
Signals and Communication Technology

The Art of Wireless
Sensor Networks

Habib M. Ammari Editor

Volume 1: Fundamentals

Signals and Communication Technology

For further volumes:
http://www.springer.com/series/4748

http://www.springer.com/series/4748

Habib M. Ammari
Editor

The Art of Wireless
Sensor Networks

Volume 1: Fundamentals

123

Editor
Habib M. Ammari
WiSeMAN Research Lab
Department of Computer

and Information Science
College of Engineering

and Computer Science
University of Michigan-Dearborn
Dearborn, MI
USA

ISSN 1860-4862 ISSN 1860-4870 (electronic)
ISBN 978-3-642-40008-7 ISBN 978-3-642-40009-4 (eBook)
DOI 10.1007/978-3-642-40009-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953605

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my first teachers: My mother,
Mbarka, and my father, Mokhtar
To my very best friends: My wife,
Fadhila, and my children, Leena,
Muath, Mohamed-Eyed, Lama,
and Maitham

To my first Dean: Dr. Bernard J. Firestone
Professor of Political Sciences and
Dean of the Hofstra College
of Liberal Arts and Sciences
at Hofstra University
for his wonderful friendship and
outstanding support to me during my
stay at Hofstra University
(September 2008–August 2011).

To my second Dean: Dr. Subrata Sengupta
Professor of Mechanical Engineering and
Dean of the College of Engineering
and Computer Science
at the University of Michigan-Dearborn
for his wonderful friendship and
outstanding support to me.

Foreword

This first volume in ‘‘The Art of Wireless Sensor Networks’’ series focuses on the
‘‘Fundamentals’’ behind wireless sensor networks, covering both the challenges
and advances in networking and communications for these resource-constrained
networks as well as the data management issues associated with the large volumes
of sensor data produced by the individual and collective sensors. Wireless sensor
networks continue to provide an important contribution to our information infra-
structure, supporting a wide variety of industrial, medical, agricultural, research,
and military applications. This book provides timely information for those desiring
to understand some of the fundamental issues that make wireless sensor networks
unique and challenging compared to more traditional wireless networks as well as
proposed solutions to advance the use of sensor networks in theory and in practice.
This volume will be an invaluable resource to those just beginning to explore this
field as well as to those wanting to delve deeper into the issues involved in the
design and implementation of this important class of networks.

Dr. Habib M. Ammari has assembled an impressive group of authors for the
individual chapters, who are renowned for their work with wireless sensor net-
works and have provided both accessible surveys of their respective topics as well
as theoretical, analytical, algorithmic, and protocol discussions, enabling the
reader to benefit tremendously from their expertise. The first set of chapters
touches on the networking aspects of wireless sensor networks, including the
physical, medium access control, and routing layers. While these networking
layers are found in virtually all networks, their design in wireless sensor networks
must take into account the resource limitations of the individual sensor nodes as
well as the application-specific purpose of these networks. These chapters describe
how the protocols and algorithms for communication and networking can be
optimized for such unique conditions in wireless sensor networks. Following this,
the book explores the management of the network, in terms of topology, mobility,
localization and task, and data management. Many of these are unique design
issues for wireless sensor networks, and, once again, they must consider both the
limited resources of the network as well as the application goals and quality of
service requirements to appropriately manage the network. The final set of
chapters delve into issues related with the data-driven nature of these networks,
including gathering the data, securing the communications, enabling ease of use,

ix

and interoperability via middleware, and software design, all of which are vital for
sensor networks deployed in real environments.

This volume entitled, ‘‘The Art of Wireless Sensor Networks’’: ‘‘Fundamen-
tals,’’ in conjunction with its sequel entitled, ‘‘The Art of Wireless Sensor Net-
works’’: ‘‘Advanced Topics and Applications,’’ promises to be a staple for those
wishing to learn the ‘‘art’’ as well as the science behind the design of wireless
sensor networks!

February 10, 2013 Wendi Heinzelman
Dean of Graduate Studies for Arts, Sciences and Engineering

Professor of Electrical and Computer Engineering
Professor of Computer Science

University of Rochester
Rochester, NY

USA

x Foreword

Contents

Part I Introduction and Applications

1 Introduction . 3
Habib M. Ammari

2 A Decade of Wireless Sensing Applications: Survey
and Taxonomy . 11
Felix Jonathan Oppermann, Carlo Alberto Boano and Kay Römer

3 Design of Low Data-Rate Environmental
Monitoring Applications . 51
Agnelo Rocha da Silva, M. Moghaddam and M. Liu

Part II Wireless Communications and Medium Access Control

4 Physical Layer Communications in Wireless
Sensor Networks. 97
Zhuo Li, Xin Wang and Qilian Liang

5 Network Coding Techniques for Wireless
and Sensor Networks . 129
Pouya Ostovari, Jie Wu and Abdallah Khreishah

6 Sleeping Techniques for Reducing Energy Dissipation 163
Rajani Muraleedharan, Ilker Demirkol, Ou Yang, He Ba,
Surjya Ray and Wendi Heinzelman

Part III Routing

7 Energy-Aware Routing for Wireless Sensor Networks 201
Ahmed E. A. A. Abdulla, Hiroki Nishiyama,
Nirwan Ansari and Nei Kato

xi

http://dx.doi.org/10.1007/978-3-642-40009-4_1
http://dx.doi.org/10.1007/978-3-642-40009-4_2
http://dx.doi.org/10.1007/978-3-642-40009-4_2
http://dx.doi.org/10.1007/978-3-642-40009-4_3
http://dx.doi.org/10.1007/978-3-642-40009-4_3
http://dx.doi.org/10.1007/978-3-642-40009-4_4
http://dx.doi.org/10.1007/978-3-642-40009-4_4
http://dx.doi.org/10.1007/978-3-642-40009-4_5
http://dx.doi.org/10.1007/978-3-642-40009-4_5
http://dx.doi.org/10.1007/978-3-642-40009-4_6
http://dx.doi.org/10.1007/978-3-642-40009-4_7

8 Utility-Based Routing in Wireless Sensor Networks 235
X. Li and Jie Wu

Part IV Topology and Mobility Management

9 Topology Management Techniques for Tolerating
Node Failure . 273
Mohamed Younis, Sookyoung Lee, Izzet Fatih Senturk
and Kemal Akkaya

10 Mobility Management with Integrated Coverage
and Connectivity . 313
Yi Zou and Krishnendu Chakrabarty

Part V Localization and Task Management

11 Range-Free Localization Techniques . 353
Christian Poellabauer

12 Energy-Efficient Task Management . 385
Hady S. AbdelSalam and Stephan Olariu

Part VI Data Management

13 Quality-Aware Sensor Data Management 429
Zhijing Qin, Qi Han, Sharad Mehrotra
and Nalini Venkatasubramanian

14 Geometric Methods of Information Storage and Retrieval
in Sensor Networks . 465
Rik Sarkar

Part VII Data Gathering

15 Data Gathering, Storage, and Post-Processing 497
Marcus Chang and Andreas Terzis

16 Data Gathering in Wireless Sensor Networks 535
Shouling Ji, Jing (Selena) He and Zhipeng Cai

xii Contents

http://dx.doi.org/10.1007/978-3-642-40009-4_8
http://dx.doi.org/10.1007/978-3-642-40009-4_9
http://dx.doi.org/10.1007/978-3-642-40009-4_9
http://dx.doi.org/10.1007/978-3-642-40009-4_10
http://dx.doi.org/10.1007/978-3-642-40009-4_10
http://dx.doi.org/10.1007/978-3-642-40009-4_11
http://dx.doi.org/10.1007/978-3-642-40009-4_12
http://dx.doi.org/10.1007/978-3-642-40009-4_13
http://dx.doi.org/10.1007/978-3-642-40009-4_14
http://dx.doi.org/10.1007/978-3-642-40009-4_14
http://dx.doi.org/10.1007/978-3-642-40009-4_15
http://dx.doi.org/10.1007/978-3-642-40009-4_16

Part VIII Security

17 Current Challenges and Approaches in Securing
Communications for Sensors and Actuators 569
Zygmunt J. Haas, Lin Yang, Meng-Ling Liu,
Qiao Li and Fangxin Li

18 Privacy Enhancing Technologies for Wireless
Sensor Networks. 609
Chi-Yin Chow, Wenjian Xu and Tian He

Part IX Middleware

19 Middleware Platforms: State of the Art, New Issues,
and Future Trends . 645
Flávia C. Delicato, Paulo F. Pires and Albert Y. Zomaya

20 Service-Oriented Middleware: Overview
and Illustrative Example. 675
Flávia C. Delicato, Paulo F. Pires and Albert Y. Zomaya

Part X Sensor Technology, Standards, and Operating Systems

21 System Architecture and Operating Systems 697
Yanjun Yao, Lipeng Wan and Qing Cao

22 Programming Languages, Network Simulators, and Tools 739
Dilan Sahin and Habib M. Ammari

23 Network Architectures and Standards . 789
Dilan Sahin and Habib M. Ammari

Editor’s Biography . 829

Contents xiii

http://dx.doi.org/10.1007/978-3-642-40009-4_17
http://dx.doi.org/10.1007/978-3-642-40009-4_17
http://dx.doi.org/10.1007/978-3-642-40009-4_18
http://dx.doi.org/10.1007/978-3-642-40009-4_18
http://dx.doi.org/10.1007/978-3-642-40009-4_19
http://dx.doi.org/10.1007/978-3-642-40009-4_19
http://dx.doi.org/10.1007/978-3-642-40009-4_20
http://dx.doi.org/10.1007/978-3-642-40009-4_20
http://dx.doi.org/10.1007/978-3-642-40009-4_21
http://dx.doi.org/10.1007/978-3-642-40009-4_22
http://dx.doi.org/10.1007/978-3-642-40009-4_23

Contributors

Hady S. AbdelSalam Microsoft Corporation, Redmond, USA

Ahmed E. A. A. Abdulla Tokyo University, Tokyo, Japan

Kemal Akkaya Southern Illinois University Carbondale, Carbondale, USA

Habib M. Ammari University of Michigan-Dearborn, Dearborn, USA

Nirwan Ansari New Jersey Institute of Technology, Newark, USA

He Ba University of Rochester, Rochester, USA

Carlo Alberto Boano University of Lübeck, Lübeck, Germany

Zhipeng Cai Georgia State University, Atlanta, USA

Qing Cao University of Tennessee, Knoxville, USA

Krishnendu Chakrabarty Duke University, Durham, USA

Marcus Chang Johns Hopkins University, Baltimore, USA

Chi-Yin Chow University of Hong Kong, Hong Kong, China

Flávia C. Delicato Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Ilker Demirkol Universitat Politecnica de Catalunya, Catalonia, Spain

Qi Han Colorado School of Mines, Golden, USA

Zygmunt J. Haas Cornell University, Ithaca, USA

Jing He Kennesaw State University, Kennesaw, USA

Tian He University of Minnesota, Minneapolis, USA

Wendi Heinzelman University of Rochester, Rochester, USA

Nishiyama Hiroki Tokyo University, Tokyo, Japan

Shouling Ji Georgia State University, Atlanta, USA

Nei Kato Tokyo University, Tokyo, Japan

xv

Abdallah Khreishah New Jersey Institute of Technology, Newark, USA

Sookyoung Lee University of Maryland, Baltimore, USA

Fangxin Li Cornell University, Ithaca, USA

Qiao Li Cornell University, Ithaca, USA

Xiaoguang Li Temple University, Philadelphia, USA

Zhuo Li University of Texas at Arlington, Arlington, USA

Qilian Liang University of Texas at Arlington, Arlington, USA

Meng-Ling Liu Cornell University, Ithaca, USA

Mingyan Liu University of Michigan, Ann Arbor, USA

Sharad Mehrotra University of California, Irvine, USA

Mahta Moghaddam University of Southern California, Los Angeles, USA

Rajani Muraleedharan University of Rochester, Rochester, USA

Stephan Olariu Old Dominion University, Norfolk, USA

Felix Jonathan Oppermann University of Lübeck, Lübeck, Germany

Pouya Ostovari Temple University, Philadelphia, USA

Paulo F. Pires Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Christian Poellabauer University of Notre Dame, Notre Dame, USA

Zhijing Qin University of California, Irvine, USA

Surjya Ray University of Rochester, Rochester, USA

Kay Römer University of Lübeck, Lübeck, Germany

Rik Sarkar University of Edinburgh, Edinburgh, UK

Izzet Fatih Senturk Southern Illinois University Carbondale, Carbondale, USA

Agnelo Rocha da Silva University of Southern California, Los Angeles, USA

Andreas Terzis Johns Hopkins University, Baltimore, USA

Nalini Venkatasubramanian University of California, Irvine, USA

Lipeng Wan University of Tennessee, Knoxville, USA

Xin Wang University of Texas at Arlington, Arlington, USA

Jie Wu Temple University, Philadelphia, USA

Wenjian Xu University of Hong Kong, Hong Kong, China

Lin Yang Cornell University, Ithaca, USA

xvi Contributors

Ou Yang University of Rochester, Rochester, USA

Yanjun Yao University of Tennessee, Knoxville, USA

Mohamed Younis University of Maryland, Baltimore, USA

Albert Y. Zomaya University of Sydney, Sydney, Australia

Yi Zou Intel Corporation, Portland, USA

Contributors xvii

Part I
Introduction and Applications

Chapter 1
Introduction

Habib M. Ammari

"My original goal was to bring readers to the frontiers of
knowledge in every subject that was treated. But it is extremely
difficult to keep up with a field that is economically profitable,
and the rapid rise of computer science has made such a dream
impossible. The subject has become a vast tapestry with tens of
thousands of subtle results contributed by tens of thousands of
talented people all over the world. Therefore my new goal has
been to concentrate on “classic” techniques that are likely to
remain important for many more decades and to describe them
as well as I can."

Donald E. Knuth
The Art of Computer Programming:
Fundamental Algorithms (1997)

1 The Art of Wireless Sensor Networks

Nowadays, the design and development of wireless sensor networks for various
real-world applications, such as environmental monitoring, health monitoring,
industrial process automation, battlefields surveillance, and seism monitoring, has
become possible owing to the rapid advances in both of wireless communications
and sensor technology. This type of network is cost-effective and appealing to a wide
range of mission-critical situations. These two reasons helped them gain significant
popularity compared to other types of networks. A wireless sensor network is a
collection of low-powered, physically tiny devices, called sensor nodes, which are

H. M. Ammari (B)

WiSeMAN Research Lab, Department of Computer and Information Science,
University of Michigan-Dearborn, Dearborn, MI 48128, USA
e-mail: hammari@umd.umich.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 3
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_1,
© Springer-Verlag Berlin Heidelberg 2014

4 H. M. Ammari

capable of sensing the physical environment, collecting and processing sensed data,
and communicating with each other in order to accomplish certain common tasks.
Furthermore, wireless sensor networks possess a central gathering point, called the
sink (or base station), where all the collected data can be stored. The major challenge
in the design and development of wireless sensor networks is mainly due to the severe
constraints that are imposed on the sensing, storage, processing, and communication
features of the sensor nodes. More precisely, the sensor nodes suffer from severely
constrained power supplies, which shorten their lifetime and make them unreliable.
It is worth noting that the sensor nodes may become faulty due to improper hardware
functioning and/or low battery power (or energy). The latter is very crucial to be
considered in the design and implementation of this type of network for their correct
operation and longevity.

Since their inception in the late 1990s, wireless sensor networks have witnessed
significant growth and tremendous development in both academia and industry. A
large number of researchers, including computer scientists and engineers, have been
interested in solving challenging problems that span all the layers of the protocol
stack of sensor networking systems. Several venues, such as journals, conferences,
and workshops, have been launched to cover innovative research and practice in
this promising and rapidly advancing field. Because of these trends, I thought it
would be beneficial to provide our sensor networks community with a comprehensive
reference on as much of the findings as possible on a variety of topics in wireless
sensor networks. As this area of research is in continuous progress, it does not seem
to be a reasonable solution to keep delaying the publication of such reference any
more.

This book series, titled “The Art of Wireless Sensor Networks,” has two volumes
that have been designed in a way to address challenging problems in traditional
as well as new emerging areas of research in sensor networking. Moreover, all the
book chapters in both volumes have been written as surveys of the state-of-the-art
and state-of-the-practice of their corresponding topics. Our main goal is to help the
readers understand the basic concepts of wireless sensor networks, and also be aware
and knowledgeable of most of the underlying research topics although some of them
are still in their infancy and not much work has been done to solve those new research
problems. These two volumes are titled:

• The Art of Wireless Sensor Networks: Fundamentals
• The Art of Wireless Sensor Networks: Advanced Topics and Applications

This book relates to the first volume and focuses on the fundamentals concepts
in the design, analysis, and implementation of wireless sensor networks. It covers
the various layers of the lifecycle of this type of networks from the physical
layer up to the application layer. Based on my fruitful discussion with all the
contributing authors whom I invited, and, particularly, Drs. Wendi Heinzelman,
Kay Römer, and Mohamed Younis, our rationale is that the first volume covers
contemporary design issues, tools, and protocols for radio-based two-dimensional
terrestrial sensor networks. Following Donald E. Knuth’s above-quoted elegant
strategy to focus on stable yet important “classic” techniques (The Art of Computer

1 Introduction 5

Programming: Fundamental Algorithms, 1997), all the book chapters in this
volume include up-to-date research work spanning various classic facets of the
physical properties and functional behavior of wireless sensor networks, including
physical layer, medium access control, data routing, topology management, mobility
management, localization, task management, data management, data gathering, secu-
rity, middleware, sensor technology, standards, and operating systems. This book
will be an excellent source of information for both senior undergraduate and grad-
uate students majoring in computer science, computer engineering, electrical engi-
neering, or any related discipline. In addition, computer scientists, researchers, and
practitioners in both academia and industry will find this book useful and interesting.

I would like to mention that I borrowed the title of this two-volume book series,
“The Art of Wireless Sensor Networks,” from Dr. Donald E. Knuth, computer scientist
and Professor Emeritus at Stanford University, who is the author of the seminal multi-
volume set of books, titled “The Art of Computer Programming.” In fact, most of the
problems being addressed in the area of wireless sensor networks are challenging
and mathematical in nature. And, solving those problems requires an ‘art’ to find
elegant yet efficient solutions in terms of time, space, and, especially, energy, which
is a crucial resource in the design and implementation of algorithms and protocols
for wireless sensor networking systems. I hope the readers will see the ‘art’ in this
book and enjoy reading it as much as I enjoyed editing it.

2 Book Organization

This book has ten parts, each of which includes 2–3 chapters. Next, we briefly
summarize the purpose of each part with a short description of its chapters.

In Part 1, titled “Introduction and Applications,” Chap. 2 provides an overview of
the most relevant applications of wireless sensor network, which have been deployed
during the last one and a half decades. Furthermore, it gives a novel taxonomy of those
applications with a goal to identify relevant programming constructs and run-time
services. Chapter 3 investigates the problem of unattended deployment in a harsh
environment and presents a discussion on the pros and cons of a specific wireless
sensor network design.

In Part 2, titled “Wireless Communications and Medium Access Control,” Chap. 4
investigates physical layer communications of wireless sensor networks. First, it
presents an optimal power allocation scheme using the water-filling algorithm with
Karush-Kuhn-Tucker conditions. Then, it describes two sensor selection schemes to
enhance the parameter estimation in energy-constrained wireless sensor networks.
Chapter 5 reviews various network coding techniques along with their assumptions
and applications. It considers both general wireless networks and wireless sensor
networks. Chapter 6 discusses several sensor sleeping techniques, which apply to
either different layers of the protocol stack or multiple layers simultaneously. Also,
it describes potential applications in each sleeping technique.

http://dx.doi.org/10.1007/978-3-642-40009-4_2
http://dx.doi.org/10.1007/978-3-642-40009-4_3
http://dx.doi.org/10.1007/978-3-642-40009-4_4
http://dx.doi.org/10.1007/978-3-642-40009-4_5
http://dx.doi.org/10.1007/978-3-642-40009-4_6

6 H. M. Ammari

In Part 3, titled “Routing,” Chap. 7 presents a classification of energy-aware
routing algorithms and shows various issues with respect to data-aggregation, routing
overhead, the energy hole phenomenon, and collisions/interferences. Chapter 8
discusses several utility-based routing protocols for wireless sensor networks and
classifies them based on their utility properties, such as delay, cost, and packet deliv-
ery ratio. Moreover, it discusses the composition-based utility for wireless networks
and its extensions in low duty-cycle wireless sensor networks.

In Part 4, titled “Topology and Mobility Management,” Chap. 9 describes existing
network topology management techniques for node failure tolerance. Also, it provides
an analysis of the impact of node failure on network connectivity in wireless sensor
networks, and proposes a classification of existing recovery schemes. Chapter 10
focuses on the problem of mobility in wireless sensor networks and its implica-
tions on sensing coverage, communication connectivity, and energy consumption.
Precisely, it deals with target tracking in mobile wireless sensor networks using the
Bayesian estimation theory. Also, it presents a purposeful and distributed mobility
management scheme as a potential probabilistic solution to the problem of mobility
management.

In Part 5, titled “Localization and Task Management,” Chap. 11 surveys a vari-
ety of range-free localization techniques in wireless sensor networks, and provides
a qualitative comparison of them. Also, it discusses current research directions in
range-free localization. Chapter 12 considers two energy-aware task management
protocols, which assign sensors to tasks based on their remaining energy while
achieving balanced load among all the sensors. Also, it gives a comparison of these
two protocols with an optimal task assignment protocol as well as energy-oblivious
protocols with respect to the network lifetime.

In Part 6, titled “Data Management,” Chap. 13 introduces a data management
perspective on large-scale sensor environments applications whose goal is to meet
non-functional requirements, such as timeliness, re-liability and accuracy, as well
as functional needs of data collection. Chapter 14 presents geometric ideas to orga-
nize sensor data based on location information. It considers distributed methods for
managing queries regarding isolated events, mobile objects, and general signal fields.

In Part 7, titled “Data Gathering,” Chap. 15 considers two case studies of wire-
less sensor network monitoring systems, namely Life Under Your Feet and RACNet,
in order to show the different components that constitute data collection networks.
While the first system focuses on extreme duty-cycling and low data rate communi-
cations, the second one emphasizes high throughput and efficient channel utilization.
Chapter 16 reviews existing techniques for data aggregation and presents their classi-
fication. In addition, it discusses a variety of tree-based and cell-based data collection
algorithms. Also, it shows the dependency between those data aggregation and data
collection techniques and potential applications.

In Part 8, titled “Security,” Chap. 17 presents challenges for ensuring security
in wireless sensor networks. It describes existing solutions, such as cryptography
schemes, key management schemes, as well as some mechanisms for attack detection
and prevention mechanisms. Also, it considers the problem of security in routing,
localization, and data aggregation. Chapter 18 presents the technologies that are used

http://dx.doi.org/10.1007/978-3-642-40009-4_7
http://dx.doi.org/10.1007/978-3-642-40009-4_8
http://dx.doi.org/10.1007/978-3-642-40009-4_9
http://dx.doi.org/10.1007/978-3-642-40009-4_10
http://dx.doi.org/10.1007/978-3-642-40009-4_11
http://dx.doi.org/10.1007/978-3-642-40009-4_12
http://dx.doi.org/10.1007/978-3-642-40009-4_13
http://dx.doi.org/10.1007/978-3-642-40009-4_14
http://dx.doi.org/10.1007/978-3-642-40009-4_15
http://dx.doi.org/10.1007/978-3-642-40009-4_16
http://dx.doi.org/10.1007/978-3-642-40009-4_17
http://dx.doi.org/10.1007/978-3-642-40009-4_18

1 Introduction 7

for the protection of system privacy, data privacy and context privacy in wireless
sensor networks, along with the threats in each of these three kinds of privacy. More-
over, it compares existing privacy-preserving techniques and discusses the strengths
and weaknesses of each one of them.

In Part 9, titled “Middleware,” Chap. 19 provides an overview of existing design
approaches for middleware in wireless sensor networks. Also, it describes the most
common middleware services and programming abstractions. Chapter 20 presents an
approach to develop systems for wireless sensor networks, called Service Oriented
Middleware, where the network is logically viewed as a service provider for consumer
applications. This type of system provides abstractions of the network through a set
of generic and/or application-specific services, such as data aggregation, adaptation,
security, self-organization, resource management.

In Part 10, titled “Sensor Technology, Standards, and Operating Systems,” Chap. 21
presents existing operating systems in wireless sensor networks and discusses their
strengths and weaknesses. Chapter 22 describes various network simulators, such
as NS-2, OMNET++, J-Sim, OPNET and TOSSIM, and network programming
languages, such as NesC and Mate. Chapter 23 gives a review of wireless sensor net-
work technologies, such as Zig-Bee, WirelessHART, 6LoWPAN, and ISA.100.11a,
along with their network structure, protocol layers, and application areas.

3 Acknowledgments

This book of this complete two-volume series, titled “The Art of Wireless Sensor
Networks,” is a tribute to the fine work of the foremost leading authorities and scholars
in their fields of research in the area of sensor networking. Frankly, it is not fair that
I am the only one whose name appears on the book cover. And, it is a great pleasure
and an honor for me to cordially recognize all of those who contributed a lot to
this book and generously supported me throughout this project in order to make this
two-volume series a reality. Without them, it would not be possible at all to finish this
book and make it available to all the researchers and practitioners, who are interested
in the fundamentals of wireless sensor networks.

First and foremost, I am sincerely and permanently grateful to Allah—the Most
Gracious, the Most Merciful—for everything He has been providing me with. Par-
ticularly, I would very much love to thank Him for giving me the golden opportunity
to work with such group of outstanding scientists and researchers to put together this
book, and for helping me publish it within two years. I am very pleased to dedicate
this modest book to Him and very much hope that He would kindly accept it and
put His Blessing in it. His Saying “And of knowledge, you (mankind) have been
given only a little” has an endless, pleasant echo in my heart and always reminds
me that our knowledge is much less than a drop in the ocean.

It is worth mentioning that all the contributing authors were invited to contribute to
this book, and that no Call for Book Chapters had ever been sent through any mailing
list. All of those authors whom I invited were chosen very selectively to cover most of

http://dx.doi.org/10.1007/978-3-642-40009-4_19
http://dx.doi.org/10.1007/978-3-642-40009-4_20
http://dx.doi.org/10.1007/978-3-642-40009-4_21
http://dx.doi.org/10.1007/978-3-642-40009-4_22
http://dx.doi.org/10.1007/978-3-642-40009-4_23

8 H. M. Ammari

the fundamental topics in wireless sensor networks. They have been contributing to
the growth and development of the field of wireless sensor networks. This book would
never have been written without their great contributions, support, and cooperation.
Therefore, my cordial recognition is due to my colleagues—the ones whom I invited
to contribute with their book chapters to this book—whose names are listed in the
alphabetical order: Drs. Nirwan Ansari, Qing Cao, Krishnendu Chakrabarty, Xiuzhen
Cheng, Flavia Delicato, Zygmunt Haas, Tian He, Wendi Heinzelman, Qilian Liang,
Mingyan Liu, Sharad Mehrotra, Stephan Olariu, Christian Poellabauer, Kay Römer,
Rik Sarkar, Andreas Terzis, Nalini Venkatasubramanian, Jie Wu, and Mohamed
Younis. I am really honored to have worked with such an amazing crew of scientists.
I learned a lot from them throughout this project, and it was an incredible experience
for me in finishing this book.

Every book chapter has undergone two rounds of reviews. Moreover, in each
round, every book chapter received 3–5 reviews by experts in the scope of the chapter.
Our ultimate goal is to provide the readers with a high-quality reference on the
fundamentals of wireless sensor networks. Precisely, all book chapters were carefully
reviewed in both rounds by all the contributing authors. I would like to express my
sincere gratitude to all the contributing authors for their constructive feedback to
improve the organization and content of all book chapters. My special thanks go to
Dr. Stephan Olariu for his generous offer to review all book chapters of both books
of this two-volume series. Also, my original plan was to publish only one book,
titled “The Art of Wireless Sensor Networks.” But, I ended up with 40 book chapters.
Therefore, I suggested to all the above-mentioned invited authors to split the book
(i.e., 40 book chapters) into two volumes along with their book chapters and titles.
Here, again, my special thanks go to all the invited authors for their very helpful
feedback with regard to the content of each volume. Moreover, I am very grateful
to Dr. Wendi Heinzelman, Professor of Electrical and Computer Engineering, and
Dean of Graduate Studies for Arts, Sciences and Engineering at the University of
Rochester, for her great foreword.

I started this project on Sunday, August 28, 2011 at 06:56 AM when I contacted
the Publishing Editor, Dr. Thomas Ditzinger, who approved my proposal for an
edited book. All book chapters for both volumes were uploaded on the website of
Springer and made accessible to the Editorial Assistant, Mr. Holger Schaepe, on
March 11, 2013. Hence, this project lasted over 18 months. During all this period
of time, I exchanged 4, 840 emails with all contributing authors with regard to their
book chapters. I would like to thank all the contributing authors for their invaluable
time, flexibility, and wonderful patience in responding to all of my emails in a timely
manner. Please forgive me for your time, and I hope that the readers will appreciate
all of your great efforts and love all the materials in this book. We all have devoted
a considerable time to finish this book and hope it will be paid off in the future.

I would like to acknowledge my family members who have provided me with
excellent source of support and constant encouragement over the course of this
project. In particular, I am most grateful to my best friend and beloved wife, Fadhila,
for her genuine friendship and good sense of humor, and for being extremely sup-
portive and unboundedly patient while I was working on this book. My special

1 Introduction 9

thanks and deep appreciation go to her for putting the Art into this book. In
addition, I would like to express my hearty gratitude to my lovely and beautiful
children, Leena, Muath, Mohamed-Eyed, Lama, and Maitham, for their endless sup-
port and encouragement. They have been one of my greatest joys, very patient, and
understanding. I hope they will forgive me for spending several hours away from
them while I was setting in front of my PC in my office or my laptop at home busy with
this book. Several times, they all told me: “Daddy, your books and emails are always
dragging you away from us!” My lovely wife and children have been a wonderful
inspiration to me, and very patient throughout the life of this project. Without their
warm love and care, this project would never even have been started. Also, I owe a
lot to both of my first teachers, my mother, Mbarka, and my father, Mokhtar, for their
sincere prayers, love, support, and encouragement, and for always teaching me and
reminding me of the value of knowledge and the importance of family. Furthermore,
I would like to thank my mother-in-law, Hania, and my father-in-law, Hedi, for their
thoughtful prayers, concern, and valuable support. Besides, I would like to thank my
sisters, sisters-in-law, brother, and brothers-in-law for their support and thoughts.

This project could not have been completed without the great support of the
people around me who made this experience successful and more than enjoyable.
I would like to thank all of my colleagues and friends at the University of Michigan-
Dearborn and, particularly, the four departments of the College of Engineering
and Computer Science (CECS), namely Department of Computer and Information
Science, Department of Electrical and Computer Engineering, Department of Indus-
trial and Manufacturing Systems Engineering, and Department of Mechanical Engi-
neering, for the collegial and very friendly atmosphere they provided me with to
finish this book. In particular, I am very grateful to Dr. Subrata Sengupta, Professor
of Mechanical Engineering and CECS Dean at the University of Michigan-Dearborn,
for his kindness, continuous encouragement, and outstanding support to WiSeMAN
Research Lab since I joined the Department of Computer and Information Science at
the University of Michigan-Dearborn on September 1, 2011. Also, I am very thank-
ful to my colleagues at the University of Michigan-Dearborn, namely Dr. Kiumi
Akingbehin, Professor of Computer and Information Science; Dr. Yubao Chen, Pro-
fessor of Industrial and Manufacturing Systems Engineering, and China Programs
Director; Dr. Bruce Elenbogen, Associate Professor of Computer and Information
Science; Dr. Brahim Medjahed, Associate Professor of Computer and Information
Science; Dr. Chris Mi, Professor of Electrical and Computer Engineering, and IEEE
Fellow; Dr. Yi Lu Murphey, Professor and Chair of the Department of Electrical and
Computer Engineering, and IEEE Fellow; Dr. Elsayed Orady, Professor of Industrial
and Manufacturing Systems Engineering; Dr. Adnan Shaout, Professor of Electri-
cal and Computer Engineering; Dr. Paul Watta, Associate Professor of Electrical
and Computer Engineering; Dr. David Yoon, Associate Professor of Computer and
Information Science; Dr. Armen Zakarian, Professor and Chair of the Department
of Industrial and Manufacturing Systems Engineering; and Dr. Qiang Zhu, Profes-
sor of Computer and Information Science, and ACM Distinguished Scientist; for
their wonderful friendship and for being so supportive and helpful along the way. In
addition, I would like to express my special thanks and gratitude to my colleague,

10 H. M. Ammari

Dr. Drew B. Buchanan, Director of the Office of Research and Sponsored Programs,
for his excellent support to my research activities in several ways. This work is
partially supported by the National Science Foundation (NSF) grants 0917089 and
1054935.

Last, but not the least, I would like to express my deep appreciation to Dr.
Thomas Ditzinger, Publishing Editor, Dr. Dieter Merkle, Editorial Director, Mr. Hol-
ger Schaepe, Editorial Assistant, Springer-Verlag, Heidelberg (Germany) and New
York (USA), Ms. Jacqueline Lenz, Springer Production Manager Book Production
STM Heidelberg, Ms. Ramyakrishnan Murugesan, Springer Production Editor, Dr.
S.A. Shine David, Project Manager, and Mr. Srinivas and his typesetting team, for
their assistance throughout the lifecycle of this project, Varddhene V., Scientific Pub-
lishing Services, and Ms. Jessica Wengrzik, Springer DE. It was a great pleasure to
work with all of them. I would like to acknowledge the publisher, Springer, for the
professionalism and the high quality of their typesetting team as well as their timely
publication of this book.

June 2013 Habib M. Ammari
WiSeMAN Research Lab

Chapter 2
A Decade of Wireless Sensing Applications:
Survey and Taxonomy

Felix Jonathan Oppermann, Carlo Alberto Boano and Kay Römer

Abstract The popularity of low-power wireless sensors increased significantly in
the last decade, triggering a golden era for wireless sensor network research and
development. During the early years of the twenty-first century, wireless sensor net-
work applications have evolved from small demonstrations with a lifetime of only a
few hours to complete systems made up of hundreds of tiny wireless nodes deployed
in a wide variety of settings, ranging from harsh and remote environments to residen-
tial buildings and clinical units. This survey gives an overview of the most relevant
applications of wireless sensor network applications deployed during the last ten
years, and classifies them using a novel taxonomy that aims to help identifying rele-
vant programming constructs and run-time services. With more than 60 applications
reviewed, ranging from military and civilian surveillance to tracking systems, from
environmental and structural monitoring to home and building automation, from
agriculture and industrial settings to health care, this survey will serve as a reference
to guide researchers and system designers.

1 Introduction

Evolving from research at the University of California, Berkeley, CA, USA in
the early years of the twenty-first century, wireless sensor networks (WSNs) have
become an important research area with a high number of dedicated conferences and
journals.

F. J. Oppermann (B) · C. A. Boano · K. Römer
Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
e-mail: oppermann@iti.uni-luebeck.de

C. A. Boano
e-mail: cboano@iti.uni-luebeck.de

K. Römer
e-mail: roemer@iti.uni-luebeck.de

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 11
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_2,
© Springer-Verlag Berlin Heidelberg 2014

12 F. J. Oppermann et al.

The typical WSN consists of a number of tiny devices equipped with a micro-
controller, a low-power radio, and a number of sensors to perceive their surrounding
environment. These devices are usually networked in a multi-hop fashion, to enable
cooperation among nodes and real-time delivery of sensed data to the user. The
original vision of WSNs consisted of randomly dropping large quantities of tiny and
low-cost embedded devices over a large area in order to enable ad hoc measurements.
The resulting dense distribution of tiny sensor nodes would enable a better area
coverage, an improved accuracy, and a greater fault tolerance compared to the use
of traditional isolated sensors. However, this vision was beyond the technological
capabilities at that time and the first prototypes of WSNs actually consisted of a
small number of matchbox-sized devices, often called “motes.” Still, their relatively
small size allows a careful placement close to the phenomenon of interest, enabling
unprecedented spatial and temporal resolution at rather low costs.

These properties, combined with the minimal need of human intervention, led to
a great success of the WSN vision, and paved the way to the adoption in a wide range
of applications, ranging from environmental monitoring and precision agriculture to
industrial automation and personalized health care. Until today, most WSN deploy-
ments have a strong scientific background. Their main purpose is the demonstration
of new technologies and the exploration of remaining limitations; the requirements of
the actual application at hand are often secondary. Consequently, most deployments
are carried out by computer scientists and not by the intended end-users.

One of the first application areas in the early years of WSN research was military
surveillance, in which sensor nodes are seen as a tool to enable reliable and unob-
trusive intrusion detection and tracking of enemy forces [9, 83]. In these scenarios,
the sensor nodes are envisioned to be randomly dropped on the battlefield and to
automatically self-organize into an operational WSN. A well-known early example
is the 29 Palms project conducted in March 2001 by researchers from the University
of California, Berkeley, CA, USA [83]. The demonstration employed a network of
five sensor nodes that are dropped by an unmanned aerial vehicle (UAV) to moni-
tor a road for passing vehicles. While environmental monitoring applications tend
to be comparatively simple by only requiring a straightforward transmission of the
sensed data to a single gateway station, early military scenarios like robust tracking
of people and vehicles moving in the proximity of a WSN are more complex, as
they require in-network processing of the sensed data. This explains why most of
the early military deployments are rather small demo applications with a lifetime of
only a few hours.

Another typical example of this kind of application is the deployment at Great
Duck Island in the year 2002 [62, 72, 102], which is usually regarded as the first
significant application deployment of a WSN. In this scenario, a sensor network
was used to unobtrusively monitor the environmental conditions around the nests of
storm petrels on a small island off the coast of Maine, USA. The goal was to provide
a more detailed picture to the biologists examining the nesting behavior of birds.
The deployment could not fully meet the expectations due to technical limitations,
but it clearly highlighted the utility and usefulness of WSNs. Many deployments in
the early years of sensor network research follow the example of Great Duck Island

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 13

by focusing on environmental research as the primary application area. In these
deployments, the WSN is typically used as a large-scale sensing instrument. Despite
generating useful data for biological research, the primary aim is usually to demon-
strate the usefulness and the advantages of low-power wireless systems compared to
traditional approaches. Such advantages include higher spatial and temporal resolu-
tion of the measured data, greater flexibility, and lower costs.

Around the year 2004, the number of reported WSN deployments increased sig-
nificantly. This increase was partly driven by the commercialization of the first WSN
platforms, such as Mica2, Mica2Dot, and their later evolutions MICAz and TelosB,
which became the de facto standard research platforms for WSNs [84]. Partly, this
increase was also due to maturing software infrastructures (e.g., TinyOS, TinyDB),
and the increasing robustness of networking protocols. As a consequence, WSNs
started to cover a larger set of application areas, including more complex civilian
scenarios such as structural monitoring [109], cold chain management [88], preci-
sion agriculture [20], emergency response [69], and health care [97, 106]. In the
following years, the latter area started to evolve into an independent branch of WSN
applications, often referred to as body sensor networks (BSN): networks of minia-
turized and low-power noninvasive or invasive wireless biosensors used to monitor
the vital signs of patients [114].

Simultaneously, the advent of wireless sensor and actor networks (WSANs) fur-
ther broadened the application space of WSNs [4]. A traditional WSN is a pure
measurement tool that only allows to observe the environment, and decision making
processes typically happen outside of the network. WSANs, instead, also feature
actuators and hence can exercise some control on the surrounding environment. In
a WSAN, the control loop is usually closed within the network, and there is often
support for the execution of decision processes. Consequently, the employed soft-
ware tends to be more complex than in pure data collection applications. Despite
their interesting features, the number of actual WSAN deployments is still rather
low compared to the amount of WSN deployments. Only three out of over sixty
deployments surveyed in this chapter feature actuators.

In the recent years, the number of WSN deployments largely increased and, driven
by the overlap of neighboring research areas such as home automation and the Internet
of Things, covers an even larger set of application areas. Furthermore, the increasing
popularity of WSNs lead to an increase of unconventional application scenarios
that combine sensor networks and other technologies, such as mobile robots [16],
RFID [38, 39], cell phones, or smart cameras [79]. Such scenarios require more
complex solutions than the ones employed in traditional WSN applications, and
push the community away from simple low data-rate monitoring applications, which
used to be the classical WSN deployments in the earlier years. Instead, classical
WSN deployments experience a shift towards more economy-oriented scenarios
and early real-world applications begin to appear. A good example is the SFpark
project in San Francisco, CA, USA [92], in which sensor network technology is
employed to monitor parking spots in a district of San Francisco. The collected data
is used to enable demand-responsive pricing and a live search for empty parking
spots while aiming to steer demand and to reduce congestion in the streets. In spite

14 F. J. Oppermann et al.

of such promising examples, the number of WSN applications outside the scientific
community is still limited. Most deployments remain prototypical in character and
are conducted by researchers working on sensor network technologies. Commercial
applications tend to be conceptually simple and not to exploit the full potential of
scientific innovations. For example, advanced multi-hop routing protocols are rarely
used.

The following survey gives an overview of WSN applications deployed during
the last ten years. It is based on a taxonomy that aims to help identifying relevant pro-
gramming constructs and run-time services to support a broad range of existing and
future WSN applications. Both the taxonomy and the survey are partially based on
earlier work conducted in the context of the makeSense project [36]. The remainder
of this chapter is structured as follows. In the next section we present a comprehen-
sive taxonomy to classify WSN applications. In Sect. 3 we apply this taxonomy to
a range of existing WSN applications and assign the applications to six basic cate-
gories based on the identified properties. For each category, exemplary applications
are described in detail, and other representatives of the category with noteworthy
distinctive characteristics are briefly highlighted. We conclude this chapter in Sect. 4
with an outlook on future WSN developments.

2 Taxonomy

Several taxonomies have been proposed in the literature to classify WSN applications.
In 2002, Tilak, Abu-Ghazaleh and Heinzelman [104] defined an early taxonomy that
allows the classification of WSNs according to different communication functions,
data delivery models, and network dynamics.

Based on a discussion with European experts from academia and industry in 2004,
Römer and Mattern [90] proposed an explicit definition of the WSN design space
based on a taxonomy consisting of twelve categories. Their design space allows the
characterization of WSN applications based on technical properties of the deployed
network. It aims to cover the full spectrum of WSN application properties, but it
is limited to sense-only applications without actuators. The design space is accom-
panied by a survey of WSN applications employing the newly defined taxonomy.
Römer and Mattern’s design space was later refined and simplified by Rocha and
Gonçalves [89]. In addition to the simplification, the authors add categories to high-
light application-specific needs independently of the employed technical solution.

Based on a survey of WSN taxonomies and the evaluation of existing WSN
applications, Ruairí et al. [91] created a solution-neutral taxonomy to cover applica-
tions’ primary requirements. In contrast to previous work, their taxonomy focuses
on properties of the actual application and does not include technical properties of
the deployed sensor network.

Bai et al. [11] proposed a WSN application taxonomy with eight dimensions that
is used as a tool to identify typical application classes to fasciculate the creation of
application-specific languages.

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 15

None of the proposed taxonomies seems to fully capture all aspects relevant to
WSN design. We propose a refined taxonomy that aims to capture exactly these
aspects while still staying concise enough to be useful. Our taxonomy is partially
based on early work conducted by Mottola and Picco as part of a survey on WSN
programming abstractions [77]. Their taxonomy is also intended as a tool to identify
common application requirements that programming platforms must meet.

We now describe the dimensions of our taxonomy. For some dimensions, the
possible values are not exclusive, and several of them may apply for a specific
application.

Goal. Traditionally, WSN have been seen primarily as a sense-only tool to passively
collect data. Such scenarios do not require control logic inside the network. For
wireless sensor and actor networks (WSANs) this is not necessarily true, anymore [4].
The collected data could still be forwarded to a central location at which the control
logic is implemented, but this is highly inefficient. Such applications follow a sense
and react pattern.

goal ∈ {sense-only, sense-and-react}.

Sampling. Depending on the application scenario, WSNs follow different approaches
for data collection and processing. In the periodic case, the nodes regularly read their
sensors, process the resulting data, and possibly react accordingly. Event-triggered
WSNs stay dormant for most of their lifetime and wait for some rare event. Each
node monitors its sensors until a relevant event is detected. Following the successful
detection of an event, the WSN becomes active and performs the required distributed
processing.

sampling ∈ {periodic, event-triggered}.

Sensed phenomenon. Similarly to Ruairí et al. [91], we discriminate the sensed
phenomena based on two orthogonal properties. The phenomenon sensed by a WSN
can either be discrete or distributed. We consider a phenomenon to be discrete if it
is located at a specific place and can usually be fully detected by a single sensor.
Multiple sensors may be required if the phenomenon is mobile, for example to
facilitate tracking, or they may allow a higher fidelity of the collected data. Distributed
phenomena affect an area or volume and can only be fully captured by a larger number
of sensors. WSNs may be used to monitor just a single phenomenon or multiple
independent phenomena.

sensed phenomenon ∈ {single,multiple} × {discrete, distributed}.

Data rate. The type of deployed sensors largely influences the capabilities and prop-
erties of a WSN. For this survey, we use an abstract classification of sensors based
on the amount of generated data. We distinguish between two classes of sensors: low
data-rate sensors, such as temperature and humidity sensors, that create a stream of
simple numerical values and high data-rate sensors that produce large amounts of
data per reading, like video cameras, or which require a high sampling rate, such as

16 F. J. Oppermann et al.

microphones and vibration sensors. The border between these classes is sometimes
fuzzy. As a rule of thumb, we consider those sensors as high date-rate sensors that
generate amounts of data that exceed the usual data-rate of WSN radio links. Most
WSNs employ low data-rate sensors.

data rate ∈ {low, high}.

Heterogeneity. WSNs were originally envisioned to be largely homogeneous. In
reality this is frequently not true: modern WSNs often consist of nodes that differ
in the set of employed sensors. In addition, some WSNs employ multiple node
architectures that offer different resources, for example in terms of storage space or
processing power, and thus are bound to serve different purposes. Similarly, some
nodes in the network may have a larger power supply available or they can harvest
energy, which allows them to spend more time in an active state than the majority of
the other nodes.

heterogenity ⊂ {sensors, architecture}.

Mobility. Most WSNs are static, but there are applications that require mobility. In
the latter case, all the nodes or a subset of the nodes in the network are mobile. A
typical example is having the sensor nodes directly attached to some animals. Active
movement of the nodes is rare and thus not considered in this survey. The base station
of the WSN is also not necessarily situated at a fixed location. It may move within
the WSN or even occasionally leave the communication range of the network.

mobili t y ⊂ {mobile nodes,mobile base-station}.

Connectivity. The connectivity of a WSN depends on the communication range of
the deployed radio, its surrounding environment, and the degree of network dynamics.
Mobility influences the connectivity of a WSN, but disruption of communication
can also be caused by an changing radio environment, even if the nodes stay at
fixed locations. If at least one (multi-hop) communication path between each pair of
nodes in the network is constantly expected, we consider the network to be connected.
Note that sporadic unintended packet losses may also occur in the connected case.
If the network is occasionally partitioned as part of normal operation, the network is
considered to have intermittent connectivity. In some networks the nodes are isolated
most of the time and enter the communication range of other nodes only sporadically.

connectivi t y ∈ {connected, intermittent, sporadic}.

Processing. In early WSN applications, the majority of data processing is performed
outside of the network. To reduce the amount of data to be transmitted and to lever-
age the nodes’ processing capabilities, it is sometimes beneficial to move parts of
the data processing directly into the network. In-network processing can occur in
different forms ranging from simple filtering to sophisticated control logic. We dis-
criminate the following types of processing: filtering, compression, aggregation,

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 17

tracking, event detection, classification, interpretation, and decision making. Filter-
ing and compression allow to reduce the amount of data to be transmitted or stored.
Aggregation further reduces the data by fusing values several sensors while pass-
ing it trough the network. If the network has the ability to autonomously scan for
the occurrence of predefined events, we specify this as event detection. Further data
processing can either take the form of classification or decision making. The result
of the later is an immediately useful result suitable to act upon.

Orthogonally, processing can happen at different locations in the network. We
distinguish local processing at a single node, distributed processing in the network,
processing at a gateway, and processing at some server outside of the WSN system.

processing ⊂ {filtering, compression, aggregation, tracking,

event detection, classification, decision making}
× {node, network, gateway, server}.

Storage. To allow later analysis of the gathered data, most applications require some
form of persistent data storage. In addition, if the network is not constantly connected,
some form of caching is required to permit a delayed transmission. Storage can
happen either directly at the node that created the data, somewhere in the network,
at the gateway, or at some server outside of the WSN system.

storage ⊂ {caching, persistent} × {node, network, gateway, server}.

Services. Besides the processing of the data, further support services may be required
for successful WSN operation. For many application scenarios it is necessary to
spatially and temporally correlate the measurements of different sensors. This usually
requires some form of time synchronization among the nodes. If node positions are
not precisely know in advance there is also a need for some kind of localization.

If the sensed data is of privacy-critical nature, like vital patient data in a hospital,
or its integrity is important, then the data needs to be protected against overhearing
or tampering. This can be realized by implementing encryption and authentication.

Long-term deployments with changing environments or requirements raise a need
for remote maintenance functions. Reprogramming or reconfiguration systems allow
to meet new requirements by remotely adapting the nodes’ software.

service ⊂ {localization, time synchronization, authentication, encryption,

reprogramming, reconfiguration}.

Communication primitives. Deployed WSN employ a range of diverse communica-
tion primitives. Simple sense-only networks usually use only some form of collection
to relay the gathered data towards the sink. More complex networks may employ a
broad range of different processing primitives.

Especially heterogeneous networks may be organized in clusters. All nodes in a
cluster communicate solely with a designated cluster head. This cluster head serves as

18 F. J. Oppermann et al.

a gateway to the outer world by communicating with other cluster heads and the base
station of the WSN. In heterogeneous networks the nodes serving as cluster heads
usually possess excessive resources in terms of energy supply, storage capacity, and
computational power.

communication primitives ⊂ {single-hop unicast,multi-hop unicast,

single-hop broadcast,flooding, collection, cluster}.

3 Survey

In this section, we present a comprehensive survey of well-documented WSN appli-
cations based on a systematic review of the leading WSN publication venues. The
survey only includes applications whose feasibility has been demonstrated by either
a prototype or a real-world deployment. We explicitly exclude pure testbeds and
similar applications. A complete list of the applications covered in this survey can be
found in Table 1. For each deployment, we report the approximate time frame, net-
work size, and overall lifetime. If the year of the actual deployment is not explicitly
stated, we assume the date of the earliest publication. We further map all the surveyed
systems to the taxonomy presented in Sect. 2, and we summarize their properties in
Tables 2 and 3. We finally categorize the surveyed applications into six classes based
on the type of output returned to the user and on the complexity of the employed
technical solution. For each class, we examine representative applications in detail
and we highlight further deployments with distinguishing properties.

Most applications are using the WSN technology as a pure measurement instru-
ment, and the collected data is typically transferred to a central server for post-
processing and analysis. Hence, the network simply delivers the raw data, and its
analysis is up to the end-user. This is typically the case for scientific deployments
in which all the collected data is relevant. The indiscriminate collection of the com-
plete raw data is also useful in prototypical deployments in order to be able to verify
the correct operation of each single node. We divide this class of applications into
three sub-classes: Low-Rate Data Collection, characterized by a periodic collection
using low data-rate sensors; High-Rate Data Collection, characterized by periodic
collection in which the data-rate generated by the sensors is particularly high; and On-
Demand Data Collection, in which the user triggers the collection of data on-demand.
Please note that in deployments that fall into one of these categories any processing
or analysis of the data is left to the user: the WSN itself does not process the data. In
another notable set of applications, the sensor network performs on-node processing
and event detection or it even classifies the observed data within the network. As a
result, the user does not get a raw collection of data anymore, but instead the noti-
fication about the occurrence of a given event or an instance of a class. We group
these applications in the Event Detection and Classification class. Some other WSNs
build upon the in-network event detection to localize or even track their position. The

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 19

Table 1 Basic properties of the presented WSN applications1

Application Year Size Lifetime Class

Environment monitoring: PODS
[19]

2002 Tens Weeks Low-rate data collection

Habitat monitoring: Great Duck
Island [62, 72, 102]

2002 Tens (100) Months Low-rate data collection

Glacier monitoring: GlacsWeb
[74]

2004 Tens (9) Months Low-rate data collection

Power monitoring [53] 2004 Tens Years Low-rate data collection
Soil and Moisture monitoring
[23, 24]

2004 Tens (9) Weeks Low-rate data collection

Vineyard monitoring: Unwired
wine [17, 20]

2004 Tens (65) Months Low-rate data collection

Wildfire monitoring [35] 2004 Tens Hours Low-rate data collection
Environment monitoring:
Redwood Eco-Physiology
[32, 105]

2005 Tens Days Low-rate data collection

Forest fire detection: FireWxNet
[37]

2005 Tens Days Low-rate data collection

Irrigation [57] 2005 Tens (5) Days Low-rate data collection
Landslide detection: SenSlide
[94]

2005 Tens Months Low-rate data collection

Tunnel monitoring [27] 2005 Tens (18) Weeks Low-rate data collection
Water monitoring [81] 2005 Tens (5) Months Low-rate data collection
LOFAR-agro [63] 2006 Tens Months Low-rate data collection
Environment monitoring:
SensorScope [15]

2007 Tens (16) Months Low-rate data collection

Irrigation: FLOW-AID [13] 2007 Tens (10) Months Low-rate data collection
Tunnel control and monitoring
[31, 26, 78]

2007 Tens Months Low-rate data collection

Fire detection and tracking [8] 2008 Tens (12) Hours Low-rate data collection
Greenhouse Monitoring [3] 2008 Tens (4) Days Low-rate data collection
AC metering [49, 50] 2009 Tens (49) Weeks Low-rate data collection
Environment monitoring:
GreenOrbs [75]

2009 Tens (120) Weeks Low-rate data collection

Environment monitoring:
PermaSense [18]

2009 Tens (25) Years Low-rate data collection

Reliable Clinical Monitoring
[29]

2009 Tens Days Low-rate data collection

Soil monitoring: Suelo [86] 2009 Tens (13) Months Low-rate data collection
Vineyard monitoring [7] 2009 Tens (27) Months Low-rate data collection
Wildlife and environmental
monitoring [38, 39]

2009 Tens (36) Months Low-rate data collection

Duty cycling building: HVAC
[2]

2010 Tens Days Low-rate data collection

MEDiSN [59] 2010 Tens (55) Days Low-rate data collection

(continued)

20 F. J. Oppermann et al.

Table 1 (continued)

Application Year Size Lifetime Class

Electronic Shepherd [103] 2004 Tens Months Low-rate data collection
Pipe monitoring: PIPENET
[101]

2004 Tens Months Low-rate data collection

Relic protection in the forbidden
city [65, 66]

2007 Tens (34) Weeks Low-rate data collection

Substation monitoring [80] 2008 Tens (45) Weeks Low-rate data collection
Structure monitoring: Four
Seasons [109]

2004 Tens Days High-rate data collection

Industrial plant monitoring: Oil
tanker [61]

2005 Tens Months High-rate data collection

Volcano monitoring [108] 2006 Tens Days High-rate data collection
Structure monitoring: Golden
Gate Bridge [56]

2007 Tens (64) Months High-rate data collection

Structural monitoring [110] 2009 Tens (21) Days High-rate data collection
Structure monitoring: Torre
Aquila [25]

2009 Tens (16) Months High-rate data collection

Underground animal tracking
[73]

2010 Tens (14) Months High-rate data collection

Zebra monitoring: ZebraNet
[51, 115]

2002 Tens Months On-demand data collection

Antelope monitoring:
wildCENSE [87]

2006 Tens Months On-demand data collection

Environment Monitoring:
LUSTER [93]

2007 Tens (20) Weeks On-demand data collection

High-fidelity Motion Analysis
[70]

2009 Tens (9) Days On-demand data collection

Cane-toad monitoring
[46, 47, 98]

2004 Tens Weeks Event detection and
classification

Fence monitoring [111] 2007 Tens (10) Days Event detection and
classification

Acoustic monitoring: VoxNet
[6]

2008 Tens (8) Days Event detection and
classification

Human monitoring:
BehaviorScope [71, 14]

2008 Tens Days Event detection and
classification

Coal mine monitoring [67] 2009 Tens (27) Days Event detection and
classification

Fall detection: WeCare [5] 2010 Tens Days Event detection and
classification

Activity recognition: PBN [54] 2011 Tens (5) Hours Event detection and
classification

Intrusion detection: 29 Palms
[83]

2001 Tens (5) Weeks Localization and tracking

Cold chain management [88] 2004 Tens (55) Years Localization and tracking

(continued)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 21

Table 1 (continued)

Application Year Size Lifetime Class

Intrusion detection: A Line in
the Sand [9]

2004 Tens (90) Days Localization and tracking

Robot navigation [16] 2004 Tens (9) Hours Localization and tracking
Sniper localization: PinPtr [99] 2004 Tens (60) Months Localization and tracking
Tracking: EnviroTrack [1, 44] 2004 Tens (70) Days Localization and tracking
Intrusion detection: ExScal [37] 2005 Thousands

(1200)
Days Localization and tracking

Parking lot surveillance [79] 2009 Tens Days Localization and tracking
Radio-based localization [113] 2012 Tens (16) Days Localization and tracking
Animal control: Networked
Cows [22]

2004 Tens (10) Weeks Actuation

HVAC [34] 2005 Tens Weeks Actuation
Animal control [107] 2007 Tens (13) Days Actuation

1Values written in italics could not be determined with absolute certainty based on the literature
available: these values have been estimated to the best of our knowledge

latter can be as simple as detecting a moving sensor or may require complex signal
processing as in [99]. We group these applications in the Localization and Track-
ing class. Finally, applications that involve not only sensing but also actuation and
actively manipulate the monitored environment are grouped in the Actuation class.

3.1 Low-Rate Data Collection

It is probably not surprising that low-rate data collection was the first application
scenario for WSNs, and that it still represents the majority of existing deployments.
These applications are typically characterized by periodic monitoring with low-data-
rate sensors, such as simple temperature or infrared sensors that usually produce a
single scalar value per measurement. Furthermore, they usually support an extensive
lifetime of the network up to several years [21]. As it can be observed in Table 3, these
applications rarely employ sophisticated in-network processing. The low data-rate
makes it feasible to communicate the collected raw data without filtering, compres-
sion, or aggregation.

3.1.1 Environmental Monitoring

The most prominent example of this application class is probably a series of deploy-
ments between 2002 and 2004 at Great Duck Island in Maine,USA [72, 102] . The
goal of these deployments was the long-term observation of the breeding behavior and
nesting conditions of Leach’s Storm Petrels. The involved biologists were especially
interested in the usage patterns of the nesting burrows and how these are affected

22 F. J. Oppermann et al.

Ta
bl

e
2

M
ap

pi
ng

of
W

SN
ap

pl
ic

at
io

ns
to

th
e

ta
xo

no
m

y
pr

es
en

te
d

in
Se

ct
.2

(1
/2

)2

A
pp

lic
at

io
n

G
oa

l
Sa

m
pl

in
g

Ph
en

om
en

on
D

at
a

ra
te

H
et

er
og

en
ei

ty
M

ob
ili

ty
C

on
ne

ct
iv

ity

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:P

O
D

S
[1

9]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
H

ab
ita

tm
on

ito
ri

ng
:G

re
at

D
uc

k
Is

la
nd

[6
2,

72
,

10
2]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed

G
la

ci
er

m
on

ito
ri

ng
:G

la
cs

W
eb

[7
4]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

N
od

es
In

te
rm

itt
en

t
Po

w
er

m
on

ito
ri

ng
[5

3]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

A
rc

hi
te

ct
ur

e
St

at
ic

C
on

ne
ct

ed
So

il
an

d
M

oi
st

ur
e

m
on

ito
ri

ng
[2

3,
24

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

Se
ns

or
s,

ar
ch

ite
ct

ur
e

St
at

ic
C

on
ne

ct
ed

V
in

ey
ar

d
m

on
ito

ri
ng

:U
nw

ir
ed

w
in

e
[1

7,
20

]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

W
ild

fir
e

m
on

ito
ri

ng
[3

5]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:R

ed
w

oo
d

E
co

-P
hy

si
ol

og
y

[3
2,

10
5]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

Fo
re

st
fir

e
de

te
ct

io
n:

Fi
re

W
xN

et
[3

7]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed
Ir

ri
ga

tio
n

[5
7]

SO
Pe

ri
od

ic
M

ul
tip

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

L
an

ds
lid

e
de

te
ct

io
n:

Se
nS

lid
e

[9
4]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

L
ow

A
rc

hi
te

ct
ur

e
St

at
ic

C
on

ne
ct

ed
T

un
ne

lm
on

ito
ri

ng
[2

7]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
W

at
er

m
on

ito
ri

ng
[8

1]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

Se
ns

or
s,

ar
ch

ite
ct

ur
e

St
at

ic
C

on
ne

ct
ed

L
O

FA
R

-a
gr

o
[6

3]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
E

nv
ir

on
m

en
tm

on
ito

ri
ng

:S
en

so
rS

co
pe

[1
5]

SO
Pe

ri
od

ic
M

ul
tip

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

Ir
ri

ga
tio

n:
FL

O
W

-A
ID

[1
3]

SO
Pe

ri
od

ic
M

ul
tip

le
di

st
ri

bu
te

d
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed

T
un

ne
lc

on
tr

ol
an

d
m

on
ito

ri
ng

[2
6,

31
,

78
]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

(c
on

tin
ue

d)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 23

Ta
bl

e
2

(c
on

tin
ue

d)

A
pp

lic
at

io
n

G
oa

l
Sa

m
pl

in
g

Ph
en

om
en

on
D

at
a

ra
te

H
et

er
og

en
ei

ty
M

ob
ili

ty
C

on
ne

ct
iv

ity

Fi
re

de
te

ct
io

n
an

d
tr

ac
ki

ng
[8

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

G
re

en
ho

us
e

M
on

ito
ri

ng
[3

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

A
C

m
et

er
in

g
[4

9,
50

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

Se
ns

or
s

St
at

ic
C

on
ne

ct
ed

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:G

re
en

O
rb

s
[7

5]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:P

er
m

aS
en

se
[1

8]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
In

te
rm

it
te

nt

R
el

ia
bl

e
C

lin
ic

al
M

on
ito

ri
ng

[2
9]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
Se

ns
or

s
N

od
es

In
te

rm
itt

en
t

So
il

m
on

ito
ri

ng
:S

ue
lo

[8
6]

SO
Pe

ri
od

ic
M

ul
tip

le
di

st
ri

bu
te

d
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

V
in

ey
ar

d
m

on
ito

ri
ng

[7
]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
Se

ns
or

s,
ar

ch
ite

ct
ur

e
St

at
ic

C
on

ne
ct

ed

W
ild

lif
e

an
d

en
vi

ro
nm

en
ta

lm
on

ito
ri

ng
[3

8,
39

]
SO

E
ve

nt
Si

ng
le

di
sc

re
te

,
M

ul
tip

le
di

st
ri

bu
te

d

L
ow

Se
ns

or
s

B
as

e st
a-

tio
n

In
te

rm
itt

en
t

D
ut

y
cy

cl
in

g
bu

ild
in

g:
H

V
A

C
[2

]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed
M

E
D

iS
N

[5
9]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
Se

ns
or

s
N

od
es

C
on

ne
ct

ed
E

le
ct

ro
ni

c
Sh

ep
he

rd
[1

03
]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
A

rc
hi

te
ct

ur
e

N
od

es
Sp

or
ad

ic
Pi

pe
m

on
ito

ri
ng

:P
IP

E
N

E
T

[1
01

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

Se
ns

or
s

St
at

ic
C

on
ne

ct
ed

R
el

ic
pr

ot
ec

tio
n

in
th

e
fo

rb
id

de
n

ci
ty

[6
5,

66
]

SO
E

ve
nt

M
ul

tip
le

di
sc

re
te

L
ow

A
rc

hi
te

ct
ur

e
St

at
ic

C
on

ne
ct

ed

Su
bs

ta
tio

n
m

on
ito

ri
ng

[8
0]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed
St

ru
ct

ur
e

m
on

ito
ri

ng
:F

ou
r

Se
as

on
s

[1
09

]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
H

ig
h

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

(c
on

tin
ue

d)

24 F. J. Oppermann et al.

Ta
bl

e
2

(c
on

tin
ue

d)

A
pp

lic
at

io
n

G
oa

l
Sa

m
pl

in
g

Ph
en

om
en

on
D

at
a

ra
te

H
et

er
og

en
ei

ty
M

ob
ili

ty
C

on
ne

ct
iv

ity

In
du

st
ri

al
pl

an
tm

on
ito

ri
ng

:O
il

ta
nk

er
[6

1]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

,h
ig

h
Se

ns
or

s
St

at
ic

In
te

rm
itt

en
t

V
ol

ca
no

m
on

ito
ri

ng
[1

08
]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

H
ig

h
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
St

ru
ct

ur
e

m
on

ito
ri

ng
:G

ol
de

n
G

at
e

B
ri

dg
e

[5
6]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

H
ig

h
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

St
ru

ct
ur

al
m

on
ito

ri
ng

[1
10

]
SO

Pe
ri

od
ic

Si
ng

le
di

st
ri

bu
te

d
H

ig
h,

lo
w

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

St
ru

ct
ur

e
m

on
ito

ri
ng

:T
or

re
A

qu
ila

[2
5]

SO
Pe

ri
od

ic
M

ul
tip

le
di

st
ri

bu
te

d
L

ow
,h

ig
h

Se
ns

or
s

St
at

ic
C

on
ne

ct
ed

U
nd

er
gr

ou
nd

an
im

al
tr

ac
ki

ng
[7

3]
SO

Pe
ri

od
ic

Si
ng

le
di

sc
re

te
L

ow
Se

ns
or

s,
ar

ch
ite

ct
ur

e
N

od
es

Sp
or

ad
ic

,
co

nn
ec

te
d

Z
eb

ra
m

on
ito

ri
ng

:Z
eb

ra
N

et
[5

1,
11

5]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

H
om

og
en

eo
us

N
od

es
,

ba
se

st
at

io
n

Sp
or

ad
ic

A
nt

el
op

e
m

on
ito

ri
ng

:w
ild

C
E

N
SE

[8
7]

SO
Pe

ri
od

ic
M

ul
tip

le
di

sc
re

te
L

ow
H

om
og

en
eo

us
N

od
es

,
ba

se
st

at
io

n

Sp
or

ad
ic

E
nv

ir
on

m
en

tM
on

ito
ri

ng
:L

U
ST

E
R

[9
3]

SO
Pe

ri
od

ic
Si

ng
le

di
st

ri
bu

te
d

L
ow

Se
ns

or
s,

ar
ch

ite
ct

ur
e

St
at

ic
In

te
rm

it
te

nt

H
ig

h-
fid

el
ity

M
ot

io
n

A
na

ly
si

s
[7

0]
SO

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

N
od

es
In

te
rm

itt
en

t

C
an

e-
to

ad
m

on
ito

ri
ng

[4
6,

47
,

98
]

SO
E

ve
nt

M
ul

tip
le

di
sc

re
te

H
ig

h
A

rc
hi

te
ct

ur
e

St
at

ic
C

on
ne

ct
ed

Fe
nc

e
m

on
ito

ri
ng

[1
11

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
H

ig
h

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

A
co

us
tic

m
on

ito
ri

ng
:V

ox
N

et
[6

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
H

ig
h

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

H
um

an
m

on
ito

ri
ng

:B
eh

av
io

rS
co

pe
[1

4,
71

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

H
ig

h
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed

C
oa

lm
in

e
m

on
ito

ri
ng

[6
7]

SO
E

ve
nt

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

N
od

es
C

on
ne

ct
ed

(c
on

tin
ue

d)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 25

Ta
bl

e
2

(c
on

tin
ue

d)

A
pp

lic
at

io
n

G
oa

l
Sa

m
pl

in
g

Ph
en

om
en

on
D

at
a

ra
te

H
et

er
og

en
ei

ty
M

ob
ili

ty
C

on
ne

ct
iv

ity

Fa
ll

de
te

ct
io

n:
W

eC
ar

e
[5

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
L

ow
,h

ig
h

Se
ns

or
s,

ar
ch

ite
ct

ur
e

N
od

es
C

on
ne

ct
ed

A
ct

iv
ity

re
co

gn
iti

on
:P

B
N

[5
4]

SO
Pe

ri
od

ic
Si

ng
le

di
sc

re
te

,
m

ul
tip

le
di

st
ri

bu
te

d

H
ig

h,
lo

w
H

om
og

en
eo

us
N

od
es

,b
as

e
st

at
io

n
C

on
ne

ct
ed

In
tr

us
io

n
de

te
ct

io
n:

29
Pa

lm
s

[8
3]

SO
E

ve
nt

M
ul

tip
le

di
sc

re
te

L
ow

H
om

og
en

eo
us

B
as

e
st

at
io

n
In

te
rm

itt
en

t
C

ol
d

ch
ai

n
m

an
ag

em
en

t[
88

]
SO

Pe
ri

od
ic

M
ul

tip
le

di
sc

re
te

L
ow

Se
ns

or
s,

ar
ch

ite
ct

ur
e

N
od

es
In

te
rm

itt
en

t

In
tr

us
io

n
de

te
ct

io
n:

A
L

in
e

in
th

e
Sa

nd
[9

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed

R
ob

ot
na

vi
ga

tio
n

[1
6]

SO
E

ve
nt

Si
ng

le
di

sc
re

te
L

ow
H

om
og

en
eo

us
B

as
e

st
at

io
n

C
on

ne
ct

ed
Sn

ip
er

lo
ca

liz
at

io
n:

Pi
nP

tr
[9

9]
SO

E
ve

nt
Si

ng
le

di
sc

re
te

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

T
ra

ck
in

g:
E

nv
ir

oT
ra

ck
[1

,
44

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
In

tr
us

io
n

de
te

ct
io

n:
E

xS
ca

l[
37

]
SO

E
ve

nt
M

ul
tip

le
di

sc
re

te
L

ow
H

om
og

en
eo

us
St

at
ic

C
on

ne
ct

ed
Pa

rk
in

g
lo

ts
ur

ve
ill

an
ce

[7
9]

SR
E

ve
nt

M
ul

tip
le

di
sc

re
te

H
ig

h
Se

ns
or

s,
ar

ch
ite

ct
ur

e
St

at
ic

C
on

ne
ct

ed

R
ad

io
-b

as
ed

lo
ca

liz
at

io
n

[1
13

]
SO

Pe
ri

di
c

Si
ng

le
di

sc
re

te
L

ow
Se

ns
or

s
St

at
ic

C
on

ne
ct

ed
A

ni
m

al
co

nt
ro

l:
N

et
w

or
ke

d
C

ow
s

[2
2]

SR
E

ve
nt

M
ul

tip
le

di
sc

re
te

L
ow

H
om

og
en

eo
us

N
od

es
In

te
rm

itt
en

t
H

V
A

C
[3

4]
SR

Pe
ri

od
ic

M
ul

tip
le

di
st

ri
bu

te
d

L
ow

H
om

og
en

eo
us

St
at

ic
C

on
ne

ct
ed

A
ni

m
al

co
nt

ro
l[

10
7]

SR
E

ve
nt

M
ul

tip
le

di
sc

re
te

L
ow

H
om

og
en

eo
us

N
od

es
C

on
ne

ct
ed

2
V

al
ue

s
w

ri
tte

n
in

ita
lic

s
co

ul
d

no
tb

e
de

te
rm

in
ed

w
ith

ab
so

lu
te

ce
rt

ai
nt

y
ba

se
d

on
th

e
lit

er
at

ur
e

av
ai

la
bl

e:
th

es
e

va
lu

es
ha

ve
be

en
es

tim
at

ed
to

th
e

be
st

of
ou

r
kn

ow
le

dg
e

26 F. J. Oppermann et al.

Ta
bl

e
3

M
ap

pi
ng

of
W

SN
ap

pl
ic

at
io

ns
to

th
e

ta
xo

no
m

y
pr

es
en

te
d

in
Se

ct
.2

(2
/2

)3

A
pp

lic
at

io
n

Pr
oc

es
si

ng
St

or
ag

e
Se

rv
ic

es
C

om
m

un
ic

at
io

n

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:P

O
D

S
[1

9]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e sy
nc

hr
on

iz
at

io
n

C
ol

le
ct

io
n,

m
ul

ti-
ho

p
un

ic
as

t

H
ab

ita
tm

on
ito

ri
ng

:G
re

at
D

uc
k

Is
la

nd
[1

02
,

62
,

72
]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n
(c

lu
st

er
)

G
la

ci
er

m
on

ito
ri

ng
:G

la
cs

W
eb

[7
4]

C
ac

hi
ng

[n
od

e]
,

pe
rs

is
te

nt
[g

at
ew

ay
]

Ti
m

e sy
nc

hr
on

iz
at

io
n

M
ul

ti
-h

op
un

ic
as

t

Po
w

er
m

on
ito

ri
ng

[5
3]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n

So
il

an
d

M
oi

st
ur

e
m

on
ito

ri
ng

[2
3,

24
]

Pe
rs

is
te

nt
[n

od
e,

se
rv

er
]

Si
ng

le
-h

op
un

ic
as

t

V
in

ey
ar

d
m

on
ito

ri
ng

:U
nw

ir
ed

w
in

e
[1

7,
20

]
Pe

rs
is

te
nt

[s
er

ve
r]

Sy
nc

hr
on

iz
at

io
n

C
ol

le
ct

io
n

W
ild

fir
e

m
on

ito
ri

ng
[3

5]
Pe

rs
is

te
nt

[s
er

ve
r]

L
oc

al
iz

at
io

n
(G

PS
)

C
ol

le
ct

io
n

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:R

ed
w

oo
d

E
co

-P
hy

si
ol

og
y

[1
05

,
32

]
C

ac
hi

ng
[n

od
e]

,
pe

rs
is

te
nt

[g
at

ew
ay

]
C

ol
le

ct
io

n

Fo
re

st
fir

e
de

te
ct

io
n:

Fi
re

W
xN

et
[3

7]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e sy
nc

hr
on

iz
at

io
n

C
ol

le
ct

io
n,

m
ul

ti-
ho

p
br

oa
dc

as
t

(c
lu

st
er

)

Ir
ri

ga
tio

n
[5

7]
D

ec
is

io
n

m
ak

in
g

[g
at

ew
ay

]
C

ol
le

ct
io

n,
Si

ng
le

-h
op

un
ic

as
t

L
an

ds
lid

e
de

te
ct

io
n:

Se
nS

lid
e

[9
4]

Fi
lte

ri
ng

[n
od

e]
,

ag
gr

eg
at

io
n

[n
et

w
or

k]
,

cl
as

si
fic

at
io

n
[s

er
ve

r]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n,
m

ul
ti-

ho
p

un
ic

as
t

(c
lu

st
er

)

T
un

ne
lm

on
ito

ri
ng

[2
7]

Pe
rs

is
te

nt
[g

at
ew

ay
]

C
ol

le
ct

io
n

W
at

er
m

on
ito

ri
ng

[8
1]

Pe
rs

is
te

nt
[s

er
ve

r]
,

Pe
rs

is
te

nt
[g

at
ew

ay
]

M
ul

ti
-h

op
un

ic
as

t

L
O

FA
R

-a
gr

o
[6

3]
C

om
pr

es
si

on
[n

ot
e]

Pe
rs

is
te

nt
[n

od
e]

R
ep

ro
gr

am
m

in
g

C
ol

le
ct

io
n

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:S

en
so

rS
co

pe
[1

5]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e sy
nc

hr
on

iz
at

io
n

M
ul

ti-
ho

p
un

ic
as

t

Ir
ri

ga
tio

n:
FL

O
W

-A
ID

[1
3]

D
ec

is
io

n
m

ak
in

g
[g

at
ew

ay
]

Pe
rs

is
te

nt
[s

er
ve

r]
M

ul
ti

-h
op

un
ic

as
t

T
un

ne
lc

on
tr

ol
an

d
m

on
ito

ri
ng

[2
6,

31
,

78
]

C
ol

le
ct

io
n,

flo
od

in
g (c

on
tin

ue
d)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 27

Ta
bl

e
3

(c
on

tin
ue

d)

A
pp

lic
at

io
n

Pr
oc

es
si

ng
St

or
ag

e
Se

rv
ic

es
C

om
m

un
ic

at
io

n

Fi
re

de
te

ct
io

n
an

d
tr

ac
ki

ng
[8

]
Tr

ac
ki

ng
[s

er
ve

r]
Pe

rs
is

te
nt

[s
er

ve
r]

C
ol

le
ct

io
n

G
re

en
ho

us
e

M
on

ito
ri

ng
[3

]
Pe

rs
is

te
nt

[s
er

ve
r]

C
ol

le
ct

io
n

A
C

m
et

er
in

g
[4

9,
50

]
Pe

rs
is

te
nt

[s
er

ve
r]

Si
ng

le
-h

op
br

oa
dc

as
t

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:G

re
en

O
rb

s
[7

5]
F

il
te

ri
ng

[n
od

e]
Fl

oo
di

ng

E
nv

ir
on

m
en

tm
on

ito
ri

ng
:P

er
m

aS
en

se
[1

8]
C

ac
hi

ng
[n

et
w

or
k]

C
ol

le
ct

io
n

R
el

ia
bl

e
C

lin
ic

al
M

on
ito

ri
ng

[2
9]

A
gg

re
ga

tio
n[

ne
tw

or
k]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n

So
il

m
on

ito
ri

ng
:S

ue
lo

[8
6]

C
la

ss
ifi

ca
ti

on

V
in

ey
ar

d
m

on
ito

ri
ng

[7
]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n

W
ild

lif
e

an
d

en
vi

ro
nm

en
ta

lm
on

ito
ri

ng
[3

8,
39

]
C

om
pr

es
si

on
[n

od
e]

C
ac

hi
ng

[n
et

w
or

k]
,

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n,
m

ul
ti-

ho
p

un
ic

as
t

D
ut

y
cy

cl
in

g
bu

ild
in

g:
H

V
A

C
[2

]
D

ec
is

io
n

m
ak

in
g[

se
rv

er
]

C
ac

hi
ng

[s
er

ve
r]

C
ol

le
ct

io
n

M
E

D
iS

N
[5

9]
Pe

rs
is

te
nt

[s
er

ve
r]

R
ec

on
fig

ur
at

io
n

C
ol

le
ct

io
n

E
le

ct
ro

ni
c

Sh
ep

he
rd

[1
03

]
Pe

rs
is

te
nt

[s
er

ve
r]

L
oc

al
iz

at
io

n
(G

PS
)

Si
ng

le
-h

op
un

ic
as

t(
cl

us
te

r)

Pi
pe

m
on

ito
ri

ng
:P

IP
E

N
E

T
[1

01
]

A
gg

re
ga

tio
n[

no
de

],
E

ve
nt

de
te

ct
io

n[
no

de
]

C
ac

hi
ng

[g
at

ew
ay

]
T

im
e

sy
nc

hr
on

iz
at

io
n

C
ol

le
ct

io
n

R
el

ic
pr

ot
ec

tio
n

in
th

e
fo

rb
id

de
n

ci
ty

[6
5,

66
]

E
ve

nt
de

te
ct

io
n[

se
rv

er
]

C
ac

hi
ng

[n
od

e]
,

Pe
rs

is
te

nd
[s

er
ve

r]
C

ol
le

ct
io

n

Su
bs

ta
tio

n
m

on
ito

ri
ng

[8
0]

C
ol

le
ct

io
n

St
ru

ct
ur

e
m

on
ito

ri
ng

:F
ou

r
Se

as
on

s
[1

09
]

C
om

pr
es

si
on

[n
od

e]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e
sy

nc
hr

on
iz

at
io

n
C

ol
le

ct
io

n

In
du

st
ri

al
pl

an
tm

on
ito

ri
ng

:O
il

ta
nk

er
[6

1]
C

la
ss

ifi
ca

tio
n[

se
rv

er
]

Pe
rs

is
te

nt
[s

er
ve

r]
,

ca
ch

in
g[

no
de

]
C

ol
le

ct
io

n
(c

lu
st

er
)

V
ol

ca
no

m
on

ito
ri

ng
[1

08
]

E
ve

nt
de

te
ct

io
n[

no
de

]
C

ac
hi

ng
[n

od
e]

,
pe

rs
is

te
nt

[g
at

ew
ay

]
T

im
e

sy
nc

hr
on

iz
at

io
n,

re
pr

og
ra

m
m

in
g

C
ol

le
ct

io
n,

m
ul

ti-
ho

p
un

ic
as

t

St
ru

ct
ur

e
m

on
ito

ri
ng

:G
ol

de
n

G
at

e
B

ri
dg

e
[5

6]
F

il
te

ri
ng

[n
od

e]
C

ac
hi

ng
[n

od
e]

T
im

e
sy

nc
hr

on
iz

at
io

n
C

ol
le

ct
io

n

St
ru

ct
ur

al
m

on
ito

ri
ng

[1
10

]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e
sy

nc
hr

on
iz

at
io

n
C

ol
le

ct
io

n

(c
on

tin
ue

d)

28 F. J. Oppermann et al.

Ta
bl

e
3

(c
on

tin
ue

d)

A
pp

lic
at

io
n

Pr
oc

es
si

ng
St

or
ag

e
Se

rv
ic

es
C

om
m

un
ic

at
io

n

St
ru

ct
ur

e
m

on
ito

ri
ng

:T
or

re
A

qu
ila

[2
5]

C
om

pr
es

si
on

[n
od

e]
,

cl
as

si
fic

at
io

n[
se

rv
er

]
Pe

rs
is

te
nt

[s
er

ve
r]

T
im

e
sy

nc
hr

on
iz

at
io

n,
re

co
nfi

gu
ra

tio
n

C
ol

le
ct

io
n,

flo
od

in
g

U
nd

er
gr

ou
nd

an
im

al
tr

ac
ki

ng
[7

3]
C

om
pr

es
si

on
[n

od
e]

C
ac

hi
ng

[n
od

e]
,

pe
rs

is
te

nt
[s

er
ve

r]
L

oc
al

iz
at

io
n

Si
ng

le
-h

op
un

ic
as

t,
co

lle
ct

io
n

Z
eb

ra
m

on
ito

ri
ng

:Z
eb

ra
N

et
[5

1,
11

5]
Fi

lte
ri

ng
[n

et
w

or
k]

C
ac

hi
ng

[n
et

w
or

k]
,

pe
rs

is
te

nt
[s

er
ve

r]
L

oc
al

iz
at

io
n

(G
PS

)
Si

ng
le

-h
op

br
oa

dc
as

t

A
nt

el
op

e
m

on
ito

ri
ng

:w
ild

C
E

N
SE

[8
7]

C
om

pr
es

si
on

[n
od

e]
C

ac
hi

ng
[n

od
e]

L
oc

al
iz

at
io

n
(G

PS
),

re
co

nfi
gu

ra
tio

n
F

lo
od

in
g

E
nv

ir
on

m
en

tM
on

ito
ri

ng
:L

U
ST

E
R

[9
3]

A
gg

re
ga

tio
n[

no
de

]
Pe

rs
is

te
nt

[n
et

w
or

k]
T

im
e

sy
nc

hr
on

iz
at

io
n

C
ol

le
ct

io
n,

si
ng

le
-h

op
un

ic
as

t
(c

lu
st

er
)

H
ig

h-
fid

el
ity

M
ot

io
n

A
na

ly
si

s
[7

0]
Fi

lte
ri

ng
[n

od
e]

Pe
rs

is
te

nt
[n

od
e,

se
rv

er
]

R
ec

on
fig

ur
at

io
n,

tim
e

sy
nc

hr
on

iz
at

io
n

Si
ng

le
-h

op
un

ic
as

t

C
an

e-
to

ad
m

on
ito

ri
ng

[4
6,

47
,

98
]

C
om

pr
es

si
on

[n
od

e]
,

fil
te

ri
ng

[n
od

e]
,

cl
as

si
fic

at
io

n[
ne

tw
or

k]
,

lo
ca

liz
at

io
n[

ne
tw

or
k]

C
ac

hi
ng

[n
od

e]
,

pe
rs

is
te

nt
[s

er
ve

r]
L

oc
al

iz
at

io
n

(G
PS

)
Si

ng
le

-h
op

un
ic

as
t,

co
lle

ct
io

n
(c

lu
st

er
)

Fe
nc

e
m

on
ito

ri
ng

[1
11

]
Fi

lte
ri

ng
[n

od
e]

,e
ve

nt
de

te
ct

io
n[

no
de

],
ev

en
t

de
te

ct
io

n[
ne

tw
or

k]

Ti
m

e
sy

nc
hr

on
iz

at
io

n
C

ol
le

ct
io

n,
ne

ig
hb

or
ho

od

A
co

us
tic

m
on

ito
ri

ng
:V

ox
N

et
[6

]
E

ve
nt

de
te

ct
io

n[
ne

tw
or

k]
C

ac
hi

ng
[n

od
e]

,
pe

rs
is

te
nt

[s
er

ve
r]

L
oc

al
iz

at
io

n
M

ul
ti

-h
op

un
ic

as
t

H
um

an
m

on
ito

ri
ng

:B
eh

av
io

rS
co

pe
[7

1,
14

]
C

la
ss

ifi
ca

tio
n[

se
rv

er
]

Pe
rs

is
te

nt
[s

er
ve

r]

C
oa

lm
in

e
m

on
ito

ri
ng

[6
7]

E
ve

nt
de

te
ct

io
n[

ne
tw

or
k]

,
ag

gr
eg

at
io

n[
ne

tw
or

k]
R

ec
on

fig
ur

at
io

n
C

ol
le

ct
io

n,
flo

od
in

g

Fa
ll

de
te

ct
io

n:
W

eC
ar

e
[5

]
E

ve
nt

de
te

ct
io

n[
ne

tw
or

k]

A
ct

iv
ity

re
co

gn
iti

on
:P

B
N

[5
4]

A
gg

re
ga

tio
n[

no
de

],
fil

te
ri

ng
[n

od
e]

,
cl

as
si

fic
at

io
n[

ga
te

w
ay

]

Pe
rs

is
te

nt
[g

at
ew

ay
]

C
ol

le
ct

io
n

(c
on

tin
ue

d)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 29

Ta
bl

e
3

(c
on

tin
ue

d)

A
pp

lic
at

io
n

Pr
oc

es
si

ng
St

or
ag

e
Se

rv
ic

es
C

om
m

un
ic

at
io

n

In
tr

us
io

n
de

te
ct

io
n:

29
Pa

lm
s

[8
3]

Fi
lte

ri
ng

[n
od

e]
,e

ve
nt

de
te

ct
io

n[
no

de
]

Pe
rs

is
te

nt
[n

et
w

or
k]

T
im

e
sy

nc
hr

on
iz

at
io

n,
lo

ca
liz

at
io

n
C

ol
le

ct
io

n

C
ol

d
ch

ai
n

m
an

ag
em

en
t[

88
]

Pe
rs

is
te

nt
[s

er
ve

r]
C

ol
le

ct
io

n

In
tr

us
io

n
de

te
ct

io
n:

A
L

in
e

in
th

e
Sa

nd
[9

]
E

ve
nt

de
te

ct
io

n[
no

de
],

cl
as

si
fic

at
io

n[
se

rv
er

],
tr

ac
ki

ng
[s

er
ve

r]

T
im

e
sy

nc
hr

on
iz

at
io

n
Si

ng
le

-h
op

br
oa

dc
as

t,
co

lle
ct

io
n

R
ob

ot
na

vi
ga

tio
n

[1
6]

D
ec

is
io

n
m

ak
in

g[
ne

tw
or

k]
Fl

oo
di

ng
,s

in
gl

e-
ho

p
br

oa
dc

as
t

Sn
ip

er
lo

ca
liz

at
io

n:
Pi

nP
tr

[9
9]

A
gg

re
ga

tio
n[

ne
tw

or
k]

,
cl

as
si

fic
at

io
n[

ga
te

w
ay

],
ev

en
td

et
ec

tio
n[

no
de

]

T
im

e
sy

nc
hr

on
iz

at
io

n,
lo

ca
liz

at
io

n
C

ol
le

ct
io

n,
si

ng
le

-h
op

un
ic

as
t

T
ra

ck
in

g:
E

nv
ir

oT
ra

ck
[1

,
44

]
E

ve
nt

de
te

ct
io

n[
ne

tw
or

k]
,

tr
ac

ki
ng

[n
et

w
or

k]
,

fil
te

ri
ng

[s
er

ve
r]

T
im

e
sy

nc
hr

on
iz

at
io

n,
lo

ca
liz

at
io

n,
re

co
nfi

gu
ra

tio
n

Si
ng

le
-h

op
br

oa
dc

as
t,

co
lle

ct
io

n,
flo

od
in

g

In
tr

us
io

n
de

te
ct

io
n:

E
xS

ca
l[

37
]

C
la

ss
ifi

ca
tio

n[
no

de
],

ev
en

t
de

te
ct

io
n[

no
de

]
R

ep
ro

gr
am

m
in

g

Pa
rk

in
g

lo
ts

ur
ve

ill
an

ce
[7

9]
E

ve
nt

de
te

ct
io

n[
no

de
],

lo
ca

liz
at

io
n[

ne
tw

or
k]

C
ol

le
ct

io
n,

flo
od

in
g

R
ad

io
-b

as
ed

lo
ca

liz
at

io
n

[1
13

]
D

ec
is

io
n

m
ak

in
g[

ga
te

w
ay

]
Si

ng
le

-h
op

un
ic

as
t

A
ni

m
al

co
nt

ro
l:

N
et

w
or

ke
d

C
ow

s
[2

2]
D

ec
is

io
n

m
ak

in
g[

no
de

]
L

oc
al

iz
at

io
n

(G
PS

),
re

pr
og

ra
m

m
in

g
M

ul
ti-

ho
p

un
ic

as
t,

si
ng

le
-h

op
br

oa
dc

as
t,

flo
od

in
g

H
V

A
C

[3
4]

D
ec

is
io

n
m

ak
in

g[
ne

tw
or

k]
M

ul
ti

-h
op

un
ic

as
t

A
ni

m
al

co
nt

ro
l[

10
7]

D
ec

is
io

n
m

ak
in

g[
no

de
]

L
oc

al
iz

at
io

n
(G

PS
)

Si
ng

le
-h

op
br

oa
dc

as
t

3
V

al
ue

s
w

ri
tte

n
in

ita
lic

s
co

ul
d

no
tb

e
de

te
rm

in
ed

w
ith

ab
so

lu
te

ce
rt

ai
nt

y
ba

se
d

on
th

e
lit

er
at

ur
e

av
ai

la
bl

e:
th

es
e

va
lu

es
ha

ve
be

en
es

tim
at

ed
to

th
e

be
st

of
ou

r
kn

ow
le

dg
e

30 F. J. Oppermann et al.

by environmental conditions. In detail, the Great Duck Island deployment consisted
of several patches of sensing nodes, connected to a transit network via dedicated
more powerful gateway nodes. A single base station provided Internet connectivity
and database services for the whole deployment. The sensor patches consisted of
two types of nodes: small sensor nodes monitor temperature and humidity in the
nesting burrows, while infrared radiation sensors were used to detect the presence of
a bird. A second type of nodes was used to monitor the weather conditions outside
of the burrows. All nodes were carefully placed by hand and manually configured in
advance, and no kind of self-organization or location detection was used [102]. The
low data-rate of the employed sensors allowed to transfer all collected data to the
base station without in-network aggregation or further processing. Another notable
work very close in spirit to the Great Duck Island deployment is the long-term study
of rare and endangered plant species by Biagioni et al. in the context of the PODS
project [19] . Deployed in the Hawaii Volcanoes National Park (Hawaii, USA),
the sensor network monitored several species of plants and their environment using
temperature, humidity, rainfall, wind, and solar radiation sensors.

These two deployments were the first examples of long-term real-world deploy-
ment of WSNs and they became forerunners for a large number of similar deploy-
ments in the area of habitat and environmental monitoring. In the Redwood
Eco-Physiology project [32, 105] , several redwood trees in a study area in Sonoma,
CA, USA, were equipped with sensor nodes in order to allow a more fine-grained
monitoring of the climate changes during the day than previously possible with
conventional equipment. The involved quantities measured were air temperature,
relative humidity, and photo-synthetically active solar radiation. In the context of
the GreenOrbs project [75] , a WSN was used to observe the effect of different
sunlight conditions in shrub thicket and to estimate canopy closure in a forest by
collecting temperature, humidity, illumination, and carbon dioxide measurements.
This application is especially notable for the high number of sensor nodes involved,
with up to 330 nodes deployed in the forest.

In the GlacsWeb project [74] , a WSN was employed to generate insights on the
conditions inside glaciers. The specific environment poses unusual challenges for
the successful deployment of a WSN, as the glacier environment is especially hostile
to sensor nodes and as radio communication through ice and water is known to be
difficult and highly unreliable. In addition, due to its remote deployment location, the
network had to reliably operate over long time intervals without direct interaction.
A first prototype was deployed in the year 2003 at Briksdalsbreen in Norway, and
an updated version was placed in the same area during 2005. Both networks were
composed of a base station and eight sensor nodes. Each node was equipped with
sensors to measure temperature, pressure, and the orientation in the ice. In order
to survive in the harsh environment, the sensor nodes were encapsulated in robust
and waterproof PVC capsules. The nodes were placed in previously drilled holes
at predefined locations in the glacier, and data was sampled every four hours. Over
time, however, the nodes slowly move with the ice, creating an additional challenge
for radio communication. Once a day the collected sensor readings were transmitted
to the more powerful base station situated on top of the glacier. The base station in

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 31

turn relayed the collected data to a reference station with Internet access located at
a nearby café via a long-range radio channel. Both prototype systems proved to be
capable of gathering useful data and, in spite of the hostile environment, remained
operational throughout the intended lifetime. Nevertheless, a high number of sensor
nodes failed either because of hardware failure or because they lost radio connectivity
with the base station.

GlacsWeb is not the only WSN successfully deployed in a harsh environment. In
the context of the PermaSense project [18] , a WSN was deployed in a highly inac-
cessible terrain area in the Alps to support the creation of new temperature models.
Another application similar in scope and execution is the SensorScope deployment
at Le Génépi, Switzerland [15] . An embedded networked sensing system named
Suelo was designed by Ramanathan et al. [86] to collect high-resolution data on soil
state. A distinctive feature of Suelo is to overcome problems with sensor calibration.
If required, the system can automatically call for human verification and assistance.
Another example of environmental monitoring application is the prediction of land-
slides through constant monitoring of ground stress [94, 95] . This deployment
was part of the SenSlide project and showed how to use a WSN to protect human
domiciles and infrastructures.

3.1.2 Wildfire Monitoring

A common application scenario with many similarities to environmental monitoring
motivated by biological research is wildfire monitoring. Doolin et al. employed a
WSN to monitor wildfire at the Pinole Point Regional Park (Contra Costa County,
CA, USA) [35] . A similar low-rate data collection wildfire monitoring applications
has also been developed by Antoine-Santoni et al. [8] . In a wildfire monitoring
application by Hartung et al. [43] , a portable WSN called FireWxNet was used to
monitor weather conditions in the proximity of wild-land fires. The collected data
provides the firefighters with a more accurate picture of the local weather conditions
and thus increases their efficiency and safety during fire suppression. In contrast
to the previous examples, in the FireWxNet project the WSN is not permanently
installed, but is intended to be deployed by the firefighters on demand.

3.1.3 Agricultural Settings

In addition to environmental and wildfire monitoring, low-rate data collection WSNs
are also frequently used in agriculture. One example is the use of a WSN for monitor-
ing a potato field in the LOFAR-agro project [63] . The main goal of the deployment
was to generate new insights on climate conditions favoring Phytophthora, a fungal
disease affecting potatoes and to enable more precise counteractive measures. The
WSN was deployed at a remote field in Borger-Odoorn (Drentheand, The Nether-
lands) and should have supported a lifetime of one year in order to monitor the
full growing cycle of the potatoes. It consisted of approximately one hundred nodes

32 F. J. Oppermann et al.

and a dedicated base station that was equipped with a Wi-Fi card to connect it to a
backbone network. Each sensor node was attached to a combined temperature and
humidity sensor. The collected data was relayed to a back-end system via the base
station and it was stored for further processing. A second goal of the project was
the evaluation of the suitability and reliability of sensor network technology under
realistic environmental conditions. In this respect, the project is especially notewor-
thy for its overall failure. The deployed WSN never operated as intended and was
hampered by a very high packet loss rate. According to the authors, only 2 % of the
measurements made it to the back-end system. This deployment highlights many of
the challenges faced in real-world WSN deployment that are still a major barrier to
a more widespread use of sensor networks.

One specific agricultural application area is surprisingly popular among WSN
researchers: vineyard monitoring. Several independent WSN deployments in vine-
yards exist [7, 17, 20, 78] . In all these deployments, the sensor nodes were
deployed at a vineyard in order to get a more fine-grained picture of the micro-
climate in the proximity of the plants. Anastasi et al. [7] further employed the WSN
to monitor also humidity and temperature in the cellar used for wine storage and
ripening. Other application areas in the agricultural field include greenhouse mon-
itoring [3] , tracking of sheep [103] , irrigation control [13, 57, 81] and
soil moisture monitoring [23, 24] .

3.1.4 Industrial Settings

With an increase of reliability and the creation of more robust communication
protocols, the use of WSNs has also been explored in industrial settings. Notable
applications include monitoring of underground pipes in the PIPENET project [101]

, monitoring of road tunnels [26, 27, 31, 78] , and substation monitoring [80]
. The increasing need to save energy in buildings opens a further area of applica-

tion for low data-rate WSNs. Kappler et al. [53] and Jiang et al. [49, 50] have
shown how WSNs allow a fine-grained monitoring of energy consumption of indi-
vidual devices. Agarwal et al. [2] employed a WSN to provide information on room
occupancy in order to operate a Heating, Ventilation and Air Conditioning (HVAC)
system based on the actual demand . This allows to reduce the workload of the
HVAC system and enables significant energy savings.

WSNs have also been used in museums or exhibitions to detect unsuitable cli-
mate conditions in the vicinity of exhibits. A prototype for relic protection has been
deployed in the forbidden city in Beijing, China [65, 66] .

3.1.5 Health Care

Low-Rate Data CollectionWSN applications have also been deployed in hospital
environments to collect the vital signs of patients. Chipara et al. [29] have built
a patient monitoring system and deployed it at the Barnes-Jewish Hospital (Saint

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 33

Louis, MO, USA) . The goal of the deployment was to monitor patients that do not
require intensive care, but are at high risk. The patients wore TelosB-based wireless
sensor nodes that measure pulse and blood oxygen saturation every 30 and 60 s,
respectively. The data was forwarded to a base station through a number of static
relay nodes carefully placed in the step-down hospital unit. This configuration also
supported the mobility of patients that could hence be monitored even when they
left the unit for diagnostic testing. A distinctive feature of this study is the thorough
analysis of the system’s reliability. On the one hand, the network performed pretty
well and delivered more than 99 % of the data to the base station. On the other hand,
the quality of the sensed data was affected by several factors, such as the mobility
of the patient, the disconnection of the sensors, and the non-optimal placement of
the pulse oximeters. Sensor disconnections typically cause long-term failures, and
can hardly be noticed by the patients. In this specific deployment, sensor outages
longer than 30 min were observed in more than 40 % of the patients, and lasted
up to 14 h. Patient movements such as tapping or fidgeting, instead, only lead to
short-term invalid sensor readings. In a first attempt to improve sensor reliability,
the authors have discussed the impact of oversampling on sensing reliability and
have developed an approach for early detection of sensor disconnection. Two other
WSN pilot deployments in a clinical setting were carried out by Ko et al. [58, 59] at
the Shock Trauma Center of the University of Maryland Medical Center, and in the
Johns Hopkins Hospital Emergency Room (Baltimore, MD, USA) . Similarly to
the work of Chipara et al. [29], the sensors employed measured blood oxygen levels
and pulse rate, and a set of relay nodes forwarded the collected data to a central unit.

It is important to highlight that these two works are some of the few WSN appli-
cations designed for clinical monitoring in which the system was actually thoroughly
tested on patients. The literature contains plenty of WSN architectures and prototypes
specifically designed for medical applications and health care [12, 42, 96, 112], but
they are rarely deployed in the real-world. Examples include the Health and Disaster
Aid project [42], in which Gao et al. have proposed an architecture for medical WSN
that collects real-time data in a mass casualty event. Similarly, in the context of the
CodeBlue project [69], Lorincz et al. have proposed a WSN architecture for emer-
gency response, which allows monitoring of the vital functions of a large number of
patients during an emergency and tries to optimize the use of rescuers. Furthermore,
in the ALARM-NET project [112], a heterogeneous WSN architecture for assisted-
living and residential monitoring was developed using MICAz sensor nodes. We do
not include such works in our survey due to the lack of real-world deployments.

3.1.6 Hybrid Systems

Finally, hybrid systems combining WSN and RFID technologies have also been
implemented. An example is the wildlife monitoring deployment in Wytham Woods,
Oxfordshire, UK by Dyo et al. [38, 39] . The system was supposed to provide
the zoologists with a more detailed picture of the movement patterns of European
badgers. The zoologists were especially interested in the social behavior of the

34 F. J. Oppermann et al.

animals, which is difficult to observe with traditional technology. Existing approaches,
like VHF telemetry are labor-intensive and cannot be used on a large scale and for
a prolonged time frame. The system consisted of three components; a number of
RFID tags worn by a number of badgers; 26 detection nodes distributed at key loca-
tions, such as sets and latrines throughout the wood; and ten additional sensor nodes
for micro-climate monitoring. RFID readers consume a significant amount of power
when active. Hence, in order to extend the lifetime of the RFID detection, a two
level adaptation process was employed. Short-term adaptation adjusts the detection
interval of the reader based on recent detection events. This enables more accurate
tracking if animals are present. Long-term adaptation adjusts the duty cycle of the
detection nodes based on the observed activity pattern of the badgers. For example,
if during the day activity is rarely detected, the intervals of time in which the system
can be put into sleep mode can be increased. The system successfully operated for a
one year period and is believed to be of great use to the involved zoologists [39].

3.2 High-Rate Data Collection

While it is usually feasible for low-rate data collection applications to transmit the
collected raw data to a central server for processing, this is often not possible in high-
rate data collection applications. In such scenarios, the data-rate generated by the
sensors usually exceeds the available communication bandwidth or would quickly
drain the limited energy budget if the raw sensor data is sent directly to a central unit.
Hence, for such applications there is a need to either implement some form of data
compression, filtering, or data processing into the network.

3.2.1 Structural Monitoring

A typical application area for high-rate data collection WSNs is structural monitor-
ing, as demonstrated in the Four Seasons project, in which a WSN was deployed
at an abandoned four-story building in Sherman Oaks, CA, USA, to monitor the
health of the structure during earthquakes [28, 109] . The building was severely
damaged during an earthquake in 1994 and consequently scheduled for demoli-
tion. Simultaneously to the sensor network experiment, a series of forced-vibration
tests with conventional equipment were conducted. The nodes of the network were
equipped with vibration sensors and accelerometers, which allowed to collect seis-
mic structure response data in order to generate new insights on the cause of the
damage in the building. The high amount of data generated by these sensors poses
a major challenge as it is not possible to simultaneously transfer the data from all
sensors. To limit the data to a maintainable rate, the system employed silence sup-
pression and data compression. In addition, vibration analysis requires precise syn-
chronization of the sensor readings. As a global time synchronization scheme would
also require a significant amount of bandwidth, the system did not rely on a global

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 35

synchronization of the nodes, but instead tracked the time it took a packet to travel
through the network. This allowed to retrospectively correlate the measurements.

Similar WSN deployments for structural monitoring of bridges have been con-
ducted at the Golden Gate Bridge in San Francisco, CA, USA [56] , and at a
single-span bridge in St. Lawrence County, NY, USA [110] . The former deploy-
ment employed 64 nodes to measure ambient vibrations at a sampling rate of 1 kHz;
the latter employed 20 sensor nodes with accelerometers and strain transducers.

A well-known deployment in the field of structural monitoring in heritage build-
ings is the “Torre Aquila” deployment in Trento, Italy [25] . The medieval tower
Torre Aquila contains a precious and renowned medieval fresco called “Il ciclo dei
mesi.” The conservation of the tower and of the frescoes is endangered by the planned
construction of a road tunnel below the building. Hence, the central goal of the sensor
network deployment by Ceriotti et al. [25] was to generate a better insight into the
structural behavior of the building and thus allow the assessment of how the construc-
tion work might affect the integrity of the tower. The actual deployment consisted
of 16 nodes of different type and a dedicated base station. The captured data ranged
from low-bandwidth measurements obtained using fiber optic sensors (FOSs) that
detected deformations in the tower walls to high-bandwidth vibration measurements
captured with a three-axis accelerometer. Additional nodes measure the temperature
distribution in the building with the help of analog temperature sensors. The software
employed in this deployment is especially noteworthy as it does not build directly on
top of a WSN operating system, but it uses instead the TeenyLIME middleware [30],
which provides basic network services such as routing and time synchronization.

3.2.2 Wildlife Monitoring

In a second deployment at Wytham Woods, Oxfordshire, UK, Markham et al. [73]
employed a WSN for underground tracking of badgers . Limited radio propagation
in the ground did not permit the use of radio-based localization. Instead, a number of
magnetics coils was distributed over the set of interest. Each badger to be monitored
wore a sensor node equipped with magneto-inductive sensors that periodically record
the strength and properties of the magnetic field. All recordings were stored on the
node until the badger left the set and moved into vicinity of a base station. In order
to minimize the storage requirements, data compression was used. As soon as the
badger reached the communication range of the base station, the data was uploaded
and stored in an external database through a bulk transfer.

3.2.3 Environmental Monitoring

An example of environmental monitoring with high-rate data collection is an deploy-
ment at the active volcano Reventador in Ecuador by Werner-Allen et al. [108]

.The goal of the deployment was the collection of high fidelity data on volcano
activity to enable geologists to build a clearer picture of the seismic phenomena.

36 F. J. Oppermann et al.

The deployment consisted of 16 sensor nodes equipped with seismic and acoustic
sensors. High resolution seismoacoustic monitoring requires high data rates (up to
1200 bytes/s per node) that exceed the available communication bandwidth. Con-
sequently, it is not possible to transmit the complete raw data. Werner-Allen et al.
solved this challenge by only transmitting the data in case an interesting event is
detected. Each node temporarily stored the collected data locally. As soon as a pre-
defined pattern was detected, the node signaled a detection event to the base station.
If a sufficient number of nodes reported an event, the base station triggered data
collection and iteratively downloaded the last 60 s of recorded data from each sensor
node. A second challenge is the precise synchronization of the logged events. To be
useful to the geologists, the data needs to be correlated with a precision in the order
of milliseconds. The deployment used global time synchronization based on the time
signal of a single GPS receiver at the base station. In addition, a time rectification
process was employed to further increase the accuracy of the recorded timestamps.

3.2.4 Industrial Settings

WSNs have also been used to monitor the status of in-field devices in industrial set-
tings using high data-rate sensors. An ongoing deployment as part of the GINSENG
project contemplates the replacement of the wired infrastructure at an oil refinery in
Sines, Portugal [85]. To monitor the vibrations of industrial machinery and equip-
ment, Krishnamurthy et al. have deployed a WSN in the engine of an oil tanker in
the North Sea, and in a central utility support building at a semiconductor fabrication
plant [61] . The system employed approximately 150 off-the-shelf accelerometers,
and the data was stored persistently in a server located outside the sensor network.

3.2.5 Health Care

Acceleration measurements, as well as data obtained from cardiac or epilepsy care
monitoring employing EKG, EEG also imply high data-rates. High-rate data col-
lections from accelerometer sensors aimed for activity recognition and high-fidelity
motor fluctuations monitoring have been carried out by Lombriser et al. [68] and
Patel et al. [82]. Nevertheless, we do not include those works in our survey due to
the lack of an actual real-world deployment.

3.3 On-Demand Data Collection

In on-demand data collection applications, the user triggers the collection of data
on-demand. This class of applications typically involves a persistent data storage on
the node or within the network in order to allow later retrieval of data.

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 37

3.3.1 Wildlife Monitoring

An example of on-demand data collection is ZebraNet [51, 115] . The main research
goal of this project was to record data on migration patterns of zebras. A second
goal was the exploration of the performance of a large-scale mobile WSN. A small
amount of zebras were equipped with sensor nodes in the Sweetwaters Game Reserve
(Nanyuki, Kenya) during January 2004. Each node was equipped with a Global Posi-
tioning System (GPS) receiver for localization in order to accurately log the position
of each zebra for several months. The position of the animal was recorded once every
hour, and more detailed information about the zebra’s movement was recorded for
three minutes of each hour. The network covered an area of 100 km2 and was very
sparse, hence the nodes could only sporadically communicate. Consequently, it was
necessary to temporarily store the collected data on the nodes. To ensure a higher
level of dependability, the data was replicated to other nodes in the vicinity, and the
recorded data was collected by a mobile base station on a vehicle regularly driven
by the end-user through the observed area. Very notable is the expected lifetime of
the system. The application of the collars required the zebras to be tranquilized and
put under high stress, hence it should be limited to once a year. Consequently, the
network lifetime had to span at least this time frame. To achieve this goal, solar panels
were used together with a rechargeable battery. Interesting features described by the
authors are the inaccuracy of single GPS readings, and the design of the butyl belting
that forms the collar. An application very close in spirit to Zebranet is the wildlife
monitoring carried out by Ranjan et al. in the context of the WildCENSE project, in
which a WSN was used to observe the movement patterns of antelopes [87] .

3.3.2 Environmental Monitoring

In the environmental monitoring project LUSTER [93], a WSN was used to monitor
the light condition under shrub thickets . A network composed of 19 sensor nodes
was deployed on Hog Island off the Eastern Shore of Virginia. As the remote location
of the deployment did not permit a reliable continuous connection to an external
data base, the network implemented distributed in-network storage for the collected
data. The desired data could be fetched on demand either in situ or via a temporary
directional long-range radio link.

3.3.3 Health Care

Another example of on-demand data collection is the deployment of Mercury at
the Spaulding Rehabilitation Hospital in Boston, MA, USA [70] . Mercury is a
software architecture running on Shimmer sensor nodes used to continuously sam-
ple and store sensor data in a MicroSD flash card for later retrieval. The system
has been tested on patients undergoing treatments to measure accelerometer and
electromyograph data for several days. Using a reliable transfer protocol based on

38 F. J. Oppermann et al.

acknowledgment messages, the end-user can extract selected raw data traces from
each node and download them persistently to a server for later analysis. The transfer
is triggered remotely by the end-user who needs to specify which specific set of
data should be collected. A notable feature of Mercury is the local extraction of fea-
tures from the collected data. To save considerable bandwidth, storage, and energy,
Mercury provides a suite of custom feature-extraction algorithms such as maximum
peak-to-peak amplitude, mean, and root mean square of the time series that are com-
puted on the fly as sensor data is being acquired [70]. This implies that in addition to
the raw data, the user can request on-demand a filtered dataset. In the next section,
we will show a class of sensor network applications in which a filtered dataset is
returned to the final user as soon as a given event has occurred.

3.4 Event Detection and Classification

In several WSN applications, the sensor network carries out on-node processing to
detect user-defined events or to classify events according to a user-defined set of
classes. In such applications, the end-user receives as output of the sensor network a
notification of the occurrence of a given event or an instance of a class.

3.4.1 Structural Monitoring

An example of event detection and classification applications is the WSN designed by
Li et al. [67] to detect collapses in coal mines . The goal of their “Structure-Aware
Self-Adaptive Sensor System” is to quickly detect and report the collapse area in
underground tunnels in order to ensure safer working conditions. The prototype was
deployed on a tunnel wall 8 m wide and 4 m high, and 27 Mica2 motes preconfigured
with their location coordinates were manually placed at carefully chosen points in
the tunnel.

3.4.2 Wildlife Monitoring

The WSN designed by Hu et al. to detect the presence of Cane-toads in a specific
area based on acoustic features [46, 47, 98] is a typical example of in-network clas-
sification . The authors deployed a large-scale WSN that incorporates in-network
reasoning to autonomously classify toads. The goal of the sensor network was the
monitoring of the increasing spread of cane toads in the North-East of Australia, due
to its strong impact on Australian native fauna.

In the context of the VoxNet project, Allen et al. [6] employed a WSN to acousti-
cally detect marmots at the Rocky Mountain Biological Laboratory (RMBL) in
Gothic, CO, USA . The network consisted of eight rather powerful ARM-based
nodes equipped with acoustic sensors that constantly monitored the environment for

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 39

marmot alarm calls. The result could be used to notify a biologist on site in order to
allow the gathering of further information. Although the network was designed to
carry out in-network classification, in the actual deployment the nodes transfered the
corresponding raw data to a gateway computer as soon as an interesting event was
detected, and an external system employed the data from multiple nodes to deduce
a position estimate for the call.

3.4.3 Civilian Surveillance

Wittenburg et al. [111] have demonstrated a rare example of civilian intrusion detec-
tion based on fence monitoring . In this example, the task of the WSN was to detect
and report any incident occurring in the proximity of a fence, such as an intruder
just probing the fence or actually climbing over it. In addition to the simple event
detection and report, the network carried out also a classification of the activity, and
has shown to be reliable even in a multi-hop scenario.

3.4.4 Health Care

The need for activity recognition has triggered a wide number of works in the body
sensor network community. The PBN system [54] combined a five node BSN with
an Android smartphone in order to enable reliable activity recognition . The sys-
tem could detect and classify various daily activities, such as cleaning, eating, or
watching television. Activity detection was primarily based on two-axis accelerom-
eters attached to the sensor nodes. The necessary data processing was performed
autonomously without relying on an external system. The detection and classifica-
tion quality was improved by employing ensemble learning techniques based on user
feedback provided through a smart phone. In BehaviorScope [14, 71], a BSN was
used as part of a system to detect different activities of elderly people and to monitor
for alarming deviations in their behavior . In contrast to PBN, this system did not
employ sensor nodes worn on the body. Instead, nodes equipped with PIR sensors
were distributed in the monitored apartment. WeCare [5] employed a combined BSN
and WSN to detect falls . WeCare is more similar to PBN, but augmented the data
from body-worn accelerometers with additional data sources. Fall detection was, for
example, verified by video. Actual falls were automatically reported to caretakers or
relatives using the cell-phone infrastructure.

3.5 Localization and Tracking

In many applications, not only an event has to be detected, but the location of that
event has to be estimated or even tracked over time. Thus localization and tracking
algorithms can be seen as a superset of event detection and classification applications.

40 F. J. Oppermann et al.

Note that detecting an event that has to be localized can be as simple as receiving a
message [88] or as complex as detecting a certain pattern in an acoustic signal [99].

3.5.1 Military Surveillance

Localization and tracking is frequently employed in military applications and sur-
veillance systems, since the predominant goals are the detection, tracking, and classi-
fication of intruders in a given area. Data processing in these scenarios is especially
challenging as it requires close co-operation of several nodes. Simon et al. have
demonstrated in PinPtr how WSNs can be used to accurately estimate the position
of snipers [99] . In their deployment, the sensor nodes were equipped with micro-
phones to detect the muzzle blast of firearms, and they performed sound-based local-
ization using distributed data processing. The network further performed a classifi-
cation of the weapon generating the blast. In the 29 Palms Fixed/Mobile Experiment
conducted at Marine Corps Air/Ground Combat Center (MCAGCC) in Twentynine
Palms, CA, USA in March 2001, a WSN was dropped from an unmanned aerial
vehicle (UAV) to monitor a road for vehicle movements [83] . Each of the nodes
was equipped with a two-axis magnetometer, which allowed the detection of vehicles
in a perimeter of 5–10 m. In addition, the WSN allowed to track vehicles once they
were detected. The information on detected vehicles was temporarily stored in the
network and later collected by a second flyover of the UAV. As the nodes were ran-
domly dropped by a UAV, they needed to self-organize to allow collective monitoring
of the environment. In the EnviroTrack project [1, 44], a similar but larger network
was used to track intruders . “A Line in the Sand” [9] extended these capabilities
by distinguishing between civilian or military vehicles and persons . In the ExScal
project [37], a location detection of intruders based on proximity was carried out .
The deployment is especially noteworthy for its unusual size of over 1000 nodes, all
carefully placed in a preplanned layout.

3.5.2 Industrial Settings

On the industrial side, mobile networks are envisioned to be deployed for tracking
of assets and goods, for instance, to ensure that certain climate conditions are con-
stantly met while some goods travel through the cold chain [88] . These application
scenarios are also especially challenging from a programming perspective, as they
are highly dynamic and a high number of parties are involved.

Na et al. [79] have designed an application for parking lot surveillance that
employs also traditional surveillance cameras . In this deployment, tracking infor-
mation from the sensor network was used to control surveillance cameras.

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 41

3.5.3 Assisted Navigation

In [16], sensor nodes were employed to assist the navigation of an autonomous
robot . The sensor nodes acted as signposts for the robot, that makes navigation
decisions based on its closest node. In their setting, the robot did not have a pre-
decided environment map, as the environment can be dynamically changing.

In their demonstration, Xu et al. [113] employed sensor nodes to track a single
person based on received signal strength indication (RSSI) fingerprints . The system
employed eight sender and eight receiver nodes. The senders periodically send beacon
messages to each receiver. Based on previously recorded training data, the position
of the person was inferred based on the effect that his or her presence had on the
RSSI readings at the eight receivers.

3.6 Actuation

The addition of actuators to a sensor network allows not only to monitor the sur-
rounding environment, but also to actively manipulate it. Such wireless sensor/actor
networks (WSANs) raise additional challenges [4]. To allow the execution of control
logic, it is necessary to implement control processes inside the network. Centralized
decision making is usually not an option, as it would require excessive communi-
cation. The need to specify sophisticated control logic makes programming such
WSANs especially difficult, which may explain why the number of WSAN applica-
tions is still comparatively low nowadays.

3.6.1 Building Automation

Modern buildings feature sophisticated heating, ventilation and air conditioning
(HVAC) systems that can benefit from the use of a WSAN [34] . By replacing
wired sensors and a centralized control system, WSANs promise to reduce costs
and at the same time increase the flexibility of the solutions. The control logic of an
HVAC system is usually based on the current climate in various parts of the building
and a set of preferred temperature levels specified by the building users, and actuators
can control heating or cooling devices [34].

3.6.2 Agricultural Settings

In the Animal Control project [107] a WSAN was used to control the behavior of
bulls . Bull fights during the breeding season sometimes lead to serious injuries
that significantly limit the value of the affected animal. As bulls are rather high-
value animals, these injuries may lead to high losses for the farmer and are highly
undesirable. Wark et al. [107] successfully employed a WSAN to separate bulls on

42 F. J. Oppermann et al.

a meadow and prevent them from fighting without a need for additional fences. The
bulls were equipped with sensor/actor nodes that allowed to apply unpleasant but
harmless stimuli to the animal. In addition, each sensor node was equipped with a
GPS sensor that enabled precise localization of the animals. The equipment was worn
by the animals in specially manufactured webbing collars. The WSAN constantly
monitored the distance between the bulls and their aggressiveness level. If a bull
was in the proximity of another bull and started moving in its direction, a small
electrical shock was applied by the stimuli actuator. The network was also used to
monitor the success of the control action and adjusts the stimuli accordingly. The
efficiency of the approach was demonstrated by a 40 min controlled experiment in
which all the relevant data was logged for later analysis. In the earlier Networked
Cows project, Butler et al. [22] used a similar approach to keep cows within a limited
area with the help of virtual fences . Both scenarios combine the challenges of
mobile WSNs and WSANs, such as the limited connectivity between sensor nodes.
Currently, both projects rely on a central control instance and do not implement
distributed in-network processing.

4 Summary and Outlook

The early years of the twenty-first century have seen a steep rise in the number
and diversity of wireless sensor network applications. This survey examined over 60
applications spanning from scientific demonstrations to real-world deployments, and
covered several application areas ranging from military and civilian surveillance to
tracking systems, from environmental and structural monitoring to home and building
automation, from agriculture and industrial settings to health care.

Triggered by the vision of Smart Dust [52], where thousands of tiny sensor nodes
would be dispersed into the environment, researchers began to implement and deploy
applications to drive and evaluate their research under realistic conditions. While
the first of these systems addressed military applications, the focus quickly shifted
towards environmental monitoring, and then agriculture, structural monitoring, home
and building automation, health and sports. Due to the lack of real Smart Dust
platforms, early systems used matchbox-sized motes assembled from off-the-shelf
components [45]. As it turned out, however, these platforms were quite sufficient for
many applications, also because the motes were carefully placed instead of dispersed.
Yet, there are continuing efforts to build grain-sized motes [64], but so far they did
not carry over to application deployments. However, as this technology matures, we
may see applications in the future that truly require small size such as intra-body
sensor networks, or swarms of tiny flying sensors [33] helping with pollination.

In fact, we can recently observe a general trend to broaden the field and move away
from using homogeneous networks of mote-class devices with simple scalar sensors.
New types of sensors and actuators such as cameras [10], RFID readers [39], or car
controls [40] are being integrated, resulting also in new research challenges due to,
for example, high data rates. Hence, high-performance microcontrollers [60] or even

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 43

mobile phones are becoming interesting platforms that enable new types of applica-
tions. Especially smartphone-based participatory sensing applications are recently
receiving substantial attention (e.g., [41, 55, 76]), mainly because mobile phones are
already ubiquitously deployed and code can be easily distributed using app stores.
Thus, very large-scale and redundant “sensor networks” as originally envisions are
becoming feasible, but at the same time new challenges arise as placement and use
of phones worn by people cannot be easily controlled, and collected data may expose
sensitive information about people wearing the phones.

The recent vision of the Internet of Things takes scaling to an extreme in that all
objects and places – respectively sensors and actuators embedded into them – shall
be connected to the Internet. Thus, the state of the real world becomes accessible
online and in real time and converges with the vast amount of information available
on the Internet. In order to also connect motes to the Internet, TCP/IP stacks have
been squeezed into 8-bit microcontrollers, enabling IP-based sensor networks [48].
Different from traditional sensor networks, there is typically less direct cooperation
among sensor nodes in the Internet of Things, as each node monitors and controls
the state of an object to which it is attached. One example are large deployments
of parking spot occupancy sensors in Barcelona and San Francisco [92] where each
node monitors a single parking spot. These deployments are the seeds for even-larger
scale smart city projects [100] where many aspects of our urban environment will be
monitored, and potentially even controlled and optimized.

This prospect raises serious questions about dependability, trustworthiness, spe-
cifically security and privacy aspects, but also ease of use. In fact, only a single
application uses encryption to protect sensor data; and the large majority of the
surveyed applications were deployed by scientists. While we could largely ignore
the above issues in environmental monitoring applications where a system failure
was annoying but not harmful and collected data revealed interesting but not privacy-
violating insights, this is not the case any more for the applications that appear at the
horizon.

Acknowledgments We would like to thank the anonymous reviewers for their helpful comments
and suggestions for improving this manuscript. The research leading to these results has received
funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grand
agreement n◦ 258351 (makeSense: Easy Programming of Integrated Wireless Sensor Networks),
n◦ 224053 (CONET, the Cooperating Objects Network of Excellence), and n◦ 317826 (RELYonIT:
Research by Experimentation for Dependability on the Internet of Things).

References

1. T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu, T. He,
S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, A. Wood, EnviroTrack: towards
an environmental computing paradigm for distributed sensor networks, in Proceeding of the
24th International Conference on Distributed Computing Systems (ICDCS), pp. 582–589
(2004)

44 F. J. Oppermann et al.

2. Y. Agarwal, B. Balaji, S. Dutta, R.K. Gupta, T. Weng, Duty-cycling buildings aggressively:
the next frontier in HVAC control, in Proceeding of the 10th International Conference on
Information Processing in Sensor Networks (IPSN), pp. 246–257 (2011)

3. T. Ahonen, R. Virrankoski, M. Elmusrati, Greenhouse monitoring with wireless sensor net-
work, in Proceeding of the 4th International Conference on Mechatronic and Embedded
Systems and Applications (MESA), pp. 403–408 (2008)

4. I.F. Akyildiz, I.H. Kasimoglu, Wireless sensor and actor networks: research challenges. Ad
Hoc Netw 2(4), 351–367 (2004)

5. H.O. Alemdar, G.R. Yavuz, M.O. Özen, Y.E. Kara, O.D. Incel, L. Akarun, C. Ersoy, Multi-
modal fall detection within the WeCare framework, in Proceeding of the 9th International
Conference on Information Processing in Sensor Networks (IPSN), demo session, pp. 436–437
(2010)

6. M. Allen, L. Girod, R. Newton, S. Madden, D.T. Blumstein, D. Estrin, VoxNet: an interac-
tive, rapidly-deployable acoustic monitoring platform. in Proceeding of the 7th International
Conference on Information Processing in Sensor Networks (IPSN), pp. 371–382 (2008)

7. G. Anastasi, O. Farruggia, G. Lo Re, M. Ortolani, Monitoring high-quality wine production
using wireless sensor networks, in Proceeding of the 42nd International Conference on System
Sciences (HICSS), pp. 1–7 (2009)

8. T. Antoine-Santoni, J.F. Santucci, E. De Gentili, X. Silvani, F. Morandini, Performance of
a protected wireless sensor network in a fire: analysis of fire spread and data transmission.
Sensors 9(8), 5878–5893 (2009)

9. A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demir-
bas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, M.
Miyashita, A line in the sand: a wireless sensor network for target detection, classification,
and tracking. Comput. Netw. 46(5), 605–634 (2004)

10. R. Bagree, V.R. Jain, A. Kumar, P. Ranjan, Tigercense: wireless image sensor network to
monitor tiger movement, in Proceeding of the 4th International Conference on Real-World
Wireless Sensor Networks (REALWSN), pp. 13–24 (2010)

11. L. Bai, R. Dick, P. Dinda, Archetype-based design: sensor network programming for appli-
cation experts, not just programming experts, in Proceeding of the 2009 International Con-
ference on Information Processing in Sensor Networks (IPSN), pp. 85–96 (2009)

12. H. Baldus, K. Klabunde, G. Müsch, Reliable set-up of medical body-sensor networks, in
Proceeding of the 1st European Workshop on Wireless Sensor Networks (EWSN), pp 353–363
(2004)

13. J. Balendonck, J. Hemming, B. van Tuijl, L. Incrocci, A. Pardossi, P. Marzialetti, Sensors and
wireless sensor networks for irrigation management under deficit conditions (FLOW-AID),
in Proceeding of the International Conference on Agricultural Engineering and Agricultural
& Biosystems Engineering for a Sustainable World (AgEng), pp. 583–588 (2008)

14. A. Bamis, D. Lymberopoulos, T. Teixeira, A. Savvides, The behaviorscope framework for
enabling ambient assisted living. Pers. Ubiquitous. Comput. 14(6), 473–487 (2010)

15. G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, M. Parlange, Sensorscope:
out-of-the-box environmental monitoring, in Proceeding of the 7th International Conference
on Information Processing in Sensor Networks (IPSN), pp 332–343 (2008)

16. M.A. Batalin, G.S. Sukhatme, M. Hattig, Mobile robot navigation using a sensor network,
in Proceeding of the IEEE International Conference on Robotics and Automation (ICRA),
pp. 636–641 (2004)

17. R. Beckwith, D. Teibel, P. Bowen, Unwired wine: sensor networks in vineyards, in Proceeding
of IEEE Sensors, pp. 561–564 (2004)

18. J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele, C. Tschudin,
M. Woehrle, M. Yuecel, PermaDAQ: a scientific instrument for precision sensing and data
recovery in environmental extremes, in Proceeding of the 8th International Conference on
Information Processing in Sensor Networks (IPSN), pp. 265–276 (2009)

19. E.S. Biagioni, K.W. Bridges, The application of remote sensor technology to assist the recov-
ery of rare and endangered species. Int. J. High Perform. Comput. Appl. 16(3), 315–324
(2002)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 45

20. J. Burrell, T. Brooke, R. Beckwith, Vineyard computing: sensor networks in agricultural
production. IEEE Pervasive Comput. 3(1), 38–45 (2004)

21. N. Burri, P. von Rickenbach, R. Wattenhofer, Dozer: ultra-low power data gathering in sensor
networks, in Proceedings of the 6th International Conference on Information Processing in
Sensor Networks (IPSN), pp. 450–459 (2007)

22. Z. Butler, P. Corke, R. Peterson, D. Rus, Networked cows: virtual fences for controlling
cows, in Proceeding of the MobiSys Workshop on Applications of Mobile Embedded Systems
(WAMES), 2004

23. R. Cardell-Oliver, K. Smettem, M. Kranz, K. Mayer, Field testing a wireless sensor network
for reactive environmental monitoring, in Proceeding of the International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 14–17 (2004)

24. R. Cardell-Oliver, M. Kranz, K. Smettem, K. Mayer, A reactive soil moisture sensor network:
design and field evaluation. Int. J. Distrib. Sens. Netw. 1(2), 149–162 (2005)

25. M. Ceriotti, L. Mottola, G.P. Picco, A.L. Murphy, C. Gunǎ, M. Corra, M. Pozzi, D. Zonta,
P. Zanon, Monitoring heritage buildings with wireless sensor networks: The Torre Aquila
deployment, in Proceeding of the 8th International Conference on Information Processing in
Sensor Networks (IPSN), pp. 277–288 (2009)

26. M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, Ş. Gunǎ, G.P. Jesi, A. Murphy,
R.L. Cigno, L. Mottola, M. Pescalli, G.P. Picco, D. Prognolato, C. Torghele, Is there light
at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels,
in Proceeding of the 10th International Conference on Information Processing in Sensor
Networks (IPSN), pp. 187–198 (2011)

27. S. Cheekiralla, Wireless sensor network-based tunnel monitoring, in Proceeding of the 1st
Workshop on Real-World Wireless Sensor Networks (REALWSN), poster session, 2005

28. K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan, E. Johnson,
S. Masri, Monitoring civil structures with a wireless sensor network. IEEE Internet Comput.
10(2), 26–34 (2006)

29. O. Chipara, C. Lu, T.C. Bailey, G.C. Roman, Reliable clinical monitoring using wireless sensor
networks: experiences in a step-down hospital unit, in Proceeding of the 8th International
Conference on Embedded Networked Sensor Systems (SenSys), pp. 155–168 (2010)

30. P. Costa, L. Mottola, A.L. Murphy, G.P. Picco, Teeny Lime: Transiently shared tuple space
middleware for wireless sensor networks, in Proceeding of the 1st International Workshop on
Middleware for Sensor Networks (MidSens), pp. 43–48 (2006)

31. P. Costa, G. Coulson, R. Gold, M. Lad , C. Mascolo, L. Mottola, G.P. Picco, T. Sivaharan,
N. Weerasinghe, S. Zachariadis, The RUNES middleware for networked embedded systems
and its application in a disaster management scenario, in Proceeding of the 5th International
Conference on Pervasive Computing and Communications (PERCOM), pp. 69–78 (2007)

32. D.E. Culler, Toward the sensor network macroscope, in Proceeding of the 6th International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 1–1 (2005)

33. K. Dantu, B. Kate, J. Waterman, P. Bailis, M. Welsh, Programming micro-aerial vehicle
swarms with karma, in Proceeding of the 9th ACM Conference on Embedded Networked
Sensor Systems (SenSys), ACM, pp. 121–134 (2011)

34. A. Deshpande, C. Guestrin, S.R. Madden, Resource-aware wireless sensor-actuator networks.
IEEE Data Eng. 28(1), 40–47 (2005)

35. D.M. Doolin, N. Sitar, Wireless sensors for wildfire monitoring, in Proceeding of SPIE Sym-
posium on Smart. Structures and Materials, vol. 5765, pp. 477–484 (2005)

36. A. Dunkels, J. Eriksson, L. Mottola, T. Voigt, F.J. Oppermann, K. Römer, F. Casati, F. Daniel,
G.P. Picco, S. Soi, S. Tranquillini, P. Valleri, S. Karnouskos, P. Spieß, P.M. Montero, D-1.1—
application and programming survey. Technical report, makeSense (2010)

37. P. Dutta, M. Grimmer, A. Arora, S. Bibyk, D. Culler, Design of a wireless sensor network plat-
form for detecting rare, random, and ephemeral events, in Proceeding of the 4th International
Symposium on Information Processing in Sensor Networks (IPSN), pp. 497–502 (2005)

38. V. Dyo, S.A. Ellwood, D.W. Macdonald, A. Markham, C. Mascolo, B. Pásztor, N. Trigoni,
R. Wohlers, Wildlife and environmental monitoring using RFID and WSN technology, in

46 F. J. Oppermann et al.

Proceeding of the 7th International Conference on Embedded Networked Sensor Systems
(SenSys), poster session, pp. 371–372 (2009)

39. V. Dyo, S.A. Ellwood, D.W. Macdonald, A. Markham, C. Mascolo, B. Pásztor, S. Scellato,
N. Trigoni, R. Wohlers, K. Yousef, Evolution and sustainability of a wildlife monitoring sensor
network, in Proceeding of the 8th International Conference on Embedded Networked Sensor
Systems (SenSys), pp. 127–140 (2010)

40. T. Flach, N. Mishra, L. Pedrosa, C. Riesz, R. Govindan, Carma: towards personalized auto-
motive tuning, in Proceeding of the 9th ACM Conference on Embedded Networked Sensor
Systems (SenSys), ACM, pp. 135–148 (2011)

41. R.K. Ganti, N. Pham, H. Ahmadi, S. Nangia, T.F. Abdelzaher, GreenGPS: a participatory
sensing fuel-efficient maps application, in Proceeding of the 8th International Conference on
Mobile Systems, Applications, and Services (MobiSys), pp. 151–164 (2010)

42. T. Gao, T. Massey, L. Selavo, D. Crawford, B. Chen, K. Lorincz, V. Shnayder, M. Welsh, The
advanced health and disaster aid network: a light-weight wireless medical system for triage.
IEEE Trans. Biomed. Circuits Syst. 1, 203–216 (2007)

43. C. Hartung, R. Han, C. Seielstad, S. Holbrook, FireWxNet: a multi-tiered portable wireless
system for monitoring weather conditions in wildland fire environments, in Proceeding of
the 4th International Conference on Mobile Systems, Applications and Services (MobiSys),
pp. 28–41 (2006)

44. T. He, S. Krishnamurthy, J.A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu,
J. Hui, B. Krogh, Energy-efficient surveillance system using wireless sensor networks, in Pro-
ceeding of the 2nd International Conference on Mobile Systems, Applications, and Services
(MobiSys), pp. 270–283 (2004)

45. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, K. Pister, System architecture directions
for networked sensors. ACM SIGPLAN Not. 35(11), 93–104 (2000)

46. W. Hu, V.N. Tran, N. Bulusu, C. tung Chou, S. Jha, A. Taylor, The design and evaluation
of a hybrid sensor network for cane-toad monitoring, in Proceeding of the 4th International
Symposium on Information Processing in Sensor Networks (IPSN), pp. 503–508 (2005)

47. W. Hu, N. Bulusu, C.T. Chou, S. Jha, A. Taylor, V.N. Tran, Design and evaluation of a hybrid
sensor network for cane toad monitoring. ACM Trans. Sens. Netw. (TOSN) 5(1), 4:1–4:28
(2009)

48. J.W. Hui, D.E. Culler, IP is dead, long live IP for wireless sensor networks, in Proceeding
of the 6th ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 15–28
(2008)

49. X. Jiang, S. Dawson-Haggerty, P. Dutta, D. Culler, Design and implementation of a high-
fidelity AC metering network, in Proceeding of the 8th International Conference on Informa-
tion Processing in Sensor Networks (IPSN), pp. 253–264 (2009)

50. X. Jiang, M. van Ly, J. Taneja, P. Dutta, D. Culler, Experiences with a high-fidelity wire-
less building energy auditing network, in Proceeding of the 7th International Conference on
Embedded Networked Sensor Systems (SenSys), pp. 113–126 (2009)

51. P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, D. Rubenstein, Energy-efficient computing
for wildlife tracking: design tradeoffs and early experiences with ZebraNet, in Proceeding
of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), pp. 96–107 (2002)

52. J.M. Kahn, R.H. Katz, K.S.J. Pister, Next century challenges: mobile networking for “smart
dust”, in Proceeding of the 5th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MOBICOM), ACM, New York, NY, USA, pp. 271–278 (1999)

53. C. Kappler, G. Riegel, A real-world, simple wireless sensor network for monitoring electri-
cal energy consumption, in Proceeding of the 1st European Workshop on Wireless Sensor
Networks (EWSN), pp. 339–352 (2004)

54. M. Keally, G. Zhou, G. Xing, J. Wu, A.J. Pyles, PBN: towards practical activity recogni-
tion using smartphone-based body sensor networks, in Proceeding of the 9th International
Conference on Embedded Networked Sensor Systems (SenSys), pp. 246–259 (2011)

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 47

55. D.H. Kim, Y. Kim, D. Estrin, M.B. Srivastava, Sensloc: sensing everyday places and paths
using less energy, in Proceeding of the 8th International Conference on Embedded Networked
Sensor Systems (SenSys), pp. 43–56 (2010)

56. S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, Health monitoring
of civil infrastructures using wireless sensor networks, in Proceeding of the 6th International
Conference on Information Processing in Sensor Networks (IPSN), pp. 254–263 (2007)

57. Y.J. Kim, R.G. Evans, W.M. Iversen, Remote sensing and control of an irrigation system using
a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 57(7), 1379–1387 (2008)

58. J. Ko, R. Musǎloiu-Elefteri, J.H. Lim, Y. Chen, A. Terzis, T. Gao, W. Destler, L. Selavo,
Medisn: medical emergency detection in sensor networks, in Proceeding of the 6th Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys), demo session, pp. 361–
362 (2008)

59. J. Ko, J.H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis, G.M. Masson, T. Gao, W. Destler,
L. Selavo, R.P. Dutton, MEDiSN: medical emergency detection in sensor networks. ACM
Trans. Embedded Comput. Syst. (TECS) 10(1), 11:1–11:29 (2010)

60. J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Brünig, T. Schmid, Q. Wang, P. Dutta,
A. Terzis, Low power or high performance? a tradeoff whose time has come (and nearly
gone), in Proceeding of the 9th European Conference on Wireless Sensor Networks (EWSN),
pp. 98–114 (2012)

61. L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, N. Kushalnagar,
L. Nachman, M. Yarvis, Design and deployment of industrial sensor networks: experiences
from a semiconductor plant and the north sea, in Proceeding of the 3rd International Confer-
ence on Embedded Networked Sensor Systems (SenSys), pp. 64–75 (2005)

62. J. Kumagai, The secret life of birds. IEEE Spectr. 41(4), 42–48 (2004)
63. K.G. Langendoen, A. Baggio, O.W. Visser, Murphy loves potatoes: experiences from a pilot

sensor network deployment in precision agriculture, in Proceeding of the 14th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), 2006

64. Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester, D. Blaauw, A modular 1mm3
die-stacked sensing platform with optical communication and multi-modal energy harvesting,
in Proceeding of the International Solid-State Circuits Conference (ISSCC), pp. 402–404
(2012)

65. D. Li, W. Liu, Z. Zhao, L. Cui, Demonstration of a WSN application in relic protection and
an optimized system deployment tool, in Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN), demo session, pp. 541–542 (2008)

66. D. Li, W. Liu, L. Cui, EasiDesign: an improved ant colony algorithm for sensor deploy-
ment in real sensor network system, in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM), pp. 1–5 (2010)

67. M. Li, Y. Liu, Underground coal mine monitoring with wireless sensor networks. ACM Trans.
Sens. Netw. (TOSN) 5(2), 10:1–10:29 (2009)

68. C. Lombriser, N.B. Bharatula, D. Roggen, G. Tröster, On-body activity recognition in a
dynamic sensor network, in Proceedings of the 2nd International Conference on Body, Area
Networks (BodyNets) (2007)

69. K. Lorincz, D.J. Malan, T.R. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Mainland,
M. Welsh, Sensor networks for emergency response: challenges and opportunities. IEEE
Pervasive Comput. 3(4), 16–23 (2004)

70. K. Lorincz, B. rong Chen, G.W. Challen, A.R. Chowdhury, S. Patel, P. Bonato, M. Welsh,
Mercury: a wearable sensor network platform for high-fidelity motion analysis, in Proceed-
ings of the 7th International Conference on Embedded Networked Sensor Systems (SenSys),
pp. 183–196 (2009)

71. D. Lymberopoulos, A. Bamis, T. Teixeira, A. Savvides, BehaviorScope: real-time remote
human monitoring using sensor networks, in Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN), demo session, pp. 533–534 (2008)

72. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, Wireless sensor networks
for habitat monitoring, in Proceedings of the 1st International Workshop on Wireless Sensor
Networks and Applications (WSNA), pp. 88–97 (2002)

48 F. J. Oppermann et al.

73. A. Markham, N. Trigoni, S.A. Ellwood, D.W. Macdonald, Revealing the hidden lives of
underground animals using magneto-inductive tracking, in Proceedings of the 8th Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys), pp. 281–294 (2010)

74. K. Martinez, R. Ong, J.K. Hart, GLACSWEB: a sensor network for hostile environments,
in Proceedings of the 1st IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON), pp. 81–87 (2004)

75. L. Mo, Y. He, Y. Liu, J. Zhao, S.J. Tang, X.Y. Li, G. Dai, Canopy closure estimates with
GreenOrbs: sustainable sensing in the forest, in Proceedings of the 7th International Confer-
ence on Embedded Networked Sensor Systems (SenSys), pp. 99–112 (2009)

76. P. Mohan, V.N. Padmanabhan, R. Ramjee, Nericell: rich monitoring of road and traffic con-
ditions using mobile smartphones, in Proceedings of the 6th International Conference on
Embedded Networked Sensor Systems (SenSys), pp. 323–336 (2008)

77. L. Mottola, G.P. Picco, Programming wireless sensor networks: fundamental concepts and
state-of-the-art. ACM Comput. Surv. (CSUR) 43(3), 19:1–19:51 (2011)

78. L. Mottola, G.P. Picco, M. Ceriotti, S. Gunǎ, A.L Murphy, Not all wireless sensor networks
are created equal: a comparative study on tunnels. ACM Trans. Sens. Netw. (TOSN) 7(2),
15:1–15:33 (2010)

79. K. Na, Y. Kim, H. Cha, Acoustic sensor network-based parking lot surveillance system,
in Proceedings of the 6th European Conference on Wireless Sensor Networks (EWSN),
pp. 247–262 (2009)

80. A. Nasipuri, R. Cox, H. Alasti, L.V. der Zel, B. Rodriguez, R. McKosky, J.A. Grazian, Wireless
sensor network for substation monitoring: Design and deployment, in Proceedings of the 6th
International Conference on Embedded Networked Sensor Systems (SenSys), demo session,
pp. 365–366 (2008)

81. J. Panchard, S. Rao, T. Prabhakar, H. Jamadagni, J.P. Hubaux, COMMON-sense net: improved
water management for resource-poor farmers via sensor networks, in Proceedings of the 1st
International Conference on Communication and Information Technologies and Development
(ICTD), pp. 22–33 (2006)

82. S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growden, D. Standaert, M. Akay, J. Dy,
M. Welsh, P. Bonato, Monitoring motor fluctuations in patients with parkinson’s disease
using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009)

83. K.S. Pister, Tracking vehicles with a UAV-delivered sensor network. (2001) Tech. rep., UC
Berkeley and MLB, http://robotics.eecs.berkeley.edu/pister/29Palms0103/

84. J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power wireless research, in Pro-
ceedings of the 4th International Symposium on Information Processing in Sensor Networks
(IPSN), pp. 364–369 (2005)

85. W.B. Pöttner, L. Wolf, J. Cecílio, P. Furtado, R. Silva, J.S. Silva, A. Santos , P. Gil, A. Cardoso,
Z. Zinonos, J.M. do Ó, B. McCarthy, J. Brown, U. Roedig, T. O’Donovan, C.J. Sreenan, Z. He,
T. Voigt, A. Jugel, WSN evaluation in industrial environments first results and lessons learned,
in Proceedings of the 3rd International Workshop on Performance Control in Wireless Sensor
Networks (PWSN), pp. 1–8 (2011)

86. N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Harmon, D. Estrin, Suelo:
human-assisted sensing for exploratory soil monitoring studies, in Proceedings of the 7th
International Conference on Embedded Networked Sensor Systems (SenSys), pp. 197–210
(2009)

87. P. Ranjan, P.K. Saraswat, A. Kumar, S. Polana, A. Singh, wildCENSE - sensor network
for wildlife monitoring. Technical report, Dhirubhai Ambani Institute of Information and
Communication Technology, Gandhinagar, Gujarat (2006)

88. R. Riem-Vis, Cold chain management using an ultra low power wireless sensor network,
in Proceedings of the MobiSys Workshop on Applications of Mobile Embedded Systems
(WAMES), pp. 21–23 (2004)

89. V. Rocha, G. Goncalves, Sensing the world: challenges on WSNs, in Proceedings of the
IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), vol 1,
pp. 54–59 (2008)

http://robotics.eecs.berkeley.edu/pister/29Palms0103/

2 A Decade of Wireless Sensing Applications: Survey and Taxonomy 49

90. K. Römer, F. Mattern, The design space of wireless sensor networks. IEEE Wirel. Commun.
11(6), 54–61 (2004)

91. R.M. Ruair, M.T. Keane, G. Coleman, A wireless sensor network application requirements
taxonomy, in Proceeedings of the 2nd International Conference on Sensor Technologies and
Applications (SENSORCOMM), pp. 209–216 (2008)

92. San Francisco Municipal Transportation Agency (2011) SFpark: Putting theory into practice.
Tech. rep., http://sfpark.org/wp-content/uploads/2011/09/sfpark_aug2011projsummary_
print-2.pdf

93. L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang, J. Stankovic,
D. Young, J. Porter, LUSTER: wireless sensor network for environmental research, in Pro-
ceedings of the 5th International Conference on Embedded Networked Sensor Systems (Sen-
Sys), pp. 103–116 (2007)

94. A. Sheth, K. Tejaswi, P. Mehta, C. Parekh, R. Bansal, S. Merchant, T. Singh, U.B. Desai,
C.A. Thekkath, K. Toyama, SenSlide: a sensor network based landslide prediction system,
in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems
(SenSys), poster session, pp. 280–281 (2005)

95. A. Sheth, C.A. Thekkath, P. Mehta, K. Tejaswi, C. Parekh, T.N. Singh, U.B. Desai, Senslide:
a distributed landslide prediction system. ACM SIGOPS Operating Syst. Rev. 41(2), 75–87
(2007)

96. E.I. Shih, A.H. Shoeb, J.V Guttag, Sensor selection for energy-efficient ambulatory medical
monitoring, in Proceedings of the 7th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), pp. 347–358 (2009)

97. V. Shnayder, B.R. Chen, K. Lorincz, T.R. Fulford-Jones, M. Welsh, Sensor networks for
medical care. Technical report TR-08-05 (Harvard University, Cambridge, 2005)

98. S. Shukla, N. Bulusu, S. Jha, Cane-toad monitoring in kakadu national park using wireless
sensor networks, in Proceedings of the 18th Asia Pacific Advanced, Network Conference
(APAN) (2004)

99. G. Simon, M. Maróti, Á Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai,
K. Frampton, Sensor network-based countersniper system, in Proceedings of the 2nd Inter-
national Conference on Embedded networked Sensor Systems (SenSys), pp. 1–12 (2004)

100. SmartSantander Project (2012) SmartSantander project. http://www.smartsantander.eu
101. I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, PIPENET: a wireless sensor network

for pipeline monitoring, in Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN), pp. 264–273 (2007)

102. R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, D. Culler, An analysis of a large
scale habitat monitoring application, in Proceedings of the 2nd International Conference on
Embedded networked Sensor Systems (SenSys), pp. 214–226 (2004)

103. B. Thorstensen, T. Syversen, T.A. Bjørnvold, T. Walseth, Electronic shepherd: A low-cost,
low-bandwidth, wireless network system, in Proceedings of the 2nd International Conference
on Mobile Systems, Applications, and Services (MobiSys), pp. 245–255 (2004)

104. S. Tilak, N.B. Abu-Ghazaleh, W. Heinzelman, A taxonomy of wireless micro-sensor network
models. SIGMOBILE Mobile Comput. Commun. Rev. 6(2), 28–36 (2002)

105. G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, W. Hong, A macroscope in the redwoods, in Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems (SenSys), pp. 51–63
(2005)

106. K. Van Laerhoven, B.P. Lo, J.W. Ng, S. Thiemjarus, R. King, S. Kwan, H.W. Gellersen ,
M. Sloman, O. Wells, P. Needham, N. Peters, A. Darzi, C. Toumazou, G.Z. Yang, Medical
healthcare monitoring with wearable and implantable sensors, in Proceedings of the 3rd
International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications
(UbiHealth), pp. 115–123 (2004)

107. T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka, P. Corke, C. Lee, J. Henshall,
K. Prayaga, J. O’Grady, M. Reed, A. Fisher, The design and evaluation of a mobile sen-
sor/actuator network for autonomous animal control, in Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (IPSN), pp. 206–215 (2007)

http://sfpark.org/wp-content/uploads/2011/09/sfpark_aug2011projsummary_print-2.pdf
http://sfpark.org/wp-content/uploads/2011/09/sfpark_aug2011projsummary_print-2.pdf
http://www.smartsantander.eu

50 F. J. Oppermann et al.

108. G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, M. Welsh, Fidelity and yield in a volcano
monitoring sensor network, in Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 381–396 (2006)

109. D. Whang, N. Xu, S. Rangwala, K. Chintalapudi, R. Govindan, J. Wallace, Development of
an embedded networked sensing system for structural health monitoring, in Proceeedings of
International Workshop on Smart Materials and Structures Technology (2004)

110. M.J. Whelan, K.D. Janoyan, Design of a robust, high-rate wireless sensor network for static
and dynamic structural monitoring. J. Intell. Mater. Syst. Struct. 20(7), 849–864 (2009)

111. G. Wittenburg, K. Terfloth, F.L. Villafuerte, T. Naumowicz, H. Ritter, J. Schiller, Fence mon-
itoring: experimental evaluation of a use case for wireless sensor networks, in Proceedings of
the 4th European Conference on Wireless Sensor Networks (EWSN), pp. 163–178 (2007)

112. A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, R. Stoleru,
Context-aware wireless sensor networks for assisted-living and residential monitoring. IEEE
Network 22(4), 26–33 (2008)

113. C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, X. Lin, Improving rf-based device-free passive
localization in cluttered indoor environments through probabilistic classification methods,
in Proceedings of the 11th International Conference on Information Processing in Sensor
Networks (IPSN), pp. 209–220 (2012)

114. G.Z. Yang (ed.), Body Sensor Networks, 1st edn. (Springer-Verlag, London, 2006)
115. P. Zhang, C. Sadler, S. Lyon, M. Martonosi, Hardware design experiences in ZebraNet, in

Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems
(SenSys), pp. 227–238 (2004)

Chapter 3
Design of Low Data-Rate Environmental
Monitoring Applications

Agnelo Rocha da Silva, M. Moghaddam and M. Liu

Abstract The majority of low-cost and off-the-shelf Wireless Sensor Networks
(WSNs) solutions cannot adequately address issues related to an unattended deploy-
ment in a harsh environment, especially if the network needs to scale and achieve
high density or high coverage or both. This is usually the case in environmental
applications. In this chapter, this problem is investigated and extensive discussion
on the pros and cons of a specific WSN design is presented. However, before mov-
ing from generic and well-established WSN solutions to customization, a detailed
analysis of the gains of having a tailored design is necessary. Accordingly, a case
study involving sparse deployments in outdoors is used to illustrate the process.

The majority of existing WSN deployments are for low data-rate monitoring appli-
cations, and some of the first WSNs were designed for environmental monitoring.
However, many challenges remain to be fully addressed before low-cost and large-
scale outdoor WSNs can become a more common reality [13, 15, 23, 24]. In this
chapter, the rationale supporting this statement is presented and some guidelines for
the design of specialized WSNs for such a scenario are proposed. For this purpose, a
real-world environmental monitoring application is used as a case study along with
a specific WSN design. The taxonomy given in Chap. 2 is used to characterize the
most relevant aspects of the design. More specifically, for each design dimension, the
pros and cons of the proposed solution are discussed. We also highlight the pros and
cons of designing a specialized WSN as opposed to adopting generic off-the-shelf
WSN technologies.

A. R. da Silva · M. Moghaddam
Electrical Engineering–Electrophysics, University of Southern California,
Los Angeles, CA, USA
e-mail: agnelosi@usc.edu

M. Moghaddam
e-mail: mahta@usc.edu

M. Liu (B)

EECS Department, University of Michigan, Ann Arbor, MI, USA
e-mail: mingyan@eecs.umich.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 51
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_3,
© Springer-Verlag Berlin Heidelberg 2014

http://dx.doi.org/10.1007/978-3-642-40009-4_2

52 A. R. da Silva et al.

In the first section of the chapter, the challenges of environmental monitoring
are discussed. We then present the requirements of an illustrative project called
NatureMONITOR. A specialized WSN solution is proposed along with a discussion
of its main advantages and limitations. In the third part of the chapter, the importance
of properly applying taxonomy to a WSN project is highlighted. We also make
the observation that this task is made easier when a solution is highly specialized.
Each design option of the NatureMONITOR project is explained in more detail and
alternative design options are also discussed. In the last section, lessons learned are
highlighted with a conclusion that advocates WSN designs tailored to application-
specific characteristics [33].

1 Challenges in Environmental Monitoring

One of the main challenges in typical environmental monitoring applications is actu-
ally the cost involved in deploying and maintaining a significant number of sensors
in the area of interest. For instance, although commercial radio, cellular, and satellite
telemetry solutions have been available for a long time [13], the cost associated with
deploying and supporting such solutions is relatively high, even when only a dozen
nodes are deployed. When larger areas (e.g., >1 km2) are involved, the cost becomes
a major factor in the feasibility of the project. About 10 years ago when WSNs were
presented as a feasible low-cost solution to large-scale deployments, there was great
expectation that these networks would be the key answer to indoor/outdoor environ-
mental monitoring [1].

However, a careful investigation of recent WSN work in this area, such as the
references provided in Chap. 2 shows that we have not achieved an effective solution.
From a business (or project sponsor’s) viewpoint, the effectiveness is measured by a
good balance between the expected functionality of such a network and acceptable
levels of cost, reliability, and scalability. We next discuss these 3 fundamental metrics,
as illustrated in Fig. 1.

Fig. 1 The main challenge of designing a large outdoor WSN is to achieve a balanced solution
involving TCO (effective cost), reliability, and scalability

http://dx.doi.org/10.1007/978-3-642-40009-4_2

3 Design of Low Data-Rate Environmental Monitoring Applications 53

1.1 Controlling the Total Cost of Ownership

While the terms large-scale, long-term, and low-cost are frequently used in the WSN
literature, a certain proposed solution often falls short of meeting the requirement
of an application. As an example, assume a sensor node carries a unitary cost of
$50 and it employs a “perpetual” energy harvesting system using a solar panel. This
does not automatically mean that the solution is truly low-cost. The true cost must
be evaluated systemically, while sensors constitute only one part of the system. In
particular, it is important to remember that the regular maintenance costs of a WSN
are not exclusively related to the power modules. For instance, if periodic sensor
calibrations are also necessary, then such costs must be included in the total cost
of ownership (TCO) of the sensor node. Moreover, in an outdoor setting regular
maintenance may be unavoidable due to a variety of reasons. Besides theft and
vandalism, the following are some of the potential issues found in a typical outdoor
deployment [27]:

• Negative effect of low-temperature on rechargeable batteries.
• Obstruction of the solar panel caused by dirt left by birds.
• Obstruction of the solar panel caused by shadow of trees (seasonal).
• Efficiency loss of the solar panel caused by long-term exposition to the environment

(e.g., >1 year).
• Damage to the components of the sensor node, including the sensor itself, caused

by insects and animals.
• Water infiltration.
• Condensing water inside waterproof enclosures.
• Communication issues due to new sources of radio frequency (RF) interference at

the site.

Therefore, we argue that the key to controlling the total cost lies in reducing main-
tenance needs and operational cost. Best practices in the industry include preventive
maintenance, which has long been used as a way to minimize the probability of
failures of the system. During a scheduled maintenance, many components of the
system are replaced simply because they are close to their expected lifetime.

Similarly, in the context of outdoor WSNs, it is important to determine whether
there are tasks or situations that require regular human intervention; such needs may
dictate other design aspects of the system. For instance, in a case where sensors
must be physically inspected, cleaned, or calibrated every 6 months, the pros and
cons of designing the lifetime of a sensor node for 2 years (in terms of its energy
solution) instead of a value closer to 6 months must be re-evaluated. Observe that
even a node with a perpetual energy lifetime will require such intervention. One
way to minimize outdoor maintenance cost is to coordinate multiple maintenance
tasks, e.g., scheduling them on the same, pre-defined dates. Knowing such a schedule
affects the design consideration for the rest of the system. For instance, such main-
tenance cycle will ultimately define the expected lifetime of the node in terms of
energy.

54 A. R. da Silva et al.

1.2 Reliability and Performance Metrics

In order to properly define maintenance dates for an outdoor WSN without compro-
mising its functionality and costs, a high degree of reliability of system components
along with a set of sound performance metrics are required. Observe that such state-
ment does not follow the traditional assumption that WSNs comprise inexpensive
nodes with a relative high failure probability. Component redundancy is a typical
solution to achieve high availability, although it is not always feasible to have repli-
cas of all components, not to mention that a complete self-healing solution is in
general complex and expensive. An alternate approach is to develop smart strategies
for the most vulnerable components. Observe that both approaches require a qualita-
tive understanding of the reliability level of system components. Usually for mature
solutions, this is known prior to implementation. However, early adopters of a new
technology must use or develop measurement tools to acquire such knowledge. This
is typically the case with large outdoor WSNs, where researchers and developers
must determine what to measure to assess the reliability level of system components.
The following is a list that exemplifies some of the expected performance metrics
for this scenario:

1. Remaining energy level (real-time) of each node.
2. Ratio between the number of packets correctly received and that of packets trans-

mitted.
3. Ratio between the number of measurements received by the sink node and the

number actually taken by the sensor nodes.
4. Number of power shortages (or reset) on each node.
5. Average data-latency over the entire WSN.
6. Measurement health (or detection reliability) of each sensor module in each node.

We have now argued that low operating cost is key to making WSNs affordable
for environmental monitoring applications, and that to lower maintenance cost it is
important to identify the weakest components. However, to realize such analysis, at
least basic network management functionalities must be available as briefly listed
above. However, for the design of a large WSN, it is essential a clear understand-
ing of how scalability affects both performance and cost, as highlighted in Fig. 1.
Accordingly, in the next section, additional metrics related to the terms large and
sparse are established.

1.3 Network Metrics for Large Network Design

The term large-scale in the WSN literature usually refers to a large number of sensor
nodes over a relatively confined area (thus high node-density) [1, 23, 24]. However,
we note that for outdoor WSNs sometimes large-scale is more related to large spatial
coverage than the number of sensors. As an example, consider a 4 km-long beach that

3 Design of Low Data-Rate Environmental Monitoring Applications 55

Fig. 2 Two possible deployment options for the beach example involving 200 sensor nodes

must be monitored for possible pollution, as shown in Fig. 2. If the budget constraint
limits the number of nodes to 200, it may be more desirable to have these sensors
covering all 4 km in a sparse deployment (Deployment 1) than to densely deploy
these sensors at a few selected locations while ignoring the rest (Deployment 2). The
technical issues underlying both approaches are distinctly different. While a solution
may be scalable in terms of node-density, this does not imply that it is also scalable
in terms of spatial coverage.

The above illustrates two types of scaling (at two extremes), one with increasing
density within a fixed area (density scaling) and the other with increasing area with a
fixed number of nodes (area scaling). In practice, a particular large-scale deployment
may be some combination of the two with one being more dominant. Area scaling
notably gives rise to the question of whether the network can remain connected as
we stretch the area without adding more nodes. But the difference between the two
also goes beyond the communication range. Depending on how the network scales,
data-rate, duty-cycle, data-latency, communication errors, and energy consumption
all vary in ways determined by the architecture, hardware, and protocols in use, and
not all of this is well understood.

For the above example, if we assume a typical communication range of 50 m,
the average number of one-hop neighbors for a node is 2 (Deployment 1) or 16.6
(Deployment 2). Therefore, the denser deployment (2) has the clear advantage of
a plurality of data paths which is usually associated with a higher degree of data
transfer reliability for the network. Similarly, the ratio between the communication
range of the nodes and the average inter-node distance between a node and its 3 closest
neighbors is 1.1 and 3.3 for deployments 1 and 2, respectively. Again, the probability
of communication errors for the first case is significantly higher compared with the
second one [43]. In short, for the same number of nodes, a sparser deployment is
typically more critical.

56 A. R. da Silva et al.

1.3.1 Motivation for Metrics Toward Large Networks

The previous discussion highlights the importance of carefully considering the
area scaling aspect when the scalability of a WSN solution is under analysis.
Unfortunately, such information is typically ignored or not mentioned in WSN
designs. For instance, many WSN papers discuss the scalability of networking proto-
cols considering density scaling, but it is much less clear how the same architecture
and protocols behave under area scaling. At the same time, cost concerns (both
deployment and maintenance) suggest that area scaling is often the more relevant
one, as shown in the preceding beach example. In this way, as the networks scales
(area), it becomes more difficult to achieve the initial goals related to TCO and reli-
ability, as illustrated in Fig. 1. In fact, rarely a large-scale deployment is reported as
having a longer lifetime (e.g., >1 year).

The majority of the reported large-scale WSN studies are for scenarios where
the average inter-node distance among immediate neighbors is still relatively small
compared to the communication range of the nodes, implying a high-density regime
[32, 34]. Consequently, the emphasis has been on handling interference in dense
deployments and on examining the performance of collaborative and multi-hopping
protocols for this scenario. When typical WSN solutions suggested for wider physical
coverage area are considered [1, 17], multi-hopping usually works due to a plurality
of paths available. For instance, ZigBee specifications allow deep multi-hopping
(e.g., 30 hops under ZigBee PRO [10, 14, 16]) and ZigBee-based networks are being
successfully deployed especially indoors. This type of solution obviously requires the
deployment of an increasing number of nodes to cover a larger area so as to maintain
a similar degree of density and this is the case for deployments inside buildings and
industrial plants.

We strongly believe that the success of using wireless sensors in environmental
monitoring applications, especially outdoor WSN deployments, heavily lies in the
proper support for sparse deployments. This is the case because the goal of any
environmental monitoring application is to capture certain underlying phenomenon
of interest. The quality of our observation is determined by both spatial resolution
of data (node-density) as well as the spatial diversity of the data (coverage area),
sometimes one more than the other. Ideally if we can have both then we have the
best information quality. However, if both cannot be afforded simultaneously due
to high cost, then one must prioritize. For some applications it makes sense to first
focus on a few select, small areas and get high-resolution data limited to those
areas. For many other applications it may be far more sensible to start with a wider
coverage first and then gradually increase the node-density over time if necessary and
when more resources become available. This observation is also relevant to many
envisioned infrastructure monitoring applications, such as the detection of leakages
in oil pipelines, structural failures of bridges, and the detection of landslides in roads.
Precision agriculture is another example [39]. Note that in all these examples high
spatial coverage is usually a requirement.

When the number of sensor nodes is limited, node placement becomes a critical
issue in the design process. Consider a deployment with 100 sensor nodes over an

3 Design of Low Data-Rate Environmental Monitoring Applications 57

area of 500 × 500 m. If we assume a square grid deployment, the average inter-node
distance among immediate neighbors is around 56 m. Many low-power radio trans-
ceivers actually offer good communication performance for distances higher than
this one. Therefore, we can realistically assume that one node in this network will
have more than 6 neighbors within its communication range of 100 m. In this case,
we expect multi-hop protocols to work properly, e.g., in [21] a routing protocol was
shown via simulation to achieve satisfactory results for 100 nodes non-uniformly
spread in a 100 × 100 m area. Moreover, because of the high density, this network
is more robust to the actual placement of sensors, i.e., changes in nodes’ locations
(as long as not too drastic as to alter connectivity) do not severely impact the perfor-
mance of the network.

Now consider a second scenario with a sparser deployment: 100 nodes over an
area of 3000×3000 m. The average inter-node distance among immediate neighbors
is higher than 330 m. Although some WSN transceivers at their maximum transmit
power levels can operate for this distance, the potential number of neighbors of a
node is drastically reduced. In fact, to the best of our knowledge, there is no published
work reporting a satisfactory multi-hop WSN solution operating in this scenario.

The connectivity challenge becomes more complicated when non-uniform deploy-
ments, obstacles, and environmental issues are considered. In this case, well-known
multi-hop and collaborative protocols may not work properly in even relatively small
areas. It is also clear that, when the number of sensor nodes is limited, the quality
of observation is highly affected by the placement of the nodes. Due to the resource
constraint, a good placement may mean spatially varying node densities over the
target area.

We will consider hereafter a deployment with 100 nodes and a coverage area of
1000 × 1000 m. While not a particularly very large network, this example will help
illustrate the problem of finding WSN solutions for realistic sparse deployments. In
Fig. 3a, b we show a node placement in a square grid and a more realistic shape for
the 1000 × 1000 m target area, respectively. In Sect. 2, a WSN solution to placement
in the area shown in Fig. 3b is presented. The proposed architecture can be applied
in different scenarios that also require high coverage area, or high spatial scalability.

When comparing Fig. 3a with b, it is clear that the latter case has more associated
challenges. However, we still have to find a way to quantitatively express the chal-
lenges for this scenario. Moreover, similar to the standard processing benchmarks
used by the microprocessor and computer industries, there is a real need of a way to
compare the performance of WSN protocols for distinct and strategic cases involving
large networks. Such cases can be real-world examples and/or artificial scenarios of
network placements involving different number of nodes and coverage areas. The
first step toward this goal is the formalization of metrics that better translate the
challenges involving communication range, number of neighbor nodes, and distance
to these nodes. Accordingly, in the next section we propose one of such metrics,
although it is not complete.

58 A. R. da Silva et al.

Fig. 3 a Grid-based node placement in a 1000 × 1000 m area. b An example of a realistic 1000 ×
1000 m deployment area

1.3.2 AIND & ANON Metrics

In this section, it is introduced a novel network metrics, called AIND-ANON. AIND
stands for Average Inter-Node Distance among immediate neighbors and ANON
stands for Average Number of One-hop Neighbors. The metrics cannot be used in
its current form as a network performance tool with the objective of comparing net-
work solutions, although we acknowledge that such tool is potentially a first step
toward this goal. The fact that the tool is not a complete one is revealed by the
observation that the metrics does not capture the location and number of sinks (i.e.,
end-destinations) at the node topology. Without this information, it is not possible
to calculate the average number of hops necessary to conclude an end-to-end com-
munication transaction. Moreover, the sensing range of a node is assumed to be the
same as the communication range, which cause distortions in the analysis of channel
contention and interference [43]. Similarly, the tool does not capture aspects related
to network congestion, data-latency, or network throughput.

Therefore, it is natural to question the effectiveness of the AIND-ANON metrics
at the ongoing discussion in this chapter. The main compelling reason behind the
development of this metrics is simplicity, that is, a simple way to formalize the
concept of network sparsity. To this end, it is important to maintain the technical
discussion in a higher level without involving too many details related to underlying
protocols and deployment environment. Moreover, we are interested to understand
how sparsity is related to network performance, at least in relation to the average
success for delivering a packet. If we assume that such delivery success in a multi-hop
network is strongly associated with the success of a node in communicating with its
closest neighbors, we significantly reduce the complexity of the analysis. However,
we will see that such assumption may not be realistic under certain circumstances.

The key input parameters of this high-level analysis are two: (a) the node topology
in 2D (or 2D-equivalent from a 3D scenario) and (b) the expected communication

3 Design of Low Data-Rate Environmental Monitoring Applications 59

range of the node. The rationale is simple: calculate the average distance of a node
to its 3 closest one-hop neighbors and also calculate the total number of one-hop
neighbors. By averaging these values for all nodes in the network, it is possible
to have qualitative indicators related to the expected challenges for this specific
topology when multi-hopping is used. This goal is achieved even without informing
the location of the sink(s). If, on the average, the ratio between the communication
range of a node and the distance to its closest neighbors are close to the unity, the
probability of communication errors increase because the received signal strength is
expected to be smaller. However, even for this worst scenario, if the number of one-
hop neighbors of this node is relatively high, the likelihood of communication success
increases. As expected, having multiple neighbors close to a node (dense network)
is the ideal case for this analysis. At the contrary direction, having a scenario with
few neighbors located at the limits of the communication range is the worst case
(sparse network). Therefore, by using the AIND-ANON metrics, it is possible to get
the sparsity degree of a network and infer about possible communication issues.

Observe that so far the use of the AIND-ANON metrics is always associated with
the expressions neighbors and multi-hopping. It suggests that the analysis under this
metrics will potentially degrade or fail when any form of segmentation or in-network
aggregation is applied to the network thus decreasing the use of multi-hopping in
that network. More specifically, assume that after analyzing a node topology using
AIND-ANON we conclude that the network is very sparse and it has high probability
of communication errors and low packet delivery rate. Although such deployment
is potentially sparse from the physical point of view, it does not necessarily imply
that the performance of the network is as critical as indicated by the metrics. The
initial pessimistic conclusion about the network is potentially valid if the average
number of hops used for the message delivery is high; otherwise, the conclusion
can be invalid. The cases where the analysis with this metrics can be distorted are
the ones where the average number of hops is close or equal to the unity and they
are the following: (a) small networks and (b) any network that employs a form of
segmentation or in-network aggregation.

Opportunistically, the above latter observation (b) is very important for our analy-
sis. More specifically, if a multi-hopping network is analyzed under AIND-ANON as
sparse (with high probability of network issues), any form of segmentation and aggre-
gation can potentially mitigate the performance issues in that scenario. Although the
AIND-ANON metrics cannot capture such improvement (there is no associated input
parameter), it is not difficult to get the intuition behind the previous statement. While
the metrics captures values on the average for the entire network, when aggregation
and/or segmentation are used, the success of the message delivery is now constrained
to a smaller physical region. For instance, in many cluster-based WSNs, the major-
ity of nodes exchange their messages by means of a single hop to a cluster-head.
Therefore, even if the average distance between a node and its immediate neigh-
bors is high (compared to its communication range), the success of the solution is
mainly associated with the average performance of the links involving nodes and
their cluster-heads, not the links among regular nodes. Similarly, when one large

60 A. R. da Silva et al.

WSN employs a significant number of sinks, the same rationale applies because on
the average a smaller number of hops is required.

We summarize this discussion as follows. The AIND-ANON metrics can be used
as a simply tool to evaluate the sparsity level of a network with a specific node topol-
ogy. Moreover, the metrics can be used as a qualitative tool to evaluate the expected
challenges associated with the use of generic multi-hopping protocols assuming that
no aggregation or segmentation effort is being used. If the metrics indicates that a
network is very sparse, network performance issues are potentially expected. In this
case, aggregation or segmentation efforts can be adopted to improve the performance
of the network. Following this direction, it is possible to reach the extreme case where
the communications at the entire network are based on one-hop links only. If these
links have good performance, the overall network achieves good performance and
easily scales. We will see that this rationale will be later applied for the design of the
case study in this chapter.

Another alternative for enhancing performance in sparse networks without seg-
menting the network is the simple addition of extra nodes, mainly serving as relay-
nodes. Typically, this is a very usual practice, although it comes with the penalty of
a higher cost to install and maintain the solution. As expected, with more nodes, the
network becomes denser and the existing WSN multi-hop protocols can potentially
achieve better performance. If the AIND-ANON metrics are evaluated again for the
new node topology, the values will indicate that the network density in fact increased,
as expected.

Next, we will see how the values for the AIND and ANON metrics are produced
by means of an algorithm. After that, we will study some cases of real-world deploy-
ments (large networks) and calculate the AIND and ANON values for each case in
addition to brief discussions.

Before proceeding with the presentation of the AIND-ANON algorithm, two
expressions must be properly explained. We define immediate neighbors as the clos-
est one-hop neighbors of a node. In our proposed algorithm, we limited the number of
these immediate neighbors to 3, meaning that AIND reflects the average inter-node
distance in relation to the closest 3 one-hop neighbors. The reason to this constraint
is simple: because AIND is ultimately related to the probability of communication
errors due to high inter-node distances, we are interested to limit the analysis to
the closest neighbors that have better potential to successfully perform the com-
munication task. In relation to ANON, the term neighbors is related to all one-hop
neighbors that are located at the communication range of a node. Each node is eval-
uated individually and the average values of AIND and ANON for the network are
calculated.

3 Design of Low Data-Rate Environmental Monitoring Applications 61

In conjunction1 with AIND and ANON, the maximum communication range of
the nodes (MCR) will form the set of parameters that we want to consider. Note that
the number of nodes is indirectly included when the node topology is analyzed and
it is also used when the values for AIND and ANON are calculated. Such parameters
(AIND, ANON, MCR) give an indication (although without accuracy) of how sparse
the network is and the potentiality of reliability and connectivity issues when multi-
hopping is intensively used. Using such metrics, we will eventually conclude that
some scenarios involving distinct number of nodes can have the same sparsity degree
and potentially share some of the network problems2 associated with this fact. In other
words, scalability issues are closely related to the sparsity level of the network. The
AIND-ANON algorithm is presented in Algorithm 1.

The calculated ANON value represents the expected number of one-hop neighbors
of a node in a network. A higher value for ANON typically is associated with a denser
network and a smaller probability of issues related to the data transfer. In fact, with

1 Contextual definition for a weakly connected network: considering the communication range of
the nodes, there is at least one path that connects all nodes.
2 The number of nodes, application/network duty-cycles, network topology, and selected WSN
protocols will also be associated with potential bandwidth, contention, and similar issues. However,
another metrics besides AIND-ANON must be developed to address these needs.

62 A. R. da Silva et al.

Table 1 AIND-ANON metrics: extreme cases interpretation

ANON value MCR/AIND value Extreme cases interpretation

Small Small Very sparse network (critical scenario): small number of
data paths and high probability of communications errors

Small High Not a large network
High Small Rare case: an efficient deployment geometry (e.g., hexagonal

tessellation) covering huge areas
High High Very dense network: issues related to the data transfer

reliability and communication errors are significantly smaller

a higher number of neighbors, the potential existence of multiple paths for the same
message increases the likelihood of having this message properly delivered.

The calculated value for AIND represents the expected average distance between
a node and its closest one-hop neighbors. A smaller value for AIND in general is
associated with a smaller probability of communication problems due to a higher
signal-to-noise ratio (SNR) level. Naturally, the numerical analysis of AIND only
makes sense if the maximum communication range (MCR) of a node is also included.
Therefore, the ratio MCR/AIND is the ultimate metric of interest besides ANON.
Although the Algorithm 1 supports heterogeneous MCRs, we will hereafter assume
a single MCR for all nodes. An initial interpretation of the values of ANON and
MCR/AIND is shown in Table 1.

In the next section, 13 real-world large3 WSN cases will be investigated under the
AIND-ANON metrics. Because only the node topology and the MCR is captured for
each case study (no additional detail in relation to the protocols and location of the
sink), the comparison between the cases are mainly to understand the network sparsity
level for each case. Nonetheless, as already mentioned, the sparser the network is, the
higher are the challenges to the deal with the performance issues if no segmentation
or aggregation techniques are employed.

The focus of this chapter is related to the cases similar to the first scenario shown
in Table 1, that is, large and sparse networks. In the next section, we will discover that
few cases of the real-world deployments of large WSNs really lie on the first scenario.
Nonetheless, important applications for outdoor WSNs require specific solutions for
this scenario, as discussed in Sect. 2.

1.3.3 AIND & ANON Metrics Applied to Real-World Deployments

Chapter 2 listed 62 real-world deployments of WSNs and, from that list, only 10
are related to deployments of more than 30 nodes. On the other hand, there are
deployments with fewer nodes that cover impressive large areas. In this section,

3 The term large WSN in this context is associated to a high number of nodes, or to a large coverage
area, or both.

http://dx.doi.org/10.1007/978-3-642-40009-4_2

3 Design of Low Data-Rate Environmental Monitoring Applications 63

Fig. 4 AIND-ANON analysis for the PODS case [8]

some of these cases and additional ones are evaluated in relation to their AIND and
ANON values. To this end, we developed a program (Microsoft Visual Basic) that
implements the Algorithm 1. The interface of this program is shown in Fig. 4.

Due to the lack of precise topology information for some of the 13 selected cases,
some of the distances are estimated based on additional reports and pictures provided
by the authors or associated websites. Similarly, while in some cases the MCR value
is explicitly provided in the related work, there are cases where we must derive the
value for MCR based on the characteristics of the radio transceiver, antenna height,
and related information. Usually, the adopted MCR value is significantly smaller
than the communication range specified in the data sheets of the radio transceivers.
It is explained by the fact that the MCR is associated with the connected region [43],
that is, with the region related to good quality bi-communication. In particular for
outdoor scenarios, the connected region is reduced due to the characteristics of the
environment, such as vegetation and topography.

Next, the case studies are presented in chronological order and each figure shows
the use of the AIND-ANON calculator software for each case.

Case 1: PODS [8]
This is a large deployment in both senses: number of nodes and coverage area. If the
deployment was only restricted to the dense grid area (top-left of Fig. 4), the value
of ANON would be higher. However, the network challenges significantly increase
with the introduction of the non-regular part of the network. Consequently, the ratio
MCR/AIND becomes significantly smaller. Therefore, the combination of a small
ANON (2.4) with a small MCR/AIND (1.4) indicates that this network is sparse and
critical network challenges are associated.

The details of the hardware are not extensively presented in [8] and, in particular
network performance results are missing. However, based on the information about

64 A. R. da Silva et al.

Fig. 5 AIND-ANON analysis for the Unwired Wine case [6]

the Tephranet node (900 MHz, +4.5 dBm transmit power), it is possible that the effec-
tive MCR (for a good quality communication) is higher than used in the calculation
shown in Fig. 4. If this is the case, the network challenges can be potentially less
critical than expected for this deployment. Again, the lack of network performance
data in this case (the network operated for few weeks), impact a deeper analysis of
the case.

Case 2: Unwired Wine [6]
The node topology for this case study was not provided in [6] and Fig. 5 represents
the sparser configuration based on our interpretation based after reading the paper
and researching associated work. The relatively high values for ANON (14.4) and
MCR/AIND (3.6) indicate that generic WSN protocols would work properly for
this scenario due to the high number of additional paths for the data transfer and
potentially smaller communication error probability.

Case 3: A Line in the Sand [4]
This is a large network only in terms of the number of sensors. The Fig. 6 (observe
the 2 m-scale) quickly reveals how dense this network is. Note that due to the lack of
information for the antenna height, we adopted a conservative value for MCR: 20 m.
Nonetheless, the very high values for ANON (77) and MCR/AIND (15.4) indicate
that generic WSN protocols would potentially fit for this scenario. Nonetheless, there
are other issues not revealed by the AIND-ANON metrics.

3 Design of Low Data-Rate Environmental Monitoring Applications 65

Fig. 6 AIND-ANON analysis for the A Line in the Sand case [4]

Fig. 7 AIND-ANON analysis for the Volcano (Ecuador) case [41]

Case 4: Volcano (Ecuador) [41]
This is a large network only in terms of coverage area. The proper choice for the
antenna and radio transceivers allows the node to have a MCR of around 400 m. It is
easy to observe how sparse this network is in the Fig. 7. Such degree of sparsity is
also revealed by the small values in the AIND-ANON metrics: 3.4 for ANON and
1.7 for MCR/AIND. Similar to the first case (PODS), this is other case of a critical
network with the potential of having high packet loss rate. In fact, the Fig. 4 in [41]
indicates significant packet loss rate.

66 A. R. da Silva et al.

Fig. 8 AIND-ANON analysis for the Trio Testbed (Richmond Field Station) case [12]

Case 5: Trio Testbed [12]
The analysis of this case is partial: only 462 of the reported 557 nodes are actually
shown in Fig. 8. Nonetheless, the additional nodes probably would not significantly
change this metrics: 149 for ANON and 7.9 for MCR/AIND. Although the coverage
area is not small, the network is mainly considered large due to the number of nodes.
In fact, it represents one of the densest outdoor WSNs so far deployed. Similar to the
Line in the Sand case, excluding contention and bandwidth issues, the network can
potentially have good performance for the majority of the current WSN protocols, if
energy and contention-related issues are disregarded.

Case 6: ExScal [3]
The AIND-ANON analysis in this case is also partial (now due to limitations of our
program): only 824 of 1200+ nodes are actually shown in Fig. 9. Similar to the pre-
vious case, a high-dense network is identified: ANON = 35 and MCR/AIND = 3.4.
Due to the existence of regions with sparser deployment, the expected network per-
formance is a little bit more critical compared to the Line in the Sand and Trio cases.

Case 7: Golden Gate Bridge [19]
Due to the lack of 3D support of our program, the layout shown in Fig. 10 is an
approximation of the real network. Nonetheless, the analysis of this layout must
reveal some similarities with the Ecuador Volcano case, another very sparse network
that has a large network section with a linear topology. In fact, ANON (2.3) and
MCR/AIND (1.6) are small values and pretty similar to the values for the Volcano
case. Unfortunately, there is no additional information about the network perfor-
mance for this 3-week deployment, except the use of an efficient patch antenna in
order to increase communication range.

3 Design of Low Data-Rate Environmental Monitoring Applications 67

Fig. 9 AIND-ANON analysis for the ExScal case [3]

Fig. 10 AIND-ANON analysis for the Golden Gate Bridge case [19]

Case 8: SensorScope (Grand Saint Bernard) [5]
Due to the lack of precise information related to the node distances in [5] and also
due to the lack of 3D support of our tool, the layout in Fig. 11 is an approximation of
the actual network. Nonetheless, similar to the previous case, we still expect to have
AIND-ANON metrics that reveal some degree of sparsity. In fact, MCR/AIND (2.2)
is a relative small value. Although ANON (5.4) is not small, if we take into account
that the each set of nodes is deployed in a distinct mountain, the real value of ANON
can potentially be half of the calculated one. Therefore, the sparsity degree in this
case is medium-to-large.

68 A. R. da Silva et al.

Fig. 11 AIND-ANON analysis for the SensorScope (Grand Saint Bernard) case [5]

Fig. 12 AIND-ANON analysis for the ParadiseNet case [29, 30]

Case 9: ParadiseNet [29, 30]
The MCR in this case is strongly reduced due to the existence of large high-voltage
transformers among the nodes. The Fig. 12 quickly reveals a very dense network.
Accordingly, ANON is calculated as 18.6 and MCR/AIND as 3.3 which are relatively
high values in our metrics.

Case 10: GreenOrbs (University Site) [24]
Another example of a dense network as shown in Fig. 13 : ANON = 9.5 and
MCR/AIND = 2.1. Due to the relatively small MCR/AIND, this network can present
a higher packet error rate. However, due to the possibility of multiple data paths, the

3 Design of Low Data-Rate Environmental Monitoring Applications 69

Fig. 13 AIND-ANON analysis for the GreenOrbs (University Site) case [24]

Fig. 14 AIND-ANON analysis for the PermaSense (Mattherhorn) case [7]

effective data transfer reliability for the network can be significantly superior. There-
fore, such case study is another medium-to-large sparsity degree case.

Case 11: PermaSense (Mattherhorn) [7]
Although not involving a significant number of nodes, this is a large network in
terms of coverage area. As shown in Fig. 14, this is definitely a sparse network:
ANON = 3.9 and MCR/AIND = 1.9. The MCR was strongly reduced in this case
due to existence of mountains in this scenario.

Case 12: SoilSCAPE I (Matthaei Botanical Gardens) [27, 28]
Involving an area of around 200 × 300 m2, this network is not very large but it is
relatively sparse if we consider the number of nodes: only 27. With ANON = 6.4

70 A. R. da Silva et al.

Fig. 15 AIND-ANON analysis for SoiSCAPE I case [27, 28]

Fig. 16 AIND-ANON analysis for SoiSCAPE II case [28]

and MCR/AIND = 2.2, it has a medium-to-large sparsity degree. The majority of
the WSN solutions will have good performance for this scenario.

Case 13: SoilSCAPE II (Canton Farm) [28]
Comparing Fig. 15 with Fig. 16, one can observe that SoilSCAPE II basically doubles
the coverage area with a smaller number of nodes, i.e., a sparser network is achieved.
In this particular scenario, the existence of obstacles (vegetation, trees, etc.) and
differences at the topography make some nodes work better than others. Although
MCR of around 400 m was achieved in ideal conditions, on the average 60m is the
MCR for the nodes with their standard antennas [28]. The small values of ANON
(1.7) and MCR/AIND (1.2) clearly indicate that this network is very sparse and the

3 Design of Low Data-Rate Environmental Monitoring Applications 71

Table 2 Estimated values of AIND and ANON for large-scale WSN deployments

Deployment case #Nodes MCR (m) AIND (m) MCR/AIND ANON

Environment monitoring: PODS [8] 104 50 34.5 1.4 02.4
Vineyard monitoring: Unwired

wine [6], approx. topology
64 50 14 3.6 14.4

Intrusion detection: A Line in the
Sand [4]

78 20 01.3 15.4 77

Volcano monitoring (Ecuador) [41] 18 400 239.8 1.7 03.4
Outdoor Testbed: Trio

(Richmond F. S.) [12],
approx. topology

462 50 06.3 7.9 149

Intrusion detection: ExScal [3],
based on a partial deployment

824 50 14.5 3.4 35

Structure monitoring:
Golden Gate Bridge [19]

64 40 24.7 1.6 02.3

Environment monitoring:
SensorScope (G. Saint Bernard)
[5]

18 180 82.4 2.2 05.4

Substation monitoring:
ParadiseNet [30, 29]

114 30 09 3.3 18.6

Environment. monitoring:
GreenOrbs (Univ. woodland)
[24]

294 50 23.3 2.1 09.5

Environment monitoring:
PermaSense (Mattherhorn)
[7]

15 50 25.6 1.9 03.9

Environment monitoring:
SoilSCAPE I (Matthaei B. G.)
[27, 28]

27 60 27.5 2.2 06.4

Environment monitoring:
SoilSCAPE II (Canton farm)
[28]

23 60 50.5 1.2 01.7

MCR: maximum communication range (on the average for all nodes). The values for MCR are
approximated ones; they are based on the information provided by the related work and also on the
characteristics of the environment, height of the antenna, and radio transceiver.

communication performance can be strongly impacted. Without a careful network
design, this scenario is highly associated with high packet error loss and associated
higher energy consumption. In fact, as reported in [28], the network only achieved
certain degree of stability when 4 additional nodes (ZigBee routers) where added to
the network.

The results of these 13 case studies are summarized in Table 2. Also, in Fig. 17, the
values of MCR/AIND and ANON for these cases are plotted. It is clear that moving
from the left-bottom part of Fig. 17 to the upper-right, the network becomes denser
and many performance problems are potentially avoided in this way. However, due
to the realistic budget constraints, more and more outdoor WSNs can be potentially
located at the sparser area of the picture(left-bottom corner). In fact, this is the

72 A. R. da Silva et al.

Fig. 17 AIND-ANON metrics applied to 13 large-scale WSN deployments

challenge behind the case study of this chapter, NatureMONITOR, as considered in
the next section.

2 NatureMONITOR Case Study

In this section we introduce an illustrative project called NatureMONITOR to high-
light the advantages of having a custom WSN design when off-the-shelf solutions
cannot provide a complete answer. In this case study, the functional requirements
are very strict (though realistic) such that the final solution is rather non-traditional
compared to that typically found in the literature. Specifically, an application-centric
approach is adopted in the design and many well-established principles are ignored.
The main advantages and limitations of the proposed solution are presented. In the
next sections more extensive discussion is provided where we also consider other,
including more traditional, options. The final conclusions are not definitive ones but
they stimulate discussions around the design of low data-rate environment monitor-
ing and similar applications.

3 Design of Low Data-Rate Environmental Monitoring Applications 73

2.1 NatureMONITOR Project Specifications

Objective: 400 environmental sensors (humidity, solar radiance, soil moisture, wind
spend, temperature, etc.) must be deployed and maintained over multiple years in an
1 km2 area (hereafter called “cell”) to provide in-situ measurements for a variety of
environmental studies. Multiple cells will be deployed.

Business Requirements:

1. The deployment must follow the guidelines of the environmental scientists, the
main users of the application, in that observations must be of sufficient spatial,
topographical, and geological diversity across the 1 km2 region. This could mean
that some areas may need to have more sensors than others, so that the ensemble
of data properly represents the region (e.g., its heterogeneity in soil makeup and
so on).

2. At each node location, 4 environmental sensors are installed. Therefore, each cell
has a maximum of 100 sensor nodes each one with up 4 sensors. While taking
measurements, each environmental sensor consumes a maximum of 100 mW.

3. The default sampling rate is once every 15 min for all sensors. However, the
system needs to be able to dynamically change this parameter for each location
from a central web application.

4. The cell has roughly 1 km2 of area but can have different geometrical shapes.
It can be anywhere in the world and no assumption may be made about the
topography and environmental parameters. In particular, support for extreme
weather conditions must be provided.

5. The total material cost of a cell cannot exceed US$25,000, excluding the
environmental sensors.

6. The total deployment cost of a cell cannot exceed US$15,000.
7. The annual operating cost of a cell (excluding the costs associated with the

central data server and also the connection to it) must be smaller than $15,000.
This value assumes the default sampling rate of 15 min.

8. The additional maintenance costs due to the usage of a more frequent sampling
rate at some nodes for a certain period of time must be known a priori before
adopting a higher sampling rate.

9. The maximum allowed latency between the moment when the measurement is
performed and the moment when the data is stored in an existing central database
(with Internet connectivity) is 24 h.

10. The sensing data must be time-stamped with real local time and the maxi-
mum allowed timing error is 1 s. It must also be stamped with the location
and depth/elevation of the measurement.

11. When the number of environmental sensors that simultaneously experience prob-
lems in a cell exceeds 30, the network cell is considered “unavailable.” Such prob-
lems may be related to both communication and sensory devices, e.g., defective
measurements. The availability of the network cell must be higher than 95 %

74 A. R. da Silva et al.

over a period of 1 year. If the network cell is unavailable due to maintenance,
these periods of time effectively count against the network availability metric.

12. The maximum number of lost measurements over a period of 1 month in a cell
cannot exceed 90 % of the expected value (i.e., the amount of measurements
scheduled to take place).

2.2 Functional and Non-functional Requirements

Observe that at the above business requirements list there is no mention to the term
WSN. However, the project budget quickly rules out more expensive connectivity
solutions like satellite or cellular connections for each location. We will therefore seek
a WSN solution. The first step for the network designer is to evaluate the feasibility of
the project, and then to use incremental deployments to test parts of the design under
real-world scenarios due to the lack of a more systematic guideline [13]. However, it
is expected that outdoor WSN deployments will eventually achieve the same level of
standardization and out-of-the-box solution that some indoor applications are starting
to experiment in recent years [10, 14, 16].

One approach to the feasibility study of this project is to fill and analyze a list of 29
strategic technical aspects of WSNs, as shown in Table 3. Each technical aspect will be
marked either “Required” or “Not Required.” The term Required must be understood
in this context as “must have” rather than “desired” (or “can be supported”). For
instance, in our case study some form of time-synchronization is clearly required.
However, “multi-hopping” or “reduced size of a node” are not explicit requirements
and they are marked Not Required (even if desired). The main point here is to separate
real functional requirements from features that are typically expected to be included
in the design of a WSN solution. Each time a non-required feature is included in
the design, the design becomes more generic and significant cost and performance
penalties can be hidden in that decision.

Analyzing Table 3, we see for this case study that the majority of the essential
characteristics of a typical WSN are marked as “not required.” This suggests that a
simpler WSN tailored to the application may be the right answer for this project; many
checks in the “Required” column would be an indication that a generic WSN may
be a better design direction. In short, the main constraints of the NatureMONITOR
project are:

• High reliability;
• Spatial scalability with low-density: large and sparse network;
• Unattended operation at harsh environmental conditions;
• Dynamic sampling scheduling;
• Real-time-based time-stamp for the measurements;
• High degree of accuracy of energy prediction at the level of a single node;
• Critical budget for deployment and ongoing operation.

3 Design of Low Data-Rate Environmental Monitoring Applications 75

Table 3 High-level business/functional requirements

Feature Required Not required

Bi-directional communication �
Unicast communication �
Multi-hopping communication �
Multi-cast communication �
Broadcast communication �
Heterogeneous network (nodes with different profiles) �
Real-time communication (<1 s data-latency) �
Node-to-node communication �
Continuous network connectivity �
Node mobility �
Well-planned node location �
Support for random node deployment �
High-accurate localization of mobile nodes �
High reliability �
Spatial scalability without high node-density �
Ability to withstand harsh environmental conditions �
Dynamic sampling scheduling �
Remote reconfiguration (exclude sampling scheduling) �
Remote reprogramming �
Small size of the node �
High data-rate �
In-network processing �
Persistent data storage at the nodes �
Localization and timestamp for the measurements �
Time synchronization among nodes �
Authentication �
Data encryption �
Remaining available energy prediction �
Unattended operation �
Harsh environment in this chapter refers to the scenario where the nodes are exposed to extreme
weather conditions (sun light, wind, humidity, temperature, etc.) and the action of insects and
animals. In some cases, the area is also one with very difficult access.

Considering the availability and characteristics of off-the-shelf hardware and soft-
ware solutions and the costs associated with the development of fully customized
solutions, the design team in this case study finally decides on a balanced solution,
a non-traditional mix of telemetry [13], short-range wireless solutions [10, 14, 16],
WSN technologies, and some degree of customization. The project proposal (in fact,
this is the initial formal feedback to the project sponsors) is described as follows, as
an extension and/or adjustment to the original business requirements:

Overview:
To cover a network cell with 1 km2 area, an open, asynchronous, and hybrid wire-
less sensor network (WSN) is proposed. The cell is divided into multiple physical

76 A. R. da Silva et al.

segments, each one with up to 30 sensor nodes. Four environmental sensors are
attached to each sensor node. The nodes in a segment communicate with a special
node called master of that segment. On the second layer of the hierarchy, master
nodes communicate with the main gateway of the WSN. The wireless technologies
used in these 2 layers are not necessarily the same. Therefore, this network solution
is potentially a hybrid one.

Sensor nodes in the same segment are deployed up to 300 m away from the master
provided that the communication performance is acceptable over that distance under
different environmental conditions. No peer-to-peer communication or collaboration
among nodes is provided. Communication between nodes and the master is based
on commercial radio transceivers typically used in WSNs. The link(s) between the
master(s) and the main gateway is (are) realized using point-to-point radio tech-
nologies capable of supporting distances of up to 5 km. However, short-range radios
(including WSN-based links) can also be implemented depending on the distance.

The solution is considered open because both network tiers (sensor node-to-
master, master-to-gateway) can adopt any current and future wireless technology that
supports point-to-point connection. Possibilities include, but are not limited to, IEEE
802.15.4 [10, 14, 16], IEEE 802.11, Bluetooth [10, 16], Z-Wave [10], DASH7 [11],
GPRS, VHF/UHF wireless modem, etc. The solution is also insensitive to the exis-
tence of low-level protocols that deal with medium access, reliability, and synchro-
nization. All these features are actually implemented at the application layer (layover
design), which facilitates the future change of wireless technologies if necessary.

All nodes, except the main gateway, are powered by non-rechargeable batteries.
Assuming sensor measurements every 20 min, the expected lifetime of a sensor node
(including the master) is 13 months. Thus every 12 months, human inspection is
expected to replace all batteries and also to perform additional preventive main-
tenance tasks. This scheme is possible because all regular nodes are expected to
have similar energy consumption. The nodes send data according to the sampling
schedule provided by the gateway via the master. They follow a TDMA-like proto-
col implemented at the application layer in order to avoid medium contention [35].
Data collected by the master is stored in its persistent memory. Sometime later (e.g.,
minutes or hours), the master forwards the data to the gateway. These features outline
an asynchronous behavior of the proposed network architecture.

In order to achieve the budget goals, the default sampling duration has been
revised from 15 to 20 min. For many environmental monitoring applications we
expect that such modification will not significantly impact the results, though this
must be confirmed by the end user. Due to temporal and spatial correlation inherent in
many environmental measurements, scientists routinely use subsampling and round-
robin subsetting [23] techniques to make up for measurement losses (either in time or
in space). However, to apply either technique, dynamic and individual measurement
schedules must be supported by a sensor node. Incidentally, for this project such
provision is also a business requirement. Therefore, it is possible to maintain the same
energy budget (in terms of battery lifetime) and to have a default sampling schedule
of 20 min while variations in this scheduling are supported for some of the nodes.

3 Design of Low Data-Rate Environmental Monitoring Applications 77

Besides the original functional requirements, the following functional and non-
functional requirements are added to the project proposal:

• The maximum number of sensor nodes per network segment is 30, excluding the
master itself which is also a sensor node (i.e., a cell has a maximum of 31 nodes).

• Adjacent network segments must use different wireless technologies or, alterna-
tively, distinct radio channels.

• All nodes in the same segment must use the same wireless technology.
• The location of the master in a segment must be carefully chosen: each sensor

node in that segment must communicate with (and only with) that master through a
reliable communication link in order to satisfy the performance metrics previously
mentioned.

• Every master has a persistent (non-volatile) memory and it must store at least 10
days worth of measurements from all sensors of the segment.

• The battery level of a node must be sent to the master along with sensor measure-
ments. Such information must eventually reach the data server.

• Only non-rechargeable batteries are used on the sensor nodes (including the mas-
ter) and such batteries must work from −40 to 70 ◦C. Many Li-SOCL2 models
support this range.

• Assuming that measurements from the 4 environmental sensors take place every
20 min, the lifetime of the non-rechargeable batteries must be at least 13 months
considering the temperature range previously mentioned.

• A new sampling rate or schedule sent to a node must be applied within 1 h.
• The sensor node enclosure must be weatherproof and have IP67 or similar/superior

rating.
• All nodes including masters and the gateway must have external watchdog circuitry

in order to reset the device in case of a continuous (e.g., lasting more than 4 h)
non-functional state.

• Nodes must synchronize their internal clocks with respect to the master at least
every hour.

• The masters must synchronize their internal clocks with respect to the gateway at
least every 24 h.

• The gateway must synchronize its internal clock with respect to the global real
time clock at least every 24 h.

• The installation or presence of the sensor node (processor and radio modules)
cannot interfere with the measurements taken by the environmental sensors at the
same location.

• The system administrator or the end user must have a way to verify the health status
(energy and communication performance) of each sensor node and the network as
a whole.

• The system administrator or the end user must have a way to forecast the energy
costs incurred by changes in the sampling scheduling of a node or a group of nodes.

As the design process progresses, some technical constraints emerges and some
features that were not previously required become required. In the case of this project,
the modifications are as follows:

78 A. R. da Silva et al.

• Unicast communication: Required.
• Heterogeneous network (nodes with different profiles): Required.
• Persistent data storage at the nodes : Required for Masters.
• Time synchronization among nodes: Required.

We next turn our attention to the issue of node placement. As already mentioned,
the limited (and small) number of nodes over a large coverage area implies low
node-density or areas with no nodes at all. Assume that, in this case study, the end
user (i.e., the environmental scientists) indicate the areas that must be populated with
sensors as shown in Fig. 18a. This placement is planned considering the topography,
landscape, soil composition, and other science-related factors.

Using the Fig. 18a as a starting point, the WSN designer has now the task of
considering available technologies and proposing the final node placement plan, an
example of which is shown in Fig. 18b. In this case, it is clear that not all areas
have an ideal representation due to the limited number of nodes, but all areas of
interest are represented. The overall network architecture of the proposed solution is
shown in Fig. 18c. As expected, this is a large and sparse network according to the
AIND-ANON metrics, as shown in Fig. 19. In this case, assuming MCR = 100 m,4

ANON is 2.9 and MCR/AIND = 1.4. We can easily anticipate that traditional WSN
protocols will potentially face problems in this scenario.

The proposed system is a collection of 2-tier WSNs, each network segment with
a star topology. For the lower tier (nodes-master), a customized overlay network
solution is placed on top of a single-hop WSN. The master of each segment is
usually close to the center of the segment. Note that the disc-shaped communication
ranges are shown here for simplicity of illustration; it has been reported that such
shapes are much more complex and irregular in practice [43]. We have used a smaller
circle compared to the real communication range. While such circles include parts of
the so called transitional region [43], the high-quality of the node-to-master links is
achieved because the topology, transmit power level, antennas, hardware, data-rate,
and protocols have been taken into account and verification tests are performed. In
practice, only the most critical links of a network segment due to distance, topography,
or existence of obstacles must be carefully tested and validated before the actual
deployment.

Note that, in this case study, node placement is very carefully planned and some
preliminary tests are even performed prior to the actual deployment. This is in stark
contrast to a “random” placement that can be proposed for environment monitoring
studies. As argued earlier, the cost constraint typically prohibits the adoption of a
random or ad hoc placement. Accordingly, the domain knowledge that environmental

4 Although the worst-case to be supported is 300 m, the AIND for this specific case is 69.2 m.
Therefore, we want to consider a more realistic case where MCR = 100 m (rather than 300 m)
considering the capabilities of existing WSN radios. The exceptions can be potentially solved
with higher transmit power levels, special antennas, or the use of additional intermediate nodes as
repeaters. However, for this preliminary analysis we want to see how critical would be the typical
WSN solution (collaborative protocols) assuming the use of typical hardware and neglecting the
worst scenarios.

3 Design of Low Data-Rate Environmental Monitoring Applications 79

Fig. 18 a Areas to be covered by sensors as required by environmental scientists. b Circles repre-
senting the communication coverage of the sensor-to-master link; each circle is a segment. c Final
placement plan for a cell (100 sensor nodes) based on a two-tier network

scientists have plays a fundamental role in the placement plan, as exemplified
here.

The advantage of the 2-tier, non-collaborative, and asynchronous approach in
the architecture for NatureMONITOR is the predictable network behavior which is
highly deterministic. In addition, issues within one segment do not propagated to
another. As a result, higher scalability is achieved both in terms of number of nodes
and in terms of spatial coverage. It is clear that this architecture shares similarities with
the existing LANs and WLANs: the scalability challenge is addressed by segmenting
the network into small groups through the use of hubs/switches/access points and
gateways/routers.

80 A. R. da Silva et al.

Fig. 19 AIND-ANON analysis for the NatureMONITOR case

In general, a planned deployment involving network segments or clusters has a
special advantage rarely mentioned in the literature: the issues related to the commu-
nication of a regular node (end device, slave, etc.) and a cluster-head (coordinator,
master, router, sink, etc.) can be solved case-by-case. For instance, a different antenna
height or the adoption of a directional antenna can be investigated for the most critical
cases involving a link of a regular node and its master. In ad hoc deployments and
also in typical collaborative WSNs, such approach normally cannot be employed due
to the plurality of neighbors of a given node. This fact is evidenced by the regular
use of disc-shaped communication models for WSNs.

Another special feature of the proposed solution is the abstraction in relation to
the underlying wireless technologies. There is no explicit tie between the architecture
and a specific solution, such as IEEE 802.15.4, TinyOS-based, or similar low-range
technology: any of these may be a proper answer. More importantly, a mix of these
solutions is supported provided that a single segment shares the same technology. In
other words, in a cell with 100 nodes, some segments may use 802.15.4 PHY 2.4 GHz
standard, while one specific segment inside a dense forest adopts ISM 900 MHz links
for the nodes. Such an approach is extremely flexible in controlling choices and costs.
Moreover, the risks of having an outdated technology are significantly reduced. As
an example, the design team may opt to use 802.15.4 transceivers as much as possible
due to its high performance, current low cost, and high market availability. However,
if after few years significant issues come to the scene due to over-utilization of
the 2.4 GHz bands by devices nearby the deployment area, the radio transceivers
can be simply changed by other solution (e.g., 900 MHz) that has similar or better
performance.

In the next section we evaluate the proposed architecture underlying the Nature-
MONITOR project comparing it with more traditional WSN designs.

3 Design of Low Data-Rate Environmental Monitoring Applications 81

3 Why Applying Taxonomy to a WSN Project?

In this section we apply the taxonomy introduced in Chap. 2 to the NatureMONITOR
project and its proposed architecture. More details about this architecture are provided
and the advantages of applying such taxonomy are highlighted. By classifying our
design, we have an opportunity to discuss different alternatives and be better prepared
to identify the pros and cons of the solution [25].

Goal. NatureMONITOR is clearly a sense-only tool which is the case for the majority
of WSN applications. Although the proposed architecture does provide some level
of support for “sense-and-react,” it is not a functional requirement of the project.
Note that cost, energy, and data-latency constraints make the implementation of a
sense-and-react tool relatively difficult to be achieved in this scenario.
Time. The solution which is being proposed is clearly a periodic data collection
one. In order to take advantage of (a) the pre-defined static node placement, (b) the
low data-rate, and (c) the limited number of nodes per segment (30 sensor nodes
plus the master), a TDMA-like MAC scheme is adopted in NatureMONITOR for
each segment. A sensor node wakes up according to its measurement schedule and
the master node wakes up when one or more nodes of its segment become active.
Contrast this approach with a typical ZigBee network configuration where a router
device, in contrast with our master node, must be always active [10, 14, 16, 27].
Because each node in a segment has its own assigned slot-time, medium access con-
tention is kept at a minimum. Moreover, the energy consumption of a node is almost
entirely determined by its measurement scheduling, making it highly deterministic,
homogeneous among the nodes, and can be accurately predicted.

On the other hand, the simplicity of this time-division scheme comes with the
drawback of a weak support for event-triggered/driven measurements because nei-
ther the nodes nor the master are continuously active. This is a potential constraint for
some applications and the architecture proposed for NatureMONITOR is thus tai-
lored for applications with a sense-send-sleep data pattern. This solution is also not
suited for critical real-time applications, such as security monitoring/surveillance,
due to its significant high data-latency.

One may argue that many existing event-driven WSN solutions could also be
adopted for this project. Indeed, many MAC protocols allow a sensor node to sleep
more than 99 % of the time while quickly waking up for fractions of a second.
During this small active time period, events can still be detected and measurements
conducted. However, the tradeoff here is the energy consumption [20]. Considering
a traditional WSN hardware platform, in order to achieve very quick wake-up times,
many parts of the hardware cannot be simply turned off and on again. Instead, the
modules are usually put into some form of sleeping or standby mode. With this
approach the latency to wake up the hardware can be as low as a few microseconds.
However, because the modules (e.g., radio transceivers and voltage regulators) cannot
be completely shutdown, the required sleeping power consumption can be significant
as discussed next.

http://dx.doi.org/10.1007/978-3-642-40009-4_2

82 A. R. da Silva et al.

Even with the recent advance in low-power technology, the difference between
digitally switching off such hardware devices and putting them in standby mode is
between 1 to 2 orders of magnitude. Again, for medium to high duty-cycle networks
(e.g., >1 %), this difference is insignificant as the energy consumption is dominated by
the active power, not the sleeping power. However, for low duty-cycle applications,
such as NatureMONITOR, the sleeping power becomes critical and a barrier to
achieve significant energy savings.

Since there is nothing at requirements of the NatureMONITOR project that points
to a future need for critical real-time support and the average sampling rate is once
every 20 min, many parts of the hardware can be simply turned off. This approach
is possible because the activation delay when the module is completely shutdown
(e.g., hundreds of milliseconds) is still very small compared to the 20 min-period. By
doing so, the design achieves energy consumption far below current WSN solutions.
Sensed Phenomenon. NatureMONITOR deals with multiple | distributed sensed
phenomenon, while uses a large number of sensors. In this regard the proposed
architecture is highly scalable as discussed in the previous section. A detailed inves-
tigation of current software and hardware WSN solutions suggests that very few
existing solutions can achieve a reliable and low-cost solution for a scenario similar
to the one in Fig. 18a: 100 nodes non-uniformly deployed over an irregular area of
1 km2.

To understand how difficult it is to achieve spatial scalability, consider a larger
area of 9 km2 instead of 1 km2, e.g., 3000 × 3000 m. It is not difficult to see that the
proposed architecture is ready to address this new scenario by the simply addition of
more network segments. In essence, the segmentation and the two relatively indepen-
dent communication layers (sensor node-master, master-gateway/data server) are the
mechanisms that allow the architecture in NatureMONITOR to be highly scalable. By
contrast, it is not clear how many large-scale solutions reported in the existing WSN
literature would spatially scale without having to add infrastructure nodes, such as
repeaters or relay-only nodes. Nonetheless, one notable solution for large and sparse
WSNs is the use of mobile nodes [2, 36, 40]. Unfortunately, such infrastructure does
not fit with the characteristics or requirements of NatureMONITOR.

A ZigBee-based solution has also been directly applied to a relative sparse net-
work in [27], with 3 router nodes and 21 end device nodes. This is the scenario for
the SoilSCAPE I case study. It is reported that when one or more of these routers
failed, the network quickly became overwhelmed with excessive retransmissions and
ZigBee-level traffic. Energy issues also emerged at the end devices due to damages to
solar panels. Using a network analyzer, it was observed that the duty-cycle exceeded
10 %, far beyond the original application requirement (∼0.3 %). This example shows
the need of a significant network infrastructure (e.g., routers) to properly support the
outdoor deployment based on ZigBee: 1 router per 7 nodes in this case [27]. Similarly,
in [9] a large outdoor deployment with ZigBee uses 1 router per 8 nodes. Besides
ZigBee, it is expected that many typical collaboration and multi-hopping WSN solu-
tions also present network performance issues in the NatureMONITOR scenarios.
A typical strategy in this case is the addition of infrastructure nodes, devices that

3 Design of Low Data-Rate Environmental Monitoring Applications 83

are deployed only to maintain the network connectivity and better performance. As
expected, this simple solution comes with a significant cost penalty.

Even if one artificially increases the network density (that is, extra nodes are not
actually required by the application) and adopts a multi-hopping solution for the
NatureMONITOR project without segmenting the cell, data-latency can be aggra-
vated if a strong sleep policy for the nodes is maintained. In short, the higher is the
number of hops in conjunction to longer sleeping periods of the nodes, the higher is
the data-latency. For instance, for the deployment plan shown in Fig. 18c, assume the
adoption of WSN nodes with transmit power between 0 and 17 dBm and frequency
2.4 GHz. In this case, the average number of hops required for one node to reach the
sink of the cell is around 5. For the worst case, a node would have more than 10 hops
toward the sink and the data-latency becomes significantly high.
Data-Rate. NatureMONITOR has low data-rate and the proposed architecture takes
this as both an assumption and a feature to be exploited. If the data-rate require-
ment increases, even if each network segment has enough bandwidth to support
this increase, two problems can potentially occur. First, the probability of network
errors would significantly increase due to the combination of higher data-rates and
high distances between the sensor nodes and the master. As a result, the proposed
architecture may not achieve the expected reliability metric.

A second problem related to a higher data-rate is that long-distance links used
to connect the master node to the gateway may not afford the bandwidth increase.
Usually these links have smaller bandwidth compared to the short-range link used
within a network segment. Therefore, some form of data aggregation and in-network
processing would be necessary. In short, the lack of support for high data-rate appli-
cations is another drawback of the architecture proposed in NatureMONITOR.
Heterogeneity. NatureMONITOR uses an architecture that comprises 3 distinct:
sensor node, master, and gateway, forming a heterogeneous WSN. Specifically, for
each segment, the master node is in charge of collecting the data from all sensor nodes
of that segment. In general, using another more powerful radio transceiver, the master
node communicates with the gateway via a long-distance link. Due to the need of
storing the measurements data in case of failure of this long-distance link, the master
also requires some form of non-volatile memory. As a result, the communication,
processing, storage, and power capabilities of the master are distinctly different from
that of a sensor node.

The main weakness of this heterogeneous approach is the network unavailability in
case of failure of the master node. If one regular sensor node stops working, the overall
application does not suffer very much. However, if a master fails, its entire network
segment becomes disconnected. If sensor nodes do not have any persistent storage,
then all the sensing data of a segment will be lost in the meantime. One approach
used in many WSNs that also employ special nodes is to apply redundancy for these
nodes. Another approach is to increase the hardware/software reliability level of the
special node (the master in this case) and to perform emergency maintenance for this
specific node if necessary.

One of the resources commonly used to achieve high availability in embedded
systems is the use of “watch-dog timers” (WDTs). Such optional device provides

84 A. R. da Silva et al.

some form of initialization of the system when the latter freezes due to a software or
hardware problem. For the master node used in this project, two independent WDTs
are used. This solution obviously does not solve all the problems; thus long-term
tests must be performed in order to verify the failure probability rate for the master
node in particular.
Mobility. NatureMONITOR does not have mobility support, as it is not a functional
requirement. It is also not hard to see that it would be quite difficult to modify the
proposed architecture to support mobility: the proper operation and low energy con-
sumption of the current solution heavily rely on the static nature of the system by
means of a fixed node placement and a priori known sampling scheduling. On the
other hand, the introduction of mobility brings randomness to the network topology
and generic ad hoc WSN solutions surely are more effective. This observation high-
lights the fact that customized designs are adequate when the underlying fundamental
assumptions are clearly understood and not broken. Otherwise, generic solutions are
potentially in advantage.

For instance, one can argue that mobile data collectors can be a better solution for
large and sparse networks [2, 36]. The design team of NatureMONITOR investigated
this option, but because the sensor nodes are left unattended in harsh environment,
no practical way to have a mobile data collector for this scenario was figured out.
Nonetheless, there are scenarios, including environmental monitoring, that are suit-
able for mobile data collectors, such as the precision agriculture application in [39].
Connectivity. NatureMONITOR has an intermittent connectivity and this feature
significantly simplifies the network design. Note that there is no peer-to-peer commu-
nication provision in this architecture and a fully connected network is not required.
Moreover, the data over the most critical links (master-to-gateway) is protected by
storage provision at the master side. The main weaknesses of having intermittent
connectivity in NatureMONITOR are (a) lower reliability due to the lack of multiple
data paths and (b) a higher data-latency. As already discussed, the sensor-to-master
communication occurs over a one-hop link. Since a node is not logically connected
to another in the same segment (even if both are within the communication range
of each other), there is no other way for the data of one sensor node to reach the
gateway or data server except passing through the master. Based on the requirements
for NatureMONITOR, the total number of lost messages can be as high as 10 % of
the total. For this particular application, due to the spatio-temporal correlation among
measurements, such relaxed metrics are usually acceptable and the network archi-
tecture exploits this fact. However, other applications may require higher reliability
on the data transfer.

NatureMONITOR adopts an acknowledge mechanism to guarantee the proper
data delivery. However, the retransmissions are allowed in the same time slot. After
the end of the assigned time slot, the sensor node simply discards the measure-
ments for that cycle. Although more reliable transport protocols are available, it is
clear that the simply approach under NatureMONITOR has a very small overhead
while it still can satisfy the relatively relaxed reliability requirements of the project.

3 Design of Low Data-Rate Environmental Monitoring Applications 85

Message redundancy is another technique used to mitigate the reliability issue
without compromising the deterministic behavior of the solution and this mecha-
nism is also available for NatureMONITOR.

Besides weaker data transfer reliability, another drawback of having intermittent
connectivity is the higher data-latency. In fact, the architecture behind NatureMON-
ITOR does not properly support critical real-time and very time sensitivity applica-
tions, such as intruder detection. Two aspects of the architecture affect data-latency.
First, the master collects the data from the nodes in its segment and only transmits
that data to the gateway after receiving the data packet from the last node of a giving
sampling cycle. Depending on the length of the node’s time-slot and the number of
active nodes, this delay can be on the order of seconds. A second source of data-
latency is due to the transmission of data from the master to the gateway or data
server. Although, it is possible that such data transfer occurs immediately after the
conclusion of the sensor-master communication, the master-gateway data transfer
can be delayed on the order of minutes or hours if energy or communication issues
at the master node are considered.
Processing. The master nodes in the NatureMONITOR solution perform some form
of filtering and compression in order to optimize the usage of time while transmitting
data to the gateway. This is an important provision due to the high energy costs
associated with the typical high-power transceivers and long-range links used for the
master-gateway communication. However, due to the simplicity of this data collection
application, there is no need for data processing at the sensor node itself, that is, a
small message is enough for the transmission of the measurements.

On the other hand, some applications require significant in-network processing,
particularly those associated with high data-rates. As previously mentioned, the archi-
tecture used in NatureMONITOR is not appropriate for these scenarios. In particular,
typical in-network processing involves a high level of collaboration among nodes,
which is not supported by this architecture.
Storage. The master node in NatureMONITOR has persistent data storage provision
through the use of non-volatile memory and/or an SD Card. Thus, the measurements
data are properly saved in case of energy issues at the master or communication
problems in the master-gateway link. However, there is no similar provision for the
sensor nodes. This is a decision aligned with the expected reliability metrics for
the sensor nodes and the fact that communication range tests are conducted at the
deployment site before the actual installation of the sensor nodes.

The main problem associated with storing data at the sensor node itself, an
approach not used in NatureMONITOR, is the additional energy consumed by the
operation. Moreover, under the current architecture, one time slot is only sufficient
for the transmission of the measurements data collected by the 4 environmental sen-
sors (also a single re-transmission in case of failure). The current slot structure does
not allow transmission of more data, i.e., previous measurements that could not be
transmitted. In short, there is no data queue at the sensor node’s side.
Services. NatureMONITOR offers two network infrastructure services: time
synchronization and a very basic form of node reconfiguration. The former ser-
vice is actually a requirement for the project because the measurements must be

86 A. R. da Silva et al.

accompanied by a time stamp based on the real clock at the gateway. Even with
cheap clock systems, the sensor and master nodes do not suffer significant clock
skew effects in the proposed architecture. This is the case because every time a sen-
sor node sends measurements to the master, it receives scheduling information that
allows its clock to be automatically adjusted on the order of milliseconds. There-
fore, only very large data sampling schedules, such as >15 h, may lead to time stamp
errors beyond the project specification. Similarly, the master also adjusts its clock
according to the gateway’s clock every time it sends data to the gateway. Finally, the
same process also occurs between the gateway and the central data server.

Node reconfiguration is a second requirement of the project. However, only the
measurement scheduling is remotely configurable. In some cases, it may be desirable
to implement full re-configurability of the sensor node without local intervention.
The same is also true in relation to remotely upload a new version of the program
that runs at the sensor node. NatureMONITOR does not fully support reconfiguration
and reprogramming in order to maintain more deterministic network traffic, which
is a key characteristic of the architecture. On the other hand, services that have
regular and predictable behavior (fixed and regular bandwidth) are relatively easy
to be implemented under the proposed architecture. Two examples are encryption
and authentication services. They are not used in NatureMONITOR as they are not
required, but their usage is feasible although resulting in additional network overhead.
Finally, because NatureMONITOR is based on a static topology and a planned node
placement, there is no need of localization techniques. A simple addressing scheme
for the sensor nodes is adequate for this objective.

After applying the taxonomy to the NatureMONITOR project, we conclude that
the proposed architecture is a highly specialized/customized WSN with the follow-
ing characteristics: sense-only, periodic sampling, multiple sensors for a distributed
phenomenon, low data-rate, heterogeneous and static nodes, intermittent connectiv-
ity, filtering and compression features at some special nodes, persistent storage at
these nodes, time synchronization, and dynamic measurement scheduling.

We conclude this section with an important discussion related to the node size and
battery choices. Note that small size is not a project requirement under NatureMONI-
TOR. In fact, while size is critical for some WSN applications [32], it is usually not so
important for outdoor scenarios compared to the cost of a sensor node. Also note that
the antenna of a sensor node is usually placed more than 1m above the soil surface
in order to increase the wireless channel quality. Therefore, cylindrical structures
longer than 1m in length and 5–10 cm in diameter can be potentially used. There is
no doubt that such form factor is far beyond the typical match-size of WSN nodes.
However, for the NatureMONITOR project, there is no need to have a tiny sensor
node. Also, the resulting gain in terms of available room at the node’s enclosure can
be exploited in favor of the adoption of larger batteries.

Despites the increasing popularity of energy-harvesting systems based on super-
capacitors and/or rechargeable batteries [18], the design team in NatureMONITOR
project opted for non-rechargeable batteries. This is because unknown weather con-
ditions (recall that the system may be deployed anywhere) imply that the design

3 Design of Low Data-Rate Environmental Monitoring Applications 87

must take into consideration extreme temperatures, which can significantly affect
the performance of energy-harvesting solutions. Moreover, it was observed in [15]
that the canopy would impact the efficient usage of solar panels. Snow, pollution,
and dirt caused by animals are also potential sources of problems for these devices.

There are 3 additional factors that favor non-rechargeable batteries despite the
fact that they must be replaced from time to time. First, non-rechargeable batter-
ies have the highest energy-density in comparison with any other form of low-cost
energy source for WSNs. Specifically, for the same physical volume the energy
stored in a non-rechargeable battery can be 2 or 3 times that stored in a recharge-
able battery. Second, more accurate methods to determine the end of life of these
batteries are available in comparing with rechargeable cells. More specifically, when
non-rechargeable batteries are used with a well-known discharging behavior, it is
possible to predict the remaining lifetime of the node with a high degree of accu-
racy. Note that this aspect is actually a requirement for NatureMONITOR. Finally,
non-rechargeable batteries have superior performance under extreme temperature
variations. For instance, in [27] many problems with the nodes occurred when the
rechargeable batteries stopped charging due to low temperatures (<0 ◦C).

Therefore, in some outdoor scenarios it may be more economical to replace the
batteries following a pre-determined schedule than having to deal with the uncertainty
of maintenance of some energy-harvesting solutions. However, such a guideline is
usually valid only when (a) the energy consumption is relatively small due to low
duty-cycles and low data-rates and (b) the system has very stable network traffic.
Because these aspects, in particular the latter one, are very difficult to be achieved
in large-scale outdoors WSNs, the majority of these solutions employ rechargeable
batteries usually associated to solar panels or other form of energy harvesting system.

4 Discussion and Conclusions

In this chapter, the advantages of designing a WSN according to specific application
needs instead of going toward a generic WSN are highlighted. The filling practice
involving the Table 3 allows the project manager and network designer to have a
better understanding of the actual requirements that are behind a WSN project. It
is highlighted that the fact that a certain feature is available and can be potentially
supported in our design does not make it a requirement for the project. By removing
such feature(s) from the design, it is possible to evaluate the option of having a
customized WSN solution. In particular, low data-rate environmental monitoring
applications can potentially follow this track.

However, before moving from generic and well-established WSN solutions to any
form of customized solution, it is highly recommended to analyze the gains of having
a tailored design. In fact, this project management principle must govern any project,
in particular involving technologies that are quickly evolving. In this chapter, it is
analyzed why sparse networks in outdoors deserve a special attention in their design.
It is shown that, for some scenarios, the current WSN solutions may not provide the

88 A. R. da Silva et al.

proper answer or, at least, the effective cost of the project may be significantly higher
than initially planned. At the end of the chapter, a discussion about the pros and
cons of adopting customized vs. typical WSN solutions is provided. The arguments
are somewhat controversial because each WSN project has a significant number of
design aspects to be considered and what is presented here as a proper solution for
some particular scenarios may not satisfy the requirements of an ongoing project
which a WSN designer is involved.

4.1 NatureMONITOR Project: Discussion

With the help of an illustrative project called NatureMONITOR, it is highlighted some
of the advantages of tailoring the WSN design to the environmental monitoring appli-
cation in comparison of simply adopting traditional WSN options. Nonetheless, there
are tradeoffs to be considered. We summarize this high-level comparison in Table 4,
where the architecture behind NatureMONITOR is compared with a commercial,
ZigBee, and TinyOS-based solutions.

An interesting network metrics, called AIND-ANON, is presented in this chapter.
The metrics can be used as a qualitative tool to evaluate the expected challenges
associated with the use of multi-hopping protocols giving the topology of the nodes
and their expected communication range. The proposed metrics are not complete but
provide a formal way to define sparsity level in WSNs. Moreover, when a network
is found to be sparser in this metrics, it is expected significant network issues. In the
case of environmental monitoring systems, three solutions are suggested: (1) simply
increase the network density by adding more nodes typically functioning as relay-
nodes, (2) apply some sort of in-network aggregation in order to reduce the average
number of hops required by the network, or (3) apply some of network segmentation.
For the options (2) and (3), one can propose certain level of customization of the
WSN design.

When a node topology for the NatureMONITOR project is analyzed under the
AIND-ANON metrics, it is revealed that the network is very sparse and potential net-
work issues are expected with traditional WSN multi-hopping solution are employed
without a careful study. For this scenario, the network segmentation seems to be a
good option. Moreover, considering the strict requirements of the project, a discus-
sion about customization of the solution evolves. The idea of customizing a WSN
design is not a novel approach. For instance, WSNs to be used in a human body
are routinely tailored to the specific requirements of body-area networks (BANs).
Additional examples are wireless underwater sensor networks [31] and wireless
underground sensor network [39], both considered in this book.

For our illustrative large-scale and sparse monitoring application (NatureMONI-
TOR), the proposed solution is highly flexible to future changes requested by envi-
ronmental scientists or end users. For instance, based on data analysis from the
previous year, an end user may decide to reduce the number of sensor nodes in cer-
tain areas with historically very similar results and spread them in areas where no

3 Design of Low Data-Rate Environmental Monitoring Applications 89

Ta
bl

e
4

C
us

to
m

iz
ed

ar
ch

ite
ct

ur
e

(N
at

ur
eM

O
N

IT
O

R
)

co
m

pa
re

d
to

tr
ad

iti
on

al
W

SN
so

lu
tio

ns

A
sp

ec
t

N
at

ur
eM

O
N

IT
O

R
Z

ig
B

ee
PR

O
[9

,
10

,
16

,
27

]

E
xp

ec
te

d
fu

nc
tio

na
lit

y
A

pp
ro

pr
ia

te
fo

r
th

e
pr

oj
ec

t
Po

te
nt

ia
lf

ea
si

bi
lit

y
fo

r
m

ul
tip

le
to

po
lo

gi
es

as
su

m
in

g
a

si
gn

ifi
ca

nt
nu

m
be

r
of

ro
ut

er
s

(e
.g

.,
>

1
pe

r
10

no
de

s)
C

os
t

A
pp

ro
pr

ia
te

fo
r

th
e

pr
oj

ec
td

ue
to

th
e

ne
tw

or
k

se
gm

en
ta

tio
n

an
d

op
en

us
e

of
di

ff
er

en
t

w
ir

el
es

s
te

ch
no

lo
gi

es

H
ig

h
de

pl
oy

m
en

ta
nd

op
er

at
in

g
co

st
s.

Ju
st

on
e

ne
tw

or
k

pr
ot

oc
ol

is
us

ed
an

d
lo

ng
-r

an
ge

co
m

m
un

ic
at

io
n

m
us

tb
e

ac
hi

ev
ed

by
m

ul
ti-

ho
pp

in
g

an
d

a
hi

gh
nu

m
be

r
of

ro
ut

er
de

vi
ce

s
R

el
ia

bi
lit

y
(a

nd
fe

as
ib

ili
ty

of
ac

cu
ra

te
pe

rf
or

m
an

ce
m

et
ri

cs
)

A
pp

ro
pr

ia
te

fo
r

th
e

pr
oj

ec
ta

ss
um

in
g

hi
gh

-d
eg

re
e

of
re

lia
bi

lit
y

fo
r

th
e

m
as

te
r

no
de

s
U

nc
er

ta
in

ty
du

e
to

in
ex

is
te

nc
y

of
si

m
ila

r
sc

en
ar

io
in

re
al

-w
or

ld
T

he
pe

rf
or

m
an

ce
m

et
ri

cs
co

nt
ro

li
s

ac
hi

ev
ed

M
an

y
of

th
e

re
qu

es
te

d
pe

rf
or

m
an

ce
m

et
ri

cs
ca

nn
ot

be
ac

hi
ev

ed
w

ith
hi

gh
ac

cu
ra

cy
Sc

al
ab

ili
ty

H
ig

hl
y

sc
al

ab
le

du
e

to
th

e
ne

tw
or

k
se

gm
en

ta
tio

n
an

d
as

yn
ch

ro
no

us
be

ha
vi

or
V

er
y

go
od

no
de

-d
en

si
ty

sc
al

ab
ili

ty
.R

ea
so

na
bl

e
sp

at
ia

ls
ca

la
bi

lit
y.

Pr
ob

le
m

s
oc

cu
r

in
ve

ry
sp

ar
se

ne
tw

or
ks

A
sp

ec
t

Te
lo

sB
+

T
in

yO
S

[2
4,

43
]

eK
o

so
lu

tio
n

[2
6]

E
xp

ec
te

d
fu

nc
tio

na
lit

y
Po

te
nt

ia
lu

nf
ea

si
bi

li
ty

fo
r

so
m

e
to

po
lo

gi
es

if
pr

ot
oc

ol
s

an
d

de
si

gn
do

no
tc

on
si

de
r

a
sp

ar
se

r
W

SN
.P

ot
en

tia
lu

se
of

m
ul

tip
le

si
nk

no
de

s

Po
te

nt
ia

lu
nf

ea
si

bi
li

ty
fo

r
so

m
e

to
po

lo
gi

es
(m

ax
im

um
ho

p-
di

st
an

ce
is

5
fo

rt
hi

s
so

lu
tio

n)
.

M
ul

tip
le

re
pl

ic
as

of
th

e
so

lu
tio

n
ar

e
ex

pe
ct

ed
C

os
t

Po
te

nt
ia

lu
nf

ea
si

bi
li

ty
fo

r
so

m
e

to
po

lo
gi

es
if

pr
ot

oc
ol

s
an

d
de

si
gn

do
no

tc
on

si
de

r
a

sp
ar

se
r

W
SN

.P
ot

en
tia

lu
se

of
m

ul
tip

le
si

nk
no

de
s

D
ep

lo
ym

en
tc

os
tf

ar
be

yo
nd

th
e

bu
dg

et
.

O
pe

ra
tin

g
co

st
s

si
m

ila
r

to
Te

lo
sB

ca
se

.I
n

ca
se

of
ar

ea
s

w
ith

ou
ts

uf
fic

ie
nt

so
la

r
ra

di
at

io
n

fo
r

ex
te

nd
ed

pe
ri

od
s

of
tim

e,
th

e
re

ch
ar

ge
ab

le
ba

tte
ri

es
m

us
tb

e
ch

an
ge

d
fr

eq
ue

nt
ly

R
el

ia
bi

lit
y

(a
nd

fe
as

ib
ili

ty
of

ac
cu

ra
te

pe
rf

or
m

an
ce

m
et

ri
cs

)
U

nc
er

ta
in

ty
(s

am
e

as
th

e
Z

ig
B

ee
ca

se
)

U
nc

er
ta

in
ty

(s
am

e
as

th
e

Z
ig

B
ee

ca
se

)

Sc
al

ab
ili

ty
V

er
y

go
od

no
de

-d
en

si
ty

sc
al

ab
ili

ty
.U

nc
er

ta
in

ty
re

la
te

d
to

th
e

sp
at

ia
ls

ca
la

bi
lit

y
V

er
y

go
od

no
de

-d
en

si
ty

sc
al

ab
ili

ty
.U

nc
er

ta
in

ty
re

la
te

d
to

th
e

sp
at

ia
ls

ca
la

bi
lit

y

90 A. R. da Silva et al.

sensor was previously deployed or in areas that require more resolution by means
of a higher node-density. NatureMONITOR adapts and scales (number of nodes and
space) nicely in this scenario. However, we still believe that this solution is not the
unique solution. Different architectures can still satisfy the requirements while giving
more emphasis on one of the three main design challenges discussed in this chapter:
cost, reliability, or scalability.

It is not rare to see network projects (not only related to WSN) that start with a
certain target related to the coverage area. Nonetheless, as the network grows, issues
potentially rise and the deployment stops when the project reaches its budget. It is pos-
sible that the project never reaches the initial target in terms of scalability. In short, this
is the problem with this design challenge (scalability): it is usually taken for granted.
However, if the scalability aspect is analyzed since the beginning of the project, many
constraints are properly imposed to the project. For instance, the designer can figure
out that cheaper WSN platforms will not scale. Other more expensive platform claims
to properly scale, but there is no evidence that it can achieve the level of expected
reliability and tests must be realized. Even if the new solution scales and is reliable,
its energy consumption can still be too high implying the need of frequent battery
exchanges (higher cost). One can suggest the use of solar panels (or other form of
energy harvester) but new problems can potentially come to the scene. Therefore,
the real hidden challenge in designing large environmental monitoring systems is to
achieve a balance involving functionality, cost, reliability, and scalability. In some
cases, the solution comes in the form of a customized design as with the Nature-
MONITOR case study. However, other techniques can be employed as discussed
next.

Among the architectural aspects of the environmental monitoring application dis-
cussed in this chapter, dynamic scheduling was mentioned as one of the project
requirements of the case study. In fact, the potential advantages of using this mech-
anism can significantly improve the energy performance of large and sparse WSN
networks. For instance, an adaptive scheduling has been proposed as a solution for
similar scenario [15, 22, 27]. Similarly, aggregation and compressive sensing [42]
can be properly exploited in the NatureMONITOR project. Therefore, instead of
following the segmentation and customization approaches, one can propose some of
the mentioned techniques to highly mitigate the expected issues in large and sparse
deployments.

4.2 NatureMONITOR Project: Preliminary Results

Although the NatureMONITOR project was introduced in this chapter as a hypo-
thetical one, it was actually implemented in real-world deployments by means of an
architecture called Ripple-2 [38]. The requirements of Ripple-2 are, in fact, a subset
of the NatureMONITOR project but with a particular focus on soil moisture and
temperature. We are still working on this project to implement all the strict network
management requirements mentioned in this chapter. Nonetheless, the majority of the

3 Design of Low Data-Rate Environmental Monitoring Applications 91

discussions related to NatureMONITOR also correspond to Ripple-2. For instance,
the numbers behind the discussion involving the lifetime of the nodes and application
duty-cycle in Sect. 2.2 come from our work with Ripple-2 [38].

The networks for the cases SoilSCAPE I and SoilSCAPE II, analyzed at Sect. 1.3.2,
were finally converted to the Ripple-2 architecture. It is important to highlight that
SoilSCAPE II was initially deployed favoring the segmentation approach (ZigBee
network). However, it still presented scalability issues even with few hops involved.
Moreover, a significant number of ZigBee routers are necessary to cover the area.
Because these special nodes cannot sleep, their energy requirements are a challenge.
In addition, we had many issues related to solar panels and rechargeable batteries
associated with extreme temperatures, in particular subzero temperatures [37].

The Ripple-2 architecture gives a strong emphasis on non-rechargeable batteries
and, accordingly, we work on hardware and software solutions to enhance the life-
time of such batteries in one more folds in relation to the current technology [37].
Therefore, we definitely followed the customization track discussed in this chapter.
The solution comes as a software and hardware overlay [38], meaning that it can
work on top of many WSN platforms. Because environmental monitoring systems
typically have a very low duty-cycle, the concept of hibernation can be exploited.
During this state, the inactive modules in the node are not simply in sleep or standby
mode, they are turned-off. However, to implement this solution, we had to develop a
cross-layer protocol. The effort paid off when we confirmed that, on the average, the
additional effective network overhead is smaller than 1 %. For low duty-cycled appli-
cations, this result is very important in terms of energy efficiency [38]. Moreover,
the effective packet loss rate is consistently below 2 % in all sites.

Up to the date, we deployed 105 nodes in 5 different sites with an average of 1
node per 5,000 km2. No extra nodes, such as repeaters or routers, were used in these
sites and the master node (Ripple-2 Local Coordinator) is actually also a sensor
node which can also hibernate. So far, all SoilSCAPE nodes are based on 802.15.4
(2.4 GHz) transceivers, 17 dBm transmit power. The energy and network performance
associated with the solution are potentially above the average in comparison with
current WSN protocols [38, 42]. We are currently working to integrate the solution
to ISM 900 MHz radio modules and a well-known WSN platform. The drawbacks
of the architecture are exactly the ones discussed in this chapter: high data-latency
and low throughput. In short, the network performance is traded for excellent energy
performance. However, the low-cost, relative high reliability, and high scalability
goals are achieved.

4.3 Conclusions

Although the expressions ah-doc, collaboration, and multi-hopping are constantly
mentioned in the WSN literature, we believe that these features are systemati-
cally overvalued. Despites their high value in military applications and academic
researches, a significant number of real-world applications can be properly addressed

92 A. R. da Silva et al.

with basic networking functionalities. The recent industrial trend toward 802.15.4 in
star-topology and ZigBee standards is strong evidence that simple solutions can be
enough for many scenarios.

The existence of a significant number of solutions related to WSN is an indicative
that hybrid solutions mixing state-of-the-art technology with some level of cus-
tomization can be a promising direction for many applications, in particular low
data-rate environmental monitoring systems. Nonetheless, as time goes by, new tech-
nological options and standards allow us to return to a more conservative, flexible,
and generic solution avoiding the extra cost (and risks) of customizing a solution.
However, as new challenges eventually appear according to the current demand, the
specialization of the solution becomes again an appealing option. And this cycle
repeats and not only for WSNs.

References

1. I.F. Akyildiz et al., A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)
2. G. Anastasi et al., Reliable and energy-efficient data collection in sparse sensor networks with

mobile elements. Perform. Eval. 66(12), 791–810 (2009)
3. A. Arora et al., Exscal: Elements of an extreme scale wireless sensor network. in Proceedings

of IEEE RTCSA, 2005, pp. 102–108
4. A. Arora et al., A line in the sand: a wireless sensor network for target detection, classification,

and tracking. Comput. Netw. 46(5), 605–634 (2004)
5. G. Barrenetxea et al., Sensorscope: Out-of-the-box environmental monitoring. in Proceedings

of IEEE IPSN, 2008, pp. 332–343
6. R. Beckwith et al., Unwired wine: sensor networks in vineyards. in Proceedings of IEEE

Sensors, 2004, pp. 561–564
7. J. Beutel et al., PermaDAQ: A scientific instrument for precision sensing and data recovery in

environmental extremes. in Proceedings of IEEE IPSN’09, 2009, pp. 265–276
8. E.S. Biagioni, K.W. Bridges, The application of remote sensor technology to assist the recovery

of rare and endangered species. Int. J. High Perform. Comput. Appl. 16(3), 315–324(2002)
9. H.R. Bogena et al., Potential of wireless sensor networks for measuring soil water content

variability. Vadose Zone J. 9, 1002–1013 (2010)
10. C. Buratti et al., An overview on wireless sensor networks technology and evolution. Sensors

9, 6869–6896 (2009)
11. DASH7 Alliance, http://www.dash7.org Accessed 23 April 2012
12. P. Dutta et al., Trio enabling sustainable and scalable outdoor wireless sensor network deploy-

ments. in Proceedings of IEEE IPSN’06, 2006, pp. 407–415
13. S.A. Ellwood et al., in Key Topics in Conservation Biology, ed. by D. Macdonald, K. Service.

Technology in Conservation: A Boon but with Small Print (Blackwell Publishing, Oxford,
2007), pp. 105–119

14. S. Farahani, ZigBee Wireless Networks and Transceivers (Elsevier, Burlington, 2008)
15. D. Ganesan et al., Networking issues in wireless sensor networks. J. Parallel Distrib. Comput.

64, 799–814 (2003)
16. N. Hunn, Essentials of Short-Range Wireless (The Cambridge University Press, Cambridge,

UK, 2010)
17. J.M. Kahn et al., Next century challenges: mobile networking for smart dust. in Proceedings

of MobiCom ’99, (Seattle, WA, 1999)
18. A. Kansal et al., Power management in energy harvesting sensor networks. ACM Trans. Embed-

ded Comput. Syst. 6(4), 1–38 (2007)

http://www.dash7.org

3 Design of Low Data-Rate Environmental Monitoring Applications 93

19. S. Kim et al., Health monitoring of civil infrastructures using wireless sensor networks. in
Proceedings of IEEE IPSN, 2007, pp. 254–263

20. R. Kuntz et al., Medium access control facing the reality of WSN deployments. ACM Comput.
Commun. Rev. 39(3) 2009

21. X.F. Li et al., A differential evolution-based routing algorithm for environmental monitoring
wireless sensor networks. Sens. J. 10(6), 5425–5442 (2010)

22. J.C. Lim, C. Bleakley, Adaptive WSN scheduling for lifetime extension in environmental
monitoring applications. Int. J. Distrib. Sens. Netw. (2012). doi:10.1155/2012/286981

23. J.C. Lim, C.J. Bleakley, Adaptive WSN scheduling for lifetime extension in environmental
monitoring applications. Int. J. Distrib. Sens. Netw. 2012 (2012) article ID 286981

24. Y. Liu et al., Does wireless sensor network scale? a measurement study on greenOrbs. in
Proceedings of IEEE INFOCOM ’11, Shanghai, China, 2011

25. K. Lu et al., Wireless sensor networks for environmental monitoring applications: a design
framework. in Proceedings of GLOBECOM, 2007, pp. 1108–1112

26. Memsic Corp. ēKo Pro series system, http://www.memsic.com/products/wireless-sensor-
networks/environmental-systems.html. Accessed 23 April 2012

27. M. Moghaddam et al., A wireless soil moisture smart sensor web using physics-based optimal
control: concept and initial demonstration. IEEE-JSTARS 3(4), 522–535 (2010)

28. M. Moghaddam et al., Ground network design and dynamic operation for validation of space-
borne soil moisture measurements: initial developments and results. in Proceedings of ESTF-
2010, 2010

29. A. Nasipuri et al., Design considerations for a large-scale wireless sensor network for substation
monitoring. in SenseApp, 2010, pp. 882–889

30. A. Nasipuri et al., Wireless sensor network for substation monitoring: Design and deployment.
in Proceedings of SenSys, Demo Session, 2008, pp. 365–366

31. D. Pompili, T. Melodia, An architecture for ocean bottom underWater acoustic sensor networks.
Poster Presentation, in Proceedings of Mediterranean Ad Hoc Networking Workshop (Med-
Hoc-Net), (Bodrum, Turkey, 2004)

32. V. Rajendran et al., Energy-efficient collision-free medium access control for wireless sensor
networks. in Proceedings of 1st International Conference on Embedded Networked Sensor
Systems, 2003, pp. 22–27. doi:10.1145/958491.958513

33. B. Raman, K. Chebrolu, Censor networks: a critique of sensor networks from a systems per-
spective. ACM SIGCOMM Comput. Commun. Rev. (2008), pp. 22–27. doi:10.1145/1384609.
1384618

34. I. Rhee et al., Z-MAC: a hybrid MAC for wireless sensor networks. in Proceedings of 3rd Inter-
national Conference on Embedded Networked Sensor Systems, (2004). doi:10.1145/1098918.
1098929

35. L. Selavo et al., LUSTER: wireless sensor network for environmental research. in Proceedings
of 5th International Conference on Embedded Networked Sensor Systems, 2007. doi:10.1145/
1322263.1322274

36. R.C. Shah et al., Data MULEs: Modeling a three-tier architecture for sparse sensor networks.
in Proceedings of IEEE SNPA, 2003, pp. 30–40

37. A. Silva, M. Liu, M. Moghaddam, Power management techniques for WSNs and similar low-
power communication devices based on non-rechargeable batteries. J. Comput. Netw. Com-
mun. 1–10 (2012)

38. A. Silva, M. Liu, M. Moghaddam, Ripple-2: a non-collaborative; asynchronous; and open
architecture for highly-scalable and low duty-cycle WSNs. in Proceedings of ACM MiSeNet,
(Istanbul, Turkey, 2012), pp. 39–44

39. A.R. Silva, M.C. Vuran, (CPS)2: integration of center pivot systems with wireless underground
sensor networks for autonomous precision agriculture. in Proceedings of ACM/IEEE Interna-
tional Conference on Cyber-physical Systems (ICCPS ’10), (Stockholm, Sweden, 2010)

40. A. Somasundara et al., Controllably mobile infrastructure for low energy embedded networks.
IEEE Trans. Mob. Comput. 6(8), 958–973 (2006)

http://dx.doi.org/10.1155/2012/286981
http://www.memsic.com/products/wireless-sensor-networks/environmental-systems.html.
http://www.memsic.com/products/wireless-sensor-networks/environmental-systems.html.
http://dx.doi.org/10.1145/958491.958513
http://dx.doi.org/10.1145/1384609.1384618
http://dx.doi.org/10.1145/1384609.1384618
http://dx.doi.org/10.1145/1098918.1098929
http://dx.doi.org/10.1145/1098918.1098929
http://dx.doi.org/10.1145/1322263.1322274
http://dx.doi.org/10.1145/1322263.1322274

94 A. R. da Silva et al.

41. G. Werner-Allen et al., Fidelity and yield in a volcano monitoring sensor network. in Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2006, pp. 381–396

42. X. Wu, M. Liu, In-Situ soil moisture sensing: measurement scheduling and estimation using
compressive sensing, in Proceedings of IEEE/ACM IPSN, Beijing, China, April 2012

43. M. Zuniga, B. Krishnamachari, Analyzing the transitional region in low power wireless links.
in Proceedings of IEEE SECON ’04, vol. 2012 (Santa Clara, CA, 2004)

Part II
Wireless Communications and Medium

Access Control

Chapter 4
Physical Layer Communications in Wireless
Sensor Networks

Zhuo Li, Xin Wang and Qilian Liang

Abstract Wireless Sensor Networks (WSNs) are widely used in applications such
as event detection, environment monitoring, target tracking, and home automation.
Typically, manually deployed sensors measure environmental information, e.g., tem-
perature, image, and wind speed, etc., and transmit noisy versions of these measure-
ments over wireless fading channels to the local intelligent control center (ICC), in
which an estimation of these state measurements is obtained and thus related control
operations are conducted.
This chapter investigates physical layer communications of WSNs in two parts:

(1) Impulse Radio Ultra-Wideband (IR-UWB) capacity optimization under the
coexistence with the OFDM-based wireless communication system—IEEE 802.11n.
The optimal power allocation scheme is presented by using the water-filling algo-
rithm with Karush-Kuhn-Tucker (KKT) conditions, which is also compared with a
traditional equal power allocation scheme;

(2) sensor selection schemes for the parameter estimation in energy-constrained
WSNs. To prolong the network lifetime and optimize the power consumption, only
sensors experiencing favorable conditions will participate in the estimation process.
And two sensor selection schemes are proposed to improve the estimation perfor-
mance.

Partial work in this chapter was present in The 11th IEEE International Symposium on Commu-
nications and Information Technologies (ISCIT2011) as “capacity optimization of ultrawide
band system under the coexistence with IEEE 802.11n system” and 2012 IEEE Innovative
Smart Grid Technologies—Asia (ISGT Asia) as “Sensor selection schemes in smart grid.”

Z. Li · X. Wang · Q. Liang (B)

Department of Electrical Engineering, University of Texas at Arlington,
Arlington, TX 76019-0016, USA
e-mail: liang@uta.edu

Z. Li
e-mail: zhuo.li@mavs.uta.edu

X. Wang
e-mail: xin.wang51@mavs.uta.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 97
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_4,
© Springer-Verlag Berlin Heidelberg 2014

98 Z. Li et al.

1 Introduction

WSNs have been rapidly developed in recent years. Consisting of wireless intercon-
nected sensor nodes, WSNs collaboratively collect, deliver and process information
in various environmental monitoring, and commercial or human centric applications.
The development of WSNs has attracted growing research on the relative technolo-
gies. An important issue of WSNs is energy efficiency. To optimize the throughput
between the wireless sensors with stringent power constraint is of great significance
to the robustness as well as the reliability of WSNs. At the mean time, if a sensor
remains active continuously, its energy will be depleted quickly leading to death. To
prolong the network lifetime, the sensors need alternate between being active and
sleeping, which means an efficient sensor selection scheme is required of power-
restricted WSNs.

In this chapter, we try to approach this from the physical layer design perspective
in terms of the following three objectives:

(1) Communication capacity, while coexisting with other wireless users, the
throughput of the WSN should be optimized with an efficient power allocation
scheme;

(2) Estimation accuracy, estimation accuracy determines if a control center could
perform reasonable operations based on the real-time measurements collected from
the monitoring sensors;

(3) Power efficiency, to prolong the lifetime of the WSN, the total power con-
sumption should be minimized.

The ultra wideband (UWB) radio is a promising technology that can be applied at
very low power for short-range high data-rate communications. In light of its main
advantages of high data rates, low cost, and low power consumption, UWB sys-
tems tend to be used for short-range and indoor applications, examples of which are
communications between wireless monitors, digital camcorders, wireless printing,
cell phones and personal computers [37]. Besides, owing to its precision capabilities
combined with the extremely low power, the UWB radio is ideal for certain frequency
sensitive environments such as hospitals and health care. It has also been used in mil-
itary applications for covert communications. In this application, the military took
advantage of the fact that UWB signals spread across a very wide bandwidth and
could be made to appear as noise to most interception equipment [34]. UWB is part of
“see-through-the-wall” precision radar imaging technology, precision locating and
tracking. Moreover, UWB technology is an ideal candidate for future Wireless Per-
sonal Area Networks (WPAN) that requires processing information with low-power
sources at very high speed across short distances [2]. Numerical studies indicate
that UWB is one of the enabling technologies for sensor network applications. Short
range communication systems could be applied to the fields of Smart Grid [39],
which includes an intelligent monitoring system that would keep track of electrical
power distribution systems [4].

In the existing literature, the coexistence issue of UWB systems and other wire-
less communication systems, such as cellular systems and NB wireless systems, is

4 Physical Layer Communications in Wireless Sensor Networks 99

widely studied. The investigation is mainly categorized into two parts: one is to study
the interference effect from other conventional systems on the UWB system, and the
other one is to analyze how UWB signals could impact other coexisting systems. Par-
ticularly, previous literature focuses on the interference introduced by UWB signals
to fixed wireless communications systems, for example, the global system for mobile
communications (GSM), universal mobile telecommunication system (UMTS), and
global positioning system (GPS) [15, 17]. Later on, the coexistence issue between
UWB systems and NB communication systems attracted researchers’ attention due
to the wide application of NB communication systems. Giorgetti et al. Reference [14]
evaluated the performance of wideband communication systems in the presence of
narrowband interference (NBI). In [14] closed-form bit-error probability expressions
for spread-spectrum UWB systems were derived under the additive white Gaussian
noise (AWGN) channels, flat-fading channels, and frequency-selective multipath fad-
ing channels, respectively, where the NBI was considered as a tone interferer. Further-
more, coexistence between UWB and Orthogonal-Frequency-Division-Multiplexing
(OFDM)-based systems was thoroughly analyzed in [8].

Considering the operating frequencies of IEEE 802.11n, an IEEE 802.11n system
with either operating mode could be interfered by a UWB user, and the interference
of an IEEE 802.11n system to a UWB user is also unavoidable. The coexistence issue
of UWB and IEEE 802.11n systems has been investigated since the standardization of
IEEE 802.11n. Reference [26] studied the maximum permissible emission power of
a UWB system under the coexistence with IEEE 802.11n by setting up the physical
layer models of these two systems. The spectrum sensing performance of UWB-
based Cognitive Radio (CR) systems with the primary user of IEEE 802.11n was
presented in [22]. Based on these studies, the topic of how to optimize the capacity of
a UWB user while making sure that these two systems can still work simultaneously
is seldom investigated. Therefore, a study on the proper spectrum management of
UWB systems which optimizes its transmission rate, seems to be needed. Besides,
this research will give a suggestion on the spectrum regulation of UWB system.

Throughput optimization for wireless communication systems has been widely
studied. Some of the existing literatures focus on the coexistence situation of two sys-
tems. Reference [38] proposed a water-filling algorithm for a direct-sequence (DS)
UWB cognitive radio (CR) network that maximizes the sum capacity while enabling
each transmitter to fit its power spectral density into, and thus to make the most of,
the spectrum void. Bansal et al. investigated an optimal power loading algorithm for
an OFDM-based cognitive radio system [1]. The downlink transmission capacity of
the CR user is thereby maximized, while the interference introduced to the primary
user (PU) remains within a tolerable range. The non-convex NP-hard problem of
weighted sum rate maximization in a multiuser Gaussian channel that models a cog-
nitive wireless network with affine power constrains was studied in [31]. The key
technique is the use of nonnegative matrix theory, in particular the Perron-Frobenius
Theorem and the Friedland-Karlin inequalities. Reference [31] also extends to a
multiuser-multiple carrier model, where a common spectrum is divided into K fre-
quency tones. Reference [7] proposed a margin-based power allocation scheme that
utilizes each UWB node’s own position information, and an exclusive region-based

100 Z. Li et al.

scheduling scheme that takes into consideration the interaction among simultaneous
transmission links.

The sensor selection problem already arises in various applications, including
sensor placement for structures [24] and target tracking [33]. The work of [30]
investigated the full sensing coverage of the field by identifying the appropriate sen-
sors and turning off the redundant sensors. Sensor selection via convex optimization
is discussed in [20] and a survey of sensor selection schemes in wireless sensor
networks is summarized in [29].

Section 2 studies the coexistence issue between an WSN and a narrowband (NB)
OFDM-based wireless communications system. The throughput optimization of
wireless sensors within the coexisting operating bandwidth with an IEEE 802.11n
user is explored, while making sure that its cumulative interference to the coexist-
ing IEEE 802.11n user is below a certain permissible threshold. The optimal power
allocation scheme is presented by using water-filling algorithm with Karush-Kuhn-
Tucker (KKT) conditions, which is also compared with a traditional equal power
allocation scheme.

In Sect. 3, we consider the sensor selection schemes to improve estimation accu-
racy and power efficiency in energy-constrained WSNs. To prolong the network
lifetime and optimize power consumption, only sensors experiencing favorable con-
ditions will participate in the estimation process. Two sensor selection schemes are
proposed to improve the estimation performance. We first propose an opportunistic
sensor selection scheme under equal power allocation and investigate the asymptotic
behaviors. Then we address a sensor selection scheme under optimal power alloca-
tion and derive a reminiscent “water-filling” solution for this scenario. Finally we
present numerical studies on improving the power efficiency using sensor selection.
The theoretical analysis and proofs are instrumental to the sensor network design.

2 Coexistence of UWB and IEEE 802.11n: Throughput
Optimization for IR-UWB

2.1 Study on Coexistence Between UWB and NB Systems

In principle, any wireless communication technology that produces signals with a
bandwidth wider than 500 MHz or a fractional bandwidth greater than 0.2 can be
considered as UWB [18], where the fractional bandwidth is defined as

η = 2 × fH − fL

fH + fL
(1)

where fL and fH are the lower bound and upper bound of the spectral frequency of
a UWB radio.

4 Physical Layer Communications in Wireless Sensor Networks 101

Fig. 1 Spectrum comparison
of UWB and NB signals

P
ow

er Spectrum
 D

ensity

UWB

NB

Lf 0f Hf (Hz)f

10dB

The Federal Communication Commission (FCC) released a spectral mask with
some restrictions for UWB. For indoor UWB systems, a maximum mean effective
isotropic radiated power (EIRP) spectrum density of −41.3 dBm/MHz is established
over the 3.1–10.6 GHz operating bandwidth [12]. Different from the NB wire-
less communications systems, i.e., Wireless Local Area Network (WLAN), World-
wide Interoperability for Microwave Access (WiMAX), and Long Time Evolution
(LTE), UWB systems conventionally occupy a relatively large bandwidth in the fre-
quency domain which is already allocated by these NB communication systems as
illustrated in Fig. 1. Therefore, it is obvious that UWB systems would inevitably
coexist with other NB wireless communication systems by sharing some operation
bandwidth [26].

2.2 UWB Radio

Two types of UWB technologies are commonly used: impulse radio UWB (IR-UWB)
and multiband OFDM UWB (MB-OFDM UWB). Due to the unique properties, such
as low complexity and low cost, good resistance to severe multipath and jamming,
and high time-domain resolution for location and tracking, IR-UWB is well suited to
sensor network applications. In this subsection, we adopt IR-UWB as the objective.
IR-UWB uses a short pulse in the time domain that occupies a large bandwidth in the
frequency domain to modulate the information [3]. The most commonly used pulse
is Gaussian pulse and its derivatives, i.e., first and second derivatives of Gaussian
pulse. The normalized Gaussian pulse is represented as

p(t) = 1∈
2πσ

exp

(
− (t − μ)2

(2σ)2

)
, (2)

where μ is the mean value of the Gaussian random variable, and σ is its standard
deviation. Let σ 2 = α2/(4π), where α is an index correlated to the width of pulse,
indicating the shape of pulse, namely the shaping factor. Figure 2 shows a normalized
Gaussian Impulse with μ = 0, and σ = 0.1.

102 Z. Li et al.

Fig. 2 Normalized Gaussian
impulse

−2 20
−0.2

0

0.2

0.4

0.6

0.8

Gaussian Impulse

t(ns)

N
or

m
al

iz
ed

 A
m

pl
itu

de

2.3 IEEE 802.11n

The Orthogonal Frequency Division Multiplexing (OFDM) technique is adopted
in IEEE 802.11n systems, and it is essentially a multi-carrier modulation (MCM)
method. The basic idea is to carry data in a large number of closely-spaced orthogonal
sub-carriers at a relatively low symbol rate. OFDM is used to cope with severe channel
conditions (for example, frequency selective fading due to multipath), to effectively
eliminate inter-symbol interference (ISI), and also to reduce the overall amount
of required spectrum due to the overlapping of the tones [28]. For the traditional
FDM multicarrier modulation technique, as shown in Fig. 3a, each subcarrier in the
frequency domain does not overlap with each other. At the same time, in order
to reduce mutual interference between the various subcarriers, subcarriers need to
retain sufficient frequency spacing, which results in low spectrum efficiency; But for
the OFDM technique, due to the orthogonal overlapping between subcarriers, the
protection bandwidth is greatly reduced and the spectrum efficiency is also highly
improved as shown in Fig. 3b.

A typical OFDM system model is shown in Fig. 4. In the transmitter, the input
serial data stream is shifted into a parallel format. The parallel data in each carrier
is then separately modulated by traditional modulation methods, such as QPSK and
QAM. After the required spectrum is worked out, an inverse fast fourier transform
(IFFT) is performed, and the guard period, also called the cyclic prefix (CP) is added
to the start of each symbol. The receiver basically does the reverse operation to the
transmitter. CP is removed and fast fourier transform (FFT) of each OFDM symbol
is then taken to obtain the original transmitted spectrum. Demodulation is performed
in each carrier, which is followed by a parallel to serial conversion [25].

4 Physical Layer Communications in Wireless Sensor Networks 103

frequency

(a) Channel 1 2 3 4 5 6 7 8

(b) Saved
Bandwidth

frequency

Fig. 3 Traditional FDM and OFDM techniques

Random
Data

Generator

Serial
to

Parallel

Traditional
Modulation IFFT

Guard
Period

Insertion

Parallel
to

Serial

... ...

Channel

Guard
Period

Removal

Serial
to

Parallel

Traditional
Demodulation

FFT
Parallel
to Serial

serial data out
...

Fig. 4 A typical OFDM system model

The new Wireless Local Area Network (WLAN) standard, IEEE 802.11n, was
finalized as a standard in 2009. This standard aims at improving network through-
put over previous standards, such as 802.11b and 802.11g with the combination
of OFDM and Multiple Input and Multiple Output (MIMO) techniques. Moreover,
either the 2.4 GHz or the 5 GHz frequency band could be used for IEEE 802.11n.
In the 5 GHz band, a high throughput (HT) OFDM system with 40 MHz bandwidth
is specified [19]. Products with IEEE 802.11n technology, such as wireless LAN
card, and wireless routers, have been widely used in personal computers, notebook
computers and other digital terminals prior to the finalization of the official standard.

Since OFDM technique is used in IEEE 802.11n signals, based on an ideal Nyquist
pulse, the power spectrum density (PSD) of the lth subcarrier in the IEEE 802.11n
user is represented as

Φl(f) = Ql Ts

(
sin π(f − fl)Ts

π(f − fl)Ts

)2

, (3)

where Ql is the transmit power in the lth subcarrier, and Ts is the symbol duration.

104 Z. Li et al.

2.4 Coexistence System Model

2.4.1 Distribution Model in the Spatial Domain

Before we study the throughput optimization issue of a UWB system under the coex-
istence with an IEEE 802.11n system, the coexistence model of these two systems
in the spatial domain is set up. In the downlink transmission scenario, as shown in
Fig. 5, the receiver of an IEEE 802.11n user could get the desired signal from its
transmitter, and also get an interference signal from the coexisting UWB transmitter.
Similarly, not only the useful information from the UWB transmitter, but also the
jammer from the IEEE 802.11n transmitter is obtained at the receiving part of the
UWB user. In this scenario, hii is denoted as the channel gain from the IEEE 802.11n
transmitter to its receiver, hiu is the channel gain from the IEEE 802.11n transmitter
to the UWB receiver, hui represents the channel gain from the UWB transmitter to
the IEEE 802.11n receiver, and huu is the channel gain from the UWB transmitter to
its receiver. We assume these channel gains are perfectly known at the transmitters.

Fig. 5 Distribution of IEEE
802.11n and UWB users in
the spatial domain

ii

iu

ui

uu

4 Physical Layer Communications in Wireless Sensor Networks 105

Frequency

IEEE
802.11n
band1

IEEE
802.11n
band2

IEEE
802.11n
band3

IEEE
802.11n
bandN

UWB
user

B1 BNΔf
B2

Fig. 6 Distribution of IEEE 802.11n and UWB users in the frequency domain

2.4.2 Distribution Model in the Frequency Domain

In the frequency domain, the available bandwidth of an IEEE 802.11n user can
be divided into N subcarriers. It is assumed that the bandwidth of each subcarrier
is Δ f Hz. For band 1, band 2, . . . , band N , the bandwidths are correspondingly
B1, B2, . . . , BN . As shown in Fig. 6, a UWB user and an IEEE 802.11n user share
the same spectrum in certain frequencies part. In this case, we can study the capacity
issue of a UWB user within each subcarrier domain of an IEEE 802.11n user, and
then sum them up to get the optimized capacity.

The frequency spectrum of a Time Domain Inc PulsON 220 UWB transceiver via
an Agilent Spectrum Analyzer is shown in Fig. 7. It is obvious to see that the fre-
quency spectrum of the UWB transceiver spans in a large range with center frequency
4.28 GHz. Additionally, the power is relatively low.

The frequency spectrum in the Max Hold mode of an OFDM-based NB signal is
obtained from a WiFi-equipped cell phone. As shown in Fig. 8, the center frequency
is 2.4 GHz with 20 MHz operating bandwidth.

2.5 Interference Model

Our objective is to optimize the capacity of the UWB user within the coexisting oper-
ating bandwidth of an IEEE 802.11n user, under the constraint that its interference
to the IEEE 802.11n user is under an acceptable threshold. Meanwhile, studying the
capacity of the UWB user, the interference at the receiver part of the UWB user should
be considered. For simplicity, we study the scenario that the UWB system coexists
with only one NB wireless communication system, which is the IEEE 802.11n sys-
tem. In this way, the received interference of the UWB user includes the additive
white Gaussian noise (AWGN) and interference from the coexisting IEEE 802.11n
user.

We suppose μ = 0 in (2), so the Power Spectrum Density (PSD) of the UWB
user within the nth subcarrier of IEEE 802.11n is [21]:

106 Z. Li et al.

Fig. 7 Frequency spectrum of UWB transceiver

Fig. 8 Frequency spectrum of OFDM-based WiFi user

4 Physical Layer Communications in Wireless Sensor Networks 107

Table 1 Interference of IEEE 802.11n user
∑N

l=1 J (l)
n

Operating
frequency of
IEEE 802.11n
(GHz)

Bandwidth of
IEEE 802.11n
(MHz)

Range of transmit
power (dBm)

Maximum∑N
l=1 J (l)

n
(dB)

Minimum∑N
l=1 J (l)

n
(dB)

2.417–2.437 20 18–21 −78.5308 −78.6660
2.417–2.437 20 15–18 −81.5167 −81.6516
5.170–5.190 20 18–21 −84.9494 −85.1046
5.170–5.190 20 15–18 −87.9597 −88.1149
5.160–5.200 40 18–21 −82.0331 −82.1809
5.160–5.200 40 15–18 −85.1469 −85.2966

Ψn(f) = Pn exp
(
−(2π f σ)2

)
, (4)

where Pn is the transmission power of the UWB user within the subcarrier Bn of
IEEE 802.11n. In this way, the interference of the UWB user within the nth subcarrier
to the lth subcarrier of the IEEE 802.11n user can be represented as

I (n)
l = |hui|2

⎛ dnl+Δ f/2

dnl−Δ f/2
Ψn(f)d f, (5)

where dnl is the frequency separation between the nth subcarrier of and the lth
subcarrier of the IEEE 802.11n user, and hui is the downlink channel gain from the
UWB transmitter to the IEEE 802.11n receiver as mentioned in Sect. 2.4.

The interference to the UWB user within the nth subcarrier introduced by the lth
subcarrier of the IEEE 802.11n can be written as

J (l)
n = |hiu|2

⎛ dnl+Δ f/2

dnl−Δ f/2
Φl(f)d f, (6)

where hiu is the downlink channel gain from the IEEE 802.11n transmitter to the
UWB receiver as mentioned in Sect. 2.4, and Φl(f) is the PSD of IEEE 802.11n
signals within the lth subcarrier as represented in (3).

Table 1 lists the numerical values of IEEE 802.11n interference within the nth
subcarrier bandwidth of a UWB user, namely

∑N
l=1 J (l)

n , when the range of transmit
power of the IEEE 802.11n user varies.

2.6 Interference Evaluation Based on I/N Criteria

The interference to noise ratio (I/N), which is defined as the power ratio of received
interference and receiver noise floor, is a widely used interference evaluation method.

108 Z. Li et al.

Table 2 Maximum
permissible interference at the
receiver part of IEEE 802.11n
user

Operating frequency
of IEEE 802.11n
(GHz)

Bandwidth of IEEE
802.11n (MHz)

I th (dBm)

2.417–2.437 20 −105.62
5.170–5.190 20 −105.62
5.160–5.200 40 −102.61

This method is originally adopted by FCC to regulate the UWB emission limits [12],
and provides a simplified model for the calculation of the maximum permissible inter-
ference level IMAX at the receiver input for an IEEE 802.11n user. The normalized
IMAX in dBm [11], can be represented as

I th = I/N + N , (7)

where I/N is the maximum permissible average or peak interference-to-noise ratio at
the receiver’s intermediate frequency (IF) output necessary to maintain an acceptable
performance criteria, in dB; N is the receiver’s inherent noise level at the receiver IF
output referred to the receiver input, in dBm.

N = 10 log K + 10 log T + 10 log B + N F, (8)

where K is Boltzmann’s constant, normally 1.38 × 10−20, in mW/K/Hz, T is the
system noise temperature, in degrees Kelvin, B is the receiver IF bandwidth, in Hz,
and N F is the noise coefficient, in dB.

According to (7) and (8), Table 2 lists the calculated maximum acceptable inter-
ference at the receiver part of the IEEE 802.11n user in three different operating
modes.

It is obvious that the maximum acceptable interference at the receiver part of
IEEE 802.11n is mainly determined by the bandwidth of the receiver, no matter on
which center frequency it operates. Moreover, for the interfered system with larger
operating bandwidth, higher interference is tolerable than that with smaller operating
bandwidth.

2.7 Optimal Power Allocation Scheme

We firstly study the capacity of a UWB user within each operating bandwidth shared
with an IEEE 802.11n subcarrier. The transmission power of UWB user within the
subcarrier Bn is represented as Pn , huu is the channel gain of the nth subcarrier
from the UWB transmitter to its receiver, J (l)

n denotes the interference introduced
by the lth subcarrier of the IEEE 802.11n user to the UWB receiver within the nth
subcarrier. According to the Shannon capacity formula, the transmission rate of the
UWB user within the nth subcarrier can be represented as [9]:

4 Physical Layer Communications in Wireless Sensor Networks 109

Rn = Δ f log2

⎜
1 + |huu |2 Pn

σ 2
awgn + ∑N

l=1 J (l)
n

⎝
, (9)

where σ 2
awgn is the power of the additive white Gaussian noise (AWGN).

As we know the capacity of the UWB user within each subcarrier, the cumulative
capacity of the UWB user within the whole coexisting operating bandwidth with the
IEEE 802.11n user is essentially the summation of these subcarrier-capacities. Our
objective is to maximize the capacity of the UWB user while keeping its interference
to the IEEE 802.11n user below a certain threshold.

C = max
Pn

N∑
n=1

Δ f log2

⎜
1 + |huu |2 Pn

σ 2
awgn + ∑N

l=1 J (l)
n

⎝
(10)

subject to
N∑

l=1

N∑
n=1

I (n)
l ⊂ I th (11)

and
Pn ◦ 0,∀n = 1, 2, . . . , N . (12)

Since log(·) is a concave function, and the sum of the concave functions is still
a concave function, to maximize a concave function is equivalent to minimizing
the negative of the concave function, namely a convex function. Obviously this is a
problem of convex optimization. In this case, by introducing a Lagrange multiplier
ν to the inequality constraint in (11) and Lagrange multipliers λn to the inequality
constraints in (12), we can get the following Karush-Kuhn-Tucker (KKT) condition
[6]:

N∑
l=1

N∑
n=1

I (n)
l ⊂ I th

P∗
n ◦ 0,∀n = 1, 2, . . . , N

λn ◦ 0,∀n = 1, 2, . . . , N (13)

λn P∗
n = 0,∀n = 1, 2, . . . , N

− 1

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2 + P∗
n

− λn + ν

N∑
l=1

∂ I (n)
l

∂ P∗
n

= 0,∀n = 1, 2, . . . , N .

From the last condition in (13), we know that

λn = ν

N∑
l=1

∂ I (n)
l

∂ P∗
n

− 1

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2 + P∗
n

. (14)

110 Z. Li et al.

So we can eliminate the slack variable λn first and get:

N∑
l=1

N∑
n=1

I (n)
l ⊂ I th

P∗
n ◦ 0,∀n = 1, 2, . . . , N

ν P∗
n

N∑
l=1

∂ I (n)
l

P∗
n

− P∗
n

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2 + P∗
n

= 0,∀n = 1, 2, . . . , N (15)

1(
σ 2

awgn+
∑N

l=1 J (l)
n

|huu |2 + P∗
n

)
∂ I (n)

l
P∗

n

⊂ υ,∀n = 1, 2, . . . , N .

We can denote ∂ J (l)
n

∂ P∗
n

as K (n)
l for simplicity, which is

K (n)
l = |hui|2

⎛ dnl+Δ f/2

dnl−Δ f/2
exp

(
−(2π f σ)2

)
d f. (16)

From the last condition in (15), we can see that if

ν <
1(

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2
)∑N

l=1 K (n)
l

(17)

then, P∗
n > 0. From the third condition in (15), we can get P∗

n as

P∗
n = 1

ν
∑N

l=1 K (n)
l

− σ 2
awgn + ∑N

l=1 J (l)
n

|huu |2 . (18)

Otherwise, P∗
n = 0 if

ν ◦ 1(
σ 2

awgn+
∑N

l=1 J (l)
n

|huu |2
) ∑N

l=1 K (n)
l

. (19)

To summarize, the allocated power of UWB user can be written as

P∗
n = max

⎧⎪⎪⎨
⎪⎪⎩

0,
1(

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2
)∑N

l=1 K (n)
l

⎫⎪⎪⎬
⎪⎪⎭

. (20)

4 Physical Layer Communications in Wireless Sensor Networks 111

Substituting (20) into (11), we can get

N∑
l=1

N∑
n=1

K (n)
l max

⎧⎪⎪⎨
⎪⎪⎩

0,
1(

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2
) ∑N

l=1 K (n)
l

⎫⎪⎪⎬
⎪⎪⎭

⊂ I th. (21)

From (21), we can see that when the left side is equal to the right side, the left side
can reach its maximum value, namely, the allocated power is maximized. In order to
maximize the capacity of UWB user, (21) can be written as

N∑
l=1

N∑
n=1

K (n)
l max

⎧⎪⎪⎨
⎪⎪⎩

0,
1(

σ 2
awgn+

∑N
l=1 J (l)

n

|huu |2
) ∑N

l=1 K (n)
l

⎫⎪⎪⎬
⎪⎪⎭

= I th. (22)

We compare the proposed optimized capacity of the UWB user with the capacity
by using the equal power allocation scheme [32] in three scenarios mentioned above.
For the equal power allocation scheme, the allocated power for the UWB user within
each subcarrier shared with subcarriers of IEEE 802.11n user Peq can be represented
as:

Peq = I th∑N
l=1

∑N
n=1 K (n)

l

. (23)

The capacity of the UWB user with equal power allocation Ceq is:

Ceq =
N∑

n=1

Δ f log2

⎜
1 + |huu |2 Peq

σ 2
awgn + ∑N

l=1 J (l)
n

⎝
. (24)

2.8 Numerical Simulation and Discussion

The maximum transmit power of an IEEE 802.11n user is 200 mW, namely 23 dBm
both in 20 MHz and 40 MHz [19]. We can assume the transmit power of an IEEE
802.11n user Q is within the range of 64–128 mW (18–21 dBm) for indoor applica-
tions. There are 64 OFDM subcarriers in the mode of 20 MHz and 128 subcarriers
with 40 MHz bandwidth. Dividing the number of subcarriers by the total bandwidth,
we can get the subcarrier frequency spacing 312.5 KHz. The symbol duration of the
IEEE 802.11n signal is 4µs. According to the ITU-R requirements, the interference
power due to unwanted emissions from sources sharing the same band on primary
bases can be partitioned as the intraservice interference, the coprimary services inter-
ference, and other interfering aggregation. UWB systems are commonly classified
as secondary services. For calculating the maximum permissible interference at the
receiver of the IEEE 802.11n user, system noise temperature is 293 K, the noise

112 Z. Li et al.

Table 3 Parameter settings

Parameter Symbol Value

Transmit power of IEEE 802.11n user Q 64–128 mW (18–21 dBm)
Number of subcarriers N 64/128
Subcarrier frequency spacing Δ f 312.5 KHz
Symbol duration of IEEE 802.11n signal Ts 4 × 10−6 s
Power of AWGN σ 2

awgn 4 × 1−3 s
Shaping factor of Gaussian pulse α 0.2 × 1−9 s
Channel gains h 10 dB
Boltzmann’s constant K 1.38 × 10−20 mW/K/Hz
System noise temperature T 293 K
Noise coefficient NF 5.3 dB
Interference to noise ratio I/N −10 dB

coefficient of an IEEE 802.11n receiver is 5.3 dB, and the interference to noise ratio
is −10 dBm [15].

In this subsection, we select the operating frequency range of an IEEE 802.11n
user as 2417–2437 MHz with 20 MHz bandwidth, 5170–5190 MHz with 20 MHz
bandwidth, and 5160–5200 MHz with 40 MHz bandwidth. σ 2

awgn is assumed to be
1 × 10−3. The shaping factor of the Gaussian pulse is chosen as 0.2 × 10−9. The
channel gains between the IEEE 802.11n user and the UWB user hii, hiu, hui, and
huu are assumed to be Rayleigh flat fading with an average power gain of 10 dB. The
detailed parameter settings are shown in Table 3.

Figure 9 is the interference introduced by the lth subcarrier of IEEE 802.11n to an
UWB user within the nth subcarrier spectrum domain, where the operating frequency
of IEEE 80.211n is 2.417–2.437 GHz and the operating bandwidth is 20 MHz. We
can see that the interference to UWB changes periodically due to the OFDM char-
acteristic for different distances between the lth subcarrier of IEEE 802.11n and the
nth subcarrier of the UWB user in the spectrum domain.

The numerical results are shown in Table 4. From these results, we can see that: (1)
the capacities of the UWB user within the coexisting frequencies shared with IEEE
802.11n user, using the proposed optimal power allocation scheme, are significantly
larger than those with the equal power allocation scheme. (2) For the IEEE 802.11n
user working on a certain frequency, i.e., in the 5 GHz band, the UWB user could
achieve larger capacity when coexisting with higher-bandwidth IEEE 802.11n user.
This could be explained according to (7), (8) and Table 2. Since the interfered system
with larger operating bandwidth can tolerate higher interference, the transmitting
power of the interfering system, namely the UWB user, will be larger, which means
higher capacity is achievable. (3) Compared with a higher operating frequency of the
IEEE 802.11n user, the capacity of the UWB user under the coexisting IEEE 802.11n
user with lower operating frequency is larger. (4) When the range of transmit power
of IEEE 802.11n varies, the capacity of the UWB user changes. When the range
decreases, the corresponding interference introduced by the IEEE 802.11n user to
the UWB user gets smaller, that means the UWB user could reach higher capacities.

4 Physical Layer Communications in Wireless Sensor Networks 113

0
10

20
30

40
50

60
70

0

20

40

60

80
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x 10
−10

lth subcarrier of IEEE 802.11n user

Interference introduced by IEEE 802.11n in 2.4GHZ 20MHz

nth subcarrier

in
te

rf
er

en
ce

(W
)

Fig. 9 Interference introduced by the lth subcarrier of IEEE 802.11n to UWB user (in 2.4 GHZ
with 20 MHz bandwidth)

Table 4 Optimal capacity and capacity with equal power allocation scheme

Operating
frequency of
IEEE 802.11n
(GHz)

Bandwidth of
IEEE 802.11n
(MHz)

Range of transmit power
of IEEE 802.11n (dBm)

Optimal
capacity (bps)

Capacity with
equal power
allocation
scheme (bps)

2.417–2.437 20 18–21 1.22837×109 1.8420 × 108

2.417–2.437 20 15–18 1.22845×109 1.8427 × 108

5.170–5.190 20 18–21 1.13294×109 1.3815 × 108

5.170–5.190 20 15–18 1.13300×109 1.3819 × 108

5.160–5.200 40 18–21 1.86853×109 2.7631 × 108

5.160–5.200 40 15–18 1.86873×109 2.7648 × 108

3 Sensor Optimization and Selection in Wireless Sensor
Networks Based on Physical Layer Design

The goal of this subsection is to consider the above points that have not yet been
well-defined in previous works. The reminder of this subsection is organized as fol-
lows: The system model and problem formulation are given in Sect. 3.1. In Sect. 3.2,
aiming at improving the estimation performance, we propose two sensor selection
schemes: sensor selection under equal power allocation and optimal power allocation,

114 Z. Li et al.

respectively. Section 3.3 demonstrates the improvements in power efficiency using
sensor selection. We present some concluding remarks in Sect. 4. Several Proofs
omitted from the body of the subsection are presented in the Appendix.

3.1 System Model and Problem Formulation

3.1.1 System Model

Consider a WSN with m sensors S1, S2, · · · , Sm deployed to estimate an unknown
parameter θ , such as the voltage, temperature level and so on. The system model is
shown in Fig. 10.

Each sensor Si is able to periodically measure the source θ . The measurement at
each sensor is assumed to be a noise-corrupted version of θ :

xi = θ + νi , (25)

where νi is the noise introduced at each sensor. Here, we assume that θ and νi are
independent and identically distributed (i.i.d.) random variables with zero mean and
variance σ 2

θ and σ 2
i , respectively.

After collecting the information about the source, each sensor transmits its obser-
vation directly to the control center without any coding. This strategy is known as
analog amplify and forward [13]. Analog amplify and forward scheme with power
allocation has been extensively studied in [10, 36]. Therefore, at sensor i, the trans-
mitter can be simply modeled by a power amplifying factor ai , and the average
transmit power is given as

Pi = ai Pxi = ai (σ
2
θ + σ 2

i), (26)

where Pxi represents the power of observation xi .

Intelligent
Control
Center

Source … …

Source
Estimation

1g

2g

mg

1
S

2
S

m
S

Fig. 10 System model

4 Physical Layer Communications in Wireless Sensor Networks 115

3.1.2 Multiple Access Scheme

We investigate two different multiple access schemes between the wireless sensors
and the ICC: orthogonal and coherent.

A. Orthogonal Access Scheme
In the orthogonal access scheme, each sensor transmits its measurement to the ICC
via orthogonal channels (e.g., using FDMA or CDMA) and the ICC receives

yi = ∈
gi ai (θ + νi) + wi

= hiθ + ni i = 1, 2, . . . , m, (27)

where gi is the power gain of the fading channel and wi with variance ξ2
i is the noise

introduced at the ICC. We assume that both the transmitter and receiver know the
fading channel state.

Clearly, the received signal vector is

y = hθ + n, (28)

where h = [∈a1g1, . . . ,
∈

am gm]T and n stands for the AWGN with diagonal covari-
ance matrix R given as diag[R] = [σ 2

1 a1g1 + ξ2
1 , . . . , σ 2

mam gm + ξ2
m]T .

With the received signal, the ICC generates an estimation θ̂ to recover the source
θ . Here, we adopt the maximum likelihood (ML) estimator [23]

θ̂ = [hT R−1h]−1hT R−1y

=
⎜

m∑
i=1

ai gi

σ 2
i ai gi + ξ2

i

⎝−1 m∑
i=1

∈
ai gi yi

σ 2
i ai gi + ξ2

i

. (29)

The Mean Square Error (MSE) of this estimator is given as

Dorth = [hT R−1h]−1 =
⎜

m∑
i=1

ai gi

σ 2
i ai gi + ξ2

i

⎝−1

. (30)

B. Coherent MAC
Another case is that all sensors transmit simultaneously and the transmitted signals
from all sensors reach the ICC as a coherent sum. Thus, the received signal at the
control center can be expressed as:

y =
m∑

i=1

hiθ + n

=
m∑

i=1

∈
ai giθ +

m∑
i=1

∈
ai giνi + w. (31)

116 Z. Li et al.

We assume the variance of noise w at the ICC is ξ2.
Given the received y, the ICC generates an estimation of source θ . Accordingly,

the ML estimator is

θ̂ = (hT R−1h)−1hT R−1 y =
⎜

m∑
i=1

∈
ai gi

⎝−1

y. (32)

This estimator is linear and achieves a MSE

Dcmac = (hT R−1h)−1

=
⎜

m∑
i=1

∈
ai gi

⎝−2 ⎜
m∑

i=1

σ 2
i ai gi + ξ2

⎝
. (33)

Remark 1: Theoretical lower bound
If all sensor measurements are directly available to the control center, we could

get the following estimator

θ0 =
⎜

m∑
i=1

1

σ 2
i

⎝−1 ⎜
m∑

i=1

x

σ 2
i

⎝
, (34)

which achieves the distortion

D0 =
⎜

m∑
i=1

1

σ 2
i

⎝−1

. (35)

This theoretical result could serve as a performance benchmark for later analysis.
Remark 2: P → ∞
As the transmit power approaches infinity, we have

Dcmac ◦ Dorth > D0. (36)

The detailed derivation is given in the Appendix. This inequality implies that as
the transmit power increases, the distortion of the orthogonal access scheme could
approach the lower bound D0; however, even if the signal power approaches infinity,
the coherent multiple access scheme cannot achieve the lower bound. One reasonable
explanation is that the individual observations carry more information than a com-
bination of these observations if the noise introduced at the ICC could be neglected.

Remark 3: ξ2 → ∞
When the noise variance ξ2 is very large,

Dcmac ⊂ Dorth. (37)

4 Physical Layer Communications in Wireless Sensor Networks 117

This is due to the fact that Dorth − Dcmac ◦ 0 will stand if ξ2 dominates. Thus,
in this case, the coherent scheme will have smaller estimation distortion than the
orthogonal scheme.

Since the coherent MAC scheme requires perfect carrier-level synchronization
among sensors, in this subsection, we will adopt the orthogonal access scheme as
the multiple access scheme between the sensors and the ICC.

3.1.3 Problem Formulation

Based on the above analysis, the power consumption of each sensor is given by
(26) and the related estimation distortion with orthogonal access scheme is given
in (30). Now we have two objectives: (1) minimizing the distortion to improve the
estimation accuracy; (2) minimizing the power consumption to improve the sensor
power efficiency. Several sensor selection schemes are proposed in the following
sections to optimally accomplish these objectives.

3.2 Improving the Estimation Accuracy Using Sensor Selection

3.2.1 Sensor Selection Scheme Under Equal Power Allocation

This section aims to minimize the estimation error under total power constraint Ptot.
Our strategy is first to select the K (⊂m) “opportunistic” sensors with the best channel
conditions, which can be formulated as follows (without power consideration):

min

⎜
m∑

i=1

zi
gi

σ 2
i gi + ξ2

i

⎝−1

s.t. 1T z = K (38)

zi ∩ {0, 1}.

The vector 1 is a vector with all entries one and the element zi of z can be chosen
from 0 or 1, which decides whether the ith sensor will be selected or not. Clearly,
the above problem is an integer optimization problem which is nonconvex and hard
to solve. Relaxing the nonconvex constraint zi ∩ {0, 1} with the convex constraint
0 ⊂ zi ⊂ 1, we reach the following relaxed sensor selection problem:

max
m∑

i=1

zi
gi

σ 2
i gi + ξ2

i

+ γ (log(zi) + log (1 − zi))

s.t. 1T z = K , (39)

where γ is a positive parameter controlling the quality of approximation.

118 Z. Li et al.

Next, solving the above convex optimization problem, we could obtain the target
sensors. Here, our principle is to choose the K sensors with largest zi weightness,
which means only “strong” sensors with favorable channel condition will participate
in the estimation process.

Finally, the power needs to be allocated in a reasonable way due to the total power
constraint. In this subsection, we will apply equal power allocation; sensor selection
under optimal power allocation will be discussed later. The equal power allocation
scheme is:

ai (σ
2
θ + σ 2

i) = Ptot

K
1 ⊂ i ⊂ K . (40)

Applying the equal power allocation strategy (40) into (30), we could get the analyt-
ical estimation distortion under equal power allocation:

Dorth =
⎜

m∑
i=1

ti
Ptotgi

σ 2
i Ptotgi + K ξ2

i (σ 2
θ + σ 2

i)

⎝−1

, (41)

where ti (ti ∩ {0, 1}) represents the final sensor selection decision. The sensor selec-
tion scheme under equal power allocation is summarized by the following algorithm.

step 1 Formulate the relaxed sensor selection problem without power constraint (39);
step 2 Solve the optimization problem and obtain the target sensors ti ;
step 3 Activate the K selected sensors. Only active sensors will participate in the

estimation process;
step 4 K active sensors adjust their transmit power accordingly (40) and send their

measurements to ICC;
step 5 ICC adopts ML estimator to recover the source θ .

Let’s discuss the following asymptotic scenarios:
Remark 4: Ptot → ∞
Under equal power allocation, as total power Ptot approaches infinity, we have

Dorth → D0. This result suggests that even if the power approaches infinity, the
distortion could only achieve the performance benchmark D0 rather than approaching
zero. The reason is that the observation noise νi could not be eliminated even if power
approach infinity. If the signal is amplified at each transmitter, the observation noise
νi is inevitably amplified as well.

Remark 5: K → ∞
As selected sensor number K approaches infinity, we obtain a similar asymptotic

behavior as [10]:

Dorth ∼
[

1

K

K∑
i=1

Ptotgi

ξ2
i (σ 2

θ + σ 2
i)

]−1

=
E

[
ξ2

i (σ 2
θ +σ 2

i)

gi

]

Ptot
. (42)

4 Physical Layer Communications in Wireless Sensor Networks 119

Hence, with K approaching infinity, the estimation error could not decrease to zero
either. One can attribute this limitation to the fact that, under the orthogonal access
scheme, K different channel noises cannot be eliminated even if K approaches
infinity.

3.2.2 Sensor Selection Scheme Under Optimal Power Allocation

In this subsection, we will address a sensor selection scheme under optimal power
allocation. According to the Problem Formulation part in Sect. 3.1, sensor selection
under optimal power allocation can be formulated as

max
m∑

i=1

ai gi

σ 2
i ai gi + ξ2

i

s.t.
m∑

i=1

ai (σ
2
θ + σ 2

i) ⊂ Ptot (43)

ai ◦ 0.

Unlike a preassigned sensor number K in the equal power allocation scenario,
under optimal power allocation, the number of active sensors will not be fixed in
advance. Obviously, this problem is convex and ai is the variable to optimize. The
Lagrangian G is given as

G = −
m∑

i=1

ai gi

σ 2
i ai gi + ξ2

i

+ λ

[
m∑

i=1

ai (σ
2
θ + σ 2

i) − Ptot

]
−

m∑
i=1

μi ai . (44)

From the Lagrangian function we can derive the following Karush-Kuhn-Tucker
(KKT) conditions [5]:

∂G

∂ai
= − giξ

2
i

(σ 2
i ai gi + ξ2

i)2
+ λ(σ 2

θ + σ 2
i) − μi = 0

λ

⎜
m∑

i=1

ai (σ
2
θ + σ 2

i) − Ptot

⎝
= 0

μi ai = 0

λ ◦ 0

μi ◦ 0

ai ◦ 0.

120 Z. Li et al.

Solving the KKT conditions, we obtain a result reminiscent of the “water-filling”
solutions in wireless communications,

ai = ξ2
i

σ 2
i gi

⎜√
gi

λξ2
i (σ 2

θ + σ 2
i)

− 1

⎝+
, (45)

where x+ equals to 0 when x is less than zero, and otherwise equals to x . The
solution is derived in the Appendix. For sensor i with ηi = gi

ξ2
i (σ 2

θ +σ 2
i)

, if ηi > λ, the

corresponding sensor will be active; otherwise the related sensor will be switched
off for power efficiency.

To practically implement the proposed sensor selection scheme, we need to split
the transmission time τ into two sections. The first section consumes a fraction
θ ∩ [0, 1] of τ and is used to select the target sensors and inform every selected
sensor. The second section of (1 − θ)τ is for the selected sensors to transmit the
measurements to the control center.

3.2.3 Voltage Estimation Performance with Different Sensor Selection
Schemes

The estimation performance of our proposed sensor selection schemes is evaluated.
To simulate the practical communication environment, we assume the wireless chan-
nel follows Rayleigh fading [16, 27]. In the following simulations, we assume 100
voltage monitoring sensors are deployed and the power of the voltage source is set
as σ 2

θ = 1 mW. Figure 11 demonstrates the voltage estimation performance with
different sensor selection schemes.

First, we examine the voltage estimation performance of the sensor selection
scheme under equal power allocation. Note that our proposed sensor selection
schemes will not be valid unless at least 10 voltage sensors are selected from the
whole 100 available sensors, which implies if too few sensors are selected per time,
the information collected at the selected sensors is not enough for the control center
to make an accurate voltage estimation. Besides, if too many sensors (K ◦ 40 in this
case) are selected per time, the estimation performance will also degrade. The expla-
nation is that if too many sensors are selected, under equal power allocation, voltage
sensors with good channel conditions could not be assigned enough power, which
will definitely impair the estimation performance. Hence, selecting the proper num-
ber of sensors could improve the voltage estimation performance. This conclusion is
further illustrated in Fig. 12. Meanwhile, Fig. 12 shows that more power budget will
always bring better voltage estimation performance.

Now let us compare the estimation performance of sensor selection schemes
under equal power allocation and optimal power allocation. As shown in Fig. 11,
sensor selection under optimal power allocation always outperforms the sensor selec-
tion scheme under equal power allocation. The improved estimation performance
of the optimal power allocation scheme comes with the price of more complex

4 Physical Layer Communications in Wireless Sensor Networks 121

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Active Voltage Sensor Number K

V
ol

ta
ge

 E
st

im
at

io
n

D
is

to
rt

io
n

Equal power without sensor selection
Equal power with sensor selection
Optimal power with sensor selection
Low Bound(Thoery)

Optimal Point

Fig. 11 Estimation performance with different sensor selection schemes

10 20 30 40 50 60 70 80 90 100
0.005

0.01

0.015

0.02

0.025

0.03

Power constraint in mw (Total sensor number is 100)

V
ol

ta
ge

 E
st

im
at

io
n

D
is

to
rt

io
n

Active sensor number is 10

Active sensor number is 20

Active sensor number is 30

Active sensor number is 40

Fig. 12 Estimation performance with different power constraint

computation. Quite interestingly, if the proper number of voltage sensors (“opti-
mal point”) are selected, the equal power allocation scheme could even achieve the
estimation performance of the optimal power allocation scheme. This conclusion ver-
ifies the merit and validity of our proposed opportunistic sensor selection algorithm.
However, due to the power constraint and limited available sensors, the estimation
performance could not approach the theoretical bound D0.

122 Z. Li et al.

3.3 Improving the Power Efficiency Using Sensor Selection

In this section, we will focus on another objective: minimizing the power consump-
tion using sensor selection.

We first consider the scenario of equal power allocation without sensor selection,
which means the sensor selection number K equals to m. Transforming the analytical
distortion result (41), we could reach

m∑
i=1

mξ2
i (σ 2

θ + σ 2
i)/σ 2

i

σ 2
i Ptotgi + mξ2

i (σ 2
θ + σ 2

i)
=

m∑
i=1

1

σ 2
i

− 1

D
. (46)

Solving this equation, the power consumption Ptot could be obtained for any given
estimation distortion D.

Then, in terms of the proposed sensor selection scheme under equal power allo-
cation, the power consumption Ptot within a given distortion D is derived from

m∑
i=1

K tiξ2
i (σ 2

θ + σ 2
i)/σ 2

i

σ 2
i Ptotgi + K ξ2

i (σ 2
θ + σ 2

i)
=

m∑
i=1

ti
σ 2

i

− 1

D
, (47)

where K represents the selected sensor number and ti is the sensor selection decision
as explained in Sect. 3.2.

Finally, to optimally allocate the power, we formulate the following optimization
problem to minimize the total power consumption subject to a given estimation
distortion D:

min
m∑

i=1

ai (σ
2
θ + σ 2

i)

s.t.

⎜
m∑

i=1

ai gi

σ 2
i ai gi + ξ2

i

⎝−1

⊂ D

ai ◦ 0.

The first constraint is equivalent to

m∑
i=1

ξ2
i /σ 2

i

σ 2
i ai gi + ξ2

i

⊂
⎜

m∑
i=1

1

σ 2
i

− 1

D

⎝
. (48)

For simplicity, let C represent the right-side part of (48)
∑m

i=1
1
σ 2

i
− 1

D . This

problem is convex and ai is the variable to optimize. The Lagrangian G is given by

4 Physical Layer Communications in Wireless Sensor Networks 123

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

Voltage Estimation Distortion

Po
w

er
 C

on
su

m
pt

io
n(

m
W

)
No sensor selection
Equal power with 20 sensor selected
Equal power with 40 sensor selected
Equal power with 60 sensor selected
Equal power with 80 sensor selected
Sensor selection under optimal power allocation

Power Gain =25 mW

Power Gain =15 mW

Fig. 13 Power efficiency with different sensor selection schemes

G =
m∑

i=1

ai (σ
2
θ + σ 2

i) + λ

[
m∑

i=1

ξ2
i /σ 2

i

σ 2
i ai gi + ξ2

i

− C

]
−

m∑
i=1

μi ai . (49)

Implementing the KKT conditions, the optimal power allocation scheme for power
efficiency is derived as

ai = ξ2
i

σ 2
i gi

⎜√
λgi

ξ2
i (σ 2

θ + σ 2
i)

− 1

⎝+
, (50)

where λ is

∈
λ =

∑K ′′
i=1

√
ξ2

i (σ 2
θ +σ 2

i)

gi σ
4
i∑K ′′

i=1
1
σ 2

i
− 1

D

. (51)

The number of active sensors K ′′ can be solved if we substitute λ back to (50).
Now the optimal strategy is that we will active the corresponding sensor if sensor
index 1 ⊂ i ⊂ K ′′, while we will switch off the sensor for all i > K ′′. Refer to the
Appendix for the details about the solution of (50) which is similar to the derivation
of (45).

Figure 13 illustrates the power efficiency with different sensor selection schemes.
We use the same simulation setup as Sect. 3.2. We conclude that the sensor selection
scheme under optimal power allocation always comes with the minimum power
consumption. When the voltage estimation distortion is required as 0.01, the optimal

124 Z. Li et al.

power allocation scheme saves nearly 25 mW compared to the no-sensor-selection
scheme; when the estimation distortion is set to 0.02, the optimal power allocation
scheme saves more than 50 % of the power consumption (15 mW). Besides, we can
observe that if proper voltage sensors are selected, the sensor selection scheme under
equal power allocation could approach the performance of optimal power allocation.
This conclusion further verifies the advantage of our proposed opportunistic sensor
selection scheme.

4 Conclusion

In this chapter, the energy efficiency issue of WSNs from the physical layer design
perspective is approached in two views: the capacity optimization of the IR-UWB
WSN with energy constraints and coexistence of a NB communications system—
IEEE 802.11n; an optimized sensor selection scheme to improve the estimation
accuracy and power efficiency. A holistic investigation on the current literature is
also conducted.

Appendix

Derivation of (36)

When the power approaches infinity, D−1
orth = ∑m

i=1
1
σ 2

i
is readily derived. In term of

the coherent multiple access case, as the power approaches infinity,

D−1
cmac =

(∑m
i=1

∈
ai gi

)2

∑m
i=1 σ 2

i ai gi + ξ2

≈
(∑m

i=1
∈

ai gi
)2

∑m
i=1 σ 2

i ai gi

⊂
m∑

i=1

ai gi

σ 2
i ai gi

=
m∑

i=1

1

σ 2
i

,

where the unequal step follows the Cauchy-Schwarz inequality. So the Dcmac could
not approach D0 unless the strict Cauchy-Schwarz equality condition σ 2

i ai gi =
t
∈

ai gi is satisfied for all i, where t is a constant. The proof is complete.

4 Physical Layer Communications in Wireless Sensor Networks 125

Derivation of (45)

Note that, if λ = 0, the first KKT condition implies that μi < 0 for all sensor i.
This will contradict with the fifth KKT condition. Thus, we must have λ > 0, which
means

m∑
i=1

ai (σ
2
θ + σ 2

i) − Ptot = 0. (52)

Transforming the first KKT condition, we have

ai = ξi

σ 2
i gi

⎜√
gi

λ(σ 2
θ + σ 2

i) − μi
− ξi

⎝
. (53)

For those sensors to be activated, ai should satisfy ai > 0. Then the third KKT
condition tells us that if ai > 0, then μi = 0 holds. Thus the proof of (45) is complete.

To determine λ, let us assume that the sensors are ordered such that

η1 ◦ η2 . . . ◦ ηm . (54)

Clearly, this ranking favours the sensors with better channel conditions and higher
observation quality.

Combining the first and second KKT conditions, we could get

∈
λ =

∑K ′
i=1

√
ξ2

i (σ 2
θ +σ 2

i)

gi σ
4
i

Ptot + ∑K ′
i=1

ξ2
i (σ 2

θ +σ 2
i)

gi σ
2
i

. (55)

The number of active sensor number K ′ (which has been shown to be unique [35])
can be solved if we substitute λ back to (45).

References

1. G. Bansal, M.J. Hossain, V.K. Bhargava, Optimal and suboptimal power allocation schemes
for OFDM-based cognitive radio systems. IEEE Trans. Wirel. Commun. 7(11), 4710–4718
(2008)

2. J. Bellorado, S.S. Ghassemzadeh, L.J. Greenstein, T. Sveinsson, V. Tarokh, Coexistence of ultra-
wideband systems with IEEE-802.11a wireless LANs, in Proceedings of GLOBECOM ’03,
p. 410 (2003)

3. M.D. Benedetto, G. Giancola, Understanding Ultra Wide Band Radio Fundamentals (Prentice
Hall, 2004)

4. F. Berens, P. Jung, Wireless ultra-wide-band (UWB) communications: technology, regulation,
standardization, and application areas. 2010 IEEE ICUWB, vol. 1, pp. 12–19 (2010)

126 Z. Li et al.

5. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2003)

6. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

7. J. Cai, K.H. Liu, X. Shen, J.W. Mark, T.D. Todd, Power allocation and scheduling for ultra-
wideband wireless networks. IEEE Trans. Veh. Technol. 57(2), 1103–1112 (2008)

8. M. Chiani, A. Giorgetti, Coexistence between UWB and narrow-band wireless communication
systems (invited Paper). Proc. IEEE. 97(2), 231–254 (2009)

9. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Hoboken, 2006)
10. S. Cui, J. Xiao, A. Goldsmith, Z. Luo, H. Poor, Estimation diversity and energy efficiency in

distributed sensing. IEEE Trans. Sig. Process. 55(9), 4683–4695 (2007)
11. Electronic Communications Committee, ECC Report 64: the protection requirements of radio

communications systems below 10.6 GHz from generic UWB applications, pp. 5–7, 24–27,
February 2005

12. Federal Communication Commission, Revision of part 15 of the commission’s rules regarding
ultra-wideband transmission systems, FIRST REPORT AND ORDER. ET Docket 98–153,
FCC 02–48, 14 February 2002, pp. 2–94 (2002)

13. M. Gastpar, M. Vetterli, Source-Channel Communication in Sensor Networks, vol. 2634
(Springer, New York, 2003), pp. 162–177

14. A. Giorgetti, M. Chiani, M.Z. Win, The effect of narrowband interference on wideband wireless
communication systems. IEEE Trans. Commun. 53(12), 2139–2149 (2005)

15. R. Giuliano, F. Mazzenga, On the coexistence of power-controlled ultrawide-band systems
with UMTS, GPS, DCS1800, and fixed wireless systems. IEEE Trans. Veh. Technol. 54(1),
62–80 (2005)

16. A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)
17. M. Hamalainen, V. Hovinen, R. Tesi, et al., On the UWB system coexistence with GSM900,

UMTS/WCDMA, and GPS. IEEE J. Sel. Areas Commun. 2(9), 1712–1721 (2002)
18. A. Huseyin, C. Zhining, D. Benedetto, Ultra Wideband Wireless Communication (Wiley-

Interscience, Hoboken, 2006), pp. 10–11
19. IEEE 802.11n D.7.0, Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications (2008), p. 245
20. S. Joshi, S. Boyd, Sensor selection via convex optimization. IEEE Trans. Sig. Process. 57(2),

451–462 (2009)
21. C.X. Juan, Q. Sheng, Spectrum analysis of Ultra-wide band signal based on Gaussian pulse,

Global Mobile Congress (GMC), pp. 1–4 (2010)
22. S. Kandeepan, G. Baldini, R. Piesiewicz, Preliminary experimental results on the spectrum

sensing performances for UWB-cognitive radios for detecting, in IEEE 802.11n Systems 6th
International Symposium on Wireless Communication Systems (ISWCS), pp. 111–115 (2009)

23. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Cambridge Uni-
versity Press, Cambridge, 1993)

24. K. Kincaid, S. Padula, D-optimal designs for sensor and actuator locations. Comput. Oper. Res.
29(6), 701–713 (2002)

25. Z. Li, Q. Liang, Capacity optimization of ultra-wide band system under the coexistence with
IEEE 802.11n, in 11th International Symposium on Communications and Information Tech-
nologies (ISCIT), pp. 553–557 (2011)

26. Z. Li, W. Zou, B. Li, Z. Zhou, X. Huang, Analysis on coexistence of ultra wideband with
OFDM-based communication systems. IEEE Trans. Electromagn. Compat. 53(3), 823–830
(2011)

27. J.G. Proakis, Digital Communication, 4th edn. (McGraw-Hill, New York, 2001)
28. A. Roca, Implementation of a WiMAX Simulator in Simulink. Diplomarbeit, Vienna, February

2007
29. H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A.B. Noy, T. Brown, T.L. Poota, A survey of

sensor selection schemes in wireless sensor networks, in Proceedings of SPIE (2007)

4 Physical Layer Communications in Wireless Sensor Networks 127

30. K. Shih, Y. Chen, C. Chiang, B. Liu, A distributed active sensor selection scheme for wireless
sensor networks, in Proceedings of the IEEE Symposium on Computers and Communications
(2006)

31. C.W. Tan, S. Friedland, S.H. Low, Spectrum management in multiuser cognitive wireless
networks: optimality and algorithm. IEEE J. Sel. Areas Commun. 29(2), 421–430 (2011)

32. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press,
Cambridge, 2004)

33. H. Wang, K. Yao, G. Pottie, D. Estrin, Entropy-based sensor selection heuristic for target
localization, in Proceedings of the Third International Symposium on Information Processing
in Sensor Networks (2004)

34. S. Wood, R. Aiello, Essentials of UWB (Cambridge University Press, Cambridge, 2008)
35. J. Xiao, S. Cui, Z. Luo, A. Goldsmith, Power scheduling of universal decentralized estimation

in sensor networks. IEEE Trans. Sig. Process. 54(2), 413–422 (2006)
36. J. Xiao, S. Cui, Z. Luo, A. Goldsmith, Linear coherent decentralized estimation. IEEE Trans.

Sig. Process. 56(2), 757–770 (2008)
37. L. Yang, G.B. Giannakis, Ultra-wideband communications: an idea whose time has come.

IEEE Sig. Process. Mag. 21(6), 26–54 (2004)
38. R. Yang, K.S. Kwak, Z. Zhou, Distributed water-filling algorithm for direct-sequence ultra

wideband cognitive radio network with limit on aggregate power emission. IET Commun.
4(12), 1404–1414 (2010)

39. P. Yi, A. Iwayemi, C. Zhou, Developing Zigbee deployment guideline under WiFi interference
for smart grid applications. IEEE Trans. Smart Grid 2(1), 110–120 (2011)

Chapter 5
Network Coding Techniques for Wireless
and Sensor Networks

Pouya Ostovari, Jie Wu and Abdallah Khreishah

Abstract Network coding is a technique where relay nodes mix packets using
mathematical operations, which can increase the throughput. Network coding was
first proposed for wired networks to solve the bottleneck in a single multicast session
problem and to increase the throughput. However, the broadcast nature of wire-
less networks and the diversity of the links make network coding more attractive in
wireless networks. Network coding can be classified as either inter or intra-session.
Inter-session network coding allows the packets from different sessions (sources) to
be mixed to increase the throughput. In contrast, intra-session network coding, which
can be used to address the packet loss problem, uses the diversity of the wireless links
and mixes packets from the same sessions. In this chapter, we survey the recent works
on network coding in both general wireless networks and wireless sensor networks.
We present various network coding techniques, their assumptions, applications, as
well as an overview of the proposed methods.

1 Introduction

As the demand for communication services is growing, wireless solutions become
more and more important. Due to their ease of deployment, wireless networks play
a major role in our lives. They are also ideal to provide a convenient solution to the

P. Ostovari · J. Wu (B)

Department of Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA
e-mail: jiewu@temple.edu

P. Ostovari
e-mail: tuc71330@temple.edu

A. Khreishah
Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA
e-mail: abdallah.khreishah@njit.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 129
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_5,
© Springer-Verlag Berlin Heidelberg 2014

130 P. Ostovari et al.

(a) (b)

Fig. 1 Binary network coding

last mile problem [1, 2]. Wireless networks can be cellular networks that are used
for mobile phones, or Wi-Fi networks that provide an Internet connection. Different
multihop wireless network settings are used. Mesh networks can be used to provide
Internet access and file sharing [3]. Wireless sensor networks (WSNs) [4] can be
used for military applications, such as enemy detection in battlefields. They can also
be used for disaster detection and monitoring applications.

Despite the diverse types of wireless networks and their applications, the common
features of wireless networks create opportunities to be exploited and challenges to
be addressed. These common features include the broadcast nature of wireless links,
the interference among the links, the diversity of the links, and the lossy behavior
of the links [5]. Also, the correlation between the links may affect the performance of
the wireless communication protocols.

Inter-session Network Coding. The broadcast nature of wireless networks is
considered a challenge, as it creates interference between the links and produces
unnecessary multiple copies of the same packet. However, if we allow the intermedi-
ate wireless nodes to code the packets, the broadcast nature becomes an opportunity.
Consider the example in Fig. 1a, where nodes s1 and s2 want to exchange their own
packets, p1 and p2, respectively. Assuming that these nodes are out of range of each
other, this communication incurs four transmissions; two transmissions for sending
the packets to the relay node, and two transmissions for relaying the packets. How-
ever, the relay node can simply XOR the packets and send the coded packet p1 ∈ p2
[6], which is shown in Fig. 1b. The nodes s1 and s2 can retrieve each others’ packets
by XOR-ing p1 ∈ p2 with their own packets, p1 and p2, respectively. As a result,
the number of transmissions has been reduced to three by using binary network
coding. Inter-session network coding can reduce the number of transmissions, by
allowing packets from different sessions (sources) to be coded together. By reducing
the number of required transmissions, network coding increases the throughput and
decreases the interference between the links in wireless networks. In the rest of the
chapter, we use terms session and flow interchangeably.

Intra-Session Network Coding. Another important application of network cod-
ing is to provide reliability in wireless networks. The traditional way to provide relia-
bility for both wired and wireless networks is to use feedback messages to report the
received (or lost) packets. By using feedback messages, the sender node will know
which packets need to be sent again. However, these feedback messages consume
bandwidth. Consider the example in Fig. 2; the source node wants to deliver packets
p1 and p2 to the node d. The reliability of the link s1 ⊂ d is equal to 2

3 . In the case

5 Network Coding Techniques for Wireless and Sensor Networks 131

Fig. 2 Application of net-
work coding to provide relia-
bility

2/3

+

+

2 +Source
packets

Random
linear
coding

that the source node sends three coded packets, p1 + p2, p1 +2p2, and 2p1 + p2, on
average, the destination node will receive two of the three coded packets. Therefore,
the destination nodes will be able to retrieve the packets p1 and p2. However, with-
out network coding, we need to use a feedback mechanism or else the source node
needs to transmit each packet multiple times. As a result, communication schemes
with network coding can provide reliability with a fewer transmissions than schemes
without network coding.

Coding the packets from the same session (source) together is called intra-session
network coding, which exploits the diversity of the links. In intra-session network
coding, the packets from the same source are coded together (usually linearly), which
makes the importance of the packets the same. Therefore, when k packets are coded
together, a relay node does not need to know exactly which packets are received by
the destination node; it is thereby enough to successfully deliver k coded packets out
of the transmitted coded packets.

Opportunistic Routing. An efficient way to address packet loss in wireless net-
works without network coding is to use opportunistic routing approaches [7]. When
a node broadcasts a packet, it is probable that the next-hop does not receive the
packet. However, because of the broadcast nature of the wireless medium, and the
diversity among the links, a neighbor of the sender can receive and forward the packet
as the next-hop with high probability. In opportunistic routing, there is no specific
path from the source to the destination, and any node that overhears the packet can
relay it. Take Fig. 3 as an example, in which node s wants to send 4 packets to the
destination d. The delivery rate of the links are shown beside the links. Assume that
each relay node received the packets shown beside the nodes. If we use traditional
shortest path routing, the route from s to d will be fixed. Assuming that the chosen
route is s ⊂ r1 ⊂ d, the source node needs to retransmit the packets p3 and p4.
On the other hand, if we allow the other nodes that received the packets p3 and p4
to forward them, the source node will not need to retransmit any packet.

The main challenge in opportunistic routing is coordinating the intermediate
nodes. To prevent redundant transmissions, the intermediate nodes need to send
feedback or listen to the other nodes’ transmissions to find out if there is a neighbor
that has received the transmitted packet. For this purpose, the intermediate nodes
need to be able to overhear each other, which might not be possible, as shown in
Fig. 3. Network coding can solve this problem [8]. To this purpose, the source node
divides the packets to be sent in batches of k packets. The source keeps sending

132 P. Ostovari et al.

Fig. 3 Opportunistic
routing

1

1

1

0.5

0.5

0.5

coded packets of the form
∑k

i=1 αi pi , where αi is a random coefficient chosen over
a finite field. When an intermediate node receives a coded packet, the node checks
if the coded packet is linearly independent to the previously received packets. If so,
the node will add the packet to its buffer. Each intermediate node generates linear
combinations of the packets in its buffer and sends the coded packets. The desti-
nation node can decode all of the packets of the batch when it receives k linearly
independent packets. In this case, the destination node sends feedback to the source
to stop sending the packets.

Cross-Layer Design. Using network coding methods in wireless protocols incurs
new challenges. For example, previous routing protocols are unaware of network cod-
ing. However, the routing protocol affects the coding opportunity. If two flows pass
through relay nodes that are far from each other, there will be no coding opportu-
nity. On the other hand, flows that are close to each other result in more interference.
Therefore, to increase the efficiency of the proposed protocols for wireless networks,
cross-layer approaches are needed. In cross-layer approaches, the protocols of dif-
ferent layers are independent. However, they communicate with each other to make
decisions and perform more efficiently.

Wireless Sensor Networks. Sensor networks differ from the general wireless net-
works in performance metrics, traffic patterns, and their amount of available memory
and processing resources [9]. These differences make some of the network coding
approaches proposed for general wireless networks inappropriate for WSNs. For
example, in some of the network coding methods, the nodes should listen to their
neighbors and store the overheard messages in their buffers. However, in sensor
networks, because of the memory limitation, sensor nodes cannot cache overheard
packets that might not be useful [10]. WSNs’ protocols must be simple and easily
implemented. Moreover, the links’ quality between the sensor nodes vary over the
time, and nodes can fail or disconnect. Therefore, the dynamic environment should be
considered, and the algorithms should be adaptive to reflect this dynamic nature [10].

The rest of this chapter is organized as follows. We provide our classification
methodology in Sect. 2. In Sect. 3, we describe some of the well-known proposed
methods for unicast application, and we categorize them. A discussion about multi-
cast and broadcast network coding approaches is provided in Sects. 4 and 5, respec-
tively. Section 6 concludes the chapter. Note that fountain codes (also known as

5 Network Coding Techniques for Wireless and Sensor Networks 133

rateless erasure codes), such as online codes [11], LT codes [12], and raptor codes
[13], are another type of coding. However, these codes are beyond the scope of this
chapter.

2 Classification of Network Coding Approaches

From one perspective, network coding can be classified into XOR (binary) coding
and random linear (RL) coding. In binary coding, XOR operations are performed
between the packets. Take Fig. 4a as an example; we have two flows: one of them
between nodes s1 and d1 and the other between nodes s2 and d2. Without network
coding, the relay node needs two transmissions to send the packets, one for each
flow. However, the relay node r can exploit the broadcast nature of its output links
and reduce the number of transmissions to one by XOR-ing the two packets. The
nodes d1 and d2 decode the coded packet by XOR-ing p1 ∈ p2 with the overheard
packets, p2 and p1, respectively.

In random linear coding, the relay nodes create coded packets of the form∑k
i=1 αi pi , where αi is a random coefficient chosen over a finite field, and pi ’s

can be coded or uncoded packets. Assume that the delivery rate of all of the links in
Fig. 4b is 0.5. Each source node generates four random linearly coded packets and
sends them. Two linearly independent packets from each session are received by the
relay node r . Then, the relay node sends four random coded packets for each ses-
sion (Fig. 4c). Each destination on average receives two linearly independent coded
packets from the relay node, and is able to decode them. The decoding process is
similar to solving a system of linear equations. Note that in the figures, we just show
the received coded packets on the lossy links.

From another view, we can classify network coding as local or global coding. In
local network coding, a relay node sends the coded packets such that the next hop
nodes are able to decode the coded packets. Then, the next hop nodes decode the

(a) (b) (c)

Fig. 4 XOR and random linear coding

134 P. Ostovari et al.

Network
coding

Network
coding

Local Global

RLXOR RLXOR

Inter
session

Intra
session

(a) (b)

Fig. 5 Classification of network coding approaches

coded packets and use the same policy to code the packets. Therefore, in a multi-hop
transmission, hop-by-hop coding and decoding is performed. In contrast, in global
network coding, the intermediate nodes do not perform decoding; they just code the
coded packets again. At the end, when the destination nodes receive enough packets,
they will be able to decode them. Usually, local network coding protocols use XOR
coding, and global protocols perform random linear coding. Figure 5 shows our
classification of network coding methods.

As described in the introduction, network coding can be inter-session or intra-
session. Inter-session network coding allows the relay nodes to code packets from the
same session (source) to solve the bottleneck problem, and to reduce the number of
transmissions (Fig. 4a). On the other hand, in intra-session network coding, the relay
nodes code packets from the same session to make the importance of the packets
the same. Intra-session network coding is a natural way to address the packet loss
problem in wireless networks (Fig. 4b and c). Also, inter and intra-session coding
can be combined together to increase the throughput. Instead of transmitting 4 coded
packets over each session, the relay node can mix the two sessions together and
send 4 coded packets over them. In this way, the number of transmissions by the
relay node is reduced from 8 to 4. Each destination node receives two coded packets
from the relay node and two from a source node. Using these 4 coded packets, each
destination node can decode the packets.

3 Network Coding Methods for Unicast Applications

In this section, we describe some of the proposed network coding approaches for uni-
cast application. We categorize the methods based on their methodologies, which are
inter or intra-session network coding. Then, we compare the methods and summarize
their advantages and drawbacks in the following sections.

5 Network Coding Techniques for Wireless and Sensor Networks 135

3.1 Inter-session Network Coding

COPE. A practical forwarding architecture, called COPE, is proposed in [6] which
increases the throughput of wireless networks. This paper addresses the case of
unicast traffic: dynamic and potentially bursty flows. COPE incorporates three main
techniques, opportunistic listening, opportunistic coding, and learning neighbors’
states. In COPE, the nodes snoop on all communications and store the overheard
packets for a limited period of time. The nodes broadcast reception reports to tell
their neighbors which packets they have in their buffers. On the other hand, in the
network coding phase, a node may have multiple choices for coding. However, the
goal is to maximize the number of packets delivered in a single transmission, while
making sure that all next-hops are able to decode the coded packet, so that they retrieve
their respective packets. When it comes to learning a neighbor’s state, COPE does
not rely solely on the reception reports, since they may get lost or arrive late. For
this reason, the delivery rate of the links are computed and broadcasted periodically.
The authors show that in the absence of opportunistic listening, COPE’s maximum
coding gain is 2.

A forwarder node in COPE works as follows. First, it selects a packet at the head
of the forwarding queue. Then, it sequentially selects another packet in the queue,
and computes the decodability probability of the packets at the next-hops when
the packets are coded together. If the decodability probabilities at all of the next-hop
nodes are greater than a given threshold, the relay node will code the packets together.
Assume that in Fig. 6, the next-hops for the packets from nodes s1, s2, and s3 are
nodes d1, d2, and d3, respectively. Also, assume that the delivery rate of the shown
links is 1, but the overhearing probability between the s nodes and d nodes is 0.8. The
node r has received packets p1, p2, and p3 from nodes s1, s2, and s3, respectively.
First, the relay node selects packet p1. Then, it computes the decodability probability
of the coded packet p1 ∈ p2 at the respective next-hops of packets p1 and p2, d1 and
d2. This probability is equal to 0.8. Assuming that the coding threshold is equal to
0.8 (this is the default value in [6]), COPE allows these packets to be coded together.
Then, the relay node checks the decodability probability when p3 is coded with
p1 ∈ p2. For all next-hops, this probability is equal to 0.64, which is less than the
threshold. Thus, p3 cannot be coded with the packet p1 ∈ p2.

With the current sensor nodes’ technology, COPE might not be much appropriate
for sensor networks. First, the nodes in COPE should snoop on all communications
and store the overheard packets in their buffer, which is not practical in WSNs,
because of the power and memory limitations. Second, the reception reports of the
packets and the delivery rate of the links should be broadcasted in COPE periodically;
this results in large amounts of power consumption in WSNs.

Centralized Approach. A network coding-aware routing method is proposed in
[14] to achieve optimal throughput. In contrast with COPE, in which the routing
and coding algorithms are separate, the proposed mechanism in [14] is a cross-layer
approach. The authors argue that when the paths of two flows are far apart (the flows
pass through nodes that are far from each other), the interference between them

136 P. Ostovari et al.

Fig. 6 COPE approach

r

is minimized. On the other hand, choosing close flows paths increases the coding
opportunities. Therefore, a trade-off between coding opportunity and conflict should
be performed. A conflict graph is used in this work to model the interference between
the links, and linear programming is used to find the optimal solution for the joint
routing and network coding problem. The main drawback of this work is that the
authors do not consider all of the possible overhearing cases between the nodes. In the
same way as the COPE approach, this approach is not suitable for sensor networks.

Distributed Approach. The problem of energy efficient opportunistic network
coding for multiple unicast flows is addressed in [15]. The proposed inter-sessions
network coding method, which is referred to as COPR, decomposes multiple unicast
sessions into a superposition of multicast and unicast sessions, with coding within
each session (note that these sessions are artificial, and they differ from the origi-
nal sessions). The network is modeled as a directed hypergraph, and the achievable
rate region of one-hop XOR network coding is determined under a primary interfer-
ence model. To simplify the network operation, the authors propose a back pressure
algorithm for dynamic scheduling that does not optimize overheard flows.

Network coding opportunities are not fully exploited in TCP flows over wireless
network coding, due to the bursty behavior of the flows. Rate mismatches between
the flows reduce the coding opportunities since the intermediate nodes may not have
enough packets from different flows to code together. [16] addresses this problem by
proposing coding-aware queue management for unicast flows. The authors formu-
late congestion control as a network utility maximization problem and solve it via a
distributed scheme. Using the optimal solution, a network coding-aware queue man-
agement scheme at intermediate nodes (NCAQM) is proposed, which stores coded
packets and drops packets based on network coding and congestion information.
NCAQM does not change the TCP or MAC protocols, which makes the approach
practical. The bursty flows are not usual in WSNs, so this method might not be very
useful for their current applications.

Analysis. A formal analysis on the performance of COPE is provided in [17]. The
authors use the encoding number as the performance measure. The encoding number
is defined as the number of packets that can be coded together at a relay node in each
transmission, and an upper bound on the encoding number at a single relay node is
proposed. It is shown that, in the case of overhearing, the upper bounds of 2D and 3D
networks are equal to 5 and 6, respectively. The authors also propose a methodology

5 Network Coding Techniques for Wireless and Sensor Networks 137

for computing the average coding number under a general class of a random access
link-scheduling mechanism. They extend their analysis to general multi-hop wireless
networks, and they formally prove the upper bound of the throughput gain for the
practical XOR coding scheme.

Lossy Links. The CLONE approach, which is a loss-aware network coding
method, is proposed for unicast sessions in [18]. The relay nodes use local XOR
coding to code the packets from different sessions. However, in contrast with the
relay nodes in COPE, which try to send the minimum number of transmissions, in
order to achieve higher throughput, the relay nodes in CLONE use redundancy to
increase the probability of delivering the packets. The idea can be motivated by the
example in Fig. 1b. Assume that the links from nodes s1 and s2 to the relay node
are loss free, and the loss probability of the links from the relay node to the source
nodes is P ◦. Using COPE, the number of transmissions is equal to 3, and the num-
ber of received packets is equal to (1 − P ◦). Therefore, the throughput is equal to
(1− P ◦)/3. On the other hand, if the relay node transmits the coded packet twice, the
throughput will be equal to (1− P ◦2)/4; thus, for P ◦ = 0.5, the throughput of the first
and the second schemes are equal to 0.167 and 0.1875, respectively. In CLONE, the
relay nodes construct redundant coded packets such that the delivery probabilities
of the original packets to their next-hop achieve a given threshold. CLONE is not
deployable in practice (especially in WSNs) due to its computational complexity. In
addition, intra-session network coding provides a more efficient way to address the
lossy behavior of the links, which is discussed in the following section.

Flow-Based Approach. The authors in [19, 20] use inter-session network coding
to increase the throughput of multi unicast flows, while maintaining fairness between
the flows. The optimal solution for lossy 2-hop relay networks is #P-complete when
the packets are considered separately. For this reason, in this work, the authors
consider flows instead of individual packets. Using this policy, they optimize the
overhearing and characterize the capacity region in the form of linear equations
when XOR network coding is used. Linear programming is used in this work to
compute the capacity region.

SenseCode. The authors in [9] use network coding to provide a reliable and
energy-efficient data gathering approach in WSNs. It is assumed that the sensing
task is periodic, and during each round all of the nodes should send their sensed
data to a sink node. They argue that the traditional tree-based methods, in which
each intermediate node transmits the received packets from its children nodes to its
parent, cannot provide reliability. The reason is that in the case of node or link failures,
the data will not be able to reach the sink node. In order to solve this problem, in
SenseCode, the sensed data from each sensor is transmitted through different paths.
In this method, each node stores all of the messages it has generated by itself, and the
packets it has received from its children nodes during the current round, in a queue.
The node also stores the overheard packets to a separate queue. When a node has
a new message to send to the sink node, the node creates a packet and marks it as
uncodabe. Then, the message will be transmitted to the parent node. Moreover, the
node sends R −1 linear combinations of the packets from its queues and marks them
as codable. Here, R is a configurable redundancy factor. Also, when a node receives

138 P. Ostovari et al.

a packet from its child node, and it is marked as uncodable, the node will relay the
packet. If the packet is marked as codable, the node sends a linear combination of the
received packet and the packets in its queues. In this way, some of the packets will
be received by the sink node as uncoded packets, which provides reliability even in
the case of high link loss rates.

Physical Layer Coding. A physical layer network coding scheme (PNC) is pro-
posed in [21] for linear networks. In contrast to traditional network coding schemes,
where coding is performed by the relay nodes on digital bits, PNC makes use of
the additive nature of simultaneously-arriving electromagnetic waves for network
coding. Take the example in Fig. 1, in which nodes s1 and s2 want to exchange
their packets through relay node r . In binary network coding, the source nodes send
their packets in different time slots, and the relay node XORs the packets after
receiving them. In contrast, in PNC, the source nodes transmit their packets simul-
taneously, so the relay node receives a combined signal. Assume that the signals
sent by nodes s1 and s2 are a1 cos(ωt) + b1 sin(ωt) and a2 cos(ωt) + b2 sin(ωt),
respectively. Then, the signal received by the relay node will be in the form of
(a1 +a2) cos(ωt)+ (b1 +b2) sin(ωt). The relay node maps the received signal, such
that when the nodes s1 and s2 receive the mapped signal, they will be able to extract
the signal sent by the other source node. Physical layer coding can be very useful
and efficient for WSNs [22]. In these networks, the sensor nodes are placed in a line
to monitor linear structures like roads, or long pipelines carrying oil, gas and water
resources, etc.

3.2 Intra-session Network Coding

In the previous section, we reviewed some of the inter-session network coding
approaches that have been proposed for lossy environments. However, the natural
way to address the loss problem is to use intra-session network coding, which makes
the importance of the transmitted packets the same. In this section, we will review
some of these approaches.

MORE. An opportunistic routing method, called MORE, is proposed in [8]. This
approach, which uses random linear network coding, can be used for unicast and
multicast applications. In contrast with traditional routing methods, in which the
path from the source to the destination node is predetermined, opportunistic routing
allows any node that overhears the transmission and is closer to the destination node
to participate in forwarding the packet [7]. However, opportunistic routing faces two
challenges. Multiple nodes may overhear a packet and forward the packet. Also, the
MAC protocol needs to be modified. MORE uses random linear network coding to
address these problems.

Consider Figure 7. Traditional routing sends the packet along path s ⊂ r1 ⊂
r2 ⊂ d. However, there is a chance that node r2, which is closer to the destination
node, will receive some of the packets. For example, assume that the source (s)
sends two packets, p1 and p2. Both of them are received by the node r1, and the

5 Network Coding Techniques for Wireless and Sensor Networks 139

Fig. 7 Opportunistic routing

1 1

0.5

0.5

node r2 received the packet p1. Therefore, node r1 does not need to forward packet
p1 since a node closer to the destination node (r2) can forward the packet. In order
to prevent this unnecessary transmission, the nodes need to be coordinated, which is
hard for large networks. To solve this problem, node r1 can forward a random linear
combination of the packet, c1 p1 + c2 p2.

MORE works as follows. The source node breaks up the file into batches of k
uncoded packets, called native packets. The source creates a random linear combi-
nation of the native packets in the current batch, and broadcasts the coded packet. A
coded packet

∑k
i=1 αi pi , where αi is a random coefficient and pi is the native packet

of the current batch. The source node attaches a header to each packet, which contains
the coefficients and the list of forwarder nodes. MORE uses ETX (expected number
of transmissions) to compute the forwarder list. The source node includes the nodes
which are closer to the destination node (in term of the ETX metric) in the forwarder
list. When a forwarder node receives a packet, the node checks if the packet contains
new information. In other words, the node checks whether the new received packet is
linearly independent from the received packet in the node’s buffer, in which case it is
called an innovative packet. Non-innovative packets will be ignored. Otherwise, the
node generates a linear combination of the received coded packets from the current
batch and broadcasts it. When the destination node receives k linearly independent
packets, it can decode the whole batch.

The remaining question in MORE is: how many packets does each forwarding
node need to send when the node receives an innovative packet from an upstream
node? The authors use the ETX metric to calculate the number of transmissions that
should be done at a forwarder node upon receiving an innovative packet from an
upstream node. They call this expected value TX_credit (transmission credit).

MORE is not suitable for WSNs. The reason is that in MORE, every node can be
a potential forwarder to transmit the packets from the source node to the destination.
Therefore, the nodes should remain in active mode to participate in opportunistic
routing, which increases the energy consumption of the sensor nodes.

Extensions over MORE. MORE does not consider the possible congestion
caused by multiple forwarders that have new packets to transmit. The problem arises
when a large number of intermediate forwarders are involved in the unicast. A dis-
tributed optimization framework, called OMNC, is proposed in [23]; OMNC jointly
optimizes rate control and multi-path routing. OMNC avoids network congestion
through its rate control mechanism. Instead of determining the number of pack-
ets, OMNC assigns the encoding and broadcast rate to each node in a decentralized

140 P. Ostovari et al.

manner, and tries to optimize the bandwidth usage and congestion avoidance. OMNC
is designed for long-lived unicast sessions in lossy wireless networks.

The authors in [24] address the problem of resolving conflicts of interest among
multiple competing flows with wireless multi-path network coding. They use game
theory to optimize resource allocation for network coding-based unicast protocols. In
the proposed framework, called Dice, the problem is modeled as a network game, in
which players share the bandwidth resource through negotiation or competition. For
both cases, the players, which are the end users (destinations), perform a localized
optimization of two subproblems: multi-path opportunistic routing, and the broadcast
and coding rate allocation among competing players.

Dividing the packets into different batches (segments) and performing coding
between the packets from the same segments is referred to as segmented network
coding, which reduces the complexity of network coding. In MORE, the source
node transmits only one segment at any time while waiting for acknowledgment
from the destination node. This stop and wait policy degrades performance, as it
leads to wasted wireless bandwidth. Also, the existence of just a single segment
in the network may not be sufficient to saturate its delay-bandwidth product. This
problem is addressed in [25] by allowing the coexistence of different segments. In
the proposed method, called CodeOR, the source node transmits W (window size)
concurrent segments. When the source node receives end-to-end feedback from the
destination node, the node adds a new segment to the current window. In addition,
each downstream node sends one-hop feedback after receiving a sufficient number
of coded packets. The authors propose a heuristic to calculate the threshold for the
sufficient packets at a given node. When a relay node (including the source node)
receives an acknowledgment from all of its downstream nodes, it starts sending the
packets of the next segment. The authors also adopt a similar algorithm to TCP Vegas
[26], which uses increased queueing delays as congestion signals.

The authors in [27] propose an optimization framework for opportunistic routing
based on network utility maximization (NUM), and they derive optimal scheduling,
routing, flow control, and rate adaptation schemes. In this work, the links’ rate con-
straints are defined per broadcast region instead of unicast links. The authors prove
the optimality of their approach, and derive a primal-dual algorithm that is the basis
of their practical protocol.

CCACK. The performance of MORE depends on the accuracy of the estimated
loss rates. Loss rates change over time, but to reduce the overhead of calculating and
collecting loss rates in MORE, the loss rates are collected only before the source
node starts the transmission of the packets. The CCACK approach [28] solves this
problem. In CCACK, nodes use cumulative coded acknowledgments, which allow
nodes to acknowledge the coded received packets to their upstream nodes, using a
single compressed feedback message, with almost zero cost. For this purpose, each
node calculates the coefficients’ null-space of the received coded packets, and the
node adds the null-space to the forwarding messages. The null-space of a set of
vectors V is a vector z, such that the inner products between z and each vector in
V is zero. When an upstream node overhears a packet from a downstream node, the
upstream node multiplies the coefficient of packets in its buffer with the received

5 Network Coding Techniques for Wireless and Sensor Networks 141

Fig. 8 CCACK approach

null-space. A nonzero result means that the packet in the buffer is innovative to the
packet in the downstream node’s buffer. CCACK is not applicable to WSNs, for the
same reason that MORE is not applicable.

Let us consider Fig. 8. The source node s has three packets in its buffer. The node
constructs three coded packets and broadcasts them. Assume that all nodes need to
decode all of the packets. Node r1 has only two packets, so it is not able to decode
the received packets. The node r1 will send a null-space of the received coefficient
vectors, which can be any vector of form (−5y, 7y, y). Suppose that z is chosen
as (−5, 7, 1). Since (−5, 7, 1).(1, 1, 1) = 3 ∀= 0, node r3 must transmit the packet
(1, 1, 1) to node r1. On the other hand, (−5, 7, 1).(2, 1, 3) = 0, so node r2 does not
have any innovative packet for node r1.

The use of null-space in opportunistic routing suffers from a problem called
the collective space problem [28]. Suppose that nodes r3, r2, and r1 are sorted in
increasing order of their distance from the destination node. Nodes r2 and r3 col-
lectively cover all of the three sent packets from the source node. As a result, the
node r1, which is farther from the destination node, does not need to transmit any
more packets. However, the inner product of the packet (3, 2, 1) in the buffer of r1
and the null-space of r2 and r3 are not zero. The reason is that r1 does not consider
the collective covered space by nodes r2 and r3. In order to solve this problem, the
authors in [28] use separate buffers at each node i for the coefficient of the received
packets from upstream nodes (Bu), the coefficient of sent coded packets (Bw), and
the received innovative packets (Bv). When the node i overhears a coded packet from
the downstream nodes, the node marks the coefficients in Bu and Bv, if their inner
product with the recited null-space is equal to zero. When the rank of the marked
coefficient vectors in Bu ∗ Bw becomes equal to the rank of the packets in buffer
(Bv), the downstream nodes (which are closer to the destination node) collectively
cover all of the packets in the node i’s buffer. Therefore, node i does not need to
transmit more packets.

Most of the proposed methods for the networks with lossy links assume that the
links are independent, and they do not consider the effect of the correlation between
the links [29] on the performance. Take Fig. 9 for example. Assume that each node
stops to transmit more packets when its next-hop nodes have collectively received
the same number of linearly independent packets to what it has in its buffer. Assume

142 P. Ostovari et al.

Fig. 9 The drawback of the
CCACK approach when the
links are highly correlated

...

...

that the delivery rate of the links between the source node s and the nodes r1 and
r2 is 0.5, and the batch size is 6. In the case that the links s ⊂ d1 and s ⊂ d2
are independent, the source node needs to try 8 transmissions, as the probability of
receiving a transmission by at least one of the nodes d1 and d2 is 0.75. In the case
of highly correlated links, either both of the nodes will receive a transmission or
none of them will. Therefore, the source node needs to transmit 12 packets. When
the links are negatively correlated, exactly one of the nodes d1 and d2 will receive a
transmitted packet. As a result, the number of required transmissions by the source
node will be 6. It can be inferred that correlation between the links has a huge effect
on the throughput of the methods. Now assume that the links are highly correlated,
so the nodes r1 and r2 will receive all of the six packets. Since they are not aware of
each other’s received packets, both of them will send all of the packets, which results
in unnecessary redundant transmissions. This problem can be solved by giving a
credit, equal to 3, to nodes r1 and r2. The work in [30] considers correlation between
the links and improves the performance of CCACK.

MIXIT. Symbol-level network coding for wireless mesh networks in introduced
in [31]. The main idea behind the MIXIT approach is that even when no node receives
a packet correctly, any given bit might be received by some node correctly. As a result,
instead of insisting on forwarding only correct packets, the intermediate nodes can
forward the correct received bits to the destination. For this purpose, the intermediate
nodes in MIXIT use physical layer hints to guess which bits in a corrupted packet
are likely correct. Unlike the previous work on network coding, the network code in
MIXIT operates at the granularity of symbols, which is defined as a small sequence
of bits, rather than packets. Take Fig. 10, in which the original symbols and the coded
symbols are noted as s and S, respectively. In contrast with the packet-level network
coding, each coded packet in MIXIT consists of multiple coded symbols. As a result,
if some parts of a packet encounters with an error, the other symbols are still useful.
In MIXIT, each router forwards random linear combinations of the high-confidence
symbols belonging to different packets, and the destination node is able to decoded
the symbols once it receives enough number of coded packets.

The first problem that MIXIT addresses is using an scalable coordination among
the nodes in order to prevent duplicate transmissions of the same symbol. In contrast
with node coordination-based approaches like ExOR, MIXIT uses the randomness
from the network code and a dynamic programming algorithm to solve the cordi-
nation problem. The second issue is error recovery. The destination node needs to
correct the errors that might exist in the received symbols. MIXIT uses symbol-level
network coding along with an end-to-end maximum rank distance (MRD) codes [32]

5 Network Coding Techniques for Wireless and Sensor Networks 143

Fig. 10 Symbol-level net-
work coding

for this purpose. The routers in MIXIT only forward random linear combinations
of high-confidence symbols, and they do not perform any error correcting. MIXIT
protocol benefits from a congestion-aware forwarding. It forwards coded symbols
through paths that have small queues and high delivery probabilities. MIXIT may be
applicable in WSNs to deliver data to sink nodes. In WSNs most traffic is from the
sensors to the sink node, so data from different sensor nodes can be coded together to
improve throughput. The MIXIT protocol can also be used for multicast applications
in mesh networks. For this purpose, routers can keep transmitting coded packets until
all destination nodes can decode them.

The authors in [33] show that the symbol-level network coding outperforms the
packet level network coding for content distribution in vehicular ad hoc networks
(VANETs). In [34], they later study the advantage of symbol level network coding for
live media streaming in VANETs. As shown in Fig. 11, the goal in [34] is to designate
live streaming multimedia to all of the nodes in a specific region of a road, called area
of interest. The core part of the proposed method, called CodePlay, is a coordinated
local push mechanism. In order to disseminate the content from sources to all the
receivers smoothly and timely, a set of spatially separated relay nodes are selected
in CodePlay distributively. The relay nodes are selected in such a way that their
transmissions can bring most useful information to their nearby vehicles. For this
purpose, CodePlay uses an objective function to calculate the contribution of each

interest

Access
point

Direction

Direction

Multimedia flow
direction

Road segment Road segment Road segment

Relay node

Area of

Fig. 11 Multimedia Streaming in VANETs

144 P. Ostovari et al.

potential relay node. The proposed method segments the road during initialization
so that the relay selection could be made locally within each segment. Each selected
relay node actively pushes coded data to cover its neighborhood. Using symbol-
level network coding CodePlay can better tolerance transmission interference, and
concurrent transmissions of all relays could be optimally coordinated locally. In
CodePlay, adjacent segments share the wireless channel resource in a round-robin
fashion to reduce interference.

3.3 Joint Inter and Intra-session Network Coding

It is not desirable to use inter-session network coding alone in a lossy link environ-
ment, since intra-session network coding is an efficient way to deal with the lossy
links. Thus, it is critical to have joint inter and intra-session network coding for
wireless networks with lossy links.

The work in [35] proposes a heuristic to combine inter and intra-session network
coding in lossy multi-hop wireless networks. This approach limits network coding
to be within a hop and provides a limited performance gain in the range of 20 % to
30 %. Also, the proposed approach in [35] lacks theoretical analysis.

A joint inter and intra-session network coding scheme, called I2NC, is proposed
in [36]. This work is grounded in network utility maximization formulation of the
problem. Assuming that the number of packets in each segment is k, each relay node
constructs k + k◦ linear combination of the packets instead of k coded packets. It is
sufficient for the receiver nodes to receive k out of k + k◦ packets. In other words,
the k◦ additional packets work as parity packets. After adding redundancy to the
packets, and coding them together, I2NC uses inter-session network coding to mix
the coded packets of different sessions. The authors propose two schemes: I2NC-state
and I2NC-stateless. In the former scheme, each node listens to all transmissions in
its neighborhood, stores the overheard packets in its buffer, and periodically informs
its neighbors about the content of the buffer. In contrast, the I2NC-stateless scheme
only relies on the local loss-rates of the links.

A cross-layer optimization scheme for lossy 2-hop relay networks is proposed
in [37] that uses joint inter and intra-session network coding. The work optimizes
overhearing, considers flows instead of packets, and assumes limited feedback. Lin-
ear equations are used to characterize the capacity region for the problem of when
the number of sessions is less than three. Also, a near-optimal coding scheme is
proposed for the case with more than two sessions, and its performance is character-
ized using linear equations. However, the complexity of the near-optimal scheme is
hyper-exponential.

A polynomial time coding method for the 2-hop relay network problem is pro-
posed in [38, 39]. This scheme, which uses random linear network coding, makes a
linear number of decisions. The authors characterize the performance of their scheme
by using linear constraints in terms of link delivery rates. They use the proposed 2-hop
relay scheme as a building block to extend the proposed scheme to multi-hop wireless

5 Network Coding Techniques for Wireless and Sensor Networks 145

networks. Based on this policy, a linear programming formulation of the achievable
rate region is proposed.

3.4 Summary and Discussion

COPE is the first proposed practical inter-session network coding method. Its com-
plexity is not high, and it works in networks with perfect links. However, COPE is
not appropriate when the links have a moderate loss probability of 20 %, as it turns
off coding in this case. CLONE solves this problem by sending different redundant
coded packets such that a given level of reliability is provided. However, CLONE
does not optimize the overhearing, and it limits the operation to XOR. As the optimal
solution is #p-complete, approximation heuristics are proposed. In [19], the authors
tackle the problem of optimal inter-session network coding from a different angle, as
they consider flows instead of packets. They optimize overhearing and characterize
the capacity region. The authors in [14] propose a cross-layer method that combines
the routing and inter-session network coding. They model interference between the
nodes as a conflict graph, and they find the optimal solution by using optimiza-
tion techniques. The drawback of this work is that some overhearing cases are not
considered during the formulation of the problem.

MORE is a practical opportunistic routing approach that uses intra-session net-
work coding to provide reliability in lossy link environments. In MORE, there is no
need to send feedback messages from the intermediate nodes, and only when the
destination nodes receive all of the packets a feedback message is sent to stop the
source node from sending more packets. The Dice method addresses the problem of
a conflict of interests among multiple flows. The CodeOR protocol solves the stop
and wait problem of MORE, which degrades performance. The CCACK method
is proposed to solve vulnerability of MORE to links’ quality changes. Instead of
estimating the number of required transmissions, in CCACK, the intermediate nodes
send the null-space of the received coded packets to help their neighbors discover
when they should transmit more packets.

MIXIT proposes the idea of performing network coding in the granularity of sym-
bols instead of packets to increase the transmission efficiency in lossy environments.
CopePlay uses the idea of symbol-level network coding for live multimedia stream-
ing in VANETs. Using symbol-level network coding for the highly mobile nodes in
VANETs decreases the interference problem by enabeling using the received correct
symbols even in the case that a packet is not received correctly.

Table 1 classifies the discussed methods for unicast application based on the used
methodology. This table also shows the objective of the approaches, and whether
they assume the existence of lossy links or perfect links.

146 P. Ostovari et al.

Table 1 Classification of the network coding methods for unicasting

Approach Methodology Topology Objective XOR
or RL

Local or
Global

Links

COPE [6] Inter-session Multi-hop Throughput XOR Local Lossy
[14] Inter-session Multi-hop Throughput XOR Local Perfect
[15] Inter-session Multi-hop Energy

efficiency
XOR Local Lossy

NCAQM [16] Inter-session Multi-hop Throughput XOR Local Perfect
CLONE [18] Inter-session Multi-hop Throughput XOR Local Lossy
[19] Inter-session Multi-hop Throughput

and
fairness

XOR Local Lossy

SensCode [21] Inter-session Multi-hop
linear
network

Throughput Physical Local Perfect

MORE [8] Intra-session Multi-hop Throughput RL Global Lossy
OMNC [23] Intra-session Multi-hop Throughput RL Global Lossy
Dice [24] Intra-session Multi-hop Throughput

and
fairness

RL Global Lossy

Dice [27] Intra-session Multi-hop Throughput RL Global Lossy
CCACK [28] Intra-session Multi-hop Throughput RL Global Lossy
[30] Intra-session Multi-hop Throughput RL Global Lossy
MIXIT [31] Intra-session Multi-hop Throughput RL (symbol-

level)
Global Lossy

CopePlay [31] Intra-session Multi-hop Throughput RL (symbol-
level)

Global Lossy

[35] Joint Inter and
Intra-
session

Multi-hop Throughput XOR Local Lossy

[36] Joint Inter and
Intra-
session

Multi-hop Throughput RL Local Lossy

[37] Joint Inter and
Intra-
session

2-hop Throughput
and
fairness

RL Local Lossy

[38] Joint Inter and
Intra-
session

2-hop
Multi-hop

Throughput
and
fairness

RL Local Lossy

4 Network Coding Methods for Multicast Applications

In this section, we look at network coding approaches that can be used for multicast
applications. With simple modifications, some of the proposed approaches for unicast
application can be applied for multicasting. To the best of our knowledge there is
no inter-session network coding for multicasting in wireless networks. It should be

5 Network Coding Techniques for Wireless and Sensor Networks 147

noted that there are some works on inter-session network coding for multicasting in
wired networks, which are beyond the scope of this chapter.

4.1 Intra-session Network Coding

In addition to unicast applications, MORE [8] can be used for multicasting. For this
purpose, the authors make simple modifications to their unicast algorithm. The first
reconciliation is that the source node does not proceed to the next batch until all of the
destinations receive the packets in the current batch. Also, the list of forwarder nodes
for multicast applications differs from the unicast. The source node computes the list
of forwarder nodes for each unicast flow from itself to the destinations in the multicast
group. The forwarder list of the multicast flow is the union of the forwarders of
the unicast flows. Moreover, the TX_credit (transmissions credit) at each forwarder
node is the maximum of the required transmissions for different unicast flows in
the multicast group. The last modification is that when the source node receives a
feedback message from a destination node, the source node recomputes the list of the
forwarder nodes and their TX_credits for the remaining destinations. As discussed
before, MORE is not applicable in WSNs.

The modified MORE for multicast applications suffers from two problems. First,
it can lead to congestion since too many nodes may act as forwarder nodes, even
for a single destination. This situation is worsened as the number of flows increases.
Next, if one of the receivers has a poor connection, then trying to satisfy reliability
for this receiver may result in throughput degradation for the other receivers. This
problem is called the crying baby [40] problem and is unique to multicast. The
Pacifier approach [41] proposes a multicast tree-based opportunistic routing design
to solve these problems. Pacifier creates a multicast tree to connect the source node
to the multicast receivers. The source node builds this shortest-ETX tree by taking
the union of all of the shortest-ETX paths from the source to the receivers. The
source node reconstructs this tree when a receiver node receives the complete batch.
In contrast with MORE, in which every node with a greater ETX value can be the
next-hop, Pacifier limits the forwarder nodes to the nodes in the multicast tree. The
source node assigns a TX_credit to each forwarder node. TX_credit specifies how
many packets that a forwarder node should transmit upon the reception of a packet
from an upstream node (a node with a greater ETX).

To solve the crying baby problem, Pacifier changes the sending pattern of the
batches. In MORE, the source node does not start transmitting the next batch until
all of the destination nodes acknowledge reception of the current batch. However,
the source node in the Pacifier approach transmits the packets in a Round-Robin
pattern. In details, when one of the receivers sends the acknowledgment of receiving
the current batch, the source node moves to the next batch. Forwarder nodes only
buffer the packets belonging to the current batch, and the nodes delete their buffer
upon reception of a packet from a new batch. The source node will continue sending
the packets from the first batch when the other batches are received by at least one

148 P. Ostovari et al.

Fig. 12 The order of transmitting the batches of packets in the MORE and Pacifier

of the destination nodes. Figure 12 describes the order of transmitting the packets by
the source node in the MORE and Pacifier approaches. In contrast to MORE, Pacifier
is suitable for WSNs. The reason is that Pacifier limits the forwarder nodes to the
nodes in the multicast tree. This method can be used in WSNs to send code updates
or other data from the sink node to a group of sensor nodes.

In [42], the authors address the network coding-based opportunistic routing prob-
lem for multicast. They argue that the important factors that affect the performance
of the multicast protocols are loss rate, the correlation among the links, and the
reachability of the node. They formulate the optimal network coding-based oppor-
tunistic routing for multicast as an optimization optimization, and develop a distrib-
uted algorithm for the problem in which each node only requires local information.
The proposed distributed algorithm consists of two phases. In the first phase, the
proposed method uses ETX metric to construct the most reliable broadcasting tree.
In the second phase, each node runs a credit assignment algorithm to calculate the
number of coded packets that it has to send. The authors show that the proposed
distributed algorithm adapts to the changes in the channel conditions, and converges
to the optimal solution. Moreover, this approach does not need any explicit knowl-
edge about the correlation among the links or the channel conditions. In addition to
using coded packet, the authors use coded feedback messages to reduce the number
of feedback messages, and to resolve the problem of delayed feedback. The sim-
ulation result in the paper show the effectiveness of the proposed method over the
MORE approach. The distributed approach can be applied on WSNs in multicast
applications such as software update of the sensor nodes.

Table 2 classifies the discussed methods for multicast application, based on their
methodology, objective, and whether they assume the existence of lossy links or
perfect links.

5 Network Coding Techniques for Wireless and Sensor Networks 149

Table 2 Classification of the network coding methods for multicasting

Approach Methodology Topology Objective XOR or RL Local or Global Links

MORE [8] Intra-session Multi-hop Throughput RL Global Lossy
Pacifier [41] Intra-session Multi-hop Throughput RL Global Lossy
CCACK [28] Intra-session Multi-hop Throughput RL Global Lossy
[42] Intra-session Multi-hop Throughput RL Global Lossy

5 Network Coding Method for Broadcast Applications

In this section, we survey some of the works that address inter-session and intra-
session network coding for broadcast applications. At the end, we compare the pro-
posed methods and summarize the results.

5.1 Inter-session Network Coding

CODEB The problem of minimizing the number of transmissions in all-to-all broad-
casting is addressed in [43]. All-to-all broadcasting is a special case of broadcasting,
in which all node broadcast their respective packets to all other nodes. In this paper,
the authors combine network coding with a deterministic forwarding approach, and
they show that using network coding results in a significant reduction in the number
of transmissions. They apply coding to the partial dominant pruning (PDP) [44] for-
warding approach, which is a local forwarding method, but their coding algorithm
can be applied to other localized deterministic approaches. The PDP approach is
used to select a subset of the nodes as the relay nodes. In PDP, each relay node
uses two-hop local information to select a subset of its neighbors such that they can
cover all two-hop neighbors of the relay node. In the CODEB approach, each relay
node maintains a neighbor reception table that shows the received packets by each
neighbor. CODEB is inappropriate for WSNs, because of its overhead.

In the proposed XOR-based coding method, the relay nodes code the packets such
that their neighbors can decode the received coded packets using the packets in their
buffer. This means that the receiver nodes can decode the received XOR-ed coded
packet without waiting for more packets to arrive. In more detail, each relay node
with a set of packets in its output queue tries to find a subset of the packets to XOR,
such that the number of native packets in the coded packet are maximized. In [43],
it is shown that this problem is NP-hard. Therefore, a greedy algorithm is proposed.
This greedy algorithm selects the first packet in the output queue and sequentially
checks if other packets can be XOR-ed with this packet, such that all of the neighbors
can decode the coded packet. In the case of delay-tolerant networks, when there is
no coding opportunity at a relay node, the node will postpone the transmission of the
packets for a random amount of time.

150 P. Ostovari et al.

(a) (b)

Fig. 13 Mapping delay-aware network coding problem to maximal clique problem

Directional Antenna. The problem of efficient broadcasting using network cod-
ing and directional antennas is studied in [45]. A node with directional antenna
capabilities can divide the omnidirectional area into different sectors and turn a sub-
set of them on for transmission. Therefore, in the proposed method, the forwarder
nodes transmit the coded or uncoded broadcast messages to restricted sectors, which
decreases the energy consumption. The authors assume that the links are perfect, and
they use a directional connected dominating set (DCDS) [46] to construct a direc-
tional network backbone. A connected dominating set is a subset of the nodes such
that all of the nodes in the set are connected together. In addition, each node of the
network is either a member of this set or is connected to a member of this set. In the
proposed method, each forwarder node performs the coding between the packets that
should be sent in the same section. The proposed approach can be applied to WSNs
that their sensor node are equipped with directional antenna; however, the method
might not be realistic, as the links are assumed to be perfect.

Deadline-Aware. The problem of deadline-aware broadcast scheduling using
network coding is considered in [47]. It is assumed that each packet has a deadline,
by which it must be sent by a relay node. To solve the problem of minimizing the
number of transmissions at a relay node subject to deadline constraints, the authors
map the problem to a maximal clique problem. In the mapped problem, each vertex
represents a packet needed by a node in the network. There is a link between two
vertices if the vertices correspond to the same packet, or if the correspondent packet
of each of the vertices is received by the correspondent node of the other vertex. This
means that these two nodes have received the packet that the other node has missed.
Therefore, if we code these packets together, the two destination nodes will be able
to decode it.

Take Fig. 13a for example. The received packets of each node are shown beside
it. Node v23 in the mapped problem (Fig. 13b) shows that node d2 has not received
packet p3. Since both of the nodes d2 and d3 need packet p3, there is a link between
vertices v23 and v33. Also, since node d1 has packet p2 and node d3 has packet p1, the
vertices v11 and v32 are connected. After mapping the problem, a weight is assigned

5 Network Coding Techniques for Wireless and Sensor Networks 151

(a) (b)

Fig. 14 a A given topology. b Two broadcasting trees routed at the source nodes 1 and 6

to each vertex. These weights are proportional to the deadline of the packets. As
finding the maximal clique in a weighted graph is NP-complete, a greedy algorithm
is used in [47] to find the maximal clique. After finding the maximal clique, the
relay node codes the correspondent packets of the vertices in the clique together. The
drawback of this work is that the deadline of the packets is considered for one-hop
transmissions, but it is not clear how to calculate the one-hop delays to meet the
global deadline. The authors study the effects of different weight functions in [48].

The problem of deadline-aware broadcasting using binary network coding is
addressed in [49]. It is assumed that a subset of nodes are the source nodes, and
each packet has a deadline to be received by all nodes, and the nodes have multi-
channel multi-radio capability. Similar to [43], this work combines PDP, which is a
deterministic forwarding approach with binary network coding. In [43], if there is
a deadline constraint, the relay nodes will send the received packets immediately,
which may decrease coding opportunities. In order to increase the coding oppor-
tunities, the authors in [49] propose three methods to compute the waiting time of
the packets at the relay nodes, such that the packets meet the deadline constraints.
The authors define the extra time as the remaining time to the deadline of the packet
minus the maximum remaining hops to the farthest destination nodes (it is assumed
that each transmission takes a unit of time to be received by the next hop). In the first
method, which is velocity-based distribution of waiting time, the assigned waiting
time to each relay node is equal to the extra time divided by the maximum remain-
ing hops. Because of more coding opportunities at the nodes with more crossing
flows, the second proposed method distributes the remaining time proportional to
the number of crossing flows to the nodes, which increases coding opportunities.
The last proposed method is a random distribution method, which randomly selects
each node’s waiting time from a specific range. All of the proposed methods in this
work are very simple, and their computation complexity are low due to using XOR
coding; thus, they can be applied in WSNs.

Authors in [50] study the problem of periodic broadcasting in wireless networks.
In this work, a subset of the nodes are the source nodes and their packets should be
broadcasted to all the nodes in the network. The authors use random linear network
coding to reduce the number of required transmissions. In this work, a broadcasting
tree is defined as a spanning tree routed at a source node. The authors propose
the idea of using one broadcasting tree for disseminating each source packet, and

152 P. Ostovari et al.

preforming random linear network coding at the intermediate nodes that are relay
nodes in more than one tree. The main idea behind using broadcasting trees is that
it ensures decodability of the coded packets at every node, as every node receives
enough linearly coded packets. Figure 14a show a given topology with two source
nodes. The two broadcasting trees routed at the source nodes are shown in Fig. 14b.
In this figure, nodes 2 and 3 are relay nodes in both of the trees. As a result, they
can encode the received packets. Node 3 linearly combines the packets and transmits
one coded packet. In contrast, node 2 needs to transmit two coded packets. This
is because that there are two parallel edges from node 2 to node 4, which means
node 2 should provide two packets to node 4. In order to minimize the number of
parallel edges, which results in less number of transmissions, the broadcasting trees
are constructed using a heuristic algorithm. In the next phase, in order to guarantee
meeting the packets’ deadlines, the authors propose a heuristic to partition the trees
such that coding the packets of each partition does not result in any deadline misses.
The proposed method can be used in WSNs for periodic broadcasting tasks. However,
the drawback of this scheme for WSNs is that the unreliability of the links is not
considered in this work.

Analysis. The problem of energy-efficient all-to-all broadcasting is studied in
[51]. The presented theoretical analysis shows that network coding improves perfor-
mance by a constant factor in fixed networks. The authors calculate this factor for
some canonical networks, such as circular networks and square grid networks. They
also propose a simple algorithm in which each node in the network sends a random
linear combination of the received packets with a given probability, called the for-
warding factor. To calculate the forwarding factors, two heuristics are proposed that
use local two-hop local information. The first heuristic assigns forwarding factors to
the nodes inversely proportional to the number of their 1-hop neighbors. The second
heuristic sets the forwarding factors of the nodes inversely proportional to the mini-
mum number of 1-hop neighbors of the node’s neighbors. The authors extend their
work in [52]. They show that, in networks where the topology dynamically changes
and operations are restricted to a simple distributed algorithm, network coding offers
improvements of factor log n, where n represents the number of nodes in the network.

5.2 Intra-session Network Coding

One-hop. In [53], network coding is used to decrease the number of required retrans-
missions due to packet loss in one-hop broadcasting over packet-erasure channels.
Firstly, the authors propose two NAK-based (negative acknowledgment) schemes
without network coding to provide reliability for broadcasting. In the first proposed
network coding-based broadcasting method, the source node receives a NAK mes-
sage immediately after each message transmission. However, the source does not
retransmit the lost packet immediately when it receives the NAK, and it maintains a
list of lost packets and the receivers that lost each packet. The retransmission phase
starts at a fixed interval of time. Then, the source node tries to code the maximum

5 Network Coding Techniques for Wireless and Sensor Networks 153

Fig. 15 One-hop broadcast-
ing

number of packets in a single coded packet. The source node retransmits the coded
packet until all of the destination nodes that have a lost packet in the coded packet
receive the packet. In an effort to improve the efficiency of the method, another
method is proposed, in which the source node dynamically changes the coded packet
based on the received feedback after each retransmission. This approach can be
applied for applications such as driver or software updates of sensor nodes in single-
hop WSNs. Base station sends the updates in one-hop transmissions to the sensor
nodes, and receives NAK from the sensor nodes in the case of transmission errors.

The setting in [54] is the same as in [53], but here the base station (BS) broadcasts
a fixed batch of packets. The proposed approach consists of two phases: information
transmission phase and retransmission phase. In the first phase, the BS transmits the
batch of N packets and receives a feedback message from each destination node. The
BS uses the benefit of network coding in the retransmission phase to send the lost
packets. The authors use XOR coding, and the constraint on coding packets together
is that each destination should not have more than one lost packet in the coded packet.
Firstly, the proposed algorithm finds the destination with the maximum number of lost
packets, and adds each of its lost packets to a different coding set. Then, the algorithm
sorts the remaining erased packets in increasing order, according to the number of
coding sets, the lost packet can be allocated such that the coding constraint is satisfied.
Starting from the packet with the minimum number of choices, the remaining lost
packets are allocated to an eligible encoding set. If there is no eligible coding set
for a packet, a new coding set will be generated. At the end, the BS node codes the
packets of each coding set together and transmits them. This process is repeated until
all of the destination nodes receive all of the packets. Similar to [53], this method
can be used for driver updates of sensor nodes in WSNs.

Assume that in Fig. 15, node d1 missed packets p1, p2, and p3. Also, node d2
missed packets p1 and p4, and node d3 missed packet p5. The node d1 has the
maximum number of lost packets. Therefore, the algorithm adds each of the lost
packets by node d1 as a separate coding set. Let S1 = {p1}, S2 = {p2}, and S3 = {p3}.
Now, packets p4 and p5 are remaining. Packet p4 can be added to sets S2 and S3, but
packet p5 can be added to S1, S2, or S3. The packet p4 has the smallest number of
choices, so the algorithm will add it to one of the sets, S2 or S3. Assume that packet
p4 is added to set S2. Packet p5 can be added to all of the sets. The final result will
be S1 = {p1, p5}, S2 = {p2, p4}, and S3 = {p3}.

In [55], the same problem as in [53] is addressed using a different approach.
The authors map the problem to a graph coloring problem and introduce a greedy

154 P. Ostovari et al.

Fig. 16 Graph coloring in
reliable broadcasting using
network coding

cc d

ba

e

heuristic to solve it. The mapping process is as follows. For each lost packet, a vertex
is added to the graph. If two packets are missed by the same destination node, a
link will be added between the corresponding vertices. A coding constraint implies
that missed packets by the same destination nodes cannot be coded together since
the destination node will not be able to decode the coded packet. This constraint is
exactly the same as the coloring constraint, in which two neighbor nodes cannot be
colored with the same color. Therefore, the vertices (packets) with the same color
can be coded together, and the minimum number of required colors for coloring the
correspondent graph is equal to the number of transmissions. The graph coloring
problem is also NP-complete; the authors use the proposed greedy algorithm in
[56] to address the mapped problem. This greedy algorithm sorts the vertices in
descending order, according to their degree. Then, starting from the first node, the
algorithm colors this node and all of the nodes that are not connected to this node
with the same color. This process is repeated for the uncolored nodes. Figure 16
shows the mapping from the example in the previous paragraph to a graph coloring.
The proposed approach is useful for broadcasting data from the base station to the
sensor nodes in single-hop WSNs.

The problem of efficient one-hop broadcasting of layered-video is studied in [57].
In this problem, a server node broadcasts a layered-video to a set of users. Because
of different channel conditions, the clients receive different number of transmissions
from the server. A promising approach to overcome this problem is using multi-
resolution coding (MRC) [58–60]. MRC is originally introduced for wired networks,
and it divides a video into a base layer and multiple enhancement layers. In this
scheme, the clients can independently decide how many layers to receive from the
server according to their available bandwidth from the server. In contrast with the
wired networks, in a wireless network all transmitted layers share the medium. As
a result, sending higher layers reduces the available bandwidth for sending lower
layers. The authors in [57] show that we can overcome the user diversity problem in
broadcasting video over Wi-Fi by combining MRC with inter-layer network coding
to increase the number of useful layers that can be retrieved by the users (It should
be noted that inter-layer coding is different from inter-session coding. This work is

5 Network Coding Techniques for Wireless and Sensor Networks 155

Fig. 17 a Original packets. b
General form of random linear
network coding. c Triangular
network coding

(a) (b) (c)

in the category of intra-session network coding as the coding is done between the
packets of the same session).

It is shown in [57] that inter-layer coding improves the number of decoded layers
even for a single receiver. The reason is that it allows retrieving useful layers from
more combinations of received transmissions. The authors show that even for a single
receiver, the previously proposed even canonical triangular scheme [61, 62] for inter-
layer network coding can perform poorly, and they propose two simple heuristics to
enhance the gain. In triangular network coding, the encoded layers are in the form
of

∑k
j=1 α j l j , where 1 → k → h and α j is a random coefficient. In other words,

each coded layer is a combination of the first k original layers. The advantage of
triangular network coding is that it reduces the number of possible coding strategies.
Considering a video with n layers, the possible ways for coding the layers using
inter-layer triangular coding and the general form of linear coding are equal to n
and 2n − 1, respectively. Figures 17b and c show the possible coded layers of the
original layers in Fig. 17a using the general form of network coding and triangular
coding, respectively. We do not show the coefficients in the figures for simplicity. For
example, l1 + l2 means α1l1 + α2l2, where α1 and α2 are two random coefficients.
For the case of multiple receivers, the proposed method calculates the gain of all
possible canonical triangular coding, and selects the best one. The authors propose
three optimization technics that drastically reduce the complexity of scanning the
gain of all the possible canonical triangular schemes.

Relay-Aided. The problem of efficient relay-aided one-hop broadcasting is
addressed in [63]. This paper is an extension of [54], in an effort to use a relay
node (Fig. 18). The authors assume that the links are lossy, and the base station (BS)
to relay channel and the relay to users’ (destinations) channels are better than the

Fig. 18 Relay-aided broad-
casting

156 P. Ostovari et al.

BS to user channels. The proposed method has 3 phases. In the fist phase, the BS
transmits N packets to the relay and user nodes. Then, the user nodes send feedback
messages to notify the BS and the relay node about the received packets by the user
nodes. Also, the relay node sends a feedback message to the BS node. In the second
phase, the BS node retransmits the set of lost packets by the user nodes. The BS node
uses network coding to increase the efficiency of this phase. After transmitting all of
the lost packets, the relay and user nodes send new feedback messages. The BS node
repeats this process until the user nodes receive all of the packets or the relay node
receives all of the lost packets by the user nodes. The third phase is similar to the
second phase, but the relay node performs retransmissions instead of the BS node.
This is because the relay node has all of the lost packets by the user nodes, and the
relay to user links are better than BS to user links. Much like as [53], this method is
appropriate for data transmissions from the base station to the sensor nodes.

Multi-hop. A reliable data dissemination protocol using adaptive network coding,
called AdapCode, is proposed in [10]. The authors use linear network coding to
reduce the traffic in WSNs, which results in increasing the battery life of the sensors.
They show that when nodes have more neighbors, we can increase the segment
size (the number of packets that will be coded together). This allows us to encode
more packets together without losing reliability, since nodes can get enough coded
packets from their neighbors. Based on this observation and the fact that the network
topology may change, an adaptive network coding protocol is proposed, where nodes
dynamically change the segment size.

An extension over AdapCode method is proposed in [64]. In the AdapCode
approach, throughout the code dissemination process, each sensor node dynamically
decides how many packets should be coded together (decides about the segment
size). The performance of the AdapCode method highly depends on the density of
the sensor nodes. Therefore, it is important to calculate the number of the sensor
nodes’ neighbors correctly. However, in AdapCode the nodes can only find their
full active neighbors, and in the case that their neighbors do not send any message,
the number of neighbors cannot be calculated correctly. To solve this problem, the
authors in [64] propose an energy-efficient neighbors discovery method. To make the
discovery process efficient, they use network beacons. After running the discovery
phase, a similar code dissemination phase to the AdapCode approach will be run to
deliver the packets to the sensor nodes.

The R-Code approach, proposed in [65], uses network coding to provide reliable
broadcast in wireless mesh networks with unreliable links. R-code uses ETX value of
the links as their weights, and constructs a minimum spanning tree. In contrast with
the AdapCode approach, in R-code only the non-leaf nodes in the spanning tree are
the relay nodes. Each parent node is responsible for delivering a sufficient number
of linearly coded packets to its children nodes. The parent node stops sending more
packets after receiving acknowledgment messages from all of its children nodes.
Similar to AdapCode, R-code can be used in WSNs to send code updates from sink
node to the sensor nodes.

5 Network Coding Techniques for Wireless and Sensor Networks 157

The DutyCode approach, which combines network coding with duty-cycling is
proposed in [66]. Duty-cycling is a technique for saving energy in WSNs. In this
scheme, the nodes turn off part or all of their systems for periods of time. Network
coding and duty-cycling achieve energy efficiency through conflicting means. Net-
work coding saves energy by exploiting the broadcast nature of the medium and
overhearing, whereas duty-cycling saves energy by reducing idle listening, which
reduces overhearing. The authors in [66] address the combination of these technics
in flooding-based WSNs applications, such as code dissemination applications that
require a non-negligible amount of time, possibly tens of minutes in large-scale
WSNs.

The main idea in DutyCode is that due to the redundancy of coding, in some
periods of time a sensor node does not benefit from overhearing coded packets. The
goal of the authors is to determine these periods of time, and let sensor nodes that
do not benefit from these useless packets, to go to the sleep mode. DutyCode is a
cross layer method. In this approach, the MAC layer provides streaming, random
sleeping and synchronization facilities. On the other hand, the proposed network
coding-aware application layer uses information from the stream being transmitted
to determine the time to sleep and its duration. In DytyCode approach, the network
coding application specifies the sleep duration when it requests the node to go to the
sleep mode. Then, the MAC protocol turns off the sensors radio for the requested
duration if there is no pending transmission. The MAC protocol does not put the
sensor node in the sleeping mode periodically. When requested, and if feasible, it
shuts down the sensor’s radio for the requested period.

5.3 Summary and Discussion

The proposed inter-sessions network coding approach in [43] is a distributed method
that relies only on local 2-hop information. It is an appropriate scheme for the case
of a delay-tolerant network. However, in the case of applications with deadline con-
straints, the relay nodes forward the received packets immediately, and the relay
nodes do not postpone the transmission of the received packets to receive more
packets. In order to increase the coding opportunities at the relay nodes, the authors
in [49] proposed three methods to compute waiting time at the relay nodes; this is to
assure that these waiting times do not result in any deadline misses. The main draw-
back of this work is that it is assumed that the nodes have multi-channel multi-radio
capabilities. The work in [50] uses broadcasting trees to periodically disseminate
the source packets to all the other nodes in the network, and performs random linear
network coding at the intermediate nodes. In [48], relay nodes transmit the packets
in an order which decreases the packet delay. It is assumed that there is a deadline to
transmit a packet at each relay node. However, it is not clear how the deadlines can
be calculated.

158 P. Ostovari et al.

Table 3 Classification of the network coding methods for broadcasting

Approach Methodology Topology Objective XOR
or RL

Local or
Global

Links

CODEB Inter-session Multi-hop Throughput XOR Local Perfect
[45] Inter-session Multi-hop Transmissions XOR Local Perfect
[48] Inter-session Multi-hop Throughput,

Deadline
XOR Local Perfect

[49] Inter-session Multi-hop Throughput,
Deadline

XOR Local Perfect

[50] Inter-session Multi-hop Throughput,
Deadline

RL Global Perfect

[52] Inter-session Multi-hop Energy
efficiency

RL Global Lossy

[53] Intra-session One-hop Transmissions XOR Local Lossy
[54] Intra-session One-hop Transmissions XOR Local Lossy
[55] Intra-session One-hop Transmissions XOR Local Lossy
[57] Intra-session One-hop Transmissions RL

(Trian-
gular)

Local Lossy

[63] Intra-session One-hop Transmissions XOR Local Lossy
[67] Intra-session One-hop Transmissions,

Delay
XOR Local Lossy

AdapCode
[10]

Intra-session Multi-hop Transmissions,
Reliability

RL Global Lossy

R-code
[65]

Intra-session Multi-hop Transmissions,
Reliability

RL Global Lossy

DutyCode
[66]

Intra-session Multi-hop Transmissions,
Reliability,
and
duty-cycle

RL Global Lossy

The work in [45] uses the advantage of directional antennas to reduce the energy
consumption of relay nodes. The authors use a directional connected dominant set
to find relay nodes. Inter-session network coding is used at relay nodes to reduce the
number of required transmissions. In [52], random linear network coding is combined
with a probabilistic forwarding approach. The performance of this approach is highly
dependant on the computed forwarding factor of the relay nodes. In this scheme,
overestimating the forwarding factor results in unnecessary redundant transmissions.
On the other hand, by underestimating the forwarding factor, the nodes will not be
able to decode the packets due to receiving insufficient number of coded packets.

The approaches in [53–55] are proposed for one-hop reliable broadcasting appli-
cations. In these methods, the source node uses intra-session network coding to
retransmit the missed packets by different destination nodes. As the problem of
efficient reliable broadcasting is NP-complete, all of the proposed approaches are
heuristic algorithms. The work in [55] is extended in [63] to use the advantage of
relay node for one-hop broadcasting applications. Triangular network coding is used

5 Network Coding Techniques for Wireless and Sensor Networks 159

in [57] in order to increase the efficiency of multi-layer video broadcasting to a set
of client nodes over single-hop error-prone wireless networks.

The work in [10, 64–66] are proposed specifically for WSNs. In AdapCode,
the sensor nodes use their neighbors density to adopt the number of packets coded
together (segment size). In order to increase the efficiency of Adapcode, the authors
in [64] use network beacons to propose an energy-efficient neighbors discovery
method. The R-Code approach [65] uses ETX metric to construct a minimum span-
ning tree, and the non-leaf nodes in the tree keep sending linear coded packets
until they receive acknowledgment messages from all of their children nodes. Duty-
Code [66] combines network coding with duty-cycling to increase the battery con-
servation.

Table 3 classifies the discussed methods for broadcast application, based on the
used methodology. This table also shows the objective of the approaches and whether
they assume the existence of lossy links or perfect links.

6 Conclusion

In this chapter, we surveyed recently proposed network coding approaches for wire-
less networks and WSNs. In general, network coding methods can be classified as
inter-session or intra-session network coding approaches. We surveyed some of the
proposed inter-session network coding approaches, which allow mixing the packets
from different sessions to solve the bottleneck problem. We also reviewed intra-
session network coding methods, which use the diversity of the links and mix the
packets from the same sessions to solve the packet loss problem. The network coding
methods can be applied in unicast, multicast, or broadcast applications. Moreover,
some of the network coding approaches have been proposed just for one-hop, two-
hop, or multi-hop networks. Therefore, we classified the methods based on their
objective, application, and network topology assumption. Some of the proposed
approaches specific to WSNs are surveyed, and we argued which of the proposed
network coding methods for general wireless networks are applicable and suitable
for WSNs.

Acknowledgments This research was supported in part by NSF grants ECCS 1231461, ECCS
1128209, CNS 1138963, CNS 1065444, and CCF 1028167.

References

1. C. Cordeiro, H. Gossain, R. Ashok, D. Agrawal, The Last Mile: Wireless Technologies for
Broadband and Home Networks, in Tutorial Presented in the 21th Brazilian Symposium on,
Computer Networks, 2003

2. S. Cherry, The wireless last mile. IEEE Spectrum 40(9), 18–22 (2003)

160 P. Ostovari et al.

3. I. Akyildiz, X. Wang, A survey on wireless mesh networks. Commun. Mag. IEEE 43(9), S23–
S30 (2005)

4. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Raptor codes. IEEE Commun. mag.
40(8), 102–114 (2002)

5. D. Aguayo, J. Bicket, S. Biswas, G. Judd, R. Morris, Link-Level Measurements from an 802.11
b Mesh Network, in ACM SIGCOMM, 2004, pp. 121–132

6. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, J. Crowcroft, XORs in the air: Practical
wireless network coding. ACM SIGCOMM Comput. Commun. Rev. 36(4), 243–254 (2006)

7. S. Biswas, R. Morris, ExOR: Opportunistic multi-hop routing for wireless networks. ACM
SIGCOMM Comput. Commun. Rev. 35(4), 133–144 (2005)

8. S. Chachulski, M. Jennings, S. Katti, D. Katabi, Trading Structure for Randomness in Wireless
Opportunistic Routing, in ACM SIGCOMM, 2007

9. L. Keller, E. Atsan, K. Argyraki, C. Fragouli, SenseCode: Network Coding for Reliable Sensor
Networks, in EPFL Technical, Report, 2009

10. I. Hou, Y. Tsai, T. Abdelzaher, I. Gupta, AdapCode: Adaptive Network Coding for Code
Updates in Wireless Sensor Networks, in IEEE INFOCOM, 2008

11. P. Maymounkov, Online Codes, in Technical Report TR2002-833, New York University, 2002
12. M. Luby, Lt Codes, in The 43rd Annual IEEE Symposium on Foundations of Computer Science,

2002, pp. 271–280
13. A. Shokrollahi, Raptor codes. IEEE Trans. Inform. Theor. 52(6), 2551–2567 (2006)
14. S. Sengupta, S. Rayanchu, S. Banerjee, An Analysis of Wireless Network Coding for Unicast

Sessions: The Case for Coding-Aware Routing, in IEEE INFOCOM, 2007, pp. 1028–1036
15. T. Cui, L. Chen, T. Ho, Energy Efficient Opportunistic Network Coding for Wireless Networks,

in IEEE INFOCOM, 2008, pp. 361–365
16. H. Seferoglu and A. Markopoulou, Network Coding-Aware Queue Management for Unicast

Flows Over Coded Wireless Networks, in NetCod, 2010, pp. 1–6
17. J. Le, J. Lui, D. Chiu, How Many Packets Can We Encode?-An Analysis of Practical Wireless

Network Coding, in IEEE INFOCOM, 2008, pp. 371–375
18. S. Rayanchu, S. Sen, J. Wu, S. Banerjee, S. Sengupta, Loss-aware network coding for unicast

wireless sessions: Design, implementation, and performance evaluation. SACM SIGMETRICS
Perform. Eval. Rev. 36(1), 85–96 (2008)

19. A. Khreishah, J. Wu, P. Ostovari, and I. Khalil, Flow Based Xor Network Coding for Lossy
Wireless Networks, in IEEE GLOBECOM, 2011

20. A. Khreishah, I. Khalil, P. Ostovari, J. Wu, Flow-based xor network coding for lossy wireless
networks. IEEE Trans. Wireless Commun. 11(6), 2321–2329 (2012)

21. S. Zhang, S. Liew, P. Lam, Hot Topic: Physical-Layer Network Coding, in MobiCom, 2006,
pp. 358–365

22. I. Jawhar, N. Mohamed, D.P. Agrawal, Linear wireless sensor networks: Classification and
applications. J. Network Comput. Appl. 34(5), 1671–1682 (2011)

23. X. Zhang, B. Li, Optimized multipath network coding in lossy wireless networks. IEEE J.
Selected Areas Commun. 27(5), 622–634 (2009)

24. X. Zhang, B. Li, Dice: A Game Theoretic Framework for Wireless Multipath Network Coding,
in ACM MobiHoc, 2008

25. Y. Lin, B. Li, B. Liang, Codeor: Opportunistic Routing in Wireless Mesh Networks with
Segmented Network Coding, in IEEE ICNP, 2008

26. L. Brakmo, L. Peterson, TCP vegas: End to end congestion avoidance on a global internet.
IEEE J. Selected Areas Commun. 13(8), 1465–1480 (1995)

27. B. Radunović, C. Gkantsidis, P. Key, P. Rodriguez, Toward practical opportunistic routing with
intra-session network coding for mesh networks. IEEE/ACM Trans. Network. 18(2), 420–433
(2010)

28. D. Koutsonikolas, C. Wang, Y. Hu, CCACK: Efficient Network Coding Based Opportunistic
Routing Through Cumulative Coded Acknowledgments, in IEEE INFOCOM, 2010, pp. 1–9

29. K. Srinivasan, M. Jain, J. Choi, T. Azim, E. Kim, P. Levis, B. Krishnamachari, The κ Factor:
Inferring Protocol Performance Using Inter-Link Reception Correlation, in ACM MobiCom,
2010, pp. 7317–328

5 Network Coding Techniques for Wireless and Sensor Networks 161

30. A. Khreishah, I. Khalil, J. Wu, Universal Opportunistic Routing Scheme Using Network Cod-
ing, in IEEE SECON, 2012

31. S. Katti, D. Katabi, H. Balakrishnan, M. Medard, Symbol-level network coding for wireless
mesh networks. ACM SIGCOMM Comput. Commun. Rev. 38(4), 401–412 (2008)

32. È. Gabidulin, Theory of codes with maximum rank distance. Problemy Peredachi Informatsii
21(1), 3–16 (1985)

33. M. Li, Z. Yang, W. Lou, Codeon: Cooperative popular content distribution for vehicular net-
works using symbol level network coding. IEEE J. Selected Areas Commun. 29(1), 223–235
(2011)

34. Z. Yang, M. Li, W. Lou, CodePlay: Live multimedia streaming in vanets using symbol-level
network coding. IEEE Trans. Wireless Commun. 11(8), 3006–3013 (2012)

35. C. Qin, Y. Xian, C. Gray, N. Santhapuri, S. Nelakuditi, I 2MIX: Integration of Intra-Flow and
Inter-Flow Wireless Network Coding, in IEEE SECON Workshops, 2008, pp. 1–6

36. H. Seferoglu, A. Markopoulou, K. Ramakrishnan, I2NC: Intra-and Inter-Session Network
Coding for Unicast Flows in Wireless Networks, in IEEE INFOCOM, 2011, pp. 1035–1043

37. C. Wang, A. Khreishah, N. Shroff, Cross-Layer Optimizations for Intersession Network Coding
on Practical 2-Hop Relay Networks, in Asilomar, vol. 41, 2009, pp. 771–775

38. A. Khreishah, I. Khalil, J. Wu, Polynomial Time and Provably Efficient Network Coding
Scheme for Lossy Wireless Networks, in IEEE MASS, 2011

39. A. Khreishah, I. Khalil„ J. Wu, Low Complexity and Provably Efficient Algorithm for Joint
Inter and Intrasession Network Coding in Wireless Networks, in IEEE Transactions on Parallel
and Distributed Systems, 2012

40. H. Holbrook, S. Singhal, D. Cheriton, P. fan and c. zhi and c. wei and k. ben letaief. ACM
SIGCOMM Comput. Commun. Rev. 25(4), 328–341 (2005)

41. D. Koutsonikolas, Y. Hu, C. Wang, Pacifier: High-Throughput, Reliable Multicast without
Crying Babies, in Wireless Mesh Networks, in IEEE INFOCOM, 2009, pp. 2473–2481

42. A. Khreishah, I. Khalil, J. Wu, Distributed Network Coding-Based Opportunistic Routing for
Multicast, in MobiHoc, 2012, pp. 115–124

43. L. Li, R. Ramjee, M. Buddhikot, S. Miller, Network Coding-Based Broadcast in Mobile Ad-
Hoc Networks, in IEEE INFOCOM, May 2007, pp. 1739–1747

44. W. Lou, J. Wu, On reducing broadcast redundancy in ad hoc wireless networks. IEEE Trans.
Mobile Comput., 1(2), 111–122 (2002)

45. S. Yang, J. Wu, Efficient broadcasting using network coding and directional antennas in
MANETs. IEEE Trans. Parallel Distrib. Syst. 21(2), 148–161 (Feb 2010)

46. S. Yang, J. Wu, F. Dai, Efficient Backbone Construction Methods in Manets Using Directional
Antennas, in ICDCS, 2007

47. Z. Dong, C. Zhan, Y. Xu, Delay Aware Broadcast Scheduling in Wireless Networks Using
Network Coding, in IEEE NSWCTC, 2010, pp. 214–217

48. C. Zhan, Y. Xu, Broadcast Scheduling Based on Network Coding in Time Critical Wireless
Networks, in IEEE International Symposium on Network Coding, June 2010

49. P. Ostovari, J. Wu, A. Khreishah, Deadline-Aware Broadcasting in Wireless Networks with
Local Network Coding, in IEEE ICNC, Jan 2012

50. P. Ostovari, A. Khreishahand, J. Wu, Deadline-Aware Broadcasting in Wireless Networks with
Network Coding, in IEEE GLOBECOM, Dec 2012

51. C. Fragouli, J. Widmer, J.L. Boudec, A Network Coding Approach to Energy Efficient Broad-
casting: From Theory to Practice, in IEEE INFOCOM, 2006, pp. 1–11

52. C. Fragouli, J. Widmer, J.L. Boudec, Efficient broadcasting using network coding. IEEE/ACM
Trans. Network. 16(2), 450–463 (2008)

53. D. Nguyen, T. Tran, T. Nguyen, B. Bose, Wireless broadcast using network coding. IEEE
Trans. Vehicular Technol. 58(2), 914–925 (2009)

54. L. Lu, M. Xiao, M. Skoglund, L. Rasmussen, G. Wu, S. Li, Efficient Network Coding for
Wireless Broadcasting, in IEEE WCNC, 2010, pp. 1–6

55. W. Fang, F. Liu, Z. Liu, L. Shu, S. Nishio, Reliable Broadcast Transmission in Wireless Net-
works Based on Network Coding”, in IEEE INFOCOM Workshops (INFOCOM WKSHPS),
2011, pp. 555–559

162 P. Ostovari et al.

56. D. Welsh, M. Powell, An upper bound for the chromatic number of a graph and its application
to timetabling problems. Comput. J. 10(1), 85–86 (1967)

57. D. Koutsonikolas, Y. Hu, C. Wang, M. Comer, A. Mohamed, Efficient Online WiFi Delivery
of Layered-Coding Media Using Inter-Layer Network Coding, in ICDCS, 2011, pp. 237–247

58. U. Horn, K. Stuhlmüller, M. Link, B. Girod, Robust internet video transmission based on
scalable coding and unequal error protection. Sig. Process. Image Commun. 15(1), 77–94
(1999)

59. D. Wu, Y. Hou, Y. Zhang, Scalable video coding and transport over broadband wireless net-
works. Proc. IEEE 89(1), 6–20 (2001)

60. A. Majumda, D. Sachs, I. Kozintsev, K. Ramchandran, M. Yeung, Multicast and unicast real-
time video streaming over wireless lans. IEEE Trans. Circuits Syst. Video Technol. 12(6),
524–534 (2002)

61. D. Koutsonikolas, Y. Hu, C. Wang, M. Comer, A. Mohamed, On the Performance of Network
Coding in Multi-Resolution Wireless Video Streaming, in NetCod, 2010, pp. 1–6

62. M. Halloush, H. Radha, Practical Network Coding for Scalable Video in Error Prone Networks,
in PCS, 2009, pp. 1–4

63. L. Lu, M. Xiao, L. Rasmussen, Relay-Aided Broadcasting with Instantaneously Decodable
Binary Network Codes, in ICCCN, 2011, pp. 1–5

64. H. Shwe, F. Adachi, Power Efficient Adaptive Network Coding in Wireless Sensor Networks,
in IEEE ICC, 2011, pp. 1–5

65. Z. Yang, M. Li, W. Lou, R-code: Network Coding Based Reliable Broadcast in Wireless Mesh
Networks with Unreliable Links, in IEEE GLOBECOM, 2009

66. R. Chandanala, R. Stoleru, Network Coding in Duty-Cycled Sensor Networks, in INSS, 2010,
pp. 203–210

67. S. Sorour, S. Valaee, Minimum Broadcast Decoding Delay for Generalized Instantly Decodable
Network Coding, in IEEE GLOBECOM, 2010, pp. 1–5

Chapter 6
Sleeping Techniques for Reducing Energy
Dissipation

Rajani Muraleedharan, Ilker Demirkol, Ou Yang, He Ba, Surjya Ray and
Wendi Heinzelman

Abstract Sensors have limited resources such as energy, computational power and
bandwidth, and thus they require protocols and techniques that are resource aware
and energy efficient. As energy waste through idle listening, retransmissions and
overhearing are some of the primary causes of reduced lifetime in wireless sensor
networks, sensor sleeping is critically important. Sleeping techniques prolong the
network lifetime by placing components of the sensor node into a sleep mode while
aiming to minimize the impact on application performance. Sensor sleeping can be
applied to different layers of the protocol stack, and a cross-layer sleep manager can
orchestrate sleeping in multiple layers simultaneously. In this chapter, the importance
of sensor sleeping, the various sleeping techniques proposed and the applications
using these approaches are discussed.

R. Muraleedharan · O. Yang · H. Ba · S. Ray · W. Heinzelman (B)

University of Rochester, Rochester, USA
e-mail: wendi.heinzelman@rochester.edu

R. Muraleedharan
Saginaw Valley State University, University Center, USA
e-mail: rmuralee@svsu.edu

O. Yang
e-mail: oyang@ece.rochester.edu

H. Ba
e-mail: ba@ece.rochester.edu

S. Ray
e-mail: ray@ece.rochester.edu

I. Demirkol
Universitat Politecnica de Catalunya, Barcelona, Spain
e-mail: ilker.demirkol@entel.upc.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 163
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_6,
© Springer-Verlag Berlin Heidelberg 2014

164 R. Muraleedharan et al.

1 Introduction

Wireless sensor networks (WSNs) have paved the way for a new era in ubiquitous
computing, where information can be sensed, accessed, and distributed over a range
of environments with minimal or no human interaction. Applications of wireless sen-
sor networks range from military to commercial applications such as border secu-
rity and surveillance, personal health monitoring, environmental monitoring, and
structural monitoring [1–3]. As the sensor nodes in these networks are often small,
inexpensive devices that are battery-operated and communicate wirelessly, they are
constrained by limited resources such as bandwidth, processing power and energy.
Therefore, the reliability, longevity, and correctness of these applications depend pri-
marily on the effective exploitation of the sensors through intelligent protocol design.
In particular, in this chapter we will focus on protocol techniques that support the
efficient use of energy in enabling the dissemination of sensed data to the sink(s).

In order to efficiently use the limited energy available in a wireless sensor network
while simultaneously supporting the application goals, we must determine where
the energy is “wasted” and develop protocol techniques that specifically address
this waste. Any action that directly relates to the sensor’s required contribution to
the application (whether sensing, transmitting or routing data) is considered useful
energy. On the other hand, actions such as idle listening, retransmission, and over-
hearing as well as sensing, transmitting or routing data that are not useful to the
application are considered wasteful, and these are the operations we aim to reduce
through protocol design.

Such energy waste can be minimized through a variety of techniques such as
in-network data processing, physical-layer optimization and sleeping techniques.
In-network data processing can be used to reduce the amount of data that must
be transmitted to the sink(s) through local processing of the data. As the energy
expended in routing information from multiple source nodes to a sink node is high
in comparison with processing the data locally using fusion [4] or data aggregation
techniques [5], much energy can be saved via in-network data processing. Physical-
layer optimization can reduce the energy needed for the successful transmission of
data over a communication link. For instance, energy consumption can be reduced
by choosing an appropriate modulation scheme based on current channel noise [6].
However, the most significant energy savings is attained by sleeping techniques,
which enable the sensor nodes to enter sleep modes to save energy whenever they are
not performing useful tasks for the application, including sensing and communicating
data.

Sleeping techniques can reduce a sensor’s idle listening, which is often a signifi-
cant portion of the “wasted” energy in a sensor node. In sleep mode, the node’s radio
is turned off and the microcontroller is put into a deep sleep. In general, in this low
power mode of the microcontroller, only the RAM, interrupt handler and timer are
functional. It is common to draw only nA-level current using this power mode with
current off-the-shelf sensor motes [7].

6 Sleeping Techniques for Reducing Energy Dissipation 165

Once a node is in the sleep state, the node must be woken up by either an internal
or external interrupt. While sleeping techniques can save tremendous amounts of
energy in the sensor node, the disadvantage of using sleeping is that a node (sender)
that wants to communicate with the sleeping node must wait until the receiver node
is awake, which causes a delay in the communication. Hence the duration of sleeping
represents a trade-off between the energy saved by turning the sensor off when not
needed and the communication latency and reliability of the application.

In this chapter, we take an in-depth look at sleeping techniques. We begin with an
exploration of different approaches to wake up a sensor node from the sleeping state.
Following this, we explore sleeping techniques at the medium access control (MAC)
layer, considering both synchronous and asynchronous duty cycling as well as time
division multiple access (TDMA) protocols that enable nodes to sleep. Moving up
a layer, we discuss sleeping techniques at the network (routing) layer, including the
use of sleeping in multi-path routing. Finally, we explore cross-layered approaches
for maximizing the effectiveness of using sleeping techniques at both the MAC and
routing layers.

2 Wake-up Techniques

Sensor sleeping is an effective approach for reducing node energy dissipation, as
nodes that are not currently transmitting or receiving data go to sleep instead of
wasting energy in the idle state. However, once a node is in the sleep mode, it must
be woken up in order to return to an active state, where the node can transmit or
receive data.

A sensor can be awakened using either an internally-controlled wake-up or an
externally-controlled wake-up. The internally-controlled wake-up is used in duty
cycling, where nodes schedule their wake-up time when they go to sleep, which is
referred to as scheduled wake-up in this chapter. For externally-controlled wake-up,
an external factor is the wake-up trigger. An external trigger can be sent by the user
through a radio (radio controlled wake-up), or it can be an event in the environment
(environmentally controlled wake-up).

A detailed categorization of the different wake-up techniques is illustrated in
Fig. 1. In this section, we introduce these wake-up techniques along with a description
of state-of-the-art research under each category. In the subsequent sections, we will
provide a discussion of sleeping techniques at different protocol stack levels and
some approaches to cross-layer sleeping.

2.1 Scheduled (Internally Controlled) Wake-up

In scheduled wake-up, a sensor node sets an internal timer to fire after a specific
duration, and turns the radio off and the microcontroller to a very low power mode [8].
A common use of this approach is through periodic wake-ups, where nodes sleep

166 R. Muraleedharan et al.

Fig. 1 Categorization of wake-up techniques for wireless sensor networks

and wake up according to a regular schedule. This is also called duty cycling, where
the duty cycle of a node represents the percentage of time that the node is awake.
Oftentimes the periods for sleeping and waking up are fixed a-priori, however in
some cases this period can be adapted based on information learned by the sensors
in the active periods [9].

A node may also set the timer such that it is awake for a specific event, i.e., with an
aperiodic schedule. For example, if the node expects to transmit or receive a message
at a certain future time (such as a time slot in a TDMA schedule), the timer is set
to ensure that the sensor node is awake as needed. Both of these approaches for
scheduled wake-ups trade off energy savings with the latency and the reliability of
the application. Therefore, it is important to appropriately schedule the wake-up to
meet application goals yet save as much energy as possible.

For periodic wake-up (duty cycling), nodes may be woken up either synchro-
nously, where all the periodic wake-up times are synchronized among nodes, or
asynchronously [10–13]. Synchronous duty cycling is beneficial for applications
such as smart metering, environmental monitoring, and smart homes, as in these
applications, the traffic load is often periodic and predictable, and nodes can sleep
during the known inactive periods, avoiding idle listening and overhearing. Synchro-
nous duty cycling, however, requires clock synchronization, which also means that
frequent resynchronization is required to maintain schedule consistency among the
nodes in the presence of clock drifts.

Synchronous duty cycling can be applied in groups or clusters of nodes [12], rather
than to the entire network. The group synchronization approach is used by many MAC
protocols, e.g., S-MAC [14], the operation of which is illustrated in Fig. 2. As seen in
the figure, a SYNC period is reserved for synchronization purposes, where the nodes
listen to the medium for the potential synchronization messages from their neighbors
and send a synchronization message periodically. A node can therefore assume the

6 Sleeping Techniques for Reducing Energy Dissipation 167

Fig. 2 Scheduled wake-up employed in S-MAC [16]

role of a synchronizer or follower based on whether it sends a SYNC message or
follows a neighbor’s schedule. Figure 2 illustrates a scheduled wake-up employed in
S-MAC, where node A sends an RTS control signal to the follower node B, who in
turn waits for the data exchange by forwarding a CTS control signal to node A. The
neighboring nodes C, D, and E are synchronizers with independent sleep schedules.
After receiving the data packet, node B sends an ACK to node A. Every node in a
WSN is independent, and therefore issues such as collision can occur when multiple
nodes attempt to be synchronizers, which is minimized using a random delay. As the
overhead required to synchronize a network increases with the size of the network,
group/cluster synchronization scales better than full network synchronization.

One issue with synchronous duty cycling is clock drift, whereby nodes become
de-synchronized after a certain period of time. The SYNC period in S-MAC and
related protocols helps to keep nodes synchronized even in the presence of clock
drift, but for networks with extremely low duty cycles, there is still a chance that the
nodes’ active periods will not align due to de-synchronization of the clocks during
the sleep period.

Asynchronous duty cycling, on the other hand, requires no prior knowledge about
other nodes and no global timing of the network, as each node independently sched-
ules its periodic wake-up [13]. While this presents a simple approach that requires
no synchronization of all nodes in a network, and hence achieves minimal overhead
traffic, the disadvantage of this technique is that nodes are not awake at the same
time, and hence an awake node may need to remain awake for a long period of time in
order to communicate with one of its neighbors. Sensor networks with low or bursty

168 R. Muraleedharan et al.

Fig. 3 Sensor node employing the radio controlled wake-up technique

traffic such as habitat and health monitoring can benefit from using asynchronous
duty cycling, where nodes periodically wake up to check for traffic on the network
and return to sleep until their next periodic wake-up if no traffic is detected [15].

2.2 Radio Controlled Wake-up

Rather than having the sensor node wake up periodically (duty cycling) or wake up
for an expected event (such as a transmission slot), another approach is to have a
remote user (through a sensor mote, actuator node, etc.) control the sensor wake-up
via a radio signal. Radio controlled wake-up is enabled by the user sending a signal
that triggers an interrupt that wakes up the sensor node [17].

Radio controlled wake-up is generally achieved with the use of a wake-up radio
[18], which is a secondary, very low power radio for the wake-up functionality of
the node, as illustrated in Fig. 3. Depending on the energy source of the wake-up
radio receiver, the wake-up radio can be classified as active or passive [19]. Active
wake-up radios use internal batteries to continuously provide power to the wake-up
radio to search for a wake-up signal and to trigger an interrupt of the microcontroller
to wake the node up. On the other hand, in passive wake-up radios, the energy from
the wake-up signal triggers the wake-up circuitry, and results in the wake-up of the
node.

Applications such as asset tracking, habitat monitoring, patient monitoring, and
intelligent transportation systems [20] can greatly benefit from active and passive
radio controlled wake-up. In these applications, replacing devices at remote loca-
tions is not feasible, or very cumbersome, and thus extending the lifetime of the
sensor nodes as much as possible becomes the top priority. Radio controlled wake-up
techniques that trigger the nodes on an as-needed basis rather than using predeter-
mined schedules achieve higher lifetime when compared to the scheduled wake-up

6 Sleeping Techniques for Reducing Energy Dissipation 169

approach by eliminating the energy waste through idle listening and overhearing
when the sensor is not actually needed.

The wake-up signal can be either broadcast to wake up all nodes within the range
of the wake-up transmitter, or unicast, where upon receiving a wake-up signal, the
wake-up receiver checks if the message is intended for the node before waking up
the node [8]. While wake-up radios have the advantage of only waking up the nodes
when another node or user is ready to receive data from the nodes, their use increases
the complexity of the sensor nodes and the hardware costs [8], and their wake-up
range may be limited, since the use of very low power or no amplifiers increases the
received signal power requirement.

There have been many research advancements in hardware design for active and
passive wake-up radios. For active wake-up radios, initial studies proposed the use
of a super-regenerative architecture with a bulk acoustic wave (BAW) resonator.
Theoretical receiver power consumptions of 400 and 62µW were achieved in [21]
and [22], respectively. Zero-bias Schottky diodes were used to design a 3-stage
wake-up scheme in [23] to reduce the false alarms caused by environmental noise.
The main transceiver is triggered only if an intermediate higher power stage verifies
a wake-up signal received from the low power stage, which dissipates on the order
of nWs and is always on searching for a potential wake-up signal.

Ansari et al. [24] achieved a further improvement in active wake-up radios through
the design of a five-stage charge pump that enables energy to be stored for a period of
time and, once accumulated to a certain level, this triggers a wake-up interrupt. The
only active parts of this circuit are a digital comparator and a voltage divider, which
consume 350 nA and 526 nA, respectively. Van der Doorn et al. [25] implemented
a low cost active wake-up receiver in the T-node platform, which is quite similar
to Mica2 motes using commercially available hardware. The signals received at the
antenna are filtered and amplified to feed the microcontroller, which ensures accurate
detection of the wake-up signal that interrupts the main processor. Their design can
theoretically operate at 171µW.

Recently, an idea based on using a commercially available low frequency (LF)
wake-up receiver [26] with an envelope detector for an ultra high frequency (UHF)
signal has shown incredible success compared to the former studies. In [27] and
[28], for less than 1µA current consumption at the receiver, 15 and 40 m ranges are
achieved, respectively, in field tests for a transmit power of 10 mW.

In [29], the Sparse Topology and Energy Management (STEM) technique pro-
posed the use of an active wake-up radio approach using dual radios with each
operating in a different frequency band. The primary radio is woken up if the proces-
sor decides that information needs to be forwarded to the data sink. A paging signal
is initiated by the sender with a target ID, therefore activating the intended receiver.
STEM provides a benefit in energy dissipation by reducing idle listening, but the
benefits are limited by the radio’s wake-up range.

While these approaches show the feasibility of very low power active wake-up
radios, passive wake-up radios have the advantage of not requiring any battery power
from the sensor node. The trade-off, however, is often a reduced wake-up range com-
pared with active wake-up radios. Gu et al. [18] proposed a passive radio wake-up

170 R. Muraleedharan et al.

circuit that theoretically could operate at a range of 10 feet with 5 ms latency. If a com-
parator and an amplifier are added, which respectively consume negligible currents of
350 and 880 nA, the radio could theoretically reach up to 100 feet with 55 ms latency.
In [30, 31], Jurdak et al. proposed a passive radio-frequency identification (RFID)
wake-up radio, RFIDImpulse, to accommodate varied network traffic. RFIDImpulse
assumes that every sensor has an attached RFID reader and a passive RFID tag to
trigger a radio wake-up signal. However, a sensor’s ability to wake up one’s neighbor
is not feasible in reality, due to the large energy cost and size of the RFID reader.
Additionally, the energy model used for the analysis in the RFIDImpulse work does
not include the energy consumed by the nodes to wake-up.

An approach for passive wake-up radios was implemented by Ba et al. [8, 32],
using an Intel WISP passive RFID tag as the wake-up radio for a sensor mote. The
wake-up performance of this WISP-Mote was tested in open, closed and cluttered
environments. The WISP RFID tag acts as a wake-up signal receiver, and can use
broadcast and unicast wake-ups to activate a sensor node, requiring no extra energy
from the node’s battery. The experimental results show that the WISP-Mote can be
woken up within 5 m using both broadcast and individually addressed wake-ups.

2.3 Environmentally Controlled Wake-up

In environmentally controlled wake-up, the sensor node is woken up by an envi-
ronmental trigger. Mainly, two types of wake-ups can be defined in this category:
sensory-based wake-up and energy-harvesting-based wake-up, as shown in Fig. 4.

Fig. 4 Sensor node employing environmentally controlled wake-up technique

6 Sleeping Techniques for Reducing Energy Dissipation 171

In sensory-based wake-up, a sensor triggers the microcontroller unit (MCU),
based on the information sensed that may indicate the presence of an event of inter-
est that requires the node to wake up. An example of sensory-based wake-up is
described by Javaheri et al. [33], where a biological signal that is produced by a Bio-
Mechanical Signal Interpreter (BMSI) triggers the node to wake up. The BMSI is an
electrically passive decoder-amplifier, where weak electrical signals are converted
into Bio-Mechanical signals based on the concentration of a specific ion. The signal
amplification and decoding processes are performed in a biological environment, and
hence are energy-efficient. Another example of environmentally controlled wake-up
is the acoustic active wake-up radio with 835 nW consumption proposed by Gold-
berg et al. [34], where the level of sound triggers a wake-up interrupt. A multi-mode
wake-up is designed by Malinowski et al. [35] for supply chain management and
asset tracking applications using CargoNet, where sensors such as shock, vibration
dosimeter, temperature, and humidity are used to trigger events at extremely low
power. Applications such as intrusion detection and surveillance can benefit from
using sensory-based wake-up systems.

In energy harvesting wake-up the sensor node is only woken up when “enough”
energy is harvested to trigger a wake-up signal. There are several possible energy
harvesting approaches, including solar, wind, vibration, and acoustic energy, with
varied power density [36]. Although, these energy harvesting techniques can be
effective wake-up triggers, waking up the sensor node when enough energy has been
harvested to support data communication requires additional hardware and depends
on environmentally available resources. The process of gathering signal strength to
trigger a wake-up can delay the wake-up of the node, which affects the network
performance, causing increased latency and reduced throughput. However, several
studies target the efficient planning of the harvesting and consumption of the energy
to increase the potential performance of such systems [33, 34, 36]. Among many,
applications such as habitat monitoring [37] can benefit from using energy harvesting-
based wake-up, because of the available outdoor harvestable energy resources.

2.4 Choosing the Wake-up Technique

The choice of wake-up technique, whether scheduled, radio controlled or environ-
mentally controlled, depends mainly on the application goals, network traffic, and the
desired energy saving, latency, and reliability trade-off. For radio controlled wake-
up, factors such as the required wake-up range, the mechanism for powering the
wake-up radio (active or passive), and the hardware cost, require additional consid-
erations. Note that, combinations of these wake-up techniques are also possible. For
example, energy harvesting wake-up can be combined with scheduled wake-up, in
which case, if enough energy could not be harvested, the node will wake-up with a
very low duty cycle timer.

As energy conservation is a growing concern, sleeping clearly will be an impor-
tant technique to avoid energy waste in future wireless sensor networks, as well as

172 R. Muraleedharan et al.

Fig. 5 Sleeping techniques for each layer in the protocol stack

in other wireless and wired networks. While the energy efficiency of the network
depends on minimizing idle listening, overhearing, and data collisions, the reliability
of the application depends on maximizing channel utilization and packet delivery and
minimizing latency. Hence the sleeping and wake-up techniques should be selected
carefully to provide the optimal trade-off.

The decision of which wake-up technique to use should be jointly done with the
protocol design for maximizing the efficiency of the network by putting the sensors
to sleep as much as possible to save energy. Sleeping can be exploited at different
levels of the protocol stack, as shown in Fig. 5:

1. Application Layer Sleeping: Nodes can sleep when their sensed data is redundant
and not required by the application. The wake-up technique to be used can be
a decisive factor. For example, if energy harvesting wake-up is used, then the
decision to send the data can involve the residual and predicted energy levels,
along with the redundancy level of the data.

2. Routing Layer Sleeping: Nodes can be put to sleep when they have no data to
relay. However, when selecting the routing approach to be used, one must consider
the benefits and constraints of potential wake-up techniques. For instance, radio
controlled wake-up will result in more relay nodes, while sleeping multipath
routing will reduce the number of routing nodes. The potential benefit of putting
more nodes to sleep for routing purposes is the reduction in energy waste. In
addition, data collisions can also be reduced using sleeping multipath routing.

3. Medium Access Control (MAC) Layer Sleeping: Source and routing nodes that
are involved in data delivery may sleep when it is not their turn to transmit
or receive data. The MAC protocol to be used can be determined with the

6 Sleeping Techniques for Reducing Energy Dissipation 173

wake-up technique. For instance, if unicast type radio controlled wake-up is to
be employed, complicated coordination, time slot assignments, etc. will not be
required.

Additionally, cross-layer techniques for managing sleeping are important when
sensors are put to sleep in different layers of the protocol stack. Next, we discuss how
protocols for the MAC and routing layer are designed to support sensor sleeping.

3 Medium Access Control Layer Sleeping Techniques

The MAC layer is responsible for ensuring that the sensor nodes access the medium
efficiently and fairly. Because of the importance of energy efficiency at the MAC
layer, there have been a host of different MAC protocols proposed to incorporate
sleeping, using both fixed and variable schedules. In the following sections, protocols
that exploit sleeping techniques at the MAC layer are discussed.

3.1 Taxonomy of Sleeping MAC Protocols

In traditional wireless networks, MAC protocols include fixed access protocols (e.g.,
TDMA, FDMA, CDMA) and random access protocols (e.g., contention-based proto-
cols). Additionally, in traditional wireless networks, the performance metrics include
fairness and throughput. For many protocols, the nodes are required to listen to the
channel frequently to maintain channel state and thus avoid collisions. Since the
idle power consumption can be of the same order as transmit and receive power
consumption for sensor nodes [38], MAC protocols for wireless sensor networks
are designed to conserve energy by incorporating sleeping techniques to reduce idle
listening, while ensuring efficient medium access.

As shown in Fig. 6, most existing MAC protocols for wireless sensor networks
are designed for scheduled wake-up. Among those, the protocols employing “peri-
odic” scheduled wake-up (duty cycling) can be further categorized as synchronous,
where nodes are time-synchronized to carry out rendezvous-based medium access
and asynchronous, where nodes carry out the communications without rendezvous
decided a-priori.

In synchronous duty cycling, since all nodes are awake at the same time, it is
possible to use any traditional MAC approach during the awake period, such as
TDMA, random access or hybrid (a combination of TDMA and random access)
approaches. The drawback of synchronous wake-up MAC protocols is the need for
control messages among the nodes to synchronize their clocks and hence their wake-
up schedules.

In asynchronous duty cycling, nodes set their own wake-up times independent of
other nodes in the network. Thus, nodes utilizing asynchronous wake-up can operate

174 R. Muraleedharan et al.

Fig. 6 Taxonomy of sleeping MAC protocols

with simple hardware, and this approach is robust and scalable to network changes.
Protocols proposed for asynchronous duty-cycling ensure that the nodes listen to the
channel periodically, and enable the nodes to sleep if there is no relevant activity.
However, these approaches have the drawback that the transmitter is required to stay
awake for a potentially long period of time to guarantee the intended receiver is
awake to hear the transmission. This may cause high energy consumption and long
delays, and hence, this approach requires careful planning that should consider the
network characteristics.

Non-periodic scheduled wake-up is mainly employed by TDMA-based protocols,
where nodes sleep until their assigned time slot in a known TDMA schedule. This
may be a slot assigned to the node to transmit or to receive. In this approach, synchro-
nization is required among all the nodes so that the slots align, but this approach is
very energy-efficient as nodes are only awake when they are transmitting or receiving
data. However, TDMA protocols require either some controller node to create the
TDMA schedule such that collisions are avoided, or nodes must select a slot in a
distributed manner using information from other nodes, which potentially incurs a
large amount of overhead.

Additionally, MAC protocols can be designed for radio controlled wake-up and
for environmentally-controlled wake-up. These MAC protocols must address the
lack of state information at each node when they wake up.

6 Sleeping Techniques for Reducing Energy Dissipation 175

3.2 MAC Protocols Employing Scheduled Wake-up

Based on the categorization that is introduced in Sect. 2 and depicted in Fig.2, MAC
protocols that employ scheduled wake-up can be categorized as synchronous duty
cycling, where all nodes are synchronized and wake up at the same time; asynchro-
nous duty cycling, where the nodes are not synchronized and hence wake up at poten-
tially different times yet have a common duty cycle; and employing hybrid wake-up,
where the nodes employ both periodic (duty cycling) and aperiodic type of wake-up
techniques. The following sections provide brief descriptions of the different MAC
protocols in each category and their benefits and limitations.

3.2.1 Synchronous Duty Cycling MAC Protocols

In synchronous periodic sleeping MAC protocols, all nodes have synchronized clocks
and wake up at the same time for communication. During the awake period, different
protocols employ contention-based, TDMA based, and hybrid medium access and
nodes may go to sleep at different times. Yet all of the nodes will wake up again at
the same periodic interval for continued communication.

Contention-based MAC protocols that employ synchronous periodic sleeping are
designed to handle nodes that have no coordination when accessing the channel.
Using concepts such as carrier sensing and random back-offs, the collision probabil-
ities can be reduced in contention-based protocols. While contention-based proto-
cols for traditional wireless networks, such as IEEE 802.11’s DCF [39] and PAMAS
[40], are successful in achieving high throughput and fairness, these approaches
still require a large amount of idle listening in networks with low traffic. Hence,
the use of fixed sleep-listen schedules was introduced in S-MAC [14], where nodes
use synchronization messages to ensure synchronized duty cycles in groups. In the
active part of the duty cycle, the nodes communicate using RTS/CTS/DATA/ACK
messages, as in IEEE 802.11 DCF. S-MAC ensures nodes do not waste energy in
idle listening by forcing the nodes to sleep after a data message exchange. Due to
the fixed sleep-listen schedule and only allowing a single data transmission in each
active period of S-MAC, the energy savings is at the expense of reduced throughput
and high latency. In addition, static sleep-listen schedules are best suited for known
or constant traffic patterns.

To handle variable traffic patterns, techniques such as adaptive contention win-
dows, latency-based duty cycles and time-outs were introduced as extensions to
S-MAC in TA-MAC [41], DSMAC [42] and T-MAC [43], respectively. In all of
these approaches, which still employ a synchronous, periodic wake-up of the nodes,
the goal is to keep nodes awake to support variable traffic yet allow nodes to sleep as
much as possible. TA-MAC utilizes an adaptive contention window that incorporates
the back-off algorithm of IEEE 802.11 and the fast collision resolution algorithm from
[44] to determine the contention window for the current traffic state. In DSMAC,
the duty cycle is adjusted based on the perceived latency of the data transmissions.
The timer introduced in T-MAC is used to help sensors sleep if no activation occurs

176 R. Muraleedharan et al.

after a certain period of time. This timer can be renewed based on the traffic load.
S-MAC was further extended by S-MAC/AL [45] to reduce multi-hop latency by
incorporating adaptive listening as in T-MAC.

Although these variations of S-MAC improved end-to-end delay and packet deliv-
ery ratio (PDR), unfortunately idle listening and the early sleep problem (where nodes
go to sleep when there is still data pending for them) still exist. A data-centric MAC
protocol called ADV-MAC [16] reduces the early sleep problem, by advertising for
upcoming data to alert intended receivers that they have pending data transfers. In
addition, a variable duty cycle that consists of fixed synchronization and advertise-
ment periods and a variable data period is used in ADV-MAC. Unlike S-MAC or
T-MAC, ADV-MAC handles variable traffic loads without compromising latency
and throughput. The limitation of ADV-MAC is the need to do the contention twice,
once for the advertisement of data and then for the transmission of the data. The
duration of the advertisement period is based on the traffic model, which affects the
energy consumption due to idle listening.

IEEE 802.15.4 [46], the IEEE standard for low power wireless networks, can use
both synchronous and asynchronous duty cycling, but the protocol is more efficient
using synchronous duty cycling in terms of packet delivery ratio and throughput [11].
The synchronous duty cycling is used with a cluster topology, where the nodes are
synchronized by a beacon packet from the cluster-head. IEEE 802.15.4 has super-
frames that consist of a Contention Access Period (CAP) and a Contention Free
Period (CFP). Within the CAP, medium access is acquired via standard contention
access. Nodes that have a stream of data to transmit can also reserve slots in the
superframe by sending requests to the coordinator during the CAP. If such requests
are granted, the coordinator includes the relevant information, such as the number of
slots allocated and the beginning slot, in the next frame. Nodes sleep following the
CAP and CFP until the start of the next synchronized wake-up period. One drawback
of this mode is that the nodes have to communicate through cluster-heads to other
nodes. This incurs delay, and high energy consumption at the cluster-head, while
reducing the achievable throughput.

3.2.2 Asynchronous Duty Cycling MAC Protocols

Asynchronous duty cycling MAC protocols do not require any locally or globally
synchronized clocks, which reduces synchronization overhead. However, all nodes
use a common duty cycle such that the duration of their sleep-awake cycle is the same.
These MAC protocols can be either sender-initiated such as B-MAC [47], X-MAC
[48], SCP-MAC [49] and WiseMAC [50] or receiver-initiated such as RI-MAC [51]
and PW-MAC [52]. In sender-initiated protocols, the sender transmits a preamble
until it receives a response from the receiver. On the other hand, in receiver-initiated
protocols, the receiver sends a beacon as soon as it is awake to let all potential
transmitters know that it is available for transmissions [52].

Sender-initiated protocols in this category are also known as low power listening
(LPL) protocols. In LPL protocols, a node with data to send transmits an extended

6 Sleeping Techniques for Reducing Energy Dissipation 177

preamble. Once a node wakes up during its regular periodic wake-up, it detects the
preamble and will stay awake until it determines if it is the receiving node. Since
the wake-up schedules are not synchronized, the preamble must be transmitted for
a duration long enough to ensure that the receiver wakes up at some time during the
transmission of the preamble. This can require a large amount of energy from the
transmitting node. Therefore LPL protocols are not feasible for networks with heavy
data traffic.

In B-MAC, asynchronous duty cycles and long preambles are used to wake up
nodes. Although, B-MAC does not require synchronization messages, the transmitter
expends energy due to the long preamble, while the other nodes expend energy due
to overhearing a preamble that may not be intended for them. X-MAC [48] reduces
the energy expenditure by replacing the long preamble of B-MAC with a series of
short preamble messages that include the receiver address. Thus, the nodes that are
not the intended receiver waste only a small amount of energy before determining
that the data is not for them and returning to sleep until the next wake-up period.

A similar approach is used in WiseMAC, which combines non-persistent CSMA
with dynamic preamble sampling based on the neighbors’ sleep schedules to reduce
idle listening. The sender can predict the next wake-up time of a receiver based on
sampling the medium with the same constant period independent of the actual traffic.
If the medium is found busy, the receiver continues to listen until a data packet is
received or until the medium becomes idle again. Every node has an updated table
with the direct neighbor’s sampling schedule offset obtained from the acknowledge-
ment packets. Since WiseMAC uses only clock drift rate to adjust predicted receiver
wake-up times, this may lead to prediction error caused by variable hardware and
operating system latency. Also, disregarding the state of the receivers, senders in
WiseMAC retransmit packets repeatedly until all packets are acknowledged, poten-
tially causing collisions and larger sender duty cycle.

In receiver-initiated transmission approaches, such as RI-MAC [51], the sender
is active but silent, whereas the receiver sends inviting beacon frames at regular
periods of time, when the node wakes up. The data transmission begins when the
sender receives a beacon frame from the targeted receiver. Due to the lack of a long
transmitter preamble, as in transmitter-initiated approaches, energy is saved and the
use of the medium is reduced. Upon detecting a collision, the receiver sends out a
new beacon using a contention window, the size of which is increased based on the
number of retransmissions. Similarly, in PW-MAC [52], independently generated
pseudo random sequences are used to control each node’s wake-up time, which
allows senders to accurately predict receivers’ wake-up times. However, PW-MAC
considers the potential hardware and operating system latency that would corrupt the
synchrony, so nodes wake up earlier by a specific amount of time, which is defined
as a protocol parameter. In addition, since PW-MAC uses pseudorandom wake-up
schedules, even if multiple nodes wake up at the same time for reception that might
cause collisions, they will have different wake-up times in the following cycles.

178 R. Muraleedharan et al.

3.2.3 MAC Protocols Employing Hybrid Wake-up

There are a wide range of MAC protocols that utilize both periodic and aperiodic
wake up techniques. Mainly, TDMA-based wireless sensor network MAC protocols
fall into this category, since these protocols generally employ periodic wake-up to
coordinate for the time slot assignments, whereas they employ aperiodic wake-up
for the data slot access.

In TDMA-based MAC protocols the channel is divided into time-slots that are
shared by the nodes. Each node is allocated a dedicated time slot to communicate
(send/receive). This approach allows the nodes to communicate without collisions
in their allocated slot, thereby minimizing the transmit time. There are a number of
factors that influence TDMA-based MAC protocols, including synchronization, cre-
ating distributed schedules, maximizing channel reuse, incorporating node mobility
and ensuring energy efficiency [53].

There are two methods for using TDMA-based medium access in wireless sen-
sor networks: (1) use of a hierarchical clustering structure where the cluster head
creates and disseminates a TDMA schedule to the nodes in the cluster, and (2) the
nodes themselves pick slots in a distributed manner to reduce collisions with other
transmissions in their two-hop neighborhood.

3.2.4 Cluster-Based Protocols with Hybrid Wake-up

Protocols that use a hierarchical, cluster-based topology include LEACH [54], PACT
[55], MH-TRACE [56], SS-TDMA [57] and DEE-MAC [58]. In these protocols,
cluster-heads create the TDMA transmission schedules and broadcast these schedules
to their cluster members. The nodes within each cluster turn their radios off at all
times except during their own transmission time slots, thereby conserving energy.
For example, in LEACH, nodes elect themselves as cluster-heads in a distributed
manner, and nodes join nearby clusters for channel access. The cluster-head learns
of all cluster members and then creates a TDMA schedule that allocates each cluster
member a slot. This schedule is then sent to the cluster members, enabling the cluster
members to sleep with an event-scheduled wake-up at their given transmission slot.
In LEACH, all cluster members transmit directly to the cluster-head, so no other
cluster members need to be awake.

PACT and MH-TRACE are proposed for networks with a clustered multi-hop
topology. In order to achieve contention-free communication, these protocols use
superframes. On the other hand, SS-TDMA handles traffic in a fixed sequence of
rounds using directions such as North, South, East, and West to achieve collision
free transmission by checking interference from its neighbors. This approach is best
suited for grid-topologies. DEE-MAC also uses cluster-based TDMA, where each
cluster is dynamically formed based on the remaining power of the nodes, and the
cluster-head builds the TDMA schedule based on the interest received from nodes
in its cluster. In addition, DEE-MAC employs an inter-cluster communication via
nodes rather than just through the cluster-heads.

6 Sleeping Techniques for Reducing Energy Dissipation 179

In general, the overhead involved in forming clusters, communicating within a
cluster, and maintaining clusters adds complexity to cluster-based TDMA protocols.
It is important in cluster-based TDMA protocols to perform resource-tracking (e.g.,
monitoring the energy of the cluster-head nodes) in order to maintain the stability of
the clusters. The energy required to maintain the time slot assignments, synchronized
clocks, and frame lengths for a dynamically changing topology heavily depends on
the protocol. In addition, the nodes’ resources, the data traffic and the environment
may change over time, which would require dynamic slot assignments.

3.2.5 Distributed Protocols with Hybrid Wake-up

Creating a distributed TDMA schedule is difficult, requiring a large amount of over-
head to converge on a feasible schedule such that collisions are minimized. Such
an approach is used in TRAMA [59], FLAMA [60], SPAREMAC [61], LMAC
[62], AI-LMAC [63], Z-MAC [66], and ATMA [67]. In these protocols, slots are
allocated either based on a random priority or winning slot contention within a two-
hop neighborhood [64], but in either case, when a node does not have any data to
send, its allocated slot is wasted. In addition, the nodes contending for the slot waste
energy during the contention process.

In TRAMA, all nodes compute priorities on the upcoming time slots with their
2-hop neighborhood information. Moreover, nodes regularly announce their data
schedules to inform the intended receivers of the data slots for which they have
priority, yet will not be used. This can lead to collisions when more than one node
tries to access a particular data slot. FLAMA is an improved version of TRAMA,
where instead of broadcasting information to the neighboring nodes, a pull-based
mechanism that shares information only based on an explicit request is used, thus
reducing overhead. SPAREMAC is a receiver oriented MAC protocol, where nodes
announce their reception schedules (RSs), which designate the time slot(s) they
will be awake and waiting for incoming data. The RS is propagated to neighboring
nodes, such that the transmitting node can consequently become active in the RS of its
intended receiver only. Therefore, SPAREMAC limits the impact of idle listening and
traffic overhearing. This approach to determine a distributed TDMA schedule solves
the hidden node problem, however it does not eliminate collisions and the control
overhead is very high, leading to high energy consumption and data delay [65].

Self-organizing TDMA based communication without using a central manager or
base station is also achieved by LMAC, where nodes can choose time slots on their
own, and they share their selected slots with their one-hop neighbors. Nodes with
conflicting time slots choose an ID-dependent back-off time to enable collision-free
communication. The drawback of LMAC is that idle listening overhead is substantial,
as nodes must listen to the control sections of all slots in a frame to learn about the
neighbor schedules and to allow nodes to join the network. In a given time period
there might be nodes that are forced to be in the awake state, leading to idle listening
and energy dissipation. AI-LMAC is an improved version of LMAC where each node

180 R. Muraleedharan et al.

can choose multiple slots based on the expected traffic flow, which aids in adapting
the operations based on the application requirements.

The Z-MAC protocol [66] combines CSMA and TDMA-based approaches, aim-
ing to exploit the better performance of TDMA for high contention situations. The
setup phase of Z-MAC includes neighbor discovery, local frame exchange of neigh-
bors’ lists and slots assignment. All the nodes are synchronized with a global time
synchronization feature. Each node is assigned a slot but it is not fixed, and any
node can contend for the channel within any slot for data transmission, although
the assigned node will get the highest priority. Nodes can sleep until they find a
time slot that is either not owned within their two-hop neighborhood or is owned by
themselves.

Another protocol employing both periodic and aperiodic wake-up techniques is
ATMA [67], where nodes advertise for their data transmissions in an advertisement
period, as in ADV-MAC [16, 68], but they also select a TDMA slot at which the
data transfer will occur. If the receiver node is free during the selected data slot, it
acknowledges the advertisement, and then the transmitter and receiver both know
that they can sleep until the assigned slot. After the data transfer in the assigned slot,
both the transmitter and receiver go back to sleep until the start of the next frame.
The efficiency of ATMA stems from the continued use of a selected data slot for a
given number of frames, thus reducing contention in subsequent frames.

3.3 MAC Protocols Employing Radio Controlled Wake-up

MAC protocols that employ radio controlled wake-up techniques help in reducing
the energy and latency involved in the frequent transition of nodes from the sleep to
the active modes. In [69], an RFID-based wake-up mechanism called RFIDImpulse
is evaluated for different sleep modes of the sensor devices, where the sleep modes
observe a trade-off between wake-up delay, wake-up energy and power consumed
during sleep. The authors implement RFIDImpulse both on the 802.15.4 MAC and
B-MAC, where nodes are woken up through the use of an RFID signal. It is shown
that if the network traffic is high, it is more energy efficient to use a light sleep mode,
and with low network traffic, nodes should be put in deep sleep mode. RFIDIm-
pulse is shown to work independent of the underlying MAC protocol, and hence
can be applied to many MAC protocols to employ radio controlled wake-up. The
applicability of RFIDImpulse is limited because of its assumption that every node
has the ability to wake up its neighbors. However, battery-powered sensor nodes
cannot afford the large amount of energy consumed by the RFID reader.

In [8, 32], an RFID-based wake-up scheme was proposed, where it is assumed
that only a collector (i.e., a data MULE) with unlimited power and an RFID reader
can wake up the sensor nodes. In the data MULE scenario, an ALOHA-based MAC
protocol is applied and the simulation results in [32] show the energy efficiency
benefits of using an RFID-based wake-up scheme over a traditional duty-cycling
scheme. In order to improve the performance of RFID wake-up in a dense network,

6 Sleeping Techniques for Reducing Energy Dissipation 181

Fig. 7 Performance of radio-controlled wake-up (WISP-Mote) compared with scheduled wake-up
(duty cycling) as node density varies [32]

a collision avoidance mechanism is incorporated in [8]. Figure 7 shows the benefit
of using radio-controlled wake-up (denoted as WISP-Mote) over scheduled wake-
up (duty cycling). As seen in the figure, the average packet delay and the number
of collisions in 10 % duty cycling increase significantly as the node density varies.
Meanwhile, the performance of the WISP-Mote is more stable. Additionally, the
energy wasted due to unnecessary wake-ups and idle listening is reduced using the
radio-controlled wake-up compared with 0.1, 0.25, 2 and 10 % duty cycling.

3.4 MAC Protocols Employing Environmentally Controlled
Wake-up

MAC protocols that employ environmentally controlled wake-up use energy har-
vesting techniques [70] to wake up the nodes. This approach conserves energy and
reduces the need to replace the node batteries, which is critical for applications that
are deployed in remote or hostile regions, or where battery replacement or recharging
is not feasible. Eu et al. [71] performed a study on single-hop MAC protocols based
on slotted and unslotted CSMA, as well as ID-based polling and probabilistic polling
techniques for wireless sensor networks powered by ambient energy harvesting. The
authors utilize a charge-and-spend strategy, where nodes go into the receive mode
when enough energy has been accumulated. They state that this strategy is employed

182 R. Muraleedharan et al.

instead of methods such as duty cycling due to its simplicity, the limited capacity
of the energy storage, to reduce leakage, and to achieve lower delay. Through sim-
ulations they show that probabilistic polling achieves better fairness and is highly
scalable, while achieving good throughput compared to the CSMA approach.

In [72], Fafoutis et al. proposed the ODMAC protocol, which targets the operation
of sensor nodes in a state where the energy consumed is equal to the energy harvested
by adjusting the duty cycle accordingly [70]. Due to the unpredictable nature of the
energy harvesting, the authors proposed the use of a receiver-based opportunistic
forwarding approach, where the transmitter opportunistically forwards frames to the
first node from the potential forwarders list that sends a beacon.

Kim et al. [73] proposed the energy adaptive MAC protocol (EA-MAC) for wire-
less sensor networks powered by an RF energy source. In EA-MAC, the master node
is assumed to be always in the awake state, and the slave nodes transit from the sleep
to the active state depending on their remaining energy levels. Also, the slave node’s
energy harvesting level is inversely proportional to its distance from the master node.
EA-MAC uses CSMA/CA with an energy adaptive contention algorithm, where the
backoff time of each slave node depends on its energy harvesting rates. Therefore,
EA-MAC adaptively manages both the duty cycle and the contention time of the
slave nodes using the nodes’ energy harvesting rates to achieve fairness among the
nodes.

4 Routing Layer Sleeping Techniques

The goal of routing in wireless sensor networks is to get data from the source node(s)
to the sink node(s) with high reliability, low latency, and using minimum energy. In
wireless sensor networks, routing of the packets is generally done by the regular
sensor nodes, and hence energy efficiency of the routing mechanism employed is
paramount in order to extend the network lifetime.

In the previous section, we saw how sleeping can be used to save energy at the
medium access control level. In this section, we explore how sleeping can save energy
at the routing layer, by placing potential nodes that are not needed as routers into
the sleep state. As shown in Fig. 8, there are two ways sleeping in the routing layer
can be achieved: (1) topology control, where only a subset of the sensor nodes are
selected as routers, enabling all other sensor nodes to go to sleep when idle, and
(2) sleeping routing, where possible router nodes that are not needed are put to sleep.
We discuss both approaches in the following sections.

6 Sleeping Techniques for Reducing Energy Dissipation 183

Fig. 8 Routing layer sleeping techniques. Topology Control (top), where nodes that form the
backbone are awake. Sleeping Routing (bottom), where nodes on the selected routes are awake

4.1 Topology Control

Topology control is used to select a subset of available sensor nodes to route data in
the network.1 Traditionally, the sensors are selected to create a backbone that ensures
network connectivity while maintaining network throughput. An additional goal for
topology control in wireless sensor networks is to select the backbone in such a
way as to reduce energy dissipation, and to select nodes that have enough remaining
energy to support the additional task of routing. The benefit of topology control is
that all nodes that are not selected as the backbone routers can go to sleep when they
do not have sensed data to transmit. This technique ensures that non-backbone nodes
save significant amounts of energy. However, given that the backbone nodes are still
energy-limited sensor nodes, many topology control protocols rotate the backbone
nodes such that the energy drain of performing the routing duties is shared among all
the nodes in the network. Topology control is most effective in large, dense networks
where the large number of nodes results in many redundant routes.

1 There can be scenarios where there are sensors (actuators, relay nodes) with different communica-
tion and energy capacities, namely heterogeneous wireless sensor networks. In this chapter we will
concentrate on homogeneous topology control, where all the sensors have the same capabilities. For
details on topology control in heterogeneous wireless sensor networks, readers can refer to [74].

184 R. Muraleedharan et al.

One such topology control protocol is GAF [75], a localized, distributed protocol
that divides the network into virtual grids. Only one sensor node in each grid is acti-
vated at any given time. The virtual grid is set up in such a way that full connectivity
is guaranteed. GAF requires location information so that the nodes know their grid
ID to ensure that only one node per grid is activated as the backbone node. To prevent
energy drain of a node, the activated node in each grid is rotated among the nodes in
the grid.

While GAF is an effective approach for topology control, it does require that
nodes have location information and know about the virtual grid. On the other hand,
in the SPAN [76] protocol, the nodes make local decisions on whether to sleep or
join the backbone as a “coordinator node.” This decision is based on the connectivity
information provided by the routing protocol. If the connectivity between any two
nodes is poor and can be improved by the coordinator node joining the backbone
network, then the coordinator node will be activated. The coordinator node will go to
sleep when routing is no longer needed. Unlike GAF, SPAN does not require its nodes
to know any geographical location information, instead SPAN broadcasts messages
and utilizes overhearing to determine when to activate nodes and to discover topology
changes in the network.

A similar approach is employed in Adaptive Self-Configuring sEnsor Networks
Topology (ASCENT) [77], where nodes are turned on or off depending on the node’s
assessment of the operating conditions. When a node identifies high data loss in
its neighborhood, it requests neighboring nodes to join the network as additional
backbone relay nodes. Nodes that receive ‘join’ request messages probe the network,
rather than joining immediately. This approach ensures that multiple nodes do not
simultaneously activate and join the backbone. The sleeping nodes check periodically
to see whether additional backbone nodes are needed in their neighborhood.

In [78] a geographical cluster-based routing protocol is proposed, where theoret-
ical analysis guarantees packet delivery in a network where the ratio of communica-
tion range to sensing range is ≥4. In [79], Simplot-Ryl et al. proposed two kinds of
backbones, namely neighbor and area dominating sets, where a node has coverage
only if it is in the backbone or its neighbor is in the backbone. The retransmission of
messages is therefore reduced, and energy waste is minimized.

In the above approaches, the main function of the protocol is to determine an
appropriate set of backbone nodes to keep the network connected and operating
with high capacity while enabling the remaining sensor nodes to sleep. While this
approach is effective in saving large amounts of energy in dense networks, it is not
effective in sparse networks due to lack of redundant routes. Therefore, in sparse
networks all nodes must be activated to keep the network connected. However, even
if all nodes must be considered as potential routers to connect the network, given
the event-driven nature of some wireless sensor networks, oftentimes traffic is only
coming from a small subset of the sensor nodes at any given time. Hence, the nodes
that are required as routers can at times be set to sleep if information about the traffic
in the network is known (i.e., any routers that are not currently being used to transfer
data to the sink can be set to sleep). We will discuss such sleeping routing protocols
in the following section.

6 Sleeping Techniques for Reducing Energy Dissipation 185

4.2 Sleeping Routing

In a network where traffic patterns can be determined, it is possible to set all routing
nodes that are currently not involved in data delivery to the sleep mode, saving
energy and improving the network lifetime. Energy savings through in-network data
processing can further benefit routing schemes. Sleeping routing can be achieved by
incorporating power management techniques into the routing protocol.

Routing protocols such as [80–83] update routes periodically and save energy by
placing routing nodes that are not involved in the data delivery to sleep. For example,
the on-demand power management framework [81] configures the sensors to sleep
by monitoring routing control messages and data transmissions such that only useful
routers are kept active. In addition, connectivity is only maintained between pairs
of senders and receivers and along the routes of data communication, thus further
reducing the energy consumption. The Route-Oriented Sleep (ROS) approach [82]
also utilizes the routing decisions so that sensor nodes do not wake up when they
are not part of a routing path. Also, by switching a sensor’s role such as sensing and
forwarding, based on a critical “probability of percolation” [84], the ROS approach
reduces communication interference and latency that occur during data transmission
with minimal loss of sensing and communication coverage.

Another example is sleeping applied to the Directed Diffusion protocol [80], such
that all nodes within an interest-query interval that are not reinforced by the sink as
routers can go to sleep [85]. To achieve this, several timers are needed at the sensor
nodes so that the nodes know when they must wake up to receive new interest queries
from the sink or new path discovery messages. Sleeping Directed Diffusion ensures
that the sleeping nodes do not negatively impact route discovery and maintenance.
In addition, the sink node collects remaining energy information from the sensors to
determine which nodes can be reinforced as routing nodes. This is done to ensure
that the selected routing nodes have enough energy to remain active for the period
when the other possible routing nodes are asleep.

In the Gossip-based sleep protocol (GSP) [86] all the receiving nodes go to sleep
with a gossip sleep probability ‘p’. GSP does not require neighborhood information or
synchronization. During each round, every node chooses to sleep or stay awake with
probability p. This probability is chosen with the goal of having the remaining awake
nodes maintain network connectivity, considering a static network. Although this
approach helps in energy conservation, due to the random method for selecting awake
nodes, an optimal route cannot be achieved and long delays may be encountered.

An entirely different approach to sleeping routing is applied using radio controlled
wake-up, STEM [29], where all nodes are in the sleep mode until they are woken up by
their previous-hop neighbor using a wake-up radio. STEM is combined with topology
control routing schemes such as SPAN and GAF to reduce energy consumption
resulting in increased node lifetime. However, the STEM protocol is limited based
on the wake-up range.

Sleeping routing protocols discussed in this section have the benefit of extending
network lifetime by enabling more sensors to sleep (and hence be available for

186 R. Muraleedharan et al.

routing). However, they do not provide any guarantee about the quality of service
(QoS). For example, when several nodes are sleeping, the routes may be longer than
the optimal routes where all the nodes are awake and potential routers. Additionally,
there may be reliability issues using the limited redundancy of the routes due to
sensor sleeping. One approach to alleviate this issue and to trade off energy with
reliability is to use multipath routing, where the data are sent over multiple paths to
the sink. In the next section, we discuss choosing an optimal degree of redundancy
and selecting the set of paths to achieve the best reliability-energy balance.

4.3 Sleeping Multipath Routing

Multipath routing [87–89] is used to increase the likelihood of reliable data deliv-
ery by sending multiple copies of data along different paths. To increase reliability,
Forward Error Correction (FEC) codes can be combined with multipath routing pro-
tocols [87]. However, while multipath routing is effective in increasing reliability, it
also requires more nodes to be involved in data delivery thus leading to higher energy
consumption (less sleeping) and shorter network lifetime. Sleeping multipath rout-
ing approaches can therefore achieve minimal energy consumption while supporting
network performance such as increased network throughput, and reliability.

A general Sleeping Multipath Routing approach to arbitrate this trade-off in relia-
bility and energy consumption was proposed in [90]. This Sleeping Multipath Rout-
ing approach can be applied to any multipath routing protocol by discovering disjoint
multiple routes between a source and the sink node. During this discovery, infor-
mation about the reliability of each route is collected. The sink can then use this
information, along with knowledge of the application’s reliability requirement, to
determine which set of disjoint routes meet the reliability requirement of the appli-
cation. Among this set, the one that minimizes energy (e.g., uses the fewest sensor
nodes) is selected, and the nodes on the remainder of the disjoint routes are put to
sleep. When multiple subsets of disjoint routes exist, these subsets can serve the
application one after the other. Thus, when the current disjoint routes deplete their
energy, another set takes over, thereby prolonging the network lifetime multiple times
depending on the available redundant subsets of disjoint routes.

This approach of sleeping multipath routing has been applied to a multipath ver-
sion of the Directed Diffusion algorithm [90]. While Directed Diffusion finds multi-
ple routes from a source node to the sink, there are no guarantees that these multiple
routes are disjoint. In the multipath version of Directed Diffusion [90], some changes
are made to the Directed Diffusion protocol to ensure disjoint routes are found and
to ensure that during route discovery, information about the reliability of the routes
is piggybacked onto the route discovery messages. This approach provides the sink
with information about the available disjoint routes and about the reliability of each
of these routes. With this information, the sink can determine which subsets of routes
meet the application requirements and select the subset that uses the least amount of
energy. Upon reinforcing the selected routes, the sink sends a negative reinforcement

6 Sleeping Techniques for Reducing Energy Dissipation 187

on the non-selected routes, such that all nodes on these non-selected routes can go
to sleep until the next route discovery or route maintenance interval.

The key requirements for applying sleeping at the routing level are to maintain
network connectivity and reliability while minimizing energy waste in the nodes not
serving as routers (topology control) or those routers that are not currently routing
data (sleeping routing and sleeping multipath routing). In the previous sections, we
discussed the possibility for nodes to sleep at the MAC layer or the routing layer, and
this discussion prompts some intriguing questions such as what happens if we employ
sleeping at both the MAC and routing layers? Will we get more gain by sleeping
at both layers, or will these different sleeping techniques interact in a performance
degrading manner? How can we achieve even higher gains through coordinated
sleeping at the MAC and routing layers? In the following section, we examine the
effects of sleeping at multiple layers in an uncoordinated way as well as cross-layer
sleeping for increased network lifetime.

5 Cross-Layer Sleeping Techniques

There are various steps involved in transmitting a message from a sender to a receiver,
but the most important of all is coordination not just among the sensors but also among
the protocols at each layer of the protocol stack. Unlike traditional networks, wire-
less sensor networks depend on the cooperation of individual nodes to provide the
required accuracy, reliability and efficiency. Therefore, the distributed yet coopera-
tive nature of the nodes can be exploited to the application’s benefit. As discussed
previously, sleeping at both the MAC and the Routing layers conserves energy; there-
fore, a cross-layered approach that exploits the cooperative nature of sensor networks
promises even higher energy savings.

5.1 Effects of Uncoordinated Sleeping in the Stack Layers

The main factor that ensures improved performance for sleeping is coordination
between multiple layers for any given network. In any application with uncoordinated
sleeping between multiple layers, a node turned off by the routing layer can be woken
up by the MAC layer based on its duty cycle, thus primarily following the MAC layer
schedule and consuming more energy by idle listening [80]. On the other hand, cross-
layer coordinated sleeping can significantly improve network throughput and data
delivery, especially when the sleeping is tailored based on network conditions and
application requirements that change over time. Therefore, a smart decision made by
a power manager to switch between sleeping schemes with cross-layer coordination
can outperform single layer sleeping schemes [80].

188 R. Muraleedharan et al.

5.2 Cross Layer Sleeping

In this section, we examine approaches where the sleeping technique is extended as
a cross layer approach to two or more layers of the protocol stack. For example, the
network and MAC layers can be combined or interact to improve energy efficiency
and network reliability. The primary concern is the coordination between different
layers and the feasibility of such an approach in real-time environments. Cross-
layered sleeping can be achieved by coordinating the sleeping in multiple stack
layers.

Sleeping using scheduling algorithms combined with routing protocols is used
to form a cross-layered approach in [91–93]. Zhu et al. [91], proposed a duty cycle
based on the Connected K-Neighborhood (CKN) sleep scheduling algorithm [83] for
a two-phase greedy forwarding (TPGF) geographical multipath routing algorithm,
where the CKN algorithm aims at allowing a portion of the nodes to sleep while main-
taining network connectivity among the rest of the nodes. Since the TPGF multipath
routing focuses on exploring the maximum number of optimal node-disjoint routing
paths to minimize path length and end-to-end transmission delay, using the CKN
algorithm proves that waking up more sensor nodes does not always help to find
more transmission paths, nor does it reduce the average length of the transmission
paths found by TPGF.

Ha et al. proposed a cross-layer sleep scheduling technique based on an orga-
nization approach called Sense-Sleep Trees (SS-Trees) [92, 95], where an iterative
algorithm is used to determine the feasible SS-tree structure. All the SS-trees origi-
nate from the sink, and the channel access is performed using a CSMA-based MAC
with implicit acknowledgements. In the initialization stage, the sink gathers network
connectivity information, computes SS-trees and disseminates sleep schedules to
every node. In the operation stage, nodes switch between sleep and active modes,
and during long inactive periods, i.e., when sensing is not needed, the entire network
will enter a hibernation mode to conserve energy. In addition, the SS-trees must be
constructed in such a way as to minimize the number of shared nodes to minimize
the number of co-SS tree neighbors of each node, and the forwarding message cost
between the data sink and each node. In [95], a greedy approach is proposed to
compute the SS-trees. The optimal sleep schedule is applied on the computed SS-
tree to maximize energy efficiency. This approach requires sensors to maintain local
connectivity with their one-hop neighbors.

MAC and routing layer sleeping are combined in ORAS [93], where opportunistic
routing and asynchronous sleeping are applied. Each node in ORAS independently
maintains its own low duty cycle, with minimal inter-node coordination or synchro-
nization clocks. ORAS employs an expected number of transmissions (ETX)-based
forwarder election mechanism to have high throughput and low delay. Due to the
opportunistic nature of ORAS, it exploits both the spatial and temporal diversity of
traffic during transmission.

In [96], an energy efficient cross-layer MAC protocol called MAC-CROSS is
proposed, where routing information at the network layer is used in the MAC layer

6 Sleeping Techniques for Reducing Energy Dissipation 189

Table 1 ABBREVIATIONS

Abbreviation Description

ACK ACKnowledgement
ADV-MAC ADVertisement-based MAC
AI-LMAC Adaptive Information-centric and Lightweight

MAC
ASCENT Adaptive Self-Configuring sEnsor Networks

Topology
ATMA Advertisement-based TDMA
B-MAC Berkeley MAC
BAW Bulk Acoustic Wave
BMSI Bio-Mechanical Signal Interpreter
CAP Contention Access Period
CDMA Code Division Multiple Access
CFP Contention Free Period
CKN Connected K-Neighborhood
CLEEP Cross-Layer Energy-Efficient Protocol
CP Communicating Parties
CSMA Carrier Sense Multiple Access
CSMA/CA Collision Sense Multiple Access with

Collision Avoidance
CTS Clear to Send
DCF Distributed Coordination Function
DEE-MAC Dynamic Energy Efficient TDMA-based MAC
EA-MAC Energy Adaptive MAC
ETX Expected number of transmissions (TX)
FEC Forward Error Correction
FDMA Frequency Division Multiple Access
FLAMA Flow Aware Medium Access
GAF Geography-informed energy conservation for

Ad Hoc Routing
GSP Gossip-based Sleep Protocol
ID Identifier
ISTH Incremental Shortest-path Tree Heuristic
LEACH Low Energy Adaptive Clustering Hierarchy
LF Low Frequency
LMAC Lightweight MAC
LPL Low Power Listening
MAC Medium Access Control
MAC-CROSS MAC CROSS-layer design Protocol
MCU Microcontroller unit
MH-TRACE MultiHop-Time Reservation using Adaptive

Control for Energy efficiency

(continued)

190 R. Muraleedharan et al.

Table 1 (continued)

Abbreviation Description

ODMAC On-Demand MAC
ORAS Opportunistic Routing with Asynchronous

Sleeping
PACT Power Aware Clustered TDMA
PAMAS Power Aware Multiple-Access protocol with

Signaling
PDR Packet Delivery Rate
PHY Physical layer
PW-MAC Predictive Wakeup MAC
RAM Random Access Memory
RFID Radio-Frequency IDentification
RI-MAC Receiver-Initiated MAC
ROS Route-Oriented Sleep
RTS Request To Send
S-MAC Sensor MAC
S-MAC/AL Sensor MAC with Adaptive Listening
SCP-MAC Scheduled Channel Polling –MAC
SS-TDMA Self-Stabilizing TDMA
SS-Trees Sense-Sleep Trees
STEM Sparse Topology and Energy Management
SYNC Synchronization
T-MAC Timeout MAC
TA-MAC Traffic Aware MAC
TDMA Time Division Multiple Access
TP Third Parties
PGF Two-Phase Greedy Forwarding
TRAMA Traffic Adaptive Medium Access
UHF Ultra High Frequency
UP Upcoming communicating Parties
WISP Wireless Identification and Sensing Platform
WiseMAC Wireless sensor MAC
Z-MAC Zebra MAC

to maximize sleep duration in each node. In MAC-CROSS, nodes are categorized
as communicating parties (CP), upcoming communicating parties (UP), and third
parties (TP), based on any nodes that are currently participating in communication,
nodes that are to be involved in upcoming data transmissions and nodes that are not
included in any routing paths, respectively. The notification of role change from UP to
TP is performed by the modified MAC protocol using RTS and CTS control frames,
where new fields Final_destination_Addr and UP_Addr are added. This ensures that
UP nodes are awake when TP nodes remain in their sleep modes. The process of
adding information to the control frames also helps the intermediate or routing nodes

6 Sleeping Techniques for Reducing Energy Dissipation 191

to update their MAC about the neighboring node’s role change. Thus, a cross-layer
approach to extend the lifetime of the sensors is attained in MAC-CROSS.

CLEEP [97] combines the physical, MAC and network layer strategies to extend
the network’s lifetime. In the physical layer, the transmission power between two
nodes is coordinated by maintaining a neighbor node information table and updat-
ing this periodically. The optimal routing path is formed by applying Incremental
Shortest-path Tree Heuristic (ISTH) on the neighborhood information table formed
by the PHY layer. In addition, ISTH requires different sensors to share forwarder
nodes in order to reduce the number of active nodes in the network, thus conserving
energy. Finally, the MAC layer uses duty cycle scheduling based on the routing infor-
mation, and applies an RTS/CTS mechanism similar to the 802.11 MAC protocol to
avoid collisions and overhearing.

Yang et al. proposed cross-layer coordination in [80] based on priority, using
sleeping Directed Diffusion and S-MAC as the routing and MAC layer approaches,
respectively. Higher priority is given to sleeping Directed Diffusion, where nodes
that are not involved in data delivery are put to sleep during successive flooding that
overrides the functionality of S-MAC. S-MAC effectively schedules a node only
when sleeping Directed Diffusion needs to keep this node active, thus prioritizing
sleeping Directed Diffusion over S-MAC sleeping.

Sleeping can be achieved using a layered approach or cross-layered coordination,
where simple scheduling algorithms are used independently or in a coordinated
manner to conserve energy and to attain a common goal of extending the lifetime of
a sensor. Routing layer sleeping is more suited for networks with high redundancy
or high contention, whereas MAC layer sleeping is more sensitive to contention
[80]. Understanding such characteristics of the network can aid in making smart
decisions to dynamically switch between different sleeping schemes. In the following
section, a sleep manager technique is explored. This technique dynamically applies
sleeping schemes to the protocol stack depending on the application and network
requirements.

5.3 Sleep Manager

A sensor network environment can change over the course of the network lifetime.
Hence, novel approaches are needed that can tolerate changes in the network condi-
tions and application requirements, yet provide solutions to incorporate sleeping for
energy savings without compromising performance or reliability.

The feasibility of applying an adaptive sleep manager that can dynamically switch
sleeping schemes at the routing layer or the MAC layer or both layers with cross-
layer coordination is proposed in [85]. This approach is demonstrated using a sleep
manager that manages Sleeping Multipath Directed Diffusion at the routing layer
and S-MAC at the MAC layer. The sleep manager estimates packet delay of S-MAC
using the Markov model for duty-cycled MAC protocols proposed in [98]. This
estimated delay is then used by the Sleeping Multipath Directed Diffusion protocol

192 R. Muraleedharan et al.

Fig. 9 Network lifetime
comparison of adaptive and
non-adaptive sensor sleeping
as the number of sensors varies
throughout the simulation
time for different application
reliability requirements [85]

to optimize the sleeping timers at the routing layer, so that sensors will neither be
put to sleep at the routing layer when the MAC layer has not delivered the pending
packets, nor be awake for an unnecessary time after the MAC layer finishes packet
delivery. As the network conditions change over time, the estimation of S-MAC
packet delay varies, and hence the sleeping timers at the routing layer are set accord-
ingly. The sleep manager also (1) makes routing layer sleeping decisions overrule the
MAC layer sleeping decisions, and (2) selects appropriate routing paths to support
the application’s reliability requirement, which may change over time. The simula-
tion results in [85] show that the sleep manager can effectively extend the network
lifetime. Moreover, the sleep manager significantly prolongs the network lifetime
while meeting the reliability requirements under the scenarios of dynamic reliabil-
ity requirements and varying network conditions. As shown in Fig. 9, the network
lifetimes using adaptive Sleeping Multipath Directed Diffusion and S-MAC signif-
icantly improve as network size varies throughout the simulation when compared
to the non-adaptive Sleeping Multipath Directed Diffusion and S-MAC, for various
application reliability requirements. This shows that adaptive sensor sleeping can
control key parameters in a dynamic manner to handle varying network conditions,
thereby improving network lifetime.

6 Conclusions

Much energy is wasted in wireless sensor networks due to idle listening, relaying
data and redundant data gathering by active sensors in the network. Sleeping is a
key technique used to reduce this energy waste. In this chapter, the need for sleeping
techniques is discussed, and different approaches to sleeping at the MAC and Routing
layers as well as cross-layer sleeping are described and analyzed. Sleeping techniques
prolong the network lifetime, thereby reducing network maintenance and cost, and
thus they are crucial for future wireless sensor network deployments.

6 Sleeping Techniques for Reducing Energy Dissipation 193

References

1. D. Dudek, C. Haas, A. Kuntz, M. Zitterbart, D. Kruger, P. Rothenpieler, D. Pfisterer, S. Fischer,
A wireless sensor network for border surveillance, in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’09). (ACM, New York, 2009), pp. 303–304

2. P. Corke, T. Wark, R. Jurdak, D. Moore, P. Valencia, Environmental wireless sensor networks.
Proc. IEEE 98(11), 19031917 (2010)

3. N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D. Estrin, A
wireless sensor network for structural monitoring, in Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys ’04). (ACM, New York, 2004),
pp. 13–24

4. U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper, B. Agarwalla, J. Shin, P. Hutto, A.
Paul, Dynamic data fusion for future sensor networks. ACM Trans. Sen. Netw. 2(3), 404–443
(2006)

5. R. Rajagopalan, P.K. Varshney, Data aggregation techniques in sensor networks: A survey.
IEEE Commun. Surveys Tutorials, 8(4) (4th Quarter) (2006)

6. M. Holland, T. Wang, B. Tavli, A. Seyedi, W. Heinzelman, Optimizing physical-layer para-
meters for wireless sensor networks. ACM Trans. Sen. Netw. 7, 4, (Article 28 Feb. 2011), doi:
10.1145/1921621.1921622

7. Texas Instruments (2011) Mixed Signal Microcontroller. Revised Aug 2011: http://www.ti.
com/lit/ds/symlink/msp430f2001.pdf

8. H. Ba, J. Parvin, L. Soto, I. Demirkol, W. Heinzelman, Passive RFID-based wake-up radios for
wireless sensor network, in appears, in Wirelessly Powered Sensor Networks and Computational
RFID (Springer, Berlin, 2011)

9. Y. Zhang, C.-H. Feng, I. Demirkol, W. Heinzelman, Energy-efficient duty cycle assignment
for receiver-based convergecast in wireless sensor networks, in IEEE GLOBECOM. pp. 1–5
(2010)

10. M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hamalainen, M. Hannikainen, T.D. Hamalainen
(2007) MAC protocols, in Ultra-Low Energy Wireless Sensor Networks in Practice. pp. 73–88.
(Wiley, West Sussex, England, 2007)

11. M. Kohvakka, M. Kuorilehto, M. Hannikainen, T.D. Hamalainen, Performance analysis of
IEEE 802.15.4 and zigbee for large-scale wireless sensor network applications, in Proceedings
of ACM International Workshop on Performance Evaluation of Wireless Ad hoc, Sensor, and
Ubiquitous Networks. Malaga, Spain. pp. 1–6 (2006)

12. M.R. Ahmad, E. Dutkiewicz, X. Huang A survey of low duty cycle MAC protocols in wire-
less sensor networks, in Emerging Communications for Wireless Sensor Networks, ed. by
A. Foerster, A. Foerster, (2011) ISBN: 978-953-307-082-7

13. R. Zheng, J.C. Hou, L. Sha, Asynchronous wakeup for ad hoc networks, in Proceedings of the
ACM symposium on Mobile ad hoc networking and, computing (MobiHoc), pp. 35–45 (2003)

14. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor net-
works, in Proceedings of the 21st International Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), New York (2002)

15. Y. Sun, O. Gurewitz, D.B. Johnson, RI-MAC: A receiver-initiated asynchronous duty cycle
MAC protocol for dynamic traffic loads in wireless sensor networks, in The 6th ACM Confer-
ence on Embedded Networked Sensor Systems, pp. 1–14 (2008)

16. S. Ray, I. Demirkol, W. Heinzelman, ADV-MAC: Analysis and optimization of energy effi-
ciency through advertisements for wireless sensor networks. Elsevier Ad Hoc Netw. J. 9(5),
876–892 (2011)

17. Y. Xue, N.H. Vaidya, A wakeup scheme for sensor networks: Achieving balance between
energy saving and end-to-end delay, in Proc. IEEE RTAS, pp. 19–26 (2004)

18. L. Gu, J.A. Stankovic, Radio-triggered wake-up capability for sensor networks, in Proceedings
of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS ’04.
pp. 27–36 (2011) doi: 10.1109/RTTAS.2004.1317246

http://www.ti.com/lit/ds/symlink/msp430f2001.pdf
http://www.ti.com/lit/ds/symlink/msp430f2001.pdf

194 R. Muraleedharan et al.

19. I. Demirkol, C. Ersoy, E. Onur, Wake-up receivers for wireless sensor networks: benefits and
challenges. IEEE Wireless Commun. 16(4), 88–96 (2009). doi. 10.1109/MWC.2009.5281260

20. R. Muraleedharan, L.A. Osadciw, Cognitive routing protocol for sensor based intelligent
transportation system, in Wireless Technologies in Intelligent Transportation Systems ed. by
M. Zhou, Y. Zhang, L.T. Yang (Nova Science Publishers, USA, 2009) ISBN 978-1-60741-588-
6

21. B. Otis, Y.H. Chee, J. Rabaey, A 400µW-RX, 1.6mW-TX super-regenerative transceiv-er for
wireless sensor networks. IEEE ISSCC 1, 396–397 (2005). doi:10.1109/ISSCC.2005.1494036

22. N. Pletcher, S. Gambini, J. Rabaey, A 65µW, 1.9 GHz RF to digital baseband wakeup receiver
for wireless sensor nodes. IEEE CICC, 539–542 (2007). doi: 10.1109/CICC.2007.4405789

23. S. Von der Mark, R. Kamp, M. Huber, G. Boeck, Three stage wakeup scheme for sensor
networks. SBMO/IEEE MTT-S 205–208 (2005). doi. 10.1109/IMOC.2005.1579978

24. J. Ansari, D. Pankin, P. Mähönen, Radio-triggered wake-ups with addressing capa-
bilities for extremely low power sensor network applications. PIMRC 1–5, (2008).
doi:10.1109/PIMRC.2008.4699501

25. B. Van der Doorn, W. Kavelaars, K. Langendoen, A prototype low-cost wakeup radio for the
868 MHz band. IJSNET 5, 22–32 (2009). doi:10.1504/IJSNET.2009.023313

26. Austria Microsystems (2010) AS3933 3-D Low Frequency RF Wake-up Receiver. http://www.
austriamicrosystems.com/Wake-up-receiver/AS3933. Accessed 12 Dec 2010

27. A. Sanchez, J. Aguilar, S. Blanc, J.J. Serrano, RFID-based wake-up system for wireless sensor
networks. Proc. SPIE 8067. 806708 (2011). doi. 10.1117/12.887039

28. G.U. Gamm, M. Kostic, M. Sippel, L.M. Reindl, Low power wireless sensor node for use in
building automation, in IEEE 12th Annual Wireless and Microwave Technology Conference
(WAMICON), pp. 1–6 (2011). doi: 10.1109/WAMICON.2011.5872856

29. C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, Optimizing sensor networks in the
energy-latency-density design space. IEEE Trans. Mobile Comput. 1(1), 70–80 (2002). doi:10.
1109/TMC.2002.1011060

30. A.G. Ruzzelli, R. Jurdak, G.M.P. O’Hare, On the RFID wake-up impulse for multihop sensor
network, in Proceedings Convergence of RFID and Wireless Sensor Networks and Their Appli-
cations (SenseID) Workshop at ACM Int’l Conference Embedded Networked Sensor Systems
(Sensys ’07), Nov 2007

31. R. Jurdak, A.G. Ruzzelli, G.M.P. O’Hare, Multi-hop RFID wake-up radio: Design, evaluation
and energy tradeoffs, in ICCCN’08, 1–8 (2008). doi. 10.1109/ICCCN.2008.ECP.124

32. H. Ba, I. Demirkol, W. Heinzelman, Feasibility and benefits of passive RFID wake-up radios
for wireless sensor networks, in Global Telecommunications Conference (GLOBECOM 2010),
pp. 1–5 (2010). doi: 10.1109/GLOCOM.2010.5683585

33. H. Javaheri, G. Noubir, S. Noubir, RF control of biological systems: Applications to wireless
sensor networks, in Proceedings of Nano-Net, Jan 2009

34. D.H. Goldberg, A.G. Andreou, P. Julian, P. Pouliquen, L. Riddle, R. Rosasco, VLSI imple-
mentation of an energy-aware wake-up detector for an acoustic surveillance sensor network.
ACM Trans. Sensor Networks. 2(4), 594–611 (2006)

35. M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, J.A. Paradiso, CargoNet: a low-cost
micropower sensor node exploiting quasi-passive wakeup for adaptive asychronous monitor-
ing of exceptional events, in Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems, Sydney (2007). doi: 10.1145/1322263.1322278

36. S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: Survey and implications, Depart-
ment of Computer Science and Engineering (CSE), Indian Institute of Technology Bombay
(IITB), Tech. Rep. IITB/CSE/2008/December/19. TR-CSE-2008-19 (2008)

37. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless sensor networks for
habitat monitoring, in Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications, Sept28–28, Atlanta (2002). doi:10.1145/570738.570751

38. M. Perillo, W. Heinzelman, Wireless Sensor Network Protocols (Appears in Fundamental Algo-
rithms and Protocols for Wireless and Mobile Networks). (CRC Hall, Boca Raton, 2005)

http://dx.doi.org/10.1109/ISSCC.2005.1494036
http://dx.doi.org/10.1504/IJSNET.2009.023313
http://www.austriamicrosystems.com/Wake-up-receiver/AS3933
http://www.austriamicrosystems.com/Wake-up-receiver/AS3933
http://dx.doi.org/10.1109/TMC.2002.1011060
http://dx.doi.org/10.1109/TMC.2002.1011060

6 Sleeping Techniques for Reducing Energy Dissipation 195

39. S.-C. Wang, A. Helmy, Performance limits and analysis of contention-based IEEE 802.11 MAC,
in Proceedings 31st IEEE Conference on Local, Computer Networks, pp. 418–425 (2006)

40. S. Singh, C.S. Raghavendra, PAMAS–power aware multi-access protocol with signalling
for ad hoc networks. ACM SIGCOMM Comput. Commun. Rev., 28(3), 5–26 (1998). doi.
10.1145/293927.293928

41. H. Gong, J. Cao, M. Liu, L. Chen, L. Xie, A traffic aware, energy-efficient MAC protocol
for wireless sensor networks. Intl J.Ad Hoc Ubiquitous Comput., 4, 148–156 (2009). doi:
10.1504/IJAHUC.2009.024517

42. P. Lin, C. Qiao, X. Wang, Medium access control with a dynamic duty cycle for sensor networks,
in IEEE Wireless Communications and Networking Conference. vol. 3, pp. 1534–1539 (2004)

43. T.V. Dam, K. Langendoen, An adaptive energy-efficient MAC protocol for wireless sensor
networks, in The First ACM Conference on Embedded Networked Sensor Systems (Sensys‘03).
ACM, New York, pp. 171–180 (2003). doi:10.1145/958491.958512

44. Y. Kwon, Y. Fang, H. Latchmun, Fast collision resolution (FCR) MAC algorithm for wireless
local area networks. Proc. IEEE GLOBECOM. 3, 2250–2254 (2002). doi: 10.1109/GLO-
COM.2002.1189032

45. W. Ye, J. Heidemann, D. Estrin, Medium access control with coordinated, adaptive sleep-
ing for wireless sensor networks. IEEE/ACM Trans. Networking, pp. 93–506 (2004).
doi:10.1109/TNET.2004.828953

46. IEEE 802.15.4-(2006) IEEE Standard for Information Technology-Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) specifications for Low Rate Wireless Per-
sonal Area Networks (LR-WPANs)

47. J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless sensor networks,
in ACM SenSys’04. ACM, New York, pp. 95–107 (2004). doi: 10.1145/1031495.1031508

48. M. Buettner, G.V. Yee, E. Anderson, R. Han, X-MAC: a short preamble MAC protocol for
duty-cycled wireless sensor networks, in ACM SenSys ’06, ACM, New York, pp. 307–320
(2006). doi:10.1145/1182807.1182838

49. W. Ye, F. Silva, J. Heidemann, Ultra-low duty cycle MAC with scheduled channel polling.
SenSys06. ACM, New York, pp: 321–334 (2006). doi:10.1145/1182807.1182839

50. A. El-Hoiydi, J.-D. Decotignie, WiseMAC: An ultra low power MAC protocol for multi-hop
wireless sensor networks, in First Int. Workshop on Algorithmic Aspects of Wireless Sensor
Networks (ALGOSENSORS). Lecture Notes in Computer Science. LNCS 3121 (2004)

51. Y. Sun, O. Gurewitz, D.B. Johnson, RI-MAC: A receiver-initiated asynchronous duty cycle
MAC protocol for dynamic traffic loads in wireless sensor networks. SenSys08. ACM, New
York, pp. 1–14 (2008). doi: 10.1145/1460412.1460414

52. L. Tang, Y. Sun, O. Gurewitz, D.B. Johnson, PW-MAC: An energy-efficient predictive-wakeup
MAC protocol for wireless sensor networks, in Proceedings of the 30th IEEE International
Conference on Computer Communications (INFOCOM 2011), pp: 1305–1313 (2011)

53. K. Kunert, TDMA-based MAC protocols for wireless sensor networks, in State of the
Art and Important Research Issues. http://www2.hh.se/staff/tola/ces_2005/papers/kristina_
kunert_final.pdf (2005)

54. W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication pro-
tocol for wireless microsensor networks, in Proceedings of the HICSS ’00. IEEE Computer
Society. Washington, DC (2000). doi: 10.1109/HICSS.2000.926982

55. G. Pei, C. Chien, Low power TDMA in large wireless sensor networks, in Military Communi-
cations Conference, 2001. MILCOM 2001. Communications for Network-Centric Operations:
Creating the Information Force. IEEE, vol. 1, pp. 347–351 (2002). doi:10.1109/MILCOM.
2001.985817

56. B. Tavli, W. Heinzelman, MH-TRACE: multihop time reservation using adaptive control for
energy efficiency. Selected Areas in Communications. IEEE J. 22(5), 942–953 (2004). doi:10.
1109/JSAC.2004.826932

57. S.S. Kulkarni, M.U. Arumugam, TDMA service for sensor networks, in Proceedings of the
24th International Conference on Distributed Computing Systems Workshops. IEEE Computer
Society. Washington, pp. 604–609 (2004)

http://www2.hh.se/staff/tola/ces_2005/papers/kristina_kunert_final.pdf
http://www2.hh.se/staff/tola/ces_2005/papers/kristina_kunert_final.pdf
http://dx.doi.org/10.1109/MILCOM.2001.985817
http://dx.doi.org/10.1109/MILCOM.2001.985817
http://dx.doi.org/10.1109/JSAC.2004.826932
http://dx.doi.org/10.1109/JSAC.2004.826932

196 R. Muraleedharan et al.

58. S. Cho, K. Kanuri, J.-W. Cho, J.-Y. Lee, S.-D. June, Dynamic Energy Efficient TDMA-based
MAC Protocol for Wireless Sensor Networks (Autonomic and Autonomous Systems and Inter-
national Conference on Networking and Services). (Papeete, Tahiti, 2005), pp. 48–48

59. J. Mao, Z. Wu, X. Wu, A TDMA scheduling scheme for many-to-one communications in
wireless sensor networks. Comput. Commun. 30(4), 863–872 (2007). doi:10.1016/j.comcom.
2006.10.006

60. V. Rajendran, J. Garcia-Luna-Aceves, K. Obraczka, Energy-efficient, application-aware
medium access for sensor networks, in 2nd IEEE Conference on Mobile Ad-hoc and Sensor
Systems (MASS 2005) (2005). doi: 10.1109/MAHSS.2005.1542852

61. L. Campelli, A. Capone, M. Cesana, A receiver oriented MAC protocol for wireless sensor
networks. In mobile adhoc and sensor systems. IEEE International conference, pp 1–10 (2007).
doi: 10.1109/MOBHOC.2007.4428626

62. L.V.. Hoesel, P. Havinga, A lightweight medium access protocol (LMAC) for wireless sensor
networks, in 1st Intl Workshop on Networked Sensing Systems (INSS) Tokyo, Japan, pp 205–208
(2004)

63. S. Chatterjea, L.V. Hoesel, P. Havinga, AI-LMAC: An adaptive information-centric and light-
weight MAC protocol for wireless sensor networks, in 2nd Int. Conf. on Intelligent Sen-
sors, Sensor Networks and Information Processing, pp. 381–388 (2004). doi: 10.1109/ISS-
NIP.2004.1417492

64. I. Demirkol, C. Ersoy, F. Alagoz, MAC protocols for wireless sensor networks: A survey. IEEE
Commun. Magaz. 44(4), 115–121 (2006). doi:10.1109/MCOM.2006.1632658

65. L. Deliang, P. Fei, Energy-efficient MAC protocols for Wireless Sensor Networks (Information
and Communication Technologies). (Beihang University, Beijing, 2009)

66. I. Rhee, A. Warrier, M. Aia, J. Min, Z-MAC: A hybrid MAC for wireless sensor networks.
Networking. IEEE/ACM Trans. 16(3), 511–524 (2008)

67. S. Ray, I. Demirkol, W. Heinzelman, ATMA: Advertisement-based TDMA protocol for bursty
traffic in wireless sensor networks, in Global Telecommunications Conference (GLOBECOM
2010) (2010). doi: 10.1109/GLOCOM.2010.5683930

68. S. Ray, I. Demirkol, W. Heinzelman, ADV-MAC: Advertisement-based MAC protocol for
wireless sensor networks, MobiQuitous ’09, pp. 1–2, July 2009

69. R. Jurdak, A.G. Ruzzelli, G. O’Hare, Radio sleep mode optimization in wireless sensor net-
works. IEEE Trans. Mobile Comput. 9(7), 955–968 (2010)

70. A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor
networks. Trans. Embedded Comput. Sys. 6(4), 2007 (2007)

71. A. Eu, W.K. Seah, H.-P. Tan, A study of MAC schemes for wireless sensor networks powered
by ambient energy harvesting, in WICON ’08 Proceedings of the 4th Annual International
Conference on Wireless Internet, pp. 1–9 (2008)

72. X. Fafoutis, N. Dragoni, ODMAC: An on-demand MAC protocol for energy harvesting - wire-
less sensor networks, in Proceedings of the 8th ACM Symposium on Performance evaluation
of wireless ad hoc, sensor, and ubiquitous networks. PE-WASUN ’11, pp 49–56 (2011)

73. J. Kim, J.-W. Lee, Energy adaptive MAC protocol for wireless sensor networks with RF energy
transfer, in Proceedings of the Third International Conference on Ubiquitous and Future Net-
works (ICUFN). Dalian, China, pp. 89–94 (2011)

74. P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput. Survey
(CSUR) 37(2), 164–194 (2005). doi:10.1145/1089733.1089736

75. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc routing, in
7th Annual International Conference on Mobile Computing and Networking, pp. 70–84 (2001)

76. B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span: An energy-efficient coordination
algorithm for topology maintenance, in Ad Hoc Wirleess Networks, vol. 8, issue 5, pp. 481–
494. Kluwer Academic Publishers, Dordrecht (2002)

77. A. Cerpa, D. Estrin, Ascent: Adaptive self-configuring sensor networks topologies. IEEE Trans.
Mobile Comput. 3, 3, 272–285 (2002)

78. H. Frey, D. Gorgen, Geographical cluster-based routing in sensing-covered network. IEEE
Trans. Parallel Distributed Syst. 17(9), 899–911 (2006). doi:10.1109/TPDS.2006.124

http://dx.doi.org/10.1016/j.comcom.2006.10.006
http://dx.doi.org/10.1016/j.comcom.2006.10.006
http://dx.doi.org/10.1109/MCOM.2006.1632658
http://dx.doi.org/10.1145/1089733.1089736
http://dx.doi.org/10.1109/TPDS.2006.124

6 Sleeping Techniques for Reducing Energy Dissipation 197

79. D. Simplot-Ryl, I. Stojmenović, J. Wu, Energy-efficient backbone construction, broadcasting,
and area coverage in sensor networks, in Handbook of Sensor Networks: Algorithms and
Architectures ed. by I. Stojmenović. Wiley, Hoboken. doi: 10.1002/047174414X.ch11

80. O. Yang, W. Heinzelman, A better choice for sensor sleeping, in 6th European Conference on
Wireless Sensor Networks (EWSN ’09) (2008)

81. R. Zheng, R. Kravets, On-demand power management for ad hoc networks, in The 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies, vol. 1, pp. 481–491
(2003)

82. H. Wang, W. Wang, D. Peng, H. Sharif, A route-oriented sleep approach in wireless sensor
network, in The 10th IEEE Singapore International Conference on Communication Systems,
pp. 1–5 (2006)

83. H. Cheng, X. Jia, An energy efficient routing algorithm for wireless sensor networks, in Inter-
national Conference on Wireless Communications. Networking and Mobile Computing, vol. 2,
pp. 905–910 (2005)

84. K.E. Haynes, R.R. Stough, R.G. Kulkarni, Towards a Percolation Model of Accessibility. http://
www.geovista.psu.edu/sites/geocomp99/Gc99/034/abs99-034.htm (1999)

85. O. Yang, Sleeping Strategies for Wireless Sensor Networks, PhD Dissertation. University of
Rochester, 2011

86. X. Hou, T. Tipper, J.F. Kabara, D. Yupho, GSP: Gossip-based sleep protocol for energy effi-
cient routing in wireless sensor networks, in The 16th International Conference on Wireless
Communications. Calgary, Alberta, Canada (2004)

87. S. Dulman, T. Nieberg, J. Wu, P. Havinga, Trade-Off between traffic overhead and reliability in
multipath routing for wireless Ssensor networks, in Wireless Communications and Networking
Conference, pp. 1918–1922 (2003)

88. B. Yahya, J. Ben-Othman, REER: Robust and energy efficient multipath routing protocol for
wireless sensor networks, in Global Telecommunications Conference, pp. 1–7 (2009)

89. L. He, Efficient multi-path routing in wireless sensor networks, in The 6th International Con-
ference on Wireless Communications Networking and Mobile, Computing, pp. 1–4 (2010)

90. O. Yang, W. Heinzelman, Sleeping multipath routing: A trade-off between reliability and
lifetime in wireless sensor networks. Global Communication Conference, Houston (2011)

91. C. Zhu, L. Yang, L. Shu, L. Wang, T. Hara, Sleep Scheduling Towards Geographic Routing in
Duty-Cycled Sensor Networks with A Mobile Sink, in The 8th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Salt Lake
City (2011)

92. R.W. Ha, P.-H. Ho, X.S. Shen, Cross-layer organization for wireless sensor networks using
sense-sleep trees. Proc. WirelessCom, 2, 952–957 (2005)

93. S. Liu, M. Sha, L. Huang, ORAS: Opportunistic routing with asynchronous sleep, in Inter-
national Conference on Future Computer and Communication (ICFCC 2010). (IEEE Press,
Wuhan, China, 2010)

94. S. Nath, P.B. Gibbons, Communicating via fireflies: geographic routing on duty-cycled sen-
sors, in Proceedings of the 6th International Conference on Information Processing in Sensor
Networks. IPSN ’07, pp 440–449 (2007)

95. R. Ha, A Sleep Scheduling Based Cross Layer Design Approach for Application Specific Wire-
less Sensor Network, Dissertation. University of Waterloo, Canada (2006)

96. International Workshops: XRA, IWSN, MEGA, and ICSE (Springer, Harbin, 2006)
97. S. Liu, Y. Bai, M.o. Sha, Q. Deng, D. Qian, CLEEP: A novel cross-layer energy-efficient proto-

col for wireless sensor networks, in 4th International Conference on Wireless Communications.
Networking and Mobile Computing. WiCOM ’08. pp. 1–4 (2008)

98. O. Yang, W. Heinzelman, Modeling and performance analysis for duty-cycled MAC protocols
in wireless sensor networks, in IEEE Transactions on Mobile Computing, pp: 905–921 (2012)

http://www.geovista.psu.edu/sites/geocomp99/Gc99/034/abs99-034.htm
http://www.geovista.psu.edu/sites/geocomp99/Gc99/034/abs99-034.htm

Part III
Routing

Chapter 7
Energy-Aware Routing for Wireless Sensor
Networks

Ahmed E. A. A. Abdulla, Hiroki Nishiyama, Nirwan Ansari and Nei Kato

Abstract Wireless sensor networks have attracted much attention due to their
ability to collect data from areas of interest. The limited energy capacity along with
the difficulty of charging batteries of deployed sensors render energy-aware routing
essential for sustained operation of wireless sensor networks. In this chapter, we clas-
sify energy-aware routing algorithms into five categories according to their network
architecture: flat multi-hop routing that finds paths to minimize energy consump-
tion or increase sensor network lifetime, hierarchical routing that creates a hierarchy
and applies data-aggregation to reduce energy consumption, hybrid multi-hop rout-
ing that is a combination of the former two and mitigates the energy hole problem,
data-centric routing that performs in-network data-aggregation to eliminate waste-
ful transmissions, and location-based routing that uses location information to reduce
the energy consumption of the wireless sensor network. Furthermore, we present a
cross-cutting discussion which addresses data-aggregation, network lifetime defin-
ition, routing overhead, the energy hole phenomenon, and collisions/interferences.

A. E. A. A. Abdulla · H. Nishiyama · N. Kato
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
e-mail: ahmed@it.ecei.tohoku.ac.jp

H. Nishiyama
e-mail: bigtree@it.ecei.tohoku.ac.jp

N. Kato
e-mail: kato@it.ecei.tohoku.ac.jp

N. Ansari (B)

Advanced Networking Laboratory, ECE Department, New Jersey Institute of Technology,
Newark, NJ, USA
e-mail: nirwan.ansari@njit.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 201
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_7,
© Springer-Verlag Berlin Heidelberg 2014

202 A. E. A. A. Abdulla et al.

1 Introduction

Advances in wireless communications and nanotechnology have facilitated the
widespread use of wireless sensor networks [4, 6, 14, 48]. Wireless sensor net-
works rely heavily on battery power to drive their functionality. When the energy of
a battery is depleted, the sensor loses its functionality. Replacing/charging the batter-
ies of a large number of sensors is an insurmountable task in terms of time and cost;
the task becomes infeasible in potentially dangerous terrain. Hence, severely limited
energy capacities of wireless sensor networks render energy-efficient technologies
indispensable for deploying wireless sensor networks. The energy consumption of a
wireless sensor node can be attributed to the following major activities:

1. Information gathering: energy consumed by the sensors onboard the nodes for
gathering information.

2. Computation: energy consumed for processing purposes, predominantly attri-
buted to the basic system operation.

3. Communications: energy consumed to transmit data from sensors to their neigh-
bors. This usually takes up the largest share of energy consumption of a wireless
sensor network.

In this chapter, we focus our attention on the energy consumption associated with
communications; in particular, we consider energy-aware routing for wireless sen-
sor networks. This kind of routing algorithms has a very different objective from
traditional routing algorithms; traditionally, routing has been designed to maximize
throughput and/or scalability. Although the aforementioned objectives are important,
communications is the major energy guzzler, and thus considering the energy con-
sumption of routing is of significant importance. Therefore, this chapter addresses
energy-aware routing for wireless sensor networks.

A wireless sensor network is usually deployed without the aid of infrastructure
such that sensors cooperate to facilitate communications in the wireless sensor net-
work. A wireless sensor network consists of two basic building blocks, namely,
a sink and a number of sensors, all of which are capable of communicating with each
other over a common wireless channel. The sink acts as the final point of collection,
and from which data can be extracted for further processing and transmission. The
sink assumes the role of a gateway because it is where all packets are routed, thus
enabling connection to other networks such as the Internet. In a practical implemen-
tation, the sink has access to a virtually unlimited energy source. Although we have
limited our discussion to a wireless sensor network with a single sink, the wireless
sensor network can, in general, have more than one sink. With each sink responsible
for collecting data from a sub-group of sensors, all the data collected from nodes of
all sub-groups are gathered into a single node for processing. As a result, this mode
of data gathering can be thought of as an integration of multiple wireless sensor
networks, each with a single sink. The second component of the sensor network is a
collection (hundreds or thousands) of sensors, which are responsible for collecting
data from their surroundings; to enable communications in an infrastructureless net-
work, they consume their limited energy reserves to relay data from other sensors,

7 Energy-Aware Routing for Wireless Sensor Networks 203

and thus decreasing the energy consumption of the sensors is the key objective of
energy-aware routing for wireless sensor networks. Energy-aware routing algorithms
can be classified into five categories according to their network architecture.

The first category is flat multi-hop routing, where routes from the source node
to the destination node are selected with low energy consumption in mind. The
second category is hierarchical multi-hop routing, where sensors take different roles
and form hierarchies. Hierarchical multi-hop routing reduce energy consumption
by decreasing the volume of data flowing within the wireless sensor network. The
third is hybrid multi-hop routing, which is a combination of the first and second
categories, and aims to mitigate the energy hole problem inherent to the many-to-one
(convergecast) traffic patterns in wireless sensor networks. The forth category is data-
centric routing that performs in-network data-aggregation in intermediate sensors
to reduce the energy consumption inefficiencies in classical routing algorithms. The
fifth is location-based routing, where location information is used to decrease the
energy consumption of the wireless sensor network. In this chapter, we examine
the landmark algorithms of each category that have largely shaped the roadmap for
innovation in this area. Moreover, we examine recently proposed state-of-the-art
routing schemes of each category.

The remainder of this chapter is organized as follows. Section 2 provides back-
ground materials of energy-aware routing in wireless sensor networks. Sections 3–7
examine various categories of energy-aware routing algorithms proposed for wire-
less sensor networks. We further discuss and compare these routing algorithms from
different perspectives in Sect. 8, and finalize this chapter with a conclusion in Sect. 9.

2 Single-Hop Versus Multi-Hop Energy Consumption

Owing to the lack of infrastructure support in wireless sensor networks, sensors need
to take the responsibility of transmitting the data they collected to the sink. In a rela-
tively small-scale wireless sensor network deployment, it may be possible for all the
nodes to transmit their collected data to the sink directly. For the majority of wireless
sensor networks applications, where nodes are far away from the sink, the simple
strategy of directly sending data to the sink does not work for a number of reasons.
We mention the most relevant of them. Firstly, the sensors have a limited transmis-
sion range and cannot transmit data over this hardware-specific range. Secondly,
long transmission distances are considered to be energy inefficient. Given a sending
and receiving node, the following equations quantify the energy consumption of the
sender and receiver [5, 34, 41],

es(i) = ε1dφ
i, j + ε2 (1)

er (j) = ε3. (2)

204 A. E. A. A. Abdulla et al.

Here, es(i) is the energy consumed for sending a unit of data by the sensor i to the
sensor j . φ is the path loss exponent dependent on the wireless fading environment,
and its value is usually from two to four, two for short distances and four for long
distances. The term ε1 is a constant specific to the specific wireless system. ε2 is
the electronics energy, characterized by factors such as digital coding, modulation,
filtering, and spreading of the signal. er (j) is the energy consumed by the receiving
node, which is a constant, ε3. Given that ε1 ∈ ε2 and ε1 ∈ ε3, Eq. (1) shows that the
energy consumption has a growth rate of order O(dφ

i, j). In other words, the energy
consumption efficiency degrades with the length of transmission distance, di, j .

Multi-hop transmission strategies are considered to be advantageous due to their
energy-efficient transmission distances. In a multi-hop transmission strategy, rather
than transmitting the data directly from the sending sensor to the receiving sensor,
one long transmission is divided into multiple shorter transmissions with each having
energy consumption according to Eq. (1). Evidently, transmitting at shorter distances
is more energy efficient. Therefore for the above-mentioned reasons, multi-hop rout-
ing is suitable for wireless sensor networks, where sensors cooperate with each other
to facilitate low-energy communications in wireless sensor networks.

3 Flat Multi-Hop Routing Algorithms

Flat multi-hop routing algorithms are based on concepts inherent from contemporary
networks [25]. In traditional wired networks, if a set of nodes are directly connected
together via a common medium, point-to-point communications between two neigh-
boring nodes can be easily executed via a data-link layer algorithm. If the two nodes
do not share a common wired link, the concept of routing, which is applying the
point-to-point data-link algorithm iteratively, applies to a packet as it passes from
one node to another till it reaches its destination. Since there are many possible
paths, choosing the best possible path defined by a specific criterion is dictated by
the routing algorithm.

The above-mentioned techniques are applicable to networks that are wireless
and lack infrastructure support, i.e., wireless sensor networks. The set of nodes
that are within the maximum transmission distance of each other are thought of
as neighbors, and can directly be connected via the wireless medium. Since many
paths exist between a source and destination pair, there must be criteria to select the
most appropriate path. In traditional wired networks, an emphasis has been placed
on choosing the path which maximizes the end-to-end throughput and minimizes
the delay (by selecting the path with the minimum number of hops, or the path
with the fastest links). These criteria are usually derived from the user requirements
(users want to have a fast connection). In wireless sensor networks, although the
end-to-end delay is important, the amount of energy consumed by the network is
even more critical as exhausted nodes will greatly affect the lifetime of the network.

7 Energy-Aware Routing for Wireless Sensor Networks 205

Fig. 1 An example of flat
multi-hop routing. Each sen-
sor can communicate with
other sensors within its maxi-
mum transmission range. The
arrow’s width represents the
amount of data that should
flow through its associated
link. Other links are not uti-
lized

Sensor node

Sink node

ji

Inactive link

Specifically, the routing algorithm can evaluate a path from the viewpoint of energy
consumption of a single link according to Eqs. (1) and (2).

3.1 Minimizing Energy Consumption

Toh [41] described a method to select paths that allow minimum energy consumption
as shown in Fig. 1. In the illustration, the flat energy-aware routing algorithm utilizes
the links indicated by arrows that minimize the energy consumed in the wireless
sensor network, while the rest of the links are inactive. The energy calculation method
is as follows. The energy-aware link cost is defined in terms of the amount of energy
consumed by each wireless link. More precisely, the energy burden on the two end
nodes, i.e., the sending and receiving nodes, can be quantified as

linkcost(i, j) = es(i) + er (j). (3)

Thus, the total energy consumed by the wireless sensor network for using path l, Pl ,
can be quantified as

Pl =
∑

linkcost(i, j) ⊂i, j ◦ l. (4)

The desired route, which can minimize the energy consumption for sending data
between any sensor, i , and the sink, Pmin

(i,sink), can be obtained from the following
equation

Pmin
(i,sink) = min

l◦L
Pl . (5)

Here, L is the set of all possible paths from sensor i to the sink. Thus, by routing
traffic through Pmin

(i,sink), the energy consumed by the wireless sensor network can be
minimized, hence ultimately increasing the lifetime of the wireless sensor network.

206 A. E. A. A. Abdulla et al.

3.2 Maximizing Network Lifetime

Chang and Tassiulas [10, 11] adopted concepts from linear programming to design a
routing algorithm that maximizes the lifetime of the wireless sensor network. We first
present their proposed model, followed by the theory and their proposed heuristic
algorithm that spreads the data flow equally among sensors to increase the lifetime
of the sensor network.

3.2.1 Linear Programming Model

Given a directed graph, G(N , L), in which a set of sensors, N , exist and are connected
together via a set of directed links (i, j), L . Here, i and j ◦ N , are the two sensors
that communicate via this link. Each sensor i has a set of sensors, Si , which can be
reached within its maximum transmission range. A link (i, j) exists in L if j ◦ Si .
Denote Ei as the initial battery energy reserve of sensor i . The energy consumed
for transmitting a message by sensor i to destination sensor j can be evaluated from
Eq. (1) and is denoted as ei j . Sensor i transmits to sensor j at the rate of qi j . Data
being transmitted from a source sensor to a destination sensor over a path is referred
to as a flow. It has quantity and direction. If it is from the source to the destination,
then it is referred to as a positive flow; otherwise, it is called a negative flow. Denote
O as the set of origin sensors, from which data are originated, and D as the set of
possible destination sensors.

We shall next present properties and the associated equations to model network
behavior. Firstly, the conservation of flow (the summation of all incoming flows
subtracting the sum of all outgoing flows in each node must be equal to the amount
of data generated from the node itself), as illustrated in Fig. 2, can be expressed in
form of a linear equation as

∑
j◦Si

q ji −
∑
k◦Si

qik = Qi , ⊂i ◦ (N − D). (6)

Here, Qi is the information generation rate of sensor i . The time period till the
energy of the sensor i is depleted, Ti (q), is inversely proportional to the amount of

k

i

j
qji qik

Qi

Fig. 2 Flow conservation at sensor i . The summation of all incoming flows to sensor i ,
∑

j◦Si
q ji ,

subtracting the summation of all outgoing flows from sensor i ,
∑

k◦Si
qik , equals the information

generated in sensor i , Qi

7 Energy-Aware Routing for Wireless Sensor Networks 207

data flowing through it, q = qi j : ⊂ j ◦ Si , that is,

Ti (q) = Ei∑
j◦Si

ei j qi j
. (7)

Network lifetime: The lifetime of the system is defined as the minimum lifetime
of a sensor in a wireless sensor network, i.e.,

TW SN (q) = min
i◦N

Ti (q). (8)

A network designer would like to maximize the lifetime of the wireless sensor
network, and thus the objective function can be formulated as follows,

max
q

TW SN (q). (9)

Furthermore, this can be expressed as

max
q

min
i◦N

Ei∑
j◦Si

ei j qi j
. (10)

The above optimization problem also serves as a model for understanding how
energy-aware routing algorithms can operate to maximize the lifetime of the wireless
sensor network. The basic observation is that if a sensor would have to transmit more
data than other sensors, it would live for a shorter time. Thus, the network lifetime
would decrease according to Eq. (8). Ultimately, to achieve the maximum lifetime,
a routing algorithm should equally spread the load among all sensors.

Theorem 1 (Necessary optimality condition [10]) Given that paths are of positive
flow to the destination. The minimum lifetime over all nodes is maximized ∀ The
lifetime of all paths from the source node to the destination node are equal.

Proof We prove the above theorem by contradiction. Let the lifetime of a path be
determined by the minimum lifetime over all the nodes in the path. Also, define a path
with positive flow as one with flows originating from the source to the destination.
Assume that the minimum lifetime over all nodes is maximized. Here, assume that
the lifetime of all paths with positive flow to the destination are not equal (contrary to
the conclusion of the above theorem). Then, there exists a path with positive flow that
has a shorter lifetime as compared to all other paths. This path’s lifetime, which is also
the minimum lifetime over all nodes, can be increased by moving a small amount of
positive flow from it to any of the other paths, thereby making its lifetime longer than
the minimum lifetime over all nodes before moving the flow. Thus, this contradicts
the first assumption that the minimum lifetime over all sensors is maximized. �

208 A. E. A. A. Abdulla et al.

3.2.2 Algorithm

Chang and Tassiulas [10] proposed two algorithms that spread flows equally among
all the paths. Both of them follow the same structure, as will be explained next; their
differences will be described afterwards.

For each node i ◦ (N − D) in the wireless sensor network,

1. Determine from which path to which path the flows should be redirected.
2. Determine the fraction of flows that should be diverted.
3. Redirect the fraction of flows as determined in Step 1 and Step 2.

The two algorithms differ in the way they implement Step 1. It may be imple-
mented based on the lifetime, calculated by Eq. (7), of the sending node and
the nodes along the path to the destination node. Additionally, it can be based on the
residual energy of the sending node and the intermediate nodes along the path to the
destination. The cost function is defined as

linkcost(i, j) = 1

Ei − ei j ni j
, (11)

where Ei is the residual energy of the sensor i , and ni j is the number of message
units transmitted from node i to node j (i.e., the size of flow traversing the link).

3.3 Recent Innovations

The seminal work of Chang and Tassiulas [10, 11] has paved the way for many
innovations for flat multi-hop routing algorithms. Indeed, many new routing algo-
rithms have been proposed to tackle the short comings of the foundation laid out by
them. We shall next highlight how these latest works advance the state of art in flat
multi-hop routing for wireless sensor networks.

The linear programming model presented in [10, 11] models the lifetime of the
wireless sensor network as the time when the first sensor dies. This definition of
network lifetime is not an accurate one because the network can still be functional
after the first sensor’s death. Many researchers have tried to improve this defini-
tion. For example, Karkvandi et al. [23] proposed a novel network lifetime criterion
based on Sensing Spatial Coverage (SSC), which refers to the ability of a sensor
to monitor a phenomenon of interest in an area. By using the SSC-based lifetime
definition, the network is able to improve the monitoring of the area of interest. Liu
and Cao [27] pointed out that in a wireless sensor network with low density, the
spacial temporal coverage requirements cannot be satisfied while satisfying the life-
time constraints. Therefore, they proposed to schedule sensors to sleep in order to
increase their coverage while meeting network lifetime requirements. Furthermore,
Naddafzadeh-Shirazi and Lampe [37] defined lifetime as the time till the network is

7 Energy-Aware Routing for Wireless Sensor Networks 209

unable to achieve given detection requirements (DRs), which are defined in terms of
probabilities of detection and false alarm as dictated by application requirements.

Liu et al. [28] considered maximization of network lifetime by scheduling sensors
to sleep during idle listening periods. They observed that the traffic is light most of the
time in many sensor network applications and the idle sensors are wasting valuable
energy during this period. Therefore, they proposed to include sleep cycle scheduling
in the routing problem to eliminate the energy wasted in idle periods and thus improve
the longevity of the wireless sensor network.

3.4 Summary

Flat multi-hop routing algorithms are based on classic concepts for traditional wired
networks. The basic idea is to modify the link cost to reflect the energy consumption
attributed to utilizing the wireless link between two sensors. After assigning link
costs to each link, a shortest-path algorithm such as Dijkstra’s algorithm [40] can
be utilized to find the least energy consuming path among a set of available paths
between a source node and a destination node. Generally, this category of routing
algorithms fails to capitalize on the redundancy that is inherent in wireless sensor
networks to reduce their energy consumption.

4 Hierarchical Routing Algorithms

Hierarchical routing assigns different roles to sensors. The hierarchy is formed when
some nodes are chosen to act as gateways (an intermediary) for other nodes.

The concept of hierarchical routing has been readily applied in traditional wired
networks [40]. The complexity of the routing process increases with the network
size. The number of interactions among sensors increases owing to the increased
interaction of the routing protocol initialization, thus leading to huge waste of com-
putation resources. Based on a clever insight that there is no need for every node to
know information about every other node, a hierarchy can be established. Follow-
ing the divide-and-conquer concept, the network can be divided into smaller areas,
sometimes referred to as regions, and then each region internally creates paths among
individual nodes. At the inter-region level, each region establishes the routes to other
regions, and individual nodes can communicate outside their regions through a spe-
cial node, often referred to as a gateway. Consequently, the computation cost can be
substantially decreased. The example presented here is a two-level hierarchy. Two
levels are definitely not sufficient for huge networks. In general, the number of levels
is dependent on the size of the network.

In the context of wireless sensor networks, regions are refereed to as clusters
and gateways as cluster heads. Adopting hierarchical network architectures allows
special operations to be assigned to the gateway of each cluster, viz, data-aggregation,

210 A. E. A. A. Abdulla et al.

where redundancy is capitalized as well as can be reduced, therefore reducing the
volume of data flows in the wireless sensor network. This eliminates many unneeded
network operations, and greatly reduces the energy consumption of the wireless
sensor network.

4.1 LEACH

Low Energy Adaptive Clustering Hierarchy (LEACH) [18] is the most popular form
of hierarchical routing for wireless sensor networks. LEACH as depicted in Fig. 3 is
a two-level hierarchy, with the sink acting at the top of the hierarchy. Time is divided
into time periods called rounds. In the beginning of each round, the sensors divide
themselves into two groups, a group of Cluster Heads (CHs) and a group of Cluster
Members (CMs).

The first group of sensors serve the role of CHs, and the remaining nodes assume
the role of CMs. The number of CHs is generally less than the number of CMs. The
wireless sensor network is divided into clusters. The distributed selection of cluster
shapes results in their resemblance to Voronoi diagrams centered on each CH.

According to the location of each CM, it will choose to join its closest CH. Each
CH, along with a number of CMs, forms a cluster. CMs act as normal sensors by
collecting data from their surroundings. The CHs also function as normal sensors
but, additionally, they act as gateways for their respective clusters. After each CM
collects data from its surrounding, it transmits the data to its respective CH. After
the CH collects data from its CMs, it aggregates them along with its own data, and
sends them to the sink.

Subsequently, the volume of data flowing within the network is substantially
reduced due to data-aggregation, thus significantly decreasing the energy consump-
tion in the wireless sensor network.

Fig. 3 An example of
LEACH, where each CH
collects data from its CMs to
aggregate and send them to
the sink

Sink node

CM

CH

Cell

7 Energy-Aware Routing for Wireless Sensor Networks 211

Fig. 4 An example of chain-
structured clusters of PEGA-
SIS, where nodes apply a
greedy algorithm to find the
closest node to them to form a
cluster

C0 C1 C2 C3 C4

Sink node

4.2 PEGASIS

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [26] clusters
nodes in a chain-based shape, differing from the cluster shapes adopted in LEACH.
Fig. 4, redrawn from [26], illustrates PEGASIS.

The basic idea is that each sensor forwards its data to its neighbor; the neighbor
adds its own data and aggregates both of them and sends a single packet to its
neighbor. This process is repeated till the data is delivered to the leader (the sensor
that is responsible for sending the data to the sink). The choice of neighbors follows
a greedy method, in which each node finds the closest neighbor to itself. Each node
in a chain takes turn to become a leader.

In PEGASIS, nodes only need to communicate with their closest neighbors, so
that the transmission distance is short, thus decreasing the energy consumed for
communication per unit of data. The advantage of using a chain-based design is to
avoid cluster formation found in LEACH.

4.3 Recent Innovations

The cluster-based design of hierarchical routing pioneered in LEACH [18] is an
effective solution to decrease the energy consumption of wireless sensor networks.
LEACH, however, presents several drawbacks, and thus many researchers have pro-
posed important improvements to LEACH. One major drawback is the distributed
nature of cluster formation in LEACH that can result in uneven distribution of CHs,
thus leading to variated transmission distances among CHs and their CMs. Conse-
quently, energy consumption among CHs and CMs vary greatly, i.e., imbalanced
energy consumption. Grid-based cluster design [53] mitigates this drawback. In a
grid-based cluster wireless sensor network, the network is divided into grids of equal
size. Sensors are aware of the grid they belong to by relating grid dimensions to their
positions. Zhang et al. [53] proposed to optimize the grid size by using probabilistic
distance models to achieve more efficient energy consumption.

Although clustering significantly reduces the energy consumption of individual
sensors, it increases the communication burden on CHs. As illustrated in Fig. 5,
once the CH has gathered information, it needs to transmit it to the sink either

212 A. E. A. A. Abdulla et al.

Fig. 5 An illustration of the
two transmission schemes
used for communication
between CHs and the sink

Sink node

CH

Direct transmissions Multi-hop transmissions

via direct transmission or via multi-hop transmissions through intermediate nodes.
Shu and Krunz [38] proposed to optimize the balance between the aforementioned
CH transmission schemes to extend the lifetime of CHs.

CH selection has a great influence on the energy consumption of the wireless
sensor network. Various CH selection schemes have been proposed [50], in which a
sensor is elected to become a CH based on several criteria such as residual energy
and node degree. Recently, Wei et al. [44] considered the case where sensors produce
differing amounts of traffic load, and proposed to increase the probability of nodes
with higher power and lower traffic generation rates to become a CH.

In most wireless sensor network scenarios, the correlation of sensor data makes
collecting all the sensor data unnecessary. Also, collecting all sensor data is energy
consuming. One technique to eliminate the transmission of unnecessary data is to
employ data predictors. Data predictors use sensors’ past inputs to estimate their
future data. If the error bound (difference between the predicted value and actual
value) is acceptable, the sensors need not transmit their sensed data. Thus, data pre-
dictors alleviate the traffic burden and subsequently reduce the energy consumption
of the wireless sensor network. Jiang et al. [22] proposed to implement data predictors
in CHs found in hierarchical routing, such as the one illustrated in Fig. 3. However, the
energy consumption for training the data predictor (computation) is non-negligible,
and therefore they have investigated which conditions render using data predictors
in CHs energy efficient. They showed that energy efficiency is a function of both the
correlation of sensors’ collected data and the desired error bound.

4.4 Summary

Hierarchical multi-hop routing is a technique adapted from existing networks, where
it has been employed for its superior scalability and low complexity. In wireless
sensor networks, hierarchical multi-hop routing exhibits its merit in the form of data-
aggregation, which reduces the volume of data transmissions, and in turn reduces
the energy consumption of the wireless sensor network. The data-aggregation [7]
scheme itself is dependent on the nature of data collected within the wireless sensor
network. For examples, data compression is applicable when the data are correlated
to a certain extent in environmental monitoring applications, beamforming when
various signals are combined to produce a signal with a better signal-to-noise ratio

7 Energy-Aware Routing for Wireless Sensor Networks 213

in acoustic data, and data fusion when several messages contain the exact content in
moving/migrating objects.

Some wireless sensor network environments only allow data-aggregation to
reduce the volume of data by a small amount. For example, when data compres-
sion is employed and the correlation between the collected data is low, then the
compression rate defined as

Compression rate = SIZE[Compressed Data]
SIZE[Original Data] (12)

will be close to one, and hence the energy savings gained by transmitting a lower
volume of data will be outweighed by the energy consumed by forming clusters. In
summary, hierarchical multi-hop routing should only be employed in applications
where the volume of data can be substantially reduced with data-aggregation.

5 Hybrid Routing Algorithms

The concept of hybrid routing for wireless sensor networks was first proposed in [33].
The motivation behind this strategy is to address the energy hole problem, which is
also refereed to as the hotspot problem. This problem is inherent to the design of
sink-based wireless sensor networks. Since all traffic originating from the sensors
is destined to the sink, the nodes that are close to the sink consume more energy
and exhaust their battery energy in a much more rapid manner than other sensors. If
the sensors close to the sink die, the sink will be isolated. Thus, the wireless sensor
network will loose its functionality, despite the fact that the rest of the wireless sensor
network is left intact.

5.1 HYMN

HYbrid Multi-hop routiNg (HYMN) [1, 33], depicted in Fig. 6, is a hybrid of two
categories of routing algorithms, namely, flat multi-hop routing, introduced in Sect. 3,
and hierarchical routing, introduced in Sect. 4. A comparison among these three
categories is shown in Table 1.

The area within the maximum transmission range of the sink is referred to as the
Sink Connectivity Area (SCA). The sensors in this area allow the sink to connect
to the sensors beyond its maximum transmission range. Generally, the number of
sensors in the SCA is relatively much less than the remaining sensors in the wireless
sensor network. Rationally, the largest part of energy consumption in the SCA is
attributed to relaying traffic that originates from outside the SCA. On the other hand,
the share of energy consumption attributed to transmitting data originating from the
SCA itself is relatively much less.

214 A. E. A. A. Abdulla et al.

Fig. 6 An illustration of
HYbrid Multi-hop routinNg
(HYMN). HYMN combines
two categories of routing
algorithms

Flat multi-hop routing Hierarchical routing

Sink node

Table 1 A comparison
among three types of
energy-aware routing
algorithms

Type Data-aggregation Transmission distance

Flat multi-hop routing No Short
Hierarchical routing Yes Long
HYMN Yes Short (in the SCA)

From the above discussion, to decrease the energy consumption of the SCA,
the energy consumption per unit of data transmission must be decreased, and/or the
volume of data flowing through the network must be limited. HYMN achieves the
effect of both solutions. Outside the SCA, a hierarchical routing algorithm can be
adopted to reduce the volume of influx going into the SCA, so that data-aggregation
decreases the flow of data into the SCA, and flat multi-hop routing is used inside the
SCA to achieve energy-efficient transmissions (short distances).

Consequently, by focusing on mitigating the energy hole problem, HYMN suc-
cessfully decreases the energy consumption in the SCA, and increases the longevity
of the wireless sensor network.

5.2 Summary

Hybrid multi-hop routing adopts two strategies of routing, namely, flat multi-hop
routing and hierarchical routing. Although it has been shown that HYMN improves
the longevity of wireless sensor networks, selecting the two respective routing algo-
rithms still remains an open research issue.

7 Energy-Aware Routing for Wireless Sensor Networks 215

6 Data-Centric Routing Algorithms

Owing to the large number of deployed sensors in a typical wireless sensor
network, it is difficult to assign a global identification scheme such as an IP iden-
tifier. Additionally, although disseminating information from a source to a possible
destination can be handled by applying the classical flooding method [19], this tech-
nique is energy inefficient. Thus, researchers [19, 20] have proposed a new addressing
scheme, referred to as data-centric routing. In contrast with address-centric, in which
each sensor independently transmits its data along a path towards a destination, data-
centric routing algorithms scrutinize data-types, give each datum an identifier/name,
and instead of identifying individual sensors, data are identified. Furthermore, these
methods allow efficient energy consumption by eliminating redundant data transmis-
sions. In the remainder of this section, we describe how basic schemes for informa-
tion dissemination work, followed by prominent examples of data-centric routing
algorithms.

6.1 Basic Schemes and Issues

A routing algorithm needs to find paths between a source node and a destination
node; the intermediate sensors operate independently from other sensors with no prior
knowledge to determine the path between the source sensor and the destination sensor.
Flooding and gossiping [8, 36] are classical local techniques used for disseminating
data throughout the network.

6.1.1 Flooding

Flooding [8] starts from the sensor that is the origin of the data; the origin broadcasts
its message to its neighboring nodes. Each of these neighbors progresses by re-
broadcasting the same message to all their neighbors. In effect, the message gets
propagated throughout the entire network. Flooding clearly generates a large number
of packets; furthermore, the algorithm can go on infinitely and ceases to stop unless
a mechanism is used to halt it. The mechanism to halt the message from propagating
forever can be provisioned by a Time To Live (TTL) mechanism. A TTL mechanism
is a counter that is decremented every time a message is relayed; upon reaching
zero, the message is no longer propagated and is discarded, thus resulting in the
termination of the propagation. Generally, the TTL field should be approximately
set equal to the number of hops, i.e., hop-count.

216 A. E. A. A. Abdulla et al.

6.1.2 Gossiping

Gossiping [8, 36] is another dissemination algorithm that is based on local interac-
tions. Generally, gossiping transmits a smaller number of packets as compared to
flooding. In a gossip algorithm, each sensor, which has a message to share, periodi-
cally chooses one sensor from its neighbors as its peer. Then, the sensor transmits the
message to its chosen neighbor. The receiving sensor re-transmits the message to one
of its neighbors with probability p or drops the message with probability 1− p. Con-
sequently, the message reaches its destination. The choice of which neighbor sensor
to send to and p are design dependent parameters. The choice of which neighbor to
send to can be random. p can be fixed or a function of network parameters such as
the number of received duplicates, which can be determined by a unique ID for each
message.

6.1.3 Energy Consumption Issues

The disadvantages from the viewpoint of energy consumption is the large amount of
redundant transmissions that needlessly consume the energy of the wireless sensor
network. Figures 7 and 8, redrawn from [19], illustrate the wasted energy in the wire-
less sensor network. Figure 7 shows the implosion problem. It is clear that only the
transmissions on either of the right or left path are sufficient, and all other transmis-
sions are extra transmissions that unnecessarily consume the energy of the wireless
sensor network. Also, as illustrated in Fig. 8, the same data that was collected from
the same area, i.e., area r, is delivered multiple times to the destination, i.e., sensor
C, needlessly wasting the energy of the wireless sensor network. This phenomenon
is referred to as overlap.

Energy-aware data-centric routing algorithms eliminate the energy consumed by
the implosion problem by eliminating needless forwarding and the overlap problem
by eliminating the transmission of duplicated data.

Fig. 7 The implosion prob-
lem in classical flooding. The
destination node, D, gets the
same data twice. The wireless
sensor network wastes energy
by the sending the same data
twice B C

A Source Node

D Destination Node

(A)

(A)

(A)

(A)

7 Energy-Aware Routing for Wireless Sensor Networks 217

A B

C Destination Node
(r,s)(q,r)

q s Monitored Area

r

Fig. 8 The overlap problem in classical flooding. The destination node C, receives two copies of
the data r

6.2 SPIN

The main idea behind Sensor Protocols for Information via Negotiation (SPIN) [19]
is to give high-level data descriptors to identify each kind of data, referred to as meta-
data. Utilizing the metadata, the SPIN nodes negotiate with each other and insure
that only required data are transferred, thus eliminating excess energy consumption
caused by both the overlap and implosion phenomena. There is no standard definition
for metadata, and they differ from applications to applications as well as vary from
the types of data collected.

The negotiation process in the basic SPIN protocol, named SPIN-1, is conducted
via a three hand-shake procedure, as illustrated in Fig. 9, which is redrawn from [19].
Each stage of the hand-shake has a defined message, as described below.

1. ADV: new data advertisement. This message begins the three-state handshake,
and it is sent when a sensor has new information it would like to share. The sensor
could have acquired the new information via monitoring its surroundings or from
one of its neighbors. The ADV message contains metadata, which are sent to the
sensor’s one-hop neighbors.

2. REQ: request data. The second stage of the three-stage handshake is triggered
when a node that has received an ADV message is interested in the data defined
in the metadata. An interested node sends the REQ message to the ADV message
sender.

3. DATA: data message. The third and final stage of the SPIN handshake. The DATA
message contains the information defined by the metadata, and is sent by the ADV
message sender.

After the DATA message is sent, the three-stage handshake is completed. Upon
acquiring the DATA message, the receiver initiates the above-mentioned three-stage
handshake; by iteratively applying the three-stage handshake mechanism, all the data
are efficiently disseminated throughout the network. The above described mechanism
avoids energy consumption attributed to unneeded transmissions, i.e., the implosion
problem, since it eliminates redundant transmissions. Additionally, the metadata

218 A. E. A. A. Abdulla et al.

B

A

B

A

B

A

B

A

B

A

B

A

(a)

(d) (e) (f)

(b) (c)

Fig. 9 The operation of the data-centric routing algorithm SPIN. a ADV stage: sensor A starts
by sending an advertisement message indicating that it has new data to its neighbor, sensor B.
b REQ stage: sensor B responds by requesting the data through a REQ message sent to sensor A.
c DATA stage: after receiving the REQ message, sensor A sends the requested data to sensor B in
a DATA message. d ADV stage: upon obtaining the data, sensor B advertises its new data through
a REQ message sent to all its neighbors. e REQ stage: the process in b is repeated. f DATA stage:
the process in c is repeated

enable a sensor to request only the data it requires and avoids wasting the energy
of the wireless sensor network by receiving data that it already has, i.e., the overlap
problem.

6.3 Directed Diffusion

Directed diffusion [20] is a great innovation over basic data-centric routing algo-
rithms because it decreases the flow of data in the wireless sensor network by incor-
porating data-aggregation. In directed diffusion, the sink creates tree like routes
throughout the wireless sensor network to eliminate the energy consumption associ-
ated with the implosion problem. Also, the data-aggregation scheme mitigates the
excessive energy consumption associated with the ovelap problem.

The above mentioned tree structure is created by the sink when it advertises its
interests. Upon receiving these interests, the sensors know what kind of information
the sink requests. When the sensors reply, in-network data-aggregation is performed.
In-network data-aggregation aggregates messages from different sources to decrease
the amount of network operations. This form of aggregation utilizes knowledge of
application requirements, and is conducted via local-interactions.

The algorithm, as illustrated in Fig. 10 redrawn from [20], is first trigged by the
sink.

1. The sink broadcasts a message describing the information that it has interest
in, and the message is intuitively referred to as an interest message. The sink’s

7 Energy-Aware Routing for Wireless Sensor Networks 219

Sink node

Source

Event

Interest

Sink node

Source

Event

Gradient

Sink node

Source

Event
(a) (b) (c)

Fig. 10 The operation of the data-centric routing algorithm, directed diffusion. a Interest propaga-
tion from the sink throughout the network. b Gradient setup from the source to the sink. c Sending
data to the sink and path reinforcement

interests are propagated through the network. An interest may contain the fol-
lowing information.
Type: The type of object to be monitored.
Interval: How often information should be reported back.
Duration: How long the sink is still interested in acquiring this information.
Location: The location of sensors where information is of interest.

2. Sensors within the one-hop range of the sink, i.e., within its maximum transmis-
sion range, receive the sink’s interests directly. These one-hop neighbor sensors
relay the interests to their neighboring sensors. Via relaying, the sink’s interests
get propagated throughout the wireless sensor network, and all sensors get to
know about the interests of the sink. Gradients are created in each sensor, and
indicate the source of the interests.

3. Data reporting is triggered when a sensor located within the field of interest
receives an interest message. The sensor sends the data back to the neighboring
sensor that is indicated in the gradient. An intermediate sensor which receives
multiple reports corresponding to earlier interests it relayed can play an active role
in decreasing the energy consumption of the wireless sensor network. Intermedi-
ate sensors are able to apply data-aggregation (e.g, looking into multiple reports
and combining them, or forwarding reports with better confidence intervals).

As described above, the gradients are created after the interests propagate in
the wireless sensor network. As there could be many paths from the source sen-
sor to the sink, transmitting the messages from the source sensor through all the
paths to the sink would lead to needless energy consumption associated to the implo-
sion problem. Directed diffusion reinforces one path, thus eliminating the excessive
energy consumption attributed to the implosion problem. Furthermore, as described
above, the interest and gradient mechanisms allow intermediate sensors between
the source sensor and the sink to apply data-aggregation to decrease the number
of network operations needed to transmit messages in the wireless sensor network,
thus reducing the energy consumption caused by the overlap problem. In summary,
directed diffusion utilizes the data-centric communication paradigm and in-network
data-aggregation to reduce energy consumption.

220 A. E. A. A. Abdulla et al.

6.4 Recent Innovations

Since the groundbreaking work of directed diffusion [20], various advances within
the realm of data-centric routing have emerged, and have made inroads in new
applications. For example, Jiang et al. [21] have investigated the top-k problem, which
aims to acquire the top most (or least) k-values from the data collected in a wireless
sensor network (e.g., the top ten highest temperature readings). Since only the top
k-values are needed (i.e., essential), collecting all data from the sensors is wasteful,
and thus Jiang et al. [21] proposed to enable intermediate nodes along the path from
the source node to the sink to filter/discard less significant data, viz. those having
values less than the required top-k values. As a result, redundant transmissions of
insignificant data that unnecessarily consume energy of the wireless sensor network
are avoided.

Directed diffusion enforces a path from many available paths for data delivery.
Yahya and Ben-Othman [47] pointed out that if the current drawn from a battery is
decreased or halted, the battery can regain some of its energy back; this is called
the relaxation phenomenon. RELAX [47] routes traffic through multiple paths so as
to capitalize on the battery relaxation phenomenon to increase the lifetime of the
wireless sensor network.

As illustrated in Fig. 10b, gradients in data-centric routing allow sensors to route
their collected data to the sink via sink-bound paths. Since their formation is deter-
mined by the location of the phenomena under surveillance (e.g., object tracking
or event monitoring) and the sink location, these gradients are far from optimal in
terms of the energy consumption of the created path. Ren et al. [35] proposed to
construct the gradients such that packets flow through the area with high residual
energy density, i.e., an area with a large number of nodes and large residual energy.
Furthermore, Wu et al. [45] proposed to construct the gradients so as to maximize the
lifetime of the sensors. Lifetime is defined as the time until the first sensor has died.
Chatzimilioudis et al. [12] investigated the energy loss associated with collisions.
The occurrence of collisions causes more energy consumption for retransmission.
They pointed out that the probability of collision increases with node degree, i.e.,
the number of links each node is connected. Also, as illustrated in Fig. 1, since all
the data ends in the sink, the node degree of a sensor increases as the node’s position
gets closer to the sink. Therefore, they have proposed to construct gradients so as to
minimize collisions by balancing the node degrees.

In directed diffusion, data can be opportunistically aggregated when they meet
at any intermediate node. The formation of the aggregation tree is based on the
chronological order of occurred events. However, the resulting tree structure produces
non-optimal aggregation. Villas et al. [42, 43] proposed a method to increase the
overlap between routes to enhance the quality of aggregation, thus leading to more
energy savings.

7 Energy-Aware Routing for Wireless Sensor Networks 221

6.5 Summary

Data-centric routing modeled after directed diffusion is one of the most popular
routing algorithms with data-aggregation for wireless sensor networks. This class of
routing algorithms are particularly suitable for query-based data collection. In con-
trast, LEACH-like routing algorithms are intended to be used for uniform reporting
purposes.

Data-centric routing algorithms require data to be clearly defined by using meta-
data. By using the metadata field, sensors can do in-network data-aggregation to
decrease the amount of network operations conducted in the network. There is no
standard definition for the metadata field, and it is application specific. Thus, defin-
ing an efficient format for the metadata field to allow data-aggregation for complex
schemes is a very important issue in data-centric routing algorithms.

7 Location-Based Routing Algorithms

Location information is essential to the functionality of most energy-aware routing
algorithms for wireless sensor networks. It is used to calculate energy consumption
of transmissions to be used to make path selection decisions as in flat multi-hop
routing algorithms, discussed in Sect. 3. Location information can be obtained based
on small low-power Global Positioning System (GPS)-enabled devices built into the
sensors, from the relative signal strength of the received signals, and other methods.
Location information can play a central role in the absence of IP-like addresses,
and help reduce energy consumption. Location-based routing algorithms have been
previously proposed for general ad hoc networks, but those that are energy-aware
can be applied to wireless sensor networks.

7.1 GAF

Geographic Adaptive Fidelity (GAF) proposed by Y. Xu et al. [46] is a location-
based routing algorithm implemented for general ad hoc networks, but is suitable
for use in wireless sensor networks. GAF capitalizes on the spatial redundancy of
sensors and reduces the number of unnecessary active sensors by setting some of
them to sleep while insuring sufficient active sensors to achieve a constant level of
routing fidelity. In general, deactivating redundant sensors substantially decreases
the energy consumption of the wireless sensor network. This dividend is particularly
distinctive in densely deployed networks, such as wireless sensor networks. This is
attributed to the high correlation between node density and node redundancy. It is
worth noting that GAF can integrate with other routing algorithms.

222 A. E. A. A. Abdulla et al.

Fig. 11 An example of virtual
grid in GAF

1

2

3

4

5

A B C

Fig. 12 The three states of
GAF Sleeping

Discovery

Active

After Ta

After Td

Receive discovery
messages from high
rank nodes

After Ts

GAF starts by dividing the wireless sensor network into virtual grids, as shown
in Fig. 11. Each sensor in a virtual grid cell is able to directly communicate with all
the sensors in the neighboring adjacent cells. As shown in Fig. 11, each cell contains
several wireless sensors, and all sensors that are within the same cell are considered
to be equivalent in terms of packet routing. It is worth noting that the maximum
transmission distance of the sensors dictates the size of a block.

In the illustration, sensors 1 and 5 can relay data between each other by trans-
mitting their packets to any of the sensors in the intermediate cell, i.e., sensors 2,
3, and 4. In other words, only one of these intermediate sensors is essential for
inter-cell communications, and thus the remaining sensors can be put to sleep. This
consequentially reduces the energy consumption of the wireless sensor network.

Sensors employing GAF enter a three-state process. As depicted in Fig. 12, the
states of this process include discovery, active, and sleeping. The discovery state is
when a sensor turns on its radio, waits for Td seconds, and exchanges messages with
other sensors to find out its neighbors within the virtual grid cell. Once a single active
sensor is selected, this sensor becomes fully functional by participating in routing
activities for a period of Ta seconds. The remaining nodes enter the sleep state, in
which the sensors turn off their radio and save substantial energy for a period of Ts .
The time spent in each state is application dependent and can be tuned by adjusting
the values of Ta , Td , and Ts . A node in the active or discovery states goes into the
sleep state if it determines that some other high ranking node will take over the role of
routing. A high ranking node is chosen by a ranking procedure, which is dependent
on applications and is done via node negotiation. For example, ranking can be an

7 Energy-Aware Routing for Wireless Sensor Networks 223

arbitrary ordering of nodes or can be performed to optimize wireless sensor network
lifetime.

Consequently by reducing the number of active sensors to only the essential
number required to sustain routing fidelity, GAF is able to successfully reduce the
energy consumption of the wireless sensor network.

7.2 GEAR

Geographic and Energy-Aware Routing (GEAR) was proposed in [16, 49], also
independently in [39], as a wireless sensor network specific location-based routing
algorithm. GEAR is based on the observation that usually queries include location
information indicating the target area of the sensors. Intuitively, to be efficient, every
query should only be propagated towards its targeted area, not to the entire network
because doing so is aimless. This approach is in stark contrast with flooding in which
data propagates throughout the entire network.

Each individual node maintains two values that quantify the energy consumption
of each path. The first is a speculative cost, which is a function of the energy con-
sumption of the sensor itself and the distance between the sensor and the destination.
The second is an acquired cost that is the actual cost, and is learned from messages
once they reach their destinations. The differences between the speculated cost and
the acquired cost arise from holes in the topology. A hole in the topology is generated
when a sensor does not have a next hop, which is closer to the destination, thereby
forcing the sensor to divert the traffic around the hole.

The algorithm has two phases. The first phase delivers the packet to the target
region, and the second distributes the packet within the region itself.

1. The first phase starts when a query is disseminated. Upon receiving a packet, the
sensor reads its destination information and checks whether it has a neighboring
node, which is closer to the destined region. If a sensor, which satisfies this
criterion, exists, the packet is forwarded to that node. In the case where there is
more than one sensor, the closest among them is chosen. On the other hand, if
there are no neighboring nodes, then this implies the existence of a hole. When a
hole exists, a sensor is chosen based on the speculated cost to detour the packet
around the hole.

2. The second phase starts when the packet reaches its intended region. It can be dif-
fused in the region by following one of two methods, restricted flooding or recur-
sive geographic forwarding. Restricted flooding requires each sensor to broadcast
once, and is not a wise choice when the sensor density is high. Recursive geo-
graphic forwarding, illustrated in Fig. 13, works by using a divide-and-conquer
approach; first, the area to which the message is to be disseminated is divided into
four regions, and a copy of this message is transmitted to one of the sub-regions.
This procedure is repeated until each region has one sensor, and consequently the
message is disseminated to all sensors in the targeted area.

224 A. E. A. A. Abdulla et al.

Fig. 13 An illustration of
GEAR’s two stages of rout-
ing. The first phase delivers the
query message to the intended
area. The second phase uses
recursive geographic forward-
ing to distribute the query
message to the intended area

Data

Hole

Second phase:
recursive geographic forwarding

Sink node

First phase

In conclusion, GEAR efficiently reduces the amount of wasteful transmissions
by limiting the query propagation towards its intended region only. Therefore, it
decreases the wasteful energy consumption.

7.3 Recent Innovations

Geographic routing is a class of location-based routing algorithms that uses a greedy
algorithm to forward its data to the sink through intermediate sensors closer to the
sink. However, the existence of holes (dead ends) in topologies requires geographic
routing to maintain extra non-local state information or employ other auxiliary tech-
niques. Kermarrec and Tan [24] proposed to decompose a given network into Greedily
Routable Components (GRC). GRC are paths where greedy routing is guaranteed
to work. By routing packets through GRC, the overhead associated with non-local
state information is removed, and energy consumption due to routing around holes
is eliminated. Furthermore, Chang et al. [9] proposed an innovative scheme that to
get around these holes. Sensors bordering around holes in their approach actively
establish a forbidden region to enable packets to be guided around holes and move
along a short path from the hole to the sink, and thus incurring less energy consump-
tion. It has been shown that contemporary geometric algorithms that are designed
to function in 2D environments perform poorly in practical 3D environments [52].
Zhou et al. [52] proposed a scheme that first forwards packets greedily as in [49] as
long as it can find a node closer to the destination than itself. If a hole is reached and
greedy forwarding fails, packets are routed deterministically using hull trees around
the hole. A hull tree is a spanning tree where each node has an associated 2D convex
hull that contains the positions from all its child nodes in the subtree rooted at the
sink. A 2D convex hull is a geometric object that for any line drawn from two end
points in it, the line will be in the 2D convex hull.

In an environment where there are multiple sinks that generate queries to nodes
in an overlapped area, as shown in Fig. 14, the sensors in the overlapped area have
to report the same data multiple times, thus incurring wasteful energy consumption.

7 Energy-Aware Routing for Wireless Sensor Networks 225

Fig. 14 An illustration of a
wireless sensor network under
two queries, Q1 and Q2. The
sensors that are overlapping
between the two queries are
colored in gray

Q1
Q2 Q1's target area

Q2's target area

Zhang et al. [51] proposed to group nodes into zones according to their locations. In
the event that there exists queries that overlap in an area, the sensors in the area only
respond once, thereby eliminating the energy wasted from redundant transmissions.

7.4 Summary

Location-based routing algorithms are a class of routing algorithms that enhance
energy consumption efficiency by capitalizing on location information. The GPS
system might not function in some applications, such as ocean-bottom wireless sensor
networks that place the sensors at the bottom of the sea, or applications where large
obstacles hinder GPS’s functionality. Thus, localization techniques to take the role
of GPSs are of prime importance.

8 Discussion

Energy-aware routing is a challenging issue, which has attracted substantial research
efforts. Research in this area has adopted many techniques from similar networks.
Specifically, since some wireless sensor networks possess features similar to those
of a wireless ad hoc network, many routing techniques employed in ad hoc networks
can be adopted for wireless sensor networks.

The main concern in this research direction is low-energy communications. This
is attributed to the large share of energy consumed for communications. Practi-
cally, sending a bit over 10 or 100 m can consume as much energy as millions of
computational operations conducted in the processing unit of the sensor, referred to
as the R4 signal energy drop-off [2].

226 A. E. A. A. Abdulla et al.

Wireless sensor networks can capitalize on the application scope in their real world
implementations to reduce energy consumption by taking into account of redundancy
of their locations and collected data.

Radio operation schemes also play a major role in the energy consumed in a
wireless sensor network. The amount of time a radio is on has a direct relationship
with the energy it consumes. The longer it is on, the more energy it consumes.
Generally, the radio can operate in always-on, synchronized radio [18, 28], or low-
duty cycle [13, 17] operation modes. In always-on operation mode, the radio is
always on. This consumes the maximum amount of energy. In the synchronized
radio operation, the radio is on only when it is needed. This allows more efficient
energy consumption as compared with always-on operation. In low-duty cycle radio
operation, the radio is off most of the time and is only on for a relatively small amount
of time. This operation mode is the least energy consuming.

Table 2 summaries the characteristics of the routing categories examined in this
chapter, along with notable representative algorithms of each routing category. They
are also characterized in terms of data-aggregation, location awareness, mobility,
and network lifetime.

Location-interactions refers to the ability of a routing algorithm to function via
local interactions executed in individual sensors without the need for global infor-
mation about the wireless sensor network. Gathering global information about the
entire wireless sensor network consumes a large amount of energy for information
exchange. It is worth noting that although hybrid routing algorithms require global
information for the flat multi-hop routing part to function, the area of the flat multi-
hop routing part is relatively small in size.

Table 2 A general comparison among various classes of energy-aware routing for wireless sensor
networks

Name Class Data-
aggregation

Local-
interactions

Mobility Network
lifetime

Toh [41] Flat No No Unsupported ANLa

Chang et al. [11] Flat No No Unsupported FNLb

LEACH [18] Hierarchical Yes Yes Unsupported ANL
PEGASIS [26] Hierarchical Yes Yes Unsupported ANL
HYMN [33] Hybrid Yes No Unsupported SNIc

SPIN [19] Data-centric No Yes Limited ANL
DDd [20] Data-centric Yes Yes Unsupported ANL
GAF [46] Location-

based
No No Unsupported ANL

GEAR [49] Location-
based

Yes No Unsupported ANL

aAverage node lifetime
aFirst node lifetime
cSink node isolation
dDirected diffusion

7 Energy-Aware Routing for Wireless Sensor Networks 227

Early research in wireless sensor networks mostly envisioned and considered
inexpensive sensors with limited or no mobility. Consequently, as can be seen from
Table 2, very limited support for mobility was considered in early wireless sensor
network routing algorithms. Recent advances in this field have investigated many
scenarios with mobility of sinks [3, 15, 29, 30]. In addition, wireless sensor and
actuator networks [31, 32] have recently drawn much research attention, where the
sensors are mobile and self-healing.

8.1 Data-Aggregation

The larger the volume of data to transmit, the larger the energy consumption of the
network. Hence, data-aggregation is of paramount importance to achieve low-energy
communications in wireless sensor networks. Four routing categories, namely, hier-
archical, hybrid, data-centric, and location-aware routing algorithms, facilitate data-
aggregation. Hybrid routing utilizes the data-aggregation function of hierarchical
routing algorithms. Also, GEAR adopts the data-aggregation method of data-centric
routing. Thus, it is worthwhile to elaborate on data-aggregation methods employed
in both data-centric and hierarchical routing algorithms. As will be discussed later,
the data-aggregation method methodology is rather application specific/dependent.

Data-aggregation in hierarchical routing algorithms is conducted in the CHs of
each cluster. The reporting model is aimed at constant uniform reporting, in which
sensors transmit data in each time interval; once the CH receives the sensed data from
its CMs, it can utilize data-aggregation. As compared with the data-aggregation in
data-centric routing, the data-aggregation method utilized in hierarchical routing
can work in conditions where the sensors produce a low amount of data collected
from overlapping areas. It can reduce the energy consumption in scenarios with
high data correlation. This reporting model is particularly suited for applications
such as environmental monitoring, where periodic information is required about the
environment.

Data-aggregation in data-centric routing, viz, in-network data-aggregation, elim-
inates the overhead of cluster formation found in hierarchical routing algorithms.
In in-network data-aggregation, sensors along the path to the destination do data-
aggregation to reduce the flow of data in the wireless sensor network.

Generally, the in-network data-aggregation method considers overlapping data
collected from different sensors and merges redundant reports to decrease the number
of transmissions conducted in the wireless sensor network. The performance of this
data-aggregation mechanism will degrade when the overlap between data collected
from different sensors is small. The overlap between the data collected from different
sensors decreases when the sensing area of sensors is small relative to their density
(the ratio between the number of deployed sensors to the size of area they are deployed
in). In such cases, the reduction of energy consumption gained by using the data-
aggregation function of data-centric routing will become insignificant.

228 A. E. A. A. Abdulla et al.

On the other hand, the query model adopted in data-centric routing is well suited
for applications where need-based data reporting is conducted. For example, the
sensor node observing a desired event only reports to the sink when the event occurs.
It produces a low amount of transmissions and will consume a small amount of
energy as compared to the uniform data reporting model.

8.2 Network Lifetime Definition

The objective of all the energy-aware routing algorithms for wireless sensor networks
is to decrease the energy consumption, and therefore to prolong operation periods of
the network. Furthermore, these routing algorithms can be evaluated under different
metrics. Particularly, network lifetime is a widely accepted metric for evaluating the
energy-aware routing algorithms. Network lifetime can have differing definitions,
and some of these definitions can be misleading. It is important to understand how
the wireless sensor network functions, and carefully define the network lifetime
to accurately evaluate a given routing algorithm. Many researchers have defined
network lifetime as the time that the first sensor dies, i.e., first node life [11]. However,
in many scenarios, a wireless sensor network can still function even after the first
sensor has died. Alternatively, defining network lifetime as the time when all sensors
die does not give much insight on the functionality of the wireless sensor network
since an isolated node collecting data and unable to transmit its collected data to
the sink is of no use. Therefore, defining network lifetime as the time when the
sink cannot collect data from the wireless sensor network, i.e., Sink Node Isolation
(SNI), is more appropriate and accurate. Moreover, designing energy-aware routing
algorithms to improve the average lifetime over all sensors is rather popular.

Table 2 shows various definitions of network lifetime that each routing algorithm
has adopted. It can be seen that the most popular definition is average network life-
time, which does not necessarily result in longer lifetime. Note that only hybrid
multi-hop routing is designed with the motivation to mitigate the energy hole prob-
lem, thus resulting in improved lifetime of the wireless sensor network.

8.3 Routing Overhead

Routing overhead is a major energy consumer in wireless sensor networks. Decreas-
ing frequency of information updates necessary for routing can decrease the energy
consumed by the routing overhead. However, decreasing their frequency leads to
degradation of the energy-aware routing algorithm’s performance due to inaccurate
information or outdated information about the wireless sensor network.

In flat multi-hop routing algorithms, deciding which path to route traffic in order
to achieve minimum energy consumption or maximum lifetime requires information
about the energy consumed per unit in each link, which can be calculated from

7 Energy-Aware Routing for Wireless Sensor Networks 229

Eq. (1), and the residual energy of each sensor. This information needs to be regularly
updated to achieve minimum energy consumption when some nodes along a path
die and the path no longer produces the minimum energy consumption and/or a
sensor is overly energy exhausted and traffic must be directed from it to allow it live
longer. The frequency of route information updates affects the accuracy of paths with
the minimum energy consumption and the maximum lifetime. Obviously, requiring
frequent updates is an energy intensive operation, and hence could pose a great
drawback to these methods.

Hierarchical routing algorithms form clusters wherein a single sensor acts as a
CH. To form a cluster, an election process needs to take pace where sensors present
themselves as CHs, and then each CH manages a collection of CMs, and this process
consumes energy of the wireless sensor network. Furthermore, since the role of CH is
an energy consuming role with data-aggregation and inter-cluster communications,
the sensors take turns in becoming a CH, thus reinitiating the energy consuming CH
election process. Decreasing the frequency of CH election puts the elected CHs in
risk of energy exhaustion (dying) and lost coverage before other sensors can take on
the CH role. Alternatively, increasing the CH election process frequency would put
a high energy burden on the wireless sensor network.

In data-centric routing, the sink sends queries to the wireless sensor network
advertising its interests; such queries consume energy. Therefore, a relationship
between the sink and sensors is created that can satisfy its interests, and afterwords
data transfer occurs between sensors and the sink. Generally, this relationship has a
predetermined time limit, and upon expiration a new relationship needs to be estab-
lished. Thus, continuous relationship establishment is required, thereby consuming
energy of the wireless sensor network. On the other hand, limiting relationship estab-
lishment results in failures of the wireless sensor network to fulfill its objective.

Location-aware routing algorithms are generally incorporated with other routing
energy-aware routing algorithms, and thus inherit the energy consumption attributed
to the routing overhead of the adopted energy-aware routing algorithm. Furthermore,
this category employs additional schemes for energy savings such as allowing some
sensors to sleep. These schemes require information exchange, and thus consume
additional energy.

8.4 Energy Hole Phenomenon

The energy hole phenomenon is defined as the energy consumption imbalance among
sensors. This inevitably leads to rapid energy exhaustion of sensors in the high-energy
consuming areas, thus resulting in holes in these areas, and subsequently network
partition. This phenomenon is attributed to the traffic patterns in wireless sensor
networks, namely, the many-to-one (convergecast) traffic directed towards the sink.

In flat multi-hop routing, all nodes, except the sink, assume the same role and
responsibility. If all the sensors transmit their data towards a central point, i.e., the
sink, nodes closer to the sink will inevitably end up draining their energy faster.

230 A. E. A. A. Abdulla et al.

Along with the lack of data-aggregation that decreases the volume of data flowing
in the wireless sensor network, the sink is consequentially disconnected from the
surviving sensors.

The application scope of hierarchical routing algorithms considers applications
with uniform reporting directed to the sink that subsequently causes the energy
hole phenomenon. Furthermore, CHs in hierarchical routing algorithms conduct
inter-cluster communications, and their relatively smaller number leads to ineffi-
cient long-distance transmissions that in turn augments the severity of the energy
hole phenomenon.

HYMN synergies two categories of wireless sensor network routing algorithms
to mitigate the energy hole phenomenon by using energy efficient transmission dis-
tances and data-aggregation. Thus, HYMN surpasses the contemporary categories
of energy-aware routing algorithms.

Data-centric routing algorithms adopt the query-based reporting model. In this
model, the sink queries a specific area. As a direct result, the flow of traffic depends on
the scenario under consideration. For example, if an application demands reporting
of a certain object’s movements, the areas where this object moves will incur higher
energy consumption rate than other areas. This phenomenon is referred to as the
query hotspot.

Location-based routing algorithms are typically coupled with other routing algo-
rithms, and thereby inherit the energy hole phenomenon characteristics of the latter
algorithm.

8.5 Collisions and Interferences

Wireless sensor networks can be categorized as a special case of ad hoc networks,
and face the same issues of collisions and interference, which occur when two nodes
within sufficiently close distance from each other try to communicate on the same
channel; thus, energy is consumed for retransmitting the same message again. The
higher the number of collisions, the larger the amount of energy is consumed in the
wireless sensor network. Owing to the ad hoc nature of wireless sensor networks,
adopting a centralized management schemes for Medium Access Control (MAC)
is not feasible; it is practical to deploy a distributed MAC scheme. All the routing
techniques, except hierarchical routing, introduced here employ such MAC schemes.
In the case where distributed MAC schemes are implemented, a high amount of
energy is consumed for MAC operations due to collisions. This is also applicable to
HYMN as it is also partly composed of hierarchical routing.

In hierarchical routing, the CH takes a leading role by aggregating data and sending
them to the sink. Furthermore, a CH is normally enabled with a centralized MAC
scheme to manage the collision and interference issues. LEACH [18] adopts the
Time Division Multiple Access (TDMA) MAC scheme for channel access. Upon
cluster formation, the CH organizes a TDMA schedule and transmits this schedule
to the CMs in its cluster. Applying TDMA ensures that there are no collisions when

7 Energy-Aware Routing for Wireless Sensor Networks 231

the CMs transmit their data to the CH, and thus avoids the energy consumed due
to collisions. Moreover, the transmission circuitry of each CM can be turned off at
most of the time except when it is its turn for transmission, thus reducing the energy
consumed by the individual sensors. However, this scheme cannot avoid interferences
or collisions caused by neighboring clusters.

9 Conclusion

In this chapter, we have addressed the crucial problem of energy-aware routing for
wireless sensor networks. The limited energy capacity along with the difficulty of
changing batteries of deployed sensors makes energy-efficient technologies essen-
tial for the longevity of wireless sensor networks. We classify energy-aware routing
algorithms into five categories according to their network architecture; flat multi-hop
routing that finds paths to minimize energy consumption or increase sensor network
lifetime, hierarchical routing that creates a hierarchy and applies data-aggregation
to reduce energy consumption, hybrid multi-hop routing that is a combination of the
former two routing algorithms and mitigates the energy hole problem, data-centric
routing where in-network data-aggregation is performed to eliminate wasteful trans-
missions, and location-based routing that uses location information to reduce the
energy consumption of the wireless sensor network. Moreover, we have discussed
how the various energy-aware routing algorithms perform from many different per-
spectives such as data-aggregation, network lifetime definition, routing overhead,
the energy hole phenomenon, and collisions/interferences.

References

1. A. Abdulla, H. Nishiyama, N. Ansari, N. Kato, Hymn to improve the scalability of wireless
sensor networks, in IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 519–524 (2011). doi:10.1109/INFCOMW.2011.5928868

2. J. Al-Karaki, A. Al-Karaki, Routing techniques in wireless sensor networks: a survey. IEEE
Wireless Commun. 11(6), 6–28 (2004). doi:10.1109/MWC.2004.1368893

3. H. Ammari, S. Das, Promoting heterogeneity, mobility, and energy-aware voronoi diagram
in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 19(7), 995–1008 (2008).
doi:10.1109/TPDS.2008.31

4. G. Anastasi, M. Conti, M.D. Francesco, A. Passarella, Energy conservation in wireless sensor
networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009). doi:10.1016/j.adhoc.2008.06.003

5. J. Aslam, Q. Li, D. Rus, Three power-aware routing algorithms for sensor networks. Wireless
Commun. Mob. Comput. 3, 187–208 (2002)

6. A. Bachir, M. Dohler, T. Watteyne, K. Leung, Mac essentials for wireless sensor networks.
IEEE Commun. Surv. Tutor. 12(2), 222–248 (2010). doi:10.1109/SURV.2010.020510.00058

7. M. Bhardwaj, A. Chandrakasan, Bounding the lifetime of sensor networks via optimal role
assignments. In: INFOCOM 2002, in Proceedings of Twenty-First Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, vol. 3, pp. 1587–1596 (2002).
doi:10.1109/INFCOM.2002.1019410

http://dx.doi.org/10.1109/INFCOMW.2011.5928868
http://dx.doi.org/10.1109/MWC.2004.1368893
http://dx.doi.org/10.1109/TPDS.2008.31
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1109/SURV.2010.020510.00058
http://dx.doi.org/10.1109/INFCOM.2002.1019410

232 A. E. A. A. Abdulla et al.

8. B. Blywis, M. Gnes, F. Juraschek, O. Hahm, N. Schmittberger, A survey of flooding, gossip
routing, and related schemes for wireless multi-hop networks. Tech. rep., Free University of
Berlin (2011)

9. C.Y. Chang, C.T. Chang, Y.C. Chen, S.C. Lee, Active route-guiding protocols for resisting
obstacles in wireless sensor networks. IEEE Trans. Veh. Technol. 59(9), 4425–4442 (2010).
doi:10.1109/TVT.2010.2068065

10. J.H. Chang, L. Tassiulas, Routing for maximum system lifetime in wireless ad-hoc networks,
in 37th Annual Allerton Conference on Communication, Control, and, Computing (1999)

11. J.H. Chang, L. Tassiulas, Maximum lifetime routing in wireless sensor networks. IEEE/ACM
Trans. Netw. 12, 609–619 (2004). doi:10.1109/TNET.2004.833122

12. G. Chatzimilioudis, D. Zeinalipour-Yazti, D. Gunopulos, Minimum-hot-spot query trees for
wireless sensor networks, in Proceedings of the Ninth ACM International Workshop on Data
Engineering for Wireless and Mobile Access, MobiDE ’10, pp. 33–40. ACM, New York (2010).
doi:10.1145/1850822.1850829

13. L. Chen, S. Guo, Y. Shu, F. Zhang, Y. Gu, J. Chen, T. He, Poster: Selective reference mechanism
for neighbor discovery in low-duty-cycle wireless sensor networks, in Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’11, pp. 367–368. ACM,
New York (2011). doi:10.1145/2070942.2070993

14. I. Dietrich, F. Dressler, On the lifetime of wireless sensor networks. ACM Trans. Sen. Netw.
5(1), 5:1–5:39 (2009). doi:10.1145/1464420.1464425

15. S. Gandham, M. Dawande, R. Prakash, S. Venkatesan, Energy efficient schemes for wireless
sensor networks with multiple mobile base stations, in Global Telecommunications Confer-
ence, 2003. GLOBECOM ’03. IEEE, vol. 1, pp. 377–381 (2003). doi:10.1109/GLOCOM.
2003.1258265

16. D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, D. Estrin, Networking issues in wireless sensor
networks. J. Parallel Distrib. Comput. 64(7), 799–814 (2004). doi:10.1016/j.jpdc.2004.03.016

17. Y. Gu, T. He, Dynamic switching-based data forwarding for low-duty-cycle wireless sensor
networks. IEEE Trans. Mob. Comput. 10(12), 1741–1754 (2011). doi:10.1109/TMC.2010.266

18. W. Heinzelman, A. Chandrakasan, H. Balakrishnan, An application-specific protocol architec-
ture for wireless microsensor networks. IEEE Trans. Wireless Commun. 1(4), 660–670 (2002).
doi:10.1109/TWC.2002.804190

19. W.R. Heinzelman, J. Kulik, H. Balakrishnan, Adaptive protocols for information dissemina-
tion in wireless sensor networks, in Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, MobiCom ’99, pp. 174–185. ACM, New
York (1999). doi:10.1145/313451.313529

20. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, Directed diffusion for
wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16 (2003). doi:10.1109/TNET.
2002.808417

21. H. Jiang, J. Cheng, D. Wang, C. Wang, G. Tan, Continuous multi-dimensional top-k query
processing in sensor networks, in INFOCOM, 2011 Proceedings IEEE, pp. 793–801 (2011).
doi:10.1109/INFCOM.2011.5935301

22. H. Jiang, S. Jin, C. Wang, Prediction or not? An energy-efficient framework for clustering-
based data collection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(6),
1064–1071 (2011). doi:10.1109/TPDS.2010.174

23. H. Karkvandi, E. Pecht, O. Yadid-Pecht, Effective lifetime-aware routing in wireless sensor
networks. IEEE Sens. J. 11(12), 3359–3367 (2011). doi:10.1109/JSEN.2011.2159110

24. A.M. Kermarrec, G. Tan, Greedy geographic routing in large-scale sensor networks: a min-
imum network decomposition approach, in Proceedings of the Eleventh ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’10, pp. 161–170. ACM,
New York (2010). doi:10.1145/1860093.1860116

25. J.F. Kurose, K.W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet,
6th edn (Addison-Wesley, New York, 2012)

26. S. Lindsey, C. Raghavendra, Pegasis: power-efficient gathering in sensor information sys-
tems, in Aerospace Conference Proceedings, 2002. IEEE, vol. 3, pp. 3-1125–3-1130 (2002).
doi:10.1109/AERO.2002.1035242

http://dx.doi.org/10.1109/TVT.2010.2068065
http://dx.doi.org/10.1109/TNET.2004.833122
http://dx.doi.org/10.1145/1850822.1850829
http://dx.doi.org/10.1145/2070942.2070993
http://dx.doi.org/10.1145/1464420.1464425
http://dx.doi.org/10.1109/GLOCOM.2003.1258265
http://dx.doi.org/10.1109/GLOCOM.2003.1258265
http://dx.doi.org/10.1016/j.jpdc.2004.03.016
http://dx.doi.org/10.1109/TMC.2010.266
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1145/313451.313529
http://dx.doi.org/10.1109/TNET.2002.808417
http://dx.doi.org/10.1109/TNET.2002.808417
http://dx.doi.org/10.1109/INFCOM.2011.5935301
http://dx.doi.org/10.1109/TPDS.2010.174
http://dx.doi.org/10.1109/JSEN.2011.2159110
http://dx.doi.org/10.1145/1860093.1860116
http://dx.doi.org/10.1109/AERO.2002.1035242

7 Energy-Aware Routing for Wireless Sensor Networks 233

27. C. Liu, G. Cao, Spatial-temporal coverage optimization in wireless sensor networks. IEEE
Trans. Mob. Comput. 10(4), 465–478 (2011). doi:10.1109/TMC.2010.172

28. F. Liu, C.Y. Tsui, Y.J. Zhang, Joint routing and sleep scheduling for lifetime maximiza-
tion of wireless sensor networks. IEEE Trans. Wireless Commun. 9(7), 2258–2267 (2010).
doi:10.1109/TWC.2010.07.090629

29. J. Luo, J.P. Hubaux, Joint mobility and routing for lifetime elongation in wireless sensor net-
works, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings IEEE, vol. 3, pp. 1735–1746 (2005). doi:10.1109/INFCOM.
2005.1498454

30. H. Nakayama, N. Ansari, A. Jamalipour, N. Kato, Fault-resilient sensing in wireless sensor
networks. Comput. Commun. 30(11–12), 2375–2384 (2007). doi:10.1016/j.comcom.2007.04.
023. Special issue on security on wireless ad hoc and sensor networks

31. H. Nakayama, Z. Fadlullah, N. Ansari, N. Kato, A novel scheme for wsan sink mobility based
on clustering and set packing techniques. IEEE Trans. Autom. Control 56(10), 2381–2389
(2011). doi:10.1109/TAC.2011.2163872

32. A. Nayak, I. Stojmenovic, Wireless Sensor and Actuator Networks: Algorithms and Protocols
for Scalable Coordination and Data Communication, 1st edn (Wiley-Interscience, Hoboken,
2010)

33. H. Nishiyama, A. Abdulla, N. Ansari, Y. Nemoto, N. Kato, Hymn to improve the longevity
of wireless sensor networks, in GLOBECOM 2010, 2010 IEEE Global Telecommunications
Conference, pp. 1–5 (2010). doi:10.1109/GLOCOM.2010.5683756

34. S. Olariu, I. Stojmenovic, Design guidelines for maximizing lifetime and avoiding energy
holes in sensor networks with uniform distribution and uniform reporting, in INFOCOM
2006. 25th IEEE International Conference on Computer Communications, pp. 1–12 (2006).
doi:10.1109/INFOCOM.2006.296

35. F. Ren, J. Zhang, T. He, C. Lin, S. Ren, Ebrp: Energy-balanced routing protocol for data
gathering in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(12), 2108–2125
(2011). doi:10.1109/TPDS.2011.40

36. D. Shah, Gossip Algorithms (Now Publishers Inc., Norwell, 2009)
37. G. Shirazi, L. Lampe, Lifetime maximization in uwb sensor networks for event detection. IEEE

Trans. Signal Processing 59(9), 4411–4423 (2011). doi:10.1109/TSP.2011.2159212
38. T. Shu, M. Krunz, Coverage-time optimization for clustered wireless sensor networks: a power-

balancing approach. IEEE/ACM Trans. Netw. 18(1), 202–215 (2010). doi:10.1109/TNET.
2009.2022936

39. I. Stojmenovic, X. Lin, Power-aware localized routing in wireless networks. IEEE Trans. Par-
allel Distrib. Syst. 12(11), 1122–1133 (2001). doi:10.1109/71.969123

40. A.S. Tanenbaum, D.J. Wetherall, Computer Networks, 5th edn (Prentice Hall, New Jersey,
2010)

41. C.K. Toh, Maximum battery life routing to support ubiquitous mobile computing in wireless
ad hoc networks. IEEE Commun. Mag. 39(6), 138–147 (2001). doi:10.1109/35.925682

42. L. Villas, A. Boukerche, H. Ramos Filho, H. Oliveira, R. Araujo, A. Loureiro, Drina: a light-
weight and reliable routing approach for in-network aggregation in wireless sensor networks.
IEEE Trans. Comput. 99, 1 (2012). doi:10.1109/TC.2012.31

43. L.A. Villas, D.L. Guidoni, R.B. Araújo, A. Boukerche, A.A. Loureiro, A scalable and dynamic
data aggregation aware routing protocol for wireless sensor networks, in Proceedings of the
13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and
Mobile Systems, MSWIM ’10, pp. 110–117. ACM, New York (2010). doi:10.1145/1868521.
1868540

44. D. Wei, P. Navaratnam, A. Gluhak, R. Tafazolli, Energy-efficient clustering for wireless sensor
networks with unbalanced traffic load, in Wireless Communications and Networking Confer-
ence (WCNC), 2010 IEEE, pp. 1–6 (2010). doi:10.1109/WCNC.2010.5506172

45. Y. Wu, Z. Mao, S. Fahmy, N.B. Shroff, Constructing maximum-lifetime data gathering forests
in sensor networks. IEEE/ACM Trans. Netw. 18(5), 1571–1584 (2010). doi:10.1109/TNET.
2010.2045896

http://dx.doi.org/10.1109/TMC.2010.172
http://dx.doi.org/10.1109/TWC.2010.07.090629
http://dx.doi.org/10.1109/INFCOM.2005.1498454
http://dx.doi.org/10.1109/INFCOM.2005.1498454
http://dx.doi.org/10.1016/j.comcom.2007.04.023
http://dx.doi.org/10.1016/j.comcom.2007.04.023
http://dx.doi.org/10.1109/TAC.2011.2163872
http://dx.doi.org/10.1109/GLOCOM.2010.5683756
http://dx.doi.org/10.1109/INFOCOM.2006.296
http://dx.doi.org/10.1109/TPDS.2011.40
http://dx.doi.org/10.1109/TSP.2011.2159212
http://dx.doi.org/10.1109/TNET.2009.2022936
http://dx.doi.org/10.1109/TNET.2009.2022936
http://dx.doi.org/10.1109/71.969123
http://dx.doi.org/10.1109/35.925682
http://dx.doi.org/10.1109/TC.2012.31
http://dx.doi.org/10.1145/1868521.1868540
http://dx.doi.org/10.1145/1868521.1868540
http://dx.doi.org/10.1109/WCNC.2010.5506172
http://dx.doi.org/10.1109/TNET.2010.2045896
http://dx.doi.org/10.1109/TNET.2010.2045896

234 A. E. A. A. Abdulla et al.

46. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc routing, in
Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,
MobiCom ’01, pp. 70–84. ACM, New York (2001). doi:10.1145/381677.381685

47. B. Yahya, J. Ben-Othman, Relax: an energy efficient multipath routing protocol for wireless
sensor networks, in 2010 IEEE International Conference on Communications (ICC), pp. 1–6
(2010). doi:10.1109/ICC.2010.5502156

48. J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey. Comput. Netw. 52(12),
2292–2330 (2008). doi:10.1016/j.comnet.2008.04.002

49. Y. Yu, R. Govindan, D. Estrin, Geographical and energy aware routing: a recursive data dis-
semination protocol for wireless sensor networks. Tech. rep., University of California, Los
Angeles (2001)

50. C. Zhang, E. Hou, N. Ansari, in Chapter 6: Node Clustering in Wireless Sensor Networks, ed. by
J. Zheng, A. Jamalipour. Wireless Sensor Networks: A Networking Perspective (Wiley/IEEE
Press, New York, 2009), pp. 173–214

51. Z. Zhang, A.D. Kshemkalyani, S.M. Shatz, Dynamic multiroot, multiquery processing
based on data sharing in sensor networks. ACM Trans. Sens. Netw. 6(3), 25:1–25 (2010).
doi:10.1145/1754414.1754421

52. J. Zhou, Y. Chen, B. Leong, P.S. Sundaramoorthy, Practical 3d geographic routing for wireless
sensor networks, in Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’10, pp. 337–350. ACM, New York (2010). doi:10.1145/1869983.1870016

53. Y. Zhuang, J. Pan, L. Cai, Minimizing energy consumption with probabilistic distance mod-
els in wireless sensor networks, in INFOCOM, 2010 Proceedings IEEE, pp. 1–9 (2010).
doi:10.1109/INFCOM.2010.5462073

http://dx.doi.org/10.1145/381677.381685
http://dx.doi.org/10.1109/ICC.2010.5502156
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1145/1754414.1754421
http://dx.doi.org/10.1145/1869983.1870016
http://dx.doi.org/10.1109/INFCOM.2010.5462073

Chapter 8
Utility-Based Routing in Wireless Sensor
Networks

X. Li and Jie Wu

Abstract Wireless sensor networks (WSNs) have been proposed for monitoring
physical environments. The applications in WSNs have comprised a wide variety of
scenarios. The design of routing protocols in WSNs becomes more complicated than
the traditional network when we consider the energy cost, throughput, reliability,
and delay as routing metrics. Selecting a particular routing protocol mainly depends
on the capabilities of the nodes, and on the requirements of the application. In this
chapter, we will briefly discuss the existing utility-based routing protocols for WSNs.
We put them into several categories according to their utility properties, such as delay,
cost, and packet delivery ratio. In addition, we will also cover the composition-based
utility for wireless networks and its extensions in low duty-cycle WSNs.

1 Introduction

Over the last few years, wireless sensor networks (WSNs) have been used in many
applications, such as military surveillance, infrastructure protection, and scientific
exploration [1–4]. The major task of WSNs is to monitor environmental changes and
report unexpected events to the destination.

The special features of WSNs bring out new challenges. One of the features is the
lifetime of a sensor node, which is constrained by the battery. Thus, to reduce the
energy cost, the consideration of energy efficiency is often preferred in a WSN design.
Moreover, these problems are complicated by the lossy links and collisions during

X. Li · J. Wu (B)

Department of Computer Information and Sciences, Temple University,
Philadelphia, PA 19122, USA
e-mail: jiewu@temple.edu

X. Li
e-mail: xiaoguang.li@temple.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 235
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_8,
© Springer-Verlag Berlin Heidelberg 2014

236 X. Li and J. Wu

communication among wireless sensor nodes. In practice, all of these utilities in
WSNs are available in different forms with many individual peculiarities. Obvious
trade-offs include accuracy, dependability, energy consumption, delay, reliability,
and so on.

Unlike the prior works about WSNs, which mainly focus on the design of MAC
protocols, we will briefly take an overview of algorithmic methods which are related
to the routing protocols. The routing protocol is designed to obtain a route for data
transmission from the source to the destination. The route is selected based on the
routing metric for different application requirements. In multi-hop networks, when
a source node wants to send its packets to a destination, the intermediate node has
to decide which neighbor an incoming packet should be forwarded to, so that it
eventually reaches the destination.

As the routing protocol plays an important role in determining the path, a good
application is dependent on the routing efficiency. Challenges in routing protocol
design are very critical, based on different characteristics in WSNs. This chapter
presents a survey on the routing designs of WSNs, based on a selected utility. This
chapter aims at providing the basic knowledge on utility-based routing designs in
WSNs. The readers are expected to acquire the recent studies and techniques on devel-
oping routing protocols in WSNs. We will first introduce the delay-based, packet-
delivery-ratio-based, and energy-based utilities for routing protocols. Then, we will
offer a special type of routing protocol based on composite utility.

2 Background

In this section, we will offer the background of utility-based routing. In addition, we
will also introduce the other related issues regarding the routing design in WSNs.

2.1 Utility-Based Routing

Intuitively, the utility-based routing is composed of routing and utility, as shown in
Fig. 1. The routing designs are dominated by different forms of routing processes,
such as unicast, multicast, and broadcast. The utilities are the routing metrics, such
as cost, packet delivery ratio, and delay. Depending on the application of the sensor
network, the utility-based routing can be continuous, event-driven, query-driven, or
a hybrid. For the continuous model, the node sends data periodically. In the event-
driven and query-driven models, the transmission is triggered when an event occurs
or when a query is generated. However, the data delivery model mentioned above
may coexist in the network. This is needed to accommodate different types of data
delivery. There are two parts for utility-based routing: the routing protocols, and util-
ities, as shown in Fig. 1. Many routing protocols have been proposed, based on the

8 Utility-Based Routing in Wireless Sensor Networks 237

Utility-based routing

Routing

Unicast Multicast Broadcast

Utility

Packet delivery ratioCost Delay

Fig. 1 Utility-based routing in WSNs

requirements of different applications and quality of service. In the real application,
three transmission patterns are used for data delivery: unicast, multicast, and broad-
cast.

2.2 Objectives of Different Utilities

WSNs are widely used for environmental sensing and data processing, with extremely
low energy and cost. The utilities of routing in WSNs are commonly discussed by
delivery ratio, throughput, delay, saving cost (hop count, energy), and composition
utility (combination of them). In this part, we will discuss the objectives of different
metrics.

(1) Packet delivery ratio (PDR): The packet delivery ratio is estimated by sending a
number of packets in a short period of time. The receiver will compute the percentage
of received packets. Thus, the purpose of improving the delivery ratio is to reduce
the delay and cost. Consequently, we can achieve both time and energy efficiency.

(2) Delay: During the transmission process, the packet is delayed at each node
or during the data delivery. Especially in low duty-cycling, the sensor has to wait a
certain time period to transmit the packet. Several issues need to be considered for
the routing design, such as the expected end-to-end delay, packet delay, and sleep
scheduling problems.

(3) Energy cost: The energy cost is also important in path-selection. As redundant
packets may consume more energy, the metric can be designed by reducing any
unexpected transmissions and real-time scheduling. In recent works, the expected
transmission cost and real-time energy cost were proposed for selecting the path.

To represent the network topology, the weighted graph has been proposed. Given
a weighted graph G = (V, E, W), V is the set of vertices, E is the set of links, and
W is the set of weights for the links. As shown in Fig. 2, the weight of a link could
be energy cost, delay, reliability or other conditions.

238 X. Li and J. Wu

Fig. 2 An example of
weighted graph

s

1

2

d

{2, 0.8, 5} {3, 0.9, 4}

{4, 0.9, 5}

{2, 0.7, 3}

{2, 0.5, 2}

{Energy cost, reliability, delay}

2.3 Reporting Model

Unlike wired networks, wireless channels are, by nature, error-prone [5]. Thus,
neighboring nodes might not successfully receive messages. This means that trans-
mission over a wireless connection is unreliable. Reliability is defined as the ability
of the network to ensure reliable data transmission in a network structure that is
continuously changing.

In low duty-cycle WSNs, many factors will affect the reliability of the link, such
as packet-error rate (PER), buffer size, and duty-cycle. In wireless networks, packet
errors are common, due to fading caused by the environment and interference from
other wireless devices. Another problem is that if the nodes are randomly deployed,
the inadequate locations and distances cause unreliability. Packet buffering in WSNs
is limited, due to memory constraints. When a buffer is full, a packet must be dropped,
which reduces reliability. To solve the reliability problem, several schemes have been
proposed. Opportunistic and retransmission-based routing are two typical methods,
as shown in Fig. 3.

If the transmission fails, a retransmission may be needed for the delivery. For
the first case, the sender can select another forwarder to transmit the packet, as
shown in Fig. 3a. This is called “opportunistic forwarding” [6]. In the other case,
the node can simply retransmit the packet using the same link., as shown in Fig. 3b.
The transmission count, delivery ratio, or other utilities are provided to measure the
metric.

Apart from different kinds of utilities, many works have been conducted about
forwarding methods. In WSNs, the simplest forwarding method is flooding. Once
a node receives the packet, the node will forward the packet to all of its neighbors.

Fig. 3 Forwarding methods.
a Opportunistic forwarding.
b Retransmission

1 2 n-1 n
i

1

2

n

(a) (b)
s

s

8 Utility-Based Routing in Wireless Sensor Networks 239

In this way, the packet is surely forwarded to the destination, as long as the network
is connected. To avoid cyclic transmissions, the node should forward the packets to
the neighbor it has not seen. To avoid useless propagation, packets usually have an
expiration time, i.e, time to live (TTL) or maximum number of hops.

Probabilistic broadcast approaches, broadly called “gossip,” offer a simpler alter-
native to deterministic routing. With gossiping, nodes in the network are required to
forward packets with a pre-specified probability, pgossip ∈ 1. The main idea is that
the proper pgossip will make the entire network receive the broadcast message with
q very high probability. Recent research [7] has mentioned that the correct value of
pgossip is closely associated with the topology of the network.

2.4 Additional Issues

In addition to the above utilities, other factors may also affect the network perfor-
mance. In this subsection, we will offer other facts related to the routing design.

2.4.1 WSNs and Low Duty-Cycle WSNs

Many applications in WSNs need a long time energy conservation due to limited
energy supply. The special feature of the applications in WSNs is that the sensors
are equipped with limited energy. Thus, it is desirable to turn off the radios when the
sensors do not need to participate in the data delivery.

To resolve the conflicts, it is necessary to reduce the communication cost and
duty-cycles. B-MAC [8] is one of them. B-MAC supports dynamic reconguration
and provides bidirectional interfaces for system services to optimize performance,
whether it be for throughput, latency, or power conservation. These sensors construct
the low duty-cycle WSNs [9]. There are two states for the sensors: active or sleep.
Usually, when a sensor node is in active mode, it can listen to the channel to receive the
packets or transmit the packets. Various MAC protocols have been proposed in low
duty-cycle WSNs. The difference relies on the synchronization mechanism. Some
MAC protocols require both of the nodes to be in active mode for data transmission,
such as S-MAC [10]. The end-to-end delay is the least common multiple (LCM) of
the two nodes. To lower the end-to-end delay latency, other MAC protocols were
proposed. The sensors can still listen/overhear the packets by providing additional
energy when they are in sleep mode. X-MAC [11] is one of them. With these MAC
protocols, the end-to-end delay is the “wake up” period of the node. Figure 4 shows
an example of two MAC protocols. Suppose nodes s and d are the neighboring nodes.
The working schedules for nodes s and d are 2 and 3k, respectively. The arrow lines
show the schedule when two nodes can communicate with each other.

In this way, the energy can be consumed during: (1) Network setup: during this
process, the sensors wake up, re-open network connections, and initialize the sensors.
(2) Data processing: when the sensors are in active mode, they can transmit the

240 X. Li and J. Wu

Node s

Node d

active mode sleep mode

ds, d = 6k ds, d = 2kS-MAC: X-MAC:

Node s

Node d

Fig. 4 Low duty-cycle WSNs

packets. (3) Tear down: the sensors close the network connection, reset, and go into
sleep mode. (4) Maintenance: The sensor nodes are in sleep mode. Very little energy
will be consumed.

2.4.2 Topology

The topological deployment of WSNs is important. This could either be determined
or random. For determined deployment, the sensors can be deployed along the road-
side, or at a metro station, etc. The Sand [12] sensor network for target tracking
and the CitySense [1] network for urban monitoring are the instances where optimal
patterns can be provided [13]. However, lots of routing protocols are designed for
random deployment.

Considering different deployments, it is important that a path exist from the source
to destination. In other words, it is necessary to ensure the connectivity of the network.
Typically, there is an inverse relationship between scalability and reliability in WSNs.
As the number of nodes in the network increases, it is more difficult to ensure
reliability. More dynamics in the environment will increase the number of control
packets during the routing process. Moreover, the network cannot afford the large
amount of overhead caused by the dynamics, which will result in less reliability. The
two basic problems in real applications are bad paths and links to the sink nodes.

As we have discussed, the routing design in WSNs mainly focuses on the packet
delivery ratio (PDR), latency, and energy efficiency [14]. In the following, we will
provide some recent work that relates to these metrics, plus some new ones through
a composition metric. The notation list is provided in Table 1. To make it consistent,
we use p, d, and c for the reliability, delay, and cost calculations, respectively. Table 1
shows the notation list used in this paper.

8 Utility-Based Routing in Wireless Sensor Networks 241

Table 1 Notation list Parameter Description

pi, j The reliability of link (i, j)
pi The packet reception probability at node i
ti The time slot at node i
ωi The working schedule of node i
di, j The delay between nodes i and j
ci, j The cost of link (i, j)
hi, j The hop count between nodes i and j
τ The time span for each time unit
d(P) The delay for a path P
ρi, j Tthe duty-cycle rate of link (i, j)

3 Single Utility-Based Routing

In this section, we will provide an overview of the recent works related with single
utility-based routing design. The “single utility” means that the routing metric is
designed for the purpose of improving the packet delivery ratio, lowering the end-
to-end delay, or saving energy costs.

3.1 Packet Delivery Ratio

The packet delivery ratio has several cases: the expected delivery ratio (EDR), the
expected transmission count (ETX), and the quality of forwarding (QoF). In the
following, we will introduce several related approaches.

3.1.1 Expected Delivery Ratio

In opportunistic routing, each node s has n neighbors that construct the forwarding
sequence, as shown in Fig. 3a. For a given forwarding sequence, suppose that Pi is
the overall probability that a packet is successfully delivered by the i th forwarder. It
can be represented as follows [14]:

Pi = (
i−1
η
j=1

(1 − p j))pi .

Therefore, the corresponding EDR for node s can be expressed as follows:

EDR =
n∑

i=1

Pi · E DRi . (1)

242 X. Li and J. Wu

Fig. 5 An example of data
forwarding in low duty-cycle
WSNs

S

A

C

B

60%

70%

80%

EDR=70%

EDR=90%

EDR=70%

(100*)

(010*)

(001*)

(100*)

EED=1

EDD=2

EDD=1

EEC=2

EEC=2

EEC=1

1

2

3

Figure 5 shows an example of computing EDR. According to Eq. 1, EDR for node s
is 0.6 · 0.7 + (1 − 0.6) · 0.7 · 0.9 + (1 − 0.6) · (1 − 0.7) · 0.8 · 0.7 = 0.74, where
PA = 0.6, PB = (1−0.6) ·0.7 = 0.28 and PC = (1−0.6) · (1−0.7) ·0.8 = 0.096.

3.1.2 Link Correlation

The link correlation in low duty-cycle WSNs was first studied in [15]. In both indoor
and outdoor experiments, they observed that if a packet is received by a sensor node
with a low packet reception ratio (PRR), in most cases, this packet can also be
received by the high PRR nodes. In order to quantify the relationship, conditional
packet reception probability at node s was defined as ps(ph |pl), where ph and pl

are for higher and lower link quality, respectively. ph and pl are the neighboring
receivers of the sender s.

The work [15] was further extended to [16]. Traditionally, energy optimality in a
designated flooding-tree is achieved by selecting parents with a smaller hop count and
the best link quality. However, in this work, the authors studied the link correlation
with which redundant transmission can be ignored. As an example, shown in Fig. 6,
node E wants to select the senders from A and B. If we do not consider the link
correlation, link AE should be selected for the transmission, since the quality of
AE(85 %) is higher than B E(75 %). However, if link correlation is considered, the
conclusion will not hold. Let p1 and p2 denote the link qualities for the two receivers,
respectively. For k successful transmissions, the number of transmissions m needed
for both of the receivers should satisfy the following equation:

pr (m = k) = pr (m > k − 1) − pr (m > k)

= ((1 − p1)
k−1 + (1 − p2)

k−1 − pk−1
12)

−((1 − p1)
k + (1 − p2)

k − pk
12).

Thus, the expected transmission E(m) is:

8 Utility-Based Routing in Wireless Sensor Networks 243

Fig. 6 An example of corre-
lation

S

A

C

E

B

D

75%

85%

70%

80%

Independent
pr(C|E)=75%

pr(D|E)=100%
Correlated

E(m) =
+⊂∑
k=1

k Pr (m = k) = 1

p1
+ 1

p2
− 1

1 − p12

As shown in Fig. 6, nodes E and C are independent. if node E chooses A as the
forwarder, p12 = (1 − p1)(1 − p2). E(m) = 1/0.75 + 1/0.85 − (1/(1 − (1 −
0.75) · (1 − 0.85))) = 1.47. In the other case, since nodes D and E are correlated,
if node E selects B as the forwarder, p12 = 1 − pE − pD + pE · pr (D/E) =
1 − 0.7 − 0.8 + 0.7 · 1 = 0.2. Here, pr (D/E) is the probability that node D
can receive the packet if the packet can be received by node E . Then, E(m) =
1/0.7 + 1/0.8 − 1/(1 − 0.2) = 1.43.

The proposed correlated flooding includes two parts. One part is to collect the link
quality information and partition the receivers into different groups. The senders will
send a hello message to their neighbors. The receivers will record the information in
a bitmap format (1: success, 0: failure). The distance between two correlated bitmaps
is called the Hamming distance. It is defined as the number of different positions
between the bitmaps. For example, the distance of [0111] and [0111] is 0, while the
distance of [0111] and [1000] is 4.

The other part is the sender selection process. Each receiver may belong to multiple
groups. In the sender selection process, the receiver will select the sender with the
highest priority. If there are more than one, it will choose the one with the best link
quality. The advantage of this method is that it makes use of the link correlation, and
reduces the number of transmissions.

3.1.3 Expected Transmission Count

Many routing metrics have been proposed to measure the link quality in wireless
networks. The ETX [17] is one of the typical routing metrics. It can be represented
as follows:

244 X. Li and J. Wu

Fig. 7 An example of corre-
lation

S

A CB

0.5
0.5

0.3

50% 100%

ETX = 1

p f · pr
,

where p f is the probability that the packet can be successfully received. pr is the
reverse probability that the ACK can be successfully received. ETX selects paths
with the minimum expected number of transmissions (including retransmissions)
required to deliver a packet to its destination. For example, p f and pr equals to 0.7
and 0.8, respectively. Then, ETX of the link is 1/(0.7 · 0.8) = 1.785.

Basalamah et al. [18] proposed a new routing scheme which makes use of link
correlation and opportunistic transmission scheme. The link correlation aware oppor-
tunistic routing was proposed to improve the performance exploiting the diversity
gain. The motivation example can be explained as follows.

As shown in Fig. 7, the expected transmission count of the three links are 1/0.5 =
2, 1/0.5 = 2 and 1/0.3 = 3.33 for nodes S to A, B, C , respectively. It is obvious that
links (S, B) and (S, C) are better than link (S, C). Therefore, we have the expected
transmission times:

ET Xs,b,c = 1

1 − ∏
i (1 − ps,i)

.

In this example, we have ET X (s, b, c) = 1/(1 − 0.25) = 1.33 for candidate set
{B, C}. Likewise, we can also obtain a similar result by considering A and B as the
candidate set. The result of ET Xs,a,b is 1.176. However, this calculation is without
link correlation. When we consider the link correlation, we could use the following
equation:

ET X = 1

1 − Pr(Es,1, Es,2, . . . , Es,n)
,

where Es,i is the event that the packet is successfully received by node i . Using
this example, the links from node S to nodes B and C is 100 % correlated. Thus,
Pr(Es,B, Es,C) is 0.5. The ETX reduces to 2. In this situation, the selection of A
and B is the best choice.

3.1.4 Quality of Forwarding

In WSNs, some routing protocols are designed by allowing the retransmission strat-
egy, as shown in Fig. 3b. The quality of forwarding (QoF) [19] was proposed to
measure the path quality. The authors considered two kinds of PDR: one is for

8 Utility-Based Routing in Wireless Sensor Networks 245

physical links and the other is for virtual links (inside the node). p is denoted as the
probability that the packets successfully go through the link. r is denoted as the most
retransmission times. Thus, the packet delivery ratio (PDR) over a link is

P DR = 1 − (1 − p)r+1. (2)

According to Eq. 2, the expected transmission count (ETC) was proposed using
the following equation:

ETC = (
r+1∑
k=1

kp(1 − p)k−1) + (r + 1)(1 − p)r+1

= 1 − (1 − p)r+1

p
.

(3)

Here,
∑r+1

k=1 kp(1− p)k−1 represents the expected transmission times that the packet
passes the link. (r + 1)(1 − p)r+1 represents the expected transmission times where
the packet will fail to to pass the link. Using Eqs. 2 and 3, the QoF is the ratio of the
data delivery ratio to the actual transmission times:

QoF = P DR

ET C
.

Thus, for a physical link, the QoF = p. Note that ETC is different from ETX in that
it not only considers link quality, but also retransmission limit. When r ◦ ⊂, ETX =
ETC. To calculate the QoF of a path, the PDR of a node has also been integrated into
the routing design. The path QoF considers both data delivery ratio and transmission
cost. If the data delivery ratios of two paths are the same, QoF selects the path with
lower transmission count. If the transmission count of two paths are the same, QoF
favors the path with high data delivery ratio.

3.2 Delay

In this subsection, we will focus on the routing issues that relate to the end-to-end
(E2E) delay. The E2E delay is one of the most fundamental issues for WSNs. Many
applications in WSNs require an E2E delay guarantee for time sensitive data. For
example, telemonitoring of human health status, vehicle anti-theft [20], and target
tracking [4] are classified as the time-sensitive applications.

In low duty-cycle WSNs, due to the limitation of the energy budget, the sensors
are scheduled to “sleep” or “active” states. When the sensors are in sleep mode,
they cannot transmit the packets. The time spent on waiting for its neighbors to
wake-up is called “sleeping latency.” Thus, unlike the traditional wireless networks,
the delay-based routing design also includes the sleeping latency, in addition to the

246 X. Li and J. Wu

transmission delay. The sleeping latency (in seconds), however, is much longer than
the transmission delay and propagation delay (in milliseconds). Therefore, the E2E
delays mainly dominate the sleeping latency.

In traditional wireless networks, the shortest path algorithm is used to find the
optimal path in the weighted graph G = (V, E). However, in the low duty-cycle
WSNs, the graph changes over time, which is called a “time-dependant graph.” G =
(V, E(t)) [21] is used to represent the models, where V is a set of nodes, and E(t)
is a set of edges that appears at time t . Several works have been conducted using
time-dependant graph models.

3.2.1 Sleep Scheduling

In [22], the authors provided delay-efficient sleep scheduling for WSNs. They con-
sider the case of a single wake up schedule, where each sensor can choose exactly
one of k slots to wake up. They also prove that minimizing the E2E is, in general,
NP-hard. The interesting part is the time slot assignment for each node. The time
slot assignment is to assign a slot to a certain node, and schedule the node to wake
up. Let ω be a slot assignment function and di, j be the delay in transmitting the data
from i to j . The delay on a path P under the slot assignment function ω is defined
in Eq. 4:

d(P) =
∑

(i, j)∀P

di, j . (4)

They use two models: all-to-all communication and weighted communication.
In the all-to-all communication, the delay diameter is defined as Di, j , which is the
shortest delay path between nodes i and j under the slot assignment function ω.
The problem is to find an assignment function ω that minimizes the delay diameter.
This is called delay-efficient sleep scheduling (DESS). Figure 8 shows an example
of the delay diameter. Among all of the pairs: (A, B), (A, C), (A, D), . . . , (B, A),

(B, C), . . ., the delay diameter DA,B = dA,E + dE,F + dF,B is 7. The property
is non-symmetric, since dA,B ∗= dB,A. Compared to the delay parameter, the hop
diameter is symmetric. For example, h A,B = hB,A = 3.

In the weighted communication model, they defined the average delay diameter,
which is

∑
i, j∀V wi, j · di, j . Like DESS, they also offer average delay efficient sleep

scheduling (ADESS). ADESS is used to find the slot assignment function ω that

Fig. 8 An example of delay
diameter A

C

E F

B

D

2
3
2

1

2
1

2
1

2
1

G
2

3
12

8 Utility-Based Routing in Wireless Sensor Networks 247

minimizes the average delay diameter. The main difference is that this method focuses
on the fact that the communication between some pairs occurs more frequently than
other pairs.

3.2.2 Pipeline Scheduling

In order to reduce unnecessary forwarding interruption, a state-of the-art solution
has been provided by using the technique of pipeline scheduling. The most recent
work is presented in [23]. Cao et al. proposed a Robust Multi-pipeline Scheduling
(RMS) algorithm to coordinate multiple parallel pipelines. Pipeline scheduling-based
routing is one of the multipath routing designs. Multi-path routing is the routing
technique of using multiple alternative paths through a network. The path could be
node disjoint, edge disjoint, or overlapped. The specialty of pipeline scheduling is
to lower the switching delay by coordinating the transmission time.

The advantage of the pipeline scheme is the decrease in the sleep latency. The
single pipeline scheme is always fragile, due to unreliable links. Therefore, multiple
pipelines are provided to dynamically switch one forwarder to another forwarder.

Examples are provided in Fig. 9. We assume that the duty cycle is 100 s. In the
original scheduling method, if the transmission from nodes A to B fails, the packet
has to wait a longer time to be retransmitted, as shown in Fig. 9a. However, if we use
multiple pipelines, we can see that the packet can dynamically switch to another for-
warder E . Figure 9b, c show the process. Note that if we reschedule the transmission
time using pipeline, such that if one pipeline has failed, the node can dynamically
switch to another one. In this way, the latency can be reduced, while using the same
energy cost. In this scheme, the route is decided dynamically by the timely results.
There are three steps for the algorithm.

The first is selection of the virtual forwarding set. The virtual forwarding set is
constructed using the link quality. Suppose that the link quality is {qs1, qs2, . . . , qsn}.
The φ is defined as the threshold, which is the one-hop delivery ratio. As shown in
Fig. 10, the first k attempts are 1 − (1 − qs1)(1 − qs2) · · · (1 − qsk). Suppose that we
have M links in the forwarding set, the following Eq. 16 needs to be satisfied:

A

C

B

E

F

D4

5

6

7

8

(a) (b)

A

C

B

E

F

D4

5

6

7

8

(c)

A

C

B

E

F

D

6

8
3

5

4

Fig. 9 An example of pipeline scheduling

248 X. Li and J. Wu

S

1 2 3 4

Virtual forwarding set

forwarding set

level k

level k-1

Fig. 10 An example of virtual forwarding set

Fig. 11 An example of simul-
taneous wake-up time

S

B

A

C

D

E

F

4

5

5

7

6

9

10

S

B

A

C

D

E

F

3

4

5

7

6

9

10

1 −
M∏

i=1

(1 − qsi) < φ (5)

The second step is propagative scheduling. The basic purpose is to let each node
decide its wakeup schedule, and minimize the expected delay of two consecutive
levels. For example, node A has two parents, whose wakeup time is {t1} and {t2}.
Then, the candidate time of node A is {t1 − 1} and {t2 − 1}. Therefore, we have
modular delay as defined in Eq. 6:

|t1 − t2|T =
{

t1 − t2, t1 → t2
t1 + T − t2, t1 < t2.

(6)

The third step is to avoid the simultaneous wakeup time. Suppose that node A
has two parents who wakeup at the same time slot 4. Therefore, node A can either
choose nodes B or C to forward the packet. To avoid this, we can shift the wakeup
time of node B to time slot 3. Figure 11 shows an example of this process.

3.2.3 Collaborative Scheduling

The collaborative scheduling was studied in [24]. The authors provided a collabo-
rative scheme based on the concept of error interference. They designed a sensing

8 Utility-Based Routing in Wireless Sensor Networks 249

probability bound to control tolerable sensing errors. The proposed scheme aims
at achieving low energy cost. The error interference is defined as the difference
between the ground truth environmental data and corresponding values generated by
the predictor of sensor nodes. There are four stages in the proposed algorithms.

The first step is to detect the neighbors. In this stage, each node recognizes its
neighboring nodes, and assigns a table for each neighbor to build the weight graph.
The neighborhood formation is a dynamic stage, which will be refreshed after a
defined period.

The second step is to generate the node-pair weighted graphs. Specially, the fol-
lowing approach to calculate data correlation C(i, j) between two observation vec-
tors by node Ni and node N j :

C(i, j) = m
∑

oi
ko j

k − ∑
oi

ko j
k⎛

m
∑

(oi
k)

2 − ∑
(oi

k)
2
⎛

m
∑

(o j
k)2 − ∑

(o j
k)2

, (7)

where {oi
1, oi

2, . . . , oi
k} is the observation vector, obtained through discrete sampling.

The third one is to use the error bound to control the neighbors. The sensing node,
can infer the prediction errors of correlated neighboring nodes by comparing its
real-time sensing values with corresponding predicted values. Using the probability
density function ρ(x), each node i can evaluate the cumulative distribution function
P M Fi (em

i):

PMFi (e
m
i) =

em
i⎜

−em
i

ρ(x)dx, (8)

where em
i is observation error, based on the difference between actual sensing data

and prediction values that are generated by our prediction model. Then, the inferred
error between nodes i and j can be expressed as follows:

ei j = P M F−1
j (P M Fi (t[k])). (9)

Here, t[k] is the variable for each step:

t[k] =
⎝
⎧

2 · t[k − 1] P M Fj (t[k − 1]) < P M Fi (em
i)

t[k − 1] + t[k − 2]
2

P M Fj (t[k − 1]) > P M Fi (em
i),

(10)

where P M F1() is the inverse function of PMF, and t[0] = 0, t[1] = em
i . It is

an iteration process. It will not stop until P M Fj (t[k1]) = P M Fi (em
i). The basic

process is that each time we will compare P M Fj (t[k − 1]) and P M Fi (em
i). Then,

we can decide the next t[k] until P M Fj (t[k1]) = P M Fi (em
i).

250 X. Li and J. Wu

The fourth step is to determine whether the sensors switch on/off. The node can
remain turned off if the inferred error is smaller than the error tolerance. The error
tolerance is a specified bound (e.g., the tolerance threshold of errors).

3.2.4 Expected End-to-End Delay

In [21], πi = (ωi , τ) is used to represent the working schedule of node i . ωi is an
infinite binary string in which 1 denotes the active state, and 0 denotes the dormant
state. τ denotes the time span for each bit. For example, the total time-span of the
binary string (00101) with τ = 2 s is 10 s, since there are totally five bits in the string.
Thus, for a sender i and receiver j , if the working schedules are σi = ((10000)∞, τ)

and π j = ((00010)∞, τ), respectively, the E2E should be 3τ − 0τ = 3τ . The main
contribution is that they provide an E2E delay guarantee by adding extra active bits
to nodes. For example, for the single link route A ◦ B, πA = ((010)∞, τ) and
πB = ((100)∞, τ). By adding an extra active bit to node B, and by changing its
working schedule from (100)∞ to (101)∞, the sleep latency can be reduced to τ .

The expected E2E was mentioned in [14]. It is formally defined as the expected
data delivery delay from source node S to destination D over a multi-hop route.
They proposed a time-expanded graph model to represent the low duty-cycle WSNs.
In the ideal case, the E2E delay in this network is equal to H · τ , where H is
the minimum number of hops between a source and destination. Figure 12 shows the
process of the delivery from node A to node D. Since node B is in sleep mode, the
packet can only be delivered at time 2. The transmission procedure is the same as
for the following node. Thus, the E2E delay is 4, where node A sends the packet at
time 1, and node D can receive it at time 4. The main concept of this paper is the
forwarding sequence, which is maintained by each node. The forwarding sequences
are constructed by the nodes’ neighbors. During the transmission, the sink node will
check the time associated with the first node in the sequence and forward the packet.
If the transmission is successful, the forwarding is done. Otherwise, the node may
check the second node in the sequence and forward the packet. If P ∩

i is the probability
that the packet arrives at the i th forwarder, under this scenario, the routing metric of

Fig. 12 Time-expanded net-
work

A B C D

(100)* (010)* (011)* (100)*

1 0 0 1

0 1 1 0

0 0 1 0

1 0 0 1

Time Node A Node B Node C Node D

1

2

3

4

8 Utility-Based Routing in Wireless Sensor Networks 251

expected E2E delay (EED) is

E E D =
n∑
i

P ∩
i (E E Di + di), (11)

where di is the waiting delay at node i . P ∩
i = Pi · E DRi/E DR can be computed

according to E DR and Pi , which is discussed in the subsection of packet delivery
ratio. We use Fig. 5 as an example to compute EED. From Fig. 5, we have dA = 2,
dB = 4, and dC = 6. From the previous section, we can get P ∩

A = 0.6 · 0.7/0.74 =
0.57, P ∩

B = 0.28 · 0.9/0.74 = 0.34, and P ∩
C = 0.096 · 0.8/0.74 = 0.1. According to

Eq. 11, the E E D of node S is 0.57 · (2 + 1) + 0.34 · (4 + 2) + 0.1 · (6 + 1) = 4.45.

3.2.5 End-to-End Delay in the Rrandom Walk Model

The E2E delay was also studied in random walk models. In the i.i.d. (independent and
identically distributed) random duty-cycling model [25], ρ is the duty cycle rate of
each node. Each node is in the active state with a probability ρ, while it is dominated
with 1−ρ. For the link (i, j), the probability of nodes i and j being in the wake mode
is ρ2. It is shown that the per-hop latency is di = 1

1−(1−ρ2)ni
, where ni is the number

of neighbors of node i . Note that, in this case, the working schedule is previously
unknown. In the pseudo-random duty-cycle model [26], the node has the knowledge
of the working schedule. Therefore, the per-hop latency is d ∩

i = 1
1−(1−ρ)ni .

In [26], the authors studied several aspects of latency in random walk models: (1)
Hitting time: the expected time for source s to hit the destination d. (2) Commute
time: the expected round-trip time between source s and destination d. (3) Cover time:
the expected time from the source s to all of the other nodes in the network. Under the
stochastic routing framework, the authors in [27] studied the routing problem using
the Markov chain. They developed centralized and distributed implementations in
low duty-cycle WSNs.

3.2.6 Communication Delay in Low Duty-Cycle Sensor Networks

In [28], the authors introduced a novel solution of communication delay in low duty-
cycle sensor networks. They provide sink-to-one and sink-to-many solutions, and
their distributed implementation.

The network topology is denoted as G(t) = (V, E(t)), where V is a set of nodes
and E(t) is a set of directed links at time t . Each edge ei j (t) belongs to E(t) if node
i and node j are in each other’s communication ranges. Node j is in active mode, so
as to receive the packets at time t . di j (t) is defined as the delay when node i sends
the packet at time t , when node j is in active mode to receive the packet.

Figure 13 shows an example of the proposed solution. In this example. the original
E2E delay from node s to node b is 6. After argumentation of active mode at time

252 X. Li and J. Wu

Fig. 13 Example of active
argumentation

S A B S A B

{1} {3} {7} {1} {3} {4,7}

2=sad 4=abd 2=sad 1=abd
E2E delay = 6 E2E delay = 3

4 for node b, the E2E delay can be reduced to 3. In addition, the original schedule
of node b is time 7. After argumentation, the schedule of node b is both time 4 and
time 7. In the following, we will provide more details of the solution. The first is
how to find the minimum delay for active instance augmentation. We define Dh

j as
the minimal delay from the source to node j , with at most h active augmentation.
The initial state is

Dh
j =

{
ds j , h = 0

1, h = 1.

Based on this solution, we then offer the recursive solution. The main idea is that we
could use intermediate node p to help the delivery. Then, we have

Dh
j = min

⎝⎪
⎪⎧

Dh
j ,

Dh−1
p + 1, h > 0

Dh
p + dpj (t).

An example can be presented in Fig. 14. In this example, the initial states are D0
a = 5,

D1
a = 1, D0

b = 2, and D1
b = 1. Then, for node c, we have D0

a +dac(6) = 5+8 = 13.
Using the above equation, we have:

Fig. 14 Example of delay
computation

s

a

b

c
{1} {6} {4}

{3}
s

a

b

c
{1} {6} {4}

{3}
50 =aD
11 =aD

S

a

b

c

{1} {6} {4}

{3}

50 =aD

11 =aD

20 =bD

11 =bD

130 =cD
31 =cD
22 =cD

30 =cD

S

a

b

c

{1} {6} {4}

{3}

50 =aD

11 =aD

20 =bD

11 =bD
31 =cD
22 =cD

8 Utility-Based Routing in Wireless Sensor Networks 253

Fig. 15 Example of linear
topology

s ba c

s a b c

s a b c

{1} {9} {3} {7}

{1} {2,9} {3} {7}

{1} {2,9} {3} {4,7}

80 =aD 120 =bD 150 =cD

11 =aD 21 =bD 51 =cD

11 =aD 21 =bD 32 =cD

D1
c = min

{
D0

a + 1 = 5 + 1 = 6

D1
a + dac(2) = 1 + 2 = 3

= 3.

Correspondingly, we have D2
c = 1 + 1 = 2. We also offer the example of linear

topology shown in Fig. 15. In this example, the initial states are D0
a = 8, D0

b = 12,
and D0

c = 15. After the first round of argumentation, we have D1
a = 1. Then, D1

b
is 2. D1

c = 5. The algorithms stops at the second argumentation, where we set
D2

c = 3.

3.2.7 Opportunistic Flooding and Expected Packet Delay

Flooding has been investigated extensively in wireless networks. However, there are
several challenges when using low duty-cycle WSNs. Firstly, the nodes stay asleep
most of time and wake up asynchronously. A broadcasting packet is rarely received
by multiple nodes simultaneously. Secondly, the sender may have to wait for a certain
period of time until its receiver becomes active. Finally, the wireless link is unreliable.
The transmission may be repeated due to the low link quality.

Opportunistic flooding in low duty-cycle WSNs was proposed in [29]. The main
objective is to reduce redundant transmissions, while achieving fast dissemination.
As shown in Fig. 16a, the flooding structure of the network is a directed acyclic graph
(DAG) of N vertices. Figure 16b offers the solution of the structure, which is called
an “energy-optimal tree.” The energy optimal tree is built based on a smaller hop
count and the best link quality. The proposed opportunistic flooding consists of three

S

B

A

C

D

E

F
0.9

0.8

0.7

0.7

0.7

0.8 0.8

0.50.5

(a) Original flooding structure (b) Energy-optimal structure

S

B

A

C

D

E

F
0.9

0.8

0.7 0.7

0.8 0.8

Fig. 16 DAG-based flooding structure. a Original flooding structure. b Energy-optimal structure

254 X. Li and J. Wu

parts: the probability mass function (pmf), decision making process, and decision
conflict resolution.

The pm f is denoted as a set of tuples {(th(i), ph(i))}, where ph(i) is the probabil-
ity of receiving the packet at time th(i). For the source node, it will always awaken.
Therefore, the delay is 0 and the probability is 100 %. The pm f of the source is
(0,100 %). Then, the probability that it receives the flooding packet at its j th active
time is

ph+1(j) =
∑

i :th(i)<th+1(j)

ph(i)p(1 − p)ni j .

Figure 17 shows an example to compute pm f . The probability that node A receives
the packet at time 10 is 0.9. At time 20, the probability is 0.9 · (1 − 0.9) = 0.09. For
the node D, the probability is the sum of two cases: (i) node A receives the packet
at time 10, or (ii) the probability that node A receives the packet at time 20. Then,
pm f is 0.9 · (1 − 0.7) · 0.7 + 0.09 · 0.7 = 0.252. Similarly, all of the nodes in the
network will compute their pm f .

In the decision-making process, the p-quantile delay (Dp) is a threshold delay.
A node computes the expected packet delay (EPD) and makes a forwarding decision,
based on the comparison between the EPD and Dp. The EPD will be introduced in
the following section. If we have the transmission from A to B, the EPD can be
computed by using the following equation:

E P D =
∑

j :th+1(j)>tl (i)

th+1(j)p(1 − p)ni j ,

where p is the link quality. A node with hop count h is denoted as a level-h node.
Then, ni j is the level-(h +1) node’s active time units between th(i) and th+1(j). EPD
is the sum of all the series. A simple way to obtain the EPD is to use the expected
transmissions
 1

p � and get the time slot of the
 1
p �th transmission. For example, as

shown in Fig. 17, since p = 0.5, we have the expected transmission 2. Then, we have
E P D = 13, as the 2rd try is at time 13. Dp can be computed by using the discrete
quartile function:

Fig. 17 The pm f computa-
tion

S

A

D

0.9

0.7

S
1.00

0

A 0.90
0.09 0.009

10 20 30

5

0.63

15

0.252

25 25

0.092

t

t

t

D

8 Utility-Based Routing in Wireless Sensor Networks 255

Fig. 18 An example of deci-
sion making

{4, 0.9, 5·k} {3, 0.3, 3·k}
s 1 d

F−1(p) = min{x ∀ R : Pr (t ∈ x) → p}.

Figure 18 shows an example of the decision making process. Thus, Dp =
F−1(0.2 + 0.5) = 9. Since EPD = 13 > Dp = 9, the second try is redundant.

The motivation for the decision conflict resolution is the hidden terminal problem.
Since links are unreliable, the more nodes in the same set will make it possible for
packets to be sent at the same time. It will be likely that a transmission is not sensed
by all of the other nodes, leading to a collision. The link quality threshold hth was
proposed for the selection process. All of the links have a higher link quality than hth .
During the selection process, the selected candidate will follow the order of the link
quality. To resolve the conflict in the sender set, the backoff function was designed
to select the higher link quality function. This means that the duration of the backoff
depends on the link quality between the sender and the receiver. When multiple
nodes want to send the packet to the same node, the node with shortest backoff time
dbackof f can forward the packet first. Suppose that the bound of backoff is Dbackof f

and the maximum size of sender set is n. Each node could compute its own backoff
by using the following equation:

dbackof f = (≈n(1 − p)) Dbackof f

n
+ drand ,

where drand is a random time period, and dbackof f is the backoff time for each node.
The basic idea is that each node computes its own backoff time dbackof f and transmit
the packets after dbackof f .

3.3 Energy Cost

The energy cost is an important part of WSNs. While developing the routing proto-
cols, it is crucial to ensure the power efficiency. The power consumption can be put
into two categories: data transmission and data processing.

3.3.1 Real-Time Power-Aware Routing

The real-time power-aware routing (RPAR) scheme was proposed in [30]. This rout-
ing protocol is based on the tradeoff between transmission power and communication
delay. This work focuses on the real-time applications in which meeting deadlines is
more important than throughput. The goal is to increase the number of packets that
meet deadlines, while minimizing the energy consumption.

256 X. Li and J. Wu

The delivery velocity was proposed as the distance that a packet travels, divided
by its packet delay. The slack is the time remaining until the deadline expires. It can
be updated at each hop. With the source s and destination d, the required velocity of
a packet is

vreq(s, d) = dis(s, d)

slackrec − (thead − trec)
,

where dis(s, d) is the Euclidean distance of s and d. thead is the time when the packet
becomes the head of the transmission queue. trec is the time to receive the packet.
The proposed RPAR protocol uses the velocity assignment policy to map a packet’s
deadline. They also provide a delay estimator for different forwarding choices:

dp = (dcont + dtran) · ET X (p),

where ET X (p) is the expected number of transmissions from node s to neighbor i at
power p. dcont and dtran are the contention delay and transmission delay, respectively.
Based on the velocity policy and delay estimator, RPAR computes the energy cost
of all of the eligible choices. Then, it will forward the packet using the most energy-
efficient choice:

C(s, d) = C(p) · ET X (p) · dis(s, d)

dis(s, d) − dis(i, d)
.

3.3.2 Expected Energy Consumption

As shown in Fig. 3, we set |S| as the forwarding sequence. The EEC [14] was defined
as the energy consumption required to deliver a packet from node s to sink node d.
For each node i , E ECi is the expected energy cost, and ci is the transmission cost.
If P ∩

i is the probability that the packet arrives at the i th forwarder, then the E EC
should be:

E EC =
n∑

i=1

P ∩
i · (ci + E ECi), (12)

where P ∩
i is the same as was discussed in the subsection about the packet delivery

ratio. As an example, shown in Fig. 5, since P ∩
A = 0.57, P ∩

B = 0.34, and P ∩
C = 0.1,

EEC of node s is 0.57 · (1 + 2) + 0.34 · (2 + 2) + 0.1 · (3 + 1) = 3.47.
So far, we have introduced the three routing metrics, proposed in [14]: expected

delivery radio (EDR), expected E2E delay (EED), and expected energy consumption
(EEC). Among all of the metrics, the basic idea is that we can select the optimal
subsequence from the forwarding sequence, so as to achieve the optimal solution.
The optimal sequence is in terms of the maximum EDR, minimum E2E delay, or
minimum EEC.

8 Utility-Based Routing in Wireless Sensor Networks 257

8

9

7

6

7

8

7

1

2

3

4

5

6

7

(a) (b)
8

9

7

6

7

8

7

1

2

3

4

5

6

7

Fig. 19 An example for power-aware broadcasting

3.3.3 Power-Aware Broadcasting

As we mentioned in the previous section, a straightforward broadcasting scheme is
flooding. However, this approach will result in redundant transmissions and more
energy consumption. In [31], Rule 1 and Rule 2 are provided to select gateways based
on the node priority (id(v)). Suppose that N (v) represents the neighbor set of node
v, and N [v] = N (v) ∃ {v} is a closed neighbor set of v; in Rule 1, if N [v] ⊆ N [u]
in G and id(v) < id(u), then unmark v. In Rule 2, if N (v) ⊆ N (u) ∃ N (w) in G
and id(v) = min{id(v), id(u), id(w)}, then unmark v. To prolong the lifetime of
the sensor nodes, the authors in [32] proposed the use of connected dominating sets
(CDS) to reduce the number of transmissions, as well as conserve energy.

They propose saving energy by only allowing dominating nodes to retransmit the
packets. In addition, they also provide the activity scheduling method to dynamically
select the dominating nodes. The selected gateway nodes are based on marking
process [33], where Rule 1 and Rule 2 are based on energy levels. Figure 19 shows
an example of the procedure, where each node is assigned with a value inside each
node representing energy level. Figure 19a shows the graph with marking process,
and Fig. 19b presents the results after Rule 1 is based on energy level. That is, energy
level is used as the primary priority, and node id is used as the secondary priority when
energy levels are the same. The nodes in the pink color are the selected gateways. In
this case, node 2 is removed as it is covered by node 3, which has a higher energy
level. Nodes 4 and 7 have the same energy level, but node 4 is removed, for it has a
smaller id.

3.3.4 Gossip

In WSNs, broadcast services should minimize energy consumption by reducing
redundant transmissions. Flooding is considered the simplest method of broadcast-
ing. However, this will lead to collisions and redundant packet receptions.

Smart gossip [7] was proposed to adapt transmission probabilities based on the
underlying network topology. To obtain the pgossip , the average reception percentage
was proposed to measure the reliability, which is the reception percentage averaged
over all nodes in the network. To evaluate the overhead, the average forwarding

258 X. Li and J. Wu

A

B C

D E

F G H

Fig. 20 An example representing the need for smart gossip

percentage was also proposed, which is the forwarding percentage averaged over all
nodes in the network. It has been proven that the average forwarding percentage is
also the measure of the average energy consumed at a node while transmitting gossip
messages.

Figure 20 shows an example that represents the need for smart gossip. If node F
can identify that node G depends only on F to receive the gossip, and nodes B, C ,
D, and E can identify that they are never required to forward the gossip, then we
achieve the efficiency. If a node Y has k parents, then it suffices for each parent to
use a gossip probability (pgossip), which ensures the probability that at least one of
them will transmit is greater than the per-hop reception probability (pr). This idea
can be presented as follows:

(1 − pgossip)
k < 1 − pr ,

where (1 − pgossip)
k is the probability that all k parents choose not to transmit. This

has to be less than (1 − pr) to meet the application reliability requirement.

4 Composite Utility-Based Metric

Although we have sorted the recent works into different categories, routing design
may be involved in several factors. These factors may be related to each other. In this
subsection, we offer additional discussions of them. We call the utility with multiple
purposes a composite utility-based metric.

One of the composite utility-based routing schemes is presented in [34], which
is also called “utility-based routing.” The concept of utility in this work is different
from our previous discussion. This utility-based routing scheme is a special routing
approach that is based on the network topology, as well as the importance of the packet
to be delivered [34, 35]. The composite utility model here is in terms of the expected
benefit (of the routing source successfully forwarding a packet to the destination)
minus the expected cost incurred by forwarding nodes. Unlike wired networks,
wireless connections are unreliable, due to interference and coverage issues. With

8 Utility-Based Routing in Wireless Sensor Networks 259

the utility-based routing metric, the more valuable packet will be delivered through
a more reliable route at the expense of a higher transmission energy cost [34]; This
is a common phenomenon in wireless communication. Utility-based routing is used
to reflect the trade-off between a highly reliable route (which is usually more costly)
and a less reliable route (which is usually less costly) based on the value of the
packet. A simple analogy that relates to utility-based routing is the postal service: a
high-value package (e.g., one that contains a passport for a visa application) usually
uses registered mail for reliability at a higher premium cost. An ordinary package is
usually mailed through a regular service.

There are two aspects to be considered in the routing design of wireless net-
works. Firstly, unlike the wired network, wireless connections are unreliable due
to the interference or coverage issues. Another problem that cannot be neglected
is the cost of transmission, due to limited energy supplies. In [34], the authors have
the following assumptions. The reliability is the packet-error-rate associated with
the link (i, j). The cost is the energy cost for transmitting a packet from sender i
to receiver j . This consists of the transmission power, alone. In the following, we
will offer the overview of several works related to utility-based routing. We will start
with ad hoc networks. Then, we will focus on multi-hop networks and opportunistic
routing. At last, we will discuss the utility-based approach in low duty-cycle WSNs.

4.1 Composite Utility-Based Routing in Ad hoc Networks

The utility-based routing in ad hoc networks was proposed in [36]. The basic idea
of utility can be presented as follows. To illustrate the model, we use a single link
route from s to d. The source node s wants to transmit a packet to the destination d.
If this transmission is successful, we will offer a benefit v for the route. During this
transmission, each link will incur a cost. The expected utility value can be derived
from the benefit and expected cost. The idea can be presented in the following:

us,d = ps,d · (v − cs,d) + (1 − ps,d) · (0 − cs,d) = ps,dv − cs,d , (13)

where us,d is the utility for the transmission. ps,d and cs,d are the probability and cost
of link (s, d), respectively. Thus, for a path < 1, 2, · · · , n >, the expected utility
U is:

U =
⎨

n−1∏
i=1

pi,i+1

⎩
· v −

n−1∑
i=1

ci,i+1

i−1∏
j=1

p j, j+1 = PR · v − CR, (14)

where PR is the path reliability, and CR is the path cost. When comparing Eq. 13
with Eq. 14, the expected utility has a similar form: stability times benefit minus
cost. The stability PR is the multiplication of reliability for each node on the path.
The expected cost of each hop is dependant on the successful delivery of previous

260 X. Li and J. Wu

Fig. 21 An example of utility-
based routing <s, 1, d >

<s, 1, 2, d >
<s, 2, d >
<s, 2, 1, d >

r :1

r :4

r :3

r :2

{2, 0.8}

{4, 0.9}

{2, 0.7}

{3, 0.9}

{3, 0.9}

s

1

2

d

Table 2 Utility in a simple
wireless network

ud u1 u2 U

r1 20/30 15/24 10/17.2
r2 20/30 8.5/14.8 15/24 4.8/9.8
r3 20/30 15/24 9.5/17.6
r4 20/30 15/24 8.5/14.8 3.7/9.3

Table 3 Utility in a simple
wireless network

ud u1 u2 u3 u4 us

u 20 10.6 17 11.3 14 9.54
opu 20 10.6 17 11.4 14 10.45

transmissions. For example, as shown in Fig. 21, there are four routes. For r1, we
have U = 0.8 · 0.9 · 20 − 2 − 3 · 0.8 = 10. In a backward manner, we can view node
1 as the virtual source. By applying Eq. 13, we have u1 = 0.9 · 20 − 3 = 15. For the
link (s, 1), nodes s and 1 can be viewed as the source and destination. The utility U
is 15 ·0.8−2 = 10. From the results, we know that the route with maximum utility is
not the same when considering different benefits for the delivery. When comparing
routes r1 and r3, r1 is better than r3 when we offer the benefit 20. However, route
r3 is the best if the benefit is 30. This means that the packets with more benefit will
select a more reliable route, despite the cost being higher (Tables 2 and 3).

4.2 Composite Utility-Based Routing Using Opportunistic Routing

Utility-based routing in multi-hop networks mainly focuses on the opportunistic
routing (OR). The opportunistic routing was proposed in [6]. The main features of
OR routing is the rule of the selection of a relay set for each node, and the rule
regarding relay prioritization. OR routing would achieve higher throughput, since
each of the source’s transmissions is likely to be received by at least one relay.

In [35], the authors explored the optimality of utility-based routing through OR
without allowing retransmissions. By integrating the idea proposed in [36], OR rout-
ing with the utility-based model can be presented as follows:

opui =
i+k∑

j=i+1

(opu j · pi, j ·
j−1∏

l=i+1

(1 − pi,l)) − c, (15)

8 Utility-Based Routing in Wireless Sensor Networks 261

Fig. 22 An example of utility-
based routing in multi-hop
networks

s

1

3

2

4

d

{2, 0.9}
{3, 0.8}

{1, 0.9}

{2, 0.8}
{1, 0.8}

{4, 0.9}
{2, 0.8}

where opui denotes the node i’s residual expected network utilities (RENU). Note
that the relays are prioritized in order from i + 1 to i + k, with i + 1 as the highest
priority.

Figure 22 shows an example of multi-hop networks. The calculation starts from the
node d. Suppose that the benefit is 20. For the node 2, the utility u2 = p2,d ·v−c2,d =
17. The procedure is the same as for node 4. Thus, u4 = 14. However, node 3 has
two receivers. By using Eq. 21, we have u4 = 17 ·0.9+14 ·0.8 ·(1−0.9)−4 = 11.4.
At last, we can get the utility opu = 10.45.

4.3 Composite Utility-Based Routing in Low Duty-Cycle WSNs

In low duty-cycle WSNs, the sensors are scheduled to be either in active or sleep
mode to achieve low-energy consumption [11, 21]. When the sensors are in sleep
mode, they cannot transmit the packets. The utility-based routing in low duty-cycle
WSNs is more challenging when we consider the periodic delay of the active and
sleep schedule on each node. In addition to the cost and reliability, the delay and
deadline are also important for the routing design in low duty-cycle WSNs.

Although energy can be saved by putting the sensor into sleep mode, the cost still
exists, due to the set-up and tear-down operations during the transition from active
to sleep mode, and vice versa [37]. In fact, energy efficiency is highly related to time
efficiency. It can be assumed that time and energy efficiency are equal during the
normal operation mode. The time efficiency can be obtained by the ratio of the time
spent on the data transmission over the total time for the ideal working schedule.
In the randomized duty-cycle scheme, the Markov chain method was used for the
analysis [37]. This provides the result of the expected time efficiency. The lower
bound and upper bound on it are also provided. The intuitive idea is that the duty-
cycle will cause additional delay, but the energy can be saved by putting the nodes
into sleep mode.

From our discussion, we know that PDR is highly dependant on reliability. In the
definition of PDR, it is measured by a given time period. Then, PDR and delay have
an inverse relationship with each other. Higher PDR means a lower delay, and vise
versa. As we have discussed in the previous section, the time efficiency and energy
efficiency are equal. Thus, it can be derived that the energy cost is also lower. In
other words, if the reliability is lower, additional delay and cost will be incurred.
In this subsection, we will introduce the timed-based method. Since low duty-cycle
WSNs are time-dependent networks, we use the concept of “journey” to represent a

262 X. Li and J. Wu

v

0

)(tv

t

iv

it Dti+1t

i+1v

i

(b)
(a)

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

U
til

ity

time

cost=5

cost=15

cost=25

Fig. 23 An example of timed-utility. a Timed-benefit function. b Different costs

path. We set J = (R, T) to be a journey where R = {0(= s), 1, . . . , n(= d)} and
T = {t0, . . . , tn}, such that ti ∈ ti+1 ∀i ∀ {0, . . . , n − 1}. Here, ti is the contact
time at node i . In general, there are several possible journeys for a given path. Unlike
single-utility, multiple factors can be jointly involved in the routing metric design.

We first provide the timed benefit function. This is used in the timed-utility model.
In our timed-utility model, we measure the packet value, cost, and delay to make for-
warding decisions. The timed-benefit function is to integrate the delay and deadline
into the composite utility.

We use a single link route from s to d as an example. v(t) is defined as the function
of TB where the benefit linearly decreases over time, as shown in Fig. 23. t is denoted
as the contact time slot for the transmission. The deadline tD is set as the timeliness
of a packet when the benefit is reduced to zero. Suppose that c is the cost for the
transmission; the utility u is u = v(t) − c. We use λ = v/tD as the slope. Then,
u = v − λ · t − c. Correspondingly, for a journey J , the utility ui for each node i
could be presented as follows:

ui+1 = ui − λ · δi − ci,i+1, (16)

where ci,i+1 is the communication cost of link (i, i +1). Figure 23b shows the results
with different costs. There are two types of decay. The first one is related with v(t),
and the other one is for the communication cost. According to Eq. 14, for a journey
J , we have the expected utility:

U = (

n−1∏
i=0

pi,i+1) · (v − λ · (

n−1∑
i=0

δi)) −
n−1∑
i=0

ci,i+1

i−1∏
j=0

p j, j+1, (17)

where δi is the delay of link (i, i + 1). By applying the result, the forward solution
is forwarded for each hop. It has been divided into two parts:

8 Utility-Based Routing in Wireless Sensor Networks 263

Fig. 24 An example for the
TU model

tD=50/200tS=0

{2, 0.9, 5k}

{3, 0.9, 3k}

{2, 0.9, 3k}

{2, 0.6, 5k}

{2, 0.6, 2k}

s

1

2

d

<s, 1, d >
<s, 1, 2, d >
<s, 2, d >
<s, 2, 1, d >

r :1

r :4

r :3

r :2

v∩
i+1 = pi,i+1 · (v∩

i − λ · ⎫ i−1∏
j=0

p j, j+1
⎬ · δi) (18)

Further, we define a notation ui as the expected utility. The expected utility value is
where node i is treated as the virtual destination. Then, we have:

ui+1 = v∩
i+1 −

i∑
j=0

(

j−1∏
k=0

pk,k+1)c j, j+1. (19)

To explain our function, we use r1 :< s, 1, d > with tD = 50 and v = 50. As
shown in Fig. 24, we have δs = 5, δ1 = 5 and λ = 1. According to Eq. 17, we
obtain the utility Ur1 = 0.9 · 0.6 · (50 − 10) − 2 − 2 · 0.9 = 17.8. Alternatively,
we can also use the step-by-step formula, i.e., Eqs. 18 and 19, to obtain the utility.
Since we have tD = 50 and us = 50, then the expected remaining benefit of node
1 is v∩

1 = ps,1 · (v − λ · δs) = 0.9 · (50 − 1 · 5) = 40.5, and the expected utility is
u1 = v∩

1 − cs,1 = 40.5 − 2 = 38.5. Further, the expected remaining benefit of node
d is v∩

d = p1,d · (v∩
1 − λ · ps,1 · δ1) = 0.6 · (40.5 − 0.9 · 5) = 21.6. Then, we can get

the expected utility of d, ud = v∩
d − cs,1 − c1,d · p1,d = 21.6 − 1.8 − 2 = 17.8.

4.4 Composite Utility-Based Broadcast in Low Duty-Cycle WSNs

The duty-cycle-aware broadcast scheme was proposed in [38]. Given the node s to
broadcast a message starting from time t0, the forwarding schedule can be represented
as

S = (1, t1), (2, t2), . . . , (i, ti), . . . , (m, tm),

where (t0 ∈ t1 ∈ · · · ∈ tm). (i, ti) denotes the i th forwarding, where node i forwards
the packet at time ti . We set Si as the set of nodes that receives the broadcast message
in the i-th forwarding. Then, | ⎭m

i=0 Si |= n where n is the number of nodes. The
function f (|S|, tm − t0) is proposed to deal with the trade-off between the total
message forwarding (|S|) and the total latency (tm − t0). This paper focuses on a
common linear combination, f (|S|, tm − t0) = α|S| + β(tm − t0). This function
covers the demands for different applications. For example, if the broadcast message

264 X. Li and J. Wu

is about an emergency event and of small size, a small α with a large β will ensure
that the message is quickly delivered to the whole network, though possibly with
higher forwarding costs. On the other hand, if it is not an emergency message, a
large α with a small β will work well to save forwarding costs.

Recent work in [39] deals with energy and delay constrained for WSNs. They
provide a solution by integrating the reliability, cost, and delay constraints. The main
idea is that they use the multi path scheme to solve the problem. The definitions are
provided for the new scheme.

5 Additional Discussions

5.1 The Maximum Utility Model

According to the implementation scheme, the destination will return the routing
information to the source by using the optimal path. We will only use the optimal
path for the retransmission. In [34], the backward method was proposed for the utility-
based routing. To simply our result, we also offer the backward method in order to
compute the retransmission times. This process is similar with the discussion of
preliminary. Then we offer the following equation:

ui = pi · (ui+1 − λ · (

n−1∏
j=i+1

p j) · δi) − ci . (20)

Theorem 1 is provided for the proof of the equality.

Theorem 1 Given a journey J =< R, T >, the utility with backward method and
single journey are the same, U = u0.

Remember that the optimal route will be returned from the destination to the
source. To simplify our analysis, we set di = λ·(∏n−1

j=i+1 p j)·δi There are two aspects
for the retransmission: First, the reliability could be improved. If the retransmission
time is r , the new reliability should be 1 − (1 − pi)

r . Second, it will produce the
additional cost and delay, which is r · ci and r · di . Then, we have the utility function
ui (r) with r retries:

ui (r) = (1 − (1 − pi)
r)(ui − r · di) − r · ci .

To get the optimal utility value, we need to investigate the difference between r and
r + 1 retries:

8 Utility-Based Routing in Wireless Sensor Networks 265

Fig. 25 An example for
LDC-TU model {4, 0.9, 5·k} {3, 0.3, 3·k}

s 1 d

ui (r) − ui (r + 1) = (1 − (1 − pi)
r)(u − rdi) − rci

− (1 − (1 − pi)
r+1)(ui − (r + 1)di) − (r + 1)ci

= di + ci − (1 − pi)
r (pi ui − r pi di + (1 − pi)di). (21)

For the analysis of Eq. 21, we know that when ui (r) > ui (r + 1), r is the amount
of retries with maximum utility. The optimal r should exist, since when r increases,
ui (r)− ui (r + 1) is also higher. Note that each time, pi will be updated by (1 − (1 −
pi)

r).
We use Fig. 25 as an example. We set v = 30 and tD = 30. According to Eq. 1,

when r = 1, we have u1(1) − u1(2) = −1.14 < 0 and u1(2) − u1(3) = 0.443 > 0.
Thus, for the link (1, d), the retransmission time is 2. However, for the link (s, 1),
we have us(1) − us(2) > 0. Thus, we have r = 1. For the implementation of the
routing algorithm, when the destination obtains the path after the RREQ process, it
will generate the route response (RREP) and send it back to the source. The number
of retransmissions along the path can be computed during the RREP process.

Thus, we have provided the extension of maximum retransmission. In the follow-
ing, we offer the extensions for other utility models.

5.2 The Other Utility Models

In this part, we offer the expected retransmissions (ExpR). From the aspect of relia-
bility, we know that many applications need an end-to-end delivery guarantee. The
following equation is used to obtain the expected retransmissions of link (i, i + 1):

ri = 1/pi .

Besides this, we also offer the delay ratio (DelayR)-based method, which is:

ri = δi−1/δi ,

where 1 ∈ r ∈ 1/p. In DelayR, we allow partial retransmissions without extra
delay. Then, we have provided three extensions: MaxU, ExpR, and DelayR.

266 X. Li and J. Wu

Fig. 26 The extension of
timed-benefit function

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

U
til

ity

Time

0.5
0.7
1
1.5
2

5.3 The Timed-Benefit with Different Indices

In this part, we will offer the extension with different indices. The proposed benefit
function will linearly decrease as the time increases. However, in other cases, the
delay distribution may vary upon different cases. In the following, we will provide
the extension of timed-benefit function. In the extension of timed-benefit function,
the benefit is also zero when t arrives at deadline tD . Thus, we have:

v(t) = v · (1 − t/tD)k,

where k is the index. It can be varied according to different cases. Figure 26 shows
an example of timed-benefit function with different k. Since 0 < 1 − t/tD ∈ 1, it is
a convex function when k > 1. It follows the concave function if 0 < k < 1.

5.4 Comparisons

So far, we have introduced single utility-based routing and composite utility-based
routing. The two kinds of utility-based routing are designed to achieve different
objectives. Therefore, the comparisons among them become very interesting. Here,
we settle them into several parts.

(1) Single utility vs Composite utility: A naive way is to analyze the joint per-
formance (throughput, packet loss rate) or single performance (delay, cost, packet
delivery ratio). For example, the paths selected from single utility, such as minimum
E2E cost, minimum E2E delay, or maximum E2E reliability, can be compared with
the paths chosen from composite utility.

(2) Utility under space view or time domain: As we have mentioned in previous
chapters, node deployment serves an important role in the selection of a path. Several

8 Utility-Based Routing in Wireless Sensor Networks 267

nodes which are close to each other can construct a group, called a community.
Different communities have their own utility value. The problem is how to build
communities and compare them. Moreover, under different time domains, the variety
of the communities is another challenge.

(3) Single copy vs Multiple copies: The utility models we have mentioned can be
extended using multiple copies. The utility value is updated, since multiple nodes hold
the packets. The E2E cost, E2E delay, and E2E reliability needed to be reconsidered.
The composite utility model can be renewed, as well.

5.5 Future work

In this part, we will discuss future work related to routing in WSNs. Currently,
lots of research is being conducted in the design of routing protocols. We provide
Table 4 for the classification of recent works. As shown in Table 4, works are seldom
designed for multicast transmission. Furthermore, the speciality of low duty-cycle
WSNs requires a more feasible routing design. Thus, we provide the future works in
several directions.

A promising direction lies in multicast routing. Unlike unicast and broadcast,
multicast routing facilitates the packets to be forwarded to a group of destinations.
In this situation, there are several paths for the different destinations. Reducing the
redundant packets and selecting a feasible path becomes more challenging; especially
in low duty-cycle WSNs, where many applications require the packets to be delivered
before the deadline. This means that the end-to-end delay is very important for the
selection of the route.

As we have mentioned before, the utility-based routing approach is designed for
a single pair that consists of a source and a destination. In the unicast, we offer
the reward if the packet arrives at the destination and satisfies certain requirements.
This work can be extended by the consideration of several destinations, or all other
nodes. A simple idea is to offer a reward when all of the destinations receive the
packet. A more complicated way is that the reward could be divided by the destina-
tions. Moreover, the optimal solution was proposed using a backward method. This
method might not be suitable for multiple destinations. However, we still hope to
find a feasible solution for this problem. The extensions could also be retransmission
strategies. As shown in Fig. 3, there are two methods used upon the failure of a trans-
mission. For the second method, the number of retransmissions can be investigated
by achieving some goals: delay, cost, reliability, or a combination of them.

6 Conclusion

In this chapter, we studied the routing issues in WSNs. We covered several topics in
the single utility design for different kinds of routing protocols. We discussed utility-
based routing, which considers the value of packets. Composition-based methods

268 X. Li and J. Wu

Table 4 Routing protocols

Routing Latency Energy cost Reliability Communication pattern Types of WSNs

[21]
√

Unicast Low duty-cycle WSNs
[29]

√
Broadcast Low duty-cycle WSNs

[17]
√

Unicast WSNs
[35]

√ √
Unicast WSNs

[34]
√ √

Unicast WSNs
[40]

√ √
Unicast Low duty-cycle WSNs

[36]
√ √

Unicast WSNs
[41]

√ √
Unicast WSNs

[42]
√

Unicast WSNs
[6]

√
Unicast WSNs

[14]
√

Unicast Low duty-cycle WSNs
[38]

√
Broadcast Low duty-cycle WSNs

[22]
√

Unicast WSNs
[5]

√
Broadcast Low duty-cycle WSNs

[19]
√

Unicast WSNs
[30]

√
Unicast WSNs

[7]
√ √

Broadcast WSNs
[16]

√ √ √
Broadcast Low duty-cycle WSNs

[15]
√

Broadcast WSNs
[43]

√ √
Broadcast Low duty-cycle WSNs

[37]
√

Unicast WSNs
[26]

√
Unicast Low duty-cycle WSNs

[3]
√ √

Multicast Low duty-cycle WSNs
[44]

√
Multicast WSNs

[27]
√

Unicast Low duty-cycle WSNs
[45]

√
Unicast Low duty-cycle WSNs

[46]
√

Unicast Low duty-cycle WSNs
[25]

√
Unicast Low duty-cycle WSNs

[2]
√

Unicast WSNs
[32]

√
Broadcast WSNs

[31]
√

Broadcast WSNs
[33]

√
Broadcast WSNs

[18]
√

Unicast WSNs
[23]

√
Unicast Low duty-cycle WSNs

[39]
√ √

Unicast WSNs
[24]

√
Unicast WSNs

[28]
√

Unicast Low duty-cycle WSNs

were also introduced. For example, delay and cost can jointly be considered in the
routing design. In the future, we believe that new routing protocols can be provided
for mobility control, as well as other factors involved in our discussion, for different
kinds of applications.

8 Utility-Based Routing in Wireless Sensor Networks 269

Acknowledgments This research was supported in part by NSF grants ECCS 1231461, ECCS
1128209, CNS 1138963, CNS 1065444, and CCF 1028167.

References

1. R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, M. Welsh, Citysense: a vision
for an urban-scale wireless networking testbed, in Proceedings of the IEEE International Con-
ference on Technologies for Homeland Security (2008)

2. J. Redi, S. Kolek, K. Manning, C. Partridge, R. Rosales-Hain, R. Ramanathan, I. Castineyra,
JAVeLEN-An ultra-low energy ad hoc wireless network. Ad Hoc Netw. 6, 108–126 (2008)

3. A. Ruzzelli, G. O’Hare, R. Jurdak, MERLIN: cross-layer integration of MAC and routing for
low duty-cycle sensor networks. Ad Hoc Netw. 6, 1238–1257 (2008)

4. Z. Zhong, T. Zhu, D. Wang, T. He, Tracking with unreliable node sequences, in Proceedings
of IEEE Infocom (2009)

5. F. Wang, J. Liu, On reliable broadcast in low duty-cycle wireless sensor networks. IEEE Trans.
Mob. Comput. 11, 767–779 (2011)

6. S. Biswas, R. Morris, ExOR: opportunistic routing in multi-hop wireless networks, in Proceed-
ings of ACM SIGCOMM (2005)

7. P. Kyasanur, R. Choudhury, I. Gupta, Smart gossip: an adaptive gossip-based broadcasting
service for sensor networks, in Proceedings of IEEE MASS (2006)

8. J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless sensor networks,
in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems
(Sensys) (2004)

9. M. R. Ahmad, E. Dutkiewicz, X. Huang, A survey of low duty cycle MAC protocols in wireless
sensor networks, in Book Chapter in, Wireless Sensor Network (2009)

10. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor network,
in Proceedings of IEEE Infocom (2002)

11. M. Buettner, G. Yee, E. Anderson, R. Han, X-MAC: a short preamble MAC protocol for
duty-cycled wireless sensor networks, in Proceedings of ACM Sensys (2006)

12. A. Arora, P. Dutta et al., A line in the sand: a wireless sensor network for target detection,
classification, and tracking. Comput. Netw. 46, 605–634 (2004)

13. X. Bai, C. Zhang, D. Xuan, J. Teng, W. Jia, Low-connectivity and full-coverage three dimen-
sional networks, in Proceedings of ACM Mobihoc (2009)

14. Y. Gu, T. He, Data forwarding in extremely low duty-cycle sensor networks with unreliable
communication links, in Proceedings of ACM Sensys (2007)

15. T. Zhu, Z. Zhong, T. He, Z. Zhang, Exploring link correlation for efficient flooding in wireless
sensor networks, in Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation (2010)

16. S. Guo, S. Kim, T. Zhu, Y. Gu, T. He, Correlated flooding in low-duty-cycle wireless sensor
networks, in Proceedings of IEEE ICNP (2011)

17. D. Aguayo, J. Morris, A high-throughput path metric for multi-hop wireless routing, in
Proceedings of ACM Mobicom (2003)

18. A. Basalamah, S. Kim, S. Guo, T. He, A. Tobe, Y.Basalamah, S. Kim, S. Guo, T. He, Y. Tobe,
Link correlation aware opportunistic routing, in Proceedings of IEEE Infocom (2012)

19. J. Wang, Y. Liu, M. Li, W. Dong, Y. He, Qof: Towards comprehensive path quality measurement
in wireless sensor networks, in Proceedings of IEEE Infocom (2011)

20. H. Song, S. Zhu, G. Cao, Svats: a sensor-network-based vehicle anti-theft system, in Proceed-
ings of IEEE Infocom (2008)

21. Y. Gu, T. He, M. Lin, J. Xu, Spatiotemporal delay control for low-duty-cycle sensor networks,
in Proceedings of IEEE Real-Time Systems Symposium (RTSS) (2009)

270 X. Li and J. Wu

22. G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel, Delay efficient sleep scheduling in wireless
sensor networks, in Proceedings of IEEE Infocom (2005)

23. Y. Cao, S. Guo, T. He, Robust multi-pipeline scheduling in low-duty-cycle wireless sensor
networks, in Proceedings of IEEE Infocom (2012)

24. Q. Zhang, Y. Gu, L. Gu, Q. Cao, T. He, Collaborative scheduling in highly dynamic environ-
ments using error inference, in IEEE Seventh International Conference on Mobile Ad-hoc and
Sensor Networks (MSN) (2011), pp. 105–114

25. P. Basu, C. Chau, Opportunistic forwarding in wireless networks with duty cycling, in
Proceedings of the 3rd ACM Workshop on Challenged Networks (2008)

26. C. Chau, P. Basu, Analysis of latency of stateless opportunistic forwarding in intermittently
connected networks. IEEE/ACM Trans. Netw. (TON) 19, 1111–1124 (2011)

27. D. Kim, M. Liu, Optimal stochastic routing in low duty-cycled wireless sensor networks, in
Proceedings of the 4th Annual International Conference on Wireless Internet (2008)

28. Y. Gu, T. He, Bounding communication delay in energy harvesting sensor networks, in
IEEE 30th International Conference on Distributed Computing Systems (ICDCS) (2010),
pp. 837–847

29. S. Guo, Y. Gu, B. Jiang, T. He, Opportunistic flooding in low-duty-cycle wireless sensor
networks with unreliable links, in Proceedings of ACM Mobicom (2009)

30. O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, T. Abdelzaher, Real-time
power-aware routing in sensor networks, in Proceedings of IEEE IWQoS (2006)

31. J. Wu, Extended dominating-set-based routing in ad hoc wireless networks with unidirectional
links. IEEE Trans. Parallel Distrib. Syst. 13, 866–881 (2002)

32. J. Wu, B. Wu, I. Stojmenovic, Power-aware broadcasting and activity scheduling in ad hoc
wireless networks using connected dominating sets. Wirel. Commun. Mobile Comput. 3,
425–438 (2003)

33. J. Wu, H. Li, On calculating connected dominating set for efficient routing in ad hoc wire-
less networks, in Proceedings of the 3rd International Workshop on Discrete Algorithms and
Methods for Mobile Computing and, Communications (1999)

34. M. Lu, J. Wu, Social welfare based routing in ad hoc networks, in Proceedings of IEEE ICPP
(2006)

35. J. Wu, M. Lu, F. Li, Utility-based opportunistic routing in multi-hop wireless networks, in
Proceedings of IEEE ICDCS (2008)

36. M. Lu, F. Li, J. Wu, Efficient opportunistic routing in utility-based ad hoc networks. IEEE
Trans. Reliab. 58, 485–495 (2009)

37. G. Ghidini, S. Das, An energy-efficient markov chain-based randomized duty cycling scheme
for wireless sensor networks, in Proceedings of IEEE ICDCS (2011)

38. F. Wang, J. Liu, Duty-cycle-aware broadcast in wireless sensor networks, in Proceedings of
IEEE Infocom (2009)

39. S. Bai, W. Zhang, G. Xue, J. Tang, C. Wang, Dear: delay-bounded energy-constrained adaptive
routing in wireless sensor networks, in Proceedings of IEEE Infocom (2012)

40. Y. Gu, T. He, Dynamic switching-based data forwarding for low-duty-cycle wireless sensor
networks. IEEE Trans. Mob. Comput. 10, 1741–1754 (2010)

41. M. Lu, J. Wu, Utility-based data-gathering in wireless sensor networks with unstable links. J.
Distrib. Comput. Netw. 13–24 (2008)

42. Q. Cao, T. He, L. Fang, T. Abdelzaher, J. Stankovic, S. Son, Efficiency centric communication
model for wireless sensor networks, in Proceedings of IEEE Infocom (2006)

43. S. Lai, B. Ravindran, On multihop broadcast over adaptively duty-cycled wireless sensor net-
works. Distrib. Comput. Sens. Syst. 158–171 (2010)

44. C. Feng, W. Heinzelman, Rbmulticast: Receiver based multicast for wireless sensor networks,
in Proceedings of IEEE WCNC (2009)

45. W. Pak, K. Cho, S. Bahk, Energy efficient routing protocol for wireless sensor networks with
ultra low duty cycle, in Proceedings of IEEE 20th International Symposium on Personal, Indoor
and Mobile Radio, Communications (2009)

46. F. Yang, I. Augé-Blum, Delivery ratio-maximized wakeup scheduling for ultra-low duty-cycled
WSNs under real-time constraints. Comput. Netw. 55, 497–513 (2011)

Part IV
Topology and Mobility Management

Chapter 9
Topology Management Techniques
for Tolerating Node Failure

Mohamed Younis, Sookyoung Lee, Izzet Fatih Senturk and Kemal Akkaya

Abstract In Wireless Sensor Networks (WSNs) sensor nodes often operate
unattended in a collaborative manner to perform some tasks. In many applications,
the network is deployed in harsh environments such as battlefield where the nodes
are susceptible to damage. In addition, nodes may fail due to energy depletion and
breakdown in the onboard electronics. The failure of nodes may have major conse-
quences. First, some areas may be left uncovered. Second, the fidelity of the collected
data gets degraded. And finally, the network may get partitioned into disjoint seg-
ments. In particular, losing network connectivity has a very negative effect on the
applications since it prevents data exchange and hinders coordination among some
nodes. Therefore, restoring the overall network connectivity with the least resource
overhead and performance impact is very crucial. This chapter focuses on network
topology management techniques for tolerating node failures. It analyzes the effects
of node failure on network connectivity in WSNs, categorizes recently published
recovery schemes, and outlines related open issues.

M. Younis (B) · S. Lee
University of Maryland at Baltimore County, Baltimore, USA
e-mail: younis@cs.umbc.edu

S. Lee
e-mail: slee22@umbc.edu

I. F. Senturk · K. Akkaya
Southern Illinois University Carbondale, Carbondale, USA
e-mail: isenturk@cs.siu.edu

K. Akkaya
e-mail: kemal@cs.siu.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 273
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_9,
© Springer-Verlag Berlin Heidelberg 2014

274 M. Younis et al.

1 Introduction

The growing interest in the applications of Wireless Sensor Networks (WSNs) has
motivated a lot of research work during recent years [1, 2]. For some of these appli-
cations, such as space exploration, coastal and border protection, combat field recon-
naissance and search and rescue, it is envisioned that a set of mobile sensor nodes
will be employed to collaboratively monitor an area of interest and track certain
events or phenomena [3–9]. By getting these sensors to operate unattended in harsh
environments, it would be possible to avoid the risk to human life and decrease the
cost of the application.

Since a sensor node is typically constrained in its energy, computation and com-
munication resources, a large set of sensors are involved to ensure area coverage and
increase the fidelity of the collected data. Upon their deployment, nodes are expected
to stay reachable to each other and form a network. Network connectivity enables
nodes to coordinate their action while performing a task, and to forward their readings
to in-situ users. In fact in many setups, such as a disaster management application,
nodes need to collaborate with each other in order to effectively search for survivors,
assess damage and identify safe escape paths. To enable such interactions, nodes
need to stay reachable to each other. Therefore, the inter-sensor connectivity has a
significant impact on the effectiveness of WSNs and should be sustained all the time.

However, a sudden failure of a node can cause a disruption to the network oper-
ation. A node may fail due to an external damage inflicted by the inhospitable sur-
roundings or simply because of hardware malfunction. The loss of a node can break
communication paths in the network and deem some of its neighbors unreachable.
Moreover, WSNs operating in a harsh environment may suffer from large-scale dam-
age which partitions the network into disjoint segments. For example in a battle field,
parts of the deployment area may be attacked by explosives, and thus a set of sensor
nodes in the vicinity would be destroyed and the surviving sensor nodes are split into
disjoint segments. Restoring inter-segment connectivity would be crucial so that the
WSN becomes operational again.

In this chapter we highlight the challenges that node failure introduces to the
operation of WSNs and provide taxonomy of mitigation approaches. We catego-
rize fault-tolerance schemes proposed in the literature according to the goals of the
recovery process and the tolerance methodology. Since this process is in general a
form of topology management (i.e., often leads to changes in the network topology
parameters), we start with an overview of contemporary techniques and objective of
topology management in wireless networks.

2 Topology Management in Wireless Networks

Networks require monitoring and maintenance whether they are wired or wireless.
The service which provides these tasks is called network management. Network
management includes five functional areas as identified by ISO: configuration

9 Topology Management Techniques for Tolerating Node Failure 275

management, fault management, security management, performance management
and accounting management [6]. However, the unique requirements of wireless net-
works such as cellular networks, Mobile Ad Hoc Networks (MANETs), or WSNs
have inspired a new functional area, namely topology management. This term is
sometimes used interchangeably with topology control and refers to the manage-
ment of parameters such as transmission power of the nodes, state of the nodes,
role of the nodes, connectivity of the network, etc. By modifying these parameters,
one can change the topology of the network and the state of the nodes. Note that
this stage naturally follows the creation of topology. Before describing the topology
management methodologies for WSNs, we would like to provide brief overview of
the methodologies in Cellular networks and MANETs.

2.1 Topology Management in Cellular Networks and MANETs

In cellular networks, topology management is done in the form of location manage-
ment. To establish the connection for an incoming call, cellular system must know
the cell that the user currently resides in. Thus, the system must keep track of the
users’ locations to determine the cell to which the call is to be forwarded. The process
of identifying the exact cell is called paging and the method to keep track of the user
locations is called location update. Updating location whenever a user transitions to
a new cell may save the paging delay; however it introduces extra overhead not only
for the cellular system, in terms of processing and radio bandwidth, but also for the
mobile device in terms of power consumption especially if the incoming call rate
is low. On the other hand, leaving out the location updates completely necessitates
a system wide paging which requires a broadcast to all cells. The incurred cost of
location update and the paging can be balanced by location management which is
a form of topology management in cellular systems. For this purpose, static and
dynamic location management algorithms have been proposed [10, 11].

In Mobile Ad Hoc Networks (MANETs), wireless links can be subject to unpre-
dictable node movements which lead to frequent link failures and arbitrary topology
changes. Thus, maintaining the network connectivity can be challenging in MANETs.
In addition, most of the time only a subset of the wireless links is indeed necessary for
forming an efficient connected network. To avoid the excessive messaging overhead
for frequent state update while efficiently providing network services, e.g., multicast,
redundant and unnecessary topology information should be ignored. This implies the
necessity of distributed self-configuring topology management techniques to track
inter-node connectivity. To this end, topology management schemes in MANETs
have been studied in two main categories: power control and hierarchical topology
organization [12]. In power control schemes, nodes adaptively set their transmis-
sion ranges by adjusting the transmission power or turn off their radios periodically
[13–15]. Hierarchical topology organization schemes structure the topology hierar-
chically by grouping the nodes in clusters. Selecting the optimal node to be a cluster
head, setting the diameter of a cluster in terms of the number of hops from the cluster

276 M. Younis et al.

head, determining the optimal number of clusters to be formed, and maintaining
the cluster membership in a highly dynamic MANET are deemed the main research
issues [16–21]. Most of the work on topology management of MANET has focused
on dealing with frequent loss of communication links due to mobility, with sig-
nificantly less attention to network partitioning conditions. To interconnect disjoint
network segments some nodes are equipped with long range or satellite transceivers
in order to overcome the lack of line-of-sight links [22].

2.2 Topology Management Methodologies in WSNs

The primary objective of the topology management techniques in WSNs is achieving
sustainable network coverage while maintaining network connectivity and conserv-
ing energy. Topology management in WSNs can be done through deterministic node
placement or performed autonomously after random deployment given the limited
human intervention [23]. Topology management techniques are employed to track
the status of communication links among the nodes, to conserve energy by switch-
ing off some of the nodes without degrading network coverage and connectivity, to
support a hierarchical task assignment for data aggregation, to balance the load on
existing nodes and links, to provide scalability by minimizing medium access colli-
sion and limiting overhead. Topology management can also be considered together
with configuration and fault management [24], as will be elaborated later in the
chapter.

Existing topology management techniques/algorithms for WSNs can be classified
into the following five categories:

• Node Discovery: Detecting the nodes and their locations is an essential function
in a WSN not only after the initial deployment but also for integrating newly
added nodes. The scope of node discovery is subject to certain trade-offs based on
the application specific goals. For instance, for large networks resource savings
in terms of energy and bandwidth can be achieved by not sharing some of the
topology details that are deemed unnecessary for certain parts of the network [25].

• Sleep Cycle Management: By utilizing redundancy, some of the nodes in a WSN
can be turned off as a means for saving energy. In addition, the number of transmit-
ted messages will decline, causing less interference and fewer failed transmission
attempts. Determining the sleep schedule while sustaining full area coverage and
strong network connectivity is a popular topology management optimization that
received quite an attention from the research community [26–29].

• Clustering: To achieve scalability and energy efficiency, nodes of a WSN may be
grouped to form a hierarchical topology. In this way, nodes can send their reading
to a cluster-head which in turn aggregates and forwards the data to the sink node
after eliminating redundant data [21]. Although the failure of cluster-head often
requires re-clustering, some approaches have provisioned the topology adjustment
by associating a primary and backup cluster-heads for each sensor node [30–32].

9 Topology Management Techniques for Tolerating Node Failure 277

• Power Control: The transmission range reflects the maximum distance at which
a receiver can stay from the sender. The longer the range is, the higher the power
consumption would be. Many of the advanced radios allow programmable trans-
mission power so that a node can avoid consuming excessive energy in reaching
nearby receivers. Low power transmission can also reduce interference and boost
the network throughput. However, the use of low transmission power limits the
network connectivity since nodes would have fewer directly reachable neighbors.
Many power control optimization techniques have been proposed to exploit such
trade-off to appropriately manage the WSN topology [33–35].

• Movement Control: Node mobility has been exploited as a means for optimizing
the network performance. For example, in [36–39], the focus is on prolonging the
network lifetime by reducing energy consumed by stationary sensors, whereas in
[40] and [41] other metrics have been targeted. In addition, mobile relays with
more capabilities than sensors are used as data forwarders in order to prolong the
lifetime of a network of stationary sensors [42, 43] or to link disjoint batches of
nodes [44–46].

3 Classification of Failure and Tolerance Techniques

3.1 Node Failure Models

A sensor failure implies a loss of functionality caused by damage, energy exhaustion
or component breakdown. The impact of the failure reflects the negative conse-
quences on the network operation and application. In the context of WSN, a sensor
failure affects network connectivity and coverage. In WSNs, node failure can be clas-
sified into two categories; a single node failure and simultaneous multiple failures.

S7

S1
S2

S3

S4
S5

S6

S1
S2

S3

S4
S5

S6

S7

Fig. 1 Assuming a disc coverage model, the failure of S7 causes a coverage gap in the network

278 M. Younis et al.

Fig. 2 Example of a single
node failure in WSN; white
nodes are cut vertices and the
failure of those nodes thus
causes a network to one or
multiple network partitions,
meanwhile black nodes are
not essential to reaching other
nodes and their failure does
not affect network partition

M12

M2

M7

M6

M5

M3

M1

M4

M14

M8

M13

M9
M10

M11
M15

M12

M2

M7

M6

M5

M3

M1

M4

M14

M8

M13

M9
M10

M11
M15

A single node failure indicates that one node fails at a time. The type of failure can be
simply detected using local heartbeat messages. Unless there is overlap in coverage,
the failed node will leave out part of the area unmonitored as shown in Fig. 1. On the
other hand, the node position within the network topology determines its criticality
to connectivity. Considering the topology as a graph, a leaf node does not serve on
the path between any two nodes and thus would not be critical to connectivity. Node
M15 in Fig. 2 is an example leaf node. Some nodes like M13 are also not critical to
network connectivity since its neighbors M12 and M14 have a path between them
that does not include M13. However, some nodes act as cut-vertices and when any of
them fails the network gets partitioned into disjoint blocks. A cut-vertex in a graph is
a vertex that if removed splits the graph into multiple connected sub-graphs. In other
words, a cut-vertex node in the network plays the role of a gateway between two
sub-networks. In Fig. 2, nodes M1, M2, M6, M7, M9 and M10 are cut-vertices and
are considered critical for connectivity. The failure of a critical node thus negatively
affects the network operation and may deem the network useless. Schemes for miti-
gating the failure of a single node include provisioning bi-connectivity to avoid the
presence of cut-vertices in the topology [47] and real-time connectivity restoration
orchestrated by the neighbor of the failed node [48–51].

Classifying nodes based on criticality can be performed through depth-first-search
algorithm, which is a centralized scheme that needs knowledge of the entire network
topology. However, in highly autonomous networks and in networks involving mobile
sensor nodes centralized management schemes are not favored due to the messaging
overhead necessary for maintaining a network-wide state. This has motivated the
use of probabilistic mechanisms for assessing the criticality of nodes. Probabilistic
schemes generally trade off the accuracy of the assessment for the reduced messaging
overhead [51–53]. The idea is to use k-hop neighbor information rather than the
entire network. Obviously, the higher the value of k the better the accuracy will be.
It has been shown that the probability of missing a cut-vertex is zero while a very
high percentage of the picked nodes are really cut-vertices [51, 53]. Using 2-hop
information, it was shown that the accuracy can reach 90 % [51].

The second type of node failure model is based on multiple simultaneous failures.
WSNs operating in a harsh environment may be subject to damage that can be
so significant in a part of the covered area that the network gets partitioned into

9 Topology Management Techniques for Tolerating Node Failure 279

Fig. 3 Illustration of a seg-
mented WSN due to damage;
solid circles indicate failed
sensors, white ones are opera-
tional nodes

disjoint segments. For example in a combat field, parts of the deployment area may
be bombed, destroying the sensor nodes in the vicinity. Figure 3 shows an articulation,
where the dark areas represent the extent of the damage, after which the surviving
nodes are partitioned into disjoint segments due to the loss of connectivity. The
simultaneous failure of multiple nodes is very challenging, not only in the recovery
process but also in determining the scope of the failure. Repairing a network after a
single node failure is neither able to handle simultaneous failure of multiple nodes,
nor analyze the scope and recover from large-scale network damage. In addition,
these schemes rely on maintaining 1 or 2-hop neighbors list in order for the recovery
process to converge. Significant network damage may involve many hops, which
mandates maintaining larger local state information that spans several hops, and
imposes prohibitive overhead.

3.2 Taxonomy of Fault-Tolerance Techniques

The mechanisms for tolerating of node failure in WSNs can be categorized based on
the following attributes:

• Concerns a node failure may raise: Generally coverage and connectivity are at
stake when a node fails. The focus of the fault-tolerance differs based on whether
coverage loss is to be mitigated or strong connectivity is to be maintained. Some
techniques care for both coverage and connectivity, with one of them being as the
primary concern and the second becoming a constraint, or a secondary concern
while performing the recovery. Given the scope of this chapter, we shall focus
more on connectivity-related fault-tolerance techniques, for which connectivity is
a primary or a secondary concern.

280 M. Younis et al.

• The scope of the recovery: Localized schemes limit the involvements of the nodes
in the recovery and thus reduce the impact that a node failure and the associate
recovery process have on the normal network operation. Obviously, in the presence
of a resource-rich node that is aware of the state of the entire network, it can devise
an optimized recovery procedure with the most suitable set of actions.

• Recovery approach: Unattended setups would favor autonomous recovery from a
node failure that is orchestrated among the nodes in a distributed manner. Central-
ized recovery fits applications in which in-situ base-station or a remote command
node are accessible and can determine the course of required actions.

• Methodology: Tolerance of a node failure can simply be reactive in nature, meaning
that a recovery action is taken after a failure is detected. Another option is to
provision the tolerance at time of network setup in order to prevent a failure from
degrading connectivity and/or coverage. Hybrid strategies also exist.

• Recovery Objective: In addition to mitigating the effect of a failure, the recovery
process may have additional objectives to be achieved. These objectives often
shape up the recovery algorithm. Examples of these objectives include minimizing
the overhead, limiting the involvement of healthy nodes, achieving certain level
of quality of service (QoS), etc.

Figure 4 summarizes these classifications. The balance of this chapter summarizes
the state of the art on tolerance of node failure and further highlights these attributes.
The discussion will be structured based on the node failure model and the concern
that triggers the recovery.

4 Tolerance of Coverage Loss Due to Node Failures

As pointed out earlier and illustrated by Fig. 1, the failure of a sensor node S7 may
result in coverage loss in the vicinity, i.e., a hole in the network coverage, unless
some healthy sensors are located within the sensing radius of S7. Since coverage
is usually considered a QoS metric, the presence of holes in the network coverage
needs to be avoided or at least their sizes should be minimized. In theory, failure of
up to k − 1 nodes can be tolerated if a region is within the sensing radius of at least
k nodes [54, 55]. Even though the probability of coverage loss can be minimized
through proactive methods such as redundant node deployment during the initial
setup, we focus on reactive schemes that can be employed after the failure takes place.
Deploying a substitute for the failed nodes is the most intuitive means for regaining
lost coverage, where the failed node is simply replaced by a spare. However, in some
setups augmenting the coverage by deploying additional nodes is not feasible and
repositioning of healthy nodes is the only option. In the balance of this section, we
discuss example techniques for minimizing the coverage loss.

Drougas and Kalogeraki [56] have proposed DÉCOR, a distributed DEpendable
COverage Restoration algorithm, to minimize the number of nodes to be deployed to
achieve/restore k-coverage in a region. Two cell models are considered. In the first,

9 Topology Management Techniques for Tolerating Node Failure 281

Fig. 4 Classification of the
various fault-tolerance mech-
anisms for wireless sensor
networks

Methodology

Provisioned solution

Reactive strategy

Hybrid schemes

Scope of the
recovery process

Localized

Network-wide

Main motive
Coverage Mitigation

Restore Connectivity

F
au

lt-
T

ol
er

an
ce

Recovery
Objective

Increase node degree

Minimize overhead

Limit node involvement

Achieve desired QoS

Approach
Centralized (by a base-station)

Distributed (network self-heal)

the region is partitioned into square-shaped cells. A node is elected within each cell
to be responsible for where coverage is lacking within its cell. The second model
employs Voronoi tessellation to define cells based on the distance between existing
sensors. The node of a Voronoi cell is responsible for identifying spots within its
cell that are not k-covered. Assessing the coverage degree requires finding out the
intersection of multiple circles, which can be very complex for large value of k. To
reduce the coverage assessment complexity, discrepancy theory is employed and a
set of points within a cell are used to find out where coverage is lacking. The two
approaches are illustrated in Fig. 5a, b, respectively. A similar approach is proposed in
[57] where the problem is formulated as a disc covering optimization and a heuristic
solution is found with a bounded error.

As mentioned above, repositioning the healthy nodes is the most popular method-
ology for mitigating coverage loss. For networks with stationary sensors, the use of
robots has been pursued in relocating sensors from area with redundant coverage to
uncovered spots [58–61]. Nonetheless, the bulk of published schemes have exploited
node mobility to restructure the network topology. For example, Ganeriwal et al. [62]
deal with the potential of coverage loss before it happens. If the remaining energy of
a node which exclusively monitors an area drops below the certain level, it sends a
panic message to nodes in area that is known to have coverage overlap. A response to

282 M. Younis et al.

Fig. 5 Illustrating the two cell models used for assessing coverage; a a cell is a square where the
nodes elect a leader, e.g., S6, for assessing the coverage at the various points within the cell in
collaboration with the leaders of neighboring cells, e.g., S2; b a cell is defined based on Voronoi
decomposition of the area based on the location of the individual nodes, e.g., Si, with respect to
neighbors, i.e., those with the commination range rc. The figure is taken from [66]

level-2 Hamliton Cyclelevel-1 Hamliton CycleCell head

.....

.....

.....

...... ...
...

...
...

...
...

...
...

Sensor node

Fig. 6 Illustrating the virtual grid model, where the dark and hallow circles represent the cell heads
and regular sensor nodes, respectively. Hamilton cycles are formed locally among the cell heads
and aggregated in a hierarchical structure (only two levels are shown)

the panic is made by volunteers and the panicking node identifies the volunteer with
the most energy resource and least motion overhead. Before volunteering, a node
should ensure that its departure will not leave a hole in coverage.

To detect and mitigate node failure, Wu and Jiang pursue a hierarchical model
[63]. The monitored area is modeled as a grid with cell sizes that ensure connectivity
between nodes in adjacent cells. Each cell elects one node to be a head and cell-based
Hamilton cycles are formed at different levels using cell heads as representatives.
The lowest level involves 4 adjacent cells. One head in a lower cycle becomes a
member of the next tier cycle and so on. Figure 6 illustrates the idea. When coverage

9 Topology Management Techniques for Tolerating Node Failure 283

is degraded in a cell, its head will negotiate with the fellow heads within the Hamilton
cycle on getting a node to move in and fill the coverage gap. If not possible at a low
cycle level, the request is elevated to the next level and so on. If any of the heads
on a cycle dies, the Hamilton cycle becomes a Hamilton path and a spare node is
moved to the vacant area along the path to restore the cycle and the coverage. Asim
et al. [64] also model the network as a grid and designate a node per each cell for
coverage maintenance by relocating nodes in case of a failure. A publish/subscribe
abstraction is pursued for finding redundant nodes where the cells with redundant
nodes are publishers and the cells that require more nodes are subscribers. Direct and
cascaded movements are offered based on where the failure takes place and where
the substitute node is located.

In [65], Sahoo et al. have presented a distributed coverage restoration algorithm
which strives to reduce the distance that a node needs to travel. The scope of the
motion is limited to 1-hop neighbors. The recovery problem is modeled using vector
algebra. A node determines boundary gaps based on the intersection of its coverage
range with that of its neighbors. A node then determines the movement direction
using polygon laws of vector addition. The approach resembles the Grid-Quorum
algorithm of Wang et al. [66], the self-spreading algorithm of Heo and Varshney [67],
which model the node’s motion using electrostatic interaction based on Coulomb’s
law between charges. Meanwhile, Nguyen et al. [68] assumes a hybrid network
model where both stationary and mobile nodes exist. Mobile nodes are employed to
fill coverage holes caused by the failure of stationary nodes. Like the work of Wang
et al. [66] a virtual grid is assumed and the mobile nodes are relocated based on
energy metric. However, the authors argue that minimizing the total energy is not
effective and maximizing the remaining energy per node is more important to the
network lifetime.

Rather than just re-acting the node failures, some approaches have exploited node
mobility to improve the coverage after the network deployment. For instance, Wang
et al. [69] utilize Voronoi diagrams of each sensor to decide where to move them so
that they are dispersed as evenly as possible in the region. The goal is to maximize
the coverage within the shortest time duration and with minimal overhead in terms
of travel distances and message exchange. Another notable approach for the same
problem followed the idea of two dimensional scanning of clustered networks [70].
The approach, which is called SMART, adopts a popular scheme for balancing load
among nodes in parallel processing architectures by assigning equal number of tasks
to each processor. This idea is used by creating a grid-based WSN where each cluster
is represented by a square cell. SMART was shown to use the minimum number of
moves when the network is converged.

Some work considered how a substitute for the failed node can be efficiently
founded. For example, Li et al. [71] have focused on optimizing the discovery of a
redundant node. They form an information mesh that facilitates the dissemination
of a request by designating proxies that maintain a list of available spares in their
proximity. Meanwhile, the ZONER approach [72] opts to overcome the presence
of obstacles in the field that may hinder the discovery of redundant nodes and the
repositioning of them to substitute the failed ones. The idea is to use limited flooding

284 M. Younis et al.

within a zone and employ face routing [73], which is a popular geographical routing
scheme for MANET, in order to move the redundant node to the position of the faulty
one. Again to avoid overburdening a single node, a shifting strategy is employed
where the closest node S1 on the route to the faulty node will move, node S2 will
then replace S1, and so on until the picked redundant node Sn relocates to the position
of Sn−1.

Some of the published work paid significant attention to the impact of the failure
and the scope of the recovery. For example, the focus of [74] is on assessing the
effect of the failed node and deciding on whether it is necessary to replace it. Three
metrics are factored in, namely, the increased per-node energy for data dissemination,
coverage loss at the network level, and the local level, i.e., in the vicinity of the
failure. Meanwhile, the approach of Sekhar et al. [75] is to use the neighbor of
the failed node in mitigating the coverage loss. Nodes determine how far they can
move towards the failed node based on the coverage overlap in their vicinity. Four
heuristics have been proposed for determining how much each neighbor of the failed
node should contribute, i.e., how much distance it travels. These heuristics differ in
the optimization metrics. A cascaded version is also proposed where the scope of
the relocation includes nodes that are multi-hop away from the failed node.

The bulk of published work assumes that all nodes have the same sensing capabili-
ties. Unlike that work, Kasinathan and Younis [76] address the mitigation of coverage
loss in networks with heterogeneous sensor nodes. They have proposed a distributed
algorithm which pursues a combination of proactive and reactive recovery strategies.
Again, their Coverage loss Mitigation Algorithm after Node failure (CoMAN) avoids
the deployment of redundant nodes and just re-organizes the available healthy nodes.
Every node maintains a 2-hop network state, i.e., those 1 and 2-hop neighbors. The
collected information about a neighbor includes its coverage capabilities, criticality
to the network connectivity and proximity, i.e., how far it is. CoMAN performs some
pre-failure planning. Based on the neighbors list, each node “A” identifies all nodes
that share some of its sensing capabilities and form a list of Possible Replaceable
Nodes (PRN). Each entry in the PRN list includes a set of nodes whose collective
sensing capabilities match or surpass that of “A.” Node “A” shares its PRN list with
its direct neighbors in order to orchestrate a recovery if node “A” fails. In order to
minimize the effect on the network performance, the picked set of backup nodes, i.e.,
selected PRN, is chosen such that repositioning these nodes causes the least coverage
and connectivity impact on the network. In addition, the distance that these backups
need to travel to replace “A” is also taken into consideration to limit the recovery
overhead. Figure 7 illustrates how CoMAN performs the recovery through a detailed
example.

A general classification for all approaches summarized in this section is that cover-
age is the only metric considered in the recovery process and connectivity is assumed
not to be an issue. In other words, for a disc coverage model the communication range
was assumed to be significantly longer than the coverage range. As we will discuss
in the next sections, some work cared about connectivity in addition to coverage or
some simply did not factor in coverage at all and focused on maintaining/restoring
strong network connectivity.

9 Topology Management Techniques for Tolerating Node Failure 285

Fig. 7 Illustrating the operation of CoMAN [83]; a the sensing capabilities of the individual nodes
are modeled using a binary string. Each node has a subset of the sensing capabilities—1’s and 0’s
annotated next to each node represent the presence or absence of a particular capability, respectively.
The importance of each sensing capability is inversely proportional to the capability number, i.e.,
capability #1 the most critical sensing capability, b each node determines its PRN list. For node
A, node I is a cut vertex is thus disqualified as a backup given the negative impact of moving it.
Meanwhile, node B has the capability 1 which is more important than all capabilities of A, and
is therefore excluded as a viable recovery option. Hence, the PRNs of node A are {E, G}, and
{G, H}; c node A exchanges its PRN list with its direct neighbors; d after the failure of A, the direct
neighbors determine the best recovery option out of the entries in the PRN of A, which will be
{E, G} since node E is closer to A than node H. The picked backups, i.e., nodes E and G, will
relocate to the position of A

5 Connectivity-Centric Recovery from a Single Node Failure

In order to tolerate a node failure that causes network partitioning, two methodologies
can be identified: (i) pre-cautionary and (ii) real-time restoration (repair). The pre-
cautionary methodology strives to provision fault-tolerance in the network topology
both at setup and during normal operation. The idea is to establish a k-connected
topology such that every node can reach other nodes over at least k node independent
paths. Such an arrangement will allow the network to seamlessly tolerate the failure
of up to k −1 nodes [47, 77]. For coverage, redundant nodes with overlapping range
are deployed to achieve k-coverage property and withstand the failure of k −1 nodes
without suffering a hole in network coverage [54, 55]. However, when connectivity
is also considered, the failure of even one among the k nodes can cause network

286 M. Younis et al.

partitioning regardless of the sustained coverage. In this and next sections, we direct
our attention to tolerance techniques that have the network connectivity as a primary
or secondary concern.

5.1 Provisioned Recovery Schemes

The popular proactive strategy for preserving the network connectivity in the pres-
ence of a faulty node is to carefully place redundant sensor nodes during the initial
deployment of a WSN. The idea is to provide more than one routing path between
any pair of sensors in the network. The route alternatives should also be node disjoint
so that the failure of a single node will not break all viable routes. In this subsection,
we summarize some of the published techniques.

In general, optimal node placement is a very challenging problem that has been
proven to be NP-Hard for most of the formulations of sensor deployment [78–81].
To tackle such complexity, several heuristics have been proposed to find sub-optimal
solutions [24, 78–87]. However, the context of these optimization strategies highly
depends on how to assess the quality of candidate positions, which is based on a
structural quality metric such as inter-node proximity, coverage, network connectiv-
ity, etc. Published work on sensor placement can be grouped into two categories. The
first considers unconstrained setups and tries to just establish connectivity between
end points [78–80]. In the second category either additional performance objectives
are targeted [82, 83] or higher degrees of connectivity are to be achieved [24, 84,
85, 88]. Given the scope of this section, we shall focus on the second category.

Although provisioning k-connectivity enables the network to tolerate the failure of
up to k − 1 consecutive node failures without suffering partitioning, bi-connectivity
has been the most popular goal given the complexity of the node placement problem
and the increased node count in achieving high level of connectivity will involve.
Overall, published proactive schemes strive to achieve the desired level of fault
resilience, i.e., level of connectivity, using the least node count. A variant of the
problem is considered in [24], in which source nodes are distinguished from relaying
nodes on the route and k-connectivity is only applied to the inter-relay topology.
Such variant is named partial k-connectivity. In some publications, k-connectivity
is provided as byproduct of determining a connected dominating set to obtain a
robust backbone [88]. In addition, some work assumed that the relays possess more
capabilities than the sensor nodes [85].

The goal of Tang et al. [84] and Hao et al. [85] is to place the minimum number
of relay nodes such that each sensor is connected to at least two relays and the inter-
relay network is 2-connected. As a result, the failure of a relay node or a sensor node
does not affect the overall network connectivity. Tang et al. divide the area into cells
and find a position for a relay so that it becomes connected to all sensors in a cell
and also to other relays in neighboring cells. The work is further extended in [85] by
formulating the same placement problem as 2-Connected Relay Node Double Cover
(2CRNDC), which finds the fewest number of locations for placing relay nodes, so

9 Topology Management Techniques for Tolerating Node Failure 287

Fig. 8 Examples of a one-way (a) and two-way (b) steinerized path. Between two sensor nodes u
and v, the least number of relay nodes (black circles) are placed to establish a one-way or two-way
path. The figure is from [24]

that each sensor is covered by at least two relays and the group of relay nodes is
bi-connected. This problem can be reduced to the well-known Minimum Geometric
Disc Cover problem which is NP-complete and they thus present a polynomial time
approximation algorithm. The algorithm computes a possible position p of a relay
and C(p) which is a set of sensor nodes covered by a relay node locating at p. Then, the
algorithm simply identifies positions that cover the maximum number of sensors, at
which relays are virtually placed. By analyzing the inter-relay connectivity, the relays
with most coverage are switched from virtual to real, in order to form a 2-connected
graph.

Meanwhile, Han et al. [24] construct k(k ≥ 1) disjoint paths between any two
sensor nodes. Unlike [84, 85], they consider a heterogeneous WSN where sensors
have different transmission radii and opt to deploy the least number of relays. How-
ever, all relay nodes have the same communication range. The authors proposed
an approximation algorithm by solving the minimum k-vertex connected spanning
graph (MKCSG) problem [32, 89–91] and then placing the least number of relay
nodes to establish k(k ≥ 1) vertex-disjoint paths between every pair of sensor nodes.
Considering a directed or an undirected graph, the algorithm provides a one-way or
a two-way steinerized path, i.e., populates nodes to establish connectivity among the
two end node on the path, along with each edge of the found MKCSG as seen in Fig. 8.
Since two sensor nodes u and v have different radio ranges, for building an asym-
metric communication link between them more relays are required, as demonstrated
in Fig. 8b.

5.2 Reactive Connectivity Restoration Schemes

Real-time connectivity restoration implements a recovery procedure when a node
failure is detected. Such a reactive methodology better suits dynamic WSNs, since
they are asynchronous in nature and it is difficult to predict the location and the
scope of the failure. Therefore, adaptive schemes can best scope the recovery process
depending on the effect of the failure on the network connectivity. Proposed reactive
recovery schemes can be categorized as follows:

288 M. Younis et al.

• Determining the impact of the failure: As indicated earlier, the loss of some nodes
may not impact the network connectivity and thus would not warrant any recov-
ery effort. However, the failure of a cut-vertex node causes the network to get
partitioned and the connectivity would need to be restored. To qualify the impact
of a node failure, a cut-vertex detection procedure should be applied. Recall that
cut-vertices in a graph can be determined by forming a depth first search tree
whose complexity grows exponentially with the depth of the graph. If the recov-
ery process is not centralized, the complexity can grow significantly. In that case,
each neighbor Ai of the failed actor A f needs to independently assess whether
A f is a cut-vertex or not. To overcome such complexity, some of the distributed
schemes in the literature pursue a probabilistic determination of cut-vertices using
2-hop neighbors information [51, 53].

• Required network state: As mentioned, identifying cut-vertices requires a network
wide analysis. In addition, it is conceivable to generate an optimal recovery plan
by considering the state of the entire network. Some of the published work strives
to pursue a local analysis instead, in order to ensure scalability to large networks.
Basically, the accuracy of determining a cut-vertex and the optimality of the recov-
ery process are traded off for reduced overhead and rapid convergence. While the
use of 2-hop information seems popular in the relevant literature [48, 50, 51],
some allowed the quality of the solution to scale when further nodes, that are
p-hop away, are known [50].

• Scope of the recovery: Another factor that differentiates among published schemes
is how many nodes are involved in the recovery. Two main methodologies can be
identified; block and sequential node movements. In block movement, a set of
connected nodes travel together as unit. The idea is re-link disjoint partitions or to
boost the network connectivity, e.g., eliminate cut-vertices, by moving one parti-
tion towards another [47]. The second methodology is to tolerate the degradation in
connectivity, caused by the loss of the failed node, by relocating one or few nodes in
a non-coordinated manner [48–50, 92]. Since the relocated nodes may get detached
from their neighbors, a cascaded repositioning is pursued where neighbors follow
through in order to sustain connectivity. The process is repeated recursively until
reaching nodes whose movement would not violate the connectivity of the WSN.

• Connectivity goal: Published schemes also differ in the degree of network con-
nectivity that ought to be sustained. Most efforts have been dedicated to repairing
a partitioned network, i.e., to become 1-connected [48–51], and to restoring bi-
connectivity [47, 50]. To the best of our knowledge, there is no published work
that achieves general k-connectivity through controlled mobility of nodes. Note
that there may be other goals in addition to connectivity. However, in this section
we focus on the approaches which have connectivity as a primary goal.

• Type of algorithm: Some of the published work employs centralized algorithms
where one of the nodes takes charge of generating the recovery plan and coordi-
nating the relocation process [92]. These approaches rely on the availability of an
alternate communication path to inform other nodes on what to do. For example in
[47], the network was assumed to be bi-connected prior to the failure and thus the
healthy nodes can still reach each other. On the other hand, distributed algorithms

9 Topology Management Techniques for Tolerating Node Failure 289

have been the preferred choice for restoring connectivity of large networks and
for repairing partitioned networks [48–51, 93–105]. In such a case, the nodes are
assumed to have some pre-failure state (e.g., k-hop) information and utilize that
information to detect and recover from network partitioning. The rationales are
that localized and distributed algorithms scale well and that partitioned networks
would not allow communication with a centralized coordinator for the recovery.

All published reactive approaches pursue node repositioning and fundamentally dif-
fer in the required network state and the performance objective of the recovery
process, other than re-establishing strong network connectivity. Examples of the
considered metrics include the number of nodes that get engaged in the recovery, the
relocation overhead in terms of the travelled distance and messaging, the network
coverage, etc. In the balance of this section we summarize sample of the published
real-time connectivity restoration schemes.

Recovery Using Two-Hop State Information: DARA [48] is among the connectiv-
ity restoration approaches that require 2-hop information to assess the criticality of
the node to the network connectivity and orchestrate recovery in a distributed man-
ner. Two variants of the algorithm, namely DARA-1C and DARA-2C, are developed
to address 1 and 2-connectivity requirements, respectively. The idea is to identify the
least number of nodes that should be repositioned in order to re-establish a particular
level of connectivity. DARA strives to localize the scope of the recovery process and
minimizes the movement overhead imposed on the involved nodes. In other words,
DARA pursues coordinated multi-node relocation in order to re-establish communi-
cation links among the impacted nodes. The main idea of DARA-1C is to replace the
dead node by a suitable neighbor. The selection of the best candidate (neighbor) is
based on the node degree and the physical proximity to the dead node. The relocation
procedure is recursively applied to handle any nodes that get disconnected due to the
movement of one of their neighbors (e.g., the best candidate that has replaced the
faulty node).

When a critical node fails some of the nodes may be temporarily isolated until the
network connectivity is restored and thus the network operation may be disrupted
during the recovery. A way to avoid such short-lived disruption is to establish a
2-connected network at the time of node deployment. In a 2-connected network,
there are at least two node-independent paths among each pair of nodes. This type
of connectivity would ensure continual inter-node coordination even if a node fails.
Such robust operation is particularly important in WSNs where real-time decisions
are made. Since the network should sustain such robustness throughout its lifetime,
2-connectivity should be restored after a node fails. Similar to DARA-1C, DARA-
2C identifies the nodes that are affected, i.e., lost their 2-connectivity property, due
to the failed node [93]. Detecting such nodes and restoring their bi-connectivity is
a very challenging problem. Nonetheless, through a careful analysis the solution
space is proven to be limited to boundary nodes in the network. Such analysis has
made DARA-2C a very efficient approach for restoring bi-connectivity. Basically,
only a subset of the neighbors of the failed node is relocated in order to restore
2-connectivity.

290 M. Younis et al.

Another node-relocation based solution for repairing a partitioned network is
published in GLOBECOM’07 [94]. However, this approach is restricted to relink-
ing only two partitions and does not handle multi-segments scenarios. The idea is
to pick the closest node in the two partitions and move them towards each other
until a communication link can be established. However, since such movement may
disconnect the repositioned nodes from their partitions, additional nodes are then
picked from each partition for performing cascaded movements in order to maintain
the intra-partition connectivity. The collective effect is like stretching the topology
of the participating sub-networks towards each other. In order to pick the appropriate
node for the cascaded motion, a connected dominating set (CDS) of the individual
partitions is considered. As long as the CDS is maintained for a partition, the effect
of relocating a node will be limited in scope and would not risk the connectivity of
the other nodes in the partition. Therefore, the approach opts to reposition non-CDS
nodes. However, such repositioning is done in a cascaded manner by replacing mul-
tiple nodes in order to minimize the maximum distance a node has to move. The
authors employ the approximate algorithm of Dia and Wu [106] for finding the CDS
using 2-hop information. Figure 9 shows an illustrative example.

A3

A8

A9

A1

A2

A5

A4

A7A6

B1

B2

B3

B4

r d

G1

G2

d1

d2

Dominator

Dominatee

A3

A8

A9

A1

A2

A5

A4

A7A6

B1

B2 B3
B4

d

G1

G2

MCDS-based Movement

Fig. 9 Illustrating how to connect two disjoint partitions, G1 and G2, using the approach of [90].
The nodes in the two partitions that are closest to each other are A1 and B1. Let the distance between
these two nodes be d, which is assumed to be greater than the transmission range of nodes, r. In
order to establish connectivity some nodes from both G1 and G2 need to be positioned along the line
A1 B1 such that they remain connected to either G1 or G1 and have a distance less than r. Since B1
is a dominator, when it moves, it has to be replaced by the closest dominatee if available, which is
B3 in the example. Moving the dominator A1 will requires the relocation of the closest dominators,
namely, A3, since there is no dominatee connected to A1. Because node A3 is not connected to any
other dominator, no further relocation is necessary

9 Topology Management Techniques for Tolerating Node Failure 291

Fig. 10 Illustrating the basic idea for RIM; a When A1 fails, its neighbors A2, A8, and A9, applies
RIM; b Nodes A2, A8, and A9, move inward towards A1 and. Such a motion, trigger relocation of
A3 to stay in contact with A2, and the relocation of A10, A11, and A12, to sustain their links with A9

Recovery Without Explicit State Update: The approaches discussed above assume
that every node knows its 2-hop neighbors and can assess the seriousness of the impact
inflicted by the failure of one of the nodes. Unlike these approaches, the RIM algo-
rithm, denoting Recovery by Inward Motion, requires just 1-hop information [49].
RIM is a localized scheme that limits the scope of the recovery process and operates
in a distributed manner. Basically, RIM orchestrates a coordinated multi-node relo-
cation in order to re-establish communication links in the neighborhood of the failed
node. The main idea is to move the neighbors of a failed node A1 inward towards the
position of A1 so that they would be able to reach each other. Figure 10 illustrates
the idea. The rationale is that these neighbors are the ones directly impacted by the
failure, and when they can reach each other again, the network connectivity would
be restored to its pre-failure status. The relocation procedure is recursively applied
to handle any node that gets disconnected due to the movement of one of their neigh-
bors (e.g., those which moved towards the faulty node). The main advantages of RIM
are its simplicity and effectiveness. RIM employs a simple procedure that recovers
from both serious and non-serious breaks in connectivity without checking whether
the failed node is a cut-vertex or not. The entire recovery process is distributed,
enabling the network to self-heal without any external supervision. RIM has been
mathematically analyzed and shown to correctly converge. The messaging overhead
stays linear in the number of nodes. The maximum distance a node travels in RIM
is r/2 where r is the node radio range. The simulation validation of RIM has shown
that RIM does well in sparse networks and outperforms approaches such as DARA
[48] that use 2-hop neighboring information. However, with high node density RIM
tends to move many nodes and increases the total travel overhead on the network.
Nonetheless, considering the overhead per node would still make RIM a favorite
approach since it balances the load among nodes.

To limit the motion overhead imposed by RIM, a Volunteer-instigated Connectiv-
ity Restoration (VCR) algorithm has been proposed [95]. In VCR the neighbors of
the failed node volunteer to restore connectivity by exploiting their partially utilized
transmission range and by repositioning closer to the failed node. These neighbors
volunteer by increasing their transmission power and moving towards the failed node
A f . In order to avoid increased medium access collision in the vicinity of A f , VCR
applies a diffusion force among volunteer nodes based on their transmission range so

292 M. Younis et al.

that they spread while staying connected. Another variant of RIM has been recently
published [96]. The approach is called Least Distance Movement Recovery (LDMR)
and operates in a distributed manner. The idea is for a set of direct neighbors of the
failed node A f to move toward A f , very much like RIM [49], while their original
positions are replaced with the nearest uncritical nodes. The recovery process starts
with a search phase where each neighbor broadcasts a message containing the failed
node ID, neighbor node ID and, Time-To-Live to limit the scope of the recovery. A
candidate node responds to all requests. When a neighbor of A f receives responses,
it chooses the best candidate based on a certain criteria (e.g., distance). To avoid
overbooking a candidate, a confirmation message is sent to ensure that no two neigh-
bors of A f will rely on the same candidate. If uncritical nodes are not available, the
cascaded relocation of RIM is applied.

Another approach that does not require explicit state update is LeDiR [97]. LeDiR,
denoting Least-Disruptive topology Repair, considers the connectivity restoration
problem subject to path length constraints. Basically, in some applications such
as combat robotic networks and search-and-rescue operation, timely coordination
among the nodes is required and extending the shortest path between two nodes as
a side effect of the recovery process would not be acceptable. For example interac-
tion among nodes during a combat operation would require timeliness in order to
accurately track and attack a fast moving target. LeDiR relies on the local view of
a node about the network to relocate the least number of nodes and ensure that the
shortest path between any pair of nodes is not extended relative to its pre-failure
status. LeDiR is a localized and distributed algorithm that utilizes the typical accu-
mulation of routing information, e.g., during path discovery, and avoids the explicit
state update.

When a node A f fails, its neighbors will individually consult their possibly-
incomplete routing table to decide on the appropriate course of action and define
their role in the recovery if any. If the failed node is a critical node, i.e., cut-vertex, the
neighbor Ai that belongs to the smallest partition reacts. LeDiR limits the relocation
to nodes in the smallest disjoint partition in order to reduce the recovery overhead.
The smallest block is the one with the least number of nodes and would be identified
by finding the reachable set of nodes for every 1-hop neighbor of A f and then picking
the set with the fewest nodes. Again, the routing table will be used for that. Intra-
partition connectivity is sustained through cascaded relocation as in DARA [48] and
RIM [49], where a node A j that loses contact with a neighbor Ai travels toward the
new position of Ai . A variant of LeDiR, called a Least-Movement Topology Repair
(Le-MoToR) algorithm, has been recently published [98]. Compared to LeDiR, Le-
MoToR relocates a node A j in a partition on a different travel path by making moving
parallel to the line Ai A f . This modification reduces the number of moved nodes and
sustains the coverage achieved by the node in the smallest partition by not shrinking
the topology towards Ai after it replaces A f .

Recovery Preplanning: Recovery from a node failure can be facilitated if some
level of preplanning is performed. This is the methodology pursued by the Detec-
tion and Connectivity Restoration (DCR) algorithm [99]. DCR proactively identifies

9 Topology Management Techniques for Tolerating Node Failure 293

nodes that are critical to the network connectivity based on local topological informa-
tion, and designates appropriate, preferably uncritical, backup nodes. Upon failure
detection, the backup initiates a recovery process by replacing the failed node. The
departure of the backup can trigger more relocation if it is also a critical node.
Therefore, DCR prefers designating uncritical nodes as backups in order for the
recovery process to terminate quickly and involve the fewest nodes. In other words,
DCR strives to avoid procrastination, localize the scope of recovery and minimize
the movement overhead. The performance advantage of the recovery preplanning
of DCR has been captured by simulation. The simulation results have demonstrated
that DCR reduces the travel distance overhead by 30–60 % compared to DARA [48]
and RIM [49], depending on the network size. In addition, significantly fewer nodes
are engaged and fewer messages are exchanged to coordinate the recovery process.

The approach of [94] is further extended in [51] to handle cases for which the
network gets partitioned into multiple disjoint segments. The idea is do preplanning
by designating nodes to lead the recovery when a failure takes place. The proposed
Partition Detection and Recovery Algorithm (PADRA), not only uses 2-hop infor-
mation in determining the impact of the failure on network connectivity, but also in
identifying a CDS for the network. PADRA designates for each cut-vertex Ai a fail-
ure handler within the network that would start the recovery process when Ai fails.
The ideal handler will be a dominatee neighbor of Ai that can simply replace Ai . If
a dominatee is not available, the closest dominator is picked as the failure handler of
Ai . Repositioning the failure handler at the position of Ai will then trigger cascaded
relocation until a dominatee is encountered. There is no procedure followed for find-
ing the closest dominatee to the failure handler as a means of minimizing the total
traveled distance for all involved nodes. Instead, a greedy heuristic is pursued where
the closest dominator is picked if a dominatee is not available. Figure 11 illustrates
the operation of PADRA through an example. PADRA was extended in [100] by
replacing the greedy heuristic with a dynamic programming-based approach. With
such an extension, the total travel distance is significantly reduced as it considers all
the alternatives at the expense of some extra messaging overhead.

A7

A1 A2 A6

A5

A4

(a)

A9

A8

A3

A7

A1 A6A5 A4

(b)

A9

A8

A3

X

FH

Fig. 11 A sample execution of PADRA [22]; dark nodes are dominators and white hallow are
dominatees. a When A2 fails, node A3 becomes the failure handler and starts the recovery process.
b A3 replaces A2, A5 replaces A3 and finally A8, which is a dominatee, replaces A5 and the
connectivity is restored

294 M. Younis et al.

Constrained Motion: Repositioning nodes to tolerate a failure may also be subject
to application level constraints. For example, the node may be assigned an important
task that is spatially tied to a certain spot. To handle such a scenario, the DARA
approach is extended in [101] to factor in the importance of on-going tasks in the
selection of a candidate node for replacing A f . In addition, a hybrid Application-
centric Connectivity Restoration (ACR) algorithm is proposed [102] that factors in
application level interests besides efficient resource utilization while recovering from
critical node failures. Like DCR [99], ACR determines critical nodes and designates
for them backups as part of pre-failure planning. Each node discovers in a distrib-
uted manner whether it is critical or not based on local topology information. Each
critical (primary) node picks a suitable backup that can satisfy application-level con-
straints. While choosing a backup, a primary node strives to find a nearby uncritical
node in order to limit the scope of the recovery and reduce the overhead. Moreover,
ACR strives to minimize the effect of node failure on coverage and connectivity by
engaging strongly connected nodes with overlapped coverage.

With the exception of RIM and its variants, the other reactive approaches for
restoring connectivity are based on a single underlying principle of replacing the
failed node without considering the possible fact that the location of the failed node
could have been the reason for its failure. These approaches also tend to trigger a
cascaded relocation of many nodes resulting in increased overhead. For example,
DARA [48] and RIM [49] often terminate after engaging the nodes at the network
periphery. To counter such shortcoming, an algorithm for Connectivity Restoration
through node Rearrangement (CRR) is proposed in [103]. CRR pursues rearrange-
ment of nodes while limiting the scope of the recovery to the vicinity of the failed
node. The main idea is to reposition the 1-hop neighbors of the failed node so that
the topology becomes strongly connected, i.e., a path exists between every pair of
nodes. The node rearrangement is modeled as a variant of the Steiner minimal tree
formation problem to connect the 2-hop neighbors of A f . The 1-hop neighbors of
A f are then placed at the identified Steiner points. If the 1-hop neighbors are fewer
than the Steiner points, the 2-hop nodes are relocated.

Combined Coverage and Connectivity Schemes: A combined coverage and con-
nectivity metric has also been considered in the recovery process. For example, the
node recovery through active spare designation (NORAS) algorithm [104], factors in
the coverage overlap in selecting a substitute for the failed node. Again the recovery
is triggered by the failure of a critical node A f that partitions the network, i.e., moti-
vated by loss of connectivity. In NORAS, potential backups are qualified based on
coverage redundancy and connectivity. A node that would cause the least coverage
degradation is favored. In addition, low node degree would make a node an attractive
backup since limited cascaded relocation may be required. NORAS opts to localize
the scope of the recovery by picking backups within the 2-hop neighborhood of A f .
Upon detecting the failure of A f , the designated spare travels to replace A f or a
series of cascaded relocation on the shortest route between A f and backup will be
triggered to split the load on multiple nodes.

9 Topology Management Techniques for Tolerating Node Failure 295

Meanwhile, the coverage conscious connectivity restoration (C3R) approach
exploits both temporal and spatial domain [105]. The main idea is to exploit both
temporal and spatial domain. Basically, the neighbors of A f will collaborate in the
recovery by taking turns. Each participating node will reposition to the vicinity of
A f , serve the network for some time and then go back to its original location. A
heuristic solution has been proposed to identify the nodes that should be involved
and a schedule is devised for them to serve the area covered by A f . This leads to
intermittent connectivity and monitoring of all the originally covered spots. An opti-
mized version of C3R, called ECR, is also proposed [105]. ECR is geared for energy
efficiency at the expense of coverage and connectivity and is suitable for applications
where network longevity is a prime objective. ECR devises a recovery schedule that
minimizes the ratio of travel-imposed energy to that being consumed while a node
is stationary. Such a scheduling problem has been formulated as a linear program.

To provide a performance bound for the schemes that tolerate a single node failure
and handle network architectures in which the base-station can develop the recovery
plan, the recovery problem has been formulated as an Integer Linear Program (ILP)
in [92]. The objective of the ILP-based optimization model is to form a strongly
connected topology while minimizing the distance that the individual nodes have to
travel and minimizing the loss in coverage caused by the failure of some nodes. The
proposed solution handles the failure of one or multiple nodes. The ILP formulation
can be viewed as providing a lower bound on achievable total travel distance for
node-relocation-based connectivity restoration.

6 Tolerating the Failure of Multiple Nodes

Due to the harsh surroundings, more than one sensor node may simultaneously fail.
In addition, the network may suffer a large-scale damage that involves many nodes
and would thus create multiple disjoint segments. Restoring connectivity is very
challenging in this case and is an under-researched problem. Three recovery strate-
gies have been pursued in the literature. In the first strategy, the network topology is
restructured by repositioning nodes from the various segments in order to re-establish
connectivity. This methodology would support network self-healing and enable dis-
tributed implementation. In the second strategy, additional relay nodes are deployed
to interconnect the disjoint segments. Finally, the third strategy involves mobile data
mules that tour the area and carry data from one segment to another. In the balance of
this section we highlight the popular objectives of the recovery process in addition to
restoring connectivity and summarize sample techniques for each recovery strategy.

296 M. Younis et al.

6.1 Objective of the Recovery Process

In addition to restoring strong network connectivity that got lost due to multi-node
failure, the recovery process often needs to meet some application-level objectives
that the network should support. The followings are some of the most popular design
factors that have been considered in the literature.

• Restoration cost: The cost of repairing a damaged WSN topology is an issue
of concern. When relocation of existing nodes is pursued, the overhead will be
limited to, pre-failure state update, recovery coordination messages and the travel
distance [107]. On the other hand when deploying new nodes, it is desirable to min-
imize the number of the additional nodes due to logistics and budgetary concerns
[108, 109].

• Topology characteristics: Fundamentally, establishing routes between the various
segments is the main goal of the recovery. However, some work has considered
achieving certain characteristics of the inter-segment topology. Having high level
of connectivity is an example. Some work tried to form a bi-connected inter-
segment topology to increase robustness against single node failure and to split
the inter-segment traffic load on multiple data paths [110]. Meanwhile some just
settled for achieving high node degree as a means for reducing the number of
cut-vertices in the inter-segment topology and lowering the probability of having
network partitioning when one of the deployed nodes fails [111, 112]. Obviously,
the increased level of connectivity comes at the price of increased node count,
which reflects the cost of the recovery, and would thus introduce some trade-off.
When mobile data mules are employed, data delivery latency becomes the main
concern and is often handled by careful scheduling of the tour [52].

• Quality of service (QoS): QoS requirements are also important design factors
which can affect the performance in WSNs. For example, there may be bandwidth
requirements for the links between segments that happen to have voluminous data
sources. In addition, the population of video and imaging sensors in the various
segments would typically vary given the non-uniform distribution of nodes after
the network is damaged. That will make the inter-segment links subject to latency
and bandwidth constraints that have to be factored in the recovery process [113].
It is worth noting that robustness and load balancing are among the popular QoS
goals and forming k-connected inter-segment topology can also be viewed as a
means for achieving these QoS objectives.

6.2 Restoring Connectivity by Node Relocation

Restoring connectivity after the simultaneous failure of multiple nodes through the
repositioning of some of the healthy nodes is very challenging. The main difficulty is
determining the scope of the damage and coordinating the response of the individual
nodes. Given the complexity of the recovery few attempts have been made to solve the

9 Topology Management Techniques for Tolerating Node Failure 297

problem in a distributed and reactive way [107, 111, 114]. However, the coordination
of nodes in such a case is not possible. Therefore, nodes either have to move to
the center of the region or utilize pre-failure information to apply an autonomous
approach. Some approaches have solved it in a centralized manner [93, 100, 115]
or considered a constrained form of the problem. For example, the DCR algorithm
[99] discussed earlier has been extended in [116] to address one multi-node failure
scenario in which no more than two of the failed nodes are adjacent. The developed
algorithm, which is named RAM, identifies critical nodes and designates for them
distinct backups. The key feature that enables RAM to handle the simultaneous
failure of two adjacent nodes lies in the backup selection process. When a critical
node chooses a backup, it prefers an uncritical node that is not serving another
primary. Moreover, two adjacent critical nodes cannot serve each other as backup.
This ensures that there will be some backup to recover in case adjacent nodes fail
at the same time. If a critical node, i.e., primary, “A” picks an uncritical neighbor
“B” as a backup, RAM requires “B” to also pick a backup “C” among its neighbors
using the same criteria. The designated backups detect the failure of adjacent nodes
and simultaneously execute the recovery process. A similar idea of backups (i.e.,
failure handlers) has been followed in [100] to handle multiple simultaneous node
failures. Basically, the idea is to run the PADRA approach at multiple locations using
the failure handlers as the initiators of the processes. However, when the nodes are
relocated in a cascaded manner, two processes may need to relocate the same nodes
for different failure recoveries and thus this creates race conditions. This problem is
addressed via lock procedures meaning that the node does not respond to a request
until it is done with another request.

The Distributed algorithm for Optimized Relay node placement using Minimum
Steiner tree (DORMS) is another recovery approach that employs node reposition-
ing to tolerate the failure of multiple nodes [111]. Since in autonomously operating
network it is infeasible to perform a network-wide analysis to diagnose where seg-
ments are located, DORMS moves relay nodes from each segment toward the center
of the deployment area. As soon as those relays become in range of each other, the
partitioned network resume operation. The goal of DORMS is to design an efficient
topology, in terms of the path length among segments, while minimizing the num-
ber of required additional nodes. Therefore, DORMS further models such initial
inter-segment topology as a Steiner minimal tree in order to reduce the count of
required relays. In order to find a topology which reduces the node count, DORMS
employs k-LCA [117], which is the best known approximation algorithm for find-
ing a minimum Steiner tree. The identified Steiner points are populated and the
other initially-employed relays return to their respective segments to resume their
pre-failure duties.

On the other hand, the main idea of the approach of autonomous repair (AuR)
of damaged WSN topologies is to regroup the healthy nodes by moving the disjoint
towards one another and towards the center of the deployment area [107]. The design
principle of AuR is based on modeling connectivity between neighboring nodes as a
modified electrostatic interaction based on Coulomb’s law between charges. In AuR,
the recovery is localized with nodes only interacting with their immediate neighbors.

298 M. Younis et al.

Fig. 12 AuR employs self-spreading and motion towards the center if the deployment to reconnect
the disjoint segments of the network: a the damaged topology, b AuR in action

The neighbors of the failed nodes are to lead the recovery process by spreading
out towards the lost nodes, causing the intra-segment topology to be stretched. If
connectivity is not restored, the segment is then moved as a block towards the center
of the deployment area. Moving all segments towards the center will increase the
node density in the vicinity of the center point and ensure that the connectivity gets
reestablished. Figure 12 illustrates the idea.

Another distributed approach to handle multiple failures is presented in [114].
This approach utilizes former route information in order to estimate the location of
the damaged nodes. Before the recovery is initiated, a distributed partition detection
algorithm is run and the nodes which cannot transmit their data are identified. Once
the partitioning is detected, a leader node is elected among those nodes to start moving
on the former paths until a live node or the sink is reached.

6.3 Recovery Through Deployment of Relays

In setups in which the nodes are not mobile or the number of healthy nodes is not
sufficient to re-establish connectivity while meeting the application requirements,
the deployment of additional nodes is inevitable. The deployed nodes would act as
relays between the segments. The connectivity restoration problem then becomes
determining the fewest number of relays and their locations so that data routes are
formed between every pair of segments. Thus, the recovery problem is mapped to
finding the Steiner Minimum Tree with Minimum number of Steiner Points (SMT-
MSP) [79], which was shown to be an NP-Hard problem by Lin and Xue [118]. The
SMT-MSP is a well-studied problem in the literature and a number of heuristics have
been proposed. A summary and comparison of some of the published techniques can
be found in [23]. To avoid repetition we summarize few of the recently-published
solutions in the context failure recovery.

9 Topology Management Techniques for Tolerating Node Failure 299

Fig. 13 Illustrating how
CORP operates in rounds to
form the topology shown on
the right. The area is modeled
as a grid and in each round
a BC is populated for each
segment. In the 5th round all
segments become connected

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

BC02

BC03

BC04BC00

BC12

BC11

BC10 BC13

BC23BC21

BC14

BC34 BC33

Seg2

Seg0

Seg1

Seg4

Seg3

r = 0

r = 1

r = 2

r = 3

r = 4

r = 5

BC44 BC43

Seg2

Seg0

Seg1

Seg4

Seg3

: Communication link

To counter the complexity of the recovery problem, Lee and Younis [112] modeled
the deployment area as a grid of equal-sized cells, and each network segment is
assumed to be located in the middle of the cell. The optimization problem is then
mapped to selecting the fewest number of cells for populating relays such that all
segments are connected. A Cell-based Optimized Relay node Placement (CORP)
algorithm is proposed. CORP is a polynomial-time algorithm that pursues greedy
heuristics. It defines the best neighboring cell (BC) of a segment Segi as the one that
lies on the shortest paths connecting Segi to the other segments. CORP operates in
rounds. In each round, the best cells are selected and populated with relays based
on where the most recently populated nodes are located. The overall placement
process converges by populating relays inwards until all relays become reachable to
one another. After all segments are connected, the algorithm prunes redundant relay
nodes. Figure 13 illustrates the operation of CORP. A distributed implementation of
CORP has also been proposed.

Another recent approach is FeSTA [108], which denotes Federating Network
Segments via Triangular Steiner Tree Approximation. FeSTA deploys relay nodes
and forms connected components of segments by finding local sub-optimal solutions
for groups of three segments. A segment is represented by a terminal and all possible 3
distinct subsets of segments are listed. For every triangle, i.e., subset of 3 terminals,
FeSTA decides either to form a new connected component or to incorporate the
terminals of that triangle to an existing connected component based on the required
number of relay nodes. Forming a new connected component, in essence, is equivalent
to finding Steiner minimal tree of the subset of 3 terminals. The terminals (segments)

300 M. Younis et al.

join an existing connected component, if the cost for connecting these terminals
individually is less than forming a distinct component. After all segments are covered,
i.e., become part of a connected component, the scale of the problem is reduced to
linking the individual connected components by steinerizing an edge between two
nodes in distinct components.

Moreover, a two-step heuristic for forming a Connected Inter-Segment Topology
(CIST) has been proposed in [109] in order to establish inter-segment connectivity
by relay node placement. CIST also strives to minimize the required number of
relays. Unlike other schemes, each segment is not represented by a single terminal,
instead, all nodes located on the boundary of the individual segments are considered.
CIST leverages the ideas promoted by FeSTA. First, CIST determines the minimal
spanning tree (mst) edges between segments and estimates the corresponding number
of relays required to establish connectivity on these edges. CIST then considers all
combinations of three segments that include two segments with an mst edge. For each
of these combinations, CIST determines the fewest relays needed to form SMT-MSP
for a triangle whose vertices are located in distinct segments, and reports the reduction
in the relay count relative to the mst-edge-based connection of the corresponding three
segments. In the next step, CIST connects groups of three segments with positive
gain, i.e., reduction in relay count, by steinerizing the corresponding triangle. Finally,
the remaining segments are connected via steinerizing mst edges. Figure 14 illustrates
the idea.

6.3.1 Recovery with QoS Objectives

In some setups it is desirable to interconnect multiple network segments to serve
an emerging event. In addition, in some node failure scenarios the recovery process
needs to re-establish connected inter-segment topologies with desired features, e.g.,
high node degree. In other words, unlike the work discussed above, support for some
intra-network QoS requirements is desired. The employed relay nodes can be newly
introduced or simply relocated from other parts of the network. The latter scenario
will require some trade-off since some parts of the network may operate at some
degraded levels of performance. Multiple heuristic solutions have been developed to
tackle many variants of this problem.

The first approach, which is named Effective QoS-Aware Relay Node Placement
Algorithm (EQAR), opts to form a connected topology using the least number of
relays while meeting inter-segment capacity constraints [113]. The inter-segment
QoS requirements may be just a byproduct of the damage since the segments may
be of different sizes and in turn, the volume of the generated traffic may widely
vary. In addition, each segment may have its own QoS requirement depending on the
application and the number of video and imaging sensors that the segment has. The
deployment area is modeled as a grid with equal-sized cells. The problem becomes
identifying the cells that ought to be populated with relays so that the total number of
deployed relays is reduced and the QoS goals are met. EQAR introduces a cell-based
cost function based on the residual capacity of the relays which have been deployed

9 Topology Management Techniques for Tolerating Node Failure 301

S1

S2

S3

S4

S5

S1

S2

S3

S4

S5

(a) (b)

Fig. 14 An illustration of how CIST works. a The initial topologies of segments. Dashed lines
represent mst edges. b CIST first processes the triangular subset {S1, S3, S4}. The dark rectangles
represent relays. CIST then processes the triangular subset {S2, S3, S5}. Since the gain of the subset
is turned to be zero, the mst edges that connect these segments are steinerized

in the cell. The optimization problem is then mapped to finding the cell-based least
cost paths that collectively meet the QoS requirements. In other words, the objective
of the optimization is to maximize the utilization of the residual relaying capacity.
Increasing the utilization of relays also increases the connectivity and allows the
resultant inter-segment topology to be more resilient to local damage.

An extended version of the CORP approach [112] discussed above is developed
to support inter-segment capacity requirements. The new approach, which is called
QoS-Aware Relay Node Placement (QRP) [119], pursues greedy heuristics to pop-
ulate the least number of relays such that the disjoint segments are connected and
the QoS requirements between every pair of two segments are met. Again, QRP
models the area as a grid of equal-sized cells and defines the best neighboring cell
of a segment Segi as the one that requires the least relaying capacity to connect
Segi to the other segments with QoS values being met. Like CORP, QRP operates in
rounds. In each round, the best cells are selected and populated with relays based on
where the most recently populated relays are located. This process concludes when
all segments are connected using the newly deployed relays.

Meanwhile the Spider Web approach opts to re-establish connectivity, i.e.,
1-vertex connectivity, using the least number of relays while achieving high degree
of connectivity in the formed topology [110]. Published schemes often form an mst
among the isolated segments. An mst-based topology usually makes some nodes a
hot spot in terms of the traffic load and limits the achievable network throughput, and
may thus deem the inter-node collaboration insufficient for specific application tasks.
Unlike these schemes, this approach establishes a topology that resembles a spider
web, for which the segments are situated at the perimeter. Such a topology not only
exhibits stronger connectivity than an mst but also achieves better sensor coverage
and enables balanced distribution of traffic load among the employed relays. The
simulation results have shown that these distinct features are provided with a com-
parable relay count to that an mst-based solution would involve. To further increase

302 M. Younis et al.

the robustness of the formed topology, the approach is extended so that the final
topology is guaranteed to be 2-vertex connected. Figure 15 shows an example of the
formed topology.

The problem considered by Al-Turjman et al. [120] is a bit different. A certain
number of relays were assumed to be available. The goal is to re-establish connectivity
among the segments and to achieve the most connected inter-relay topology using
the allowed relay count. The area is modeled as a grid and relays are to be placed on
the intersection points. An mst is formed using the edges of the grid and assuming
all intersections have relays. Only the selected intersection points are populated
with relays. In the second phase the unused relays, out of the allowed relay count,
are populated so that the node degree of the inter-relay topology is maximized. To
achieve that, the connectivity is modeled using the Laplacian matrix of a graph [121].
The connectivity is then measured by computing the second smallest eigenvalue λ2,
where λ2 indicates the minimum number of links which if omitted the graph loses
its strong connectivity, i.e., becomes partitioned.

6.3.2 Employing Mobile Data Mules

The final strategy for connecting the segments of a partitioned network is through
the employment of mobile relays called mobile data mules (MDM) that tour the
area and carry data from one segment to another. Mobility has been exploited for
data delivery in sparse MANET, for data routing in delay tolerant networks, and for
data collection in dispersed sensor networks. In those types of networks, an MDM
plays one of three roles; a collector that tours the sensors and carries their data to
a remote entity, a base-station that consumes the data, or a relay that forwards data
from one node to another [23, 37, 43–46]. MDMs can be naturally available in the
environment and move randomly in an uncoordinated manner. Shah et al. [122] took
advantage of these MDMs to collect data from sensor nodes that happen to be on
the MDM travel path and to carry these data to a base-station. Although, the data
delivery is conducted in an opportunistic fashion, the authors argued that the high
availability of mobile nodes that can serve as MDMs makes the approach viable for
urban sparsely-populated WSNs. It is worth noting that MDMs can also be used for
tolerating coverage loss, especially when the number of failed nodes is relatively
small or when coverage of specific landmarks is of high importance. In that case, the
MDM can provide intermittent coverage by periodically visiting certain spots [105].

Energy conservation has been a popular objective for employing MDMs. For
example, in [123, 124], the authors have proposed energy efficient data collection
protocols in single-hop WSNs by employing MDMs moving on a fixed path. In
[125–127] the same problem has been tackled for multi-hop WSNs. In addition,
MDMs are used as data forwarders for densely-populated nodes in order to prolong
the lifetime of a network [43]. Meanwhile, Alsalih et al. [128] have proposed an
MDM placement approach to provide energy efficiency in highly energy constrained
sensor networks. Sensors are not assumed to spatially distant from each other so that
their transmission intersects. Using the intersection points, the authors formulate the

9 Topology Management Techniques for Tolerating Node Failure 303

Fig. 15 An illustrative exam-
ple of topology established by
employing spider-web relay
node deployment strategy

P1

P2

P3

P4

P5

P6

R1

R2

R3

R4

R5

R6
R7

R8

R9

R10

R11

Outer Partition representative
Inner Partition representative

Relay Node

P7

Center of Mass

problem as a Mixed Integer Linear Program (MILP) to find an optimal solution.
However, especially when the scope of the damage is so wide, the nodes that the
MDM is going to visit may be so far apart that their transmission ranges do not
intersect. Therefore, a MILP-based solution may not be feasible. On the other hand,
Ekici at al. [129] have presented an algorithm for defining a tour that strives to
minimize the data loss rates due to buffer overflow for a specific data generation
frequency.

MDMs have also been used to link disjoint batches of nodes [44–46] which may
be the result of a large-scale failure that damaged the WSN topology. The focus of
[44, 46] is on studying the delay effect of using mobile relays. Analytical models
were developed to form a stochastic distribution for data latency while the MDM
serves as a data relay, data collector, and data sink. On the other hand, “Message
Ferries” have been introduced in [45] to efficiently deliver data in sparse MANET
using deterministic movement of MDMs. However, the travel route for an MDM is
not derived to serve the network, instead the nodes adjust their wake-up and sleep
schedule to connect with MDM when it comes to the vicinity. Overall, an approach
that considers the availability of multiple MDMs and determines their optimal travel
route and schedule is yet to be developed.

A variant of the MDM-based connectivity solution is considered in [22], where
MDMs are placed to act as mobile access points in order to connect nodes in isolated
networks through airborne units or satellites. The deployed nodes usually do not have
expensive radios for long-haul communication and usually serve limited geographi-
cal areas. The limited communication range and the occasional failure of nodes may
result in partitioning the network, leaving some nodes unreachable to some others.
To overcome such structural weaknesses in the network, MDMs are employed to
interconnect isolated sub-networks through an airborne relay, such as an unattended
air vehicle (UAV) or satellite. As depicted in Fig. 16, which is redrawn from [22], a

304 M. Younis et al.

Fig. 16 MDMs are placed to
connect isolated sub-networks
through an airborne unit

Mobile access point

Airborne unit

Regular ground node

MDM acts as an access point for the nodes in its neighborhood. A similar idea was
proposed in [130].

7 Conclusion and Open Research Problems

This chapter has analyzed the impact of node failures on the operation of WSNs
and categorized popular network topology management techniques for tolerating
failures. The problem has been classified based on the scale and scope of the failure
and popular objectives for the recovery process are enumerated. Mitigation schemes
have been categorized into precautionary ones, that are performed before a failure
happens, and reactive ones where the network deals with a failure only when it
is detected. Sample recovery approaches for single and multi-node failures have
been presented and compared. The followings are some open research problems that
warrant additional investigation:

• As mentioned earlier, there is no work which can restore k-connectivity of a
k-connected WSN in a distributed and efficient manner. Restoring k-connectivity
through a generic algorithm that will work for any given k is certainly an interesting
research direction.

• In underwater wireless sensor networks (UWSNs), the nodes are prone to failures
more than terrestrial WSNs due to corrosion and fouling. Therefore, UWSN may
get partitioned and some of the nodes may not be able to communicate with one
another and with the surface station. Exploiting controlled mobility to restore the
connectivity in such 3-D networks is very challenging.

• Combining hybrid proactive and reactive strategies for failure recovery is an under-
researched area. For example, the network may start designating backups when
nodes start to fail at a noticeable rate so that the recovery can be expedited.

• The robustness of the failure detection and tolerance can be enhanced when cross-
layer techniques are leveraged. For example, distinguishing node and link failures
is often difficult and may trigger many false alarms. A combined link and net-
work layers methodology can significantly reduce the frequency of false positives.

9 Topology Management Techniques for Tolerating Node Failure 305

Exploiting cross-layer techniques for fault tolerance is not a sufficiently explored
area of research.

• While a number of published studies have employed MDMs for connecting disjoint
network segments, many research questions are left unanswered, in particular,
how to determine the optimal MDM count and how to coordinate their motion for
optimal performance.

• The handling of security concerns when dealing with node failures is a tough
and unexplored area of research. Security association, trust, and node vulnerabil-
ity can constrain node placement/repositioning and thus complicate the recovery
significantly.

• For most of the summarized approaches that pursue node repositioning, the
movement is assumed to be obstacle free and no error is assumed in determin-
ing locations to move. Evaluation studies for assessing the effect of navigation
and localization errors on the performance of recovery approaches are needed.

Acknowledgments This work was supported by the National Science Foundation (NSF) awards
CNS 1018171 and CNS 1018404.

References

1. I.F. Akyildiz et al., Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)
2. C.-Y. Chong, S.P. Kumar, Sensor networks: evolution, opportunities, and challenges. Proc.

IEEE 91(8), 1247–1256 (2003)
3. D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world with wireless sensor

networks, Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, vol. 4 (Salt Lake City, UT, 2001), pp. 2033–2036

4. D. Ganesan et al., Networking issues in wireless sensor networks (J. Parallel Distrib, Comput,
2003). (Special Issue on Frontiers in Distributed Sensor Networks, Elsevier Publishers)

5. D. Estrin, Next century challenges: scalable coordination in sensor networks, in Proceedings
of the 5th Annual International Conference on Mobile Computing and Networks (MobiCOM
1999) (Seattle, WA, August, 1999)

6. H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks (Wiley, New
York, 2005)

7. R. Min et al., Low power wireless sensor networks, in Proceedings of the International Con-
ference on VLSI Design (Bangalore, India, January, 2001)

8. K. Romer, F. Mattern, The design space of wireless sensor networks. IEEE Wirel. Commun.
11(6), 54–61 (2004)

9. S. Tilak et al., A taxonomy of wireless micro-sensor network models. SIGMOBILE Mobile
Comput. Commun. Rev. 6(2), 28–36 (2002)

10. A. Bar-Noy, I. Kessler, M. Sidi, Mobile users: to update or not to update? ACM/Baltzer J.
Wirel. Netw. 1, 175–195 (1995)

11. P.G. Escalle, V.C. Giner, J.M. Oltra, Reducing location update and paging costs in a PCS
network. IEEE Tran. Wirel. Commun. 1(1), 200–209 (2002)

12. L. Bao, J.J. Garcia-Luna-Aceves, Topology management in ad hoc networks, in Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2003) (Annapolis, MD, June, 2003)

13. A. Muqattash, M.M. Krunz, A distributed transmission power control protocol for mobile ad
hoc networks. IEEE Trans. Mobile Comput. 3(2), 113–128 (2004)

306 M. Younis et al.

14. C. Sengul, R. Kravets, TITAN: on-demand topology management in ad hoc networks. ACM
SIGMOBILE Mobile Comput. Commun. Rev. 9(1), 77–82 (2005)

15. J. Wu, F. Dai, Mobility-sensitive topology control in mobile ad hoc networks. IEEE Trans.
Parallel Distrib. Syst. 17(6), 522–535 (2006)

16. A. Amis, R. Prakash, T. Vuong, D.T. Huynh, MaxMin D-cluster formation in wireless ad hoc
networks, in Proceedings of the IEEE Conference on, Computer Communications (INFO-
COM’99), March 1999.

17. S. Banerjee, S. Khuller, A clustering scheme for hierarchical control in multi-hop wireless
networks, in Proceedings of IEEE Conference on Computer Communications (INFOCOM’01)
(Anchorage, Alaska, April, 2001)

18. C.R. Lin, M. Gerla, Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas
Commun. 15(7), 1265–1275 (1997)

19. K. Guan, J. Hsu, R. Ghanadan, J. Gu, P. Khuu, G. Sadosuk, M.J. Weber, Adaptive management
of scalable mobile ad-hoc networks with non-homogeneous topology, in Proceedings of the
IEEE Military Communications Conference (MILCOM 2007) (Orlando, FL, October, 2007)

20. M. Chatterjee, S.K. Das, D. Turgut, WCA: a weighted clustering algorithm for mobile ad
hoc networks. J. Cluster Comput. (Special Issue on Mobile Ad hoc Networks) 5(2), 193–204
(2002)

21. A.A. Abbasi, M. Younis, A survey on clustering algorithms for wireless sensor networks.
Comput. Commun. 30(14–15), 2826–2841 (2007)

22. C.-C. Shen, O. Koc, C. Jaikaeo, Z. Huang, Trajectory control of mobile access points in
MANET, in Proceedings of the 48th IEEE Global Telecommunications Conference (GLOBE-
COM ’05) (St. Louis, MO, November, 2005)

23. M. Younis, K. Akkaya, Strategies and techniques for node placement in wireless sensor
networks: a survey. J. Ad-Hoc Netw. 6(4), 621–655 (2008)

24. X. Han, X. Cao, E.L. Lloyd, C.-C. Shen, Fault-tolerant relay nodes placement in heteroge-
neous wireless sensor networks, in Proceedings of the 26th IEEE/ACM Joint Conference on
Computers and Communications (INFOCOM’07) (Anchorage, AK, May, 2007)

25. B. Deb, S. Bhatnagar, B. Nath, STREAM: sensor topology retrieval at multiple resolutions.
J. Telecommun. (Special Issue on Wireless Sensor Networks) 26(2–4), 285–320 (2004)

26. A. Cerpa, D. Estrin, ASCENT: adaptive self-configuring sensor networks topologies, in Pro-
ceedings of the 21st International Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM 2002) (June, New York, NY, 2002)

27. P.B. Godfrey, D. Ratajczak, Naps: scalable, robust topology management in wireless ad hoc
networks, in Proceedings of the IEEE 3rd International Symposium on Information Processing
in Sensor Networks (IPSN 2004) (CA, April, Berkeley, 2004)

28. C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, Optimizing sensor networks in the
energy-latency-density design space. IEEE Trans. Mobile Comput. 1(1), 70–80 (2002)

29. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc rout-
ing, in Proceedings of the 7th Annual International Conference on Mobile Computing and
Networking (MobiCom’01) (Rome, Italy, June, 2001)

30. Y. Lai, H. Chen, Energy-efficient fault-tolerant mechanism for clustered wireless sensor net-
works, in Proceedings of the 16th International Conference on Computer Communications
and Networks (ICCCN’07) (Honolulu, Hawaii, August, 2007)

31. G. Gupta, M. Younis, Fault-tolerant clustering of wireless sensor networks, in Proceedings
of the Wireless Communications and Networking Conference (WCNC 2003) (New Orleans,
LA, March, 2003)

32. T. Bagheri, DFMC: decentralized fault management mechanism for cluster based wireless
sensor networks, in Proceedings of the 2nd International Conference on Digital Information
and Communication Technology and its Applications (DICTAP) (Bangkok, Thailand, May,
2012)

33. L.H.A. Correiaa, D.F. Macedoa, A.L. dos Santos, A.A.F. Loureiroa, J.M.S. Nogueiraa, Trans-
mission power control techniques for wireless sensor networks. Comput. Netw. 51(17), 4765–
4779 (2007)

9 Topology Management Techniques for Tolerating Node Failure 307

34. S. Lin, J. Zhang, G. Zhou, L. Gu, J.A. Stankovic, T. He, ATPC: adaptive transmission power
control for wireless sensor networks, in Proceedings of the 4th ACM Conference on Embedded
Networked Sensor Systems (SenSys 2006), Boulder, CO., October 2006

35. J. Jeong, D. Culler, J.H. Oh, Empirical analysis of transmission power control algorithms for
wireless sensor networks, in Proceedings of the 4th International Conference on Networked
Sensing Systems (INSS ’07) (Braunschweig, Germany, June, 2007)

36. J. Luo, J.-P. Hubaux, Joint mobility and routing for lifetime elongation in wireless sensor
networks, in Proceedings of IEEE INFOCOM 2005 (Miami, FL, March, 2005)

37. I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, Sink mobility protocols for data collection in
wireless sensor networks, in Proceedings of the 4th ACM International Workshop on Mobility
Management and Wireless Access (MOBIWAC) (Terromolinos, Spain, October, 2006)

38. Z.M. Wang, S. Basagni, E. Melachrinoudis, C. Petrioli, Exploiting sink mobility for max-
imizing sensor networks lifetime, in Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05) (Hawaii, January, 2005)

39. W. Alsalih, S. Akl, H. Hassanein, Placement of multiple mobile base stations in wireless sensor
networks, in Proceedings of the IEEE Symposium on Signal Processing and Information
Technology (ISSPIT) (Cairo, Egypt, December, 2007)

40. W. Youssef, M. Younis, K. Akkaya, An intelligent safety-aware gateway relocation scheme
for wireless sensor networks, in Proceedings of the IEEE International Conference on Com-
munications (ICC 2006) (Istanbul, Turkey, June, 2006)

41. K. Akkaya, M. Younis, Sink repositioning for enhanced performance in wireless sensor net-
works. Comput. Netw. 49(4), 512–534 (2005)

42. W. Wang, V. Srinivasan, K.-C. Chua, Using mobile relays to prolong the lifetime of wireless
sensor networks, in Proceedings of the International Conference on Mobile Computing and
Networking (Cologne, Germany, 2005)

43. H. Jun et al., Trading latency for energy in densely deployed wireless ad hoc networks using
message ferrying. J. Ad Hoc Netw. 5(4), 444–461 (2007)

44. H. Almasaeid, A.E. Kamal, Modeling mobility-assisted data collection in wireless sensor net-
works, in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’08)
(New Orleans, LA, December, 2008)

45. W. Zhao, M. Ammar, E. Zegura, A message ferrying approach for data delivery in sparse
mobile ad hoc networks, in Proceedings of the 5th ACM international symposium on mobile
ad hoc networking and computing (MobiHoc’04) (Tokyo, Japan, May, 2004)

46. H. Almasaeid, A.E. Kamal, Data delivery in fragmented wireless sensor netoworks using
mobile agents, in Proceedings of the 10th ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM) (Chania, Greece, October,
2007)

47. P. Basu, J. Redi, Movement control algorithms for realization of fault-tolerant ad hoc robot
networks. IEEE Netw. 18(4), 36–44 (2004)

48. A. Abbasi, K. Akkaya, M. Younis, A distributed connectivity restoration algorithm in wireless
sensor and actor networks, in Proceeding of the 32nd IEEE Conference on Local Computer
Networks (LCN 2007) (Dublin, Ireland, October, 2007)

49. M. Younis, S. Lee, A.A. Abbasi, A localized algorithm for restoring inter-node connectivity
in networks of moveable sensors. IEEE Trans. Comput. 59(12), 1669–1682 (2010)

50. S. Das, Localized movement control for fault tolerance of mobile robot networks, in Proceed-
ings of the 1st IFIP International Conference on Wireless Sensor and Actor Networks (WSAN
2007) (Albacete, Spain, September, 2007)

51. K. Akkaya, A. Thimmapuram, F. Senel, S. Uludag, Distributed recovery of actor failures in
wireless sensor and actor networks, in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC’08) (Las Vegas, NV, March, 2008)

52. S. Milenko Jorgić, M. Hauspie, D. Simplot-Ryl, I. Stojmenovic, Localized algorithms for
detection of critical nodes and links for connectivity in ad hoc networks, in Proceedings of the
Third Annual IFIP Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net, Bodrum,
Turkey, June, 2004)

308 M. Younis et al.

53. X. Liu, L. Xiao, A. Kreling, Y. Liu, Optimizing overlay topology by reducing cut vertices,
in Proceedings of ACM Workshop on Network and OS Support for Digital Audio and Video
(Newport, RI, May, 2006)

54. S. Kumar, T.H. Lai, J. Balogh, On k-coverage in a mostly sleeping sensor network. Wireless
Netw. 14(3), 277–294 (2008)

55. H.M. Ammari, Stochastic k-coverage in wireless sensor networks, in Proceedings of the 4th
International Conference on Wireless Algorithms, Systems, and Applications (WASA ’09), ed.
by B. Liu, A. Bestavros, D.-Z. Du, J. Wang (Springer, Berlin, 2009), pp. 125–134

56. Y. Drougas, V. Kalogeraki, Distributed, reliable restoration techniques using wireless sensor
devices, in Proceedings of the 21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007) (Long Beach, CA, March, 2007)

57. N. Kumar, D. Gunopulos, V. Kalogeraki, Sensor network coverage restoration, in Proceedings
of the International conference on Distributed Computing in Sensor Systems (DCOSS 2005)
(Marina del Ray, CA, June, 2005)

58. R. Falcon, X. Li, A. Nayak, Carrier-based focused coverage formation in wireless sensor and
robot networks. IEEE Trans. Autom. Control 56(10), 2406–2417 (2011)

59. G. Fletcher, X. Li, A. Nayak, I. Stojmenovic, Randomized robot-assisted relocation of sensors
for coverage repair in wireless sensor networks, in Proceedings of the 72nd IEEE Vehicular
Technology Conference Fall (VTC 2010-Fall) (Ottawa, Canada, September, 2010)

60. C.-Y. Chang, S.-W. Chang, M.-H. Li, Y.-C. Chen, energy-efficient mechanisms for coverage
recovery in WSNs, in Proceedings of the International Wireless Communications and Mobile
Computing Conference (IWCMC 2008) (Crete Island, August, 2008)

61. Y. Mei, C. Xian, S. Das, Y.C. Hu, Y.-H. Lu, Sensor replacement using mobile robots. Comput.
Commun. 30(13), 2615–2626 (2007)

62. S. Ganeriwal, A. Kansal, M.B. Srivastava, Self-aware actuation for fault repair in sensor
networks, in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 2004) (New Orleans, LA, April, 2004)

63. J. Wu, Z. Jiang, A hierarchical structure based coverage repair in wireless sensor networks,
in Proceedings of the 19th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2008) (Cannes, France, September, 2008)

64. M. Asim, H. Mokhtar, M.Z. Khan, M. Merabti, A sensor relocation scheme for wireless
sensor networks, in Proceedings of the Workshop on Advanced Information Networking and
Applications (WAINA2011) (Singapore, March, 2011)

65. P.K. Sahoo, J.-Z. Tsai, H.-L. Ke, Vector method based coverage hole recovery in wireless
sensor networks, in Proceedings of the 2nd International Conference on Communication
Systems and Networks (COMSNETS 2010) (Bangalore, India, January, 2010)

66. G. Wang, G. Cao, T. La Porta, W. Zhang, Sensor relocation in mobile sensor networks, in Pro-
ceedings of the 24th Annual IEEE Conference on Computer Communications (INFOCOM’05)
(Miami, FL, March, 2005)

67. N. Heo, P.K. Varshney, Energy-efficient deployment of intelligent mobile sensor networks.
IEEE Trans. Syst. Man Cybern. A 35(1), 78–92 (2005)

68. D.T. Nguyen, N.P. Nguyen, M.T. Thai, A. Helal, An optimal algorithm for coverage hole
healing in hybrid sensor networks, in Proceedings of the 7th International Wireless Commu-
nications and Mobile Computing Conference (IWCMC 2011) (Istanbul, Turkey, July, 2011)

69. G. Wang, G. Cao, T. La Porta, Movement-assisted sensor deployment, in Proceedings of 23rd
International Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’04) (Hong Kong, March, 2004)

70. J. Wu, S. Yang, SMART: a scan-based movement assisted sensor deployment method in
wireless sensor networks, in Proceedings of 24th International Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM’05) (Miami, FL, March,
2005)

71. X. Li, N. Santoro, I. Stojmenovic, Mesh-based sensor relocation for coverage maintenance
in mobile sensor networks, Proceedings of the 4th International Conferene on Ubiquitous
Intelligence and Computing (UIC-07), Lecture Notes in Computer Science, vol. 4611 (Hong
Kong, July, 2007), pp. 696–708

9 Topology Management Techniques for Tolerating Node Failure 309

72. X. Li, N. Santoro, ZONER: a ZONE-based sensor relocation protocol for mobile sensor
networks, in Proceedings of the 31st IEEE Conference on Local Computer Networks (LCN
2006) (Tampa, FL, November, 2006)

73. I. Stojmenovic, Position based routing in ad hoc networks. IEEE Commun. Mag. 40(7), 128–
134 (2002)

74. S. Parikh, V. Vokkarane, L. Xing, D. Kasilingam, Node-replacement policies to maintain
threshold-coverage in wireless sensor networks, in Proceedings of 16th IEEE International
Conference on Computer Communications and Networks (ICCCN 2007) (Honolulu, HI,
August, 2007)

75. A. Sekhar, B.S. Manoj, C.S.R. Murthy, Dynamic coverage maintenance algorithms for sen-
sor networks with limited mobility, in Proceedings of the 3rd IEEE Annual Conference on
Pervasive Computing and Communications (PerCom 2005) (Koloa, Kauai, HI, March, 2005)

76. K.R. Kasinathan, M. Younis, Distributed approach for mitigating coverage loss in heteroge-
neous wireless sensor networks, in Proceedings of the 3rd IEEE International Workshop on
Management of Emerging Networks and Services (MENS 2011) (Houston, TX, December,
2011)

77. N. Li, J.C. Hou, FLSS: a fault-tolerant topology control algorithm for wireless networks, in
Proceedings of the 10th ACM Annual International Conference on Mobile Computing and
Networking (MobiCom 2004) (PA, September, Philadelphia, 2004)

78. X. Cheng, D.-z. Du, L. Wang, B. Xu, Relay sensor placement in wireless sensor networks.
Wirel. Netw. 14(3), 347–355 (2008).

79. E.L. Lloyd, G. Xue, Relay node placement in wireless sensor networks. IEEE Trans. Comput.
56(1), 134–138 (2007)

80. A. Efrat et al., Improved approximation algorithms for relay placement, in Proceedings of the
16th European Symposium on Algorithms (Karlsruhe, Germany, September, 2008)

81. S. Poduri, S. Pattem, B. Krishnamachari, G.S. Sukhatme, Sensor network configuration and
the curse of dimensionality, in Proceedings of the 3rd IEEE Workshop on Embedded Networked
Sensors (MA, May, Cambridge, 2006)

82. Y.T. Hou, Y. Shi, H.D. Sherali, On energy provisioning and relay node placement for wireless
sensor networks. IEEE Trans. Wireless Commun. 4(5), 2579–2590 (2005)

83. Z. Cheng, M. Perillo, W.B. Heinzelman, General network lifetime and cost models for eval-
uating sensor network deployment strategies. IEEE Trans. Mobile Comput. 7(4), 484–497
(2008)

84. J. Tang, B. Hao, A. Sen, Relay node placement in large scale wireless sensor networks.
Comput. Commun. (Special Issue on Wireless Sensor Networks) 29, 490–501 (2006)

85. B. Hao, H. Tang, G. Xue, Fault-tolerant relay node placement in wireless sensor networks: for-
mulation and approximation, in Proceedings of the Workshop on High Performance Switching
and Routing (Phoenix (AZ, April, 2004)

86. J. Pan, L. Cai, Y.T. Hou, Y. Shi, S.X. Shen, Optimal base-station locations in two-tiered
wireless sensor networks. IEEE Trans. Mobile Comput. 4(5), 458–473 (2005)

87. Q. Wang, K. Xu, G. Takahara, H. Hassanein, Locally optimal relay node placement in heteroge-
neous wireless sensor networks, in Proceedings of the 48th IEEE Global Telecommunications
Conference (GLOBECOM 2005) (St. Louis, Missouri, November, 2005)

88. F. Dai, J. Wu, On constructing k-connected k-dominating sets in wireless ad-hoc and sensor
networks. J. Parallel Distrib. Comput. 66(7), 947–958 (2006)

89. J.L. Bredin, E.D. Demaine, M. Hajiaghayi, D. Rus, Deploying sensor networks with guaran-
teed capacity and fault tolerance, in Proceedings of the 5th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 2005) (Urbana-Champaign, IL, May,
2005)

90. G. Kortsarz1, Z. Nutov, Approximating node connectivity problems via set covers. Algorith-
mica 37, 75–92 (2003).

91. J. Cheriyan, S. Vempala, A. Vetta, Approximation algorithms for minimum-cost k-vertex
connected subgraphs, in Proceedings of the 34th Annual ACM Symposium on the Theory
of Computing, pp. 306–312, Montreal, Quebec, Canada, May 2002 Kindly update Refs. [98,
116] with volume number, page range and year of publication, if applicable.

310 M. Younis et al.

92. A. Alfadhly, U. Baroudi, M. Younis, Optimal node repositioning for tolerating node failure in
wireless sensor actor network, in Proceedings of the 25th Biennial Symposium on Commu-
nications, Kingston, Canada, May 2010 KIndly update Ref. [98] with volume number, page
range and year of publication, if applicable.

93. A. Abbasi, M. Younis, K. Akkaya, Movement-assisted connectivity restoration in wireless
sensor and actor networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1366–1379 (2009) Kindly
update Refs. [98, 116] with volume number, page range and year of publication, if applicable.

94. F. Senel, K. Akkaya, M. Younis, An efficient mechanism for establishing connectivity in wire-
less sensor and actor networks, in Proceedings of the 50th IEEE Global Telecommunications
Conference (Globecom’07) (Washington, DC, November, 2007)

95. M. Imran, M. Younis, A.M. Said, H. Hasbullah, Volunteer-instigated connectivity restora-
tion algorithm for wireless sensor and actor networks, in Proceedings of the IEEE Inter-
national Conference on Wireless Communications, Networking and Information Security
(WCNIS2010) (Beijing, China, June, 2010)

96. A. Alfadhly, U. Baroudi, M. Younis, Least distance movement recovery approach for large
scale wireless sensor-actor networks, in Proceedings of the Workshop on Federated Wireless
Sensor Networks (FedSenS 2011) (Istanbul, Turkey, July, 2011)

97. A. Abbasi, M. Younis, U. Baroudi, Restoring connectivity in wireless sensor-actor networks
with minimal topology changes, in Proceedings of the IEEE International Conference on
Communications (ICC 2010) (Cape Town, South Africa, May, 2010)

98. A. Abbasi, M. Younis, U. Baroudi, A least-movement topology repair algorithm for partitioned
wireless sensor-actor networks. Int. J. Sensor Netw. Inderscience, Switzerland, 11(4), 250–
262 (2012)

99. M. Imran, M. Younis, A.M. Said, H. Hasbullah, Partitioning detection and connectivity
restoration algorithm for wireless sensor actor networks, in Proceedings of the IEEE/IFIP
International Conferences on Embedded and Ubiquitous Computing (EUC 2010) (Hong
Kong, China, December, 2010)

100. K. Akkaya et al., Distributed recovery from network partitioning in movable sensor/actor
networks via controlled mobility. IEEE Trans. Comput. 59(2), 258–271 (2010)

101. A. Abbasi, U. Baroudi, M. Younis, K. Akkaya, C2AM: an algorithm for application aware
movement-assisted recovery in wireless sensor and actor networks, in Proceedings of the 5th
International Wireless Communications and Mobile Computing Conference (IWCMC 2009)
(June, Leipzig, Germany, 2009)

102. M. Imran, M. Younis, A.M. Said, H. Hasbullah, Application-centric connectivity restoration
algorithm for wireless sensor actor networks, in Proceedings of the 6th International Con-
ferences on Grid and Ubiquitous Pervasive Computing (GPC 2011) (Oulu, Finland, May,
2011)

103. M. Younis, R. Waknis, Connectivity restoration in wireless sensor networks using Steiner
tree approximations, in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM’10) (Miami, FL, December, 2010)

104. S. Vaidya, M. Younis, Efficient failure recovery in wireless sensor networks through active
spare designation, in Proceedings of the 1st International Workshop on Interconnections of
Wireless Sensor Networks (IWSN’10) (Santa Barbara, CA, June, 2010)

105. N. Tamboli, M. Younis, Coverage-aware connectivity restoration in mobile sensor networks.
Elsevier J. Netw. Comput. Appl. 33, 363–374 (2010)

106. F. Dai, J. Wu, An extended localized algorithms for connected dominating set formation in
ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 1027–1040 (2004)

107. Y. Joshi, Autonomous Recovery from Multi-Node Failures in Wireless Sensor Networks (Uni-
versity of Maryland Baltimore Count, December, MS Thesis, Department of Computer Sci-
ence and Electrical Engineering , 2011)

108. F. Senel, M. Younis, Relay node placement in structurally damaged wireless sensor networks
via triangular Steiner tree approximation. Comput. Commun. 34(16), 1932–1941 (2011)

109. F. Senel, M. Younis, Optimized connectivity restoration in a partitioned wireless sensor
networks, in IEEE International Conference on Global Telecommunications Conference
(GLOBECOM 2011) (Houston, Texas, December, 2011). (Submitted)

9 Topology Management Techniques for Tolerating Node Failure 311

110. F. Senel, M. Younis, K. Akkaya, Bio-inspired relay node placement heuristics for repairing
damaged wireless sensor networks. IEEE Trans. Veh. Technol. 60(4), 1835–1848 (2011)

111. S. Lee, M. Younis, Recovery from multiple simultaneous failures in wireless sensor networks
using minimum Steiner tree. J. Parallel Distrib. Syst. 70, 525–536 (2010)

112. S. Lee, M. Younis, Optimized relay placement to federate segments in wireless sensor net-
works. IEEE J. Sel. Area Commun. (Special Issue on Mission Critical Networking) 28(5),
742–752 (2010)

113. S. Lee, M. Younis, EQAR: effective Qos-aware relay node placement algorithm for connecting
disjoint wireless sensor sub-networks. IEEE Trans. Comput. 60(12), 1772–1778 (2011)

114. S. Vemulapalli, K. Akkaya, Mobility-based self route recovery from multiple node failures
in mobile sensor networks, in Proceedings of 10th IEEE International Workshop on Wireless
Local Networks (WLN 2010), Denver, CO., October 2010.

115. M. Sir, I. Senturk, E. Sisikoglu, K. Akkaya, An optimization-based approach for connecting
partitioned mobile sensor/actuator networks, in Proceedings of 3rd International Workshop
on Wireless Sensor, Actuator and Robot Networks (WiSARN) (Shanghai, China, April, 2011)

116. M. Imran, M. Younis, A.M. Said, H. Hasbullah, Localized motion-based connectivity restora-
tion algorithms for wireless sensor actor networks. J. Netw. Comput. Appl. Elsevier Science,
The Netherlands, 35(2), 844–856 (2012)

117. G. Robins, A. Zelikovsky, Tighter bounds for graph Steiner tree approximation. SIAM J. Disc.
Math. 19(1), 122–134 (2005)

118. G. Lin, G. Xue, Steiner tree problem with minimum number of Steiner points and bounded
edge-length. Inf. Process. Lett. 69, 53–57 (1999)

119. S. Lee, M. Younis, QoS-aware relay node placement for connecting disjoint segments in wire-
less sensor networks, in Proceedings of the First International Workshop on Interconnections
of Wireless Sensor Networks (IWSN’10) (Santa Barbara, CA, June, 2010)

120. F. Al-Turjman, H. Hassanein, M. Ibnkahla, Optimized relay placement to federate wireless
sensor networks in environmental applications, in Proceedings of the IEEE International
Workshop on Federated Sensor Systems (FedSenS11) (Istanbul, Turkey, July, 2011)

121. A. Ghosh, S. Boyd, Growing well-connected graphs, in Proceedings of the 45th IEEE Con-
ference on Decision and Control (CDC) (San Diego, CA, December, 2006)

122. R.C. Shah, S. Roy, S. Jain, W. Brunette, Data MULEs: modeling and analysis of a three-tier
architecture for sparse sensor networks. Elsevier Ad Hoc Netw. J. 1(2–3), 215–233 (2003)

123. A. Chakrabarti, A. Sabharwal, B. Aazhang, Communication power optimization in a sensor
network with a path-constrained mobile observer. ACM Trans. Sensor Netw. 2(3), 297–324
(2006)

124. L. Song, D. Hatzinakos, Architecture of wireless sensor networks with mobile sinks: sparsely
deployed sensors. IEEE Trans. Veh. Technol. 56(4), 1826–1836 (2007)

125. A. Somasundara, A. Kansal, D. Jea, D. Estrin, M. Srivastava, Controllably mobile infrastruc-
ture for low energy embedded networks. IEEE Trans. Mobile Comput. 5(8), 958–973 (2006)

126. S. Gao, H. Zhang, S.K. Das, Efficient data collection in wireless sensor networks with path-
constrained mobile sinks. IEEE Trans. Mobile Comput. 10(5), 592–608 (2011)

127. J. Li, S.M. Shatz, A.D. Kshemkalyani, Mobile sampling of sensor field data using controlled
broadcast. IEEE Trans. Mobile Comput. 10(6), 881–896 (2011)

128. W. Alsalih, H.S. Hassanein, S.G. Akl, Placement of multiple mobile data collectors in wireless
sensor networks. J. Ad Hoc Netw. 8(4), 378–390 (2010)

129. E. Ekici, Y. Gu, D. Bozdag, Mobility-based communication in wireless sensor networks. IEEE
Commun. 44(7), 56–62 (2006)

130. M. Ahmed et al., Positioning range extension gateways in mobile ad hoc wireless networks
to improve connectivity and throughput, in Proceedings of IEEE Military Communications
Conference (MILCOM‘01) (Washington, DC, October, 2001)

Chapter 10
Mobility Management with Integrated
Coverage and Connectivity

Yi Zou and Krishnendu Chakrabarty

Abstract Mobility management is a major challenge in mobile ad hoc networks
(MANETs), due in part to the dynamically changing network topologies. For mobile
wireless sensor networks (WSNs) that are deployed for surveillance applications, it
is important to use a mobility management scheme that can empower nodes to make
better decisions regarding their positions such that strategic tasks such as target
tracking can benefit from node movement. In this chapter, we describe a purpose-
ful and distributed mobility management scheme for mobile sensor networks. The
proposed scheme considers node movement decisions as part of a distributed opti-
mization problem, which integrates mobility-enhanced improvement in the quality
of target tracking data with the associated negative consequences of increased energy
consumption due to locomotion, potential loss of network connectivity, and loss of
sensing coverage.

1 Introduction

The mobile wireless sensor network is a special type of wireless sensor networks
where some or all of the nodes can move. Nodes may perform a one time move,
such as in [53] to help deployment, or can move constantly, such as in scenarios dis-
cussed in [5]. In some cases, only a portion of the nodes can move [39], where in other
cases, all nodes can move freely [43, 55]. With the advancement of new technologies
bringing more energy efficient hardware with more powerful sensing, communica-
tion, and computation capabilities than ever before, mobile wireless sensor networks

Y. Zou
Intel Corporation, Portland, OR 97229, USA
e-mail: yi.zou@intel.com

K. Chakrabarty (B)

Duke University, Durham, NC 27708, USA
e-mail: krish@ee.duke.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 313
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_10,
© Springer-Verlag Berlin Heidelberg 2014

314 Y. Zou and K. Chakrabarty

are pushed to a much wider range of applications for target monitoring, detecting, or
tracking. However, since locomotion generally consumes more energy than sensing
or communication, mobility in wireless network, in a way, is like a double-edged
sword: when the holder is skillful enough to use it properly, it helps defeat more
enemies; otherwise, it may actually hurt him- or herself. It is therefore important to
understand the implications on wireless sensor networks when mobility is introduced.

The mobile wireless sensor network is a vast research topic; it is virtually impos-
sible to cover all topics in a single chapter. While it is by no no means the goal to give
a complete collection of all existing works in this area, this chapter is designed to
build a foundation for readers to understand most important issues in mobility man-
agement for wireless sensor networks. It is to the authors’ best hope that, after finish
reading this chapter, readers would feel comfortable and encouraged to go beyond
texts presented here to investigate further topics related to mobility management in
wireless sensor networks.

1.1 Mobility in Sensor Networks

Mobile ad hoc networks have received considerable attention in the literature [11].
Most existing methods for mobility management focus on communication issues
arising from dynamically changing topologies due to node mobility [11, 19, 22],
especially in personal communication service (PCS) such as cellular phone networks
[36]. Mobility management has long been recognized as a major challenge in mobile
ad hoc networks (MANETs) [5, 31]. As discussed in [5], a MANET generally has
the following characteristics: (1) new members can join and leave the network any
time; (2) no base station is available to provide connectivity to backbone hosts or to
other mobile hosts; (3) it is difficult to implement sophisticated scheme for handover
and location management; (4) each node acts as a router, forwarding packets from
others nodes; (5) communication connectivity is usually “weak” in the sense that
it is easily broken due to node movement. As pointed out in [17], wireless sensor
networks (WSNs) are auto-configurable networks of nodes like MANETs and are
connected via wireless links.

Regardless of whether sensor nodes being static or mobile, the fundamental pur-
pose of a wireless sensor network is to serve its designated application. Mobility
may simply be a requirement even though the node itself does not move, such is the
case in mobile cellular phones. Therefore, it is extremely important to understand the
application first before adopting any wireless sensor network algorithms. To the best
of our knowledge, one of the most popular and fundamental applications for wireless
sensor networks is to monitor, detect, or track an object of interest. An example of
such applications is described in the habitat monitoring project carried by the Uni-
versity of California, Berkeley [38]. In this chapter, target tracking is considered to
be the designated type of applications for wireless sensor networks. Particularly, this
chapter focuses on the case where every individual wireless sensor node deployed in

10 Mobility Management with Integrated Coverage and Connectivity 315

the field can move freely as long as it has enough supporting energy. The implications
from the mobility on the sensing, communication, and energy consumption are at
center of discussion in this chapter.

1.2 Challenges in Mobility Management

Every action in wireless sensor network has a consequence of energy consump-
tion. Locomotion consumes far more energy than sensing or communication or even
combined. Therefore, it is crucial to know whenever a node makes a movement, it
will help the application goal of target tracking that the wireless sensor network is
deployed for. Obviously, one would start asking questions, such as the ones listed
below:

1. How will an individual node move wisely?
2. What are the justifications for the node movement?
3. What is needed for an individual node to make the movement decision?
4. Can this be achieved in a distributed manner?

Mobility management in mobile wireless sensor networks is different from that in
mobile ad hoc networks because the movement of sensor nodes here is not random;
rather, the movement of sensor nodes is purposeful, e.g., to actively and better track
an intruder. In such scenarios, it is important to have an efficient mobility manage-
ment scheme to ensure that sensor node mobility is exploited in the best possible way,
e.g., to improve the quality of target tracking. At the same time, the mobility manage-
ment strategy should avoid inefficient usage of scarce resources, such as energy and
network bandwidth. Furthermore, the mobility management scheme should also take
into account the potential negative consequences of node movement, e.g., loss of area
coverage, loss of connectivity, and degradation of network performance. In addition,
node movement also involves locomotion energy and routing overhead, especially
the need to reestablish routes. Therefore, a practical mobility management scheme
should empower a node with the ability to determine whether it should move, and
where it should move, such that the movement can enhance tracking quality with-
out depleting scarce resources, or significantly compromising coverage and network
connectivity.

For wireless sensor networks with scarce energy resources, it is not always favor-
able for nodes to move during field operation because the energy required for locomo-
tion energy is often much higher than that for sensing and communication [29, 35].
However, as shown in [27, 42], when nodes can afford the energy cost associated
with mobility, it is important to have a network management scheme that can make
effective use of mobility to facilitate application objectives. For example, multiple
mobile robots can be deployed in a battlefield for target tracking without human
intervention [29]. These mobile robots can form an ad hoc sensor network for mon-
itoring the region of interest. To ensure better tracking quality for a moving target, it
is beneficial to dynamically move nodes to advantageous locations.

316 Y. Zou and K. Chakrabarty

1.3 Chapter Layout

The rest of the chapter is organized as follows. Section 2 presents background mate-
rial and existing work related to mobility management in wireless sensor networks.
For readers looking for more extensive reading, Sect. 2 may be used as a shortcut to
related topics. To prepare readers for a serious technical discussion and mathematical
analysis to follow, Sect. 3 reviews the Bayesian estimation theory for target track-
ing [3, 7, 51]. Applying concepts and techniques taken from Bayesian estimation
theory, Sect. 3 formulates the problem of mobility management in wireless sensor
networks as an optimization problem based on predicated sensor measurements. The
optimization criteria are further discussed in Sects. 4 and 5, where cost and negative
consequences due to node movement are discussed. These analysis form the mathe-
matical foundation for implementing the probabilistic mobility management scheme
in a fully distributed manner. Some simulation results are presented in Sect. 6 as an
illustration of metrics used in this study, where readers may use as a reference point
for deriving their own criteria. Section 7 concludes this chapter and presents future
research directions.

2 Literature Review

To prepare readers for technical technical discussions in later sections, Sect. 2 reviews
related research work in the context of mobility management in wireless sensor net-
works. Rather than covering everything in current literatures, Sect. 2 section focuses
on selected topics that authors think are potentially most relevant and useful to read-
ers, namely in target tracking, routing protocols, and mobility management. Never-
theless, readers are encouraged to read further in other topics that this chapter is not
able to cover due to limited space.

2.1 Target Tracking

One of the most popular and fundamental applications for wireless sensor networks
is to monitor, detect, or even track an object of interest. Research on centralized target
tracking has been carried on for many years, originating from early work on target
tracking by radar during World War II [14]. Common tracking techniques include
Kalman filtering, Bayesian estimation methods, and their variants [7, 14, 20]. The
unique constraints of wireless sensor networks such as limited energy due to battery-
based power supply, limited storage capacity for time-series data, scalability for
network management, and distributed sensing and data processing, pose a number
of new challenges for target tracking.

Recent research efforts on target tracking in wireless sensor networks [2] have
focused on collaborative sensing [14, 28, 51], energy-efficient routing and manage-
ment [8, 13, 21, 45, 48], and sensor node deployment [41, 42, 53]. Collaborative

10 Mobility Management with Integrated Coverage and Connectivity 317

sensing and signal processing provide raw sensory data from the low-level sensing
units on sensor nodes. In many cases, cheap sensors such as omnidirectional acoustic
sensors [14, 51] are used since alternatives such as CCD cameras generally require
more resources for power, memory, bandwidth and computation. Some earlier work
[4] considers binary sensing model to take advantage of sensor geometric properties
in target tracking. In many existing literatures, a wireless sensor network is viewed
as a grid-based topology. A recent study [52] proposes to improve the energy effi-
ciency based on distance distributions in grid-based wireless sensor networks. In Cao
et al. [12], the authors derive closed-form formulas for sensor detection probability
and delay to evaluate various sensing models from a probabilistic perspective. More
recent work [44] proposes a distributed event detection mechanism with minimal
energy cost. Sensor activities represented by these events are collaborated through
the proposed method, which is an appealing solution for applications like site moni-
toring. Although the target information from a single node is generally limited, more
useful information can be obtained through data exchange and aggregation between
multiple nodes, based upon which higher-level strategic decisions can be made [23,
34]. In Jiang et al. [25], the authors combine the energy efficiency with the design of
node sleep scheduling algorithm for target tracking. In this work, the tracking data
is fed to the sensor network to select nodes to wake up and join the target tracking
with more accurate sensing data.

2.2 Routing Protocols

Routing in ad hoc sensor networks has received a lot attention and is considered
a great challenge for ad hoc sensor networks [2]. Many efforts have been made to
achieve energy-efficient routing in data aggregation, especially for target tracking
applications. For a brief review, several typical examples are discussed in the fol-
lowing. The LEACH protocol [21] forms a clustered hierarchy in sensor networks,
where the cluster head will be responsible for transmitting sensor data for its cluster
members. The energy saving is achieved because the data is consolidated through
such clusterization. SPAN [13] is another energy-efficient routing protocol, where
sensor nodes are selected to operate on off-duty and on-duty cycles for sensor nodes.
By switching between off-duty and on-duty state, the energy level of all nodes are
averaged, resulting in an extended sensor network lifetime. In Xu et al. [48], the
authors introduced routing fidelity as measure to evaluate the routing cost in the
sense of energy consumption. This is used to adaptively tune the routing, resulting
in energy consumption reduction. This, however, may not perform well due to its
dependency on geographic information of the network. Another effort for energy-
efficient routing is the rumor routing protocol proposed in [8], where routing is based
on reaction on events in the network. This frees the routing protocol from depending
on any geographic information of sensor nodes when a coordinate system is not avail-
able. Backbone-based routing using connected-dominating-set (CDS) is proposed in
[45]. After the backbone is established, routing and querying can be achieved via the

318 Y. Zou and K. Chakrabarty

backbone nodes, leaving none-backbone nodes in a energy-saving state. The energy
conservation via node scheduling is also extended to more realistic scenarios of
wireless sensor network applications, where both network connectivity and sensing
coverage have to be satisfied. To achieve such goal, [46] investigates the geometrical
relationships between sensing and communication and proposes a Coverage Config-
uration Protocol (CCP) integrated with the SPAN protocol. Similarly, [54] combines
requirements for sensing coverage and communication connectivity into one set of
input parameters of an optimization problems and proposes a distributed solution
based on minimum dominating set heuristics.

2.3 Mobility Management

Relatively less attention has been devoted to the problem of mobility management
for mobile sensor networks. Obviously, the network topology changes when nodes
move, and this change in topology affects both sensing coverage and communication
connectivity [16, 46, 54].

For static sensor networks, [37] provides an elegant analysis of the interrelated
problems of sensing coverage and communication connectivity. In mobile sensor
networks, however, these issues are complicated due to the changing topology, typ-
ically resulting in a node being disconnected, the network becoming partitioned, or
loss of sensing coverage in some regions, making the mobility management a more
interesting and more challenging topic in wireless sensor networks [1, 16]. In addi-
tion, the mechanical energy consumption due to node mobility is generally higher
than the energy required for sensing, communication, and computation [29, 35].

In some earlier work, sensor motion is managed as an event-based mechanism
[10], since it is natural to move sensors close to locations where these events of interest
are happening, In Wang et al. [42], the authors used limited mobility to achieve a better
topology that considers both sensing and communication. The mobility investment
is traded-off with the improved topology, which subsequent operations can benefit
from. The “dynamic enclose cell” routing protocol is introduced in [50] to reduce
the overhead for routing due to increased complexity in mobile sensor networks.
However, this work is focused on the adaptation of static network routing protocols,
rather than protocol design from the perspective of a mobile sensor network. The idea
of “virtual coordinates” is proposed in [32], where virtual coordinates are based on
node connectivity; this forms an abstract layer that existing geometry-based routing
protocols can use. In Jea et al. [24], the authors explored the use of the mobile element,
i.e., data mule in the paper’s context, to perform data collection. The control mobility
is achieved by setting rules based on where the mobile element goes as well as how
long it is expected to take. Recently in [35], the authors have shown that purposeful
mobility can be used to achieve energy saving for routing in the sense of an amortized
cost measure. It is also shown in [27] that mobility is helpful for maintaining sensing
coverage for both static and mobile targets, particularly when the number of nodes
is not sufficient for covering the complete area. This idea is similar to repositioning

10 Mobility Management with Integrated Coverage and Connectivity 319

schemes for sensor node deployment as proposed in [42, 53]. Since mobile sensor
nodes are normally more expensive than static nodes, hybrid wireless sensor networks
also receive a good amount of attention. A good example is in [40], static sensors
broadcast events to mobile sensors who bid based on Voronoi weights to be able
to reply to the static nodes. Winning mobile nodes are then guided by the static
nodes to perform the active sensing. Alternatively, probabilistic graphical model
such as Bayesian network has also been proposed to provider a better inference of
mobility management in wireless sensor networks. As illustrated in a recent study
in [6]. However, the computation involved in this approach is quite significant and
the results from [6] are also limited to a centralized implementation. In another
recent study [30], the authors propose a distributed sensor fusion mechanism for
mobile wireless sensor networks. The mobility management scheme combines two
techniques, the weighted Voronoi diagrams-based broadcasting for node location
updating, and the Kalman filtering-based node location prediction. The proposed
scheme in [30] also integrates the mobility management with geographical routing
for efficient data forwarding to achieve lower latency as well less energy overhead.
A good summary of related mobility management algorithms in wireless sensor
networks can be found in [43] with evaluation on pros and cons in many published
mobility management algorithms. In [39, 47], authors looked into the assistance from
collaborative sensing of static sensors to help mobile sensors to move to preferred
locations. In a way, this approach balances the limited number of expensive mobile
nodes with a large number of cheap static nodes. The mobile node in this work, acts
as the collaborative sensing cluster head node from the perspective of the earlier
IDSQ method [51] for collaborative sensing. Static nodes within a mobile node’s
communication range are like “local” sensors for the mobile node. This allows the
distributed implementation of the proposed method.

Noticing that most existing work in this context is not considering a fully mobile
wireless sensor network where every individual node can move freely at any time,
authors in [55] proposed a generic distributed and probabilistic approach. In Zou and
Chakrabarty [55], authors assume that mobility is a given existing capability for each
node but each node makes its own local decision on where to move. Looking back at
[39, 47], one would notice that [55] shares a lot of design challenges. Both authors
believe the mobility of a node can be taken advantage of to better serve the appli-
cation while paying the penalty for spending energy on locomotion. Both authors
stress that sensing coverage, communication connectivity, and energy consumption
are equally as important as each other. Both authors take all these factors into con-
sideration in their design. Both authors attempt to solve the mobility management
issue from a probabilistic approach that is more realistically matched in real-life
scenarios. All existing work in this topic have shown that managed mobility leads to
improved network topologies, which can in turn facilitate subsequent data collection
and processing operations in sensor networks.

Without loss of generality, in the following sections, [55] is used as the basis
for technical discussion for the following reasons. This chapter is designed for fully
mobile wireless sensor network. This allows readers of this chapter to evaluate the
challenges in mobility management from a much wider perspective. For example,

320 Y. Zou and K. Chakrabarty

based on the knowledge from this chapter, readers can easily apply restrictions to
limit number of mobile nodes for their own applications, potentially reducing cost.
Secondly, this chapter aims at the mobility management for the specific objective,
i.e., target tracking, one of the most useful and popular applications for wireless
sensor networks. Furthermore, this chapter presents a probabilistic analysis that
evaluates the risks of losing connectivity and sensing coverage from the perspec-
tive of a mobile sensor network with an inherently dynamic topology. Eventually,
this chapter presents a distributed mobility management scheme that unifies tracking
quality, sensing coverage, network connectivity, and energy consumption. Read-
ers are expected to find such general mobility management easily applicable, with
modifications such as sensor characteristics or communication range or power con-
straints, to satisfy their own target tracking applications. For example, mobile robots
deployed in a battlefield environment, mobility is affordable from cost considera-
tions, but nodes should be carefully controlled to improve tracking quality.

3 Tracking Quality Improvement Due to Node Movement

To improve the quality of target tracking, a node can decide to move to another
location at the next time instant. These locations are referred to as candidate locations.
In the following discussion, First, Sect. 3 describes the tracking problem based on
standard target estimation theory [3, 7]. This is then followed by formulating the
problem of selecting the best candidate location for a node in a fully distributed
manner.

3.1 Preliminaries

The target state is denoted by xt ∈ R
dx , where t is a discrete time sequence. For

example, for target tracking in a 2D field, xt can be defined as a column vector
of [x; y; xa; ya], where x, y are the target speeds and xa, ya are the corresponding
accelerations in X and Y coordinates. The parameter xt is described by the system
model as:

xt = ft (xt−1, wt−1), (1)

where ft : Rdx ×R
dw ⊂ R

dx and wt−1 represents i.i.d. process noise. The parameters
dx and dw denote the dimensions of xt and wt , respectively. Note that xt is estimated
recursively from sensor measurements given by the observation model as:

zt = ht (xt , vt), (2)

where ht : R
dx × R

dv ⊂ R
dz and vt represents i.i.d. measurement noise. The

parameters dz and dv denote the dimensions of zt and vt , respectively. The statistics

10 Mobility Management with Integrated Coverage and Connectivity 321

for both wt and vt are assumed to be known. In Bayesian estimation theory, xt is
estimated recursively by incorporating the new measurements to modify the prior,
and thereby obtain the posterior [3, 7, 51]. Let us denote the estimated target state
at time t as x̂t . The Bayesian estimation is given by

p(x̂t |z1:t−1) =
∫

p(x̂t |x̂t−1)p(x̂t−1|z1:t−1)dx̂t−1, (3)

p(x̂t |z1:t) = p(zt |x̂t)p(x̂t |z1:t−1)

p(zt |z1:t−1)
, (4)

p(zt |z1:t−1) =
∫

p(zt |x̂t)p(x̂t |z1:t−1)dx̂t , (5)

where the likelihood is given by p(zt |x̂t). Equation (3) is the prediction step, Eq. (4)
updates the prior using the new measurement zt to obtain the posterior p(x̂t |z1:t),
and Eq. (5) is the normalizing factor. From these equations, readers can see that
sensor measurements must be forwarded to a processing center for data integration,
where the prior information is already available. In sensor networks, this can be
implemented either in a centralized manner by designating one of the sensor nodes
as the processing center [20, 23], or a cluster-based approach [51]. The first approach
normally uses a node with more powerful computation capabilities for centralized
processing; all other nodes forward their collected sensor data. The second approach
depends on a dynamic clustering algorithm to select one of the nodes as the cluster
head, i.e., the node that performs sensor fusion. When the cluster head is changed,
usually in accordance with the estimated target track, it needs to pass the prior
information to the next cluster head for continuous tracking [51].

The above scenario becomes more complicated when mobile sensor nodes need
to make decisions locally about their movements to better track the target. Below,
some challenges encountered are listed in the mobility management sensor nodes:

• Nodes must make decisions on where to move in a timely manner. Nodes may
not be able to afford to wait for the posterior from the fully integrated sensor
measurements on the processing center or the cluster head.

• In the prediction stage as shown in Eq. (3), p(x̂t−1|z1:t−1) is assumed to be known
to the processing center or the cluster head from previous estimation at t − 1. This
implies that if each mobile node needs to make a decision on its movement based
on the result from the complete sensor integration, this information must also be
available. However, because mobility management should be autonomous as well
as distributed, it is difficult to decide to which nodes this information should be
forwarded. Furthermore, continuously forwarding the prior based on all nodes’
measurements will cause considerable burden on the communication bandwidth,
and it will increase energy consumption.

• Node movements result in topology changes in the sensor network. This implies
that the set of neighbor nodes for each node also changes.

To ensure that a node is able to make a local decision using only current local
knowledge, it is assumed that every node has the capability to perform sensor

322 Y. Zou and K. Chakrabarty

integration locally. A node that has local sensor measurement exchanges sensor mea-
surements within its own one-hop neighborhood. It also performs estimation using
the Bayesian approach with possibly incomplete sensor measurements, i.e., zt does
not necessarily contain sensor measurements from all sensor nodes that have detected
the target at time sequence t , but only nodes within the one-hop neighborhood. Note
that sensor measurements can still be delivered to the designated processing server
node for an estimation based on current complete sensor measurements.

Figure 1 illustrates how the mobility management works to help improve target
tracking quality. Consider a mobile sensor node si , as shown in Fig. 1a. In order to
improve the quality of target tracking data, node si moves to a location that leads to
improved sensor measurement. In other words, si will expect a higher signal-to-noise
S/N ratio at its location at time instant t + 1, compared to its sensor measurement
at time instant t . Note that topology in a mobile sensor network is dynamic. Apart
from the extra energy a node spends in movement, a node also faces risks of losing
communication connectivity to its neighbors, as well as losing sensing coverage in
certain areas. For the node si in this example, these are shown by Fig. 1b and Fig. 1c
respectively.

The method described here is related to the Information Driven Sensor Query
(IDSQ) method described in [51]. IDSQ is used to select the best sensor measurement
from a set of fixed sensor nodes that have currently reported a target, i.e., sensor
nodes that have new sensor measurements. The selection is based on the estimated
information gain from the sensor measurement on the candidate sensor node, where
the information gain is evaluated using well-defined rules.

In mobility management, the movement decision for a node is based on whether
the new location will improve tracking quality. Since a node does not know a priori
the quality of sensor measurements it will get at the new location, first a predic-
tion can be made on all possible sensor measurements corresponding to all possible

Area uncovered by si when si moves to a new location

Mobile sensor node si at time t Mobile sensor node si at time t+1

One-hop neighbors of mobile
sensor node si at time t

Moving target at time t

Mobile node si movement decision at time t

(a) (b) (c)

Movement of si may cause
some area under coverage at t

becomes uncovered at t+1

Movement of si may break the
communication connectivity

with its neighbor nodes.

To improve tracking quality,
mobile node si chooses to
move to a location that is
expected to have a higher

signal-to-noise ratio.

Higher S/N at t+1

Lower S/N at t

Fig. 1 An illustration of the mobility management method

10 Mobility Management with Integrated Coverage and Connectivity 323

candidate locations that the node might choose to move to. These predicted sensor
measurements are then used as true measurements, as if they were from nodes cur-
rently located at these candidate locations. Thus, the problem of making decision
on where to move is viewed as the problem of selecting one of the predicted mea-
surement that is expected to best improve the quality of tracking data. In this sense,
this problem is similar to the sensor selection strategy in [51]. However, in [51],
the sensor measurements at time t are already available locally at those nodes to be
selected, whereas in our case, the focus is on predicted measurements corresponding
to candidate locations that a node has to decide to choose as its next location at time
t + 1. Moreover, [51] does not consider mobile sensor nodes.

3.2 Assumptions

To simplify the discussion, this chapter makes the following assumptions for the
sensor network:

1. It is assumed that both sensor nodes and the target are moving at constant speeds.
This is justified since Bayesian estimation is not limited by this assumption.

2. It is assumed that the sampling interval of all sensor nodes is small enough such
that there is no drastic change in sensor measurements of the target state.

3. All nodes have the same number of candidate locations where they can move.
This is justified for a gridded sensing region.

4. Node si considers movement and carries out the evaluation process only if it
detects a target.

5. A node uses the prior of its current location to predict the sensor measurements
at its candidate locations.

6. A node uses the current sensor measurements from its current one-hop neighbor
nodes.

7. When node si performs evaluation for movement decision at time instant t , it is
assumed that the neighbor nodes of si at time instant t + 1 are the same as at t .

8. When node si performs evaluation for movement decision at time instant t , it is
assumed that si has collected sensor measurements from its one-hop neighbors
that have also detected the target.

9. When node si performs evaluation for movement decision at time instant t , it
is assumed that si has complete knowledge about the candidate locations of its
neighboring nodes.

10. When node si performs evaluation for movement decision at time instant t , for
simplified discussion, this chapter only considers costs associated with locomo-
tion, loss of communication connectivity, and loss of sensing coverage.

Note that it is possible that in certain time instances, the neighbor nodes can
change. When this happens, errors are potentially introduced due to the fact that
measurements from neighbor nodes are not consistent. However, one can always
choose the value of Δt , i.e., the time difference two consecutive time instances,
to be arbitrarily small such that the error introduced is negligible. Of course, in

324 Y. Zou and K. Chakrabarty

reality, making the Δt small imposes a much higher hardware requirement on the
node’s capabilities in sensing, computation, memory, and storage. Therefore, it is
recommended to tune Δt to be just small enough to avoid the aforementioned side
effect while still using most the affordable hardware.

Consider a node si located at lit at time t . The prior from previous estimation,
denoted by p(x̂t−1|z1:t−1), is different for each sensor node since a node can start
this process at any time when necessary and the sensor measurements are only from
its one-hop neighborhood. This neighborhood might constantly change due to node
movement. Let N i

t be a function that maps from the discrete time t to a set of nodes
that are one-hop neighbors of node si at t . Let us denote the sensor measurements
available for si at time t as zi

t , i.e., zi
t contains the measurement zi

t from si and z j
t from

all nodes in N i
t . Let us use x̂i

t to denote the target estimate on node si at time t that
is derived using zi

t . Figure 2 illustrates how a node uses the predicted measurement
to decide its next movement.

To simplify the discussion, it is assumed that there are only a limited number of
locations that a node can move to from its current position; these are referred to as
candidate locations. Candidate locations can be determined from the speed of the
node and the sampling frequency of the sensor on the node. At time t , let L i

t+1
be the set of candidate locations for node si at time t + 1, i.e., lit+1 ∈ L i

t+1. Our
goal is then to find the location lit+1 such that the tracking quality is best among all
candidate locations. Note that lit ∈ L i

t+1 has already included the case that a node
may decide to stay in its current location. For a given grid point in the surveillance
area,L i

t+1 can include locations that are just one step away from the current location,
corresponding to due-east, north-east, due-north, north-west, due-west, south-west,
due-south, south-east, and the current location, respectively. This is shown in Fig. 2
as the dotted squares where node si can move to.

Let us further denote the predicted sensor measurement for si at lit+1 as ẑi
t+1(l

i
t+1).

Let us use ẑi
t+1(l

i
t+1) to denote the vector containing all predicted sensor

Mobile sensor node i at time t

Mobile sensor node i at candidate location of time t+1

Target from local estimate of node i

Predicted measurement of
node i for t+1 from a
candidate location of time t

Fig. 2 Node si predicts its measurement at a candidate location based on its current target estimate

10 Mobility Management with Integrated Coverage and Connectivity 325

measurements within a one-hop neighborhood of si when si is located at lit+1 at
time t + 1. For example, assume that sensor nodes are equipped with acoustic sen-
sors. The sensor measurement at time t on a node si located at lit for a target located
xt is given by [14]

zi
t = a

◦ xt − lit ◦ α
2

+ vi
t , (6)

where a and α represent physical characteristics of the acoustic sensor, ◦xt − lit◦
denotes the shortest distance between the target and the sensor at time t , and vi

t is a
measurement noise, assumed to be Gaussian. Based on Eq. (6), the predicted sensor
measurement for node si at lit+1 can be obtained by

ẑi
t+1(l

i
t+1) = a

◦ x̂i
t − lit+1 ◦ α

2
+ vi

t+1, (7)

where x̂i
t represents the target estimate by node si using local knowledge, i.e., sensor

measurements within the one-hop neighborhood of si . Let us use x̂i
t instead of x̂t due

to the fact that si may not be able carry out target estimation to obtain x̂t based on all
sensor measurements at time t ; some nodes with the target data may not be within
the one-hop neighborhood of si . Moreover, it is impossible to use the target estimate
at time t +1, i.e., x̂i

t+1, since sensor measurements at t +1 are not yet available. This
implies that the error in the predicted sensor measurement is expected to be large if
there is a drastic change in the target state, e.g., a sudden acceleration of the target.

Note that ẑi
t+1(l

i
t+1) contains predicted sensor measurements from the neighbor

nodes of si at t +1. However, for each candidate location lit+1 ∈ L i
t+1, each neighbor

node s j ∈ N i
t also has |L j

t+1| candidate locations to choose from, which means

that si has to calculate |L j
t+1| predicted sensor measurements for each neighbor

node s j ∈ N
j

t . This in turn implies that a complete computation on node si for all

possible predicted sensor measurements requires a total of |L i
t+1|

∏
s j ∈N i

t
|L j

t+1|
calculations. In this way, si is assumed to have complete knowledge of L j

t+1 for each
s j ∈ N i

t .
Furthermore, since neighbor nodes of si may also move, N i

t and N i
t+1 are not

necessarily the same. Since N i
t+1 is not yet available for si at t , It is assumed that

N i
t+1 is the same as N i

t ; the latter can be obtained by exchanging neighbor sen-
sor measurements at current time instant t . The discussion is further simplified by
assuming that si uses current sensor measurements from its current neighbor nodes
in N i

t , i.e., for any two li1
t+1, li2

t+1 ∈ L i
t+1, ẑi

t+1(l
i1
t+1) and ẑi

t+1(l
i2
t+1) only differ

from each other in ẑi
t+1(l

i1
t+1) and ẑi

t+1(l
i2
t+1), and all other elements are the same

as z j
t , ∀s j ∈ N i

t . These assumptions are valid because the interval between two
consecutive discrete time instants is small; since the maximum displacement from
node movement is also correspondingly small, it is expected that there is no drastic
change in sensor measurements.

326 Y. Zou and K. Chakrabarty

Table 1 List of notations used throughout the chapter

Notation Description

n Total number of sensor nodes
si Sensor node i
rc, rs Sensor node communication and sensing radius
X , Y The x- and y-dimension of the 2D sensing grid
gk , G Grid point with index k and the set of all grid points
xt , dx Target state vector at time t and its dimension
x̂t , dx Estimated target state vector at time t and its dimension
zt , dz Sensor measurement vector at time t and its dimension
wt , dw Process noise vector at time t and its dimension
vt , dv Measurement noise vector at time t and its dimension
zi

t , zi
t Measurement from si and measurements available for si at t

m Total number of candidate locations
lit Candidate location vector for si at t
L i

t The set of all candidate location vectors for si at t
N i

t One-hop neighbors of node si at t

di j
t+1 The distance between node si and s j

ẑi
t+1(l

i
t+1) The predicted measurement for si at lit+1

ẑi
t+1(l

i
t+1) All predicted measurements for si at lit+1

ψ Information utility function
δrc Communication radius threshold
ci

k Sensing coverage probability at gk from si

ci
k(l

i
t) Coverage probability of gk from si at l j

t

Sk The set of nodes that can detect gk

ck The collective coverage probability of gk from Sk

S k
t The set of nodes that detect grid point gk at time t

ck
t The collective coverage probability of gk from S k

t
pth The required sensing coverage threshold
Ai The sensing area of node si , Ai ∈ G

A (lit) The sensing area of node si located at lit at t

Table 1 presents a list of notation used throughout the chapter.

3.3 Probability of Node Movement to a New Location

Figure 3 illustrates how the predicted sensor measurement at candidate locations is
used to obtain the predicted target estimate on the basis of Bayesian estimation,
as described in Sect. 3.1. Next, the Bayesian estimation equations introduced ear-
lier can be rewritten to calculate the target estimate based on the predicted sensor
measurements. The node can then make a decision on where to move, i.e., select the
best lit+1 ∈ L i

t+1, by evaluating the estimated improvement in the target estimate for
the next time instant t + 1. This is shown as follows.

10 Mobility Management with Integrated Coverage and Connectivity 327

Fig. 3 An illustration of the
use of the predicted measure-
ment for updating the prior in
Bayesian estimation

Node i uses existing one-
hop neighbor measure-

ments of time t

Predicted measurement of
node i for t+1 from a

candidate location of time t

Use Bayesian prior updating equation to
obtain the predicted target estimate of t+1:

Predicted measurement vector of node i for
t+1 from a candidate location:

p(x̂i
t+1|zi

1:t) =
∫

p(x̂i
t+1|x̂i

t)p(x̂i
t |zi

1:t)dx̂i
t , (8)

p(x̂i
t+1|zi

1:t , ẑi
t+1(l

i
t+1)) = p(ẑi

t+1(l
i
t+1)|x̂i

t+1)p(x̂i
t+1|zi

1:t)
p(ẑi

t+1(l
i
t+1)|zi

1:t)
, (9)

p(ẑi
t+1(l

i
t+1)|zi

1:t) =
∫

p(ẑi
t+1(l

i
t+1)|x̂i

t+1)p(x̂i
t+1|zi

1:t)dx̂i
t+1, (10)

where ẑi
t+1 is the vector containing predicted sensor measurements at time t + 1

from node si , zi
1:t is the vector containing previous measurements of node si and its

one-hop neighbors, x̂i
t is the previous target estimate for node si , x̂i

t+1 is the target
estimate based on the predicted measurements ẑi

t+1 at time t + 1 from node si ,
and p(ẑi

t+1(l
i
t+1)|x̂i

t+1) is the likelihood based on the predicted measurements. Note
that the above equations represent the Bayesian estimation method based on both
predicted sensor measurements ẑi

t+1 from node si and possibly incomplete previous
target estimation x̂i

t from node si . However, if there exists a central processing node, it
can still eventually send the posterior p(x̂t |z1:t) to node si to replace x̂i

t for improving
the local target estimate. In this way, even though si is able to make its movement
decision based on local knowledge, future decisions can be improved when the target
estimate based on complete sensor measurements is available to it.

After the target estimate based on predicted sensor measurements is obtained,
i.e., p(x̂i

t+1|zi
1:t , ẑi

t+1(l
i
t+1)), similar rules as proposed in [51] are used to select

the best predicted sensor measurements ẑi
t+1(l

i
t+1), which subsequently gives us the

best predicted sensor measurement ẑi
t+1(l

i
t+1) from node si . Thus the corresponding

candidate location lit+1 that is expected to best improve the tracking quality can be
found from L i

t+1. This chapter uses the definition of the information utility function
ψ described in [51]. The parameter ψ is defined as: ψ : P(Rdl) ⊂ R, where dl is
the dimension of node location lit , and P(Rdl) is a class of probability distributions.

328 Y. Zou and K. Chakrabarty

In our case, P(Rdl) corresponds to all posteriors calculated from predicted sensor
measurements from all candidate nodes locations at t + 1 in L i

t+1. Since the output
of the utility function ψ is a real number, ψ maps the posterior based on the predicted
measurement from the candidate location to a real number representing the improve-
ment in tracking quality from this candidate location. In standard estimation theory,
the trace or determinant of the estimation error covariance matrix is commonly used
as a measure of the tracking quality [7, 51]. Let êi

t+1(l
i
t+1) be the target estimate error

from local estimation on si based on predicted measurements, and Ri
t+1(l

i
t+1) be the

corresponding covariance matrix of êi
t+1(l

i
t+1), i.e., Ri

t+1(l
i
t+1) = E{(êi

t+1)·(êi
t+1)

∗ },
where ∗ denotes the transpose of a matrix. Suppose the posterior is Gaussian. One
way of defining the utility function is given by:

ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1)) → −trace(Ri

t+1(l
i
t+1)), (11)

where trace is the trace of a matrix. Some alternative approaches can also be used
to evaluate the improvement in tracking quality [7, 51]. In general, the selection of
a candidate location should maximize the utility function, i.e.,

l̄it+1 = max
lit+1∈L i

t+1

ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1)). (12)

Since ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1)) is associated with the posterior based on the predicted

sensor measurements on candidate locations, Eq. (12) is essentiall a random variable.
Thus, the probability of a node making a decision to move to lit+1 at t +1 is expressed
as follows.

p(lit+1) → Pr(si at lit+1 at t + 1)

= ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1))∑

lit+1∈L i
t+1

ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1))

, (13)

where p(lit+1) represents the probability of node si being at lit+1 at t+1 to improve the
quality of target tracking data. Note that in Eq. (13), it is assumed that by definition,
ψ(p(x̂i

t+1|ẑi
t+1(l

i
t+1)) yields a non negative real value. As shown in the next section,

p(lit+1) is used to evaluate the integrated cost when other factors are also considered
in the discussed mobility management scheme. From Eq. (13), the computational
complexity for obtaining p(lit+1) depends on the complexity of the estimation algo-
rithm as well as the size of set of candidate locations L i

t+1.

10 Mobility Management with Integrated Coverage and Connectivity 329

4 Estimation of Negative Consequences

As discussed in Sect. 1, it is required to consider the negative consequences of node
movement, e.g., additional energy consumption, connectivity loss, and coverage loss.
Additional risks include the need for reestablishing the route, the potentially higher
rate of node failures due to node movement. This chapter limits the discussion to
the three most important factors, namely energy, connectivity, and coverage issues.
Impact from other factors may be considered as a topic for future investigation. In
this section, probabilities associated with above-mentioned negative consequences,
when node chooses to move to a candidate location, are derived. These probabilities
are then used in an integrated cost evaluation described in the next section.

4.1 Energy Consumption

Obviously, nodes have to spend additional energy for movement. Even though sensor
nodes on mobile platforms can carry more battery supplies, it is important to ensure
that the available energy is properly used to best serve the purpose of surveillance
tasks. It is assumed a simplified dynamics model for the sensor node movement; this
model is similar to the one used in [35]. It is assumed that all nodes move at the same
constant speed. Section 4.1 also ignores the energy consumption for acceleration
when the node starts to move as well as for deceleration when the node stops to
move. It is also assumed that the node always moves along a straight line, i.e., the
distance that a node has moved during the interval between two consecutive time
instants is the distance between the old location and the new location of the node.

Consider an arbitrarily chosen node si located at lit at time instant t . Let E i
t+1(l

i
t+1)

be a mapping from lit+1 to a real number representing the energy consumption on si

when si decides to move to lit+1. The energy consumption is related to the distance
that the node has moved from time t to t + 1 as follows:

E i
t+1(l

i
t+1) = θ◦lit − lit+1◦, (14)

where θ is a constant in unit of Joule per meter, and◦lit−lit+1◦ is the Euclidean distance
between lit and lit+1. Note that Eq. (14) indicates a linear relationship between the
energy consumption and the distance moved because this chapter only considers
a simplified energy consumption evaluation model. It is however not restricted to
follow the energy consumption model in this chapter, based on nodes characteristics,
readers can apply their energy consumption model in a similar way.

Since si may have multiple candidate locations to choose from as its next location,
let us define pi

t+1(E|lit+1) as the weighted probability for node si to move to lit+1
at t + 1, where the weight indicates the energy consumption associated with this
movement. The probability pi

t+1(E|lit+1) is given by

330 Y. Zou and K. Chakrabarty

pi
t+1(E|lit+1) = Ē − E i

t+1(l
i
t+1)∑

lit+1∈L i
t+1

(
Ē − E i

t+1(l
i
t+1)

) , (15)

where Ē (Ē ∞ E i
t+1(l

i
t+1) is a known constant representing the maximum amount of

energy that the node can afford for making the one-step movement. The parameter
Ē usually depends on the available battery and the operational lifetime requirement.
Obviously, Eq. (15) yields the highest probability for a candidate location with min-
imum amount of energy consumption.

4.2 Probability of a Node Being Disconnected

Section 4.2 focuses on analyzing the risk that node becomes disconnected due to
its possible movement for the next time instant t + 1. Once again, let us consider
node si . and assume that the network is connected at current time instant t . The
current work that analyzes connectivity in wireless sensor networks deals only with
the relationship between the node density and the probability of the network being
connected or disconnected [26, 49]. While these results are useful in random sensor
deployment, they cannot be directly applied to mobile sensor networks where the
topology is dynamically changing. This chapter simplifies the discussion by only
considering the probability that node si is disconnected from all other nodes at the
next time instant, i.e., the probability that N i

t+1 = φ, where N i
t+1 is defined earlier

as the set of neighbor nodes for si at time t + 1. Let di j
t+1 be the distance between

node si and s j at t + 1, and let rc be the communication radius for a node. Then the
probability that si is disconnected at t + 1 is given by

Pr(N i
t+1 = φ) → Pr

(
di j

t+1 > rc,∀s j ∈ S \ {si }
)

, (16)

which requires the testing of connectivity from si to all other nodes in S since knowl-
edge about N i

t+1 is generally not available until si has moved to the new location
lit+1. To ensure that the discussed scheme is suitable for a distributed implementa-
tion, the calculation to the probability that si is disconnected is restricted to be from
nodes only in the current neighbor set N i

t . Since it is possible that N i
t ∩N i

t+1 = φ

and N i
t+1 \ N i

t
= φ, the above restriction is a conservation one in evaluating the
probability of loss of connectivity. In this way, the calculation requires only current
one-hop knowledge. Let pi

t+1(C) → Pr(N i
t+1 = φ) be the probability that si is

disconnected at time t + 1. Then pi
t+1(C) is givenby

pi
t+1(C) →

∑
lit+1∈L i

t+1

Pr(N i
t+1 = φ|lit+1)p(lit+1)

10 Mobility Management with Integrated Coverage and Connectivity 331

=
∑

lit+1∈L i
t+1

Pr
(

di j
t+1 > rc,∀s j ∈ N i

t |lit+1

)
p(lit+1), (17)

where p(l j
t+1) is defined by Eq. (13) as the probability that neighbor node s j is located

at l j
t+1 at t +1. It can be argued whether p(l j

t+1) is indeed available to si . The value of

p(l j
t+1) can be requested by si from its neighbors before it makes any movement, at

the same time when it is receiving the sensor measurements. However, since p(l j
t+1)

is not available until the procedure described in Sect. 3 is completed, this implies that
all nodes have to first wait for their neighbors to finish the evaluation of improvement
in target tracking data. This also requires additional bandwidth. If retrieval of p(l j

t+1)

by si is not feasible, si does not have any a priori knowledge about how its neighbors
are going to move. In this case, it can be simplified by letting p(l j

t+1) = 1
|L j

t+1|
,

where |L j
t+1| is a constant, and the same for each node s j .

In Eq. (17), let pi
t+1(C|lit+1) → Pr(di j

t+1 > rc,∀s j ∈ N i
t |si at lit+1), which is the

probability that si is disconnected at t + 1, given that it moves to lit+1. Therefore,
pi

t+1(C) is given by

pi
t+1(C) =

∑
lit+1∈L i

t+1

pi
t+1(C|lit+1)p(lit+1)

=
∑

lit+1∈L i
t+1

⎛
⎜⎝ ∏

s j ∈N i
t

Pr(di j
t+1 > rc|lit+1)

⎧
⎪⎨ · p(lit+1), (18)

where Pr(di j
t+1 > rc|lit+1) represents the probability that si is disconnected from its

neighbor s j , given that si moves to lit+1 at t + 1. The probability Pr(di j
t+1 > rc|lit+1)

can be obtained by

Pr
(

di j
t+1 > rc|lit+1

)
=

∑
l j
t+1∈L j

t+1

Pr
(

di j
t+1 > rc|l j

t+1, lit+1

)
p(l j

t+1). (19)

Now, Pr(di j
t+1 > rc|l j

t+1, lit+1), the probability that si is disconnected at time t + 1

from a neighbor s j , given that si is at lit+1 and s j is at l j
t+1, is either 1 or 0 when lit+1

and l j
t+1 are given. However, to also include the differences in the distances between

si and its neighbors in N i
t , the definition of this probability can be refined in several

ways. Let pi j
t+1(C) → Pr(di j

t+1 > rc|lit+1, l j
t+1). Several ways of determining pi j

t+1(C)

are listed below.

1. Use predicted distance di j
t+1 between si and s j directly:

332 Y. Zou and K. Chakrabarty

pi j
t+1(C) → Pr(di j

t+1 > rc|lit+1, l j
t+1)

= di j
t+1∑

l j
t+1∈L j

t+1

di j
t+1

. (20)

Therefore, if si is at lit+1, it will have the highest probability of being disconnected
from s j when their mutual distance is the maximum among the candidate locations
of s j .

2. Alternatively, if you want to be more conservative, i.e., to inform the node of the
possibility of being disconnected in advance of this event actually occurring at
the next time instant, pi j

t+1(C) can be defined as

pi j
t+1(C) → Pr(di j

t+1 > rc|lit+1, l j
t+1)

=

⎩⎫⎫⎫⎫⎫⎬
⎫⎫⎫⎫⎫⎭

1

δrc−d
i j
t+1∑

l j
t+1∈L j

t+1

[1

δrc − di j
t+1

]
if di j

t+1 < δrc

1 if di j
t+1 ∞ δrc,

(21)

where δrc is a fraction of rc, representing an acceptable threshold on how far
away the neighbor s j can be to si , e.g., δrc = 0.9rc. Equation (21) can be used in
situations where connectivity is given high priority; a smaller value of δrc imposes
a more strict connectivity constraint on node movement.

Next, let us rewrite Eq. (18) for pi
t+1(C) as follows:

pi
t+1(C) =

∑
lit+1∈L i

t+1

pi
t+1(C|lit+1)p(lit+1)

=
∑

lit+1∈L i
t+1

⎛
⎜⎝ ∏

s j ∈N i
t

⎛
⎜⎝ ∑

l j
t+1∈L j

t+1

pi j
t+1(C)p(l j

t+1)

⎧
⎪⎨

⎧
⎪⎨ p(lit+1). (22)

Note that Eq. (22) requires only local knowledge from one-hop neighborhood, which
then can be implemented in a distributed manner. Also note that, from a general
perspective of the connectivity in mobile sensor network, movement of nodes causes
the partitioning of the network. As shown in the above discussion, the partitioning is
avoided by evaluating the probability of the node being disconnected, which again is
from the predicated target estimate. The connectivity problem in this case is integrated
with the application goal for target tracking.

10 Mobility Management with Integrated Coverage and Connectivity 333

4.3 Potential Loss of Sensing Coverage

Another potential risk arising from node movement is the possible loss of sensing
coverage in certain regions of the sensor field. When nodes move in the sensor field,
the sensing area that is originally covered by these mobile nodes may not be covered
by any other nodes. This implies that there may be some “holes” in the coverage over
the sensor field. If these holes are not covered by any other nodes, a target that appears
at the same time in this area will remain undetected. Therefore, the movement of
nodes has to be managed in a way such that no such “hole” is formed.

The sensor field is represented as a 2D grid with dimension X by Y . Let there be a
total of ng = XY grid points in the set G , and let gk be a grid point with index k. Let
ci

k be the probability that gk is covered by node si , and ck → p(Sk) be the mapping
from the set of nodes Sk that detect the grid point gk to the probability that gk is
covered by the set of nodes in Sk . When nodes in Sk move, ck changes due to the
fact that locations of nodes in Sk change as well; thus Sk may also change. Let ci

k(l
i
t)

map l j
t to a probability representing the coverage probability of gk due to si , when

si is located at l j
t . Let S k

t a mapping from time instant t to a set of nodes that detect
grid point gk at time t . Let us then define ck

t → p(S k
t) be the mapping from a set of

nodes S k
t that detect gk at t to the coverage probability at time t for gk from nodes in

S k
t . It is assumed that initially the sensing coverage requirement is achieved by the

sensor deployment algorithm, i.e., after the sensor deployment, ∀gk ∈ G , ck ∞ pth ,
where pth is a given sensor deployment control parameter representing the required
sensing coverage threshold. One way for calculating ck and ck

t is shown in [54] as:

ck = 1 −
∏

si ∈Sk

(1 − ci
k) (23)

and
ck

t = 1 −
∏

s j ∈S t
k

(1 − c j
k). (24)

Consider an arbitrarily chosen node si at time t . Suppose that si moves from its
current location lit to lit+1. To simplify the analysis, it is assumed that the sensing
radius rs of a node remains constant when it moves. Therefore, the area that si is
able to cover at any time instant is fixed. However, the global sensing coverage may
be affected by node movement. The coverage in the sensing area centered at the
current location of si , i.e., lit , may be reduced, e.g., there may not be enough nodes to
provide coverage for the area centered at lit after si has moved to lit+1. On the other
hand, si may even improve the sensing coverage at its new location lit+1. A thorough
evaluation of the loss (or gain) of global sensing coverage requires an exchange of
global information for the current topology of the sensor network. Due to the need for
a distributed implementation, only the knowledge of a limited number of hops is used
for local sensing coverage evaluation, i.e., � 2rs

rc
≈-hops neighbor information [54].

334 Y. Zou and K. Chakrabarty

Let the sensing area of node si be Ai ∈ G , i.e., Ai is the set of grid points in
G covered by si . Let A (lit) be a mapping from R

dl to the set of grid points, i.e.,
A (lit) is the set of grid points corresponding to the sensing area centered at lit . Let
us denote the set of grid points that will not be covered by si after si moves to lit+1
as ΔA (lit+1), which is given by

ΔA (lit+1) = A (lit+1) ∪ A (lit) \ A (lit+1). (25)

To ensure that there is no hole in the sensing area originally covered by si at t , the
following condition must be satisfied:

ck
t+1 ∞ pth, ∀gk ∈ ΔA (lit+1). (26)

The next task is to find the expected coverage for gk at time t + 1, i.e, E{ck
t+1}.

Obviously, E{ck
t+1} requires the knowledge of S k

t+1, which is not available to node
si at t . However, the calculation of E{ck

t+1} can be restricted on nodes in S k
t only,

which contains information about the probability that any s j ∈ S k
t is not in S k

t+1.
Since it is possible that S k

t+1 may include other nodes that are not in S k
t , the

evaluation is more conservative. The value of E{ck
t+1} for grid point gk ∈ ΔA (lit+1)

can be obtained as follows:

E{ck
t+1} → E{ck

t+1(S
k

t)}

= E

⎩⎫⎬
⎫⎭1 −

∏
s j ∈S k

t

(1 − c j
k (l j

t+1,∀l j
t+1 ∈ L

j
t+1))

⎫
⎫

= 1 − E

⎩⎫⎬
⎫⎭

∏
s j ∈S k

t

(1 − c j
k (l j

t+1,∀l j
t+1 ∈ L

j
t+1))

⎫
⎫

= 1 −
∏

s j ∈S k
t

(
1 − E

{
c j

k (l j
t+1,∀l j

t+1 ∈ L
j

t+1)
})

= 1 −
∏

s j ∈S k
t

⎛
⎜⎝1 −

∑
l j
t+1∈L j

t+1

c j
k (l j

t+1)p(l j
t+1)

⎧
⎪⎨ , (27)

where p(l j
t+1) is given by Eq. (13). Note that since nodes make movement decisions

based on local knowledge only, it is assumed that the movement decision on all nodes
are independent. Hence, the probability of the appearance of a hole in ΔA (lit+1) can
be obtained as:

Pr(ΔA (lit+1) has a hole) = Pr(∃gk ∈ ΔA (lit+1)|ck
t+1 < pth)

10 Mobility Management with Integrated Coverage and Connectivity 335

→ Pr(∃gk ∈ ΔA (lit+1)|E{ck
t+1} < pth). (28)

It is easy to see that Eq. (28) yields either 1 or 0 because Pr(ΔA (lit+1) has a hole)
denotes a binary outcome on the existence of a hole. Note that there may be more
than one gk in ΔA (lit+1) that satisfies ck

t+1 < pth . Furthermore, different choice
of lit+1 may yield different numbers of such grid points as gk . To describe more
accurately the loss of sensing coverage in ΔA (lit+1) due to the movement of node
si , pi

t+1(S|lit+1) is introduced as the probability of the loss of sensing coverage for
si , given that si is located at lit+1 at time t + 1. The probability pi

t+1(S|lit+1) can be
defined in several ways as listed below.

1. A straightforward method for obtaining pi
t+1(S|lit+1) is to count the number of

grid points that fail to satisfy the coverage requirement. Therefore,

pi
t+1(S|lit+1) → |ΔA0(lit+1)|

|ΔA (lit+1)|
, (29)

where ΔA0(lit+1) ⊆ ΔA (lit+1), is defined as

ΔA0(lit+1) → {gk |gk ∈ ΔA (lit+1), E{ck
t+1} ≤ pth}. (30)

Equation (30) gives the highest probability to the candidate location lit+1 that will
have the highest number of grid points in the corresponding ΔA (lit+1) whose
coverage are below the threshold pth . Note that this approach does not consider
the exact coverage on grid points.

2. To also include the drop of coverage on grid points that fail to meet the coverage
threshold requirement, pi

t+1(S|lit+1) can be refined to express the coverage loss
more precisely. Thus,

pi
t+1(S|lit+1) → Pr(coverage drop of gk ∈ ΔA (lit+1)|E{ck

t+1} ≤ pth)

=

∑
∀gk∈ΔA (lit+1),E{ck

t+1}<pth

(pth − E{ck
t+1})

∑
∀gk∈ΔA (lit+1)

E{ck
t+1}

. (31)

3. Alternatively, since ck
t is available to sk at t , pi

t+1(S|lit+1) can then be defined
to reflect the expected absolute loss of coverage per grid point. Let Δck

t+1 →
ck

t+1 − ck
t . Obviously, Δck

t+1 < 0 represents the sensing coverage loss on grid
point gk . Since only E{ck

t+1} is available, the expectation of Δck
t+1 is then used,

i.e, E{Δck
t+1}. Therefore,

336 Y. Zou and K. Chakrabarty

pi
t+1(S|lit+1) → Pr(coverage loss of gk ∈ ΔA (lit+1)|E{Δck

t+1} < 0)

=

∑
∀gk∈ΔA (lit+1),E{Δck

t+1}<0

|E{Δck
t+1}|

∑
∀gk∈ΔA (lit+1)

|E{Δck
t+1}|

, (32)

where |E{Δck
t+1}| gives the absolute value of E{Δck

t+1}. Equation (32) shows that
if a candidate location lit+1 gives the maximum total absolute coverage loss on all
grid points, it has the highest probability of loss of sensing coverage pi

t+1(S|lit+1).
Note that the denominator of Eq. (32) also includes the possible coverage gain
on all grid points in ΔA (lit+1). For example, for two candidate locations with
the same amount of coverage loss given by the numerator in Eq. (32), the one
with larger coverage gain in the denominator has the lower probability of loss of
sensing coverage.

Note that lit ∈ L i
t+1, which implies that ΔA (lit+1) = φ when lit+1 = lit . So let us

define pi
t+1(S|lit+1 = lit) = 0. With pi

t+1(S|lit+1), the probability of loss of sensing
coverage, denoted by pi

t+1(S), can be obtained as follows.

pi
t+1(S) =

∑
∀lit+1∈L i

t+1

pi
t+1(S|lit+1)p(lit+1), (33)

where pi
t+1(S|lit+1) can be obtained by one of the definitions described above.

5 Decision on Node Movement

In Sects. 3 and 4, we have derived the probabilities associated with tracking qual-
ity improvement, additional energy consumption, loss of connectivity, and loss of
coverage. Next, we investigate the cost evaluation based using these probabilities.

5.1 Cost Evaluation

Recall that the optimal candidate location in the sense of tracking quality improve-
ment is given by Eq. (12). However, this selection does not consider the negative
consequences described in Sect. 4. Next, the selection rule is presented. The selec-
tion rule is based on the cost evaluation that takes into account of all negative conse-
quences due to node movement. Let constants Ce, Cc, and Cs be the individual costs
corresponding to energy consumption due to movement, loss of connectivity, and
loss of coverage, respectively. To simplify the discussion, it is assumed that Ce, Cc,
and Cs are already properly normalized. Note that Ce, Cc, and Cs have non negative

10 Mobility Management with Integrated Coverage and Connectivity 337

values to indicate the costs associated with the energy consumption in movement
and risks of losing connectivity and coverage. Let C i

t+1(l
i
t+1) be the total cost for

node si when si moves to lit+1 at t + 1. Let C i
t+1(l

i
t+1) be defined as

C i
t+1(l

i
t+1) → pi

t+1(E|lit+1)Cewe + pi
t+1(C|lit+1)Ccwc + pi

t+1(S|lit+1)Csws, (34)

where we, wc, and ws are normalized weighting factors for energy consumption,
connectivity and sensing coverage, respectively. In various types of application sce-
narios, we, wc, and ws can be used to reflect different priorities on these costs. Based
on Eq. (34), the expected total cost for si when si moves to lit+1 can be found as:

E{C i
t+1} →

∑
lit+1∈L i

t+1

C i
t+1(l

i
t+1)p(lit+1). (35)

Equation (35) can be used as an extension to the discussed scheme in this chapter
for group mobility management, where nodes can exchange their expected total cost
and decide who should move. Similarly, if there is a need to impose a centralized
control over node movement, the expected total cost given by Eq. (35) can be sent to
the base station to guide the node movement. Hence the discussed scheme is flexible
in various types of applications.

5.2 Decision on Movement

When the total cost is obtained for all candidate locations, the optimal selection of
the candidate location for node si can be obtained by considering both positive and
negative consequences. In practice, the decision on node movement depends on the
actual requirement for particular operations in the sensor network. Considering both
the positive and negative consequences, the selection rule for the candidate location
is defined as a two-step selection process described below.

• Selection Step 1: We first find locations that are expected to improve the target
tracking data. This is given by:

L̄ i
t+1 = {lit+1|lit+1 ∈ L i

t+1 and Ψ (lit+1) ∞ δψ max
lit+1∈L i

t+1

Ψ (lit+1)}, (36)

where Ψ (lit+1) → ψ(p(x̂i
t+1|ẑi

t+1(l
i
t+1)) is described in Sect. 3.3 and δψ(0 ≤

δψ ≤ 1) is a given parameter, which represents how many candidate locations are
considered good enough for the improvement of target tracking data. Obviously,
L̄ i

t+1 ⊆ L i
t+1. The next step then selects the candidate location in L̄ i

t+1 that has
the minimum cost.

338 Y. Zou and K. Chakrabarty

Fig. 4 Pseudocode for distributed mobility management

• Selection Step 2: Secondly, the location that is found with the minimal cost among
all candidate locations is selected as follows:

l̄it+1 = min
lit+1∈L̄ i

t+1

C i
t+1(l

i
t+1), (37)

where C i
t+1(l

i
t+1) is given by Eq. (34).

Note that when δψ = 1, Eq. (36) is then reduced to be the following:

L̄ i
t+1 = {l̄it+1|l̄it+1 = arglit+1∈L i

t+1
max Ψ (lit+1)}. (38)

Recall from Sect. 3, where Eq. (38) is the same as the selection algorithm given by
Eq. (12) in Sect. 3.3. This corresponds to the case where user wants to highly prioritize
the target tracking improvement regardless of the associated costs; the selection step 2
can then be omitted. On the other hand, when δψ = 0, it leads to L̄ i

t+1 = L i
t+1, which

implies that user are more concerned about the costs associated with all candidate
locations. The selection step 1 can then be omitted. Also note that as discussed in
Sects. 3 and 4, all evaluations require only local knowledge, therefore, the discussed
mobility management scheme can be implemented in a distributed manner.

5.3 Analysis of Time Complexity

Section 5.3 analyzes the time complexity for the discussed mobility management
algorithm. Figure 4 shows pseudocode for the distributed mobility management pro-
cedure.

10 Mobility Management with Integrated Coverage and Connectivity 339

The computational complexity for the discussed procedure illustrated in Fig. 4
depends on complexities of the individual computation for target estimation, move-
ment probability, connectivity, coverage loss, and cost evaluation. Note that for
any two nodes si and s j (i
= j), |L i

t+1| = |L j
t+1|. Let m = |L j

t+1|. Assume
that the target tracking algorithm has a complexity of O(T), where T reflects
the complexity of the estimation algorithm. For example, in Kalman filtering,
O(T) = O(2d2

x dz)+ O(2dx d2
z)+ O(d3

x)+ O(d3
x) [18]. As shown in Sect. 3.3 from

Eqs. (12) and (13), for each candidate location li
t+1, node si has to perform a local

target estimation using the predicted sensor measurements to obtain p(lit+1). Note
that the node has to integrate all available sensor data within its one-hop neighbor-
hood, which for the worst case may be as many as n−1. Therefore,the computational
complexity for node movement probability is O(mnT). From Eq. (15), evaluation
of E i

t+1(l
i
t+1) takes O(1) time. Evaluation of pi

t+1(C|lit+1), i.e., the probability for
si being disconnected, requires the calculation of distances between si and all of its
neighbors at the current time instant for all their candidate locations. Assume that
there are a total of n nodes, this procedure takes O(mn) time. For coverage loss eval-
uation, the complexity depends on grid dimension X and Y representing the sensing
area. It takes O(mnXY) time for coverage loss evaluation. From Sect. 5, the cost eval-
uation and movement decision take O(m) time. Therefore, the mobility management
procedure takes O(mnT)+ O(mn)+ O(mnXY)+ O(m) = O(mnXY)+ O(mnT)

time.
Note that in the propose mobility management algorithm, there is no commu-

nication required at the time for a node to make its movement. This is especially
important and useful because a node can react to targets in a timely manner. Though
the node still needs the prior to obtain the posterior, as mentioned in Sect. 3.3, the
target estimate based on complete sensor measurements can be forwarded to nodes at
a later stage after node makes its decision on its movement to dynamically track the
mobile target. In mobile sensor networks, where topology is constantly changing, a
node depends on techniques such as periodical HELLO message for current neigh-
borhood information. The HELLO message can be easily extended for exchange
of sensor measurements and target estimate. The mobility management algorithm
discussed in this chapter imposes virtually no communication overhead.

6 Simulation Studies

To give readers a more concrete view of the previous analysis, Sect. 6 presents simu-
lation results based on the previously discussed mobility management scheme using
MatLab. The setup of the simulation contains a wireless sensor network with 20
homogeneous nodes with a communication radius of 18m and a sensing radius of
9 m. Nodes are randomly deployed in a 20 m × 20 m sensor field represented by a
20 × 20 grid. A linear system model is considered in the simulation using Kalman
filtering for target estimation. Recall the system and measurement model given by

340 Y. Zou and K. Chakrabarty

Eqs. (1) and (2) from Sect. 3.1, the system model and measurement model used in
our simulation are given as:

xt =
[

1 0
0 1

]
xt−1 +

[
Δt 0
0 Δt

]
u + wt−1, (39)

zt =
[

1 0
0 1

]
xt + vt , (40)

where Δt is the sampling interval, u = [μx ;μy] represents the constant speeds of
the target in x and y direction, respectively. The state vector xt contains the x and
y coordinates of the target. It is assumed that μx = μy . It is assumed that initially
x̂0 = [0; 0] for all nodes. The sensing model that is used for coverage evaluation is
given by: ci

k = e−αdi
k , where ci

k is the coverage probability, di
k is the distance between

the grid point gk and the node si , and α represents the physical characteristics of the
sensor [54]. In the simulations, the parameter α is chosen such that α = − ln pth

rs
.

Note that readers can follow steps given in Sect. 6 to feed their own system and
measurement models as well as sensing models to the same mobility management
framework using MatLab or other tools to perform a similar simulation run to fine-
tune on parameters like α, grid point size, sensing range, communication range, etc.,
before deploying in the field.

6.1 Static Sensor Network Versus Mobile Network with Mobility
Management

In Figs. 5 and 6, a comparison of the discussed mobility management approach is
presented, where the baseline case is for the sensor network using only static nodes
i.e., nodes remain at their original locations throughout the simulation. In addition
to the localized approach, Sect. 6.1 also considers a centralized target estimation
approach, which is based on all the sensor measurements. The target speed is set as
μx = μy = 1 m/s and nodes have the same speed as the target. The sampling interval
Δt is 1 sec. The target is initially placed at [2; 2]. The selection of candidate locations
for target tracking data improvement is based on the trace of the error covariance
matrix. Figure 5 shows the comparison of the trace of the error covariance matrix
and position estimation error in a log10 scale. It clearly shows that the error for a
mobile sensor network is less than that for the static network. Another good and
well-accepted metric for evaluating the tracking quality is the norm of the position
error [7, 20, 51], which is shown at the bottom of Fig. 5. The norm of the position
error for the mobile network is roughly 72.5 % less during the time that target is
moving through the sensor field.

Figure 6a shows the average of the expected probability that a mobile node is dis-
connected, i.e., pi

t+1(C|lit+1), and the average distance moved by the mobile nodes.
Note that node movement causes an increase in the expected probability of nodes

10 Mobility Management with Integrated Coverage and Connectivity 341

0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

Discrete Time SequenceE
rr

or
 C

ov
ar

ia
nc

e
M

at
rix

 T
ra

ce
 (

Lo
g1

0)

(a)

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

Discrete Time Sequence

P
os

iti
on

 E
rr

or
 N

or
m

 (
Lo

g1
0)(b)

Mobile Nodes
Static Nodes

Mobile Nodes
Static Nodes

Fig. 5 a Trace of estimation error covariance matrix: mobility management versus static network.
b Position error norm: mobility management versus static network

being disconnected, but since the sensor network is densely deployed and node
movement is not drastic per time step, the probability of disconnection is still very
small. Figure 6b illustrates the average of the expected probability of coverage loss,
i.e., pi

t+1(S|lit+1) for all mobile nodes, and the average global coverage difference
between the mobile network and the static network. The average global coverage
is defined as the sum of individual grid points coverage on individual grid points
over the total number of grid points on the example sensor field. Similar to Fig. 6a,
pi

t+1(S|lit+1) in the top graph of Fig. 6b is very small. However, as shown by the bot-
tom graph in Fig. 6b, the mobility management scheme improves the global coverage
compared to the static network.

6.2 Random Mobile Sensor Network Versus Mobile Network
with Mobility Management

Figure 7a, b illustrate the effects of mobility management for mobile sensor net-
works. In one case, the nodes in the mobile network uses the discussed mobility
management algorithm to make movement decisions. In the baseline case, nodes
randomly select a candidate location for the next move. Figure 7a shows that the

342 Y. Zou and K. Chakrabarty

0 5 10 15 20 25 30 35 40
0

2

4

6

8 x 10−10

Discrete Time Sequence

A
ve

ra
ge

 E
{p

t+
1

i
(C

)}

(top)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

Discrete Time Sequence

A
ve

ra
ge

 M
ov

em
en

t i
n

D
is

ta
nc

e
(m

)

(bottom)

(a)

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

Discrete Time Sequence

A
ve

ra
ge

 E
{p

t+
1

i
(S

)}

(top)

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

4

5 x 10−6

Discrete Time SequenceA
ve

ra
ge

 C
ov

er
ag

e
P

ro
b.

 D
iff

(bottom)

(b)

Fig. 6 a Top: Average expected probability of a node being disconnected. Bottom: Average distance
moved by a node. b Top: Average expected probability of loss of sensing coverage. Bottom: Average
global coverage difference between the example mobile sensor network and the static sensor

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

Discrete Time Sequence

E
rr

or
 C

ov
ar

ia
nc

e
M

at
rix

 T
ra

ce
 (

Lo
g1

0)

With mobility management
Without mobility management

(a)

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6 x 10−6

Discrete Time Sequence

A
ve

ra
ge

 S
en

si
ng

 C
ov

er
ag

e
D

iff
er

en
ce

(b)

Fig. 7 a Trace of estimation error covariance matrix: with mobility. b Average global coverage
difference between the mobile sensor network with mobility management and without mobility
management.

mobility management algorithm achieves the selection of candidate locations that
can provide better tracking quality. Figure 7b illustrates the effect of mobility man-
agement for improved sensing coverage, which is advantageous for surveillance.
This benefit is not available for mobile sensor networks that use a random mobility
management scheme.

6.3 Localized Versus Centralized Implementations

Next, Sect. 6.3 compares the localized implementation with a centralized implemen-
tation. For the centralized approach, it is assumed that here exists a base station that
acts as the processing center. All nodes that have detected the target forward the data

10 Mobility Management with Integrated Coverage and Connectivity 343

to the base station for processing. The base station uses the same evaluation rule as
described in previous sections. However, the base station has global knowledge of
the location of all the nodes and it can integrate sensor data from all the sensor data.
It is expected that the centralized approach requires more bandwidth and energy for
communication. Figure 8a, b show the simulation results. For simplicity, it is assumed
that the base station is located at the center of the sensing region.

Fig. 8a shows the trace of estimation error covariance matrix and position error
norm for the localized and centralized implementations. As shown in the top graph of
Fig. 8a, the centralized approach outperforms localized implementation in tracking
quality because in the localized algorithm nodes only have local knowledge. This
is evident by the bottom of Fig. 8a, where the estimated error covariance matrix of
localized implementation is always larger than that for the centralized case.

On the other hand, the energy consumption is considerably higher for the cen-
tralized method; see the bottom part of Fig. 8b. Equation (41) is used to calculate the
energy consumption at time instant t for node si :

e(t, i) = ecomm(t, i) + ecomp(t, i) + emove(t, i), (41)

where ecomm(t, i), ecomp(t, i), and emove(t, i) account for energy consumption due to
communication, computation, and movement, respectively. Note that sensing energy
consumption is not considered here because it is not affected by whether the discussed
mobility management scheme is implemented as a localized or a centralized algo-
rithm. Let ˆN i

t be the set of nodes that have detected the target and are also the
one-hop neighbors of node si . Let di j (t) be the distance between node si and s j at
time t . Let d̂i (t) → max di j (t),∀s j ∈ ˆN i

t , be the maximum distance between si

and its neighbors. Let Δdi (t) be the distance that si moves at time t . The measures
ecomm(t, i), ecomp(t, i), and emove(t, i) are evaluated as follows:

ecomm(t, i) = d̂i (t)
α × (Esend + | ˆN i

t | × Erecv), (42)

ecomp(t, i) = (| ˆN i
t | + 1) × m × Ecomp, (43)

emove(t, i) = Δdi (t) × Emove, (44)

where Esend , Erecv, Ecomp, and Emove are power constants for communication,
transmitting, computation, and locomotion, respectively. α is the attenuation con-
stant. Example values chosen in the simulation run are as follows: α = 2.5,
Esend = Erecv = 1 mJ/m, and Emove = 50 mJ/m, which are based on metrics
presented in [35]. Note that Erecv and Esend are also related to the size of the data
packet. In this simulation, it is assumed that a 100-byte packet is sufficient for a
node to send its sensor response as well as its current location to its neighbors. It
is assumed that Ecomp = 0.1 mJ. The number of candidate locations m, which is
defined in Sect. 5.3, is set to 9 in this simulation.

As shown in top of Fig. 8b, since only local knowledge is used, the number of
nodes involved in data integration for the localized algorithm is much lower than that

344 Y. Zou and K. Chakrabarty

0 5 10 15 20 25 30 35 40
−5

−4

−3

−2

−1

0

1

Discrete Time SequenceE
rr

or
 C

ov
ar

ia
nc

e
M

at
rix

 T
ra

ce
(L

og
10

)

Localied
Centralized

0 5 10 15 20 25 30 35 40
−9

−8

−7

−6

−5

−4

Discrete Time Sequence

P
os

iti
on

 E
rr

or
 N

or
m

 (
Lo

g1
0)

Localized
Centralized

0 5 10 15 20 25 30 35 40
10

15

20

25

30

Discrete Time Sequence

N
um

be
r

of
 N

od
es

 In
vo

lv
ed

 in
 S

en
so

r
F

us
io

n

Localized
Centralized

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Discrete Time Sequence

E
ne

rg
y

C
os

t (
m

J)

Localized
Centralized

(a) (b)

Fig. 8 Mobility management: localized versus centralized. a Top: Trace of estimation error covari-
ance matrix. Bottom: Position error norm. b Top: Number of nodes involved in evaluation. Bottom:
Energy cost evaluation

for the centralized case. As a result, the tracking quality is better for the centralized
case, as shown in Fig. 8a. However, the centralized approach requires considerably
more energy, as shown in the bottom of Fig. 8b. The results presented here can be
used as a guideline to select an appropriate implementation strategy to trade-off
energy consumption with tracking accuracy. Moreover, from the top of Fig. 8b, it is
noticed that localized algorithm is scalable since the number of nodes involved in
data integration does not increase with the total number of deployed nodes.

6.4 Discussion

The mobility management scheme discussed in this chapter determines the probabil-
ity that a node moves to a certain location, i.e., p(lit+1). As shown in Sect. 3.3 p(lit+1)

is obtained by making use of the predicted sensor measurement at the candidate loca-
tion. Alternative techniques can be used to achieve the same purpose, for example,
the distributed probability inference method as described in [33], where a distrib-
uted architecture is presented for message exchange among sensor nodes to solve
problems such as probability inferencing. However, this architecture is not designed
to handle mobility management for target tracking as described in this chapter. As
discussed in Sect. 3, the predicted measurement from a node’s candidate locations is
used. Therefore, further improvement is expected for target tracking in mobile sensor
networks by integrating the discussed mobility management scheme with the efficient
probability inferencing technique based on the distributed architecture described in
[33]. In view of the inherent complexity and the dynamic nature of mobile sensor
networks, the algorithm is designed with only localized communication require-
ments. Every node can make its movement decision in a timely manner for dynamic

10 Mobility Management with Integrated Coverage and Connectivity 345

0 1 2 3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

Target−to−Node Speed Ratio

Po
si

tio
n

Er
ro

r N
or

m
(L

og
10

)

0 1 2 3 4 5 6 7 8 9 10
−6

−5.5

−5

−4.5

−4

Target−to−Node Speed RatioEr
ro

r C
ov

ar
ia

nc
e

M
at

rix
 T

ra
ce

(L
og

10
)

(a)

20 25 30 35 40 45 50 55 60
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Number of Nodes Deployed

Po
si

tio
n

Er
ro

r N
or

m
(L

og
10

)

20 25 30 35 40 45 50 55 60
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

Number of Nodes Deployed

Er
ro

r C
ov

ar
ia

nc
e

M
at

rix
 T

ra
ce

(L
og

10
)

(b)

Fig. 9 a Mobility management for target at different speeds. Target-to-node speed ratio is 0.1, 0.5,1,
2, 4, and 10. b Mobility management for different node densities. Random sensor deployment with
20, 30, 40, 50, and 60 nodes

target tracking without lengthy negotiation with neighbors for maintaining connec-
tivity and sensing coverage. This ensures a flexible distributed implementation for
mobility management in mobile sensor networks for target tracking.

Note that the performance of the discussed scheme is also related to factors such
as the speed of the nodes, the target speed, and number of nodes deployed in the
sensing region. Figure 9 shows the position error norm as well as error covariance
matrix trace for target tracking using the discussed mobility management method
for different target speeds and various number of nodes. Figure 9a illustrates the
tracking performance when the target-to-node speed ratio is varied from 0.1 to 10.
It is expected that when the target is moving slowly, nodes are able to track more
accurately, as evident from the increase in the error covariance matrix trace. In Fig. 9b,
when the number of nodes deployed increases, the target tracking quality is improved
because more sensor data are available within one-hop neighborhood for the node to
make movement decisions based on local knowledge.

7 Conclusions

The demand for mobile wireless sensor networks in various surveillance applications
is growing rapidly with the advance of modern hardware and software in sensor net-
works. Mobility management, due to its inherent complexity, still presents itself as
one of the most challenging topics in the wireless sensor network research com-
munity. This chapter bring to readers recent findings in mobility management for
wireless sensor networks. It is important for reader to understand an optimal mobil-
ity management scheme must always consider at least three basic factors that are

346 Y. Zou and K. Chakrabarty

vital to the operation of a mobile wireless sensor network: effective sensing cover-
age, reliable communication connectivity, and efficient energy consumption. With
every node in the field is potentially moving as well as is moving based on its local
knowledge, the topology dynamics of such mobile sensor network makes the mobility
management an formidable problem.

This chapter attempts to tackle the mobility management problem by mathemati-
cally formulating it as an optimization problem based on well-established Bayesian
estimation theory for target tracking. Obviously, this approach imposes many limita-
tions and simplifications, such as those described in Sect. 3.1. For example, consider
the case where a target moves at a much higher speed than all sensor nodes, the dif-
ference between two consecutive measurements from a node is too large to be useful
for the calculation of the predicted sensor measurements, as described in Sect. 3.3.
In real world, this is mostly due to the lack of any a priori knowledge of the target.
It is still possible to address this problem at the time when the sensor network is
deployed, i.e., the sampling rate of the chosen sensor nodes should be fast enough
to match the target speed. On the other hand, if the target is moving at a much lower
speed, a single step of node movement will cause a drastic change in a node’s two
consecutive measurements. In this case, a node has to adjust its speed before it starts
moving to avoid unnecessary locomotion energy consumption. One of the directions
for future investigation is to add the robustness or adaptiveness to more complicated
target dynamics model that is realistically non-linear in most practical applications.
One direct approach is to linearize the target dynamics model to work directly with
the scheme discussed in this chapter, where linearization error will have a significant
impact on the effectiveness of this discussed scheme.

One rather strong assumption in this chapter is about the neighbor nodes. When
trying to get predicted measurements from neighbor nodes, this chapter assumes
neighbor nodes are not changing. In reality, this assumption may not be always
valid. Imagine the node is moving at a very high speed that one movement may end
up changing all neighbors completely. This potentially will cause huge errors in the
predicted measurements that would eventually lead to erroneous movement decision.
However, in theory, one can always choose the value of Δ, i.e., the time difference
between two consecutive time instances, to be arbitrarily small such that the error
introduced is virtually negligible. This work-around, unfortunately, is impractical
for real-time embedded implementation since it imposes a higher expectation on the
node’s capabilities in sensing, computation, memory, and storage. This translates
to more expensive hardware with more energy consumption and more bandwidth
required. Alternatively, a more appropriate yet more complicated approach is to feed
back global target tracking knowledge to individual nodes. One of the nodes, dedi-
cated or not, has to take the role as the multiple sensor fusion node to perform target
tracking based on all available sensor node measurement. The selection of such cen-
tral sensor fusion node itself deserves a separate research effort where heuristically,
the central sensor fusion node at any given time instant is located at the center of
the sensor network such that it can communicate with all nodes with a minimum
communication hops for better energy efficiency.

10 Mobility Management with Integrated Coverage and Connectivity 347

One other issue is the impact on existing routing protocol in wireless sensor
networks. The topology of the sensor network is changing at any given time instant
where mobility exists across all nodes. This chapter makes no effort on evaluating
the impact on the routing protocols in the context of mobility management, e.g.,
quantifying the additional cost of reestablishing routes when previous routes become
invalid due to node movement.

Last but not least, this chapter has focused on evaluating mobility management
for target tracking for single target tracking scenarios. The discussions presented
in this chapter is not limited to the case of multiple target tracking, it is yet to see
how well the discussed mobility management scheme performs in multiple target
tracking applications. Potentially, one new challenge in multiple target tracking is
about partitioning the mobile wireless sensor networks to perform a single target
tracking by a subset of mobile nodes. Another challenge is about target identification,
particularly for homogeneous targets. However, without any a priori knowledge of
target types, number of targets, the complexity of mobility management for multiple
targets tracking is extremely difficult.

In summary, the constantly changing topology due to node movement makes
mobility management difficult for mobile sensor networks. However, as shown in
this chapter, when used properly, mobility can improve target tracking quality. This
chapter presents a feasible design of such mobility management scheme for a distrib-
uted implementation with only one hop neighbor nodes needed. Each node makes
its own decision using local knowledge based on optimization on the cost evaluation
derived from Bayesian estimation theory. The cost evaluation technique allows the
trade-off between target tracking quality improvement and the negative consequences
of energy consumption, loss of connectivity and coverage. Even though certain com-
promises have to be made, such as those described in in Sects. 3.1 and 7, simulation
results provide promising supports to the discussed mobility management scheme.
It is beyond the scope of this chapter to solve all aforementioned problems, not to
mention that none of these issues are trivial. Fortunately, this chapter has laid down
the foundation and paved the way for the future study. It is the hope of the authors
that this chapter brings more attention from the research community for more general
and more graceful solutions to mobility management in wireless sensor networks.

Acknowledgments This research was supported by DARPA, and administered by the Army
Research Office under Emergent Surveillance Plexus MURI Award No. DAAD19-01-1-0504. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas, A. Kansal, S. Madden, J.
Reich, Mobiscopes for human spaces. IEEE Pervasive Comput. 6(2), 20–27 (2007)

2. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE
Commun. Mag. 40(8), 102–114 (2002)

348 Y. Zou and K. Chakrabarty

3. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process 50, 174–188 (2002)

4. J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, D. Rus, Tracking a moving object
with a binary sensor network. in Proceedings ACM Conference Embedded Networked Sensor
Systems (SenSys), 2003, pp. 150–161

5. F. Baker, An outsider’s view of MANET, IETF document ID: draft-baker-manet-review-01,
IETF (2012), http://datatracker.ietf.org Accessed 18 March 2012

6. D. Ballari, M. Wachowicz, The design of a Bayesian network for mobility management in
wireless sensor networks. in Proceeding 6th International Conference Geographic Information
Science (GIScience), 2010, Item ID 7424

7. Y. Bar-Shalom, W.D. Blair (eds.), Multitarget-Multisensor Tracking: Applications and
Advances-Volume III (Artech House, MA, 2000)

8. D. Braginsky, D. Estrin, Rumor routing for sensor networks. in Proceedings ACM International
Workshop on Wireless Sensor Networks and Applications, 2002, pp. 22–31

9. R.R. Brooks, C. Griffin, D. Friedlander, Distributed target classification and tracking in sensor
networks, in Proceedings IEEE, 2003, pp. 1163–1171

10. Z. Butler, D. Rus, Event-based motion control for mobile-sensor networks. IEEE Pervasive
Comput. 2(4), 34–42 (2003)

11. T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc network research. J.
Wireless Comm. Mob. Computing 2, 483–502 (2002)

12. Q. Cao, T. Yan, J. Stankovic, T. Abdelzaher, Analysis of target detection performance for wire-
less sensor networks. in Proceedings IEEE International Conference Distributed Computing
in Sensor Systems (DCOSS), 2005, pp. 276–292

13. B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span: an energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless networks. in Proceedings ACM Annual
International Conference Mobile Computing and Networking (MobiCom), 2001, pp. 85–96

14. J.C. Chen, K. Yao, R.E. Hudson, Source localization and beamforming. IEEE Signal Process.
Mag. 19, 30–39 (2002)

15. A.J. Coulson, A.G. Williamson, R.G. Vaughan, A statistical basis for lognormal shadowing
effects in multipath fading channels. IEEE Trans. Comm. 46, 494–502 (1998)

16. P. Dutta, D. Culler, Mobility changes everything in low-power wireless sensornets. in Proceed-
ings USENIX/IEEE Workshop on Hot Topics in Operating Systems (HotOS XII), Monte Verita,
Switzerland, May 2009. http://static.usenix.org, Accessed 18 March 2012

17. J. Garcia-Macias, J. Gomez, MANET versus WSN, in Sensor Networks and Configuration, ed.
by N.P. Mahalik (Springer, Berlin Heidelberg, 2007), pp. 369–388

18. M.J. Goris, D.A. Gray, I.M.Y. Mareels, Reducing the computational load of a kalman filter.
IEE Electron. Lett. 33, 1539–1541 (1997)

19. Z.J. Haas, B. Liang, Ad hoc mobility management with uniform quorum systems. IEEE/ACM
Trans. Networking 7, 228–240 (1999)

20. D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion (CRC Press, FL, 2001)
21. W. R. Heizelman, A. Chandrakasan, H. Balakrishnan, Energy efficient communication protocol

for wireless micro sensor networks. in Proceedings International Conference System Sciences,
2000, pp. 1–10

22. X. Hong, M. Gerla, G. Pei, C. Chiang, A group mobility model for ad hoc wireless networks.
in Proceedings ACM/IEEE International Symposium Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), 1999, pp. 53–60

23. S.S. Iyengar, R.R. Brooks (eds.), Distributed Sensor Networks, (Chapman & Hall/CRC Com-
puter and Information Science Series, , CRC Press 2003)

24. D. Jea, A. A. Somasundara, M.B. Srivastava, Multiple controlled mobile elements (data mules)
for data collection in sensor networks. in Proceedings IEEE International Conference Distrib-
uted Computing in Sensor Systems (DCOSS), 2005, pp. 244–257

25. B. Jiang, K. Han, B. Ravindran, H. Cho, Energy efficient sleep scheduling based on moving
directions in target tracking sensor network. in Proceedings IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2008, pp. 1–10

http://datatracker.ietf.org
http://static.usenix.org

10 Mobility Management with Integrated Coverage and Connectivity 349

26. X. Y. Li, P. J. Wan, Y. Wang, C. W. Yi, Fault tolerant deployment and topology control in
wireless networks. in Proceedings ACM International Symposium Mobile Ad Hoc Networking
and Computing (MobiHoc), 2003, pp. 117–128

27. B. Y. Liu, P. Brass, O. Dousse, P. Nain, D. Towsley, Mobility improves coverage of sensor
network. in Proceedings ACM International Symposium Mobile Ad Hoc Networking and Com-
puting (MobiHoc), 2005, pp. 300–308

28. J. Liu, J. Liu, J. Reich, P. Cheung, F. Zhao, Distributed group management in sensor networks:
algorithms and applications to localization and tracking. Telecommun. Syst. 26(2–4), 235–251
(2004)

29. Y.G. Mei, Y.H. Lu, Y.C. Hu, C.S. George Lee, Deployment strategy for mobile robots with
energy and timing constraints. in Proceedings IEEE International Conference Intelligent
Robots and Systems (ICRA), 2005

30. T. Melodia, D. Pompili, I.F. Akyldiz, Handling mobility in wireless sensor and actor networks.
IEEE Tran. Mob. Comput. 9, 160–173 (2010)

31. Mobile Ad-hoc Networks (MANET), IETF (2012), http://datatracker.ietf.org/wg/manet/
charter. Accessed 18 March 2012

32. T. Moscibroda, R. O’Dell, M. Wattenhofer, R. Wattenhofer, Virtual coordinates for ad hoc and
sensor networks. in IEEE Foundations of Mobile Computing, Workshop, 2004, pp. 8–16

33. M. Paskin, C. Guestrin, J. McFadden, A robust architecture for distributed inference in sen-
sor networks. in Proceedings ACM/IEEE International Conference Information Processing in
Sensor Networks (IPSN), 2005, pp. 55–62

34. S. Phoha, T.F. La Porta, C. Griffin, Sensor Network Operations (Wiley, N.J, 2006)
35. R. Rao, G. Kesidis, Purposeful mobility for relaying and surveillance in mobile ad-hoc sensors

networks. IEEE Trans. Mob. Comput. 3, 225–231 (2004)
36. A. Roy, S.K. Das, A. Misra, Exploiting information theory for adaptive mobility and resource

management in future cellular networks. IEEE Wirel. Comm. Mag. 11, 59–65 (2004)
37. S. Shakkottai, R. Srikant, N.B. Shroff, Unreliable sensor grids: coverage, connectivity and

diameter. in Proceedings IEEE International Conference Computer Communications (INFO-
COM), 2003, pp. 1073–1083

38. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin, Habitat mon-
itoring with sensor networks. Commun. ACM 47, 33–40 (2004)

39. R. Tan, G. Xing, J. Wang, H.C. So, Exploiting reactive mobility for collaborative target detection
in wireless sensor networks. IEEE Trans. Mob. Comput. 9, 317–332 (2010)

40. A. Verma, H. Sawant, J. Tan, Selection and navigation of mobile sensor nodes using a sensor
network. Pervasive Mob. Comput. 2(1), 65–84 (2006)

41. X. R. Wang, G. L. Xing, Y. F. Zhang, C. Y. Lu, R. Pless, C. Gill, Integrated coverage and connec-
tivity configuration in wireless sensor networks. in Proceedings ACM Conference Embedded
Networked Sensor Systems (SenSys), 2003, pp. 28–39

42. G. Wang, G. Cao, T. La Porta, Movement-assisted sensor deployment. IEEE Trans. Mob.
Comput. 5, 640–652 (2006)

43. Y.C. Wang, F.J. Wu, Y.C. Tseng, Mobility management algorithms and applications for mobile
sensor networks. Wireless Communications and Mobile Computing 12, 7–21 (2012)

44. G. Wittenburg, N. Dziengel, C. Wartenburger, J. Schiller, A system for distributed event detec-
tion in wireless sensor networks. in Proceedings ACM/IEEE International Conference Infor-
mation Processing in Sensor Networks (IPSN), 2010, pp. 94104

45. J. Wu, Extended dominating-set-based routing in ad hoc wireless networks with unidirectional
links. IEEE Trans. Parallel Dist. Syst. 13, 866–881 (2002)

46. G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, C. Gill, Integrated coverage and connectivity
configuration for energy conservation in sensor networks. ACM Trans. Sens. Netw. 1, 36–72
(2005)

47. G. Xing, J. Wang, Z. Yuan, R. Tan, L. Sun, Q. Huang, X. Jia, H.C. So, Mobile scheduling
for spatiotemporal detection in wireless sensor network. IEEE Trans. Parallel Dist. Syst. 21,
1851–1866 (2010)

http://datatracker.ietf.org/wg/manet/charter.
http://datatracker.ietf.org/wg/manet/charter.

350 Y. Zou and K. Chakrabarty

48. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc rout-
ing. in Proceedings ACM Annual InterntionL Confernece Mobile Computing and Networking
(MobiCom), 2001, pp. 70–84

49. F. Xue, P.R. Kumar, The number of neighbors needed for connectivity of wireless networks.
Wireless Netw. 10(2), 169–181 (2004)

50. Y. Yang, D. Lee, M. Park, H. Peter, Dynamic enclose cell routing in mobile sensor networks. in
Proceedings IEEE Asia-Pacific Software Engineering Conference (APSEC), 2004, pp. 736–737

51. F. Zhao, J. Liu, J. Liu, L. Guibas, J. Reich, Collaborative signal and information processing:
an information directed approach. Proc. IEEE 91, 1199–1209 (2003)

52. Y. Zhuang, J. Pan, L. Cai, Minimizing energy consumption with probabilistic distance models
in wireless sensor networks. in Proceedings IEEE International Conference Computer Com-
munications (INFOCOM), 2010, pp. 1–9

53. Y. Zou, K. Chakrabarty, Sensor deployment and target localization based on virtual forces. in
Proceedings IEEE International Conference Computer Communications (INFOCOM), 2003,
pp. 1293–1303

54. Y. Zou, K. Chakrabarty, A distributed coverage- and connectivity-centric technique for selecting
active nodes in wireless sensor networks. IEEE Trans. Comput. 54, 978–991 (2005)

55. Y. Zou, K. Chakrabarty, Distributed mobility management for target tracking in mobile sensor
networks. IEEE Trans. Mob. Comput. 8, 872–887 (2007)

Part V
Localization and Task Management

Chapter 11
Range-Free Localization Techniques

Christian Poellabauer

Abstract In wireless sensor networks, sensors are often deployed without a priori
knowledge of their locations or sensor node locations can change during the lifetime
of a network. However, location information is essential for a variety of reasons. Sen-
sors monitor phenomena in the physical world and given the location of the sensors,
it is then possible to estimate the location of the observed phenomenon. For example,
chemical and humidity sensors deployed on a farm can provide information about
soil moisture, crop health, and animal movement if the sensor locations are known.
Accurate location information is also needed for various sensor network manage-
ment tasks such as routing based on geographic information, object tracking, and
providing location-aware services. Frequently, sensor node localization is performed
using ranging techniques, where the distances between a sensor device and several
known reference points are determined to derive the position of a sensor. However,
the cost and limitations of the hardware needed for range-based localization schemes
often make them poor choices for WSNs. Therefore, a variety of localization pro-
tocols have been proposed that attempt to avoid the use of ranging techniques with
the goal to provide more cost-effective and simpler alternatives. These range-free
localization techniques estimate a node’s position using either neighborhood infor-
mation, hop counts from well-known anchor points, or information derived from the
area a node is believed to reside in. This chapter introduces the basic concepts of
range-free localization, surveys a variety of state-of-the-art localization techniques,
compares qualitatively the characteristics of these protocols, and discusses current
research directions in range-free localization.

C. Poellabauer (B)

University of Notre Dame, Notre Dame, USA
e-mail: cpoellab@nd.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 353
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_11,
© Springer-Verlag Berlin Heidelberg 2014

354 C. Poellabauer

1 Overview

Wireless sensor networks are built and deployed to collect real-time information
on the spatial-temporal characteristics of the physical environment. Therefore, the
knowledge of the location of each sensor node in a network is critical to many WSN
applications and services to appropriately interpret sensors readings. For example,
environmental sensor networks measure air, water, and soil quality to detect the pres-
ence and sources of pollutants [16], but they require accurate spatial information to
support precise modeling and simulation of the dispersion of the pollutants. Further,
in battlefield scenarios, sensor locations are essential to accurately determining or
predicting enemy movements [19] and in emergency response systems, sensor loca-
tions are needed to guide first responders towards survivors and away from harm [17].
Sensor node localization is also needed to support a variety of network management
services, such as routing protocols (e.g., many routing protocols are based on the
principle of geographic forwarding [34]), coverage area and topology control [33],
energy management techniques (e.g., protocols that adjust in-network data manage-
ment to preserve energy [13]), clustering [38], boundary detection [10], and various
network security mechanisms and protocols [37].

As a consequence, localization has been the focus of a significant number of
research efforts, ranging from manual configurations to distributed positioning algo-
rithms. For example, Global Positioning System (GPS) has been a popular choice
for localization in mobile devices, but it is often a poor choice for WSNs because of
its high hardware cost (compared to the low cost of the miniaturized devices often
used for sensing) and its inability to provide location services in indoor settings and
other scenarios where no clear view of the sky is available. The type of location infor-
mation provided by GPS can be expressed as global metric, i.e., a position within
a general global reference frame (e.g., longitudes and latitudes). Another example
of such a system is the Universal Transverse Mercator (UTM) coordinate system,
which provides positions within zones and latitude bands. In contrast, relative met-
rics are based on arbitrary coordinate systems and reference frames, e.g., a sensor’s
location expressed as distances to other sensors without any relationship to global
coordinates.

When systems such as GPS are unsuitable for a WSN, a network can also rely
on a subset of nodes that know their global positions for localization. Other nodes
in the network can then use these anchor nodes (or reference nodes) to estimate
their own positions. Techniques that rely on such anchors are called anchor-based
localization (as opposed to anchor-free localization). Many localization techniques,
particularly in the category of anchor-based techniques, are based on range measure-
ments, i.e., estimations of distances between several sensor nodes. These range-based
localization techniques require sensors to monitor measurable characteristics such
as received signal strengths of wireless communications or time difference of arrival
of ultrasound pulses.

In contrast, range-free localization techniques do not rely on distance estimates,
but instead rely on approaches such as estimating their relative positions to other

11 Range-Free Localization Techniques 355

nodes using connectivity-based algorithms. These range-free localization techniques
are typically more cost-effective, because they do not require the nodes to have special
hardware functionalities. On the downside, range-free localizations typically lead to
coarser estimates. However, these estimates are sufficient for many types of WSN
applications where limited localization accuracy is acceptable.

The remainder of this chapter discusses the fundamentals and state-of-the-art
solutions for range-free localization techniques. When comparing localization tech-
niques, two important qualities of localization information are the accuracy and
precision of a position. For example, a GPS sensor indicating a position that is true
within 10 m for 90 % of all measurements, the accuracy of the GPS reading is then
10 m (i.e., how close is the reading to the ground truth?) and the precision is 90 %
(i.e., how consistent are the readings?). Apart from physical positions (such as the
longitudes and latitudes provided by GPS), many applications (e.g., indoor tracking
systems) may only require symbolic locations [7], such as “office building A14” or
“mile marker 12 on Highway 50.” Other metrics that determine the suitability of a
localization technique for a specific WSN scenario include energy efficiency, support
for Quality-of-Service, and localization overheads and costs.

2 Range-Free Versus Range-Based Localization

Most WSN localization techniques rely on variations of the same principle, i.e., they
establish sensor node locations based on information exchange between neighboring
nodes. When certain characteristics of the exchanged messages or signals are used
to determine distances between nodes, a variety of localization techniques can be
applied to determine a sensor’s position, where the positioning accuracy depends on
the quality of distance measurements. These types of localization techniques belong
to the category of range-based localization. In contrast, if information exchange
is only used to establish connectivity information (i.e., learn about the topology
of a portion of the WSN), then a sensor node can learn its position in a network
relative to other sensor nodes. While the accuracy of these range-free localization
techniques is typically lower than the accuracy of range-based techniques, range-free
approaches can provide more cost-effective solutions for large, low-cost wireless
sensor networks. This section provides an overview of these two main categories of
sensor node localization.

2.1 Overview of Range-Based Localization Techniques

In range-based localization, sensor nodes obtain distance estimates between them-
selves and other sensor nodes, e.g., using measurements of certain characteristics
of radio signals, including signal propagation times, signal strengths, and angle of
arrival. When the concept of Time of Arrival (ToA) is applied [3], the distance between
the sender and receiver of a signal is determined by combining the signal propagation

356 C. Poellabauer

time with the known signal velocity. For example, an acoustic signal requires approx-
imately 30 ms to travel a distance of 10 m (assuming a velocity of 343 m/s), while
a radio signal requires only about 30 ns for the same distance (assuming a velocity
of 300 km/s). Radio-based distance measurements require highly accurate clocks to
measure such short propagation times, thereby adding to the cost and complexity
of range-based localization techniques. Time of arrival methods can further be cat-
egorized as one-way methods and two-way methods. With one-way methods, the
signal transmission time and reception time are measured at the sender and receiver,
respectively, thereby requiring accurate time synchronization between sender and
receiver. With the two-way method, the round-trip time of a signal is measured at
the signal sender, therefore removing the need for time synchronization.

A second class of range-based localization techniques uses the Time Difference of
Arrival (TDoA) approach [4], where two signals travel from the sender to the receiver
with different velocities. For example, the first signal could be a radio signal, followed
by an acoustic signal. The receiver is then able to determine its location similar to the
ToA approach. TDoA-based approaches do not require the clocks of the sender and
receiver to be synchronized and can obtain very accurate measurements. However,
a disadvantage of the TDoA approach is the need for additional hardware, e.g., a
microphone and speaker to transmit and receive acoustic signals.

Another popular technique is to determine the direction of signal propagation,
typically using an antenna or microphone arrays. The Angle of Arrival (AoA) is then
the angle between the propagation direction and some reference direction known as
orientation [25]. For example, for acoustic measurements, several spatially separated
microphones can be used to receive a single signal and the differences in arrival
time, amplitude, or phase can then be used to determine an estimate of the arrival
angle.

Finally, the Received Signal Strength (RSS) method determines distance based
on signal attenuation. While RSS measurements may not lead to as accurate dis-
tance measurements as the ToA method (e.g., signal attenuation depends not only
on distance, but also multi-path propagation effects, reflections, and noise), these
measurements are often readily available in many wireless network cards.

Given a distance measurement between a sensor node and a reference node, the
sensor node knows that its position must be along the circumference of a circle (in
two-dimensional space) or sphere (in three-dimensional space) centered at the ref-
erence node, with the radius representing the distance between the reference node
and the sensor node. To obtain a unique location in two dimensions, distance mea-
surements from at least three non-collinear reference nodes are required (or distance
measurements from at least four non-coplanar reference nodes in three dimensions).
This process of determining a sensor node location is called trilateration. In contrast,
a similar process called triangulation uses the geometric properties of triangles to
estimate sensor locations. Triangulation requires at least two angles (or bearings)
and the locations of the reference nodes or the distance between them to determine
the sensor node location in two-dimensional space. The processes of trilateration and
triangulation are illustrated in Fig. 1, where three reference nodes are used (identified
by their known (xi , yi) coordinates).

11 Range-Free Localization Techniques 357

,y
2

α3

1α

x3,y3

x2 α2

x1,y1 x1,y1

x2,y2

x3,y3

Fig. 1 Example of trilateration (shown on the left) and triangulation (shown on the right)

Triangulation and trilateration rely on the presence of at least three reference
nodes. However, in many sensor networks, it is infeasible to assume that every sensor
node can directly communicate with at least three reference nodes. Therefore, these
techniques can further be extended, i.e., once a sensor has determined its own position
(using either trilateration or triangulation with three or more reference nodes), this
sensor can itself become a reference node for other sensors. This iterative process is
called iterative multilateration [28]. A downside of this process is that every iteration
contributes to the localization error.

A variation of this approach is called collaborative multilateration, where the goal
is to construct a graph of participating nodes, i.e., nodes that are reference nodes or
have at least three participating neighbors. A node can then estimate its position by
solving the corresponding system of over-constrained quadratic equations relating
the distances between the node and its neighbors.

Case Study: GPS-Based Localization

As an example of a trilateration system, consider the Global Positioning System
(GPS) [8], which is the most widely publicized location-sensing system, providing
an excellent lateration framework for determining geographic positions. GPS is the
only fully operational global navigation satellite system (GNSS), consisting of at
least 24 satellites orbiting the earth at altitudes of approximately 11000 miles. The
satellites are uniformly distributed in a total of six orbits (i.e., there are four satellites
per orbit) and they circle the earth twice a day at approximately 7000 miles per hour.
Each satellite constantly broadcasts coded radio waves that contain information on
the identity of the particular satellite, the location of the satellite, the satellite’s status,
and the date and time a signal has been sent. In addition to the satellites, GPS further
relies on infrastructure on the ground to monitor satellite health, signal integrity,
and orbital configuration, e.g., at least six monitor stations located around the world
constantly receive the data sent by the satellites and forward the information to a
master control station (MCS). This MCS uses the data from the monitor stations to
compute corrections to the satellites’ orbital and clock information, which are then
sent back to the satellites via ground antennas.

358 C. Poellabauer

Satellites and receivers use very accurate and synchronized clocks so that they
generate the same code at exactly the same time. A GPS receiver compares its own
generated code with the code received from the satellite, thereby determining the
actual generation time of the code at the satellite and the time difference between the
code generation time and the current time. This time difference expresses the travel
time of the code from the satellite to the receiver. Since radio waves travel at the
speed of light, given the time difference, the distance between receiver and satellite
can be determined. Given this distance, the receiver knows that it must be positioned
somewhere on the sphere centered on the satellite. With two more satellites, a receiver
can determine two points where the three spheres intersect and typically one of these
two intersections can be eliminated, e.g., because it would position the receiver far
out in space. While three satellites appear to be sufficient for localization, a fourth
satellite is required to obtain an accurate position.

While most GPS receivers available today are able to provide position measure-
ments with accuracies of 10 m or less, advanced techniques to further increase the
accuracy are also being used. For example, Differential GPS (DGPS) [20] uses land-
based receivers with exactly known locations to receive GPS signals and compute
correction factors, which are then broadcast to regular GPS receivers. Further, Real
Time Kinematic (RTK) navigation is another technique used to provide centimeter-
level accuracy by using a stationary GPS receiver together with one or more mobile
units, where the stationary receiver re-broadcasts the signals it receives from the
satellites as correction signals to the mobile units.

2.2 Overview of Range-Free Localization Techniques

The localization approaches discussed so far rely on ranging techniques such as
RSS, Time of Arrival, Time Difference of Arrival, and Angle of Arrival. In con-
trast, range-free localization techniques do not require additional hardware and are
therefore a cost effective alternative to range-based techniques. With range-free tech-
niques, instead of estimating distances between sensor nodes, other approaches are
used to determine a sensor node’s location at a coarser granularity. These approaches
can be grouped into techniques based on area, hop count, and neighborhood
information [16].

In area-based localization, a network can be divided into areas or regions, and
localization is then concerned with determining the region a node occupies. For
example, a sensor node that is able to hear radio signals from two reference nodes
can determine that it must reside in the overlapping region of the radio coverage areas
of these reference nodes. The more reference nodes are available, the more accurately
a node can determine its position (or the region it occupies becomes smaller).

Figure 2 shows two examples of area-based localization. On the left, a node
(white node) determines that its position is in the region created by the overlap-
ping radio coverage regions of its two neighboring nodes (black nodes). The figure
on the right shows a similar situation with two nodes with directional antennas.

11 Range-Free Localization Techniques 359

Fig. 2 Area-based localization using two reference nodes with omni-directional antennas (left) and
directional antennas (right)

When directional antennas are used, the size of the overlapping region can be reduced,
thereby increasing the positioning accuracy.

In localization techniques based on hop count, hop distances between two nodes
A and B are used to estimate node distances and node positions. The hop count is the
minimum number of hops hmin (i.e., the shortest route) that separates nodes A and
B. The maximum distance between A and B is then R ∈ hmin, where R is the radio
coverage radius (assuming that all nodes have the same radio range).

Further, in neighborhood-based localization, reference nodes placed throughout
the sensor network periodically issue beacons that include the emitting node’s loca-
tion. If a sensor node receives beacons from only one reference node, the sensor node
simply assumes its own location to be identical to the reference node’s location. How-
ever, if beacons from multiple reference nodes can be received, more sophisticated
methods (e.g., the centroid technique) can be used to determine a node’s position in
the network.

Finally, recently a number of event-based localization techniques have emerged,
where event emitters transmit signals that are being received by the sensors and these
signals (or certain timing aspects of these signals) can be used to determine a sensor’s
location. In these techniques, localization is based on the presence of (often costly)
event generator devices, therefore replacing the need for reference nodes. In general,
in anchor-based techniques, the placement of reference nodes (anchors) needs to be
carefully planned to ensure that sensors nodes can communicate with a sufficient
number of reference nodes. In contrast, in event-based protocols (as an example for
anchor-free techniques), it has to be ensured that all sensors can be in range (or line-
of-sight) of one or more signal generator, which may limit the scale of the sensor
network.

3 Case Studies of Range-Free Localization Techniques

In the remainder of this chapter, we discuss a variety of range-free localization solu-
tions that utilize area, hop count, or neighborhood information to position sensors,
but also more recent event-based techniques that rely on event detection by sensor
nodes to determine sensors positions.

360 C. Poellabauer

Fig. 3 Illustration of a sample
network topology for the
convex position estimation
approach

Connection constraint

Known location

Unknown location

3.1 Convex Position Estimation

One of the first area-based localization techniques determining positions exclusively
on connectivity-induced constraints was introduced in [5]. In this approach, a network
is represented as a graph with n nodes, with a subset of m nodes serving as reference
nodes, i.e., their Cartesian positions are known (see Fig. 3, which shows reference
nodes as black nodes, nodes with unknown positions as white nodes, and nodes that
are able to communicate are connected via lines).

More formally expressed, the network is a graph with n nodes, where the positions
of the first m nodes are known and expressed as (x1, y1, . . ., xm, ym). The challenge
is then to find the unknown positions (xm + 1, ym + 1, . . ., xn, yn) of the remaining n-m
nodes such that all proximity constraints are satisfied. In [5], a centralized solution to
this challenge is proposed, where nodes communicate their connectivity information
to a single computer that solves this optimization problem.

This approach is based on finding solutions to linear and semidefinite programs
that can be used to generate feasible positions for the nodes in a network. The
semidefinite problem (SDP) is a generalization of the linear program (LP) [21], with
the objective function cT x and the following constraints:

F (x) = F0 + x1F1 + · · · + xnFn < 0

Ax < b

Fi = FT
i .

The first constraint represents a matrix inequality on the cone of positive semidefinite
matrices, i.e., the eigenvalues of F(x) must be nonpositive, which is known as linear
matrix inequality (LMI). Each node has a position (x,y), allowing us to form a single
vector containing all positions as

x = [x1 y1 . . . xm ym xm+1 ym+1 . . . xn yn]T .

11 Range-Free Localization Techniques 361

Given this mathematical basis and assuming that the connectivity in a network can be
represented as a set of convex position constraints (i.e., a convex set is one for which
any two points in the set can be connected with a line entirely contained in the set), the
work in [5] continues to propose solutions for convex constraint models for RF and
optical communication systems. In the symmetric model where the communication
range of each node can be represented as a circle, a connection between nodes can
be expressed as a 2-norm constraint on the node positions. For example, the LMI
can be determined as:

⊂a − b⊂2 ◦ R ∀
[

I2 R a − b
(a − b)T R

]
∗ 0,

where R is the maximum range and node positions are expressed as a and b. Using
Schur complements [2] transforms the quadratic inequality into an LMI with a 3 × 3
matrix, where I2 represents the two-dimensional identity. Multiple LMIs can be
stacked in diagonal blocks to form a single large SDP for the entire network.

This approach can further be extended, e.g., instead of maximum radio ranges
R, smallest ranges rab are assigned to each constraint (i.e., replace R in the above
formula with rab). Values for rab can be obtained during the initialization phase by
varying the transmission power of the radios. Once a connection is first detected at
a power P0, the receiver node can calculate the maximum possible separation for
reception at power P0. This maximum separation rab can then be used to determine
a tighter upper bound for each connection in the network. Another extension to
this approach considers sensors with directional antennas or laser transmitters and
receivers (optical communication), where antennas and detectors can be rotated until
a signal is detected. This leads to cones representing the feasible sets and this can be
used to reduce the size of the area where a sensor is believed to be, thereby reducing
the localization error.

3.2 Ad Hoc Positioning System

As an example of a hop count based localization technique, the ad hoc positioning
system (or APS) [22] provides a distributed connectivity-based localization approach
that estimates node locations using a set of at least three reference nodes (the more
reference nodes, the higher the accuracy obtainable in APS). An important aspect
of APS is that it is based on the concept of distance vector (DV) exchange [18],
where nodes periodically exchange their routing tables with their one-hop neighbors
to obtain accurate network-wide connectivity (and routing) information.

APS supports various schemes, the simplest of them being the DV-hop approach.
Here, each node maintains a table {Xi , Yi , hi }, where {Xi , Yi } represents the location
of node i and hi is the hop distance between this node and node i. Using the routing
table updates exchanged in DV, reference nodes will learn about the presence (and
location) of other reference nodes and can then calculate an average hop size, called

362 C. Poellabauer

Fig. 4 Example of DV-hop
localization

d(R1,R3) = 120m

R1

R2

R3

d(R1,R2) = 40m
d(R2,R3) = 80m

S

the correction factor ci :

ci =
∑ √

(Xi − X j)2 + (Yi − Y j)2

∑
hi

for all other reference nodes j (i →= j). The computed correction factors are also
propagated throughout the network and given the locations and correction factors
of the reference nodes, a sensor node is then able to estimate its own location.
Figure 4 illustrates an example of DV-hop localization using three reference nodes
(R1, R2, R3) and six sensor nodes, where sensor node S is attempting to estimate its
position.

Each reference node knows the Euclidean distance and the minimum hop count
between itself and all other reference nodes. Given this information, reference node
R1 is able to compute its correction factor as (40 + 120)/(2 + 6) = 20, which indicates
the estimated hop distance in meters. Similarly, reference node R2 determines its
correction factor as (40 + 80)/(2 + 5) = 17.1 and reference node R3 determines its
correction factor as (80 + 120)/(5 + 6) = 18.2.

To ensure that each node will only use one correction factor (typically the one
from the closest reference node), correction factors are propagated using controlled
flooding, i.e., once a node has received a correction factor from one of its neigh-
boring reference nodes, subsequent correction factors are ignored. For example, in
Fig. 4, sensor node S may have received the correction factor from reference node
R2 first (since it is closest in distance) and uses R2’s correction factor to determine
its distances to all reference nodes. That is, S computes is distance to R1 as 17.1*3,
its distance to R2 as 17.1*2, and its distance to R3 as 17.1*3.

A variation of this approach is the DV-distance method, where distances between
neighboring nodes are determined using radio signal strength measurements. As
before, these distances are propagated throughout the network (but this times in
meters instead of hops). While this approach provides finer granularity (not all hops
are estimated to be the same size), it is also more sensitive to measurement errors.
Another variation of this technique is to use true Euclidean distances. Here, a node
must have at least two neighbors that have distance measurements to a reference node,
where the distance between the two neighbors is known. Based on this information,
simple trigonometric relationships can be used to determine the distance of a node
to a reference node.

11 Range-Free Localization Techniques 363

Fig. 5 Location estimation
based on the intersection of the
triangles formed by reference
nodes

R1

R2

R3

R1

R2

R3

R4
N N

3.3 Approximate Point In Triangulation

A well-known example of an area-based range-free localization technique is APIT
(or Approximate Point In Triangulation) [6], which, similar to APS, also requires the
presence of reference nodes with well-known locations. The main idea behind APIT
is to consider the triangles formed by different sets of three reference nodes and to
determine whether a node resides within or outside of these triangles. By identifying
the triangles a node resides in, it is possible to narrow down the node’s potential
locations.

The key procedure in this approach is the Point In Triangulation (PIT) test, which
allows a node to determine these triangles. In this test, once a node has determined
the locations of a set of reference nodes (via location updates similar to the APS
protocol), it tests whether it resides within or outside of each triangle formed by each
set of three reference nodes. Consider a set of three reference nodes R1, R2, and
R3. A node N is then situated outside the triangle formed by these reference nodes,
if there exists a direction such that a point adjacent to N is either further or closer
to R1, R2, and R3 simultaneously. If no such direction exists, node N is inside the
triangle and the triangle formed by the three reference nodes can be added to the set
of triangles in which N resides. This technique is illustrated in Fig. 5. In this example,
node N resides within the triangle formed by reference nodes R1, R2, and R3, shown
in the left graph. On the right of Fig. 5, a fourth node, R4 has been added (i.e., N has
learnt about the presence and location of the fourth reference node), which leads to
additional triangles formed the sets {R1, R2, R4}, {R1, R3, R4}, and {R2, R3, R4}.
Using this additional information, node N is able to reduce the size of the area it
resides in.

However, this test as described above is not feasible in practice since it would
require that nodes could be moved in any direction. Therefore, instead of this perfect
PIT test, an Approximate PIT (APIT) test can be used as long as network density is
sufficiently large. In APIT, node movement is emulated using neighbor information
that is exchanged between nodes using beacon messages, e.g., using such beacon
messages, a ranking among nodes in reach of a reference node can be established
based on their signal strengths (and therefore distances). For example, if no neighbor
of node N is further from or closer to all three reference nodes R1, R2, and R3
simultaneously, node N assumes that it resides inside the triangle formed by the
three reference nodes; otherwise node N assumes that it is outside the triangle.

364 C. Poellabauer

R2

N4

N2N1

N2

R1

R2

N4 N

R1

N3

R3

N1

N

N3

R3

Fig. 6 Examples of APIT test scenarios

Figure 6 illustrates this approach, where the left graph shows an example where
node N is within the triangle formed by the three reference nodes and the right graph
shows an example where node N is outside. In the left example, node N has four
neighbors N[1..4], none of which is simultaneously closer to or further away from
all three reference nodes. Therefore node N determines that it must reside within the
triangle formed by the reference nodes. In contrast, the graph on the right shows an
example where node N determines that it must reside outside the same triangle since
node N4 is closer to all three reference nodes than node N, while node N2 is further
away from all reference nodes, compared to node N.

In this approach, it is possible that a node’s determination is wrong, simply because
only a finite number of neighboring nodes (and therefore directions) can be used to
evaluate whether the node is inside or outside the reference node triangle and small
errors in signal strength measurements can falsify the result. For example, in the left
graph of Fig. 6, if the signal strength measurements from node N4 indicate that it
must be further away from reference node R2 than node N, node N would incorrectly
conclude that it resides outside the triangle. Such measurement errors are very likely
to occur due to the signal strength easily being affected by obstacles, multi-path
propagation, etc.

Once the APIT test completes, a position estimate can be computed as the center
of gravity of the intersection of all triangles in which M resides in. While the APIT
approach provides a simple way of determining locations without the need for addi-
tional hardware on the sensor nodes, its main disadvantages are the effect of distance
measurement errors on localization accuracy and the need for large network density
(i.e., sensor nodes must have several reference nodes that can be reached and they
must have several neighboring nodes to perform the APIT test).

3.4 Ring Overlapping Localization Techniques

Another area-based ranging technique that has been proposed recently [15, 39] is
based on forming rings around reference nodes, where a sensor node estimates
its position to be within the intersection of multiple such rings. The goal of these

11 Range-Free Localization Techniques 365

α

t

d1

d2

H

t

a

bd1

d2dst

dab
d1’

d2’

θ

s s

oo
α

Fig. 7 Principle of the overlapping circles technique

techniques is to provide increased localization accuracy (e.g., compared to hop-based
techniques), while keeping the cost of communication and computation low.

For example, in [15], the authors propose a technique called “Annulus Intersection
and Grid Scan” or AIGS. In this technique, a reference node X is considered as the
center of a circle, where the radius of the circle is the distance to another reference
node Y. If the reference node density is sufficient, each reference can thereby form
multiple such rings. In AIGS, a sensor node A with an unknown location tries to
determine two specific rings around each neighboring reference node: (i) the circle
with the shortest radius among all circles that contain node A and (ii) the circle with
the largest radius among all circles that do not contain it. To select such rings, node
A must be within the annulus of these circles and therefore, the annulus of the circles
can be used to estimate the location of node A. In AIGS, the center of the intersections
of the overlapping rings is taken as the estimated coordinate of the unknown node A.

This basic principle is shown in Fig. 7. This figure shows several reference nodes,
with the circles indicating the radius of the closest and furthest neighbor beacon
nodes. The shaded area indicates the intersection of the circles and the unknown
node estimates its position to be in the center of this region. In detail, the algorithm
performs the following steps. Note that the algorithm assumes that all nodes use
omnidirectional antennas, all nodes are randomly deployed in 2-dimensional space,
all nodes have the same transmit power, and there is no node mobility.

• Step 1: Localization is based on the transmission of two beacon messages by the
reference nodes. The first one contains the coordinates of the reference node (x, y)
and each receiver records the reference node’s location and signal strength. In
the second beacon, each reference node broadcasts its view of the network, i.e.,
the information previously received from other reference nodes. All sensor nodes
receiving these beacons also record this information.

• Step 2: A sensor A with unknown location successively selects a reference node that
is within its one-hop range and uses this node as the center of a number of circles,
each with a radius that equals the distance between the reference node and one of
its neighboring reference nodes. Then node A attempts to find the smallest annulus
that exactly contains node A. If there is such an annulus, the algorithm continues

366 C. Poellabauer

in Step 3, otherwise the process is repeated until all neighboring reference nodes
have been investigated.

• Step 3: Node A now attempts to find the intersection area of the annulus; if it is the
first annulus, then the intersection area will be itself, otherwise it will be the inter-
section of the newly discovered annulus the previously determined intersection
area.

• Step 4: Node A repeats Step 2 until all neighboring reference nodes have been
investigated.

• Step 5: If there is an intersection area, node A now computes the centroid area
and takes the resulting location as its coordinate. Otherwise, node A computes its
coordinates using a centroid localization algorithm.

In comparison to DV-Hop, AIGS performs well in both overhead and accuracy.
The results presented in [15] indicate that in a network with 30 % reference nodes (out
of 200 nodes in total), the localization error can be significantly reduced, particularly
for large communication ranges. For example, while DV-Hop had an average local-
ization error of 30 % (which stayed constant with varying communication ranges),
the localization error for AIGS was less than 20 % for low communication ranges
and less than 5 % for high communication ranges. The computational complexity of
AIGS is similar to DV-Hop, while the communication overhead is lower (beacons
are exchanged only within the one-hop neighborhood).

3.5 Multidimensional Scaling

A popular technique to achieve range-free localization (and an example for local-
ization based on hop count) is multidimensional scaling (MDS) [1, 31], which has
its roots in psychometric and psychophysics, and is a set of data analysis techniques
that display the structure of distance-like data as a geometrical picture. MDS requires
a powerful centralized device (e.g., a base station connecting a WSN to the rest of
the world), which collects topological information from the network, determines the
nodes’ locations, and propagates this information back into the network.

With MDS, the network is represented as an undirected graph of n nodes, where
the edges in the graph represent connectivity information. Further, a subset of m nodes
represents reference nodes (i.e., nodes with well-known locations). The goal of MDS
is to preserve the distance information, assuming that the distances between all pairs
of nodes are known, such that the network can be recreated in the multidimensional
space. The result is then an arbitrarily rotated and flipped version of the original
network layout.

Classical MDS and MDS-MAP

One of the simplest versions of MDS, called classical MDS, has a closed form
solution allowing for efficient implementations. In this version, the process is as
follows. First, assume a matrix representing the squared distances between nodes:

11 Range-Free Localization Techniques 367

D2 = c1
∞ + 1c

∞ − 2SS
∞
,

where 1 is an nx1 vector of ones, S is the similarity matrix for n points, where each
row represents the coordinates of point i along m coordinates, SS∞ is called the scalar
product matrix, and c is a vector consisting of the diagonal elements of the scalar
product matrix. Next, by multiplying both sides of this equation by the centering
matrix

T = I − 11∞

n
,

where I is the identity matrix and 1 is again a vector of ones, leads to

T D2T = T
(

c1
∞ + 1c

∞ − 2SS
∞)

T = T c1
∞
T + T 1c

∞
T − T (2B) T,

where B = SS∞. Since centering a vector of ones yields a vector of zeros, this can
be simplified to

T D2T = −T (2B) T .

Next, multiplying both sides with −1/2 results in

B = −1

2
T D2T .

B is a symmetric matrix and can therefore be decomposed into

B = QηQ
∞ = Q

∞η
1
2

(
Qη

1
2

)∞
= SS∞.

This can then be decomposed into

B = QηQ
∞ =

(
Q

∞η
1
2

) (
Qη

1
2

)∞
= SS∞.

Finally, given B, the coordinates of S can now be determined by eigendecomposition:

S = Qη1/2.

This approach is used in [31], where a localization method called MDS-MAP is
proposed. In MDS-MAP, a distance matrix D is constructed using an all pairs shortest
path algorithm (e.g., Dijkstra’s), with di j representing the distance (i.e., the number
of hops) between two nodes i and j. In the next step, the classical MDS approach
as described in this section is used to arrive at an approximate value of the relative
coordinate of each node. These relative coordinates can then be transformed into
absolute coordinates by aligning the relative coordinates obtained for the reference
nodes with their absolute coordinates. Using least-squares minimization, even more

368 C. Poellabauer

refined location estimates could be obtained. Another extension to this approach is to
divide a WSN into overlapping regions, where localization is performed, as described
above, separately for each of these regions. The resulting local maps can then be
stitched together to arrive at a global network topology. This is achieved using nodes
that appear in multiple maps, i.e., nodes that are shared between adjacent regions.
The outcome is an improved performance for networks that are shaped irregularly, by
avoiding the use of distance information of nodes that are far away from each other.
Another modification of this approach is to implement it as a distributed solution
(instead of the centralized solution used so far, which relies on collecting all nodes’
information at a central location), which has been proposed in [29].

3.6 Rendered Path Localization

A challenge in range-free localization is to ensure that large numbers of reference
nodes are uniformly distributed across the network. If this is not given, many solutions
will fail or deliver poor results, particularly in anisotropic WSNs with possible holes.
In anisotropic networks, the Euclidean distances between pairs of nodes may not
closely correlate with the hop counts, because holes in the network force paths
between the nodes to have curves. This is particularly common when nodes are
deployed randomly, with denser areas of nodes alternating with sparser areas, leading
to such holes.

As a consequence, the Rendered Path (REP) [14] protocol addresses this problem
by path rendering and virtual hole construction operations in a distributed manner.
The basic idea behind REP is to identify the boundaries of holes in a network and
to label the boundary nodes of different holes with different colors. When the short-
est path between two nodes passes the holes, it is rendered with the colors of the
boundary nodes, i.e., a path can be rendered by multiple colors. By passing holes,
the path is segmented according to the intermediate colorful boundary nodes. In
addition, REP also generates virtual holes to augment and render the shortest path
by calculating the Euclidean distance between two nodes based on the distance and
the angle information along the rendered path.

Consider two nodes s and t, separated by a hole H (see Fig. 8), where REP renders
a shortest path PG(s, t) between these two nodes.

Every point on the boundary of hole H is colored with the color of H and these
points are said to be H-colored. When a hole between nodes s and t exists, the
shortest path must intersect with the hole boundaries and REP knows (from the
colored points and their colors) how many different holes a path has passed, i.e., the
number of passed holes is equal to the number of different rendered colors.

Figure 8 illustrates a simple basic scenario for REP. The figure shows a convex
hole H at point o, which is H-colored. The shortest path between s and t (Pst) is
segmented into so and ot, where we assume that |so| = d1 and |ot | = d2. Based on
the law of cosines, the triangle formed by s, t, and o has the following mathematical
relationship:

11 Range-Free Localization Techniques 369

Fig. 8 Basic scenario of REP

N

R1

R2

R3

|st |2 = |so|2 + |ot |2 − 2 |so| . |ot | .cos∠sot

and consequently:

dst =
√

d2
1 + d2

2 − 2d1d2cosπ.

In order to obtain the angle between so and ot, REP creates a virtual hole (approxi-
mately round-shaped) around o, with radius r, such that the former shortest path s-o
-t is blocked. The center o of this virtual hole is then called focal point. The color of
the virtual hole is the color of o and the new shortest path between s and t is therefore
augmented to bypass the enlarged hole. The right graph in Fig. 8 illustrates that the
new shortest path P∈

st can be segmented into three pieces: an uncolored line sa (of
length d1

∞), an o-colored arc (of length dab), and another uncolored line bt (of length
d2

∞). The length dab reflects angle and can be determined as

π = 2σ − dab

r
− arccos

r

d1
− arccos

r

d2
.

The distance dst between nodes s and t can then be determined from the length
information on the two rendered paths Pst and P∈

st.
The focus in this discussion and illustration has been on a simple scenario with

a single hole separating two nodes. However, in real settings, it may often occur
that paths interact with hole boundaries at more than one point, e.g., when a path
intersects along a segment of a boundary with a convex hole or at several discrete
points with a concave hole. However, solutions to these scenarios can be similarly
derived as for the situation with a single boundary point.

370 C. Poellabauer

Fig. 9 Principle of SeRLoc
localization

1 α2

d1 d2

α b

3.7 Secure Range-Independent Localization

The Secure Range-Independent Localization (or SeRLoc) protocol [12] is concerned
with providing range-free localization in untrusted environments. To achieve secure
localization, SeRLoc is primarily concerned with providing a decentralized solution
that is resource-efficient, but also robust against security threats.

Toward this end, SeRLoc assumes that some nodes in the network know their
location and orientation, e.g., the positions of these locators can be obtained using
GPS receivers. Another assumption is that locators are equipped with sectored anten-
nas with M sectors (while regular sensor nodes are equipped with omnidirectional
antennas). A certain known directivity gain G(M) and an idealized angular recep-
tion are also assumed. Sensors then determine their positions using beacons that
are transmitted by the locators; this principle is illustrated in Fig. 9. Each locator
transmits different beacons at each antenna sector, where each beacon contains the
coordinates of the locator and the angles of the antenna boundary lines. Sensor nodes
collect these beacons and use them to determine whether they are within a specific
antenna sector for the transmitting locator. Each sensor also knows the maximum
transmission range for each locator, which can further be used to limit the size of
the sector. Once beacons from all locators have been collected, a sensor node can
determine the overlap between the sectors to identify the region within which they
must reside.

Once this region has been determined, the sensor node then computes the center
of gravity and assumes that this is the sensor’s location.

As previously mentioned, a primary goal of SeRLoc is to provide localization in
untrusted environments and therefore, SeRLoc includes a variety of security mech-
anisms. First, encryption is used to protect localization information, i.e., all beacon
messages are encrypted using a shared global symmetric key (pre-loaded on sensor
before deployment). Every sensor also shares a symmetric pairwise key with every
locator.

Next, the use of a shared symmetric key does not identify the source of the
messages a node receives. Therefore, a malicious node could impersonate multiple
locators. To prevent malicious nodes from injecting false localization information
into the network, sensors must authenticate the source of the beacons using collision-
resistant hash functions. Each locator Li has a unique password PW i , which is
blinded with the use of a collision-resistant hash function such as MD5 [26]. Due to

11 Range-Free Localization Techniques 371

the collision resistance property, it is computationally infeasible to find a value PW j ,
such that H(PW i) = H(PW j), with PW i PW j . The hash sequence is generated
using the following approach:

H0 = PWi , Hi = H
(

Hi−1
)

, i = 1, . . . , n,

with n being a large number and H0 never revealed to any sensor. Each sensor has
a pre-loaded table containing the identifier of each locator and the corresponding
hash value Hn(PW i). Now, assume that locator Li wants to transmit its first bea-
con and sensors initially only know the hash value Hn(PW i). The beacon message
contains (Hn−1(PW i), j) with the index j = 1 (i.e., the first hash value pub-
lished). Every sensor receiving this beacon can now authenticate the locator only if
H(Hn−1(PW i)) = Hn(PW i). Once verified, the sensor replaces Hn(PW i) with
Hn−1(PW i) in its table and increases the hash counter by one.

3.8 Event-Driven Localization

Recent work on localization has resulted in another type of range-free solutions,
called event-driven localization. In these techniques, certain types of events, such
as radio signals, light or laser beams, sound blasts, etc., are issued and nodes in the
network perform event detection to determine their positions. This section provides
an overview of solutions that belong to this category of localization algorithms.

The Lighthouse Approach

The idea behind event-based localization is to determine distances, angles, and posi-
tions using concrete events such as radio waves, beams of light, or acoustic signals
transmitted by a reference node and received by a sensor node. In the Lighthouse
location system [27], sensor nodes can determine their location with high accuracy
without the need for additional infrastructure components besides a base station
equipped with a light emitter.

The concept behind the Lighthouse approach is illustrated in Fig. 10. It uses an
idealistic light source, which has the property that the emitted beam of light is parallel,
i.e., the width b remains constant. The light source rotates and when the parallel
beam passes by a sensor, it will see the flash of light for a certain period of time
tbeam, which varies with the distance between the sensor and the light source (since
the beam is parallel). The distance d between the sensor and the light source can then
be expressed as

d = b

2sin π
2

,

where expresses the angle under which the sensor sees the beam of light as follows:

372 C. Poellabauer

Fig. 10 The lighthouse local-
ization approach (top view)

Spotlight Device

N2 N3 N4 N5

d

N1

π = 2σ
tbeam

tturn
.

Here, tturn is the time the light source takes to perform a complete rotation. The beam
width b is known and a constant, therefore, a sensor can then calculate the value of
tbeam as

tbeam = t2 − t1

and
tturn = t3 − t1,

where t1 is the time the sensor sees the light for the first time, t2 is the time the sensor
no longer sees the light, and t3 is the time when the sensor sees the light again.

So far, we assumed that the beam width b is constant, independent from the
distance between light source and receiver node. However, perfectly parallel light
beams are difficult to realize in practice and even very small beam spreads can
result in significant localization errors. For example, a beam width of 10 cm and a
beam spread of leads to a beam width of 18.7 cm at a distance of 5 m. An additional
requirement is that the beam width should be as large as possible to keep inaccuracies
small. To achieve this, two laser beams can be used to create the outline of a “virtual”
parallel beam since the sensor nodes are only interested in detecting the edges of the
virtual beam represented by the two laser beams.

The Spotlight Approach

Similar to the Lighthouse approach, another example for a range-free localization
method that does not require reference nodes and uses events for localizations is
Spotlight [35, 36]. The key concept behind this approach is to generate events
(e.g., light beams), where the time when an event is detected, together with cer-
tain spatio-temporal properties of the generated events, can be used to derive sensor
node locations. Key assumptions for this approach are that a Spotlight device can

11 Range-Free Localization Techniques 373

Fig. 11 Point scan event
distribution function

Ey(ti)

Ex(ti)

horizontal scan

ve
rt

ic
al

 s
ca

n

generate events that can be detected by sensor nodes, the Spotlight device knows
its location and the time when the event was created, the sensors in the network are
time-synchronized, and the sensors have line-of-sight (LOS) to the Spotlight device.

The Spotlight protocol performs the following steps:

1. A Spotlight device distributes events e(t) in the space A over a certain period of
time.

2. Sensor nodes record the time sequence Ti = {ti1, ti2, . . ., tin} at which events are
detected.

3. After the event distribution, these collected times are transmitted to the Spotlight
device.

4. The Spotlight device determines the locations of the sensor nodes using the col-
lected time sequences and the known Event Distribution Function E(t).

The Event Distribution Function E(t) is the core technique and an essential com-
ponent of the Spotlight approach and multiple solutions for E(t) have been proposed:

• In the Point Scan function, it is assumed that the sensors nodes are placed along
a straight line, as shown in Fig. 11. The Spotlight device generates events, such
as light spots, along this straight line with a constant speed. This leads to a series
of event detections at the sensor nodes, where the set of timestamps when such
events were detected by node i is described as Ti = {ti1}. The event distribution
function is described as:

E (t) = {p | p ∩ A, p = t ∈ s},

where A describes the straight line going from coordinates (0,0) to (0,l), i.e.,
A = [0, l] and The localization function can then be derived as

374 C. Poellabauer

t = 3

t = t0 = 1

t = 2

0000 0001 0010 0011

0100 0101 0110 0111

1011101010011000

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1011101010011000

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1011101010011000

1100 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1011101010011000

1100 1101 1110 11111101

Fig. 12 Line scan event distribution function

L (Ti) = E (ti1) = {ti1 ∈ s} .

• In the Line Scan function (Fig. 12), nodes are distributed in a two dimensional
plane (A = [l × l] ⊂ R2) and it is assumed that the Spotlight device can generate
an entire line of events simultaneously (e.g., such as a laser).
Given a scanning speed of s and a set of event detection timestamps (for node i),
the line scan function is defined as

Ex (t) = {pk | k ∩ [0, l] , pk = (t ∈ s, k)} f or t ∩ 0, l/s and

Ey (t) = {pk | k ∩ [0, l] , pk = (k, t ∈ s − l)} f or t ∩ l/s, 2l/s.

The localization function can then be derived from the intersection of the vertical
and horizontal scans, i.e.,

L (Ti) = E(ti1)∪ E(ti2).

11 Range-Free Localization Techniques 375

Fig. 13 The area cover imple-
mentation

1

Event 1

Event 2 Event 4

Anchor

A

2
B

3

Event 3

5

Anchor

4

• In the Area Cover function, Spotlight devices that can cover an entire area are being
used. With this approach, a sensor field A is partitioned into multiple sections, each
assigned a unique binary identifier, called code (Fig. 13). Each section Sk within
area A has then a unique code k and events are generated according to the encoded
bit in the bitstring. The area cover function is then:

BIT (k, j) =
{

true if jth bit of k is 1
false if jth bit of k is 0

and

E (t) = {p | p ∩ Sk, BIT (k, t) = true}.

The localization function can then be described as

L (Ti) = {p | p = COG (Sk) , B I T (k, t) = true if t ∩ Ti , BIT (k, t)

= false if t ∩ T − Ti }.

Multi-Sequence Positioning

Finally, the Multi-Sequence Positioning (MSP) approach is another example of event-
based localization [39] and works by extracting relative location information from
multiple simple one-dimensional orderings of sensor nodes.

For illustration of the concept behind MSP, consider Fig. 13, which shows a
small sensor network with five nodes with unknown locations and two reference
nodes with known locations. There are multiple event generators placed around
the network and each generator produces an event at different points in time. For
example, such events can be ultrasound signals or laser scans with different angles.
The nodes in the sensor network detect these events at different times, depend-
ing on their distances to the event generators. For each event, we can then estab-
lish a node sequence, i.e., a node ordering (which includes both the sensor and the

376 C. Poellabauer

Fig. 14 Basic concept of
MSP

1

Event 1

Event 2 Event 4

Anchor

A

2

B

3

Event 3

5

Anchor

4

Table 1 Node sequence for
the four events generated in
Fig. 14

Event 1 A – 1 – 5 – 3 – 4 – 2 – B

Event 2 1 – 2 – B – A – 3 – 5 – 4
Event 3 4 – 5 – B – 3 – A – 2 – 1
Event 4 B – 2 – 3 – 1 – 4 – A – 5

anchor nodes) based on the sequential detection of the event. An example of such
ordering for the situation shown in Fig. 13 is presented in Table 1. Then, a multi-
sequence processing algorithm narrows the potential locations for each node to a
small area and finally, a distribution-based estimation method estimates the exact
locations.

The main concept behind the MSP algorithm is to split a sensor network area
into small pieces by processing node sequences. For example, in the example in
Fig. 14, performing a straight-line scan from top to bottom results in a node sequence
2-B-1-3-A-4-5. The basic MSP algorithm uses two straight lines to scan an area from
different directions, treating each scan as an event. A left-to-right scan leads to a node
sequence 1-A-2-3-5-B-4.

Since the reference nodes have well-known locations, the two reference nodes
in Fig. 14 split the area into nine parts. This process can be extended to cut the
area into smaller pieces by increasing the number of reference nodes and scans
(from different angles). The basic MSP algorithm processes each node sequence to
determine the boundaries of a node (by searching for the predecessor and successor
reference nodes for the node) and shrinks the location area of this node according to
the newly obtained boundary information. Finally, a centroid estimation algorithm
sets the center of gravity of the resulting polygon as the estimated location of the
target node.

11 Range-Free Localization Techniques 377

4 Discussion and Comparison

While the primary goal of range-free techniques is to produce localization solutions
that are inexpensive (and ideally also with low computational and communication
overheads), while typically providing less accurate results compared to range-based
techniques. This section qualitatively compares the different localization schemes
described in this chapter, discusses their underlying techniques, including the advan-
tages and disadvantages of these techniques.

Centralized Versus Distributed Localization

In centralized localization schemes, node information is collected by a centralized
server, which then executes the localization algorithm. Then, the server can use
the computed locations for a variety of sensor network management tasks (e.g., to
establish routes) or it can send the locations to the individual sensor nodes. Since
the server can learn the entire network topology, the outcome can be optimized.
On the other hand, the computational requirements of the server are typically very
high. Additional downsides of a centralized approach are the large communication
overheads (i.e., topology information must be collected centralized and location
information may have to be disseminated to all nodes) and that location changes
may take a long time to be recognized (i.e., these techniques work best in stationary
networks).

In a distributed localization scheme, each sensor node independently determines
its location, typically by exchanging information with neighboring sensor nodes,
communicating with neighboring reference nodes, or by observing events (such as
light beams). In contrast to centralized solutions, the overheads (communication and
computation) are typically lower (making distributed solutions also more scalable),
but since every node only knows localized information, the localization error tends
to be larger.

Localization protocols such as MDS, convex position estimation, and Spotlight are
centralized solutions due to their reliance on network-wide information for position-
ing. Other protocols such as APIT, APS, REP, and SeRLoc are distributed by nature.
Finally, some protocols, e.g., hop-based positioning schemes, can be implemented
both in distributed or centralized fashion.

Table 2 summarizes some of the key advantages and disadvantages of typical state-
of-the-art centralized and distributed localization schemes. Generally, the increased
communication overhead in centralized localization schemes limits the scalability
of these schemes, but can lead to significantly more accurate positions. On the other
hand, with distributed schemes, localization is performed locally only, leading to
typically scalable solutions that produce results with larger errors.

Communication and Computational Complexity

The localization schemes discussed in this chapter vary widely in their communica-
tion and computational overheads (and consequently also their energy requirements).

378 C. Poellabauer

Table 2 Comparison of centralized and distributed localization schemes

Centralized schemes Distributed schemes

Sensor cost Low Low-Medium
Number of anchors Small High
Accuracy Medium Low
Scalability Medium High
Computation overhead Sensor: Low Server: High Low
Communication overhead High Low
Robustness to anisotropic topologies Low Medium

For example, centralized solutions typically have large communication overheads,
where network-wide information is collected centrally and positioning results may
have to be reported back to each individual sensor node in the network. Algorithms
based on graph theory (e.g., convex position estimation) or data analysis techniques
(e.g., MDS) also have high computational requirements on the centralized server. For
example, MDS has a computational cost of [24, 30], although variants of MDS with
improved scalability have also been proposed [32], including a distributed version of
MDS [9]. Due to the high communication overheads, centralized solutions typically
scale poorly and react very slowly to topology changes. However, compared to the
requirements for the server, the computational requirements for sensor nodes are
usually very limited, which can limit the energy costs.

In contrast, in decentralized solutions, each sensor nodes communicates with
neighboring nodes to determine its position. The overall communication overheads
in the network can therefore be lower, but each node must execute its own version
of the localization scheme and the overheads introduced depend on the complexity of
the localization algorithm. For example, APIT is a rather computationally intensive
distributed algorithm that performs best when the number of reference nodes within
the vicinity of a sensor node is large (i.e., greater than 20). However, with 20 reference
nodes, the intersections of 1140 areas need to be analyzed. On the positive side, since
localization is performed locally, distributed schemes can detect changes in topology
rather quickly (e.g., depending on the frequency of information exchange between
reference nodes and sensor nodes) and therefore the latencies in positioning can be
kept low.

Localization Accuracy

The accuracy of localization schemes and the error in the computed positions depend
on a variety of parameters, including the number of reference nodes. For example,
as mentioned previously, APIT performs best when the number of reference nodes
“visible” to a sensor node is rather large, which requires a highly dense network of
reference nodes. Further, schemes such as APIT perform best when the reference
nodes are randomly distributed throughout the network, which is not always feasible
in a real deployment. Compared to distributed solutions, centralized schemes have

11 Range-Free Localization Techniques 379

the advantage that they collect network-wide information, thereby allowing them
to optimize their positioning algorithms. As a consequence, centralized localization
algorithms typically provide positions with higher accuracy than distributed solutions
that determine sensor location using only limited (local) information.

The achievable accuracy also depends significantly on the network topology, e.g.,
REP applies a path rendering technique to remove the impact of holes in the network.
Simulations have shown that the accuracy of REP is significantly better than both
APS and APIT in isotropic networks [6, 23]. However, REP assumes (i) that the
network has high node density to allow it to achieve accurate boundary recognition,
(ii) that the shortest path between two nodes is close to a straight line (if there are
no holes), and (iii) that the length of an arc can be estimated from node connectivity
along the circle boundary.

Schemes based on concepts in graph theory, such as MDS, can provide accurate
results if the network is not too sparse. For example, simulation results [30] have
shown that connectivity-based MDS methods achieve an average localization error
of 0.31R (where R is the radio range in a randomly deployed network with mean
1-hop connectivity of 12.1).

In localization schemes that rely on localization events, a typical goal is to utilize
an asymmetric system design to keep the overheads at the sensors low, i.e., sensor
nodes can use simple techniques to detect the events. In the Lighthouse approach,
an accuracy of 10 cm in a square space of 5 m*5 m has been demonstrated when the
event emitter is carefully calibrated. The event distribution needs to be very accurately
timed and typically line-of-sight is required for event detection. However, uneven
terrain and the reliance on mechanical parts (e.g., rotating emitter) make careful
calibration difficult. In contrast, MSP has the advantage that events are emitted by
multiple event sources in different locations of the network (however, a sensor node
must be able to detect events from at least two different emitter sources) and that
precise control of event generation is not required, i.e., events can be generated
anytime (and only event observation is necessary for localization).

Tables 3 and 4 summarize key advantages and disadvantages of the localization
protocols discussed in this chapter. The goal is to emphasize the key functional and
performance differences between the different techniques, to facilitate the selection of
an appropriate localization solution given a specific network topology or application
and to help identify potential research directions.

5 Research Directions

The last decade has seen the emergence of a variety of localization techniques and
protocols, most of which belong to the class of area- or hop-based schemes. Event-
based systems belong to a newer category that has received a significant amount of
attention recently. In the area of event-based systems, more works is needed to address
challenges such as accurate calibration, positioning accuracy, and how to maintain
line-of-sight. When line-of-sight is not given, a secondary localization technique can

380 C. Poellabauer

Table 3 Summary of localization techniques (part 1)

Localization
protocol

Type Centralized or
distributed

Reference nodes Security
features

Convex Point
Estimation

Area Centralized Medium-high number required No

APS Hop Distributed Medium-high number required No
APIT Area Distributed Many required No
MDS Hop Centralized None No
REP Hop Distributed Few required No
Ring Overlapping Area Distributed Medium number required No
SeRLoc Area Distributed Sectored antennas Yes
Lighthouse Event Distributed Light emitter (1+) No
Spotlight Event Centralized Event generator No
MSP Event Centralized Event generator (2+) No

Table 4 Summary of localization techniques (part 2)

Localization
protocol

Overhead
(comput.)

Overhead
(commun.)

Accuracy Scalability

Convex point
estimation

High (server)
Low (sensor)

Medium Good Medium

APS Low Low Medium-Good Good
APIT High Low Medium Good
MDS High Medium Medium Medium
REP High Medium High (anisotropic)

Medium (regular)
Good

Ring Overlapping Medium Low Medium-Good Good
SeRLoc Medium Low Medium-Good Good
Lighthouse Low Low Good Medium
Spotlight Medium (server)

Low (sensor)
Low High Medium

MSP Medium (server)
Low (sensor)

Medium Good-High Good

be employed, possibly with reduced accuracy. The concept of multimodal localiza-
tion (i.e., use of multiple localization techniques simultaneously) is not only attractive
because of its robustness, but also its ability to further reduce localization error and
to provide verifiability. Such integration of multiple techniques could also be used
to combine range-based with range-free technologies in order to take advantage of
the strengths of each approach. For example, range-based techniques can provide
high accuracy, but often require additional ranging hardware, extensive environmen-
tal profiling, and careful system tuning and calibration. On the other hand, range-
free techniques can be more economic at the resource-constrained sensors. More
research is required to investigate new protocols that combine cost-effectiveness and
accuracy.

11 Range-Free Localization Techniques 381

Among the protocols discussed in this chapter, only SeRLoc addresses the need for
security in wireless sensor networks. Localization is critical to most sensor networks
and attacks can render them ineffective. However, very little work has been done to
provide robust and secure localization schemes. SeRLoc has the ability to protect
against wormholes, Sybil attacks, and attacks intended to compromise sensor nodes.
While it provides some security, more work will be needed, especially for sensor
network application in emergency response or military settings. In [11], the authors
attempt to address some of the shortcomings of SeRLoc, specifically focusing on
providing robust localization and verification of the location claim of a sensor node.
The work in [11] does not require centralized management and is also not vulnerable
to jamming.

More work is also needed to limit the impact of localization techniques on the
communication and computation overheads, hardware costs, the need for centralized
computation, and the need for dedicated event generators. Most sensor networks
are composed of very low-cost technology, where the accuracy of localization can
be affected by the hardware limitations of the sensors or by environmental noise
affecting signal or event detection. By applying techniques such as uncertainty-
based averaging, error propagation control, or data fusion, these impacts could be
mitigated. Finally, there remain many challenges to be addressed in network topology
and density, e.g., REP is an effort to address holes and irregular shapes in a network
that could be problematic for connectivity-based localization techniques. These are
complex challenges that remain open problems, especially for large networks and
networks with varying densities.

Finally, most localization techniques focus on position estimation in two-dimensional
space and very little prior work has focused on three-dimensional space. Techniques
based on graph theory (e.g., convex position estimation) can be extended to three-
dimensional space when the positions are extended to include a third component
(x, y, z), however leading to significantly increased computational complexity. Hop-
based techniques can also be extended rather easily if all three coordinates of the
reference nodes are known. Area-based techniques will typically require more sig-
nificant changes to compute the intersections of spheres and other three-dimensional
objects instead of simple circles and triangles. Finally, while event-based techniques
such as MSP may rather easily be adapted to three-dimensional scenarios, other tech-
niques that are based on light events (e.g., Lighthouse) may be difficult to implement
or require significant amounts of additional hardware (e.g., multiple simultaneous
light beams in different directions in the Lighthouse scheme).

6 Summary

Localization in sensor networks is essential for many sensing applications and net-
work management activities. This chapter provided a survey of range-free local-
ization techniques in wireless sensor networks, including techniques based on hop
count, area information, neighborhood information, and event detection. For many of

382 C. Poellabauer

these techniques, it is required that there are sufficient reference nodes and that those
nodes are evenly distributed throughout the network. While the accuracy obtained by
range-free localization techniques is typically lower than the accuracy of range-based
techniques, a main advantage of range-free localization is that typically no additional
hardware is needed and localization can therefore be performed at a lower cost. This
chapter compared a variety of centralized and distributed localization techniques,
including techniques belonging to the event-based positioning category. These tech-
niques vary significantly in their overheads, performance, scalability, and the number
of reference nodes. This chapter concluded with a comparison of these techniques,
including a discussion of open research questions.

References

1. I. Borg, P. Groenen, in Modern Multidimensional Scaling: Theory and Applications (Springer,
New York, 1997)

2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and
control theory. in Society for Industrial and Applied Mathematics (SIAM) (Philadelphia, PA,
1994)

3. Y.-T. Chan, W.-Y. Tsui, H.-C. So, P.-C. Ching, Time-of-arrival based localization under NLOS
conditions. IEEE Trans. Veh. Technol. 55(1), 17–24 (2006)

4. C.R. Comsa, A.M. Haimovich, S.C. Schwartz, Y.H. Dobyns, J.A. Dabin, Time difference of
arrival based source localization within a sparse representation framework. in Proceedings of
the 45th Annual Conference on Information Sciences and Systems (CISS) (Baltimore, MD,
2011)

5. L. Doherty, K.S.J. Pister, L. El Ghaoui, Convex position estimation in wireless sensor networks.
in Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications
Societies (Anchorage, AK, 2001)

6. T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher, Range-free localization schemes
for large scale sensor networks. in Proceedings of the 9th Annual International Conference on
Mobile Computing and Networking (MobiCom) (San Diego, CA, 2003)

7. J. Hightower, G. Borriello, Location system for ubiquitous computing. Comput. J. 34(8), 57–66
(2001)

8. B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, in Global Positioning System: Theory and
Practice, 5th edn., (Springer, 2008)

9. X. Ji, H. Zha, Sensor positioning in wireless ad-hoc sensor networks using multidimensional
scaling. in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM) (Hong Kong, China, 2004)

10. I. Khan, H. Mokhtar, M. Merabti, A new self-detection scheme for sensor network boundary
recognition. in Proceedings of the 34th Conference on Local Computer Networks (Zurich,
Switzerland, 2009)

11. L. Lazos, S. Capkun, R. Poovendran, Robust position estimation in wireless sensor networks.
in Proceedings of the International Workshop on Information Processing in Sensor Networks
(IPSN) (2005)

12. L. Lazos, S. Capkun, R. Poovendran, SeRLoc: Secure range-independent localization for wire-
less sensor networks. in Proceedings of the ACM Workshop on Wireless Security (WiSe) (2004)

13. H. Lee, A. Klappenecker, K. Lee, L. Lin, Energy efficient data management for wireless sensor
networks with data sink failure. in Proceedings of the 2nd IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS) (Washington, DC, 2005)

11 Range-Free Localization Techniques 383

14. M. Li, Y. Liu, Rendered path: range-free localization in Anisotropic sensor networks with holes.
in Proceedings of the Thirteenth Annual International Conference on Mobile Computing and
Networking (MobiCom) (Montreal, Canada, 2007)

15. C. Liu, K. Wu, T. He, Sensor localization with ring overlapping based on comparison of received
signal strength indicator. in Proceedings of the IEEE International Mobile Ad-Hoc and Sensor
Systems (MASS) Conference (Fort Lauderdale, FL, 2004)

16. Y. Liu, Z. Yang, X. Wang, L. Jian, Location, localization, and localizability. J. Comput. Sci.
Technol. (IJST) 25(2), 274–296 (2010)

17. K. Lorincz, D. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Mainland,
S. Moulton, M. Welsh, Sensor networks for emergency response: challenges and opportunities.
IEEE Pervasive Comput. 3(4), 16–23 (2004)

18. Y. Lu, W. Wang, Y. Zhong, B. Bhargava, Study of distance vector routing protocols for mobile
ad hoc networks. in Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom) (Dallas - Fort Worth, TX, 2003)

19. V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, N. Shroff, Design of surveillance sensor
grids with a lifetime constraint. in Proceedings of the First European Workshop on Wireless
Sensor Networks (EWSN), (2004), pp. 263–275

20. L.S. Monteiro, T. Moore, C. Hill, What is the accuracy of DGPS? J. Navig. 58(2), 207–225
(2005)

21. Y. Nesterov, Interior point polynomial algorithms in convex programming. in Society for Indus-
trial and Applied Mathematics (SIAM) (Philadelphia, PA, 1994)

22. D. Niculescu, B. Nath, Ad hoc positioning system (APS). in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM) (San Antonio, TX, 2001)

23. D. Niculescu, B. Nath, DV based positioning in ad hoc networks. Telecommun. Syst. 22(1–4),
267–280 (2003)

24. N. Patwari, A.O. Hero, J.A. Costa, Learning sensor location from signal strength. in Secure
Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks, Advances
in Information Security Series, vol. 30 (Springer, 2006)

25. R. Peng, M.L. Sichitiu, Angle of arrival localization for wireless sensor networks. in Pro-
ceedings of the 3rd Annual IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (2006)

26. R. Rivest, The MD5 message-digest algorithm. RFC 1321, April 1992
27. K. Roemer, The lighthouse location system for smart dust. in Proceedings of the 1st Interna-

tional Conference On Mobile Systems, Applications And Services (2003), pp. 15–30
28. A. Savvides, C.-C. Han, M.B. Strivastava, Dynamic fine-grained localization in ad-hoc net-

works of sensors. in Proceedings of the 7th Annual International Conference on Mobile Com-
puting and Networking (Rome, Italy, 2001)

29. Y. Shang, W. Ruml, Improved MDS-based localization. in Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) (2004)

30. Y. Shang, W. Ruml, Y. Zhang, M.P. Fromherz, Localization from mere connectivity. in Proceed-
ings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc) (Annapolis, Maryland, 2003)

31. Y. Shang, W. Ruml, Y. Zhang, M. Fromherz, Localization from connectivity in sensor networks.
IEEE Trans. Parallel Distrib. Syst. 15(11), 961–974 (2004)

32. Y. Shang, W. Ruml, M.P. Fromherz, Positioning using local maps. Ad Hoc Netw. 4(2), 240–253
(2006)

33. I.G. Siqueira, L.B. Ruiz, A.A.F. Loureiro, J.M. Nogueira, Coverage area management for
wireless sensor networks. Int. J. Netw. Manag. 17(1), 17–31 (2007)

34. I. Stojmenovic, Position based routing in ad hoc networks. IEEE Commun. Mag. 40(7), 128–
134 (2002)

35. R. Stoleru, T. He, J.A. Stankovic, Range-free localization, Chapter in secure localization and
time synchronization for wireless sensor and Ad Hoc networks. in Advances in Information
Security Series, ed. by R. Poovendran, C. Wang, S. Roy, vol. 30 (Springer, 2007)

384 C. Poellabauer

36. R. Stoleru, T. He, J.A. Stankovic, D. Luebke, A high-accuracy low-cost localization system
for wireless sensor networks. in Proceedings of the ACM Conference on Embedded Networked
Sensor Systems (SenSys) (San Diego, CA, 2005)

37. J. Undercoffer, S. Avancha, A. Joshi, J. Pinkston, Security for Sensor Networks. in Proceedings
of the CADIP Research Symposium (2002)

38. O. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: a hybrid, energy-
efficient approach. in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies (Infocom) (Hong Kong, 2004)

39. Z. Zhong, T. He, MSP: multi-sequence positioning of wireless sensor nodes. in Proceedings of
the 5th International Conference On Embedded Networked Sensor Systems (2007), pp. 15–28

Chapter 12
Energy-Efficient Task Management

Hady S. AbdelSalam and Stephan Olariu

Abstract In numerous applications of wireless sensor networks, the reliability of
the data collected by sensors is cast as specific QoS requirements expressed in terms
of the minimum number of sensors needed to perform various tasks. Designing
a long-lived sensor network with reliable performance has always been challeng-
ing due to the modest non-renewable energy budget of individual sensors. In order
to promote network longevity, this chapter looks at two energy-aware task man-
agement protocols: the first protocol is centralized, while the second one is fully
distributed. Both protocols assign sensors to tasks based on their remaining energy
so that energy expenditure among neighboring sensors is as even as possible. We
compare the network longevity, i.e., the functional lifetime of the sensor network,
achieved by assigning tasks to sensors using the proposed protocols against an opti-
mal task assignment and also against energy-oblivious protocols. Extensive simu-
lation results have revealed that the performance of the proposed protocols is very
close to that of the optimal task assignment. Furthermore, our simulations have shown
that the proposed protocols can increase the functional longevity of the network by
about 16 %.

1 Introduction

An important research direction in wireless sensor networks (WSNs) is to develop
techniques that increase the useful lifetime (a.k.a. functional longevity) of the net-
work, while maintaining reliable performance satisfying application-specific QoS

H. S. AbdelSalam (B)

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
e-mail: hasalam@microsoft.com

S. Olariu
Computer Science Department, Old Dominion University, Norfolk, VA 23529, USA
e-mail: olariu@cs.odu.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 385
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_12,
© Springer-Verlag Berlin Heidelberg 2014

386 H. S. AbdelSalam and S. Olariu

requirements. The major challenge in the design of efficient protocols that satisfy
these requirements is the modest, non-renewable energy budget of individual sensors.
A great deal of research has been conducted to optimize sensor energy expendi-
ture at different levels of the network stack: MAC [19, 20], routing [25], avoiding
energy holes [16, 24], data aggregation [8] among others. In spite of all this, the
problem of designing energy efficient protocols that promote network longevity and
that satisfy the stipulated QoS requirements of the application is still very much
open. As it turns out, in such a context, energy-oblivious task management protocols
may lead to uneven expenditure of sensor energy by assigning uneven workloads to
sensors. This, in turn, translates into reduced sensor density around those heavily
loaded sensors and may, eventually, lead to the creation of energy holes that parti-
tion the network into disconnected islands. We refer the reader to relevant chapters
in this handbook where many interesting facets of the energy expenditure problem
are discussed in some detail. We note, in passing, an unmistakable trend in recent
network research: namely, persistent and sustained efforts directed at making the
sensors energetically self-sufficient by harvesting energy from the ambient environ-
ment. Notwithstanding these efforts, that are still very much in their infancy, the
problem of designing energy-efficient protocols for sensor networks will continue
to be relevant for the foreseeable future. This is acutely perceived in contempo-
rary research in nano-sensor technologies where rather minute quanta of energy are
being harvested from the environment; moreover, the rate at which energy is har-
vested is low, making the design of energy-efficient protocols for nano-scale sensors
imperative.

In this chapter we explore a different angle of energy-related problems in sensor
networks that, to the best of our knowledge, has been overlooked in the sensor net-
works literature. Specifically, we look at task assignment protocols, namely strategies
for assigning sensors to tasks. We show that improper task assignment can result in
severely skewed energy consumption of sensor energy due to tasking a group of sen-
sors more than others. Figure 1 illustrates a simple example of the problems that could
well arise due to improper task assignment. Assume that sensors were deployed as
shown in Fig. 1a; two tasks T1 and T2 are issued at two different locations. Without

S1

S2

S3
S6

S4

S5

S7

R S8

S9

S1 S2 S5

1

S7

3

S3 S9S6

2

S8S4

5

Sensors

4

E
n

er
g

y
L

ev
el

s

T2T1

(a) (b)

Fig. 1 An example of improper task assignment

12 Energy-Efficient Task Management 387

loss of generality, we assume that sensor energy comes in discrete units and that
each task consumes one unit of energy of each participating sensor and requires the
cooperation of at least three sensors to collect accurate results (QoS requirements for
reliable performance). Furthermore, we assume that the sensing range of sensors is
R, so sensors within range R from the task location are allowed to participate in the
task, other sensors cannot participate because the monitored phenomenon is outside
their sensing area. In Fig. 1b, the vertical axis, labeled “Energy Levels,” keeps track
of the remaining energy units of sensors S1 through S9. For illustration purposes, we
assume that sensors S1 through S9 are awake during the recruiting process for tasks
T1 and T2.

Now, assume that the recruiting protocol for task T1 selected sensors S4, S5, and
S6. Although the recruited sensors still have enough energy to complete task T1, the
energy of sensors S4 and S5 will be totally depleted after the task completion, hence
they will not be able to participate in any subsequent task. Moreover, there is no way
to recruit three sensors for task T2. On the other hand, if the recruiting protocol for
task T1 had selected sensors S1, S2, and S3, then S4 and S5 would have saved their
energy to participate in task T2. In fact, a more careful protocol would not recruit
sensors S4 and S5 together for task T2; instead it would recruit sensors S7, S9 and
either S4 or S5. This latter choice guarantees that if there was a subsequent task T3 at
the same location as task T2, there would be sensors with sufficient energy to execute
the new task.

In spite of its simplicity, the previous example shows that task assignment can be
very tricky and that performing it improperly may cause many problems, ranging
from reducing network density in different areas of the network to creating energy
holes that might segment the network into disconnected sub-networks. In turn, this
might have a serious impact on network reliability and on longevity by increasing the
task failure rate. For these reasons, when it comes to selecting the required workforce
for a given task, task assignment protocols must take into consideration the difference
in remaining energy at the individual sensor level.

In many WSN applications, the sensors will provide information in response to
queries or tasks assigned to them by Task-Issuing Entities (TIEs) placed, for exam-
ple, in the helmet of fire-fighters, first responders, paramedics and other authorized
personnel. For each task, a workforce consisting of some of the sensors in the area
of interest is to be recruited according to the QoS requirements specific to the task
at hand. In this chapter we assume that QoS requirements are expressed in terms
of the minimum number of sensors needed to perform a task. In this scenario, the
naive approach that allows all the sensors in the same neighborhood to participate in
all the tasks regardless of QoS requirements seems to be completely inappropriate,
especially when the remaining sensor energy is very limited and network longevity
is an important consideration. Hence, efficient task management, in conjunction with
an energy-aware workforce selection, play a vital role in the success of this kind of
networks.

The remainder of this chapter is organized as follows, a summary of related work
is presented in Sects. 2, 3 we state our assumptions about sensor capabilities and
the underlying network model. In Sect. 4 we use renewal theory to reason about the

388 H. S. AbdelSalam and S. Olariu

time-independent awake probability of sensors. Further, Sect. 5 discusses theoretical
results involving task management policies that maximize network longevity. In
Sect. 5.1 ideal protocols that guarantee an optimal task assignment are discussed.
These theoretical results motivate our efforts, detailed in subsequent sections of the
chapter, to keep the energy span of sensors as low as possible. In line with this goal,
the next two section present our two energy-efficient task assignment protocols.
Specifically, in Sect. 6, we discuss the details of our centralized workforce selection
protocol. A distributed version of workforce selection protocol is presented in Sect. 7.
Our extensive performance evaluation and simulation results are discussed in Sects. 8,
9 offers concluding remarks and discusses areas for future investigations.

2 Related Work

Due to the modest non-renewable energy budget at the individual sensor level, there
has been a consensus in the literature that if the functional longevity of the WSN is to
be promoted, sensor energy must be used wisely. This state of affairs has motivated
extensive research devoted to optimizing sensor energy expenditure and to promoting
network longevity. This flurry of research activity has produced a good number of
energy-efficient or energy-aware protocols for WSN. Somewhat surprisingly, less
attention has been devoted to developing efficient protocols for task management and
workforce selection in WSN. To the best of our knowledge, we are the first researchers
to consider the workforce selection problem in WSN [6, 7]. Consequently, we could
not find other protocols against which to compare the performance of our proposed
protocols. For this reason, we had to compare the performance of our protocols
against the performance achieved when using ideal assignment based on sensor
remaining energy.

In previously-published work [7], we proposed a centralized task management and
workforce selection protocol for special purpose single-hop sensor-based mission-
critical networks. The proposed protocol was used to recruit sensors that reside within
a disc centered at the current location of the TIE. A major drawback of the previous
protocol, it can only recruit sensors that lie within a single-hop from each other and
also from the TIE.

In later work published in [6], we tried to remove the single-hop restriction by
using the concept of network training [21]. The main idea was to divide the deploy-
ment area around TIEs using a set of concentric coronas and wedges. The cells which
are formed from the intersections of coronas and wedges are used as the basic tasking
units. The sizes of the coronas and wedges are chosen such that sensors within each
tasking unit are assumed to be within the same transmission range. After selecting an
appropriate coordinator, the workforce protocol proposed in [7] can be used within
each cell independently. Although, the protocol looks simple and straightforward,
it has a major scalability issue which is inherent in network training. In particular,
as we move from the TIE outward, the size of the tasking cells increases from one
corona to the next. After a certain point, some sensors within the same cell will not

http://dx.doi.org/10.1007/978-3-642-40009-4_5

12 Energy-Efficient Task Management 389

be within the communication range of each other, hence the workforce selection
protocol described in [7] cannot be used.

In this chapter, we attempt to overcome the shortcomings mentioned in the pre-
vious protocols. First, we develop a tasking model that is appropriate for the alter-
nating wakeup/sleep duty cycles inherent to sensor design. On top of this model,
we propose two workforce selection protocols for sensor networks, the first proto-
col is centralized while the other is distributed. The new protocols do not have the
single-hop restriction we had in the previous protocols. Hence, they can be used
to recruit sensors anywhere in the network. Furthermore, the distributed protocol
has the advantage of reducing the overhead imposed on any central nodes selected
to be responsible for the coordination of the workforce selection process. We also
provide a simple probabilistic analysis to estimate protocol necessary parameters.
Finally, through simulation we compare the performance of the proposed protocols
against ideal workforce selection and energy-oblivious protocols in order to verify
and measure the increase in the functional longevity of the network.

3 The Network Model

In our network model, we assume the following:

• The sensors are powered by a non-renewable on-board energy source. When its
energy supply is exhausted, the sensor becomes in-operational; hence the sensors
sleep and wake up alternatively to save their energy budget. Sleep and awake cycles
for different sensors occur asynchronously. For example, the sensors may sleep
for a random amount of time distributed uniformly in the range [Ts, TS] and may
stay awake for another random amount of time uniformly distributed in the range
[Tl , TL];

• The sensors are deployed uniformly in the deployment area, assumed to be a planar
region;

• The sensors may or may not have IDs. In any case, our protocols do not use such
IDs;

• As already mentioned, in addition to the sensors, the WSN contains a small number
of sinks, hereafter referred to as TIEs, responsible for assigning sensors to tasks
and for getting the aggregated result back. The TIEs have a steady energy supply
and are awake all the time. In addition, the TIEs have powerful transceivers with
application-dependent ranges that can be used to issue tasks to sensors within
different areas of the network;

• The sensors have a maximum transmission range denoted by tx , and a maximum
sensing range denoted by R. The communication and sensing ranges of sensors are
governed by the inequality (tx ≥ 2R). This inequality guarantees that whenever
two sensors are within the same sensing range (i.e., they can cooperate in the same
task), they will be able to communicate with each other during the workforce
selection process;

390 H. S. AbdelSalam and S. Olariu

Fig. 2 Minimum distance
between two concurrent tasks

• At deployment time, all sensors pack the same amount of energy. It is helpful to
imagine that, initially, each sensor has L units of energy and that each time the
sensor participates in a task it expends one unit of energy. That is, each sensor can
participate in L tasks before its energy drops to zero, at which moment the sensor
expires;

• Each sensor is aware of its remaining energy level;
• Each task is associated with a certain location, and if the distance between the

locations of two tasks is less than 2(tx + R), then they are not allowed to run
concurrently to avoid interference (see Fig. 2). This constraint can be partially lifted
if the TIEs can communicate between themselves through a separate channel. If
this communication channel is available and if the distances between the centers
of the tasks to be performed concurrently are relatively small, then these tasks can
be combined into one single task. The QoS requirements of the combined task is
chosen to be the maximum of the QoS requirements of the individual tasks. Only
one TIE should be responsible for running the combined task. Once the aggregated
result arrives at the TIE, it can be forwarded directly to other TIEs;

• Each task requires the cooperation of a workforce of sensors and consumes one
unit of energy of each participating sensor. The size of the workforce is reflecting
the QoS requirements specific to the task (see below);

• The network uses any of the well known localization protocols to localize sensors
[2, 4, 5, 9–11, 14, 21], so each sensor has a rough estimate of its current position;

• We assume that sensors are able to distinguish between background noise and the
collisions [22] that occur when there is an overlap between the transmissions of
two or more sensors;

• Finally, we assume that QoS requirements of sensing tasks is expressed in terms
of the minimum number of sensors that must participate in each task.

4 The Time-Invariant Awake Probability

In deployments populated by energy-constrained sensors it is of paramount impor-
tance to design energy-aware protocols that promote the functional longevity of
the underlying network. This typically means that the sensors spend their lifetime
alternating between two modes: in sleep mode the sensor turns off its radio interface

12 Energy-Efficient Task Management 391

Fig. 3 Illustrating the renewal
process of wake-up times

and clocks down its processor; in awake mode the sensor is fully functional, with its
processor running at top speed and its radio interface turned on.

Let the sequence of random variables A1, A2, · · · , An, · · · denote the duration
of consecutive awake times of a given sensor. It is quite natural to assume that these
awake times are independent identical distributed (i.i.d.) random variables with a
common distribution function FA and that A has finite expectation. Similarly, let the
sequence of random variables S1, S2, · · · , Sn, · · · denote the duration of consecutive
sleep times of a given sensor. We assume that the sleep times are i.i.d. with a common
distribution function FS . As before, we assume that S has finite expectation.

To make a choice, we assume that the sensor wakes up for the 0-th time at t = 0.
As it turns out, this assumption is adopted for convenience only; as far as the limiting
probability of the sensor to be awake at some arbitrary time t this assumption is
irrelevant. Referring to Fig. 3, we find it useful to model the lifetime of the given
sensor as a renewal process {N (t), t ≥ 0}, where the renewal points are the moments
when the sensor wakes up (other than the 0-th wake-up at time t = 0). Let

X0 = 0, X1 = A1 + S1, X2 = A2 + S2, · · · , Xn = An + Sn, · · ·

be the inter-arrival times of the renewal process where for n ≥ 1, Xn is the time inter-
val between the (n − 1)-th and the n-th renewals where, recall, t = 0 is taken as the
0-th renewal. It is clear that the random variables X1, X2, · · · , Xn, · · · have a com-
mon distribution FX , which is the convolution of FA and FS . Since, by assumption,
both A and S have finite expectation, so does X . In fact, we can write

μ = E[X] = E[A + S] = E[A] + E[S] < ∞. (1)

We are interested in the limiting probability h(t) that our sensor is awake at time t .
To derive the integral equation satisfied by h(t), we condition on the time of the first
renewal, X1. Indeed, we can write

h(t) =
∞∫

0

Pr[{awake at time t} | {X1 = s}] dFX1(s)

=
t∫

0

Pr[{awake at time t} | {X1 = s}] dFX1(s)

+
∞∫

t

Pr[{awake at time t} | {X1 = s}] dFX1(s). (2)

392 H. S. AbdelSalam and S. Olariu

Observe that for 0 ≤ s ≤ t , we can write

Pr[{awake at timet} | {X1 = s}] = h(t − s). (3)

On the other hand, for t > s we have

∞∫
t

Pr[{awake at time t} | {X1 = s}] dFX1(s)

= Pr[{A1 > t} ∩ {X1 > t}]
= Pr[{A1 > t}] [since {A1 > t} ⊆ {X1 > t}]
= 1 − FA(t). (4)

By virtue of (3) and (4) combined, (2) becomes

h(t) = [1 − FA(t)] +
∫ t

0
h(t − s) dFX (s). (5)

Writing
Q(t) = 1 − FA(t),

it is easy to see that h(t) satisfies the renewal integral equation

h(t) = Q(t) +
∫ t

0
h(t − s) dFX (s) (6)

and that Q(t) has the following properties:

• Q(t) ≥ 0;
• Q(t) is non-increasing for all t ≥ 0;
• ∫ ∞

0 Q(t) dt = ∫ ∞
0 [1 − FA(t)] dt = E[A] < ∞.

Assuming that X is non-lattice,1 the Key Renewal Theorem [18] guarantees that

lim
t→∞ h(t) = lim

t→∞[1 − FA(t)] + lim
t→∞

1

μ

∫ ∞

0
Q(s) ds

= lim
t→∞

1

μ

∫ ∞

0
Q(s) ds

= 1

μ
E[A]

= E[A]
E[A] + E[S] [by (12.1)]. (7)

1 A discrete random variable is said to be lattice if all the values it can assume with positive
probability are of the form nh for some h > 0 and integer n.

12 Energy-Efficient Task Management 393

To summarize our findings, we have proved the following result.

Theorem 1 Assuming that A has finite expectation and that T = A+S is non-lattice
with finite expectation, the limiting probability, p, that a given sensor is awake at
time t equals

p = E[A]
E[A] + E[S] .

We note that the conclusion of Theorem 1 is intuitively satisfying and that the result
itself has been a part of the sensor network folklore where it had been used without
proof. It is also worth mentioning that Theorem 1 has an unmistakable PASTA [23]
“flavor”: for, consider an observer external to the network that is watching and noting
the behavior of our sensor. The observer will note that the long-term probability of
the sensor to be awake is E[A]

E[A]+E[S] . On the other hand, Theorem 1 tells us that
sufficiently far away from the origin (i.e., t = 0), the probability that the sensor is
awake at an arbitrary time t is also E[A]

E[A]+E[S] ;
Finally, we note that Theorem 1 is a very convenient tool since it allows one to use

the time-invariant probability of a sensor being awake in lieu of the instantaneous
awake probability. As a result, in practice it is often natural to assume that a sensor
sleeps for a random amount of time uniformly distributed in the range [Ts, TS] and
stays awake for a random amount of time uniformly distributed in the range [Tl , TL].
Theorem 1 guarantees that we can evaluate p by writing

p =
m(Tl+TL)

2
m(Tl+TL+Ts+TS)

2

= Tl + TL

Tl + TL + Ts + TS
. (8)

5 Network Longevity

Consider a deployment area populated by N sensors, each having the same initial
on-board energy. We assume that energy is expended only by participating in various
tasks and that communication, housekeeping and governance activities do not involve
any energy expenditure. While this is unrealistic, we feel the assumption is justified on
two grounds: first, that sensing devices are mechanical devices (e.g., a thermometer)
that, as a rule, require a substantial amount of energy to collect data; and, second,
because task management establishes a lower bound on energy expenditure.

Assume a possibly infinite sequence of tasks T1, T2, . . . , Tk, . . . issued sequen-
tially, without the benefit of lookahead or speculation. Moreover, even though in
practice the tasks may be correlated and, as a result of executing a task, a known
sequence of other tasks is likely to be executed, we assume that the tasks are sto-
chastically independent. This assumption is justified by the fact that any correlation
between tasks can only help with scheduling and task management. This is, indeed,
the case as correlation between tasks can lead to sharing sensor data or even aggre-
gated data, reducing the need to expend sensor energy for these tasks. Likewise, if

394 H. S. AbdelSalam and S. Olariu

lookahead is permitted, task management is easier and can lead to a more efficient
management of sensors’ energy.

In the literature, network longevity is defined in various ways [1], including:

Definition 1: The longevity of the network is the number m of tasks T1, T2, · · · , Tm

that are executed until the energy of some sensor is totally depleted;
Definition 2: The longevity of the network is defined as the number m such that

tasks T1, T2, · · · , Tm are executed but task Tm+1 cannot be executed;
Definition 3: For α, (0 < α ≤ 1), the α-longevity (or α-lifetime) of the network is

the number of tasks the network can perform until the sensor density
drops below α × ρ where ρ is the initial density.

It is plain that Definition 1 is rather pessimistic since, in general, the fact that
one sensor has depleted its energy budget does not mean that no further tasks can be
performed. On the other hand, a sensor whose energy has been depleted while other
sensors still have a lot of remaining energy, reflects poorly on the effectiveness of the
task management strategy. Next, Definition 2 is useful in proving theoretical results
about the intrinsic properties of any task management strategy. The most flexible
definition, Definition 3, will be adopted in this chapter and all our simulation results
will be expressed in terms of α-longevity for various values of α.

5.1 Optimal Task Management Strategies

Before we start discussing task management strategies, it is appropriate to establish
notation and terminology. Assume that, initially, all sensors have L units of energy
and that each sensor expends one unit of energy for each task in which it participates.

Consider a task management strategy S and assume for some positive integer
n, (n ≥ 0), tasks T1, T2, · · · , Tn have been performed under S:

• let max(S, n) be the largest remaining energy of any sensor. Recall that max(S, 0)

= L;
• let min(S, n) be the smallest remaining energy of any sensor; Recall that min(S, 0)

= L;
• let σ(S, n) = max(S, n) − min(S, n) be the energy spectrum of S after having

performed n tasks;
• let r(S, n) denote the residual number of energy units available, collectively, to all

the sensors;
• let a(S, n) be the number of sensors with nonzero remaining energy.

For a task T , the number, w(T), of sensors that need to perform the task is
referred to as the size of the workforce of T . We say that a task Tn+1 is feasible if
w(Tn+1) ≤ r(S, n). In other words, a task is feasible if the size of its workforce does
not exceed the residual energy units available in the network.

We now define formally the concept of an optimal task management strategy.

12 Energy-Efficient Task Management 395

Definition 1 A task management strategy S is optimal if a feasible task can always
be performed.

We are now ready to give a necessary and sufficient condition for the optimality
of a task management strategy.

Theorem 2 A task management strategy S is optimal if, and only if, for all n ≥
0, σ (S, n) ≤ 1.

Proof First, let S be a task management strategy such that for every sequence of
tasks and for all n ≥ 0, σ (S, n) ≤ 1. Let m be the first subscript for which the tasks
T1, T2, · · · , Tm have been performed but Tm+1 cannot be performed. We need
to show that Tm+1 cannot be feasible. Indeed, the only way in which Tm+1, while
feasible, cannot be executed is that

a(S, n) < w(Tm+1) ≤ r(S, m).

By definition, this implies that max(S, m) ≥ 2 and min(S, n) = 0.2 However, this
is a contradiction since now σ(S, m) = max(S, m) − min(S, m) ≥ 2. Thus, the
strategy S must be optimal.

Conversely, let S be a task management strategy and let j be a subscript for which
σ(S, j) > 1. We propose to show that S cannot be optimal by exhibiting a feasible
task that cannot be performed. Let N be arbitrary. We distinguish the following cases:

Case 1: r(S, j) ≤ N
Since σ(S, j) > 1, it follows that a(S, j) < r(S, j) ≤ N . Now consider a task

Tj+1 with w(Tj+1) = a(S, j) + 1 ≤ r(S, j). While, clearly Tj+1 is feasible it
cannot be performed by the system since the number of sensors with nonzero energy
is smaller than the required size of its workforce.

Case 2: r(S, j) > N
If a(S, j) < N then we proceed as in Case 1 above. Assume, therefore, that

a(S, j) ≥ N . Consider the tasks Tj+1, Tj+2, · · · , Tk with

w(Tj+1) = w(Tj+2) = · · · = w(Tk) = N

in such a way that a(S, k − 1) ≥ N and a(S, k) < N . Since it must be the case that
a(S, k) < r(S, k), consider the task Tk+1 with w(Tk+1) = r(s, k). Clearly, Tk+1 is
feasible, yet is cannot be performed since there are too few sensors with nonzero
energy.

We just proved that S cannot be optimal and the proof of the theorem is complete.

Theorem 2 suggests the following simple optimal task management strategy:
Optimal Task Management Strategy: when selecting sensors for task Tn with

n ≥ 0, select as many sensors as possible at energy level max(S, n). If w(Tn) exceeds

2 To see why min(S, n) = 0, observe that if min(S, n) > 0 then all the sensors have a nonzero
energy budget and so the feasible task Tm+1 can definitely be performed.

396 H. S. AbdelSalam and S. Olariu

the number of sensors at energy level max(S, n), select the balance from the sensors
with energy level max(S, n) − 1.

Notice that, the Optimal Task Management Strategy is a nice theoretical tool
that, unfortunately, is not directly implementable. This is because, in order to save
energy, the sensors with the largest remaining energy may not be awake when we
need them. However, motivated by Theorem 2, our task management strategies will
strive to keep the energy spectrum as small as possible. While this is not guaranteed
to achieve optimality unless the energy spectrum is always one, the intuition is that,
in most cases, it will come close.

In the next two sections we shall discuss two very different task management
strategies that were, originally, presented in [1] and [3]. In Sect. 6 we present a
centralized task management strategy, while in Sect. 7 we discuss the details of a
distributed such strategy.

6 Centralized Task Management

In our centralized task management protocol each task is issued by one of the
TIEs, usually the TIE closest to the center of the Area-of-Interest (AoI) consid-
ered to be a disk of a radius compatible with the sensing range R of sensors [15].
We refer to the task management strategy detailed in this section as centralized
because the the selection of the set of sensors (a.k.a. the workforce) to participate
in a given task occurs in a centralized fashion, coordinated by one of the sensors
within the vicinity of the center of the AoI. As discussed in [15], the TIE need
not be co-located with the AoI: this is because the TIE has a sufficiently large
transmission range that can target (by broadcasting) the sensors around the AoI.
Of course, the sensors are assumed to have at least a coarse-grain awareness of the
location [4, 17]. We refer to the sensor that coordinates the task as task leader or task
coordinator. The task leader is selected using any of the well-known leader elec-
tion protocols [12, 13]. We begin by describing our assumptions about the tasking
model.

Each sensing task is associated with a certain location chosen to be at the center of
the AoI. Based on the location of the AoI, the location of the sensor, and the sensing
range R, each sensor can determine whether it can participate in a given task or not.
We assume that each task is associated with predetermined QoS requirements that
have to be satisfied and that determine the size, w, of the workforce that will perform
the task.

Under the assumptions described above, the TIEs issue tasks and later receive
the aggregated results for decision making. Figure 4 illustrates the different stages of
running a task under this model.

A task starts when one of the TIEs sends a sequence of Call-To-Work (CTW)
messages to get the attention of a sufficiently large number of sensors that we
will refer to as “candidate sensors.” After that, the candidate sensors run among
themselves a leader election algorithm to select the task coordinator or the task

12 Energy-Efficient Task Management 397

Fig. 4 Tasking model in the centralized protocol

leader which will be responsible for coordinating the workforce selection process.
After selecting the leader, a contention-based workforce selection mechanism is
used to recruit the required workforce based on sensors’ remaining energy. The
workforce selection process involves one or more bidding rounds coordinated by
the task leader. After collecting the required workforce, task execution begins
immediately by the recruited sensors. Task execution time might vary based on
the type of the sensing task and the sensor capabilities, especially in a heteroge-
neous deployment. When the sensors complete execution, they start sending their
sensory data back to the task leader in the order in which they joined the work-
force. In the next subsections, we provide the technical details of each of these
steps.

6.1 CTW Messages

Recall that in our tasking model, we assume that the TIE sends a sequence of k CTW
messages to attract the attention of a sufficient number of sensors for the next task.
An important parameter that the TIE has to evaluate is the parameter k.

An interesting problem is to determine the probability distribution of the number
of candidate sensors “collected” at the end of k CTW messages. Assume a network
density of ρ sensors/m2, that the sensing area of any task is π R2, and that the
probability that a sensor is awake to receive a CTW message is p, independent of
other sensors.

Recall that, as mentioned earlier, we assume that in order to save energy, a generic
sensor alternates between sleep and awake periods: the sensor sleeps for a random
amount of time uniformly distributed in the range [Ts, TS]. Upon waking up, the
sensor stays awake for a random amount of time uniformly distributed in the range
[Tl , TL], after which is goes to sleep and the whole process is repeated. Observe that

398 H. S. AbdelSalam and S. Olariu

the TIE can use (8) to estimate the limiting probability, p, that a (generic) sensor is
awake.

Theorem 3 Let X1, X2, · · · , Xm be the number of candidate sensors collected, out
of a population of N sensors, by the first m CTW messages. Then, X1+ X2+· · ·+ Xm

is binomially distributed with parameters N and 1 − (1 − p)m.

Proof The proof is by induction on m. To settle the basis, we observe that

Pr[{X1 + X2 = j}] =
j∑

i=0

Pr[{X1 + X2 = j}|{X1 = i}] Pr[{X1 = i}]

=
j∑

i=0

Pr[{X2 = j − i}] Pr[{X1 = i}]

=
j∑

i=0

(
N − i

j − i

)
p j−i (1 − p)N− j

(
n

i

)
pi (1 − p)N−i

=
j∑

i=0

(
N

j

)(
j

i

)
p j (1 − p)2N− j

(
1

1 − p

)i

=
(

N

j

)
p j (1 − p)2N− j

j∑
i=0

(
j

i

)(
1

1 − p

)i

=
(

N

j

)
p j (1 − p)2N− j (2 − p) j

(1 − p) j

=
(

N

j

)
p j (2 − p) j (1 − p)2(N− j)

=
(

N

j

) [
1 − (1 − p)2

] j [
(1 − p)2

]N− j
.

Thus, X1 + X2 is binomially distributed with parameters N and 1 − (1 − p)2.
Next, let m, (m ≥ 2), be arbitrary and assume that the convolution X1 + X2 +

· · · + Xm−1 is binomially distributed with parameters N and 1 − (1 − p))m−1. As
before, we write

Pr[{X1 + X2 + · · · + Xm = r}]

=
r∑

k=0

Pr[{X1 + X2 + · · · + Xm = r}|{X1 + X2 + · · · + Xm−1 = k}]

Pr[{X1 + X2 + · · · + Xm−1 = k}]

=
r∑

k=0

Pr [{Xm = r − k}] Pr[{X1 + X2 + · · · + Xm−1 = k}]

12 Energy-Efficient Task Management 399

=
r∑

k=0

(
N − k

r − k

)
pr−k(1 − p)N−k

(
N

k

) [
1 − (1 − p)m−1

]k [
(1 − p)m−1

]N−k

=
r∑

k=0

(
N

r

)(
r

k

)
(1− p)N−r pr−k

[
1−(1− p)m−1

]k [
(1− p)m−1

]N [
(1− p)m−1

]−k

=
(

N

r

)
(1− p)N−r

[
(1− p)m−1

]N r∑
k=0

[
1−(1− p)m−1

(1− p)m−1

]k

pr−k

=
(

N

r

)
(1 − p)N−r

[
(1 − p)m−1

]N
[

p + 1 − (1 − p)m−1

(1 − p)m−1

]r

=
(

N

r

) [
1 − (1 − p)m]r [

(1 − p)m]N−r
.

We just proved that X1 + X2 +· · ·+ Xm is binomially distributed with parameters
N and 1 − (1 − p)m , completing the proof of the theorem.

In addition to being an interesting, and somewhat surprising, result in its own
right, Theorem 3 has the following useful consequence.

Corollary 1 The expected number of sensors collected by k CTW messages is

ρπ R2
[
1 − (1 − p)k

]
. (9)

The TIE can use equation (9) to estimate k, the least number of CTW messages
needed to attract the attention of at least c candidate sensors as follows:

c ≤ ρπ R2
[
1 − (1 − p)k

]

(1 − p)k ≤ 1 − c

ρπ R2

k ≥
ln(1 − c

ρπ R2)

ln(1 − p)

k =
⌈

ln(1 − c
ρπ R2)

ln(1 − p)

⌉
. (10)

At this point it is important to observe that c does not represent the number of
sensors required for the task; instead, c represents the number of candidate sensors
from which the required workforce w is to be selected. Hence, if the TIE wants to
collect a workforce of w sensors for the next task, it substitutes c in Eq. (10) by
c = f (w) ≥ w (the derivation of the function f (w) is presented later). This way
the protocol probabilistically attracts the attention of more than w candidate sensors.
From these sensors, only w sensors will be selected based on the difference in sensors’
remaining energy.

400 H. S. AbdelSalam and S. Olariu

6.2 Leader Election

Immediately after the last CTW message, candidate sensors willing to participate in
the next task go through a simple leader election procedure to elect the leader sensor
that will be responsible for coordinating the workforce selection process. The leader
election technique proposed here is a simplified version of a more general technique
that was previously proposed in [13].

The leader election process starts when each candidate sensor initializes an internal
countdown timer to an appropriate random value that is inversely proportional to
its remaining energy. Several formulas can be used for this purpose, for instance:
(A

Es
+r), or A(Eest −Es)+r), where A is a constant, Es is the remaining energy of the

sensor, Eest is the current estimate of the maximum energy in the task neighborhood,
and r is a random value.

It is clear that the previous formulas probabilistically give preference to sensors
with relatively high energy over other sensors; at the same time they produce random
values which can help reduce transmission collisions between sensors. The value of
the parameter A should be appropriately selected based on the maximum energy of
sensors and the range of the random variable r . In our simulation we used A = 10
while r was randomly selected in the range [1, 10].

When the timer of some sensor expires, the sensor transmits a message to all
its neighbors announcing itself as a task leader. When other sensors receive this
message, they realize that the leader has already been selected and they stop their
internal timers. When the timers of two or more sensors expire at the same time and
they start sending their messages concurrently, collisions occur. In such a situation,
collisions can be easily resolved by allowing colliding sensors only to go through
another round of counting down starting from randomly selected values. This process
continues until a leader is elected.

It is important to note that the leader election protocol described above can be
extended, in the obvious way, to allow the election of more than one leader forming
what we refer to as a coordination committee. The members of the coordination
committee share the same responsibilities as the task leader. For instance, when the
coordination committee has m members, leader sensor i should be responsible only
for coordinating bidding rounds i , i +m, i +2m and so on. However, in the single task
leader approach it would be responsible for coordinating all the bidding rounds for
this task. Using a coordination committee of three or four members instead of a single
task leader can distribute the task coordination load over different sensors which can
help balance energy consumption among the sensors. Moreover, the coordination
committee members still have the option to join the workforce if their energy allows
them to do so. This flexibility can help reduce the running time of the workforce
selection protocol.

12 Energy-Efficient Task Management 401

6.3 Workforce Selection

After the leader election stage, the workforce selection proceeds through one or
more bidding rounds. A bidding round is a contention-based mechanism used to
select a subset of sensors from a larger set based on a certain criterion. Each bidding
round has a number of bidding slots, explicitly specified in the CTW messages or
the bidding result messages of the previous rounds. Candidate sensors willing to
participate in a task show their interest by bidding randomly in one of the bidding
slots. The leader sensor of any round is responsible for coordinating the bidding
process (i.e., it announces the winning bidders at the end of each round, determines
whether there is a need for another bidding round and announces the number of
bidding slots in the next bidding round). Only single-bidder slots are considered
winning slots. Once the leader sensor announces the winning slots in a round, the
winning bidders (sensors which bid on any of the winning slots) immediately join
the workforce. If the required workforce is not fully recruited, bidding continues
for another round. In the new bidding round, not only previous round’s losers are
eligible to bid but also additional sensors who received the bidding results message
but were asleep during the CTW stage can place their bids. If the bidding extends
beyond the maximum number of bidding rounds allowed, there are two options avail-
able: (1) cancel the task, (2) execute the task with the currently recruited workforce.
Either way the TIE must be informed that the required level of QoS may not be
satisfied.

Immediately after a task leader has been elected (for the first bidding round) or
after the bidding result message (for subsequent bidding rounds), the timeline is
divided into a number of bidding slots; each bidder selects one of these slots at
random and transmits a short frame that contains the sensor current energy level and
the slot number (to avoid any confusion due to the lack of accurate synchronization
between sensors).

As a result of the bidding process, each bidding slot can have zero, one, or multiple
bids. Slots with no bids are useless, while those with multiple bidders result in garbled
messages and are ignored. Only messages in single-bidder slots can be received
correctly. At the end of each bidding round, the task leader records the number,
G, of single-bidder slots. If G is greater than the required workforce w, then the
task coordinator sensor selects the workforce among bidder sensors with the highest
energy level. If G is less than w, then it selects all the winning sensors and announces
another bidding round to collect the remaining workforce.

Each bidding result message contains a vector v that has s elements correspond-
ing to the s bidding slots in the preceding bidding round, as illustrated in Fig. 6. For
bidding slot i , the corresponding element v[i] is set to 0 to indicate that the bidding
sensor was not selected at this round, otherwise v[i] is set to a non zero temporary
ID to indicate that the bidding sensor was selected by the task coordinator to join the
workforce. A sensor starts task execution immediately after it joins the workforce.
When the sensors finish the execution of the required task and based on their tem-
porary IDs they sequentially send their results to the task coordinator for local data

402 H. S. AbdelSalam and S. Olariu

10

14

14 12

12

13

14

13

 Last
CTW

13, 14 14 10,12 13 14 12

Fig. 5 Illustrating the bidding process

aggregation. Finally, the task coordinator (the leader sensor) sends the aggregated
results to the TIE for further processing if necessary.

Candidate sensors participate in bidding with probabilities that are proportional
to the difference between their current energy and the maximum energy among
candidate sensors Emax . The TIE piggybacks on CTW messages its estimate of the
value of Emax in the neighborhood of the required task. In the first bidding round
of the first task within a certain area, Emax is unknown to the TIE, so candidate
sensors participate in bidding with probabilities 1

2 (we will justify this choice later).
In subsequent rounds, the leader sensor can estimate Emax from the bids received
so far and transmits the estimated value of Emax within the bidding results message.
This value is also transmitted with the aggregated result to the TIE which uses the
received values to update an internal two dimensional matrix that keeps track of the
current estimate of Emax in different regions of the network.

6.3.1 An Example

We feel it is appropriate, at this time, to give the reader an idea of how the bidding
process work. Referring to Fig. 5, assume that eight candidate sensors were identified
in the AoI; these sensors are denoted in Fig. 5 by their remaining energy levels.
Suppose further that eight slots were announced for bidding after the last CTW
message. In the first slot two sensors (one at level 14 and the other at level 13) have
transmitted; in the second slot no sensor has transmitted; in the third slot one sensor
has transmitted, and so on. It is important to note that since each sensor is transmitting
in one slot, the total number of bidders is eight. Now, slots with two transmissions
result in a collision at the receiver (i.e., at the task leader), while a single-bidder slot
result in a clear reception.

As illustrated in Fig. 6, after the last bidding slot, the task leader announces the
results of the bidding process. Specifically, the task leader announces that the sensors
that have bid in the first slot were unsuccessful, that the sensors that has bid in the

12 Energy-Efficient Task Management 403

Fig. 6 Announcing the results
of the bidding round

third slot has been successful and is assigned and ID of 1 in the workforce associated
with the task. Similarly, the sensors that have bid in slots five, seven and eight have
been successful and were assigned IDs 2, 3 and 4 in the workforce. Assuming that the
workforce associated with the task must contain more than four sensors, the bidding
process is continued, as above, until the workforce has been selected. It is important
to observe that in addition to selecting a workforce for the task the bidding process
also allows us to assign temporary IDs to the participating sensors. By using these
IDs the task leader can address each of the sensors individually and also it allows the
sensors to report their results to the task leader without collision.

Notice that as a result of the bidding process the task leader can estimate the
largest remaining energy budget of the sensors in the AoI. Since the highest “bid” in
the various slots was 14, the task leader knows that there are sensors with a remaining
energy level of 14. Since some of them have collided with other sensors (see the first
slot), not all the sensors at level 14 will participate in the current task. When the time
comes to select sensors for a subsequent task, the task leader will remember that
Emax = 14, which will be broadcast to all the sensors in the AoI as part of the CTW
messages.

6.4 Estimating the Number of Bidding Slots

Next, we show how the number of bidding slots in any bidding round is estimated.
Assuming that for a general bidding round we have n bidders and s slots, we calculate
the expected number of single-bidder slots in this round. We assume that a bidder
can bid on any slot with equal probability, more precisely 1

s , and since we have n
bidders that bid independently of each other, the probability that a specific slot has
only one bidder equals n(1

s)(1 − 1
s)n−1. Since we have s slots, the expected number

of single-bidder slots, G, can be expressed as

E[G] = n

(
1 − 1

s

)n−1

. (11)

Recall that in our workforce selection only single-bidder slots matter. Hence,
maximizing the number of these slots will definitely reduce the number of bidding
rounds needed. Since n is a discrete variable, we define the continuous variable x such
that x = n for all the values of n. Now, we can differentiate E[G] with respect to x

E[G] = x

(
1 − 1

s

)x−1

404 H. S. AbdelSalam and S. Olariu

dE[G]
dx

=
(

1 − 1

s

)x−1 [
1 + x · ln

(
1 − 1

s

)]
. (12)

The maximum value of E[G] occurs when its first derivative equals 0.

dE[G]
dx

=
(

1 − 1

s

)x−1 [
1 + x · ln

(
1 − 1

s

)]
= 0

1 = −x · ln

(
1 − 1

s

)

1 = ln

(
1 − 1

s

)−x

e =
[(

1 − 1

s

)s]− x
s

e ≈ (e)
x
s ⇒ x ≈ s ≈ n. (13)

Obviously, the approximation in Eq. (13) is valid for large values of s. Moreover,
Eq. (13) shows that the maximum value of E[G] occurs when the number of bidders
n equals the number of bidding slots s and that the maximum number of single-bidder
slots expected is given by

E[G]max = s · (1 − 1

s
)s−1.

For a task that requires a workforce of size w, the required number of single-bidder
slots is also w. Based on this, we can determine the number of slots to use as follows

G = w = s

(
1 − 1

s

)s−1

w ≈ s · e−1(
1 − 1

s

)

e · w ≈ s2

s − 1

s2 − e · w · s + e · w ≈ 0

s ≈
e · w

(
1 +

√
1 − 4

e·w
)

2
. (14)

For w > 3, (1 +
√

1 − 4
e·w) ≈ 2, hence Eq. (14) can be simplified to

s ≈ e · w (15)

12 Energy-Efficient Task Management 405

6.5 Determining a Suitable Number of Candidates

Recall that the bidding sensors are a subset of the candidate sensors, selected accord-
ing to some criteria. In this subsection we turn our attention to the relation between n,
the number of bidders and c, the number of candidate sensors. Previously, we men-
tioned that each candidate sensor participates in bidding with probability proportional
to the difference between its energy (i.e., Es) and the maximum energy among all
candidate sensors (i.e., Emax). In particular, a candidate sensor with energy level
Es should bid with probability 1

1+Emax −Es
. Assuming that the energy of candidate

sensors is uniformly distributed across σ consecutive levels, the expected number of
bidders can be related to the number of candidate sensors as follows,

E[n] =
σ−1∑
i=0

pi · ci

=
σ−1∑
i=0

1

1 + i
· c

σ

= c

σ

[
1 + 1

2
+ 1

3
+ · · · + 1

σ

]

= c · Hσ

σ

≈ c · [ln σ + γ]
σ

.

Solving for c, yields

c = σ · E[n]
ln σ + γ

≈ n · σ

ln σ + γ
, (16)

where γ ≈ 0.57721 is Euler’s constant. The TIE uses Eq. (16) to estimate the required
number of candidate sensors it has to collect through CTW messages in order to select
the workforce for the next task. The parameter σ in Eq. (16) reflects the average width
of the spectrum of sensors energy at different points in network lifetime. Since the
task management protocol is designed to balance energy expenditure among sensors
by minimizing variations in their energy, it is expected that the value of σ will remain
small most of the time. Simulation results verified this expectation and showed that
σ did not exceed 4 levels in all our experiments. More details will be presented in
Sect. 8.

Recall that in Sect. 6.3, in the presence of an unknown value for Emax , the partic-
ipation probability of sensors was taken to be 1

2 . Equation (16) can be used to justify
our choice of this value as follows. Equation (16) expresses the ratio between the
number of bidders and the number of candidate sensors as ln σ+γ

σ
. The average value

of this ratio for small values of σ (i.e ≤ 6) is 0.515 ≈ 0.5. Hence, at the very early
stage of the network lifetime when the differences between sensor energy levels are

406 H. S. AbdelSalam and S. Olariu

Fig. 7 Illustrating the distributed task management protocol

minor (i.e., σ is small) and when Emax is unknown, if each of the candidate sensors
participates in bidding with probability 1

2 , then the expected number of bidders will
be close to n, justifying our choice.

7 Distributed Task Management

One of the shortcomings of the centralized task management strategy is the excessive
load it imposes on leader sensors for coordinating workforce selection and data
aggregation. To overcome this problem, there are two possible approaches. As already
mentioned, one natural approach is to elect a task coordination committee (instead of a
single task leader) and to spread the workload across the members of the committee.
A second approach, that will be pursued in this section, is to design a distributed
version of the workforce selection protocol. In this version, we adopt the tasking
model depicted in Fig. 7.

The distributed task management model is similar to the centralized one described
in Sect. 6. However, it differs from it in the task assignment stage and in the way data
is aggregated. In the distributed model, task assignment involves two phases. In the
first phase, candidate sensors collected in the CTW stage run a distributed protocol
to determine the maximum energy among themselves (see Sect. 7.1). In the second
phase, each sensor decides whether or not to participate in the current task based on:

• the difference between its current energy and the maximum energy determined in
the first phase;

• its distance to the position of the AoI (see Sect. 7.2).

Our previous assumptions about the capabilities of sensors still hold. In the follow-
ing subsections, we present the details of the different phases of the task assignment
protocol.

12 Energy-Efficient Task Management 407

7.1 Phase 1: Estimating the Maximum Energy

The main goal of this phase is to run a fully distributed protocol in order to determine
Emax , the maximum energy among the candidate sensors. Assume that sensor energy
Es can be quantized into 2n levels (i.e., Es can be encoded in a string of n bits).
The idea is to let candidate sensors transmit the strings that represent their energy
levels bit by bit in a sequence of very short n packets (n iterations). The timeline
is divided into n slots, and sensors start the encoding process immediately after the
last CTW message.3 Sensors start their transmission from the most significant bit
to the least significant bit as follows: a value of 0 is not transmitted while a value
of 1 is transmitted. Sensors that pick up the values transmitted use the following
disambiguation scheme:

• No packets received: 0 is recorded;
• A single packet received: 1 is recorded;
• Two or more packets received or a collision detected: 1 is recorded.

A sensor drops out if the binary representation of its energy has a 0 in its kth most
significant bit, and it detected a collision or received one or more packets in the kth

iteration (time slot). It the end, each sensor stores the maximum energy among all
candidate sensors in the sensing area. Note also that there is no loss of information
in the process of estimating the maximum.

At this point, one might argue that we cannot trust the synchronization achieved
using the last CTW message because packets received by different sensors suffer from
different propagation and processing delays. Although this seems to be true, we still
can argue that the achieved level of synchronization is more than sufficient for our
purpose especially when there is no actual payload (data) in the packets transmitted.
In this interpretation, detecting a collision is equivalent to receiving a packet. Hence,
if the iteration slot length is T , and the transmission time to send any of these small
packets is Tt , the only way in which this protocol fails is when a sensor is delayed
for a period longer than T − Tt . In this case its string is transmitted and interpreted
shifted by one or more bits. However, since the slot time T can be chosen arbitrarily,
we can choose T such that the probability that a sensor will be delayed longer than
T − Tt is very small, especially when the sensors are within the same sensing area.

Next, we illustrate by an example how this protocol works. Referring to Fig. 8,
we assume a scenario where there are five sensors (i.e., S1, S2, S3, S4 and S5) that
lie within the sensing area of a specific task. We assume that the respective energy
levels of these sensors are 11101, 10111, 11011, 01111 and 11100. To determine
the maximum, we need five iterations. In the first iteration, only sensors S1, S2, S3
and S5 transmit. A collision is recorded and all the sensors set the most significant
bit of the perceived maximum to 1. Moreover, sensor S4 realizes it should drop out
since its most significant bit is a 0. In the second iteration, only sensors S1, S3, and
S5 transmit. Again a collision is recorded, and all the sensors set the second most

3 We assume that CTW messages include information about the number of remaining CTW
messages.

408 H. S. AbdelSalam and S. Olariu

Epoch Transmissions Bit
1 <S1,S2,S3,S5> 1
2 < S1,S3,S5> 1
3 <S1,S5> 1
4 Ambient 0
5 <S1> 1

S1[11101], S2[10111], S3[11011], S4[01111] , S5[11100]

Last
CTW S1

S2

S3

S5

S1

S5

S1

S3

S5

E1 E2 E3 E4 E5

S1

1 1 1 0 1
Drift Safety
Distance

Sensing
Range R

S1

S4

S2

01111

10111

11101

S3

11011

S5

11100 Task
Position

Fig. 8 Estimating the maximum energy among candidate sensors

significant bit to 1. Sensor S2 drops out. In the third iteration, only sensors S1 and
S5 transmit. All the sensors set the third most significant bit to 0. Sensor S3 remains
inactive for the remaining iterations. In the fourth iteration, there is no transmissions,
so 0 is recorded. Finally, in the fifth iteration, only sensor S1 transmits. Sensors set
the least significant bit of the perceived maximum to 1 and reach the consensus that
the maximum energy is 11101.

It is worthwhile to mention that when the sensors know the maximum energy
within each sensing area, they can benefit from this in many different ways. For
example, this knowledge allows each sensor to adjust its duty cycle (the ratio between
its sleep and awake time) based on the difference between its remaining energy Es

and the maximum energy in its sensing area Emax . As a result, sensors with relatively
low energy (Ei < Emax) can sleep for longer periods than sensors with relatively
high-energy.

The previous protocol suggests an easy way to select a group of sensors to be
responsible for sending the aggregated sensory data to the next hop in its way to the
TIE. Obviously, many sensors may have energy equal to Emax , so an appropriate
mechanism should be used to allow one sensor only to transmit. An easy way to do
this is by letting each of these sensors initialize a countdown timer with a random
value. The sensor whose timer expires first transmits a a special short message to
announce itself. Sensors with non-expired timers turn off their timers immediately
when they receive such message. If two or more timers expired simultaneously, a
collision occurs and the colliding sensors go into another round till the packet is
transmitted successfully.

7.2 Phase 2: To Participate or Not to Participate

After having determined the maximum energy in the sensing area, each sensor has
to decide whether or not it is going to participate in the task at hand. Each sensor

12 Energy-Efficient Task Management 409

Fig. 9 Partitioning the AoI
into k disjoint regions

makes this decision based on the difference between its energy Es and the maximum
energy Emax determined in the previous phase.

Since our protocol is fully distributed and there is no central node to coordinate
sensor participation, the sensor will have to make decisions independently of each
other. Unfortunately, under these conditions we cannot guarantee that the number
of participating sensors matches the required workforce. The best we can do while
keeping our protocol distributed is to keep the actual number of recruited sensors as
close as possible to the required workforce.

To achieve this goal we divide the sensing range into k disjoint regions of equal
size using concentric circles of radii r1 < r2 < · · · < rk = R as illustrated in Fig. 9.
The radii that divide the sensing area into regions are determined in such a way that
the number of sensors in these regions are as even as possible. The best way to do this
under uniform distribution is to choose these radii such that the areas of the regions
are equal. Mathematically, this can be expressed as follows:

π · (r2
i − r2

i−1) = π · (r2
i−1 − r2

i−2)

r2
i = 2r2

i−1 − r2
i−2 (17)

substituting in (17) for ri−1, ri−2 …

r2
i = 3r2

i−2 − 2r2
i−3

r2
i = 4r2

i−3 − 3r2
i−4

...

410 H. S. AbdelSalam and S. Olariu

Fig. 10 Illustrating the various decision rounds

A simple inductive argument shows that

r2
i = i · r2

1 − (i − 1)r2
0

ri = √
i · r1. (18)

If the entire sensing area is divided into k regions of equal area (i.e., π R2

k), then

R = rk = √
k · r1

r1 = R√
k
. (19)

Finally, substituting r1 in (18) yields

ri = R

√
i

k
. (20)

Based on the AoI position and its own position, each sensor can determine its
region. Participation decisions are made in decision rounds that run immediately
after estimating the maximum energy in the sensing area. Each decision round is
associated with an energy level that determines the set of sensors that can join the
selected workforce.

Referring to Fig. 10, in the first decision round, only sensors with energy equals to
Emax are allowed to transmit; in the second decision round, only sensors with energy
equals to Emax − 1 are allowed to transmit, and so on. The packets transmitted by
sensors are very short and contain no payload, the payload is implicitly encoded in
the transmission itself. Each decision round has k time slots corresponding to the k
regions described above. In slot i in decision round Emax − j + 1, only sensors that
are in region i with energy level equals Emax − j + 1 are allowed to transmit.

Each sensor initializes an internal counter to 0 and waits for the decision round
corresponding to its energy and the time slot corresponding to its region. It is possible
that the protocol collects the required workforce and terminates before the decision
round and slot of a sensor comes. The idea of the protocol is to recruit sensors one
by one based on their energy and using regions to reduce the number of sensors that

12 Energy-Efficient Task Management 411

are being added in each step (only one sensor at each step if possible). The sensors
that pick up the packets transmitted use the following disambiguation scheme:

• No packets received: do nothing;
• A clear packet received: increment the counter by 1;
• A collision recorded: increment the counter by 2.

The protocol terminates when the internal counter of a sensor is greater than or
equals the required workforce. Only sensors that transmitted join the workforce. To
guarantee that the protocol terminates in a finite number of decision rounds, there
should be a maximum number of decision rounds that the protocol allows. If the
last decision round is reached, then all the sensors that are in the sensing area and
have not already transmitted, transmit in their corresponding slot irrespective of their
energy level.

7.3 Average Size of the Over-recruited Workforce

Next, we estimate the average number of over-recruited workforce by evaluating the
probabilistic distribution of the number of sensors in each region and show how it
changes with the number of regions k. Assuming a uniform distribution of sensors in
the sensing area, we can map the problem to the classical “balls and bins” problem in
which n balls are distributed uniformly at random into k bins. In our scenario we have
n sensors that are deployed randomly in k regions. The reader should note that here
n refers to the number of sensors in the sensing area with energy level that matches
the energy level determined by the decision round. Since sensors in the sensing area
may have different energy levels, n only represents a fraction of the total number of
nodes in the sensing area.

The event that a given sensor will be deployed in a particular region is a Bernoulli
trial with probability of success equal to the ratio between the region area to the whole
sensing area (i.e., 1

k since the regions areas are equal). Thus, the random variable Xi

which represents the number of sensors in region i follows a binomial distribution
B(n, 1

k).

Pr [{Xi = j}] =
(

n

j

)(
1

k

) j (
k − 1

k

)n− j

. (21)

To understand the source of over-recruiting notice that, as illustrated in Fig. 11, it
is quite possible that more than two sensors in the same region transmit in the same
slot, as happened in slot S4 where three sensors have transmitted. While all three of
these sensors will be part of the workforce, only two are counted and the protocol
proceeds to recruit more sensors even though it may have reached the desired size
of the workforce.

With this in mind, we are interested in evaluating the probability that more than
two sensors fall in the same region because this may result in recruiting more sensors
than the required size of the workforce. The sought probability is

412 H. S. AbdelSalam and S. Olariu

Fig. 11 Illustrating the source of over-recruiting

Pr [{Xi > 2}] = 1 − Pr [{Xi ≤ 2}]

= 1 −
2∑

j=0

(
n

j

) (
1

k

) j (
k − 1

k

)n− j

. (22)

To simplify our notation we define αi (n, k) as follows:

αi (n, k) =
i∑

j=0

(
n

j

) (
1

k

) j (
k − 1

k

)n− j

= 1

kn

i∑
j=0

(
n

j

)
(k − 1)n− j

α1(n, k) = 1

kn

[
(k − 1)n + n(k − 1)n−1

]
(23)

α2(n, k) = (k−1)n−2

kn

(
(k−1)2+n(k−1)+ n(n−1)

2

)
. (24)

By substituting (24) into (22) we obtain

Pr [{Xi > 2}] = 1 − α2(n, k). (25)

We are now ready to evaluate the expected size of the extra workforce recruited for
a given task. For this purpose, we define the random variable Yi that represents the
number of extra workforce in region i and also define Y = ∑k

i=1 Yi , the size of extra
workforce in the whole sensing area. Easy manipulations show that

E[Yi] =
n−2∑
j=0

j · Pr [{Yi = j}] =
n−2∑
j=0

j · Pr [{Xi = j + 2}]

=
n−2∑
j=1

j ·
(

n

j + 2

)(
1

k

) j+2 (
k − 1

k

)n−(j+2)

=
n∑

l=3

(l − 2) ·
(

n

l

)(
1

k

)l (
k − 1

k

)n−l

12 Energy-Efficient Task Management 413

Fig. 12 E[Y]vs.k/n

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
 [

Y
]

k/n

n=10
n=20
n=30

= n

k

n−1∑
l−1=2

(
n − 1

l − 1

) (
1

k

)l−1 (
k − 1

k

)(n−1)−(l−1)

− 2
n∑

l=3

(
n

l

)(
1

k

)l (
k − 1

k

)n−l

= n

k
[1 − α1(n − 1, k)] − 2 [1 − α2(n, k)] . (26)

By linearity of expectation

E[Y] =
k∑

i=1

E[Yi] = k · E[Yi]

= n [1 − α1(n − 1, k)] − 2k [1 − α2(n, k)] . (27)

Figure 12 gives more insight into how E[Y] changes with changes in k and n.
Obviously, as the number of regions k increases the expected number of extra work-
force recruited decreases to match the required workforce. It is also important to note
that E[Y] represents the expected number of extra workforce recruited assuming that
the protocol continues to run in all the slots of the decision round. However this is
not the case for many tasks in which the protocol terminates in the first few slots of
the first decision round. So, in fact, E[Y] is more like an upper bound on the extra
workforce recruited.

8 Performance Evaluation

Using C++, we have built a wireless sensor networks simulator that implements
different workforce selection protocols. As we mentioned earlier, to the best of our
knowledge we are the first to address workforce selection in WSN. Hence, we could

414 H. S. AbdelSalam and S. Olariu

not compare our protocols against other protocols. Hence, we compared the perfor-
mance of our proposed protocols to the performance achieved using ideal workforce
selection in which the workforce is selected from sensors with the highest energy in
the sensing range of the task being executed. In addition, we compare our protocols
to energy-oblivious protocol which uses the same CTW and bidding rounds mecha-
nisms described in our centralized protocol. The only difference is that the bidding
decisions of candidate sensors are made irrespective of their remaining energy. This
is different from our approach in which the estimate of the maximum energy among
candidate sensors, Emax , is used to control the probability by which candidate sensors
participate in bidding for the next task.

Our performance evaluation begins by specifying, in Sect. 8.1, the simulation
model along with the system parameters used in our simulations. Later, in Sect. 8.2
we present a detailed performance evaluation of our two task management protocols
obtained using the system model in Sect. 8.1.

8.1 Simulation Model

An important parameter which we need to consider when dealing with energy-neutral
protocols is the “Participation Factor” (PF). PF defines the probability by which can-
didate sensors participate in bidding. In our simulation, we run several experiments
assuming PF takes the values 0.5, 0.75, and 0.90.

Before presenting our results, we have to define network longevity. In a typical
sensor network, sensors are deployed with a predetermined density ρ which is usu-
ally chosen in a way that satisfies QoS requirements expressed in terms of number
of sensors participating in different sensing tasks. An appropriately chosen value
of ρ can provide a reliable network performance by guaranteeing that a sufficient
number of sensors will be available to perform upcoming tasks at the required level
of QoS. Unfortunately, sensors have limited and non-renewable energy budget, once
the energy of a sensor is entirely depleted, it dies and, eventually, the network den-
sity decreases. When sensor density drops below a certain threshold, the number of
sensors available may not suffice to satisfy the QoS requirements of upcoming tasks
and at this point the sensing results cannot be reliable anymore. Based on this, we
define the α-reliable lifetime of a network as the average number of tasks the network
can perform until the sensor density goes below α of its initial value. For instance,
the 0.1-reliable lifetime of a network with density 0.5 sensors/m2, is the average
number of tasks that can be performed on this network before the sensor density
become less than 0.05 sensors/m2.

We conducted several experiments to evaluate the performance of our proposed
protocols. In our simulation, sensors were deployed uniformly at random in a square
with side length 200m. We used different sensor densities ranging from 0.3 to 1.5
sensors/m2. The network has a single TIE placed at the origin (0, 0) and which is
responsible for tasking sensors across the deployment area. QoS requirements of
generated tasks were expressed in terms of the minimum number of sensors needed

12 Energy-Efficient Task Management 415

Fig. 13 Average number of
CTW messages

0

2

4

6

8

10

12

0.3 0.6 0.9 1.2 1.5

Optimal

Centralized

Distributed

Energy-Neutral PF = 0.50

Energy-Neutral PF = 0.75

Energy-Neutral PF = 0.90

Network Density

A
vg

. N
u

m
b

er
 o

f
 C

T
W

 M
es

sa
g

es

to participate in each task. The required workforce for different tasks was selected
randomly from the range [1, 20]. We tried to balance tasking load on different spots of
the network by selecting the positions of the AoIs (task centers) uniformly at random
across the whole deployment area. The sensors were assumed to have a fixed sensing
range of 10.0 meters – beyond this range sensor readings may not be reliable. The
sensors sleep and wake up alternatively and asynchronously in a way that makes
them active for only 10 % of their lifetime. Initially, each sensor has exactly 30 units
of energy (i.e., each sensor can at most participate in 30 tasks).

8.2 Simulation Results

Using the deployment and network parameters mentioned in Sect. 8.1 we have eval-
uated a number of performance metrics of our protocols.

8.2.1 Average Number of CTW Messages

We begin by investigating the number of CTW messages needed to attract the
attention of a suitable number of candidates. Figure 13 shows, for different net-
work densities, the average number of CTW messages needed to get the atten-
tion of sufficient number of sensors in order to execute the next upcoming task.
The optimal protocol assumes that a single CTW message is sufficient to collect
a suitable number of candidates. However, this is not the case for other proto-
cols which substitute its specific estimate of the number of candidate sensors into
Eq. (10) to evaluate the required number of CTW messages. Each of the shown
protocols has its own way to estimate, c, the number of candidate sensors. The
centralized protocol depends on Eqs. (15) and (16) to estimate c. However, in
the distributed protocol, c is evaluated by multiplying the workforce size, w, by
some constant factor f1 (in our simulation experiments, we assume f1 = 4).

416 H. S. AbdelSalam and S. Olariu

Fig. 14 Average number of
bidding rounds

0

2

4

6

8

10

0.3 0.6 0.9 1.2 1.5

Optimal Energy-Neutral PF = 0.50
Centralized Energy-Neutral PF = 0.75
Distributed Energy-Neutral PF = 0.90

Network Density

A
vg

. N
u

m
b

er
 o

f
 B

id
d

in
g

 R
o

u
n

d
s

The energy-oblivious protocol uses Eq. (15) to estimate the number of bidders,
n, from the workforce size. After that, it uses the participation factor to relate
the number of bidders to the number of candidate sensors (n = P F · c). From
Fig. 13, we can see that the average number of CTW messages needed decreases
as the network density increases with very minor differences between different
protocols.

8.2.2 Average Number of Bidding Rounds

Figures 14 and 15 show, respectively, the expected number of bidding rounds along
with the expected number of bidding slots within each round. In the optimal scenario,
the workforce selection protocol ends using a single bidding round which has a
number of bidding slots equal to the size of the required workforce. However, for
other protocols, typically more than one bidding round is needed to compensate for
any empty or garbled slots that might arise due to bidding collisions (i.e., when
two or more sensors bid in the same slot). As the value of the participation factor of
energy-neutral protocols increases, the expected number of bidding rounds increases.
In turn, this increases the number of sensors willing to bid within the same round.
Hence, the resulting number of single-bidder slots decreases and more rounds are
needed to select the remaining workforce.

Figure 15 confirms that the average number of bidding slots used in the central-
ized protocol bidding rounds is very close to its counterpart in the energy-oblivious
protocol with very minor changes due to using different participation factors. It is
also important to understand that the curve associated with the distributed protocol
in Fig. 14 shows the number of decision rounds used in workforce selection since in
this protocol there is no bidding. And for the same reason, the number of bidding
slots for this protocol is always zero.

12 Energy-Efficient Task Management 417

Fig. 15 Average number
of bidding slots in bidding
rounds

0

2

4

6

8

10

12

14

0.3 0.6 0.9 1.2 1.5

Optimal Energy-Neutral PF = 0.50
Centralized Energy-Neutral PF = 0.75
Distributed Energy-Neutral PF = 0.90

Network Density

A
vg

. N
u

m
b

er
 o

f
 B

id
d

in
g

 S
lo

ts

Fig. 16 Average width of
sensor energy spectrum

0

2

4

6

8

10

0.3 0.6 0.9 1.2 1.5

Optimal Energy-Neutral PF = 0.50
Centralized Energy-Neutral PF = 0.75
Distributed Energy-Neutral PF = 0.90

Network Density

A
vg

. E
n

er
g

y
S

p
ec

tr
u

m
 W

id
th

8.2.3 Average Width of the Energy Spectrum

Figure 16 shows how our centralized and distributed protocols can preserve net-
work density for longer periods by balancing the rate at which sensor energy is
consumed. In particular, the figure compares the average width of sensor energy
spectrum throughout the network 0.2-reliable lifetime for different network densi-
ties. To estimate the average width of sensor energy spectrum, we evaluated the width
of the spectrum after the execution of every task using Eq. (28).

wt =
{

1
n1

∑n1
s=1

(
Es − E

)
Es ≥ E

1
n2

∑n2
s=1

(
E − Es

)
Es < E,

(28)

where E is the average energy of sensors immediately after the execution of task t .
Here, n1 is the number of sensors whose remaining energy is larger than or equal

418 H. S. AbdelSalam and S. Olariu

Fig. 17 Average width of
energy spectrum for different
initial energy levels

0

5

10

15

20

0.3 0.6 0.9 1.2 1.5

Optimal - 50 Units Optimal - 100 Units
Centralized - 50 Units Centralized - 100 Units
Distributed - 50 Units Distributed - 100 Units
Energy-Neutral - 50 Units Energy-Neutral - 100 Units

Network Density

A
vg

. E
n

er
g

y
S

p
ec

tr
u

m
 W

id
th

to E . Similarly, n2 is the number of sensors whose remaining energy is less than
E . Finally, the average spectrum width among all executed tasks was estimated
as 1

n

∑n
t=1 wt , where n is the total number of tasks executed during the network

lifetime.
Figure 16 tells us that the average width of sensor energy spectrum of the distrib-

uted protocol is much narrower than the width obtained when using any of the other
protocols. Moreover, the average spectrum width is very close to the optimal value
(i.e., 1). The superior performance of the distributed task management protocol over
other protocols can be attributed to the following factors:

• An accurate estimation of the maximum energy among candidate sensors;
• Selecting the workforce using decisions rounds that give priority to sensors with

higher energy levels over sensors with lower energy. Although, the average spec-
trum width of the centralized protocol is slightly larger than that of its counter-
part, in the distributed protocol, it is much narrower than the spectrum of energy-
oblivious protocols. It is worthwhile to mention that in both the centralized and
the distributed protocols, the average spectrum width hardly changes with sensor
initial energy. This is not the case for energy-oblivious protocols, where the aver-
age spectrum width increases when sensor initial energy increases as confirmed
by Fig. 17.

The significant differences between the energy of sensors when using energy-
oblivious protocols makes one expect that many of the heavily loaded sensors would
die at an early stage of the network lifetime. Typically, when a large number of
sensors which reside at some spot die, the network density at this spot decreases.
Figures. 18, 19 and 20 capture this phenomenon when using different workforce
selection protocols with initial deployment densities of 0.3, 0.7, and 1.0 respectively.

12 Energy-Efficient Task Management 419

Fig. 18 Average density
degradation throughout net-
work 0.2-reliable-lifetime
using different protocols
for initial network density
ρ = 0.3

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0 5000 10000 15000 20000 25000 30000 35000 40000

Optimal
Centralized
Distributed
Energy-Neutral PF = 0.5

Executed Tasks

N
et

w
o

rk
 D

en
si

ty

Fig. 19 Average density
degradation throughout net-
work 0.2-reliable-lifetime
using different protocols
for initial network density
ρ = 0.7

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Optimal
Centralized
Distributed
Energy-Neutral PF = 0.5

Executed Tasks

N
et

w
o

rk
 D

en
si

ty

8.2.4 Average Density Degradation for Various Initial Deployment Densities

As shown in Figs. 18, 19, and 20, the degradation in network density for energy-
oblivious protocols starts at a relatively earlier stage compared to other protocols.
Table 1 shows the percentage of the network lifetime before the network density
starts to degrade.

The continuous degradation in network density can eventually create energy holes.
We conducted a set of experiments to capture the impact of using different workforce
selection protocols on the rate at which holes grow in the network. Figures 21, 22 and
23 offer a comparison of the growth rate of energy holes using the four protocols under
different deployment densities. The initial deployment densities of Figs. 21,22 and 23
are respectively 0.3, 0.7 and 1.0. The steep slopes of the curves in Figs. 21,22 and 23
show that our centralized and distributed protocols can reduce the rate at which energy
holes grow in the network specially under small and medium network densities.
Under dense deployments, our protocols tends to be less effective in reducing the
growth rate of energy holes. In order to explain the reason behind this, we recall that
energy holes grow only when all the sensors within the hole are dead. Although the

420 H. S. AbdelSalam and S. Olariu

Fig. 20 Average density
degradation throughout net-
work 0.2-reliable-lifetime
using different protocols
for initial network density
ρ = 1.0

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 20000 40000 60000 80000 100000 120000

Optimal
Centralized
Distributed
Energy-Neutral PF = 0.5

Executed Tasks

N
et

w
o

rk
 D

en
si

ty

Table 1 Percentage of network lifetime before density degrades

Density Optimal Centralized Distributed Energy-oblivious

0.3 96.1 86.0 93.2 61.7
0.7 97.0 88.8 94.5 63.4
1.0 97.2 83.3 94.3 62.3
1.5 97.3 90.9 94.3 61.9

Fig. 21 A comparison
between the growth rate
of energy holes throughout
0.2-reliable-lifetime of the
network using different proto-
cols for initial network density
ρ = 0.3

degradation in network density when using energy-oblivious protocols starts at an
earlier stage, there is always a nonzero probability to find at least one alive sensor
that can restrict the growth of the energy holes. This probability increases under
dense deployments which in turn delays the appearance and growth of energy holes
making our techniques less effective.

12 Energy-Efficient Task Management 421

Fig. 22 A comparison
between the growth rate
of energy holes throughout
0.2-reliable-lifetime of the
network using different proto-
cols for initial network density
ρ = 0.7

Fig. 23 A comparison
between the growth rate
of energy holes throughout
0.2-reliable-lifetime of the
network using different proto-
cols for initial network density
ρ = 1.0

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000 120000

Energy-Neutral PF = 0.5

Optimal

Centralized

Distributed

Executed Tasks

Network Density 1.0

M
ax

im
u

m
 H

o
le

R
ad

iu
s

8.2.5 Growth Rate of Energy Holes

One of the interesting metrics of protocol performance is its capacity to delay the
formation of energy holes in the network [16]. We have evaluated, by simulation, this
parameter for various deployment densities. The results are presented in Figs. 21, 22
and 23.

8.2.6 The Total Number of Tasks Executed

Recall that the adopted definition of network longevity was the total number of tasks
executed until the network density drops below a given value.

Figure 24 compares the maximum number of tasks the network can execute
throughout its 0.2-reliable-lifetime using the four different protocols. It is inter-
esting to note that some protocols are able to execute more tasks than the optimal

422 H. S. AbdelSalam and S. Olariu

Fig. 24 Total number of
executed tasks using different
workforce sizes

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0.3 0.6 0.9 1.2 1.5

Optimal

Centralized

Distributed

Energy-Neutral PF = 0.50

Energy-Neutral PF = 0.75

Energy-Neutral PF = 0.90

Network Density

To
ta

l N
u

m
b

er
 o

f
 E

xe
cu

te
d

Ta
sk

s

protocol. To understand how this could happen, we recall our tasking model in which
a sequence of CTW messages are transmitted by the TIE to attract the attention of sen-
sors willing to participate in the execution of the next task. In some cases, especially
at later stages of network lifetime, the number of collected sensors is less than the
required size of the workforce as determined by QoS. Hence, those under-recruited
tasks are executed using whatever was collected even if the collected number of
sensors was less than what was specified in the CTW messages. For example, if
at a late stage of the network lifetime all sensors within a certain spot died except
for a single sensor which has E units of energy remaining, then the network can
assume falsely it can execute up to E additional tasks at this spot irrespective of the
workforce size required by these tasks. Fortunately, the same scenario cannot happen
using any of the optimal, centralized, or distributed approaches because of the minor
differences between sensor energy. By the time the first sensor within a certain spot
dies, the remaining sensors within the same spot will be about to die as well. Hence
under-recruiting occurs for a small number of tasks.

Our explanation is confirmed by the results in Fig. 25 in which we show the num-
ber of tasks executed using the exact workforce size. From the figure, it is obvious
that the optimal protocol has superior performance over other protocols. Although,
the centralized approach is the closest protocol to optimal in performance, the dis-
tributed approach seems to perform poorly and even worse than energy-oblivious
protocols. The reason for this state of affairs can be traced back to under-recruiting.
Because of the distributed nature of the protocol, sensors join the workforce inde-
pendently and, as a result, the number of recruited sensors may be larger than the
required workforce size. Simulation results showed that for 38.3 % of the total
executed tasks, the size of the workforce recruited by the distributed protocol is
larger than the required workforce size by around 17.4 %. We confirmed this by
adding another curve to Fig. 25 that shows the total number of tasks executed using
a workforce size that is at least as large as the required workforce size. Surpris-
ingly, after adding under-recruited tasks, the performance of the distributed protocol

12 Energy-Efficient Task Management 423

Fig. 25 Number of tasks exe-
cuted using exact workforce
size

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

0.3 0.6 0.9 1.2 1.5

Optimal

Centralized

Distributed

Distributed with Over-Recruited

Energy-Neutral PF = 0.50

Energy-Neutral PF = 0.75

Energy-Neutral PF = 0.90

Network Density

Ta
sk

s
E

xe
cu

te
d

 w
it

h
 E

xa
ct

 W
o

rk
fo

rc
e

has increased tremendously to the extent it became slightly better than the central-
ized protocol. On the average our centralized approach can increase the network
0.2-reliable lifetime by around 16.5 % while our distributed approach by around
17.2 %.

9 Concluding Remarks and Open Problems

In this chapter we showed how tasking sensors improperly can affect the reliability
and the durability of the network by reducing network density, creating energy holes,
and partitioning the network into isolated islands. We also discussed a centralized
and a distributed workforce selection protocols for maximizing network lifetime by
balancing task load among sensors within the same sensing area.

The centralized approach depends on running a contention-based bidding rounds
to select required workforce for any task based on sensor remaining energy. On the
other hand, the distributed approach works in two phases. In the first phase, the sensors
within the task sensing range run a distributed protocol to estimate the maximum
energy among them. After that, and in the second phase sensors join the workforce
in decision rounds based on their distance to the AoI and the difference between their
current energy and the maximum energy determined in the first phase. Simulation
results demonstrated that the proposed protocols can increase the longevity of the
network by evenly expending sensor energy and by reducing energy differences
between sensors within the same sensing area.

In spite of these encouraging results, a lot remains to be done. At the moment, we
are trying to extend this work by adjusting sensor sleeping time based on the relative
difference between sensor remaining energy and the energy of other surrounding
sensors. In particular, we try to prolong the sleeping time of sensors with low energy,
and compensate for their absence by shortening the sleeping time of sensors with

424 H. S. AbdelSalam and S. Olariu

relatively high energy. The main advantage of this approach is to balance energy
consumption among sensors without changing the effective density of the network.

Acknowledgments The work presented in this chapter was funded, in part, by NSF grants CNS-
0721563 and CNS-1116238.

References

1. H.S. Abdelsalam, A virtual infrastructure for mitigating typical challenges in sensors networks,
Old Dominion University, December 2010

2. H. S. AbdelSalam, S. Olariu, Hexagon-based localization technique for wireless sensor net-
works. in PERCOMW ’09: Proceedings of the Seventh IEEE International Conference on
Pervasive Computing and Communications Workshops, Galveston, Texas, IEEE Computer
Society, March 2009

3. H.S. AbdelSalam, S. Olariu, Toward efficient task management in wireless sensor networks.
IEEE Trans. Comput. 60, 1638–1651 (2011)

4. H.S. AbdelSalam, S. Olariu, Bees: Bioinspired backbone selection in wireless sensor networks.
IEEE Trans. Parallel Distrib. Syst. 23, 44–51 (2012)

5. H.S. AbdelSalam, S. Olariu, S.R. Rizvi, in Tiling-based localization scheme for sensor networks
using a single beacon, IEEE Globecom, Dec, 2008

6. H.S. Abdelsalam, S.R. Rizvi, Energy efficient workforce selection in special-purpose wireless
sensor networks. in INFOCOM Student Workshop 2008, IEEE, 1–4, April 2008

7. H.S. AbdelSalam, S.R. Rizvi, S. Ainsworth, S. Olariu, A durable sensor enabled lifeline support
for firefighters. in INFOCOM Workshops (MCN), IEEE, 1–6, April 2008

8. H.M. Ammari, S.K. Das, Scheduling protocols for homogeneous and heterogeneous k-covered
wireless sensor networks. Pervasive Mob. Comput. 7(1), 79–97 (2011)

9. F. Barsi, A. Bertossi, C. Lavault, A. Navarra, S. Olariu, M.C. Pinotti, V. Ravelomanana, Efficient
location training protocols for heterogeneous sensor and actor networks. IEEE Trans. Mob.
Comput. 10(3), 377–391 (2011)

10. T. He, C. Huang, B. Blum, J. Stankovic, T. Abdelzaher, Range-free localization schemes in
large scale sensor networks, 2003

11. R. Nagpal, H.E. Shrobe, J. Bachrach, Organizing a global coordinate system from local infor-
mation on an ad hoc sensor network. In IPSN, pp. 333–348, (2003)

12. K. Nakano, S. Olariu, Randomized o (log log n)-round leader election protocols in packet radio
networks. in ISAAC ’98: Proceedings of the 9th International Symposium on Algorithms and
Computation, pages 209–218, London, springer, 1998

13. K. Nakano, S. Olariu, Leader election protocols for radio networks. Handb wirel networks
mob. comput. pp. 219–242, 2002

14. D. Niculescu, B. Nath. Ad hoc positioning system (aps) using aoa. in INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE,
3:1734–1743 vol. 3, 30 March-3 April 2003

15. S. Olariu, M. Eltoweissy, M. Younis, ANSWER: AutoNomouS netWorked sEnsoR system. J.
Parallel Distrib. Comput. 67(1), 111–124 (2007)

16. S. Olariu, I. Stojmenovic, Design guidelines for maximizing lifetime and avoiding energy holes
in sensor networks with uniform distribution and uniform reporting. in INFOCOM 2006. 25th
IEEE International Conference on Computer Communications. Proceedings, pp. 1–12, April
2006

17. S. Olariu, A. Wada, L. Wilson, M. Eltoweissy, Wireless sensor networks: leveraging the virtual
infrastructure. Network, IEEE, 18(4):51–56, July-Aug, 2004

18. E. Parzen, Stochastic Processes, pp. 182–183, Holden-Day, Inc., 1962

12 Energy-Efficient Task Management 425

19. V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves, Energy-efficient collision-free medium
access control for wireless sensor networks. in I.F. Akyildiz, D. Estrin, D.E. Culler, M.B.
Srivastava, eds. SenSys, ACM, pp. 181–192, 2003

20. T. van Dam, K. Langendoen, An adaptive energy-efficient mac protocol for wireless sensor net-
works. in SenSys ’03: Proceedings of the 1st international conference on Embedded networked
sensor systems, pp. 171–180, New York, USA, ACM, 2003

21. A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, K. Jones, Training a wireless sensor network.
Mob. Networks Appl. 10, 151–168 (2005)

22. K. Whitehouse, A. Woo, F. Jiang, J. Polastre, D. Culler, Exploiting the capture effect for
collision detection and recovery. in EmNets ’05: Proceedings of the 2nd IEEE workshop on
Embedded Networked Sensors, IEEE Comput. Soc. pp. 45–52, Washington, DC, USA, 2005

23. R.W. Wolff, Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)
24. X. Wu, G. Chen, S.K. Das, On the energy hole problem of nonuniform node distribution in

wireless sensor networks. IEEE Int. Conf. Mob. Adhoc Sen. Syst. (MASS), 2006 , pp 180–187,
Oct. 2006

25. L. Yuan, W. Cheng, W. Cheng, X. Du, An energy-efficient real-time routing protocol for sensor
networks. Comput. Commun. 30(10), 2274–2283 (2007)

Part VI
Data Management

Chapter 13
Quality-Aware Sensor Data Management

Zhijing Qin, Qi Han, Sharad Mehrotra and Nalini Venkatasubramanian

Abstract In this chapter, we provide a data management perspective on large-scale
sensor environments applications posing non-functional requirements to meet the
underlying timeliness, reliability and accuracy needs in addition to the functional
needs of data collection. Due to the large-scale regional spread, we need methods
that will allow scaling of today’s systems to large-scale deployments. Our data man-
agement techniques have solved a fundamental challenge in such situations, that is
the ability to handle the explosion of sensor data in sensor networks, either due to
scaling of the network or due to increased data generation by highly capable and
“media-rich” nodes.

1 Motivation

Continuing advances in computational power, radio components, and reduction in
the cost of high-performance processing and memory elements has led to the prolifer-
ation of portable devices (e.g., intelligent sensors, actuators, and sensory prosthetics)
with substantial processing capabilities. By providing the ability to monitor phenom-
ena in close proximity with multihop wireless communication (enabled by on-board
radios) and collaborative in-network computation (enabled by on-board processing),
embedded networked sensors are able to achieve accuracy, latency, and coverage in

Z. Qin (B) · Q. Han · S. Mehrotra · N. Venkatasubramanian
Colorado School of Mines, University of California at Irvine, Irvine, CA, USA
e-mail: zhijing.qin@gmail.com

Q. Han
e-mail: qhan@mines.edu

S. Mehrotra
e-mail: sharad@ics.uci.edu

N. Venkatasubramanian
e-mail: nalini@ics.uci.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 429
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_13,
© Springer-Verlag Berlin Heidelberg 2014

430 Z. Qin et al.

monitoring real-world cluttered environments that a small number of complex sen-
sors cannot. Such devices are rapidly permeating a variety of applications domains
such as avionics [1], environmental [2], structural sensing [3], telemedicine [4], space
exploration [5], and command and control [6]. Popularly used wireless sensor devices
include Mica motes from Crossbow, Tmote Sky from Moteiv, the MKII nodes from
UCLA, and SunSpot from Sun.

In this chapter, we provide a data management perspective on large-scale sensor
environments applications posing non-functional requirements to meet the underly-
ing timeliness, reliability and accuracy needs in addition to the functional needs of
data collection. Consider the following use-case of sensor networks in the domain
of public health and safety where one needs to monitor chemical and biological
contaminants in soil, ground water, streams, etc. The application scenarios range
from long-term monitoring for slowly evolving disasters (e.g., leakage of industrial
contaminants into ground water) to detection of sudden disasters (e.g., bio-chemical
terrorist attack). Since the phenomena that we seek to monitor and respond to may
involve large-scale regional spread (tens to hundreds of kilometers), we need methods
that will allow scaling of today’s systems to large-scale deployments. A fundamental
challenge in such situations is the ability to handle the explosion of sensor data in
such networks. This explosion in data occurs either due to scaling of the network or
due to increased data generation by highly capable and ‘media-rich’ nodes. Since
data movement costs precious network resources (e.g., energy, storage, bandwidth),
data management must be part of the overall system and software architecture.

In circumstances where the presence of a human in the loop is either too expensive
or too slow, embedded sensing systems must also respond autonomously and flexibly
to unanticipated combinations of events at run-time. These systems are networked to
form long-lived “systems of systems” that must run unobtrusively and autonomously,
shielding operators from unnecessary details, while simultaneously communicating
and responding to application-critical information at heretofore infeasible rates. An
important design challenge for such complex distributed computing systems is to
satisfy performance and reliability constraints while ensuring efficient exploration
through a very large space of device and network operational choices. This process,
unless addressed by the software development and execution architecture, is likely
going to be manually driven thus limiting the application potential due to prohibitive
application development and interoperability across the sensor networks.

There are several reasons why a data management perspective on sensor net-
works is increasingly important. Given the proliferation of sensing capabilities, we
are observing a transition from a device centric view of sensor systems to an infor-
mation centric view where sensors generate large amounts of data that is stored
and processed to generate higher level information for applications. The notion of
what is a sensor is changing (above and beyond mote-like devices) to accommo-
date multimodal sensors, human sensors, smartphones, all of which are capable of
capturing, storing, processing, and communicating the sensed data. Managing het-
erogeneous sensor data and extracting information from it is key to many real world
applications—e.g., cyberphysical systems [7].

13 Quality-Aware Sensor Data Management 431

Networks composed of large numbers of wireless sensors present significant chal-
lenges to the designers of data management systems which aim to incorporate data
produced by such networks. We envision future generations of sensor networks that
would take input from many remote sensors, and provide geographically-dispersed
operators with the ability to interact with the collected information and to con-
trol remote actuators. As shown in Fig. 1, possible sensor sources may be smart
phones, lap top, usb sensor, etc. Sensor data generated by those sources is collected
via heterogeneous network (e.g., wifi, cellular, Ethernet, etc). A bunch of context
aware applications use those data for various kinds of purposes. Ideally, user appli-
cations will interact with sensor-generated data in a high-level language appropriate
to their application domain. This will then be translated to data management prim-
itives, e.g., queries in an SQL-like language which will then be evaluated by the
data management system, by some appropriate processing strategy. Such strategies
should take into account (a) the quality requirements of applications, e.g., the level
of precision requested for an average temperature value, (b) the underlying observed
physical phenomena, whose properties may suggest a processing strategy, and
(c) the characteristics and current state of the sensor network, e.g., its scale, degree
of heterogeneity, processing/memory/energy capabilities of sensors.

In this chapter, we will first illustrate the different kinds of applications likely to
use sensor data, and in particular, real-time monitoring, e.g., pollutant tracking using
chemical sensors, data archival for future use, e.g., the recording of natural phenom-
ena for future analysis by qualified scientists, and forecasting which extrapolates into
the future, as in e.g., the prediction of the likely trajectory of a hurricane. We will
characterize applications’ non-functional needs in terms of quality of service and
quality of data, describe how to specify these application needs and how to translate
high level application needs to requirements for sensor data. We will further develop
a model of a sensor system and sensor data. We will evaluate alternative architec-
tures which can achieve application goals, spanning the spectrum from traditional
fully-centralized approaches whose simplicity is counterbalanced by their inability
to leverage sensor capabilities to fully decentralized ones which lack global scope

Fig. 1 Emerging applications in pervasive sensing environments

432 Z. Qin et al.

Fig. 2 Sensor application landscape

but may be resilient to failures. Finally, we will examine how alternative evaluation
strategies, given an architectural choice, affect optimization goals such as timeliness,
energy efficiency and resilience to faults.

2 A Landscape of Distributed Sensor Applications

Often, sensor-based systems are built with narrow application goals in mind. Consider
for instance a simple application using chemical sensors to track and report pollutants
in water streams periodically. We anticipate that as sensor network infrastructures
become more sophisticated, they will have to accommodate several concurrent appli-
cations, some of which may have conflicting requirements in terms of timeliness,
reliability and data accuracy. It is important for future sensor systems to accom-
modate alternative application types, and ensure that their conflicting requirements
mesh with each other gracefully.

In order to cover a wide spectrum of sensor applications, we first distinguish
between different application types based on the temporal aspect of sensor data
(Fig. 2): archival applications focus on historical (past) data, e.g., in order to detect
patterns over time and build time-varying models. Real-time data collection is not
critical here, but high quality and reliable archival of sensor-generated data is; moni-
toring applications are interested in current sensor values such as intrusion detection
systems; and forecasting applications are interested in predicting future sensor val-
ues, where human operators involved in decision making processes can avail of
information about trends in sensor values. An example of this is route selection in
intelligent transportation applications, where techniques to predict traffic conditions
(estimated from traffic monitoring devices) among various route candidates can help
in reducing travel times and latencies.

13 Quality-Aware Sensor Data Management 433

We can also classify applications based on the pattern of access to sensor data
(Fig. 2). In some cases, e.g., pollutant tracking, the target application is known before
sensor data is collected. Thus, one can set up the data collection framework in a
manner that is optimal for the particular application. In particular, if multiple such
applications co-exist, as in e.g., multiple continuous queries then one could exploit the
overlap in applications’ data needs to optimize the amount of data communication.
In other cases, the application type (e.g., requests for aggregate pollutant levels over
spatial grids) is known, but not the query instances, which are unknown and arrive in
an ad hoc manner. Finally, there is the case where the specific application type may
not be known beforehand. For example, one might instrument a network of traffic
monitoring sensors for the purpose of monitoring speed levels in different segments
of the road. However, sensors in such an infrastructure may potentially be used in the
future for very different applications: e.g., to control traffic signals, or disseminate
optimal routes in real-time to drivers.

The basic functionality of the sensor network is to sense, capture, and communi-
cate data to answer application queries. The ability to use sensors in a wide range of
applications has expanded the way sensing (and sensors) are used today. Tradition-
ally, sensor data is viewed as being small—it was designed to encompass parameters
such as temperature and smoke density; more recently, it has expanded to incorpo-
rate diverse and richer context data from cyberphysical systems, e.g., smartspace
video surveillance data and power grid voltmeter. Further, sensor data can also be
data captured by smart phones either from user input or from built in sensors such as
accelerometers. The sensor application landscape discussed above is valid regardless
of data sources. Increasingly, it has become more important to enable the functional-
ity of the sensor network while addressing the tradeoffs and non-functional needs of
various sensor applications. By non-functional needs, we mean applications’ timeli-
ness, reliability, and data accuracy needs. This can be achieved by taking advantage
of a few key intuitions and building upon the wealth of techniques developed over
the years in real-time systems, fault tolerant distributed computing and dynamic data
management.

Consider the following example of sensing for emergency response at a crisis site.
(1) Medical sensing: medical sensors can be deployed on a patient’s body to monitor
health related parameters. These data is collected via wireless personal area network
for the doctors to monitor the patient’s health status in real time. (2) Deployed envi-
ronmental sensors at crisis site: smoke sensor can detect fire in a building, and it can
also work with camera sensors to help determine a rescue route in a timely manner.
The above example illustrates the utility of sensing in emergency response applica-
tions. The example also illustrates the need for timeliness, prioritization and fault
tolerance in sensing. It illustrates that the networked sensor environment in practice
is highly heterogeneous. It illustrates the need for careful and judicious utilization
of scarce communication resources. In fact, it also illustrates that in the immedi-
ate aftermath of a disaster, energy efficiency of the sensors monitoring patients and
environmental phenomena is of less importance than the timely and accurate com-
munication of sensed information. It illustrates that these needs shift over time where
enhancing sensor lifetimes through careful energy management at the sensor node

434 Z. Qin et al.

is critical to monitor remnant or new phenomena in the days and weeks after the
disaster. It illustrates that the sensing data has changing needs which will bring about
different desired tradeoffs. For example, before a fire starts, smoke sensors only need
to report when the smoke density exceeds a specified threshold. While during the fire,
smoke sensors need to periodically report the smoke density with a high frequency.
The need of the sensing changes from reliability to timeliness.

The first step towards the goal of supporting sensor applications with different
quality needs is to fully understand the diverse needs of monitoring, archiving or
forecasting sensor applications. This requires a careful analysis of a wide range of
performance requirements, which define the extent to which performance specifi-
cations such as timeliness, reliability, and accuracy may be violated. We explore
applications’ quality requirements from several dimensions.

• QoS-timeliness may be specified in the format of periodicity, deadline, or a certain
relative order of different tasks. For instance, in the subsurface contaminant track-
ing scenario, conductivity readings will only be collected after the temperature
readings suggest the existence of a potential plume. Current sensor systems sup-
port a basic form of time constraints—data collection frequency as in TAG [8]
and Cougar [9]. It is worthwhile to investigate other timing notions used in tem-
poral, real-time databases [10–12] and active databases [13, 14], and then develop
a variety of timing semantics appropriate for distributed sensor environments.

• QoS-reliability is most commonly defined as the percentage of nodes participating
in the collection among all the nodes in the sensor network [15, 16], or as a set
of nodes that cover the entire sensor network [17]. In addition to supporting these
reliability specifications, we have developed more informative reliability metrics
with well-defined semantics. For instance, the recall metric used in information
retrieval may be used to indicate the desired completeness of the answer set, if the
application is gathering all the readings that meet certain conditions [18]; reliability
can also be specified as tolerable thresholds on “false-alarm” or “missed-event”
probabilities (i.e., bounds on detection or estimation accuracy) [19].

• QoD (Quality of Data) desired from the sensing substrate may be imposed on
individual sensor values, or on an answer computed over readings from a set
of sensor reports. QoD requirements may be specified as desired data freshness,
absolute or relative accuracy bounds. For instance, an application may be satisfied
with a report that is off the true value by ±5 [20] (i.e., absolute accuracy) or by
10 % [21] (i.e., relative accuracy).

• Cost is simply defined as energy consumption since energy is the most stringent
resource constraint in sensor networks.

A sensor application may have requirements for one of the multidimensional parame-
ters (QoS, QoD, Cost), or a combination of them with different preferences towards
different constraints. These preferences will be used to guide future monitoring,
sensing and collection plans. In practice, it may be very difficult (if not impossible)
to satisfy all the specified requirements simultaneously, to reach the multi-constraint
optimal point in reality given the dynamic network conditions and severe resource

13 Quality-Aware Sensor Data Management 435

constraints in the sensor network. Therefore, we allow applications to specify their
preference towards different constraints.

One of the important sensor application programming methodologies that have
emerged in recent research is a separation between application logic and the sensor
data acquisition that drives the application. Examples of such efforts include the
Cougar [9] and Berkeley TinyDB projects [22] that have promoted the view of sensors
as data producers and support declarative database languages such as SQL, suitably
extended and modified, as a way for applications to specify their sensor data needs
(e.g., ACQL [23] developed as part of TinyDB supports event-based queries, lifetime
queries, etc.) which are of specific interest in sensor environments. An important
research direction is extensions of both syntax and semantics of such languages
to enable specification of not just their functional but also non-functional needs of
applications. A step in that direction is TiNA [24] that extended ACQL to support
applications with data accuracy requirements. However, constructs to specify other
aspects including timeliness and reliability constraints are missing. Developing such
a language requires a careful analysis of diverse needs of sensor applications ranging
from monitoring, archival, prediction, actuation, etc.

To ensure end-to-end support for applications with multiple non-functional needs,
it is essential to provide a channel for applications to specify what they need and
in what manner. First, we will need a high level declarative language, using which
applications can specify both functional and non-functional needs. Second, we will
also need a compiler that takes in an application program and generates executable
code. The specification of high level application needs will be either translated to
data needs or tradeoffs to guide sensing and collection planning. We next discuss
why existing work in the literature cannot be directly used and suggest possible ideas
to address this issue.

Specification of application needs: Sensor applications are often interested in
data of certain type (e.g., temperature, or humidity data), and they are not interested
in where and how the data is obtained. TinyDB uses a modified version of traditional
SQL, focusing on issues related to when and how often data are acquired [23]. It
supports several new features that are unique to sensor applications, such as event-
based queries, lifetime-based queries and actuation queries, etc. Worthy of mention
is the “LIFETIME” clause, which provides an intuitive way for users to reason
about power consumption. This language has been furthered extended for continuous
aggregate queries by TAG [8] and Cougar [9] where sampling period is specified in
a clause beginning “EPOCH DURATION” or “EVERY”. Building on top of these,
TiNA [24] introduces the “TOLERANCE” clause in the query specification, using
which users can specify the temporal coherency tolerance for the query. For example,
if the user specifies the tolerance to be 10 %, the sensor network will only report sensor
readings that differ from previous reported readings by more than 10 %.

It is necessary to further extend the query language and provide other clauses
for users to specify other non-functional needs in addition to accuracy and energy
efficiency: timeliness, reliability.

436 Z. Qin et al.

• Specifying accuracy: The concept of relative accuracy introduced by TiNA allows
a uniform and easy to understand definition of user tolerance on heterogeneous data
sources, where the domain of sensed values is different from one sensor to another.
However, there do exist other applications that prefer to specify their absolute
tolerance (the maximum deviation of sensor reports from actual measurements).
Therefore, we should add the support for absolute accuracy tolerance.

• Specifying timeliness: Specification of time constraints has been used extensively
in real-time databases and active databases, where time constraints of transactions
take the form of periodic, non-periodic, deadline based or non-deadline based;
they can also be specified as relative relationships among different transactions.
For example, transaction A must be finished 10 s before transaction B. We should
leverage those well-studied methodologies and build time constraints into sensor
query language. In addition, we should provide an approximate means for spec-
ifying time constraints. When there is uncertainty in the exact timing of event
occurrences [25], each event occurrence can have a timestamp given by a time
interval. We believe this will provide more flexibility for applications.

• Specifying reliability: Faults in sensor networks create ambiguity in answers to
queries. For example, it is impossible for applications to know whether the answer
is based on partial reports from sensors, whether the unreported readings are miss-
ing or just because those sensors do not satisfy the predicates. Reliability require-
ments can take the form of event detection probability, or percentage of readings
from a certain region, etc. The “recall” metric used in information retrieval can be
used to measure the completeness of answer to selection queries. That is, applica-
tions can specify in the language their desired recall requirements.

Our discussion so far about language support assumes deterministic guarantees to
these non-functional needs. In fact, these assumptions can be relaxed. Some applica-
tions would be satisfied with probabilistic guarantees [26]; in addition, applications
may have various preferences towards these non-functional needs. Some type of
probabilistic reasoning will be necessitated by the fact that sensors record measure-
ments at points in space and time, whereas applications are interested in the under-
lying phenomena which are continuous in nature, and can be approximated, e.g., by
interpolation [27]. Therefore, the language should include clauses to applications to
specify their preferences, which can later be used to guide sensing and collection.

Translation of Application Needs: In fact, an application’s non-functional needs
manifest themselves in the several layers of the system; by adapting and translat-
ing non-functional requirements between different layers in the system, we are able
to satisfy the application requirements in a manner that is sensitive to the underly-
ing resource availability. We next use the accuracy requirement as an example to
explain the implication of accuracy needs at application layer, query service layer
and data collection layer. We then illustrate how an application’s accuracy needs can
be mapped to data accuracy needs.

Application accuracy need is related to the real-life goals of applications. For
example, a particular application might be interested in detecting a certain event in
a region. Accuracy here can be defined as event detection accuracy. Data collection

13 Quality-Aware Sensor Data Management 437

system can adjust accuracy settings at the various service layers with the ultimate goal
of satisfying the application accuracy requirement while minimizing system resource
assumption. Conversions between accuracy representations at query service and data
collection layers depend on the particular query types.

Query accuracy requirements are specified by each query and each answer has
certain accuracy guarantees. The querying service uses the data produced by the data
collection service to produce answers to queries posed by users. There are several
types of queries considered in our system: (a) Queries on an individual sensor may
ask for its value at a given time at some accuracy level. When the query can be
satisfied using the collected data, these queries can be processed and answered by
utilizing only data obtained from the data collection service. Otherwise, the data
collection service may begin sampling at a higher rate in order to provide the desired
level of quality. (b) A set-based query asks for the set of sensors that possess certain
property. The accuracy on the answer set can be usually captured by using “precision
and recall” [28]. If E is the set of sensors which possess the property, e.g., “with its
sensing value greater than 100” and A is the set of sensors returned as an answer,
then “precision” measures the fraction of A which should have been returned, i.e.,
A∩E

A , which measures the purity of the answer, whereas recall measures the fraction
of E that was returned, i.e., A∩E

E , which quantifies the completeness of the answer.
(c) Aggregate queries are also quite common, which computer count, sum, average,
min or max over a set of data. All the queries discussed above can be either one-time
queries or continuous queries. Dealing with continuous queries is more challenging
due to the fact that storing and updating data demand more system resource. Adapting
data accuracy to meet query accuracy requirements is one of the main focuses in this
research thrust.

Data collection accuracy is upper bounded by sensing technology, as it is impos-
sible to obtain a better estimate of observed phenomena than that which is techno-
logically feasible using the best sensing technology. However, invoking the sens-
ing, processing the sensed data, and transmitting it, all require significant amount
of resources, including energy, CPU cycles and disk space. This can become an
excessive burden for resource-limited sensor devices or damaged/overloaded sens-
ing infrastructures. Thus, the data collection should be flexible by: (i) switching
between different sensors if more than one are available; (ii) approximating data
time series in order to minimize transmission; finally,(iii) adapting the rate at which
samples are obtained, saving on the cost of using the sensors, but producing a coarser
approximation of sensed phenomena. The sensing accuracy is governed mostly by
the deployed sensors. The accuracy of sensing corresponds to the “measurement
error” in a traditional scientific experiment.

The complexity of mapping an application’s accuracy requirement to accuracy
requirements over sensor measurements depends on both the application as well as the
nature of the underlying sensor network. For example, when we use acoustic sensors
to track a moving object, the measurement at the sensor cannot directly translate to
the displacement of the object. We should allow the application writer to adapt the
application logic to deal with imprecise data without worrying about the underlying

438 Z. Qin et al.

translation of data to measurement accuracy. We have demonstrated how such a
translation can be achieved using a mathematical framework for a target tracking
application willing to tolerate a bounded inaccuracy (e.g., tolerance to within 10 m
from the target trajectory) [29]. Similar with accuracy need mapping, we can translate
timeliness and reliability requirements as well. For queries with time constraints, we
can avoid probing those nodes whose responses are slow [30]; for queries with
reliability requirements, we can decide whether those missing reports need to be
re-transmitted.

3 Sensor Data Models and Representation

A data model is used to store and represent sensor data at different levels of the
architecture. Data representation plays an important role in answering user queries—
a good model not only reduces the amount of efforts needed to answer queries, but also
facilitates the satisfaction of non-functional needs, such as accuracy and reliability
of the sensor data. There are several questions to be answered in developing a data
representation model. (a) Shall we choose a simple or a complex model? A complex
model might be more accurate, but typically requires more parameters that will need
to be exchanged between sensors and servers, incurring extra overhead. It is preferred
to use a simple model if it can suffice. (b) How is a model generated? A data model
can be static and chosen from a set of fixed models; a model can also be dynamically
learned from the changing sensor readings. (c) When should a model or the model
related parameters be changed? If it is changed immediately upon a model violation,
that would be too aggressive since the violation may be temporary a phenomena; if
it is never changed, then it would be too conservative and sensor does not always
comply with a single model. (d) Who updates the model? A server may have global
knowledge and can maintain history, so a long-haul model is possible; however
it does not have the most recent changes in sensor readings. Keeping the data at
the servers and sensors consistent requires additional communication overhead. If a
sensor updates the model, the advantage is that the sensor has better knowledge of
recent history. However, a long-haul model may not be feasible if the sensor does
not have enough memory to store the history.

Traditional sensor applications such as temperature and humidity monitoring
require the sensor to report the exact data to the server, and the update may be peri-
odically or event-triggered. Such kind of data enables the server to have an accurate
view of the sensor data. However, given the limited computational, communication,
and storage resources at the sensors, it is expensive to collect and communicate
the exact data to the server, especially when the sensor data becomes voluminous.
Moreover, there are inherent errors existing in sensors and a single exact data may
be incorrect. For example, in an application such as target tracking in a sensor net-
work, error in sensor intensity readings may result in error in localizing the object.
Similarly, the result of a query for average temperature in a given region may be
imprecise due to data error. Fortunately, one key observation is that a large number of

13 Quality-Aware Sensor Data Management 439

Fig. 3 Sensor data representations

sensor applications can tolerate a certain degree of error in data. The communication
overhead between the data sensors and the server can be alleviated by exploiting the
applications’ error tolerance. This leads the possibility of using a range to represent
the collected data. A larger range will cause less messaging overhead and energy
consumption, but will lower the data quality. In contrast, small range will provide
higher data quality while incurring bigger overhead and energy consumption.

Related research efforts [20, 31] explores the natural tradeoff between applica-
tion quality and energy consumption at the sensors. With the dynamicity on both
the application requirement and the data source, an adaptive range representation
model is proposed [20, 31].The range of the collected data depends on both the
application requirement and the cost. An optimized range can be chosen by satisfying
the application requirement while minimize the cost (Fig. 3).

SensorML: More recently, increasingly ubiquitous sensors brought us sensor data
with various content, quality and formats from heterogeneous data source [32], e.g.,
video surveillance data from pervasive computing space and speech data from fire-
fighters’ interphones. To integrate and utilize these various kinds of data, one single
sensor data model is not sufficient. More generic and standardized sensor data models
should be proposed. Senor Modeling Language (SensorML)[33] is an XML-based
modeling language designed for such a purpose. SensorML provides the mechanism
for describing the whole range of sensing from simple sensors to arbitrary complex
sensor systems and its corresponding platforms. Each sensor is modeled as an opera-
tor that is an integral part of a system. Operators consist of input and output behavior,
i.e., describe the stimulus received by the sensor and its subsequent action, additional
parameters and the input-output transformation function. SensorML meta-data can
be used to provide answers to the questions, (1) what is measured (phenomenon);
(2) how is it measured (calibration, quality); (3) where is it measured (geometry, spa-
tial response, and sampling); (4) when is it measured (temporal sampling, impulse
response); and (5) why is it measured (target application, future processing).

However, the limitation of this standard is that it assumes that users and application
writers are able to specify their needs by describing the sensors and operators required
for the task at hand. It does not address middleware level challenges such as the
need to represent high level concepts, such as entities and activities, which are much

440 Z. Qin et al.

more natural for application designers to reason about. Furthermore, the specification
does not address adaptivity challenges, hence assuming that there are no resource
constraints.

The Virtual Sensor Abstraction: To capture sensing needs at a higher levels of
abstraction, SATware [34] abstracts specific sensor formats, data types and the rep-
resentation of sensor readings so that developers can build applications at the logical
level without specific details about the acquisition process or the data formats of the
underlying sensor(s). SATware suggests a conceptual level abstracting the raw sensor
streams from application writers. More specifically, SATware encapsulates a query
into a single operator: a virtual sensor. This is the similar idea to encapsulation in
object-oriented programming and aims to hide complexity of operators and simplify
the design of applications. It also speeds up application development in SATware
and reduces probability of having faulty applications.

Applications can also be modularized and tested independently. Also, reusability
is increased since (1) operator topologies (and not only operators) can be now reused,
and (2) virtual sensors can be replaced without changing the rest of the application.
Virtual sensors provide a controlled avenue toward producing more semantic views
closer to the problem domain of the users of sensor data steam processing application.

An example of a virtual sensor is

WhoLeftCoffeeBurning = 010(CoffeeBurning, Person_Id)

where O10 is an operator that detects if a person has let the coffee burn more than
three times, given a person ID and the burning event. Additionally, the notion of a
virtual sensor enables optimizations at other system levels to deal with non-functional
constraints. For example the middleware services can be utilized to adapt the data
collection process, perform sensor actuations and enable re-calibration of sensors to
perturbations and errors.

Semantics-Based Data Models: While virtual sensors provides a higher level
abstraction of the sensor data, there is still a significant semantic gap between the
information of interest for users (e.g., “where is the evacuation warden?”) and the
data produced by sensors (“RFID reader 57 and read tag 0815”). A key reason for
this gap is that traditional database systems, particularly those focused on capturing
and managing data from the real world, are not good at dealing with the noise, loss,
and uncertainty in data inherent in information that is obtained from sensors. We
argue that a semantics-based data model should be used to represent the uncertainty
that is inherent in information obtained from sensors, as a way of bridging this gap.
Recently, there has been renewed interest in modeling the uncertainty of a sensor
data value using a Bayesian framework. For example, Graphical models [35] have
been used to managing and querying large-scale uncertain databases; these models
capture not only tuple-level and attribute-level uncertainties, but can also represent
arbitrary correlations that may be present among the data. Efficient strategies for
query evaluation over such probabilistic databases are also been studied. For exam-
ple, Deshpande et al. [36] have proposed a suite of techniques based on probabilistic
models that are designed to allow database to tolerate noise and loss, exploit cor-
relations to predict missing values and identify outliers [37]. Such correlations also

13 Quality-Aware Sensor Data Management 441

provide a way to give approximate answers to users at a significantly lower cost
and enable a range of new types of queries over the correlation structure. SATWare
extends the semantic ideas in SensorML to capture concepts relevant to sensor-based
system. It employs several ontologies and concepts to represent the physical world,
the sensor, the data and their correlations.

Figure 4 illustrates the key elements of a semantics-based sensor data model that
include (a) the sensor; (b) the environment model in which the sensor is embedded;
(c) the phenomena (observed by a sensor) and the associated phenomena semantics;
(d) the observability of a phenomena, an observation generated by a sensor and the
corresponding observation extraction process. We describe these concepts in detail
below.

Phenomena and Phenomena Semantics: Phenomena represent any kind of fea-
ture property whose value is amenable to observation or estimation, including phys-
ical properties, existence and occurrence assessments, etc. Phenomenon has a type,
for example, a person walked in certain space, meeting has started in a certain room,
number of people in a region. The phenomena is a measureable value instance that
happens in the pervasive space and changes over time. Almost any phenomena can
be captured and represented by discretizing the value range. For example, the level
of coffee in a coffee pot can be categorized to one of the following values: “full,”
“half-full” and “empty.” The coffee level changes due to brewing of fresh coffee and
consumption of coffee and an accurate representation models these state transitions
as a function of time. Phenomena semantics represent the way that the phenomena
evolves as a function of time and space. The phenomena semantics capture the state
transition nature of the phenomena as a function of time and space. Consider the cof-
fee level detection task described above, a full coffee level can transition to half-full,
empty and overflowing states. The likelihood of each of the possible future states
based on the current and past states gives us a meaningful context and understand-
ing of the monitored system, in this case the coffee machine. The semantics of a

Fig. 4 A generalized semantics-based sensor data model

442 Z. Qin et al.

phenomena give the application a “window” to the future states of the phenomena
in the expected sense. This, in turn, is used to guide the middleware in tasks such as
data collection—if it knows that an entity is more likely to appear in a certain camera
we can allocate resources accordingly.

Environment Model: creates an abstract representation of the monitored environ-
ment. The abstract environment representation allows the modeling of the phenom-
ena state independent of the sensing infrastructure. The environment model creates
unique space identifiers for different regions in the monitored space—r1,…,rk. For
example, in a building setting the environment model is used to refer to different
regions such as “r1 = south west hallway, second floor” and “r2 = second floor
kitchen”.

Sensors: Sensors represent physical sources (e.g., devices) that provide input to
observe a phenomena. The sensor is associated with metadata information that is used
by the different processes that extract observations. Metadata information includes
the

• Sensor type. Sensor types include video, motion, temperature, etc. Different sensor
types are capable of observing different types of phenomena, for instance, mea-
suring the temperature can be done using a thermometer and not a video camera.

• Environment Cover—the regions of the space that are covered by this sensor. For
example, in the case of a camera sensor the regions covered include the parts of
the environment in the field of view of the camera.

• Sensor parameters—the state of the sensor (e.g., in the case of camera sensor the
state can be zoomed in or zoomed out, titled at 65 %, etc.).

Virtual Sensors and the Observation Extraction Process: Virtual sensors abstract
the physical source of data and capture the extraction process that is used to observe
a phenomena. Observations are generated following an extraction process—D that is
controlled by extraction parameters. The extraction process is responsible of gener-
ating a digital representation of the high level event that was captured by the sensor.
Generating the observation might include multiple operators and processes, however,
for our problem we abstract that process and consider that the observation process
contains an extraction process as well. For example, detecting if there is a face in
the field of view requires processing by a face detection operator. We assume that
the observation extraction process also executes all the relevant operators to generate
the observation of interest to the application.

Observability of a Phenomena: A sensor has a finite number of possible states that
control the way the sensor observes the monitored phenomena. Given a phenomena
at a given location and time, a sensor would be able to observe it and hence will be
in the observability set of the phenomena if the following four conditions hold:

(1) The sensor type can observe the phenomena of interest.
(2) The coverage of the sensor includes the location of the phenomena as specified

by the environment model.
(3) The state of the sensor is such that the phenomena type is observable in that state

by that sensor type.

13 Quality-Aware Sensor Data Management 443

(4) The observation parameters are calibrated to extract the observation correctly.

For example, collecting a high resolution frontal face image of an entity in MeerkatU,
can only be done if (1) the sensor is of video camera type, and (2) the face of the
entity appears in a region that is part of the field of view of the camera, as specified
by our environment model. (3) The camera is zoomed into the region in which the
face is present. (4) The face detection software is calibrated to detect that there is
face in the field of view of the camera. The observability of a phenomena is related
to observability in control systems [38] in which the internals of a system need to be
observed using external measurements.

To exploit the above data model concepts effectively in gathering and processing
data from large multisensory systems. one must understand the architecture of the
distributed sensor system in more detail—this is the topic of the following section.

4 Architectures for Executing Sensor Applications

Given heterogeneous sensor platform distributed over a space and applications data
needs expressed as queries, multiple execution architectures are possible. A tradi-
tional client-server approach would collect data at a (logically) centralized repository
and evaluate queries over such a repository. In such a centralized sensing architec-
ture, sensors are passive units that send data to the central server. Applications subse-
quently execute over this server, operating over the data stored there. This approach
simply uses the minimum functionality expected of sensors, namely their ability to
communicate their captured data to the world at large. Such an approach does not
exploit the computation and storage capabilities available within the sensor network
at sensor nodes.

In recent years, the availability of cheap wireless sensors has led many researchers
to re-evaluate this architecture. Several observations led to this: first, current sensor
designs include processing and memory components which are not leveraged if the
sensor is considered as a passive beacon of data; second, bandwidth and energy limita-
tions of battery-powered sensors may make the centralized approach very inefficient,
as it entails the transmission of every value from its source, via multiple hops, to the
server; third, servers themselves would not be able to scale gracefully to the large
number of data sources anticipated for future sensor networks due to the low cost of
these devices; fourth, time delays for transmitting data to a server before process-
ing it may be prohibitive, and this may be especially critical in applications where
real-time response, e.g., actuation, is driven by the sensors themselves.

As a result, many researchers have adopted approaches in which processing is
pushed to the sensors themselves, either by eliminating the need for a server alto-
gether, or by introducing some intelligence in the data flow structure, e.g., routing
tree, used to transmit data from the sensors to the central server. In the traditional
centralized approach, sensors sample periodically and transmit them to the server
who then does all the processing. In a completely decentralized approach, data is

444 Z. Qin et al.

transmitted between sensors and processed by the sensors themselves to determine
whether there is an event of interest [29]. The third and more popular approach is to
introduce some intelligence in the routing tree leading to the server; for example, a
sensor routes values of other sensors towards the server, and it might avoid doing so
if it determines that a sensor’s value places it well outside the application’s interest.
This splits the processing between the server and the sensors, and would result at
lower data transmission costs, as fewer values need to be transmitted.

Such “in-network” computation can effectively exploit resources at the sensors to
trade computation for reduced communication. By computing directly in the sensor
network, the data routing and computing can be co-optimized, resulting in higher
scalability. There are, however, limitations of such an approach including limitations
on types of data access that can be supported in-network, complexity of optimally
splitting computation between sensors and servers, and the lack of a direct way of
exploiting applications tolerance to errors and faults. Yet another approach is a hier-
archical view in which the actual placement of the distributed server functionality is
a function of the node capabilities in a hierarchical setting, the architecture allowing
for dynamic migration of functionality based on the well-developed client server
model. The exploration of such architectures has, in the literature, been motivated
from a narrow perspective of suitability for one (or more) sensor application scenar-
ios (e.g., monitoring, archiving), a comprehensive understanding of the suitability
and feasibility of diverse architectures under different situations and blend of appli-
cation loads is missing. Additionally, the implications of supporting non-functional
requirements over these architectures is not well understood in many cases. There-
fore, there is a need for a thorough comprehensive analysis of possible architectures
with the focus on supporting non-functional application requirements.

There is an intuitive simplicity in the centralized approach, since any application
can be conceivably built on top of it. By contrast, approaches which push processing
to the sensors entail the need to create distributed versions of every task posed to
the network, each of which must (i) work correctly, i.e., produce a result equivalent
to that produced by a centralized approach, and (ii) work efficiently and robustly,
especially in the sense of minimizing energy drain and being resilient to failures.
It is not immediately clear which architecture is the most appropriate for what type
of applications. A methodology for systematic evaluation of different architectural
approaches must be based on the following factors:

• Application needs: Consider an application monitoring certain phenomenon
within a geographical region for real-time response. Imagine that a routing tree
is used to achieve this goal, with each node in the tree aggregating data received
from its children. There are many ways to build such a tree with different node
placement and tree construction strategies. To minimize makespan, i.e., the com-
pletion time of collecting all data, it is essential to enable and exploit parallel
transmissions as much as possible. It seems intuitive that a routing tree with large
node fanouts may help increase parallel transmissions and reduce the depth of the
tree, thus reduce the notification delay for changes in the observed phenomenon.
However, when interference in wireless communication is considered, it is not

13 Quality-Aware Sensor Data Management 445

obvious that large fanouts can always decrease makespan. Given a monitoring
application, it is challenging to design a sensor placement and tree construction
algorithm under constraints such as network coverage and wireless interference,
to achieve the ultimate goal of timeliness. Furthermore, large fanouts may impose
a great burden on individual parent sensors which must listen for and aggregate
over several values. Therefore, an archival application would prefer a different
architecture which prolongs the longevity of the sensor network by optimizing for
energy drain alone.

• Node density of sensor networks: Imagine two sensor networks that differ in the
number of nodes which they contain. This point is salient in view of the fact
that many current sensor deployments and many research efforts are evaluated
over networks of small size, of up to at most a few hundred nodes. Much of
the initial excitement about wireless sensors centered around the prospect that
networks involving thousands and millions of sensors would be built. What is
the best architecture for networks of different size? A centralized approach might
impose tremendous processing costs on the central server over a large network.
On the other hand, a fully distributed solution may be completely impractical
for networks of this size, e.g., because of the long paths of lateral (sensor-to-
sensor) communication. It appears that network clustering, which groups sensor
nodes into clusters, is the most feasible approach. However, identifying the criteria
that determine the sizes and even hierarchies of clusters is a challenging issue.
Dynamically maintaining and changing the clusters is also an immediate challenge
to accommodate node failures and balance energy drain across sensors.

• Heterogeneity of sensor networks: Current approaches often assume the exis-
tence of a network monitoring a single environmental attribute, e.g., temperature.
If multiple sensors exist, e.g., for temperature and atmospheric pressure, then
integration of their data might need to happen de facto in a central server, depend-
ing on the ability of sensor nodes for temperature/pressure to communicate with
each other. Some efforts [39–41] address issues emerging from the co-existence
of multiple sensing modalities within a single sensor node. Yet, there exist many
different possible gradations between a situation where temperature and pressure
can only be correlated at a central server and one in which they are measured on
the same node. Consider the example of an application for detecting anomalous
behavior, e.g., intrusions, in sensitive installations. Light intensity, sound, smoke,
video, motion detection and numerous other sensor types may co-exist in such a
setting, and data from them ought to be integrated either in-network or at a cen-
tral site for the purpose of e.g., raising an alarm or tracking an intruder. Bearing
certain precedence constraints, e.g., acoustic sensors are much cheaper to operate
than video sensors which allows us to check sound intensity first to detect an intru-
sion event with minimum energy consumption, data may be routed in a specific
way, e.g., from acoustic sensors to video sensors, to enable in-network integration
for the purpose of e.g., raising an alarm or tracking an intruder. Decisions on the
best architecture for these applications have to be made considering all potential
cooperation between sensor nodes.

446 Z. Qin et al.

Fig. 5 A mediation-based architecture for sensor systems

A Mediation-Based Architecture for Sensor Data Management: Concurrently
supporting multiple applications is complicated; it is desirable to have a middleware
component bridging the applications and the network layer. There are plenty of works
on WSN middleware. From the paradigm perspective, we can classify these middle-
wares into several categories: event-based [42], application driven [43], component
based [44] and mediation based. In this chapter, we use a mediator to shield appli-
cations from underlying complexity; it is the module where the context collection
process is executed. Figure 5 depicts the architectural components of a mediator-
based framework for context collection. The efficiency of the system depends on
specific algorithms applied in each component of the framework. We describe the
functionality of each component.

The Information Sources correspond to different components in the distributed
sensor system, such as the server, link, mobile or stationary host, and sensors. The
context information about sources includes network parameters (such as residual
link bandwidth, end-to-end delay on links, link load, link packet drop rate.), server
parameters (such as CPU utilization, butter capacity, disk bandwidth.), stationary host
parameters (such as client capacity, connectivity), mobile host parameters (such as
mobile host location, connectivity, power level), and any data that sensors can capture
(such as temperature, humidity, habitat activities). These sources can be programmed
to send out information updates periodically, to respond to value requests, or to send
out notifications when their values are beyond a certain pre-specified threshold.

The Information Consumers are application and system level tasks that use the
data collected from the information sources. For instance, a traffic monitoring appli-
cation is an application level task that obtains data from highway sensors periodically
to assist in traffic planning and routing. Consumer requests are read-only requests
that obtain current context, and they are often associated with QoS and/or QoD
requirements. The arrival time of one-shot consumer requests are unpredictable,
while continuous consumer requests are often in the format of interest registration,
i.e., they register desired context data with specified triggering conditions.

13 Quality-Aware Sensor Data Management 447

The Data Base is also called Context Repository consisting of distributed data-
bases which hold context information from information sources. Approximate data
representation in the repository can be used to lower the cost of maintaining the repos-
itory. For example, each data item can be represented using an interval bounded by
an upper and a lower value. The information in the context repository is updated
based on current network conditions and user requirements using different update
policies.

The Information Mediator serves as the decision point for the information collec-
tion process. When a number of users request dynamic data at varying requirements
under constantly changing system/network conditions, mediation functionality is
crucial to deliver the right data to the right user at the right time. Therefore, a key
component of context collection architecture is an information mediator, which con-
nects information sources and consumers and serves as a crux of the information
collection process where collection decisions are instrumented.

Information Flow of a Context Collection Process: A typical context collection
process works as follows. Information sources communicate changes in source values
to the mediator, and the mediator uses the most recent value to update the context
repository representation if deemed necessary. Information consumers forward their
requests to the mediator which in turn retrieves the requested data from the repository.
If the repository values meet user specified quality, the mediator returns the answer;
otherwise, the mediator probes the sources for current values. In next section, we
will show how we collect sensor data on such a mediation-based system.

Distributing the Mediator Functionality: Although logically a mediator resides
between applications and sensors, in reality, it can be at a very powerful server, or
at a resource sufficient base station, or at resource constrained sensors. Since sensor
applications may involve a large number of sensors (especially when the observed
phenomena moves spatially), it is desirable to use distributed cooperating mediators
to ensure system scalability. Given a large number of consumers (query points) and
sensor networks, the choice of how to design the mediation-based architecture has
multiple challenges—it involves determining an optimal total number of mediators
and their locations should be identified that minimizes the overhead involved in
satisfying the functional and non-functional needs.

Given multiple mediators, techniques are required to decide where to place data
from each sensor and how (e.g., at what accuracy level) the data should be main-
tained. In addition, we need to maintain a consistent view among all the replicas;
with multiple mediators, we need to select for each user request where to retrieve the
requested data in order to ensure applications’ non-functional needs while balancing
the load among distributed mediators. As sensor network infrastructures get more
sophisticated, they must provide seamless access to data dispersed across a hierarchy
of sensors, mediators, servers and archives—from sensor devices where data origi-
nates to large databases where data is stored and/or analyzed. Sensors are more than
just passive beacons, but can perform useful work, so we need to consider where to
store data and how to push part of the computation to sensors. Archival applications
require large amounts of sensor data to be stored for future analysis. If this informa-
tion is stored at sensors, then we are restricted by sensors limited storage, network

448 Z. Qin et al.

Fig. 6 SATware mediation middleware

and computation resources. If this information is stored at servers, the architecture
must be able to cope with high data production rates, and prevent data staleness
and/or wasted resources. Several research efforts have been devoted to this area.
Dimensions [45] uses in-network wavelet-based progressive aging of summaries in
support of long-term querying in storage. DCS [46] stores data at a node determined
by the name associated with the sensed data. In SDCT [47], finding locations of
the nodes for caching data to minimize communication cost corresponds to finding
the nodes of a weighted Minimum Steiner tree whose edge weights depend on the
edge’s Euclidean length and its data refresh rate. Based on this, a dynamic distributed
energy-conserving application-layer service for data caching and asynchronous mul-
ticast is presented. TSAR [48] is a storage architecture designed for multi-tier sensor
network where an application comprises tens of tethered proxies, each managing tens
to hundreds of untethered sensors. TSAR separates data from metadata by employing
local archiving at the sensors and distributed indexing at the proxies. At the proxy
tier, TSAR employs a novel multi-resolution ordered distributed index structure, the
Interval Skip Graph, for efficiently supporting spatio-temporal and value queries.
At the sensor tier, TSAR supports energy-aware adaptive summarization that can
trade off the cost of transmitting metadata to the proxies against the overhead of
false hits resulting from querying a coarse-grain index. The data placement problem
should be addressed together with non-functional needs. Specifically, the goal should
be to identify the most appropriate data placement strategies to achieve timeliness,
accuracy, reliability needs while ensuring energy efficiency.

SATware [34] is a distributed multilevel mediation-based middleware for multi-
sensor environment. If can efficiently capture, represent, process, and store informa-
tion from the various data producers (e.g., cameras, motes, mesh routers) at desired
levels of accuracy and granularity to meet the information quality and dependability

13 Quality-Aware Sensor Data Management 449

needs of consumers (e.g., video data for surveillance or link congestion levels for
routing) given storage and communication constraints. Shown in Fig. 6, the data col-
lection module can adjust the collection policy to achieve this. The privacy issues
(e.g., in video data) are solved by privacy manager. At the meantime, given the appli-
cation requirement and the low level sensor environment, optimal sensing schedule
can be made to achieve efficient data collection. In general the architecture of SAT-
ware mediation middleware that translates application needs (expressed via queries)
to a corresponding data collection plan to be executed on the multisensor environ-
ment. Such data collection techniques to deal with the multiple needs of sensor
applications is the focus of the following section.

5 Sensor Data Collection

Given the importance and potential of the impact of sensor technologies, over the past
decade, significant progress has been made on techniques to architect and program
large-scale sensor systems. Important developments include design of light-weight
operating systems for sensor devices, powerful programming frameworks that isolate
application logic from the complexities of optimizing the computation over sensor
networks, techniques for in-network processing that exploit computational resources
at the sensors to reduce communication and preserve energy.

While substantial progress has been made, current research has primarily con-
sidered functional aspects of distributed sensor systems focusing on techniques to
sense, capture, communicate, and compute over sensor networks. As sensor appli-
cations become more complex and diverse, non-functional application needs (such
as timeliness, reliability, accuracy and privacy) become important. As an illustrative
example, consider a network of sensors monitoring ground movement to detect pres-
ence/arrival of enemy forces in a given region in a command and control application.
Timeliness and reliability of sensing (in presence of failures) might be of essence
here if the countering maneuver requires immediate detection. Such timeliness and
reliability requirements, however, come at certain costs, namely additional communi-
cation overheads, energy costs, etc. Furthermore, different applications over a given
sensor infrastructure may have differing non-functional requirements. For instance,
an online monitoring and actuation application might have real-time requirements,
an analysis application over the same sensor system might only require that data be
collected in a repository (eventually) at a given level of accuracy or spatial and tem-
poral frequency. At the meantime, the more accurate the less privacy the system can
provide. For example, an accurate location sensing would expose people’s privacy to
externals. Such differing application requirements may pose competing requirements
on the underlying sensor data collection, coordination, and storage mechanisms. For
instance, from the perspective of the archival application, it might be both feasi-
ble and desirable that the data be collected, temporarily stored, compressed and then
transmitted to the repository. A real-time monitoring/actuation application, however,
may demand low latency.

450 Z. Qin et al.

5.1 Quality-Aware Sensor Data Collection

Wireless sensor networks have typically been built with a high degree of dependency
between applications and the underlying communication protocols. Such dependency
is justified as necessary to achieve energy efficiency. However, it generates rigid
systems with sensor networks specifically designed to suit a particular application.
While providing a platform that accommodates all types of sensor applications is very
difficult, one idea is to build a middleware architecture that can support a represen-
tative class of sensor applications—those with multiple performance requirements
(in particular QoS, QoD, Cost). We observe that there exists a fundamental trade-
off between the overhead introduced in supporting the application and the QoS/QoD
achieved. We refer to this characteristic as the QoS-QoD-Cost tradeoff. If we consider
Cost as one dimension and composite performance as another dimension, the appli-
cation fixes the position of one dimension, and the system is expected to maximize
the position along the other dimension.

The Quality-aware Sensing Architecture (QUASAR) [49] is a framework that aims
to provide end-to-end support of sensor data collection with data quality specifica-
tions [50] and varying QoS and QoD needs (Fig. 7). We envision two complementary
techniques for quality aware sensor data collection.

The first category includes applications that aim to maximize the QoS/QoD with-
out exceeding the energy budget: This applies when the lifetime of a sensor network
is known and the application would like to get as high-quality data as possible.
Providing desired timeliness, reliability, accuracy to applications while conserving
energy continues to be an important goal. For instance, in the immediate aftermath
of a toxic chemical leakage, timely and accurate communication of collected data
is much more important than energy efficiency, hence the application would like to
maximize QoS-timeliness and QoD subject to the constraint of remaining energy.
With the finite remaining energy level on each sensor node, we are faced with a joint
optimization problem when the objective of an application is to maximize more than
one metric (i.e., two or three among reliability, timeliness, accuracy).

Existing work has addressed limited subsets of the problem space. Using decou-
pled strategies that optimize each performance goal in separate phases can unfortu-
nately lead to very expensive data collection plans, since these performance goals are
often interdependent. The decision on achieving one objective affects the decision on
achieving the other. For instance, improving reliability might entail retransmission
of packets, which may lead to increased latency. One strategy is to design a new
composite evaluation metric. Most of the existing work focuses on one single per-
formance metric, such as data freshness (i.e., the time elapsed from data generation
time to the data collection time) [51], data fidelity (i.e., ratio of nodes participating in
the collection to all the nodes in the area) [51], data accuracy measured as how much
the obtained data deviates from the real value [20], or as combined spatial and time
distortion [35]. We believe it is a better approach if we take into account pre-specified
application preferences towards different performance goals and define a compos-
ite system performance metric to facilitate the identification of an “optimal” point

13 Quality-Aware Sensor Data Management 451

Fig. 7 QUASAR architecture

that would maximize the multiple QoS or QoD requirements. Alternatively, we can
investigate the tradeoff between these performance goals and develop a collection
plan that optimizes all the goals. More specifically, we might be able to derive theo-
retical upper bounds on QoS-timeliness, QoS-reliability and QoD, given the energy
constraint. We can further design online algorithms that attempt to either maximize
the composite performance metric as described above, or jointly optimize multiple
goals simultaneously.

An alternate formulation for quality aware data collection can be developed where
the goal is to minimize energy consumption while achieving a minimum acceptable
level of QoS/QoD: This applies when a sensor network needs to consume as little
energy as possible in order to last longer while ensuring the satisfaction of application
needs. For instance, careful energy management of sensor nodes is critical to monitor
remnant or new plumes in the days and weeks after the plume disaster; hence, the
application would like to minimize energy consumption as long as QoD reaches a
certain level. The multiple constraints can be any combination of requirements for
QoS-timeliness, QoS-reliability and QoD, e.g., an application might want to mini-
mize energy consumption while ensuring the minimum data accuracy and maximum
tolerable latency. Since the granularity at which the sensor data is maintained at

452 Z. Qin et al.

the server directly affects the amount of communication, and a sensor consumes
energy even when it is idling, the total energy consumption is a function of data
granularity and sensor idling time at different power saving states. Therefore, this
is a multi-variable optimization problem subject to multiple constraints. An arbi-
trary combination of algorithms for satisfying timeliness requirements and those for
meeting data accuracy needs will result in undesirable system performance, since
these constraints are not orthogonal and varying one will typically affect the others.
Hence, it is crucial to understand the interplay between different application needs.

In the following, we describe how individual non-functional needs have been
supported in the literature.

Dealing with Data Accuracy Requirements. Since sensors are resource con-
strained, sensor data is often collected into more powerful servers. A natural tradeoff
exists between the sensor resources (bandwidth, energy) consumed and the data accu-
racy collected at the server. Blindly transmitting sensor updates at a fixed periodicity
to the server results in a suboptimal solution due to the differences in stability of
sensor values and due to the varying application needs that impose different accu-
racy requirements across sensors. The idea of approximate caching in traditional
databases has been applied to resource-constrained sensor networks [19, 49]. The
novelty of that work is the application-aware integration of data accuracy satisfac-
tion and power management of sensors [20, 52]. They have developed an optimal
data collection protocol that depicts how the server and the sensors collaborate to
maintain an optimal representation of sensor data. In concert with this, an optimal
algorithm was designed for managing sensor states, which determines the length of
sensor idling or sleeping.

Dealing with Reliability Requirements. With the increasingly popular use of
WSNs, data is available as never before in many fields of study; practitioners are
now burdened with the challenge of doing data-rich research rather than being data-
starved. However, in situ sensors can be prone to errors, links between nodes are
often unreliable, and nodes may become unresponsive in harsh environments, leav-
ing to researchers the onerous task of deciphering often anomalous data. To this end,
the REDFLAG fault detection service is developed that is a Run-time, Distributed,
Flexible, detector of faults, that is also Lightweight And Generic [53]. REDFLAG
addresses the two most worrisome issues in data-driven wireless sensor applications:
abnormal data and missing data. REDFLAG exposes faults as they occur by using
distributed algorithms in order to conserve energy. There are also approaches to
guaranteeing an application’s reliability requirement [15, 54]. Further, the problem
of evaluating continuous selection queries over sensor data has been considered in
the presence of faults [18, 55]. Reports produced by small sensors may not reach
the querying node, resulting in an incomplete and ambiguous answer, as any of the
non-reporting sensors may have produced a tuple which was lost. Fault Tolerant
Evaluation of Continuous Selection Queries (FATE-CSQ) is a protocol that guaran-
tees a user-requested level of quality in an efficient manner. FATE-CSQ is designed
to be resilient to different kinds of failures.

Dealing with Timeliness Requirements. The nature of many sensor applications
as well as continuously changing sensor data often imposes real-time requirements

13 Quality-Aware Sensor Data Management 453

on WSN protocols. Due to numerous design constraints, such as limited bandwidth,
memory and energy of sensor platforms, and packet collisions that can potentially
lead to an unbounded number of retransmissions, timeliness techniques designed
for real-time systems and real-time databases cannot be applied directly to WSNs.
In order to design a protocol for sensor applications that require periodic collection
of raw data reports from the entire network in a timely manner, previous work has
formulated the problem as a graph coloring problem and then developed TIGRA
(Timely Sensor Data Collection using Distributed Graph Coloring)—a distributed
heuristic for graph coloring that takes into account application semantics and special
characteristics of sensor networks [56, 57]. TIGRA ensures that no interference
occurs and spatial channel reuse is maximized by assigning a specific time slot
for each node. Although the end-to-end delay incurred by sensor data collection
largely depends on a specific topology, platform, and application, TIGRA provides a
transmission schedule that guarantees a deterministic delay on sensor data collection.

5.2 Dealing with Composite Requirements

A more challenging issue is to ensure that the multiple non-functional needs posed by
application queries: timeliness, data accuracy, reliability are met in a cost-effective
manner. However application requirements may conflict with each other. Consider
the following cases.

• Accuracy versus timeliness: Frequent updates from sensors will undoubtedly
improve accuracy, however, it might also leave the server not enough time to
process user queries, hence violating many time constraints. A straightforward
application of existing algorithms for dynamic data management that address the
cost and accuracy tradeoffs attempt to keep the database “reasonably” accurate.
However, it ignores the arrival order and time constraints of user requests. i.e.,
an urgent request might have to wait for a long time before it can be processed;
even though the request can be processed by merely retrieving values from the
repository, the long waiting time may lead to the violation of time constraints.
There are other subtle implications that arise when timing needs are ignored. For
instance, handling update requests from sensors prior to retrieval requests might
either improve or worsen timing and cost depending on how many update requests
remain to be processed. Furthermore, the cost involved in sensor data collection is
not only introduced by communication, but also sensor idling at different power
saving states.

• Timeliness versus reliability: In order to ensure reliability in the presence of
faults, there may be a need to re-transmit data; however, this recovery can be
time-consuming, hence leading to degradation in timeliness satisfaction. Directly
applying existing fault tolerant techniques developed for delivering sensor data
may provide certain reliability guarantees. However, those techniques typically
are ignorant of timing needs of applications. For instance, in order to ensure

454 Z. Qin et al.

reliable data delivery, hop-by-hop recovery is often applied; however, the final
arrival of the data might lag behind significantly and become useless since the
timing constraints are violated.

• Reliability versus accuracy queries may derive some missing sensor data based on
historical or neighboring reports, and this might be sufficient for reliability needs;
however, this implies that the derived data may not be accurate.

Existing and ongoing research has addressed the tradeoffs between two dynamic fac-
tors in different context. For instance, the tradeoffs between transaction timeliness
and data freshness have been studied via different real-time scheduling algorithms
in real-time and temporal databases [36, 58, 59]; the accuracy and cost tradeoffs
are explored by developing various cache management algorithms in dynamic data
management [31, 49, 50, 60–67], the tradeoffs between reliability and energy effi-
ciency in sensor networks have been investigated [8, 16, 37, 68–76]. However,
the problem of supporting multi-dimension (possibly conflicting) non-functional
needs—timeliness, accuracy, reliability and cost-effectiveness—simultaneously in
the context of heterogeneous sensor networks remains a challenge. While real-time
scheduling algorithms determine the order of request processing with the objec-
tive of increasing the number of requests with their time constraints met, they are
incognizant of communication and data processing overheads involved in the data
collection process in highly unreliable distributed sensor environments. The over-
heads come from of sampling sensors, retrieving data from repositories, updating
repositories, etc. To address the cost constraint, these overheads should be kept to a
minimum while addressing the timeliness/accuracy/reliability needs. In addition, the
current approaches do not address the issues of how the scheduled request should be
processed. For instance, should it obtain information from the repository and sacri-
fice accuracy for cost or should it probe the sensor and sacrifice cost for current and
possibly future accuracy?

Determining an appropriate composition of the services for reliable accuracy-
aware scheduling and cost-aware database maintenance is challenging due to the
following reasons. Firstly, achieving optimality (minimized overall cost while meet-
ing timelines s needs and accuracy constraints) in sensor data collection is impossible.
Addressing the timeliness/accuracy/reliability/cost tradeoffs simultaneously is in fact
NP-hard, since the problem is a superset of the classical scheduling problem with
mutual exclusion constraints (which has been proven to be NP-hard [77, 78]). Sec-
ondly, how the composition should work needs to be determined. Should the services
operate independently with no interaction (resulting in poor performance) or should
each service be extended to work in concert with the others? Each service becomes
more complicated when extended and composed and there are no straightforward
rules for how to adjust parameters for each service in order to achieve the overall best
performance. It is also unclear exactly what information is needed to enable the com-
position to make the parameter adjustments. Finally, there are a number of dynamic
factors affecting the data collection process: the network latency and link quality
are unpredictable and variable, the observed phenomena are highly dynamic, and
sensors are failure prone. Hence, adapting the system while balancing the composite

13 Quality-Aware Sensor Data Management 455

tradeoffs of timeliness, accuracy, reliability and cost is not straightforward. Lots of
current research has primarily considered functional aspects of distributed sensor
systems focusing on techniques to sense, capture, communicate, and compute over
sensor networks. To support different non-functional (i.e., quality) needs of sensor
data collection, most schemes are implemented at different layers such as MAC layer,
routing layer, or data management layer. In fact, these non-functional needs are cross
cutting issues that are better addressed by using cross-layer approaches. Motivated
by the observation that various biological systems have developed mechanisms to
meet conflicting requirements simultaneously, a biologically-inspired solution has
been proposed to balance the tradeoffs among conflicting requirements (reliabil-
ity, timeliness, energy efficiency) and govern mobile agent behavior in sensornets
[79, 80] .

To ensure judicious composition, several general strategies can be exploited.

• Error-Aware prediction: Here, the individual sensor and mediator dynamically
agree upon a model that predicts sensor measurements over the immediate future.
If the sensor reading adheres to the predicted model within an error bound, the com-
munication of the sensor readings to the mediator is avoided conserving energy.
Prediction-based mechanisms can exploit local compute capabilities at the sensor
to further optimize communication (the efficacy of the optimization process is
dependent on the accuracy of the prediction model). While prediction is useful,
there are many issues that need to be resolved in incorporating prediction models
for dynamic data collection. For instance: Who determines the prediction models,
the sensor or the mediator? What is the protocol by which a sensor and media-
tor agree on a model M? How does one do dynamic model switching to improve
accuracy of the prediction process? What is the energy/performance overhead due
to model maintenance and synchronization?

• Spatiotemporal Sensor Correlation: As sensor networks scale in size and den-
sity, there will be increasing redundancies (correlations) between different sensors
[81]. This can be exploited in a principled manner to help recover from failures
or provide a quick estimate of the sensor value when probing the sensor may
result in violation of timeliness needs. We will develop a probabilistic approach
where we model the correlations between different sensors using a probabilistic
network (Bayesian net or Markov random field). Using a compact summary of
the (joint) distribution of all the sensors, we will attempt to provide reasonably
accurate answers to queries such as: Given that sensor X has value X, what is
the most likely value of sensor Y? (to fill in missing values, for instance). As a
by-product, such an approach can also detect failures. Consider the case where the
readings of sensor X have changed significantly, but X is failing to communicate
this for some reason. The shift in its data distribution will be reflected in other
correlated sensors as well. If these sensors are still functioning, then the changes
they signal, used in conjunction with the probabilistic model, will clearly indicate
that communication is to be expected from X. The absence of such communication
is a sign of the possible failure of X.

456 Z. Qin et al.

• Application Aware Caching: Caching part of the sensor data can be performed at
different levels: at the sensor node, at the intermediate mediator, or at a centralized
server. Cached data may be accurate enough to answer some queries, this may
enable better timely results to queries. Cached data can be used to infer current
sensor readings as well, which improves timeliness while avoiding the overhead
of re-transmitting data from sensors. Questions that need to be answered while
developing these techniques include where to cache, what to cache and how to
cache (i.e., at what level of resolution).

6 Querying and Query Optimization in Sensor Networks

User tasks submitted in a high-level language appropriate to the application domain,
will be mapped to appropriate data management primitives by the application soft-
ware which will then be posed to the sensor database management system in a
declarative (e.g., SQL-like) language. In this section, we will describe the various
types of sensor queries and potential optimizations for query processing in sensor
networks.

A query from a sensor application may ask for a data value produced by a sensor
device at any time instant including the future, the present or the historical past. While
queries about the future cannot be answered precisely at the present time by either
the producer or the archiver, queries about the present can be answered by the data
producer or the device in our case. For historical queries, the only choice is to answer
them approximately at the archive since the producer discards the time series once
it has sent a compressed representation to the archive. For queries seeking future
data values, we seek to build evaluation strategies that allow tremendous scaling
to large-scale data networks. Thus, we use an approximate representation of the
actual data at the sources within bounded quality guarantees using a quality-aware
client-server architecture to achieve scalable, energy and bandwidth efficient query
processing. The data collection architecture as described above allows us to capture
current and past data with a given quality. Applications need to be able to run on this
imprecise data producing approximate results. While there are many types of queries
are possible, we consider three types of queries over the imprecise data representation
of particular interest to sensor applications: continuous monitoring queries, general
purpose aggregate and SQL queries and monitoring applications.

Continuous queries for monitoring applications: Continuous queries are those
in which a query runs periodically over a time period (e.g., summary of the traffic
information on a freeway every 5 min). Such queries may be continuous aggre-
gate queries with different precision bounds on their answers. Different queries will
involve different sets of source/sensor data with possible overlaps. If the communi-
cation cost to collect a single data on any specific source is known, it is an inter-
esting research problem to look for the optimal precisions on each data source so
that the total communication cost is minimized and all query quality requirements
are satisfied as well. Again the issue is given the error threshold, how to push the

13 Quality-Aware Sensor Data Management 457

computation to the sensors and exploit inter-sensor communication to minimize the
net communication overhead between the sensors and the server.

An example of continuous queries is the tracking of mobile objects over a period
of time. The basic approach to tracking using sensors works as follows: at any
instance, a set of sensors whose sensing range the object to be tracked is located
in are activated. The activated sensors communicate their readings to the tracking
module periodically which fuses the sensor readings to determine the location of a
mobile object at any given time. The more frequent the communication, better is
the track, where quality is defined as the reciprocal of the deviation from the actual
trajectory. However, it incurs higher cost. Depending upon the type of sensor used,
in its simplest form, the location can be triangulated from three sensor values.

In contrast to the above, an alternative tracking framework is to explore a sys-
tematic mechanism using which the energy consumption of the tracking module can
be controlled based on the application’s quality/accuracy requirement. Specifically,
an application may specify its willingness to tolerate a bounded inaccuracy—e.g.,
tolerance to within 10 meters from the target trajectory. The application tolerance
can be exploited to reduce communication between sensors and the tracking module.
A key aspect of this approach is the translation of application quality to measure-
ment quality at the sensor. At any stage during tracking, each enabled sensor and the
tracking module dynamically agree upon a model that predicts the object’s mobility
in the immediate future. Such a model can either be communicated by the tracking
module to the sensor when the sensor is activated or alternatively determined by
the sensor using model fitting techniques based on a set of readings. If the object
adheres to the predicted model within the error bound, the communication of the
sensor readings to the tracking module is avoided thereby conserving energy. Note
that the correctness of the approach is independent of the efficacy of the prediction
model in predicting the target motion, though the effectiveness of the strategy (in
terms of reducing communication) is directly related to the model. Previous work
[29] has established the feasibility of the above envisioned adaptive tracking frame-
work on top of adaptive precision data collection mechanisms. Using even the very
conservative policies to adapt the sensor precision based on application tolerance,
we can get many-fold improvement in power conservation.
Answering Value-based Queries with Bounded Quality: A query may ask for a data
value (or aggregation of a set of data values) produced by a device at any time instant
including the future, the present or the historical past. While queries about the future
cannot be answered precisely at time n (which is the present time) by either the pro-
ducer or the archiver, queries about the present can be answered by the data producer
or the device in our case. For historical queries, the only choice is to answer them
approximately at the archive since the producer discards the time series once it has
sent a compressed representation to the archive. If a query asks for a data value at a
time instant, it may be answered using any of the three following evaluation strategies:

Probe: The server issues a direct request to the device for the data item at the time
instant. However, this requires that the producer, or the device, maintain the samples it

458 Z. Qin et al.

has not yet sent to the archive and listen continuously on the communication channel,
thus making it in appropriate for the energy-constrained wireless sensor nodes
Wait: The server may wait for the data item to arrive. However if the quality require-
ments of the query is more stringent than ε(precision at the sensor), then the answer
would be incorrect.
Predict: A predictive model (M, θ) is stored at the archive. Thus the archive or the
server predicts the future value of the device and answers the query. The use of pre-
diction to answer queries is motivated by the communication latency between the
producer and the archiver of the time series. It does away with either doing a probe
or waiting for a value to e sent by a sensor. Also, the archive can answer to interested
applications, within εpred estimation of time series values before these values arrive
at the archive.

Answering Set-based Queries with Bounded Quality: For queries that return a set of
answers, (e.g., sample points in space-time where temperature exceeds 100 degrees),
one of the key issues is how to measure the quality of results. Many metrics to
measure differences between two sets have been proposed in the literature (e.g.,
Earth movers distance, match-and compare, etc.). While such measures could be used
diagnostically to quantify the closeness of results to the true answer (i.e., quality of
the results) when the true answers are known, there is no straightforward mechanism
to estimate the quality of result at the server using these measures in a prescriptive
setting such as ours when the true answers are not known a priori. An ideal measure,
for our setting is such that (1) it is easy to compute, (2) does not require advance
knowledge of exact answers, and (3) can be used to support progressive improvements
of results. We have recently shown that precision (that measures the purity of results)
and recall (that measures the completeness of results) suitably adapted to measure
the set discrepancy metrics satisfy the above requirements [82]. The key aspect of
these measures that makes them suitable for our purpose is that even though precision
and recall cannot be accurately computed without knowledge of the true answer set,
a range that provides a lower and upper bound on them can be determined without
explicit knowledge of the true answers. Thus, at any stage of query processing, a
tight bound on accuracy of the returned results can be determined. If the bound is not
sufficient to meet application needs, results can be suitably refined. Previous work has
explored such a mechanism for a simple selection queries that select certain sensor
readings based on whether or not they satisfy a specified predicate. One direction
of future research is to generalize this approach to a larger class of SQL queries
including join queries.
Energy-aware query processing: Since the most critical resources in WSNs are energy
and communication capabilities, research efforts in query optimization have aimed
to minimize energy consumption and communication loads. In-network data aggre-
gation is one such technique; it relies on the observation that a sensor node consumes
much more energy to communicate than process data. Here sensor nodes operate in
multiple phases to process the received sensor data and then send out the aggre-
gated information. During the first phase, a hierarchical tree structure rooted at an
access point is discovered via techniques such as network clustering [83, 84]. For

13 Quality-Aware Sensor Data Management 459

example, in TAG [8], a routing tree is formed during the query dissemination phase.
A node always aggregates incoming data before sending it to its parent. Approx-
imation techniques [21, 85] have also been explored to achieve energy-efficient
data aggregation by eliminating unnecessary messages. X. Yu. S. Mehrotra et al.
[86] tackles issues that arise due to shared media access by exploring sensor state
scheduling for data collection and aggregation within sensor networks. They first
identify potential collisions relevant to aggregate monitoring in the deployed wire-
less environment, and then propose TDMA scheduling algorithms based on greedy
heuristics to determine sensor node operation states to achieve energy-efficient and
collision-free communication for data collection and control message dissemination
with short makespans. Other work [87–89] organizes the queries into groups accord-
ing to their attributes so that similar queries results can be collected using the same
path.
Distributed query processing: is an alternative approach to processing triggered
queries. Although tree-based query processing has been shown to work well for mon-
itoring queries in general, utilizing a fixed network topology for triggered queries
is not always the best solution. SURCH (SURfing and searCHing) [90] is a fully
decentralized peer-based algorithm for processing triggered queries in wireless sen-
sor networks. SURCH combines query dissemination and processing so that a query
can be partially processed on the fly in a sensor network. Partial results are delivered
to the query initiator or a designated proxy for final processing. SURCH avoids the
overheads of network topology construction or interaction with a server by exploit-
ing local communication. The novelty of SURCH is fourfold. First, it is capable
of processing ad hoc in-network generated queries more efficiently than existing
tree-based techniques in addition to continuously monitoring queries. Second, by
implementing prioritization, when only a small number of sensor nodes contribute
to the query result, SURCH demands very little communication. Third, sensor work-
loads can be balanced to maximize the overall life-time of sensor networks through
carefully designed propagation policies. Finally, SURCH has an inherent resilience
to sensor failures, as it does not depend on any particular node, but works “around”
failed nodes, discovering the ones that are still operational.

7 Conclusions

In this chapter, we discussed techniques and solutions for effective data management
in distributed sensor networks. In particular, novel approaches to data representation,
distributed sensor architectures, and query processing will trigger the development of
alternative protocols/services for adaptive optimization engine that can be used over
a wide range of sensor networks and applications. Sensor networks are an example
of a complex technical system with multiple operational constraints and perfor-
mance goals dictated by the deployed application at hand. In general, the dynamic
nature of observed phenomena under varying system and network conditions implies
that policies instrumented in the system should be dynamic and customizable.

460 Z. Qin et al.

Multiple system and application activities can interfere with each other when they
occur concurrently in distributed sensor systems. Fundamental problems arise in
the concurrent execution of multiple distributed services and protocols that manage
multiple needs; further complications arise in the dynamic customization of these
services and protocols. Arbitrary composition of those techniques developed for
addressing each individual non-functional need will result in unsatisfactory system
performance, when there are multiple needs. More research is needed to address the
complexity of supporting distributed sensor data collection application under multi-
ple conflicting requirements: timeliness, accuracy, reliability and cost-effectiveness.

A widescale and effective deployment of sensing infrastructures has the poten-
tial to impact the scientific community (disaster management, ecosystem monitor-
ing, command and control) at large; further research in this area will help generate
guidelines for the development of sensor architectures for specific disciplines. Novel
challenges for the new decade include sustainability of large sensing infrastructures
that provide intelligence to applications while preserving the privacy of individuals
in sensed spaces.

References

1. J. Jude, et al., Sensorflock: an airborne wireless sensor network of micro-air vehicles. in Pro-
ceedings of the 5th international conference on Embedded networked sensor systems, ACM
(2007)

2. J. Polastre, et al., Analysis of wireless sensor networks for habitat monitoring. Wireless Sensor
Netw. 399–423 (2004)

3. K. Chintalapudi et al., Monitoring civil structures with a wireless sensor network. Internet
Comput. IEEE 10(2), 26–34 (2006)

4. C. Otto, et al., System architecture of a wireless body area sensor network for ubiquitous health
monitoring. J. Mobile Multim. 1.4, 307–326 (2006)

5. J. Henaut, D. Dragomirescu, R. Plana, Fpga based high date rate radio interfaces for aerospace
wireless sensor systems. Fourth International Conference on Systems, ICONS’09, IEEE,(2009)

6. W.-A. Geoffrey et al., Deploying a wireless sensor network on an active volcano. Internet
Comput. IEEE 10(2), 18–25 (2006)

7. E.A. Lee, Cyber-physical systems-are computing foundations adequate, vol. 2. Position
Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap (2006)

8. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tag: a tiny aggregation service for ad-
hoc sensor networks. in Proceedings of USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2002)

9. A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, Y. Yao, The cougar project: a work-in-progress
report. in ACM SIGMOD Record 32(4), (2003)

10. G. Ozsoyoglu, R.T. Snodgrass, Temporal and real-time databases: a survey. in Proceeding of
IEEE Transactions on Knowledge and Data Engineering (TKDE)7(4) (1995)

11. K. Ramamritham. Real-time databases. Int. J. Distribut. Parallel Databases 1(2) (1996)
12. A. Tansel, J. Cliord, S. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass, Temporal Databases:

Theory (Design and Implementation, Benjamin/Cummings, 1994)
13. S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.K. Kim, Composite events for active databases:

semantics, contexts and detection. in Proceedings of the International Conference on Very Large
Data Bases (VLDB) (1994)

13 Quality-Aware Sensor Data Management 461

14. A.P. Sistla, O. Wolfson. Temporal conditions and integrity constraints in active database sys-
tems. in Proceedings of ACM International Conference on Management of Data (SIGMOD)
(1995)

15. Q. Han, I. Lazaridis, S. Mehrotra, N. Venkatasubramanian, Sensor data collection with expected
reliability guarantees. in Proceedings of IEEE International Workshop on Sensor Networks and
Systems for Pervasive Computing (PerSeNS) (2005), pp. 374–378

16. Y. Sankarasubramaniam, O.B. Akan, I.F. Akyildiz. Esrt: event-to-sink reliable transport in
wireless sensor networks. in Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc) (2003)

17. S.J. Park, Ra. Vedantham, R. Sivakumar, I.F. Akyildiz, A scalable approach for reliable down-
stream data delivery in wireless sensor networks. in Proceedings of ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc) (2004)

18. I. Lazaridis, Q. Han, S. Mehrotra, N. Venkatasubramanian. Fault-tolerant queries over sensor
data. in Proceedings of International Conference on Management of Data (COMAD) (2006),
pp. 104–116

19. I. Hwang, Q. Han, A. Misra. MASTAQ: a middleware architecture for sensor applications
with statistical quality constraints. in Proceedings of IEEE International Workshop on Sensor
Networks and Systems for Pervasive Computing (PerSeNS), (2005), pp. 390–395

20. Q. Han, S. Mehrotra, N. Venkatasubramanian. Energy efficient data collection in distributed
sensor environments. in Proceedings of IEEE International Conference on Distributed Com-
puting Systems (ICDCS) (2004), pp. 590–597

21. C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries over distributed data
streams. in SIGMOD (2003)

22. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tinydb: an acqusitional query processing
system for sensor networks. ACM Trans. Database Syst. 30(1), (2005)

23. S.R. Madden, M.J. Franklin, J.M. Hellerstein, .W. Hong, The design of an acquisitional query
processor for sensor networks. in Proceedings of ACM International Conference on Manage-
ment of Data (SIGMOD) (2003)

24. M. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, Balancing energy efficiency and quality
of aggregate data in sensor networks. VLDB J. 13(4), 384–403 (2004)

25. C.G. Lee, A.K. Mok, P. Kanana. Monitoring of timing constraints with confidence thresholds.
in Proceedings of IEEE Real-Time Systems Symposium (RTSS) (2003)

26. R. Cheng, D.V. Kalashnikov, S (Evaluating probalistic queries over imprecise data. in ACM
SIGMOD, Prabhakar, 2003)

27. S. Grumbach, P. Rigaux, L. Segoufin, Manipulating interpolated data is easier than you thought.
VLDB J. 156–165 (2000)

28. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval (Addison Wesley, New York,
1999)

29. X. Yu, K. Niyogi, S. Mehrotra, N. Venkatasubramanian, Adaptive target tracking in sensor
networks. in CNDS (2004)

30. Q. Han, M.B. Nguyen, S. Irani, N. Venkatasubramanian. Time-sensitive computation of aggre-
gate functions over distributed imprecise data. in Proceedings of IEEE International Workshop
on Parallel and Distributed Real-Time Systems (WPDRTS) (2004)

31. C. Olston, B.T. Loo, J. Widom. Adaptive precision setting for cached approximate values. in
Proceedings of ACM International Conference on Management of Data (SIGMOD) (2001)

32. E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, F. Ye, A semantics-based mid-
dleware for utilizing Heterogeneous sensor networks. DCOSS, 174–188 (2007)

33. M. Botts, OGC Implementation Specification 07–000: OpenGIS Sensor Model Language,
SensorML (2012)

34. http://www.ics.uci.edu/projects/SATware/ (2012)
35. R. Cristescu, M. Vetterli, On the optimal density for real-time data gathering of spatiotemporal

processes in sensor networks. in Proceedings of IEEE International Conference on Information
Processing in Sensor Networks (IPSN) (2005)

http://www.ics.uci.edu/projects/SATware/

462 Z. Qin et al.

36. A. Datta, I. Viguier, Providing real-time response, state recency and temporal consistency in
databases for rapidly changing environments. Inform. Syst. 22(4) (1997)

37. J. Considine, F. Li, G. Kollios, J. Brers, Approximate aggregation techniques for sensor data-
bases. in Proceedings of the IEEE International Conference on Data Engineering (ICDE)
(2004)

38. http://en.wikipedia.org/wiki/Control_system (2012)
39. B. Hore, et al. SATware: middleware for sentient spaces. in Multimodal Surveillance: Sensors,

Algorithms and Systems (2007)
40. M. Kim, et al., A semantic framework for reconfiguration of instrumented cyber physical

spaces. in Workshop on Event-based Semantics, CPS Week (2008)
41. V. Ronen, Towards Adaptation in Sentient Spaces. Dissertation (University of California, 2012)
42. E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal, R. Patra, S. Surana, K.

Fall, The case for technology in developing regions. in IEEE Computer (2005)
43. W. Heinzelman, A. Murphy, H. Carvalho, M. Perillo, Middleware to support sensor network

applications. IEEE Netw. 1(18), 6–114 (2004)
44. G. Heineman, W. Councill, Component-Based Software Engineering: Putting the Pieces

Together (Addison-Wesley, Reading, 2001)
45. D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, J (An evaluation of multi-resolution

search and storage in resource-constrained sensor networks. in SenSys, Heidemann, 2003)
46. S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, F. Yu, Data-centric storage

in sensornets with ght, a geographic hash table. Mobile Netw. Appl. (2003)
47. K.S. Prabh, T.F. Abdelzaher, Energy-conserving data cache placement in sensor networks.

ACM Trans. Sensor Netw. 1(2) (2005)
48. P. Desnoyers, D. Ganesan, P. Shenoy, Tsar: a two tier storage architecture using interval skip

graphs. in ACM Sensys (2005)
49. I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, N. Venkatasubramanian, D. Kalashnikov, W. Yang,

Quasar: Quality aware sensing architecture. ACM SIGMOD Rec. 33(1), 26–31 (2004)
50. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,

N. Tatbul, S. Zdonik, Monitoring streams: a new class of data management applications. in
Proceedings of the 28th International Conference on Very Large Data Bases (VLDB) (2002)

51. C. Lu, G. Xing, O. Chipara, C.L. Fok, S. Bhattacharya, A spatiotemporal query service for
mobile users in sensor networks. in Proceedings of International Conference on Distributed
Computing Systems (ICDCS) (2005)

52. Q. Han, S. Mehrotra, N. Venkatasubramanian, Application-aware integration of data collection
and power management in wireless sensor networks. J. Parallel Distribut. Comput. 67(9), 992–
1006 (September 2007)

53. I. Urteaga, K. Barnhart, Q. Han, REDFLAG: a run-time, distributed, flexible, lightweight, and
generic fault detection service for data-driven wireless sensor applications. Pervas. Mobile
Comput. 5(5), 432–446 (2009)

54. L. Paradis, Q. Han, A survey of fault management in wireless sensor networks. J. Netw. Syst.
Manage. 15(2), 171–190 (2007)

55. I. Lazaridis, Q. Han, S. Mehrotra, N. Venkatasubramanian, Fault-tolerant evaluation of contin-
uous queries over sensor data. Int. J. Distribut. Sensor Netw/ 5(4), 338–360 (2009)

56. L. Paradis, Q. Han, Tigra: timely sensor data collection using distributed graph coloring. in
Proceedings of IEEE International Conference on Pervasive Computing and Communication
(PerCom), pp. 264–268 (2008)

57. L. Paradis, Q. Han, A data collection protocol for real-time sensor applications. Pervas. Mobile
Comput. 5(1), 369–384 (2009)

58. B. Adelberg, H. Garcia-Molina, B. Kao, Applying update streams in a soft real-time database
system. in Proceedings of ACM International Conference on Management of Data (SIGMOD)
(1995)

59. R. Zhang, C. Lu, T.F. Abdelzaher, J.A. Stankovic, Controlware: a middleware architecture
for feedback control of software performance. in Proceedings of International Conference on
Distributed Computing Systems (ICDCS), (2002)

http://en.wikipedia.org/wiki/Control_system

13 Quality-Aware Sensor Data Management 463

60. Y. Huang, R. Sloan, O. Wolfson. Divergence caching in client-server architectures.in Pro-
ceedings of the IEEE Third International Conference on Parallel and Distributed Information
Systems (PDIS) (1994)

61. Q. Han, N. Venkatasubramanian, Autosec: an integrated middleware framework for dynamic
service brokering. IEEE Distribut. Syst. Online 2(7) (2001)

62. C. Olston, J. Widom, Best-effort cache synchronization with source cooperation. in Proceedings
of ACM International Conference on Management of Data (SIGMOD) (2002)

63. L. Liu, C. Pu, W. Tang, Continual queries for internet scale event-driven information delivery.
Proc. IEEE Trans. Knowl. Data Eng. 11(4), 610–628 (1999)

64. J. Chen, D.J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: a scalable continuous query system for
internet databases. in Proceedings of ACM International Conference on Management of Data
(SIGMOD) (2000)

65. S.R. Madden, M.J. Franklin. Fjording the stream: an architecture for queries over streaming
sensor data. in Proceedings of the IEEE International Conference on Data Engineering (ICDE)
(2002)

66. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream
systems. in Proceedings of ACM Symposium on Principles of Database Systems (PODS) (2002)

67. P. Bonnet, J.E. Gehrke, P. Seshadri, Towards sensor database systems. in Proceedings of IEEE
International Conference on Mobile Data Management (MDM) (2001)

68. N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, M. Stonebraker. Load shedding in a data
stream manager. in VLDB Conference (2003)

69. B. Babcock, M. Datar, R (Load shedding for aggregation queries over data streams. in Pro-
ceedings of ICDE Conference, Motwani, 2004)

70. C.Y. Wan, A.T. Campbell, L. Krishnamurthy. Psfq: a reliable transport protocol for wireless
sensor networks. in Proceedings of ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA) (2002)

71. S.J. Park, Ra. Vedantham, R. Sivakumar, I.F. Akyildiz, A scalable approach for reliable down-
stream data delivery in wireless sensor networks. in Proceedings of ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc) (2004)

72. S. Tilak, N.N. Abu-Ghazaleh, W. Heinzelman. Infrastructure tradeos for sensor networks. in
Proceedings of ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA) (2002)

73. C.Y. Wan, S.B. Eisenman, A.T. Campbell. Coda: congestion detection and avoidance in sensor
networks. in Proceedings of the ACM Conference on Embedded Networked Sensor Systems
(SenSys), (2003)

74. D. Ganesan, R. Govindan, S. Shenker, D. Estrin, Highly-resilient, energy-efficient multipath
routing in wireless sensor networks. in ACM Mobile Computing and Communications, Review,
vol. 1(2) (2002)

75. F. Ye, G. Zhong, S. Lu, L. Zhang. Gradient broadcast: a robust data delivery protocol for large
scale sensor networks. ACM Baltzer J. Wireless Netw. 11(2) (2003)

76. A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, W. Hong. Model Driven Approximate
Query in Sensor Networks. VLDB J. 14(4) (2005).

77. A.K. Mok. Fundamental design problems of distributed systems for the hard-real-time envi-
ronment. Ph.D. thesis (MIT, 1983)

78. J.A. Stankovic, M. Spuri, M.D. Natale, G.C. Buttazzo, Implications of classical scheduling
results for real-time systems. IEEE Comput. 28(6), 16–25 (1995)

79. P. Boonma, Q. Han, J. Suzuki, Leveraging biologically-inspired mobile agents supporting
composite needs of reliability and timeliness in sensor applications. in Proceedings of IEEE
International Conference on Frontiers in the Convergence of Bioscience and Information Tech-
nologies (FBIT) (2007), pp. 851–860

80. Q. Han, D. Hakkarinen, P. Boonma, J. Suzuki, Quality-aware sensor data collection. Int. J.
Sensor Netw. 7(3), 127–140 (2010). Special Issue on Data Quality Management in Wireless
Sensor Networks

464 Z. Qin et al.

81. G. Hartl, B. Li, Infer: a bayseian inference approach towards energy efficient data collection in
dense sensor networks. in Proceedings of International Conference on Distributed Computing
Systems (ICDCS) (2005)

82. I. Lazaridis, Sharad mehrotra: capturing sensor-generated time series with quality guarantees.
ICDE 429–440 (2003)

83. Y. Chen, A. Liestman, Approximating minimum size weakly-connected dominating sets for
clustering mobile ad hoc networks. in The 3rd ACM International Symposium on Mobile Ad
Hoc Networking and, Computing (2002)

84. K. Kalpakis, K. Dasgupta, P. Namjoshi. Maximum lifetime data gathering and aggregation in
wireless sensor networks. in The IEEE International Conference on Networking (2002)

85. A. Deligiannakis, Y. Kotidis, N (Hierarchical in-network data aggregation with quality guar-
antees. EDBT, Roussopoulos, 2004)

86. X. Yu. S. Mehrotra, N. Venkatasubramanian, Sensor scheduling for aggregate monitoring in
wireless sensor networks. SSDBM (2007), p. 24

87. B. Bonfils, P. Bonnet, Adaptive and decentralized operator placement for in-network query
processing. in Proceedings of IPSN International conference on information processing in
sensor networks (2003), pp. 47–62

88. S. Pattem, B. Krishnamachari, R. Govindan, The impact of spatial correlation on routing with
compression in wireless sensor networks. in Proceedings of IPSN (International conference
on information processing in sensor networks) (2004), pp. 28–35

89. M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, Balancing energy efficiency and quality
of aggregate data in sensor networks. VLDB J. 13(4), 384–403 (2004)

90. X. Yu, S. Mehrotra, N. Venkatasubramanian, SURCH: distributed aggregation over wireless
sensor networks. IDEAS 158–165 (2006)

91. C. Bisdikian, L.M. Kaplan, M.B. Srivastava, D.J. Thornley, D. Verma, R.I. Young, Building
principles for a quality of information specification for sensor information. in Proceedings of
the 12th International Conference on, Information Fusion (2009)

92. A. Deshpande, L. Getoor, P. Sen Book Chapter. in Graphical Models for Uncertain Data;
Managing and Mining Uncertain Data, ed. by C. Aggarwal (Springer, New York, 2009)

93. A. Deshpande, C. Guestrin, S (Using probabilistic models for data management in acquisitional
environments. in The Proceedings of CIDR (Madden, 2005)

94. A. Deshpande, C. Guestrin, S. Madden, W. Hong, in Exploiting correlated attributes in acqui-
sitional query processing, ICDE (2005)

Chapter 14
Geometric Methods of Information Storage
and Retrieval in Sensor Networks

Rik Sarkar

Abstract Sensor networks collect data from their environment. Locations of the
sensors are an important attribute of that information and provide a context useful to
understand, and use sensor data. In this chapter, we will discuss geometric ideas to
organize sensor data by using their locations. We will consider distributed methods for
managing queries about isolated events, queries about mobile objects, and queries for
general signal fields. Location-based methods often require suitable simple geometric
domains to operate, and we will discuss how they can be adapted to networks with
complex shapes.

1 Introduction

The data collected by a sensor has to be available to others, since the sensor that
produces a piece of datum is not always the one that uses it. The consumer may be
far from the source of data and have no idea of how to find the one relevant source
in a large network. A similar problem arises when the consumer asks for aggregate
information, for example: sum or average or maximum, which need contribution a
large group of sensors—at a large communication cost.

Methods of data pre-processing distribute hints about sensor information across
the network. When done properly, pre-processing can make it easier to answer con-
sumer queries—search and aggregation—and avoid the large costs.

Locations are a useful tool in pre-processing and an important aspect of sensor
data. Physical events are naturally associated with coordinates instead of ids: the
location of a fire alarm is critical, the sensor identity is not. Locations let us associate
events with the physical world—they give us an index of the environment. As a result,
locations are essential to Cyber Physical Information. Interpreting and processing

R. Sarkar (B)

Department of Informatics, The University of Edinburgh, Edinburgh, UK
e-mail: rsarkar@inf.ed.ac.uk

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 465
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_14,
© Springer-Verlag Berlin Heidelberg 2014

466 R. Sarkar

data by locations gives a geometric structure to the otherwise amorphous sensor
readings. As an added bonus, basic network operations of routing, communication,
scheduling and many others can benefit from use of locations. Since wireless com-
munication works only between nearby nodes, their locations have a close relation
to the overall structure of a network.

In this chapter, we will examine how geometric ideas can leverage the locations
of nodes for better utilization of sensors. We will see that geometry plays a role in
processing the sensor data as well as in answering queries.

These methods can be divided into two categories by their applicability. In Sect. 2,
we discuss ways of managing data in a static scenario where sensors measure general
physical quantities or events such as temperature, pressure or occurrence of fire. In
Sect. 3 we will consider methods for processing data about mobile objects. With the
increasing popularity of mobile devices, this is an important sensing category, and
carries interesting relations to the general case. In each of Sects. 2 and 3, we will
consider two different styles of data organization— hierarchic data structures, and
data distribution in a flat structure. In Sect. 4, we will discuss how these methods are
adapted to complex networks by construction of virtual coordinates and segmentation
of networks.

Our goal is to keep the methods as general as possible, so that they are applicable
to the widest variety of scenarios. Therefore we will treat our network as general
communication-capable sensors distributed in a plane, without any assumption on
their specific sensing capabilities or other features. Nonetheless, we will also mention
relevant example applications in each case to illustrate the methods and their uses.

In the rest of this section we discuss the general model and scenario used to
describe the different methods. Locations and distributions of nodes are important
to storage schemes, as is routing. In the following let us briefly review the aspects of
these topics that will be relevant to our main discussion. Readers generally familiar
with location-based algorithms and routings methods may wish to skip ahead to the
next section.

1.1 Distribution and Location of Nodes

Finding locations of nodes is a challenge on its own and much research has been
devoted to it. The methods and protocols vary by the requirements and the infrastruc-
ture available, and the theoretical questions related to localizing nodes in reason-
able models are often intractable problems [4, 10]. For more related works on this
topic see a recent survey [15]. From a practical point of view, GPS is becoming
more affordable, and localizing sensors by collaborating with nearby and pass-
ing GPS enabled devices is often a possibility. Wireless and cellular signal-based
localizations are also becoming and common and fairly reliable. Very accurate
localization will not be important to our discussions, we therefore leave the ques-
tion of localization here and assume that some form of approximate locations are
available.

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 467

We do need some idea of how sensors are distributed in the domain. For our
discussion, let us assume that the nodes are distributed over large area and with
bounded density—the number of neighbors of any node is bounded by some constant
number. This is a reasonable assumption, since in a small region we would like to
have only a limited number of sensors. Too many devices in close proximity increase
costs and reduce communication efficiency [16], but cannot provide corresponding
sensing benefits.

For simplicity, we can discuss the performance of algorithms with respect to
a specific sensor configuration. Let us suppose n sensors are distributed in a large
enough square and with uniform density as above. If communication ranges of sensors
are bounded above and below by some constants, this would mean that the sides of
this square are of length η(

∈
n), and the diameter of the network is of the same

order. The expected distance between any two random nodes in the network is also
η(

∈
n).1 We will discuss more general types of networks in Sect. 4.

1.2 Communication and Routing

To make best use of sensor networks, a sensor needs to communicate with other
nodes. It needs support from the network to forward its messages. Multi-hop routing
in wireless and sensor networks is a widely studied subject that we will not attempt to
survey here, but will mention briefly a few concepts important to our later discussion.

Flooding. This is perhaps the simplest communication technique, where the message
is sent to all neighbors of the source, and a receiver always sends it to all its own
neighbors. As a result, the message reaches all nodes in the connected network,
including the intended destination. Once the first message is delivered, one of the
paths along which it traveled can be used for further communication between source
and the destination. This is the basis of classic ad hoc routing protocols such as
AODV [35] and DSR [18]. The cost of such a protocol is η(n) per communication
pair, since the first message goes to all nodes.

Geographic routing. To make routing more efficient in sensor networks, several
methods have been proposed making use of node locations. These schemes pre-
process the network to compute a planar graph whose edges consist of communica-
tion links in the network (see [2]). The routing itself follows a two phase method.
Suppose node s currently has a message for location t , then s uses one of the following
tactics:

1. Greedy routing: Node s checks all its neighbors and finds neighbor w that is
nearest to t . If |wt | < |st |, that is, w is nearer to t , then s sends the message to w.

1 A function f (n) is said to be η(g(n)), if there are constants a, b, N such that for all n > N ,
a · g(n) ⊂ f (n) ⊂ b · g(n). That is, for large enough n, f (n) behaves like g(n) to within constant
factors. More details can be found in books on algorithms. See for example [7].

468 R. Sarkar

Fig. 1 Greedy routing and face routing. Message path is shown in bold, and goes through the
following steps. A message for t starts from x and reaches y by a greedy step. Greedy step fails at
y, so perimeter mode is initiated for the shaded face. Message reaches w while traversing the face.
Greedy mode resumes at w since |wt | < |yt |. The message traverses the face containing location t
looking for the node nearest to t

2. Perimeter mode routing: If no such w is available, the routing enters perimeter
mode, where the message moves along the face of the planar graph containing s,
until it finds w with |wt | < |st |.

See Fig. 1 for an example.
There are several methods [2, 19, 22, 25, 26], that are variations of this essential

strategy. The most popular among these is GPSR [19], which we will use as our
standard reference for this class of greedy plus perimeter mode routing. We will
assume for simplicity that the sensors are distributed with sufficient density that
there are no large “holes” in the square network. As such, we can say that if two
nodes are distance d away in the plane, the GPSR path between them has a length
O(d)—which is the communication cost between these two sensors. If there is no
node at the destination location t , then GPSR traverses the face containing t , and
arrives at the node closest to t .

Virtual coordinates and handling network shapes. A real sensor network will
typically not be so simple. It will have unexpected shape, and will likely have coverage
holes where there are no sensors. Is it still possible to apply the routing methods and
the geometric data storage methods to these networks?

Protocols have been designed to compute virtual coordinates— assignment of a
logical or virtual location to nodes in an abstract plane [5, 6, 34, 36, 39, 40, 45].
These methods morph the virtual network into more standard shapes, making it easier
to use routing and geometric data storage methods. A different approach is proposed
in [46, 47]—to decompose a complex shape into pieces, each of which is relatively
simple, and easy to apply geometric methods.

We will discuss these methods of handling complex shapes in Sect. 4.

2 Information Brokerage and Range Queries

An important sensor network question is searching for particular pieces of infor-
mation. Sensors detect and store significant events, and sometimes we need to
find a particular type of event—for example, a tourist on safari may wish to find

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 469

the elephants.2 We have a sensor network monitoring the park, and some sensor
P near a group of elephants has useful information—it has stored an “elephant
detection” event. But sensor P is not aware where an interested tourist may be.
Symmetrically, node C is in communication with the tourist, but has no idea where
P is.

This general problem is called Information Brokerage: information producer P
has some data, and information consumer C would like to learn this data. We need
a general method by which producer and consumer can find each-other easily.

The conceptually simplest protocol to handle this problem is for the consumer to
check every node in the network by flooding a query. This approach was taken in
Directed Diffusion [17] and TinyDB [31]. It works well when data is updated often,
but queries are occasional—a sensor stores updated information, and responds to
the queries it receives. However, all other nodes in the network are also required to
receive and forward the query, whether they have relevant data or not. When searches
are frequent, this becomes an unnecessary load on the nodes, most of whom have
nothing to do with the query.

We wish to have an information brokerage scheme that makes better use of network
resources—uses less communications, and balances the load across the network. We
would like to avoid consuming energy at nodes that can not help us in our search.
All nodes reporting their data to a single server achieves this in a way—it avoids
flooding the network, but also overloads the server and the nodes close to it. All the
updates and queries have to be forwarded by the few nodes leading to the server,
which will quickly run out of battery. Information should be spread out to balance
the storage and communication loads in the network.

2.1 Hashing Data to Points and Curves

One method to coordinate producers and consumers is by using consistent hashing
over the entire network. The idea is used in [37]. All nodes know a hash function
that can be applied to the data query or key, and it returns a location. Let us denote
this function as h.

The sensor P performs the hash h (“Elephant”), and obtains a location — a pair of
coordinates: (x, y). Node P sends a message to the sensor at (x, y) that “Elephant”
or relevant data is available at P’s location. The consumer C performs the same hash
when searching and obtains the same (x, y); thus C knows which sensor must have
the information.

Location (x, y) need not be a sensor location at all, a random hash h will almost
certainly give us an empty location. We can resolve this by storing the data at the
sensor nearest to the location (x, y)—see Fig. 2. Finding this nearest sensor, called

2 This commonly used example is from [37].

470 R. Sarkar

Fig. 2 Geographic hash tables. The data producer P sends a message to location (x, y) = h(key),
using GPSR. The trajectory is shown as the path in red. The data may be stored at the node S nearest
to the location, or on the entire perimeter around the hash location. The consumer also performs
GPSR with (x, y) as target and arrives at the data

the home node—we saw in Sect. 1.2 how this can be done using GPSR [19]. The
consumer can also send a message via GPSR routing to (x, y) to arrive at this same
sensor, and a return message retrieves the data. Since hash locations are completely
random, the expected cost for a node—either a producer or a consumer—to send a
message to the hash location is η(

∈
n). Therefore, the cost of a producer storing a

piece of information at the hash location, or that of a consumer retrieving it are both
asymptotically η(

∈
n) in expectation.

Storing a piece of data at only the home node is fragile—a failure of the node can
destroy all the stored information. For better fault tolerance, GHT utilizes the GPSR’s
perimeter routing mechanism. While searching for the home node, GPSR traverses
the perimeter of the face that contains the hash location, and GHT stores the data
at all nodes on this home perimeter at no extra communication cost. Periodically, a
probe is sent around the home perimeter, checking the health of the perimeter nodes.
If some nodes have failed and the perimeter changed, then the new perimeter nodes
are given a copy of the data.

The perimeter mode storage of data has an additional advantage that the consumer
can get the data as soon as the search message hits some part of the perimeter curve.
If we had gone a step ahead and stored the data at all the nodes on the path from
the producer up to the home perimeter, and sent the consumer’s search message in a
path likely to touch the storage path, it could have collected the data without visiting
the home region.

Can we stretch this idea further? Maybe we can deliberately send the producer’s
message along a path that the consumer can find. If done suitably, this method may
have several additional benefits. In Fig. 2, the producer and consumer are fairly close,
yet the search message has to travel to the hash location and back; which means slower
response to the query, and additional load on the home nodes and those on the path.
If the search found a nearby node on the producer’s storage path, these unnecessary
penalties would be avoided.

Our next brokerage technique, called Double Rulings [41, 43] expands this
concept—data is stored along a path instead of at a node. The challenge is to design
the trajectories such that the search paths find the storage paths easily.

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 471

(a) (b)

Fig. 3 a Stereographic projection in side-view. b Producer storage curves (red) for p and p◦. They
are great circles passing through hash location h

2.1.1 Double Rulings

Double Rulings is the general idea of storing data on a path such that the consumer’s
search finds it easily. Simply taking the GPSR path to the hash location does not
suffice—the goal is to have the intersection of search and storage paths close to the
consumer. The close intersection means less communication and faster response to
the query. It will be best to have the intersections at different points on the storage
path and have the load of responding to queries more evenly distributed. The specific
scheme we will discuss is from [41, 43].

The intuition is to design the paths as abstract curves on a sphere. A type of curves
we use are called great circles. These are circles that lie on the sphere and have the
largest possible diameter. On the earth for example, the equator and the longitude
circles are all great circles. The great circles on a sphere are analogous to straight
lines on a plane—shortest distances are measured along them. Just as with the plane,
given two points on a sphere, there is a unique great circle through them.3

The sensor network itself lies on a plane. To make use of curves on a sphere, we
first need a correspondence between the sphere and the plane. This is done through a
mapping called stereographic projection. Imagine the sphere is placed on the plane.
For any point h∀ on the plane, we imagine the straight line from h∀ to the north pole
of the sphere—its top most point. This line intersects the sphere at another unique
point h, which is the image of h∀ under the stereographic projection. This idea is
shown in Fig. 3a.

With this map between the plane and the sphere, we can now define the storage
and search curves in terms of curves on the sphere. An example of storage curves is
shown in Fig. 3b where two producers are mapped to points p and p◦ on the sphere. In
double ruling, the hash function gives a location h on the sphere. The data is stored by
a producer along the great circle curve on the sphere passing through itself and h. To
be precise, data is stored along nodes on the curve in the plane that is the stereographic
map of the storage curve on the sphere. By properties of stereographic projection,

3 The exception to this is the special case when the two points in question are antipodes to each-other
on the sphere, and there are an infinite number of great circles passing through them.

472 R. Sarkar

(a) (b)

Fig. 4 a Double Rulings p and q are stereographic maps of producer and consumer; h is the
hash, h̄ is its antipode. C(p, h) is storage curve (a great circle) and L(q, h) is the retrieval curve,
intersecting at u and v. b Actual Network storage path (red) and search and retrieval path (blue) in
the plane. The hash location is shown as black triangle

the circular curves on the sphere map to circles in the plane. Thus the producer’s cost
for storing data along any circle in the network field is at most O(

∈
n).4

Using curves on a sphere makes data search and retrieval easy—a great circle
intersects any other great circle. Thus, the consumer doesn’t even have to consider
the hash h—it can simply send a message on a great circle and find any data in the
network.

The knowledge of the hash function can be used to create smarter paths that have
provably small search cost. We make use of latitude curves for this efficient search
and retrieval in place of great circles. A latitude curve is defined to be one that
maintains constant distance to the hash location on the sphere—see Fig. 4a.5 The
advantage of such curves is that they intersect any producer curve within a distance
O(d) from the consumer, where d is the distance between the consumer and the
producer on the sphere. In Fig. 4a, this means that either u or v—must be close to the
consumer q. The location and radius of the sphere can be chosen such that distance
between any two points on the plane is at most a constant times the distance between
corresponding points on the sphere, and the length of a path on the sphere is within a
constant factor of the length of the corresponding path in the plane produced by the
stereographic projection. Thus, the cost of search and retrieval for the consumer is

4 A function f (n) is said to be O(g(n)), if there are constants b, N such that for all n > N ,
f (n) ⊂ b · g(n). That is, for large enough n, f (n) is less than g(n) to within constant factors.
See [7] for details. The largest possible circular arc has length O(

∈
n) in a square of length O(

∈
n).

5 The name derives from latitudes on the earth, that maintain a constant distance to the poles.

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 473

0

20

40

60

80

100

120

0

20

40

60

80

100

120

(a) (b)

Fig. 5 Communication load at different nodes. Information generated by one producer, and queries
issued by 500 consumers. a Load for double rulings is distributed. b Load when using GHT is
clustered around the hash location, and therefore poorly balanced

O(d∀), where d∀ is its distance to the producer in the plane. This property is called
distance sensitive retrieval.

The storage and search paths in the plane are shown Fig. 4b. In a discrete network
the paths cannot be the smooth curves we construct by projection. The network path
following the curves as shown in the figure are obtained using a general strategy of
“Routing along a curve” described in [33].

Double Rulings includes GHT as a subcase—every storage curve passes through
the hash location, thus the consumer can always retrieve data from there. This is a
useful feature when a consumer wants all the data of a particular type instead of
just one—this can be done by visiting the hash location. On a sphere, its antipode h̄
serves as an additional proxy hash location—any great circle passing through h also
passes through h̄, and the GHT style retrieval can be performed by visiting its image
in the plane.

The great circle curves are useful for certain types of searches. For example, when
the consumer asks for multiple types of data at once, a great circle retrieval can find
all of them at once, since the a great circle will intersect all other great circle producer
curves.

One of our goals in using in-network storage is to balance the data handling load
among the nodes. Double ruling has the advantage that different consumers retrieve
data from different parts of the producer curve, so that the tasks of responding to
query are better distributed. This effect can be seen in Fig. 5. GHT creates high load
near the hash location. The load from double rulings is more balanced. In fact, the
overall load from double rulings is less, since it requires less communication per
query.

474 R. Sarkar

P

C

P

C

(a) (b)

Fig. 6 a Rumor routing: Producer follows a random walk. Consumer also follows a random walk
until it hits the producer. b Landmark-based double ruling. Landmark nodes are shown as green
triangle. Hash to a tile instead of location, then follow GLIDER routing to reach tile. The nodes in
bold are on boundary of one or more tiles

Location-free double ruling schemes. Intersection of paths to achieve information
brokerage has been used based on other structures than the stereographic projec-
tion [41, 43]. We describe these methods very briefly, making use of Fig. 6. The first
method, shown in Fig. 6a is called Rumor Routing, described in [3]. Here, the storage
path is a random walk from the producer, and of some maximum length determined
beforehand. The retrieval path is also a random walk, starting at the consumer. When
the retrieval path meets the storage path, it finds the data, which is returned to the
consumer.

The second method (Fig. 6b) relies on landmarks to decompose the network, and
is described in [12]. A few nodes in the network are selected as landmarks. All
other nodes determine the landmark nearest to them, and are grouped into “tiles”
accordingly. This is easy to do by flooding messages from the landmarks, and using
that to measure how far each node is from the different landmarks. The hash in this
case is a complete tile. The producer sends the data using a related landmark-based
routing scheme described in [11]. In each tile the path passes through, it shoots off
additional branches so that a consumer path finds an easy intersection. The consumer
uses the same hash and routing scheme, and intersects a storage node in the hash tile
or an earlier one.

These methods have the advantage that they do not need locations to operate.
Thus, they can be used when GPS or similar infrastructure are not present. However,
when locations are available, they are substantially more expensive than the methods
we discussed making use of locations. In the next subsection we return to our main
discussion of location-based schemes—how they can be divided recursively for better
query response.

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 475

Level 0

Level 1

Level 2

Fig. 7 A 3 level quadtree. On the left is the recursive partitioning—each level consists of one or
more square areas. At the next level each square is split into 4 congruent squares. On the right is
the tree—each square becomes a node, with edges to its children, and the parent

2.2 Hierarchical Partitions

Recursively partitioning a space is a common technique in data storage and search
mechanisms. The reader may be familiar with the binary partitioning used in binary
search on an array—where at each step the array is divided into 2 parts. By creating
an abstract node for each such part, we get a corresponding abstract structure called
a binary search tree, that represents the recursive partitioning of the array. To apply
similar techniques to sensor nodes in a plane we need a two dimensional version of
this idea.

Figure 7 shows a quadtree partitioning. We start with a square space at the top
level, and recursively partition it into smaller congruent squares at each level. Recur-
sive partitioning gives rise to an abstract tree structure shown on the right. Each
square at each level corresponds to a node in the tree, thus each node other than the
leaves has 4 children. We can interchangeably refer to a square or corresponding
quadtree node as convenient. The partitioning in Fig. 7 has two levels in addition to
the root, in general we can have any number of levels. It is reasonable to assume that
the final level is one where the squares are unit sized. In our constant density square
network model, unit sized leaves imply a quadtree with η(log n) levels.

This general partitioning scheme has been used in different ways for sensor data
handling. Here we briefly discuss a few of these.

2.2.1 Structured Replication in GHT

GHT [37] has a variant called structured replication (Fig. 8) designed to handle
the hotspot problem of many producers trying to transmit updates to a single hash
location. In this method, each node considers a quadtree partitioning of the square.
On each level of the partitioning, it is possible to perform the hash on each square at
that level, giving us 4i hash location at each level i .

The producer P stores the data at the single nearest hash location among all
the locations. In a k level tree storage cost is reduced to O(

∈
n/2k), but the search

476 R. Sarkar

Fig. 8 Structured replication
in GHT has a hash location in
each square of a quadtree par-
titioning. A producer (shown
shaded) stores the data at the
nearest hash location among
all these

P

cost increases—now the consumer has to search multiple locations. The protocol
dictates that the consumer searches the hash at level 0, which automatically for-
wards the message to the level 1 hashes, each of which forwards the message to
level 2 hashes and so on. Thus the search cost is O(2k∈n). This method therefore
decreases storage or update cost, but increases the search cost. The authors point
out that if the levels are such that at the lowest level squares are constant sized, then
this costs O(n)—asymptotically the same flooding to retrieve data from the source
node.

2.2.2 Fractional Cascading and Aggregate Information

Let us consider now a different question—answering aggregate queries using a hier-
archical structure. Imagine all our sensors are monitoring a signal that has an attribute
value, such as temperature. We can thus ask a question “Which sensors in region R
have temperatures above T ?” or, “How many sensors in region R have temperatures
above T ?” To answer these, we need a different type of data storage and retrieval
than the information brokerage schemes.

The fractional cascading method [14] suggests storing at each sensor, aggregate
data about exponentially growing regions: a constant number of values for each
quadtree square that contains it. A sensor has detailed information about the local
neighborhood, and progressively coarser information about larger regions.

The method starts with partitioning the square with a quadtree. Remember that a
node u in the quadtree corresponds to a square in the partitioning. Its parent p(u) is
the larger square at the previous level that contains the square u. Fractional cascading
then proceeds by storing some values at each sensor in a square. At each sensor in u,
it stores the maximum in the square u, and the maxima for each sibling of u in the
quadtree. That is, each node saves 4 values for each level in the tree—the quadtree
nodes on the path from the leaf to the root, and their siblings (See Fig. 9). This means

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 477

Fig. 9 The network from the
point of view of the shaded
node in quadtree square u.
It stores one aggregate (for
example maximum) for each
square in this figure

Square u

Fig. 10 Query response in fractional cascading. The query is to find an aggregate (e.g., sum of
values) of all sensors in the outer rectangle R shown in bold. Each square in the figure is canonical
piece—its parent square is not in R. The method needs to visit each canonical square once, this is
done by following the spiral path shown as dashed segments, that has length O(P log P)

that on a typical tree in our scenario, a node needs to store O(log n) values, and the
communication cost of storing all the data in this format is O(n log n).

The query response is done in terms of Canonical Pieces. Given a region R,
a canonical piece is a square in the partitioning that fits completely in R, but its
parent does not fit—see Fig. 10. To find the true answer, we check each canonical
piece. The cost of this traversal can be shown to be O(D + ∈

Ak + P log P). Here
A and P are the area and perimeter of R, while k is the number of sensors with
temperature above T . The parameter D is the distance from the query source to the
query range—it is the unavoidable cost of communicating with the query region.

Sometimes we may not be interested in a such a detailed report. We may just
ask “What is the maximum temperature in R?” to find out if there is a fire in the
region. On such a query, it is sufficient to check just one node from each canonical
piece, since every node stores the maximum value of each square it belongs to. The
traversal can be done nicely by following a spiral path in R visiting the smaller pieces
at the edges first, and traversing progressively larger squares inwards. The cost of
visiting all the canonical pieces will be simply O(D + P log P), taking into account
the distance of R from the query point. Similarly, it is possible to compute sums,
where each node stores the sum of values in its square and their siblings at all levels.

478 R. Sarkar

This is useful in answering a question of type “How many animals are there in region
R?” and can be answered at the same cost.

Fractional cascading is a fundamental concept in computer algorithms [8], and
have been used in different fields in different ways. It will make further appearances
in the next section when we discuss tracking mobile devices.

2.2.3 DIM: Locality Preserving Storage of Multidimensional Data

Sensors in a network are likely to have many different sensing capabilities. And
queries may be with respect to multiple parameters. Whether it is a data center or a
wildlife preserve, we need to keep track of many different parameters that will help
us understand animal behaviors, hardware failures and other events in the network.

For such data, it is useful to be able to make range queries: which hardware failures
in the data center typically happen at high temperature and load conditions? At which
locations has the bird been spotted when temperature was between 30 and 35 ∗C and
humidity in range 80−100 %?

To answer the queries efficiently, it helps if similar data are stored close together.
For example, if events at similar humidity and similar temperature are stored nearby,
the cost of answering the queries above will be low.

Based on this idea, DIM [28] suggests a locality preserving hashing scheme for
events. Here “locality preserving” means that it tries to place together events that are
similar in some parameters.

Let us suppose for the moment that we have k different binary parameters. We can
ask: “Was the temperature low or high?”, “Was the humidity above or below 50 %?”
and similar questions about every parameter. Thus each event is accompanied by a
bit vector b of length k. To each possible bit vector, we will assign a zone—a region
of the network—where the corresponding events will be stored.

This method is inspired by a different type of space partition called kd–trees [8].
We start with our square network region R, and partition it recursively, diving each
region into two according to the next bit b[i] of b. If i is even, we split R with a
vertical line, and depending on b[i] being 0 or 1, we choose left or right. Similarly,
if i is odd, we split R with a horizontal line and depending on if b[i] being 0 or 1, we
choose bottom or top. Figure 11 shows an example how we can map any bit vector
to a unique region of the network.

Thus, given an event whose binary properties are represented by b, we have a
way to map it to a region, and events with same properties will be mapped to and
stored in the same region. Observe that parameters whose values are earlier in the
sequence have greater weight in determining the neighborhood of storage, creating
an imbalance in the significance of different parameters.

The case where parameter values are not binary can be handled by considering the
binary representation of the values. For simplicity, let us say each value is an integer
in the range [0 to 2v−1], represented by v bits. The first bit is the most significant—it
determines if the value is in the range [0 to 2v−1−1] or [2v−1 to 2v]. Given the first
bit determining if the value is in the left or right half of the range, the second bit

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 479

Fig. 11 Any bit vector can be
assigned to a unique region in
the network

01 110

000 100 101

1111

0011

0010

1110

determines if the value is in the lower or upper half of the reduced range, and so on.
To map k such values to the network, we utilize this bit representation concept. The
first k bits of b are the most significant bits if the k values, the next k bits store the
second most significant bits of the values and so on.

3 Mobility Management and Tracking

Let us revisit a question we had considered in the previous section. A tourist asks
“Where can I find an elephant?” We discussed some methods of brokerage that helps
the tourist to find the animals of interest. These brokerage methods work well as
long as the animals stay in their place, or move very rarely. What happens when the
animals are active and move continuously? In such cases, methods such as GHT and
Double Rulings have to continuously update the storage data—by sending messages
on long paths or curves.

This is identical to a common question in mobile networks. “Where is user x?”
It is important, when placing a call to user x in cellular networks. Cellular networks
handle mobility by assigning to each phone a “home” server and having the phone
update this server suitably. In a sensor network the corresponding strategy will be
updating a hash location in GHT or sending a message along a double ruling path
every time x moves, which is impractical for frequently moving targets.

The general problem of tracking and finding mobile objects is therefore a chal-
lenging topic in sensor networks. It is particularly important and difficult in the case
when the tracked object is a frequently moving device such as phone, or a GPS in
a fast moving car. The question of detecting a nearby target and detecting its move-
ments and location are themselves subjects of extensive research. However, our topic
of discussion in this chapter is sensor data, we will therefore focus on managing the
tracking information obtained by the sensors. For simplicity, we can assume for
example, that the mobile devices are GPS enabled and are willing to cooperate by
communicating their true locations.

480 R. Sarkar

3.1 Hierarchic Tracking Data

Hierarchic data in quadtree format is relevant to tracking mobile objects as it is to
tracking isolated data. The methods using hierarchic information fundamentally use
the fractional cascading concept of storing more detailed information about the local
neighborhood, and lower resolution data about regions farther away.

GLS: Grid location service. This method was originally described for mobile ad hoc
networks in [27], but is based on the same essential ideas that we are using in sensor
networks.

GLS assumes a global total ordering of n node ids in a cyclic directed list: L =
0, 1, 2, . . . , n−1(mod n). Suppose the node with id x belongs to a square sx

i at level i .
GLS stores x’s location at the node whose id is the first after x in the sequence L
among nodes in sx

i . Then it repeats the procedure for the siblings of sx
i and similarly

stores the id of x at the successor of x in each of these squares.
You may have already noticed the similarity to fractional cascading that we saw

in Sect. 2.2.2. The information in a square si at level i is replicated in each of its
siblings. The difference is that in Sect. 2.2.2 we dealt with only the aggregate value,
and every node in a si stored the same level i value. In GLS, there is no aggregation.
The information about node x is stored at exactly one node in square sx

i , and at one
node in each sibling square.

When node y searches for x , it sends a search message to the node first in L after x
for which y has location information. This node performs the same operation again,
looking for x . It can be shown that this is guaranteed to reach a location server of x ,
which will be able to forward the message directly to x . The initial registration of
x’s location and updates on moving can be executed using the same basic operation.
When x wants to select and update a location server in a square s, it sends an update
message to s. The message starts as a search for x inside s and will find the node that
should be x’s location server. Thus, using the same elegant primitive, GLS handles
both the fundamental operations of searches and updates.

The difficulty in GLS is that the search cost can be disproportionately large com-
pared to the distance between x and y. When these two nodes are close but lie in
different squares of the quadtree partitioning, the search may have to take a long
path. The same problem can arise when x moves. A small move of x can produce a
costly update. We will discuss next a method that solves this problem.

LLS: The locality aware location service. This hierarchic method [1] uses location
servers at different levels of the quadtree. For a mobile node x , there is a hash location
h(x) at the root level of the quadtree that stores its data. Similarly, there is a hash
location hs(x) for any square s at any other level of the partitioning. These locations
act as location servers for x . Any other node that looks for x can get the information
by communicating with a few of these servers.

At any time, if x is in square sx
i at level i , then the location server at hsx

i
(x)

stores location of x . In fact, it only notes a pointer to the square at level i + 1 that
contains x . There are O(log n) different location servers—one at each level—that

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 481

m
c

u

Fig. 12 Basic search in hierarchic mobility tracking. Only relevant part of quadtree is drawn.
Suppose m is the lowest level square (leaf node in the quadtree) that contains the mobile user. The
quadtree nodes on the path from m to the root have information about the mobile user. The consumer
at node c searches ancestors of c until it hits p—the common ancestor with m. The search then
proceeds down the tree to find m and the precise location of the user

carry information about x’s location at any time. This is different from structured
replication in GHT. In structured replication, there is a similar hierarchy of hash
locations, but the data is stored at only one of them, whereas in LLS, information is
stored at one server for each level. And in contrast to GLS, the server hsx

i
(x) at level

i only records the level i + 1 square sx
i+1 containing x , not its exact address. This

has the advantage that when x moves anywhere inside that square, hsx
i
(x) does not

need to be updated.
When a different node y wants to find the location of x , or to communicate with it,

an inductive search is performed. The lowest level square sy
j containing y is checked

first. To be precise, the location server at hsy
j
(x) is asked for x’s location. If this fails,

the higher level server in sy
j−1 is checked and so on, until a server with information

about x is found at some level—which may be the top level h(x) in the worst case.
Next, the query has to follow pointers down the levels to the leaves. An example is
shown in (Fig. 12).

This basic search idea has a disadvantage that in certain cases, the search cost
may be much higher than the distance between x and y —this search is not distance
sensitive. See for example the case in Fig. 13: x and y are geographically close, but
y has to communicate with the distant location server “1” to find x . This happens
because the two nodes are separated at a high level of the partitioning, although they
are quite close. The same issue can cause the update cost of x to be high when x
crosses this boundary.

To make the search distance sensitive, LLS replicates x’s location data at the
eight level i squares neighboring sx

i . This guarantees that the search incurs a
communication cost O(d) where the distance between x and y is d. This also
makes it possible to keep the update costs distance sensitive. Updates are per-
formed in a lazy manner. When x moves to one of the neighboring square, no
updates are performed. When x moves out of this neighborhood, an update is per-
formed to remove the outdated information and to enter the new information in
the new neighborhood. Therefore x drags with it a sliding window of servers at

482 R. Sarkar

(a) (b)

Fig. 13 a The black shaded nodes are x’s location servers. The numbers next to them are the level
of the quadtree that they correspond to. y searches for x , and finds a trace of x at level 1. b At any
level, x’s location is stored at eight adjacent squares in addition to the host, When x moves to one
of these squares, no updates take place. However, on the next move an update is triggered and all
twelve squares are updated

each level—see Fig. 13b. The idea is to delay updates to avoid unnecessary com-
munication. On average, if a node moves a distance d, then this scheme can be
shown to have update costs of O(d log d). The cost is amortized. That means,
the average cost over many moves is guaranteed to be low, but the update cost
at a particular step can be arbitrarily high compared to the movement at that
step.

During a search, it is possible that due to the lazy update scheme, a server claiming
to have the target is in fact in error. However in such a case, the target is guaranteed
to be in one of the neighboring squares. It can be shown that this does not increase
the asymptotic search cost.

In the next section we will consider a different problem of aggregate queries:
answering a question of type: “How many device are in an arbitrary region R of the
network?” LLS, based on its information of node locations can answer the same way
that range queries are answered in the fractional cascading method of Sect. 2.2.2—
using the spiral traversal of canonical pieces shown in Fig. 10. While this works, the
query process is not efficient since the preprocessing carried out by LLS was not
designed for such questions. The algorithm in [29] is more efficient in answering
such queries. There the preprocessing is based on computing a harmonic function that
makes it easy to answer such aggregate questions. The computation of a harmonic

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 483

function and its subsequent updates can be expensive; we will instead look at a
different method for answering counting queries in the next subsection.

In summary, the utility of LLS and GLS is in search and communication with
mobile nodes. The hierarchic partitioning scheme provides the benefit that the search
process operates in a small neighborhood of the query origin, and goes to broader
regions only when that is necessary. The updates are performed lazily—delayed as
much as possible to minimize costs. Thus the location servers provide an essential
service of point to point communication—they find a particular user based on the
device identifier.

3.2 Differential Tracking Forms: Aggregate Tracking

Beyond the question of tracking movements of individual users, we can ask questions
about aggregates of users. This is analogous to the range queries we had considered
in the previous section. Now we wish to answer questions of type: “How many users
are there in a region R?” This is useful when we wish to quickly find the traffic density
in arbitrary regions of the network, or the number of people in the neighborhood of
a sporting venue.

It is possible to answer the question using the location server hierarchy of LLS.
We can use the spiral traversal method shown in Fig. 10, and answer the question the
same way. However, there are a few aspects of LLS that we wish to improve upon:

1. Search Costs: While the canonical traversal is nice, we do not know where the
different location servers in a canonical square may be. We would need to search
all nodes in each square, and therefore all nodes in R to find the answer.

2. Update Costs: The costs of updating location servers may be high, even when
a node moves a small distance. This is particularly significant when updates are
very frequent, for example when tracking moving vehicles—with high speeds
and large numbers.

3. Privacy: LLS requires tracking each device at every moment. The users may
wish not to be tracked with such precision. We would like to keep the counting
information, without following the precise movement of individual devices.

For this problem, we find it beneficial to leave the hierarchic fractionally cascaded
data format and return to a flat data model once more. The model is based on the con-
cept of a differential form in mathematics. This fundamental concept can be adapted
to sensor networks by interpreting it as weights on edges of a planar graph [38]. We
will address a more general problem of counting the total weight of targets in an
arbitrary region. Counting targets is a special case of this question with each target
having weight 1.

We first compute a planar graph in the network the way we discussed for routing
(Sect. 1.2). This graph needs to be one such that when a target crosses an edge of this
graph, one or more sensor detects this fact—for example, by an explicit update from
the target itself, or by a localization carried pout by the sensors. We assign a weight

484 R. Sarkar

a

b

c df 1

ξ(f 1) ξ(f 2)+

+

ξ(ca)

ξ(ab)

ξ(bc)

ξ(ad)

ξ(db)

ξ(ba)

ξ(ca)

ξ(bc)

ξ(ad)

ξ(db)

=

=

ξ((f 1 + f 2))

f 2

Fig. 14 The weight inside a collection of faces f1, f2, . . . can be obtained by simply adding the
weights on the boundary of the collection. For every edge ab in the interior, weights π(ab) and
π(ba) cancel, leaving only the outer perimeter edges

to each edge. This weight function π is a special one; it is constructed to have two
important local properties:

1. The weight is directed: π(ab) = −π(ba). That is, if a message moving from a to
b sees a weight w, then a message moving from b to a sees a weight −w.

2. If the weight of targets in face f is w, then a message traveling along the boundary
edges of f in a clockwise direction sees a total edge weight of w. A message
traveling along the boundary of a face without targets sees a total weight zero.

It turns out that having these two simple properties allow very sophisticated tracking:
we can find the weight of targets inside any region R just from the weights of edges
on the boundary of R. For a face f , let us refer to the boundary of f traversed
clockwise as σ f . We can treat the region R to be a collection of faces, and denote its
boundary by σ R.

To obtain the total weight on faces inside R, it is sufficient to add the weights of
edges on σ R. Thus, we find the total weight inside R simply by making a clockwise
tour of its boundary, without ever entering R at all! Fig. 14 shows the intuition behind
this idea. For a formal proof, see [38].

When a target moves, we need to update these weights. Suppose a target of weight
w moves from face f1 to face f2 above, crossing the edge ab, the function π is updated
by π(ab) → π(ab) − w (or equivalently, π(ba) → π(ba) + w). It is easy to check
that this update reduces the weight on the boundary of f1 by w, and increases the
weight around f2 by the same amount. The function π is called a differential tracking
form.

Initializing the function π requires setting its value on the edges suitably. To do this,
we can assume that the target arrived at its current position through some arbitrary
path from the exterior, and update the edges it would have crossed on such a path
(see Fig. 15). This is done in a more consistent and efficient way by constructing a
dual of the planar graph and using a spanning tree of this dual to find paths for all
targets. This method works at O(n) communication complexity.

The differential tracking form has several nice properties. It is tolerant to cov-
erage holes: even if a target enters a hole and is currently not in the range of any
sensor, its information is stored at the boundary of the hole, and for any region that

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 485

T
L

ξ(L) =

T

(a) (b) (c)

Fig. 15 a Suppose the single target T has weight w. Then for a loop L that contains T , π(L) = w.
Such a loop is shown in bold. b A target T enters the network along the red curve updates a
sequence of edges shown in bold blue. If the T is already at the position, we can imagine that T
entered through some such path. c The trail corresponds to a path in the dual graph. The edges to
be updated are precisely the duals of the edges on this path

contains the hole, this method still returns the correct answer. For the same reasons,
it is also tolerant to sensor failures. The method can be made locally adaptive to
insertion of new sensors and movements of the sensors themselves. The tracking is
also anonymous—we update someone crossing an edge, but not the identity of the
user or device. In fact, the entire protocol works without any need for identification.

The most important property, from a performance point of view, is that updates
are very inexpensive. The weights on the edges can be maintained locally by the
sensors that are the end points of the edge. When a target crosses the edge, this is
detected locally, and this weight is modified. That is all that is needed. When a target
moves a distance d, the update cost is O(d)—the number of edges crossed by the
target. Efficient updates are critical to tracking mobile objects, since movement of
devices or vehicles are generally much more frequent that queries. The completely
local update has the additional advantage that it does not require participation of
sensors far from the region of activity, which can happen, for example in LLS. It is
therefore possible for sensors to stay in sleep mode while there is no activity in the
neighborhood.

In general, it is useful to maintain different tracking forms for different categories
of objects which we may want to search or count. This is particularly useful for
example for the tourist looking for elephant type of query we discussed earlier, or for
a traveller searching for a cab. It is shown in [38] that by repeated application of the
counting query, such questions can be answered at a distance sensitive cost of O(d).

Other than moving targets, tracking forms are also useful in aggregating general
signals monitored by sensors. We simply need to treat the signal value at a sensor as
the target weight at that location. For example, suppose we wish to find the average
temperature. We need two tracking forms: one for temperature, one for node count.
By finding the sum of temperatures and dividing by the number of sensors in any
region, we easily find the average.

486 R. Sarkar

0

50

100

150

200

250

(a) (b)

Fig. 16 a A network whose boundary does not match the square. b Load distribution of DIM for a
set of random data. The boundaries are overloaded while interior nodes have much lower workload.
The variation in load between different boundary points comes from the design of the algorithm

On the whole, this method is very robust and flexible. The ability to compute sums
of values can potentially be extended to compute other types of functions of sensor
values. Exactly how to achieve such extensions and exactly what can be achieved
with this method remains to be investigated.

4 Networks with Complex Shape: Segmentation
and Virtual Coordinates

We had started off assuming that our sensors are in a nice square field, and we applied
plane geometry without regard for obstacles. Reality may not be so accommodating.
Obstacles like buildings may create holes in the sensor network or the perimeter may
be irregular instead of a square. What happens to the hierarchic and flat structure
algorithms when they encounter the boundary of such a gap in the network?

Empty regions in a sensor network are often governed by the nearest sensor.
Recall what DIM [28] does: it stores data at zones determined by its attributes
(attr1, attr2, . . .). In irregular networks the data aimed at zones in large empty
regions are recorded by sensors at their boundary, and are also retrieved at the bound-
ary. While this works, it is not the most efficient.

See for example Fig. 16. The network in Fig.16a has an irregular shape, and we
apply DIM to the bounding box shown as the black square. All data hashed to the
empty white regions are eventually stored at nodes nearest to these regions—at the
network boundaries. These boundary nodes store a higher fraction of data than others
as shown in Fig. 16b.

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 487

0

50

100

150

200

250

(a) (b)

Fig. 17 a The network decomposed into segments forming simple shapes. Each segment is shown
in a different color, along with its own bounding box. b Load distribution when DIM is applied
to segment-wise bounding boxes instead of the global range. Bounding boxes may have partial
overlaps, and those nodes have to operate for both the squares and therefore take double the load
as seen above. But load balance is still better than Fig. 16

The problem is not specific to DIM. GHT and all the hierarchic data handling
methods rely on “nearby” sensors in some way or the other, and therefore show sim-
ilar imbalance against boundary nodes. Double ruling and other path-based meth-
ods are also not immune. A path that encounters a hole will typically move along
the boundary to find a way to the destination. Routing methods like GPSR fre-
quently move along hole boundaries in perimeter mode, and create heavy loads there.
Without any special care, workload distribution will generally be heavily against
boundary nodes, resulting in hotspots, delays, low efficiency, and possibly loss of
packets.

The difficulties appear largely from our misplaced assumption of a simple square
network. If we take the precise network shape and adjust our algorithms not to stray
outside, they may operate in a balanced way. However, there are several practical
and theoretical hurdles to this ideal approach. Efficiently describing a convoluted
boundary and storing it at each sensor is difficult in general, and impossible for a
sufficiently complicated boundary. Even if we can somehow figure out the boundaries
and their descriptions, it is not clear how to adjust our algorithms. Hashes and space
partitions that are natural in a square, are hard to adapt to arbitrary shapes. Instead we
will discuss two other methods of handling complex shapes. The first is to decompose
a network into simpler pieces and apply the algorithms independently in each piece.
The second is to create virtual coordinates with simple shapes thus eliminating the
problems of complicated boundaries.

488 R. Sarkar

4.1 Network Decomposition

The network of Fig. 16a has a natural structure made of five approximately square
shapes. Fig. 17a shows a decomposition of this type. Nodes belonging to the same
segment after decomposition are shown in the same color. The segmented network
can now be covered by five bounding boxes— one for each segment. Instead of
dividing event ranges into two parts and allocating to two parts of the network, we
can now divide them into 5 parts of suitable sizes, and allocate to different segments
proportional to sizes. In each segment, we follow the usual DIM method of binary
space partitions to allocate events to zones in the bounding box. As a result, the
allocation of zones is tight with respect to the actual sensor distribution and the
imbalance at boundaries disappears—see Fig. 17b. Other data storage schemes will
have similar improvements.

The network segmentation idea and the results above are from [46, 47]. The
decomposition was obtained by taking the distance of nodes from the boundaries,
and constructing a discrete representation of the gradient vector field of this distance.
The different segments correspond to partitioning the vector field according to its
different sinks or end points, and computed distributedly in-network. This method
simply tries to divide the network into its constituent large pieces, and not specifically
into squares. Smaller segments generally have tighter bounding boxes, and as a result
better balanced performance.

Managing the network in suitable partitions has been considered in different sce-
narios. Decomposing the network in convex regions can help in routing, since simple
greedy routing works well in convex shapes. This has led to the effort of decompos-
ing the network into Greedily Routable Regions [21]. Other convex decompositions
have helped in localization methods [30].

As we saw above, once the network is segmented, the data storage algorithm takes
into account this split at the top level of operation and divides data into the segments.
This method needs the storage algorithm to be aware of the segmentation and may
be impractical and inefficient when many segments are connected in complicated
ways. Our next method tries to avoid these issues by creating virtual coordinates.

4.2 Virtual Coordinates

Virtual coordinates are a simple concept. Instead of using the real locations, each
sensor is assigned a different logical coordinate to simplify data processing. In our
case, we want coordinates that give a simple virtual shape to a network in place
of the original complex one—hopefully one that balances the load for our storage
algorithms.

Figure 18b shows a type of virtual coordinates where each hole boundary of
Fig. 18a is converted into a circle, and the outer boundary of the network becomes
the outer circular boundary. This configuration is easier to describe than the original

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 489

(a) (b)

Fig. 18 a Triangulated network. b Virtual coordinates with circular holes. The shape of the network
is transformed by Ricci Flow to obtain coordinates with circular holes

(a) (b) (c)

Fig. 19 The virtual coordinates can be reflected in a circular boundary. a At each reflection, a
boundary goes to a circle. b & c The reflections can be repeated in the new circular boundaries until
holes are negligibly small

one. A circle is represented by its center and radius, thus the entire network is now
described by just three numbers per boundary.

The transformation of Fig. 18 is obtained by conformal deformations of the origi-
nal network. A conformal deformation is equivalent to local scaling—either contrac-
tion or expansion—at each point in the network. Ricci Flow is a particular technique
of repeated applications of such deformations that achieves the transformation of
arbitrary boundaries to circle. Application of this method requires a triangulated pla-
nar graph. Thus the Ricci Flow algorithm described in [39] starts with a distributed
method of triangulating networks. This triangulated state is visible in Fig. 18—each
face of the graph, except the holes, is a triangle.

The network still has large holes and we need a method to solve the load imbalance
of storage schemes. This is done by a technique called circular reflections. Similar
to reflecting figures about a line in the plane, it is possible to perform reflections

490 R. Sarkar

about a circle—points outside the circle are sent inside and vice versa. For each hole
boundary, we perform such a reflection that creates a copy of the network inside it,
see Fig. 19a. There are two nice effects of this reflection. First, it fills up much of the
holes, reducing empty space, and second, the circular boundaries map to circular hole
boundaries inside. This second property means that we can repeat the entire process
in these new circular boundaries and reduce empty space indefinitely: Fig. 19b, c.

Finally, we can now have a network with only small and insignificant amount of
empty spaces inside. For any point that was in a large empty space previously, now
it is possible to find a reflected image of a node close to it. A message intended for
this point goes to this node instead of the boundary, thus giving us a more balanced
storage. Routing to a point inside a “hole” is simple—reflection preserves continuity
at the boundary, and thus it is possible to reach the interior point by simple greedy
routing. Either the storage or the routing do not require us to compute the reflected
images of the nodes beforehand—they can be decided on the fly as needed. And
we also do not need to consider an infinite number of reflections, a few levels of
reflections suffice in most cases. See the discussions in [40] for more details of this
method.

Several other methods of computing virtual coordinates exist, with different
properties and applications. The reader is may find interesting ideas in hyper-
bolic virtual coordinates [24, 45]. However, these and most other virtual coordi-
nates [11, 13, 32, 36] are designed for routing, and not for data storage.

5 Discussion

We hope that the reader got an impression of the variety of techniques and ideas that
can be brought into play with locations as the primary index. Beyond the natural
localization of sensor data by coordinates, many interesting queries are location
oriented. Whether we look for the nearest cab or ask for the average temperature in
a part of the city; we are interested not in the whole of network data, but only in a
geometric local part of it, and our methods should be designed accordingly.

The impact of locations and geometry is almost always useful when looking for
simple yet efficient methods to handle sensor data. See for example [9], which uses a
gossip algorithm on sensor networks to compute averages of sensor values. Instead of
exchanging information with neighbors as in a traditional gossip algorithm, here the
nodes perform gossip with random locations in the network. As a result, the algorithm
converges to the desired result, such as the average temperature, much faster in this
method. Fractionally cascaded hierarchic information can also be computed, using
a different gossip technique called spatial gossip [42, 44]. This protocol computes
and stores log n aggregates at each node. For any level i of the hierarchy, a node p
receives the aggregate of all nodes within a distance 2i of p. This is analogous to
the quadtree-based methods we saw earlier, except that unlike a quadtree, here the
average is of a disk centered exactly at each node p. This technique in fact relies on
an idea from social networks: a model for creating small world graphs [20, 23].

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 491

The concepts in processing information in sensor networks are more general than
the applications to sensor networks themselves. With low power nodes and the need
to process large quantities of data at minimal communication, sensor networks are a
more restrictive and challenging platform than most others. A method that is suitable
for sensor networks is also likely to be efficient in other networks with suitable
adaptation. The approach of treating all nodes as minimal and equivalent aids this
generality. Since we do not assume specific network configurations or special abilities
on part of some nodes, these methods are likely to be easily adaptable. Such flexibility
is important in the ever changing world of modern wireless and sensor networks.

Here we mentioned only a few works in this domain, and that too only superfi-
cially. Our goal was to introduce some elementary yet important ideas in the topic.
The reader is encouraged to look into the original articles and the many other works
for more details, subtleties and elegant ideas in this fast developing area.

As sensor networks and similar systems become common in the real world, our
views on them will surely change. We will learn how they are deployed and used,
and face new challenges. We will need to adapt our existing algorithms, and develop
new models, applications and algorithms to adjust to the new networks.

With the popularity of location enabled portable devices, the tracking, storing and
managing of location data are becoming more important. Since much of our data,
including photos, notes and messages are now location tagged, we can develop new
types of applications taking advantage of these features. At the same time, we can
rethink our existing ideas and protocols for a location-aware world.

References

1. I. Abraham, D. Dolev, D. Malkhi, LLS: a locality aware location service for mobile ad hoc
networks, in DIALM-POMC ’04: Proceedings of the 2004 Joint Workshop on Foundations of
Mobile Computing, (2004), pp. 75–84

2. P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing with guaranteed delivery in ad hoc
wireless networks. Wireless Netw. 7(6), 609–616 (2001)

3. D. Braginsky, D. Estrin, Rumor routing algorithm for sensor networks, in Proceedings of the
1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), Sept
2002, pp. 22–31

4. J. Bruck, J. Gao, A. Jiang. Localization and routing in sensor networks by local angle informa-
tion, in Proceedings of the 6th ACM International Symposium on Mobile ad hoc Networking
and Computing (MobiHoc’05), May 2005, pp. 181–192

5. J. Bruck, J. Gao, A. Jiang, MAP: Medial axis based geometric routing in sensor networks.
Wireless Netw. 13(6), 835–853 (2007)

6. M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, A. Rowstron, Virtual ring routing: network
routing inspired by DHTs, in SIGCOMM’06, (2006)

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms (MIT
Press/McGraw-Hill, Massachusetts, 2001)

8. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algo-
rithms and Applications (Springer-Verlag, Berlin, 1997)

9. A.G. Dimakis, A.D. Sarwate, M.J. Wainwright, Geographic gossip: efficient aggregation for
sensor networks, in IPSN ’06: Proceedings of the 5th International Conference on Information
Processing in Sensor networks, (2006), pp. 69–76

492 R. Sarkar

10. T. Eren, D. Goldenberg, W. Whitley, Y. Yang, S. Morse, B. Anderson, P. Belhumeur, Rigidity,
computation, and randomization of network localization, in Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’04), vol.
4, March 2004, pp. 2673–2684

11. Q. Fang, J. Gao, L. Guibas, V. de Silva, L. Zhang, GLIDER: Gradient landmark-based distrib-
uted routing for sensor networks, in Proceedings of the 24th Conference of the IEEE Commu-
nication Society (INFOCOM), vol. 1, March 2005, pp. 339–350

12. Q. Fang, J. Gao, L.J. Guibas, Landmark-based information storage and retrieval in sensor
network, in The 25th Conference of the IEEE Communication Society (INFOCOM’06), vol. 1,
April 2006, pp. 339–350

13. R. Fonesca, S. Ratnasamy, J. Zhao, C.T. Ee, D. Culler, S. Shenker, I. Stoica, Beacon vector
routing: scalable point-to-point routing in wireless sensornets, in Proceedings of the 2nd Sym-
posium on Networked Systems Design and Implementation (NSDI), May 2005, pp. 329–342

14. J. Gao, L. Guibas, J. Hershberger, L. Zhang, Fractionally cascaded information in a sensor
network, in Proceedings of the 3rd International Symposium on Information Processing in
Sensor Networks (IPSN’04), April 2004, pp. 311–319

15. J. Gao, L.J. Guibas, Geometric algorithms for sensor networks. Philos. Trans. R. Soc. A 370,
(1958), (2012), pp. 27–51

16. P. Gupta, P.R. Kumar, The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2),
388–404 (2000)

17. C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks, in ACM Conference on Mobile Computing and
Networking (MobiCom), (2000), pp. 56–67

18. D.B. Johnson, D.A. Maltz, in Mobile Computing, ed. by T. Imielinski, H. Korth. Dynamic
Source Routing in Ad Hoc Wwireless Networks, vol. 353 (Kluwer Academic Publishers,
Dordrecht, 1996)

19. B. Karp, H. Kung, GPSR: Greedy perimeter stateless routing for wireless networks, in Pro-
ceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom), (2000), pp. 243–254

20. D. Kempe, J. Kleinberg, A. Demers, Spatial gossip and resource location protocols, in STOC
’01: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (ACM Press,
New York, NY, USA, 2001), pp. 163–172

21. A.-M. Kermarrec, G. Tan, Greedy geographic routing in large-scale sensor networks: a min-
imum network decomposition approach, in Proceedings of the 11th ACM International Sym-
posium on Mobile ad hoc Networking and Computing, MobiHoc ’10 (ACM, New York, NY,
USA, 2010), pp. 161–170

22. Y.-J. Kim, R. Govindan, B. Karp, S. Shenker, Geographic routing made practical, in Proceed-
ings of the 2nd USENIX/ACM Symposium on Networked System Design and Implementation
(NSDI 2005), May 2005

23. J. Kleinberg, The small-world phenomenon: an algorithm perspective, in STOC ’00: Proceed-
ings of the 32nd Annual ACM Symposium on Theory of Computing, 2000, pp. 163–170

24. R. Kleinberg, Geographic routing using hyperbolic space, in Proceedings of the 26th Confer-
ence of the IEEE Communications Society (INFOCOM’07), (2007), pp. 1902–1909

25. F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger, Geometric ad-hoc routing: of theory and
practice, in Proceedings of 22nd ACM International Symposium on the Principles of Distributed
Computing (PODC), (2003), pp. 63–72

26. F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger, Geometric ad-hoc routing: of theory and
practice, in PODC ’03: Proceedings of the 22nd Annual Symposium on Principles of Distributed
Computing, (2003), pp. 63–72

27. J. Li, J. Jannotti, D.S. J. De Couto, D.R. Karger, R. Morris, A scalable location service for
geographic ad hoc routing, in Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking, MobiCom ’00, (2000)

28. X. Li, Y.J. Kim, R. Govindan, W. Hong, Multi-dimensional range queries in sensor networks,
in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,
(2003), pp. 63–75

14 Geometric Methods of Information Storage and Retrieval in Sensor Networks 493

29. H. Lin, M. Lu, N. Milosavljević, J. Gao, L. Guibas, Composable information gradients in wire-
less sensor networks, in Proceedings of the International Conference on Information Processing
in Sensor Networks (IPSN’08), April 2008, pp. 121–132

30. W. Liu, D. Wang, H. Jiang, W. Liu, C. Wang, Approximate convex decomposition based
localization in wireless sensor networks, in INFOCOM, (2012), pp. 1853–1861

31. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), (2002), 131–146

32. T. Moscibroda, R. O’Dell, M. Wattenhofer, R. Wattenhofer, Virtual coordinates for ad hoc
and sensor networks, in Proceedings of the 2004 Joint Workshop on Foundations of Mobile
Computing, DIALM-POMC ’04 (ACM, New York, NY, USA, 2004), pp. 8–16

33. B. Nath, D. Niculescu, Routing on a curve. SIGCOMM Comput. Commun. Rev. 33(1), (2003),
155–160

34. J. Newsome, D. Song, GEM: graph embedding for routing and data-centric storage in sensor
networks without geographic information, in SenSys ’03: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems, (2003), pp. 76–88

35. C.E. Perkins, E.M. Royer, Ad hoc on-demand distance vector routing, in Proceedings of the
2nd IEEE Workshop on Mobile Computing Systems and Applications, (1999), pp. 90–100

36. A. Rao, C. Papadimitriou, S. Shenker, I. Stoica, Geographic routing without location infor-
mation, in Proceedings of the 9th Annual International Conference on Mobile Computing and
Networking, (2003), pp. 96–108

37. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker, GHT: A geographic
hash table for data-centric storage in sensornets, in Proceedings of 1st ACM Workshop on
Wireless Sensor Networks ands Applications, (2002), pp. 78–87

38. R. Sarkar, J. Gao, Differential forms for target tracking and aggregate queries in distributed
networks, in Proceedings of the 16th Annual International Conference on Mobile Computing
and Networking (MOBICOM), (2010)

39. R. Sarkar, X. Yin, J. Gao, F. Luo, X. D. Gu, Greedy routing with guaranteed delivery using
ricci flows, in Proceedings of the 8th International Symposium on Information Processing in
Sensor, Networks (IPSN’09), April 2009

40. R. Sarkar, W. Zeng, J. Gao, X.D. Gu, Covering space for in-network sensor data storage, in
Proceedings of the 9th International Symposium on Information Processing in Sensor, Networks
(IPSN’10), April 2010

41. R. Sarkar, X. Zhu, J. Gao, Double rulings for information brokerage in sensor networks, in
Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom), Sept 2006, pp. 286–297

42. R. Sarkar, X. Zhu, J. Gao, Hierarchical spatial gossip for multi-resolution representations in
sensor networks, in Proceedings of the International Conference on Information Processing in
Sensor, Networks (IPSN’07), April 2007, pp. 420–429

43. R. Sarkar, X. Zhu, J. Gao, Double rulings for information brokerage in sensor networks.
IEEE/ACM Trans. Netw. 17(6), 1902–1915 (2009)

44. R. Sarkar, X. Zhu, J. Gao, Hierarchical spatial gossip for multiresolution representations in
sensor networks. ACM Trans. Sen. Netw. 8(1), 4:1–4:24 (2011)

45. W. Zeng, R. Sarkar, F. Luo, X.D. Gu, J. Gao, Resilient routing for sensor networks using
hyperbolic embedding of universal covering space, in Proceedings of the 29th Annual IEEE
Conference on Computer Communications (INFOCOM’10), April 2010

46. X. Zhu, R. Sarkar, J. Gao, Shape segmentation and applications in sensor networks. in Pro-
ceedings of the 26th Conference of the IEEE Communications Society (INFOCOM’07), May
2007, pp. 1838–1846

47. X. Zhu, R. Sarkar, J. Gao, Segmenting a sensor field: algorithms and applications in network
design. ACM Trans. Sen. Netw. 5(2), 12:1–12:32 (2009)

Part VII
Data Gathering

Chapter 15
Data Gathering, Storage, and Post-Processing

Marcus Chang and Andreas Terzis

Abstract In this chapter we give an overview of the different components needed
in an end-to-end wireless sensor network monitoring system. Using two case stud-
ies with vastly different data throughput we show selected examples of components
commonly found in data collection networks and use actual deployments as motivat-
ing examples. Specifically, the Life Under Your Feet soil monitoring project focus
on extreme duty-cycling and low data rate communications while the data center
monitoring network RACNet emphasizes high throughput and efficient channel uti-
lization.

1 Introduction

For monitoring applications (e.g., environmental and industrial/process monitoring)
wireless sensor networks (WSNs) promise inexpensive, hands-free, low-cost, and
low-impact data collection—an attractive alternative to manual data logging—in
addition to providing considerably richer data.

Obviously, not all monitoring applications have the same objectives and each
data collection system should be designed with the users’ requirements in mind. For
example, in a healthcare body sensor network (BSN) application [18] data privacy
is a legal requirement which must be built into all steps of the data gathering process
from the moment the sensor is sampled and until it reaches an authorized user, while
such a requirement is rarely seen in environmental monitoring since these are often
deployed in public areas anyway.

M. Chang · A. Terzis (B)

Johns Hopkins University, Baltimore, MD, USA
e-mail: terzis@cs.jhu.edu

M. Chang
e-mail: mchang@cs.jhu.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 497
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_15,
© Springer-Verlag Berlin Heidelberg 2014

498 M. Chang and A. Terzis

We focus on data collection for industrial and scientific purposes since these
particular WSNs tend to have more stringent data quality requirements than those
found in more consumer oriented WSNs, meaning solutions for the former will often
be usable in the latter but not vice versa.

In fact, when asking domain scientists about their requirements to the collected
data the common response is that all raw measurements should be collected and
persistently stored [3]. However, given the lossy nature of wireless links, even a
reliable network protocol cannot prevent data losses since the nodes’ resources, such
as buffers and energy reserves, have a finite capacity. Therefore, in order to minimize
the risk of data loss the data gathering protocols and algorithms must be chosen to
suit the observed phenomena and the actual network deployment. For example, for
battery driven nodes deployed in yearlong environmental monitoring projects the
network protocol have to be both fast enough to sustain the data generated from the
network (with minimal risk for buffer overflows) and power efficient enough to last
the entire duration of the project.

In this chapter we will mainly focus on gathering data from sensor networks in the
two opposite ends of the data generation spectrum, and orthogonal to this, we will
focus on the large and dense networks from environmental and industrial monitoring
(as opposed to smaller networks such as BSN), as described in Sect. 2.

Furthermore, the raw measurements need to be precisely timed and calibrated, to
give scientists and plant managers high confidence that measured variations reflect
actual changes in the underlying processes rather than random noise, systematic
errors, or drift. Hence, in Sect. 3 we will explore timestamping methods specifically
tailored for monitoring applications where data is analyzed offline, independent of
when and where the data was actually collected, as opposed to sensor network appli-
cations that do in-network processing and actuation.

Last, for environmental monitoring, given the communal nature of field mea-
surement locations, other scientists might use the data in ways unforeseen when the
original measurements were taken. Generally speaking, techniques that distill mea-
surements for a specific purpose potentially discard data that are important for future
studies. Hence the need for persistence storage, even after the data has been collected
from the sensor network, which we present an example of in Sect. 4.

To illustrate the effect different system requirements have on the design and
implementation we will use two vastly different scientific and industrial monitor-
ing applications as case studies for the rest of this chapter, namely the soil moni-
toring application Life Under Your Feet and the data center monitoring application
RACNet , both presented below.

1.1 Soil Monitoring

Figure 1 depicts the overall architecture of the system that we developed to monitor
soil abiotic factors. This system has operated since the Fall of 2005 in multiple
deployments with durations ranging from a few weeks to 2–3 years at seven different

15 Data Gathering, Storage, and Post-Processing 499

Fig. 1 Architecture of the
end-to-end Life Under Your
Feet data collection system

locations, across two continents and biospheres ranging from an urban forest at sea
level, to a high-altitude desert, and moist South-American rain forests.

Using TelosB motes running TinyOS, we equipped the nodes with EC-5 Decagon
soil moisture sensors, whose resistance varies with soil moisture, and soil thermistors
whose resistance varies with temperature. We chose the Decagon soil moisture sensor
because of its high accuracy and reliability.

Soil conditions are measured by each of the nodes deployed over the covered
area. The collected measurements are stored on the nodes’ local flash memory and
are periodically retrieved by a base station over single- or multi-hop wireless links.
Once the base station successfully retrieves the raw measurements, it inserts them into
a SQL database. At this point, raw measurements are calibrated using sensor-specific
calibration tables and are cross-correlated with data from external data sources (i.e.,
data from the weather service). The database acts not only as a repository for collected
data, but also drives visualization tools and provides access to the data through SQL-
query and Web Services interfaces.

1.2 Data Center Monitoring

RACNet [27] is a large-scale sensor network for high-fidelity data center environ-
mental monitoring. RACNet uses custom-made Genomote sensor nodes (similar to
TelosB) that employ a combination of wired and wireless communications to scale.
A wireless master node and several wired sensors form a wired daisy chain to cover
one side of a rack, collecting data at different heights. This design increases sensing

500 M. Chang and A. Terzis

(a)

cold
aisle

(b)

hot
aisle

T T+2
T+4

T+6

T+8

T+10

T+10

T+12

T+8

Fig. 2 Temperature distribution over the front (cold aisle) and back (hot aisle) of a row of 10 racks
in RACNet . Significant spatial variation demands dense networks of temperature sensors

coverage and reduces the number of contending radios in the same space, without
sacrificing deployment flexibility.

RACNet has been deployed in several data centers, including a production deploy-
ment at a 12,000 sq-ft. facility comprising 696 Genomotes, whereas 174 of these were
wireless Genomotes. The system has been running since mid-2008, collecting more
than 2.5 million measurement records per day. Each Genomote chain collects the
following measurements every 30 s: three temperature readings collected at different
rack heights, one humidity measurement, and a measurement indicating the avail-
ability of the USB power for network monitoring purposes. Figure 2 presents heat
maps generated from 24 sensors located at the front and back of a row of 10 server
racks.

2 Collection

Although WSN protocols have matured to a point where data collection protocols,
such as the Collection Tree Protocol (CTP) [13] described below, and even the more
general purpose IETF 6LoWPAN/RPL protocol can be used out-of-the-box and still
perform well in terms of low duty-cycle and high data delivery rate for a wide range of

15 Data Gathering, Storage, and Post-Processing 501

networks, more challenging applications can benefit from more specialized network
protocols.

For example, for extremely duty-cycled networks where data is only collected
once per week or month due to lack of infrastructure, which often happens in envi-
ronmental monitoring, the control packets in CTP would dominate the network traffic
between collection rounds. Similarly, for dense networks with high data throughput
the lack of channel diversity in CTP will increase interference.

In this section we will explore two diametrically opposite data collection proto-
cols, namely Koala, specifically designed for infrequent burst transfers in deploy-
ments where data is collected sparingly and where network connectivity between
collection rounds is unnecessary, and the Wireless Reliable Acquisition Protocol
(WRAP), designed for high data rate and dense networks where throughput has
higher priority than power consumption.

Related Low-Power Collection Protocols

Data collection has been thoroughly studied in the sensor network literature. A large
portion of the work in this area focuses on the power aspect of the problem, aiming
to minimize energy consumption through data aggregation (e.g., [30]), ultra-low
duty-cycles (e.g., [2]), or optimal sensor placement (e.g., [12]).

For long-term data gathering applications, such as environmental monitoring,
routing protocols need to support low duty-cycles (<1 %), reliably deliver collected
measurements, operate unattended for long periods of time, and support tens to
hundreds of nodes per gateway, deployed in sparse topologies. In response to these
requirements, some WSN networking stacks employ techniques to coordinate the
nodes’ sleep schedules and maintain states at each of the network’s nodes (e.g.,
routing entries, link quality information, etc.). These protocols synchronize the sleep
schedules of neighboring nodes, collect and disseminate link quality information,
and calculate routes through distributed min-cost routing algorithms.

Generally speaking, routing can be divided into the data and control planes. The
first includes all the components necessary to forward packets along a multi-hop path.
To do so, it relies on a forwarding table whose entries list the next-hop(s) on the path
towards a particular destination. This forwarding table is maintained by the control
plane which includes routing protocols that discover and select network paths.

The following list data collection protocols are some of the most prominent in the
WSN literature:

Dozer [2] is the first data gathering protocol that achieves permille (∈0.1 %) duty-
cycles by synchronizing sleep schedules and require nodes to persistently maintain
routing trees. This synchronization also allows Dozer to continuously inform the
gateway about the network’s health and deliver the measurements with low latency.

Werner-Allen et al. proposed a request-reply collection protocol called Fetch in
the context of their volcano monitoring project [47]. The base station first floods the

502 M. Chang and A. Terzis

network with the request, which triggers the target node to return the data. Since data
collection occurs infrequently, Fetch does not maintain a dissemination topology.

Flush is a reliable, single-flow transport protocol for bulk downloads in sensor
networks [17]. Flush supports flow control but lacks mechanisms for network-wide
wake ups. Lance is a data driven collection protocol that schedules downloads based
on the value of the data and the cost of delivery (e.g., energy) [46]. Meliou et al.
introduced the concept of data gathering tours, whereby a network’s gateway gathers
data from a subset of the network’s nodes [32]. To do so the gateway calculates a
source route that visits all the nodes in the tour.

CTP is a best-effort data collection protocol that relies on hop-by-hop retransmis-
sions to reduce packet loss [13]. It has been deployed in large WSNs with hundreds
of nodes [28]. While CTP does not support low-power operation by itself, it can be
combined with Low Power Listening (LPL) [1, 37] which power cycles the nodes’
radios to achieve low duty-cycles.

In Life Under Your Feet we developed the Koala data collection protocol [35],
which decouples the control and data planes at the node level, by implementing a
network-wide routing control plane. The majority of the functionality of this network-
wide plane is implemented at a centralized location (e.g., a gateway) using informa-
tion collected by the network’s nodes. This information is then used to calculate and
disseminate the end-to-end paths that nodes will use.

Since experience has shown that implementing complex networking protocols
on nodes can lead to unexpected failures in the field [19, 43, 45] decoupling the
control and data plane should increase robustness. Compared to routing protocols
implemented at the node level, this approach provides multiple benefits in addition to
reduced complexity. First, nodes do not incur the overhead of persistently maintaining
routing state. Moreover, the network-wide view provides the ability to perform other
optimizations. For example, a node can establish two disjoint paths to the same
destination to improve reliability and/or load balancing.

Related High-Throughput Collection Protocols

Unlike outdoor environmental monitoring deployments, in which sensors are sparsely
deployed and power is the primary concern, industrial monitoring has distinctly
different trade-offs. First, power consumption is no longer the determining factor.
Instead, performance issues such as data yield and latency become critical. Second,
to monitor large industrial installations at fine spatial granularities, large and dense
sensor deployments are necessary. In turn, this dramatic increase in scale leads to
solutions that are qualitatively different from sparse outdoor deployments.

Several companies have started to offer wireless sensor networks for industrial
monitoring. Among them, Federspiel Controls [10] uses OEM sensors from Dust
Networks, which incorporate a frequency-hopping protocol called Time Synchro-
nized Mesh Protocol (TSMP) [7]. A TSMP network can support up to 255 nodes
with a fixed TDMA schedule. Unfortunately, no results on the performance of TSMP

15 Data Gathering, Storage, and Post-Processing 503

are publicly available. SynapSense [42] provides the LiveImaging solution for mon-
itoring data center environment conditions. Little information is known on the net-
working details of LiveImaging. To the best of our knowledge, LiveImaging supports
only 5 min sampling intervals and does not support multiple frequency channels. Both
solutions use battery powered sensors, which limit their sampling rate and system
lifetime.

A number of multi-channel protocols have been proposed to address the challenges
associated with high densities in sensor networks. First, several general multi-channel
MAC protocols [21, 52] assign nearby nodes to different channels to improve spatial
reuse. The frequent channel switching required in such node-based channel assign-
ment protocols can generate large overhead.

Work from Le et al. [20] and Wu et al. [49], uses channel assignment strategies
and results from control theory to achieve load balancing among different trees.
However, neither of the two approaches offer reliable data delivery.

For RACNet we developed the Wireless Reliable Acquisition Protocol (WRAP).
Like many data collection protocols, WRAP has a network layer that controls the
topology and a transport layer for data retrieval. Nevertheless, WRAP is unique in the
way it combines centralized and distributed decision making to achieve scalability
and responsiveness. Specifically, the network layer constructs collection trees across
multiple channels in a distributed way. On the other hand, the transport layer relies on
a centralized token passing mechanism to prevent network congestion and reliably
retrieve data from each of the network’s nodes. Note that WRAP takes advantage of
the energy supply from server USB ports, and does not exercise duty-cycling.

Next, we will present Koala and WRAP in detail.

2.1 Koala: Low-Power Data Collection

Koala [34] is a system for reliably downloading bulk data that targets data gathering
applications with no real-time requirements. Koala uses the Flexible Control Proto-
col (FCP), a signaling protocol we developed to install routing paths on the network’s
nodes. Koala uses FCP to create the multi-hop paths over which a WSN gateway
downloads data from the nodes. FCP supports ephemeral paths that transmit a single
datagram and persistent paths that persist until explicitly torn down. Both paths can
offer reliable transfers. Koala uses Low Power Probing (LPP), an efficient technique
to wake up the network’s nodes before a download occurs and leverages the avail-
ability of multiple channels in IEEE 802.15.4 radios to perform data downloads over
different channels, thereby minimizing overhearing costs.

Figure 3 represents the position of the Flexible Control Protocol (FCP) relative
to other protocols in the TinyOS networking stack. Specifically, FCP sits directly
above the Active Message layer which offers the ability to send unicast and broadcast
messages to nodes within the same broadcast domain. In turn, FCP provides upper
layers the ability to send one or more messages across multi-hop paths with or without
end-to-end reliability.

504 M. Chang and A. Terzis

DripCTP

Active Message

Applications

FCP

Unreliable
Ephemeral Path

Reliable
Ephemeral Path

Unreliable
Persistent Path

Reliable
Persistent Path

Fig. 3 The Flexible Control Protocol (FCP) used in Koala and its relations to other protocols in
the TinyOS network protocol architecture

Because nodes do not keep any persistent routing state, a network path1 must be
established before it can be used to carry traffic. For this reason, FCP includes a
path establishment phase that installs entries on the path tables of each of the nodes
on the path. Nodes subsequently use these entries to forward packets, until they are
explicitly or implicitly removed, thus relinquishing allocated resources.

Depending on whether paths are used to transmit one or multiple data packets,
FCP provides ephemeral and persistent network paths.

Ephemeral Network Path. This service is equivalent to a source route since the
data packet carries the network path it should follow in addition to the application’s
data. Intermediate nodes do not establish any state but rather forward the packet based
on the path encoded in it. This service is useful when a node wants to send a short
message, such as a command, to another node in the network. It has the advantage
of not incurring the delay and the overhead associated with establishing the path. On
the other hand, the maximum amount of application data that an ephemeral path can
carry is limited to a single radio packet, minus the space necessary to store the path
information.

Persistent Network Path. Unlike ephemeral paths, persistent network paths must
be established before they can be used. This establishment phase requires interme-
diate nodes to allocate entries on their path tables. These entries are used to forward
subsequent packets that do not carry source routes. At the end of a successful estab-
lishment phase the nodes at both ends of the path receive a path identifier that they
use to forward traffic in both directions.

Both path types can offer end-to-end reliability, meaning that the destination will
generate acknowledgments for each of the packets it receives. Moreover, intermediate
FCP nodes will attempt to deliver the packets up to a maximum number of times and
notify the sender if the path is no longer available.

1 FCP network paths are analogous to virtual circuits or MPLS label-switched paths (LSPs) but
with no QoS attributes associated to them.

15 Data Gathering, Storage, and Post-Processing 505

2.1.1 Network Wide Wake-up

Because current node radios consume as much energy in idle listening mode as
when they transmit or receive [44], nodes must maximize the time they keep their
radios turned off. This means that a mechanism is necessary to wake up the network
prior to a download operation. One potential solution would be for nodes to keep
synchronized sleep schedules as in [2, 50]. Doing so would however require nodes
to maintain persistent network state (i.e., their neighbors’ sleep schedules) which
contradicts our philosophy of simplifying node-level networking code.

Low Power Listening (LPL), in which nodes periodically sample the channel for
signs of activity and transmitters send long preambles to generate such activity, offers
an appealing alternative for waking up non-synchronized nodes. While initially pre-
sented in the context of bit-stream radios [37], LPL has been adopted to packet-based
radios, in which case the preambles consist of a continuous stream of packets [1].

LPL however was designed for waking up individual nodes rather than the whole
network, as Koala requires. While using LPL in broadcast mode is possible, doing so
requires transmission of maximum length preambles, leading to packet storms that
impede the collection of neighborhood data (described next). The underlying reason
is that, unlike the unicast case, the sender does not know when all intended receivers
have woken up. For this reason, it cannot terminate the preamble’s transmission
early. False negatives, situations in which a node fails to correctly detect a preamble,
represent an even bigger threat. While not a significant issue in the unicast case—a
false negative can be detected due to the lack of an acknowledgment, thus scheduling
a retransmission at the sender—missed detections can cause nodes to completely miss
the opportunity to wake up and participate in a download.

Low Power Probing (LPP), a technique we developed, addresses these problems
by replacing passive channel probing at the receiver with active probing. Specif-
ically, nodes periodically broadcast short packets requesting acknowledgments. If
such an acknowledgment is received, the node wakes up and starts acknowledging
other nodes’ probes, otherwise it goes back to sleep. Figure 4 provides a graphical
representation of LPL and LPP. LPP replaces Clear Channel Assessment (CCA)
samples at the receiver with transmissions of short packets. In turn, this obviates the
need for long preambles thus reducing the level of contention on the radio channel.

Algorithm 1 presents LPP in pseudo-code. Enabling and disabling of acknowl-
edgments is necessary to avoid false positives when the probes of two or more nodes
cause them to wake each other up by mistake. When the Sleep() procedure returns,
the node keeps its radio on until the next time the procedure is called. This procedure
executes only at the network’s nodes. The wake up operation is initiated by a gateway
which enables its radio’s acknowledgments and starts listening for probes from the
network’s nodes.

506 M. Chang and A. Terzis

Algorithm 1 Lower Power Probing
procedure Sleep(interval)

loop
TurnRadioOff()
DeepSleep(interval)
TurnRadioOnWithAckDisabled()
r ⊂ SendProbe()
if WasAcked(r) then

EnableRadioAcks()
return

2.1.2 Neighborhood Discovery

While the gateway selects the routes in Koala, its decisions are driven by information
that the network’s nodes collect. Specifically, once awake, each node collects its
neighborhood by recording the identities of its neighbors as well as the quality of
its links from these neighbors, defined as the Received Signal Strength Indicator
(RSSI) of the received packets. These RSSI values are collected from the wake up
probes (and the acknowledgments to these probes) received by the node’s neighbors.
Furthermore, to accelerate the neighborhood collection process, nodes send periodic
beacons which are also acknowledged, generating bi-directional link information.2

We require two properties from the beaconing scheme: to generate a bounded
amount of traffic overhead, independent of node density, and to be fair. To achieve
these properties, nodes select their beaconing intervals from an exponential distri-
bution and suppress their transmission if they receive a beacon before their timer
expires. The memoryless property of the exponential distribution ensures fairness,
while suppression limits the total number of beacons. Generating an exponential dis-
tribution from the uniform distribution requires computing log(x) with x ◦ [0, 1]. In

LPL Sender

LPL Receiver

LPP Sender

LPP Receiver

Listening

Probe Transmission

Packetized Preamble

Ack Tx

Packet Rx

Ack Rx
Packet Tx

CCA sampling
Listen

Fig. 4 A simplified representation of LPL for packet-based radios and LPP. Preamble and packet
durations are not drawn to scale

2 A node stops transmitting beacons once it participates in a download operation.

15 Data Gathering, Storage, and Post-Processing 507

Algorithm 2 Neighborhood Collection
procedure NeighborhoodCollection(bs)

add ⊂ InitQueue(bs)
while QueueEmpty(add) = False do

node ⊂PopQueue(add)
path ⊂BuildPath(node, parent, bs)
r ⊂SendNeighborhoodReq(node, path)
if r ∀= Empty then

for each (n, rssi) in R do
UpdateNeighborhood(n, rssi)
if InQueue(n, add) = False then

parent[n] ⊂ node
r ⊂AppendQueue(n)

procedure BuildPath(n, p, s)
r ⊂InitList(s)
while n ∀= s do

r ⊂AppendList(p[n])
n ⊂ p[n]

return r

practice, we found that approximating log(x) with the first term of its Taylor series

log(x) = (x − 1) − (x − 1)2

2
+ (x − 1)3

3
− (x − 1)4

4
. . . (1)

produced satisfactory results.
The gateway uses unreliable persistent FCP paths to collect the nodes’ neigh-

borhood information every time it wakes up the network. It does so by following
the procedure outlined in Algorithm 2. In summary, the gateway uses the neigh-
bor information it collects directly, to download the neighborhoods of its immediate
neighbors. Using this information, the gateway extends its network knowledge by
another hop. Then, for each two-hop neighbor x, the gateway selects the link between
x and its existing one-hop neighbors which has the highest RSSI value (say y). The
path to x then is built by extending the path to y. The advantage of this approach is
that new paths are always constructed by extending existing high-quality paths. The
algorithm terminates after the gateway retrieves neighborhood information from all
the nodes.

2.1.3 Routing Path Selection

Routing path selection is a two-step process that starts once the gateway retrieves
neighborhood information from all the network’s nodes. The gateway first computes
the depth of each of the network’s nodes through a breadth-first search (BFS) of the
collected network topology, in which all links are initially considered equivalent.
During the second step, we compute a path from each of the network’s nodes back to
the gateway. We do this by starting from the selected node and randomly following
a good link towards a neighbor that is closer to the gateway (i.e., at a higher level

508 M. Chang and A. Terzis

of the BFS tree). In this context, good links are those with RSSI values higher than
−70 dBm. We use this threshold to ensure that only stable links with low packet loss
are used for data downloads [26]. We randomly choose among good links rather than
selecting the best link to exercise multiple links. This way, the load of retrieving data
is distributed more evenly among the network’s nodes. If a path fails, indicated by an
FCP error, the gateway selects an alternate path to download data from the current
node.

2.1.4 Channel Switching

Once the network is active and the gateway has selected the paths it will use, it
starts to download data sequentially from each of the network’s nodes. However,
downloading large blocks of data (∈100–200 KB) over multi-hop paths can take
from tens of seconds to minutes depending on link conditions. Nodes that do not
participate in the download waste energy during this time. Therefore, it is desirable
to put these nodes to sleep. However, due to the way LPP works, even if such nodes
go to sleep, they will be awaken because active nodes will acknowledge their probes.

To avoid these spurious wake ups the gateway instructs all nodes on the current
download path to switch to a different frequency channel3 before the download
starts. Once the download completes, the gateway instructs the nodes to return to the
common command channel. Both operations use reliable ephemeral FCP network
paths. To switch the path N1, N2, . . . Nk , the gateway initiates k sequential channel
switch requests starting from the node farthest from it (i.e., Nk) and ending with N1.
If all channel switch operations are successful, the gateway initiates the download
operations. Because the same path is re-used to download data from all k nodes,
as soon as a download completes the gateway asks the source node to return to the
command channel and go to sleep.

Algorithm 3 provides a formal description of both channel switch operations.
While a number of failures can occur during a channel switching operation, Koala
will eventually recover from all of them because nodes return to the command channel
if no FCP activity is detected within a certain amount of time.

2.1.5 Data Download

The gateway uses reliable persistent FCP paths to download the data from the net-
work’s nodes. The only remaining challenge is to select the appropriate inter-packet
interval with which the source should inject packets to the network, to avoid col-
lisions with copies of its packets forwarded upstream. It is easy to show that in a
download path in which each node interferes only with its predecessor and successor,
the source should inject one packet for every three time slots (i.e., time necessary to
transmit a single packet over a single hop) to avoid collisions. However the correct

3 IEEE 802.15.4 radios provide 16 non-overlapping frequency channels.

15 Data Gathering, Storage, and Post-Processing 509

Algorithm 3 Channel Switching
procedure PathSwitching(path)

s ⊂ InitStack()
t ⊂ InitStack(path) ∗ Last element is the top
c ⊂ RandomChannel()
while StackEmpty(t) = False do

node ⊂ PopStack(t)
r ⊂ SendChSw(c, s)
if r = Failed then

break
else

PushStack(s, node)
while StackEmpty(s) = False do

node ⊂ PopStack(t)
if NeedsDownload(node) then

Download(s)
NodeDeSwitching(s)

procedure NodeDeSwitching(p)
for node in p do

if NeedsDownload(node) then
SendChSwWithSleep(CmdChannel, p)
return

SendChSwitch(CmdChannel, p)

inter-packet delay is not known in the general case, because the interference graph
is not known.

One could derive the optimum delay OptDelay(m) for paths of length m for the
worst case scenario in which all nodes interfere with each other. In practice how-
ever deployments are sparse and therefore this approach will produce sub-optimal
results. One way we can reduce this delay bound is by using the collected neighbor-
hood information. To do so, for each node n on the download path p, we compute
PathNeighbors(n, p) which is the number of neighbors that n has in p. The inter-
packet delay can then be set to the largest PathNeighbors() value since it represents
the maximum interference at any single hop on the path.

However, both approaches do not consider the impact of hop-by-hop retransmis-
sions in the face of packet loss. Such retransmissions increase the time required for
a packet to “clear” an upstream hop and thus require larger and, more importantly,
dynamically adjustable inter-packet delays at the source. For this reason, we opted
for an alternative approach in which the gateway uses the acknowledgments that
FCP generates to keep a running estimate of the path’s round trip time (RTT). The
source then injects a new packet every RTT/2 s. The rational is that after RTT/2 s
the last packet most likely has exited the path, and it is safe to send the next packet.
Algorithm 4 presents the full gateway’s logic. We acknowledge that this approach
is sub-optimal, transmitting slower than the optimal sending rate especially over
paths with long RTTs. Alternatively, one could use more sophisticated rate control
algorithms such as the ones in [17, 36] to overcome this limitation.

Once the gateway finishes downloading data from all the intended nodes, it leaves
the network or goes to sleep. The rest of the network should also go to sleep when
this happens. We achieve this behavior using the Drip dissemination protocol [23].

510 M. Chang and A. Terzis

Algorithm 4 Data Download
procedure Download(path)

start ⊂ GetTime()
r ⊂ SendNeigborhoodReq(p)
rtt ⊂ GetTime()−start
if r = Failed then

return
SendDownloadReq(p, rtt/2)
repeat

r ⊂ ReceiveDataDownload()
until r = Failed

∨
LastPacket(r)

Specifically, the gateway periodically (once every 5 s) disseminates monotonically
increasing values for key K . Each node that receives an updated K value resets its
internal timer (set to 15 s). If on the other hand, the node does not receive a new value
before its timer expires, it goes to sleep.

2.1.6 Koala Summary

Koala provides the flexibility of running the network at different duty-cycles by
adjusting the amount of data retrieved during each download operation. Intuitively,
downloading larger blocks of data in a single operation is more efficient than using
multiple smaller operations because the constant overhead of waking up the network
is incurred only once. On the other hand, one needs to wait until the motes have
collected the appropriate amount of data before a download operation can occur.
Therefore, the data retrieval latency is a function of the data acquisition rate and the
download size.

Figure 5, originally from [35], illustrates these trade-offs by presenting the overall
duty-cycles achieved by different download sizes as a function of the amount of
data nodes collect per day. The computed duty-cycles include all the system costs,
including the cost of (repeatedly) waking up the network, collecting neighborhood
information and installing routes, and the cost of downloading data. This is the
reason why all duty-cycles start at 0.1 %, because this is the cost of running LPP
alone. Interested readers can find a description of this experiment’s detailed setup as
well as thorough analysis of Koala in [35].

2.2 WRAP: High-Throughput Data Collection

For RACNet we developed the Wireless Reliable Acquisition Protocol (WRAP) [24]
for scalable data collection given the unique radio characteristics found inside data
centers. To tackle the challenge of self-interference caused by contention in dense
wireless networks, WRAP uses multiple IEEE 802.15.4 frequency channels simul-
taneously and adaptively balances the number of nodes on each channel based on
traffic load. WRAP also implements coordinated data collection through a token

15 Data Gathering, Storage, and Post-Processing 511

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20000 40000 60000 80000 100000 120000

D
ut

y-
cy

cl
e

[%
]

Data rate [bytes/day/node]

512KB
352KB
192KB
128KB

96KB
64KB
32KB

Fig. 5 Overall duty-cycle of Koala as a function of the per-node data acquisition rate. Each line
represents a different download block size

passing protocol that provides an implicit network arbitration mechanism, allowing
only one active packet flow per frequency channel.

From an architectural perspective, WRAP’s design is at the center of the spectrum
between distributed and centralized data collection. At one end of this spectrum, the
nodes participating in a distributed data collection protocol collaborate to construct
a common routing tree and independently forward data as soon as possible [13, 48].

At the other end of the design space lies the centralized approach, in which the
gateway controls the operation of the entire network leveraging its ample computa-
tional resources and complete knowledge of the network topology [35, 41].

WRAP follows a hybrid approach whereby nodes determine the routing topology
in a distributed way while the gateway coordinates data transport using a centralized
token passing mechanism. Specifically, the gateway periodically generates a token
that traverses the derived routing tree in a depth-first manner. Only the tree node that
holds the token can transmit one or more packets before passing the token to the next
node. By allowing only a single node to transmit at any point in time, token passing
bypasses the inter-flow contention that can lead to congestion and packet loss. This is
especially important close to the root of a dense network whereby concurrent flows
are very likely to interfere with each other. In this respect WRAP is a congestion
avoidance mechanism, unlike existing centralized [36] or distributed [38] congestion
control protocols. Moreover, by eliminating congestion as a possible cause of packet
loss, WRAP removes the ambiguity that complicates the response of congestion
control protocols to missing data.

This division of responsibilities ensures timely adaptation to link quality varia-
tions and at the same time gives every network node a fair share of the network’s

512 M. Chang and A. Terzis

resources without contention. RCRT is another example of a hybrid protocol that
adds centralized coordination—the rate control information—to an otherwise dis-
tributed protocol [36]. However, imposing a single transmission rate for the entire
network is inevitably biased towards the weakest node (i.e., the one behind the most
lossy link) and artificially degrades the overall network throughput.

2.2.1 BiTree: Bi-directional Data Collection Tree

The network layer maintains robust data collection trees rooted at the network’s
gateways. The mechanism’s distributed nature allows nodes to independently react
to topology changes including degraded link qualities and node failures. Since WRAP
also uses the tree to deliver downstream traffic such as requests for lost data packets,
we focus on building bi-directional trees (BiTrees) with high quality bi-directional
links.

Gateways initiate BiTree construction by broadcasting HEARTBEAT messages.
HEARTBEATs include fields that represent the node’s status, including its hop dis-
tance from the root, its parent node ID, the number of children, and the path quality
metric to the root.

Upon receiving a HEARTBEAT message, a node takes the following steps: first,
the incoming HEARTBEAT message needs to have a RSSI above a threshold to
avoid links with high loss rates. Next, the node checks whether the potential parent
has already reached its maximum number of children. If not, the next step is to
evaluate the path quality to the gateway via this potential parent by computing the
path expected transmission count (PETX) as follows:

PETX j =
∑
l◦P

1

PRRl
= PETXi + 1

PRRi, j
, (2)

where j is the current node, i is its potential parent, and P is the path from j to the
gateway via i .

To compute PETX j recursively, the PETXi is included in the HEARTBEAT mes-
sages. However, estimating PRRi, j directly from HEARTBEATs would require mul-
tiple message rounds. Instead, we take advantage of the Link Quality Indicator (LQI)
available from radio chips such as the TI CC2420 [44], to reduce control message
overhead. Specifically, we use the piece-wise linear approximation shown in Fig. 6
to estimate a link’s PRR based on its LQI. We note that while the curve shown in
Fig. 6 was derived from site survey data, it resembles the approximation used in [5].

The node selects the upstream neighbor with the smallest PETX as its potential
parent and initiates a TREE_JOIN request. The parent also estimates the link quality
from this potential child in the upstream direction before replying with a GRANT
message. Otherwise, the TREE_JOIN operation times out. This two-way handshake
has two benefits. First, it serves as an explicit agreement between the parent and the
child node that both have the resources to relay messages for each other. Second,

15 Data Gathering, Storage, and Post-Processing 513

Fig. 6 Piece-wise linear approximation of PRR from LQI in RACNet. The dots are the average
PRR for each LQI obtained from a site survey

since we require a BiTree for data downloading, it is important to ensure the link
quality in both directions, as wireless links can be asymmetric [51].

As described above, nodes broadcast HEARTBEAT messages to construct and
maintain BiTrees. It is therefore desirable to transmit multiple HEARTBEATs in
a short amount of time, to accelerate the tree construction process. However, in
large and dense networks, this can lead to broadcast storms and severe collisions,
eventually affecting the quality and stability of the resulting tree.

A simple and low-maintenance solution would be to adopt a contention-based
approach, in which nodes contend for the radio medium. However, this approach is
ill-suited for dense networks because the large number of HEARTBEATs is likely
to cause collisions and large delays. At the same time, a TDMA-based protocol
that assigns exclusive time slots to each node within the same interference range is
cumbersome as it requires tight time synchronization and additional control traffic
to set up the schedule.

Instead, WRAP uses a reduced contention mechanism to regulate the broadcast
of HEARTBEAT messages. Specifically, WRAP defines a time slot of length T that
starts immediately after a node P broadcasts its HEARTBEAT message. The time
slot is further divided into two uneven sections according to the number of children
that P already has and the number of additional children that P can support. The
first section is reserved for the HEARTBEAT messages sent by P’s children, while
the second is used by nodes that are not part of the tree to initiate the handshake
process with P . Nodes that receive P’s HEARTBEAT randomly select a time within
the appropriate section to transmit their message.

While this mechanism reduces contention, it does not guarantee a collision-free
network. Specifically, we do not coordinate among nodes within the same broadcast
domain that connect to different parents. Instead, we let them contend for the medium.

514 M. Chang and A. Terzis

2.2.2 Channel Diversity

A RACNet system may consist of many hundreds of nodes within one data center.
One way to increase data throughput and reduce data latency is by using multiple
gateways. To do so, we take advantage of channel diversity to build multiple BiTrees
rooted at different gateways, each on a different channel frequency. Previous work
has shown that simultaneous communications over two-channel-apart IEEE 802.15.4
channels do not interfere with each other [49].

In WRAP, every gateway has a fixed channel assigned by the operator. Non-
gateway nodes start by scanning channels sequentially and looking for a tree to join.
Since gateways continuously perform data collection, a node can first overhear the
network traffic and decide whether the channel potentially has a tree that it can join.
In addition, a node can bound its wait time on each channel to (little over) one
HEARTBEAT time interval because gateways periodically initiate new rounds of
HEARTBEAT beaconing. A node joins the first tree using the two-way handshake
mechanism described above. However, the node joins any subsequent trees only if
the estimated quality of the new path is better than the one on the current tree.

WRAP follows a transaction model when constructing BiTrees across different
channels. It is possible that a node (temporarily) joins multiple trees as it actively
scans all available channels. However, nodes in this state do not broadcast HEART-
BEAT messages to recruit children. This is to limit further disturbance in the candi-
date trees that the node later decides not to join. When the scanning phase ends, the
node switches to and stays in the last tree it joined. Finally, a node’s parent takes its
HEARTBEAT transmissions as an indication of its commitment to the tree. Other
candidate parents eventually time out and remove the node from their children lists.

Nodes can significantly reduce their channel scanning time with the gateways’
help. Specifically, gateways maintain the list of all channels they collectively occupy
and include this information in their HEARTBEAT messages. Therefore, after receiv-
ing one HEARTBEAT message, nodes immediately know all available channels.

2.2.3 Load Balancing Multiple BiTrees

As nodes join and leave the network or link qualities change, the sizes of different
BiTrees can become unbalanced. We quantify the size of a tree by its sum of hops
Δ, or the total path length from each node in the tree to the root. This Δ largely
determines the overall time necessary to finish a data collection round and for this
reason WRAP uses Δ to balance the load among all the network’s trees.

WRAP implements a distributed algorithm for balancing BiTrees. WRAP period-
ically checks the Δ’s of different trees, and it initiates the channel-balancing process
by sending a START_BAL message that propagates through the tree with the largest
Δ. WRAP utilizes two mechanisms to avoid network instability: (i) it restricts the
channel-balancing process to the gateway with the largest Δ, and (ii) it tolerates cer-
tain amount of imbalance in Δ. Let Δavg be the average among all trees. A gateway
b→ starts the channel-balancing process only under the following conditions:

15 Data Gathering, Storage, and Post-Processing 515

Δb→ − Δavg > δ, and

b→ = argmaxb◦B(Δb), (3)

where B is the set of all gateways and δ is a threshold parameter that controls the
amount of tolerable imbalance.

The START_BAL message contains the probabilities for switching to each of
the other channels. Switching probabilities are defined to be higher for more under-
utilized channels.

Specifically, a node connected to the tree rooted at b→ will decide to switch out
with probability Pout = Δb→−Δavg

Δb→ . Once the node decides to leave b→’s tree, the
probability that it switches to another tree Bi ∀= b→ is set asfollows:

Pi = 0, if Δi ∞ Δavg

Pi = Δavg − Δi∑
b◦B and Δb<Δavg

(Δavg − Δb)
, if Δi < Δavg. (4)

Intuitively, we attempt to migrate the extra nodes from gateway b→ to under-loaded
gateways, based on their degrees of under-utilization. In other words, more nodes
will attempt to join the tree with fewer nodes. Finally, if the node cannot find a parent
in the target channel, it returns to its original channel.

2.2.4 Token-Based Data Download

The transport layer reliably collects data to RACNet gateways along the network’s
BiTrees. Rather than having nodes initiate data uploads asynchronously, WRAP
coordinates the network traffic to reduce radio contention. At the same time, pull-
based approaches in which gateways initiate data collection by sending requests to
individual network nodes can incur significant overhead including the cost of one
downstream message per node and the round-trip delay for transmitting each node’s
measurements. WRAP addresses these two sources of overhead by adopting a token
passing approach.

The token passing mechanism does not require the gateways to have a priori
knowledge of the network topology. Rather, it relies on the network to determine
the next node that should hold the token. Since gateways continuously retrieve data
from the network, this property also removes the overhead of having a separate phase
for collecting neighborhood information from all nodes in the network. The basic
protocol works as follows.

Gateways initiate a data collection round by passing the token to the first node on
their list of children. Each token contains an unique 32-bit token ID so that nodes
know when a new round of data collection has started. WRAP tokens traverse the
tree in a depth-first order. After receiving the token, the node passes it sequentially to

516 M. Chang and A. Terzis

Fig. 7 Two-level binary tree.
Passing the token in depth-
first-search will yield the
sequence 1, 3, 3, 4, 4, 1, 2,
5, 5, 6, 6, and 2 (12 edges in
total)

S

A B

C D E F

1 2

3 4 5 6

all of its children in the tree. Once all of its children have finished transmitting their
measurements the node streams the measurements it has accumulated since the last
data collection round to the gateway. To minimize the number of packet transmis-
sions, nodes aggregate as many measurements as possible in one packet. In practice,
up to five such measurements fit in one maximum-size, 128-byte IEEE 802.15.4
frame. This ability to aggregate multiple measurements to a single packet is a side
benefit of the architectural decision to decouple data collection from data generation.

When the gateway eventually receives the token back from the network, it scans
the measurements received and recovers lost packets by requesting any missing
sequence numbers.

Passing the token in a depth-first fashion ensures that the token travels each net-
work edge exactly twice. For example, in the two level binary tree shown in Fig. 7,
the edge visiting order is 1, 3, 3, 4, 4, 1, 2, 5, 5, 6, 6, and 2 (12 edges in total).
If breadth-first traversal was used instead, the token would travel each edge at least
twice, because the token has to travel back to the gateway. In the case of Fig. 7 this
would lead to 16 edge traversals compared to 12. WRAP further reduces the token
passing overhead through inference. First, since a parent forwards all the measure-
ments from its children, it has the opportunity to inspect the MORE_DATA field in
their packets and determine when the current child has sent its last packet. When
this happens, the parent assumes that the child has released the token. Second, since
children can overhear packets sent by the parent, the parent piggy-backs the next
child node ID when it is ready to pass the token.

Although WRAP aggressively performs link-level retransmissions, the network
can still lose the token for various reasons such as node failure. WRAP puts the
burden of token recovery on the gateway. Since nodes stream data only when they
hold the token, if the gateway’s idle timer expires while waiting for incoming data,
it assumes that the token has been lost and regenerates a token with the same ID.
Since each token carries an unique ID, nodes that have held a token with the same
ID will immediately release it.

2.2.5 End-to-End Reliability

WRAP implements a NACK-based, end-to-end data recovery scheme, whereby gate-
ways request end-to-end retransmissions for missing sequence numbers. To amortize

15 Data Gathering, Storage, and Post-Processing 517

the round trip time incurred in the data retransmission process, WRAP accumulates
multiple data retransmission requests destined to the same node.

WRAP encapsulates downstream data requests inside source-routed packets.
Doing so, requires gateways to have knowledge of their tree topology. To do so,
nodes in the tree piggy-back their parent node ID to the end of the data stream that
they send to their gateway. Based on this process, a gateway can rebuild the complete
tree topology at the end of a data collection round.

To stream data efficiently, the source node must determine the inter-packet trans-
mission interval that minimizes self-interference and end-to-end delay. WRAP adapts
a technique similar to the one proposed in [17] whereby a node estimates the inter-
packet delay by measuring the time between transmitting the last packet of a batch
and the last time it overhears the same packet forwarded by nodes upstream. To
take into account the whole path, parents propagate the local estimates downstream
via the HEARTBEAT message. Then, each child node updates its local inter-packet
value to the maximum of the previous local value and the one in the HEARTBEAT
message.

2.2.6 WRAP Evaluation

We compare WRAP to the Collection Tree Protocol (CTP) [13] and Rate-Controlled
Reliable Transport (RCRT) [36]. CTP is a best-effort data collection protocol that
does not implement end-to-end retransmissions but rather relies on hop-by-hop
retransmissions to reduce packet loss. RCRT implements end-to-end reliability as
well as congestion control by controlling the senders’ transmission rates. We imple-
mented the same application that periodically samples a set of sensors on top of all
three protocols. All of our code is written in TinyOS 2.1 [22]. We use the default CTP
version included with the TinyOS 2.1 distribution. We also ported RCRT to TinyOS
2.1 for fair comparison. In all cases, we use a single frequency channel (26) because
CTP and RCRT do not have a channel balancing capability.

Sampling Intervals. We first stress the three protocols by increasing the applica-
tion’s sampling rate. Figure 8 presents the three protocols’ behavior as we vary the

IP
I (

se
c)

5 6.1 5.3 3.9 5.05

15.6 2.6

4.95

71.4
CTP WRAP RCRT

0
25

50
75

10
0

12
5

5−sec 3−sec 2−sec

Y
ie

ld
 (

%
)

0
20

40
60

80
10

0

5−sec 3−sec 2−sec

Fig. 8 Boxplots of the inter-packet interval (IPI) and data yields under various sampling intervals
on the 62-node lab testbed, comparing WRAP to CTP and RCRT. The number on top of each IPI
plot shows the average

518 M. Chang and A. Terzis

application’s sampling interval on a 62-node lab testbed. In each case, the experiment
ran for at least 2 h.

While CTP achieves low inter-packet intervals at low network loads, packet losses
increase drastically as the network becomes congested. RCRT reacts to this con-
gestion by lowering nodes’ transmission rate. We noticed that the RCRT gateway
instructed the nodes to reduce their rate to the minimum configured rate (i.e., one
packet per 60 s) when a 2-s sampling interval was used. This dramatic reaction was
due to the fact that the gateway experienced multiple timeouts while waiting for
nodes to acknowledge its requests to lower their rates. Because RCRT treats such
timeouts as further signs of congestion, the gateway reacts by lowering the nodes’
rates even further. However, even this drastic reaction did not achieve perfect yield
in the case of 2-s sampling.

While CTP ignores congestion, leading to lower yields, and RCRT reactively
lowers the nodes’ transmission rate, leading to higher inter-packet intervals, WRAP
prevents congestion from occurring in the first place by allowing only one network
flow at any point in time. As the results from Fig. 8 suggest this strategy achieves
high data yields and low inter-packet intervals across all sampling rates.

Network Density. Next, we stress the protocols by increasing the network’s den-
sity. We do so by uniformly arranging an increasing number of nodes, following a grid
pattern, over the same physical area in the data center testbed. Having more nodes in
the same space not only increases the amount of traffic that the network must deliver,
but also increases contention when node communications are not coordinated, as in
the case of CTP and RCRT. To evaluate the effects of network size on performance
we fix the application sampling rate to one packet every 10 s and increase the number
of nodes from 50 to 150. We did not perform the RCRT experiment with 150 nodes
because the performance of the protocol (inter-packet interval) degraded appreciably
even with a network of 100 nodes. In each case, the experiment ran for at least 2 h.

As Fig. 9 shows, the inter-packet interval increases slightly with the network size.
Interestingly, this increase was due to packet loss in the case of CTP and to the longer
time necessary to service the whole network in the case of WRAP which achieved
100 % yields for all network sizes. As in the previous set of experiments, RCRT
reacted to the increased levels of contention by reducing the nodes’ transmission rate.
Specifically, for the 100-node network the gateway set the nodes’ rate to minimum, or
one packet every 60 s. In practice however the inter-packet interval was even higher

IP
I (

se
c)

10 10.5 11 10 10.7 11.5 10 12.2

35.1

11.5 12.7

CTP WRAP RCRT

0
30

60
90

12
0

15
0

50 nodes 75 nodes 100 nodes 150 nodes

Y
ie

ld
 (

%
)

60
70

80
90

10
0

50 nodes 75 nodes 100 nodes 150 nodes

Fig. 9 Boxplots of the inter-packet interval (IPI) and data yields under various network sizes on the
data center testbed, comparing WRAP to CTP and RCRT. Each node generates one packet every
10 s. The number on top of each IPI plot shows the average

15 Data Gathering, Storage, and Post-Processing 519

because even this decreased rate was not able to prevent network losses and decreases
data yields.

2.2.7 WRAP Summary

Decoupling the topology control from the data collection and using a token passing
mechanism to provide network-wide arbitration allows WRAP to avoid congestion
more efficiently than previous data collection protocols.

When compared with two leading data collection protocols, one using uncoor-
dinated transmissions (CTP [13]) and the other using rate-based congestion control
(RCRT [36]), WRAP is able to maintain high yield at various load and network sizes.
As Fig. 8 shows, with a fixed inter-packet-interval of 10 s, increasing the network
size has little effect on WRAP’s yield while both RCRT and CTP starts to degrade
when the network size reaches 100 and 150 nodes respectively. The interested reader
can find details about this experiment and a detailed evaluation of WRAP in [24].

3 Time Reconstruction

In WSNs, each node’s clock (referred to as local clock henceforth) is typically imple-
mented as a free running counter that monotonically increases and resets to zero upon
reboot. Since nodes do not reboot simultaneously nor count at the same speed, mea-
surements timestamped with one local clock cannot be correlated with measurements
from another.

In order to accomplish this correlation, nodes can either synchronize their clocks
to a global reference clock before the sensors are sampled (so that measurements
can be directly timestamped with this global clock) or during a post-processing step
where the global time is reconstructed from each node’s local clock.

In environmental monitoring networks, such as Life Under Your Feet, the desired
level of accuracy in this context is in the order of milliseconds to seconds. In order
to reduce complexity of the code running on the mote and minimize the network
overhead, it is more efficient to record sensor measurements using the mote’s local
time frame and perform a postmortem reconstruction to translate them to global time.

Postmortem time reconstruction schemes collect ∩local, global〉 pairs during a
node’s lifetime, using a global clock source (typically, an NTP-synchronized PC).
These pairs (referred to as “anchor points”) are then used to translate the collected
measurements to the global time frame by estimating the nodes’ clock skew and
offset.

In the absence of reboots, this naive time reconstruction strategy performs well.
However, in practice, nodes reboot due to low battery power, high moisture, and soft-
ware defects. Even worse, when nodes experience these problems, they may remain
completely inactive for non-deterministic periods of time. Measurements collected
during periods which lack ∩local, global〉 anchors (due to rapid reboots and/or bases-
tation absence) are difficult or impossible to accurately reconstruct. Unfortunately,

520 M. Chang and A. Terzis

such situations are not uncommon based on our deployment experiences and those
reported by others [47].

To remedy this problem we developed the Phoenix [15] offline algorithm for
reconstructing global timestamps that is robust to frequent node reboots and does
not require a persistent global time source.

Nodes in Phoenix exchange their time-related state with their neighbors only,
thereby establishing a chain of transitive temporal relationships to one or more nodes
with references to the global time. These relationships allow Phoenix to reconstruct
the measurement timeline for each node. The offline nature of Phoenix has two
advantages: (a) it reduces the complexity of the software running on the node, and
(b) it avoids the overhead associated with executing a continuous synchronization
protocol.

Related Time Synchronization Protocols

Assignment of timestamps in sensor networks falls under two broad categories. Strict
clock synchronization aims at ensuring that all the mote clocks are synchronized to
the same clock source. Flooding Time Synchronization Protocol (FTSP, [31]), Refer-
ence Broadcast Synchronization (RBS, [9]), and the Timing-sync Protocol for Sensor
Networks [11] are examples of this approach. These systems are typically used in
applications such as target tracking and alarm detection which require strong real-
time guarantees of reporting events. The second category is known as postmortem
time reconstruction and it is mostly used due to its simplicity. While strict synchro-
nization is appropriate for applications where there are specific events of interest
that need to be reported, postmortem reconstruction is well-suited for applications
where there is a continuous data stream and every measurement requires an accurate
timestamp.

Phoenix falls under the second class of methods. The idea of using linear regres-
sion to translate local timestamps to global timestamps was first introduced by
Werner-Allen et al. in a deployment that was aimed at studying active volcanoes
[47]. This work, however, does not consider the impact caused by rebooting motes
and basestation failures from a time reconstruction perspective. More recently,
researchers have proposed data-driven methods for recovering temporal integrity [16,
29]. Lukac et al. use a model for microseism propagation to time-correct the data
collected by their seismic sensors. Although data-driven methods have proved useful
for recovering temporal integrity, they are not a solution for accurate timestamping.

Routing integrated time synchronization protocol (RITS, [39]) spans these cat-
egories. Each mote along the path (to the basestation) transforms the time of the
reported event from the preceding mote’s time frame, ending with an accurate global
timestamp at the basestation. RITS does not consider the problem of mote reboots,
and is designed for target tracking applications. The problem of mote reboots have
been reported by a number of research groups. Chang et al. report that nodes rebooted
every other day due to an unstable power source [4], whereas Dutta et al. employed

15 Data Gathering, Storage, and Post-Processing 521

the watchdog timer to reboot nodes due to software faults [8]. Allen et al. report
an average node uptime of 69 % [47]. More recently, Chen et al. advocate Neutron,
a solution that detects system violations and recovers from them without having to
reboot the mote [6]. They advocate the notion of preserving “precious” states such
as the time synchronization state. Nevertheless, Neutron cannot prevent all mote
reboots and therefore Phoenix is still necessary.

3.1 Phoenix Postmortem Timestamp Reconstruction

The relationship between a mote’s local clock, LTS, and the global clock, GTS, can
be modeled with a simple linear relation: GTS = α × LTS + β, where α represents
the mote’s skew and β represents the intercept (global time when the mote reset its
clock) [39]. This conversion from the local clock to global clock holds as long as
the mote’s local clock monotonically increases at a constant rate. We refer to this
monotonically increasing period as a segment. When a mote reboots and starts a
new segment, one needs to re-estimate the fit parameters. If a mote reboots multiple
times while it is out of contact with the global clock source, estimating β for these
segments is difficult. While data-driven treatments have proven useful for recovering
temporal integrity, they cannot replace accurate timestamping solutions [16, 29].
Instead, time reconstruction techniques need to be robust to mote reboots and not
require a persistent global time source.

The Phoenix [15] postmortem time reconstruction algorithm consists of two
stages: an online collection stage and an offline reconstruction stage.

Online Anchor Collection

Each node operates solely with respect to its own local clock. A new segment
(uniquely identified by ∩nodeid, reboot count〉) begins whenever a node reboots: each
segment starts at a different time and may run at a different rate. Our architecture
assumes that there is at least one node in the network that can periodically obtain
references from an accurate global time source. This source is used by Phoenix to
establish the global reference points needed and may be absent for long periods of
time. The global time source can be any reliable source (a node equipped with a
GPS receiver, NTP-synced basestation, etc.) and does not need to be identical to the
basestation. Without loss of generality, we assume that the global time source is a
GPS receiver connected to a node different from the basestation.

All nodes (including the GPS-connected node) broadcast their local clock and
reboot-count values every Tbeacon seconds. Each receiving node stores this infor-
mation (along with its own local clock and reboot counter) in flash to form anchor
records. The format of these records is ∩nodeidr , rcr , lcr , nodeids, rcs, lcs〉; where
rc, lc, r, and s refer to the reboot counter, local clock, receiver and sender, respec-
tively. Periodically, nodes turn on their radios and listen for broadcasts in order to

522 M. Chang and A. Terzis

anchor their time frame to those of their neighbors. Each node tries to collect this
information from its neighbors after every reboot and after every Twakeup seconds
(�Tbeacon). The intuition behind selecting this strategy is as follows. The reboot time
determines the offset (i.e., the value of the global clock when the node (re)boots).
The earliest opportunity to extract this information is immediately after a reboot. To
get a good estimate of the skew, one would like to collect multiple anchors that are
well distributed in time. Thus, Twakeup is a parameter that governs how far to spread
out anchor collections. In the case of a GPS node, the nodeidr , rcr and nodeids, rcs

are identical, and lcr , lcs represent the local and global time respectively.
The basestation periodically downloads these anchors along with the sensor mea-

surements. This information is then used to assign global timestamps to the collected
measurements using Algorithm 5. If the rate of reboots is known, the anchor collec-
tion frequency can be fixed conservatively to collect enough anchors between reboots.
One could also employ an adaptive strategy by collecting more anchors when the seg-
ment is small and reverting to a larger Twakeup when an adequate number of anchors
have been collected. It is advantageous for a node to attempt to collect anchors from
a small set of neighbors (to minimize storage), but this requires a node to have some
way of identifying the most useful segments for anchoring.

Offline Timestamp Reconstruction

The Phoenix algorithm is intuitively simple. We will outline it in text and draw
attention to a few important details. For a more complete treatment, please refer
to the pseudocode in Algorithm 5. Phoenix accepts as input the collection of all
anchor points AP (both ∩local, neighbor〉 and ∩local, global〉). It then employs a
least-square linear regression to extract the relationships between the local clocks
of the segments that have anchored to each other (LF, for Local Fit). In addition
to LFa(i, j) (slope), LFb(i, j) (intercept), Phoenix also obtains a goodness-of-fit
(G O F) metric, LFχ (i, j) (unbiased estimate of the variance of the residuals) and
LFd f (degrees of freedom). For segments which have global references, Phoenix
stores this as GF (for Global Fit).

The algorithm then initializes a queue with all of the segments which have direct
anchors to the global clock. It dequeues the first element q and examines each segment
c that has anchored to it. Phoenix uses the transitive relationship between GF(q) and
LF(q, c) to produce a global fit T (c) which associates segment c to the global clock
through segment q. If Tχ (c) is lower than the previous value for GFχ (c) (and using
q would not create a cycle in the path used to reach the global clock), the algorithm
replaces GF(c) with T (c), and places c in the queue. When the queue is empty,
no segments have “routes” to the global clock which have a better goodness-of-fit
than the ones which have been previously established. At this point, the algorithm
terminates.

The selection of paths from an arbitrary segment to a segment with global time
references can be thought of as a shortest-path problem (each segment represents a
vertex and the fit between the two segments is an edge). The GOF metric represents

15 Data Gathering, Storage, and Post-Processing 523

Algorithm 5 Phoenix
Ensure:

a, b: alpha and beta for local-local fits;
P: parent segment; Π : Ancestor segments

procedure Phoenix(AP)
for each (i, j) in Keys(AP) do ∗ All unique segment pairs in AP

LFa,b,χ,d f (i, j) ⊂ Llse(AP(i, j)) ∗ Compute the local-local fits

for each s ◦ S do ∗ Set of all unique segments
GFα,β,P,Π,χ,d f (s) ⊂ (≈,≈,≈, s, χMAX,≈) ∗ Initialize global fits

for each g ◦ G do ∗ All segments anchored to GTS
InitGTSNodes(g, LF, GF)
Enqueue(Q, g) ∗ Add all the GTS nodes to the queue

while NotEmpty(Q) do
q ⊂ Dequeue(Q)
C ⊂ NeighborAnchors(q)
for each c ◦ C do

Tα,β,P,Π,χ,d f (c) ⊂GlobalFit(c, q, GF, LF)
if (UpdateFit(c, T, GF)) then ∗ Check for a better fit

Enqueue(C)
return GF

procedure InitGTSNodes(g, LF, GF)
GF(g) ⊂ (LFa (g, g′), LFb(g, g′), ≈, g, LFχ (g, g′), LFd f (g, g′)) ∗ g′ is GTS, g is LTS

procedure GlobalFit(c, q, GF, LF)
if q > c then ∗ Smaller segment is the independent variable

αnew ⊂ GFα(q) → LFa (q, c)
βnew ⊂ GFα(q) → LFb(q, c) + GFβ (q)

else
αnew ⊂ GFα(q)/LFa (q, c)
βnew ⊂ GFα(q) − αnew → LFb(q, c)

χ ⊂ GFd f (q)→GFχ (q)+LFd f (q,c)→LFχ (q,c)
GFd f (q)+LFd f (q,c) ∗ Compute the weighted G O F metric.

d f ⊂ GFd f (q) + LFd f (q, c)
return (αnew, βnew, q, {c ∃ GFΠ (q)}, χ, d f) ∗ Update parent/ancestors

procedure UpdateFit(c, T, GF)
if c ◦ TΠ (c) then ∗ Check for cycles

return false
if Tχ (c) < GFχ (c) then

GFα,β,P,Π,χ,d f (c) ⊂ Tα,β,P,Π,χ,d f (c)
return true

else
return false

the edge weight. The running time complexity of the implementation of Phoenix
was validated experimentally by varying the deployment lifetime (thereby varying
number of segments). The runtime was found to increase slower than the square of
the number of segments.

3.1.1 Phoenix Evaluation

We evaluate the effect of Phoenix using an actual deployment (running Koala) and
compare it against the Robust Global Timestamp Reconstruction (RGTR) [16] algo-
rithm, a time reconstruction algorithm we used before developing Phoenix.

524 M. Chang and A. Terzis

We deployed a network (referred to as the “Olin” network) of 19 motes arranged
in a grid topology in an urban forest near the Johns Hopkins University campus in
Baltimore, MD. Anchors were collected for the entire period of 21 days using the
methodology described above. The basestation collected data from these motes once
every 4 h and the NTP-corrected clock of the basestation was used as a reliable global
clock source. The motes rebooted every 5.7 days on average, resulting in a total of
62 segments. The maximum segment length was 19 days and the minimum was 2 h.

In RGTR, when a mote is contacted for a download, the basestation records an
anchor point, i.e., it records the mote’s current local clock and the basestation’s global
clock. Motes that are poorly connected to the basestation can remain out of contact
with the basestation for several download rounds before they can transfer their out-
standing data. When motes reboot at a rate faster than the frequency with which they
contact the basestation, there exist periods which lack enough information to accu-
rately recover the timestamps. Upon acquiring the anchor points, the measurements
are converted from their local clock to the global clock.

We note that, in order to estimate the fit parameters (α, β) for the segments, RGTR
requires at least 2 anchor points. If we assume that α is stable per mote for small
segments. Using this assumption, at least one anchor point is needed to estimate the
β for any given segment, provided that α has been estimated accurately for the mote.

Since it is very difficult to establish absolute ground truth in field experiments,
we establish a synthetic ground truth by reconstructing timestamps using all the
global anchors obtained from the basestation.4 We record the α and β values for
each segment and use these values as ground truth. Because we downloaded data
every 4 h we obtained enough global anchors from the motes to be confident with
the derived ground truth estimates.

In order to emulate a GPS mote, we selected a single mote (referred to as G-mote)
that was one hop away from the basestation. We used the G-mote’s global anchors
obtained from the basestation as though they were taken using a GPS device. We
ignored all other global anchors obtained from other motes. Furthermore, to emulate
the absence of the basestation for N days, we discarded all the anchors taken by the G-
mote during that N -day long period. We tested for values of N from one to eighteen.

After simulating the basestation failure, we reconstruct the timestamps by apply-
ing Phoenix using only the ∩local, neighbor〉 anchors, and global anchors available
from the G-mote. This provides us with another set of α and β estimates for each of
the segments. We compare these estimates with the ground truth estimates (pair-wise
comparison). In order to provide a deeper insight, we decompose the average PPM
error metric into its constituent components—α and β errors. Furthermore, we report
the median and standard deviation of these α and β errors. Table 1 reports the results
of these experiments. We found that the median α error stayed as low as 5.9 ppm,
while the median β error stayed as low as 6.4 s for N = 18. In general, αmed, βmed

and βstd increased as N increased and αstd stayed relatively consistent for different
values of N . The stability of the α estimates using Phoenix with N = 0 and N = 18

4 Note that every time a mote contacts the basestation, we obtain a global anchor for that mote.

15 Data Gathering, Storage, and Post-Processing 525

Table 1 Phoenix accuracy using the Olin dataset as a function of the number of days that the
basestation was unavailable

Error\Days 2 4 6 8 10 12 14 16 18

αmed (ppm) 1.73 1.73 1.85 1.70 1.96 2.20 4.36 5.47 5.93
αstd (ppm) 3.41 3.40 3.40 3.39 3.30 3.26 3.17 3.00 3.00
βmed (s) 0.88 0.88 0.91 0.94 1.16 1.55 4.52 6.02 6.44
βstd (s) 0.58 0.57 0.58 0.57 0.65 0.91 2.43 3.11 3.45

60 65 70 75 80 85 90

0.00

0.25

0.50

0.75

1.00

Persistent
BS down 18 days

P
ro

ba
bi

lit
y

Skew (PPM)

0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

D
at

a
lo

ss
 (%

)

Basestation down (days)

(a) (b)

Fig. 10 The stability of the α estimates using Phoenix and the data loss using RGTR in comparison
to Phoenix. a The CDF of α estimates on the Olin deployment. b Data loss using RGTR. Data loss
from Phoenix was <0.06 %

is shown in Fig. 10a. The CDF shows that median skew was found to be around
75 ppm and the two curves track each other closely.

The data loss using Phoenix was found to be as low as 0.055 % when N was
18 days. In comparison, we found that there was significant data loss when the
timestamps were reconstructed using RGTR. Figure 10b shows the data losses for
different values of N . The figure does not report the Phoenix data loss as we found it
to be 0.055 % irrespective of N . This demonstrates that Phoenix is able to reconstruct
more than 99 % of the data even when motes reboot frequently and the basestation
is unavailable for days. We note that in comparison to Phoenix, RGTR does not
incur any additional storage and duty-cycle overheads as anchors are recorded at the
basestation directly as part of the data downloads.

3.1.2 Phoenix Summary

Phoenix is an offline time reconstruction algorithm that assigns timestamps to mea-
surements collected using each mote’s local clock. One or more motes have references
to a global time source. All motes broadcast their time-related state and periodically
record the broadcasts of their neighbors. If a few mote segments are able to map their
local measurements to the global time frame, this information can then be used to
assign global timestamps to the measurements collected by their neighbors and so
on. This epidemic-like spread of global information makes Phoenix robust to random

526 M. Chang and A. Terzis

mote reboots and basestation failures. We found that in practice there are more than
enough possible ways to obtain good fits for the vast majority of data segments.

4 Storage and Access

After the measurements have been sampled and collected they need to be stored in
an efficient and scalable way that also allows flexible post-processing, analysis, and
visualization.

4.1 Data Storage

The database design, visualized in Fig. 11, follows naturally from the experimental
design and the WSN. Each entry in the Site table is a geographic region.

Each site is partitioned into Patcheswhich in turn contain Nodes. A particular
Node has an array of Sensors that report environmental measurements. Each patch
is a coherent deployment area, defined through its GPS coordinates. Sensor locations
are relative to the reference coordinates of a patch.

The Node and Sensor types (metadata) are described in corresponding Type
tables in Fig. 11. Each node has a record in the Nodes table describing its model,
deployment, and other metadata. Each Sensor table entry describes its type, posi-
tion, calibration information, and error characteristics. The Event table records
state changes of the experiment such as battery changes, maintenance, site visits,

Fig. 11 Sensor Network Database Schema used in Life Under Your Feet. The different boxes
correspond to database tables, while the arrows correspond to relations between tables

15 Data Gathering, Storage, and Post-Processing 527

replacement of a sensor, sensor failure, etc. Global events are represented by pointing
to the NULL patch or NULL node. The site configuration tables (Site, Patch,
SiteMap) and hardware configuration tables (Node, Sensor, NodeType,
SensorType) are loaded prior to the data collection. The DataConstants and
RToSoilTemp contain constants that are used in the calibration process mentioned
earlier and are also loaded before measurements are added to the database. As new
nodes or sensors are added, new records are added to those tables. When new types
of nodes or sensors are added, those types are added to the database type tables.

Raw measurements arrive at the database as comma-separated-list ASCII files.
They are then loaded into the database using a two-step process common to data
warehouse applications. (1) The data are first loaded into a quality-control (QC)
table (RawData) in which duplicate records and other erroneous data are removed.
(2) Next, the quality-controlled data are copied into the CleanData table, while
faulty data (e.g., duplicates) are inserted into the BadData table. The contents of the
CleanData table are then inserted into the DataSeries table after converting
the timestamps of the collected measurements from “sensor time” (i.e., the node’s
local clock) to GMT using Phoenix. Finally the contents of the DataSeries table
are calibrated using stored procedures.

The database, implemented in Microsoft SQL Server 2005, benefits from the
http://www.skyserver.sdss.org database that was built for Astronomy applications
[40]. It inherited a self-documenting framework that uses embedded markup tags
in the comments of the DDL scripts to characterize the metadata (units, descrip-
tions, enumerations, for the database objects, tables, views, stored procedures, and
columns). The DDL is parsed a second time, and the metadata information is extracted
and inserted into the database itself. A set of stored procedures generate an HTML
rendering of the hyper-linked documentation (see Schema Browser on our web-
site [25]).

4.2 Data Access

Since sensor-based experiments have inherent spatial dimensions map-based inter-
faces (such as Microsoft Bing Maps and Google Earth) offer an intuitive interface for
exploring such experiments. We implemented such an web-interface to our database
called Grazor, where users can search for specific locations and sensors with specific
capabilities or just browse through the map at their leisure. Once the sensors are
identified, the user can click on their icons and receive current as well as historical
measurements collected by these sensors.

Current and historical sensor measurements are available from the Life Under
Your Feet website, where measurements can either be viewed directly inside the web
browser or downloaded as CSV files. Figure 12 presents a sample screenshot of
Grazor covering the geographic area of one of our deployments.

In addition to Grazor, we also have a direct web-interface for performing arbitrary
analysis by exposing the SQL schema and allow SQL queries directly to the database.

http://www.skyserver.sdss.org

528 M. Chang and A. Terzis

Fig. 12 Grazor User Interface from Life Under Your Feet

This “guru-interface” has proven invaluable for scientists using the Sloan Digital Sky
Survey and has already been very useful to us. If there is some question you want to
ask that is not built-in, this interface lets you ask that question.

4.3 Data Analysis

In addition to examining individual measurements and looking for unusual cases,
scientists want a high level view of the measured quantities; they want to analyze
aggregations and functions of the sensor data, cross-correlate them with external
measurements, and perform these tasks using intuitive and easy-to-use tools. Some
of the typical questions we expect these systems to answer are:

1. Display a physical quantity (average, min, max, standard deviation) for a particu-
lar time or time interval, for one sensor, for a subset of the sensors, for all sensors
at a site, or for all sites. Show the results as a function of location, time, as well
as a function of sensor subset ID or category.

2. Look for unusual patterns and outliers such as a node behaving differently from
its neighbors or an unusual spike in measurements.

3. Look for extreme events, e.g., rainstorms, and show data in time-after-event coor-
dinates.

15 Data Gathering, Storage, and Post-Processing 529

Fig. 13 Sensor data cube dimension model

4. Correlate measurements with external datasets (e.g., with weather data, data from
CO2 flux towers, or data from stream gauges).

5. Notify the user in real-time if the data has unexpected values, indicating that
sensors might be damaged and need to be checked or replaced.

Queries 2–5 are standard relational database queries that fit the schema in Fig. 11
very nicely—indeed the database was designed for them. However, Query 1 is really
the main application of the data analysis and calls for a specialized database design,
called a data cube, that supports roll-up and drill-down data queries across many
dimensions [14].

Figure 13 shows the unified dimension model for a data cube we built for the
database shown in Fig. 11. It is built and maintained using the Business Intelligence
Development Studio and OLAP features of SQL Server 2005. The cube provides
access to all sensor measurements including air and soil temperature, soil water
pressure and light flux averaged over 10-min measurement intervals, in addition to
daily averages, minima and maxima of weather data including precipitation, cloud
cover and wind.

The cube also defines calculations of average, min, max, median and standard
deviation that can be applied to any type of sensor measurement over any selected
spatio-temporal range. Analysis tools querying the cube can display these aggregates
easily and quickly, as well as apply richer computations such as correlations that are
supported by the multidimensional query language MDX [33]. Users can aggregate

530 M. Chang and A. Terzis

and pivot on a variety of attributes: position on the hillside, depth in the soil, under
the shade versus in the open, etc.

The cube aggregates the DataSeries fact table around three dimensions (when,
who, where)—Time (DateTimes), Location/Sensor (Sensor), and Measurement
Type (MeasurementType) (see Fig. 13.) The Time dimension includes a hierarchy
providing natural aggregation levels for measurement data at the resolution of year,
season, week, day, hour and minute (to the grain of 10-min interval). Not only can
data be summarized to any of these levels (e.g., average temperature by week), but
these summarized data can then also be easily grouped by recurring cyclic attributes
such as hour-of-day and week-of-year. The Location/Sensor dimension includes a
geographic hierarchy permitting aggregation or slicing by site, patch, node or indi-
vidual sensor, as well as a variety of positional or device-specific attributes (patch
coordinates, node position, sensor manufacturer, etc.) This dimension itself is con-
structed by joining the relational database tables representing sensor, site, patch, and
node.

The weather data available in the cube uses these dimensions as well, although at a
different time and space grain. In the Location/Sensor and time dimensions, weather
is available per-site and per-day respectively. By sharing the same dimensions as the
sensor measurements, relationships between weather and measurement information
can be readily analyzed and visualized side-by-side using the tools.

Data visualization, trending and correlation analysis is most effective when mea-
surement data is available for every 10-min measurement interval of a sensor. While
it is straightforward to handle large contiguous data gaps by eliminating a gap period
from consideration, frequent gaps can interfere with calculations of daily or hourly
averages. To avoid these problems, we plan to use interpolation techniques to fill any
holes in the data prior to populating the cubes.

Figure 14 displays one example of the type of analysis enabled by the data cube. It
displays the correlation between surface temperature and light intensity as a function
of sensor ID, indicated by circles with different colors, averaged over the whole dura-
tion of the experiment. As daylight breaks, the temperature of the surface quickly rises
(moving to the right), and reaches its maximum around 2–3 PM, since the deployment
site has northern exposure. Then as dusk sets, temperature starts to decline reaching
its minimum during the early morning hours. This example demonstrates the power
of visualization to expose subtle data features and lead to deeper scientific insights
as well as provide a decision tool for how the sensor-based experiment should be
modified to better cover the scientists’ needs.

5 Conclusion

A wireless sensor network is only the first component in an end-to-end system
that transforms raw measurements to scientifically significant data and results. This
end-to-end system includes calibration, interfaces with external data sources (e.g.,
weather data), databases, Web Services interfaces, analysis, and visualization tools.

15 Data Gathering, Storage, and Post-Processing 531

Fig. 14 Example of datacube analysis. Correlation between surface temperature and light intensity

The WSN community has focused its attention so far on routing algorithms, self-
organization, and in-network processing among other things, environmental moni-
toring applications—sometimes derided as academically dull applications—require
a different emphasis: reliable delivery of the majority (if not all) of the data and meta-
data, high quality measurements, and reliable operation over long deployment cycles.
We believe that focusing on these problems will lead to interesting new avenues in
WSN research.

References

1. M. Buettner, G. Yee, E. Anderson, R. Han, X-MAC: a short preamble MAC protocol for duty-
cycled wireless sensor networks, in Proceedings of the 4th ACM SenSys Conference (2006)

2. N. Burri, P. von Rickenbach, R. Wattenhofer, Dozer: ultra-low power data gathering in sensor
networks, in Proceedings of the 6th IPSN Conference (2007)

3. M. Chang, P. Bonnet, Meeting ecologists’ requirements with adaptive data acquisition, in
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10
(ACM, New York, NY, USA, 2010), pp. 141–154. doi:10.1145/1869983.1869998. URL http://
doi.acm.org/10.1145/1869983.1869998

4. M. Chang, C. Cornou, K. Madsen, P. Bonnet, Lessons from the Hogthrob deployments, in
WiDeploy (2008)

http://dx.doi.org/10.1145/1869983.1869998
http://doi.acm.org/10.1145/1869983.1869998
http://doi.acm.org/10.1145/1869983.1869998

532 M. Chang and A. Terzis

5. B.R. Chen, K.K. Muniswamy-Reddy, M. Welsh, Ad-hoc multicast routing on resource-limited
sensor nodes, in REALMAN ’06 (2006)

6. Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, J. Regehr, Surviving sensor network software
faults, in SIGOPS (2009)

7. Dust Networks, Inc., Time Synchronized Mesh Protocol, http://www.dustnetworks.com/docs/
TSMP_Whitepaper.pdf (2006)

8. P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse, D. Culler,
Trio: enabling sustainable and scalable outdoor wireless sensor network deployments, in IEEE
SPOTS, pp. 407–415 (2006)

9. J.E. Elson, L. Girod, D. Estrin, Fine-grained network time synchronization using reference
broadcasts, in Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation (OSDI), pp. 147–163 (2002)

10. Federspiel Controls, http://www.federspielcontrols.com
11. S. Ganeriwal, R. Kumar, M.B. Srivastava, Timing-sync protocol for sensor networks, in Pro-

ceedings of the 1st ACM Conference on Embedded Networked Sensor System (SenSys), pp.
138–149 (2003)

12. D. Ganesan, R. Cristescu, B. Beferull-Lozano, Power-efficient sensor placement and transmis-
sion structure for data gathering under distortion constraints, in IPSN ’04 (2004)

13. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Collection tree protocol, in Proceed-
ings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 1–14
(2009)

14. J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: a relational operator generalizing
group-by, cross-tab and sub-totals, in Proceeding of the 1996 International Conference in Data
Engineering, pp. 152–159 (1996)

15. J. Gupchup, D. Carlson, R. Musăloiu-E, A. Szalay, A. Terzis, Phoenix: an epidemic approach
to time reconstruction, in Proceedings of the 7th European Conference on Wireless Sensor
Networks, EWSN’10 (Springer, Berlin, 2010), pp. 17–32. doi:10.1007/978-3-642-11917-0_2.
URL http://dx.doi.org/10.1007/978-3-642-11917-0_2

16. J. Gupchup, R. Musaloiu-Elefteri, A.S. Szalay, A. Terzis, Sundial: using sunlight to reconstruct
global timestamps, in EWSN, pp. 183–198 (2009)

17. S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, P.L. David Culler, S. Shenker, I. Stoica, Flush: a
reliable bulk transport protocol for multihop wireless networks, in Proceedings of 5th ACM
Sensys Conference (2007)

18. J. Ko, J.H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis, G.M. Masson, T. Gao, W. Destler, L.
Selavo, R.P. Dutton. MEDiSN: Medical emergency detection in sensor networks, in ACM
Trans. Embed. Comput. Syst. 10(1), Article 11 (2010)

19. K. Langendoen, A. Baggio, O. Visser, Murphy loves potatoes: experiences from a pilot sensor
network deployment in precision agriculture, in Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS) (2006)

20. H.K. Le, D. Henriksson, T. Abdelzaher, A control theory approach to throughput optimization
in multi-channel collection sensor networks, in IPSN ’07 (2007)

21. H.K. Le, D. Henriksson, T. Abdelzaher, A practical multi-channel medium access control
protocol for wireless sensor networks, in IPSN ’08 (2008)

22. P. Levis, D. Gay, V. Handziski, J.H. Hauer, B. Greenstein, M. Turon, J. Hui, K. Klues, R.S. Cory
Sharp, J. Polastre, P. Buonadonna, L. Nachman, G. Tolle, D. Culler, A. Wolisz, T2: A Second
Generation OS For Embedded Sensor Networks. Tech. Rep. TKN-05-007, Telecommunication
Networks Group, Technische Universität Berlin (2005)

23. P. Levis, G. Tolle, TEP 118 Dissemination, http://www.tinyos.net/tinyos-2.x/doc/html/tep118.
html

24. C.J.M. Liang, J. Liu, L. Luo, A. Terzis, F. Zhao, Racnet: a high-fidelity data center sensing
network, in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’09 (ACM, New York, NY, USA, 2009), pp. 15–28. doi:10.1145/1644038.1644041.
URL http://doi.acm.org/10.1145/1644038.1644041

http://www.dustnetworks.com/docs/TSMP_Whitepaper.pdf
http://www.dustnetworks.com/docs/TSMP_Whitepaper.pdf
http://www.federspielcontrols.com
http://dx.doi.org/10.1007/978-3-642-11917-0_2
http://dx.doi.org/10.1007/978-3-642-11917-0_2
http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html
http://dx.doi.org/10.1145/1644038.1644041
http://doi.acm.org/10.1145/1644038.1644041

15 Data Gathering, Storage, and Post-Processing 533

25. Life Under Your Feet: Life Under Your Feet Schema Browser (2007), http://lifeunderyourfeet.
org/en/help/browser/browser.asp

26. S. Lin, J. Zhang, G. Zhou, L. Gu, J.A. Stankovic, T. He, ATPC: adaptive transmission power
control for wireless sensor networks, in Proceedings of the 4th ACM Sensys Conference (2006)

27. J. Liu, B. Priyantha, F. Zhao, C.J.M. Liang, Q. Wang, S. James, Towards fine-grained data
center cooling monitoring using racnet, in HotEmNets’08 (2008)

28. Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M. Xi, J. Zhao, X.Y. Li,
Does wireless sensor network scale? A measurement study on greenorbs, in INFOCOM, 2011
Proceedings IEEE, pp. 873–881 (2011)

29. M. Lukac, P. Davis, R. Clayton, D. Estrin, Recovering temporal integrity with data driven time
synchronization, in IPSN, pp. 61–72 (2009)

30. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tag: a tiny aggregation service for ad-hoc
sensor networks, in OSDI ’02 (2002)

31. M. Marot, B. Kusy, G. Simon, A. Ledeczi, The flooding time synchronization protocol, in
Proceedings of the 2nd Conference on Embedded Networked Sensor Systems (SenSys), pp.
39–49 (2004)

32. A. Meliou, D. Chu, C. Guestrin, J. Hellerstein, W. Hong, Data gathering tours in sensor net-
works, in Proceedings of IPSN (2006)

33. Microsoft Corporation: Multidimensional Expressions (MDX) Reference, http://msdn2.
microsoft.com/en-us/library/ms145506.aspx (2005)

34. R. Musaloiu-E., C.J. Liang, A. Terzis, Koala: ultra-low power data retrieval in wireless sensor
networks, in Proceedings of the 7th International Conference on Information Processing in
Sensor Networks (IPSN) (2008)

35. R. Musaloiu-E., C.J.M. Liang, A. Terzis, Koala: ultra-low power data retrieval in wireless
sensor networks, in IPSN ’08: Proceedings of the 7th International Symposium on Information
Processing in Sensor Networks (2008)

36. J. Paek, R. Govindan, Rate-controlled reliable transport for sensor networks, in Proceedings
of the 5th ACM Sensys Conference (2007)

37. J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless sensor networks,
in Proceedings of the 2nd ACM Sensys Conference (2004)

38. S. Rangwala, R. Gummadi, R. Govindan, K. Psounis, Interference-aware fair rate control in
wireless sensor networks, in SIGCOMM ’06 (2006)

39. J. Sallai, B. Kusy, Á. Lédeczi, P. Dutta, On the scalability of routing integrated time synchro-
nization, in EWSN, vol. 3868 (Springer, Berlin, 2006), pp. 115–131, http://dblp.uni-trier.de/
db/conf/ewsn/ewsn2006.html#SallaiKLD06

40. Sloan Digital Sky Survey: The Sloan Digital Sky Survey/SkyServer (2002), http://skyserver.
sdss.org/

41. T. Stathopoulos, L. Girod, J. Heidemann, D. Estrin, Mote Herding for Tiered Wireless Sen-
sor Networks. Tech. Rep. CENS-TR-58, University of California, Los Angeles, Center for
Embedded Networked Computing (2005)

42. SynapSense Corporation: LiveImaging: Wireless Instrumentation Solutions, http://www.
synapsense.com/ (2008)

43. R. Szewczyk, J. Polastre, A. Mainwaring, D. Culler, Lessons from a sensor network expedition,
in Proceedings of the 1st European Workshop on Wireless Sensor Networks (EWSN ’04) (2004)

44. Texas Instruments: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver, http://www.chipcon.
com/files/CC2420_Data_Sheet_1_3.pdf (2006)

45. G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, P. Buonadonna, S. Burgess, D. Gay, W.
Hong, T. Dawson, D. Culler, A macroscope in the redwoods, in Proceedings of the Third ACM
Conference on Embedded Networked Sensor Systems (SenSys) (2005)

46. G. Werner-Allen, S. Dawson-Haggerty, M. Welsh, Lance: optimizing high-resolution signal
collection in wireless sensor networks, in SenSys ’08 (2008)

47. G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, M. Welsh, Fidelity and yield in a volcano
monitoring sensor network, in Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) (2006)

http://lifeunderyourfeet.org/en/help/browser/browser.asp
http://lifeunderyourfeet.org/en/help/browser/browser.asp
http://msdn2.microsoft.com/en-us/library/ms145506.aspx
http://msdn2.microsoft.com/en-us/library/ms145506.aspx
http://dblp.uni-trier.de/db/conf/ewsn/ewsn2006.html#SallaiKLD06
http://dblp.uni-trier.de/db/conf/ewsn/ewsn2006.html#SallaiKLD06
http://skyserver.sdss.org/
http://skyserver.sdss.org/
http://www.synapsense.com/
http://www.synapsense.com/
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

534 M. Chang and A. Terzis

48. A. Woo, T. Tong, D. Culler, Taming the underlying challenges in reliable multihop wireless
sensor networks, in Proceedings of ACM Sensys 2003 (2003)

49. Y. Wu, J. Stankovic, T. He, S. Lin, Realistic and efficient multi-channel communications in
dense sensor networks, in INFOCOM ’08 (2008)

50. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor net-
works, in Proceedings of IEEE INFOCOM 2002 (2002)

51. J. Zhao, R. Govindan, Understanding packet delivery performance in dense wireless sensor
networks, in Proceedings of the ACM Sensys (2003)

52. G. Zhou, C. Huang, T. Yan, T. He, J.A. Stankovic, T.F. Abdelzaher, MMSN: multi-frequency
media access control for wireless sensor networks, in INFOCOM ’06 (2006)

Chapter 16
Data Gathering in Wireless Sensor Networks

Shouling Ji, Jing (Selena) He and Zhipeng Cai

Abstract Data gathering is one of the primary operations carried out in Wireless
Sensor Networks (WSNs). It involves data collection with aggregation and data
collection without aggregation, referred to as data aggregation and data collection
respectively. In the last decade, many techniques for these two applications are pro-
posed, with different focuses, such as accuracy, reliability, time complexity, and so
on. This chapter reviews the state of the art of data aggregation and data collection
techniques in order to present a comprehensive guidance on how to choose a more
appropriate approach for different applications. The definitions of data aggregation
and data collection are firstly introduced. Subsequently, the challenges of designing
effective data aggregation and data collection methods are discussed. Then some typ-
ical data aggregation techniques and their classifications are presented. Particularly,
a latest distributed data aggregation algorithm (DAS) is illustrated in details. For
data collection, we begin with some new advances and then introduce several new
tree-based and cell-based data collection algorithms. Finally, this chapter is ended
by pointing out some possible future research directions.

1 Introduction

Wireless Sensor Networks (WSNs) have been successfully applied to a variety of
fields. For all the applications, data gathering is one of the primary operations carried
out in WSNs, where a base station collects all the data generated from each sensor
through wireless communications. Data gathering is mainly for estimating network

S. Ji · Z. Cai (B)

Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
e-mail: zcai@gsu.edu

J. He
Department of Computer Science, Kennesaw State University,
Kennesaw, GA 30144-5591, USA

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 535
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_16,
© Springer-Verlag Berlin Heidelberg 2014

536 S. Ji et al.

Fig. 1 An example WSN

s
0

s
1

s
2

s
3 s

4
s

5

s
6

s
7 s

8

size, determining average system load, processing user queries, gathering interesting
data, and so on. Much effort has been spent on designing effective data gathering
approaches with different focuses such as energy-efficiency, network lifetime, delay
bound, network throughput, energy-delay tradeoff, and so on [2, 3, 7, 15, 16, 19,
22, 24, 25, 33, 35–38, 41, 49, 51, 59, 62, 67, 69, 72, 73]. In this chapter, we
introduce and summarize the recent advances of data gathering, and present some
representative works.

In general, data gathering can be further classified as data collection with aggrega-
tion [2, 3, 15, 16, 22, 25, 35, 49, 59, 62, 67] and data collection without aggregation
[7, 19, 24, 36–38, 41, 51, 69, 72, 73], referred to as data aggregation and data col-
lection respectively. In data aggregation, specific aggregation functions are employed
during the data gathering process, e.g., MAX, MIN, SUM, AVERAGE, and so on. In
data collection, all the raw data produced at each node is gathered to the sink (base
station) without any aggregation function. Figure 1 shows an example WSN consist-
ing of one sink node denoted by s0 and 8 sensor nodes denoted by si (1 ∈ i ∈ 8).
s0 can communicate directly with a PC or some other user-operated devices in a wired
or wireless manner. Each bidirectional edge between two nodes in Fig. 1 implies these
two nodes have a one-hop communication link. For two nodes without a direct link,
they can communicate via a multi-hop manner as long as the network is connected.
For instance, in Fig. 1, s1 and s8 can communicate along the path s1 ⊂ s4 ⊂ s5 ⊂ s8
or other paths. Now, suppose the WSN in Fig. 1 is used for monitoring the temperature
of the deployed area. At a particular time instant t , assume the temperature values
sensed by si (1 ∈ i ∈ 8) are 48◦ at s1, 58◦ at s2, 60◦ at s3, 57◦ at s4, 61◦ at s5, 58◦
at s6, 47◦ at s7, and 49◦ at s8, respectively. Then, if we want to obtain the maximum
temperature value of the monitored area at time t , we can conduct data aggrega-
tion in this network by applying the aggregation function MAX, which is used to

16 Data Gathering in Wireless Sensor Networks 537

obtain the maximum value of a candidate data set. Consequently, in this example,
the data aggregation value is MAX{48◦, 58◦, 60◦, 57◦, 61◦, 58◦, 47◦, 49◦} = 61◦.
On the other hand, if we want to perform data collection over this network, e.g., to
collect all the temperature values sensed by all the sensors at time t to the sink, all
the 8 temperature values in the set {48◦, 58◦, 60◦, 57◦, 61◦, 58◦, 47◦, 49◦} will be
collected to the sink for further processing.

When dealing with data aggregation and data collection for WSNs, the constraints
and limitations of WSNs on power supply, computation ability, and communication
capacity introduce many challenges. We summarize some main challenges as follows.

• Energy Efficiency. Most sensor nodes are battery-powered, which implies the
available power of a sensor node is very limited. Furthermore, in large-scale
WSNs and WSNs which are deployed as monitoring and controlling systems
where human intervention is not desirable or feasible, it is usually impossible to
recharge a sensor node. Therefore, how to design energy-efficient data aggregation
and data collection methods is a challenge. Especially for data collection, more
traffic will be induced compared with data aggregation.

• Timeliness and Real-time. The limited communication capacity of each sen-
sor node and the interference caused by wireless communication makes it more
challenging to design effective data aggregation and collection algorithms for real-
time applications. It is worth mentioning that more communication traffic will be
induced for data collection compared with data aggregation, especially for the
nodes close to the sink. Apparently, data are easily accumulated at the nodes close
to the sink, which is called the data accumulation phenomenon. Thus, to resolve
this problem and design elegant scheduling schemes is very important.

• Scalability and Robustness. WSNs tend to be large-scale networks and distrib-
uted systems. Some new nodes may join a network and some existing nodes may
disappear at any time. This implies that the topological structure of a WSN varies
over time. To deal with the dynamics, distributed algorithms with scalability are
highly desired. On the other hand, it is difficult, sometimes impossible, to obtain
the overall realtime network information to design optimal distributed algorithms.
Therefore, designing optimal or sub-optimal distributed data aggregation and col-
lection algorithms is challenging.

• Time Synchronization and Distributed Solutions. For large-scale WSNs con-
sisting of vulnerable sensor nodes, it might be difficult and not realistic to achieve
ideally strict time synchronization due to the unstable deployment environment,
clock drifts, and technical limits.1 Therefore, to comprehensively and profoundly

1 Currently, some works have been proposed on the time synchronization issue for wireless sensor
networks. For instance, in [23], a flooding-based time synchronization method, named Glossy, was
designed. By testbed experiments (the testbed is a wireless sensor network consisting of 39–94
sensor nodes) and analysis, it can be shown that Glossy can achieve high-accurate network-wide
time synchronization (at the millisecond level). Here, we emphasize that for large-scale wireless
sensor networks deployed in an open/outdoor environment, e.g., GreenOrbs, a practical wireless
sensor network consisting of 1000 + sensor nodes deployed in a forest [32], it might be difficult to
achieve network-wide accurate time synchronization.

538 S. Ji et al.

understand the performance of data aggregation and collection for practical WSNs,
it is also important to investigate distributed data aggregation and collection algo-
rithms for asynchronous WSNs.

• Other Issues. There exist many other challenges for data aggregation and collec-
tion in WSNs induced by node mobility, duty cycling, security issues, and so on,
in different kinds of applications. To address these challenges, application-aware
data aggregation and collection schemes are expected.

The rest of this chapter is organized as follows. In Sect. 2, the formal definition of
data aggregation is provided. Then we review and summarize the existing data aggre-
gation methods, followed by the discussion of a famous distributed data aggregation
scheme. In Sect. 3, we go through some typical data collection algorithms. Finally, we
conclude this chapter and point out some possible future research directions in Sect. 4.

2 Data Aggregation

In this section, we first provide some background knowledge of data aggregation.
Subsequently, we review some existing data aggregation methods. Finally, we discuss
one popular distributed data aggregation algorithm (DAS) [76], which is also the
existing best algorithm with respect to minimizing the data aggregation latency.

2.1 Introduction of Data Aggregation

Data aggregation is an essential operation in WSNs and has many real applications.
As introduced in [35], data aggregation can be used to determine network size by the
COUNT aggregation function, which is an important parameter in many applications,
e.g., Distributed Hash Tables (DHT) [56, 65], the configuration of a quorum in
dynamic settings [1], and membership service in ad hoc networks [5]. There are many
other applications of data aggregation by applying different aggregation functions
such as MAX, MIN, AVERAGE, and SUM.

Generally, to accomplish a data aggregation task, we have to design a data aggrega-
tion schedule, which specifies how to carry out the aggregation task step by step in an
interference-free manner. Now, we give the formal definition of an interference-free
data aggregation schedule in randomly deployed WSNs under the protocol interfer-
ence model.2 For a WSN consisting of one single-radio sink node denoted by s0
and n single-radio sensor nodes denoted by s1, s2, . . . , sn , the transmission range r
and interference range rI of all the nodes are assumed to satisfy rI = c1 · r , where

2 As indicated by some recent research, the protocol interference model may not be practical
in realistic WSN applications. However, it has been employed since it simplifies the quantitative
analysis process of a designed protocol which might provide some general guiding rules and insights
on designing practical protocols for WSNs.

16 Data Gathering in Wireless Sensor Networks 539

c1 ∀ 1 is a constant. The network time is assumed to be slotted. Since each node
is equipped with a radio, within a time slot, a node si (0 ∈ i ∈ n) can only work
on a half-duplex communication mode, that is, a node can either send or receive
data in a time slot but not both. Then, the topological structure of this WSN can be
represented by a graph G(V, E), where V = {si : 0 ∈ i ∈ n} and E is the set of all
the possible edges formed among all the nodes in V . For any two nodes u, v ∗ V ,
there is an edge between u and v if and only if →u − v→ ∈ r , where →u − v→ is the
Euclidean distance between u and v. Under the protocol interference model, node u
can successfully transmit data to node v only if (i) there is a link3 between u and v

((u, v) ∗ E); and (i i) there is no other node w such that v is within the interference
range of w (→w − v→ ∈ rI) and w is trying to transmit data simultaneously with u.

Let X and Y be two subsets of V and X ∞Y = ∩. The data from the nodes in X can
be aggregated to the nodes in Y if and only if all the nodes in X can simultaneously
transmit data to some nodes in Y during a time slot in an interference-free manner.
Then, an interference-free data aggregation schedule can be determined by a sequence
of data sets S1, S2, . . . , Sω , {s0}. During the first time slot, the data from S1 can be
aggregated to the nodes in V \S1 in an interference-free manner. During the second
time slot, the data from S2 can be aggregated to the nodes in V \(S1 ∪ S2) in an
interference-free manner. This process continues until the ω -th time slot, during
which the data from Sω is aggregated to the sink s0 in an interference-free manner.
Therefore, a data aggregation schedule can be formally defined as follows.

Definition 1 [Data aggregation schedule].A data aggregation schedule is a seq-
uence of data sets S1, S2, . . . , Sω , Sω+1 = {s0} that satisfies the following conditions:

• ⋃ω+1
i=1 Si = V ;

• Si ∞ S j = ∩, for 1 ∈ i �= j ∈ ω + 1;
• All the data of the nodes from set Sk (1 ∈ k ∈ ω) can be aggregated to the nodes

in V \⋃k
i=1 Si during the k-th time slot, which implies the sink can obtain the final

data aggregation value in the ω -th time slot.

Currently, the study of data aggregation schedule in WSNs focuses on the follow-
ing objectives: minimizing data aggregation delay, maximizing network throughput,
maximizing network lifetime, and maximizing energy efficiency.

Note that, besides the protocol interference model, two other more realistic
interference models are frequently exploited to capture wireless interference char-
acteristics in WSNs, namely the physical interference model and the generalized
physical interference model.4 For the given definition of data aggregation, it can be

3 We use link and edge interchangeably in this chapter.
4 Under the physical interference model, a node u can successfully transmit data to another node
v only if the Signal-to-Interference-plus-Noise Ratio (SINR) at v associated with u is no less than
a threshold value. Thus, the data transmission under the physical interference model can also be
viewed as a binary function, i.e., to be failed or to be successful. Under the generalized physical
interference model, instead of modeling a data transmission as a binary function, the data receiving
rate at v from u is a continuous function depending on the SINR value at v.

540 S. Ji et al.

applied under the physical interference model and the generalized physical inter-
ference model directly. This is because that the definition specifies a proper data
aggregation schedule from the interference-free scheduling perspective. For how to
define interfering and interference-free, it is independent of data aggregation def-
inition and only depends on different interference models. Similarly, in arbitrarily
deployed WSNs, the formal definition of a data aggregation schedule can also be
obtained with some according modifications.

2.2 Overview of Data Aggregation Schemes

In this subsection, we review some recent works on data aggregation. Some compre-
hensive surveys have been conducted in [2, 22, 35, 59, 67]. Furthermore, the research
advances on secure data aggregation are summarized in [3, 25, 62]. In the following
of this subsection, we summarize new advances on data aggregation techniques from
three aspects: energy-efficiency, minimum-latency, and energy-delay tradeoff.

Energy-Efficient Data Aggregation. In [46], an energy-efficient data gathering
method with reliability consideration is proposed. To conserve energy, three schemes
are exploited. First, by adopting the network flow optimization techniques, the opti-
mal strategy to balance the communication load among all the nodes is investigated.
Second, to further balance the communication load, multiple communication trees,
instead of a fixed tree, are constructed. In different task cycles of a periodic-task,
one of the multiple trees is exploited. Finally, interference-free data transmission
procedures are designed for data transmission. In [57], a new minimum spanning
tree-based protocol, named Power Efficient Data gathering and Aggregation Proto-
col (PEDAP), as well as its power-aware version is proposed. PEDAP tries to prolong
the lifetime of the last node in the system and meanwhile considering the lifetime
of the first node.5 On the other hand, with the cost of only slightly sacrificing the
lifetime of the last node, the near optimal lifetime of the first node can be achieved in
the power-aware version. In [20], the aggregation tree construction problem is inves-
tigated and an energy-aware distributed algorithm to generate a data aggregation tree
based on the residual power of the nodes is proposed. In the sparse-node distribution
situation, a multi-chain-based data aggregation scheme is proposed in [21], where a
chain is a data transmission path connecting some or all of the network nodes. Since
the performance of the scheme heavily depends on the construction of the chain,
an energy-efficient chain construction algorithm is also proposed in this work. In
[18], the use of approximation in data aggregation by exploiting small sketches is
investigated. First, the authors generalized duplicate-insensitive sketches for approx-

5 The network considered in [57] is a single-hop wireless sensor network where all the nodes can
communicate directly. When considering the lifetime of the last node, it is defined as the time
duration from the network being deployed to the time that the last node exhausts its energy. When
considering the lifetime of the first node, it is defined as the time duration from the network being
deployed to the time that a node exhausts its energy.

16 Data Gathering in Wireless Sensor Networks 541

imating COUNT to deal with SUM. Subsequently, they proposed a method to use
sketch to produce accurate results with low communication cost and computation
cost. Considering the fact that it is not necessary to provide 100 % accuracy for most
WSN applications, the authors in [63] introduced a data structure, named Quan-
tile Digest or q-digest, which provides provable guarantees on approximation error
and maximum resource consumption. Based on the experiments on a WSN involv-
ing 49 MICA 2 motes using a realistic traffic trace, a method to address reliable
bursty convergecast scheme for WSNs is proposed [77]. In the proposed scheme, to
improve channel utilization and reduce ack-loss, a window-less block acknowledg-
ment scheme is designed; to alleviate retransmission-incurred channel contention, a
differentiated contention control mechanism is implemented.

Minimum-Latency Data Aggregation. The Minimum-Latency Data Aggregation
(MLDA) problem is studied in [10] for WSNs under the Unit Disk Graph (UDG)
model and the protocol interference model. First, the authors proved that the MLDA
problem is NP-hard even when all the sensors are grid-deployed by applying the result
on orthogonal planar drawing and reduction from restricted planar 3-SAT. Then, a
(η−1)-approximation algorithm for the MDAT problem is proposed, where (η−1)

equals the maximum number of sensors within the transmission range of any sensor.
In [79], the ratio of (η − 1) proposed in [10] is improved, and a new approximated
data aggregation algorithm with ratio 7η

log2 |S| + c is proposed, where S is the set of
sensors containing source data, and c is a constant. In [78], the challenges of fast
and reliable data aggregation on the collision-prone CSMA MAC layer is studied.
The authors considered two cases: first, the size of the packets produced by all the
sensor nodes is much smaller than the maximum size of a data frame that can be
transmitted in one time slot; second, some node does not have data for transmission
and for those nodes which have, they may have lots of data that require more than one
data packet. Latterly, Wan et al. [68] further improved the MLDA ratio bound under
the UDG model and protocol interference model. In that work, they first designed
three data aggregation algorithms with latency 15R + η − 4, 2R + O(log R) +
η, and (1 + O(log R/

3
≈

R))R + η, respectively, when the interference range is
equal to the transmission range, where R and η are the range (network radius with
respect to the base station) and maximum degree of the communication topology,
respectively. Subsequently, they extended their results to the case that the interference
range is larger than the transmission range, and proposed two aggregation algorithms.
Recently, the authors of [76] and [74] studied distributed data aggregation algorithms
for WSNs. Under the UDG model and protocol interference model, the proposed
distributed data aggregation algorithm yields an aggregation schedule with latency
24D + 6η + 16, where D is the network diameter and η is the maximum node
degree.

Energy-Delay Tradeoff Data Aggregation. In [50], two new schemes to minimize
energy × delay for CDMA and non-CDMA WSNs are proposed. When the goal
is to minimize the delay cost only, a binary combining scheme is designed, which
yields a solution of latency log n and incurs a slight increase in energy cost. For

542 S. Ji et al.

CDMA WSNs, a chain-based binary scheme with optimized performance in terms
of energy × delay is proposed, where the chain-based binary scheme is a hierarchi-
cal binary-tree like data aggregation schedule. For non-CDMA WSNs, a chain-based
3-level hierarchy scheme is designed with good performance. In [75], the energy-
latency tradeoff issue for WSNs is studied. The authors proposed some algorithms
to minimize the overall energy dissipation of sensor nodes in the aggregation tree
subject to the latency constraint. For the off-line problem, they designed a numerical
optimal algorithm and a pseudo-polynomial time approximation algorithm based on
dynamic programming. In [44], the authors studied the data aggregation problem for
wireless ad hoc networks. First, they proposed a simple randomized distributed data
aggregation algorithm with expected running time O(log n), where n is the number
of nodes in the network. Subsequently, they investigated the trade-off between the
energy and the latency of data aggregation. They showed that their proposed algo-
rithm consumes at most O(n log n) times the optimal minimum energy. Recently,
Li et al. [48] studied the MLDA schedule problem and proposed an energy-efficient
distributed data aggregation scheduling algorithm based on a novel cluster-based
aggregation tree. By theoretical analysis, they showed that the induced latency of
their proposed algorithm is upper bounded by 4R′ + 2η − 2, where η is the maxi-
mum degree and R′ is the inferior network radius which is smaller than the network
radius R. Furthermore, by simulations, they showed that the proposed algorithm has
a comparable delay performance as that of the most recently published centralized
algorithm, while consumes 78 % less energy.

2.3 DAS [76]

Since distributed data aggregation algorithms are preferred for WSNs, in this sub-
section, we discuss a recently published distributed data aggregation scheme DAS.
DAS is a distributed data aggregation scheduling algorithm which tries to minimize
the induced data aggregation latency [76].

DAS is proposed under the UDG model, which is an even simplified version of the
protocol interference model. For simplicity, the transmission range and interference
range of all the nodes are assumed to be equal and normalized to 1. The network
time is assumed to be slotted and synchronized. DAS consists of two phases. In the
first phase, a data aggregation tree is constructed. In the second phase, the distributed
aggregation scheduling is performed.

In phase one, a Connected Dominating Set (CDS)-based tree is constructed by
exploiting the existing methods [26–31, 68] and serves as the data aggregations
tree. Let G(V, E) be a unit-disk graph representing a WSN. Define the sink s0 as
the center of G. The radius of G with respect to s0 is the maximum depth of the
Breadth-First-Search (BFS) tree rooted at s0. For a subset U of V , U is a Dominating

16 Data Gathering in Wireless Sensor Networks 543

s0s1
s2

s3s4

s5

s6 s7 s8
s9

s10

s11

(a) s0s1
s2

s3s4

s5

s6 s7 s8
s9

s10

s11

(b)

s0s1
s2

s3s4

s5

s6 s7 s8
s9

s10

s11

(c) s0s1
s2

s3s4

s5

s6 s7 s8
s9

s10

s11

(d)

Fig. 2 The construction of a CDS-based data aggregation tree. s0 is the sink. a Network topology,
b black nodes as dominators, c blue nodes as connectors and d CDS-based data aggregation tree

Set (DS) of G if every node in V is either an element of U or adjacent6 to at least
one node in U . If the subgraph of G induced by U is connected, then U is called a
Connected Dominating Set (CDS) of G. Since CDS can serve as a virtual backbone
of a WSN, it receives a lot of attention recently [26–31]. We use the example shown
in [43] to explain the aggregation tree construction process.

Taking the WSN shown in Fig. 2a as an example, a CDS-based data aggregation
tree T can be built (shown in Fig. 2d) using the method proposed in [68]. Let G
represent the network in Fig. 2a. T is rooted at sink s0 and can be built according to
the following steps. First, construct a BFS tree on G beginning at the sink and obtain
a Maximal Independent Set (MIS) D according to the search sequence. As shown
in Fig. 2b, the set of all the black nodes {s0, s5, s7, s9, s11} is an MIS of the network
shown in Fig. 2a. Note that D is also a Dominating Set (DS) of G and an element
in D is called a dominator. Clearly, every dominator is out of the communication
range of any other dominator. Let G ′ be a graph on D in which two nodes in D are
linked by an edge if and only if these two nodes have a common neighbor in G,
e.g., s0 and s7. Obviously, sink s0 is in G ′ and we also denote s0 as the center of
G ′. Suppose that the radius of G ′ with respect to s0 is L ′ and we denote the union
of the dominators at level l (0 ∈ l ∈ L ′) as set Dl . Note that, D0 = {s0}. Second,
we choose nodes, also called connectors, to connect all the nodes in D to form a
CDS. Let Sl (0 ∈ l ∈ L ′) be the set of the nodes adjacent to at least one node in Dl

and at least one node in Dl+1 and compute a minimal cover Cl ∃ Sl for Dl+1. Let
C = ∪L ′−1

0 Cl and therefore D ∪ C is a CDS of G. As shown in Fig. 2c, the blue
nodes {s1, s2, s3} are connectors chosen to connect the dominators in D0 = {s0} and
D1 = {s5, s7, s9, s11}. Meanwhile, the union of the dominators and connectors in
Fig. 2c forms a CDS of the network shown in Fig. 2a. Finally, for any other node u,

6 In this chapter, if we say two nodes u and v are adjacent/connected, we mean u and v are within
the communication range of each other, i.e., →u − v→ ∈ r , where r is the transmission range of
sensor nodes.

544 S. Ji et al.

also called a dominatee, not belonging to D ∪ C , choose the nearest dominator as
u’s parent node. In this way, the data aggregation tree T of G is obtained as shown in
Fig. 2d. For the constructed data aggregation tree, it has many interesting properties,
e.g., each connector node is adjacent to at most 5 dominators in which one of them is
the parent node of that connector, and each dominator node is adjacent to at most 12
connectors in which one of them is the parent node of the dominator except for the
sink node (the sink node is the root of the data aggregation tree which has no parent
node).

The second phase is the aggregation scheduling phase. For each node u ∗ V ,
let p(u) be u′s parent node in the data aggregation tree T . Let N (u) be the set of
u′s 1-hop neighbors except for p(u) and Ch(u) be the set of u′s children, then u′s
competitor set is defined as N (p(u)) ∪ (∪v∗N (u)\Ch(u)Ch(v))\{u, p(u)}. In DAS,
each node u has to maintain the following information:

• u′s unique ID;
• u′s competitor set, denoted by M(u);
• u′s earliest possible sending slot, K , initialized to 1;
• R(u) = R1(u) ∪ R2(u), where R1(u) = {v|v ∗ M(u) and is ready to schedule},

R2(u) = {v|v ∗ M(u) and finished scheduling}, and R1(u) and R2(u) are both
initialized to be empty. For ⊆v ∗ R1(u), v′s earliest possible sending slot is
maintained and for ⊆w ∗ R2(u), w′s schedule is maintained.

• The number x of u′s children that have not been scheduled, which is initialized to
the number of u′s children.

Additionally, in DAS, at any time instant, each node is set to one of the fol-
lowing states: NOT-READY (NRY), READY (RY), WAIT0, WAIT1, SCHEDULE-
COMPLETED (SC) and SLEEP. During the scheduling process, the behavior of each
node is captured by the automaton shown in Fig. 3.

According to the automaton shown in Fig. 3, initially, all the leaf nodes on T are
in the RY state, while all the other nodes are in the NRY state. Once a node is in the
RY state, it has an aggregation value obtained by aggregating its own data and the
data received from all of its children. Furthermore, each node in the RY state sends a
MARK message containing its node ID and K to request for the feedback message
from all its competitors and switches to the WAIT0 state. For each node, if it receives
a MARK message, it replies a message back which contains its current state and the
earliest possible sending slot. For a node u in the WAIT0 state, until it receives all
the feedback messages, if its ID is larger than all the nodes in R1(u), it switches to
state SC to call a function named FIX-SCH(u) to determine its actual schedule and
sends a SCH-COMPLETE message containing its ID and K to the nodes in R1(u).
The description of function FIX-SCH(u) is shown in Algorithm 1. Otherwise, if u′s
ID is not larger than the ID of every node in R1(u), it switches to state WAIT1 to wait
for the event that its ID is larger than the nodes in R1(u). Until this event happens,
u switches to state SC and conducts the same action mentioned above.

In DAS, each sensor node works according to the automaton shown in Fig. 3.
Finally, the sink node can obtain the final data aggregation value. By theoretical
analysis, it is shown that the time complexity of DAS is O(n), the message complexity

16 Data Gathering in Wireless Sensor Networks 545

Fig. 3 The behavior of a node in DAS

Algorithm 1: FIX-SCH(u)
input : node u
output: u′s actual schedule

sch ← u.K ;1
while true do2

if ∃ node v ∗ R2(u), v.schedule = sch then3
sch ← sch + 1;4

else5
u.schedule ← sch;6
u sends a SCH-COMPLETE message and u.schedule to7
M(u) ∪ {p(u)}, then let u go to sleep and wake up in its time slot;8

of DAS is O(nη), and the induced data aggregation delay is upper bounded by 24D +
6η + 16, where D is the network diameter and η is the maximum node degree.

3 Data Collection

In some applications, the base station needs to collect all the data from all the sensor
nodes without aggregation [11, 12, 39, 43], referred to as data collection. In this
operation, the union of all the data from all the sensor nodes at a particular time
instant is called a snapshot, e.g., in the temperature-monitoring example shown in
Fig. 1 (Sect. 1), the data set {48◦, 58◦, 60◦, 57◦, 61◦, 58◦, 47◦, 49◦} produced by all

546 S. Ji et al.

the sensors at time t is a snapshot. The problem of collecting all the data of one
snapshot is called snapshot data collection, and a snapshot data collection schedule
can be defined formally as follows [39, 40, 43].

Definition 2 Snapshot Data Collection Schedule. Suppose the network topology
graph is represented by G = (V, E), where V = {s0 = sink, s1, s2, . . . , sn} is the
node and E is the set of all the possible formed links. A snapshot data collection
schedule is a sequence of node transmission sets S1, S2, . . . , Sω , Sω+1 = {s0} that
satisfies the following conditions:

• ∪ω+1
i=1 Si = V ;

• During the k-th (1 ∈ k ∈ ω) time slot, every node in set Sk can successfully
transmits one data packet to some nodes in V \Sk ;

• At the end of the ω -th time slot, the sink s0 can receive all the n data packets of a
snapshot.

Similarly, the problem of collecting multiple continuous snapshots is called con-
tinuous data collection, and a continuous data collection schedule is a schedule
sequence of node transmission sets that gathers all the n data packets of each snap-
shot to the sink [39, 40, 43]. Furthermore, data collection capacity, which is defined
as the achievable average data receiving rate at the sink during the data collection
process [9, 11–13, 40, 43], is widely adopted as a performance measurement to
measure how fast has data been collected to the sink.

Evidently, compared with data aggregation, data collection introduces more com-
munication traffic, which implies a data collection network is more crowded and a
data transmission suffers from more interference. Therefore, to design an effective
data collection scheduling scheme is more challenging compared with data aggrega-
tion. In the following, recent research advances on data collection will be reviewed,
followed by detailed discussion of several representative data collection methods,
which yield the best result with respect to network capacity under the protocol inter-
ference model and the physical interference model, respectively.

3.1 Overview of Data Collection Schemes

Similar to data aggregation, data collection is another essential operation in WSNs.
Therefore, much research has been conducted on this issue recently. In [69], recent
data collection issues, challenges, and approaches in WSNs are summarized. In
addition, the data collection methods in WSNs with mobile elements are surveyed in
[24]. In the following, we will summarize the most recent data collection algorithms
with different focuses.

Energy-Efficient Data Collection. In [71], Wang et al. studied the traffic-aware
relay node deployment issue, which aims to maximize network lifetime. The authors
developed optimal solutions for a simple case where there is only one source node

16 Data Gathering in Wireless Sensor Networks 547

with both single and multiple traffic flows. Subsequently, they showed that the gen-
eral form of the deployment problem is NP-hard. Thus, they transformed the general
problem into a generalized Euclidean Steiner Minimum Tree (ESMT) problem and
developed a hybrid algorithm that can successfully return optimal results with all test
cases which can be verified within acceptable time frames. However, the solution
of ESMT is in the continuous domain and may yield fractional numbers of relay
nodes. Therefore, they further developed algorithms for discrete relay node assign-
ment, together with local adjustments that yield practical solutions. In [60], the
authors investigated the delay and energy-efficiency tradeoffs for data collection in
large-scale WSNs. They proposed efficient distributed algorithms for data collection
with objectives of minimizing data collection delay, minimizing overall communica-
tion traffic, or minimizing total energy consumption. Furthermore, they theoretically
proved that the proposed algorithms are either optimal or within constant factors of the
optimum. To address the energy-efficient data collection challenges for WSNs, Liu
et al. [52] designed a generic data collection framework on how to partition the sensors
into clusters, how to dynamically maintain the clusters in response to environmental
changes, how to make a schedule for the sensors in a cluster, how to explore temporal
correlation, and how to restore the data in the sink with high fidelity.

Wang et al. [70] studied the approximate data collection issue for WSNs. They pro-
posed an Approximate Data Collection (ADC) algorithm to partition the network into
clusters, discover local data correlations on each cluster head, and perform a global
approximate data collection at the sink according to model parameters uploaded by
cluster heads. The adaptive data collection strategies for lifetime-constrained WSNs
are studied in [66]. First, the authors implemented an off-line algorithm that can
obtain the optimal data update strategy. Second, based on sensor readings, an adap-
tive strategy that makes data update decisions on the fly and meets network lifetime
requirements is proposed. Furthermore, to cope with message losses, two methods,
History and Expected, are also proposed for the adaptive strategy. Finally, in connec-
tion with the adaptive strategy for aggregate data collection, a scheme to assign the
numbers of updates allowed to be sent by the sensor nodes based on their topological
relations is designed.

Based on a distributed N -to-1 multi-path discovery protocol, a hybrid multi-path
scheme (H-SPREAD), which aims to improve the security and reliability of data
collection, is proposed in [53]. By combining with secret sharing, the end-to-end
multi-path data dispersion in H-SPREAD enhances the security of the end-to-end
data delivery. Furthermore, since H-SPREAD has multiple available data transmis-
sion paths, the reliability of data collection can be improved as well. In [61], Rothery
et al. conducted an empirical study of data collection algorithms for WSNs. An impor-
tant conclusion derived from that work is that the right choice of a data collection
algorithm should come after understanding the operating environment of a WSN. In
addition, this conclusion is shown to have significant impacts on the performance of a
data collection scheme. By exploiting spatio-temporal load balancing, the authors in
[47] designed a near-lifetime-optimal data collection strategy and an energy-efficient
packet exchange mechanism for WSNs. In the designed strategy, instead of using a
fixed communication topology, a set of communication topologies are constructed

548 S. Ji et al.

and can be applied in a duty-cycling manner with each topology for a data collec-
tion cycle. By integrating adaptively enabling/disabling the prediction scheme, Jiang
et al. [42] proposed an energy-efficient framework for clustering-based data collec-
tion in WSNs. To efficiently implement the prediction techniques, they also designed
an adaptive scheme.

Delay-Aware Data Collection. In [55], Luu et al. implemented an efficient schedul-
ing for data collection through multi-path routing technique in WSNs. They also
proposed an algorithm for deriving a super/lower bound on the shortest possible
length of the data collection schedule generated by any algorithm. In [17], Cheng
et al. designed a delay-aware data collection network structure for WSNs. With the
objective of minimizing data collection delay, two network formation algorithms
are designed to construct the proposed network structure in centralized and distrib-
uted manners, respectively. To reduce the redundancy of the data produced by all the
sensors in a WSN, and thereby decreasing the communication traffic and energy con-
sumption of a data collection task, Arici et al. [4] proposed a Pipelined In-Network
COmpression (PINCO) scheme for data collection in WSNs. In PINCO, each group
of data is a highly flexible structure such that compressed data can be recompressed
without decompressing, which can further reduce communication traffic in a data
collection task.

Data Collection with Mobile Elements. To improve data collection efficiency for
WSNs and prolong network lifetime, mobile elements are usually considered. For
instance, in [8, 34, 45, 58] and [6], the authors proposed to use mobile sinks or
mobile nodes to improve data collection efficiency. In [58], the secure data col-
lection problem using mobile data collectors is investigated for clustered WSNs.
According to the tree-based key management scheme, three protocols for secure
data collection in terms of different assumptions and constraints are proposed in
[58], namely the Time Stamp Protocol (TSP), the Polynomial Points Sharing Pro-
tocol (PPSP), and the Secret Sharing Protocol (SSP), which are used to iden-
tify malicious Movement for Democratic Change and to maintain confidential-
ity of the collected data. The scalable data collection issue in WSNs with mul-
tiple mobile sinks is investigated in [45]. In this work, based on randomization
and locally available information, a distributed data collection algorithm for multi-
mobile-sink WSNs is designed and evaluated. Similar to [45], Chatzigiannakis
et al.[8] also studied the data collection issue for WSNs with a mobile sink. They
proposed four characteristic mobility patterns for the sink along with different data
collection algorithms. By simulations, several important performance properties of
each proposed protocol are examined. Another similar work exploiting node mobility
for energy-efficient data collection in WSNs is [34]. In that work, the authors pro-
posed a scheme to exploit mobile nodes in the monitoring area working as forwarding
agents. They also showed an analytical model to understand the key performance
metrics of data collection, e.g., data transfer, latency to the destination, and energy
consumption. In [6], Borsetti et al. investigated the data collection issue for road-side
sensor networks by using mobile nodes as data mules. In that work, they proposed a

16 Data Gathering in Wireless Sensor Networks 549

concept of Virtual Data Mule (VDM) and applied VDM to the case of data retrieval
from road-side sensors through vehicular nodes. A federation problem was studied
for data collection wireless sensor networks in the scenarios where the number of
available mobile data collectors is less than the number of relay nodes required and
more than the number of network segments (a network segment can be viewed as
a connected network component in the network topological graph) in [64]. Specif-
ically, an algorithm was presented to find an optimized travel routes for the mobile
data collectors so that the average delay of the network can be minimized.

Data Collection Capacity. The delay-optimal data collection issue and the order-
optimal data collection capacity problem are studied in [9, 11–14, 39, 40, 43]. In
[12] and [13], the authors investigated the data collection capacity of arbitrary WSNs,
which is a more general network deployment model compared with the traditional
random WSNs. In that work, they first constructed a Breadth First Searching (BFS)
tree as the data collection topology and then designed a data collection algorithm
based on path scheduling. By theoretical analysis, they showed the proposed algo-
rithm can achieve order-optimal data collection capacity of π(1

8τ2 W) for random
deployed WSNs, where τ > 1 is a parameter in the protocol interference model,
and W is the bandwidth of the wireless channel. For arbitrary WSNs, the proposed
algorithm can achieve a data collection capacity of σ(1

η∗ W), whereη∗ is a weighted-
average value of the maximum interference among paths and branches of the BFS
tree. In [39, 43], the authors studied the achievable continuous data collection capac-
ity for dual-radio multi-channel WSNs. In that work, the authors first proposed a
multi-path scheduling algorithm for snapshot data collection. By theoretical analy-
sis, they showed that the multi-path scheduling algorithm has better performance
than previous works, which yields a schedule plan of capacity lower bounded by

W
3.63

H ρ2+o(ρ)
, where H is the number of available channels, W is the bandwidth of a

channel, and ρ is the same parameter as τ in [12] (which is actually a parameter in
the protocol interference model). Subsequently, the authors proposed a novel contin-
uous data collection algorithm for dual-radio multi-channel WSNs. By combining
the pipeline scheduling technique and the compressive data gathering technique, the
proposed continuous data collection algorithm speeds up the data collection process
significantly.

Since the physical interference model is more accurate to describe wireless
interference in WSNs, the authors in [11] and [40] studied the snapshot data
collection capacity and continuous data collection capacity, respectively. By tak-
ing an elegant network partition method, two cell-based snapshot data collection
algorithms are proposed, which are shown to be order-optimal. Additionally, the
authors in [40] proposed a Segment-Based Pipeline Scheduling (SBPS) algorithm
under the physical interference model. By analysis, SBPS can achieve a contin-

uous data collection capacity of σ(
√

n
log n · W) or σ(n

log n · W), where n is the

number of sensor nodes in a WSN. In [9] and [14], Chen et al. studied the data
collection capacity problem for multi-sink WSNs. They showed that the achiev-
able data collection capacity of their designed algorithm for a k-sink WSN is

550 S. Ji et al.

π(k · W), which implies multiple sinks can improve the achievable data collection
capacity.

3.2 Tree-Based Data Collection

In [43] and [39], the authors studied the snapshot data collection and continuous data
collection issues for randomly deployed dual-radio multi-channel WSNs under the
protocol interference model. In this subsection, we discuss the methods proposed
in those papers. First, we describe the network model employed in [43] and [39].
Subsequently, the multi-path scheduling algorithm for snapshot data collection is pre-
sented. The basic idea of the multi-path scheduling algorithm is trying to schedule
multiple interference-free paths on the data collection tree concurrently to acceler-
ate the data collection process. Third, the proposed pipeline scheduling algorithm
for continuous data collection is given. In the pipeline scheduling algorithm, the
data collection tree is partitioned into segments, and then a data collection pipeline
can be formed on these segments to implement parallel transmission of multiple
snapshots. Finally, some obtained theoretical results on the proposed algorithms are
demonstrated.

Network Model. In [43] and [39], the considered network is a WSN consisting of n
sensor nodes and one sink node. The transmission range of all the nodes is normalized
to one and thus the network topology can be represented by a Unit Disk Graph (UDG).
The interference range in the protocol interference model is assumed to be ρ ∀ 1.
For each node, the number of available orthogonal channels is H , denoted by φ1,
φ2, . . . ,φH , respectively. In addition, the bandwidth of all the channels is same, each
of which is W bits/second.

Multi-Path Scheduling for Snapshot Data Collection. To accomplish a data collec-
tion task, a Connected Dominating Set (CDS)-based routing tree is constructed first
in [43] and [39] to serve as the communication structure. The construction process
has been discussed in Sect. 2.3. For the snapshot data collection problem, a multi-
path scheduling algorithm, which is based on a single path scheduling algorithm, is
proposed. We will show the single-path scheduling algorithm first, and then we will
review some multi-path scheduling algorithms.

In the single-path scheduling algorithm, the data collection on one path is sched-
uled. First, the links on the path are partitioned into two sets denoted by Po and Pe,
where Po denotes the set of links on the path whose heads are dominators and whose
tails have at least one packet for transmission, and Pe denotes the set of links on the
path whose tails are dominators and have at least one data packet for transmission. For
the path shown in Fig. 4a, s0 and s2 are dominators. Hence, Po = {(s3, s2), (s1, s0)}
and Pe = {(s2, s1)}. Then, in the single-path scheduling algorithm, the data collec-
tion on a path will be scheduled by repeating the following two steps until all the
data has been collected to the sink.

16 Data Gathering in Wireless Sensor Networks 551

Fig. 4 a A single path and
b its scheduling (r = round).
The number within each node
denotes the number of data
packets at that node

0

1

1

1

s
0

s
1

s
2

s
3

(a)

0

1

1

1

s
0

s
1

s
2

s
3

1r

1

0

0

2

2r

1

1

0

1

3r

2

0

0

1

4r

2

1

0

0

5r

3

0

0

0

s
0

s
1

s
2

s
3

s
0

s
1

s
2

s
3

s
0

s
1

s
2

s
3

s
0

s
1

s
2

s
3

s
0

s
1

s
2

s
3

(b)

• In an odd round, schedule every link in Po once, i.e., assign a dedicated channel
and one dedicated time slot to each link in Po.

• In an even round, schedule every link in Pe once, i.e., assign a dedicated channel
and one dedicated time slot to each link in Pe.

The scheduling process of the path in Fig. 4a is shown in Fig. 4b. During the first
(odd) round, links (s3, s2) and (s1, s0) are scheduled and the packets at s3 and s1 are
transmitted to their parent nodes. After the first round, s3 has no packet to transmit.
During the second (even) schedule, link (s2, s1) is scheduled and s2 transmits one
packet to its parent node. This process continues until all the packets on path P have
been transmitted to s0.

For the data collection task on a tree, the authors in [43] and [39] proposed some
multi-path scheduling algorithms. Suppose that there are m leaf nodes in the data
collection tree T , and the path from leaf node si (1 ∈ i ∈ m) to the sink s0 is denoted
by Pi . Two paths Pi and Pj are said intersecting if they have at least one common node
besides the sink node. The common node of two intersected paths having the largest
number of hops from the sink is called an intersecting point. If path Pi intersects with
other paths, the route from si to the nearest intersecting point of si is called a sub-path,
denoted by Fi . Otherwise, Fi is actually Pi . The basic idea of the proposed multi-path
scheduling algorithm is as follows: For the non-intersecting paths without wireless
interference, schedule them by the single path scheduling algorithm concurrently.
For the non-intersecting paths with wireless interference, schedule them according
to a certain order. The path with the smallest subscript has the highest priority. For
the intersecting paths, schedule them according to a certain order, e.g., if Pi is one
of these intersecting paths with the smallest subscript, schedule Pi until there is no
packets having to be transmitted on the sub-path Fi and then continue to schedule
the next path. The multi-path scheduling algorithm can be further explained by the
routing tree shown in Fig. 5a. In Fig. 5a, there are three leaf nodes s1, s2, and s3
and their corresponding paths are P1, P2 and P3, respectively. Path P1 and path
P3 are not intersecting, therefore they are scheduled concurrently as long as they
are interference-free. Since path P1 and path P2 are intersecting paths, path P1 is

552 S. Ji et al.

Fig. 5 a A routing tree and
b its scheduling

s
0
(sink)

s
1
, P

1

s
2
, P

2

s
3
, P

3

F
1

(a)

s
0
(sink)

s
1
, P

1

s
2
, P

2

s
3
, P

3

F
1

s
0
(sink)

s
2
, P

2

(b)

scheduled first. After no packets on the sub-path F1 of P1 have to be transmitted,
path P2 is scheduled as shown in Fig. 5b.

Pipeline Scheduling for Continuous Data Collection. For the continuous data
collection task in dual-radio multi-channel WSNs, the authors of [39, 43] proposed
a pipeline scheduling algorithm, which is based on the Compressive Data Gathering
(CDG) technique [54]. CDG is first proposed for snapshot data collection. The basic
idea of CDG is to distribute the data collection load uniformly to all the nodes in the
entire network.

In the proposed pipeline scheduling algorithm, the nodes in a data collection tree
T are grouped by levels, denoted by De, DL ′ , CL ′−1, DL ′−1, CL ′−2, . . ., D1, C0,
D0 = {s0 is the sink}, in a bottom-up manner, where De is the set of all the dominatees,
Di (0 ∈ i ∈ L ′) is the set of the dominators at the i-th level, and Ci (0 ∈ i ∈ L ′ − 1)

is the set of the connectors at the i-th level. Since every node has two radios, one
radio can be dedicated to receiving data and the other is dedicated to transmiting data.
Therefore, the nodes at every level can receive and transmit data simultaneously over
different channels. Consequently, for a continuous data collection task consisting of
N snapshots, the scheduling idea of the pipeline scheduling algorithm is as follows:

1. All the nodes in De transmit the packets of the j-th (1 ∈ j ∈ N − 1) snapshot to
their parent nodes in the CDG way. After all the packets of the j-th snapshot have
been transmitted successfully, the nodes in De immediately transmit the packets
of the (j + 1)-th snapshot in the CDG way.

2. After all the nodes in Dl(1 ∈ l ∈ L ′) receive all the packets of the j-th snapshot
from their child-level, they send the packets of the j-th snapshot to their parent
nodes in the CDG way. After all the packets of the j-th snapshot have been
transmitted successfully, the nodes in Dl immediately transmit the packets of the
(j + 1)-th snapshot to their parent nodes in the CDG way, if they have received
all the packets of the (j + 1)-th snapshot from their child-level.

3. After all the nodes in Cl(0 ∈ l ∈ L ′ − 1) receive all the packets of the j-th
snapshot from their child-level, they send the packets of the j-th snapshot to their

16 Data Gathering in Wireless Sensor Networks 553

parent nodes in the CDG way. After all the packets of the j-th snapshot have been
transmitted successfully, the nodes in Cl immediately transmit the packets of the
(j + 1)-th snapshot in the CDG way if they have received all the packets of the
(j + 1)-th snapshot from their child-level.

4. The sink restores the data of a snapshot in the CDG way after it receives all the
packets of this snapshot.

Steps 1–4 provide the general frame of the pipeline scheduling scheme. Now, we
discuss the idea to prevent radio confliction and channel interference in Steps 1–3. If
two or more nodes have the same parent node, they are called sibling nodes. In Steps
1–3, radio confliction may arise if two or more sibling nodes send data to their parent
node simultaneously even over different orthogonal channels. This is because every
sensor only has one radio dedicated to receiving data. Suppose that there are at most
ηe (resp., ηd and ηc) nodes in De (resp., Dl(1 ∈ l ∈ L ′) and Cl(1 ∈ l ∈ L ′ − 1))

which have the same parent node. Usually, ηe < η(T) except in one-hop WSNs,
where any sensor is just one hop away from the sink, ηe = η(T). Then, ηd ∈ 4
and ηc ∈ 11 (Note that |C0| ∈ 12). To avoid confliction, the nodes in De (resp., Dl

and Cl) can be partitioned into ηe (resp., ηd and ηc) subsets to guarantee that each
node belongs to one subset and no sibling nodes belong to the same subset. Then,
when scheduling the nodes of each level, these subsets can be scheduled in a certain
order. For the nodes in C0, they can also be scheduled in a certain order.

The authors of [43] and [39] theoretically evaluated the proposed snapshot data
collection algorithm and the continuous data collection algorithm. They showed that
the achievable data collection capacity of the multi-path scheduling algorithm is
σ(1

3.63
H ρ2+o(ρ)

· W), where W is the channel bandwidth, H is the number of the

orthogonal channels, ρ is the ratio of the interference radius over the transmission
radius of a node, and o(ρ) is a linear equation of ρ, which is order-optimal. The
achievable asymptotic network capacity of the pipeline scheduling algorithm in a
long-run is nW

12M(3.63
H ρ2+o(ρ))

when ηe ∈ 12, or nW
Mηe(

3.63
H ρ2+o(ρ))

when ηe > 12,

where n is the number of the sensors, M is a constant value and usually M � n,
and ηe is the maximum number of the leaf nodes having the same parent in the
routing tree (i.e., data collection tree). A straightforward upper bound of a dual-
radio WSN is 2W , since a dual-radio sink can simultaneously receive two packets at
most. Whereas, thanks to the benefit brought by the pipeline technique, the analysis
shows that the pipeline scheduling algorithm can even achieve a capacity higher
than 2W .

3.3 Cell-Based Data Collection [40]

To capture the wireless interference in wireless networks, two interference models
are frequently used, i.e., the protocol interference model and the physical interference
model. The protocol interference model is a simplified model which is more conve-
nient for analysis. On the other hand, under the physical interference model, a receiver

554 S. Ji et al.

can successfully receive data from the sender only if the Signal-to-Interference-plus-
Noise Ratio (SINR) of the sender at the receiver is no less than a threshold (denoted
by λ) value. Compared with the protocol interference model, the physical interference
model takes the received physical signal strength as a criterion, which is more accu-
rate and reliable. Therefore, to describe the wireless interference more accurately in
a data collection scheduling, the authors of [40] studied the snapshot data collection
problem and the continuous data collection problem for WSNs under the physical
interference model. In [40], the basic idea of the designed algorithms is to partition
the network into cells. Subsequently, all the cells are further been partitioned into
compatible cell sets where all the cells in a compatible cell can conduct data trans-
mission concurrently and interference-freely. Based on the obtained compatible cell
sets, a snapshot data collection algorithm and a continuous data collection algorithm
are designed, which both schedule compatible cell sets sequentially and repeatedly
until to finish the data collection task.

Network Model and Network Partition. The considered WSN in [40] consists of
n sensors denoted by s1, s2, . . . ,sn and one sink deployed in a square area A = cn,
where c is a constant. All the nodes are assumed to be independent and identically
distributed (i.i.d.). The sink is assumed to be located at the top-right corner of the
square. The communication radius of all the sensor nodes is assumed to be r and the
bandwidth of the common available channel is W . The network time is slotted and
during a time slot, a receiver s j successfully receives the transmitted data from the
sender si under the physical interference model if and only if the SINR of si at s j is
no less than a constant λ > 0, i.e.,

SINR = Pi · (→si − s j→)−τ

N0 + ∑
k �=i

Pk(
∥∥sk − s j

∥∥)−τ
∀ λ, (1)

where Pi is the transmission power of si , →si − s j→ is the Euclidean distance between
si and s j , τ is the path-loss exponent and usually τ ∗ [3, 5], N0 > 0 is a constant
representing the background noise, and Pk is the transmission power of concurrent
sender sk (1 ∈ k ∈ n, k �= i).

Subsequently, the authors in [40] studied the geographical properties of the con-
sidered WSN. By partitioning the network into equal-size square cells as shown in
Fig. 6, the authors derived the upper and lower bounds of the number of sensor nodes
within each cell, as well as the average number of sensor nodes in each cell. Addi-
tionally, for the cells shown in Fig. 6, each of them is assigned a pair of coordinates
(i, j) (1 ∈ i, j ∈ φ), which indicates this cell is located at the i-th column and the
j-th row. For convenience, the cell with coordinates (i, j) is denoted by δi, j .

Since the sink is located at the upper-right corner cell δφ,φ, for the sensors in cell
δi, j , they will forward their data to the sensors located at cells δi+1, j ,δi, j+1 or/and
δi+1, j+1 as shown in Fig. 7, i.e., the sensors in each cell will forward their data to
sensors in subsequent cells horizontally, vertically, or/and diagonally. Finally, the

16 Data Gathering in Wireless Sensor Networks 555

Fig. 6 Network partition

Fig. 7 Data transmission
mode

data generated by all the sensors will be forwarded to the sink via this multi-hop
fashion.

When data transmission is initialized between two neighboring cells, they may
suffer interference caused by other concurrent data transmissions. To make all the
concurrent data transmissions successful, the network is further partitioned into larger
square zones with side length R = α · l (to avoid radio conflicts, α > 2, i.e., R ∀ 3l)
by another group of horizontal and vertical lines and these square zones are called
interference zones as shown in Fig. 8. For each interference zone, it is assigned a
pair of integer coordinates (i, j) (1 ∈ i, j ∈ ⌈≈

cn/R
⌉
) and interference zone (i, j)

which is denoted by oi, j . For a cell δi ′, j ′ in an interference zone oi, j , the relative
position of δi ′, j ′ in oi, j is defined as (i ′·l−(i−1)·R, j ′·l−(j−1)·R). The cells having
the same relative positions in different interference zones are called compatible cells.
In Fig. 8, compatible cells having relative position (l, l) are highlighted. If two sensors
are in different cells which are compatible cells, they can transmit data simultaneously
without incurring any interference.

At any time, one sensor in each compatible cell can be selected to transmit data.
All the selected sensors transmit data simultaneously. These transmitting sensors will
not incur unacceptable interference to each other, since they are spread in different
compatible cells. To this end, the authors also derived the necessary condition on the

556 S. Ji et al.

Fig. 8 Interference zones and
compatible cells

value of R. By setting appropriate R value, all the compatible cells can conduct data
transmissions simultaneously and successfully.

Based on the derived R value, the scheduling algorithms for snapshot data col-
lection and continuous data collection are designed in [40], respectively.

Cell-based Path Scheduling for Snapshot Data Collection: For snapshot data col-
lection, the authors of [40] proposed a Cell-Based Path Scheduling (CBPS) algorithm.
First, by abstracting each cell δi, j into a super-node βi, j , a data collection tree can
be constructed according to the following rules:

• For super-node βφ, j (1 ∈ j ∈ φ′) (note that φ′ = φ − 1), βφ, j transmits its data to
βφ, j+1, i.e., create a directed edge from βφ, j to βφ, j+1;

• For super-node βi,φ(1 ∈ i ∈ φ′), βi,φ transmits its data to βi+1,φ, i.e., create a
directed edge from βi,φ to βi+1,φ;

• For super-node βi, j (1 ∈ i, j ∈ φ′), βi, j transmits its data to βi+1, j+1, i.e., create
a directed edge from βi, j to βi+1, j+1.

For the network shown in Fig. 8, a data collection tree can be constructed as shown
in Fig. 9. In Fig. 9, pi and p′

i denote the paths from the leaf super-nodes to the sink.
According to the example shown in Fig. 9, the basic idea of CBPS can be shown

as follows, which consists of four steps.
Step 1: Schedule paths p1, p2, . . . , pφ′ until all the data packets on these paths

have been transmitted to the super-nodes on pv . When scheduling p1, p2, . . . , pφ′ ,
it is obvious that they can be partitioned into at most α groups Gk(0 ∈ k ∈ α − 1)

with each group consisting of mutual compatible paths. Thereafter, in the i-th super
time slot (a super time slot equals to the maximum time needed to transmit the data of
one cell to a neighboring cell), the paths in group G(i−1)%α are scheduled. Taking the
data collection tree shown in Fig. 9 as an example, p1, p2, . . . , p7 can be divided
into three groups with G0 = {p1, p4, p7}, G1 = {p2, p5} and G2 = {p3, p6}.
Thereafter, G0, G1 and G2 will be scheduled in a round-robin fashion. Within a
group, the super-nodes on all the paths can also be divided into at most α node-
groups gk(0 ∈ k ∈ α − 1) with each node-group containing mutual compatible
nodes. Then, in the j-th available super time slot for a particular node-group, the

16 Data Gathering in Wireless Sensor Networks 557

Fig. 9 Construction of a data collection tree

super-nodes in g(j−1) %α are scheduled. For group G0 in the previous example,
the super-nodes on paths p1, p4 and p7 can be divided into three node-groups and
they can be scheduled in a round-robin manner in the available super time slots
for G0.

Step 2: Schedule paths p′
2, p′

3, . . . , p′
φ′ until all the data packets on these paths

have been transmitted to the super-nodes on ph . This step can be done in a similar
way as Step 1.

Step 3: Schedule path pv until all the data packets have been transmitted to the
sink. After Step 1, for any super-node βφ, j (1 ∈ j ∈ φ′), it has the data of j super-
nodes. Then, pv can be abstracted to a virtual tree rooted at the sink, having φ′ internal
disjoint paths (except at the root) with lengths 1, 2, . . . ,φ′ respectively by splitting
super-node βφ, j into j virtual nodes. Now, in the virtual tree, every virtual node
contains exactly the same data with a super-node as the result of the splitting. For
instance, pv in Fig. 9 is abstracted to a virtual tree shown in Fig. 10. Afterwards, we
schedule each path of the resulting virtual tree by a similar path-scheduling method
used in Step 1.

Step 4: Schedule path ph until all the data packets have been transmitted to the
sink. This step can be done in a similar way as Step 3.

After the above four steps of CBPS, the data of a snapshot can be collected by the
sink.

Segment-Based Pipeline Scheduling for Continuous Data Collection. For contin-
uous data collection, the authors of [40] proposed a Segment-Based Pipeline Schedul-
ing (SBPS) algorithm, which is also based on the CDG technique [54].

Since a network is partitioned into interference zones oi, j (1 ∈ i, j ∈ ⌈≈
cn/R

⌉
),

a new term called segment can be defined based on interference zones. On the basis of
interference zone oi,i (1 ∈ i ∈ ⌈≈

cn/R
⌉
), the area consisting of interference zones

o j,i (i ∈ j ∈ ⌈≈
cn/R

⌉
) and oi, j (i ∈ j ∈ ⌈≈

cn/R
⌉
) is called a segment, denoted

by Si . Taking the network shown in Fig. 11 as an example, there are three segments
S1 (consisting of interference zones {o1,1, o2,1, o3,1, o1,2, o1,3}), S2 (consisting of

558 S. Ji et al.

Fig. 10 A virtual tree

Fig. 11 Segments

interference zones {o2,2, o3,2, o2,3}), and S3 (consisting of interference zone {o3,3}).
Within a segment Si , the area consisting of cells on and below the principal diagonal
is denoted by Sir , and the area consisting of the remaining cells is denoted by Siu ,
i.e., Si = (Sir , Siu). For instance, in the network shown in Fig. 11, S1r = {δi,1(1 ∈
i ∈ φ),δi,2(2 ∈ i ∈ φ),δi,3(3 ∈ i ∈ φ)}, and S1u = {δ1, j (1 < j ∈ φ),δ2, j (2 <

j ∈ φ),δ3, j (3 < j ∈ φ)}.
For CDC, a similar routing structure as in the CBPS algorithm (note it does not

imply the same scheduling) is employed, i.e., each cell is abstracted as a super-node
and then a data collection tree is constructed following the same rules as in CBPS
(cells and super-nodes are used interchangeably in the subsequent discussion). Unlike
CBPS, a super-node here can compress its currently held data packets of a snapshot
by the CDG technique.

Based on the defined segments and the constructed data collection tree, the general
idea of SBPS can be presented in a hierarchy-level fashion as follows.

16 Data Gathering in Wireless Sensor Networks 559

Fig. 12 Data collection
pipeline of 3 segments

First, scheduling at the segment-level. At this level, each segment as a whole
is considered. Since there is no intersection between any two segments, the data
transmission on the segments can be pipelined (it can also be guaranteed that there is
no wireless interference among segments in the next step), i.e., for each segment Si =
(Sir , Siu), Si starts the data transmission of the (k +1)-th snapshot immediately after
it transmits all the data of the k-th snapshot to segment Si+1. Let tp = max{t (Si)|1 ∈
i ∈ ⌈≈

cn/R
⌉

, t (Si) is the number of time slots used by segment Si to transmit all
the data packets of a snapshot}. Then, a segment data transmission pipeline on all
the segments is formed with each segment working with tp time slots for every
snapshot (here, a snapshot is an individual task in a traditional pipeline operation).
For instance, Fig. 12 shows the data collection process of three snapshots by the
segment data transmission pipeline formed from the network shown in Fig. 11.

Second, scheduling at the row/column-level, i.e., within a segment. For the k-
th snapshot, within each segment Si = (Sir , Siu), Sir is scheduled first to transmit
the data in the cells of Sir to S(i+1)r row by row. Thereafter, Siu is scheduled by a
similar way to transmit the data in the cells of Siu to S(i+1)u column by column. When
schedule Sir , the first row of cells of Sir , i.e., the cells δ j,i (i ∈ j ∈ φ), are scheduled
first, followed by the second row of cells, i.e., the cells δ j,i+1(i + 1 ∈ j ∈ φ), and
so on until the last row of cells of Sir , i.e., the cells δ j,i+α−1(i + α − 1 ∈ j ∈ φ),
are scheduled. When scheduling each row, the cells on that row can be partitioned
into α compatible cell groups gi

1, g
i
2, . . . , gi

α with each group containing mutual
compatible cells. Afterwards, gi

1, g
i
2, . . . , gi

α are scheduled in sequence. Note that the
same approach can be followed when scheduling all the segments in the segment data
transmission pipeline. Therefore, all the cells in gi

j (1 ∈ j ∈ α, 1 ∈ i ∈ ⌈≈
cn/R

⌉
)

are also mutual compatible cells. This implies all the segments can be scheduled
without wireless interference. Afterwards, the cells in Siu can be scheduled column
by column in a similar way. Finally, Si transmits all the data packets of the k-th
snapshot to its subsequent segment Si+1.

Third, scheduling at the cell-level, i.e., within each row/column. For every sen-
sor in cell δi, j , it generates one data packet of the k-th snapshot. Furthermore,
for the sensors in cells δi,1(1 ∈ i ∈ φ) and δ1, j (1 ∈ j ∈ φ), they will not
receive any data packets of the k-th snapshot according to the previous segment-
level and row/column-level scheduling strategies (actually, this is true for any snap-
shot). Thus, the sensors in δi,1(1 ∈ i ∈ φ) and δ1, j (1 ∈ j ∈ φ) transmit the
packets of the k-th snapshot in the CDG way in their available time slots, i.e.,
for each sensor, it multiplies its data with M random coefficients respectively,
and sends the new obtained M products to its parent node. For the sensors in

560 S. Ji et al.

δi, j (1 < i, j ∈ φ), they will receive some data packets of the k-th snapshot (it
is possible that some sensors do not have any children. In this case, they do the
same operation as the sensors in δi,1(1 ∈ i ∈ φ) and δ1, j (1 ∈ j ∈ φ)). After
they receive all the packets of the k-th snapshot from their children sensors, they
combine their data and the received data in the same way as in CDG and transmit
the obtained M data packets to their parent sensors, respectively. For the sink, it
restores the data of a snapshot in the CDG way after it receives all the packets of that
snapshot.

For the proposed CBPS and SBPS, the authors of [40] evaluate their performance
through theoretical analysis and simulations. They proved that CBPS can achieve
order-optimal data collection under the protocol interference model, and SBPS can
accelerate the continuous data collection process significantly. Also, the simulation
results show that CBPS and SBPS work well for WSNs under the physical interfer-
ence model.

4 Conclusions and Future Work

In this chapter, the techniques of data aggregation and data collection in WSNs are
discussed. First, the definitions of data aggregation and data collection are introduced,
followed by the challenges of data aggregation and data collection. Subsequently, the
recent advances of data aggregation techniques are summarized. A recently published
distributed data aggregation algorithm DAS is then introduced in detail. DAS is fully
distributed data aggregation algorithm which is more suitable for distributed wireless
systems such as wireless sensor networks. Then different data collection algorithms
are reviewed, with several state-of-the-art tree-based and cell-based data collection
algorithms discussed in details.

In conclusion, for different data aggregation and collection applications, proper
strategy choices in different scenarios are summarized in Tables 1 and 2.

Table 1 Data aggregation
strategy choices in different
scenarios

Scenarios Choices

Energy-aware [18, 20, 46, 57, 63, 77]
Latency-aware [10, 68, 74, 76, 78, 79]
Energy-latency tradeoff [44, 48, 50, 75]

Table 2 Data collection
strategy choices in different
scenarios

Scenarios Choices

Energy-efficient [42, 47, 52, 53, 60, 61, 66, 70, 71]
Delay-aware [4, 17, 55]
Max-capacity/throughput [9, 11–14, 39, 40, 43]
Mobile wireless networks [6, 8, 34, 45, 58]

16 Data Gathering in Wireless Sensor Networks 561

Furthermore, since WSNs are application-oriented networks, there are still many
new challenges introduced by different applications involving data aggregation and
data collection. Therefore, the following future research directions exist.

• Most of the existing works on data aggregation and data collection focus on
snapshot data aggregation or snapshot data collection. Therefore, they may be
inefficient for applications requiring continuous data aggregation or/and data col-
lection. In continuous data aggregation and data collection, besides the challenges
and constraints in snapshot data aggregation and data collection, more traffic and
therefore more interference will be induced. Hence, designing effective contin-
uous data aggregation and continuous data collection algorithms, with respect
to energy-efficiency, delay-aware, energy-delay tradeoff, or/and other Quality-of-
Service (QoS) objectives, is desirable.

• Almost all of the existing works on data aggregation are based on the assump-
tion that data can be fully aggregated, where multiple data packets can be aggre-
gated into one single data packet. However, for some applications, e.g., top-k
queries, this assumption may not be valid. This is because, in these applications,
instead of producing one data packet, k (k ∀ 1) data packets may be produced
after applying the data aggregation function. For convenience, this kind of data
aggregation is referred to as partial data aggregation. Evidently, more traffic may
be produced in partial data aggregation tasks compared with traditional fully
data aggregation tasks, which implies most of the existing works do not work.
Therefore, how to accomplish a partial data aggregation task is an interesting
topic.

• Most of the works for data aggregation and data collection are for the single-radio
single-channel case. However, with the fast development of hardware techniques,
many multi-radio multi-channel sensor nodes are available nowadays. In multi-
radio multi-channel WSNs, each sensor node is equipped with multiple radios and
each radio can work on multiple orthogonal channels. Compared with traditional
single-radio single-channel WSNs (which can only works on a half-duplex mode7),
multi-radio multi-channel WSNs can achieve a higher network throughput, since
a multi-radio node can works on a full-duplex manner and multi-channel improves
the parallelism of the network. Therefore, to exploit the benefits brought by multi-
ple radios and multiple channels, multi-radio multi-channel data aggregation and
data collection algorithms deserve more research attention in the future.

• To capture the wireless interference in wireless networks, the generalized phys-
ical interference model is more accurate, but more complicated. However, most
of the works are based on the protocol interference model and the physical inter-
ference model. Therefore, to be more practical, it is worth to study how to design
data aggregation and data collection algorithms under the generalized physical
interference model.

7 In a wireless network, if a node works on the half-duplex mode, then, at any time, this node can
either transmit data to some other node, or receive data from some other node, but not both. If a
node works on the full-duplex mode, then, this node can transmit and receive data simultaneously
without any confliction or interference.

562 S. Ji et al.

• For simplicity, most of the works on data aggregation and data collection assumed
that the networks are randomly deployed, explicitly or implicitly. Actually, a more
general network deployment model is the arbitrary network model, where all
the sensor nodes in the network are arbitrarily distributed, and thus two nodes
even within the transmission range of each other may not conduct data transmis-
sions directly because of the obstacles between them. Under the arbitrary network
deployment model, how to implement energy-efficient data aggregation and col-
lection algorithms, delay-optimal data aggregation and collection algorithms, as
well as energy-delay tradeoff data aggregation and collection algorithms, is still
an un-solved issue.

• Wireless networks, especially large-scale WSNs, tend to be distributed and asyn-
chronous. Besides, they could be dynamic, i.e., at any time, some nodes may
disappear due to energy depletion or damages, and some new nodes may join a
network. Thus, centralized algorithms which require the overall network infor-
mation may not be proper. Furthermore, it is difficult and not realistic to achieve
strict overall time synchronization due to the unstable deployment environments,
clock drift, and other technique limits. Therefore, designing distributed and asyn-
chronous data aggregation and collection algorithms is another future research
direction.

References

1. I. Abraham, D. Malkhi, Probabilistic quorums for dynamic systems. Distrib. Comput. 18(2),
113–124 (2005)

2. K. Akkaya, M. Demirbas, R.S. Aygun, The impact of data aggregation on the performance of
wireless sensor networks. Wireless Commun. Mob. Comput. 8, 171–193 (2008)

3. H. Alzaid, E. Foo, and J.G. Nieto, Secure data aggregation in wireless sensor networks: a
survey, in CRPIT (2008)

4. T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, PINCO: a pipelined in-network compression
scheme for data collection in wireless sensor networks, in ICCCN (2003)

5. Z. Bar-Yossef, R. Friedman, and G. Kliot, RaWMS—Random walk based lightweight mem-
bership service for wireless ad hoc networks. ACM Trans. Comput. Syst. 26(2), 1–66 (2008)

6. D. Borsetti, C. Casetti, C.-F. Chiasserini, M. Fiore, J. María, Virtual data mules for data col-
lection in road-side sensor networks, in ACM MobiOpp (2010)

7. Z. Cai, S. Ji, J. He, A.G. Bourgeois, Optimal distributed data collection for asynchronous
cognitive radio networks, in IEEE ICDCS (2012)

8. I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, Sink mobility protocols for data collection in
wireless sensor netowrks, in ACM MOBIWAC (2006)

9. S. Chen, Y. Wang, X.-Y. Li, X. Shi, Order-optimal data collection in wireless sensor networks:
delay and capacity, in IEEE SECON (2009)

10. X. Chen, X. Hu, J. Zhu, Minimum data aggregation time problem in wireless sensor networks,
in IEEE MSN (2005)

11. S. Chen, Y. Wang, X.-Y. Li, X. Shi, Data collection capacity of random-deployed wireless
sensor networks, in IEEE GLOBECOM (2009)

12. S. Chen, S. Tang, M. Huang, Y. Wang, Capacity of data collection in arbitrary wireless sensor
networks, in IEEE INFOCOM (2010)

13. S. Chen, M. Huang, S. Tang, Y. Wang, Capacity of data collection in arbitrary wireless sensor
networks, in IEEE Transactions on Parallel and Distributed Systems (2011)

16 Data Gathering in Wireless Sensor Networks 563

14. S. Chen, Y. Wang, X.-Y. Li, X. Shi, Capacity of data collection in randomly-deployed wireless
sensor networks. Wireless Netw. 17, 305–318 (2011)

15. S. Cheng, J. Li, Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor
networks, in ICDCS (2009)

16. S. Cheng, J. Li, Z. Cai, O(ε)-approximation to physical world by sensor networks, in IEEE
INFOCOM (2013)

17. C.-T. Cheng, C.K. Tse, F.C.M. Lau, A delay-aware data collection network structure for wireless
sensor networks. IEEE Sens. J. 11(3), 699–710 (2011)

18. J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation techniques for sensor data-
bases, in ICDE (2004)

19. M. Ding, X. Cheng, Robust event boundary detection in sensor networks—a mixture model
based approach, in IEEE INFOCOM (2009)

20. M. Ding, X. Cheng, G. Xue, Aggregation tree construction in sensor networks, in IEEE VTC
(2003)

21. K. Du, J. Wu, D. Zhou, Chain-based protocols for data broadcasting and gathering in the sensor
networks, in IEEE IPDPS (2003)

22. E. Fasolo, M. Rossi, J. Widmer, M. Zorzi, In-network aggregation techniques for wireless
sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007)

23. F. Ferrari, M. zimmerling, L. Thiele, O. Saukh, Efficient network flooding and time synchro-
nization with glossy, in IPSN (2011)

24. M. D. Francesco, S.K. Das, Data collection in wireless sensor networks with mobile elements:
a survey. ACM Trans. Sens. Netw. 8(1), 1–31, 2011

25. J. Guo, J. Fang, X. Chen, Survey on secure data aggregation for wirless sensor networks, in
IEEE SOLI (2011)

26. J. He, S. Ji, Y. Pan, Z. Cai, Approximation algorithms for load-balanced virtual backbone
construction in wireless sensor networks, Theoretical Computer Science

27. J. He, S. Ji, M. Yan, Y. Pan, Y. Li, Load-balanced CDS construction in wireless sensor networks
via genetic algorithm. Int. J. Sens. Netw. (2011)

28. J. He, S. Ji, M. Yan, Y. Pan, Y. Li, Genetic-algorithm-based construction of load-balanced
CDSs in wireless sensor networks, in MILCOM (2011)

29. J. He, Z. Cai, S. Ji, R. Beyah, Y. Pan, A genetic algorithm for constructing a reliable MCDS in
probabilistic wireless networks, in WASA (2011)

30. J. He, S. Ji, P. Fan, Y. Pan, Y. Li, Constructing a load-balanced virtual backbone in wireless
sensor networks, in ICNC (2012)

31. J. He, S. Ji, Y. Pan, Z. Cai, Load-balanced virtual backbone construction for wireless sensor
networks, in COCOA (2012)

32. http://www.greenorbs.org/
33. Q. Huang, Y. Zhang, Radial coordination for convergecast in wireless sensor networks, in IEEE

LCN (2004)
34. S. Jain, R.C. Shah, S. Roy, Exploiting mobility for energy efficient data collection in wireless

sensor networks. Mob. Netw. Appl. 11, 327–339 (2006)
35. P. Jesus, C. Baquero, P.S. Almeida, A survey of distributed data aggregation algorithms, Tech-

nical report (2011)
36. S. Ji, Z. Cai, Distributed data collection and its capacity in asynchronous wireless sensor

networks, in INFOCOM (2012)
37. S. Ji, Z. Cai, Distributed data collection in large-scale asynchronous wireless sensor networks

under the generalized physical interference model. IEEE/ACM Trans. Netw. (in press)
38. S. Ji, R. Beyah, Z. Cai, Snapshot and continuous data collection in probabilistic wireless sensor

networks. IEEE Trans. Mob. Comput. (in press)
39. S. Ji, Y. Li, X. Jia, Capacity of dual-radio multi-channel wireless sensor networks for continuous

data collection, in IEEE INFOCOM (2011)
40. S. Ji, R. Beyah, Y. Li, Continuous data collection capacity of wireless sensor networks under

physical interference model, in IEEE MASS (2011)

http://www.greenorbs.org/

564 S. Ji et al.

41. S. Ji, R. Beyah, Z. Cai, Snapshot/Continuous data collection capacity for large-scale proba-
bilistic wireless sensor networks, in INFOCOM (2012)

42. H. Jiang, S. Jin, C. Wang, Prediction or not? an energy-efficient framework for clustering-
based data collection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(6),
1064–1071 (2011)

43. S. Ji, Z. Cai, Y. Li, X. Jia, Continuous data collection capacity of dual-radio multi-channel
wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1844–1855 (October
2012)

44. A. Kesselman, D. Kowalski, Fast distributed algorithm for convergecast in ad hoc geometric
radio networks, in IEEE WONS (2005)

45. A. Kinalis, S. Nikoletseas, Scalable data collection protocols for wireless sensor networks with
multiple mobile sinks, in IEEE ANSS (2007)

46. H. Lee, A. Keshavarzian, Towards energy-optimal and reliable data collection via collision-free
scheduling in wireless sensor networks, in IEEE INFOCOM (2008)

47. H. Lee, A. Keshavarzian, H. Aghajan, Near-lifetime-optimal data collection in wireless sensor
networks via spatio-temporal load balancing. ACM Trans. Sens. Netw. 6(3) (2010)

48. Y. Li, L. Guo, S.K. Prasad, An energy-efficient distributed algorithm for minimum-latency
aggregation scheduling in wireless sensor networks, in IEEE ICDCS (2011)

49. J. Li, S. Cheng, (ε, δ)-approximate aggregation algorithms in dynamic sensor networks. IEEE
Trans. Parallel Distrib. Syst. 23, 385–396 (2012)

50. S. Lindsey, C. Raghavendra, K.M. Sivalingam, Data gathering algorithms in sensor networks
using energy metrics. IEEE Trans. Parallel Distrib. Syst. 13(9), 924–935 (2002)

51. F. Liu, X. Cheng, D. Chen, Insider attacker detection in wireless sensor networks, in IEEE
INFOCOM (2007)

52. C. Liu, K. Wu, J. Pei, An energy-efficient data collection framework for wireless sensor net-
works by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst. 18(7), 1010–
1023 (2007)

53. W. Lou, Y. Kwon, H-SPREAD: a hybrid multipath scheme for secure and reliable data collection
in wireless sensor networks. IEEE Trans. Veh. Technol. 55(4), 1320–1330 (2006)

54. C. Luo, F. Wu, J. Sun, C.W. Chen, Compressive data gathering for large-scale wireless sensor
networks, in ACM MOBICOM (2009)

55. H. V. Luu, X. Tang, An efficient scheduling algorithm for data collection through multi-path
routing structures in wireless sensor networks, in IEEE MSN (2010)

56. G. Manku, Routing networks for distributed hash tables, in PODC (2003)
57. H. Ö. Tan, ï. Körpeoǧlu, Power efficient data gathering and aggregation in wireless sensor

networks, SIGMOD Record, vol. 32, No. 4, pp. 66–71 (2003)
58. A.S. Poornima, B.B. Amberker, Secure data collection using mobile data collector in clustered

wireless sensor networks. IET Wireless Sens. Syst. 1(2), 85–95 (2011)
59. R. Rajagopalan, P.K. Varshney, Data-aggregation techniques in sensor networks: a survey.

IEEE Commun. Surv. Tutor. 8(4), 48–63 (2006)
60. C. Ren, X. Mao, P. Xu, G. Dai, Z. Li, Delay and energy efficiency tradeoffs for data collections

and aggregation in large scale wireless sensor networks, in IEEE MASS (2009)
61. S. Rothery, W. Hu, P. Corke, An empirical study of data collection protocols for wireless sensor

networks, in ACM RealWSN (2008)
62. Y. Sang, H. Shen, Y. Inoguchi, Y. Tan, N. Xiong, Secure data aggregation in wireless sensor

networks: a survey, in IEEE PDCAT (2006)
63. N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians and beyond: new aggregation

techniques for sensor networks, in ACM Sensys (2004)
64. J.L.V.M. Stanislaus, M. Younis, Delay-conscious federation of multiple wireless sensor net-

work segments using mobile relays, in IEEE VTC 2012-Fall (2012)
65. I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, Chord: a scalable peer-to-peer

lookup service for internet applications, in SIGCOMM (2001)
66. X. Tang, J. Xu, Adaptive data collection strategies for lifetime-constrained wireless sensor

networks. IEEE Trans. Parrellel Distrib. Syst. 19(6), 721–734 (2008)

16 Data Gathering in Wireless Sensor Networks 565

67. M. Thangaraj, P.P. Ponmalar, A survey on data aggregation techniques in wireless sensor
networks. Int. J. Res. Rev. Wireless Sens. Netw. 1(3), 36–42 (2011)

68. P.-J. Wan, S.C.-H. Huang, L. Wang, Z. Wan, X. Jia, Minimum-latency aggregation scheduling
in multihop wireless networks, in ACM MOBIHOC (2009)

69. F. Wang, J. Liu, Networked wireless sensor data collection: issues, challenges, and approaches.
IEEE Commun. Surv. Tutor. 13(4) (2011)

70. C. Wang, H. Ma, Y. He, S. Xiong, Approximate data collection for wireless sensor networks,
in IEEE ICPADS (2010)

71. F. Wang, D. Wang, J. Liu, Traffic-aware relay node deployment: maximizing lifetime for data
collection wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(8), 1415–1423
(2011)

72. W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, P. Deng, Localized outlying and boundary data
detection in sensor networks. TKDE 19(8), 1145–1157 (2007)

73. K. Xing, X. Cheng, Location-centric storage for on-demand warning in sensor networks, in
IEEE INFOCOM (2005)

74. X. Xu, S. Wang, X. Mao, S. Tang, X. Li, An improved approximation algorithm for data
aggregation in multi-hop wireless sensor networks, in FOWANC (2009)

75. Y. Yu, B. Krishnamachari, V.K. Prasanna, Energy-latency tradeoffs for data gathering in wire-
less sensor networks, in IEEE INFOCOM (2004)

76. B. Yu, J. Li, Y. Li, Distributed data aggregation scheduling in wireless sensor networks, in
IEEE INFOCOM (2009)

77. H. Zhang, A. Arora, Y. Choi, M.G. Gouda, Reliable bursty convergecast in wireless sensor
networks, in ACM MOBIHOC (2005)

78. Y. Zhang, S. Gandham, Q. Huang, Distributed minimal time convergecast scheduling for small
or sparse data sources, in RTSS (2007)

79. J. Zhu, X. Hu, Improved algorithm for minimum data aggregation time problem in wireless
sensor networks. J. Syst. Sci. Complexity 21, 626–636 (2008)

Part VIII
Security

Chapter 17
Current Challenges and Approaches in Securing
Communications for Sensors and Actuators

Zygmunt J. Haas, Lin Yang, Meng-Ling Liu, Qiao Li and Fangxin Li

Abstract Recent advances in MEMS hardware have enabled small-footprint and
inexpensive sensors to be deployed in hard-to-access locations and to form wireless
sensor networks (WSNs). WSNs are typically mission-oriented networks and offer
appealing solutions to a range of practical problems. However, due to the charac-
teristics of WSN, their design principles differ from other types of networks. For
instance, the severe limitations of computational and energy resources in the net-
work nodes restrict their ability to process and communicate information. These
characteristics, particular to WSNs, dictate new security challenges and require new
approaches to implementation of security protocols. In this chapter, we present some
of the WSNs security challenges and discuss a number of selected solutions pre-
sented in the technical literature. The structure of the chapter is as follows. In Sect. 1,
we provide background material on WSN security; in particular, we present the
security goals, implementation constraints, potential attacks and defenses, and eval-
uation benchmarks. In Sect. 2, we discuss basic security challenges and approaches,
including cryptography schemes, key management schemes, and attack detection
and prevention mechanisms. Then, in Sects. 3, 4, and 5, we discuss secure routing,
secure localization, and secure data aggregation, respectively. Finally, we conclude
the survey in Sect. 6.

1 Background

1.1 Security Goals

The field of Information Security defines numerous goals with respect to protect-
ing information, with the following being considered the top three: confidentiality,
integrity, and availability [1]. (These three components, being the core principles

Z. J. Haas (B) · L. Yang · M-L. Liu · Q. Li · F. Li
Wireless Networks Laboratory (WNL), Cornell University, Ithaca, NY 14853, USA
e-mail: haas@ece.cornell.edu
URL:wnl.ece.cornell.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 569
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_17,
© Springer-Verlag Berlin Heidelberg 2014

570 Z. J. Haas et al.

of information security, are often referred to as the CIA triad in the Information
Assurance field [2].) Information confidentiality is defined as the concealment of
information, so that the information can only be available and disclosed to the
intended parties. Integrity of information refers to its trustworthiness, so that an adver-
sary cannot create, modify, or destroy information, including protection against injec-
tion of fraudulent, duplicate, or old (expired) information (e.g., the replay attack).
Information availability denotes the ability of timely and reliable access to the infor-
mation. The operation of averting information availability is called the denial of ser-
vice attack. Note that ensuring the above elements of information security requires
protection of multiple hardware and software components of the system, with the
network being just one such a component.

Other major elements of information security include:

• Authentication—the ability of a party to verify the identity of the other communi-
cating party or parties.

• Non-repudiation—the ability to assert that a particular party generated the infor-
mation.

• Authorization—the ability to restrict information access only to permitted parties.
• Authenticity—the ability to verify that the information has been created or modified

by the declared party.
• Privacy—the ability to conceal the meta-data about the information-generating

entity (e.g., identity of the entity, its location) that generated the transmitted data
(to be distinguished from confidentiality).

As for most networks, WSNs are also expected to support a subset of the above
information security goals, a set which depends on the particular WSN applica-
tion. However, the new aspect of WSN security relates to the approaches through
which the above information security goals are implemented. In particular, meeting
the above security goals in WSNs are especially challenging, due to the hardware
limitations of the sensor nodes (energy, computation, storage), as well as due to the
operational modes of the network (e.g., unattended operation, large number of nodes,
limited node lifetime, fixed deployment, unknown and/or changing propagation con-
ditions). Furthermore, due to the fact that in some applications cost is an important
consideration, individual network nodes tend to be inexpensive and, thus, less reli-
able. However, overall the network needs to support some required reliability level.
Furthermore, the cost consideration often prevents reliance on more expensive hard-
ware (e.g., tamper-resistant modules), which could otherwise reduce the complexity
of some security-related protocols.

1.2 Implementation Constraints

The particular features of the sensor nodes, especially their limitations, affect the
design of the security protocols. For instance, typically, nodes in a WSN are

17 Current Challenges and Approaches in Securing Communications 571

inexpensive sensing devices with quite limited computational capabilities, as com-
pared with nodes in traditional communication networks. Consequently, WSN’s
nodes are unable to execute security protocols designed for such other networks.
Furthermore, the wireless communication channel and the operational characteris-
tics of WSNs introduce additional implementation challenges.

Hardware Constraints

The complexity of a software and the performance requirements of its underlying
application dictate the amount of hardware resources needed for the software execu-
tion, including the size of memory/storage, the code space, the CPU clock rate, and
the energy source. Sensors are usually limited in physical size, which in turn limits
its ability to store data and code. Most contemporary sensor devices have RAM sizes
ranging from 1 to 10 KB, and program memory less than 1 MB [3]. For example,
a popular sensor type, the TelosB, uses the TI MSP430F1611 processor, which is
a 16-bit, 8-MHz RISC CPU, with only 10 KB RAM, 48 KB program memory, and
1024 KB flash storage. Moreover, the code space required to support the OS alone
is on the order of several kilobytes. For example, the de-facto operating system for
wireless sensors, the TinyOS, requires about 4 KB of memory. Therefore, the imple-
mentation of security protocol must be very space-conscious to fit the code in the
limited available memory of a sensor node.

Power Constraints

Power constraints are always a major concern in WSNs, because the small physical
size of the sensor node limits the battery size and, thus, its energy capacity. Further-
more, in many application scenarios in which sensor nodes operate unattended, once
a sensor node is deployed it is impossible to replace its battery. Although recharging
is possible if an energy scavenging mechanism is implemented in the nodes, often
the amount of energy collected in this way is limited and inadequate to fully support
by itself the node’s energy needs. In contrast to the above power limitation, security
related operations can be especially power demanding. Walters et al. summarized in
Ref. [4] three major sources of power consumptions due to security related operations
in WSN:

• the processing required for security functions, such as encryption, decryption, data
signing, and signature verification;

• the energy required to transmit the security-related data or overhead, such as ini-
tialization vectors for encryption and decryption; and

• the energy required to maintain security parameters in a secure manner, such as
storage of cryptographic keys.

572 Z. J. Haas et al.

Physical-Level Constraints

In general, wireless communication medium makes mounting security attacks much
easier, as compared to attacks in wired networks. For example, the attacker can
passively eavesdrop on the network’s radio frequency range to steal messages in
transit, or it can inject malicious messages into the network at will [5]. However,
WSN are particularly vulnerable due to several of their attributes. The large number
of deployed nodes and the lack of tight binding among the network nodes render
it easier for an attacker to compromise a small number of nodes, while remaining
undetected. Moreover, due to the simplicity of their hardware, sensor nodes will
typically lack sophisticated protection schemes against physical-layer attack, such
as jamming. Furthermore, in many WSNs, the senor nodes are unreliable and prone
to hardware malfunction or depletion of energy, so that compromising a sensor node
could be misinterpreted as a failure, rather than a security breach. To provide the
required level of security, WSN security protocol design must take these physical-
level constraints into consideration.

1.3 Potential Attacks and Defenses

Wood and Stankovic in Ref. [6] exploited layered network architecture to analyze
security issues and to improve robustness. The network layers architecture is divided
into physical, data link, network, and transport layers. Each layer is susceptible to
different types of attacks, and security attacks can exploit interaction among layers
or cut across multiple layers. Table 1 lists the layers of a typical sensor network, and
describes each layer’s security vulnerabilities and possible defenses.

Table 1 Sensor network layers and denial-of-service defenses (From [6])

Network layer Attacks Defenses

Physical Jamming Spread-spectrum, priority message, lower
duty cycle, region mapping, mode
change

Tampering Tamper-proofing, hiding
Data Link Collision Error-correcting code, collision detection

Exhaustion Rate limitation
Unfairness Small frames

Network Neglect and greed Redundancy, probing
Homing Encryption
Misdirection Authorization, monitoring
Black holes Authorization, monitoring

Transport Flooding Client puzzles
Desynchronization Authorization

17 Current Challenges and Approaches in Securing Communications 573

There are two major types of attacks at the physical layer: jamming and tampering
[6]. Jamming refers to interfering with the transmissions on the radio frequencies that
the network’s nodes are using, such that an adversary can disrupt the entire network of
N nodes with only k randomly distributed jamming nodes, where k << N . The stan-
dard defense against jamming involves various forms of spread-spectrum communi-
cation. However, such defense may not be available for sensor nodes, because sensor
devices are typically assumed to be low-cost, low-power devices. Other defenses
include switching to a lower duty cycle to outlive an adversary or mapping the
jammed region and rerouting traffic. Tampering refers to physically compromising
the nodes in the network. Tamper protection falls into two categories: passive and
active [7]. Passive mechanisms do not require energy and include technologies that
protect a circuit from being detected (e.g., tamper-proofing, protective coat). Active
tamper protections involve special hardware circuits, which consumes more energy.
Therefore, it would be more appropriate for sensor nodes to employ passive tech-
niques.

The data link layer is susceptible to three major attacks: collisions, exhaustion,
and unfairness [6]. Error-correcting codes can be used to alleviate some of the effects
of collisions. However, they cannot completely solve the problem, as the adversary
can still corrupt more data than could be corrected by the network. Collision detec-
tion is another way to deal with a collision attack, but it cannot completely defend
against collision attacks, because proper transmission still need cooperation among
nodes, while subverted nodes could intentionally and repeatedly deny channel access.
Exhaustion refers to attacks that deplete the energy source of the network nodes,
thus jeopardizing the availability of the network. Existing MAC techniques, such as
random back-offs and scheduled access, are only intended to solve the problem of
random collisions. When collisions are intentional, these techniques become largely
ineffective. A possible solution is inclusion of a rate limiting mechanism in MAC
admission control, so that the network would simply ignore the excessive requests
generated by an attacker without responding to such requests, and thus avoiding fur-
ther increase in the traffic volume. However, rate limiting feature has its disadvan-
tages; for example, it reduces the overall network capacity and it limits the maximum
data rate of individual users even when the network is underutilized. Unfairness can
be caused by selective intermittent application of the attacks mentioned above, by
abusing a cooperative MAC-layer priority scheme, or by monopolizing the channel.
One defense against this threat is to use small frames, so that an individual node can
capture the channel only for a short time period. However, if the messages typically
transmitted by the network nodes are long, then splitting the messages into smaller
frames incurs additional framing and channel-access overheads.

The network layer is subject to four types of attacks: neglect and greed, homing,
misdirection, and black holes [6]. A malicious node is neglectful when it arbitrarily
neglects to route some messages. This node is also greedy if it gives undue priority
to its own messages. A solution to this type of problem is to use multiple (alternate)
routing paths or send redundant messages. Location-based network protocols that
rely on geographic forwarding expose the network to homing attacks, in which an
adversary observes the traffic to obtain the location of critical nodes. Once found,

574 Z. J. Haas et al.

these nodes are subject to being attacked. One solution to this problem is to encrypt
the header, so that an adversary cannot learn the location of the critical nodes from
reading the header. This solution assumes a secure key management scheme, such
that all neighbors share cryptographic keys, and so a passive adversary cannot learn
the source or destination of the messages from the headers. Misdirection is a more
powerful attack, which forwards messages along a wrong path, perhaps by fabri-
cation malicious route advertisements. This attack can target either the sender or
an arbitrary victim. (The defense to this attack is similar to that for a black-holes
attack, which is discussed next.) A Black-holes attack is an even more effective
attack against distance-vector-based routing protocols. In this attack, compromised
nodes advertise zero-cost routes, thus forming routing black holes within the net-
work [8]. This causes excessive messages to be routed through the compromised
nodes, and therefore causes intensive bandwidth contention around malicious nodes.
It also causes the neighbors of malicious nodes to quickly exhaust their energy sup-
plies due to excessive routing, and therefore could potentially create partitions in
the network. Authorization and monitoring are ways to defend against misdirec-
tion and black-holes attack [6]. In an authorization-based solution, only authorized
nodes (i.e., nodes with valid public/private key pairs) are allowed to exchange rout-
ing information. Nodes may use public key infrastructure to sign and verify routing
messages, thus ensuring the confidentiality and integrity of routing information. Zero-
cost routes in black holes attack are thus eliminated, as an adversarial node does not
have the valid public/private key pairs to generate encrypted routing information.
Such a scheme requires a reliable certification authority for authentication. Since a
centralized certification authority can become a single point of failure, distributed
certification authority schemes have been proposed. For example, Zhou and Haas
in Ref. [9] proposed a distributed certification authority scheme by distributing the
certification function among n servers and, by using threshold cryptography, ensures
the certification authority is compromised only if at least t servers are compromised.
Monitoring-based solution relies on nodes monitoring their neighbors to ensure their
proper routing behavior. Nodes then select routing paths utilizing nodes that exhibit
long-term proper routing behavior. It is assumed in monitoring-based solution that
nodes with a longer period of proper routing behavior are more trustworthy, and
therefore routing information from these nodes are less likely to be inaccurate. This
defends misdirection and black-holes attack, as compromised nodes can be quickly
detected by their neighbors, and the compromised nodes are then not selected again
for routing paths.

The transport layer can be threatened by flooding and desynchronization attacks
[6]. A naïve solution to flooding is to limit the number of allowed connections, but
this would also degrade the overall network throughput, as there would be fewer
connections available for each node. A better solution is to have the server node
ask the client node to solve some computationally expensive puzzle upon requesting
a connection, so that if the client is a compromised node and repeatedly requests
establishment of connections, the client would deplete its power while repeatedly
solving the puzzles. Desynchronization disrupts end-to-end connections. In this
attack, the adversary disrupts the communication between two nodes by forging

17 Current Challenges and Approaches in Securing Communications 575

messages that carry sequence numbers or other control messages. If the adversary
is successful, the communicating nodes will waste energy by excessively executing
the synchronization-recovery protocol without exchanging any useful information.
A counter to this attack is authentication of all exchanged packets, assuming that the
adversary cannot forge the authentication mechanism.

1.4 Evaluation Benchmarks

There are various benchmarks for evaluating whether a security scheme is appropriate
for WSNs. Some of these benchmarks are [10]:

• Resiliency—the network capability to continue to offer sufficient security services
while some of the network nodes are compromised.

• Resistance—the network capability to avert an attacker from fully controlling the
network.

• Scalability—the capability to support security in very large networks (on the order
of hundreds to thousands of nodes).

• Self-organization and flexibility—the capability to adaptively restructure the
security scheme as a result of network changes.

• Robustness—the capability of the network to continue to operate in spite of
irregularities (e.g., security attacks, hardware failure, etc). (Robustness is a more
generalized notion than resiliency, as resiliency is focused on providing security
services while under attack, whereas robustness considers providing general net-
work services while under attack.)

• Energy efficiency—the degree to which the network lifetime is maximized by
preserving energy.

• Assurance—the confidence that the major elements of information security (e.g.,
confidentiality, integrity, availability, etc.) are adequately met [2].

2 Basic Security Challenges and Approaches

2.1 Cryptography Schemes

Cryptography is the basic element in any security system. It deals with encrypting
the message in order to achieve secure communication in the presence of third party
adversaries. There are two types of encryption methods: symmetric key cryptography,
which uses the same key for encryption and decryption, and asymmetric (public) key
cryptography, which uses different keys for encryption and decryption. Compared
to asymmetric key cryptography schemes, symmetric key cryptography schemes
have the advantage of lower computational overhead because they involve relatively

576 Z. J. Haas et al.

simply bit-wise operations (e.g., XOR) that can be directly implemented in hardware,
but they require more complex key distribution and key management schemes [11].

There has been extensive work done on the evaluation of different cryptography
schemes. In Ref. [12], Ganesan et al. investigated the performance of five different
symmetric key cryptography schemes (RC4, IDEA, RC5, MD5, and SHA1), over six
different hardware platforms that use 8/16/32-bit word size (Atmega 103, Atmega
128, M16C/10, SA-1110, PXA250, and UltraSparc2). Their experiments indicate
that: (1) the cycle overhead (i.e., the number of clock cycles to perform a crypto-
graphic operation on a hardware platform) is mostly uniform within each word-size
class (8/16/32 bit), but there are differences among the three word-size classes; (2)
the impact of caches (i.e., the additional clock cycles due to cache misses in memory
fetch) is negligible; and (3) hashing techniques require almost an order of a magni-
tude higher clock cycle overhead than symmetric key encryption techniques. Table 2
shows the execution times for the various encryption algorithms on the various plat-
forms. Figure 1 shows the byte overhead for the various algorithms and platforms.
They also derived a model to assess the computational overhead of embedded archi-
tectures for encryption protocols, in general.

Although public key cryptography schemes have received much less attention in
WSN security due to their expensive computational overhead, there are several stud-
ies that discuss the possibilities of incorporating public key cryptography schemes
into WSN. In Ref. [13], Gaubatz et al. showed that special purpose ultra-low power
hardware implementations of public key algorithms can be used in sensor nodes.
They implemented three different public key cryptography schemes (Rabin’s Scheme

Table 2 Execution times (in µs) for algorithms, platforms, and plaintext sizes (in bytes) (From
[12])

Algorithm Size Action Atmega Atmega M16C/10 Strong Xscale Xscale Sparc
103 128 ARM (400) (200) (440)

MD5 0 Digest 5863 1466 1083 46 26 53 23
1–26 Digest 5890 1473 1075 46 26 53 23
62–80 Digest 10888 2722 2011 74 45 90 39

SHA-1 1 Digest 15249 3812 2651 69 12 102 27
3 Digest 15781 3945 5303 69 12.3 103 27
56 Digest 14543 3636 7955 133 25.8 205 55
64 Digest 31107 7777 10907 145 25.7 207 56

RC5 16 Init 9641 2410 2074 41 45 91 28
Enc 1651 413 197 3 3 6 2
Dec 1636 409 202 3 3 7 2

IDEA 16 Init enc 1523 381 727 26 15.54 47 11
Init enc 9417 2354 1927 76 25.16 69 36
Enc 2555 325 596 16 3.24 17 9
Dec 2614 325 597 16 3.27 17 9

RC4 Init 1886 472 2455 155 66.8 216 96
Enc 344 86 123 10 5 9 4

17 Current Challenges and Approaches in Securing Communications 577

0

0.5

1

1.5

2

2.5

3

3.5

4

D
ig

es
t 0

 M
D

5

D
ig

es
t 1

-2
6

0

D
ig

es
t 6

2
0

D
ig

es
t 6

2-
80

 0

D
ig

es
t 1

 S
H

A
-1

D
ig

es
t 3

 0

D
ig

es
t 5

6
0

D
ig

es
t 6

4
0

In
it

16
 R

C
5

E
n

0
0

D
e

0
0

In
it

16
 ID

E
A

In
it

de
 0

 0

E
n

0
0

D
e

0
0

In
it

0
R

C
4

E
n

0
0

Atmega 103

Atmega 128

M16C/10

StrongARM

Xscale(200)

Xscale(400)

Sparc(440)

Fig. 1 Normalized overhead for algorithms, platforms and, plaintext sizes (in bytes) (From [12])

[14], NtruEncrypt and NtruSign [15], and Elliptic Curve Cryptography [16, 17]) in
a sensor node that is embedded with a custom-designed low-power co-processor to
handle all the computation-intensive tasks. They concluded that the use of public
key cryptography can reduce the amount of traffic overhead due to key management
in WSN, and that the computational cost is within acceptable limits and sufficiently
fast on their special-purpose hardware. Wander et al. in Ref. [18] also performed a
series of experiments to quantify the energy costs of authentication and key exchange
based on ECC [16, 17] and RSA [19] public key cryptography schemes on an 8-bit
microcontroller platform. Their studies indicate that authentication and key exchange
protocols using optimized software implementations of public key cryptography are
quite viable on small wireless devices. They also recommend ECC over RSA for
larger energy savings.

Another cryptography technique is watermarking. In Ref. [20], Koushanfar
and Potkonjak proposed the first watermarking approach for protecting data and
information generated in wireless embedded sensor networks. They considered a
sensor network application in which sensor nodes collect data (the data-acquisition
phase) to solve nonlinear optimization problem (the data-processing phase). Node
signatures are embedded during the data-acquisition and data-processing phases,
without compromising the quality of the recorded data or the results of data process-
ing. They conducted two experiments—acoustic atomic trilateration and light source
determination—to study the trade-offs between the security protection and the water-
marking overhead and to study the situations where such watermarking scheme is
the most effective.

578 Z. J. Haas et al.

Fig. 2 Taxonomy of key management protocols

2.2 Key Management Schemes

Key management deals with distributing and storing encryption and decryption keys
to implement secure communication. A trivial solution to key management is to use
a global key for all the sensor nodes. However, in this scheme, if any node in the
network is compromised, then the adversary obtains the global key and the whole
network security is defeated. Another trivial solution is to have each node store
N − 1 different keys (where N is the total number of nodes in the network), with
each key corresponding to a different node in the network. However, this solution
is too complex, as a sensor node’s limited memory may be insufficient to store the
N − 1 keys, especially for a large network. Clearly, key management is an important
yet challenging task, in particular for encryption schemes that use symmetric key
cryptography.

There have been extensive research works done in the area of key management
schemes. Here, we discuss four categories of key management schemes—key
pre-distribution schemes, hybrid cryptography schemes, key infection schemes,
and key management in hierarchy networks. Figure 2 shows the taxonomy of key
management.

2.2.1 Key Pre-distribution Schemes

In key pre-distribution schemes, sensor nodes store some initial keys before the nodes
are deployed [21]. Key pre-distribution schemes are further divided into probabilistic
schemes and deterministic schemes.

For probabilistic schemes, the existence of one or more common predistribu-
tion keys between intermediate nodes is not certain, but is instead guaranteed only
probabilistically. Eschenauer and Gligor in Ref. [23] proposed one of the earlier prob-
abilistic schemes. In their scheme, a ring of keys is distributed to each sensor node
before node deployment. Each key ring consists of a randomly chosen k keys from a

17 Current Challenges and Approaches in Securing Communications 579

large pool of P keys, which is generated offline. A pair of nodes can communicate if
they share any key among their key rings. Although a pair of nodes may not always
have a shared key, if a path between them exists, they can use that path to exchange
a key that establishes a direct link. An enhancement over this scheme is proposed by
Chan et al. in Ref. [22], in which a q-composite random key pre-distribution scheme
is proposed. This scheme requires q keys (q > 1) instead of just one common key
among the key rings of a pair of communicating nodes. The authors showed that the
q-composite key scheme strengthens the network’s resilience against node capture
when the number of captured nodes is small. Figure 3 shows how the fraction of
additional communications that the attacker can compromise varies with the number
of nodes captured by the attacker. As a point of reference, comparing the two cases
of q = 1 and q = 2, in terms of the amount of additional compromised communica-
tions in a network with 50 compromised nodes is 9.52, and 4.74 %, respectively. The
disadvantage of the q-composite keys schemes is that a larger portion of the network
is revealed to the adversary as larger number of nodes becomes compromised. This
scheme thus trades off the protection against an unlikely large-scale network attack in
order to significantly improve the strength of the random key pre-distribution scheme
against smaller-scale attacks. Another probabilistic scheme is GKMPSN proposed
by Zhu and Zhang in Ref. [24]. GKMPSN is a centralized group key distribution
scheme, in which a network controller broadcasts new group keys, as well as node
revocation information (i.e., information that identifies a compromised node), to all
the nodes whenever a compromised node is detected. Prior to the deployment of the
network, each node stores a random set of keys out of a common large key pool. The
group re-keying operation then takes two steps. In the first step, the pre-deployed ran-
dom keys at each node are used to create secure channels between nodes in order to
deliver new keying materials to legitimate nodes. In the second step, each node uses
the received keying materials to update both the group key and the pre-deployed keys
that are invalidated by the compromised nodes. GKMPSN has an attractive property

Fig. 3 Probability that a
random communication link
between two randomly chosen
nodes can be decrypted by an
adversary, as a function of the
number of nodes captured by
the adversary (excluding the
two communicating nodes).
Key ring size is 200, and
probability of successful key-
setup with a neighbor is 0.33
(From Ref. [22])

580 Z. J. Haas et al.

of partial statelessness, in which a node can decode the current group key, even if the
node missed a few previous group re-keying operations. This is an attractive feature
as: (1) typically packet losses are high in WSN due to unreliable communication,
and (2) the scheme facilitates new nodes joining the network after initial network
deployment.

For deterministic schemes, any two intermediate nodes are guaranteed to share
one or more predistributed keys. An example of a deterministic scheme is LEAP
(Localized Encryption and Authentication Protocol) proposed by Zhu et al. [25].
LEAP is motivated by the observation that different types of messages have different
security requirements and that a single keying mechanism is not suitable for meeting
these different security requirements. LEAP supports the establishment of four types
of keys for each sensor node—an individual key shared with the sink node, a pairwise
key shared with another sensor node, a cluster key shared with multiple neighboring
nodes, and a group key that is shared by all the nodes in the network. The individual
key allows a node to securely send sensor readings to the sink node. The pairwise
key prevents a compromised node’s attack, because once a compromised node is
detected, its neighbors will typically immediately revoke the pair-wise keys shared
with that compromised node. However, even if the compromised node is not detected
for some time, its damage is only limited to its near neighbor, as the pair-wise keys
are only shared between one-hop neighbors. The cluster key is used for secure local
broadcast, for example routing control information. The group key authenticates the
sink node to the sensor nodes to facilitate secure network-wise operations, such as
key refreshments. Blom in Ref. [26] proposed another pair-wise deterministic key
distribution scheme. The scheme can defend against up t compromised nodes. In
pre-distribution phase the sink node generates a (t + 1)-by-N matrix G over some
finite field GF(q), where N is the total number of nodes in the network and (t + 1) is
the codeword size. The matrix is known to all the nodes in the network. Then the sink
node creates a (t+1)-by-(t+1) symmetric matrixD over GF(q). This allows the sink
node to compute a matrixA = (DG)T with the property thatK = AG is a symmetric
matrix (since AG = (DG)T G = GTDTG = GTDG = GTAT = (AG)T). Each node
i in the network is assigned with a public column vector G(i) = ith column of G,
and a private row vector A(i) = ith row of A. Then, for nodes i and j to establish
a pairwise key, they can exchange A(i) and A(j), and compute their pairwise key
Kij = Kji = G(j)A (i) = G(i)A (j). Assuming there are m < t + 1 compromised
nodes, then these nodes know m rows and, due to symmetry, m columns of K. A node
needs to know at least (t +1) elements in a codeword in order to acquire information
about other element in the codeword of other nodes. Therefore, if there are less than
(t + 1) cooperating nodes, no information about the unknown key is revealed. It has
been proven in that the Blom scheme securely protects the pairwise key if any t + 1
columns of G are linearly independent.

17 Current Challenges and Approaches in Securing Communications 581

2.2.2 Hybrid Cryptography Schemes

Hybrid cryptography schemes use computationally expensive asymmetric key cryp-
tography at the sink nodes and computationally cheaper symmetric key cryptography
at all other sensor nodes. An example of hybrid scheme is proposed by Huang et al.
in Ref. [27], which is based on a combination of elliptic curve cryptography and
symmetric key operations. This scheme reduces the high cost of elliptic curve ran-
dom point scalar multiplications at the sensor side and replaces them with low cost
and efficient symmetric key-based operations. On the other hand, it authenticates
the two identities based on elliptic curve implicit certificates to avoid the typical key
management problem in pure symmetric key-based protocols.

2.2.3 Key Infection Schemes

In key infection schemes, keys are sent in plaintext and thus are not secure. However,
these schemes assume that the number of adversaries at key establishment phase is
very small. For example, Anderson et al. in Ref. [28] proposed a scheme in which each
node bootstraps itself by broadcasting an initial key in the clear. Nodes then exchange
keys and build up trust structures as they perform network and resource discovery.
The scheme assumes that the adversary can only monitor a small proportion of
the communications during deployment phase (i.e., initial key setup phase), but is
fully capable of launching attacks after the deployment phase. This is often a realistic
assumption, because the initial deployment duration is on the order of seconds, while
the overall lifetime of the network can be up to years. Despite the apparent insecurity
of this scheme, the proposed scheme uses multipath secrecy amplification and multi-
hop key propagation to enhance the security of the network, such that at most a
fixed proportion of communications links can be eavesdropped. Multipath secrecy
amplification combines keys propagated along different paths to update pairwise
keys. For example, consider three nodes W1, W2, and W3, with pairwise keys k12,
k13, and k23. Suppose W1 wants to update k12 to k∈

12. W1 can ask W3 to send the
key-update request to W2. The request from W1 to W3 is encrypted using k13, and the
request from W3 to W2 is encrypted using k23. Therefore, if k12 is the only key being
compromised, the adversary cannot update to a new k∈

12 as long as neither k23 nor
k13 is compromised. Table 3 compares the ratio of the compromised links of the two
schemes: the basic key infection scheme and the security amplification scheme (SA),
showing the improvement of the latter scheme. In the table, η is a varying density of
the adversarial nodes (referred to as “black dust”), assuming values of 1 %, 2 %, and
3 %, and d is the average number of neighbors of a node. Multi-hop key propagation
uses intermediate nodes to temporarily store the pairwise key update information for
two nodes at the ends of a path. For example, if W1 links to W2, W2 links to W3,
and W1 wants to update k13 to k∈

13, then W1 and W3 can invoke W2’s help to set
up a new key that W2 immediately forgets, so a potential node compromising W2
in the future does not reveal k∈

13. Multi-hop key propagation supports end-to-end,
rather than link-level cryptography, which helps energy efficiency as sink-to-node

582 Z. J. Haas et al.

Table 3 Improvement of secrecy amplification (SA) over the basic key infection scheme (From
Ref. [28])

d η = 1 % η = 2 % η = 3 %
Basic (%) SA (%) Basic (%) SA (%) Basic (%) SA (%)

2 1.20 0.97 2.29 2.00 3.38 2.93
3 1.81 1.37 3.44 2.67 5.42 3.93
4 2.30 1.80 4.45 3.71 6.50 5.55
5 2.93 2.37 5.73 4.68 8.73 6.75

communications can be encrypted using end-to-end keys rather than translated at
intermediate nodes. With the assumption of limited adversaries at the initial key
deployment phase, and with the enhancement using multipath secrecy amplification
and multi-hop key propagation, the simulation showed that the key infection scheme
is almost as secure as using pre-loaded initial keys.

2.2.4 Key Management in Hierarchy Networks

Some key management schemes take advantage of the fact that nodes are often
categorized into different types, such as sink nodes, gateway nodes, and sensor nodes,
and different types of nodes have different computational resources. In Ref. [29], Jolly
et al. present a key management scheme in a clustered sensor network. The method
uses pre-deployed symmetric keying, in which sensor nodes store a minimum number
of keys that they share with other nodes. Gateway nodes store a larger number of keys,
and the sink nodes have no restrictions and store all the keys in the network. Their
simulation showed that the energy consumption overhead for the key management is
remarkably low and they report an order of magnitude of energy saving. Chorzempa
et al., in Ref. [30] proposed another hierarchical key management scheme for WSNs.
The scheme is called SECK (Survivable and Efficient Clustered Keying), with three
tiers of nodes. The bottom tier consists of low-end sensor nodes, which are clustered.
Each cluster is managed by a second-tier cluster head to perform data aggregation
and forwarding. At the top tier there is a globally trusted sink node. After initial
network deployment, the low-end sensor nodes undergo a location training phase to
establish clusters, and cluster coordinate system is used in low-end node recovery
procedure. Clusters are then used for establishing and updating administrative keys.
A session key between a pair of nodes can then be obtained from administrative keys.
Simulations suggested that the scheme is resilient against multiple node captures,
and can efficiently recluster and salvage compromised nodes. Figure 4 depicts the
comparison of the resiliency against node capture of the SECK scheme and the basic
probabilistic pairwise scheme of Eschenauer and Gligor [23], while showing that the
resiliency of both schemes is comparable. Realizing that the Eschenauer and Gligor
scheme is considered as having good resiliency, one can conclude that the SECK
scheme has overall good resiliency property as well.

17 Current Challenges and Approaches in Securing Communications 583

Fig. 4 The ratio of keys
captured versus the ratio of
the captured nodes (From Ref.
[23])

2.3 Attack Detection and Prevention

Section 1.3 briefly discussed several basic attacks and defenses in WSNs. This section
extends the previous discussion, and focuses on attack detection and prevention
mechanisms for two well-known attacks in WSNs: the Sybil attack and the Wormhole
attack. Another, a more complex issue, compromised node detection, is discussed
here as well.

2.3.1 Sybil Attack Detection and Prevention

Newsome et al. systematically analyzed the Sybil attack and its defensive measures
in Ref. [31]. In the Sybil attack, a node illegitimately claims multiple identities. This
attack can be exceedingly detrimental to many important functions of WSN. Figure 5
demonstrates Sybil attack, where an adversary node ‘AD’ is present with multiple
identities. ‘AD’ appears as node ‘F’ to ‘A’, as node ‘C’ to ‘B’, and as node ‘A’ to ‘D’,
so when ‘A’ wants to communicate with ‘F’, it sends the message to the adversarial
node ‘AD’.

For distributed storage for WSNs, the Sybil attack can defeat replication and
fragmentation mechanisms in a distributed hash table, such as GHT [32]. Thus, the
system may not realize that while it replicates or fragment data across a number of
nodes, in fact, it is storing data on a number of Sybil identities which were created
by the same malicious node. For routing, the Sybil attack can defeat multipath or
dispersity routing protocols, such that seemingly disjoint paths could, in fact, tra-
verse through a single malicious node which represents several Sybil identities. In
geographic routing protocols, a Sybil node could appear as being present in more
than one place at the same time. For data aggregation, the Sybil attack can have one
malicious node contribute to the aggregate many times to alter the aggregate reading.
For voting, the Sybil attack allows a malicious node to vote multiple times to control

584 Z. J. Haas et al.

Fig. 5 Sybil attack

outcome of a vote, such as in a blackmail attack. For fair resource allocation, a Sybil
node can claim multiple identities and therefore obtain more network resources. For
misbehavior detection, Sybil nodes could “spread the blame” by making it appear
that the level of misbehaving of the Sybil identities is large enough for the system to
take an action. Defenses against the Sybil attack include radio resource testing, ran-
dom key predistribution, position verification, and registration [31]. In radio resource
testing [31], it is assumed that any sensor node has only one radio, and that a radio is
incapable of simultaneously sending or receiving on more than one channel. When
a node A wants to test whether any of its neighbors are Sybil nodes (i.e., a node with
multiple identities), the node A can assign to each of its neighbors a different channel
to broadcast some messages. The node A can then choose randomly a channel to
listen to. Due to the assumption that each node has only one radio, if A does not
hear anything on a chosen channel, then the node A can be suspect that the node
being assigned to that channel is a Sybil node. Figure 6 shows the probability of not
detecting the presence of some Sybil nodes using this method.

In random key predistribution [31], each node is assigned a subset of a large set
of keys, such that any two nodes share at least a secret key for communication, and
no two nodes are assigned with the same subset of keys. As a result, the sensor node
can be uniquely identified by the subset of keys that it possesses. A network is able
to verify the identity of a node by the keys that the node possesses, referred to as key
validation. To launch a successful Sybil attack, the attacker is challenged to find the
exact subset of keys of a node to steal the node’s identity. The estimated probability of
a randomly created Sybil identity being effective is depicted in Fig. 7 as a function of
the number of compromised nodes. As a point of reference, for an attack to succeed,
the attacker needs to compromise at least 150 nodes (in the full validation case).

Position verification is another approach to defend against Sybil attacks [31]. This
approach is only applicable in static WSNs (i.e., where sensor nodes are not mobile).
In this approach, the network verifies the positions of each node. Sybil nodes can be
detected because the Sybil nodes advertised by a single malicious node now all have

17 Current Challenges and Approaches in Securing Communications 585

Fig. 6 Probability of no Sybil
nodes being detected while
using the radio defense in
the case of a channel being
assigned to every neighbor
(From Ref. [31])

Fig. 7 Probability of a ran-
domly created Sybil node
being effective in the key
pool scheme as a function of
the number of compromised
nodes (From Ref. [31])

the same physical position, which would raise an alarm, as the assumption is that a
single physical location could be associated with at most one node.

Registration is another potential solution against Sybil attacks [31]. In this
approach, there is a trusted central authority that manages the network. The cen-
tral authority keeps a list of trusted nodes and deployment of nodes. In order to
detect a Sybil attack, an entity would poll the network; the results would then be
compared with the information about the known deployment. To prevent attack, any
node could query the central authority for checking the trusted node list. However,
this scheme requires that the central authority must be able to store the trusted node
list and deployment information securely.

586 Z. J. Haas et al.

2.3.2 Wormhole Attack Detection and Prevention

In the wormhole attack, attacker records packets at one location in the network,
tunnels them to another location, and retransmits the packets at the other location,
making it appear as the two parts of the tunnel are in close proximity to each other.
Figure 8 demonstrates the wormhole attack, where ‘WH’ is the adversary node which
creates a tunnel between nodes ‘E’ and ‘I’. These two nodes are at most at the distance
of two hops from each other.

The wormhole attack can form a serious threat in wireless networks. For example,
the wormhole attacker can gain unauthorized access, disrupt routing, or perform a
Denial-of-Service attack. In Ref. [33], Hu et al. described the wormhole attack and
proposed a mechanism called packet leashes for detecting and defending against
wormhole attacks. A leash is an additional part of a packet that limits the packet’s
maximum allowed transmission distance. The authors introduced two types of
leashes—geographic leash, which limits the distance a packet travels, and temporal
leash, which limits the time a packet lives (and hence limits the travelling distance,
as packet’s speed is limited by its speed of propagation). To construct a geographical
leash, each node is assumed to know its own position, and all nodes in the network
are assumed to have loosely synchronized clocks. Consider two nodes: source, s, and
receiver, r. Let ps, pr, ts, and tr denote positions and times of nodes s and r, respec-
tively. If v is an upper bound on the velocity of any node, and π is the maximum
clock difference between any two nodes, then upon receiving the packet from source
s, the receiver can compute an upper bound on the distance between the sender and
itself, as dsr ⊂ ||ps − pr|| + 2v (tr − ts + π) + σ, where σ is the maximum rela-
tive error in location information between any two nodes. To use temporal leashes,
the packet includes an expiration time, after which the receiver does not accept the
packet. The expiration time is based on the allowed maximum transmission distance
and the speed of light. A specific protocol, called TIK (TESLA with Instant Key

Fig. 8 The Wormhole Attack

17 Current Challenges and Approaches in Securing Communications 587

Fig. 9 Timing of a packet
in transmission of the TIK
protocol (From Ref. [33])

disclosure), is also presented in Ref. [33] to implement temporal leashes. TIK con-
sists of three states: sender setup, receiver bootstrapping, and sending and verifying
authenticated packets. In the sender setup phase, the sender uses a pseudo-random
function F and a secret master key X to derive a series of keys K0, K1, . . ., Kw, where
Ki = FX(i). The pseudo-random function is assumed to be secure in the sense that it
is computationally intractable for an attacker to find the master secret key X, even if
all the keys K0, K1,…, Kw are known. In addition, without the secret master key X,
it is computationally intractable for an attacker to derive a key Ki that the sender has
not yet disclosed. Each Ki expires after some time interval I, which is selected by
the sender. In the receiver bootstrapping phase, the receiver synchronizes with the
source to agree on the initial time T0 and the time interval I. Finally, in the sending
and verifying authenticated packets phase, if the sender sends a packet P at time Ti,
then the sender also sends a message authentication code (HMAC) of P generated
using some undisclosed key Ki+j, in which j is large enough such that P arrives at
the receiver before time Ti+j and Ki+j has not yet been disclosed. The receiver can
wait until time Ti+j for the source to release the key Ki+j, and verify the HMAC for
P. The timing diagram of a TIK packet is shown in Fig. 9. The protocol assumes that
all the clocks are synchronized within the maximum timing error of π. Upon receipt
of the HMAC value and based on the time as the time of disclosure of the key , the
receiver confirms that the corresponding key was not yet sent by the sender. After all
the verifications of the protocol were successfully completed, the receiver accepts
the packet.

2.3.3 Compromised Node Detection

Besides attack detection and prevention, compromised node detection is another
important problem in WSN security. Compromised node detection is usually
implemented by software or hardware code-testing schemes. However, for WSNs,
hardware-based code-testing schemes are often not feasible for lightweight sensor
nodes. Software-based code-testing is more promising, because it requires neither
dedicated hardware nor physical access to the device. Software-based approaches are
usually based on a challenge-response scheme, where the verifier (usually the sink
node) challenges a prover (a target device) to compute a checksum of its memory
[34]. Examples of software-based code-testing schemes are SWATT [35] and SCUBA
[36].

588 Z. J. Haas et al.

SWATT (SoftWare-based ATTestation for Embedded Devices) [35] by Seshadri
et al. is a software-based attestation technique to verify the memory contents of
embedded devices. For each sensor device, SWATT adds an external verifier that is
physically distinct from the device. The verifier and the device then run the challenge-
response protocol of SWATT. To ensure that the device can return the correct answer
only if its memory contents are correct, the verification procedure uses a pseudo-
random memory traversal, in which the verifier sends to the device a randomly
generated seed for the device to generate a pseudorandom starting memory address
for the verifier to access. The verifier then traverses the memory randomly, and iter-
atively updates a checksum of the memory contents. Since the verifier’s memory
traversal is random, the attacker cannot predict which memory location is accessed,
and therefore after a certain number of iterations of memory accesses, the verifier
can eventually detect whether the memory is maliciously altered.

SCUBA (Secure Code Update By Attestation) [36] by Seshadri et al. is another
example of software-based code-testing scheme. SCUBA enables a sensor network
to detect compromised nodes. Once a compromised node is detected, SCUBA allows
the network to either repair the compromised node through code updates, or revoke
the compromised node. SCUBA is based on ICE (Indisputable Code Execution),
which is a challenge-response-based protocol that ensures that a remote sensor node
does not execute a malicious executable. To achieve this, each sensor node is installed
with a special executable called the ICE verification function. The ICE verification
function is responsible for checking the integrity of an executable on the sensor node,
and also for setting up an execution environment to provide atomic execution for this
executable (i.e., when an executable is executed in this execution environment, no
other executable can interrupt this execution). To ensure that the ICE verification
function itself is untampered, the ICE verification function is implemented as a self-
checksumming code, which is a sequence of instructions that compute a checksum
over themselves, such that the checksum would be wrong or the computation would
be slower if the sequence of instructions were modified. The SCUBA protocol then
works as follows. To invoke a sensor node’s executable X, the invoker node (e.g.,
a sink node) first sends a “check integrity and execute” request to the sensor node.
The ICE verification function on the sensor node then checks for the integrity of X,
and executes X if the integrity checking passed. After finishing the execution of X,
the sensor node sends the execution result, together with the checksum returned by
the ICE verification function, back to the invoker. The invoker can detect whether
the sensor node’s executable is compromised by reviewing the ICE checksum.

3 Secure Routing

Many WSN routing protocols are based on traditional ad hoc network routing
protocols. The original focus of ad hoc routing protocols was on performance, but
security issues were extensively studied as research on ad hoc routing protocols
matured (e.g., [37–42]). Of course, secure routing is also an important requirement

17 Current Challenges and Approaches in Securing Communications 589

Fig. 10 Taxonomy of secure routing

for WSN applications. This section examines existing approaches to secure routing
for WSNs. Figure 10 shows the taxonomy of secure routing. A comprehensive dis-
cussion of many of the attacks on routing protocols is also presented in Ref. [43] by
Karlof et al.

3.1 Traditional Routing Protocols for Ad Hoc
and Sensor Networks

Routing protocols for ad hoc and sensor networks can be broadly classified into three
categories: proactive, reactive, and hybrid [44]. In proactive routing protocols, nodes
periodically exchange routing information, so typically correct routes are almost
always known at the time a routing request is placed. Examples of proactive rout-
ing protocols include DSDV [45], TBRPF [46], and OLSR [47]. In reactive routing
protocols, nodes exchange routing information only when a communication request
is pending. Examples of reactive routing protocols include DSR [48], AODV [49],
LMR [50], ABR [51] and TORA [52]. Hybrid routing protocols are a mixture of
proactive and reactive routing protocols. ZRP [53] and FSR [54] are examples of
hybrid routing protocols. Proactive routing protocols have lower latency, since rout-
ing information is consistently maintained; however such protocols are wasteful in
communication overhead when the traffic activity is small and, especially, when the
network is highly mobile. In contrast, reactive routing protocols incur smaller com-
munication overhead at the expense of larger delays. Thus, reactive protocols may
be more practical for low-activity and mobile ad hoc networks, while proactive pro-
tocols may better fit highly-active and more static networks. Similarly, for mobile
sensor networks which support applications that require infrequent communications,
reactive protocols might be a better choice. Hybrid routing protocols typically out-
performs proactive and reactive routing protocols, because they use a combination of
the two [55], and often optimize their performance based on the network conditions
[53, 56].

590 Z. J. Haas et al.

The original designs of many of the ad hoc network routing protocols are based
on performance metrics (e.g., energy efficiency) rather than on security provisions,
but there have been numerous works that extend these original ad hoc network rout-
ing protocols to improve security. Zapata in Ref. [37] noted that ad hoc networks
protocols are being designed without security in mind. He proposed the secure ad
hoc on-demand distance vector (SAODV) routing protocol to address the problem
of securing a MANET network. SAODV assumes that each node has a signature key
pair from a suitable asymmetric cryptosystem. Further, each ad hoc node is capable
of securely verifying the association between the address of a given ad hoc node and
the public key of that node. AODV uses two mechanisms to secure its messages:
Digital signatures and Hash chains. Digital signatures are used by AODV to authen-
ticate the non-mutable fields of a message. Hash chains are used in AODV to secure
the mutable part of a message, which is hop count information. On the other hand,
for route error messages, a node uses digital signatures to sign the whole message,
and any neighbor of the node that receives such a route error message authenticates
the signature.

Papadimitratos and Haas [39, 57] proposed the Secure Message Transmission
(SMT) protocol, which is based on the notion of information dispersion. SMT
assumes that there is another underlying protocol capable of discovering routes
in the network (e.g., SRP [7]), although the routes may contain malicious nodes.
SMT adds redundancy and partitions the information into fragments, while trans-
mitting the fragments across multiple routes, so that even if some of the fragments
are lost (i.e., those that are sent over the routes with malicious nodes), the remain-
ing fragments suffice to reconstruct the original transmission. While SMP transmits
data simultaneously over multiple routes, a modification of SMT, the Secure Single
Path (SSP) protocol, transmits data over multiple routes in an alternative manner.
The salient feature of these protocols is that they do not rely on trustworthiness of
nodes in the network (with the exception, of course, of the source and the destination
nodes). Indeed, the protocols can deliver highly reliable and low-delay communica-
tion even when a large fraction of the network nodes act maliciously. The protocols
are, in particular, useful for reliable and secure real-time communications, when
retransmissions may not be an option. As a point of reference, SMT can deliver 93 %
of messages without retransmissions, even when 50 % of the nodes randomly drop
packets. Figure 11 depicts an example of the SMT operation.

Fig. 11 SMT transmission
of a single message through
dispersion

Time
Source

Destination

ACK

Re-transmit

Dispersed
ACK

Dispersed
Message

Lost
Fragments

Fully
reconstructed

message

Lost
Fragment

17 Current Challenges and Approaches in Securing Communications 591

Ariadne [40], by Hu et al., is an on-demand secure routing protocol for ad hoc
networks. Ariadne’s goal is to prevent attacks by tampering with uncompromised
routes (i.e., routes formed by uncompromised nodes), and also prevent many types
of DoS attacks. The operation of the Ariadne protocol is based on the target node
authenticating the Route Requests. This is accomplished by the initiator including
a MAC, which is calculated over the unique data in the Route Request, and using
key Ksd. Ariadne uses three alternative mechanisms for route data authentication,
which are: TESLA protocol, Digital signatures, and standard MACS. Additionally,
per-hop hashing technique is used to confirm that there is no missing node in the
list of nodes in the request. The design of the protocol is based on a reactive routing
protocol DSR [48] and a broadcast authentication protocol TESLA [58, 59]. The
operation of DSR is divided into Route Discovery and Route Maintenance. In Route
Discovery, the source node S broadcasts a ROUTE_REQUEST message containing
the identifier for the destination node D (which is referred to as the “target”). There
are two situations in which discarding of a ROUTE_REQUEST occurs. One such a
situation is when the node’s address is already listed in the route’s record. Discarding
the request avoids a request propagating around a loop. The other such a situation
involves discarding the request upon determination that the host has recently seen
a copy of the same request, one carrying the same initiator address and the same
request id. This guarantees that a later copy of the request that arrived at this node
by a different route is removed. If the request is not discarded, the node appends its
own identifier to the ROUTE_REQUEST message and re-broadcasts the message.
When ROUTE_REQUEST reaches the target D, D replies with a ROUTE_REPLY
message, which contains the routing information, back to the source node S. Node S
then uses the route in ROUTE_REPLY message to forward data to the node D. Route
Maintenance is a mechanism used to detect broken links on an established route. If
any of the intermediate hop transmission along the path fails, the node unable to
make the next hop transmission returns a ROUTE_ERROR message back to S, and
S repeats the Route Discovery phase. TESLA uses a secret key to generate message
authentication code (MAC) for messages to ensure broadcast authentication. The
secret key should be kept secret by the message originator, so that no other node can
forge the MAC, however, the receiving nodes need the secret key for verification.
Instead of using a computationally expensive asymmetric cryptography scheme such
as RSA [19], TESLA achieves this asymmetry from loose time synchronization and
delayed key disclosure. In TESLA, the sender chooses a random initial key KN , and
generates a one-way key chain by repeatedly computing a one-way hash function H
on its starting value: Ki = H (Ki+1) = HN−i (KN). To compute any previous key Kj

from a key Ki in which j < i, a node can compute Kj = Hi−j (Ki) Then, at time slot
ti, the key Ki is used to generate the MAC. At the next time slot ti+1, Ki is published,
so that the receiving nodes can verify the MAC using Ki. If the source node has
additional broadcast messages to send, Ki+1 is used to generate the MAC for the new
messages at time ti+1 Similar to DSR, Ariadne also has a Route Discovery phase
and a Route Maintenance phase. To support secure routing, the ROUTE_REQUST,
ROUTE_REPLY, and ROUTE_ERROR messages are all authenticated using the
TESLA scheme described above.

592 Z. J. Haas et al.

Marti et al. in Ref. [38] proposed a reputation-based secure routing for ad hoc
networks. In reputation-based routing, the next-hop of a path is chosen based on
reliability of links and reputation of nodes. Marti et al. used a watchdog that identifies
misbehaving nodes and a Path-rating scheme that helps routing protocols to avoid
these nodes; Watchdog and Pathrater are the two mechanisms used to detect and
mitigate routing misbehavior. These mechanisms are implemented on top of source
routing protocols. Detection of misbehaving nodes is done by the Watchdog by
keeping a buffer of packets that were recently sent. The Watchdog then attempts to
verify whether a packet has, indeed, been forwarded by the next node by overhearing
the transmissions of the neighboring nodes. The Watchdog removes the packet from
its buffer when it determines that the packet has been forwarded by the next node.
If after a timeout the packet is still in the buffer, a failure count of the node that was
responsible for forwarding on the packets is incremented by the Watchdog. If the
count surpasses a particular threshold, the node is considered a misbehaving node.
The Pathrater is run by every network node. The most likely reliable route is chosen
by taking into the consideration the knowledge of misbehaving nodes and the data
about links’ reliability.

The algorithm of the Pathrater assigns ratings to nodes in five steps: firstly, when
the Pathrater becomes aware of a node in the network, the Pathrater assigns the node
the rating of 0.5 (every node assigns itself the value of 1.0.) Secondly, at periodic time
intervals (of 200 ms), the Pathrater increments the ratings of nodes on all actively
used paths by the value of 0.01, with the maximum rating value being 0.8. Thirdly,
when the Pathrater detect a misbehaving during packet forwarding, it decrements a
misbehaving node’s rating by 0.05. Fourthly, negative path values suggest that there
is one or more suspected misbehaving nodes on the path. Of course, the goal is to
choose the path with the highest ratings.

The Grudger Protocol by Buchegger and Boudec in Ref. [41] is also a reputation-
based secure routing for ad hoc networks. Detecting and isolating misbehaving nodes
becomes possible by utilizing the Grudger Protocol. Trust relationships and routing
decisions are based on behavior of other nodes, which is gathered through experience,
observation, or reports. It is intended to be implemented and run on top of any
existing ad hoc routing protocols, such as DSR or AODV. Each node of the Grudger
protocol consists of four components: monitor, reputation system, path manager,
and trust manager. The monitor detects deviance by watching its neighborhood. This
is accomplished by listening to the transmissions of the next node to verify that it
forwards the packet. As a result, nonconformities can be detected. The trust manager
plays an important role in three aspects: firstly, using trust function it calculates the
trust levels of nodes and manages trust levels in a trust table; secondly, the incoming
ALARM messages are filtered based on the trust level of the reporting nodes and
maintaining information about received alarms in an alarm table; thirdly, forwarding
the ALARM messages according to the friends list. The reputation system is in
charge of maintaining a table of the ratings of the nodes. A rating is determined
based on a function that includes the node’s own experience, the observations, and
the reported experience. The path manager re-ranks paths based on a security metric,
deletes paths which contain malicious nodes, ignores route requests generated by

17 Current Challenges and Approaches in Securing Communications 593

Fig. 12 The relationship
between monitor, reputation
system, path manager, and
trust manager (Based on Ref.
[41])

malicious node, and ignores requests for a route which contains a malicious node in
the source route (while alerting the source node).

Figure 12 describes the relationship between the four components of the Grudger
Protocol (the monitor, the reputation system, the path manager, and the trust man-
ager). The operation is explained as follows in four steps. Step 1: When the monitor
detected a suspicious event, such information is passed on to its reputation system.
Step 2: The reputation system determines whether the event happened more often
than some predefined threshold, and if so, the rating of the node that caused the event
is adjusted by the reputation system. Step 3: If the resulting rating of the node is
too high, then the path manager removes all the routes that contain this node from
the cache of the paths. The trust manager then sends out an ALARM message. Step
4: Upon receipt of such an ALARM message by a monitor component from a node
that is (at least) partially trusted, the monitor passes such a received ALARM mes-
sage on to the trust manager, and the ALARM table in the trust manager is updated.
Depending on the level of evidence, the information about the node reported in the
ALAM will be passed on to the reputation system.

Despite the effectiveness of those secure routing protocols for ad hoc networks,
they may not always be directly applied to WSNs. This is because WSNs usually have
a directional data flow, from the data collector nodes towards the sink nodes; whereas
in ad hoc networks, data flows are more uniform among nodes. Routing protocols
designed for ad hoc networks do not take this directional data flow characteristic into
considerations. Therefore, depending on the situation WSNs may need their own
versions of such secure routing protocols.

594 Z. J. Haas et al.

3.2 Multipath Routing

Multipath routing protocols take advantage of the redundancy of sensor nodes in
the network. They are robust against limited number of compromised nodes, at the
expenses of larger communication overhead. INSENS (Intrusion-tolerant Routing
Protocol for Wireless Sensor Networks), proposed by Deng et al. in Ref. [60], is an
example of a multipath routing protocol. The main goal of INSENS is to support
operation in spite of the harm caused by an intruder who was able to compromised
sensor nodes with the intention to inject, modify, or block packets. INSENS assumes
that after the initial deployment, sensor nodes can have only bounded mobility.
INSENS is effective against DoS attacks and false routing information spreading.
In this scheme, each node shares a secret key only with the sink node and not with
other nodes. To defend against DoS attacks, broadcast is only permitted by the sink
node. To defend against false routing information spreading, initially the sink node
computes a multi-hop, multi-path data forwarding tree in three rounds. In round 1,
the sink node broadcasts route request message to all sensor nodes. In round 2, the
sensor nodes reply back to the sink node with their local topological information.
In round 3, the sink node computes a routing table, and then securely unicasts it to
each sensor node in a breadth-first manner. This forms a data forwarding tree rooted
at the sink node. Data forwarding then proceeds according to this data forwarding
tree. Multipath routing in INSENS enhances intrusion tolerance, so that even if an
intruder compromises a node or a path, alternate forwarding paths still exist on the
data forwarding tree. Bidirectional verification is used to protect against the rushing
attack. Nodes joining and leaving a network are supervised by secure maintenance
mechanisms.

In Fig. 13, multiple routes are derived between each source and destination. The
intent is that these paths should be as independent as possible; i.e., that the paths
share in common minimum number of nodes and links. In the best case, only the

Fig. 13 Selection of paths in
the multipath routing policy
(From Ref. [60])

17 Current Challenges and Approaches in Securing Communications 595

source node and the destination node are common between two paths. In fact, the
second path should exclude the nodes on the first path (area S1 in Fig. 13), their
neighbors (area S2), and the neighbors of their neighbors (area S3). One or more
intruders along some paths can jeopardize the delivery of some of the copies of a
message. However, as long as there is at least one path that is not affected by an
intruder, the destination will receive a correct copy of the message.

3.3 Secure Routing for Cluster or Hierarchical Sensor Networks

Many WSN architectures are “cluster-based.” In such architectures, each cluster has
a cluster head and many subordinates, and the cluster head is very close (one-hop or
only few-hops away) from all subordinates in its cluster. Subordinates collect data
and send the data to the cluster head, and then the cluster head determines routing
path and transmits aggregated data. LEACH in Ref. [61], proposed by Heinzelman
et al., is one of the first cluster-based routing protocols that significantly reduces
energy consumption. LEACH is a self-organizing, adaptive clustering protocol that
uses randomization to distribute the energy load evenly among the sensor nodes.
After sensor node deployment, nodes cluster themselves and elect one cluster head
for each cluster. Since cluster heads typically perform more intensive processing, they
are more prone to faster battery drainage and reduced lifetime. To reduce this problem,
LEACH randomly rotates the cluster-head position. Furthermore, to reduce energy
and to enhance system lifetime, the transmissions to the cluster head are compressed
using local data fusion. The cluster head selection process is done probabilistically:
each sensor node elects itself to be a local cluster head with certain probability.
A cluster head broadcasts its status (e.g., remaining energy, location information,
etc.) to other sensors. The non-cluster head nodes then join a cluster by choosing the
cluster head that requires the minimum communication energy. After all the nodes
are arranged into clusters, every custer-head generates a schedule to be used by the
nodes that belong to the cluster-head. The energy dissipated in the sensor can be
minimized by turning off the radios of nodes, when the nodes are not transmitting.
The LEACH protocol also equalizes the energy used by the nodes, so that nodes are
depleted of energy at about equal rate, thus allowing maintaining a more uniform
coverage of the environment.

Operation of the LEACH algorithm is based on rounds, and the algorithm com-
prises the following phases: (a) the advertisement phase, (b) the cluster set-up phase,
(c) the schedule creation phase, and (d) the data transmission phase.

There are two steps in the advertisement phase; the cluster-heads are chosen in
the first step by having each node n, select a random number between 0 and 1. If this
number is less than the threshold T(n), then the node serves as a cluster-head in the
current round. The threshold function is set as follows:

596 Z. J. Haas et al.

T(n) =
{

P
1−P · (r mod P−1)

if n ◦ G

0 otherwise,

where P is the intended percentage of cluster heads, r is the number of the current
round, and G represents the set of nodes that have not served as cluster-heads in
the last 1/P rounds. The second step in the advertisement phase consists of form-
ing the clusters: transmitting with the same power, the cluster-heads transmit their
advertisement using the CSMA (Carrier Sense Multiple Access) protocol. Each non-
cluster-head node selects its cluster-head (and, thus, the cluster) for this round based
on the measured signal strength of the received advertisement transmissions. During
the cluster set-up phase, a non-cluster-head node transmits its selection to the cluster-
head and, thus, becomes a member of the cluster. The cluster-head node generates a
TDMA schedule, which is based on the number of the nodes in its cluster, and which
indicates to each node when a node can transmit. In the data transmission phase, the
non-cluster nodes transmit to the cluster head based on the TDMA schedule. When
all the data from the non-cluster nodes have been received by the cluster head, the
cluster head compresses the data into a single signal, which the cluster head then
transmits to the base station. To reduce the interference between the transmissions of
the nodes in different clusters which are in close proximity one to another, the clusters
use different CDMA (Code Division Multiple Access) codes to communicate. The
cluster head send the information about the choice of a particular spreading code to
the nodes in its cluster. Using the particular spreading code, the cluster head can then
extract the information sent by its nodes, while reducing the interference caused by
transmission of nodes in other clusters.

Despite the energy-efficiency characteristic of LEACH, Karlof et al. in Ref. [43]
pointed out that such cluster-based protocols are susceptible to the Sybil attack, in
which a compromised node can claim multiple identities and advertises itself as
multiple cluster heads. Tubaishat et al. proposed in Ref. [62] a cluster-based rout-
ing protocol, the Secure Routing Protocol for Sensor Networks (SRPSN). The goal
of the SRPSN protocol is to protect the data packet in the sensor networks from
different types of attacks. It uses a group key management scheme, which contains
group communication policies, group membership requirements and an algorithm for
generating a distributed group key for secure communication. This secure routing
protocol stores the routing table in a cache. The protocol uses hierarchical archi-
tecture and highly efficient symmetric cryptographic operations. In the group key
management scheme, the key computation starts from the initiator node by using its
partial key. The group key is computed by a leader using the partial keys which are
contributed by every sensor node in a group; i.e., one can consider this as a “bottom
up approach,” as the accumulation of the partial keys is done from a leaf nodes up
to the parent nodes. A modified multiparty Diffie–Hellman protocol [63] is used for
computing group key, while the updating of group keys is done using the concept
of key trees. The routing information messages (e.g., route request and route reply
messages) are then encrypted using the group key.

17 Current Challenges and Approaches in Securing Communications 597

Fig. 14 Ripple-zone-based
WSAN routing (From Ref.
[64])

Cluster-based secure routing protocols are also used in wireless sensor and
actuator networks (WSANs), which is a special type of WSNs that consists of
both, low-power sensor nodes that form the traditional WSN and high-power actu-
ator nodes. Therefore, while WSNs are mostly concerned only with sensors-to-
sensors communications, WSANs have to consider four types of communications:
sensors-to-sensors, sensors-to-actuators, actuators-to-sensors, and actuators-to-
actuators. Furthermore, the natures of the four types of communications are different.
For example, sensors-to-sensors communication is usually many-to-one (sensors to
the sink) or many-to-many (sensors to sinks), whereas actuators-to-actuators com-
munication is usually peer-to-peer. Hu et al., in Ref. [64] proposed a secure rout-
ing protocol based on WSAN’s hierarchical network architecture. A scalable and
energy-efficient routing architecture, referred to as Ripple-zone (RZ), is employed
to implement WSAN security. A multiple-key management scheme, together with the
Ripple-zone routing architecture, improves the security of in-network processing, for
example, of the data aggregation operation. The scheme uses a Member Recognition
Protocol (MRP) to allow actuators and sensors to self-organize themselves into sep-
arate domains, with each actuator as the domain center. As shown in Fig. 14, within
each domain, sensor nodes are grouped into ripple zones around the domain center
actuator, such that nodes in a ripple zone all have the same number of hops to the actua-
tor. Within each ripple zone, sensor nodes are further clustered, and each cluster elects
a sensor node as the cluster head or “master.” A “master” is responsible to accumulate
data from the sensors in its zone. The “master” then transmits the data to the “master”
in the next “ripple,” which is located closer to the actuator. Each node (sensor or actu-
ator) shares a global key and a pairwise key with the sink node, which are updated
periodically. In the high-level (among actuators), two types of keys exist: session
key (SK), which is used to secure data packet transmission, and a backbone key
(BK), which is used to secure control packets that include session key re-keying
information. Figure 15 shows the relationship between these two keys. To protect
against attacks, the session keys (SKs) are periodically re-keyed, while the refresh-
ing of the backbone key (BK) is event-triggered, based on events such as actuator
insertion, node death, or node compromise. A chain of session keys is generated at
the sink node by continuously applying a known one-way hash function, and the key

598 Z. J. Haas et al.

Fig. 15 Backbone Key (BK)
and Session Key (SK) (From
Ref. [64])

chain is sent to the actuators. An actuator keeps a buffer to store the key chain in
order to tolerate multiple key losses. To support different security levels for different
types of messages, multiple types of keys are introduced in the low level: Master-to-
Actuator Key (MAK), Inter-Master Pairwise Key (MPK), Sensor-to-master Pair-wise
Key (SPK), Zone Key (ZK), and Ripple Key (RK). A MAK is shared between each
master and its domain actuator and is used for direct master-to-actuator secure com-
munication. MPK is used occasionally to establish secure channels between two
masters that belong to two actuator domains. SPK is shared between a master and
each of the sensors in its zone. ZK is used for data aggregation and also for propa-
gation of a query message to the whole cluster and is shared among all sensors in
the same cluster. RK is used to achieve hop-to-hop security in an actuator domain.
This multi-key management scheme allows for the establishment of a secure routing
protocol based on ripple-zone, in which messages are routed in a hop-by-hop manner
across ripple zones.

3.4 Broadcast Authentication

Broadcast is a fundamental operation in many networks, and it is an essential com-
ponent in many routing protocols. Perrig et al. in Ref. [65] proposed μTESLA,
an authenticated broadcast protocol for the SPINS (Security Protocols for Sensor
Networks). In general, authentication operation based on asymmetric cryptography
is too computationally intensive for WSN nodes. μTESLA overcomes this prob-
lem through the concept of delaying the disclosure of symmetric keys. To send an
authenticated packet, the sink node computes a MAC (message authentication code)
on the packet with a key that is secret at that point in time. Upon receiving the packet,
the node temporarily stores the packet in a buffer and waits for the key disclosure
from the sink node. At the time of key disclosure, the sink node broadcasts the veri-
fication key to all the receivers. When a node receives the disclosed key, it can verify
the key. If the key is correct, the node can use it to authenticate the packet. Each

17 Current Challenges and Approaches in Securing Communications 599

MAC key Ki is a key of a key chain, generated by a public one-way function F, such
that Ki = F(Ki+1) where the subscript denotes the time interval.

4 Secure Localization Schemes

Depending on the application, localization can be an essential service in a WSN. For
example, a location-based routing protocol, GPSR (geographic routing protocol)
proposed by Karp et al. in Ref. [66], relies on accurate position of sensor nodes
to perform routing. Localization is a well-studied topic, but almost all localization
systems operate in a non-adversarial setting [67]. Secure localization only recently
emerged as an active area of research. Secure localization schemes can be categorized
into two groups—beacon-based and non-beacon-based.

4.1 Beacon-Based Schemes

In the beacon-based schemes, some nodes in the WSN (referred to as beacon nodes)
are equipped with GPS hardware. These beacon nodes can correctly identify their own
location via GPS signals. The beacon nodes can then help the non-beacon nodes to
obtain their location information. The localization schemes can be categorized into
two types of schemes: “range dependent” and “range-independent.” In the range-
dependent schemes, the calculation of a node’s location is based on the estimates
of distances and angles to reference points, where the locations (coordinates) of
the reference points are known. Such estimates are usually obtained by one of the
following ways: received signal strength, Time of Arrival (ToA), Time Difference of
Arrival (TDoA), and Angle of Arrival (AoA) [67].

On the other hand, the range-independent localization schemes do not rely on
the nodes performing time, angle, or power measurements. For example, Lazos
et al. in Ref. [68] proposed a range-independent localization algorithm called SeRLoc
that is beacon-based. SeRLoc is a distributed algorithm based on a two-tier network
architecture that allows sensors to passively determine their location without inter-
acting with other sensors. There are two types of nodes: sensor nodes equipped with
omnidirectional antennas, and locator nodes equipped with multi-directional anten-
nas and GPS. Locator nodes first obtain their accurate location via GPS, and then
each locator transmits beacons with their individual coordinates and coverage areas.
Each sensor node collects location information from all the locator nodes that it can
receive and then, using this information, assembles a search area of its own loca-
tion. After receiving enough beacons from different locators, the sensor estimates its
location as the center of gravity of the overlapping region of the coverage areas. After
analytically evaluating the probability of sensor displacement due to security threats
in WSNs, such as the wormhole attack, the Sybil attack, and compromise of network

600 Z. J. Haas et al.

Fig. 16 A sensor estimates its
location as a Center of Gravity
based on the beacons from
locators L1, L2, L3, and L4
(Based on Ref. [68])

entities, they showed that SeRLoc provides accurate location estimation even in the
presence of these threats. See Fig. 16 for additional details.

Li et al. in Ref. [70] proposed a robust statistical method for secure localization
using triangulation. In triangulation, a sensor node gathers a collection of {(x, y, d)}
values, where d is an estimated distance from the sensor node to a beacon node at
location (x, y). In the ideal case, these {(x, y, d)} values map out to a parabolic sur-
face d2 (x, y) = (x − x0)

2 +(y − y0)
2. Thus, to estimate its location, the sensor node

can simply solve for a Least Square problem from the gathered data set {(x, y, d)}.
However, in the presence of adversaries, some of the (x, y, d) values can be out-
liers. Therefore, instead of using Least Square, the authors proposed to use Least
Median Square [69] for achieving robustness in localization. Unlike Least Square,
which minimizes the sum of the residue squares, Least Median Square minimizes the

LS
LMS

50 200100 150 250

20

60

50

40

30

70

10
0 50 2001501000 250

50

30

20

10

0

40

80

70

60

100

90
LS
LMS

√ √

(a) (b)

Fig. 17 The performance comparison between LS and LMS for localization (From Ref. [69])

17 Current Challenges and Approaches in Securing Communications 601

median of the residue squares. As a result, outliners have a much smaller effect on the
optimization cost function, which makes the location estimation more robust. Con-
tamination ratio (α) is the fraction of the samples that are outliers and the noise level
is assumed to be Φn. Figure 17 shows the square root of mean square error (MSE) as

a function of distance da =
√

(xa − x0)
2 + (ya − y0)

2 (measurement of the strength
of the attack). In particular, the performances at two pairs of α and Φn values are
presented in the Fig. 17a: (α, Φn) = (0.2, 20) and Fig. 17b: (α, Φn) = (0.3, 15). The
results demonstrate that the estimation error of ordinary LS increases with da, which
is caused by the non-robustness of LS to outliers. On the other hand, the estimation
error of LMS exhibits a different behavior; it first increases until reaching a maximum
(which occurs at a critical value of da), then the estimation error slightly decreases,
and finally stabilizes. These results could be interpreted as saying that, if LMS is
used for localization, the adversary does not gain by mounting a too powerful attack.

4.2 Non-Beacon-Based Schemes

Since equipping sensor nodes with GPS hardware can be costly, in some practical
environments beacon-based localization schemes may not be feasible. In non-
beacon-based schemes, a node calculates the position of another node of interest
by making an estimation based on the known locations of existing nodes. Non-
beacon-based schemes are less accurate, but are also less expensive to implement
than beacon-based schemes [67].

Fang et al. in Ref. [71] proposed a non-beacon-based localization scheme. The
scheme is based on the following observation: in practice, it is quite common for sen-
sor nodes to be deployed in groups. The locations of the groups (deployment points)
are pre-determined prior to deployment and are stored in each sensor’s memory.
Sensors from the same group can be placed in locations which follow some a priori
known spatial probability distribution, for example, a two-dimensional Gaussian
distribution. With this prior deployment knowledge, sensors can estimate their
locations by observing the group memberships of its neighbors. The scheme modeled
the localization problem as a statistical estimation problem and used the Maximum
Likelihood Estimation method to estimate the location.

5 Secure Data Aggregation

WSN applications that involve extensive amount of data processing typically do not
have all the processing done at the central sink node, but instead some processing
could be done by the network. Such in-network processing via data aggregation
in large-scale sensor networks has been shown to improve scalability, eliminate

602 Z. J. Haas et al.

information redundancy, and increase the lifetime of the network, but the drawback
is that data aggregation renders the security problem more difficult [72].

In a large-scale data processing network, sensor nodes can be classified into two
groups. Most of the nodes are data collector nodes that are only responsible for
collecting sensor measurements. The other nodes are data aggregator nodes that
perform aggregation functions upon receiving data from collector nodes. The mas-
sive data processing performed by the collector–aggregator architecture can signifi-
cantly reduce the communication overhead in the network. However, from a security
perspective, there are two types of potential threats: the first one is that aggregators
can receive false data from collectors; the second one is that the sink node receives
false data from compromised aggregators [10]. Secure data aggregation schemes
are developed to overcome these two threats. These schemes can be classified into
plaintext-based schemes and cipher-based schemes.

5.1 Plaintext-Based Schemes

In the plaintext-based secure data aggregation schemes, intermediate nodes in the
path can read the data in transit. Hu et al. in Ref. [73] proposed such an example. In
this scheme, each node A is initialized before deployment with a symmetric secret
key, KAS , shared with the sink node. Time is slotted, so that as time progresses, a
sequence of temporary encryption keys will be generated for node A. For example, in
time slot i, the temporary encryption key for A would be KAi = E (KAS, i). After each
time slot i, the temporary encryption key KAi will be revealed to all sensor nodes. The
data aggregation proceeds as follows. Consider the following sequence of connected
nodes: A ∀ B ∀ C ∀ S, as in Fig. 18. At time slot i, node A transmits its reading
RA, identifier A, and a message authentication code MAC (KAi, RA) to its next hop
node B. Node A will hold the data until time slot i + 1, when KAi is revealed. This

Fig. 18 Example Sensor
Network. (Based on Ref. [73])

A

C

B

Base Station S

A tree similar to the
one on the left side

(not shown)
IDA|RA|MAC(KAi , RA)

IDB|RB|MAC(KBi , RA)

| MAC (KCi , Aggr (RA, RB)

IDB|RB |MAC(KBi , RB)

IDA|RA|MAC(KAi , RA)

17 Current Challenges and Approaches in Securing Communications 603

same sequence of operations is done at node B (i.e., at the time of slot i, B sends
{RB, B, MAC (KBi, RB)} to C). At the time of the slot i + 1, KAi and are revealed to
all the nodes. Therefore node B can verify the integrity of RA, and if RA is verified,
then B forwards A’s message {RA, A, MAC (KAi, RA)} to C. Similarly, C can verify
RA’s and RB’s integrity using KAi and KBi, respectively. If the verification test at C
passed, C can perform aggregation over RA and RB. This data aggregation scheme is
therefore a delayed aggregation—aggregation is performed not at the immediate next
hop, but at a later hop. As a result, the intermediate node has to forward both its own
data and the received data to the last node, and therefore an additional transmission
cost is incurred. However, delayed aggregation benefits data integrity—an adversary
who obtains key material from a compromised node cannot tamper with many sensor
readings.

5.2 Cipher-Based Schemes

In cipher-based secure data aggregation schemes, intermediate nodes on the path
cannot read the data in transit. One implementation of such a scheme is Concealed
Data Aggregation (CDA), proposed by Girao, et al. in Ref. [74]. CDA is based
on a concept called privacy homomorphism (PH) proposed by Domingo–Ferrer in
Ref. [75]. PH is a particular encryption transformation with additive and multi-
plicative homomorphic properties, so that direct computation over encrypted data is
possible. Suppose Q and R are two rings, where “+” and “*” are the correspond-
ing addition and multiplication operations for both rings. Let K denote the set of
keys, E to be an encryption function (E : K × Q ∀ R), and D to be a correspond-
ing decryption function (D : K × R ∀ Q) Then PH ensures that, for all a, b ◦ Q
and k ◦ K , we have a + b = Dk (Ek (a) + Ek (b)) (i.e., homomorphic addition),
and a ∗ b = Dk (Ek (a) ∗ Ek (b)) (i.e., homomorphic multiplication). CDA uses PH
to encrypt aggregated data along the path. The additive and multiplicative homo-
morphism properties allow processing data while the data is encrypted, without the
necessity to decrypt the data at each intermediate node. This allows preservation of
data confidentiality and integrity while the data is routed within the network.

6 Conclusion

In this chapter, we discussed several important aspects of WSN security, including
cryptography schemes, key management schemes, secure routing protocols, secure
localization, and secure data aggregation.

Cryptography schemes are classified into public key cryptography and
symmetric key cryptography. Public key cryptography schemes are more compu-
tationally demanding, but require less care in key distribution and management. Due
to limited resources at the sensor nodes, public key cryptography schemes are often

604 Z. J. Haas et al.

considered infeasible for WSNs, although recent results showed that some public
key cryptography schemes can be implemented in WSNs by choosing appropriate
algorithms, parameters, etc. However, achieving energy-efficient public key cryptog-
raphy schemes still need further research. For symmetric key cryptography schemes,
efficient key management schemes need to be designed.

We discussed four categories of key management schemes—key pre-distribution
schemes, hybrid cryptography schemes, key infection schemes, and key management
in hierarchical networks. Although key management has been an active research area
in the past decade, there are still certain open problems in this area. Current key
management schemes are mostly concerned with static WSNs, and key management
schemes for mobile WSNs still lack appropriate solutions. Most key management
schemes require trustworthy sink nodes, which may not be a valid assumption in
many applications; therefore new schemes need to be designed to secure the sink
node.

Currently there are many secure routing algorithms for WSNs, and many of them
are derivatives of secure ad hoc network routing algorithms. We reviewed several ad
hoc network routing protocols, then surveyed two categories of secure routing proto-
cols specifically designed for WSNs—multipath routing and cluster-based routing.
Although many secure routing algorithms can prevent or detect node compromise to
some extent, there is still a window of vulnerability in which a compromised node can
go unnoticed and false routing information may be spread. Designing secure routing
protocols to minimize this window of vulnerability is another important research
area. Yet another consideration for future secure routing research is to expand the
evaluation metrics. Current evaluations of secure routing are mostly focused on secu-
rity metrics; other metrics such as QoS need to be considered in addition to security.

Secure localization is divided into two categories: beacon-based and non-beacon-
based schemes. However, both types of schemes are only suitable for static WSNs.
Mobile WSNs secure localization still need further investigation.

Secure data aggregation schemes include plaintext-based and cipher-based
schemes. Data aggregation schemes usually assume aggregators as more power-
ful sensor nodes than data collector sensor nodes. Therefore it is desirable to design
secure data aggregation schemes that can be applied in a homogeneous WSN, where
all the sensor nodes have equal capabilities. Another potential research direction in
secure data aggregation is to investigate the tradeoffs between security and energy
efficiency gains.

A somewhat newer topic related to WSN that has not been covered in this chapter
is that of security of Internet of Things (IoT) networks. The reader is referred to
references [76–81].

Acknowledgments This work was sponsored in part by the NSF grants numbers ANI-0329905,
CNS-1040689, ECCS-1308208, CNS-1352880, CNS-0626751, and by the AFOSR contract number
FA9550-09-1-0121/Z806001.

17 Current Challenges and Approaches in Securing Communications 605

References

1. M. Bishop, Computer Security: Art and Science (Addison-Wesley, Boston, 2003)
2. G. Stoneburner, C. Hayden, A. Feringa, Engineering Principles for Information Technology

Security, NIST Special Publication (Rev A, June 2004), pp. 800–827
3. M. Healy et al., Wireless Sensor Hardware: A Review (IEEE Sensors, Lecce, 2008
4. J.P. Walters et al., in Wireless Sensor Network Security: A Survey Security in Distributed, Grid,

and Pervasive Computing, ed. by Y. Xiao (CRC Press, Boca Raton, 2006)
5. E. Shi et al., Designing secure sensor networks. IEEE Commun. Mag. 11(6), 38–43 (2004)
6. A. Wood et al., Denial of service in sensor networks. IEEE Comput. 35(10), 54–62 (2002)
7. P. Papadimitratos, Z.J. Haas, Secure routing for mobile ad hoc networks, in Proceedings of

SCS CNDS (San Antonio, 2002) 27–31 Jan 2002, pp. 193–204
8. J. Jeong, G.Y. Lee, Z.J. Haas, Prevention of black-hole attack using one-way hash chain scheme

in ad hoc networks, in International Conference on Information Networking (Estoril, 2007)
pp. 22–25

9. L. Zhou, Z.J. Haas, Securing Ad Hoc networks. IEEE Netw. 13(6), 24–30 (1999)
10. X. Chen et al., Sensor network security: a survey. IEEE Commun. Surv. Tutorials 11(2), 52–73

(2009)
11. S.A. Camtepe et al., Key distribution mechanisms for wireless sensor networks: a survey.

Computer Science Department at RPI Techical report TR-05-07 (2005)
12. P. Ganesan et al., Analyzing and modeling encryption overhead for sensor network nodes, in

Proceedings of 2nd ACM International Conference on Wireless Sensor Networks Applications
(2003), pp. 151–159

13. G. Gaubatz et al., State of the art in ultra-low power public-key cryptography for wireless sensor
networks, in Proceedings of 3rd IEEE International Conference on Pervasive Computing and
Communications Workshops (2005), pp. 146–150

14. M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization
(MIT Laboratory for Computer Science, Cambridge, 1979)

15. J. Hoffstein, J. Pipher, J. Silverman, NTRU: a ring based public key cryptosystem, in Algorith-
mic Number Theory (ANTS III) (Portland, 1998)

16. N. Koblitz, Elliptic curve cryptosystem. Math. Comput. 48 (177), 203–209. JSTOR 2007884
17. V. Miller, Use of elliptic curves in cryptography. CRYPTO 85, 417–426 (1985)
18. A. Wander et al., Energy analysis for public-key cryptography for wireless sensor networks, in

IEEE PerCom’05 (Pisa, 2005)
19. R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-

key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
20. F. Koushanfar, M. Potkonjak, Watermarking techniques for sensor networks: foundation and

applications, in Security in Sensor Networks, ed. by Y. Xiao (Auerbach Publications, Boca
Raton, 2006)

21. J. Jeong, Z.J. Haas, Predeployed secure key distribution mechanism in sensor networks: current
state-of-the-art and a new approach using time information. IEEE Wirel. Commun. 42–51
(2008)

22. H. Chan et al., Random key predistribution schemes for sensor networks, in Proceedings of
IEEE Symposium Security Privacy (2003), pp. 197–203

23. L. Eschenauer et al., A key-management scheme for distributed sensor networks, in Proceedings
of Conference on Computer and Communications Security (2002), pp. 41–47

24. S. Zhu, W. Zhang, Group key management in sensor networks, in Security in Sensor Networks,
ed. by Y. Xiao (Auerbach Publications, Boca Raton, 2007)

25. S. Zhu et al., LEAP: efficient security mechanisms for large-scale distributed sensor networks,
in Proceedings of 10th ACM Conference on Computer and Communications Security (2003),
pp. 62–72

26. R. Blom, An optimal class of symmetric key generation systems, advances in cryptology, in
Proceedings of EUROCRYPT84, LNCS, Vol. 209 (1984), pp. 335–338

606 Z. J. Haas et al.

27. Q. Huang et al. Fast authenticated key establishment protocols for self-organizing sensor net-
works, in Proceedings of 2nd ACM International Conference on Wireless Sensor Networks
Applications (2003), pp. 141–150

28. R. Anderson, et al., Key infection: smart trust for smart dust, in Proceedings of 12th IEEE
International Conference on Network Protocols (ICNP) (2004)

29. G. Jolly et al., A low-energy key management protocol for wireless sensor networks, in Proceed-
ings of 8th International Symposium Computers and Communications (ISCC), Vol. 1 (2003),
pp. 335–340

30. M. Chorzempa et al., SECK: Survivable and efficient clustered keying for wireless sensor
networks, in Proceedings of IEEE Workshop on Information Assurance in Wireless Sensor
Networks(Phoenix, 2005), pp. 453–458

31. J. Newsome et al., The Sybil attack in sensor networks: analysis and defenses, in Proceedings
of 3rd International Symposium on Information Processing in Sensor Networks (2004), pp.
259–268

32. S. Ratnasamy et al., GHT: a geographic hash table for data-centric storage, in WSNA (2002)
33. Y. Hu et al., Packet leashes: a defense against wormhole attacks in wireless ad hoc networks,

in Proceedings of IEEE INFOCOM (2003)
34. C. Castelluccia, et al., On the difficulty of software-based attestation of embedded devices, in

CCS’09 (2009), pp. 9–13
35. A. Seshadri, et al., SWATT: software-based attestation for embedded devices, in Proceedings

of IEEE Symposium Security Privacy (2004), pp. 272–282
36. A. Seshadri, et al., SCUBA: Secure code update by attestation in sensor networks, in Proceed-

ings of 5th ACM Workshop Wireless Security (2006), pp. 85–94
37. M.G. Zapata, Secure Ad-Hoc on-demand distance vector routing. Mobile Comput. Commun.

Rev. 6(3), 106–107 (2002)
38. S. Marti, et al., Mitigating routing misbehavior in mobile ad hoc networks, in Proceedings of

6th Annual International Conference Mobile Computing Networking (2000), pp. 255–265
39. P. Papadimitratos, Z.J. Haas, Securing data communication in mobile Ad Hoc networks. JSAC

24(2), 343–356 (2006). Special issue on Security in Wireless Ad Hoc Networks
40. Y. Hu, A. Perrig, Ariadne: a secure on-demand routing protocol for ad hoc networks, in ACM

MOBICOM (2002), pp. 12–23
41. S. Buchegger, J.L. Boudec, Nodes bearing grudges: towards routing security, fairness, and

robustness in mobile ad hoc networks, in Proceedings of the 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing (IEEE Computer Society, Canary Islands,
2002), pp. 403–410

42. M.C. Wong et al., Security issues in ad hoc networks, in Security in Sensor Networks, ed. by
Y. Xiao (Auerbach Publications, Boca Raton, 2007)

43. C. Karlof et al., Secure routing in wireless sensor networks: attacks and countermeasures.
AdHoc Netw. J. Spec. Issue Sensor Netw. Appl. Protoc. 1(2–3), 293–315 (2003).

44. Y. Wang, Y. Tseng, Attacks and defenses of routing mechanisms in Ad Hoc and sensor networks,
in Security in Sensor Networks, ed. by Y. Xiao (Auerbach Publications, Boca Raton, 2007)

45. C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers, in ACM Conference on Communications Architectures, Proto-
cols and Applications, Vol. 1 (1994), pp. 234–244

46. B. Bellur, R.G. Ogier, A reliable, efficient topology broadcast protocol for dynamic networks.
in IEEE INFOCOM, Vol. 1 (1999), pp. 178–186

47. P. Jacquet et al., Optimized link state routing protocol for ad hoc networks. in IEEE International
Multi Topic Conference, Vol. 1 (2001), pp. 62–68

48. D.B. Johnson, D.A. Malts, Dynamic source routing in Ad Hoc wireless networks, in Mobile
Comput., ed. by T. Imielinski, H. Korth (Kluwer Academic Publishers, Norwell, 1996), pp.
153–181

49. C.E. Perkins, E.M. Royer, Ad-Hoc on-demand distance vector routing, in IEEE Workshop on
Mobile Computing Systems and Applications, Vol. 1 (1999), pp. 90–100

17 Current Challenges and Approaches in Securing Communications 607

50. M.S. Corson, A. Ephremides, A distributed routing algorithm for mobile wireless networks.
Wirel. Netw. 1(1), 61–81 (1995)

51. C.K. Toh, Associativity-based routing for ad hoc mobile networks. Wirel. Pers. Commun. 4(2),
103–139 (1997)

52. V.D. Park, M.S. Corson, A highly adaptive distributed routing algorithm for mobile wireless
networks. in IEEE INFOCOM, Vol. 1 (1997), pp. 1405–1413

53. Z.J. Haas, M.R. Pearlman, The performance of query control schemes for the zone routing
protocol. IEEE/ACM Trans. Netw. 9(4), 427–438 (2001). doi:10.1109/90.944341

54. G. Pei, M. Gerla, T.W. Chen, Fisheye state routing: a routing scheme for Ad Hoc wireless
networks. in IEEE International Conference on Communications, Vol. 1 (2000), pp. 18–22

55. P. Samar, M.R. Pearlman, Z.J. Haas, Independent zone routing: an adaptive hybrid routing
framework for Ad Hoc wireless networks. ACM/IEEE Trans. Netw. 12(4), 595–608 (2004)

56. M.R. Pearlman, Z.J. Haas, Determining the optimal configuration for the zone routing protocol.
IEEE J. Sel. Areas Commun. 17(8), 1395–1414 (1999). doi:10.1109/49.779922

57. P. Papadimitratos, Z.J. Haas, Secure message transmission in mobile Ad Hoc networks. Elsevier
Ad Hoc Netw. J. 1(1), 193–209 (2003)

58. A. Perrig, R. Canetti, D. Song and J.D. Tygar, Efficient and secure source authentication for
multicast, in Proceedings of the Network and Distributed System Security Symposium, NDSS’01
(2001), pp. 35–46

59. A. Perrig, R. Canetti, J.D. Tygar, D. Song, Efficient authentication and signing of multicast
streams over lossy channels, in Proceedings of the IEEE Symposium on Security and Privacy
(2000), pp. 56–73

60. J. Deng et al., INSENS: intrusion-tolerant routing in wireless sensor networks. Comput. Com-
mun. 29, 216–230 (2006)

61. W.R. Heinzelman et al., Energy-efficient communication protocol for wireless microsensor
networks, in 33rd Annual Hawaii International Conference on System Sciences (2000), pp.
3005–3014

62. M. Tubaishat et al., A secure hierarchical model for sensor network. ACM SIGMOD Rec. 33,
7–13 (2004)

63. W. Diffie, M.E. Hellman, Privacy and authentication: an introduction to cryptography. Proc.
IEEE 67(3), 397–427 (1979)

64. F. Hu et al., Scalable security in wireless sensor and actuator networks, in Security in Sensor
Networks, ed. by Y. Xiao (Auerbach Publications, Boca Raton, 2007)

65. A. Perrig et al., SPINS: security protocols for sensor networks. Wirel. Netw. 8, 521–534 (2002)
66. B. Karp et al., GPSR: greedy perimeter stateless routing for wireless networks, in Proceedings

of the 6th Annual International Conference on Mobile Computing and Networking (ACM Press,
New York, 2000), pp. 243–254

67. K. Ravichandran, K.M. Sivalingam, Secure localization in sensor networks, in Security in
Sensor Networks, ed. by Y. Xiao (Auerbach Publications, Boca Raton, 2007)

68. L. Lazos et al., SeRLoc: robust localization for wireless sensor networks, in Proceedings of
3rd ACM Workshop Wireless Security (2004), pp. 21–30

69. P. Rousseeuw, A. Leroy, Robust Regression and Outlier Detection (Wiley-Interscience, New
York, 2003)

70. Z. Li, W. Trappe, Y. Zhang, B. Nath, Robust statistical methods for securing wireless localiza-
tion in sensor networks, in Proceedings of 4th International Symposium Information Processing
in Sensor Networks (2005)

71. L. Fang et al., A beacon-less location discovery scheme for wireless sensor networks, in Pro-
ceedings of IEEE INFOCOM (2005)

72. T. Dimitriou, I. Krontiris, Secure in-network processing in sensor networks, in Security in
Sensor Networks, ed. by Y. Xiao (Auerbach Publications, Boca Raton, 2007)

73. L. Hu et al., Secure aggregation for wireless networks, in Proceedings of Symposium Applica-
tions Internet Workshops (2003), pp. 384–391

74. J. Girao et al., CDA: concealed data aggregation in wireless sensor networks, in Proceedings
of ACM WiSe (2004)

http://dx.doi.org/10.1109/90.944341
http://dx.doi.org/10.1109/49.779922

608 Z. J. Haas et al.

75. J. Domingo-Ferrer, A provable secure additive and multiplicative privacy homomorphism, in
Proceedings of Information Security Conference (2002), pp. 471–483

76. L. Atzori et al., The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)
77. R. Roman et al., Integrating wireless sensor networks and the internet: a security analysis.

Internet Res. 19(2), 246–259 (2009)
78. R. Roman et al., Do wireless sensor networks need to be completely integrated into the internet?

in Furture Internet of People, Things and Services (IoPTS) eco-Systems (Brussels, 2009)
79. R. Hummen et al., A security protocol adaptation layer for the IP-based internet of things,

Interconnecting Smart Objects with the Internet Workshop (2011)
80. T. Zahariadis et al., Securing Wireless Sensor Networks Towards a Trusted Internet of Things

(IoS Press, 2009), pp. 47-56. ISBN: 978-1-60750-007-0
81. R. Roman et al., Key management systems for sensor networks in the context of the internet

of things. Comput. Electr. Eng. 37(2), 147–159 (2011)

Chapter 18
Privacy Enhancing Technologies for Wireless
Sensor Networks

Chi-Yin Chow, Wenjian Xu and Tian He

Abstract Since wireless sensor networks (WSNs) are vulnerable to malicious
attacks due to their characteristics, privacy is a critical issue in many WSN applica-
tions. In this chapter, we discuss existing privacy enhancing technologies designed
for protecting system privacy, data privacy and context privacy in wireless sensor net-
works (WSNs). The privacy-preserving techniques for the system privacy hide the
information about the location of source nodes and the location of receiver nodes. The
data privacy techniques mainly protect the privacy of data content and in-network
data aggregation. The context privacy refers to location privacy of users and the
temporal privacy of events. For each of these three kinds of privacy in WSNs, we
describe its threats and illustrate its existing privacy-preserving techniques. More
importantly, we make comparisons between different techniques and indicate their
strengths and weaknesses. We also discuss possible improvement, thus highlighting
some research trends in this area.

1 Introduction

Privacy is a critical issue when applying theoretical research in wireless sen-
sor networks (WSNs) to scientific, civilian and military applications [35, 45],
e.g., environmental sensing, smart transportation and enemy intrusion detection.

C.-Y. Chow · W. Xu
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
e-mail: chiychow@cityu.edu.hk

W. Xu
e-mail: wenjianxu2@student.cityu.edu.hk

T. He (B)

Department of Computer Science and Engineering, University of
Minnesota,Minneapolis, MN, USA
e-mail: tianhe@cs.umn.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 609
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_18,
© Springer-Verlag Berlin Heidelberg 2014

610 C.-Y. Chow et al.

WSNs are vulnerable to privacy breaches because they possess the following
characteristics:

• Wireless communication. Wireless sensors need to communicate with each other
through wireless communication. Wireless communication signals are easy to be
tracked or eavesdropped by adversaries. We show later in this chapter that, in
some kinds of applications, privacy breaches take place when adversaries are able
to track or eavesdrop wireless communication signals even if the content of the
transmitted data is protected securely.

• Open environments. WSNs are usually deployed in open environments to provide
sensing and monitoring services. Such open environments could cause privacy
concerns because malicious people can easily approach the system area or even
physically access the sensor.

• Large-scale networks. The number of sensor nodes in a WSN is often large, so
that protecting every node from being compromised by adversaries is difficult.
Thus, the privacy enhancing technology designed for the WSN should be able to
deal with a situation that the network contains some compromise sensor nodes
which can be controlled by adversaries.

• Limited capacity. In general, wireless sensors have scarce resources, e.g., limited
computational power, constrained battery power, and scarce storage space. As a
result, existing privacy enhancing technologies designed for the Internet or wireless
networks are not applicable to WSNs.

Due to these limitations, it is very challenging to design secure privacy-preserving
techniques for WSNs. It is essential for researchers to study existing privacy enhanc-
ing technologies for WSNs, investigate their strengths and weaknesses, and identify
new privacy breaches to improve them. To help researchers to understand the state-
of-the-art privacy enhancing technologies for WSNs, we category them into three
main types of privacy, namely, system privacy, data privacy, and context privacy.
These three kinds of privacy are defined as follows:

1. System privacy is the ability of a system to protect the information about the
setting of its WSN (e.g., the location information of its base station) and the
communication information among its network components (e.g., the source node
of data).

2. Data privacy is the ability of a system to preserve the data content through the
course of transmission or in-network aggregation.

3. Context privacy is the ability of a system to protect the user location monitored
by sensor nodes, or the time when an event is detected by sensor nodes.

For each of these three kinds of privacy, we discuss its threats and then highlight its
existing privacy-preserving techniques.

The rest of this chapter is organized as follows: Sect. 2 presents an overview
of this chapter. Sections 3, 4, and 5 describe the threat models and solutions of
system privacy, data privacy, and context privacy, respectively. Section 6 concludes
this chapter and discusses future research directions.

18 Privacy Enhancing Technologies for Wireless Sensor Networks 611

2 Overview of This Chapter

Various WSN applications require different privacy protection techniques. For exam-
ple, in an event detection application, the location information of source sensor nodes
is the sensitive information and can be inferred by adversaries through wireless com-
munication signal analysis even without knowing the transmitted data content. Such
event detection applications require system privacy protection. In a data collection
application, its sensor node’s readings are sensitive and should be protected during
the course of transmission. Thus, data collection applications need data privacy pro-
tection. In a location monitoring application, the location information of monitored
individuals is sensitive and should be protected. Location monitoring applications
call for context privacy protection. From these three applications, we can see that
different types of WSN applications have their own definition of sensitive informa-
tion and they require different privacy protection techniques. In other words, exiting
privacy enhancing technologies for WSNs are application-oriented because many of
them are designed for a particular WSN application.

In this chapter, we identify three main types of privacy for existing WSN appli-
cations, namely, system privacy, data privacy, and context privacy. For each type of
privacy, we first discuss its threat model and then describe its protection techniques,
as depicted in Fig. 1. For system privacy, we mainly discuss privacy-preserving tech-
niques designed to protect the source node of data and the location information of
base stations. For data privacy, we survey privacy-preserving techniques for protect-
ing data content during transmission or in-network aggregate processing. For context
privacy, we focus on protection techniques designed for preserving the location pri-
vacy of people monitored by sensor nodes and the temporal information of events
detected by sensor nodes.

3 System Privacy

Tracking wireless communication signals in a WSN could reveal different kinds of
sensitive information such as which sensor node generates a reading, which sensor
node is the destination of a packet and which sensor nodes are near a base station (or a

Fig. 1 Our taxonomy of privacy enhancing technologies for wireless sensor networks (WSNs)

612 C.-Y. Chow et al.

sink node). For example, sensors deployed for detecting and monitoring a particular
type of endangered animal in a forest (e.g., giant pandas [57]) can be utilized by
hunters to locate the monitored animals. After a sensor node detects a target animal,
it sends a report to the base station. A hunter can eavesdrop wireless communication
signals to trace from the base station back to the source node, even without capturing
and analyzing the transmitted data content. This kind of privacy breach would cause
serious consequences and is difficult to be detected. More powerful adversaries can
also compromise a sensor node and capture packets to learn the routing path from
the source sensor node to the base station.

Under the system privacy, we identify two main types of privacy issues, namely,
data source privacy, and base station privacy. Adversaries may locate the data source
or the base station by analyzing wireless communication signals. Privacy-preserving
techniques designed for protecting data source and base station privacy may prevent
such malicious attacks.

3.1 Data Source Privacy

Consider our example where a WSN is deployed for detecting and monitoring a
particular type of endangered animal in a forest. After a sensor node detects a target
animal, it generates a report about the animal’s activities and send the report to the
base station through a multi-hop routing protocol [2, 3]. Suppose an adversary is
equipped with devices such as antenna and spectrum analyzers that can be used to
capture wireless signals between sensor nodes and measure the angle of arrival of
signals. And all sensor nodes keep silent until they detect a target animal in their
sensing area. After a sensor node detects a target animal, it sends a report to the base
station. The adversary would capture wireless communication signals along the data
transmission path from the source sensor node to the base station, and then he can
carry out a traffic backtracking attack to find the source sensor node by capturing
wireless signals for each hop, analyzing their direction, and then identifying the
sender of each hop, as illustrated in Fig. 2. In practice, the adversary could use traffic
backtracking to locate the endangered animals and bring danger to them, even though
he is not able to read the report content. In this section, we discuss existing privacy
enhancing techniques for two main types of attacks: local eavesdropping (Sect. 3.1.1)
and global eavesdropping (Sect. 3.1.3).

3.1.1 Local Eavesdropping

Phantom routing is a routing protocol designed to prevent the traffic backtracking
attack [32, 46]. The main idea of the phantom routing protocol is to select a phantom
source node at a location far away from the real one. The protocol consists of two
main steps:

18 Privacy Enhancing Technologies for Wireless Sensor Networks 613

Fig. 2 The traffic backtrack-
ing attack in a WSN

Fig. 3 The phantom routing
paths of two data packets from
the real source node to the
base station

1. Camouflage step. This step ensures that a phantom source sensor node is located
far away from the real source node. For example, when a sensor node wants to
send out a packet, the packet is forwarded to the other node with hop distance h.

2. Routing step. This step makes sure that the packet can be delivered to the base
station. After forwarding the data packet h hops, a conventional routing protocol
(e.g., flooding [39], probabilistic broadcast [19], or single-path routing [28, 33])
is used to route the packet to the base station.

Figure 3 shows an example of the phantom routing where h = 4 and a source
sensor node sends out two packets X and Y . During the camouflage step (i.e., the
first four hops), the routing paths of the packets X and Y (indicated by bold arrows)
from the real source sensor node are different. After forwarding the packets 4 hops,

614 C.-Y. Chow et al.

they are forwarded to the base station through a single-path routing protocol. These
camouflage paths make an adversary difficult to backtrack to the source sensor node
in a given time period. The basic idea is that the adversary can trace back to a certain
intermediate node by capturing the transmission signal of one of these two packets,
but he may never catch any other packet from the real source sensor node at that
intermediate node because the routing paths of other packets do not pass through
that node. In this way, the phantom routing could direct the adversary to a place far
away from the real source sensor node, and therefore it cuts off the backtracking of
the adversary.

We next discuss several techniques that have been proposed for the camouflage
step.

1. Random walk [32]. For each of the first h hops, the sensor node randomly
chooses a neighbor node to forward the packet. Since such a random walk may
visit a sensor node more than once and the node at the h-th hop (i.e., the phantom
source) may remain clustered around the actual source node, the pure random
walk is inefficient for leading the phantom source node to be far away from the
actual source node [32, 46].

2. Neighbor-grouping-based directed walk [32]. When a sensor node forwards a
packet, it divides its neighbor nodes into two sets S and S∈. The node first randomly
selects one of these two sets and then randomly forwards the packet to a neighbor
node in the selected set. For example, the neighbor nodes can be divided into two
sets based on their hop distance to the base station, i.e., S includes all the neighbor
nodes with the hop distance smaller than or the same as the sensor node’s hop
distance and S∈ includes all the nodes with the hop distance larger than the sensor
node’s hop distance.

3. Greedy random walk [58]. Before a sensor node forwards a packet, it uses a
Bloom filter [5] to store the identifiers of itself and its neighbor nodes and then
forwards the packet with the Bloom filter. After a neighbor node receives the
packet, it randomly selects a neighbor node whose identifier is not stored in the
Bloom filter as the next hop, adds the identifiers of its neighbor nodes in the
Bloom filter, and then forwards the packet with the updated Bloom filter.

4. Minimum distance [37]. When a sensor node wants to send out a packet, it
randomly selects the location of a phantom source node such that the distance
between the sensor node and the phantom source node is at least certain distance
dmin . Figure 4 illustrates this technique in our example, where both packets X
and Y are first forwarded to their phantom source nodes that are far away from
the source sensor node by at least dmin . Then, the phantom source nodes route
X and Y using a single-path routing protocol. However, the sensor node may not
have the actual location of every node in the system, if an intermediate node that
is able to tell that the selected phantom source node does not exist, it becomes the
phantom source node. The actual source node can also select all the intermediate
nodes on the routing path to a selected phantom node using either an angle-based
or a quadrant-based approach.

18 Privacy Enhancing Technologies for Wireless Sensor Networks 615

Fig. 4 The minimum distance
technique in the camouflage
step of phantom routing

Fig. 5 The sink toroidal
region (STaR) technique in the
camouflage step of phantom
routing

5. Sink toroidal region [38]. In this technique, a phantom source node is always
selected inside a sink toroidal region (STaR) around a base station or a sink. The
STaR is defined by two circles centered at the base station with radius r and
R, where r < R. The intersection area between these two areas constitutes the
STaR. A source sensor node randomly selects a location within the STaR as the
phantom source, and then forwards its packet to it, as in the minimum distance
technique. The STaR area should be large enough such that it is not practical for
an adversary to monitor the entire STaR. Figure 5 depicts STaR in our example,
where the shaded donut shape is the STaR. Packets X and Y are first forwarded
to their randomly selected phantom source nodes inside the STaR and then a
single-path routing protocol is used to forward them to the base station.

616 C.-Y. Chow et al.

3.1.2 Discussion

All these techniques share the same goal: randomly finding a phantom source node
that is far away from the actual source node. The first three techniques require an
intermediate node to make its local decision to find a phantom node, while the last
two techniques allow the source sensor node to determine the phantom node, and
even all the intermediate nodes in the routing path between itself and the phantom
node in the minimum distance technique. The last two techniques are more reliable,
energy-efficient, and secure, because the sensor node has more control over the
selection of its phantom node. However, if the sensor node does not have a global
view of the system, it may not be able to use the minimum distance or STaR technique.
It would be useful to extend them to allow intermediate nodes to make their local
decision based on the source sensor node’s requirements and its performance can be
the same as the centralized decision scenario.

3.1.3 Global Eavesdropping

In the previous section, we discussed the privacy-preserving techniques designed for
a scenario that an adversary can only eavesdrop on a limited portion of the network
at a time, i.e., a local eavesdropper. In this section, we consider a stronger adversary
called a global eavesdropper [41, 51, 59] who is capable to deploy his sensor nodes
or compromise sensor nodes to monitor the communication traffic in the entire WSN.
With a global view of the network traffic, the adversary can easily infer the location
of a source node using the traffic analysis attack.

The basic approach of preventing the traffic analysis attack from global eaves-
droppers is to inject dummy traffic into a WSN to make adversaries confused and
thus unable to distinguish a real data source from a set of dummy data sources. There
are three main kinds of techniques to inject dummy traffic into a WSN:

1. Periodic collection [41]. Every sensor node independently and periodically sends
out data packets regardless of whether it has real data packets to send out or only
dummy data packets. More specifically, each sensor node has a timer that fires
at a constant rate. When the timer fires, if the node has a packet in its buffer, it
forwards the packet; otherwise, it sends a dummy packet with a random payload.
In this way, the adversary is not able to distinguish a real source sensor node from
other dummy sensor nodes because they are all sending out data packets in the
same manner. The drawback of this solution is that a network with more sensor
nodes incurs higher communication overhead.

2. Source simulation [41]. Although the periodic collection technique provides
optimal source-location privacy, if the constant rate is small, the system delay
may be very high; if the rate is large, the system may have too much dummy
traffic and suffer from high power consumption. The source simulation technique
artificially creates multiple fake traces in the network to hide the traffic generated
by real objects. For example, if a WSN is designed to monitor pandas in a forest,

18 Privacy Enhancing Technologies for Wireless Sensor Networks 617

their historical habits and behaviors are studied to create fake traces for pandas.
Before deployment, we randomly select a set of sensor nodes and initialize a
unique token in each of them. These tokens are transmitted between sensor nodes
in the network to simulate the behavior of pandas. Thus, the adversary who wants
to trace pandas using the traffic analysis attack probably finds a virtual one.

3. Probabilistic dummy generation [51]. The objective of this technique is also
to reduce the amount of dummy traffic and latency of the periodic collection
technique. This technique uses the exponential distribution to control the rate of
dummy generation by creating a sequence of dummy packets such that the time
intervals between two consecutive messages follow the predefined exponential
distribution. For a packet generated by a real event, the packet is delayed as long
as its transmission time also follows the predefined exponential distribution. The
whole concept of this technique is based on a statistical property: if two proba-
bilistic distributions are both exponential distributions with very close means, they
are statistically indistinguishable from each other. Experimental results show that
this technique effectively reduces communication overhead while it can provide
the same level of privacy protection as the periodic collection technique.

3.1.4 Discussion

The basic idea of these dummy traffic injecting techniques is to use dummy traffic to
hide the real data source sensor nodes. There is a tradeoff between the communication
overhead (e.g., bandwidth and power consumption) and the privacy protection [29].
K. Mehta et al. provide a method to estimate a lower bound on the communication
overhead needed to achieve a certain level of privacy protection in the network [41].
In addition, some scientists study how to reduce communication overhead for dummy
traffic without sacrificing any privacy protection. For example, Y. Yang et al. suggest
placing some proxy sensor nodes in a WSN to filter out dummy packets and drop
them after a certain number of hops of transmission [59].

There is a new research direction for source data privacy in unattended wireless
sensor networks (UWSNs), where critical sensor nodes replicate their readings in
a certain number of randomly selected nodes d-hop away from the critical sensor
nodes. Recent study has found that there is a tradeoff between source-location privacy
and data survivability (i.e., the number of data replicas) [7]. When an adversary finds
the data source node, he can destroy the critical node in the system.

3.2 Base Station Privacy

In some WSN applications, such as security monitoring systems, the physical loca-
tion of a base station (or a sink node) is considered as sensitive information. The
main reason is that revealing the physical location of a base station to the adversary
may give him a chance to make either physical or denial-of-service attacks to the

618 C.-Y. Chow et al.

base station in order to disable the WSN [15]. However, many routing protocols
would reveal obvious traffic patterns in the network. The sensor nodes near the base
station forward a greater number of data packets than other sensor nodes that are
far away from the base station [16]. Based on such unbalanced traffic, it is easy for
the adversary to infer the base station’s physical location. The main idea of hiding
the location information of the base station is similar to that of the phantom routing
and dummy traffic injection techniques, but it focuses on how to make the adversary
difficult to distinguish a sink node (or a base station) from other sensor nodes. We
describe four techniques for protecting the base station privacy.

3.2.1 Multi-Parent Routing

In the multi-parent routing [16], each sensor node has multiple parent nodes.
Each sensor node s finds its multiple parents based on their hop distance to the base
station. The base station broadcasts a beacon message with a level field that is initially
set to one. When s receives the beacon message, the value of level indicates s’s hop
distance to the base station. s next increases level by one and rebroadcasts the beacon
message with the increased level value to its neighbors. After a certain time period,
s selects all neighbor nodes whose level value is less than s’s level value as its parent
nodes. Figure 6 depicts an example, where a WSN consists of seven sensor nodes s1
to s7 and each sensor node already finds its level value. s3 have four neighbor nodes
(i.e., s1, s2, s6, and s7), but only the level values of s1 and s2 are less than s3’s level
value. Thus, s1 and s2 are s3’s multiple parent nodes. Each sensor node erases its
level value after all the sensor nodes have found their multiple parent nodes. When a
sensor node wants to send a data packet, it randomly selects one of its multiple parent
nodes to send the packet. Although this technique is similar to the phantom routing
technique, it aims at spreading out traffic evenly in the whole WSN to make the
adversary difficult to infer the physical location of the base station instead of finding
an intermediate phantom node. Multi-parent routing often works with random walk
and fractal propagation, as will be discussed later, to enhance the privacy-protecting
performance.

Fig. 6 Multi-parent routing

18 Privacy Enhancing Technologies for Wireless Sensor Networks 619

3.2.2 Random Walk

Although a random walk has been proposed for reliable data transmission [56], it
can also be used to protect the base station privacy [16]. The basic idea is that a
sensor node has two ways to forward a packet: (1) the node forwards the packet to
one of its parent nodes with equal probability or (2) it forwards the packet of one of
its neighbors with equal probability. The node uses the first way with probability p
or the second one with probability 1 − p.

3.2.3 Fractal Propagation

The multi-parent routing and random walk techniques can avoid forwarding packets
to the base station through the shortest or static path. The fractal propagation tech-
nique can further spread out fake packets [16]. When a sensor node overhears that its
neighbor node forwards a data packet, it also generates a fake data packet following
a predefined probability distribution with a system parameter k and forwards it to a
randomly selected neighbor node. After the neighbor node receives the fake packet,
it reduces the value of k by one and forwards it to one of its neighbor nodes with
the updated k value. When a node receives the fake packet with k = 0, it simply
drops the packet. As a result, this technique spreads out the communication traffic
of a data packet in the network. This technique works due to the fact that the nor-
mal nodes can distinguish a fake packet from a real one, while the adversary cannot
distinguish since it does not know the encryption key. If we use this technique with
the multi-parent routing and random walk techniques, a full picture of the real and
fake communication flows triggered by a data packet transmission looks like a fractal
shape, as depicted in Fig. 7.

3.2.4 Hiding Traffic Direction Information

The goal of hiding traffic direction information is to make the directions of both
incoming and outgoing traffic at a node uniformly distributed [30]. The basic idea
is that each sensor node divides its neighbor nodes into two disjoint lists: closer and
further lists, where the closer list contains the neighbor nodes that are closer to a
receiver and the further list consists of the neighbor nodes that are further way from
the receiver. The distance between two sensor nodes can be measured by their hop
distance or their Euclidean distance. When a sensor node forwards a data packet,
it selects the next hop from the further list with probability p, and from the closer
list with probability 1 − p. p is used to balance a performance trade-off between
communication overhead (i.e., latency and power consumption) and privacy. For
example, if p is smaller, the node selects more next hops in the closer list. Thus,
the routing paths are shorter and the power consumption is lower, but the receiver’s
location privacy is weaker. On the other hand, if p is larger, more next hops are elected
from the further list. Although the privacy protection is stronger, the routing paths

620 C.-Y. Chow et al.

Fig. 7 The real and fake
communication traffic trigged
by a data packet transmission
using the fractal propagation
technique with the multi-
parent routing and random
walk techniques

Base Station

Source Sensor Node

are longer and the power efficiency is lower. To further protect the receiver-location
privacy, fake packets can also be injected with this technique to smooth out the traffic.
Whenever a sensor node forwards a packet, it also sends a fake packet to a randomly
chosen neighbor in the further list, and the fake packet will be further forwarded
away by h hops (h ⊂ 2). Experimental results show that this technique with fake
packet injection deliveries more packets than the phantom routing technique [32]
and the fractal propagation technique [16], when p ⊂ 0.4.

3.2.5 Discussion

In general, the techniques designed for protecting the base-station- or receiver-
location privacy are based on random forwarding and fake packet injection. Some of
these techniques (i.e., [16, 30]) require that each sensor node knows its hop distance
from a sink through a broadcast message from the sink. An intelligent fake packet
injection technique has been designed to protect the base-station privacy during such
a topology discovery period [36]. Most of existing techniques for protecting base
station privacy only consider stationary base stations. It is interesting to consider a
scenario where a base station is able to move to sensor nodes to collect data. There are
only a few attempts to tackle this scenario. For example, data forwarded to random
nodes and mobile base stations move in the network following some random paths
to collect data from sensor nodes [43]. Actually, the mobility of the base station can
enhance the privacy of the base station itself [1]. Specifically, the base station relo-
cates itself within the WSN periodically, which obfuscates previous traffic analysis
conducted by the adversary. Thus, the privacy of the base station is protected. Nev-

18 Privacy Enhancing Technologies for Wireless Sensor Networks 621

ertheless, more research efforts are needed to tackle the privacy issue of mobile base
stations with stationary sensor nodes or even with mobile sensor nodes.

4 Data Privacy

Wireless sensor nodes are usually deployed to monitor surroundings by providing
a variety of readings. In many WSN applications, sensor readings may be sensitive
information, e.g., a log of identifications of border-crossing vehicles. Such readings
must be protected from malicious attacks. This section describes existing privacy-
preserving techniques for two main types of data privacy: data content privacy and
aggregate data privacy.

4.1 Data Content Privacy

Many research efforts have mainly focused on how to design encryption and authenti-
cation mechanisms for WSNs that consider the computational and power constraints
of wireless sensor nodes. Since these techniques are more related to security issues in
WSNs, we briefly highlight two well-known suites of security protocols. Interested
readers are referred to two survey papers [8, 50].

1. SPINS [47]. SPINS consists of two components, a secure network encryption
protocol (SNEP) and a micro version of timed efficient streaming loss-tolerant
authentication protocol (µTESLA). SNEP provides secure channels between
a senor node and a base station for data confidentiality, data authentication
for two-party communication, data integrity through data authentication, and
guarantee for data freshness (i.e., no adversary replays old data). µTESLA pro-
vides authenticated broadcast communication.

2. Localized Encryption and Authentication Protocol (LEAP) [60]. LEAP sup-
ports the management of four types of keys to provide different security require-
ments for different kinds of data communications on sensor nodes. (1) Every sen-
sor node has a unique individual key that is shared with the base station for their
secure communication; (2) the sensor nodes in the same group have a shared group
key for building a secure broadcast channel from the base station to the whole
group; (3) every sensor node shares a cluster key with its neighbors for securing
local broadcast messages; and (4) every node also shares a pairwise shared key
with each of its neighbor nodes for secure communication with authentication. In
addition, LEAP provides an efficient protocol for establishing and updating these
keys, as well as an authentication mechanism for them.

There are two key limitations of security protocols in WSNs [44, 53]. (1) Con-
strained resources. Since sensor nodes usually have limited battery and computa-
tional power, only simple and fast methods of cryptography can be used in WSNs.

622 C.-Y. Chow et al.

Wireless communication is a major cause of power consumption, so unnecessary
information exchange should be avoided. (2) Unsecure key storage. Since sensor
nodes are usually deployed in an open area, they have no secure storage for their
secret keys. Recent results have shown that pairing-based cryptography (PBC) is suit-
able for constrained sensors [44, 53]. Based on PBC, authenticated identity-based
non-interactive security protocols can be designed for WSNs. Experimental results
have shown that PBC is feasible on 8-, 16-, and 32-bit sensor processors and vari-
ous types of sensor platforms, e.g., MICA2/MICAz, TelosB/Tmote Sky, and Imote2.
Therefore, it is important for the sensor network security community to restudy how
PBC can be used to enhance the existing suites of security protocols.

4.2 Aggregate Data Privacy

One of the important functions of WSN applications is the support for in-network
data processing, which means sensor nodes can collaborate with each other to provide
services or answer queries without a centralized server. End-to-end encryption and
authentication techniques are not applicable to in-network data processing because
intermediate nodes cannot access any by-passing data. In practice, many WSN appli-
cations only need to provide aggregate statistics such as SUM, AVERAGE, MIN,
or MAX of sensor readings in a certain region or within a certain time period [40].
These applications can employ in-network data aggregation to reduce the amount of
raw sensor readings to be reported, so sensor and network resources can be saved.
Data aggregation techniques often assume that all sensor nodes in the WSN are trust-
worthy [49]. However, this assumption may not be realistic because sensor nodes
can be compromised by the adversary who wants to steal sensor readings. If the raw
sensor readings are passing through and being aggregated on these compromised
nodes, this would cause privacy leakage.

Before presenting privacy-preserving data aggregation techniques, we summarize
their desired characteristics as follows:

1. Privacy. The data generated by a sensor node should be only known to itself.
Furthermore, a privacy-preserving data aggregation technique should be able to
handle attacks and collusion among compromised nodes, since it is possible that
some nodes may collude to uncover the private data of other nodes.

2. Efficiency. Data aggregation reduces the amount of traffic in a WSN, thus saving
bandwidth and power usage. However, a privacy-preserving data aggregation
technique introduces additional computational and communication overhead to
sensor nodes. A good technique should minimize such kinds of overhead.

3. Accuracy. A privacy-preserving data aggregation technique should not reduce
the accuracy of aggregate values.

Different WSN applications make different trade-offs among these performance
metrics. The rest of this section discuss four privacy-preserving schemes for data
aggregation, namely, cluster-based private data aggregation (CPDA), slice-mix-

18 Privacy Enhancing Technologies for Wireless Sensor Networks 623

aggregate (SMART), secret perturbation, and k-indistinguishable privacy-preserving
data aggregation (KIPDA).

4.2.1 CPDA: Cluster-Based Private Data Aggregation

CPDA [25] is designed to support privacy-preserving SUM aggregation in WSNs. In
CPDA, sensor nodes are randomly grouped into clusters. For each cluster, algebraic
properties of polynomials are used to calculate an aggregate SUM. CPDA guarantees
that the data of individual node is not exposed to other nodes. Finally, the intermediate
aggregate values in each cluster are further aggregated along a routing path to a base
station. In general, CPDA consists of three main steps:

1. Formation of clusters. The first step in CPDA is to construct clusters to perform
intermediate aggregations. Every cluster consists of one cluster head (CH) and
many cluster members. The CH is responsible for calculating intermediate aggre-
gations and reporting their results to a base station. Figure 8 depicts a cluster with
three sensor nodes s0, s1, and s2, where s0 is the CH.

2. Intermediate aggregation. This step is based on a random key distribution mech-
anism proposed in [18]. Consider a cluster with one head and n members, where
s0 is the CH and s1, . . . , sn are other sensor nodes in the cluster. Each node si

(0 ◦ i ◦ n) sends a seed Ai to other members in its cluster. As depicted in
Fig. 8a, s0 sends A0 to s1 and s2, s1 sends A1 to s0 and s2, and s2 sends A2 to
s0 and s1. For each node s j (0 ◦ j ◦ n), each node si (0 ◦ i ◦ n) perturbs
its own private reading into V i

j based on s j ’s seed and n random numbers gen-

erated by si , and it then sends E(V i
j) in an encrypted form to s j , where i ∀= j .

As illustrated in Fig. 8b, s0 sends E(V 0
1) and E(V 0

2) to s1 and s2, respectively;
s1 sends E(V 1

0) and E(V 1
2) to s0 and s2, respectively; and s2 sends E(V 2

0) and
E(V 2

1) to s0 and s1, respectively. Each node s j (1 ◦ j ◦ n), except the CH, next

adds all received V i
j (0 ◦ i ◦ n) and its V j

j together to compute a sum Fj , and
then send Fj to its CH. In the running example, s1 and s2 send F1 and F2 to the
CH s0, respectively. Finally, after the CH receives Fj from each member s j , it is

(a) (b) (c)

Fig. 8 An example of CPDA within a cluster of three sensor nodes. a Broadcast seeds. b Send
encrypted perturbed values. c Send assembled values to CH

624 C.-Y. Chow et al.

able to compute the sum of the original readings from all the nodes in the cluster
without compromising the privacy of individual nodes’ data value.

3. Cluster data aggregation. The cluster head reports its intermediate aggregate
sum to the base station. The base station computes an aggregate SUM by summing
up all collected intermediate aggregate sums.

CPDA guarantees that if less than (n − 1) nodes collude in a cluster of size n,
the individual sensor readings in the cluster cannot be disclosed. Therefore, larger
average cluster size contributes to better privacy-preservation performance, but it also
incurs more computational overhead to compute the intermediate aggregation value.
As a result, there is a design tradeoff between the privacy protection and computation
efficiency.

Although CPDA can provide private data aggregation, it cannot guarantee data
integrity. If an adversary changes the intermediate aggregate result in some clusters,
the aggregate result would deviate from the actual one dramatically [26]. CPDA has
been extended to iCPDA [27] that can guarantee data integrity through additional
piggybacks. In iCPDA, every node in a cluster collects necessary information to
calculate an intermediate aggregate result within the cluster. Hence, all the nodes in
the cluster can figure out the intermediate aggregated value in the cluster, enabling
them to monitor their CH and detect data pollution attacks. Experimental results
showed that the communication overhead of iCPDA is a little bit higher than CPDA
due to the extra message exchange.

4.2.2 Slice-Mix-Aggregate (SMART)

The basic idea of SMART [25] is to slice readings and use the associative property
of addition to compute aggregate SUM. In general, SMART consists of three main
steps:

1. Slicing readings. Suppose a WSN has N sensor nodes. Each sensor node si

randomly selects a set of m peers within a certain hop distance. After si gets a
private reading di , di is sliced into m pieces. si randomly keeps one piece, and
then each of the remaining m − 1 pieces is randomly sent in an encrypted form
to a distinct one of the selected m peers. Let di j be a piece of di that is sent from
si to another sensor node s j , and hence, di = ∑N

j=1 di j , where di j = 0 if s j does
not receive any piece of di .

2. Mixing slices. When a sensor node s j receives k encrypted pieces within a certain
time interval, s j decrypts each piece and sums up all received pieces to compute
a mixed value r j = ∑N

i=1 di j , where di j = 0 if si is not one of the senders of the
k pieces. Then, s j sends r j to the query server.

3. Aggregation. After the query server receives the mixed values from all the sen-
sor nodes within a certain time interval, it sums them up to get the final result∑N

j=1 r j = ∑N
i=1

∑N
j=1 di j = ∑N

i=1 di , where r j = 0 is the query server does
not receive any mixed value from node s j and di = 0 if node si does not report
any reading within the time interval.

18 Privacy Enhancing Technologies for Wireless Sensor Networks 625

Unlike CPDA, SMART does not need to form any clusters, so it can reduce the
computational cost of cluster-wise data aggregation.

4.2.3 Secret Perturbation

The basic idea of secret perturbation [20] is that each sensor node si has a pre-assigned
secret Si , which is only known to si and the base station. si does not send its original
reading di to the base station. Instead, si only sends a perturbed version of di , i.e.,
d̂i = di + Si , to the base station. Each intermediate node between si and the base
station receiving a perturbed value can perform an additive aggregation function
on it with other perturbed values sent from other nodes to get a single perturbed
value. Since the base station knows the secret of each sensor node, it can subtract the
perturbations from a perturbed value to get an actual reading. In general, the basic
secret perturbation scheme consists of three main steps to compute aggregate SUM:

1. System initialization. Given N sensor nodes and the range of each sensor reading
[0, dmax], the base station selects an integer L , a prime number q and a secure
hash function hash(x) such that max{2L−1, 2N } < q < 2L , dmax < 2L and
0 ◦ hash(x) < 2L . It also assigns each sensor node si with two secret numbers.

2. Perturbed aggregation. When a sensor node si receives a query, it gets a reading
di , uses hash(x) to calculate a perturbed reading value d̂i and an auxiliary reading
value Âi , and initializes a list of IDs of reporting sensor nodes listi = {i}. If si

is a leaf node or it has no downstream node that reports data, si simply sends
∗d̂i , Âi , listi →. On the other hand, if the other node s j receives ∗d̂ik , Âik , listik →
from its downstream nodes, where k = 0, 1, . . . ,m and m < N , it computes its
own d̂ j , Â j and list j , and then performs an additive aggregation ∗d̂ j , Â j , list j →
on all the received ∗d̂ik , Âik , listik →.

3. Retrieving the original aggregation at a base station. After the base station s0
receives the perturbed tuples ∗d̂ik , Âik , listik → from its downstream nodes, where
k = 0, 1, . . . ,m, m ◦ N , and the ID of the base station is 0, s0 computes its d̂0,
Â0 and list0. so is then able to find the sum of its reading and the original readings
of all the received tuples.

Taiming Feng et al. have extended the basic secret perturbation scheme to the
fully-reporting secret perturbation scheme [20] that does not require sensor nodes
to report their IDs by requesting every sensor node to report an actual or dummy
reading in the perturbed form. They further proposed the adaptive secret perturbation
scheme to minimize communication overhead and avoid reporting node IDs.

4.2.4 k-Indistinguishable Privacy-Preserving Data Aggregation (KIPDA)

The KIPDA scheme [21] is designed for MAX/MIN aggregation in WSNs based
on the concept of k-anonymity [52]. The basic idea of KIPDA is that each sensor

626 C.-Y. Chow et al.

node reports its actual reading along with k − 1 other restricted or unrestricted
camouflage values such that the actual reading is indistinguishable among the k
values. A base station is able to find an exact aggregate MAX/MIN result based on
k-indistinguishable data reported from sensor nodes. We present the four main steps
in KIPDA with a running example with k = 7 for aggregate MAX, as depicted in
Fig. 9.

1. System setup. The base station decides a set of global real value positions for a
vector with k elements. Each position is assigned to each sensor node to indicate
which position in a reported vector should store its actual reading. For each
sensor node, the remaining unassigned positions are divided into two disjoint sets:
(1) a set of unrestricted positions, where a random camouflage number is generated
for each position, and (2) a set of restricted positions, where a camouflage value
that is required to be less than or equal to an actual reading for aggregate MAX
while a camouflage value that is required to be larger than or equal to an actual
reading for aggregate MIN. In our example (Fig. 9), we assume that k is seven,
the size of each set of unrestricted positions is two, and the size of each set of
restricted positions is four.

2. Filling camouflage values. After a sensor node receives a query, it puts its actual
reading at its real value position assigned by the base station in a vector. Then,
it generates a camouflage value at every unrestricted or restricted position in the
vector. Finally, it sends the vector to the base station through its parent node. In
the running example, sensor node 1 puts is actual reading (i.e., 23) at the first
position in a vector (indicated by an underline) and generates two unrestricted
camouflage values 30 and 21 that are put at the fourth and sixth positions in
the vector (indicated by shaded cells), respectively, as Fig. 9. Since the query
computes aggregate MAX, node 1 generates four camouflage values that are less
than the actual reading (i.e., 23). In this example, node 1 puts 18, 15, 20, and 8 at

Fig. 9 An example of processing aggregate MAX using KIPDA with k = 7

18 Privacy Enhancing Technologies for Wireless Sensor Networks 627

the second, third, fifth, and seventh positions in the vector, respectively. Similarly,
nodes 2 and 3 generate their vectors. Since node 1 is the parent node of nodes 2
and 3, nodes 2 and 3 send their vectors to node 1.

3. Aggregation at an intermediate node. After a sensor node receives vectors
from its children nodes, it computes an intermediate aggregation result vec-
tor. For each position in the result vector, the node selects the maximum value
at the same position among all the received vectors. The node next sends the
result vector to its parent node. For example (Fig. 9), node 1 receives the vec-
tors from nodes 2 and 3. The value at the first position of the result vector is
max{23, 26, 10} = 26. Similarly, the value at the second position of the result
vector is max{18, 35, 11} = 35 and so on. After node 1 computes the intermedi-
ate result vector ∗26, 35, 33, 30, 34, 21, 13→, the vector is sent to the base station
through its parent node.

4. Retrieving the original aggregation at a base station. After the base station
receives an aggregate vector, it selects the maximum value among the values at
the global real value positions in the vector as the query answer. For example
(Fig. 9), the base station receives an aggregate vector ∗26, 35, 33, 30, 34, 21, 13→
from node 1. The base station selects the maximum values at the first, third and fifth
positions in the vector. Thus, the final aggregate MAX is max{26, 33, 34} = 34.

Since the aggregate process of KIPDA does not require end-to-end or link-level
encryption, it achieves higher efficiency than the encryption-based data aggregation
technique in terms of power consumption and latency. In terms of robustness, KIPDA
can tolerate up to a large number of compromised sensor nodes or communication
link. However, it is not easy to apply KIPDA to other aggregation functions other
than MAX and MIN.

4.2.5 Discussion

All the private data aggregation techniques discussed in this section can provide
precise aggregate results if there is no packet loss. In terms of privacy protection,
the secret perturbation technique always prevents the adversary from finding out an
individual sensor’s data or an aggregate result, regardless of the number of compro-
mised sensor nodes. Contrarily, CPDA, SMART and KIPDA can only tolerate up to
a certain threshold number of compromised sensor nodes or communication link. In
terms of efficiency, experimental results [20] showed that the secret perturbation tech-
nique consumes less bandwidth than CPDA and SMART. KIPDA is more efficient
than conventional encryption-based data aggregation techniques which incur high
latency due to the decryption and re-encryption operations. Finally, CPDA, SMART
and secret perturbation techniques are specially designed for aggregate SUM, while
KIPDA is tailored for aggregate MAX/MIN. A WSN application should select the best
private data aggregation technique based on its requirements for privacy protection
and system efficiency.

628 C.-Y. Chow et al.

5 Context Privacy

In this section, we focus on two kinds of context detected by sensor nodes, namely,
location privacy and temporal privacy, in Sects. 5.1 and 5.2, respectively. Location
privacy protection techniques are designed to anonymize the location information
of people monitored by sensor nodes. Privacy-enhancing techniques for temporal
privacy are designed to hide the time when a query is issued by a user or an event is
detected by a sensor node.

5.1 Location Privacy

Sensor-based location systems have been proposed to support indoor positioning
and monitoring, e.g., [24, 48, 55]. Such indoor monitoring systems can provide
many services: (1) Location-based queries. They can answer queries like “how many
customers on the second floor” and “which shop is the densest one during lunch
hours.” (2) Security and control. The system alerts the administrative staff when it
detects that someone enters an office at midnight or the number of people in a room is
larger than a system-specified limit. (3) Resource management. When the system has
detected no people in an certain area for a certain period of time, it turns off some
building facilities (e.g., lights, escalators and elevators) to save energy. However,
similar to GPS, sensor-based location systems would threaten the user privacy. For
example, if an adversary knows the location of a person’s office, the adversary can
easily determine whether the person is in his or her office by monitoring the sensing
information, e.g., the number of people in a sensing area, reported from the sensor
deployed in his or her office. Once the adversary identifies an individual’s location,
the adversary can track the user’s movements by monitoring location updates from
other sensor nodes [11, 22].

Cricket [48] is a privacy-aware sensor-based location system. Cricket has two
strategies to protect the user’s location privacy: (1) It deploys sensors in a system
area. Every user wears a tag that receives signals from multiple sensors to detect
the user’s location. This decentralized positioning approach does not require any
centralized processing on user location information or store user locations. (2) If
a user concerns about location privacy, he or she can turn off the tag, and thus, no
monitoring system can know the user’s location. However, Cricket [48] is not suitable
for location monitoring systems. The main reason is that if many people do not report
location information to a location monitoring system, the system cannot provide any
meaningful services.

Note that location privacy is different from data source privacy described in
Sect. 3.1. Location privacy protection techniques aim at protecting the privacy of
individuals’ location information collected by source sensor nodes, while the objec-
tive of data source privacy protection techniques is to protect the privacy of the
location of source sensor nodes themselves. We discuss four privacy enhancing tech-

18 Privacy Enhancing Technologies for Wireless Sensor Networks 629

niques for indoor sensor-based location monitoring systems, and then describe how
a privacy-preserving monitoring system provides location-based services without
compromising the user location privacy.

5.1.1 Pseudonyms

To protect the privacy of individuals’ location information collected by sensors
while taking advantage of location-based services, users’ true identity should be
hidden from the applications receiving their location information. An even-driven
middleware has been designed to act as a proxy server between the user and the
application to help the user hide his/her real identity [4]. As depicted in Fig. 10, after
a user registers his/her interest in a particular location-based service (LBS) with the
middleware, the LBS provider receives event callbacks from the middleware when
the user enters or exits a certain system-specified area. For example, a shopping mall
application is configured to enable an LBS “sending e-coupons to users entering the
shopping mall.” This application should register certain areas in front of the shopping
mall’s entrances and wait for the event callback. When a registered user enters the
application’s registered area, the application sends relevant e-coupons to the user.
Since the users’ real identity can be anonymized by the middleware, they can enjoy
LBS without revealing their real identities. However, it is still risky for a user to use a
long-term pseudonym, even if different LBS providers give out different pseudonyms
to the same user to avoid collusion. This is because an adversary could identify a
user by following the “footsteps” of a pseudonym to or from some places which
are strongly associated with the user’s real identity (e.g., a residential house). One
possible solution is to frequently change a user’s pseudonym, but it may significantly
degrade the quality of LBS. We discuss a mix-zone approach that can balance between
the user location privacy and the quality of services.

Fig. 10 The middleware
model for pseudonyms

630 C.-Y. Chow et al.

5.1.2 Mix Zones

The idea of mix zones [4] is derived from the concept of mix nodes designed for
anonymous communication systems [6]. A mix zone is defined as a spatial region
with a system-specified maximum number of users who have not registered with
any application callback, while an application zone is defined as an area where LBS
applications could register for event callbacks. An example is depicted in Fig. 11,
where there is one mix zone, which is represented by a shaded area, and three
application zones, which are represented by white rectangles, an art gallery (A),
a book store (B), and a coffee shop (C). Let’s use this simple example to illustrate
the basic idea of mix zones. Suppose that two users Alice and Bob enter the mix
zone from B at the same time, and their identities are mixed; after a certain period,
two users exit from the mix zone and appear in C . We cannot infer that these users
are Alice and/or Bob or other users located in the mix zone before Alice and Bob
entering it. However, if a mix zone has a diameter much larger than the distance the
user can reach during one location update period, it might not be able to protect users
adequately. For the same example depicted in Fig. 11, A is much closer to B than C .
If two users enter the mix zone from A and C at the same time and a user appears
in B at the next location update time, an adversary may tell that the user entering
B from the mix zone is not the one who emerged at C before. Furthermore, if there
is nobody in the mix zone at this time, the user in B can only be the one from A,
thus revealing A’s identity. To address this privacy issue, two metrics are proposed to
measure the level of privacy protection, namely, anonymity set and entropy. A user
can specify the minimum size of his/her anonymity set that is the number of people
visiting the mix zone during the same location update period. The user is not willing
to reveal his/her location information to any application until the mix zone finds a
qualified anonymity set. The entropy is used to measure the level of uncertainty that
a hostile adversary knows about a user’s location information based on the user’s
historical movement data.

Fig. 11 A sample mix zone
for three application zones

18 Privacy Enhancing Technologies for Wireless Sensor Networks 631

Fig. 12 Examples of node ID
cloaking in the hierarchical
location perturbation algo-
rithm. a Sensor node detected
at least k subjects. b At least
k subjects can only be found
in the room level. c At least k
subjects can only be found in
the room level

(a)

(b)

(c)

5.1.3 Hierarchical Location Perturbation

Sensors could be deployed inside buildings to track the locations of individuals, which
is used for adaptive computing services. However, the location privacy of individuals
may be breached due to the vulnerability of WSN. The basic idea of the hierarchical
location perturbation algorithm [22] is to provide less spatial accuracy and perturb
the count of subjects in a monitored area. In general, the algorithm consists of two
main steps:

Step 1: Defining a hierarchical structure. The system area is partitioned into
several physical hierarchies, e.g., rooms, floor, and building. Each sensor node is
assigned with a unique hierarchical ID. Figure 12 depicts an example of a hierarchical
structure, where the highest level is a building, the second level contains all the floors
in the building, the third level contains all the rooms on each floor, and the lowest level
contains all the sensor nodes in each room. If each node in the hierarchical structure
does not have more than 16 child nodes, the ID of each level can be represented by
four bits, as depicted in Fig. 12a.

In each hierarchy, a sensor node is selected as a leader by using a distributed
leader election protocol. Each leader keeps track the number of subjects monitored
in its corresponding hierarchy. Also, each node knows a system-specified anonymity
level k, i.e., the monitoring system can only receive the subject count information of
a monitored area containing at least k subjects.

Step 2: Location perturbation. When a sensor node detects the number of subjects
that is equal to or larger than k, it cloaks the number of subjects by randomly rounding
up or down the subject count to the nearest multiple of k, and sends an exact node
ID to the leader in the upper level. Otherwise, the sensor sends the exact number
of detected subjects with a cloaked node ID to the leader in the upper level. The
leader repeats this step until at least k subjects in a higher level can be found. In
our example, if a sensor node can detect at least k subjects, it can report its exact

632 C.-Y. Chow et al.

ID with a cloaked subject count to the leader in the upper level (i.e., the room level)
(Fig. 12a). Otherwise, it sends the exact subject count with its cloaked ID “XXXX”
to the leader in the room level. Figure 12b shows the case that the leader in the room
level can detect at least k subjects. If this is not the case, it further sends the exact sum
of the subject counts of its child nodes with its cloaked ID to the leader in the floor
level. Figure 12c shows that the leader in the floor level can find at least k subjects, so
it sends its exact ID with cloaked room and node IDs and the cloaked subject count
to the leader in the building level.

5.1.4 Spatial Cloaking

TinyCasper [9, 11] is a privacy-preserving location monitoring system designed for
WSNs. The basic idea of TinyCasper is that sensor nodes can communicate with
each other and work together to find k-anonymized aggregate locations that are
reported to a server. A k-anonymized aggregate location is defined as (A, N), where
A a monitored area that contains at least k people and N is the number of people
detected inside A. Figure 13a depicts an example where 17 sensors are deployed in
the system, a nonzero number beside a sensor node indicates the number of people
detected inside its sensing area, the location of six people are represented by circles,
and k = 3. After the sensor nodes communicate with other peers, every node with
a nonzero people count blurs its sensing area into a cloaked area that contains at
least k = 3 people. Then, the sensor node reports the cloaked area A along with
the number of people N located in A as an aggregate location, i.e., (A, N), to the
server. In our example, sensor nodes s1, s5, s6, s7, and s15 detect a nonzero people
count, they communicate with nearby peers to blur their sensing area. For example,
s7 needs to communicate with nodes s5 and s6 to find three people, and then it blurs
its sensing area into a cloaked area that contains the sensing areas of nodes s5, s6 and
s7 (represented by the left-bottom shaded rectangle in Fig. 13b. s7 reports the cloaked
area with three people as an aggregate location to the server. In this example, the
server receives two three-anonymized aggregate locations (represented by the two
shaded rectangles) (Fig. 13b).

Two in-networks spatial cloaking algorithms have been proposed for Tiny-
Casper [9, 11]. (1) The resource-aware algorithm employs a greedy approach for
sensor nodes to determine their aggregate locations. Its objective is to minimize the
communication and computational overhead. (2) The quality-aware algorithm aims
at enabling sensor nodes to determine their aggregate locations with the minimal
cloaked area, in order to maximize the usability of the aggregate locations that are
used by the server to provide location-based monitoring services. Spatial cloaking
techniques have also been extended to support mobile devices, e.g., smartphones and
mobile sensors, through peer-to-peer communication [12, 13, 42].

18 Privacy Enhancing Technologies for Wireless Sensor Networks 633

(a) (b)

Fig. 13 Example of spatial cloaking in a sensor-based location monitoring system (k = 3).
a Sensor deployment. b Two k-anonymized aggregate locations

5.1.5 Discussion

Using pseudonyms may not be secure because an adversary could link the old and
new pseudonyms to infer a user’s read identity. The effectiveness of the mix zone
greatly depends on its size, the user population, the sensing resolution, and the user
movement speed. The hierarchical location perturbation algorithm does not con-
sider sensor nodes deployed at the same level in the predefined hierarchy, e.g., the
sensor nodes in the same room. When the subject count of a sensor node does not
satisfy a certain number, the algorithm goes up to its parent. The algorithm trends to
generate cloaked areas larger than necessary, such large aggregate locations would
degrade their usability in location monitoring services. On the other hand, the spatial
cloaking algorithms do not reply on any hierarchical structure and they can support
both indoor and open environments. In addition, since they aim at maximizing the
usability of their cloaked areas by minimizing their area, they can be used to provide
better location monitoring services. We discuss how a WSN can provide location
monitoring services based on cloaked areas in next section.

634 C.-Y. Chow et al.

5.1.6 Privacy-Preserving Location Monitoring Services

As discussed in Sects 5.1.3 and 5.1.4, the privacy-preserving monitoring system can
only report aggregate locations for the server to provide monitoring services. To
this end, a privacy-preserving aggregate query processor is designed to employ a
spatio-temporal histogram to estimate the subject distribution based on aggregate
locations reported from sensor nodes [10]. The spatio-temporal histogram partitions
the system area into disjoint equal-sized cells that is stored as a two-dimensional
array. Each element M[i, j] is an estimator that represents the estimated number of
subjects located in its corresponding cell area, where i and j indicate the i-th row and
j-th column in the array, respectively. In general, the privacy-preserving aggregate
query processing has two main steps.

Step 1: Histogram updates. The server is able to detect the total number of people
Ntotal in the system area. Initially, Ntotal is uniformly distributed among all esti-
mators in the histogram. When the server receives an aggregate location (A, N),
the basic approach calculates the sum S of the estimators of the cells intersecting
the aggregate location area A and uniformly distributes the reported people count
N among the cells intersecting A. The difference between S and N is uniformly
distributed among the cells outside A. Several optimization techniques have been
proposed for an adaptive spatio-temporal histogram, in which the server updates the
histogram based on various spatial, temporal, and historical factors.

Figure 14 depicts an example of a basic histogram where the system area is divided
into 25 cells and Ntotal = 100. Initially, Ntotal is uniformly distributed among the
25 cells, so the value of each estimator is 4 (Fig. 14a). Figure 14b shows an aggregate
location with N = 20 people and its cloaked area A is represented by a bold rectangle.
The sum of the four estimators of the four cells intersecting A is 4 × 4 = 16. Since
20 is uniformly distributed among the four cells intersecting A, each estimator in
these four cells is set to 20/4 = 5. The difference 16−20 = −4 is evenly distributed

(a) (b)

Fig. 14 An update on the basic spatio-temporal histogram. a Initial histogram. b An aggregate
location with 20 people

18 Privacy Enhancing Technologies for Wireless Sensor Networks 635

Fig. 15 Privacy-preserving
aggregate query processing

among the estimators of the cells outside A, so each of those estimators is set to
4 + (−4/21) = 3.81.

Step 2: Aggregate query processing. The query processor is able to answer aggre-
gate queries. Given an aggregate query with a query range, the query processor
calculates the sum of the estimators of the cells intersecting the query range and
returns it as a query answer. Figure 15 depicts an example of an aggregate query with
a spatial query range which is represented by a bold rectangle. The query answer
is the sum of the estimators of the cells intersecting the spatial query range, i.e.,
5 × 4 + 3.81 × 2 = 27.62.

Recently, a stochastic flow model [54] has been designed to provide location
monitoring services in an indoor environment based on the sensor node’s actual
subject count. Since the flow model considers the network topology, it may provide
more accurate location monitoring services. It would be very useful to apply the flow
model to TinyCasper.

5.2 Temporal Privacy

In this section, we discuss two privacy-preserving techniques for temporal privacy in
WSNs, namely, adaptive delaying [31] and probabilistic sampling [23]. The adaptive
delaying technique is mainly designed for protecting the event time or the packet
transmission time, while the probabilistic sampling technique aims at protecting the
user’s query patterns and the unusual event time.

636 C.-Y. Chow et al.

5.2.1 Adaptive Delaying

In some WSN applications, the time when an event is detected or data is transmitted
by a sensor node is considered as sensitive information. An adversary would be able
to infer temporal information by merely capturing the arrival time of data packets
at some sensor nodes. Packet delaying techniques have been applied to anonymous
network communication. Most of these early techniques rely on the concept of pool
mixes [14], where the pool mix waits until it buffers a certain number of packets before
taking mixing action to protect their anonymity. Thus, the pool mix delays packets
before forwarding them. The concept of pool mixes has been extended to delay
individual incoming packets according a probabilistic distribution before sending
them out [17, 34].

P. Kamat et al. [31] have further used packet delaying to protect the temporal
privacy of detected events and transmitted packets. Suppose a source node S detects
an event and generates a packet at some time X and sends the packet in an encrypted
form to a destination node R, and a compromised node E monitors traffic arriving
at R. The adaptive delaying technique can protect temporal privacy in three network
scenarios:

1. Two-party single-packet network. S obfuscates the time X by storing the packet
in its local buffer for a random time period Y before transmitting it to R. E
witnesses the packet arrives at a time Z = X +Y , while R can decrypt the packet
to know the actual event detection or packet generation time X .

2. Two-party multiple-packet network. Suppose S generates a stream of n pack-
ets p1, p2, . . . , pn at times X1, X2, . . . , Xn and delays them by Y1,Y2, . . . ,Yn ,
respectively, before sending them to R. E observes the packets at Z1, Z2, . . . , Zn ,
where Zi = Xi + Yi (1 ◦ i ◦ n). Similar to the first scenario, R can decrypt
each packet and know its actual event detection or packet generation time. If the
system needs to maintain packet ordering, Y j has to be at least the time until all
previous packets p1, p2, . . . , pi (where 1 ◦ i < j ◦ n) were transmitted. Thus,
there is an ordering of Z1 < Z2 < . . . < Zn . Otherwise, Y j can be independent
of each other and independent of the event detection or packet generation times.

3. Multihop network. Suppose S sends a stream of packets to R through m inter-
mediate nodes S ∞ N1 ∞ N2 ∞ . . . ∞ Nm ∞ R. The delay of a packet
pi is Yi = Y0,i + Y1,i + . . . + Ym,i , where Yk,i denotes the delay time of i-th
packet at k-th intermediate node and Y0,i denotes the delay time of i-th packet at
S. Consequently, E observes the arrival of each packet pi at Zi = Xi + Yi .

Delaying packets protects temporal privacy, but it increases burden on the
buffer at an intermediate node, especially the nodes close to the base station. When a
buffer is full, a replacement strategy is needed to replace a victim packet in the buffer
for a newly received packet. The victim packet is transmitted immediately instead
of dropping it. Four replacement strategies have been designed to choose a victim
packet from a buffer as follows:

1. Longest delayed first (LDF). The packet has been delayed in the buffer for the
longest time is selected as the victim packet.

18 Privacy Enhancing Technologies for Wireless Sensor Networks 637

2. Shortest delay time first (SDTF). The packet has been delayed in the buffer for
the shortest time is selected as the victim packet.

3. Longest remaining delay first (LRDF). The packet with the longest remaining
delay time in the buffer is selected as the victim packet.

4. Shortest remaining delay first (SRDF). The packet with the shortest remaining
delay time in the buffer is selected as the victim packet.

A rated-controlled adaptive delaying mechanism is used to adjust the delay process
based on the employed replacement strategy. In the adversary model of simulations,
the adversary estimates the creation time of each packet. The total estimation error
for m packets is calculated as the mean square error, i.e.,

∑m
i=1(x

∈
i − xi)

2/m, where
xi is the true creation time for packet i and x ∈

i is estimated by the adversary. The larger
this value is, the better the temporal privacy is protected. At the same time, tolerable
end-to-end delivery latency for each packet should be maintained. Simulation results
show that LRDF is the best replacement strategy in terms of both temporal privacy
and latency.

5.2.2 Probabilistic Sampling

Data can be collected from sensor nodes in an on-demand or a periodic manner. The
on-demand manner is easy for an adversary to infer when a user issues a query or a
sensor node detects an event. Although the periodic manner can protect the temporal
privacy of queries issued by users and events detected by sensor nodes, its power
consumption is very high if the data collection time interval is short. However, it
may not satisfy a user-specified deadline if the time interval is long. To this end, a
probabilistic sampling technique is designed [23]. The basic idea is to carefully report
data at random times to blend user requests and events with the routine traffic, thus
making user requests and events indistinguishable to an attacker. In this technique,
the day is divided into time intervals, TimeInterval, and each time interval contains
the same number of equal-sized time slots. Figure 16 depicts an example, where the
time slot is one second and the day is divided into 86,400 time slots. Each time
interval is five seconds, so it contains five time slots and the day has 17,280 time
intervals. This technique has three important policies:

Fig. 16 Probabilistic sam-
pling

1 2 3 4 5 6 7 8 86400

24 hours

One time slot (1 sec)

One time interval (5 sec)

638 C.-Y. Chow et al.

1. A time slot is a short time period, in which at most one data report or query can
transmit or issue, respectively. The base station and the sensor node have the same
probability P (e.g., 1/(TimeInterval × 2)) of issuing a query or initiating a data
report, respectively.

2. A user should only be able to issue one query every time interval.
3. When there are too many time slots between two reports from a sensor node, P

should be increased until the sensor node can generate a data report. After that,
P is reset to its original value.

With the careful design of the generation probability of automatic data reports, the
privacy of user queries and unusual events in the network is protected. Experimental
results show that the probabilistic sampling technique can effectively reduce the
chance that an adversary can identify whether a user issues a query in a time interval.

5.2.3 Discussion

The adaptive delaying technique [31] does not consider any user- or system-specified
deadline for a query or data collection. It would be more interesting if this technique
can be extended to be time-constrained. In addition, it is important to investigate
whether such a time constraint degrades its privacy protection. On the other hand,
although the probabilistic sampling technique [23] considers user-specified dead-
lines, it is not clear how to adjust the probability P to meet the deadline and maxi-
mize the accuracy of a query answer. More sophisticated models are needed to answer
these questions.

6 Conclusion and Future Directions

In this chapter, we highlighted the existing privacy enhancing technologies for wire-
less sensor networks (WSNs). We categorized these technologies into three main
types of privacy, namely, system privacy, data privacy and context privacy. For each
type of privacy, we presented its major privacy-preserving techniques. In the con-
text privacy, the user location privacy is a new type of privacy in WSNs. There are
three main open privacy issues in privacy-preserving location monitoring services.
(1) Existing solutions only aim at protecting snapshot location privacy. It is important
to study continuous location monitoring privacy to avoid tracking a target user’s loca-
tion by analyzing consecutive snapshots of aggregate locations reported from sensor
nodes. (2) The state-of-the-art privacy-preserving aggregate query processor can only
support range queries. It is essential to design more advanced query processors to
support more complex analysis, e.g., data mining. (3) There is a tradeoff between
user privacy and data accuracy. For example, a higher anonymity level would lead
to a larger aggregate location area that degrades the user location accuracy. It would

18 Privacy Enhancing Technologies for Wireless Sensor Networks 639

be very interesting to derive a theoretical model to balance such a tradeoff and find
an appropriate privacy protection level for a desired level of accuracy.

References

1. U. Acharya, M. Younis, Increasing base-station anonymity in wireless sensor networks. Ad
Hoc Netw. 8(8), 791–809 (2010)

2. K. Akkaya, M. Younis, A survey on routing protocols for wireless sensor networks. Ad Hoc
Netw. 3(3), 325–349 (2005)

3. J.N. Al-Karaki, A.E. Kamal, Routing techniques in wireless sensor networks: A survey. IEEE
Wirel. Commun. 11(6), 6–28 (2004)

4. A.R. Beresford, F. Stajano, Location privacy in pervasive computing. IEEE Pervasive Comput.
2(1), 46–55 (2003)

5. B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7),
422–426 (1970)

6. D.L. Chaum, Untraceable electronic mail, return addresses and digital pseudonyms. Commun.
ACM 24(2), 84–88 (1981)

7. C.W. Chen, Y.R. Tsai, Location privacy in unattended wireless sensor networks upon the
requirement of data survivability. IEEE J. Sel. Areas Commun. 29(7), 1480–1490 (2011)

8. X. Chen, K. Makki, K. Yen, N. Pissinou, Sensor network security: A survey. IEEE Commun.
Surv. Tutor. 11(2), 52–73 (2009)

9. C.Y. Chow, M.F. Mokbel, T. He, TinyCasper: A privacy-preserving aggregate location moni-
toring system in wireless sensor networks, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2008

10. C.Y. Chow, M.F. Mokbel, T. He, Aggregate location monitoring for wireless sensor networks:
A histogram-based approach, in Proceedings of the IEEE International Conference on Mobile
Data Management, 2009

11. C.Y. Chow, M.F. Mokbel, T. He, A privacy-preserving location monitoring system for wireless
sensor networks. IEEE Trans. Mob. Comput. 10(1), 94–107 (2011)

12. C.Y. Chow, M.F. Mokbel, X. Liu, A peer-to-peer spatial cloaking algorithm for anonymous
location-based services, in Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2006

13. C.Y. Chow, M.F. Mokbel, X. Liu, Spatial cloaking for anonymous location-based services in
mobile peer-to-peer environments. GeoInformatica 15(2), 351–380 (2011)

14. G. Danezis, The traffic analysis of continuous-time mixes, in Proceedings of the International
Conference on Privacy Enhancing Technologies, 2005

15. J. Deng, R. Han, S. Mishra, Intrusion tolerance and anti-traffic analysis strategies for wireless
sensor networks, in Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks, 2004

16. J. Deng, R. Han, S. Mishra, Decorrelating wireless sensor network traffic to inhibit traffic
analysis attacks. Pervasive Mob. Comput. 2(2), 159–186 (2006)

17. C. Díaz, B. Preneel, Taxonomy of mixes and dummy traffic, in Proceedings of the International
Information Security Workshops, 2004

18. L. Eschenauer, V.D. Gligor, A key-management scheme for distributed sensor networks, in
Proceedings of the 9th ACM conference on Computer and communications, security (2002)

19. P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, A. Kermarrec, Lightweight proba-
bilistic broadcast. ACM Trans. Comput. Syst. 21(4), 341–374 (2003)

20. T. Feng, C. Wang, W. Zhang, L. Ruan, Confidentiality protection for distributed sensor data
aggregation, in Proceedings of the IEEE INFOCOM, 2008

21. M.M. Groat, W. Hey, S. Forrest, KIPDA: k-indistinguishable privacy-preserving data aggrega-
tion in wireless sensor networks, in Proceedings of the IEEE INFOCOM, 2011

640 C.-Y. Chow et al.

22. M. Gruteser, G. Schelle, A. Jain, R. Han, D. Grunwald, Privacy-aware location sensor networks,
in Proceedings of the USENIX International Workshop on Hot Topics in Operating Systems,
2003

23. J. Guerreiro, E.C.H. Ngai, C. Rohner, Privacy-aware probabilistic sampling for data collection
in wireless sensor networks, in Proceedings of the International Wireless Communications and
Mobile Computing Conference, 2011

24. A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, The anatomy of a context-aware
application. Wireless Netw. 8(2–3), 187–197 (2002)

25. W. He, X. Liu, H. Nguyen, K. Nahrstedt, T. Abdelzaher, PDA: Privacy-preserving data aggre-
gation in wireless sensor networks, in Proceedings of the IEEE INFOCOM, 2007

26. W. He, X. Liu, H. Nguyen, K. Nahrstedt, T. Abdelzaher, iPDA: an integrity-protecting private
data aggregation scheme for wireless sensor networks, in Proceedings of the IEEE Military
Communications Conference, 2008

27. W. He, X. Liu, H. Nguyen, K. Nahrstedt, T. Abdelzaher, A cluster-based protocol to enforce
integrity and preserve privacy in data aggregation, in Proceedings of the IEEE International
Conference on Distributed Computing Systems Workshops, 2009

28. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, Directed diffusion for
wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16 (2003)

29. A. Jhumka, M. Leeke, S. Shrestha, On the use of fake sources for source location privacy:
Trade-offs between energy and privacy. Comput. J. 54(6), 860–874 (2011)

30. Y. Jian, S. Chen, Z. Zhang, L. Zhang, Protecting receiver-location privacy in wireless sensor
networks, in Proceedings of the IEEE INFOCOM, 2007

31. P. Kamat, W. Xu, W. Trappe, Y. Zhang, Temporal privacy in wireless sensor networks: Theory
and practice. ACM Trans. Sens. Netw. 5(4), 1–24 (2009)

32. P. Kamat, Y. Zhang, W. Trappe, C. Ozturk, Enhancing source-location privacy in sensor net-
work routing, in Proceedings of the IEEE International Conference on Distributed Computing
Systems, 2005

33. B. Karp, H.T. Kung, Gpsr: Greedy perimeter stateless routing for wireless networks, in Pro-
ceedings of the ACM International Conference on Mobile Computing and Networking, 2000

34. D. Kesdogan, J. Egner, R. Büschkes, Stop-and-Go-MIXes providing probabilistic anonymity
in an open system, in Proceedings of the International Workshop on Information Hiding, 1998

35. N. Li, N. Zhang, S.K. Das, B. Thuraisingham, Privacy preservation in wireless sensor networks:
A state-of-the-art survey. Ad Hoc Netw. 7(8), 1501–1514 (2009)

36. X. Li, X. Wang, N. Zheng, Z. Wan, M. Gu, Enhanced location privacy protection of base station
in wireless sensor networks, in Proceedings of the International Conference on Mobile Ad-hoc
and Sensor Networks, 2009

37. Y. Li, J. Ren, Source-location privacy through dynamic routing in wireless sensor networks, in
Proceedings of the IEEE INFOCOM, 2010

38. L. Lightfoot, Y. Li, J. Ren, Preserving source-location privacy in wireless sensor network using
STaR routing, in Proceedings of the IEEE Global Communications Conference, 2010

39. H. Lim, C. Kim, Flooding in wireless ad hoc networks. Comput. Commun. 24(3), 353–363
(2001)

40. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: A tiny aggregation service for
ad-hoc sensor networks. ACM SIGOPS Oper. Syst., Rev. 36(SI), 131–146 (2002)

41. K. Mehta, D. Liu, M. Wright, Protecting location privacy in sensor networks against a global
eavesdropper. IEEE Trans. Mob. Comput. 11(2), 320–336 (2012)

42. M.F. Mokbel, C.Y. Chow, Challenges in preserving location privacy in peer-to-peer environ-
ments, in Proceedings of the International Workshop on Information Processing over Evolving
Networks, 2006

43. E.C.H. Ngai, I. Rodhe, On providing location privacy for mobile sinks in wireless sensor
networks, in Proceedings of the ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2009

44. L.B. Oliveira, D.F. Aranha, C.P.L. Gouvêa, M. Scott, D.F. Câmara, J. López, R. Dahab,
TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor
networks. Comput. Commun. 34(3), 485–493 (2011)

18 Privacy Enhancing Technologies for Wireless Sensor Networks 641

45. N. Oualha, A. Olivereau, Sensor and data privacy in industrial wireless sensor networks, in Pro-
ceedings of the International Conference on Network Architectures and Information Systems
Security, 2011

46. C. Ozturk, Y. Zhang, W. Trappe, Source-location privacy in energy-constrained sensor network
routing, in Proceedings of the ACM International Workshop on Security of Ad hoc and Sensor
Networks, 2004

47. A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS: Security protocols for sensor
networks. Wireless Netw. 8(5), 521–534 (2002)

48. N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The cricket location-support system, in
Proceedings of the ACM International Conference on Mobile Computing and Networking,
2000

49. R. Rajagopalan, P. Varshney, Data-aggregation techniques in sensor networks: A survey. IEEE
Commun. Surv. Tutor. 8(4), 48–63 (2006)

50. J. Sen, A survey on wireless sensor network security. Int. J. Commun. Netw. Inf. Secur. 1(2),
55 (2009)

51. M. Shao, Y. Yang, S. Zhu, G. Cao, Towards statistically strong source anonymity for sensor
networks, in Proceedings of the IEEE INFOCOM, 2008

52. L. Sweeney, k-anonymity: A model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl.
Based Syst. 10(5), 557–570 (2002)

53. P. Szczechowiak, A. Kargl, M. Scott, M. Collier, On the application of pairing based cryptog-
raphy to wireless sensor networks, in Proceedings of the ACM International Conference on
Wireless Network Security, 2009

54. S. Wang, X.S. Wang, Y. Huang, Tracking the dynamic distribution of people in indoor space
with noisy partitioning sensors, in Proceedings of the IEEE International Conference on Mobile
Data Management, 2012

55. R. Want, A. Hopper, V. Falcao, J. Gibbons, The active badge location system. ACM Trans. Inf.
Syst. 10(1), 91–102 (1992)

56. A. Woo, T. Tong, D. Culler, Taming the underlying challenges of reliable multihop routing in
sensor networks, in Proceedings of the ACM International Conference on Embedded Networked
Sensor Systems, 2003

57. World Wildlife Fund: http://wwf.panda.org [Accessed: April 24, 2012]
58. Y. Xi, L. Schwiebert, W. Shi, Preserving source location privacy in monitoring-based wire-

less sensor networks, in Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing, 2006

59. Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, G. Cao, Towards event source unobservability with
minimum network traffic in sensor networks, in Proceedings of the ACM International Con-
ference on Wireless Network Security, 2008

60. S. Zhu, S. Setia, S. Jajodia, LEAP: Efficient security mechanisms for large-scale distributed
sensor networks, in Proceedings of the ACM International Conference on Computer and Com-
munications Security, 2003

http://wwf.panda.org

Part IX
Middleware

Chapter 19
Middleware Platforms: State of the Art,
New Issues, and Future Trends

Flávia C. Delicato, Paulo F. Pires and Albert Y. Zomaya

Abstract In this chapter we examine the rapid advances that have occurred recently
in the wireless sensor networks (WSNs) domain and argue that intelligent middle-
ware is needed to tackle the challenges brought by these changes. We present an
overview on existing design approaches for WSN middleware, as well as the most
common middleware services and programming abstractions. We describe key fea-
tures that must be incorporated in middleware for the current generation wireless
sensor networks and conclude the chapter with a discussion on new issues and future
trends in the design of WSN middleware.

1 Introduction

Wireless Sensor Networks (WSNs) technology [1] experienced a major breakthrough
in the last decade, attracting increased attention from the scientific community and
the industry. Wireless Sensor Network nodes work collaboratively, extracting envi-
ronmental data, performing some simple processing and transmitting them to one
or more exit points of the network called sink nodes, to be analyzed and further
processed. The computational capacity, albeit limited, of sensor nodes, enables them
to realize the so-called in-network processing. Thus, WSN nodes are not merely
passive devices to collect data, but are also capable of performing operations such

F. C. Delicato (B) · P. F. Pires
Federal University of Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, RJ-Brazil
e-mail: fdelicato@gmail.com

P. F. Pires
e-mail: paulo.f.pires@gmail.com

A. Y. Zomaya
University of Sydney, Sydney, NSW, 2006, Australia
e-mail: albert.zomaya@sydney.edu.au

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 645
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_19,
© Springer-Verlag Berlin Heidelberg 2014

646 F. C. Delicato et al.

as event detection, data fusion and data aggregation [2]. Such WSN feature brings
potential advantages such as, for instance, rapid response to critical situations.

Considering the wide range of environmental variables that can be collected by
sensor nodes, there are a large number of applications that can benefit from the
use of WSN, including fire detection [3], object detection and tracking [4] secu-
rity monitoring [5], environmental monitoring, structural health monitoring (like
bridges, buildings, tunnels and dams) [6, 7], monitoring of natural disasters (such as
landslides [8]), just to name a few. WSN applications differ greatly in their data deliv-
ery models, QoS, connectivity and mobility requirements, thus demanding different
organizations and features from the underlying network. In Chap. 6 of this Book
there is a comprehensive survey on WSN applications, including a multidimensional
taxonomy addressing the most relevant application features and requirements.

The increasing abundance of WSN applications and the heterogeneity of wireless
sensor technologies currently available bring forth different challenges and require
changes in how these networks should be designed and used. Several important issues
in the early years of WSN research, as routing, topology control and media access
control, already have relatively suitable and efficient solutions, but the new usage
scenarios of these networks have opened a whole new range of challenges to be
overcome.

One of the changes the WSN field has witnessed recently regards the scope of such
networks. Early work on WSN had focused on simple applications of data acquisition,
and in most cases, considered a single application over a network. The research focus
was mostly on providing algorithms and protocols for efficient power management,
routing, localization, and other low level issues. The design of network protocols
and applications were usually tightly coupled, and the application logic along with
underlying protocols were bundled in a monolithic code to be deployed in the nodes.
Such works assumed application-specific WSNs (a single application scope). This
strong coupling aimed to provide a high efficiency in terms of energy consumption.
However, the design strategies were often ad hoc and imposed direct interaction of the
application with the underlying embedded operating system, or even with hardware
components of sensor nodes. Furthermore, such design approach generated rigid
systems with WSNs built specifically for a single target application, with no reuse
of software artefacts and of the sensing/communication infrastructure.

Recent work is considering that, given the cost of building and deploying the
WSN infrastructure, the potentially long operational lifetime of the WSN and the
wide range of applications that could use it, the same network can be shared by
different applications. Therefore, the current trend is to design WSNs with long life-
times, meeting the requirements of multiple applications from the same or different
domains, which execute concurrently in the network nodes. Such approach gives rise
to the vision of shared sensor networks [9] (multiple applications scope), in which
the lack of flexibility previously adopted in the WSN design is undesirable.

Finally, the new generation of WSNs, that has gained momentum nowadays,
is supposed to have an Internet-scale scope. Unlike previous application-specific
or shared WSNs, in this new scenario the interface among different networks and

http://dx.doi.org/10.1007/978-3-642-40009-4_6

19 Middleware Platforms 647

applications is highly relevant, thus interoperability becomes an issue. This kind of
WSN is related to the new paradigm of “the Internet of things” [10, 11].

Apart of the WSN scope, the development of applications for such networks has
always been a challenge. First of all, WSN programming has traditionally been an
error-prone task since it requires programming individual nodes, using low-level
abstractions provided by the sensor operating system and interfacing with the hard-
ware and network protocols [12]. Second, developers of WSN applications are usu-
ally experts in their knowledge field (as civil engineer, biology, geology, etc), not in
networks. Even when network experts are available to be in charge of dealing with
programming issues, the requirements of the applications that will run in the WSN
need to be taken in account to efficiently program the nodes; therefore, the domain
experts always need to be involved. So, there is a gap between the high-level require-
ments from WSN applications (the application level knowledge), and the complexity
of operations in the underlying network infrastructure (the network level knowledge).
A potential solution to bridging this gap and removing (or alleviating) the hindrances
and challenges posed by the WSN application development and execution is to adopt
a middleware platform.

In distributed systems, middleware is usually defined as software that lies between
the operating system and applications running on each node of the system. In gen-
eral, middleware is supposed to hide the internal operation and heterogeneity of the
underlying system, providing standard interfaces, abstractions and a set of services.
By hiding the inherent complexity of distribution, the use of middleware in traditional
distributed computing facilitates the work of application developers. Tasks such as
concurrency control, transactions, data replication, security, and other infrastructure
services are examples of services performed by a middleware.

WSN systems could also benefit from the use of a middleware layer that offers
a generic execution environment for applications, providing a high level abstrac-
tion of the network infrastructure functionality. In short, WSN middleware has to
provide support for the development, management, deployment and execution of
sensing-based application. Among other functions, the middleware can decide the
best protocols to be used according to the application requirements, coordinate the
operation of sensors to achieve the application goals and intelligently manage the use
of network resources. In order to efficiently provide the quality of service required
by applications, it is often necessary to interact with the lower levels of protocols or
even with hardware components. The middleware can perform this interaction for
the benefit of the application. All these functions facilitate the tasks of the application
developers and of the network managers.

However, despite the well-known advantages of using middleware platforms in
traditional distributed systems, only recently the researchers began to consider its
adoption in the WSN design [13–17]. Considering the simplicity of the first appli-
cations and the application-specific nature of early WSNs, the overhead of adding a
middleware layer in the network design was often not worth. But to accommodate
the new scenarios of shared and Internet-scale WSN, the development of WSNs will
require systematic design approaches based on high level and preferable standard-
ized abstractions. Thus, the support of middleware becomes a crucial need in order

648 F. C. Delicato et al.

to provide: (i) appropriate system abstractions, so that the application developer
can focus on the application logic without having to deal with the lower level imple-
mentation details, (ii) standard and reusable services for several applications, so that
developers can deploy and execute the application without worrying about com-
plex, error-prone and tedious functions, (iii) runtime environment able to manage
the execution of multiple applications, (iv) mechanisms for network infrastructure
management and adaptation to allow the efficient use of WSN resources. It should
also support interoperability with external networks, as the Internet, or enterprise
systems.

Since WSNs have several particular features and constraints, conventional mid-
dleware technologies are not suitable for these networks. Instead, a middleware
specifically tailored to WSN is required, and the design and implementation of a
successful WSN middleware is not trivial. It needs to deal with challenges dictated
by the WSN features on one hand and the applications requirements on the other.

Considering the WSN scarce resources, a middleware must be robust, fault tol-
erant, lightweight and with short storage requirements. Regarding the design, mid-
dleware platforms used in traditional distributed systems (based on fixed and wired
connected devices) have been built adhering to the “black box” metaphor, that is, the
inherent complexity of the distribution should be hidden from the users and devel-
opers, so that the system appear as a single integrated computational entity. In other
words, the distribution becomes transparent. However, completely hiding the network
operation details from applications can be inefficient in WSNs. WSN applications
need to detect and react to changes in the environment (regarding connectivity, band-
width and available energy), as well as to changes in the application requirements.
The application ability to modify the network behaviour can be crucial to improve
the overall system performance. Therefore, the middleware should act as a broker
between applications and the WSN, translating application requirements into WSN
configuration parameters. Due to the dynamics of WSN environments, the middle-
ware should supply mechanisms that allow the application to monitor the network
state through a high level interface. From the monitoring of the execution context,
the application may decide to dynamically change some behaviour of the network, or
aid the middleware to perform some adaptation. Therefore, WSN middleware should
provide context-awareness, instead of transparency, for the applications.

Independently on the design approach or specific purpose, a complete WSN mid-
dleware solution should include three major components: programming abstractions,
system services and runtime support. It should be mentioned that it is not necessary
for a specific WSN middleware to include all these components. Also, functions of
several components may be combined together and implemented as a single com-
ponent. Moreover, it is desirable to include some mechanism for QoS provision and
management. QoS issues in WSN are complex and often have a crosslayer nature.
Thus a complete QoS solution requires not only middleware support but also the
participation of all levels of the WSN protocol stack. Runtime support supplies
the underlying execution environment of applications and can be considered as an
extension of the embedded operating system which provides functions of scheduling
of tasks, inter-process communication (IPC), memory control, and power control in

19 Middleware Platforms 649

terms of voltage scaling and component activation/inactivation. The need for runtime
support in WSN middleware derives from the facts that the hardware and firmware
of the sensor nodes may not always provide enough support for the implementation
of the middleware services. Runtime support of WSN middleware is often embodied
as a virtual machine over a specific embedded operating system [18].

In this chapter we will start by summarizing the requirements a WSN middleware
should meetl (Sect. 2) and then will focus on currently existent programming abstrac-
tions (Sect. 3) and middleware services (Sect. 4) for WSN. Section 5 sheds light on
new issues and future trends in the design of WSN in general and middleware con-
cerns in particular. Section 6 concludes the chapter presenting final remarks.

2 Requirements and Challenges of Middleware for WSN

The main purpose of WSN middleware is to support the development, maintenance,
deployment and execution of sensing-based applications. This support includes
mechanisms to formulate high-level sensing tasks, communicate such tasks to the
WSN, distribute them to individual sensor nodes, coordinate nodes to perform the
tasks and report the final result back to the task issuer (applications and/or final users).
All mechanisms provided by a middleware platform should respect the special fea-
tures of WSN, mainly the energy efficiency, robustness, dynamic execution context
and scalability. In this Section we will first depict WSN constraints and specific
features that dictate middleware requirements, and then outline some desired design
principles and characteristic the middleware should have to meet such requirements.

2.1 WSN Features

Wireless sensor networks are a category of ad hoc networks, sharing several char-
acteristics of these networks but having additional requirements and constraints.
Following we summarize the main WSN features that pose challenges in the design
of a WSM middleware.

Resource Constraint. The limited resources of WSN nodes have always been an
issue in the design and operation of these networks. The main restrictions of sensor
nodes concern their processing power, memory capacity, bandwidth and energy. Due
to the processing and memory limitations, any software solution for WSN should be
lightweight, with a low computational load. Such feature often prevents the adoption
of sophisticated techniques for the implementation of services in the nodes. More-
over, resource limitation make it challenging to meet QoS requirements as response
time, availability, bandwidth allocation, data reliability, among other application spe-
cific needs, as a long operational lifetime (for long running applications).

In spite of the fact that recent advances on technology indicate that limited proces-
sor and memory are temporary constraints in WSNs that tend to disappear with fast

650 F. C. Delicato et al.

developing fabrication techniques [19], the energy constraint, on the other hand,
remains as a critical issue that needs to be tackled so that WSNs can be widely
employed. Therefore, it is an important requirement of WSN to have mechanisms to
manage the energy consumption in sensor nodes in an intelligent way.

Dynamic Execution Context. WSNs are subject to unpredictable changes in their
execution context. Besides the intrinsic variations in the network connectivity, typical
in wireless links, the availability of sensors in the network is also highly variable
due to node failures, energy depletion and mobility. The network topology is also
frequently changed by topology control protocols [20] that decide when and which
sensors should be turned off to save power. The required sensing tasks, that dictate the
network behaviour, can also change since the emergent WSN are assumed to be used
by different applications (concurrently or not). These characteristics demonstrate the
high degree of dynamics in the execution context of WSNs. Therefore, it is crucial
that such networks are endowed with mechanisms that provide context-awareness
and adaptation.

Data-Centricity. Sensor nodes are used to collect data from its surroundings.
Since applications are interested in the data collected by a sensor, and express their
interests in terms of type of data and QoS requirements, the scheme for node address-
ing in a WSN should be based in attributes that describe the node capabilities to
provide data (instead of using a scheme based on any global and unique network
address). Moreover, individual readings of a single node are often not relevant to the
application, which is more interested in the merged or synthesized information gath-
ered from different nodes. Considering the typical spatial density in a WSN, there is
often a redundancy in the data collected for different nodes inside a given region of
interest. Since in WSN the data communication in general consumes more energy
than data processing, individual measurements should be aggregated as near to the
data source as possible so that only the resulting, relevant information is transmitted
to sink nodes, thus saving transmission energy. Therefore, in-network processing
should be performed in every node of the WSN, aiming at saving energy of nodes,
while reducing data redundancy,thus increasing the relevance of the information
reported back to the application.

Scalability and Heterogeneity. A particular feature of WSNs is that they may
consist of hundreds to thousands of nodes. Moreover, in the emergent WSN envi-
ronment, it is likely that the devices, communication links, protocols and software
components will be heterogeneous in terms of capabilities, programming abstrac-
tions, models and development tools. Such heterogeneous nature of WSNs, with a
large number of sensors of different hardware platforms running applications devel-
oped by different teams will require the use of an abstraction layer that provides a
common way to program, access the networks and extract the sensing data. The high
number of nodes will require mechanism to coordinate them in the execution of the
required sensing tasks.

Additional Features. Another unique feature of WSN is the use of application
knowledge to configure and optimize the network operation. Such knowledge should
be used in the initial decision making about WSN parameters and behaviour as well
as to trigger dynamic adaptation whenever is needed after the application execution.

19 Middleware Platforms 651

An additional feature concerns the concept of time and location of the sensed event.
As WSNs monitor real-world data, information of time and space are important,
and consist in key elements to properly merge individual sensor readings. Finally,
since WSN can be deployed for sensitive applications like military surveillance and
forecasting systems, security requirements such as confidentiality, authentication,
integrity, freshness, and availability should be considered. Since most existing algo-
rithms and security models are not suitable for WSNs, solutions specifically tailored
for these networks must be designed that take into account the node resource con-
straints.

2.2 WSN Middleware Requirements

All the aforementioned WSN features should be taken into account when designing a
successful WSN middleware and specifying its services. The following subsections
describe the main requirements such WSN middleware should met.

2.2.1 Management of WSN Resources

The WSN scarcity of resources dictates that the middleware imposes a low compu-
tational load in the sensor nodes. Moreover, middleware should provide services to
manage and optimize the network resource usage in an efficient way while meeting
the application requirements. One example of such services is the selection of the set
of nodes that will participate in a given sensing task, always taking into account the
tradeoff between meeting the application requirements and optimizing energy con-
sumption. Depending on the desired granularity of control, the middleware may also
be in charge of (i) selecting the voltage levels used to process each task allocated to a
sensor, using some mechanism of dynamic voltage scaling (DVS), (ii) dynamically
changing the data modulation scheme by adopting a dynamic modulation scaling
(DMS) technique, or (iii) dynamically adapting the data sampling rate of sensors
[21], always with the final aim of optimizing energy consumption. Another useful
service is to implement data fusion techniques to merge sensor readings of individual
sensors into a high-level result to be sent to the application, thus saving transmission
energy.

2.2.2 Management of Dynamic Execution Contexts

Considering the WSN highly dynamic environment, WSN middleware should pro-
vide services to flexibly adapt the system to the changes without decreasing its overall
performance. Furthermore, the middleware should report failures and take measures
to circumvent problems until the detected failures can be fixed. To deal with the
dynamic execution context while providing a reasonable quality of service to its

652 F. C. Delicato et al.

users, the WSN behaviour cannot rely on static parameters defined at the design
time. The middleware should make decisions on the initial WSN configuration and
then be able to change its operation dynamically, with or without the participation of
applications. The execution context must be continually monitored and applications
need to be “aware” of such context [6] and actively participate in the decision making.
To this end, the middleware must expose to applications part of the knowledge about
context, allowing them to participate in decisions about the infrastructure and in the
activation of adaption strategies whenever it is necessary. The authors in [6] argue
that the use of computational reflection [19] provides a powerful way for building
middleware platforms that enable the development of context aware applications.
WSN middleware can use reflective principles to interact with the infrastructure of
the underlying network, keep updated context information in their data structures
and make them available to applications.

Application knowledge should be used in the middleware decisions at sev-
eral levels, including support to routing strategies and data aggregation functions.
Traditional middleware are general purpose platforms, being designed to accommo-
date a wide variety of applications without needing application knowledge. WSN
middleware, on the other hand, has to provide mechanisms for injecting application
knowledge into the WSN and exploit such knowledge for optimization purposes.
However, since WSNs can support a wide class of applications, tradeoffs need to be
explored between the degree of generality and the application specificity of the mid-
dleware. A promising approach is to embed the particular features of an application
in some type of specification or configuration file, building an application profile, as
is done for example in [22]. The information embedded in the application profile can
be interpreted by the middleware and used to guide its operations and the network
behaviour.

2.2.3 Management of WSN Heterogeneity

The middleware should provide proper abstractions and mechanisms to deal with the
heterogeneity of sensor nodes [23]. It should encapsulate the different communication
protocols, software and hardware technology, providing the application with a high-
level interface to interact to.

An additional feature concerns the concepts of time and location of sensed events.
Since WSNs monitor real world data, time and spatial information are relevant,
being key elements for fusing individual sensor readings. Therefore, support for
time synchronization and location management should be integrated into a WSN
middleware. Security solutions can be also provided as middleware services for
sensitive applications. All services provided by the middleware should respect the
particular characteristics of WSNs, especially robustness, scalability and efficiency
in terms of energy. Finally, it is important to note that the scope of middleware for
WSN is not restricted to the sensor network alone, but also encompasses external
networks connected to the WSN (such as Internet) as well as the applications issuing
queries or tasks to the WSN.

19 Middleware Platforms 653

2.2.4 Summarization of WSN Middleware Requirements

To conclude this Section we summarize the aforementioned WSN requirements in a
set of design principles for building WSN middleware systems. In [24] the authors
proposed principles to be adopted in the design of a WSNs middleware. These prin-
ciples and some additional ones that we consider relevant for a successful WSN
middleware are described below:

• The middleware must provide mechanisms for both data-centric and in-network
processing.

• Application knowledge should be used to optimize the network operation. There-
fore, it is important to integrate knowledge of the application level to the services
provided by the middleware.

• The middleware should be light in terms of communication and computing require-
ments. This requirement calls for using simple and efficient heuristics that generate
sub-optimal solutions for decisions taken by the middleware.

• Due to the limited resources, it is very likely that the performance requirements
of all running applications cannot be simultaneously met. Thus, the middleware
should intelligently negotiate QoS of various applications against each other.

• All the solutions should preferably be based on the use of localized algorithms
[25, 26]. Such algorithms provide robustness and scalability to the system.

• The middleware design should incorporate context awareness and adaptive prop-
erties.

3 Programming Abstractions

As we previously mentioned, a complete WSN middleware solution should include
three major components: programming abstractions, system services and runtime
support, besides QoS mechanisms. Programming abstractions are the underpinning
of WSN middleware. They provide the high-level programming interfaces to the
application developer, separating the programming of WSN applications from the
operation in the underlying WSN infrastructure. They also provide the basis for
developing the middleware services. Such abstractions, being supported by a suit-
able programming model, compiler and runtime support, unburden developers from
handling low-level mechanisms such as messaging and routing protocols, power
management, among others.

Existing programming abstractions encompass three aspects, discussed in the next
two subsections: abstraction level (Sect. 3.1), programming paradigm, and interface
type (Sect. 3.2). The decision of adopting a particular abstraction level and selecting
an appropriate programming paradigm (and corresponding type of interface) depends
on the specific application requirements and the underlying WSN infrastructure.
Section 3.3 presents a brief comparison among commonly adopted programming
paradigms.

654 F. C. Delicato et al.

3.1 Programming Abstractions: Abstraction Levels

Abstraction level refers to how the application developer views (and interact to)
the WSN system. Basically, we can identify two different levels for programming
abstractions: node-centric or local behaviour and macroprogramming or global/
system behaviour.

Node-centric level abstracts the WSN as a distributed system consisting of a col-
lection of sensor nodes, and the developer is provided with support to program the
individual nodes [27, 28]. Therefore, the developer has to translate the global appli-
cation behaviour in terms of local actions on each node, and individually program the
nodes using the corresponding programming model. Examples of middleware plat-
forms that consider such scope for programming WSN applications are Hood [29],
Abstract Regions [7], Logical Neighborhoods [30], and Virtual Nodes [31].

On the other hand, macroprogramming [32] or global level abstracts the WSN
as a single virtual system and allows the programmer to build a unique centralized
program (global behaviour) that is then further decomposed (sometimes automati-
cally or semi- automatically) into subprograms to execute on local nodes (node level
behaviour) [33, 34]. This approach relieves application developers from directly
dealing with concerns at each network node. Regiment [35], Kairos [33, 36] and
ATaG [37] are significant examples of this type of abstraction.

Roughly speaking, node level abstraction promotes the development of applica-
tions in a more flexible and energy efficiency way, and generates smaller commu-
nication and interpretation overhead. On the other hand, system level abstractions
are easier to use since nodal behaviours can be generated automatically so that the
developer can concentrate on the network-wide tasks, without directly handling the
collaboration among sensor nodes to perform the assigned tasks [18].

3.2 Programming Abstraction: Paradigms and Interface Types

Programming paradigm refers to the model adopted to program the applications. It
defines the respective type of interface to be used in the middleware platform. The
suitability of a specific approach is often dependent on the application requirements.
One of the main features of WSN applications that affects the choice of the mid-
dleware programming approach is the required data delivery model. Data delivery
in WSN can be continuous, event-driven, or query-based. Correspondingly, for dif-
ferent applications, WSN middleware may use different programming paradigms,
such as database, mobile agent, and Publish/Subscribe (Pub/Sub). For example, the
data base paradigm is often more suitable for query-based data collection, while the
Pub/Sub paradigm can be a good choice for event-driven applications.

The next subsections briefly present existent programming paradigms for WSN
middleware. It is important to notice that some of these approaches are orthog-
onal to each other and a same middleware platform can fit in more than one.

19 Middleware Platforms 655

For instance, a middleware can adopt an event-based and a component-based and/or
an application-driven programming approach at the same time.

3.2.1 Programming Paradigm Based on Virtual Machines

This approach allows developers to write application code in separate, small modules
that are injected and distributed throughout the network using specialized algorithms,
which aim at minimizing the overall energy consumption and resource usage. The
Virtual Machine (VM) in each node then interprets the injected modules. Examples
of this approach include Maté [38], ASVM [39] and DAViM [40]. Maté consists in
a byte code interpreter that runs on TinyOS [41]. Code is broken into capsules of 24
byte-long instructions, and the set of capsules representing a program are injected
into the network. Maté’s components include the VM, the network, the logger, the
hardware and the boot/scheduler. A synchronous model is adopted that, according
to Maté’s developers, makes application-level programming simpler and less prone
to bugs than dealing with asynchronous event notifications. On the other hand, the
use of such synchronous model makes Maté not so suitable for event-based WSN
applications.

3.2.2 Programming Paradigm Based on Database

In the database approach, the whole network is abstracted as a virtual database sys-
tem. This approach provides an easy-to-use and high-level interface that allows user
to issue queries to the WSN in order to extract the sensing data of interest. We can
consider that the database approaches were the first attempt to propose a middle-
ware layer for WSNs. Examples include Cougar [42], TinyDB [9], SINA [43]. The
first two proposals are based on pure database systems, which essentially provide
a distributed database solution tailored to resource-constrained WSNs, focusing on
efficient query routing and processing. In Cougar system [42] the processing capa-
bilities of the sensors are exploited to perform part of query processing within the
network, instead of centralizing such processing only in the WSN sink node. In SINA
an SQL-like query language is used to express queries, but the middleware also pro-
vides additional functions which are out of the scope of traditional database systems.
It provides support for scripting that enables the management of sensor hardware
access, communication and event handling.

3.2.3 Event-Based Programming Paradigm

Another programming approach to WSN middleware is based on the concept
of events. In such approach, the application specifies its interest in given state
changes of the environment (basic events). Upon detecting an event, a sensor node
sends an event notification towards interested applications. The application can also

656 F. C. Delicato et al.

specify certain patterns of events (composite events), so that the application is only
notified if events occur that match these patterns [12]. In [15], a sophisticated set
of event operators for describing event patterns in WSN was proposed. Mires [44]
is another example of middleware using an event-based approach, in which a pub-
lish/subscribe solution was designed and implemented to run on TinyOS using nesC
language. It adopts a component-based programming model using active messages
to implement its publish/subscribe-based communication infrastructure. Other pro-
gramming abstraction that provides publish-subscribe mechanisms is the message-
oriented approach. The strength of this paradigm, in the same way as the event-based
one, lies in its support for asynchronous communication that promotes energy sav-
ings in the WSN. Both are very suitable for WSN applications that required and
event-driven data delivery model.

3.2.4 Application-Driven Programming Paradigm

The application driven approach allows developer to fine-tune the network operation,
configuration and management according to application requirements. In spite of the
fact that such approach brings benefits regarding the WSN performance, it may pro-
vide a specialized middleware that is tightly coupled with the application, instead of
a general purpose WSN middleware. MiLAN is an example of middleware [45] that
adopts this approach. MILAN receives a description of the application requirements
through a standard API and chooses the best network configuration according to
such requirements, while seeking to maximize the overall network lifetime. MILAN
incorporates changes in the application interests based on updated context infor-
mation and manages the network conditions over time. In its first version, MILAN
adopts a fully centralized approach, suitable for small scale WSNs, as those used to
monitor patients in hospitals.

3.2.5 Component-Based Programming Paradigm

Component-Based Software Engineering (CBSE) is a modern methodology that
proposes software construction by plugging software components [46]. Based on
component interoperability, this programming approach aims at building more flex-
ible and adaptable software. Recently, some middleware proposals based on CBSE
have emerged in the WSN field. In [47] RUNES is introduced, a reconfigurable
component-based middleware for networked embedded systems. RUNEs architec-
ture encompasses two layers: a foundation layer, called the middleware kernel, which
is the runtime realization of a simple but well-defined software component model,
and a top layer of component frameworks that offer a configurable and extensible
set of middleware and application services [12]. Other example is MWSAN [48],
a real-time component-based middleware for WSANs, which provides a set of high
level services for sensors and actuators. Besides considering the real-time as a major

19 Middleware Platforms 657

concern, it also takes into account issues such as the network configuration and
quality of service (QoS) parameters.

3.2.6 Programming Paradigm Based on Tuple Spaces

The need for coordination in WSNs has attracted the attention of the Coordination
paradigm community [49]. Coordination [50] is a programming paradigm “whose
goal is to separate the definition of the individual behaviour of application compo-
nents from the mechanics of their interaction.” This goal is usually achieved by using
either message passing or data sharing as a model for interaction. Publish-subscribe,
previously described, is an example of the former, where coordination occurs only
through the exchange of messages (events) among publishers and subscribers. While
message passing, in its pure form, is inherently stateless, data sharing enables coordi-
nation among components by manipulating the (distributed) state of the system [50].
Linda [51] can be considered one of the most representative coordination languages
and it brought attention of the community for the tuple space abstraction. Linda
is based on a shared memory model where data is represented by elementary data
structures called tuples, and the memory is a multiset of tuples called a tuple space.
The tuple space model has several features that make it suitable for using in wireless
networks environments in general. First, only a small set of operations is needed to
manipulate the tuple space, and therefore to enable distributed component interac-
tion [50]. Second, in this model, the coordination among processes in is decoupled in
both time and space, i.e., tuples can be exchanged among producers and consumers
without being simultaneously available, and without mutual knowledge of their iden-
tity or location. Such decoupling is crucial in the presence of wireless connectivity,
considering the inherent fluctuations in the radio communication. Moreover, tuple
spaces can be straightforwardly used to represent the context perceived by the coor-
dinating components. On the other hand, this beneficial decoupling is achieved at
the costs of the global accessibility to all components and persistence, two features
not feasible or efficient in WSN environments [50]. Therefore, to benefit from the
advantages of the tuple space model, middleware for WSN needs to adapt to the
resource constrains of sensor nodes. Examples of WSN middleware that builds on
the concept of tuple spaces are TinyLime [52] and TeenyLime [53]. In TinyLime,
sensor nodes are sparsely distributed in an environment, not necessarily able to com-
municate with each other, and a set of mobile base stations (laptops) move through
the space accessing the data of nearby sensors. Each base station owns a tuple space
and federated tuple spaces can be established in order to communicate and synchro-
nize several base stations and some client hosts. TinyLime exploits the benefits of
using tuple spaces while circumventing its potential drawbacks for the WSN context.

658 F. C. Delicato et al.

3.2.7 Programming Paradigm Based on Mobile Agents

In the mobile agent based computing paradigm, a task-specific executable code
traverses the relevant sources to acquire sensing data. Mobile agents can be used to
reduce the communication cost in the network, by moving the processing function to
the data rather than bringing the data to a central node [12]. Examples of proposals that
adopt mobile agents in WSNs are Agilla [54], MAWSN [55] and actorNet [56]. Agilla
could also be included in the tuple space middleware approach, since agents coordi-
nate through tuple spaces. Agilla aids the fast deployment of adaptive applications in
WSNs. It allows the developer to create and inject mobile agents, which can migrate
across the WSN performing application-specific tasks. Mobile agents can intelli-
gently move or clone themselves to target locations in response to changing condi-
tions in the environment. Each node maintains a local tuple space, and different agents
can coordinate through local or remote operations on these tuple spaces. This flow of
code and state has the potential to transform a WSN into a shared, general-purpose
computing platform able of running several autonomous applications at a time.

3.3 WSN Middleware Programming Paradigms

The middleware programming abstraction paradigms aforementioned provide mainly
communication services allowing high-level applications to issue (synchronous or
asynchronous) queries on WSN generated data. Each paradigm has its own features
and consequently its own advantages and disadvantages. Table 1 summarizes the
pros and cons of the described programming paradigms.

A current issue with existing programming paradigms for WSN middleware is
that they only provide limited flexibility and interoperability in terms of interaction
with external applications and end-users. Updating the interfaces and providing auto-
mated machine-to-machine (M2M) interactions in these types of solutions is often
constrained due to restricted interaction models and pre-defined interfaces and oper-
ations [57]. Another promising and recent solution for middleware programming
paradigm is adopting a service oriented approach [58, 59], according to which mid-
dleware components are provided as services. Chapter 21 addresses service oriented
WSN middleware.

4 Middleware Services

Services embody the functionalities and consist in the core of a WSN middleware.
They are exposed to the application developer through the abstraction programming
interface, and provide the support for application deployment, execution, as well as
sensor and network management. During deployment, the functionalities of WSN
middleware can be distributed to the sensor nodes, sink nodes, and applications.

http://dx.doi.org/10.1007/978-3-642-40009-4_21

19 Middleware Platforms 659

Table 1 Programming paradigm comparison

Programming
Abstrac-
tion

Pros Cons

Virtual
machine

• It minimizes the overall energy
consumption and resource
usage (energy efficiency is
high)

• It has high scalability
• It allows software updates at

runtime, thus adapting the
WSN behavior to different
application requirements and
execution contexts (adaptability
is high)

• The execution of instructions
can introduce high overhead on
nodes

• In some existing proposals, for
instance Maté, code updates
disturb the entire system, since
it is required to disseminate a
complete TinyOS code image
with the modified virtual
machine in the network

• Code updates are installed in
all WSN nodes—there is no
control where they will be
installed

• Programming the applications
is not easy (usability is poor)

Database • It provides an easy-to-use and
high-level interface to the final
users (usability is good)

• It is energy efficient

• It lacks time space relations
between events

• Real time applications are not
supported

• Only approximate results are
provided

• It assumes that sensor nodes
are largely homogeneous
(heterogeneity support is poor)

• Existing implementations do
not support complex sensor
types, as surveillance cameras
with image processing

• The use of SQL-like languages
is not suitable for WSN since
sensor data capture
observations and not facts.
Moreover, since SQL is
query-oriented it does not
properly support the
task-oriented programming
required by WSN

Event-based • It allows a good decoupling of
event producers and
subscribers, and supports
additional operations related to
time and spatial conditions

• It is suitable for event-based
WSN applications

• The implementation of such
paradigm can be complex

• It assumes that all sensors
report accurate data and that the
set of sensors is homogeneous
(heterogeneity support is poor)

(continued)

660 F. C. Delicato et al.

Table 1 (continued)

Application
driven

• It allows developer to fine-tune
the network operation,
configuration and management
according to application
requirements

• Usability is good
• Scalability is high

• It lacks support for OS and
hardware heterogeneity

• High coupling with the target
application (domain specific
middleware rather than a
generic middleware)

Component-
based

• It provides high support for
heterogeneity, allowing
applications run on various
types of devices

• It scales well
• It allows building flexible and

adaptable software
(adaptability is high)

• The application programming
is not easy (poor usability)

Tuple space
approach

• It allows high decoupling
among data sources and
consumers

• It is resource-intensive
• It does not scale well
• It does not support adaptability

Mobile agent
based

• It allows resource optimization,
by reducing the communication
cost in the network (energy
efficiency is high)

• It scales well
• The migration of agents

enables adapting network to
different applications with
different requirements
(adaptability is high)

• The use of multiple agents
allows multiple users from
different applications share the
network simultaneously
(resource sharing is good)

• It is a platform dependent
solution

• Programming the applications
is not easy (usability is poor)

The distributed middleware components located in different nodes of the network
communicate with each other to achieve common goals in benefit of the user/
manager.

Middleware services can be classified into two broad categories: common or
generic services and domain or application-specific services. Common services are
the basic services shared by all WSN applications. They assist the handling of the
application-level information and the management of WSN infrastructure. Domain
services facilitate the development of applications in a specific domain. They make
use of the common services and add application-specific functionalities.

19 Middleware Platforms 661

4.1 Common Services of WSN Middleware

The functionalities provided by common services of a WSN middleware include:
code and data management, resource discovery and management; and integration.
The following subsections detail each of these services.

4.1.1 Code Management Service

Code Management encompasses services for code deployment, i.e., allocation and
migration of code to sensor nodes. Code allocation determines a set of sensor nodes,
on which the execution of code representing the sensing tasks is be activated. Code
migration transfers the code on a sensor node to another one [60]. Strategies for
code allocation can be context aware and allow adaptation to the current context. For
instance, in MiLAN [45] application-level QoS is applied to the control of the code
allocation. The approach enables adapting the application operations according to the
current application requirements, which can be adjusted depending on the output of
the application itself. Code migration can be implemented at not only the middleware
layer but also in the underlying embedded operating systems, as in BerthaOS [61]
and MagnetOS [62]. However, because the operating system of WSN nodes often
does not support code interpretation, code migration implemented at the OS level is
error prone and subject to malicious attacks. Current implementation techniques for
code migration at the middleware level include the use of mobile code (e.g., TCL
script in Sensorware [63], SQTL scripts in SINA [43]) and mobile Java object (e.g.,
TinyLime [52]).

4.1.2 Data Management Service

This service is responsible for data acquisition, data processing, data synchroniza-
tion, and data storage functionalities. As previously mentioned, WSN applications
are data centric, where data refers mainly to the sensed data, however it can also
refer to the network infrastructure information of interest by the applications (for
instance to participate in optimization decisions). Approaches to implement the data
management services strongly depend on the application data delivery model.

Data acquisition is an essential service for WSN applications, responsible for
delivering the relevant and accurate data required by the application. For the event-
based data delivery model, data acquisition support is focused on the event definition,
event register/cancel, event detection and event delivery. The application specifies its
interest in specific state changes of the data. Upon detecting such an event, the mid-
dleware will help sending event notification to interested applications. TinyDB [9],
DSware [64], Mires [44], and Impala [28] all support event-based data acquisi-
tion. For query-based applications, data acquisition support is focused on the query
processing model and methods. Middleware for query-based data model usually

662 F. C. Delicato et al.

uses a declarative interface, with global level abstraction and database programming
model, as for example TinyDB, Cougar and SensorWare.

Regarding the support for data processing in WSNs we can identify two different
approaches, with several degrees between them. In a totally centralized processing,
sensing data are collected and sent to a central node for processing. WSN nodes
are passive devices, only in charge of achieving the environmental measurements,
while all processing is performed in the central (sink) node. In a fully distributed
processing, every sensor node is involved with data sensing, processing and routing,
and is aware of the final decision to be sent to the application. Such approach
fully exploits the computational capacity of WSN nodes performing the so-called
in-network processing. In the middle of these two extremes, we have partially
distributed processing. One possible approach for partially distributed processing
consists in raw data being collected and pre-processed in the sensor nodes to obtain
partial results which are then sent to the sink node for further processing in order to
achieve the final result to be sent to the application. Other possible approach consists
in the final results being obtained through both in-network processing by individ-
ual sensor nodes and information exchange between the sensors, and between the
sensor and the sink node. Considering that the communication cost is higher than
the computation cost at a sensor node, WSN middleware should support in-network
distributed data processing service, mostly by implementing data fusion/aggregation
techniques [2]. Another service related to data processing is time synchronization
aimed to ensure the proper synchronization between different sensor nodes. Several
WSN applications require precise time synchronization among the readings on differ-
ent sensor nodes. Achieving time synchronization is an important function of a mid-
dleware platform. Several time synchronization algorithms specific for WSN have
been proposed in the last years [65]. All of them could be provided as a middleware
service.

Regarding data storage support in WSNs three approaches can be identified
[66, 67]. External storage stores the data in the sink node—external to the WSN. Local
storage stores the data where it is generated, reducing communication but increasing
the cost to achieve (query) data. Data centric storage provides a trade-off between the
previous two approaches and it is the most popular approach implemented in existing
WSN middleware [68]. In data centric-storage sensing data is stored according to
its event type at designated WSN nodes. As a consequence, users can send queries
for a particular data type directly to the node that stores such data type rather than
flooding the network with queries, thus saving communication energy.

4.1.3 Resource Discovery Service

The ubiquity and the wireless nature of sensor devices require network architectures
to support ad hoc configuration. A key technology of true ad hoc networks is service
discovery, functionality by which “services” (functionalities provided by nodes) can
be described, advertised, and discovered by other devices or applications. There are
typically two levels of resource discovery in WSN: an internal level is used by sink

19 Middleware Platforms 663

nodes to discover the characteristics of every sensor node in the network; an external
discovery level is used by applications to find out which WSN supplies the required
services, and how to invoke them. Considering the dynamic environment of WSN,
such service is required for discovering sensor nodes newly joined to the network and
for detecting nodes which are becoming unavailable either as a result of mobility or
energy depletion. After an application starts executing, the service also provides the
application with the underlying network information to achieve context-awareness
and to support adaptive resource management services.

The resource discovery service can return, among other useful information: (i) the
data type (s) that a discovered node can provide, (ii) the modes a sensor can operate,
(iii) the node transmission power level, (iv) the supported data sensing and data
sending rates, (v) the node residual energy level, (vi) information about the network
topology, network protocols, and (vi) neighbours and locations of the discovered
nodes.

Compared to the resource discovery in traditional networks [16] which involves
identifying and locating services and resources in the system, resource discovery
services in WSN are more difficult to implement due to the lack of unique node ID
and the lack of a generic service specification, and because the services need to be
provided in a power-aware way. Most of the current service discovery and capability
description mechanisms in WSN are based on ad hoc representation schemes and lack
from standardization. Some WSN middleware platforms (as MiLAN, for instance),
adopt service discovery protocols from traditional computer network solutions, e.g.,
SLP [69] and Bluetooth SDP [52]. Other systems, e.g., TinyLime, developed novel
solutions to implement the resource discovery service, specific tailored for WSNs.

A crucial requirement for the future, widely accessed WSNs is interoperability
under unpredictable conditions, i.e., networks which were not designed for spe-
cific, predefined purposes, should be able to be accessed by different applications,
which dynamically discover their functionality and take advantage of it. Crucial
tasks involved in the dynamic utilization of WSN services are service discovery and
description. Service oriented approaches enhanced with semantic technologies, as
for instance, the adoption of ontology language are promising solutions to describe
the characteristics of WSN devices, their sensing capabilities, and specific informa-
tion of applications accessing the WSN, in a standardized way. In [70] the authors
describe a WSN middleware that exploits such technologies.

4.1.4 Resource Management Service

This is the service responsible for managing the node (e.g., energy, memory, sens-
ing devices, communication module) and network (e.g., topology, routing, system
time) resources. Resource management allows the WSN to be self-configured, self-
organized and self- healing. Resource management services are usually in charge
of resource configuration at setup time and resource adaptation at runtime, and they
are essential to ensure the QoS properties. Resource management at the OS layer is
platform-dependent, thus changes at this level might affect resource requirements of

664 F. C. Delicato et al.

the different applications running in a sensor node. On the other hand, application-
level resource management imposes an extra burden on the application, and adap-
tation mechanisms developed at this level cannot be reused. In contrast, resource
management at the middleware layer has more flexibility. Examples of resource
management services are: clustering [71, 72], task scheduling and allocation [73,
74], active node selection. These services are supported by finer granular ser-
vices such as power level management, transmission level management, among
others.

4.1.5 Integration Service

For wide scope applications, WSN needs to be integrated into other existing network
infrastructures, such as the Internet, grid, cloud, and database systems. Therefore,
a service is required to integrate WSN and its running applications into external
systems. Since a WSN is a “close” network, it is not easy to implement the integra-
tion service at the lower layers (e.g., OS or MAC layer), thus middleware should
provide this service [75]. In a WSN middleware, integration is related to both task
coordination and data sharing, and can be implemented at the application level or
data level [18]. Application level integration is more related to task coordination,
where the applications are running in both the WSNs and the external system. Data
level integration, on the other hand, is more related to data sharing, where only the
data provided by the WSNs are used in the external system. A promising solution to
achieve integration at both levels is the service oriented approach. It allows imple-
menting WSN integration based on standardized and open architecture technologies
as Web services. It provides a common information and communication format to
facilitate the integration.

4.1.6 Additional Services

Besides the aforementioned services, there are several others that can be included
as common services in a WSN as, for instance, naming, location and security. The
naming service is used whenever a unique local identification for each node of the
network is required (with a smaller size in bytes than the serial number, or MAC
address). The localization service is useful when some nodes of the network do not
have GPS receiver. In these cases, a localization algorithm [76] can be implemented as
a service provided by the middleware, and executed on demand. Security is the service
in charge of meeting the requirements of confidentiality, authentication, integrity,
freshness, and availability whenever the application data or code is sensitive.

19 Middleware Platforms 665

4.2 Domain Specific Services of WSN Middleware

Domain services facilitate the development of applications in a specific domain.
They make use of the common services and leverage them by adding application-
specific functions. Since there is a wide range of application domains in WSN, a
comprehensive listing of this type of service is difficult. Significant examples are
EnviroTrack [77], a WSN middleware that supports environmental Target tracking,
and Impala, a middleware designed for the ZetbraBet project, a wildlife monitoring
project. Impala has two layers: the upper layer contains the application specific
protocols and functions, and the lower layer contains the common services such
as code management. There are also several proposals for WSN-SHM middleware
[6, 7, 66, 78], designed for developing structural health monitoring applications.
Such applications, besides other common requirements of WSN application, require
high frequency sampling and are highly resource consuming, thus posing additional
challenges for the middleware to tackle.

5 New Issues and Future Trends

The most notable changes required in the WSN design to accommodate the new
application scenarios and technologies relate to the following factors: (i) sharing of
the WSN infrastructure, (ii) interoperability between different WSNs, (iii) access to
sensor generated data, and (iv) use of WSN in applications considered critical. We
will discuss these changes in the following sections.

5.1 WSN Infrastructure Sharing

The first change is directly related to the “application-specific” feature typical of
WSN. Since the emergence of these networks, they were usually designed as systems
dedicated to a single target application. With such approach, there was always a
large coupling between the requirements of the target application and the underlying
network, including node hardware and software platforms. By adopting this design
strategy, WSNs could be built by taking advantage of the knowledge at the application
level to optimize the other levels of network protocols in order to achieve maximum
energy efficiency. Applications developed for a particular sensor platform needed
to be completely rewritten to be used on other platforms, with virtually no reuse
of both software artefacts and the deployed sensors. This scenario tends to change
considerably.

In many commercial and/or large scale WSN deployments nowadays, the return-
of-investment (ROI) is a crucial factor to determine the successfulness of those

666 F. C. Delicato et al.

deployments. On one hand, as it is always the case in networks composed of resource
constrained devices, the system lifetime is the fundamental requirement to be taken
into account in the design of a WSN system. In this sense, the ROI is considered
beneficial from a longer system lifetime. On the other hand, the utilization of a WSN
plays an increasingly important role in current WSN design, and such utilization
may be very low in networks specifically designed for a single application. For
instance, a WSN designed for a smart building [67, 79] may provide the following
four services: temperature and humidity monitoring, security alarms, light control
and structural health monitoring. Obviously, in this case, each service requires a
set of sensors (dependent on the service type) to perform the associated sensing
tasks. In the traditional design, the smart building project would require four service-
specific WSNs to fulfil the needs of the applications. However, with such design the
utilization of each individual WSN would be low, and the maintenance cost high.
Therefore, one direct consequence of this type of design is the decrease of the WSN
ROI.

Another issue related to the aforementioned change in the design approach of
WSN was raised in works such as [80], which discuss the potential use of WSN
for sustainable development.1 According to the authors, such potential will remain
largely underexploited as these networks are designed primarily for application con-
texts relatively rich in resources. The cost of WSNs is one of several barriers that
prevents them from being exploited for the sustainable development of applications.
Many components of WSN are becoming less expensive (the processing boards, for
example), but the sensing units remain relatively expensive components, depending
on their type. As stated in [44], “successful projects based on technology devel-
opment depend upon shared technology, due to the excessive cost of individual
devices/personal.” However, as mentioned, the traditional design approach of most
WSN is based on long-term deployments, owned by a single user and focused on
a single application, a paradigm that does not promote sharing, and consequently
using WSN for sustainable development.

For these reasons, and considering the physical networks’ infrastructure cost and
the fact that the same set of sensors can be useful for a variety of applications,
the design trend of WSNs starts shifting from energy efficient application-specific
approach towards an energy efficient multiple applications approach [23, 81, 82].
Compared to the traditional design approach, this new one enables multiple applica-
tions to share the resource of sensors and networking, increasing the use of the system
so that the total cost is reduced and ROI increased, and promoting the sustainable
development of WSN. Following the same trend of sharing data/infrastructure, one
can still imagine a scenario in which multiple applications not only benefit from an
installed network infrastructure, but also from multiple sensor networks, producing
a shared multifunctional system.

1 Sustainable development can be defined as a process of development that “meets the needs of the
present without compromising the ability of futures generations to meet their own needs” and whose
interdependent underpinnings are “the social and economic development, as well as environmental
protection.”

19 Middleware Platforms 667

However, this new trend hinders the issue of obtaining energy efficiency in the
WSN and poses new challenges regarding simultaneously meeting requirements of
different applications. In fact, this new trend of designing shared WSN systems has
an impact on all levels, from network design and development of their applications, to
the use of data produced by it, affecting the other changes mentioned above, required
for new WSN scenarios. In particular, the desired sharing creates new challenges
when it comes to promoting the interconnection and interoperability of WSN and
to achieve the desired energy efficiency, while meeting the requirements of different
applications.

5.2 WSN Interoperability

Regarding the interoperability and interconnection of networks, WSN nodes typically
can be produced by different manufacturers using different technologies, hardware,
software, languages, APIs, programming and communication models. Currently,
there is not a de facto standard for sensor programming languages and neither for
accessing sensor generated data. This feature poses a challenge to be surpassed to
enable new scenarios, especially regarding the shared use of WSN. In this scenario,
there must be interoperability between different WSN, possibly between different
applications, and between WSN and external networks as the Internet. Moreover, the
way how data produced by these networks are extracted and accessed should also be
reviewed to enable the extraction and easy access to the wide range of data available
for the end user. Thus, the adoption of a uniform API, protocols and standardized
languages is necessary to allow such interoperability in an environment with high
degree of heterogeneity.

Concerning data access, having WSN originally designed to operate as standalone
networks, sensor readings were usually disseminated using proprietary data formats,
toward the sink node located at the edges of these networks. In the sink nodes the
target application was in charge of performing more complex processing whenever
required, and any translations or format conversions. However, in the new shared sce-
nario, with several applications developed by different users from different domains,
there is the need of interconnecting these networks to external networks, enterprise
networks and the Internet. Moreover, WSN applications and the produced sensed
data become part of corporate systems in a M2M interaction. Integrating a WSN into
the information system of an enterprise at a high abstraction level is a recent need
already being tackled by several authors [83]. The use of proprietary data formats
and protocols is not suitable in these scenarios. Therefore, the adoption of common
APIs, standardized formats and protocols is a need.

In the context of WSN interconnection with other networks, a recent outspread
of the advances in embedded systems has enabled the integration in the Internet of
physical objects of everyday life, such as household appliances, industrial machinery,
vehicles, sensors and actuators. The paradigm of connecting everyday objects (the
so called smart objects or smart things), in the Internet is known as the Internet

668 F. C. Delicato et al.

of Things—IoT [11]. IoT aims to connect the physical (analog) environments to
the Internet (digital), promoting a large number of new possibilities for application
domains. Recently, a new paradigm of application development inspired by the idea
of IoT, known as Web of Things (WoT) [84–86] has emerged. This new paradigm
is based on the use of protocols and standards widely accepted and already in use
in traditional Web, such as HTTP (Hypertext Transfer Protocol) and URIs (Uniform
Resource Identifier). The purpose of the WoT is to leverage the vision of connectivity
between the physical and digital worlds, enabling the current Web to include everyday
life objects, which will be handled in the same way as any other Web resource. In the
WoT paradigm, the interfaces of a smart object is built according to REST principles
(Representational State Transfer) [87], which allow exposing the services of these
objects as resources in a ROA approach (resource -Oriented Architecture) [88]. These
interfaces provided by objects that are to be integrated as Web resources are called
RESTful APIs, and the resources provided by the APIs are called RESTful resources.
In the WoT context, the sensors of a WSN can be considered as smart objects [10] and
the data provided by them can be made available as a resource through RESTful APIs.
A number of approaches have been proposed [89–91] to enable building REST-based
WSN, and the required interconnection of WSN with the Internet.

5.3 WSN for Critical Applications

A final point to consider with respect to new issues in the WSN context that affect
the middleware usage concerns the fact that the adoption of these networks in crit-
ical applications can bring benefit still underexploited. According to the European
Commission [92], critical application scenarios consist of “[....] networks, facilities,
services and physical and IT assets that, if suffering interruption or are damaged, will
have a serious impact on health, security or well being economic of citizens. [....]”.
The number of critical scenarios where WSN can be used is remarkably high, as can
be observed in the studies reported in [1]. However, its widespread use in such settings
is still limited by a lack of confidence in the resilience of these networks. Resilience
can be defined as [93]: “the persistence or reliability when facing ‘changes’.” This
perspective leads to new requirements, especially regarding the fault tolerance of
such networks, such as the ability to accommodate unforeseen environmental dis-
turbances. The use of WSN for critical applications such as SHM, monitoring of
natural disasters, control of factories and plants, Smart Grids, among others, intro-
duces specific reliability requirements in addition to the usual WSN requirements.
Among these, the authors in [7] reported: (i) reliable synchronization of the sensor
collected measurements, (ii) reliable delivery of a significant amount of measure-
ments, and (iii) minimization of human intervention on the network (i.e., autonomy
of the network). Such requirements must be satisfied in WSN systems so that they
can be used in applications considered critical. A middleware platform consists of
the most appropriate component of a WSN system to implement the features that
meet such requirements.

19 Middleware Platforms 669

6 Final Remarks

WSN middleware aims at supporting the development, management, deployment and
execution of sensing-based applications. It can also contribute to dealing with the
heterogeneity of nodes in a same WSN, promoting interoperability among networks
and applications and reuse of software and hardware artefacts. In order to achieve its
goals, WSN middleware provides an interface and a set of services. Depending on
the application features and needs different services will be required. In Chap. 6 of
this Book, the authors classify WSN applications according to different dimensions.
The authors identified that most of the researched applications require some form
of mechanism for data storage (persistency), data processing (as filtering, fusion,
decision making, event defection), as well as additional, sometimes complex services
as time synchronization and localization. All these services and mechanisms can be
provided by a middleware layer, instead of being addressed repeatedly and in an ad
hoc manner by each application developer. Even if the application is simple enough
so that it does not require middleware services, the provided middleware API aids
in the application programming, shielding the developer from dealing with the low
level languages typical of WSN environments. Therefore, WSN middleware is useful
for most of WSN application classes and scenarios. Only in situations where the
application requirements are overly specific, the WSN scope is by design (or due to
some policy/administrative issue) restricted to a single application, the network nodes
are homogeneous and highly constrained (thus making the resource optimization the
main issue) and no interoperability, portability and/or reuse are desirable, the use of
a middleware layer and its inherent overhead could be discarded.

In this chapter we presented an overview of the concept of WSN middleware,
its main features and benefits of usage, and discussed existing solutions. It was not
our goal to exhaust the subject, since it is a broad and interdisciplinary research
field. For some comprehensive and recent surveys on WSN middleware the reader
is referred to [17, 18, 59]. Our goal in this chapter was to motivate for the necessity
of using middleware when building WSNs and developing applications for these
networks, as well as shedding light in several aspects to be considered when designing
a middleware specific tailored for WSNs. Moreover, we presented the emergent
scenarios of WSN and discussed how, along with the rapid evolution in this area, the
adoption of a middleware platform will become even more important to increase the
popularity of WSN-based applications [41, 58, 86].

Acknowledgments This work was partially supported by Brazilian agencies FAPERJ and CNPq.
We want to express our gratitude to Professor Habib M. Ammari who kindly invited us to contribute
to this Book.

http://dx.doi.org/10.1007/978-3-642-40009-4_6

670 F. C. Delicato et al.

References

1. I.F. Akyildiz et al., Wireless sensor and actor networks: research challenges. Ad Hoc Netw. J.
(Elsevier) 2(4), 351–367 (2004)

2. E.F. Nakamura, A.A.F. Loureiro, A.C. Frery, Information fusion for wireless sensor networks:
methods, models, and classifications. ACM Comput. Surv. 39, 9/1–9/55 (2007)

3. P. Levis, D. Culler, The firecracker protocol, in Proceedings of the 11th ACM SIGOPS European,
Workshop, Sept 2004

4. L. Evers, P. Havinga, Supply chain management automation using wireless sensor networks.
IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, pp. 1–3,
2007

5. T. He, S. Krishnamurthy, J.A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu,
J. Hui, B. Krogh, Energy-efficient surveillance system using wireless sensor networks, in Pro-
ceedings of the 2nd International Conference on Mobile Systems, Applications, and Services,
pp. 270–283. ACM, New York, NY, USA, 2004

6. L. Capra, W. Emmerich, C. Mascolo, Carisma: context-aware reflective middleware system for
mobile applications. IEEE Trans. Softw. Eng. 29(10), 929–945 (2003)

7. M. Cinque, D. Cotroneo, G. De Caro, M. Pelella, Reliability requirements of wireless sensor
networks for dynamic structural monitoring, International Conference on Dependable Systems
and Networks (DSN), 2006

8. A. Rosi, M. Berti, N. Bicocchi, G. Castelli, M. Mamei, A. Corsini, F. Zambonelli, Landslide
monitoring with sensor networks: experiences and lessons learnt from a real-world deployment.
Int. J. Wirel. Sens. Netw. 10(3), 111–122 (2011)

9. S. Bhattacharya et al., Multi-application deployment in shared sensor networks based on quality
of monitoring, in Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology
and Applications, Symposium, 2010

10. F.C. Delicato, P.F. Pires, L. Pirmez, T. Batista, Wireless sensor networks as a service, in Pro-
ceedings of the 17th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS ’10), IEEE Computer Society, Washington, DC, USA, 2010

11. O. Vermesan et al., Internet of things strategic research roadmap. Aerospace Technologies and
Applications for Dual Use, 2008

12. B. Rubio, M. Diaz, J.M. Troya, Programming approaches and challenges for wireless sensor
networks, in Proceedings of the 2nd International Conference Systems and Networks Commu-
nications, France, p. 36, 25–31 Aug 2007

13. F.C. Delicato, L. Fuentes, N. Gamez, P. Pires, Variabilities of wireless and actuators sensor
network middleware for ambient assisted living, in Proceedings of 10th International Work-
Conference on Artificial Neural Networks, IWANN 2009 Workshops, vol. 5518, pp. 851–858,
Salamanca, Spain, 2009

14. F.C. Delicato et al., A flexible middleware system for wireless sensor networks, in Proceedings
of the ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, July 2003

15. E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, A message-oriented
middleware for sensor networks, in Proceedings of the 2nd International Workshop on Mid-
dleware for Pervasive and Ad-Hoc Computing (MPAC 2004), pp. 127–134, Toronto, Canada,
October 2004

16. H.A. Duran-Limon, G.S Blair, G. Coulson. Adaptive resource management in middleware: a
survey. IEEE Distrib. Syst. Online 5(7), 1541–4922 (2004)

17. K. Henricksen, R. Robinson. A survey of middleware for sensor networks: state-of-the-art
and future directions, in Proceedings of the International Workshop on Middleware for Sensor
Networks, pp. 60–65, Melbourne, Australia, 2006

18. M.M. Wang, J.N. Cao, J. Li et al., Middleware for wireless sensor networks: a survey. J. Comput.
Sci. Technol. 23(3), 305–326 (2008)

19. B.C. Smith, Reflection and semantics in a procedural programming language. Ph.D. thesis,
MIT, USA, 1982

19 Middleware Platforms 671

20. P. Santi, Topology control in wireless Ad Hoc and sensor networks. ACM Comput. Surv. 37(2),
164–194 (2005)

21. C. Yeh, Dynamic reconfiguration techniques for wireless sensor networks. Masters theses,
University of Massachusetts (2008), http://scholarworks.umass.edu/theses/119

22. F.C. Delicato et al., Reflective middleware for wireless sensor networks, in Proceedings of the
20th ACM Symposium on Applied Computing, USA, March 2005

23. K. Römer, O. Kasten, F. Mattern, Middleware challenges for wireless sensor networks. ACM
Mobile Comput. Commun. Rev. 6(2), 59–61 2002

24. Y. Yu, B. Krishnamachari, V.K. Prasana, Issues in designing middleware for wireless sensor
networks. Special issue on middleware technologies for future communication networks. IEEE
Netw. Mag. 18(1), 15–21 (2004)

25. S. Meguerdichian et al., Localized algorithms in wireless ad-hoc networks: location discov-
ery and sensor exposure, in Proceedings of the 2001 ACM Symposium on Mobile Ad Hoc
Networking and Computing, pp. 106–116, USA, Oct 2001

26. H. Qi, P.T. Kuruganti, Y. Xu, The development of localized algorithms in wireless sensor
networks. Invited paper, Sensors 2002 vol. 2, pp. 286–293, 2002

27. P. Levis, D. Culler, Mate: a tiny virtual machine for sensor networks, in Proceedings of the 10th
International Conference Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), pp. 85–95. ACM Press, San Jose, USA, 2002

28. T. Liu, M. Martonosi, Impala: a middleware system for managing autonomic, parallel sensor
systems, in Proceedings of PPoPP’03, pp. 107–118, San Diego, California, USA, June 2003

29. W. Whitehouse, C. Sharp, E. Brewer, D. Culler, Hood: a neighborhood abstraction for sensor
networks. in Proceedings of the 2nd International Conference on Mobile Systems, Applications
and Services, pp. 99–110, New York, USA, 2004

30. L. Mottola, G.P. Picco, Logical neighborhoods: a programming abstraction for wireless sensor
networks, in Proceedings of the 2nd International Conference on Distributed Computing in
Sensor Systems, San Francisco, CA, USA, June 2006

31. P. Ciciriello, L. Mottola, G. Picco, Building virtual sensors and actuators over logical neighbor-
hoods, in Proceedings of the 1st International Workshop on Middleware for Wireless Sensor
Networks, pp. 19–24, Melbourne, Australia, 2006

32. R. Gummadi, O. Gnawali, R. Govidan, MacroProgramming wireless sensor networks using
Kairos, in Proceedings of the International Conference on Distributed Computing in Sensor
Systems, vol. 3560, pp. 126–140. Springer, LNCS, 2005

33. R. Gummadi et al., Macro-programming wireless sensor networks using kairos, in Proceedings
of the International Conference on Distributed Computing in Sensor Systems (DCOSS 05),
pp. 126–140. Springer, Marina del Rey, USA, LNCS 3560, 2005

34. M. Welsh, G. Mainland, Programming sensor networks using abstract regions, in Proceedings
of the 1st Usenix/ACM Symposium Networked Systems Design and Implementation (NSDI 04),
pp. 29–42, San Francisco, CA, March 2004

35. R. Newton, M. Welsh, Regions streams: functional macroprogramming for sensor networks,
in Proceedings of the 1st International Workshop on Data Management for Sensor, Networks
(DMSN’04), pp. 78–87, 2004

36. T.C. Rodrigues et al., Model-driven development of wireless sensor network applications, in
Proceedings of the 9th IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Melbourne, 2011

37. A. Bakshi, V.K. Prasanna, J. Reich, D. Larner, The abstract task graph: a methodology for
architecture-independent programming of networked sensor systems. in Proceedings of the
International Workshop on End-to-End Sense-and-Respond Systems (EESR’05), pp. 19–24,
2005

38. P. Levis, D. Culler, Mat’e: a tiny virtual machine for sensor networks, in Proceedings of the 10th
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X’02), San Jose, CA, USA, Oct 2002

39. P. Levis, D. Gay, D. Culler. Active sensor networks, in Proceedings of the 2nd International
Symposium on Networked Systems Design and Implementation (NSDI’05), pp. 29–42, San
Francisco, CA, USA, March 2005

http://scholarworks.umass.edu/theses/119

672 F. C. Delicato et al.

40. S. Michiels, W. Horr’e, W. Joosen, P. Verbaeten, DAViM: a dynamically adaptable virtual
machine for sensor networks, in Proceedings of the 1st International Workshop on Middleware
for Sensor Networks, Melbourne, Australia, 2006

41. TinyOS communities. TinyOS specification, http://www.tinyos.net
42. P. Bonnet, J. Gehrke, P. Seshadri, Towards sensor database systems, in Proceedings of the

2th International Conference on Mobile Data Management (MDM’01), vol. 1987, pp. 3–14.
Springer, LNCS, 2001

43. C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, G.P. Picco, TinyLime: bridging
mobile and sensor networks through middleware, in Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), pp. 61–72, Hawaii,
USA, March 2005

44. E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal, R. Patra, S. Surana,
K. Fall, The case for technology in developing regions, in IEEE Computer, June 2005

45. W. Heinzelman, A. Murphy, H. Carvalho, M. Perillo, Middleware to support sensor network
applications. IEEE Netw. 1(18), 6–114 (2004)

46. G. Heineman, W. Councill, Component-Based Software Engineering: Putting the Pieces
Together (Addison-Wesley, Reading, 2001)

47. P. Costa, G. Coulson, C. Mascolo, L. Mottola, G.P. Picco, S. Zachariadis, Reconfigurable
component-based middleware for networked embedded systems. Int. J. Wirel. Inf. Netw. 14(2),
149–162 (2007)

48. J. Barbar’an, M. D’ıaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio, A real-time component-
oriented middleware for wireless sensor and actor networks, in Proceedings of the IEEE Inter-
national Conference on Complex, Intelligent and Software Intensive Systems, pp. 3–10, Vienna,
Austria, April 2007

49. N. Carriero, D. Gelernter, Coordination languages and their significance. Commun. ACM 35(2),
97–107 (1992)

50. P. Costa, L. Mottola, A.L. Murphy, G.P. Picco, Tuple space middleware for wireless net-
works, in Invited Chapter in Middleware for Network Eccentric and Mobile Applications ed. by
B. Garbinato, H. Miranda, L. Rodrigues. Springer Press, 2008

51. D. Gelernter, Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

52. Bluetooth Special Interest Group, Bluetooth specification, version 1.1, Feb 2001, http://en.
wikipedia.org/wiki/Bluetooth

53. P. Costa, L. Mottola, A.L. Murphy, G.P. Picco, TeenyLIME: transiently shared tuple space
middleware for wireless sensor networks, in Proceedings of the 1st International Workshop on
Middleware for Wireless Sensor Networks (MidSens 2006), pp. 43–48, Melbourne, Australia,
Nov 2006

54. C.-L. Fok, G.-C. Roman, C. Lu, Rapid development and flexible deployment of adaptative
wireless sensor network applications, in Proceedings of the 25th International Conference on
Distributed Computing Systems, pp. 653–662. IEEE Computer Society Press, Columbus, Ohio,
USA, June 2005

55. M. Chen, T. Kwon, Y. Yuan, V. Leung, Mobile agent based wireless sensor networks. J. Comput.
1(1), 14–21 (2006)

56. Y. Kwon, S. Sundresh, K. Mechitov, G. Agha, ActorNet: an actor platform for wireless sensor
networks, in Proceedings of the IEEE International Joint Conference on Autonomous Agents
and Multiagent Systems, Hakodate, Japan, May 2006

57. H. Abangar, P. Barnaghi, K. Moessner, R. Tafazolli, A. Nnaemego, K. Balaskandan, A ser-
vice oriented middleware architecture for wireless sensor networks, in Proceedings of Future
Network and Mobile Summit, Florence, Italy, June 2010

58. OASIS, Reference architecture foundation for service oriented architecture 1.0, committee
specification draft 03, July 2011

59. J. Al-Jaroodi, N. Mohamed, Service-oriented middleware: a survey. J. Netw. Comput. Appl.
35(1), 211–220 (2012)

http://www.tinyos.net
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth

19 Middleware Platforms 673

60. M. Kuorilehto, M. HÄannikÄainen, T. D. HÄamÄalÄainen, A survey of application distrib-
ution in wireless sensor networks. EURASIP J. Wirel. Commun. Networking 38(5), 774–788
(2005)

61. J. Lifton, D. Seetharam, M. Broxton, P.J. Pushpin, Computing system overview: a platform
for distributed, embedded, ubiquitous sensor networks, in Proceedings of the 1st International
Conference on Pervasive Computing, Switzerland, 2002

62. R. Barr et al., On the need for system-level support for ad hoc and sensor networks. Operating
Syst. Rev. 36(2), 15 (2002)

63. A. Boulis, C.-C. Han, M. B. Srivastava, Design and implementation of a framework for efficient
and programmable sensor networks, in Proceedings of the First International Conference on
Mobile Systems, Applications, and Services (MobiSys 03), SAN Francisco, CA, USA, pp.
187–200, 5–8 May, 2003

64. S. Li, S. Son, J. Stankovic, Event detection services using data service middleware in distributed
sensor networks, in Proceedings the 2nd International Workshop Information Processing in
Sensor Networks, pp. 502–517, Palo Alto, California, USA, 22–23 April 2003

65. J.E. Elson, Time synchronization in wireless sensor networks. PhD thesis, University of
California, Los Angeles, 2003

66. K. Chintalapudi, J. Paek, O. Gnawali, T.S. Fu, K. Dantu, J. Carey, R. Govindan, E. Johnson,
S. Masri, Structural damage detection and localization using NETSHM, in Proceedings of the
5th International Conference on Information Processing in Sensor Networks, pp. 475–482,
USA, April 2006

67. K.-C. Tsai, J.-T. Sung, M.-H. Jin, An environment sensor fusion application on smart building
skins, in Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC ’08), pp. 291–295. IEEE Computer Society, Washington,
DC, USA, 2008

68. S. Shenker et al., Data-centric storage in sensornets, in proceedings of the 1st ACM SIGCOMM
workshop on hot topics in networks. ACM SIGCOMM Comput. Commun. Rev. 33(1), 137–142
(2003)

69. E. Guttman, C. Perkins, J. Veizades, M. Day, Service location protocol, version 2, IETF, RFC
2608, June 1999

70. F.C. Delicato et al., Exploiting web technologies to build autonomic wireless sensor networks,
in Proceedings of IFIP 19th World Computer Congress, TC-6, 8th IFIP/IEEE Conference on
Mobile and Wireless Communications Network, vol. 211, pp. 99–114, Santiago, 2006

71. A.R. Rocha et al., WSNs clustering based on semantic neighbourhood relationships. Comput.
Netw. 56(5), 1627–1645 (2012)

72. Y.-C. Chang, Z.-S. Lin, J.-L. Chen, Cluster based self-organization management protocols for
wireless sensor networks. IEEE Trans. Consum. Electron. 52(1), 75–80 (2006)

73. Voinescu, A., Tudose, D.S., N. Tapus, Task scheduling in wireless sensor networks, in Pro-
ceedings of the Sixth International Conference on Networking and Services, Cancun, Mexico,
07–13 March 2010

74. Y. Yu, V.K. Prasanna, Energy-balanced task allocation for collaborative processing in wireless
sensor networks. ACM/Kluwer J. Mobile Netw. Appl. 10(1–2), 115–131 (2005)

75. K. Hwang, J.I.N. Park, D. Eom, A design and implementation of wireless sensor gateway for
efficient querying and managing through world wide web. IEEE Trans. Consum. Electron. 49,
1090–1097 (2003)

76. W. Heinzelman, A. Murphy, H. Carvalho et al., Middleware to support sensor network appli-
cations. IEEE Netw. Mag. 18(1), 6–14 (2004)

77. T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo, S. Son, R.
Stoleru, J. Stankovic, A. Wood, EnviroTrack: towards an environmental computing paradigm
for distributed sensor networks, in Proceedings of the 24th International Conference Distributed
Computing Systems, Tokyo, Japan, pp. 582–589, 23–26 March 2004

78. D. Musiani, K. Lin, T. Simunic Rosing, Active sensing platform for wireless structural health
monitoring, in Proceedings of the 5th International Conference on Information Processing in
Sensor Networks, Massachusetts, 25–27 April 2007

674 F. C. Delicato et al.

79. F. Shu, M.N. Halgamuge, W. Chen, Building automation system using wireless sensor net-
works: radio characteristics and energy efficient communication protocols. Special issues: net-
work on building monitoring: from theory to real application. Electron. J. Struct. Eng. 66–73
(2009)

80. N. Ramanathan et al., Gaurav Sukhatme designing wireless sensor networks as a shared resource
for sustainable development. International Conference on Information and Communication
Technologies and Development, May 2006

81. D. Guinard et al., Sharing using social networks in a composable web of things, in 2010
8th IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), pp. 702–707, 2010

82. H.B. Lim et al., The national weather sensor grid: a large-scale cyber-sensor infrastructure for
environmental monitoring. Int. J. Sens. Netw. 7, 19–36 (2010)

83. I.K. Samaras, J.V. Gialelis, G.D. Hassapis, Integrating wireless sensor networks into enter-
prise information systems by using web services. Third International Conference on Sensor
Technologies and Applications, pp. 580–587. IEEE Press, 2009

84. D. Guinard, V. Trifa, Towards the web of things: web mashups for embedded devices, in
Proceedings of Workshop on Mashups, Enterprise Mashups and Lightweight Composition on
the Web, WWW Conferences, Spain, 2009

85. D. Guinard, Towards opportunistic applications in a web of things, in IEEE International
Conference on Pervasive Computing and Communications Workshops, 2010

86. D. Guinard, V. Trifa, T. Pham, O. Liechti, Towards physical mashups in the web of things, In
Proceedings of IEEE Sixth International Conference on Networked Sensing Systems, Pittsburgh,
USA, June, 2009

87. R.T. Fielding, Architectural styles and the design of network-based software architectures.
Doctoral dissertation, University of California, Irvine, 2000

88. X. Guo, J. Shen, Z. Yin, On software development based on SOA and ROA, in Control and
Decision Conference (CCDC), pp. 1032–1035. Publishing Press, 2010

89. A. Dunkels, T. Voigt, J. Alonso, Making TCP/IP viable for wireless sensor networks, in Pro-
ceedings of the First European Workshop on Wireless Sensor Networks (EWSN 2004), Berlin,
Germany, Jan 2004

90. A. Dunkels, T. Voigt, J. Alonso, H. Ritter, J. Schiller, Connecting wireless sensornets with
TCP/IP networks, in Proceedings of the Second International Conference on Wired/Wireless
Internet Communications (WWIC2004), Frankfurt (Oder), Germany, Feb 2004

91. J.W. Hui, D.E. Culler, IP is dead, long live IP for wireless sensor networks, in Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems, pp. 15–28. ACM, Raleigh,
North Carolina, USA, 2008

92. K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan, E. Johnson,
S. Masri, Monitoring civil structures with a wireless sensor network. IEEE Internet Comput.
10(2), 26–34 (2006)

93. J.C. Laprie, From dependability to resilience, 38th IEEE/IFIP International Conference On
Dependable Systems and Networks, Anchorage, Alaska, June 2008

Chapter 20
Service-Oriented Middleware: Overview
and Illustrative Example

Flávia C. Delicato, Paulo F. Pires and Albert Y. Zomaya

Abstract In this chapter we present an emerging approach to develop systems for
WSN, named Service-Oriented Middleware (SOM), in which the WSN is logically
viewed as a service provider for consumer applications. SOM provides abstrac-
tions for the complex underlying WSN through a set of generic and/or application-
specific services. Services as data aggregation, adaptation, security, self-organization,
resource management as well as other advanced services can be designed, imple-
mented, and integrated in an SOM framework to provide a flexible and easy environ-
ment to develop effective WSN applications. Moreover, the intrinsically decoupled
nature of the various components involved in a service-oriented architecture pro-
motes interoperability between service providers and consumers. The adoption of
service oriented approach provides WSN users with a unified protocol to access and
communicate with the WSN components and developers with a flexible programing
model to build efficient and scalable WSN systems. Besides presenting the basic con-
cepts of SOM development and discussing the potential benefits of such approach
in building WSM middleware systems, in this chapter we also present a concrete
example of a WSN SOM to further illustrate the described features.

F. C. Delicato (B) · P. F. Pires
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: fdelicato@gmail.com

P. F. Pires
e-mail: paulo.f.pires@gmail.com

A. Y. Zomaya
University of Sydney, Sydney, Australia
e-mail: albert.zomaya@sydney.edu.au

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 675
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_20,
© Springer-Verlag Berlin Heidelberg 2014

676 F. C. Delicato et al.

1 Introduction

Wireless sensor networks (WSNs) operate in a highly dynamic and distributed
environment. Such networks are becoming increasingly heterogeneous regarding
the devices, software technologies and hardware components employed, and they
potentially serve the needs of applications from multiple domains. All these features,
combined with the fact that developers generally are not networking experts, make
the development of applications for sensor networks a challenging task. There are
usually integration, scalability, reliability, security, usability, QoS, and operational
issues to be considered when building WSN applications. Tacking these challenges
is crucial to enable WSN to reach its full potential as a widely distributed sensing
infrastructure.

In traditional distributed computing, the use of middleware [1–4] facilitates the
work of application developers, unburdening them to deal with the inherent complex-
ity of distribution. Activities such as concurrency control, transactions, data replica-
tion, security, and other infrastructure services are performed by a middleware layer
placed between applications and the operating system. WSNs can also benefit from
the usage of a middleware layer that provides a runtime environment for generic
applications and abstracts the complexity of the underlying network infrastructure.
Among other functions, WSN middleware can decide the most suitable protocols to
be used according to the application requirements; coordinate the nodes’ operation
in the accomplishment of the application goals; and intelligently manage the use of
network resources. To efficiently provide the quality of services required by WSN
applications, it is often necessary to interact with the lower levels of the network
protocol stack, or even with the hardware devices. The middleware layer can exe-
cute such interactions for the benefit of final users or applications. By performing
all these functions, a WSN middleware facilitates the task of application developers
and network managers.

The design of new generation WSNs often incorporates a middleware layer as
a solution to face the challenges involved in building and executing WSN applica-
tions. There are different approaches for WSN middleware, concerning the provided
abstraction programing to build applications and the provided services to support
applications’ execution. Chapter 19 of this book presents a comprehensive survey
on existing proposals for WSN middleware. All the surveyed approaches provide
important functions for different applications such as efficient software configura-
tion and data aggregation. However, more advanced functions are required in the
middleware layer as, for instance, the capability to adapt the network behaviour to
the ever changing execution context of WSNs and the provision of several levels
of interoperability (among different networks, applications and with the Internet).
Future WSNs are envisioned as shared systems [5–7], composed of an underlying
sensing and communication infrastructure, possibly belonging to multiple owners,
providing services to a wide range of applications, from several groups of users. To
accommodate the features of this emergent scenario, a new architectural approach
is needed, in which application logics and requirements are separated from the data

http://dx.doi.org/10.1007/978-3-642-40009-4_19

20 Service-Oriented Middleware: Overview and Illustrative Example 677

gathering and dissemination functions. In such architecture, the components should
be loosely coupled, and accessed through well-defined interfaces. To achieve energy
efficiency, applications should be able to dynamically change the network behaviour.
However, these changes should be expressed in a high abstraction level, through a
common, preferably standardized protocol. Such features will allow the design of
WSN to be independent from the applications that will use them.

One of the most recent approaches that provide high flexibility for adding new and
advanced functions to WSN middleware is the service-oriented paradigm. Service-
oriented middleware (SOM) logically views the WSN as a service provider for con-
sumer applications [8]. The SOM provides abstractions for the complex underlying
WSN through a set of generic and/or application-specific services. Services such as
data aggregation, adaptation, security, self-organization, reliability, management as
well as other advanced services can be designed, implemented, and integrated in an
SOM framework to provide a flexible and easy environment to develop effective WSN
applications. Moreover, the intrinsically decoupled nature of the various components
involved in a service-oriented architecture promotes interoperability between service
providers and consumers. The adoption of service oriented approach provides WSN
users with a unified protocol to access and communicate with the WSN components
and developers with a flexible programing model to build efficient and scalable WSN
systems.

In this chapter we will first discuss (Sect. 2) basic concepts of the service oriented
approach and the main advantages of adopting such approach in WSN middleware.
In Sect. 3, as an aid to fully understanding WSN SOM, we present in details an
illustrative example of a middleware system built on the service paradigm. Section 4
concludes the chapter.

2 Overview on Service-Oriented Middleware for WSN

The service oriented paradigm is a promising approach for designing distributed
systems which has been considered a compelling candidate to deal with the hetero-
geneity in the Internet. In recent years it has been adopted in the design of WSN
middleware. Service-oriented middleware (SOM) logically views WSNs as service
providers for client applications. The distinctive feature of WSN SOM is that the
complex underlying WSN is managed through a set of services required by WSN
applications which are organized following the Service Oriented Architecture (SOA
[9]). SOA is independent of any specific technology and focuses on defining services
as autonomous and heterogeneous computational components running on different
platforms [10]. The following subsections present basic concepts related to service
oriented computing and SOA. We also discuss the application of SOA principles in
the building of WSN middleware.

678 F. C. Delicato et al.

2.1 Background Concepts: SOC and SOA

Service-Oriented Computing (SOC) is the computing paradigm that uses services as
underpinning elements for developing distributed applications. Services are self-
describing, platform-agnostic computational elements that support fast, low-cost
composition of applications [11, 12]. Services may range from simple function
requests to complex business processes. SOC enables software vendors to present a
software application as a service. By adopting SOC, organizations are able to expose
their core competencies programmatically over a network (Inter or intra-net) using
standard (XML-based) languages and protocols. Services are exposed, accessed and
implemented via a self-describing interface-based on open standards [12]. By adopt-
ing standardized protocols and languages to describe services and their interactions,
SOC facilitates integrating services provided by various vendors, and allows building
business applications from the composition of other existing services. SOC success-
fully addresses problems related to the integration of heterogeneous applications in
a distributed environment. Such feature has motivated the use of SOC as a promis-
ing programming model for handling node heterogeneity in the Internet and, more
recently, in the WSN domain.

According to [12] in order to meet their design requirements, services should be:

• Technology neutral: they must be invocable through standardized lowest common
denominator technologies that are available to almost all IT environments. This
implies that the invocation mechanisms (protocols, descriptions and discovery
mechanisms) should comply with widely accepted standards.

• Loosely coupled: they must not require knowledge or any internal structures or
conventions (context) at the client or service side.

Services shoud also support location transparency, meaning that they should have
their definitions and location information stored in a repository (the service registry)
and be accessible by clients independently of their location.

To build the service model, SOC relies on the Service Oriented Architecture (SOA)
[10]. SOA is an architectural design pattern that enables applications to be developed
using loosely coupled and interoperable services. The main building block in SOA is
the service, an entity describable and discoverable through well-defined interfaces.
All participants in a SOA revolve around the service, interacting and performing
different functions according to their established roles. SOA specifies three roles: the
service provider, the service discovery agency, and the service requestor (client). The
interactions among them involve the publish, find and bind operations [13] (Fig. 1).
Clients are software agents that request the execution of a service. Providers are
software agents that provide the service. Agents can be simultaneously both service
clients and providers. Providers are responsible for publishing a description of the
service(s) they provide. Clients must be able to find the description(s) of the services
they require and to bind to them. In a typical service-based scenario a service provider
hosts a network accessible software module (an implementation of a given service).
The service provider defines a service description and publishes it to a discovery

20 Service-Oriented Middleware: Overview and Illustrative Example 679

Fig. 1 SOA roles and opera-
tions

agency through which the service is made discoverable. The service requestor uses
a find operation to retrieve the service description typically from a discovery agency
and uses the service description to bind with the service provider and invoke the
service or interact with the service implementation.

Among other features, according to [12], the SOA approach enables that: (i) mul-
tiple applications executing in various platforms can effectively communicate with
each other; (ii) software services are provided to end-user applications through pub-
lished/discoverable interfaces, and (iii) services are loosely coupled, thus reducing
dependencies and facilitating reuse.

2.2 Implementation Technologies

SOA only defines the fundaments of service orientation; as a consequence it is neces-
sary the use of a technology that implements SOA principles. The most disseminated
technology for service implementation is Web Services technology. Web services can
be defined as modular programs, generally independent and self-describing, that can
be discovered and invoked across the Internet or an enterprise intranet. In the same
way as component-based middleware systems, Web services expose an interface
that can be reused without concerning on how the service is implemented. Unlike
current component-based middleware [1, 14–16], Web services are not accessed via
protocols dependent on a specific object-model. Instead, Web services are accessed
via ubiquitous Web protocols and data formats, such as Hypertext Transfer Protocol
(HTTP [17]) and XML [18], which are vendor independent.

The Web Services Description Language (WSDL) [19, 20] is an XML language
to describe the interface of a Web service enabling a program to understand how
it can interact with it. Each Web service publishes its interface as a WSDL docu-
ment that completely specifies the service interface so that clients and client tools
can automatically bind to the Web service. A WSDL document defines services as
collections of network endpoints or ports [19]. Besides, messages and port types are
defined. Messages are abstract descriptions of the data being exchanged, and port

680 F. C. Delicato et al.

types are abstract collections of operations. In WSDL, there is a separation between
the abstract definition of messages and their concrete network implementation. This
allows the reuse of abstract definitions of messages and port types. The concrete
protocol and data format specification for a particular port type defines a reusable
binding. A port is specified by associating a network address with a reusable binding.
A service is defined as a collection of ports.

SOAP protocol extends XML so that computer programs can easily pass para-
meters to server applications and then receive and understand the returned semi-
structured XML data document. The SOAP specification has four parts [21]. The
SOAP envelope construct defines a framework for expressing the content of a mes-
sage. The SOAP binding framework defines an abstract framework for exchang-
ing SOAP envelopes between peers using an underlying protocol for transport. The
SOAP encoding rules defines a serialization mechanism that can be used to exchange
instances of application-defined data, arrays, and composite types. SOAP standard
communication model is asynchronous, however, it can be mapped to represent more
complex communication models such as RPC-like (solicit and response) or broadcast
communication.

Since the Web services technology uses XML as the encoding system, data is
easily exchanged between computing systems with incompatible architectures and
incompatible data formats. WSDL completely describes the Web service interface,
while SOAP completely describes parameters, data types and exceptions included
in a message being exchanged between Web services. The XML language is very
flexible to model services descriptions and messages but it is also rather verbose.
For most applications the verbosity of XML is not a problem. WSN applications,
however, are constrained by the sensor resources, that are limited in processing power
and memory capacities, and, most importantly, have a very slow communications
channel available. Therefore, a more compact mechanism for representing the data
is needed. One example of such a mechanism is the WAP Binary XML Content
Format (WBXML [22]). This format defines a compact binary representation for
XML [18], intended to reduce the size of XML documents for transmission and to
simplify parsing them. WBXML was designed to be used as part of the WAP protocol
[22]. The binary XML content format was designed to allow more effective use of
XML data on narrowband communication channels with no loss of functionality or
semantic information.

Recently, the REpresentational State Transfer (REST) [23] was introduced as a
lighter alternative architectural style to the WS-* technologies. RESTful Web ser-
vices are built based solely on current standard Web mechanisms; any entity on the
Web is identified as a resource at some URI that can be accessed through standard
HTTP operations. The maind advantage of REST is its universality and the uni-
form service interface that leads to a potentially lightweight implementation, since
it does not imposes any overhead to interact with a service as it occurs in the case
of the SOAP protocol. However, the simplicity of the REST architecture currently
provides support to only basic distributed interaction and coordination [24], leaving

20 Service-Oriented Middleware: Overview and Illustrative Example 681

many open issues that have been tackled by SOC, such as dealing with security, dis-
tributed transactions, services composition, and many other features needed to built
a complete solution to common problems of a distributed environment.

2.3 SOM for WSN

As we have seen in Chap. 19 of this Book, WSN have requirements and features that
hinder the development of applications for these environments. Among these, we can
highlight the limited resources of nodes, the high dynamics and heterogeneity of the
network. For WSN to realize their full potential of usage by industry and scientific
communities, new programming models and frameworks are required to deal with
the challenges posed by these environments, and also to allow the applications to
make use of resources available in the network at each moment, adapting themselves
to the contextual changes. The adoption of a SOM can be a successful design decision
to face the challenges involved in building and executing WSN applications.

Briefly stated, Service-Oriented Middleware (SOM) supports the service-oriented
interaction pattern through the provision of proper functionalities for deploying,
publishing/discovering and accessing services at runtime. SOM also often provides
support to realize more complex composite services by integrating simpler ones [25].

By separating the software of a WSN in service consumers and service providers
which interact in a flexible way through publish, discovery and bind operations, SOM
provides an automated and elegant solution for [26]:

• Facilitating application development from the discovery and composition of ser-
vices provided by networks of possibly heterogeneous nodes;

• Facilitating coordination of applications in terms of consumption of the services
provided by the underlying network infrastructure;

• Facilitating the adaptation of applications, in an energy-efficient manner for the
network, in order to handle the highly dynamic execution context.

Recent efforts have targeted the use of SOM for WSN to provide high flexibility for
adding new functions to WSN middleware. Unlike other approaches, new functions
can be added to the middleware simply by adding new services. These services can
be designed, implemented, and easily integrated in the SOM to provide a flexible
and easy environment to develop WSN applications.

There are several proposals for WSN SOM presented in the literature. For a
comprehensive survey on the subject the reader is referred to [8]. Most of current
approaches [27, 28] consider the WSN as a data provider for client applications
that run outside the network and access the provided resources through a base sta-
tion (or sink node) that acts as the gateway between the WSN nodes and external
systems. Such approaches promote interoperability among heterogeneous nodes but
do not leverage the ability of nodes to support in-network processing, thus not fully
exploiting their collaboration and self-adaptation capacities. If the WSN nodes are

http://dx.doi.org/10.1007/978-3-642-40009-4_19

682 F. C. Delicato et al.

considered not only as data providers but as providers of services, including simple
processing, decision making and implementation of adaptive behaviour, the use of
SOC can bring many additional benefits to the design and implementation of appli-
cations, especially concerning the network efficiency and flexibility. An example
of this approach is Servilla [29]. Servilla is a service provisioning framework for
heterogeneous WSN. Using Servilla, an application can dynamically discover and
bind to local and remote services, facilitating in-network collaboration between het-
erogeneous nodes and achieving high levels of efficiency and flexibility. In Servilla,
applications are composed as platform-independent tasks and platform-specific capa-
bilities are exposed as services. Tasks search for services that match their require-
ments, and dynamically bind to them when they are available. A specialized service
description language is adopted that enables tasks to selectively bind to services that
exploit the capabilities of whatever hardware is available at a particular time and
place [29]. In contrast to Servilla, that adopts a service description language specif-
ically tailored for the system, in the next Section we describe a WSN SOM that
is completely built on standardized Web services technologies and protocols. The
described middleware will be used as a tool to support the learning of the paradigm
presented in this Chapter, in a learning-by-example approach.

3 Illustrative Example of WSN SOM

As an illustrative example of a WSN service oriented middleware, in this section
we detail the work presented in [30–33]. In the proposed system, the middleware
components are organized following the SOA roles and their implementation is based
on the Web Service technologies. From an external point of view, applications are
service requestors and sink nodes are service providers. A sink node exposes the
descriptions of the services provided by the WSN as a whole and offers access to
these services. From an internal point of view, sinks are the service requestors and
sensor nodes are the service providers. Sensors send the descriptions of their services
to sink nodes, which keep a repository of the service descriptors of each type of
sensor existing in the network. The interfaces of the provided services are physically
described by WSDL documents and XML Schema [34] and the messages exchanged
between the external and internal components of the system are implemented as
SOAP or XML messages.

The main components of the middleware are the communication module and
middleware services (Fig. 2). The communication module is composed of a message
router, a set of handlers, a set of XML drivers and a SOAP Proxy. The communi-
cation module in sink nodes is based on the SOAP protocol. However, to avoid the
overhead incurred by the adoption of SOAP, inside the network all data messages
are represented in XML language, encapsulated through a specific, compact format.

SOAP Proxy. The communication between the WSN and external applications
occurs through sink nodes. SOAP proxies are programs that translate function calls
made in the application programming language to SOAP messages. Conversely,

20 Service-Oriented Middleware: Overview and Illustrative Example 683

Fig. 2 Middleware Architecture [33]

SOAP reply messages are converted to data and function calls in the application
language. SOAP proxies are automatically created from WSDL documents describ-
ing the WSN provided services.

XML Drivers. As the middleware can be used in the top of multiple network
infrastructures, an abstraction layer, implemented as XML drivers, is provided to
represent the underlying behaviour of protocols and devices. XML drivers consist of
software modules that translate the middleware messages and commands (defined in
XML language) to the protocol language and vice-versa.

Message Router. This component coordinates the flow of SOAP/XML messages
through the several handlers of the communication module. Handlers represent the
message processing logic and act as dispatchers to the several middleware services.
There are a set of basic handlers and a set of specific handlers. Basic handlers are
responsible for parsing and composing XML messages, header processing and data
type conversions. Specific handlers are defined for each implemented middleware
service.

Middleware Services. The basic service provided by a WSN is the delivery of
data collected by sensors for client applications. Such delivery depends on the dis-
covery of sensing capabilities available in the network nodes, on the request for data
according to the application needs and on how communication occurs between source
nodes (data producers) and applications (data consumers). The proposed middleware
provides the application with an abstraction of this delivery service so that it can be
configured according to the different requirements of each application. To support
data delivery, the middleware provides a discovery service, based on Web services
protocols. Besides the abstraction of the basic service of data delivery, the middle-
ware offers a data aggregation service as well as resource management services,
which encompass (i) a decision service to facilitate the application development and
(ii) an inspection and adaptation service to provide the dynamic behaviour of the
system. The decision service is responsible for taking the necessary configuration
decisions to meet a particular set of application requirements. Examples of decisions

684 F. C. Delicato et al.

supported by this service are the choice of the best routing protocol and the selection
of the subset of nodes to remain active during the execution of the required sensing
tasks [35]. The inspection and adaptation service [36] is in charge of monitoring the
system state and activating adaptation policies whenever it is necessary.

The middleware services are implemented as modular software components.
Therefore, depending on the computational resources of the sensor nodes, as well as
on the specifc requirements of the running applications, a different set of services
can be installed. Additional generic services as naming, location and security, can be
implemented by third parties and incorporated to the middleware architecture. The
modular architecture and the use of XML in the internal middleware communication
allow the service components to be implemented in any programming language and
easily “plugged” in the middleware. This feature provides the middleware archi-
tecture with flexibility and extensibility properties, required to accommodate new
requirements of emerging applications and WSN scenarios. Section 3.2 describes an
extension implemented with the purpose of augmenting the middleware adaptation
capability by enhancing the services’s descrpttion with semantic information. The
next sections present the main steps of the middleware operation.

3.1 System Operation

The basic operation of the described middleware consists of a series of phases that
are interleaved with the WSN operation itself.

Service Discovery. Before system start-up, it is necessary to discover the ser-
vices provided by the WSN. Two levels of service discovery are required: external
and internal; each one managed by a specific middleware component. Internal discov-
ery (Fig. 3) starts with an initial configuration phase, during which nodes exchange
XML messages describing their services. Configuration messages include: node iden-
tifier, timestamp, sensor types, geographical location, residual energy, maximum &
minimum confidence degrees, and maximum & minimum data rates. Configuration
messages have to reach at least one sink node in the network. A multi-hop protocol
is used to route such messages. This phase takes place only once during system
start-up, and the protocol being used is not so far the optimized solution for a given
application. Sink nodes store the contents of received configuration messages in a
local XML-based repository.

The external discovery level is used by applications to find out which WSN sup-
plies the required services, and how to invoke them. The use of SOAP and XML,
both part of the Web Services architecture [37], makes the UDDI standard [38] to
be a natural choice for service discovery protocol. UDDI is a protocol for communi-
cating with registries. UDDI defines an infrastructure based on XML for the service
discovery, and uses SOAP as the protocol to invoke these services. After using UDDI
to find the WSN that meets its requirements, the application obtains through the sink
node the WSDL document [19] that describes the interface of the services provided
by the network.

20 Service-Oriented Middleware: Overview and Illustrative Example 685

Fig. 3 UML sequence diagram of Internal Discovery Phase

Fig. 4 UML sequence diagram of Interest Submission Phase

Submission of Application Interests and Requirements. The WSDL document
provided by the sink node enables the application to learn about the services avail-
able in the WSN and how to invoke them. The application can submit its interests
(Fig. 4) using different types of SOAP messages for interest advertising [31]. A
SOAP message for interest advertising contains the sensor type, the coordinates of
the geographical target area, the data acquisition duration and rate, data aggregation
functions to be applied on sensed data, among other information. Besides interests,
applications can send, for each requested service, a list of execution policies, indicat-
ing the QoS parameters to be respected in each execution context, during the delivery
of the service.

686 F. C. Delicato et al.

Network Configuration. The middleware implements an automated decision
process to select the best protocol/topology to be used in the network for a given
application. Such process is a service provided by the decision service. A decision
algorithm [33] is responsible for choosing the best data dissemination strategy, pro-
tocol and network topology. Choices are based on the results of previous experiments
and simulations. The middleware keeps a database with past information of different
configurations and application requirements. Such information is constantly refined
when new values are reported by the current applications. After the middleware using
the information on the advertising interest SOAP message to discern about network
configuration, such message is propagated to the sensor nodes using the underlying
data dissemination protocol.

Creation of Application Profile. The application profile is an XML-based data
structure which contains: (i) the description of the application requirements in terms
of its sensing interests, and (ii) the execution policies for each requested service, i.e.,
the QoS parameters to be met in each possible execution context. The initial profile
is built from information extracted from the SOAP message of interest advertising.
The middleware inserts its decisions about protocol and topology configuration in
the application profile. Furthermore, the different adaptation policies applied during
the execution of the application can be included in the profile.

In the described system, the QoS requirements for the basic service of data delivery
can be defined in terms of three parameters: delay, accuracy and data rate. QoS
requirements for the aggregation service are defined according to two parameters:
the aggregation degree (ratio of the number of received messages to the number of
sent messages) and the aggregation delay (delay incurred by the time a sensor node
should wait for incoming messages to be aggregated before their transmission). Other
services require different sets of QoS parameters.

The execution state is represented by a set of application and system parameters.
Application parameters concern the information known by the current application and
are defined in terms of the values of sensing data about the monitored phenomenon
[39]. System parameters regard information known by the middleware and include:
battery level; range/power/transmission rate; and geographic location of nodes.

After creating the application profile, the middleware establishes the current net-
work task and controls the network/sensors as a function of the application QoS and
network performance. The middleware interacts with the infrastructure of the subja-
cent network to keep the context always up to date. Whenever a change in the context
occurs, the system verifies in the active application profiles if QoS requirements are
being met. If some requirement is not being satisfied, the middleware applies an
adaptation policy.

Data Dissemination. When a sensor node generates data, the data is transferred
to the communication module, where an XML driver converts it into an XML rep-
resentation. A specific handler verifies if the data attributes match some aggregation
service request. If there is a match, the data is dispatched to the respective aggregation
service. The aggregated data is forwarded to the dissemination protocol, as a new
XML message of data advertisement. When receiving a packet from another sensor,
the dissemination protocol verifies (through a field in the packet header) if the packet

20 Service-Oriented Middleware: Overview and Illustrative Example 687

contains an application message (data or interest advertising) or an infrastructure
(control) message. If it is a control packet, the message is processed by the protocol
of data dissemination itself. In case of an application message, it is transferred to
the communication module. A basic handler is responsible for verifying the message
type (interest or data) and for dispatching it to the specific handler, which process
the message and forwarding to the respective services indicated in the message.

System Inspection. The middleware inspection capacity allows an application to
request information on the current execution context whenever it wants (reification
process [40]). The request is submitted as a SOAP message. From the analysis of the
provided information, the application may decide to modify the system behaviour,
changing some previously registered QoS parameter or execution policy. The adap-
tation module keeps a table to register the parameters that each application requests
to monitor. To capture any sensible change, monitoring components existent in the
sensor nodes periodically check the values of requested parameters.

Adaptation Policies. Adaptation policies are pre-registered in the system as sets of
actions to be performed when the QoS requirements established by an application are
not being fulfilled, for a given execution context. There are aggressive or conservative
policies, and their main goal is to balance the application QoS requirements with
the network state, aiming to extend the WSN global lifetime. Examples of defined
adaptation policies are: (i) increase the data reliability (data accuracy); (ii) decrease
the energy consumption; (iii) increase the available bandwidth. A policy of decreasing
the energy consumption may be implemented by two actions: decreasing the data
rate and turning off some sensors (considered as providing redundant information to
the application). The system, however, must verify if the action to be performed will
not damage the minimum level of QoS requested by running applications.

3.2 Semantic Extension of the WSN Middleware

The pervasiveness and the wireless nature of sensor devices require WSN architec-
tures to support ad hoc configuration. A key technology of true ad hoc networks is ser-
vice discovery, functionality by which “services” offered by nodes can be described,
advertised, and discovered by other devices or applications. Current service discovery
and capability description mechanisms are based on ad hoc representation schemes
and rely on standardization. A crucial requirement for the future, widely accessed
WSNs is interoperability under unpredictable conditions, i.e., networks which were
not designed for specific, predefined purposes, should be able to be accessed by
unforeseen applications, which dynamically discover their functionality and take
advantage of it. To enable fully automatized services discover in a highly distributed
and heterogeneous systems, semantic information is necessary to augment the syn-
tactic information provided by WSDL and XML schema. An approach that has been
successfully adopted to increase the degree of automation in the Web services envi-
ronment is the Semantic Web [41]. Aiming to provide semantically enriched Web
services descriptions, the Semantic Web approach proposes using service ontologies,

688 F. C. Delicato et al.

such as the Ontology Language for Web Services (OWL-S) [42], for augmenting ser-
vice description. As OWL-S definitions are interpretable by software agents through
the employment of inference techniques, Web services described by these ontologies
can be automatically discovered and composed.

The tasks involved in the dynamic utilization of WSN services include service
discovery and description. The description of a service encompasses information
about the sensing task and QoS parameters. Thus, an ontology language is useful to
describe the characteristics of WSN devices, their sensing capabilities, and specific
information of applications accessing the WSN. In order to endow the proposed mid-
dleware with semantic capabilities, new mechanisms were included in its original
architecture to acquire, to reason about and to adapt the WSN behavior according
to context information. Such capability allows sensor nodes to maintain consistent
contextual knowledge and change their behavior according to it. Such knowledge is
achieved through sharing context information among the different entities of a WSN
system, namely, sensor nodes, applications and infrastructure components. Sensors
monitor and periodically send contextual information (for instance the current status
of the device and the network connectivity). Applications inspect the current con-
text and eventually change previously stated execution policies. Service components
must guarantee that defined QoS parameters are met, and that the current execu-
tion context is a valid one. In order to meet this goal, the extended version of the
described middleware adopts a set of common ontologies to support the communi-
cation among the different entities that comprise the WSN domain. Such ontology
also facilitates sharing knowledge among devices from different vendors and among
different WSNs.

Enhanced Communication Module. In the implemented extension, the commu-
nication module includes, besides a SOAP proxy and XML drivers, a knowledge base
and a reasoning engine. The knowledge base corresponds to the ontology database.
It contains the adopted ontology model, that is, the definitions of the classes and
properties created for describing sensor features, execution contexts and policies,
application queries and tasks. The full database is implemented only in sink nodes.
Sensor nodes keep a sub-part of the ontology definitions needed for representing their
own capabilities and information about execution contexts. The reasoning engine is
a software module responsible for reasoning with ontology knowledge, that is, static
knowledge derived from the underlying ontology model. Its function is to decide
whether WSN nodes can meet the requirements of a submitted application task.

Enhanced Services. The new extension enhanced the adaptation capabilities of
the proposed middleware. In such version, the middleware inspection and adapta-
tion service were implemented as two independent modules: (i) the inspection mod-
ule, that allows the application to inspect the network behavior at runtime, exposing a
representation of the current execution state; and (ii) the monitoring and adaptation
module, responsible for monitoring the states of the network and running applica-
tion(s) and for activating adaptation policies whenever it is necessary or requested.
The monitoring and adaptation module accesses the local ontology database
and, similarly to the communication module, it contains a reasoning engine. This
engine is responsible for reasoning with both ontology knowledge and contextual

20 Service-Oriented Middleware: Overview and Illustrative Example 689

knowledge. Contextual knowledge is a dynamic knowledge that is inferred from sit-
uational information reported by sensor nodes. Once that information is available,
the module verifies if the WSN execution context at every given moment represents
a valid state. Otherwise, a predefined adaptation policy is triggered to repair the
network state.

WSN Ontology. We detected three situations in which it would be worthwhile to
add semantics in the context of accessing and using WSNs:

• To discover networks that potentially meet the interests of an application, given a
high level description of the requested services. The goal here is to find the address
(URL) of the access point (sink) of such WSNs, through which applications are
able to access and use the WSN services. In this case, the UDDI protocol, used for
discovering WSNs, should be added with semantic capacities. Addressing such
situation is out of the scope of our work.

• Once a specific WSN has been chosen, to determine if the sensing task requested
by the application can be fully accomplished by such network, given the task
detailed description, including QoS requirements.

• Once the required task has been initiated, to share knowledge on the execution
context, allowing (i) sensor nodes to send information about the network and the
application current states; (ii) applications to monitor such state; and (ii) service
components to verify if a given execution state is valid and the eventual need of
triggering adaptation mechanisms in case of violation of QoS parameters.

We designed a WSN ontology to capture the most relevant features of sensors,
execution context and application requirements for the purposes of service discov-
ery and context monitoring. Therefore, we created classes and properties to describe
concepts related to the descriptions of sensor node capabilities, application tasks,
policies, and execution contexts. For the purpose of service discovery, we defined:
(i) three main classes for describing WSN features (WSN, SensorNode and Sen-
sorField); and (ii) four main classes for describing application requirements (Task,
Query, QoSParameters and SensorType). For the purpose of describing execution
policies and contexts, and verifying if the current state fits in a valid policy, the main
classes created are: ExecutionContext, ApplicationState, NetworkState, Execution-
Policy and CurrentState. The defined ontologies are concisely depicted in Figs. 5
and 6. The middleware reasoning engines have a set of rules that allows reasoning
based on such ontologies.

The ontologies designed for the WSN domain were defined by using the OWL/
RDF language [43]. The Web Ontology Language (OWL) is intended to provide
a language to describe the classes and relations between them that are inherent in
Web documents and applications. The OWL language can be used (i) to formalize a
domain by defining classes and properties of those classes; (ii) to define individuals
and assert properties about them, and (iii) to reason about these classes and individuals
to the degree permitted by the formal semantics of the OWL language. We will not
present the OWL files containing the complete description of ontologies, for lacking
of space. The OWL-DL [43] version of the language was used for representing the

690 F. C. Delicato et al.

Fig. 5 Main ontologies for execution policies and contexts

Fig. 6 Main ontologies for tasks and WSN descriptions

ontologies stored on the sink node knowledge base and the OWL-Lite [43] version
for ontologies on the sensor node database.

20 Service-Oriented Middleware: Overview and Illustrative Example 691

4 Conclusion

Sensor network applications often run on networks composed of hundreds or thou-
sands of nodes spread over a wide geographical area. Sensor nodes have very scarce
computational and energy resources, communicate via highly volatile wireless links,
and often are exposed to environmental factors such as storms, critical temperatures
and humidity, among others. In addition, sensor nodes can have different capacities,
be manufactured and operated by different vendors, and be accessed by multiple
clients requiring different functionalities from the network. When applying the ser-
vice oriented paradigm to the WSN system design, the WSN is seen as a service,
with different granularities: the whole network can be the service provider for client
applications; groups of nodes can be providers of composite services; each sensor
node can be a provider of simple services; or even a single sensing unit can provide
an atomic service for other nodes or applications. The adoption of a service-oriented
middleware provides flexibility in designing WSN applications, as it builds on well-
known standards for data representation and packaging, for describing the function-
ality provided by the WSN (as a service), thus facilitating the search for available
services that can be invoked to meet application needs. Furthermore, the use of SOM
can facilitate coordination of the nodes in performing the sensing tasks, contributing
to the efficient use of network resources. The use of SOC has been proven success on
the Internet. Its adoption in WSN is still in its infancy but has the potential to lever-
age the widespread use of these networks, especially in emerging scenarios in which
more and more sensor networks will be built as shared infrastructures with multiple
owners and serving multiple users. In these scenarios, issues such as interoperability
and ubiquitous access to sensor generated data will be even more crucial.

Acknowledgments This work was partially supported by the following Brazilian funding agencies:
FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de
Janeiro), CNPq (National Council for Scientific and Technological Development), under processes
311363/2011-3 and 470586/2011-7 for Flávia C. Delicato; 480359/2009-1 and 311515/2009-6 for
Paulo F. Pires and RNP. We also want to express our gratitude to Professor Habib M. Ammari who
kindly invited us to contribute to this Book.

References

1. Microsoft Corporation. Distributed Component Object Model Protocol-DCOM/1.0, draft
(Nov 1996), http://www.microsoft.com/Com/resources/comdocs.asp. Accessed June 2012

2. OMG (Object Management Group). The Common Object Request Broker: Architecture and
Specification. Revision 2.0. (July 1995)

3. OMG Common Object Request Broker Architecture: Core Specification. V. 3.0.3, http://www.
omg.org/technology/documents/formal/corba_2.htm. Accessed March 2012

4. SUN Microsystems, Enterprise JavaBeans Specification 2.0, http://java.sun.com/products/
ejb/docs.html. Accessed June 2012

http://www.microsoft.com/Com/resources/comdocs.asp.
http://www.omg.org/technology/documents/formal/corba_2.htm.
http://www.omg.org/technology/documents/formal/corba_2.htm.
http://java.sun.com/products/ejb/docs.html.
http://java.sun.com/products/ejb/docs.html.

692 F. C. Delicato et al.

5. S. Bhattacharya, A. Saifullah, C. Lu, G.-C. Roman, Multi-application deployment in shared
sensor networks based on quality of monitoring. 16th IEEE real-time and embedded technol-
ogy and applications symposium (2010), pp. 259–268

6. C. Efstratiou, I. Leontiadis, C. Mascolo, J. Crowcroft, A shared sensor network infrastructure,
in Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys
’10). ACM, (New York, 2010) pp. 367–368. doi: 10.1145/1869983.1870026

7. F. Wu, Y. Kao, Y. Tseng, From wireless sensor networks towards cyber physical systems,
Pervasive Mob. Comput. 7(4), pp. 1574–11 (2011). ISSN 397–413

8. J. Al-Jaroodi, N. Mohamed, Service-oriented middleware: a survey. J. Netw. Comput. Appl.
35(1), 211–220 (2012)

9. S. Graham et al., Building Web Services with Java: Making Sense of XML, SOAP, WSDL,
and UDDI (Sams Publishing, Indianapolis, 2002)

10. OASIS Reference Architecture Foundation for Service Oriented Architecture 1.0, Committee
Specification Draft 03, (July 2011)

11. M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: state of
the art and research challenges. IEEE Comput. 40(11), 38–45, IEEE Computer Society, 2007

12. M.P. Papazoglou, Service-oriented computing: concepts, characteristics and directions.
Keynote for the 4th international conference on web information systems engineering (WISE
2003), December 10–12, 2003, IEEE CS

13. M. Champion, C. Ferris, E. Newcomer, D. Orchard, Web Services Architecture W3C Working
Draft, www.w3.org/TR/ws-arch/, Nov 2002

14. Microsoft Corporation and Digital Equipment Corporation, The Component Object Model
Specification, http://www.opengroup.org/pubs/catalog/ax01.htm, Accessed October 1995

15. Microsoft Corporation. Net Framework, http://www.microsoft.com/net. Accessed January
2012

16. SUN Microsystems, Enterprise JavaBeans Specification 2.0. Sun Microsystems, http://java.
sun.com/products/ejb/docs.html Accessed August 2001

17. Ietf, RFC 2616, Hypertext Transfer Protocol—HTTP/1.1, http://www.ietf.org/rfc/rfc2616.
txt, Accessed June 1999

18. W3C (World Wide Web Consortium) Recommendation, Extensible Markup Language (XML)
1.0 (Second Edition), http://www.w3.org/TR/REC-xml, Accessed October 2000

19. W3C (World Wide Web Consortium) Note, Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer, http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/,
Accessed June 2007

20. W3C (World Wide Web Consortium) Note. Web Services Description Language (WSDL)
1.1, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, Accessed March 2001

21. W3C (World Wide Web Consortium), SOAP Version 1.2 Part 0: Primer (Second Edition),
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, Accessed April 2007

22. Wireless Application Protocol Forum: What is WAP and WAP Forum? http://www.wapforum.
org /what/index.htm

23. R.T. Fielding, R.N. Taylor, Principled design of the modern Web architecture. ACM Trans.
Internet Technol. 2, 115–150 (2002)

24. C. Pautasso, O. Zimmermann, F. Leymann, Restful web services vs. “big” web services:
making the right architectural decision, in 17th international conference on World Wide Web
(WWW) (2008)

25. V. Issarny et ai., Service-oriented middleware for the future internet: state of the art and
research directions. J. Internet Serv. Appl. 2(1), 23–45 (2011)

26. C.L. Fok, G.C. Roman, C. Lu, Adaptive service provisioning for enhanced energy efficiency
and flexibility in wireless sensor networks, Elesvier Science of Computer Programming,
Special Issue on Best Papers of Coordination’10, Available online 29 December 2011, ISSN
0167–6423

27. E. Avilés-López, J. García-Macías, Tinysoa: a service-oriented architecture for wireless sensor
networks, Service Oriented Computing and Applications. doi:10.1007/s11761-009-0043-x.

http://www.opengroup.org/pubs/catalog/ax01.htm,
http://www.microsoft.com/net.
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://www.ietf.org/rfc/rfc2616.txt,
http://www.ietf.org/rfc/rfc2616.txt,
http://www.w3.org/TR/REC-xml,
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315,
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/,
http://www.wapforum.org
http://www.wapforum.org

20 Service-Oriented Middleware: Overview and Illustrative Example 693

28. N.B. Priyantha, A. Kansal, M. Goraczko, F. Zhao, Tiny web services: design and implemen-
tation of interoperable and evolvable sensor networks, in SenSys ’08 (2008), pp. 253–266.
doi:10.1145/1460412.1460438

29. C.L. Fok, G.C. Roman, C Lu, Servilla: a flexible service provisioning middleware for hetero-
geneous sensor networks. Sci. Comput. Program. 77(6), 663–684 (2012). ISSN 0167–6423

30. F.C. Delicato et al., A service approach for architecting application independent wireless
sensor networks. Cluster Comput. 8(2–3), 211–221 (2005). ISSN: 1386–7857

31. F.C. Delicato et al., A Flexible Middleware System for Wireless Sensor Networks, in Pro-
ceedings of the ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro,
July 2003

32. F.C. Delicato et al., Reflective Middleware for Wireless Sensor Networks, in Proceedings of
the 20th ACM Symposium on Applied Computing (SAC2005) (USA, 2005), pp. 1155–1159

33. F. Delicato, P. Pires J. Rezende, L. Pirmez, Service Oriented Middleware for Wire-
less Sensor Networks. Technical Report NCE04/04, http://www.nce.ufrj.br/labnet/research/
networksensors/publications.htm, (2004)

34. W3C (World Wide Web Consortium) Recommendation 28 October 2004 [Online], XML
Schema Part 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0/. Último acesso:
24/05/2005

35. F.C. Delicato et al., Application-Driven Node Management in Multihop Wireless Sensor
Networks, in Proceedings of the 4th IEEE International Conference on Networking, Reunion
Island, April 2005

36. F. C. Delicato et al., An efficient heuristic for selecting active nodes in wireless sensor net-
works. Comput. Netw. 50, 3701–3720, Elsevier Science, ISSN: 1389–1286, 2006

37. Web Services Architecture, W3C Recommendation 2004 [cited 2009 August]; Available
from: http://www.w3.org/TR/ws-arch/

38. OASIS Spec Technical Committee Draft, UDDI Version 3.0.2, http://uddi.org/pubs/uddi_v3.
htm 2004

39. W. Heinzelman, A. Murphy, H. Carvalho et al., Middleware to support sensor network appli-
cations. IEEE Netw. Mag. Spec. Issue 18(1), 6–14 (2004)

40. L. Capra, W. Emmerich, C. Mascolo, Carisma: context-aware reflective mIddleware system
for mobile applications. IEEE Trans. Software Eng. 29(10), 929–945 (2003)

41. T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web. Scientific American Magazine
(May 17, 2001)

42. OWL-S Coalition, OWL-S 1.1 Release, http://www.daml.org/services/owl-s/1.1/
43. W3C Recommendation, OWL Web Ontology Language (February 10, 2004); http://www.

w3.org/TR/owl-guide/

http://www.nce.ufrj.br/labnet/research/networksensors/publications.htm,
http://www.nce.ufrj.br/labnet/research/networksensors/publications.htm,
http://www.w3.org/TR/xmlschema-0/.
http://www.w3.org/TR/ws-arch/
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.daml.org/services/owl-s/1.1/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/

Part X
Sensor Technology, Standards, and

Operating Systems

Chapter 21
System Architecture and Operating Systems

Yanjun Yao, Lipeng Wan and Qing Cao

Abstract The emergence of resource constrained embedded systems such as sensor
networks have introduced unique challenges for the design and implementation of
operating systems. In OS designs for these systems, only partial functionality is
required compared to conventional ones, as their code is running on a much more
restricted and homogeneous platform. In fact, as illustrated by microcontrollers,
most hardware platforms in wireless sensor networks (WSNs) simply do not have
the required resources to support a full-fledged operating system. Instead, operating
systems for WSNs should adapt to their unique properties, which motivate the design
and development of a range of unique operating systems for WSNs in recent years.
In this chapter, we systematically survey these operating systems, compare them in
their unique designs, and provide our insights on their strengths and weaknesses.
We hope that such an approach is helpful for the reader to get a clear view of recent
developments of wireless sensor network operating systems.

1 Introduction

The traditional roles of an operating system include the management and protection
of system resources for different users, in addition to providing programming and
execution support for concurrent applications. Residing between the hardware and
applications, operating systems are known for their complexity: the Linux operating

Y. Yao (B) · L. Wan · Q. Cao
Department of Electrical Engineering and Computer Science, University of Tennessee,
Knoxville, TN, USA
e-mail: yyao9@utk.edu

L. Wan
e-mail: lwan1@utk.edu

Q. Cao
e-mail: cao@utk.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 697
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_21,
© Springer-Verlag Berlin Heidelberg 2014

698 Y. Yao et al.

system as of 2012 contains around 15 million lines of code [1], whereas Windows
XP reportedly has 45 million [2]. Such complexity is necessary to implement the
wide range of tasks that operating systems are involved in, such as task scheduling,
memory protection, storage management, among others.

For resource constrained embedded systems such as sensor networks, however,
only partial functionality is required for their operating systems compared to con-
ventional ones, as their code is running on much more restricted and homogeneous
platforms. In fact, as represented by microcontrollers, most hardware platforms in
WSNs simply do not have the required resources to support a full-fledged operat-
ing system. Furthermore, operating systems for WSNs should support their unique
requirements, such as energy management, sensor sampling, and low-power commu-
nication. These requirements motivate the design and development of a wide range
of unique operating systems for WSNs, which will be our main topics of discussion
in this chapter.

Specifically, this chapter is organized as follows. In the remaining of this section,
we describe the critical tasks performed by sensor network operating systems. In the
next section, we describe a variety of hardware platforms. In Sects. 3–5, we describe
three representative operating systems for sensor networks, including TinyOS [3],
Contiki [4], and LiteOS [5]. We briefly describe several more operating systems, and
compare them from different perspectives in Sect. 6. Finally, we conclude in Sect. 7.

1.1 Kernel Scheduler

The operating system kernel serves the central functionality of scheduling tasks,
through which it selects the next job to be admitted into the system. There are
multiple types of schedulers, such as first-in-first-out (FIFO), shortest-job-first (SJF),
priority-based scheduling, round-robin scheduling, and multilevel queue scheduling.
Each of these scheduling policies makes different tradeoffs between CPU overhead,
throughput, turnaround time, and response time. Detailed treatment on this topic can
be found in textbooks such as [6].

For WSNs, the types of commonly found scheduling policies are more limited due
to resource constraints. Different operating systems can be categorized according to
(i) what types of entities are being scheduled, and (ii) what are the scheduling policies
used. For example, the TinyOS operating system uses a streamlined FIFO scheduler
for tasks, where these tasks are special types of function pointers stored in a task
queue. These tasks are envisioned to be long-running functions that are posted by
triggering events. Different from TinyOS, another operating system, SOS [7], focuses
on messages, which are asynchronous and behave like tasks in TinyOS. These mes-
sages serve as communication mechanisms between system modules. SOS maintains
a high priority queue for time-critical messages, such as those from ADC interrupts
and a limited set of timers, and a low priority queue for other, non-time-critical
messages. Finally, some operating systems provide scheduling for multiple types
of entities. The LiteOS operating system, for example, provides scheduling support

21 System Architecture and Operating Systems 699

for both threads and tasks, and allows different policies to be implemented for each
entity: a priority-driven scheduler is provided to support tasks, while a round-robin
scheduler is provided to allow multiple threads to share the CPU without starvation.

Which type of scheduling is the best? We don’t believe that there is a specific
answer to this question. The different implementations of scheduling, however, do
have a significant impact on the way programs are written and executed. We leave
the detailed discussions on the impact of scheduling on programming models to our
descriptions of individual operating systems.

1.2 Programming Model

In this section, we describe those programming models offered by operating sys-
tems, that is, how developers write programs based on different system level APIs.
One of the fundamental problems faced by programming models is how they handle
concurrency. Concurrency is challenging in sensor networks. This is because appli-
cations written for them are fundamentally asynchronous: a radio message event,
for example, could come in at any time. One of the simplest ways to handle this is
by polling the radio to decide whether a packet has arrived. Such a simple model
suffers, however, from excessive CPU usage and the risks of missing data when the
packets are being processed. Clearly, better concurrency models are needed to build
efficient and reliable applications.

We can categorize existing operating systems for sensor networks into two broad
domains in terms of their concurrency models: event driven and thread driven. Some
operating systems provide compatible APIs for both types of models, such as the 2.x
versions of TinyOS. In this chapter, we primarily consider the 1.x version of TinyOS
to illustrate the idea of event-driven programming model.

1.2.1 Event-Driven Programming Model

The concept of the event-driven programming model is conceptually simple: the
system handles an event using interrupts, where an event can be triggered by both
hardware and software sources. For example, they could be an event indicating data
availability from a sensor, a packet arrival event, or a timer firing event. Such an event
is then handled by a short sequence of instructions that only carries out the very basic
activities, for example, storing the content of the packet or a sensor’s value into a
local buffer. The actual processing of these data is not done in these event handler
routines, but is handled separately and decoupled from the actual occurrences of
events. These handling routines are usually referred to as long-running processing
tasks. Unlike events, which can interrupt at any time, tasks are only handled in a
specific order (FIFO in TinyOS), which means that later tasks cannot preempt the
earlier tasks.

700 Y. Yao et al.

The reasoning behind such design choices is profound: using short and simple
event handling sequences can avoid their interference with normal code execution.
Event handlers typically do not interrupt each other (as this would complicate stack
handling procedures), but are simply executed one after each other. As a result,
this event-based programming model creates two different “contexts”: one for the
time-critical event handlers and one for normal instruction flows. Interestingly, pro-
grammers usually find such a programming methodology quite complicated, espe-
cially for larger scale applications: reasoning about the application usually involves
formal methods in finite state machines (FSM), which are implicitly embedded in
event-driven applications.

Although difficult to write, the event-based programming model comes with the
advantage that it saves context switch overhead: only one thread of execution is
continually running with its own stack. Therefore, such models typically have lower
memory footprint and less runtime overhead compared to thread-based models [5].

1.2.2 Thread-Driven Programming Model

Because of the complexity of adopting the event-based programming model, most
modern operating systems support concurrent execution of multiple processes or
threads on a single CPU. On sensor networks, such a model was originally challenged:
as the early papers on TinyOS illustrated [3], the concern of overhead in context
switches makes this model less preferable on resource constrained devices, hence
motivating the event-driven design. Later work, however, challenged this argument
by showing that multiple threads can indeed be created on the resource-constrained
platforms with only a few kilo bytes of RAM space. Representative systems following
this philosophy include the Mantis operating system in 2007 [8], the LiteOS operating
system in 2008 [5], and the TinyOS 2.x version in 2009 [9]. The critical advantage of
thread-based model is that it greatly simplifies software development: using threads,
the programmer can easily reason about the execution sequences of the programs,
leading to more logical organizations of software components.

1.3 Protocol Stack

One conventional way for developing communication protocol stacks, e.g., the
protocol stack of the Internet, is to provide a layered architecture of protocols, where
one protocol resides on top of another to provide desired functionalities. The key
advantage of this approach is that it allows each layer to be developed separately and
independently of its higher or lower layer protocols. Therefore, as long as one layer’s
interface remains the same, its implementation can be flexible. The layered approach
has been shown to be highly effective in conventional wired network environments,
where two models are widely popular: the OSI seven-layer model and the TCP/IP
four-layer model.

21 System Architecture and Operating Systems 701

However, for WSNs, such a layered approach is less preferable. One primary
reason is the need for cross-layer optimization to achieve the best performance under
resource constraints. For example, in a sensor network that collects real-time sen-
sor data, its sampling period should not be fixed due to frequently changing radio
channel conditions. Instead, the sampling period should be adjusted dynamically
according to the real-time link quality. In this case, the application layer (data collec-
tion) exploits the routing layer (link quality) information to achieve the best packet
delivery performance.

Because of their differences with conventional networks, protocol stacks for
sensor networks tend to use separate models. In the TinyOS operating system,
a component-based model is proposed. Specifically, TinyOS adopts a holistic
approach, where a separate programming language called nesC [10] is developed
to facilitate this component-based model. These components are wired together to
fulfill the global functionality, and they interact with each other over clearly-defined
interfaces. The main difference compared to the layered architecture is that such a
component-based model no longer maintains hierarchical relations between com-
ponents. Therefore, an application layer component can easily invoke the interface
provided by a routing layer component. Another advantage of this design is that
such a component based architecture fits well with the event-driven programming
model of TinyOS: functions provided by hardware or software can all be conve-
niently designed and implemented as self-contained components to improve system
maintainability and modularity.

1.4 Storage Management

The storage space is a precious resource in sensor networks mostly due to energy
consumption concerns. Storage management has conventionally been considered as
one important goal of operating systems, as demonstrated by the design of various
file systems and storage services [11, 12]. On sensor nodes, typically flash storage
is provided to store sensor data temporarily before they are transmitted back to the
base station. Therefore, the management of storage space determines how data are
managed during the execution time of the system.

The operating system for sensor networks provides varying interfaces for storage
management. Earlier operating systems such as TinyOS, Contiki and SOS provide
direct access to the on-board flash memory by allowing users to read and write
specific blocks directly. Empirical studies, however, found such an approach to be
too low-level for most practical needs of applications. Later operating systems such
as Mantis and LiteOS provide reliable file system interfaces that are similar to Unix.
Such design choices make it much easier to develop large-scale storage-intensive
applications.

Perhaps one of the interesting trends in sensor networks is that storage man-
agement can also be implemented as totally separate components compared to the
host operating systems. For example, the ELF file system [13] was implemented

702 Y. Yao et al.

on the TinyOS operating system, yet reflects a separation of concerns by serving
as an extension to the original functionalities of the host OS. Some other storage-
oriented services, such as EnviroMic [12], focuses on additional storage issues such
as data redundancy. Finally, some other work presents support for data management
over additional hardware, such as flash cards, whose capacity may scale up to a few
gigabytes [14].

1.5 Additional Requirements

In this section, we briefly introduce a few more cross-cutting requirements in sensor
networks. These requirements include memory management, energy conservation,
real-time support, reliability, and portability.

1.5.1 Memory Management

On resource-constrained sensor nodes, memory space is very limited. Therefore,
most sensor network operating systems do not provide dedicated memory manage-
ment. TinyOS, for example, assumes that everything is statically allocated at compile
time, and does not support dynamic memory allocation. The same design princi-
ple is followed in several following operating systems such as Contiki and Mantis.
Some operating systems believe otherwise, such as SOS and LiteOS, which provide
dynamic memory allocation in the form of memory pools. In SOS, such support
is needed to facilitate its dynamic messaging system, while in LiteOS, a Unix-like
malloc API is provided for user applications, which is especially useful on motes
such as IRIS nodes [15] where more RAM space is available.

1.5.2 Energy Conservation

Most operating systems for sensor networks mention energy conservation as one of
the fundamental goals in their system designs. However, in our survey of representa-
tive operating systems, we find that energy conservation has usually been associated
with the application layer or the networking layer, but not with the operating system
itself. This explains why only a few primitives on energy conservation are provided
in the OS, such as turning the CPU into low-power mode, or turning the radio into
sleeping mode, etc. Indeed, if the OS decides to take aggressive energy conservation
measures, the applications layer will be affected no matter it is intended or not. There-
fore, most operating systems allow application layers to develop their own energy
saving protocols (e.g., the tripwire system in VigilNet [16]), while the kernel only
provides basic primitives through its APIs.

21 System Architecture and Operating Systems 703

1.5.3 Real-Time Support

Real-time support has been less considered by operating system designs. On the
other hand, many sensor network applications such as surveillance and environmental
monitoring are time-sensitive in nature. To support such applications, one operating
system, Nano-RK [17], provides a reservation-based real-time operating system for
use in WSNs. Specifically, Nano-RK supports fixed-priority preemptive multitasking
for guaranteeing that task deadlines are met, along with support for CPU and network
bandwidth reservations. During runtime, tasks can specify their resource demands, so
that the operating system can provide timely, guaranteed and controlled access to CPU
cycles and network packets in resource-constrained embedded sensor environments.

1.5.4 Reliability

Due to the difficulty of debugging WSNs, reliability has recently emerged as a critical
problem. How to address reliability in the operating system layer is still an active area
of research. Interestingly, although the original papers on the initial versions of the
current operating systems did not mention much on reliability, follow-up publications
filled these gaps by addressing specifically system reliability. For example, on top
of TinyOS alone, the following debugging and reliability tools have been provided:
EnviroLog [18], Neutron [19], t-kernel [19], among others.

1.5.5 Portability

Portability refers to the ability of the operating systems to be easily ported across
different platforms. We provide a survey of the different types of hardware in the next
section. Note that, however, not all platforms are supported by one single operating
system. Among the operating systems we surveyed, TinyOS and Contiki are the two
that support the widest range of devices. On the other hand, we are optimistic on the
portability of the remaining operating systems, as we consider this to be mostly an
engineering problem: given that most of these operating systems are written in C or
variants of C, porting them across system platforms will not be too challenging.

2 Hardware Platforms and Architecture

In this section, we concentrate on introducing the hardware components of a sensor
node, and the characteristics of different commercial motes.

704 Y. Yao et al.

2.1 Sensor Node Components

A sensor node, also called mote, is an autonomous device working in WSNs. It is
capable of processing information, gathering sensed data and communicating with
other sensor nodes. A typical sensor node consists of the following hardware com-
ponents:

• Microcontroller: With the characteristics of being low-cost and low-power, a
microcontroller performs data processing and controls the functionality of other
components in a sensor node.

• Transceiver: A transceiver is composed of both a transmitter and a receiver. The
transceiver is in charge of sending and receiving packets to or from other sensor
nodes in the network. It usually has multiple operational states, such as transmit,
receive, idle, and sleep, where each state consumes different amount of energy.

• Sensor Boards: To measure the physical conditions, sensor boards are either
integrated into or installed separately on the microcontroller boards. Usually, a
sensor node is equipped with passive sensors that sense the environment without
affecting them. Within the coverage area of sensors, the observed event can usually
be reliably and accurately reported.

• Power Source: The power source provides energy to the sensor node. The most
common power source is battery. Some sensor nodes are able to gather additional
energy at runtime from sources such as solar energy, temperature differences, or
vibrations. When connected to the PC, sensor nodes can draw power through USB
connectors.

• External Memory: Some sensor nodes are equipped with flash memories, which
are used to expand their storage capacity. The external memory can be used to
store application related data or programs.

2.2 Commercial Sensor Nodes

Since the concept of SmartDust was proposed a decade ago [20], many companies
have developed different sensor nodes. In this section, we present an overview of sev-
eral commercial sensor nodes as shown in Table 1. These nodes include Mica [21],
Mica2 [22], MicaZ [23], EPIC [24], IRIS [15], Sun SPOT [25], LOTUS [26],
TelosB [27], Cricket [28], Waspmote [29], and Imote2 [30].

2.3 Comparison of Sensor Nodes

In this section, we compare the characteristics of microcontrollers, transceivers, sen-
sors and memories on the above-mentioned sensors.

21 System Architecture and Operating Systems 705

Table 1 Properties of popular commercial sensor nodes

Sensor node Microcontroller Transceiver Storage Vendor Year

Mica Atmel ATmega103 RFM TR1000 radio 512 KB Crossbow 2001
Mica2 Atmel Atmega128L Chipcon CC1000 512 KB Crossbow 2002
MicaZ Atmel Atmega128L TI CC2420 802.15.4 radio 512 KB Crossbow 2002
EPIC TI MSP430 TI CC2420 802.15.4 radio 2 MB UC Berkeley 2007
IRIS Atmel ATmega1281 Atmel AT86RF23 radio 512 KB Crossbow 2007
Sun SPOT Atmel

AT91RM920T
TI CC2420 802.15.4 radio None Oracle 2006

LOTUS Cortex M3
10–100 MHz

RF231 radio 64 MB MEMSIC 2011

TelosB TI MSP430 TI CC2420 802.15.4 radio 1024 KB Crossbow 2004
Cricket Atmel ATmega128L Chipcon CC1000 512 KB MEMSIC 2007
Waspmote Atmel ATmega1281 ZigBee/802.15.4/

DigiMesh/RF,
2.4 GHz/868/900 MHz

2 GB Libelium 2009

Imote2 Intel PXA271
XScale

TI CC2420 802.15.4 radio 32 MB Crossbow 2008

2.3.1 Microcontroller and Memory

Table 2 reviews the microcontroller specifications for each model mentioned in the
previous section. The speed of the microcontroller is closely related to the sizes
of bus, clock, RAM, EEPROM and flash. Most of the motes are equipped with a
microcontroller consisting of 8-bit bus, and 8 MHz clock, and its memory contains
4 KB of RAM, 4 KB of EEPROM, and 128 KB of flash. These limited resources are
sufficient to deal with ordinary tasks, while more resources are provided for special
ones.

Most of the microcontrollers, which operate on only one frequency, do not sup-
port dynamic voltage scaling (DVS). As adjusting the frequency of the processor
is one of the most effective methods of optimizing power consumption, microcon-
trollers operate on multiple CPU frequencies are developed. For example, the Intel
PXA271 XScale supports switching between four CPU frequencies as 13, 104, 208,
and 416 MHz to balance performance and power efficiency.

Table 2 Microcontroller specification comparison

Microcontroller Bus Clock (MHz) RAM EEPROM Flash

ATmega103 8-bit 4 4 KB 4 KB 128 KB
Atmega128L 8-bit 8 4 KB 512 KB 128 KB
TI MSP430 microcontroller 16-bit 4–8 10 KB None 48 KB
ATmega1281 8-bit 8 8 KB 4 KB 128 KB
Atmel AT91RM9200 32-bit 180 512 KB None 4 MB
Cortex M3 32-bit 10–100 64 KB SRAM None 512 KB + 64 MB
Intel PXA271 XScale 16/32-bit 13–416 32 MB None 32 MB

706 Y. Yao et al.

Table 3 Radio specification comparison

Radio model Frequency band (MHz) Outdoor range Current draw

CC1000 300–1000 500–1000 ft Transmit: 7.4 mA, receive:
10.4 mA, idle: 74µA, sleep:
0.2µA

CC2420 2400–2483 75–100 m Transmit: 11–17.4 mA, receive:
19.7 mA, idle: 20µA, sleep:
1µA

CC2480 2405–2480 >300 m Transmit: 27 mA, receive: 27 mA,
sleep: 0.3–190µA

Atmel
AT86RF230

2400–2483.5 100 m Transmit: 16.5 mA, receive:
15.5 mA, sleep: 20µA

2.3.2 Radio Transceivers

The radio transceiver properties of each mote are as shown in Table 3. Most of the
motes are equipped with 802.15.4 transceivers with slightly different characteristics
on frequency band and outdoor range. One important difference is that these models
support different number of power states, and each of the power states consumes
various amount of power.

2.3.3 Sensor Support

There are several types of sensors for detecting humidity, temperature, light, pressure,
acceleration/seismic, acoustic, magnetic, video, vibration and other types of envi-
ronment conditions. Motes are equipped with sensors in two ways, on-board sensors
or plug-in sensors. Most of motes, such as Mica, Mica2, MicaZ, IRIS and so on, pro-
vide no on-board sensors. Instead, an expansion connector is provided for installing
external sensor boards. As shown in Table 4, just a few sensor nodes, such as TelosB,
provide on-board sensors.

Table 4 Sensor specification comparison

Sensor node name Sensors

Mica/Sun SPOT Light, temperature, acceleration/seismic sensors
MicaZ/Mica2/EPIC/ Expansion connector for light, temperature, barometric

pressure, acceleration/seismic, acoustic, magnetic and other
sensor boards

IRIS/LOTUS/Cricket Expansion connector for light, temperature, barometric
pressure, acceleration/seismic, acoustic, magnetic and other
sensor boards

TelosB Optional integrated temperature, light and humidity sensor
Waspmote Expansion connector for gas, temperature, liquid level, weight,

pressure, humidity, luminosity, accelerometer, soil
moisture, solar radiation

21 System Architecture and Operating Systems 707

3 The TinyOS Operating System

3.1 Introduction

TinyOS is a well-known and widely-used open source operating system designed
for wireless sensor networks. It started as a project at UC Berkeley as part of the
DARPA NEST program. Since it was made available to public in 2000, TinyOS has
attracted thousands of academic and commercial developers and users worldwide.

3.2 System Overview

There are four requirements of wireless sensor networks that motivate the design of
TinyOS:

• Limited Resources: Generally, the sensor nodes or motes have very limited
hardware resources to achieve the goals of small size, low cost, and low power
consumption.

• Reactive Concurrency: In wireless sensor networks, a sensor node must be able to
respond to many types of events, such as sending and receiving packets. Therefore,
a concurrency management that reduces potential bugs while satisfying resource
and timing constraints is required.

• Flexibility: The variety of hardware and applications in sensor networks implies
that the operating system for sensor nodes must be flexible. In addition, the oper-
ating system for sensor nodes should also support fine-grained modularity so that
it can be customized and reused.

• Low-Power Operations: To ensure prolonged operation lifetime, it is crucial to
improve the energy efficiency of motes. Therefore, the low power operation is an
important goal in the operating system design.

To achieve these four requirements, the design of TinyOS concentrates on two
basic principles: the event-driven programming model and the component-based sys-
tem architecture. Specifically, TinyOS supports an event-driven concurrency model
which consists of split-phase interfaces, asynchronous events, and tasks. TinyOS is
implemented in the nesC programming language, a dialect of C, which supports the
TinyOS concurrency model, as well as mechanisms for combining different software
components together to form robust network embedded systems. The nesC program-
ming language is designed to allow application developers to easily build different
components and link them together to construct complete, concurrent systems. This
allows developers and users to enjoy enough flexibility to customize the system based
on hardware and applications.

TinyOS is composed of a tiny scheduler and a graph of components. Each com-
ponent is an independent computational unit that has one or more interfaces. These

708 Y. Yao et al.

interfaces, which are bi-directional, provide the only point of access to the compo-
nent. There are three computational abstractions for components: commands, events,
and tasks.

Commands and events are designed for inter-component communication, while
tasks are used to demonstrate intra-component concurrency. Typically, a command
is a request sent to a component to perform some service, such as reading data from
a sensor, while an event signals the completion of that service. Hardware interrupts
or packet arrivals can also signal the events asynchronously. The command returns
immediately while the event signals the completion of the service some time later.

Commands and events may post a task, which is a function that will be executed
by TinyOS scheduler at a later time, rather than being executed immediately. Tasks
are atomic with respect to each other and run to completion, though they can be
preempted by events. Tasks can be used to call lower level commands, signal higher
level events, and schedule other tasks which are within a component. The run-to-
completion execution model of tasks makes it possible to allocate a single stack
that is assigned to the currently executing task, which allows tasks to be much more
lightweight compared to threads. A non-preemptive, FIFO scheduling policy is used
in the standard TinyOS task scheduler.

3.3 Event-Based Concurrency Model

In wireless sensor network applications, fine-grained concurrency is needed, because
events can arrive at any time and must interact with ongoing computations. There
are two approaches to solve this problem: (1) queuing the events on their arrival
so that they could be executed later, as in most message-passing systems [31], and
(2) executing an event handler immediately, also referred to as the active message
approach [32]. TinyOS chooses the latter approach because some of those events are
time critical.

The execution model of TinyOS is event-driven which consists of run-to-
completion tasks which represent the ongoing computation, and interrupt handlers
that are invoked asynchronously by hardware. A program uses the post operator to
submit a task to the scheduler for execution, and all tasks run to completion and the
other tasks will not preempt the running task. Waiting tasks in the task queue will be
executed in the order of their arrivals. In other words, tasks are atomic with respect
to each other. However, tasks are not atomic with respect to interrupt handlers, or the
commands and events invoked by the interrupt handlers.

On one hand, the non-preemptive TinyOS concurrency model can provide pro-
grammers a simple way to deal with the race conditions, deadlocks and other
concurrency-related issues. On the other hand, it also can cause some serious prob-
lems in many applications when long running tasks are involved. In these problems,
even priority tasks may be delayed, which will reduce the responsiveness of the
system significantly. The concurrency model of TinyOS makes TinyOS most suit-
able for developing simple, non-time-critical applications. Programmers may even

21 System Architecture and Operating Systems 709

can split large tasks into smaller pieces to handle the non-preemptive tasks problem,
so that the maximum delay for incoming priority tasks will be reduced. However, as
the computational capabilities of sensor nodes increase and their applications become
more complex, this concurrency model may not be suitable in some scenarios.

3.4 Component-Based System Architecture

Another important concept of TinyOS’s programming model is the so called compo-
nents which encapsulate a set of specific services, which are specified by interfaces.
A general component structure is shown in Fig. 1. The TinyOS component contains
four interrelated parts: a set of command handlers, a set of event handlers, a fixed-
size frame, and a set of simple tasks. Tasks, command and event handlers run in the
context of the frame and operate on its state.

A component has two classes of interfaces: one consists of those the compo-
nent provides and the other consists of those the component uses. Figure 2 shows
a simplified form of the TimerM component (TimerM component is a part of the
TinyOS timer service), which provides the StdControl and Timer interfaces and uses
a Clock interface. Interfaces, which are bi-directional, contain both commands and
events. The providers of an interface implement the commands while the users of an
interface implement the events. For instance, as shown in Fig. 3, the timer interface
defines start(), stop() commands and a fired() event. The start() and
stop() commands are implemented in the component that provides this interface,
while the fired() event is implemented in the component that uses this interface.

In nesC, there are two types of components: modules and configurations. As
shown in Fig. 2, modules are written in a dialect of C and used to call and implement
commands and events. A module declares private state variables and data buffers,

Fig. 1 The structure of a
TinyOS component [33]

Command Handlers Set of Tasks

Event Handlers
Frame (containing state

information)

710 Y. Yao et al.

module TimerM{
 provides {
 interface StdControl;
 interface Timer[uint8_t id];
 }
 uses interface Clock;
}
Implementation {

… a dialect of c …
}

Fig. 2 The TimerM component [3]

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

Interface SendMsg {
command result_t send(uint16_t address,

uint8_t length,
TOS_MsgPtr msg);

event result_t sendDone(TOS_MsgPtr msg,
result_t success);

}

Fig. 3 TinyOS interface example [3]

which can only be referenced by itself. Configurations are used to wire different
components together through interfaces of these components. For instance, as shown
in Fig. 4, the TinyOS timer service is a configuration (TimerC) that ties the timer
module (TimerM) and the hardware clock component (HWClock) together. Multiple
components can be aggregated together into a single “supercomponent” through
configurations.

nesC not only provides the component programming model, but also imposes
some limitations on C to improve the efficiency and robustness of the source code.
First, the function pointers are prohibited in nesC which allows the compiler to
know the call graph of a program precisely. The benefit of this is cross-component
optimizations for entire call paths become possible, which can help remove the

21 System Architecture and Operating Systems 711

Fig. 4 TimerC configuration
[3]

configuration TimerC {
 provides {
 interface StdControl;
 interface Timer[uint8_t id];
 }
}
Implementation {
 components TimerM, HWClock;

 StdControl = TimerM.StdControl;
 Timer = TimerM.Timer;

 TimerM.Clk -> HWClock.Clock;
}

Ad Hoc Routing Application

Active Messages

Radio Packet Serial Packet

Radio Byte UART

RFM

application

message

packet

byte

bit

photo clocks

SW

HW

Fig. 5 Ad hoc networking application component graph [32]

overhead of cross-module calls and the inline code for small components into its
callers. Second, nesC does not support dynamic memory allocation, which prevents
memory fragmentation and runtime allocation failures.

3.5 Networking Architecture

The communication and networking architecture of TinyOS is based on Active
Messages (AM), which is a simple, extensible paradigm for message-based com-
munications. Each Active Message consists of two parts: the name of a user-level
handler which will be invoked on a target node and a data payload which will be
passed as arguments. Specifically, in TinyOS, the packets of the active message are
36 bytes long and the handler ID is 1 byte. As an active message is received, the
node dispatches the message to one or more handlers that are registered to receive
messages of that type. Figure 5 shows the complete component graph of an ad hoc
networking application which is based on the active message model in TinyOS.

The components underlying the packet level is used to transmit the block of bytes
out over the radio. The interface of the packet level component provides a mechanism

712 Y. Yao et al.

HPL2

HAL2

HIL2

HPL1

HAL1

HIL1

HPL4

HAL4

HIL4

HPL3

HAL3

HIL3

HW Platform 1 HW Platform 2 HW Platform 3 HW Platform 4

Platform-specific
Applications

Platform-specific
Applications

Cross-platform Applications

HW/SW
Boundary

HW/SW
Boundary

H
ar

d
w

ar
e

In
d

ep
en

d
en

ce
H

ar
d

w
ar

e
In

d
ep

en
d

en
ce

Fig. 6 Hardware abstraction architecture for TinyOS 2.x [34]

to initiate the transmission, and when a transmission or a reception is complete two
events will be fired. In Fig. 5 we can see AM not only provides an unreliable, single-
hop datagram protocol, but also a unified communication interface to the radio and
the serial port. The application level protocols which are built on top of the AM
interface provide multi-hop communication, large ADUs, or other features.

3.6 New Features in TinyOS 2.x

TinyOS 2.x can be regarded as a clean slate redesign and re-implementation of
TinyOS. The motivation for developing TinyOS 2.x is to eliminate several limitations
in TinyOS 1.x which make 1.x hard to meet nowadays requirements and uses. For
instance, the fundamental limitations of the structure and interfaces defined in TinyOS
1.x, cause the following problems: components are tightly coupled, interactions are
hard to find, and it is difficult for a newcomer to learn sensor network programming
quickly. The main modifications and new features of TinyOS 2.x lie in the following
aspects.

3.6.1 Hardware Abstraction

To implement the hardware abstractions, TinyOS 2.x follows a three-level abstraction
hierarchy, called the HAA (Hardware Abstraction Architecture) shown in Fig. 6.

At the bottom of the HAA is the HPL (Hardware Presentation Layer), which is
a thin software layer on top of the raw hardware. HPL is used to present hardware
such as IO pins or registers as nesC interfaces. Generally there is no state in the HPL
besides the hardware itself, which has no variables.

At the middle of the HAA is the HAL (Hardware Abstraction Layer), which is
built on top of the HPL. HAL provides higher-level abstractions that are easier to

21 System Architecture and Operating Systems 713

use than the HPL. Though HAL provides high-level abstractions of hardware, it still
provides the full functionality of the underlying hardware.

At the top of the HAA is the HIL (Hardware Independent Layer), which is built
on top of the HAL. HIL provides abstractions that are hardware independent, which
means that the HIL usually does not provide all of the functionality that the HAL
does.

3.6.2 Scheduler

TinyOS 2.x scheduler also has a non-preemptive FIFO policy, but tasks in 2.x operate
slightly differently compare to those in 1.x. In TinyOS 2.x, tasks can have their own
reserved slots in the task queue, and a task can only be posted once. A post fails if
and only if the task has already been posted. If a component needs to post a task
multiple times, an internal state variable can be set in the component, which means
when the task executes, it can repost itself.

This slight change in semantics significantly simplifies the component code,
because a component can just post the task instead of testing to see if a task has
already been posted. Components do not need to try to recover from failed posts
with retries.

3.6.3 Multi-Thread Support

TinyOS 1.x does not provide any multi-thread support, so that application develop-
ment should strictly follow the event driven programming model. Since version 2.1,
TinyOS provides support for multi-thread and these TinyOS threads are called TOS
Threads [35]. The TOS thread package, which is backward compatible with existing
TinyOS code, provides a thread-based programming model which is compatible with
an event-driven kernel. In TinyOS, though application-level threads cannot preempt
tasks and interrupt handlers, they can preempt other application-level threads. The
TinyOS scheduler is run by a high priority kernel thread which is dedicated to this
task. Control Blocks (TCB) are dynamically allocated by TOS threads Thread with
space for a fixed size stack that does not grow overtime. Context switches and system
calls of TOS thread introduce an overhead which is less than 0.92 % [35].

3.6.4 Booting/Initialization

TinyOS 2.x has a different boot sequence than TinyOS 1.x. The interface StdControl
in TinyOS 1.x has been split into two interfaces Init and StdControl. The latter
one only has two commands start and stop. In TinyOS 1.x, components will
be powered up and started at boot if they are wired to the boot sequence. However,
in TinyOS 2.x this case will not happen, because the boot sequence only initializes
components. When boot sequence finishes initializing the scheduler, hardware, and

714 Y. Yao et al.

software, it will signal the Boot.booted event. This event will be handled by the
top-level application component which will start services accordingly.

3.6.5 Virtualization

The concept of a “generic” or instantiable component, which is introduced by nesC
1.2, allows TinyOS 2.x to have reusable data structures, like bit vectors and queues,
which can make application development more simple and efficient. Furthermore,
with the help of generic configurations, services can encapsulate complex wiring
relationships for clients that need them. This means many basic TinyOS services
now can be virtualized. A program can instantiate a service component that provides
the needed interface rather than wiring to a component with a parameterized interface
(e.g., GenericComm or TimerC in 1.x).

3.7 Implementation and Hardware Support

TinyOS and its applications are very small, which are suitable for those platforms
where hardware resources are often limited. TinyOS can run on a wide range of
hardware platforms, including EPIC, Imote2, Shimmer, IRIS, Kmote (Telos Rev B),
Micaz, Mica2, Mica2Dot, NXTMOTE (TinyOS on LEGO MINDSTORMS NXT),
Mulle, TMote Sky (Telos Rev B), TinyNode, Zolertia Z1, UCMini, among oth-
ers. Supported microcontrollers include Atmel AT90L-series, Atmel ATmega-series,
Texas Instruments MSP-series and Intel XScale PXA271. The details of these hard-
ware platforms can be found in Sect. 2.

4 Contiki: A Lightweight and Flexible Operating System

4.1 Introduction

Developed by the Swedish Institute of Computer Science, Contiki is a lightweight and
flexible operating system for WSNs. Contiki provides dynamic loading and unload-
ing of individual components and services. Although it implements an event-driven
kernel, it also supports preemptive multi-threading, which is implemented as a library
that is linked only with programs that explicitly require multi-threading support.

In the following subsections, we present the system overview, kernel architecture,
and key features of the Contiki operating system.

21 System Architecture and Operating Systems 715

4.2 System Overview

Contiki is an operating system developed for sensor motes with constrained resources.
A running Contiki system is composed of four components: the kernel, the libraries,
the program loader, and a set of processes. As shown in Fig. 7, the memory of Contiki
is separated into two parts at the compile time: the core and the loaded program. The
Contiki kernel, the program loader, the language run-time, support libraries, and a
communication stack with device drivers for the communication hardware are saved
in the core. On the other hand, programs are loaded into the system by program
loaders.

Prior to the deployment of the system, the core is compiled into a single binary
image and stored in the memory. After the deployment, the core is not modified,
unless a special boot loader is used to overwrite or patch the core. In the program
loader, programs binaries may be obtained either by using the communication stack,
or by using external storage such as EEPROM. In most cases, programs loaded
into the system are first stored in EEPROM before being programmed into the code
memory.

Saved in the core, the kernel controls the communication between processes. This
functionality is not implemented by providing a hardware abstraction layer as is the
case with TinyOS, but by letting device drivers and applications communicate directly
in the hardware. A process, which is controlled by kernel, can be either an application
program or a service. As mentioned above, the programs are loaded by the program
loader. On the other hand, a service is a set of application processes working together
to implement a specific functionality. Both the application programs and services can
be dynamically replaced in-time. A process is defined by an event handler function
and an optional poll handler function, where the event handler is an asynchronous
callback subroutine that handles inputs received in a program, and a poll handler
specifies an action when a process is polled. The state of the process is kept in its
private memory and the kernel only keeps a pointer to the process state.

More specifically, the kernel provides a lightweight event scheduler and a polling
mechanism. The event scheduler is in charge of dispatching events to run processes
and periodically calls processes’ polling handlers, which specifies the action of the

Fig. 7 Contiki as partitioned
into core and loaded programs
[4]

Loaded program

Communication service

Language run-time

Program loader

Kernel

ROM

RAM

Loaded program

Communication service

Kernel

Core Core

716 Y. Yao et al.

polled process. Once an event handler is scheduled, the kernel cannot preempt it.
In that case, event handlers must run to completion, if no internal mechanisms are
used to achieve preemption. On the other hand, the polling mechanism specifies
high priority events that are scheduled in-between each asynchronous event. Polling
mechanism is used by processes that operate near the hardware to check for status
updates of hardware devices. All processes that implement a poll handler are called
in order of their priority, when a poll is scheduled.

Contiki uses a two-level scheduling hierarchy to implement the event preemption.
First, in Contiki, all event scheduling is done at a single level and events cannot
preempt each other, unless there is an interrupt. An interrupt can be implemented by
using hardware interrupts or underlying real-time execution support. In Contiki, the
interrupts are never disabled. In that case, Contiki does not allow events to be posted
by interrupt handlers to avoid race conditions in the event handler. Instead, a polling
flag, which provides interrupt handlers with a way to request immediate polling, is
provided in the kernel to request a poll event.

The events, which trigger the execution of programs, can be dispatched by the
kernel or through the polling mechanism. There are two types of events supported in
Contiki kernel, asynchronous events and synchronous events. Asynchronous events
are a form of deferred procedure calls, which are enqueued by the kernel and are
dispatched to the target process some time later. The use of asynchronous events
reduce stack space requirement, because the stack is rewound between each invo-
cation of event handler. However, in order to implement an immediate schedule of
target processes, synchronous events are supported, too.

4.3 Key Features

As we mentioned above, Contiki is a lightweight event-driven operating systems
that supports both preemptive multi-threading and dynamic loading and unloading
of individual components and services. In this section, we will introduce how Contiki
implements those features in detail.

4.3.1 Easy Event-Driven Programming

In general, Contiki is an event-driven operating system. This is because event-
driven systems do not need to allocate memory for per-thread stacks, which leads
to lower memory requirements. As an operating system designed for sensor motes
with constrained resource, it is important to keep the system to be lightweight.

However, as we discussed earlier, event-based programming is typically compli-
cated, as an event-driven model does not support blocking wait, an abstraction that
is usually desired to express the program logic flows. In that case, programmers of
such systems frequently need to use state machines to implement control flow for
high-level logic that cannot be expressed as a single event handler. To cope with this

21 System Architecture and Operating Systems 717

problem, a novel programming abstraction called Protothreads [36] is proposed for
Contiki. Protothreads, which provide a conditional blocking wait operation, can be
used to reduce the number of explicit state machines in event-driven programs, and
make it possible to write event-driven programs in a thread-like style with a memory
overhead of only two bytes per protothread.

From the view of implementation, in Contiki operating system, processes are
implemented as protothreads running on top of the event-driven kernel. The pro-
tothreads mechanism does not specify how to invoke or schedule a protothread.
Instead of that, the system using the protothread defines all these. In general, the pro-
tothread of a process is invoked when the process receives an event, such as a message
from another process, a timer, or a sensor input. The blocking of the thread is exe-
cuted while the process receives an event using the protothread conditional blocking
statements. We can treat protothreads as a combination of events and threads. From
threads, blocking wait semantics have been inherited by protothreads. From events,
protothreads have inherited the stacklessness and the low memory overhead. The
linear sequencing of statements in event-driven programs is supported by the block-
ing wait semantics. As a protothread does not require its own stack, protothreads are
very lightweight compare to traditional threads. Besides, all protothreads run on the
same stack, and context switching is done by stack rewinding. These two features
make protothread work better on memory constrained systems.

More specifically speaking, protothreads can be used to replace state machines.
The steps of doing this are as following. In general, the control flow of a state machine
can be decomposed to three primitive patterns: sequences, iterations and selections
as shown in Fig. 8. All these three patterns can be easily mapped to protothreads
as shown in Fig. 9. In that case, to rewrite an event driven state machine with pro-
tothreads, we just need to first find the patterns in the state machine, and then translate
the patterns to corresponding protothreads.

Based on the pseudocode in Fig. 9, we have already had a peak on how to program
on protothread. Let us have look at the details on this in the following part. In general,
there are a set of APIs been provided by Protothreads:

1. PT_BEGIN(pt): begins the protothread.
2. PT_END(pt): ends the protothread.
3. PT_INIT(pt): initializes the protothread.
4. PT_EXIT(pt): exits from protothread.

cond1

cond2

condition

cond2a

cond1

cond2b

(a) (b) (c)

Fig. 8 Three patterns of state machines: a sequences, b iterations, c selections [36]

718 Y. Yao et al.

a_sequence:
PT BEGIN

an_iteration:
PT_BEGIN
(*…*)

(*…*)

a_selection:
PT_BEGIN
(*…*)
if(condition)

_
(*…*)
PT_WAIT_UNTIL(cond1)
(*…*)

while (cond1)
PT_WAIT_UNTIL (cond1

or cond2)

PT_WAIT_UNTIL(cond2a)
else

PT_WAIT_UNTIL(cond2b)
PT_END

PT_END
(*…*)
PT_END

Fig. 9 Pseudocode of protothreads for different state machine transitions [36]

ON

Timer expired WAITING

OFF

Timer expired

Timer expired

Remaining communication

Fig. 10 State machine of the hypothetical MAC protocol [36]

5. PT_WAIT_UNTIL(pt, condition): the operation takes a conditional statement
and blocks the protothread until the statement evaluates to be true.

6. PT_YIELD(pt): performs a single unconditional blocking wait that temporarily
blocks the protothread until the next time the protothread is invoked.

7. PT_SPAWN(pt): initializes a child protothread and blocks the current protothread
until the child protothread is either ended with PT_END or exited with PT_EXIT.

The functionality of each API is as following. The beginning and end of a pro-
tothread are declared with PT_BEGIN and PT_END statements. Other protothread
statements, such as PT_WAIT_UNTIL, must be placed between PT_BEGIN and
PT_END. A protothread can exit prematurely with a PT_EXIT statement. A pro-
tothread is stackless, because instead of having a history of function invocations, all
protothreads in a system run on the same stack that can be rewound. In that case,
protothread can only block at the top level of the function. In other words, it is
impossible for regular function called from a protothread to block inside the called
function, unless an explicit PT_WIAT_UNTIL() statement is used. As a result of that,
the programmer should always be aware of which statements may block the thread.

Let us take the code for hypothetical MAC protocol as an example to see how
to translate the code of state machines to protothreads. In general, the hypothetical
MAC works as following: turn on the radio at t0; wait until t = t0 + tawake; turn
radio off, if all communication has completed; if communication has not completed,
wait until it has completed or t = t0 + tawake + twaitmax ; turn radio off, and wait until
t = t0 + tawake + tsleep; start all over again.

21 System Architecture and Operating Systems 719

State:{ON,WAITING, OFF}

radio_wake_eventhandler:
if (state= ON)

radio_wake_protothread:
PT BEGIN

if (expired(timer))
mer tsleep

if (notcommunication_complete())

_
while (true)

radio_on()
timer tawake

state WAITING
wait_timer twait_max

else
radio off

PT_WAIT_UNTIL(expired(timer))
mer tsleep

if (notcommunication_complete())
wait timer t_ ()

state OFF
elseif (state= WAITING)

if (communication_complete() or

_ twait_max
PT_WAIT_UNTIL(

communication_complete()
or expired(wait_timer))

d ff()expired(wait_timer))
state OFF
radio_off()

elseif (state= OFF)

ra io_o
PT_WAIT_UNTIL(expired(timer))

PT_END

if (expired(timer))
radio_on()
state ON

mer tawake

Fig. 11 Pseudocode of the hypothetical MAC protocol with states (left) and Protothreads (right)
[36]

The above steps can be generalized as the state machine shown in Fig. 10. On the
other hand, the pseudocode for the state machine and the protothreads are shown
in Fig. 11. From the pseudocode, we can see that protothreads not only make the
programming simple, but also considerably decrease the code size.

4.3.2 Preemptive Multi-Threading

As mentioned above, Contiki is an event-driven operating system that supports
preemptive multi-threading. In this section, we will show how preemptive multi-
threading is implemented in details.

In general, preemptive multi-threading is implemented on top of the event-based
kernel as a library that can be linked on demand. More specifically, only applications
that explicitly require a multi-threaded model will be linked with this library.

The multi-threading in Contiki is designed as following: each thread requires a
separate stack, and threads execute on their own stack until they explicitly yield or
are preempted. In that case, the multi-threading library is divided into two parts:
a platform independent part that provides interfaces to the event-based kernel, and a
platform specific part which implements the stack switching and preemption primi-
tives between threads. The preemption is implemented by using a timer interrupt that
saves the processor registers onto the stack and switches back to the kernel stack.

As a loadable library, a set of stack management functions are provided. We hide
the details of the internal code of each function, and only show the APIs of the library
here as following:

720 Y. Yao et al.

1. mt_yield(): yield from the running thread.
2. mt_post(id, event, dataptr): post an event from the running thread.
3. mt_wait(event, dataptr): wait for an event to be posted to the running thread.
4. mt_exit(): exit the running thread.
5. mt_start(thread, functionptr, dataptr): start a thread with a specified function

call.
6. mt_exec(thread): execute the specified thread until it yields or is preempted.

In the APIs above,mt_yield(),mt_post(),mt_wait(), andmt_exit()
can be called from a running thread. On the other hand, mt_start() and
mt_exec() are called to set up and run a thread. The actual scheduling of a thread
is performed in mt_exec(), which needs to be called from an event handler.

4.3.3 Run-Time Dynamic Linking

The third feature of Contiki is dynamic loading and unloading of individual com-
ponents and services. This is because of the following reason. In a variety range of
situations, it is necessary to update system software for sensor networks. In most of
these scenarios, just a small part of the system needs to be modified. Without support
for dynamic loading and unloading of system components, it is costly to perform
those changes. In that case, being able to dynamically reprogram parts of the sen-
sor network system, instead of reloading the whole system image, helps shorten the
development cycle time distinctly.

The Contiki system uses loadable modules to perform dynamic reprogramming.
With loadable modules, only parts of system need to be modified when a single
program is changed. It works as following: the native machine code of the program
that is loaded into the system, which holds references to functions or variables in
the system, is contained in a loadable module. The references must be resolved to
the physical address of the functions or variables before the machine code can be
executed. The process of resolving the references is called linking. There are two
ways to link modules, the pre-linked modules and the dynamically linked modules.
The first way is done when the module is compiled. It contains the absolute physical
addresses of the referenced functions or variables. On the other hand, the second way
is done when the module is loaded, and it contains the symbolic names of all system
core functions or variables that are referenced in the module.

The original Contiki [4] uses pre-linked binary modules for dynamic loading.
Compare to dynamically linked modules, pre-linked modules have two benefits:
first, pre-linked modules are smaller than dynamically linked modules, hence less
information needs to be transmitted. Second, the process of loading a pre-linked
module into the system is less complex than the process of linking a dynamically
linked module. In that case, the pre-linked method has smaller run-time overhead
than dynamically linked method. However, the pre-linked module needs to keep the
absolute addresses of all functions and variables that are referenced by the module,
which means that these physical addresses are hard-coded. Therefore, the pre-linked

21 System Architecture and Operating Systems 721

Application process

Function 1();

Function 2();

Function 3();

Service layer

Service
interface

stub

Kernel

Version number

Function 1 ptr

Function 2 ptr

Function 3 ptr

Service interface Service process

Function 1 implementation

Function 3 implementation

Function 2 implementation

Fig. 12 How an application process calls a service [4]

module can only be loaded into the system with the exact same physical addresses
as the original system.

In the later versions of Contiki, a dynamic linker is proposed and imple-
mented [37]. The dynamic linker is designed to link, relocate, and load the stan-
dard object files, such as Executable and Linkable Format (ELF), Compact ELF
(CELF), and so on. It takes four steps to link, relocate and load the object files: first,
the dynamic linker parses the object files and extracts relevant information about
where in the object files the code, data, symbol table, and relocation entries are
stored. Secondly, memory for the code and data is allocated in flash ROM and RAM,
respectively. After that, the code and data segments are linked and relocated to their
respective memory locations. Finally, the code is written to flash ROM and the data
to RAM.

4.3.4 Callable Services

To make the dynamic loading and unloading of a set of applications easier, Contiki
proposed the fourth feature, callable services. In Contiki, the functionalities that the
application processes may call are implemented as services. A service can be seen as
a form of shared library. The most typical services include communication protocol
stacks, sensor device drivers, and higher level functionalities such as sensor data han-
dling algorithms. In Contiki, services can be dynamically replaced and dynamically
linked at run-time.

As shown in Fig. 12, services are managed by a service layer, which sits next
to the kernel. The service layer keeps track of running services and finds installed
services. Services can be identified by strings of text that describe them. In that case,
the installed services are searched with those strings. A typical service consists of a
service interface and a process that implements the interface. The service interface
consists of a version number and a function table, which holds function pointers to
the functions implementing the interface.

722 Y. Yao et al.

Services can be dynamically loaded and replaced at run-time. When a service is
to be replaced, the kernel informs the running version of the service by posting a
special event to the service process. With the help of the kernel, a pointer to the new
service process is provided, and the service can produce a state description that is
then passed to the new process. Besides that, a version number of the new service
is tagged to the service state description, so that only one compatible version of the
same service will be loaded. Meanwhile, the old service removes itself from the
system.

4.4 Network Protocols

Besides the basic services provided by the operating system, two extended
components on network protocols have been proposed for Contiki. In this section,
we introduce them in details.

4.4.1 ContikiRPL

RPL (Routing Protocol for Low-power and Lossy Networks) is a standard protocol
for IPv6 routing over Low-power, Lossy Networks (LLNs). Optimized for many-
to-one traffic pattern, RPL is designed for networks with significantly higher packet
loss rates than traditional IP routing protocols. The network topology of RPL is a
Destination-Oriented Directed Acyclic Graph (DODAG) rooted at a border router,
where all nodes in the network maintain a route to the router.

In Contiki, a variant of RPL, called ContikiRPL [38], is proposed. ContikiRPL
sets up forwarding tables only and leaves the actual packet forwarding to other net-
work layers, instead of making forwarding decisions per packet. ContikiRPL gets
link cost estimated by an external neighbor information module, and recomputes the
path cost to the sink via the updated link, and checks if there is a need to change pre-
ferred parents on the forwarding table. The link cost is computed as an exponentially
weighted moving average function over the number of link layer transmissions, and
the neighbor with smallest cost will be kept in the forwarding table.

4.4.2 ContikiMAC

Contiki group proposed a MAC layer protocol called ContikiMAC [39], which uses a
power-efficient wake-up mechanism with a set of timing constraints to allow devices
to keep their transceivers off. In general, ContikiMAC is a simple asynchronous
protocol, which needs no signaling messages and additional packet headers.

ContikiMAC is a radio duty cycling protocol that uses periodical wake-ups to
listen for packet transmissions from the neighbors. For a sender, it repeatedly sends
a packet, until it gets the acknowledgment from the receiver. For a receiver, it peri-

21 System Architecture and Operating Systems 723

odically wakes up to check if there is a packet sent to it. If the receiver detects a
transmission to it, it should stay awake to receive the full packet and transmit a link
layer acknowledgment. For other nodes that detect the packet, they go to sleep imme-
diately. The sender can learn the wake-up time of a receiver based on the time it gets
the acknowledgment. In that case, more power can be saved while the sender keeps
on sleeping until the time receiver wakes up.

4.5 Implementation and Hardware Support

The code size of Contiki, which is tightly related with the provided services, is larger
than the code size of TinyOS. As a set of services are provided, Contiki’s event kernel
is significantly larger than that of TinyOS. Compared to TinyOS, whose event kernel
only provides a FIFO event queue scheduler, the Contiki kernel is more complex, as
both FIFO events and poll handlers with priorities are supported. On the other hand,
the dynamic loading and unloading property of Contiki requires more run-time code
than TinyOS.

Contiki is ported onto a number of architectures, such as Texas Instruments
MSP430, Atmel AVR, Hitachi SH3 and the Zilog Z80. In that case, it can run in
a large range of hardware platforms, such as Mica, Mica2, MicaZ, EPIC, IRIS, Sun
SPOT, LOTUS, TelosB, Cricket, and Waspmote mentioned in Sect. 2.

5 The LiteOS Operating System

5.1 Introduction

The LiteOS operating system is a multi-threaded operating system that provides
Unix-like abstractions for WSNs. Aiming to be an easy-to-use platform, LiteOS
offers a number of novel features, including: (1) a hierarchical file system and
a wireless shell interface for user interaction using UNIX-like commands; (2) ker-
nel support for dynamic loading and native execution of multithreaded applications;
and (3) online debugging, dynamic memory, and file system assisted communica-
tion stacks. LiteOS also supports software updates through a separation between the
kernel and user applications, which are bridged through a suite of system calls.

The key contribution of LiteOS is that it presents a familiar, Unix-like abstraction
for WSNs by leveraging the likely existing knowledge that common system pro-
grammers already have: Unix, threads, and C. By mapping sensor networks to file
directories, it allows applying user-friendly operations, such as file directory com-
mands, to sensor networks, therefore reducing the learning curve for operating and
programming sensor networks.

724 Y. Yao et al.

5.2 System Overview

In this section, we first present an overview of the LiteOS operating system, and then
present its three subsystems.

5.3 Architectural Overview

Figure 13 shows the overall architecture of the LiteOS operating system, partitioned
into three subsystems: LiteShell, LiteFS, and the kernel. Implemented on the base
station PC side, the LiteShell subsystem interacts with sensor nodes only when a
user is present. Therefore, LiteShell and LiteFS are connected with a dashed line in
this figure.

LiteOS provides a wireless node mounting mechanism (to use a UNIX term)
through a file system called LiteFS. Much like connecting a USB drive, a LiteOS
node mounts itself wirelessly to the root filesystem of a nearby base station. Moreover,
analogously to connecting a USB device (which implies that the device has to be less
than a USB-cable-length away), the wireless mount currently supports devices within
wireless range. The mount mechanism comes handy, for example, in the lab, when a
developer might want to interact temporarily with a set of nodes on a table-top before
deployment. Ideally, a network mount would allow mounting a device as long as a
network path existed either via the Internet or via multi-hop wireless communication
through the sensor network. Once mounted, a LiteOS node looks like a file directory
from the base station. A sensor network, therefore, maps into a higher level directory
composed of node-mapped directories. The shell, called LiteShell, supports UNIX
commands, such as copy (cp), executed on such directories.

LiteShell

User Environment File System (LiteFS)

User control Sensor Node
Neighborhood

LiteOS Kernel

Sensor node

Device Drivers

Data Files

User Applications

Multi-threaded
Kernel

Binary Installer

System Calls
Services

Command
Processor

Session
State

Data
Cache

Fig. 13 LiteOS operating system architecture [5]

21 System Architecture and Operating Systems 725

5.4 Key Features

5.4.1 LiteShell Subsystem

The LiteShell subsystem provides Unix-like command-line interface to sensor nodes.
This shell runs on the base station PC side. Therefore, it is a front-end that interacts
with the user. The motes do not maintain command-specific state, and only respond
to translated messages (represented by compressed tokens) from the shell, which are
sufficiently simple to parse. Such an asymmetric design choice not only significantly
reduces the code footprint of the LiteOS kernel that runs on motes, but also allows us
to easily extend the shell with more complicated commands, such as authentication
and security.

Currently, LiteOS supports the list of commands listed in Table 5. They fall into
five categories: file commands, process commands, debugging commands, environ-
ment commands, and device commands.
File Operation Commands

File commands generally maintain their Unix meanings. For example, the ls com-
mand lists directory contents. It supports a −l option to display detailed file informa-
tion, such as type, size, and protection. To reduce system overhead, LiteOS does not
provide any time synchronization service, which is not needed by every application.
Hence, there is no time information listed. As an example, a ls −l command may
return the following:

$ ls -l
Name Type Size Protection
usrfile file 100 rwxrwxrwx
usrdir dir --- rwxrwx---

In this example, there are two files in the current directory (a directory is also a
file): usrfile and usrdir. LiteOS enforces a simple multilevel access control scheme.
All users are classified into three levels, from 0 to 2, and 2 is the highest level. Each
level is represented by three bits, stored on sensor nodes. For instance, the usrdir
directory can be read or written by users with levels 1 and 2.

Once sensor nodes are mounted, a user uses the above commands to navigate the
different directories (nodes) as if they are local. Some common tasks can be greatly

Table 5 The list of LiteOS
shell commands

Command list

File commands ls, cd, cp, rm, mkdir, touch,
pwd, du, chmod

Process commands ps, kill, exec
Debugging commands debug, list, print, set

breakpoint, continue,
snapshot, restore

Environment commands history, who, man, echo
Device commands ./DEVICENAME

726 Y. Yao et al.

simplified. For example, by using the cp command, a user can either copy a file
from the base to a node to achieve wireless download, or from a node to the base
to retrieve data results. The remaining file operation commands are intuitive. Since
LiteFS supports a hierarchical file system, it provides mkdir, rm and cd commands.

Process Operation Commands

LiteOS has a multithreaded kernel to run applications as threads concurrently.
LiteShell provides three commands to control thread behavior: ps, exec, and kill. We
illustrate these commands through an application called Blink, which blinks LEDs
periodically. Suppose that this application has been compiled into a binary file called
Blink.lhex,1 and is located under the C drive of the user’s laptop. To install it on
a node named node101 (that maps to a directory with the same name) in a sensor
network named sn01, the user may use the following commands:

$ pwd
Current directory is /sn01/node101/apps

$ cp /c/Blink.lhex Blink.lhex
Copy complete

$ exec Blink.lhex
File Blink.lhex successfully started

$ ps
Name State
Blink Sleep

As illustrated in this example, we first copy an application, Blink.lhex, into the
/apps directory, so that it is stored in the LiteFS file system. We then use the exec
command to start this application. The implementation of exec is as follows. The
processor architecture of Atmega128 follows the Harvard architecture, which pro-
vides a separate program space (flash) from its data space (RAM). Only instructions
that have been programmed into the program space can be executed. Hence, LiteOS
reprograms part of the flash to run the application.

Once the Blink application is started, the user may view its thread information
using the ps command. Finally, the kill command is used to terminate threads.

Debugging Commands

We now describe the debugging commands. Eight commands are provided, includ-
ing those for setting up the debugging environment (debug), watching and setting
variables (list, print, and set), adding/removing breakpoints (breakpoint and con-
tinue), and application checkpoints (snapshot and restore). Note that all debugging
commands keep information on the front-end, i.e., the PC side. In fact, there is no
debugging state stored on the mote, which means that there is no limit on the max-
imum number of variables (or the size of variables) can be watched, or how many
breakpoints can be added. We now describe these commands in more detail.

The user first invokes the debug command to initiate the environment. This com-
mand takes the source code directory of the application as its parameter. For example,
if supplied with the kernel source code location, it allows debugging the kernel itself.

1 LiteOS uses a revised version of the Intel hex format, called lhex, to store binary applications.
lhex stands for LiteOS Hex.

21 System Architecture and Operating Systems 727

Once invoked, this command parses the source code as well as the generated assem-
bly to gather necessary information, such as memory locations of variables. Such
information is then used by other debugging commands for diagnosis purposes. For
instance, it is used by the command list to display the current variables and their sizes,
commands print and set to watch and change variable values, and commands break-
point and continue to add and remove breakpoints. Once a breakpoint is added, the
command ps tells whether a thread has reached the breakpoint.

We now explain the commands snapshot and restore. Snapshot allows adding
a checkpoint to an active thread, by exporting all its memory information, including
variable values, stack, and the program counter, to an external file. Restore, on the
other hand, allows importing such memory information from a previously generated
file, essentially restoring a thread to a previous state. Combined use of these two
commands allows replaying part of an application by rewinding it, and is particularly
useful for locating unexpected bugs.

Environment Commands

The next four commands support environment management: history for displaying
previously used commands, who for showing the current user, man for command
references, and echo for displaying strings. The meanings of these commands are
similar to their Unix counterparts.

Device Commands

The LiteOS shell provides an easy way to interact with the sensors. Every time the
file system is initialized, a directory dev is created, which contains files that map to
actual device drivers. On MicaZ, the dev directory contains the following files:

$ls
led, light, temp, magnet, accel, radio

In this directory, led refers to the LED device. There are four sensors, light,
temperature, magnetic, and accelerator, respectively. There is also the radio device,
which sends and receives packets. An example of reading 100 data samples from the
light sensor at a frequency of 50 ms is written as follows, where the first parameter
is the frequency and the second parameter is the number of readings (Fig. 14).

./light 50 100

5.4.2 LiteFS Subsystem

We now describe the LiteFS subsystem. The interfaces of LiteFS provide support for
both file and directory operations. The APIs of LiteFS are listed in Table 6.

While most of these APIs resemble those declared in “stdio.h” in C, some of them
are customized for sensor networks. For instance, two functions, fcheckEEPROM
and fcheckFlash, are unique in that they return the available space on EEPROM
and the data flash, respectively. Another feature of LiteFS is that it supports simple
search-by-filename using the fsearch API, where all files whose names match a

728 Y. Yao et al.

Command
Processor

Session
State

Data
Cache

commands

replies

parsed commands

replies

single-hop
neighborhood

Fig. 14 The implementation of LiteShell [5]

Table 6 LiteFS API list

API usage API interface

Open file FILE* fopen(const char *pathname, const char *mode);
Close file int fclose(FILE *fp);
Seek file int fseek(FILE *fp, int offset, int position);
Test file/directory int fexist(char *pathname);
Create directory file int fcreatedir(char *pathname);
Delete file/directory int fdelete(char *pathname);
Read from file int fread(FILE *fp, void *buffer, int nBytes);
Write to file int fwrite(FILE *fp, void *buffer, int nBytes);
Move file/directory int fmove(char *source, char *target);
Copy file/directory int fcopy(char *source, char *target);
Format file system void formatSystem();
Change current directory void fchangedir(char *path);
Get current directory void fcurrentdir(char *buffer, int size);
Check EEPROM usage int fcheckEEPROM();
Check flash usage int fcheckFlash();
Search by name void fsearch(char *addrlist, int *size, char *string);
Get file/directory info void finfonode(char *buffer, int addr);

query string are returned. These APIs can be exploited in two ways; either by using
shell commands interactively, or by using application development libraries.

Implementation of LiteFS

Figure 15 shows the architecture of LiteFS, which is partitioned into three modules.
It uses RAM to keep opened files and the allocation information of EEPROM and
the data flash in the first module, uses EEPROM to keep hierarchical directory infor-
mation in the second, and uses the data flash to store files in the third. Just like Unix,
files in LiteFS represent different entities, such as data, application binaries, and
device drivers. A variety of device driver files, including radio, sensor, and LED, are
supported. Their read/write operations are mapped to real hardware operations. For
example, writing a message to the radio file (either through the shell by a user or
through a system call by an application) maps to broadcasting this message.

In RAM, our current version of LiteOS supports eight file handles (this number is
adjustable according to application needs), where each handle occupies eight bytes.
Hence, at most eight files can be opened simultaneously. LiteFS uses two bit vectors

21 System Architecture and Operating Systems 729

Root

D

D

D

F

F

F

F

2K

2K

2K

2K

File Handle
(x 8)

EEPROM
Bit Vector

Flash
Bit Vector

RAM EEPROM Flash

65 control blocks
256 storage blocks

Fig. 15 LiteFS architecture [5]

to keep track of EEPROM/flash allocation, one with 8 bytes for EEPROM, the other
with 32 bytes for the serial flash. A total of 104 bytes of RAM are used to support
these bit vectors.

In EEPROM, each file is represented as a 32-byte control block. LiteFS currently
uses 2080 bytes of the 4096 bytes available in EEPROM to store hierarchical directo-
ries, while the remaining EEPROM is available for other needs. These 2080 bytes are
partitioned into 65 blocks. The first block is the root block, which is initialized every
time the file system is formatted. The other 64 blocks are either directory blocks
(specified with D) or file blocks (specified with F) according to application needs.
Just like Unix, files represent data, binary applications, and device drivers.

5.5 Programming Model

In this section, we describe the programming model provided by LiteOS. In TinyOS/-
nesC, the view is that an application is driven by events, which can optionally post
long-running tasks to a FIFO scheduler. Such a programming model typically requires
the use of finite state machines (FSMs) to reason with large-scale applications. In
contrast to the event based programming model adopted by TinyOS, LiteOS uses
threads to maintain execution contexts. Threads, however, do not completely elim-
inate the use of events for efficiency reasons. Observe that there are two types of
events: internally generated events, and externally generated events. For instance, a
sendDone event always follows a packet sending operation, and is therefore inter-
nally generated. A radio receive event, however, is triggered by external events, and
may not be predictable. LiteOS treats these two types of events separately. Gener-
ally, internally generated events are implicitly handled by using threads, where events
like sendDone are no longer visible. It is the externally generated events that deserve
special attention.

We illustrate how externally generated events are handled in LiteOS using the radio
receive event as an example. LiteOS provides two solutions to handle this event. The
first is to create a new thread using the createThread system call, which blocks until

730 Y. Yao et al.

the message arrives. Consider a reliable communication example. Suppose that the
application thread creates a child thread to listen to possible acknowledgements. If
such a message is received before T_timeout, the child thread wakes up its parent
thread using the wakeupThread method. Otherwise, if its parent thread wakes up
without receiving an acknowledgement, this child thread is terminated by its parent
thread using the terminateThread method.

While this thread-based approach is usually sufficient for handling externally
generated events, it introduces the overhead of creating and terminating threads.
This is typically not a problem because it wastes a few hundred CPU cycles, less
than 0.1 ms. For computationally intensive applications, however, user applications
want to reduce overhead. LiteOS provides another primitive for this purpose: callback
functions.

A callback function registers to an event, which could range from radio events
to detections of targets, and is invoked when such an event occurs. For instance, the
function registerRadioEvent tells that a message has been received. Its prototype
is defined as follows:

void registerRadioEvent(uint8_t port, uint8_t *msg,
uint8_t length, void (*callback)(void));

This interface requires the user thread to provide a buffer space for receiving
incoming messages. After the kernel copies the message to this buffer, it invokes the
callback function. Based on this mechanism, the previous reliable communication
example can be implemented as follows:

Part I: Application

1 bool wakeup = FALSE;
2 uint8_t currentThread;
3 currentThread = getCurrentThreadIndex();
4 registerRadioEvent(MYPORT, msg, length, packetReceived);
5 sleepThread(T_timeout);
6 unregisterRadioEvent(MYPORT);
7 if (wakeup == TRUE) {...}
8 else {...}

Part II: Callback function

9 void packetReceived()
10 {
11 _atomic_start();
12 wakeup = TRUE;
13 wakeupThread(currentThread);
14 _atomic_end();
15 }

We briefly explain this example. First, the thread listens on MYPORT, and allo-
cates a buffer for receiving incoming packets (line 4). This thread then sleeps (line 5).
When it wakes up, it checks if it has been woken by the callback function (line 7),
or by a timeout event (line 8). The thread then handles these two cases separately.

21 System Architecture and Operating Systems 731

Localhost
packet

Port Map

Buffer

Buffer

Handling Func

Handling Func

Buffer Handling Func

A
B
C

Receive

Packet
Receiver

Routing and Transport Component

Port Matching
App

Threads

Protocols

Subscribe

Packet Sender

Send

Radio
control

Power
control

Channel
control

Channel
polling

CRC Checker

Radio Core

Communication Stack

MAC Component

Header
Analyzer

Receive

Port Matching

Send

Destination
Demuxing

Header
Builder

Control of Power and Channel

Channel polling

Receive

Subscribe

Receive

Network packet

Algorithm
Implementation

Neighbor
Table

Fig. 16 The architecture of communication stack [5]

5.6 Communication Architecture

In this section, we describe the communication stack of LiteOS. The design of flexible
and powerful communication stacks has been a critical challenge to sensor network
applications. In LiteOS, we treat communication stacks, such as routing and MAC
protocols, as threads. Hence, different communication protocols can be exchanged
easily, and dynamically loaded just like any user application.

To use a protocol, an application organizes the header of packets in such a way that
the communication protocol can correctly parse it. Packets are then sent to the port
which the protocol is listening on. For example, a flooding protocol uses a different
listening port compared to a multi-hop routing protocol. In the following example,
our multi-hop routing protocol listens on port 10, and the application sends a packet
of 16 bytes through this protocol using the following code sample:

//10 is the port number, 0 means local node protocol
//16 is the message length, and msg is the message pointer
radioSend(10, 0, 16, msg);

Our implementation of this multi-hop protocol (geographic forwarding) maintains
a neighbor table of 12 entries, and contains around 300 lines of code. Its binary image
consumes 1436 bytes of program flash, and 260 bytes of RAM, including stack. Its
overhead is so low that it can co-exist with other protocols, such as flooding.

Figure 16 shows the communication stack that serves as the foundation for the
routing layer protocols. In this figure, both the receiving (on the left) and the sending

732 Y. Yao et al.

(on the right) operations are illustrated. When the sender intends to deliver packets,
it puts the destination address as well as the port number for the destination node
into the packet header. The packet is then delivered to the MAC component and
broadcasted over the radio. When the packet is received by a neighbor, its CRC field
is first checked for integrity. If this packet is sent to the current node, its port number
is matched against each process that is listening to incoming packets. The thread that
has a match in port number is considered the right thread for the incoming packet.
The contents of the packet are then copied into the internal buffer that is provided by
the thread, which is in turn woken up to handle the incoming packet. Note that this
communication stack is similar to the port-based socket model in Unix in their way
of handling packets.

5.7 Implementation and Hardware Support

The code size of LiteOS is comparable to that of Contiki, though considerably
larger than TinyOS. This is because LiteOS employs more complicated schedul-
ing algorithms and implementation details. LiteOS has been ported onto a number
of architectures, such as MicaZ and IRIS motes. LiteOS can also run on the Avrora
simulator [40] without any modification.

6 Comparison of Different Operating Systems

Besides the three operating systems we described in this chapter, there are a few other
operating systems for WSNs. In this section, we first briefly describe these operating
systems, and then we compare them.

6.1 The SOS Operating System

SOS [7] is developed by the University of California, Los Angeles. Similar to Contiki
and LiteOS, it also supports dynamically loadable modules. Specifically, SOS con-
sists of a list of modules and a common kernel, which implements messaging,
dynamic memory, and module loading and unloading, among other services. Please
note that in SOS, modules are not processes: they are scheduled in a cooperative
manner, and there is no memory protection between modules. On the other hand,
the system protects against common module bugs using techniques such as typed
entry points, watchdog timers, and primitive resource garbage collection. The latest
version of SOS, version 2.0.1, is no longer under active development because of the
graduation of the core developers.

21 System Architecture and Operating Systems 733

6.2 The Mantis Operating System

Mantis OS [8] is developed by the University of Colorado, and aims to develop a
more traditional OS for sensor networks. It implements a conventional preemptive
time-sliced multi-threading on sensor nodes. Its programming model is primarily
thread-driven, therefore, it also provides support for a set of concurrency control
primitives, including semaphores. Its power-efficient scheduler helps save energy
when all threads are sleeping and then sleeps the microcontroller for a duration
deduced from each thread’s sleep time. Mantis OS also supports advanced sensor
OS features such as multimodal prototyping, dynamic reprogramming, and remote
shells. As of today, it is no longer under active development after the 1.0 beta version.

6.3 The Nano-RK Operating System

Nano-RK [17] is developed to support real-time sensor network applications such as
environment surveillance and monitoring. Developed by the Carnegie Mellon Univer-
sity, Nano-RK implements a reservation-based real-time scheduler. Nano-RK sup-
ports fixed-priority preemptive multitasking for guaranteeing that task deadlines are
met, along with the support for CPU and network bandwidth reservations. Tasks can
specify their resource demands, and the operating system provides timely, guaranteed
and controlled access to CPU cycles and network packets in resource-constrained
embedded sensor environments. Nano-RK also introduces the concept of virtual
energy reservations that allows the OS to enforce energy budgets associated with a
sensing task by controlling resource accesses. Nano-RK has been implemented on
the Atmel ATMEGA128 processor with the Chipcon CC2420 802.15.4 transceiver
chip. The latest version of Nano-RK supports various wireless link layer protocols
such as U-Connect [41].

6.4 The RETOS Operating System

RETOS [42] is developed in Yonsei University, Korea. It has four distinct objec-
tives, which are to provide (1) a multithreaded programming interface, (2) system
resiliency, (3) kernel extensibility with dynamic reconfiguration, and (4) WSN-
oriented network abstraction. RETOS is a multithreaded operating system, hence
it provides the commonly used thread model of programming interface to devel-
opers. It uses various implementation techniques to optimize the performance and
resource usage of multithreading. RETOS also provides software solutions to sepa-
rate kernel from user applications, and supports their robust execution on MMU-less
hardware. The RETOS kernel can be dynamically reconfigured, via a loadable kernel
framework, so an application-optimized and resource-efficient kernel is constructed.

734 Y. Yao et al.

Finally, the networking architecture in RETOS is designed with a layering concept to
provide WSN-specific network abstractions. The latest version of RETOS is version
1.2, and is no longer under active development.

6.5 The Enix Operating System

Enix is a lightweight dynamic operating system for tightly constrained platforms for
WSNs. Enix provides a cooperative threading model, which is applicable to event-
based WSN applications with little run-time overhead. Virtual memory is supported
with the assistance of the compiler, so that the sensor platforms can execute code
larger than the physical code memory they have. To enable firmware updates for
deployed sensor nodes, Enix supports remote reprogramming. The commonly used
libraries and the main logical structure are separated; each sensor device has a copy of
the dynamic loading library in the Micro-SD card, therefore, only the main functions
and user-defined sub-routines need to be updated. A lightweight, efficient file system
named EcoFS is also included in Enix. Enix was last released in August, 2010, but
is no longer under active development.

6.6 Comparison of Sensor Network Operating Systems

In this section, we compare the features of different operating systems in different
angles. Specifically, Fig. 17 shows our comparison results. One general principle is
that different operating systems have their own pros and cons, and users should take
these features into account when making decisions on which operating system to
choose.

Specifically, we have the following observations on the comparison of OS in
sensor networks.

First, we observe that sensor network operating systems are far from maturation.
Even for the most mature one, TinyOS, its impact is still limited mostly within acad-
emia. Indeed, the lack of serious industry participation seems to explain why some
of the operating systems are no longer in active development. For example, interest-
ingly, the SOS website explained that the reason that SOS is no longer developed is
that its core developers have graduated. In the future, sustained effort from indus-
try or community seems to be very much needed to broaden the impact of sensor
network operating systems.

Second, we observe that a set of benchmark requirements will be highly ben-
eficial for future development of sensor network OS software. Just like standard
benchmarks exist for measuring the pros and cons of CPU chips, such benchmarks
could significantly increase the usability of sensor network operating systems. We
hope that the academic community can work together in the future to decide which

21 System Architecture and Operating Systems 735

T
in

yO
S

C

on
tik

i
Li

te
O

S

S
O

S

M
an

tis

R
E

T
O

S

N
an

o-
R

K
E

ni
x

C
ur

re
nt

 li
ce

ns
e

N
ew

 B
S

D

B
S

D

B
S

D

M
od

ifi
ed

 B
S

D

M
od

ifi
ed

 B
S

D

N
ot

 a
va

ila
bl

e
G

N
U

N
ot

 a
va

ila
bl

e

U
se

r
sh

el
l i

nt
er

fa
ce

N

o
(a

pp
lic

at
io

n
sp

ec
ifi

c
sh

el
l s

uc
h

as
 S

im
pl

eC
m

d
ex

is
ts

)

Y
es

 (o
n-

th
e-

m
ot

e
sh

el
l i

s
pr

ov
id

ed
)

Y
es

 (
w

ire
le

ss

re
m

ot
e

sh
el

l)
N

o
Y

es
 (

te
rm

in
al

)
N

o
N

o
N

o

R
ea

l-t
im

e
su

pp
or

t
N

o
N

o
N

o
N

o
N

o
N

o
Y

es

Y
es

F
ile

 s
ys

te
m

S

in
gl

e
le

ve
l (

E
LF

,
M

at
ch

bo
x)

C

of
fe

e
fil

e
sy

st
em

Li

te
F

S
, U

ni
x-

lik
e

hi
er

ar
ch

ic
al

N

o
N

o
N

o
N

o
E

co
F

S

T
hr

ea
d

su
pp

or
t

Y
es

 (
in

 2
.x

)
Y

es
 (

pr
ot

ot
hr

ea
ds

)
Y

es

N
o

Y
es

Y

es

Y
es

Y

es

E
ve

nt
-b

as
ed

 p
ro

gr
am

m
in

g
Y

es
 (

by
 d

ef
au

lt)

Y
es

Y

es

Y
es

N

o
Y

es

N
o

N
o

D
eb

ug
gi

ng

Y
es

 (
th

ro
ug

h
va

rio
us

 r
es

ea
rc

h
pr

oj
ec

ts
)

Y
es

Y

es
 (

bu
ilt

-i
n

G
D

B

lik
e

de
bu

gg
in

g)

N
o

N
o

Y
es

 (
st

at
ic

 a
na

ly
si

s
an

d
dy

na
m

ic

an
al

ys
is

)

N
o

Y
es

W
ire

le
ss

 r
ep

ro
gr

am
m

in
g

Y
es

 (
D

el
ug

e)

Y
es

Y

es

Y
es

 (
m

od
ul

e
le

ve
l)

O
ne

 n
od

e
on

ly

Y
es

Y

es

Y
es

D
yn

am
ic

 m
em

or
y

N
o

Y
es

 (
m

al
lo

c
in

te
rf

ac
e)

Y

es
 (

m
al

lo
c

in
te

rf
ac

e)

Y
es

N

o
N

o
Y

es

N
o

F
irs

t p
ub

lic
at

io
n/

re
le

as
e

da
te

20

02
 (v

er
si

on
 1

.0
)

20
04

20
08

20
05

20
05

20
07

20
05

20
10

La
te

st
 r

el
ea

se

V
er

si
on

 2
.1

.1
,

A
pr

il,
 2

01
0

V
er

si
on

 2
.5

S

ep
te

m
be

r,
 2

01
1

V
er

si
on

 2
.1

,
O

ct
ob

er
, 2

01
1

V
er

si
on

 2
.0

.1

A
pr

il,
 2

00
8

V
er

si
on

 1
.0

 b
et

a
O

ct
, 2

00
7

V
er

si
on

 1
.2

S

ep
te

m
be

r
20

07

R
87

7
Ju

ly

20
09

R
el

ea
se

 2
, A

ug
us

t
20

08

P
la

tfo
rm

 s
up

po
rt

A

tm
eg

a1
28

 a
nd

M

S
P

43
0

M
S

P
43

0
an

d
A

tm
eg

a1
28

A

tm
eg

a1
28

A

tm
eg

a1
28

A

tm
eg

a1
28

,
M

S
P

43
0

M
S

P
43

0
A

tm
eg

a1
28

N

or
di

c
nR

F
24

LE
1

S
im

ul
at

or

T
O

S
S

IM
,

P
ow

er
T

os
si

m

C
oo

ja

T
hr

ou
gh

 A
V

R
O

R
A

S

ou
rc

e
le

ve
l

S
im

ul
at

or
/

T
hr

ou
gh

A

V
R

O
R

A

T
hr

ou
gh

 A
V

R
O

R
A

N

o
T

hr
ou

gh

A
V

R
O

R
A

N

o

F
ig

.1
7

C
om

pa
ri

so
n

of
se

ns
or

ne
tw

or
k

op
er

at
in

g
sy

st
em

s

736 Y. Yao et al.

properties and features are crucial for sensor network OS designs, and make sure
that they are well implemented.

A third observation is that there is a general lack of good simulators for OS-
independent simulation. For example, the only one that we are aware of on the AVR
platform is the Avrora. Without such simulation support, it is extremely difficult to
carry out large-scale simulations without the use of large-scale testbed.

7 Conclusion Remarks

The difficulty of building a comprehensive operating system on resource-constrained
sensor nodes is underscored by the fact that only a few have been developed in the
past decade of research on WSNs. The support from operating systems, on the other
hand, is crucial to facilitate the design, implementation, and testing of wireless sensor
network software. In this chapter, we systematically presented the design considera-
tions of operating systems for WSNs, the major components of three representative
OS systems, and compared the current OSes in multiple angles and aspects. We hope
our descriptions so far can help the reader become familiar with the basic concepts
and knowledge of operating systems for WSNs.

Currently, operating system research and development for WSNS remains an
active research area, and we predict that we will continue to see new operating systems
emerge in this area driven by new hardware and sensor network applications. Indeed,
there are many open problems that need to be further investigated. For example, how
to choose the right programming models based on application needs will continue
to be a central topic of explorations in the field of OS research for WSNs. Various
trade-offs among overhead, energy efficiency, system reliability, flexibility, and user
interface designs will certainly shape the design choices in future operating systems
for sensor networks in the days to come.

Acknowledgments The work in this book chapter is in part supported by the NSF grant CNS-
0953238 and CNS-1117384.

References

1. J. Corbet, G. Kroah-Hartman, A. McPherson, Linux Kernel Development: How Fast It Is Going,
Who Is Doing It, What They Are Doing, and Who Is Sponsoring It. White Paper (online) (2012).
http://go.linuxfoundation.org/who-writes-linux-2012

2. A history of Windows. Microsoft (online) (10/12/2012). http://windows.microsoft.com/en-
US/windows/history

3. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture directions for
networked sensors, in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), New York, NY, USA, 2000)

http://go.linuxfoundation.org/who-writes-linux-2012
http://windows.microsoft.com/en-US/windows/history
http://windows.microsoft.com/en-US/windows/history

21 System Architecture and Operating Systems 737

4. A. Dunkels, B. Gronvall, T. Voigt, Contiki–a lightweight and flexible operating system for tiny
networked sensors, in Proceedings of the IEEE Workshop on Embedded Networked Sensors
(EmNets) (IEEE (Comput. Soc.), Washington, DC, USA, 2004), pp. 455–462.

5. Q. Cao, T. Abdelzaher, J. Stankovic, T. He, The LiteOS operating system: towards Unix-like
abstractions for wireless sensor networks, in Proceedings of the International Conference on
Information Processing in Sensor Networks (IPSN), 2008, pp. 233–244.

6. A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts (Wiley, New York, 2005)
7. C.c. Han, R. Kumar, R. Shea, E. Kohler, M. Srivastava, A dynamic operating system for sensor

nodes, in Proceedings of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), Seattle, Washington, DC, 2005, pp. 163–176.

8. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torg-
erson, R. Han, MANTIS OS : an embedded multithreaded operating system for wireless micro
sensor platforms, in ACM/Kluwer Mobile Networks & Applications (MONET), Special Issue
on Wireless Sensor Networks, August, Secaucus, NJ, USA, 2005)

9. P. Levis, D. Gay, V. Handziski, J.h. Hauer, B. Greenstein, M. Turon, J. Hui, K. Klues, C.
Sharp, R. Szewczyk, J. Polastre, P. Buonadonna, L. Nachman, G. Tolle, D. Culler, A. Wolisz,
T2: a second generation OS for embedded sensor networks. Technical Report TKN-05-007,
Telecommunication Networks Group, Technische Universität Berlin (2005).

10. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesC language: a holistic
approach to networked embedded systems, in Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), San Diego, CA, USA, 2003)

11. N. Tsiftes, A. Dunkels, A database in every sensor, in Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), Seattle, Washington, DC, 2011)

12. L. Luo, Q. Cao, C. Huang, T. Abdelzaher, J. Stankovic, M. Ward, EnviroMic: towards coop-
erative storage and retrieval in audio sensor networks, in Proceedings of the International
Conference on Distributed Computing Systems (ICDCS) (ON, Toronto, 2007), pp. 1–22

13. H. Dai, M. Neufeld, R. Han, ELF: an efficient log-structured flash file system for micro sen-
sor nodes, in Proceedings of the ACM Conference on Embedded Networked Sensor Systems
(SenSys), Baltimore, MD, USA, 2004)

14. G. Mathur, P. Desnoyers, D. Ganesan, P. Shenoy, Ultra-low power data storage for sensor
networks, in Proceedings of the International Conference on Information Processing in Sensor
Networks (IPSN) (ACM, New York, NY, USA, 2006), pp. 1–8

15. IRIS sensor nodes, Memsic website (online) (10/11/2012), http://www.memsic.com/products/
wireless-sensor-networks/wireless-modules.html

16. T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vicaire, J.
Stankovic, T. Abdelzaher, J. Hui, B. Krogh, VigilNet: an integrated sensor network system for
energy-efficient surveillance. ACM Trans. Sensor Netw. 2(1), 1–38 (2006)

17. A. Eswaran, A. Rowe, R. Rajkumar, Nano-RK: an energy-aware resource-centric RTOS for
sensor networks, in Proceedings of the IEEE Real-Time Systems Symposium (RTSS) (IEEE
Computer Society, Washington, DC, USA, 2005)

18. L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, J. Stankovic, Achieving repeatability of asyn-
chronous events in wireless sensor networks with EnviroLog, in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM) (2007).

19. Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, J. Regehr, Surviving sensor network software
faults, in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP) (ACM
Press, New York, NY, USA, 2009), p. 235

20. J. Kahn, R.H. Katz, K. Pister, Next century challenges: mobile networking for Smart Dust, in
Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
(Mobicom), Seattle, Washington, DC, USA, 1999)

21. Mica sensor node datasheet (2001), http://stomach.v2.nl/docs/Hardware/DataSheets/Sensors/
MICA_data_sheet.pdf

22. Mica2 sensor node datasheet (2002), https://www.eol.ucar.edu/rtf/facilities/isa/internal/
CrossBow/DataSheets/mica2.pdf

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://stomach.v2.nl/docs/Hardware/DataSheets/Sensors/MICA_data_sheet.pdf
http://stomach.v2.nl/docs/Hardware/DataSheets/Sensors/MICA_data_sheet.pdf
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf

738 Y. Yao et al.

23. MicaZ sensor node (2002), http://www.memsic.com/products/wireless-sensor-networks/
wireless-modules.html

24. EPIC sensor node (2007), http://www.eecs.berkeley.edu/ prabal/projects/epic/
25. Sun SPOT sensor node datasheet (2006), http://www.sunspotworld.com/docs/Yellow/

eSPOT8ds.pdf
26. LOTUS sensor node (2011), http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html
27. TelosB sensor node (2004), http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html
28. Cricket sensor node (2007), http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html
29. Wasp mote website (2009), http://www.libelium.com/products/waspmote
30. L. Nachman, J. Huang, J. Shahabdeen, R. Adler, R. Kling, Imote2: serious computation at the

edge, in Wireless Communications and Mobile Computing Conference, IWCMC ’08. Interna-
tional, Crete Island 2008, 1118–1123 (2008)

31. T. Stanley, T. Close, M.S. Miller, Causeway: a message-oriented distributed debugger. Technical
Report HPL-2009-78, HP Laboratories (2009).

32. P. Buonadonna, J. Hill, D. Culler, Active Message Communication for Tiny Networked Sensors
(2001), http://ww.w.tinyos.net/papers/ammote.pdf

33. L.f.u. Innsbruck, M. Lang, TinyOS. Habitat (2006).
34. V. Handziski, J. Polastre, J.H. Hauer, C. Sharp, A. Wolisz, D. Culler, The Hardware Abstrac-

tion Architecture of TinyOS 2.x. Tech. Rep., Telecommunication Networks Group Technische
Universität Berlin, Computer Science Department University of California, Berkeley (2010).

35. P. Levis, A. Terzis, R. Govindan, TOSThreads: thread-safe and non-invasive preemption in
TinyOS, in Proceedings of the ACM Conference on Embedded Networked Sensor Systems
(SenSys), Berkeley, CA, 2009)

36. A. Dunkels, O. Schmidt, T. Voigt, M. Ali, Protothreads: simplifying event-driven program-
ming of memory-constrained embedded systems, in Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys) (Boulder, CO., USA, 2006)

37. A. Dunkels, N. Finne, J. Eriksson, T. Voigt, Run-time dynamic linking for reprogramming
wireless sensor networks, in Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems (Sensys) (ACM (Boulder, CO., USA, 2006), pp. 15–28

38. N. Tsiftes, J. Eriksson, A. Dunkels, Poster abstract: low-power wireless IPv6 routing with
ContikiRPL, in Proceedings of the International Conference on Information Processing in
Sensor Networks (IPSN) (Stockholm, Sweden, 2010), pp. 4–5

39. A. Dunkels, The ContikiMAC Radio Duty Cycling Protocol. Technical Report T2011:13,
Swedish Institute of Computer Science. Swedish Institute of Computer Science (2011).

40. B.L. Titzer, D.K. Lee, J. Palsberg, Avrora: scalable sensor network simulation with precise
timing, in Proceedings of the International Conference on Information Processing in Sensor
Networks (IPSN), Los Angeles, CA, 2005)

41. A. Kandhalu, K. Lakshmanan, R.R. Rajkumar, U-Connect: a low-latency energy-efficient asyn-
chronous neighbor discovery protocol, in Proceedings of the International Conference on
Information Processing in Sensor Networks (IPSN), Stockholm, Sweden, 2010)

42. H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, C. Yoon, RETOS: resilient, expandable, and
threaded operating system for wireless sensor networks, in Proceedings of the International
Conference on Information Processing in Sensor Networks (IPSN) (IEEE, Cambridge, MA,
USA, 2007), pp. 148–157

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.eecs.berkeley.edu/
http://www.sunspotworld.com/docs/Yellow/eSPOT8ds.pdf
http://www.sunspotworld.com/docs/Yellow/eSPOT8ds.pdf
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.libelium.com/products/waspmote
http://ww.w.tinyos.net/papers/ammote.pdf

Chapter 22
Programming Languages, Network Simulators,
and Tools

Dilan Sahin and Habib M. Ammari

Abstract Wireless sensor networks offer many advantages in different applica-
tion areas with its ease of deployment, low-cost, low-power capabilities. With the
increased interest to the wireless sensor networks, the research community have
started to carry out network simulations to better analyze the network’s behavior and
performance since they provide significant reduction in cost and simulate the differ-
ent types of sceneries in tolerable time intervals. This chapter introduces the network
simulators, i.e., NS-2, OMNET++, J-Sim, OPNET and TOSSIM, respectively with
some of the major network programming languages, e.g., nesC and Mate.

1 Introduction

Wireless sensor networks (WSNs) offer many advantages in different application
areas with its ease of deployment, low-cost, low-power capabilities [1]. WSN enables
sensing, monitoring and controlling of the physical environment to produce high
quality and easy accessible information for further analysis purposes. However, it
has some inadequacies to fully perform its tasks due to the nature of wireless sensor
nodes. Wireless sensor nodes have limitations in their computational capacities since
they are low-cost and low-power. Hence, to provide reliable, secure and long-term
wireless sensor network communications, a lot of protocols have been developed
to efficiently use the resources, accurately route the sensor packets, and reliably
provide wireless communications. To better analyze the performance of WSN pro-

D. Sahin
University of Michigan-Dearborn, Dearborn, MI, USA
e-mail: dsahin@umd.umich.edu

H. M. Ammari (B)

WiSeMAN Research Lab, Department of Computer and Information Science,
University of Michigan-Dearborn, Dearborn, MI 48128, USA
e-mail: hammari@umd.umich.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 739
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_22,
© Springer-Verlag Berlin Heidelberg 2014

740 D. Sahin and H. M. Ammari

tocols, preliminary test phases on large scales, and under complex and changing
conditions should be conducted. Since, creating real test beds, is costly and in some
cases impossible, reliable network simulations are used to test the functionalities and
performances of the network protocols in changing environment conditions and spe-
cific network requirements. Hence, with the increased interest to the wireless sensor
networks, the research community have started to carry out network simulations to
better analyze the network’s behavior and performance. The complex configurations
of sensor networks, some difficulties to provide the appropriate network devices
and transmission media and some other reasons lead the researchers to prefer using
the network simulation tools to better meet the network requirements and to have a
chance to test the different types of scenarios in tolerable time intervals.

The network simulator programs are always the software tools that some of them
commercially available for free-of-charge, while some do not. Network simulators
use specific programming languages, while some of them even combine a couple
of programming languages to model the networks. Most of the network simulators
consist of some basic modules, such as, wireless medium, physical environment,
network protocols, events and applications. Wireless medium is modeled by medium
module which enables nodes to broadcast signals and use specific propagation models
while environment module is responsible to model the physical phenomenon which is
related to temperature, humidity, sound and light etc. The network protocol modules
cover physical protocol which is the lowest layer of the protocol stack and responsible
of some basic networking stuff, such as, sending and receiving data packets, carrier
sensing and adjusting communication channels, MAC protocol which is generally
implemented in software running on node’s processor and responsible for setting
protocol parameters and adjusting energy consumption, routing protocol which pro-
vides routing packets between sensor nodes with special algorithms to meet the
requirements of WSN, application layer which acts as the interface between lower
protocol layers and WSN applications. Here are some of the advantages of network
simulators.

• Low-cost: Network simulators provide significant reduction in cost. Preparing real
network test beds takes too much time to build and increases the cost. However,
network simulators can simulate the different types of sceneries in tolerable time
intervals. On the other hand, they provide a pre-test environment before investing
money to costly network equipment.

• Ease of usability: With the “add” command, adding sensor nodes or other net-
work equipment to a network is easy in network simulators. Most of the network
simulators provide user friendly interfaces to the user.

• Customization: Some network models may not be modeled by simulators, however,
it is possible for users to create their own network models.

• Scalability: It is possible to create wireless networks with hundreds of sensor nodes
in tolerable time intervals and test the reliability of the communication between
them in network simulators.

There is a wide range of network simulators, however not all of them are suitable
to simulate WSN scenarios. In this chapter, four basic network simulation programs,

22 Programming Languages, Network Simulators, and Tools 741

e.g., NS-2, OMNET++, J-Sim and OPNET, are detailed investigated with the pro-
gramming languages used to model the networks. A comprehensive comparison
is presented. Furthermore, a brief description of other network simulation tools
is also introduced. Furthermore, a brief comparison of other network simulators,
e.g., TOSSIM, QualNet, Atarraya, GLoMoSim, JiST, are presented. Some of the
simulators have some limitations to conduct some special simulations, for instance,
some of them do not have any support for energy modeling of the sensor nodes or
some of them have some limitations in supporting a scalable network. While energy
consumption concept is very critical to create reliable simulations in some situations,
some of them require scalability feature from a simulator. Here are some of the short-
comings/opportunities of network simulators to have a general understanding before
giving details.

• Comparing to NS-2, J-Sim can simulate larger number of network nodes, around
500 network nodes. NS-2 is better for small-scale networks since, large-scale
networks require so much memory and CPU time. However, J-Sim is not initially
developed for WSN, hence, the execution time is quite longer than the execution
time of NS-2.

• A detailed documentation and a regularly updated manual simulations are pro-
vided by NS-2. J-Sim and OMNET++ network simulators cannot provide such
a detailed and updated documentation.

• The disadvantage of NS-2 is that NS-2 needs to be re-compiled every time when
there is a change in the user code.

• While J-Sim network simulator can work on all platforms, OMNET++ and NS-2
network simulators can run on Windows and Unix systems.

• The architecture of TOSSIM and NS-2 have some similarities, however, they have
different aspects network simulation, while NS-2 focuses on simulation of the
sensor nodes at the packet level, TOSSIM focuses on simulating TinyOS sensor
nodes the bit level.

• While NS-2 advantages of large user community and on-going development, J-Sim
and OMNET++ lacks of comprehensive documentations.

• OMNET++ is very rich in terms of providing several features. NS-2 is the same as
OMNET++ in this field, hence becoming familiar with these two simulators may
take some time of the users, according to be familiar to J-Sim network simulator.

• In terms of GUI features, OMNET++ supports more tools and functionalities
than J-Sim supports.

• J-Sim provides a rich support for wireless sensor networks, while NS-2 enables
simulation of some common wireless sensor network protocols.

• TOSSIM’s execution model does not capture CPU time and it does not model the
energy consumption.

• OMNET++ has a better design engine for simulations than NS-2 platform.
• According to a study conducted by Vienna University of Technology [2],

OMNET++ has a better performance than NS-2, and it enables the creation
of the simulation from the scratch with good speed optimizations. Furthermore,

742 D. Sahin and H. M. Ammari

OMNET++’s programming interface is clearer and more open than NS-2’s pro-
gramming interface since NS-2 puts some restrictions to some of its parts.

• NS-2 supports OTcl script interface which provides fast coding strategies for
modules.

The remainder of this chapter is organized as follows. In Sect. 2, the importance
of wireless sensor network modeling concept is introduced with different models,
e.g., wireless channel modeling, energy consumption modeling, MAC modeling, and
routing modeling. Section 3, on the other hand, gives a quick review about the network
simulators before presenting them in detailed. Sections 4, 5, 6, 7 and 8, introduce the
network simulators, i.e., NS-2, OMNET++, J-Sim, OPNET and TOSSIM, respec-
tively. Some of the major network programming languages, e.g., nesC and Mate,
are presented in Sect. 9, while Sect. 10 gives a general comparison about the network
simulators. Section 11 gives a brief description about some short-comings of network
simulators, while Sect. 12 presents briefly some other network simulation tools.

2 Wireless Sensor Network Modeling

2.1 Wireless Channel Modeling

The key to the successful design of reliable wireless communication systems is how
realistically the radio propagation channel is modeled. An accurate analysis of a
radio propagation model may enable valuable insights for wireless sensor network
optimization and performance. There are three important radio propagation mod-
els that most of the network simulation tools have implemented, e.g., free space
model, two-way ground reflection model and log-normal shadowing model. Free
space model, the simplest propagation model, assumes that wireless communication
range is the perfect circle, and the wireless channel has the ideal propagation con-
ditions in which there is a direct line-of-sight path between transmitter and receiver.
Two-way ground reflection model, on the other hand, takes into account both prop-
agation distance from transmitter to receiver and ground reflection approximations
of the signal. Hence, it gives more accurate results than free-space model for long
distance communications. The more detailed model, log normal shadowing model,
takes into account both fading and distance affects in the surrounding of transmitters
and receivers, hence, it provides more accurate estimations about the received power
than the other two propagation models.

The radio propagation models in simulation environments must reduce the com-
putations and calculations to a minimum level to enable reasonable time intervals.
Most of the network simulators have implemented these three radio propagation
channel models to give more precise assumptions about wireless data communi-
cations. While free space and two-way ground are easy to implement in network
simulation environments, to implement log-normal shadowing model, it is needed
some other information rather than distance, e.g., interferences and fading effects.

22 Programming Languages, Network Simulators, and Tools 743

This chapter presents how each network simulator has implemented these models in
the following sections.

2.2 Energy Consumption Modeling

In WSN, energy consumption minimization is one of the most important tasks to
increase the network lifetime. Hence, the knowledge of power consumption charac-
teristics of sensor nodes is a great value to design accurate power saving strategies.
Each network simulation tool has applied different approaches to this critical subject.
In next sections, detailed analysis will be provided for each network simulator.

2.3 MAC Modeling

Wireless sensor nodes mostly operate in harsh environmental conditions which
changes the network conditions, such as, network topology may change due to many
different reasons or network size and network density may change. Hence, MAC
modeling should provide valuable insights to prevent the adverse effects of these
changes on network performance, and network lifetime. There are two important
MAC schemes, e.g., time division multiple access (TDMA), and code division mul-
tiple access (CDMA) in wireless sensor networks. TDMA is preferred when the
energy consumption is an issue since it decreases the energy consumption of the
sensor nodes by letting them sleep during their inactive states. CDMA, on the other
hand, is a contention-based MAC scheme which means that nodes are responsible
to find a free-channel by sensing the medium. However, nodes have to be awake for
longer times and spend more power. In the following sections, detailed analysis will
be provided for each network simulator.

2.4 Routing Modeling

The most important thing to be considered while designing routing protocols should
be their energy saving features. Furthermore, they should transmit the data reliably
from one point to another. In the literature, there have been many routing techniques
implemented for WSN. Each network simulator applies different methods to meet
the specific requirements of the networks. In the following sections, detailed analysis
will be provided for each network simulator.

744 D. Sahin and H. M. Ammari

3 A Quick View on Network Simulators

3.1 NS-2

• General: NS-2 is very popular discrete-event simulation tool for WSN, and inten-
tionally developed for academic research, hence, it is open source and easily
extendible.

• Support: NS-2 supports IEEE 802.11 and IEEE 802.15.4 wireless MAC.
Furthermore, it provides energy-saving strategies for IEEE 802.15.4 wireless
MAC.

• Routing: NS-2 supports ad hoc routing protocols for wireless IP network.
• Language: C/C++, OTcl languages are used to develop NS-2, and OTcl sits in

the center of simulation and controls and creates the simulation environment.
• Scalability: NS-2 does not scale well for large sensor networks since it does not

have an application model, hence, some public extensions are integrated to do
some specific tasks.

3.2 OMNET++

• General: OMNET++ is an open, extensible component-based discrete-event sim-
ulation tool, and developed by a user community in academia.

• Support: OMNET++ supports wired/wireless IP communications networks, and
wireless sensor networks with some extensions. The main support was for IP
networks, hence, it does not provide efficient energy models or protocols for WSN.

• Language: C++ language is used for OMNET++ simulations.
• Wireless Channel Modeling: Castalia is a modular and extensible simulation

environment which supports wireless channel and radio modeling for WSN.
• Scalability: OMNET++ scales well for large sensor networks.

3.3 J-Sim

• General: J-Sim an extensible, open-source, discrete event network simulation
environment.

• Routing: AODV routing algorithm is one of the basic algorithms implemented in
J-Sim.

• Language: J-Sim is a java-based tool and also it offers higher-level Tcl-based
programming interface.

• Wireless Channel Modeling: J-Sim only supports free-space and two-way ground
propagation models.

22 Programming Languages, Network Simulators, and Tools 745

3.4 OPNET

• General: OPNET is a discrete-event, general purpose network simulator which
was intentionally developed for military purposes. OPNET has strong libraries for
fixed networks, on the other hand, with some extensions, it also supports WSN
simulations for ZigBee compatible.

• Wireless Channel Modeling: OPNET is very successful at accurate modeling
of the radio transmission since it can detaily model in different characteristics
of physical-transceivers and antennas. Furthermore, it can also model some 3D
outdoor scenarios.

3.5 TOSSIM

• General: TOSSIM is a discrete-event simulator which is released as a simulator
tool for TinyOS operating system for embedded sensor nodes.

• Energy Consumption Modeling: The PowerTOSSIM is an extension of TOSSIM
to be the enabler of an accurate energy consumption modeling.

• Language: TOSSIM is programmed based on a component-based programming
model, supported by nesC programming language.

• Real-Time Modeling: TOSSIM may not be accurate in real-time modeling since
its simulation code may not run in a real node as it runs perfectly in simulation.

• Scalability: The probabilistic bit error model makes TOSSIM very scalable.

4 NS-2

NS-2 which is an open source, discrete event network simulation tool, is one of the
most popular simulation tools in the research community. It is the second version of
Network Simulator (NS) which has been supported by central research and devel-
opment organization for the Department of Defense DARPA (Defense Advanced
Research Projects Agency) through the Virtual InterNetwork Testbed (VINT) project
with the joint effort of University of California at Berkeley, University of Southern
California’s Information Sciences Institute (USC/ISI), Lawrence Berkeley National
Laboratory (LBNL), Xerox Palo Alto Research Center (PARC) and the National
Science Foundation (NSF) in early 1989 [3].

NS-2 is an object-oriented simulator written in C++ and OTcl programming
languages to simulate a variety of IP networks. TCP, routing, and multicast protocols
over wired and wireless networks are some of its simulation areas. It does not only
focus on the typical network simulations, it also performs resource allocation, real-
time communication, energy issues in ad hoc networks, transport protocols in wireless
sensor networks, and control strategies for wireless robots [4].

746 D. Sahin and H. M. Ammari

Fig. 1 Advantages and disadvantages of NS-2

NS-2 supports simulation of TCP, routing and multi-cast protocols over wired
and wireless networks, while support for wireless sensor networks, wireless LAN
protocols were added in later versions.

The architecture of NS-2 is very similar to Open Systems Interconnection (OSI)
Reference Model. Hence, a packet needs to go to the network layer, link layer,
MAC layer and physical layer. Local Area Network (LAN), Wireless LAN (WLAN),
and satellite networks are supported on the lower layers. On the network layer,
NS-2 supports static, dynamic, unicast, and multicast routing with several queueing
techniques, such as First In, First Out (FIFO) algorithms or stochastic fair queuing.
On the transport layer, NS-2 supports TCP, User Datagram Protocol (UDP), and
Real-time Transport Protocol (RTP). Basically, NS-2 was developed to simulate
wired networks, however, with the later extensions, it can simulate IEEE 802.11 and
several other extensions for Bluetooth [3]. An energy model and a set of randomized
mobility models are also integrated to NS-2 to enable the users to easily generate
traffic and movement patterns and provide realistic.

The extensibility and object-oriented features of NS-2 have made it very popular,
however, there are also some short-comings and limitations in terms of customization
and easy-to-use. NS-2 does not support an application model which is very important
for sensor networks to create interactions between network and application levels.

A detailed documentation and a regularly updated manual simulations are pro-
vided by NS-2. Some of the advantages and disadvantages of NS-2 is represented by
Fig. 1. NS-2 has three analyzing tools, network animator (Nam), trace file analyzer
(Trace Graph), and visualization and analysis tool for wireless simulations (INSpect).

• Nam: Nam is the standard GUI of NS-2 to visualize the simulation results, network
topology, packet flows, queue lengths and packet drops. Nam is developed to
be able read large animation data and be used in different network visualization

22 Programming Languages, Network Simulators, and Tools 747

tools [3]. Before visualizing the simulation, Nam generates a trace file which
holds topology information, e.g., nodes, links, and packet traces. Hence, the user
can generate topology configurations, layout information, and packet traces using
tracing events in ns. After the trace file generation, it is read by nam, and a topology
is created with a pop up window. Nam provides many controls to the user. For
instance, the user can jump to any point in time by using a time line and time
actuator. Nam also provides a service to convert Nam animations to animated gifs
and MPEG movies. Nam also enables the creation of simple scenarios.

• Trace Graph: Trace Graph’ responsibility is to graphically represent trace files
of NS-2. Throughputs, round trip times, or node dependent information, e.g.,
the number of forwarded packets can all be visualized with 200 different 2- and
3-dimensional graphs provided by Trace Graph [5]. However, Trace graph is not
part of NS-2 bundle.

• INSpect: The main feature of INSpect is to visualize the wireless environments,
connectivity graphs, communication ranges, and coordinates of static and mobile
nodes [5]. INSpect is originally based on Nam visualization tool.

4.1 WSN Modeling in NS-2

• Propagation Modeling: NS-2 simulator implements three different radio
propagation models, e.g., free space, two-way ground and log-normal shadow-
ing propagation models. Basically, the receiving power Pr is calculated for data
transmissions between sensor nodes with the preferred propagation model, and
later, based on the value, channel model decides what action to take. There are two
important cases in which receiver takes an action: in the first case, Pr is greater that
the receiving threshold which means that there is enough power to allow reception
at receiver side, in the second case, Pr is less than the receiving threshold, but
greater than the carrier sense threshold, the receiving node drops the packet. Most
importantly, NS-2 implements the most accurate radio propagation model, log-
normal shadowing, and it is up to the user to pick the most suitable propagation
model in terms of the requirements or network characteristics.

• Energy Consumption Modeling: Energy consumption model is one of the most
important components of NS-2 in implementing a reliable wireless sensor net-
work. Sensors are all battery-powered, and to provide precise assumptions during
simulations, energy consumption of sensors should be carefully taken into account
in energy consumption models. NS-2 supports an EnergyModel which is imple-
mented as a node attribute. The initial energy value given at the beginning of
the simulation changes during the each packet reception and transmission. When
the all energy source of the node is consumed, the other nodes are notified to
take the necessary actions. Since MAC protocol controls the radio modules which
consume the most energy, the choice of the MAC protocol is also an important
parameter to control the energy consumption levels of sensor nodes.

748 D. Sahin and H. M. Ammari

• MAC Modeling: IEEE 802.11 MAC protocol, S-MAC, T-MAC, TDMA are
implemented in NS-2 simulation environment. IEEE 802.11 MAC protocol is very
efficient in terms of bandwidth and latency. However, the energy control function of
IEEE 802.11 cannot meet the demands of sensor network applications [6]. Hence,
it is not preferred in wireless sensor network applications if energy consumption
is an important criteria. On the other hand, S-MAC is more energy efficient than
IEEE 802.11 MAC. S-MAC enables efficient energy consumption for sensor nodes
by offering them a tunable periodic active/sleep cycle for sensor nodes. However,
it is not efficient in network bandwidth and latency. Hence, T-MAC is introduced
which is capable of controlling the frame size dynamically. TDMA, on the other
hand, is very efficient in terms of energy preservation, since it provides active/sleep
cycles for each node.

• Routing Modeling: Destination-Sequenced Distance Vector (DSDV), Dynamic
Source Routing (DSR), Ad hoc On-Demand Distance Vector (AODV), Temporally-
Ordered Routing Algorithm (TORA) and Protocol for Unified Multi-casting
Through Announcements (PUMA) are some of the most important routing algo-
rithms implemented in NS-2. In the literature, there are many researches about
NS-2 simulator and implementation and comparison of these routing algorithms
and many more for other routing algorithms, e.g., optimized link state routing
(OLSR), dynamic MANET On Demand (DYMO), fish-eye state routing (FSR)
[7–14].

4.2 NS-2 Simulation and Programming Languages

NS-2 uses two languages, C++ to define the internal mechanism of the simulation
objects, and Object-oriented Tool Command Language (OTcl) to set up the simula-
tion by configuring the objects while scheduling discrete events. C++ is preferred
for its run-time speed to efficiently manipulate bytes, packet headers and imple-
ment algorithms to run over large data sets, while OTcl is preferred for its great
performance to be changed very quickly and interactively [3]. NS-2 provides a class
hierarch in C++ which can be refereed as the compiled hierarchy and a similar class
hierarchy with the OTcl which can be defined as the interpreted hierarchy. The root
of the hierarchies is the TclObject class in which the methods automatically estab-
lish the interpreted class hierarchy [3]. New simulator objects are created through
the interpreted hierarchy and mirrored by another object in the compiled hierarchy.
In the general class hierarchy, TclObject is the superclass of other classes in the
interpreted and compiled hierarchies, as depicted in Fig. 3. NsObject is the subclass
of TclObject, as well as, the super class of all basic network component objects, e.g.,
nodes and links. Connecter and classifier are the subclasses of NsObject. Node is
a compound object of NS-2 with a node entry object and classifiers. Unicast node
which consist of an address classifier and a port classifier, and multicast node which
contains a classifier to classify multicast packets from unicast packets, and to per-
form multicast routing, are two different types of nodes in NS-2. Link is another

22 Programming Languages, Network Simulators, and Tools 749

compound object that is used between nodes as duplex-link or simplex-links. They
can be recognized as OTcl objects which aggregates the delay, queuing, and pos-
sibly loss modules. Event scheduler is another concept of NS-2 network simulator.
A real-time and non-real-time schedulers exist in NS-2 to help the interaction of the
simulator with a real live network, capture live packets just like a common node and
also inject packets into the live network, and handle the events generated by network
objects at a scheduled time, respectively. Since, NS-2 is an event driven simulator,
schedulers have quite important roles. There are four types of schedulers that each
of them is implemented with a specific data structure. The basic task of a scheduler
is to select the next earliest event and execute it, then select other earliest event to do
the same task. Here are some of the types of the schedulers.

• The List Scheduler: Simple linked-list data structure is used for implementation of
the list scheduler. The elements in the list is hold according to a time-order, hence,
for adding or deleting an event, a scanning process is needed to be performed to
find the appropriate entry.

• The Heap Scheduler: A heap data structure is used for implementing the heap
scheduler. The heap schedular is the superior version of the list scheduler with
large number of events [3].

• The Calendar Queue Scheduler: The Calendar Queue Scheduler is implemented
based on a different data structure. The events on the same month/day of multiple
years can be recorded in one day.

• The Real-Time Scheduler: The main focus area of the real-time scheduler is to
synchronize the execution of events with real-time. It is the subclass of the list
scheduler, and the real-time capability is still under development. This scheduler
can work well with relatively slow network traffic data rates.

In NS-2 simulations, the following classes are the fundamental parts for performing
simulations.

• TclClass: TclClass is the virtual class that enables two important functionalities
to its subclasses; one is constructing the interpreted class hierarchy to mirror the
compiled class hierarchy and another is providing methods to instantiate new
TclObjects.

• TclCommand: TclCommand provides a mechanism to export simple commands
to the interpreter which can be executed within a global context by the interpreter.

• EmbeddedTcl: The development of functionality is allowed in either compiled
code, or via the interpreter code. The Tcl scripts can be loaded and evaluated by
the objects of EmbeddedTcl class. NS-2 can be easily extended by adding OTcl
code via scripts. Hence, the scripts must be integrated to NS-2. For this purpose,
the scripts are converted into EmbeddedTcl objects.

• InstVar: InstVar class focuses on the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified OTcl instance vari-
able in the equivalent interpreted object [3]. When a class is established within the
interpreter, a variable must be bound and interpreter can operate on an object in
that class. Hence, whenever a TclObject is created within the interpreter, method

750 D. Sahin and H. M. Ammari

execution context is set up with the interpreter and a compiled shadow object of the
interpreted TclObject is generated. After these steps, the constructor of the com-
piled object has chance to bind its member variables of the object to interpreted
instance variables in the context of the newly created interpreted object [3].

• Simulator: Simulator class enables a set of interfaces to configure a simulation
and to choose the type of event scheduler to drive the simulation. As mentioned
before, user needs to write a simulation script to start the simulation, hence, the
corresponding script starts with generating an instance of the simulation class, and
then, call the other methods to create nodes, topologies, and other aspects of the
simulation. When a new simulation class object is created, some operations are
performed, such as, initializing the packet format, creating a scheduler etc. The
event scheduler starts to run the simulation in an event-driven manner.

4.3 NS-2 Fundamental Components

As mentioned before, to start a simulation, an instance of Simulator class, topology,
network nodes should be created. Here are some of the basic elements for NS-2
simulations.

4.3.1 Node

Node is a stand-alone class ln OTcl while most of its components are TclObjects. The
simple structure of a node, which is depicted in Fig. 2, consists of two TclObjects
as mentioned before, an address classifier and a port classifier. Their main tasks
are to distribute incoming packets to the proper agent or outgoing link. NS-2 nodes
have address or id field, a list of neighbors, a list of agents, and a routing module. By
default, nodes are created for unicast simulations. To differentiate a multicast routing
from unicast routing, it should be looked at the highest bit of the address which is 0
to represent the unicast routing, or other than 0 to represent the multicast routing.

4.3.2 Classifier

When a node receives a packet, the packet’s fields, e.g., its destination address, its
source address should be examined, and then, the values should be mapped to an
outgoing interface object which is the next downstream recipient of the corresponding
packet. This whole task is performed by the classifier object. Hence, it is not wrong to
define a node as a collection of classifiers. A simple node has one address classifier
and a port classifier, however, when there is a need to add more functionality to
the node, more classifiers can be added. Different types of classifiers are used for
different purposed by each node. According to a logical criteria, a packet is matched
and a reference is obtained to another simulation object based on the match results

22 Programming Languages, Network Simulators, and Tools 751

Fig. 2 Simple structure of a node

by the classifier [3]. A table of simulation objects indexed by slot number is included
to each classifier to associate the slot number with a received packet and forward it
to the object referenced by that slot. There are four types of classifiers.

• Address Classifiers: Address classifiers are used for unicast packet forwarding.
A bitwise shift and mask operation to a packet’s destination address are performed
to generate slot numbers [3].

• Multicast Classifiers: Multicast classifiers are used to classify packets according
to the source and destination addresses. A table mapping is performed for mapping
source/group pairs to slot numbers.

• MultiPath Classifier: MultiPath classifier is used to provide equal cost multipath
forwarding, in case of a node has multiple equal cost routes to the same destination,
wants to use all of them simultaneously.

• Hash Classifier: Hash classifier is used to classify a packet as a member of a
particular flow by using hash tables to assign packets to flows [3]. When flow-
level information is needed, hash classifiers are used.

The organization of these classifiers and construct a bridge to them is very important
and can be handled by class inheritance concept [3]. However, this method has some
complications, hence, object composition concept is introduced. A set of interfaces
for classifier access and organization is needed to allow individual routing modules
which perform implementation of their own classifiers to insert their classifiers into
the node, to allow route computation blocks to populate routes to classifiers in all

752 D. Sahin and H. M. Ammari

routing modules, and to provide a single point of management for existing routing
modules [3].

4.3.3 Routing Module

In NS-2 routing, three functions carry important roles, Routing agent is used to
exchange routing packet with neighbors, route logic is used to perform information
gathering by the routing agents for the actual route computation, and lastly, classi-
fiers to enable computed routing table to manage packet forwarding [3]. In the new
routing implementation phase, not all of the three functional blocks should be imple-
mented, same classifiers can be used. Routing module is required to manages all these
three function blocks, when a new routing protocol which has its own classifier, is
implemented. The main functionalities of the routing module are,

• Initialize its connection to a node, and tears the connection down. Usually, it
informs the about its interest level for route updates and transport agent attach-
ments, and creates its classifiers and install them in the node.

• To be informed by the node, if it is interested in knowing routing updates,
• to be informed by the node, if it is interested in learning about transport agent

attachment and detachment in a node.

4.3.4 Links

Links are other fundamental elements of the NS-2 simulator. They are used to connect
the network nodes in the topology. While nodes are composed of classifiers, links
are composed of connectors. Link is a stand-alone class as node class in OTcl. Two
nodes are connected together with a point to point link via a simple link class with
specified bandwidth and delay characteristics [3]. There are five important elements
that define a a link.

• Head: Head is the entry point to the link which points to the first element in the
link.

• Queue: Queue is the reference to the main queue element of the link. One queue
is owned per simple link. Multiple queue elements may be owned by other more
complex types of links [3].

• Link: Links is recognized as a reference to the element which actually takes the
responsibility to model the link, according to the delay and bandwidth character-
istics.

• Ttl: Ttl is referred as the reference to the element which makes adjustments to
the ttl in each packet.

• Drophead: Drophead is the reference to an object which is the head of a queue of
elements that process link drops [3].

22 Programming Languages, Network Simulators, and Tools 753

Fig. 3 A partial architecture
of NS-2

4.3.5 Connectors

The only responsibility of connectors is to generate data for one recipient. A packet
is received by a connector which will perform some functions on it, deliver it to the
neighbors and then drop it. Here are some of the different types of connectors.

• Network Interface: The main task of network interface connector is to label
packets with incoming interface identifier which is used by some multicast routing
protocols.

• DynaLink: DynaLink connector can be referred as an object which allows/dis-
allows traffic depending on whether the link is up or down. It is inserted to the link
just before the simulation is started, hence, represents the head of the link.

• DelayLink: DelayLink connector is referred as the object which can model the
link’s delay and bandwidth characteristics. DelayLink manages the schedules the
receive events for the downstream object for each packet received at the appropriate
time for that packet in case of the link is not dynamic.

• Queues: Queues connector maintains the modeling of the output buffers integrated
to a link in a real router in a network.

• TTLChecker: The main task of the TTLChecker connector is to decrement the
ttl in each packet that it receives. In case of a ttl has a positive value, the packet is
forwarded to the next element on the link [3] (Fig. 3).

754 D. Sahin and H. M. Ammari

4.3.6 Agents

The end-points where network packets are generated or consumed, or are in the
implementation of protocols at various other layers can be recognized as the
agents [3]. Agent class has partly implementation in C++ and partly implemen-
tation in OTcl. Packet generation and reception functionalities are both supported by
Agents. At different layer, agents are used for protocol implementations.

4.3.7 Timers

As agents, timers can be implemented in both C++ and OTcl. Timers are based on
an abstract base class in C++. Mostly, they are used by agents.

4.3.8 Packets

The structure of a packet is defined in the packet class which provides member
functions to handle a free list for objects of this type [3]. Packet class has a pointer to
an array of characters where the packet headers are hold and a pointer to the packet
data. The packet structure has some fields to hold some special information about
the packet; time stamp field is used for measurement of queuing delay at switch
nodes, ptype_ field is used for identification of packet types, uid_ field is used for
scheduling packet arrivals, size_ field is used for packet’s size information etc.

4.3.9 OTcl

OTcl is the Tcl script language with Object-oriented extensions developed at MIT.
NS-2 uses OTcl to create and configure a network. Hence, NS-2’s configuration part
is written in OTcl. The user needs to write a Tcl script to start the NS-2 simulation.
A Tcl script has the proper information to run the simulation, such as definitions of
the network topology and protocols, generation of network traffic and other events,
commands to generate trace files. After the network topology is defined by the net-
work objects and the plumbing functions in the library, the event scheduler should
be invoked to manage the traffic sources to start or stop transmitting packets [15].
Then, The OTcl script is analyzed and C++ libraries are used to implement the data.

4.3.10 C++

C++ programming language is very suitable to run a large simulation, hence, C++
is the preferred language to implement the main part of the simulator. The user
do not need to write a C++ code to start the simulation, if there is a need to add
new protocols and models, C++ code must be written. The C++ codes need to be

22 Programming Languages, Network Simulators, and Tools 755

Fig. 4 Advantages and disadvantages of OMNET++

compiled and linked to an executable file hence, changing in C++ code may take
time. The user may use three different C++ programming styles; Basic C++ which
is the simplest style with basic instructions, but is not flexible enough, C++ coding
with input arguments which addresses the flexibility problem by taking the system
parameters as input parameters not to compile the program again, C++ coding with
configuration files which address the length problem of large number of inputs of
the second type by saving all the system parameters in a configuration file. With the
introduction of the third style, the previous problems are solved.

5 OMNET++
The discrete event simulation environment, OMNET++ which is stands for objec-
tive modular network testbed in C++, has been developed by Andrs Varga to focus
on the traffic modeling of telecommunications network, the simulation environment
of communication networks, complex IT systems, queuing networks and hardware
architectures. OMNET++ is an extensible, open-source, component-based C++
simulation library with integrated development and graphical runtime environment
which supports real-time simulations, alternative programming languages (C#, Java),
database integration and network emulation [16]. Rather than being a network sim-
ulator, OMNET++ provides an appropriate environment with basic machinery and
tools for developers to write simulations. Some of the advantages and disadvantages
of OMNET++ is presented in Fig. 4. OMNET++ runs on Linux, Unix systems,
Windows OS platforms. There are many model frameworks, e.g., INET framework,
Castalia, MIXIM, OverSim, developed independently from OMNET++ simulation
framework to support computer networks, queuing networks and hardware architec-
tures [16].

756 D. Sahin and H. M. Ammari

OMNET++ provides many advantages to programmers with its public-source,
component-based, modular and open-architecture environment and high expendabil-
ity and modularization features. OMNET++ eases the discrete event-driven appli-
cation and complex software systematic performance assessment simulations [17].

OMNET++ includes different facilities to perform the important tasks. Here are
some of them.

• Simulation Kernel Library: Simulation kernel library has some definitions of
objects which are used for scenario definition and topology creation.

• The Simulation IDE: IDE provides a dual-mode, e.g., graphical and source,
round-trip editor for NED files [16].

• Network Description (NED): NED is the language of OMNET++ that enables
users to declare simple modules, and connect and assemble them into compound
modules [16].

• Graphical Network Editor (GNED): GNED enables the graphical topology build
and file creation in NED language with the use of modules, gates and connections.
GNED provides easy definition of scenarios. The reusability of models is easier
since GNED enables creation of topology templates. Furthermore, the NED files
can be exported into XML format and XML files can be imported according to
the NED document type definition to for topology creation [15].

OMNET++ has a different perspective in representing the network elements in a
model. The component architecture concept is introduced in OMNET++ framework
which gives a flexibility to the designer to map the network devices or protocols into
model components that can be recognized as modules. Hence, OMNET++ consists
of a hierarchically nested modules. Logical structure of the system is depends on
the user, hence, the depth of the module nesting is not limited. Message passing is
the basic way for modules to communicate with each other. Events, jobs, packets,
commands or other entities depending on the model domain can be recognized as
messages transferred between modules. Furthermore, modules can be connected to
each other via gateways.

5.1 OMNET++ MODEL

OMNET++ modules are gathered together to form the OMNET++ model. There
are two types of modules, simple modules which are written in C++ with the usage
of simulation class library, and compound modules which are formed by a group
of simple modules. Routing tables, user agents, traffic sources and sinks, protocol
entities, e.g., TCP, 802.11 interface card represent the simple modules in a computer
network while network nodes, e.g., routers, hosts represent the compound modules.
Model reuse concept is adopted in OMNET++, a model type as a building block
can be recognized as a simple or a compound model as depicted in Fig. 5. Hence, a
model can be split up into many simple modules or a compound module can behave
as a simple module with modifications of its functionality. Simple and compound

22 Programming Languages, Network Simulators, and Tools 757

Fig. 5 Basic architecture of simple and compound modules

modules are the instances of module types that serve as components of more complex
module types. Hierarchically nested modules form OMNET++ models which can
be also recognized as networks. System module represents the top level model and
contains submodules. All OMNET++ modules can be recognized as submodules or
sub-submodules of the system module [16]. Moreover, different module types can
be saved in separate files and a group of these types can create component libraries.
OMNET++ models have some important components to perform its special tasks,
here are some of them.

• Gate: Gates which are the input, output and input interfaces of modules, have
important roles in OMNET++, for instance, messages are send via output gates
and received via input gates by simple modules.

• Connection: An input gate and an output gate or two input gates can be linked
by a connection. Two submodules, a submodule with parent and two gates of the
parent module can be linked by a connection. Within a single module of hierarchy,
connections are created and not allowed to span through the hierarchical levels not
to hinder the model reuse. Propagation delay, data rate, bit error rate etc. can be
assigned to the connections.

• Messages: Messages enable modules to communicate with each other. Frames
or packets in a computer network, jobs or customers in a queueing network can
represent the messages. Furthermore, complex data structures can be contained in
messages. Messages can be sent directly or via gateways and connections to the
simple modules.

• Parameters: Modules can have parameters, e.g., string, integer, double, boolean,
and XML element tree, to transmit the configuration data to simple modules and
define the model topology [16]. These parameters can be encapsulated into channel

758 D. Sahin and H. M. Ammari

objects. Moreover, parameters can also define the number of submodules and
number of gates within a compound module.

5.2 WSN Modeling in OMNET++

A vast majority of simulation models have been implemented by OMNET. The
different simulation frameworks of OMNET supports different types of simulations,
for instance, INET framework supports wired and wireless, ad hoc simulations,
e.g., 802.11, Ethernet, TCP, IP, IPv6, OSPF, MPLS, RSVP, and also provides some
extensions for new protocols, e.g., mobile ad hoc routing, mobile IPv6 and peer-to-
peer networks, while MiXiM framework supports mobile and fixed wireless networks
with detailed models of radio wave propagation, interference estimation, and wireless
MAC protocols, e.g., ZigBee. Furthermore, Castalia provides researchers to test their
protocols in realistic wireless channel and radio models.

• Propagation Modeling: The wireless channel access is one of the most important
modules in OMNET++. Hence, three important radio propagation models, e.g.,
free-space, two-way ground and log-normal shadowing, have been implemented
in OMNET++. For instance, Kuntz et. al implemented log-normal shadowing
model in [18] to describe the real conditions sufficiently. The free-space prop-
agation model is already the default propagation model of INET framework of
OMNET++, and, two-way ground model is also supported [19].

• Energy Consumption Modeling: In OMNET++, a battery module has been
implemented to control the real-time energy levels of each node. The total time
that is spent by the radio module in different states is calculated to find the actual
consumed energy with the given radio power models. In [20], Chen et. al. proposed
an energy model in which the energy consumption at the radio is measured by
counting the total time that the radio has spent in each state of the simulation.

• MAC Modeling: The Ad hoc operation is supported by both OMNET++’s INET
and Mobility frameworks. Furthermore, in different versions of OMNET++, dif-
ferent MAC protocols have been implemented. IEEE 802.15.4 CSMA and L-MAC
have been implemented in OMNET++, MiXiM 2.1 version, while S-MAC and
T-MAC have been implemented in OMNET++ 3.2, MAC Sim 0.2.2 versions
[16]. However, IEEE 802.15 MAC is the core module of the implementation.

• Routing Modeling: Routing modeling supports star and tree-cluster topologies
and also helps forming the cluster-tree PANs.

• Traffic Modeling: Chen et al. developed traffic module as a traffic generator
to run the simulation [20]. Hence, traffic module provides traffic generation with
multiple types, e.g., CBR, on-off and exponential. Furthermore, it acts like a traffic
producer and also as a traffic sink to collect and analyze the data packets.

22 Programming Languages, Network Simulators, and Tools 759

5.3 OMNET++ NED Language

The domain specific language (DSL) of OMNET++ can be recognized as NED
language which stands for network description. NED language is chosen from a vari-
ety of other languages, e.g., XML, Tcl, Python, since it is simple and supported with
a graphical editor. NED enables the declaration of simple modules which describe
the interface of the modules, such as, gates and parameters, or definitions of com-
pound modules which consist of the declaration of the module’s external interface,
e.g.,gates and parameters, and the definition of submodules and their interconnec-
tion, or definitions of networks which are compound modules that are recognized as
self-contained simulation model [16]. Here are some of the specific features of NED
language.

• Hierarchical: To deal with complexity, especially in very large projects, hierar-
chical representation is a very common concept. Hence, single complex modules
can be broken down into smaller modules and can be used as compound modules.

• Inheritance: Sub-classifying is another method that is adopted by OMNET++.
Modules and channels can be subclassed to create and inheritance overall the sys-
tem. Hence, some adjustments can be made to the derived modules and channels,
such as adding new parameters, gates and connections.

• Inner Types: To prevent namespace pollution, channel and module types used
locally by a compound module can be defined within a compound module.

• Packages: Package usage is preferred by NED language to prevent the name
clashes.

• Meta-Data Annotations: Modules, channel types, parameters, gates and submod-
ules can be annotated by adding properties to store graphic attributes, e.g., position,
icon, to declare measurement units, to denote the C++ namespace, to mark gates
which remain unconnected. For instance, a module’s graphical representation can
be specified as meta-data annotations.

• Component Based: The reusability of simple modules and compound modules
enable the reduction in code copying and existence of component libraries.

5.4 Network Simulation Frameworks

The following network simulation frameworks were developed for OMNET++ and
some characteristics of these frameworks is presented in Fig. 6.

• INET Framework: INET framework built upon OMNET++ is an open-source
communication network simulation package that supports wireless and mobile
simulations while containing important protocol implementations such as IPv4,
IPv6, TCP, UDP, etc. The module concept is adopted from OMNET++ and,
while routers, hosts, switches are represented by OMNET++ compound modules;
protocols, applications and other functional units are represented by OMNET++

760 D. Sahin and H. M. Ammari

Fig. 6 Some characteristics of network simulation frameworks of OMNET++

simple modules [21]. INET hierarchical packets consist of modules and they are
organized according to OSI layers. While some modules implement protocols,
manage communication modules or autoconfiguration of a network, some modules
are just responsible for holding the data, such as, routing tables. Network interfaces,
e.g., ethernet, IEEE 802.11, are generally recognized as compound modules and
they consist of a queue, MAC and other simple modules.

• Castalia: The specialty of Castalia framework is networks of low-power embed-
ded devices, body area networks and wireless sensor networks. Castalia fully sup-
ports advanced tests of distributed algorithms and protocols in realistic wireless
channel since it adopts log-normal shadowing model to accurately model the wire-
less channel by taking into account different parameters, e.g., scattering, fading,
noise, interference [22]. Castalia is a highly parametric and can simulate a wide
range of platforms. Castalia supports advanced channel model based on empiri-
cally measured data, advanced radio model based on real radios for low-power
communication and extended sensing modeling provisions [22].

• MIXIM: MIXIM is an OMNET++ network simulation framework that supports
mobile and fixed wireless networks and provides a detailed models wireless chan-
nel, wireless MAC protocols, e.g., ZigBee, wireless connectivity, mobility models
etc [23]. A user friendly, graphical representation of wireless mobile networks is
provided with advanced support of debugging and complex wireless scenarios.

• OverSim: OverSim is an overlay and peer-to-peer network simulation framework
based on INET framework. OverSim has many structured, e.g., Chord, Kademlia,
Pastry, Bamboo, Koorde, and Broose and unstructured P2P systems and overlay

22 Programming Languages, Network Simulators, and Tools 761

protocols to facilitate the implementation of additional protocols and to make them
more comparable [24]. The overlay, underlay and all network packets are detaily
represented by the graphical interface of OMNET++. A P2P network architec-
ture can be modeled by OverSim’s modular architecture, and easy exchange and
extendibility of modules and code reuse are all available in OverSim [24].

5.5 OMNET++ Programming

OMNET++ simulation tool provides modeling and simulation of different kinds
of networks. The user can easily describe the network topology, and GNED edi-
tor enables easy definition of network scenarios with a graphical and script-based
description of the topology with modules, gates and connections, and furthermore,
GNED editor enables exporting NED files to XML which is the enabler language
for OMNET++ to interface with other systems, for instance, a network manage-
ment application may import the network topologies saved in a SQL database into
OMNET++ [15]. OMNET++’s C++ classes describe the simulation objects, and
simple modules are the basic components of OMNET++ programming and they
are implemented as C++ classes, derived from cSimpleModule library class. Sim-
ple modules’ main task is message sending which is represented with cMessage class.
The events can be generated and read by each module which can be recognized with
discrete events. Discrete event simulation (DES) is one of the other fundamental
concept of OMNET++ programming. Computer networks are usually recognized
as DES systems in which state changes happen at discrete instances in time, hence,
between two consecutive events, no state change takes place [16]. In a computer
network, start of a packet transmission and end of a packet transmission can be
recognized as two consecutive events that no state change happens between them.
Arrival time term refer the time when events take place. Messages are used to repre-
sent the events, and are sent from one module to another. The message’s destination
module is the place where the event will occur and the time when the event will occur
is the arrival time of the message [16].

The other components of OMNET++ programming are compound modules and
channels. Channel objects may represent the connections in simulation. Channel
objects can be programmed by C++ users and represent the channel behavior, e.g.,
propagation and transmission time modeling, error modeling etc. All of the com-
ponents are represented with C++ cComponent while the abstract module class
cModule and abstract channel class cChannel are the subclasses of cComponent.
Figure 7 depicts other classes and the inheritance relationship of them.

Furthermore, a set of user interfaces are used to perform some specific tasks, such
as, managing state estimations, visualizing of simulation results, enabling users to
start or stop the simulation execution. These user interfaces are places in different
simulation libraries, and they are connected to the simulation kernel or to the models
through interfaces. There are two types of OMNET++ user interfaces; e.g., Tknenv

762 D. Sahin and H. M. Ammari

Fig. 7 Inheritance relationship of components of OMNET++

which is based on graphical, windowing user interface, and Cmdenv which is the
command-line user interface [15].

• Tknenv: Interactive execution of the simulation, tracing and debugging are all
supported by Tknenv user interface which provides a detailed visualization of
simulation state, separate window for output of each module, event-by-event exe-
cution, labeled breakpoints and detail report of the entire simulation etc.

• Cmdenv: Cmdenv which is a small, fast user interface, is designed for batch
execution and can run on UNIX or Windows. Three data files are used to write
the simulation results; the output vector files which can be read by Matlab, Octave
and Plove tool, the output scalar files which can be visualized by Scalar tool and
user own files [15].

Here are some of the other fundamental elements of OMNET++ programming.

5.5.1 Library Classes

The fundamental parts of OMNET++ simulation library consist of the parts of the
component model, e.g., modules, channels, gates, objects etc. The network topology
can be extracted from a model by the topology discovery class of the library [16].
Furthermore, random number generation and several distributions are all available.
Some of the distributions are log-normal, Poisson, Bernoulli, uniform etc. Moreover,
simulation library also includes several statistical classes.

22 Programming Languages, Network Simulators, and Tools 763

5.5.2 Network Packets

In network simulations, the representation of network packets is very important.
Packets which are derived from cPacket, are C++ classes and they are subclasses
of cMessage. The packet’s length, the pointer to the encapsulated packet, error flag
which indicates if the packet is corrupted, are all included in cPacket’s field.

5.5.3 Wireless Packet Transmission

In wireless packet transmission, packets are directly sent to the corresponding nodes.
Channel controller module is dedicated to keep track of the range and frequency
information of nodes. Channel controller also provides the modeling of the wireless
channel and the radio reception in destination node’s side. In this level, the model
frameworks, e.g., MiXiM, Castalia etc., decide which propagation, interference and
reception model to implement [16].

5.5.4 Simulation Signals

Simulation signals are the notification mechanism of OMNET++ simulation library,
that allows communication between components [16]. Components emit the signals
and propagate them on the module hierarchy up to the roof. There is a listener concept
that are notified when a signal is emitted. Listeners have the ability to receive signals
from all of the components during the whole simulation. Listeners help the modules
to get notified of the events via the signals. Components register listeners for the
specific events that they want to be aware of. Furthermore, signals can be used for
emitting variables to be recorded as simulation results [16].

6 J-Sim

J-Sim is an extensible, open-source, discrete event network simulation environment
build entirely in JAVA programming language which is a wide-spread, well-known
and easy-to-learn programming language. J-Sim enables a flexible simulation of dis-
tributed, parallel, and discrete event systems and has a wide range of application areas
which have discrete-time character [25]. J-Sim is a real-time process driven network
simulator, developed by a team at the Distributed Realtime Computing Laboratory
(DRCL) of the Ohio State University and has been sponsored by the National Science
Foundation (NSF), DARPA’s Information Technology Office, Air Force Office of Sci-
entific Research’s Multidisciplinary University Research Initiative (AFORS MURI),
the Ohio State University and the University of Illinois at Urbana-Champaign [26].
J-Sim is inspired by the first widely used simulation language, Simula which was
developed in the 1960s by Ole-Johan Dahl and Kristen Nygaard [25]. The advantages

764 D. Sahin and H. M. Ammari

Fig. 8 Advantages and disadvantages of J-Sim network simulator

and disadvantages of J-Sim is depicted in figure Java is not the only language used
in J-Sim; for the description and implementation of models, Java programming lan-
guage is preferred, while a script language is preferred for construction, configuration
and control the simulation at run-time [15]. Tcl, Perl or Python script languages are
all supported by J-Sim, however, the J-Sim implementation is based on Tcl script
language. J-Sim is implemented on top of the Autonomous Component Architecture
(ACA) where components are written in Java. Here are some of the fundamental
parts of J-Sim (Fig. 8).

• Component: In J-Sim, every element is recognized as a component, such as a
node, a link, or a protocol. Each component can be a single component or they can
be grouped to form other components as depicted in Fig. 9. Each component make
connections to each other through ports where they exchange the data flows. The
ports can be connected as one-to-one, one-to-many or many-to-many. A component
can be realized as a box that sends output flows and receive input flows with the help
of the ports. J-Sim has the ability to disable the components to see the consequences
of a failure in a simulated network.

• Composite: Components can come together to form other components. These
components can be recognized as composite that consist of several inner compo-
nents.

• Contract: Contract can be realized as the behavior of a component. There are two
types of contracts; port contract which is specific to a port of the component and
focuses on the communication pattern of the components that are connected to it,
and component contract which defines the input-output relation of a component
to better describe the arrival time, and the arrival place of data packets and the data
process [15].

22 Programming Languages, Network Simulators, and Tools 765

Fig. 9 Components and
composite components of J-
Sim

A network is a composite component which consists of nodes, links and smaller
networks, while a node is a composite component which consists of applications and
protocol modules. ACA mimics the integrated circuit design and its software archi-
tecture is so modular that contract binding is separated from component binding at
system integration time. Hence, J-Sim has a loosely-coupled component architec-
ture that components can be designed, implemented and tested individually [25].
With ACA, J-Sim provides an extendible network simulation and enables its compo-
nents easy plug-and-play notion to the simulator environment. A generalized packet-
switched internetworking framework (INET) implemented on top of ACA based on
some features gathered from different layer of protocol stack.

6.1 WSN Simulation in J-Sim

J-Sim provides an extensible component architecture and framework for wireless
sensor network simulations with the great support for sensor, sink nodes, wireless
communication channels and power and mobility models. In [27], the wireless simu-
lation framework consists of sensor nodes which are responsible to detect the signals
generated by target nodes, and send them to the sink nodes via wireless channel.
Since, wireless communication between sensor nodes is handled between wireless
channels, to correctly simulate the wireless sensor networks, a channel component
is implemented to simulate channels. Furthermore, two different propagation mod-
els, e.g., sensor propagation model and wireless propagation model, are included to
differentiate the signal propagation between sensor node to sink nodes and sensor
nodes to target nodes. The other modules for energy consumption, routing or MAC
layers are introduced in the followings.

• Propagation Modeling: While free-space and two-way ground propagation mod-
els are available in J-Sim simulator, log-normal shadowing model is not supported.
However, J-Sim supports a different propagation model, irregular terrain model,

766 D. Sahin and H. M. Ammari

which is based on the electromagnetic theory and make predictions of the median
attenuation of a radio signal as a function of distance [28].

• Energy Consumption Modeling: J-Sim’s energy consumption model is imple-
mented in WirelessPhy component to control the energy consumption of each
sensor node. When a node consumes all of its energy, its the interface card is
called as “dead,” and no further communications can be done with this node.

• MAC Modeling: IEEE 802.11 protocol is the only MAC protocol implemented
in the Mac_802_11 component for J-Sim wireless extension. IEEE 802.11 MAC
frames are transmitted between wireless interface card and the Mac_802_11 com-
ponent when their reception and decode process are successfully accomplished.

• Routing Modeling: AODV routing algorithm is one of the basic algorithms imple-
mented in J-Sim. Greedy Perimeter Stateless Routing has been also implemented
in J-Sim network simulator tool [29].

• WirelessPhy Model: Some features of the physical layer of a wireless card are
simulated in this model. The receiving signal strength of each frame is measured
and calculated to determine if it can be correctly decoded.

6.2 INET Platform

INET platform is component-based architecture which is dedicated to network sim-
ulation and provides modeling of all kinds of infrastructures. INET platform is fully
integrated with J-Sim network simulator. INET defines the basic components of
hierarchical networks, such as network, node, link etc., protocol component which
serves as the base class for protocol module implementations, and finally contract
classes for the core service layer [25]. Hierarchical networks in random depth are
supported by INET, for instance, an internetwork with networks, nodes and links.
Address allocation mechanism is adopted by INET to address the network nodes at
different levels of the network hierarchy [25]. A typical INET node contains a core
service layer which provides services which are defined in terms of contracts, such
as the data forwarding/delivery service, the identity service, the routing service, the
interface/neighbor service and the packet filter configuration service [25].

• Data Forwarding/Delivery Service: The downward contract and the upward con-
tract come together to form a data forwarding service. The downward contract
focuses on defining the packet sending service provided by the core service layer
to upper layer protocols. An upper layer protocol must clarify some of the informa-
tion before sending a packet, for instance, the destination address, the maximum
number of hops before the packet is discarded (TTL), the router alert flag which
indicates if the corresponding packet should be prevented by intermediate routers,
and the type of service (ToS) that packet will receive. The upward contract focuses
on describing the service to deliver a packet to an upper layer protocol. The pre-
requisite information should be provided by core service layer, such as the sender

22 Programming Languages, Network Simulators, and Tools 767

address, the incoming interface on which the packet arrives, and the type of service
(ToS).

• Node Identity Service: A list of identities, or addresses, of the nodes should be
provided in the core service layer. INET defines a unicast address as an identity
that belongs to only one node in the network, and a multicast address as another
identity that can be used by one or more nodes to be identified in the network. Node
identity service provides identity lookup and identity configuration contracts for
upper layers to configure the node identities. In identity lookup, default identity
lookup, identity inquiry and all identities inquiry services are provided for upper
layer protocols to look up the node identities. In identity configuration service,
service for configuring the identities of a node is supported.

• Routing Service: A routing table is used at each node’s core service layer. A rout-
ing table contains the information source and destination addresses, proper inter-
faces for each packet to be relayed. A routing table can be configured by an upper
layer with route lookup, route configuration and route request service contracts.
Route lookup contract specifies the source address, the destination address, and
the incoming interface on which the packet arrived, route configuration describes
the services for configuring the routing table, such as, adding, removing and mod-
ifying a routing table entry, route request is defined when a packet does not have
the route by the core service layer [25].

• Interface/Neighbor Services: There exist a database to hold the information about
the interfaces of the node which includes information about the local address, the
addresses of the neighbors within an interface, and the bandwidth etc. Upper layer
protocols can be notified by the neighbor events with the help of core layer service.

• Packet Filter Configuration Services: The extensible part of the core service
layer can be recognized as the packet filters which is a part of each node. When a
packet is forwarded to an interface, the packet may meet a couple of packet filters.

The core service layer of INET is composed of five different components, e.g.,
Packet Dispatcher, Identity, Routing Table, Hello, and PacketFilterSwitch to better
reuse the components as depicted in Fig. 10 [25].

Fig. 10 Components of an INET node [25]

768 D. Sahin and H. M. Ammari

• Packet Dispatcher Component: The data sending/delivery services to the upper
layer protocols are provided by packet dispatcher component. The incoming pack-
ets are forwarded to a proper number of output ports which are connected to an
upper layer protocol or a lower layer component. The identity lookup and route
lookup services are invoked and TLL fields of the packets are checked to decide
whether discard a packet or not.

• Identity Component: Identities of the nodes are used to provide the identity
services to the upper layer protocols and other components in the core service
layer.

• Routing Table Component: The routing table entries are used to provide the
routing services to the upper layer protocols, e.g., the routing protocols.

• Hello Component: The interface and neighbor information of the nodes are used
to provide interface/neighbor services to both the upper layer protocols and other
components in the core service layer by hello component.

• Packet Filter Switch Component: Packet filter switch component works between
an upper layer protocol and the components in the packet filter banks. The config-
uration requests are switched for packet filter components.

6.2.1 J-Sim Library

J-Sim library provides the model creation in a flexible way. J-Sim library is an easy-
to-use, and not a complex simulation model that can be built with minimum coding.
J-Sim library is based on five important packages; Queue package which consists of
four different types of queues including FIFO, LIFO, Priority, and Temporal queues,
Statistic package which provides data collection and analysis, Variate package which
includes random number generators and many commonly-used random variate gen-
erators, Process package which provides implementation of the process interaction
approach, and lastly, Event package which provides event scheduling approach [30].

• Queue Package: Queue class is an abstract base class and derive FIFO Queue
(First-In, First-Out queue), LIFO Queue (Last-In, First-Out queue), PriorityQueue,
and TemporalQueue classes. The subclasses derived from the Queue classes need
to implement the methods of the Queue classes since they are all abstract and empty
to indicate the queue to be empty. Each queue has a infinite capacity, however,
the user can set limitations while contracting queue objects. There are some basic
methods of queue classes; length method to return the number of elements in the
queue, clear method to remove all the elements in the queue, enqueuemethod to
insert a single element into the queue etc [30].

• Statistic Package: The main purpose of the statistic package is to collect statistical
information with its special classes. It is an abstract class as the Queue class and
consist of special methods to analyze statistical data; SampleSat class to collect
sample statistical data, TimeStat class to collect time-persistent statistics, Statistic
class to calculate minimums, maximums, means, variances, standard deviations,
root mean squares and confidence interval half widths [30].

22 Programming Languages, Network Simulators, and Tools 769

• Variate Package: A wide variety of random variates is provided by variate
package. Discrete random variates, e.g., Bernoulli, Binomial, DiscreteProb, Geo-
metric, HyperGeometric, NegativeBinomial, Poisson, and Randi, and continuous
random variates, e.g., Beta, Cauchy, ChiSquare, Erlang, Exponential, F Distri-
bution, Gamma, HyperExponential, LogNormal, Normal, StudentT, Triangular,
Uniform, and Weibull, are all supported by J-Sim’s variate package.

• Process Package: Process package provides creation of simulation models using
the process interaction paradigm of simulation. The classes in this package are
easy-to-use with the help of automatic code generation, hence, designing a model
do not need any additional effort. Process package has some special classes to do
some specific tasks; VirtualScheduler class to implement virtual time simulation,
Clock class to keep the time of the simulation model for both pseudo-real-time
and virtual-time simulations, SimObject to represent a single simulation entity
and encompass its basic functionality, and Model class to encapsulate the basic
features of a simulation model applet.

• Event Package: Event Package is used to build event-scheduling simulation
models which consists of the Event classes, Entity and Scheduler to implement
event scheduling.

6.2.2 J-Sim Simulation

Pseudo-real time simulation and virtual time simulation are both provided by J-Sim
as depicted in Figs. 11 and 12, respectively. Virtual time simulation is used in case
of a need for fast simulation in which the user do not want to be limited by the
speed of a real time clock. Hence, the virtual clock is used instead of a real time
clock. In pseudo-real time simulations, the user wants to see results of the simulation
with animations. This type of simulation can also be used for testing the validity
of a model where each entity is implemented as a Java thread. It is easy to switch
between these two alternatives. Virtual Scheduler Class is a virtual time simulation
manager which schedules of entities that generate events based on the time when
the entity causes the event. Virtual Scheduler Class has some similar methods with
Java’s Thread methods, e.g., vStart, vStop, vSuspend, vResume etc.

J-Sim builds many classes on top of this. Here are some of the fundamental classes
of J-Sim.

• SimObject Class: An instance of SimObject class can represent a single simulation
entity. SimObject can extend the Java Thread class and enable each entity in a J-Sim
model as a separate entity.

• DynamicNode Class: DynamicNode is an abstract class which encapsulates the
features that appear as Server, Facility, Signal, Source and Sink.

• Server Class: Server class can be recognized as service provider which creates a
number of service units and provides servers to SimObjects requesting service.

770 D. Sahin and H. M. Ammari

Fig. 11 State transition diagram of pseudo-real time simulation

Fig. 12 State transition diagram of virtual time simulation

• Facility Class: This class is derived from Server class, hence it is very similar to
server class. A queue is encapsulated as a private data member. A facility provides
service to simulation entities via the request method.

• Signal Class: The behaviors of servers and increasing or decreasing number of
service units are all affected by signal class. A traffic light can be recognized as a
signal class in a simulation.

• Source Class: Source class can be recognized as the creator of SimObjects depend-
ing on the defined parameters, e.g., inter-arrival time, number of entities. Since
simulation model will request creation of different types of entities, initially, source
class is designed as an abstract class. To provide the required entity, the source
class should be extended and makeEntity abstract method should be implemented.

22 Programming Languages, Network Simulators, and Tools 771

Furthermore, the lifetime of the Source class is implemented to periodically create
an entity to the inter-arrival time distribution.

• Sink Class: Sink class is developed as the opposite of the source class which
destroys the SimObjects. When SimObjects complete their lifetimes, they directly
go to the sink class to be terminated with the capture method.

• Transport Class: Edges of the simulation model graph that connect two nodes
are generated by the transport class. Simulation entities travel along the transport
class and move to the transport class with move method.

• Model Class: Model class enables multiple models to run simultaneously in a
separate window frame. Furthermore, it provides statistical summary of the results
when the simulation is over.

J-Sim simulations can run in two different modes; console mode and graphics mode.
In the console mode, JSimulation is one of the fundamental classes of J-Sim which
is inherited from Object and has the ability to execute the simulation. Hence, in
every J-Sim simulation program, an instance of this class should take place. Every
simulation object has some special tasks to perform. Here are some of them [25].

• Information About Processes: Simulation object need to update the processes
in its list when a new process is created or killed. Every instance of JSimulation
has a queue of JSimProcessInfo elements where information about the simula-
tion processes are stored. JSimProcessInfo object is created and inserted into the
queue that is called as infoQueue, whenever a new process is added to the simula-
tion. deleteProcess() and deleteAllProcesses() are the methods used to delete the
processes from the queue.

• The Calendar: A calendar of events as instances of JSim Calendar in simulation
object list, should be updated when a process is activated, suspended or canceled.
JSim Calendar represents a queue of JSimCalendarItem elements that each of
them holds the time information of one event about when the event is sched-
uled and the number of processes which will be run at that time. Some methods
of calendar perform some specific tasks, addEntry() to add a new element to
the queue, deleteEntries() to delete the first or all events from the calendar, and
getFirstProcessTime() to return the time of the first event in the calendar. The men-
tioned methods cannot be used by processes. JSimulation suggests some methods,
e.g., addEntryToCalendar() and deleteEntriesInCalendar() to use them.

• Simulation Time: The simulation time should be kept and should be increased
from its initial value, 0, as every step is executed. JSimSimulation’s step() method
is the only place where the simulation time is changed. While it cannot be set by
any other methods, it can be read by every method.

• The simulation object needs to know switching between console mode and graph-
ics mode. To switch from console mode to graphics mode, the user need to call a
method named runGUI(). Each simulation can create its own simulation mode as
an instance of JSimGUIMainWindow class (Tables 1, 2).

772 D. Sahin and H. M. Ammari

Table 1 General comparison 1 of network simulators

Network
simulator

Graphical
support

Language
support

Interface Scalability Available modules

OMNET Yes C++ NED Large Wired, wireless, ad hoc, and wireless
sensor networks

NS-2 No C++ OTcl Small Wired, wireless, ad hoc, and wireless
sensor networks

J-Sim Yes Java Tcl Large Wired, wireless, ad hoc, and wireless
sensor networks

Table 2 General comparison 2 of network simulators

Network
simulator

Extendible Simulation
technique

Documentation Licence Initial concentra-
tion focus

OMNET Yes Discrete event
simulation

Medium Open source Wired network

NS-2 Yes Discrete event
simulation

Excellent Open source Wired network

J-Sim Yes Discrete event
simulation

Lacks a compre-
hensive manual

Open source Wired network

6.2.3 Tcl Language

Tcl is one of the most widely accepted scripting language in the world. Tcl language
is used for configuration of simulation scenarios which requires a certain learning
overhead. gEditor helps the configuration of Tcl files. The main contribution of Tcl
is to enable topology setup and a limited means of simulation control. J-Sim offers
higher-level Tcl-based programming interface. Tcl operations are all commands and
written in prefix notation. Redefinition and overridden concepts are adopted. Tcl gains
extendibility feature via Java in J-Sim. String handling, file system access, several
native data types, unicode support, threading are some of features that supported by
Tcl language.

6.2.4 Java Programming Language

J-Sim is a java-based tool. Java is widely supported by many communities and one
of the most widely-spread and well-known programming language. Furthermore, its
runtime environments and compilers are free of charge. Java provides many advan-
tages for J-Sim. For instance, Java pre-compiled code can be interpreted in the tar-
get environment, hence, both source texts and pre-compiled code are portable. This
important feature of Java is an important indication that Java is platform-independent
and enables users to use the tool in all possible computing environments and user’s
simulations can be ported from one platform to another with minimum effort.

22 Programming Languages, Network Simulators, and Tools 773

Java is an object-oriented language with the concepts of classes, instances, encapsu-
lation, inheritance and polymorphism which provides the basic classes to be extended
both in functionality and in data content. Java enables several processes to run con-
currently, provides a safe method of their synchronization with the use of Thread
concept. With Thread class, instances can run parallel with other instances.

7 OPNET

OPNET is another discrete event network simulator written in C++. It is one of
the most widely used network simulation programs. The downside of OPNET is not
commercially available for free-of-charge. However, It can be used free of charge by
the users applying to the University program of the simulator. The advantage of Opnet
among some of the others is that OPNET provides modeling of different network-
specific hardware, e.g., physical-link transceivers and antennas [31]. OPNET sup-
ports a various number of protocols, e.g., MAC protocols of IEEE 802.11a/b/g and
Bluetooth technologies. OPNET also provides a user graphical interface for mod-
eling, making graphs and animating the simulator results. Windows XP/2K, Linux
and Solaris platforms support the OPNET network simulator.

As NS-2, OPNET also provides a comprehensive manual for technical support.
Furthermore, it enables to collect some special kind of statistics, e.g., global statistics,
node statistics, attribute statistics and animation statistic.

OPNET supports four simulation technologies as depicted in Fig. 13 [31];

Fig. 13 OPNET simulation technologies

774 D. Sahin and H. M. Ammari

• Discrete Event Simulation: Highly detailed models which provide explicit
simulation packets and control messages are supported with discrete event simu-
lation feature. Discrete event simulation feature enables high-fidelity results, the
simulation run times may take quite longer.

• Hybrid Simulation: Two different modeling techniques, e.g., analytical and dis-
crete, are combined to achieve accurate and detailed results for specific flows.
Background and explicit network traffics place important roles for hybrid simula-
tion feature. Background traffic can be recognized as the network’s ambient load
at an abstract level, while explicit traffic models are used to detaily represent the
selected network application flows. The runtime of the executions are quite faster
compared to the discrete event simulation technology.

• Flow Analysis: Analytical techniques and algorithms are preferred by flow analy-
sis technology to model the steady-state network behavior. Instead of modeling
individual protocol messages or packets, Flow analysis technology prefers study-
ing the routing and reachability features of the network in steady state, and in
scenarios with one or more failed devices. As hybrid simulation technology, Flow
analysis technique manages execution times faster than discrete event simulation
technique.

• Application Characterization Environment (ACE) Quick Predict: Analytical
technique is the preferred solution to monitor the impact on application response
time of changing network parameters, e.g., bandwidth, latency, utilization, packet
loss. OPNET ACE fully supports this technique.

7.1 WSN Simulation OPNET

OPNET enables simulation of different types of WSN. Terrain, mobility, path-loss,
hybrid or analytical models are all supported for wireless network simulations.

• Propagation Modeling: OPNET implements free-space and longley-rice propa-
gation models. Furthermore, it allows developers to create their own propagation
models as well. Longley-rice model takes into account many parameters to mea-
sure the signal strength, such as, vertical, horizontal, polarization, earth’s curvature
and conductivity [32].

• MAC Modeling: OPNET simulator is highly preferred for MAC layer simula-
tions. OPNET implements IEEE 802.11 MAC layer in its wireless module and
decides if a packet is correct based on the received power [33]. MAC layer uses
different metrics, e.g., delay, bandwidth, energy consumed per bit to measure the
communication performance.

• Routing Modeling: There are no special routing protocols implemented in
OPNET.

22 Programming Languages, Network Simulators, and Tools 775

7.2 OPNET Simulation

A project-and-scenario approach is preferred to model the networks.

• Project: Project can be recognized as the collection of network-related scenarios,
and each of them tried to address a particular aspect of the network design. All the
projects can have only one scenario.

• Scenario: Scenario can be recognized as the single instance of a network. Sce-
nario represents a unique configuration of the network, e.g., topology, protocols,
applications, traffic, and simulation settings.

After that, there are three steps that need to be performed for the network simulation.

• Specifying Data Collection: One of the most important decision that must be
decided before starting the simulation should be the form of the simulation result,
e.g., application-specific, statistics, behavioral characterizations, visual anima-
tions, time-dependent series of values, parametric relationships or application-
specific visualization [34]. Hence, in the first step the form of the simulation
should be decided.

• Construction of the Simulation: The execution of the OPNET simulation pro-
gram can be managed by using an executable file in the host computer’s filesystem.

• Execution the Simulation: The last step is the simulation execution. If the results
are not satisfying, additional changes can be made to the model’s specification and
additional simulations can be executed. Internal and external execution are some
of the options for running the network simulations.

During these important steps, there are some sub-steps that should be made to start
a simulation. Project editor is used to construct and edit the topology of a network
model. To construct a network topology, the objects from an Object Palette can be
dragged to the Project Editor workspace, or the existing network topologies can be
loaded and built or from an external system, a network topology can be imported. Fur-
thermore, OPNET provides a wide range of models from its libraries. For instance,
a standard library contains subnetworks, nodes, links, LANs, clouds and utility
objects. Several simulation scenarios can be modeled, and it is also possible to
communicate with other simulators. OPNET supports the hierarchical modeling
and describes a network as a collection of sub-models representing sub-networks
or nodes. Manual creation of simulation topologies is available. OPNET supports
a variety of different protocols while it enables the users to implement their own
models. Stochastic models can be implemented since network nodes can be con-
figured by just setting their parameters. Each node has transmission and reception
modules as their protocol layer or physical resource to provide connections to the
links. Message forwarding is the basic way for modules to communicate [31]. The
simulation of wireless sensor networks is supported with the extension, named, the
OPNET Modeler Wireless Suite. Full protocol stack modeling is supported with this
extension, hence, all aspects of wireless transmission, RF propagation, transmitter,
receiver characteristics, interference, node mobility etc., are modeled. MANET, IEEE

776 D. Sahin and H. M. Ammari

Fig. 14 Hierarchical organization of editors

802.11, 3G, Ultra Wide Band, IEEE 802.16, Bluetooth are some of the supported
wireless technologies by OPNET.

As mentioned above, OPNET provides hierarchical modeling in which it provides
three different editors to model the systems as depicted in Fig. 14. These are network,
node, process editors that help OPNET to gain a hierarchical fashion.

• Network Model: A physical topology of a communications network can be spec-
ified to position the network entities, e.g., nodes, links. The node’s behavior can be
customized with a set of parameters or characteristics that are attached within each
model. The network nodes can behave as fixed or mobile nodes, and duplex or
simplex links can connect them. Radio links are also supported to provide mobile
communications. It is possible to modify the links to simulate the actual commu-
nication channels. Subnetwork concept is introduces to decrease the complexity
level of the network. This concept introduces the abstraction concept. Each subnet-
work can contain multiple other subnetworks while the lowest level subnetwork
consists of nodes and links. The communication between different subnetworks
can be managed by communication links.

• Node Model: Node editor provides the required specifications for the network
devices which are connected to the network. Node models can be recognized as
interconnected modules. Packet generators, point-to-point transmitters and radio
receivers can be introduces as the first group of node models which all have pre-
defined characteristics and parameters. Processors and queues can be recognized
as the second group of models which have high programable characteristics. All
the models can be connected to each other with packet streams and static wires.
A block structured data flow diagram is always used to represent a node.

22 Programming Languages, Network Simulators, and Tools 777

• Process Model: Process editors construct the process models whose main
responsibility is to introduce the logic flow and behavior of processor and queue
modules. Furthermore, process models can also define the functionality of each
programmable block in a node model. Proto-C language which contains the state
transition diagrams, a library of kernel procedures, and the standard C program-
ming language can define the process models [34]. A powerful state-transition
diagram is preferred to support any specification of any type of protocol, resource,
application, algorithm, or queuing policy. Child process can be generated to do
the sub-tasks.

To gain more insights about the network elements, a brief description of each
element is itemized as the followings:

• Node: Node is a basic network device with a wide range of possible capabilities,
e.g., router, switch, hub, workstation, server, firewall, etc.

• Link: Link can be recognized as the physical media and properties, such as, line
rate in bits per second, delay, likelihood of data corruption, etc. Line segments or
a series of line segments with arrowheads represent the links.

• LANs: A LAN infrastructure is abstracted by the LAN object which enables the
reduction of the amount of configuration required to do to represent an internetwork
of LANs, and the amount of memory needed to run the simulation [31].

• Cloud: The WAN infrastructure is abstracted into one object by the cloud object
which provides high-level characteristics, such as, packet latency and discard ratio.

• Utility Objects: Utility objects manage logical functions in the network, such as,
configuration of network resources, scheduling special events, etc.

7.2.1 OPNET Probe Editor

There are some techniques to collect the simulation data. The simulation data can be
automatic animation, customized programmed animation predefined and user defined
statistics. Probe editor can be used to decide the type of outputted data. A probe can
be assigned for each source of data which is desired by the user. Many probes can
come together to provide a group to be used when the simulation is executed. There
are many types of probes. Here are some of them.

• Statistic Probe: Statistic probe is a kind of probe that is applied to predefined,
standard statistics and monitoring characteristics, e.g., bit error rates or throughput.

• Custom Animation Probe: This type of probe is also supported by process and
link models. The characteristics of animation is defined.

• Automatic Animation Probe: Generation of animation sequences of the simula-
tion is provided with the automatic animation probe.

• Coupled Statistic Probe: The output data is generated as the data generated by
the statistic probe. However, additionally, a primary module and a coupled module
should be defined. Some data is generated in primary module while some of them
is generated in coupled module.

778 D. Sahin and H. M. Ammari

7.2.2 OPNET Analysis Tool

OPNET Analysis Tool provides the data visualization with the help of graphs. As
mentioned before, the simulation results can be represented by different forms, e.g.,
f numerical data, animation, messages printed in the console window, to generation
of ASCII or binary files, and even live interactions with other programs [34]. Rec-
tangular areas in the graphs provided by analysis tool, are recognized as the analysis
panels which can be produced with several different operations. A plotting area,
with two numbered axes, which is generally referred to as the abscissa axis (horizon-
tal), and the ordinate axis (vertical) is included in an analysis tool. Hence, OPNET
Analysis Tool enables the user to extract the data from the output files to display
them in various forms. Several mechanisms for numerically processing the data and
generating new data sets for plotting purposes, e.g., computing probability density
functions and cumulative distribution functions, histograms, are also introduced by
the Analysis Tool.

7.2.3 OPNET Filter Tool

The data which is represented by OPNET Analysis Tool can also be operated by
OPNET Filter Tool which is represented as the block diagram consisting of inter-
connected filter elements. These can be either built-in numeric processing elements,
or references to other filter models [34]. The hierarchial model is introduced in filter
tools which consist of other filters. The discrete and ordered sets of numeric data can
be called as the vector o which the filters can also operate.

8 TOSSIM

TOSSIM is another discrete event simulator to ease the development of sensor net-
work applications. First of all, we need to have a closer look at the TinyOS to better
understand TOSSIM. TinyOS is the most popular event-driven, component-based
operating system for use with embedded sensor nodes [35] and TOSSIM enables
the simulation of these nodes by abstracting the hardware capability and software
modeling [36]. TOSSIM can fully simulate the TinyOS network stack from the bit
level, allowing experimentation with low-level protocols in addition to top-level
application systems. TinyViz is the graphical user interface of TOSSIM which can
visualize and interact with running simulations. The independent components are
linked together to enable building an application-specific OS into each application.
It is written with one of the most popular programming language, nesC, and it has the
abilities to access and control the radio communication and hardware parts of sensor
nodes. TOSSIM is actually a TinyOS simulator and utilizes the TinyOS’s hierarchi-
cal model with the replacement of lower level hardware components with software
emulated ones [37]. It can be compiled directly from TinyOS code which provides

22 Programming Languages, Network Simulators, and Tools 779

reducing the gap between real environment and the simulator. TOSSIM enable thou-
sands of nodes to run simultaneously with high levels of reliability with the help of
great design of TinyOS since it supports mote-based applications which are small
in size and have their own private and static frames which reduce the simulation
overhead [37]. Here are some of the advantages of TOSSIM.

• In scalability point of view, TOSSIM can handle wide range of networks with
thousands of nodes, e.g., a network with 850 nodes, and simulate many of the
sensor nodes at once even they have limited memory and CPU resources with high
reliability levels.

• TOSSIM can highly perform well at capturing the behaviors of motes by providing
wide range of experiments.

• TOSSIM supports a seamless PC-based TinyOS tool-chain which help developers
to perform seamless transitions between running applications on motes and in
simulation and also provides detailed visualizations of running simulations with
GUI support.

• TOSSIM provides a bridging between algorithms and implementation to give a
chance to developers to test their code on real hardware.

8.1 TOSSIM Simulation

For wireless sensor network, TOSSIM uses a very simple and powerful abstraction
in which a WSN is represented as a directed graph where each vertex is a sensor
node while each edge is a bit error probability. Hence, with this abstraction, many
problems, i.e., hidden terminal problem, problems during data transmission, can be
captured easily.

8.1.1 Radio Models

TOSSIM supports two basic radio models, i.e., simple which places all nodes in a
single cell and lossy which places nodes in a directed graph. Simple radio model is
used for testing single-hop algorithms and provides every bit to be transmitted and
received without any errors. Lossy radio model enables TOSSIM to model asym-
metric links and capture many reasons of packet loss and noise in the network.

8.1.2 Network Monitoring and Visualization

The SerialForwarder is the standard TinyOS interface tool which enables user to
interact with the simulated network. TOSSIM provides two modes, i.e., serial port
mode and the snooping mode to connect to SerialForwarder. On the other hand,
message interface generator is another tool to generate necessary Java classes for
TinyOS packets.

780 D. Sahin and H. M. Ammari

8.2 WSN Simulation of TOSSIM

The basic idea of TOSSIM is to provide a flexible, simple and efficient environment
for the needs of users, hence, it does not provide any modeling about the real world.
However, it enables outside tools to manage the necessary modeling according to the
needs of simulation.

• Propagation Modeling: TOSSIM does not provide a radio propagation modeling
for WSN, however, it supports a radio abstraction of bit errors between two nodes in
the network which provides an easy modeling for asymmetric links. Furthermore,
TOSSIM enables an external program managing the required radio propagation
modeling and mapping it to the bit errors between nodes.

• Energy Consumption Modeling: TOSSIM, itself, does not provide a proper
energy modeling, or energy-consumption estimation modeling for wireless sen-
sor nodes since it has instantaneous transitions from an event to another with no
tracking of execution time. Hence, to add proper energy-consumption estimation
features to it, PowerTOSSIM is written as an extension, event-driven simulation
environment to TOSSIM to handle accurate and per-node estimations of power
consumptions. It provides a detailed energy model for each type of sensor nodes,
for instance, the first model was developed for Mica2 which is the third generation
multi-channel radio transceiver used for low power WSN, while the second model
was developed for MicaZ which offers a 2.4 GHz, IEEE/ZigBee 802.15.4, with
PowerTOSSIM-z [37, 38] (Table 3).

9 Other Major Programming Languages for Wireless Sensor
Networks

WSN consist of thousands of sensor nodes which are easy-to prone to failure, hence,
even they are not physically reachable, they should be reprogrammable for the chang-
ing needs with the lowest energy-consumption [39]. Here are some of the major
programming languages for WSN.

9.1 nesC

nesC is a very popular low-level network programming language used for wireless
sensor networks to support special needs of sensor nodes by providing event-driven
execution, component-oriented application design, and a flexible concurrency model
[40]. It is an extension of C language and supports almost the same data types,
structures and set of operators. nesC provides many advantages in terms of reduc-
tion in code size, simplification of application development, reliability and resource

22 Programming Languages, Network Simulators, and Tools 781

Table 3 Modeling suitability comparison of network simulators [15]

Modeling
suitability

OMNET++ J-Sim NS-2 OPNET

Creation new
models

Yes Yes Yes Not specified

Extendibility to
existing and
predefined
models

Yes Yes Yes Yes

Generic models
support

Yes Yes Not specified

Distributed on
a platform
network

Parallel
simulation is
possible

Yes

Hosting
operating
systems

Windows, Linux,
Unix

All platforms are
supported

Windows, Unix,
free Bsd

Windows, Linux,
Sun solaris

Hosting hetero-
geneous
modeling
formalisms

Stochastic and
deterministic

Stochastic and
deterministic

Stochastic and
deterministic

Stochastic and
deterministic

Support for
hierarchical
modeling

Yes Yes Yes

Easy
integration
with other
tools

Yes Yes Yes Yes

Continuous and
discrete
variable
representa-
tion

Yes Yes Yes Yes

Stochastic
modeling

Yes Yes Yes Yes

consumption, for instance, it introduces whole-program analysis which includes
data-race detection in reliability point of view and aggressive function inlining in
resource consumption point of view [40]. It has a strong relationship with TinyOS,
the micro-based event-driven operating system for sensor nodes. nesC language has
been used for development of WSN applications on TinyOS platform and. The holis-
tic system design of nesC has been realized as the key focus of it. This design provides
mote applications to be tied to hardware and gives a chance to each mote to run a
single application at one time. Hence, all resources are known and designing flexible
decompositions is easy since hardware and software boundaries vary on the appli-
cation and hardware platform. Furthermore, nesC programming language has two
important modular concepts, the interface and component. While components are
assembled to form the whole program, interfaces are responsible to declare some

782 D. Sahin and H. M. Ammari

events which imply the completion of an operation and commands which indicate
the requests for that operation. There are two types of components, i.e., configura-
tionwhich indicates the number of components that are wired to one another through
interfaces and module which is responsible to implement the commands that have
been identified by the interfaces or events. Here are some of the advantages of nesC
language.

• nesC programming language supports a strong component model which supports
event-driven systems, a flexible hardware/software boundary and provides bidi-
rectional interfaces and efficient implementations.

• nesC programming language provides applications to show synchronous behaviors
with very limited resources since it’s compiler can detect most of the data races at
compiler time.

• nesC programming language performs very well in terms of improving reliability
and reducing code size.

• Whole program inlining, dead-code elimination, static component instantiation
are some of the other advantages that nesC provides.

Here are some of the shortcomings of nesC language.

• nesC is a static programming language which does not support dynamic memory
allocation or function pointer.

• nesC has complex syntax and semantics according to other networking languages.
Hence, it is not easy to establish formal models from nesC programs.

• Modeling nesC programs on TinyOS may be complicated since it is also required
to model the hardware operations on motes.

Apart from all the advantages and disadvantages, nesC should accomplish some goals
which are related to the nature of WSN. One of the most important goal of nesC is
to provide long-lived applications for WSN for reliable data communications since
sensor nodes may have to collect data for long-periods without human interaction.
On the other hand, nesC has to deal with the limited physical resources that sensor
nodes have.

9.2 Mate

Mate is the first virtual machine for sensor networks and implemented on top of the
TinyOS. It is basically a byte-code interpreter to run on sensor nodes and designed
to meet the specific requirements of sensor nodes which are limited in processing
and energy-consumption. Mate can quickly and easily manage the installation of
wide range of programs with the lowest energy-consumption and network traffic
since it provides capsules of 24 instructions to fit in a packet and forward themselves
via the network [39]. Mostly single byte instructions, bytecode, form its instruc-
tions set and arithmetic operations, variable and stack manipulations are encoded as
instructions. Mate has two stacks, operand stack which provides the environment to

22 Programming Languages, Network Simulators, and Tools 783

most instructions to operate on, and return address stack. Mate has three execution
contexts, i.e., clock timers, message send requests and message receptions, that can
run simultaneously on instruction granularity [39].

Here are some of the highlighted advantages of Mate.

• Mate has a small, robust and simple programming model which provides memory,
execution and energy-consumption efficiency for sensor nodes.

• Mate provides secure operations and prevents malicious capsules.
• Mate hides race conditions and asynchrony of TinyOS which prevents the need

for managing the message buffers.
• Mate supports both a built-in ad hoc routing algorithm and mechanisms for writing

new ones.

10 General Comparison of Network Simulators from WSN
Perspective with Example Scenarios

• IEEE 802.15.4 Simulation Point of View: Most of the existing network simu-
lation tools were originally designed for wired networks, and then extended for
wireless sensor networks. Hence, realistic wireless sensor network simulations
cannot be conducted. The energy consumption of sensor nodes is one of the most
important criteria that must be taken into account while designing a simulation.
However, most of the network simulators cannot support this feature in a reliable
manner. For instance, NS-2 was developed for IP networks, however, later it is
extended for IEEE 802.11 wireless networks. IEEE 802.11 MAC, on the other
hand, is not efficient for the battery-powered wireless sensor nodes, since it intro-
duces additional overheads. Hence, NS-2 cannot provide an efficient and reliable
simulation environment for wireless sensor network simulations, e.g., ZigBee.
However, in the literature, there has been some researches conducted to develop
a reliable model for IEEE 802.15.4 protocols for WSN simulations with OPNET
simulator [41, 42]. In [41], the OPNET modeler simulator is used to create a
reliable simulation tool for IEEE 802.15.4 slotted CSMA/CA mechanism with
the support of deterministic real-time traffic, and cluster-tree topology and hierar-
chical tree routing mechanisms. J-Sim is not suitable to simulate IEEE 802.15.4
networks, since it only implements the IEEE 802.11 MAC.

• IEEE 802.11 Simulation Point of View: NS-2 network simulator was origi-
nally developed for simulation of TCP/IP, multicast protocols, and wireless sensor
network support has been added later. However, the extensibility feature of NS-
2 enables the integration of new protocols. J-Sim, on the other hand, provides
an energy modeling for sensor networks. With its component based architecture
model, it enables the sensor network to scale well (Table 4).

784 D. Sahin and H. M. Ammari

Table 4 Opportunities and challenges of network simulators in WSN point of view

Simulation
suitability

Opportunities Challenges Support of MAC
protocols

OMNET++ Supports a graphical
network editor

Needs other frameworks to
run WSN simulations

Aloha, CSMA
(MiXiM)

J-Sim Supports energy modeling,
component-based
architecture

Radio energy consumption
is not supported

IEEE 802.11

NS-2 Visualization is available
and very popular

Customization, and
application model is not
enabled

IEEE 802.11,
a single-hop
TDMA protocol

OPNET Supports very large-scale
WSN

Introduces complexity in
propagation models

IEEE 802.15.4

TOSSIM Provides accurate and
reliable simulations

Energy consumption model
is not supported

–

11 Shortcomings of Network Simulators

• NS-2: NS-2 is one of the most complex network simulators. It needs advanced
skills and a long-learning process to create reliable and meaningful simulations. On
the other hand, the customization is not available and application model which is a
very important component for sensor networks to make interactions with network
protocol level is not included in NS-2.

• TOSSIM: The energy consumption is the most important measurement of sensor
nodes in WSN. However, TOSSIM does not model the energy consumption, hence
it is, alone, not preferable simulator in most cases. On the other hand, TOSSIM
makes assumptions very simplified which may lead a perfectly running simulation
not run on a real mote, furthermore, the TOSSIM simulation results should not be
recognized as the final-point of evaluations.

• J-Sim: J-Sim is another complex simulator tools, and the downside of it is that
only IEEE 802.11 MAC protocol has been implemented so far. Hence, it is not a
preferred simulator tool for realistic WSN simulations. Furthermore, it introduces
some additional overhead and some inefficiencies regarding to the Java program-
ming language.

• OPNET: OPNET is one of the most preferred simulator for WSN, however, it
does not support any special routing protocols.

• OMNET++: OMNET++, by itself, is not a wireless sensor network simulator.
Castalia, for instance, is a WSN simulator built on top of OMNET++. It has some
limitations, for example, it is not a sensor specific platform (Table 5).

22 Programming Languages, Network Simulators, and Tools 785

Table 5 Simulation suitability comparison of network simulators [15]

Simulation suitability OMNET++ J-Sim NS-2 OPNET

Fast simulation capabilities Not specified Yes
Exchanging information with

other simulators
Yes

Real network/system
interactions

Yes Yes Yes Yes

Trace files of the simulation
results creations

Yes Yes Yes Yes

External information as input Yes in output files Yes Yes
GUI for model

creation/management
C++ editor for

component behaviour
component
behavior in
Java

Yes Yes

GUI for scenario
creation/management

GNED for topology Yes Limited Yes

Design, archive and modify
scenarios

Yes Yes Yes Yes

Network visualization tools and
network data base systems

Yes A plotter only Yes Yes

Analysis tools for state
estimations of the network,
results analysis, etc.

Yes A plotter only Yes Yes

Disturbances/corruptions
generations inside the
simulated networks

Defined in C++ code Yes Yes Yes

Simulation of SCADA system
components

Yes Yes Yes Yes

Simulation of electricity and
telecommunication
networks

Generic modeling Generic mod-
eling

Telecom Telecom

12 Other Network Simulators

There are many other network simulators which are briefly covered in this section.
Here are some them.

• GloMoSim: GloMoSim is another popular network simulator platform which
focuses on simulation of mobile wireless networks [43]. GloMoSim is written in
Persec programming language which is the extension of C programming language
for parallel programming. The user needs to know how to write in Persec to
add new protocols or methods. As NS-2, GloMoSim realizes the OSI concept.
GloMoSim is very good at simulating IP networks, however, its performance is
not good enough for other types of networks. GloMoSim has been updated as a
commercial product, QualNet.

• QualNet: QualNet is a commercial product based on GloMoSim network sim-
ulator to simulate ad hoc networks [44]. Persec programming language is used

786 D. Sahin and H. M. Ammari

for developing the QualNet. The main focus area of QualNet is wireless sensor
networks, hence, it provides several set of tools for network simulation and mod-
eling.

• Atarraya: Atarraya is another event-driven simulation platform for teaching and
researching topology control algorithms and protocols for wireless sensor net-
works. Atarraya enables creation and testing of old and new topology control
protocols with the help of its graphical interface to illustrate how these protocols
work. Several topology construction and several topology maintenance algorithms
and protocols, deployment generation using different distributions and support for
different energy models are all the features that Atarraya supports [45].

• JiST: JiST which referees to the Java in Simulation Time, is another network
simulator for mobile ad hoc networks [46]. The official development of JiST is
no longer supported by its original author, however, Ulm University has released
some enhancements and improvements.

Acknowledgments This work is funded by WiSeMAN Research Lab Department of Computer
and Information Science College of Engineering and Computer Science University of Michigan-
Dearborn. The authors gratefully acknowledge the insightful comments of the anonymous reviewers
which helped improve the quality and presentation of the paper significantly. This work is partially
supported by the US National Science Foundation (NSF) grants 0917089 and 1054935.

References

1. S. Misra, M. Reisslein, G. Xue, A survey of multimedia streaming in wireless sensor networks.
IEEE Commun. Surv. Tutorials 10, 1553–1877 (2008)

2. A Comparison Study of Network Simulators, Online: https://ti.tuwien.ac.at/ecs/people/
albeseder/simcomp/simcomp

3. NS-2 Official WebSite, Online: http://www.isi.edu/nsnam/ns/
4. S. Ivanov, A. Herms, G. Lukas, Experimental validation of the NS-2 wireless model using

simulation, emulation, and real network in Proceedings of the 4th Workshop on Mobile Ad-
Hoc Networks (WMAN’07), pp. 433–444. VDE Verlag, (2007)

5. K.M. Reineck, Evaluation and comparison of network simulation tools. Master thesis (2008)
6. H. Tseng, S.-H. Yang, P.-Y. Chuang, H.-K. Wu, G.-H. Chen, An energy consumption analytic

model for a wireless sensor MAC protocol. 2004 IEEE 60th Vehicular Technology Conference,
2004. VTC2004-Fall, vol. 6, pp. 4533–4537, 26–29 Sept 2004

7. I. Vijaya, A.K. Rath, Simulation and performance evaluation of AODV, DSDV and DSR in
TCP and UDP environment. 3rd International Conference on Electronics Computer Technology
(ICECT), 2011, vol. 6, pp. 42–47, 8–10 April 2011

8. S. Wasiq, W. Arshad, N. Javaid, A. Bibi, Performance evaluation of DSDV, OLSR and DYMO
using 802.11 and 802.lip MAC-protocols. IEEE 14th, International Multitopic Conference
(INMIC), 2011, pp. 357–361, 22–24 Dec 2011

9. J. Ma, The study on multi-path DSDV in Ad Hoc. IEEE 3rd International Conference on
Communication Software and Networks (ICCSN), 2011, pp. 299–303, 27–29 May 2011

10. N. Javaid, A. Bibi, A. Javaid, S.A. Malik, Modeling routing overhead generated by wireless
proactive routing protocols. 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1072–1076,
5–9 Dec 2011

11. L. Shrivastava, S.S. Bhadauria, G.S. Tomar, Performance evaluation of routing protocols in
MANET with different traffic loads. 2011 International Conference on Communication Systems
and Network Technologies (CSNT), pp. 13–16, 3–5 June 2011

https://ti.tuwien.ac.at/ecs/people/albeseder/simcomp/simcomp
https://ti.tuwien.ac.at/ecs/people/albeseder/simcomp/simcomp
http://www.isi.edu/nsnam/ns/

22 Programming Languages, Network Simulators, and Tools 787

12. K. Han, G. Pei, B. Ravindran, C. Hyeonjoong, E.D. Jensen, RTRD: real-time and reliable data
delivery in Ad Hoc networks. WCNC 2008. IEEE Wireless Communications and Networking
Conference, 2008, pp. 2253–2258, 31 March, 3 April 2008

13. S. Sagar, N. Javaid, Z.A. Khan, J. Saqib, A. Bibi, S.H. Bouk, Analysis and modeling experiment
performance parameters of routing protocols in MANETs and VANETs. 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 1867–1871, 25–27 June 2012

14. S.S. Kushwah, G.S. Tomar, Investigation of effects of mobility on routing protocols in
MANET. 2011 International Conference on Ubiquitous Computing and Multimedia Appli-
cations (UCMA), pp. 82–84, 13–15 April 2011

15. White Paper, IRRIIS integrated risk reduction of information-based infrastructure systems. List
of available and suitable, simulation components (2006)

16. OMNETT++ Community Website, Online: http://www.omnetpp.org/ Last visit: 28 June 2012
17. Q. Xue, X. Ren, Research of routing protocols simulation for wireless sensor networks based

on OMNeT++. 2012 International Conference on Quality, Reliability, Risk, Maintenance, and
Safety Engineering (ICQR2MSE), pp. 79–82, 15–18 June 2012

18. A. Kuntz, F. Schmidt-Eisenlohr, O. Graute, H. Hartenstein, M. Zitterbart, Introducing proba-
bilistic radio propagation models in OMNeT++ mobility framework and cross validation check
with NS-2. in Proceedings of the 1st International Conference on Simulation tools and Tech-
niques for Communications, Networks and Systems and Workshops (Simutools ’08), Article
72, p. 7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium, 2008

19. J.-C. Maureira, P. Uribe, O. Dalle, T. Asahi, J. Amaya, Component based approach using
OMNeT++ for train communication modeling. 2009 9th International Conference on Intelli-
gent Transport Systems Telecommunications, (ITST), pp. 441–446, 20–22 Oct 2009

20. F. Chen et al., An energy model for simulation studies of wireless sensor networks using
OMNeT++

21. INET Framework Manual, Online: http://inet.omnetpp.org/doc/inet-manual-DRAFT.pdf, Last
visit: 28 June 2012

22. Castalia User Manual, Online: http://castalia.npc.nicta.com.au/
23. MIXIM Manual, Online: http://mixim.sourceforge.net/index.html
24. OverSim User Manual, Online: http://www.oversim.org/
25. J-Sim Community Website, Online: http://www.J-Sim.zcu.cz/
26. M. Malowidzki, Network simulators: a developer’s perspective. Military Communication Insti-

tute, Zegrze
27. A. Sobeih, J.C. Hou, L.-C. Kung, N. Li, H. Zhang, W.-P. Chen, H.-Y. Tyan, H. Lim, J-Sim: a

simulation and emulation environment for wireless sensor networks. IEEE Wirel. Commun.
13(4), 104–119 (2006)

28. K. Sarabandi, I. Koh, G. Liang, H. Bertoni, Propagation modeling for FCS. in Proceedings of
the IEEE Military Communications Conference (IEEE MILCOM’01) Oct 2001

29. F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger, Geometric Ad-Hoc routing: of theory and
practice. in Proceedings of the ACM Symposium on Principles of Distributed Computing (ACM
PODC’03), July 2003

30. J.A. Miller et al., JSIM: a Java-based simulation and animation environment. Department of
Computer Science, University of Georgia, Athens.

31. OPNet Official Website, Online: http://www.opnet.com/solutions/network_rd/modeler.html
32. P.L. Rice, A.G. Longley, K.A. Norton, A.P. Barsis, Tech note 101: transmission loss predic-

tions for tropospheric communication circuits, vol. I, II. U.S. Government Printing Office,
Washington, Jan 1967

33. A. Daga, D.K. Borah, G.R. Lovelace, P. De Leon, Physical layer effects on MAC layer perfor-
mance of IEEE 802.11 a and b WLAN on the Martian surface. IEEE Aerospace Conference,
p. 8, 2006

34. X. Chang, Network simulations with OPNET. Proceedings of the 1999 Winter Simulation
Conference

http://www.omnetpp.org/
http://inet.omnetpp.org/doc/inet-manual-DRAFT.pdf
http://castalia.npc.nicta.com.au/
http://mixim.sourceforge.net/index.html
http://www.oversim.org/
http://www.J-Sim.zcu.cz/
http://www.opnet.com/solutions/network_rd/modeler.html

788 D. Sahin and H. M. Ammari

35. A.I. McInnes, Using CSP to model and analyze TinyOS applications. 16th Annual IEEE Inter-
national Conference and Workshop on the Engineering of Computer Based Systems ECBS
2009, pp. 79–88, 14–16 April 2009

36. TOSSIM Official WebSite, Online: http://www.cs.berkeley.edu/pal/research/tossim.html
37. P., Enrico et al., PowerTOSSIM z: realistic energy modelling for wireless sensor network

environments. Proceedings of the 3nd ACM Workshop on Performance Monitoring and Mea-
surement of Heterogeneous Wireless and Wired Networks. ACM 2008

38. V. Shnayder, M.Hempstead, B. Chen, G.W. Allen, M.Welsh, Simulating the power consumption
of large scale sensor network applications. Division of Engineering and Applied Sciences,
Harvard University (2003)

39. P. Levis, D. Culler, Mate: a tiny virtual machine for sensor networks. SIGOPS Oper. Syst. Rev.
365, 85–95 (2002)

40. D. Gay, P. Levis, R.v. Behren, M. Welsh, E. Brewer, D. Culler, The nesC language: a holistic
approach to networked embedded systems. in PLDI, p. 111, 2003

41. P. Jurcik, A. Kouba, M. Alves, E. Tovar, Z. Hanzalek, A simulation model for the IEEE
802.15.4 protocol: delay/throughput evaluation of the GTS mechanism. in Proceedings of
15th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS07), Istanbul (Turkey), Oct 2007

42. A. Kouba, M. Alves, B. Nefzi, Y.Q. Song, Improving the IEEE 802.15.4 slotted CSMA/CA
MAC for time-critical events in wireless sensor networks. in Proceedings of the Workshop of
Real-Time Networks (RTN 2006), Satellite Workshop to (ECRTS 2006) July 2006

43. Glomosim Official Website, Online, http://pcl.cs.ucla.edu/projects/glomosim/
44. QualNet Official Website, Online, http://www.scalable-networks.com/content/
45. Atarraya Official WebSite, Online, http://www.csee.usf.edu/ labrador/Atarraya/
46. E. Weingartner, H.V. Lehn, K. Wehrle, A performance comparison of recent network simulators.

Distributed Systems Group RWTH Aachen University Aachen, Germany

http://www.cs.berkeley.edu/pal/research/tossim.html
http://pcl.cs.ucla.edu/projects/glomosim/
http://www.scalable-networks.com/content/
http://www.csee.usf.edu/

Chapter 23
Network Architectures and Standards

Dilan Sahin and Habib M. Ammari

Abstract Wireless sensor network is composed of a collection of sensor nodes that
sense the physical phenomena for further analysis purposes. ZigBee, WirelessHART,
6LoWPAN and ISA.100.11a are some of the wireless sensor network technologies
that are presented throughout this chapter with the details of their network structure,
protocol layers, key characteristics and application areas.

1 Introduction

There has been tremendous interest in wireless sensor networks (WSNs) technolo-
gies from academia, industry and technology developers due to its seamless, energy
efficient, reliable, low-power and low-cost features. Basically, a WSN consists of
a collection of sensor nodes spread over a geographical area to sense the physical
environment and send the information to the collection points for further data analy-
sis purposes [69]. Sensor nodes have limited computational capabilities, memory
resources and bandwidth to be low-power and prolong the sensor network lifetime.
WSN brings comfort to daily lives with advance applications, e.g., advanced con-
trol to healthcare systems, remote monitoring and control to security systems and
advanced control and monitoring capabilities to automation industry, power grid,
military services [29, 41, 62]. To be able to support these applications and address
their specific needs, different protocols were proposed for WSNs.

D. Sahin
University of Michigan-Dearborn, Dearborn, MI, USA
e-mail: dsahin@umd.umich.edu

H. M. Ammari (B)

WiSeMAN Research Lab, Department of Computer and Information Science, University of
Michigan-Dearborn, Dearborn, MI48128, USA
e-mail: hammari@umd.umich.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 789
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4_23,
© Springer-Verlag Berlin Heidelberg 2014

790 D. Sahin and H. M. Ammari

This chapter introduces the key characteristics, protocol structures, applica-
tion areas and network architectures of ZigBee, WirelessHART, 6LoWPAN and
ISA.100.11a technologies, and finally gives a brief comparison in terms of network
topology, reliability, data rate, security, power consumption and scalability features.

ZigBee provides an effective, low-power, low cost connectivity for a large number
of devices into a single network. It has been an advantageous technology for most of
the application areas, e.g., house automation, medical care, smart buildings, indus-
trial control, since it overcomes the limits of wire connections [86]. However, the
current trend has been moving to IP-based wireless networking technologies, such
as, 6LoWPAN, which form a strong bridge between Internet and wireless embedded
devices [41].

6LoWPAN is low-cost, low-power WSN technology that interconnects low-power
wireless area networks to IP networks. However, switching to a new technology will
bring its own obstacles, since, most of the wireless sensors have been deployed over
years.

WirelessHART, on the other hand, is the first open wireless technology in indus-
trial processing applications.

As mentioned before, there are a variety of different WSN-based applications that
each of them has different, and unique requirements, however, the overall require-
ments can be generally itemized as the followings.

• Energy Consumption Efficiency: Energy consumption efficiency is one of the
most critical requirements for most of the WSN applications, since the sensor
nodes are battery powered, and they need to survive for long period of times
unattended [40]. Hence, they have to consume the energy wisely to increase the
life-time of sensor network and provide reliable and continuous wireless data
communications since battery recharging/replacementmay not be feasible in large-
scale deployments. There have been tremendous efforts towards minimizing the
energy consumption of sensor nodes [43]. The most popular approach towards this
problem is switching the mode of a sensor node to the sleeping mode, since a sensor
node may spend as much energy in the idle node as in receiving and transmitting
mode [6, 81]. Furthermore, the size of the sensor transmission radius, the type of
operating system, sensor’ event detection delay, the preferred routing algorithms,
network topology, participation density are some of the other parameters that affect
the energy consumption of a sensor node [3, 6, 21]. Dutta et al. proposed clustering
techniques to provide optimal energy consumption among sensor nodes [11], while
Unterassinger et al. proposed an energy management unit by employing several
state machines to control different energy consumption domains by turning on/off
depending on the operating mode of the wireless sensor node [63].

• Security: Security is another critical requirement that must be addressed for the
continuity of the reliable WSN communication, since sensor nodes are vulnerable
to various types of malicious attacks and threats, and in most applications, e.g.,
disaster recovery, bio-weapons, military, the wireless data is security fragile [4].
The data transmission between sensor nodes are placed over unreliable wireless
channel, and in most scenarios, they are unattended. Furthermore, they are limited

23 Network Architectures and Standards 791

in memory, processing and computational power. All these factors introduce major
obstacles in the implementation process of traditional efficient security techniques,
e.g., cryptography, authentication and key management, for instance, applying
encryption techniques may require the transmission of additional data bits, increase
the delay and packet loss [38, 54]. There has been various research on various
security schemes proposed or implemented so far for wireless sensor networks.
Holohan et al. proposed a new security paradigm for WSN which provides a
mechanism to combat with the difficulties in securing resource constrained devices
on distributed ad hoc networks by establishing primary-key infrastructure concepts
[24]. Furthermore, Karlof et al. focused on secure routing in WSN [31], while
Wood et al. introduced a mapping protocol, JAM, which detects the faulty region
and prevents the data routing among that region [80].

• Self-Healing: Self-healing ability is another important requirement for WSN,
since, sensor nodes operate unattended and autonomously in harsh environmental
conditions which may easily lead to node failures or sensor nodes’ battery deple-
tion or changes in topology. Hence, the sensor nodes should easily adjust to the new
network conditions and heal itself for the continuity of quality of service (QoS) and
reliable data communications [68]. In academia, there have been many studies in
this special area, for instance, Dutta et al. developed a new self-healing key distri-
bution scheme with revocation capability to recover and increase the scalability of
WSN and efficiency in storage and communication overhead over a lossy wireless
network [10], while Han et al. proposed another self-healing distribution scheme
to help group users to recover from the loss of broadcast messages over wire-
less network [19]. On the other hand, Qui et al. proposed an efficient solution for
especially ZigBee networks to recover from any node failures or communication
breakdowns [68].

2 IEEE 802.15.4 Protocol

IEEE 802.15.4 standard is the leading standard for most of the wireless sensor net-
work technologies. It is a low-cost, low-power consumption and low-data rate wire-
less standard which has been increasingly replacing the wired technologies in existing
applications. It specifies the physical layer and media access control layer for wire-
less technologies, e.g., ZigBee, WirelessHART, ISA100.11a etc, however it does not
support upper layers or networking methods [15]. The standard provides enough
flexibility in terms of distance and positions of devices in the network to meet the
special requirements of WSN applications [9].

792 D. Sahin and H. M. Ammari

2.1 Protocol Structure of IEEE 802.15.4

• Physical Layer: Physical layer specifies the radio characteristics and respon-
sible from data modulation, sending and receiving data. It provides 27 chan-
nels in 868 MHz (available in Europe), 915 MHz (available in US), 2.4 GHz
(available world wide) bands [49]. The standard supports two physical layers,
direct sequence spread spectrum (DSSS) technique and frequency-hopping spread
spectrum (FHSS) to increase the reliability of the communications.

• MAC Layer: MAC layer has a key role in defining how efficiently and low-cost
a communication is carried on [15]. The basic functionality is to transfer MAC
frames via the physical channel with very low duty cycles which is appealing
for WSN applications since the energy consumption is one of the main concerns.
IEEE 802.15.4 MAC layer specifies two medium access modes; beacon-enabled
mode (coordinated mode) and nonbeacon-enabled mode (uncoordinated mode)
[9]. Beacon frames are periodically broadcasted by the network coordinator for
the synchronization of equipment in the network in beacon-enabled communica-
tion. This type of mode is preferred when the network uses star topology. The
frames can be transmitted from a device to a coordinator in which a device uses
carrier sensing multiple access with collision avoidance (CSMA-CA) or the trans-
mission can be made from a coordinator to a device [49]. Sending beacon frames
in nonbeacon-enabled communication becomes randomly according to the chan-
nel state, if channel is busy, it is waited for a random period of time, if channel is
idle, the data is transmitted [85]. MAC layer defines four frame structures; beacon
frame used by network coordinator for beacon transmissions, response frame is
the simplest frame among the others which is used for the confirmation of suc-
cessful frame receptions, data frame is used for almost all data transmissions,
and command frame is a simple frame that is responsible for network connection,
disconnection and valid channel access.

2.2 Network Architecture of IEEE 802.15.4

Two types of devices, full-function device (FFD) and reduced-function device (RFD),
have been defined in the standard. FFD is basically capable of performing all the
network functionalities, while RFD is limited to perform a set of simple functions,
such as, measuring some network parameters, e.g., light, humidity, temperature [9].
Each network is controlled by a network coordinator which is responsible for setting
up the network and maintaining all the necessary functionalities. FFD can take the
responsibilities of a network coordinator while RFD just has the abilities to connect
with network coordinator and join/disjoint the network. Star and mesh networking
topologies are supported by the standard depending on the application requirements.

23 Network Architectures and Standards 793

3 ZigBee Wireless Standard

ZigBee is a standardized, short-distance, low cost, low power wireless technology
based on IEEE 802.15.4 protocol, designed to meet the increasing demands for low-
powered and efficient wireless networking between sensory and control network
applications. ZigBee is proposed by the ZigBee Alliance which is a group of com-
panies providing innovative, reliable and easy-to-use ZigBee standards [25]. ZigBee
is a self-organizing and self-healing wireless mesh network technology, supporting
more than 64,000 devices on a single network, operating at 2.4 GHz Industrial, Sci-
entific, and Medical (ISM) non-licensed frequency band with 16 channels for global
use, 915 MHz with 10 channels for North America and 868 MHz with one channel for
EU countries [26]. ZigBee technology allows 250 Kbs data rate at 2.4 GHz, 40 Kbs
data rate at 915 Mhz and 20 Kbs at 868 Mhz, and also transmission distances vary
between 10–100 m, depending on the environmental characteristics [26].

Two implementation options are offered for ZigBee Specification; ZigBee and
ZigBee PRO feature sets. While ZigBee feature set is designed for smaller networks,
ZigBee PRO feature set improves the capabilities of ZigBee feature set to support
larger networks by providing the same reliability and stability features [27].

ZigBee standard has entered the wireless technologies market with extraordinary
control, scalability, security, ease-of-use, low-cost and low-power features. ZigBee
offers many advantages in wireless communication over other wireless technologies
as presented as foll

• Reliable: ZigBee is considered as a reliable technology since it applies end-to-end
acknowledgment (ACK) and retransmission mechanisms with filtering duplicate
packets [34]. The use of link quality metrics is an important indicator for the
reliability assignment of the technology. ZigBee benefits the link quality estima-
tor offered by IEEE 802.15.4 based on the bit error rate (BER) estimate which
is implemented in many radio chips. ZigBee star topology is the least complex
topology which can lead to simplicity and increased reliability, on the other hand,
peer-to-peer topologies may increase the reliability since they include multiple
paths to the ZigBee coordinator and ZigBee end devices.

• Interference Avoidance: Most of the technologies used in home electrical devices,
such as Bluetooth, Wi-Fi, wireless USB and microwave ovens, share the same,
2.4 GHz ISM band with ZigBee. Hence, the interference problem is unavoidable
in such situations. ZigBee uses different spread-spectrum techniques to protect
itself from multipath and narrowband interference [17]. Indeed, IEEE 802.15.4
suggests various channels in the 915 MHz and 2.4 GHz bands for ZigBee. ZigBee
can select the least interfered channel to fight against the interference. Moreover,
ZigBee coordinator have the capability to reunite the ZigBee network in a different
channel in case of any interference situations [17]. Furthermore, IEEE 802.15.4
MAC layer is based on CSMA/CA(Carrier sense multiple access with collision
avoidance) that the sensor node will listen the channel before transmitting the
packet.

794 D. Sahin and H. M. Ammari

• Global Implementation: ZigBee protocol has a global acceptance in almost all
countries since it adopts IEEE 802.15.4 PHY layer with 16 channels for global
use, 915 MHz with 10 channels for North America and 868 MHz with one channel
for EU countries [26].

• Low Cost: ZigBee-based devices and platforms are cost-effective with simplic-
ity and the underlying flexibility of 802.15.4 protocol. The system maintenance,
flexibility, and battery life should be also considered in the overall system cost
[67].

• Security: ZigBee has strong the encryption and authentication mechanisms and
they are applied at application, network and MAC layers. While MAC layer man-
ages its own security processing, other layers can decide which security level to
use. ZigBee adopts the advanced encryption standard (AES) block cipher with
counter mode (CTR) and cipher block chaining message authentication code with
powerful 16-bit cyclic redundancy check [35]. Master, link and network keys
are used to secure the transmitted frames, e.g., routing messages, network join
requests. ZigBee network shares a network key as a common key, and all the net-
work devices use it to secure the network frames. On the other hand, link key is
a secret session key which are unique for two communicating ZigBee devices.
Master key is responsible for generating link keys.

• Long Battery Life: ZigBee nodes are very efficient in battery life times, ranging
from a few months to many years [5]. ZigBee standard adopts sleeping mode
strategy to prolong the network life time. While ZigBee routers and coordinators
are always awake, ZigBee end devices may sleep for the majority of time and send
data for a small period of time [65]. During the sleep time, ZigBee coordinator
and ZigBee routers hold the data and when the ZigBee end devices are awake,
they send a request to their parent nodes if there are any packets to be sent.

• Scalable: IEEE 802.15.4 PHY and MAC layers that support handling large number
of devices in a network are adopted for ZigBee protocol, hence, ZigBee network
can be highly expandable; 255 ZigBee nodes(one is the master node and others
are slave nodes) can be contained in a ZigBee network. In case of the network
coordinator interconnects each other, e.g., star topology, the size of the whole
network can be up to 65,000 nodes [35].

3.1 The Protocol Structure of ZigBee

The ZigBee protocol layering is based on the standard Open Systems Interconnec-
tion (OSI) seven-layer model. ZigBee benefits for a powerful physical radio specified
by IEEE 802.15.4-2003 that defines the characteristics of ZigBee’s physical layer
(868/915 MHz or 2.4 GHz) and medium access control(MAC) layer [1, 37]. Network
layer and application layer are specified by ZigBee Alliance with some technical
shortcomings, e.g., address allocation, scalability, management tools, routing mech-
anisms, and interoperability with the Internet [39]. Here is the protocol structure of
ZigBee as depicted in Fig. 1.

23 Network Architectures and Standards 795

Fig. 1 ZigBee protocol stack

• Physical Layer: The low-cost feature of ZigBee comes with the design princi-
ples of physical layer; hence, ZigBee technology has simple and high level of
integrations.

• MAC Layer: Multiple topologies and handling large number of devices are sup-
ported in ZigBee networks with the special design principles of MAC layer. MAC
layer provides low power management capabilities, the usage of RFD devices, data
framing, frame detection, medium access and error control for ZigBee technology.

• Network Layer: ZigBee network layer is one of the key layers in protocol stack, it
provides mechanisms to ensure normal operations for MAC layer and application
layer. Network layer is responsible for applying security frames, controlling nodes
for joining or leaving the network and managing discovery and maintenance of
routes between devices [1]. When a node wants to join the network, network
layer starts the network discovery procedure to find a parent node and establish
parent-child relationship [5].

• Application Layer: ZigBee Alliance provides application layer that consists of
application support sub-layer (APS), ZigBee device objects (ZDO) and application
framework [46]. APS acts as an interface between network layer and application
layer, and it is responsible for binding devices based on their services and needs,
transmitting messages and providing security services between them. ZDO defines
the roles of the devices in the network, responses to binding requests and provides
secure relationship between devices. Application framework provides the guide-
lines to be able to build a profile onto the ZigBee stack. It enables specifications to
the frame formats for transporting data and standard data types for ZigBee profiles.

796 D. Sahin and H. M. Ammari

3.2 The Network Architecture of ZigBee

ZigBee network layer can support different network topologies, e.g., star topology,
cluster tree topology and mesh network. For time-critical applications and long-life
time networks, star topology is preferred as the least resource demanding topology in
which all the end devices have direct communication with the network coordinator;
for larger physical environments, cluster tree network is preferred which is a hybrid
star/mesh topology and provides increased reliability and long network life time;
mesh network with alternate route flexibility allows peer-to-peer communication
between network devices, and decentralized routing is established throughout the
network to provide self-healing capability in case of a node failure [7, 36]. Each
ZigBee wireless network should have one ZigBee Network Coordinator to initialize
the network and assigning network parameters. ZigBee coordinator is responsible for
data collection, address assignment and multi-hop delivery in a tree topology [17].
ZigBee network can have more than one ZigBee router to extend the network and
many end devices for data acquisition and control. Furthermore, ZigBee technology
provides two different physical device types; reduced function device (RFD) and full
function device (FFD). FFD can define full MAC layer functions that enable them to
act as a network coordinator by sending beacons, synchronizing network equipment
etc., RFD can only act as a simple network end device. Here are the brief descriptions
of ZigBee network components. A general view of the network is depicted in Fig. 6.

• ZigBee Network Coordinator (ZNC): ZNC has many responsibilities, such as
starting and configuring the ZigBee network, assigning a radio frequency channel,
network ID and other network parameters. Furthermore, ZNC supports associ-
ations, designs trust center, manages network nodes and stores the information
of network nodes by maintaining the overall network knowledge. Each ZigBee
network has only one ZNC.

• ZigBee Router: ZigBee router provides multi-hopping for routing the messages
between network nodes and it is also capable of accepting a join request to the
network as a ZNC. Every ZigBee network except a ZigBee star network supports
ZigBee routers and more than one ZigBee router can exist in ZigBee networks.

• ZigBee Trust Center (ZTC): For ZigBee security architecture, ZTC is the fun-
damental component and all other ZigBee devices trust ZTC for its services, e.g.,
trust management, device management and network management. ZTC stores and
distributed keys to ZigBee devices.

• ZigBee Gateway: ZigBee gateway is responsible for serving as a bridge between
ZigBee network and other network. A ZigBee network and a wired network should
not be directly connected to each other. Hence, a ZigBee gateway is needed to
separate them for security concerns and better traffic management.

• ZigBee End Devices: The simplest devices in ZigBee networks are ZigBee end
devices with minimum memory size equipment and high energy savings. Their job
is only communication with each other, requesting data from ZNC and searching
for available networks.

23 Network Architectures and Standards 797

ZigBee devices have two addresses, a 16 bit short network address and a 64 bit
IEEE extended address. The parent coordinator or router device assigns a 16 bit
network address to each node dynamically while joining to the ZigBee network.
Each node uses this 16 bit network address for data transmissions and data routing.
The 64 bit address is unique for each device and it stays the same when the node is
manufactured.

ZigBee standard provides an automatic formation and self-organizing network,
hence a sensor node should serve as a the coordinator of the network to initiate the
network formation, set security levels of the network and be the network manager. The
corresponding sensor node is the ZigBee coordinator. Hence, ZigBee coordinator as
an FFD device takes the maximum control of the network. To form a ZigBee network,
the network should contain at least one FFD to act as a network coordinator, and one
FFD or RFD to serve as a ZigBee end device.

ZigBee network establishment contains two basic steps, e.g., network initializa-
tion and sensor nodes’ joining to the network. The network coordinator is selected
before the finding the appropriate channel for the network communications. Assign-
ing a network identifier is the coordinator’s responsibility. ZigBee coordinator
decides the depth of the network, the number of children of a ZigBee router and
number of child routers of a router before initializing the network. After the network
establishment, other ZigBee devices can join to the network. The new sensor node
starts to search for the network. It scans the available channels to find the operating
networks and decides which one it should join. After searching for the network, the
new node should select a parent node, and it prefers the parent node with the highest
signal. The new node is ready for asking the network coordinator for joining the
network. The network coordinator accepts the new node to the network, if the new
node is a permitted device and has enough address space.

ZigBee standard supports two routing schemes, mesh routing which is based on
Adhoc on demand vector (AODV) routing [47] and tree routing which is based on
cluster tree routing algorithm [22]. Network layer uses AODV. In AODV routing,
ZigBee router which is ready to transmit a packet from source to destination, prepares
a routing table entry for the route. A route discovery process is took place on-demand
in which the source node broadcasts a request and destination node replies that
request. When the routing table entries are formed, the route can be used for data
transmissions. In this type of routing, FDD devices act as ZigBee routers. In tree
routing, only ZigBee routers transmit packets in a simplified routing notion.

3.3 ZigBee and Sensor Network Applications

ZigBee provides more reliable, energy efficient and cheaper communications in low
transmission rate and high capacity networks than other wireless networking tech-
nologies, e.g., Wi-Fi, Bluetooth [7]. Hence, ZigBee technology can be a proper choice
for the applications that need short-range and low data rate communications, and low
complexity and low power consumptions.

798 D. Sahin and H. M. Ammari

• Personal Health Care: Healthcare expenditures has been increasing with growing
population, increased living standards, longer life-spans, sophisticated high-tech
treatments in mostly all over the world. Hence, to reduce the costs, new medical
devices based on ZigBee technology can be manufactured. For instance, with wire-
less low-power communication capability, ZigBee is a promising technology for
the adoption of Assistive Technology that help disabled or elderly to maintain their
independence and mobility [76]. The strong mesh networking capability provides
accurate equipment location services in hospital, medical center environments.
Furthermore, chronic disease monitoring, personal wellness monitoring and per-
sonal fitness monitoring are other application areas that ZigBee technology focuses
on.

• Home Automation: Home automation is the biggest market for ZigBee technol-
ogy. The idea of an interconnected home creates a new ecosystem to maintain
cost-effective, high-comfort, easy-to-use smart homes. There exist a diverse home
automation applications ranging from security, light and climate control systems,
environment and energy management systems to MP3s and DVD movie selec-
tion via a ZigBee wireless remote and TV interface, media management, audio
servers that ease the lives of human-beings with self-organizing, simple set-up and
maintenance features. There are a lot of companies that develop wireless home
automation products based on ZigBee technology; automatic discovery of IPbased
control devices, auto creation of programming and user interface for integration of
new products are some of the features of Control4, on the other hand, Eatons Home
Heartbeat enables the concept of home awareness by monitoring the activities of
home appliances and alerting homeowners to take actions [75]. ZigBee wireless
technology may be applied to meter reading systems to enable monitoring cen-
ter reliable and low-cost data analysis and measurement for accurate electricity
consumption values.

• ZigBee Smart Energy: With growing population, there is a significant increase
in energy demand. Most of the consumers are not aware of the decreased energy
resources, and how electric utilities are having difficulties to meet the energy
demand and finding new ways to make consumers more conscious about the situ-
ation and integrating new energy resources to the power grid. Electric utility com-
panies, government agencies, technology providers are looking smarter ways to
reduce the energy consumption. ZigBee Smart Energy Profile aims to decrease the
energy consumption with advances, ZigBee-based, green products. ZigBee Smart
Energy Profile offers demand response and load control support by providing mul-
tiple control methods including temperature set points and offsets, criticality levels
and targeting specific groups of devices including HVACs, water heaters, lighting,
electric vehicles, and generation systems; real-time pricing support for multiple
commodities including electric, gas, water, and thermal [87].

23 Network Architectures and Standards 799

4 WirelessHART

WirelessHART is the first open industrial wireless communication standard which
was designed as the wireless extension to the Highway Addressable Remote Trans-
ducer (HART) protocol [13, 59, 60]. Compared to the HART protocol which is
widely used in the industrial process automation with thousands of HART networks
and HART devices, wirelessHART has many advantages in the field of industrial
control. WirelessHART brings simplicity, robustness, lower installation and mainte-
nance costs and more flexible configuration to the industrial automation and control
applications [60]. WirelessHART is a robust wireless networking technology operat-
ing at 2.4 GHz Industrial, Scientific, and Medical (ISM) non-licensed frequency band
as several other wireless technologies. WirelessHART is a mesh network and built
on the IEEE 802.15.4 physical layer and adds its own time-synchronized data link
layer which is responsible from formatting the data packets, detection and correction
of bit errors; network layer which defines the routing, topology control, end-to-end
security and session management; transport layer which provides the end-to-end
transmission reliability and flow control; application layer which defines various
device commands, responses, data types and status reporting [32, 59].

WirelessHART was officially released in September 2007 by HART Communica-
tions Foundation (HCF) as the first open wireless communication standard designed
to meet the unique requirements of wireless networks operating in process plants
[44]. WirelessHART is a secure, highly reliable and TDMA-based wireless mesh
networking technology which is interoperable with wireless device types of differ-
ent manufacturers, and backward compatible with widely-used HART technology
in the process industry [60, 61].

• Interference: WirelessHART uses frequency hopping spread spectrum (FHSS)
and blacklisting methods to overcome the interference within the communication
channels in industrial environment [59]. FHSS provides WirelessHART to be able
to hop across the 16 channels defined in the IEEE802.15.4 standard to prevent
interference while blacklisting feature prevents the usage of certain channels. Fur-
thermore, clear channel assessment (CCA) mechanism is adopted as an optional
choice before a message transmission.

• Simple: The simplicity is the main building block of WirelessHART standard.
Some of the features of WirelessHART, such as self-organizing and self-healing
wireless mesh network, reduced installation and wiring costs, easy-adjustments to
changes in plant infrastructure, enable users to easily implement and gain benefits
of WirelessHART standard [44].

• Reliable: Reliability is one of the most important requirement in the field of
industrial control. However, the quality of data communications in industrial
environments is under threat of the changing conditions, diverse sources of radio-
frequency and electromagnetic interference. WirelessHART uses channel hopping,
time division multiple access (TDMA), and direct sequence spread spectrum cod-
ing (DSSSC) technologies to overcome interference with other overlapping net-
works; easily finds alternate paths and adjusts communication paths to provide

800 D. Sahin and H. M. Ammari

optimal performance [44]. Moreover, all the field devices have routing capabili-
ties and easily form a mesh network.

• Secure: WirelessHART is a secure protocol since robust, always-on, multi-tiered
security measurements are employed to provide end-to-end, per-hop, and peer-
to-peer security on data transmissions. WirelessHART provides security at both
network level and MAC level by using four different security keys, e.g., public
key, join key, network key and session key. Public key is responsible for helping
the network manager to authenticate the new nodes; join key which used by sensor
nodes side and is unique for each sensor node, sends joining request packets to the
networks; all the network devices can share network key which used in MAC layer;
and lastly, session key is used by network manager to encrypt critical data packets
and it is unique between two devices [2]. Furthermore, for secure encryption of
messages, an industry standard, advanced Encryption Standard (AES-128) block
cipher in Counter with CBC-MAC Mode is used [51]. Moreover, data link layer is
also responsible from security control by providing per-hop security between two
neighboring wireless devices.

• Interoperable: WirelessHART is not a completely new protocol, it is the wireless
extension of the HART protocol for industrial process automation and control
protocol, released as the latest version HART 7.2. To be able to take advantage from
widely used HART protocol, wirelessHART is designed as backward compatible
with HART protocol even they have different physical and data-link layers with
advances mechanisms for the integration of HART devices with WirelessHART
networks [51].

4.1 The Protocol Structure of WirelessHART

WirelessHART uses a simplified version of OSI-7 layer reference model and imple-
ments the IEEE 802.15.4 physical layer as its first layer up to 250 Kbps. Wire-
lessHART have unique specifications for data link layer and network layer, and uses
the same transport and application layer of HART protocol. WirelessHART is the
extension of widespread HART protocol and provides greater flexibility and scalabil-
ity of wireless networking and meet the specific requirements of process automation
applications that have a minimum cycle time on the order of seconds. A general
view of the network is depicted in Fig. 6 [13]. Here is the protocol structure of Wire-
lessHART as depicted in Fig. 2.

• Physical Layer: WirelessHART physical layer is the interface to the medium
and responsible from transmitting and receiving raw data packets with additional
control mechanisms to select operating channels and make channel assessments
[48].

• Data Link Layer (DLL): The operation of industrial process automation should
meet the strict timing requirements to provide a complete solution for real-time
process control applications [60]. Hence, WirelessHART has a time-synchronized

23 Network Architectures and Standards 801

Fig. 2 WirelessHART proto-
col stack

data link layer which has a strict 10ms time slot and utilizes TDMA technology
for collision-free and deterministic and coordinated communications [59]. Other
responsibilities of DLL are handling acknowledgement frames, frequency hop-
ping, channel blacklisting and security control [48]. DLL is divided into two sub
layers, a logical link control (LLC) and a medium access layer (MAC). TDMA and
slow frequency-hopping approaches are used by MAC layer and all the network
nodes share the same sense of time or aligned to the same superframe structure
which is formed by 100 timeslots per second and repeated continuously [13].
Timeslots are established to each WirelessHART field device to be able to pro-
vide multiple links. The timeslots are all grouped into superframes (10 ms). TDMA
needs accurate internal slot timing to be able to provide proper interaction between
sender and the receiver. Hence, superframes are generated periodically, sent and
stored in each WirelessHART device. Proper number of superframes are gruoped
and each group forms a network cycle, hence, each field device receives one time
slot for data transmission within each network cycle. Some network devices which
have more duties that the others may have more than one time slot to finish its task
(Fig. 3).

• Network Layer: The basic responsibilities of network layer is to route packets
from initial source to final destination, maintain the routing tables and providing
secure, end-to-end communications. In addition, a central network manager is
introduced in network layer to maintain the full knowledge of the network topology,
manage the routing, handling the assignments of routing tables of every device in
the joining the network. There are two types of routing protocols in network layer;
graph routing which is an ID-based routing protocol where all the network devices
are configured with graph information, including specification of neighbors to
forward the packets; source routing which is the supplement of graph routing, used
for network diagnostics and maintains a fixed path between source and destination.

• Transport Layer: Transport layer operates at the end communication points and is
responsible from end-to-end packet delivery across several devices in the network.

802 D. Sahin and H. M. Ammari

Fig. 3 6LoWPAN protocol
stack

Transport Layer supports both (REQUEST/RESPONSE) acknowledgments and
unacknowledged transactions.

• Application Layer: WirelessHART inherits application layer from application
layer of HART protocol which is responsible from necessary communication ser-
vices for object-to-object communication between distributed field applications
and defines severe device commands, responses to data types and status reporting
[48, 59]. Universal commands can be recognized as a collection of commands that
must be supported by all wirelessHART devices; Common practice commands are
optional and can be applied to a wide range of devices; Device specific commands
are formed according to the needs of the field device by the manufacturers.

4.2 The Network Architecture of WirelessHART

To enable wireless networking reliable and successful in industrial applications, it
must have self-healing and self-organizing features. It must be scalable, redundant
enough to extend network range and provide real-time access and control to the
applications. Wireless mesh network is capable of providing redundancy and self-
healing features to the network since each node has a connection to at least one
other node and all the nodes can find their neighbors and establish paths for data
forwarding. The components of WirelessHART form a wireless mesh network that
is managed by a network manager. Network manager is responsible for forming and
monitoring the mesh network, and controlling the new devices to join the network.
Star and hybrid (mesh/star) network topologies are also used by wirelessHART.

23 Network Architectures and Standards 803

WirelessHART network consists of wireless devices; field devices, adapters, access
points, routers, and wired devices; gateways, network and security manager, and plant
automation hosts [51]. The popularity of using industrial field devices are increasing
since they are less-expensive, easily-installed and more flexible than wired devices
and they reduce modification and maintenance time [42]. These devices are also
capable of finding their neighbors and establishing paths towards them. A mesh
network is established between wireless devices where each device acts like a router.
Mesh network provides some advantages to the WirelessHART network. Since, all
the sensor nodes are connected to each other, the network range can be increased.
Furthermore, since there are a lot of alternative paths between sensor nodes, in case
of a node failure, the packets can be rerouted by alternative paths and reliability of the
network is increased. Here is the brief introduction to the wirelessHART components:

• Field Devices: Field devices are the distributed actual sensors which are connected
to the process or plant equipment and capable of routing and forwarding packets.
Field devices can be connected to the plant equipment via other wireless network
or they can be directly connected to the WirelessHART network.

• Adapters: Adapters are the enablers of the integration of wired HART devices
into the wirelessHART network. One or more HART devices can be connected to
a WirelessHART network via adapters. In case of point-to-point HART networks,
only one adapter can be used to connect a HART device to the network.

• Routers: Routers are the special kinds of field devices, however, they do not
interfere with process until they are needed for the improvement of the wireless
connectivity.

• Gateway: Gateways are recognized as the bridges that provide connection between
WirelessHART network and process plant. Each network has one gateway which
consists of a virtual gateway and one or more access points. Virtual gateways have
direct communications with network manager.

• Access Points: The actual physical connection to the WirelessHART network is
provided by access points. Each access point has a unique ID.

• Network Manager: Network manager is responsible for the overall configuration
and maintenance of WirelessHART network. It collects information from field
devices via the gateway to determine the network health, routes to be set up, manage
dedicated and shared resources. Network manager updates the routing information
and communication schedule when new sensor nodes join to the WirelessHART
network. Furthermore, network manager provides TDMA schedule and manages
time slots in TDMA to be placed on different frequencies and to be allocated
hop-by-hop based while other stations are all allowed to sleep.

• Security Manager: Security manager is responsible of monitoring the security
status of the network, preventing attacks, generating session, joint and network
keys with the incorporation of network manager.

All the WirelessHART devices need to have routing capabilities. Hence, all them
are treated as the same in terms of network initialization, installation, network capa-
bility etc. With these features, WirelessHART is a simple and self-organizing net-
work. WirelessHART uses two different mechanisms for message routing, e.g., graph

804 D. Sahin and H. M. Ammari

routing and source routing. In graph routing, pre-determined paths are used for rout-
ing messages from source to destination. To prevent path redundancy, the graph route
is divided into different several route paths between source and destination. On the
other hand, source routing does not use path diversity and prefers ad hoc created
routes for routing the packets. To be able to initiate the WirelessHART network,
network and security managers, an access point, a gateway, some field devices are
the fundamental components to be ready. After that, the network Id and a joint key
should be assigned to the network as the first step for initializing the network. While
the network manager settings are done through a PC connected to it, WirelessHART
device settings must be made via a HART port. After these steps, WirelessHART
network is ready to operate.

4.3 WirelessHART and Industrial Applications

Industry environments have harsh and unique characteristics that impose technical
challenges to wireless communication technologies, e.g., strict timing requirements,
high security concerns, RF interference, dynamic topologies and variable link capac-
ities. The publicly available ZigBee and Bluetooth standards exist to be used in
industrial applications, however, their capabilities cannot meet the unique require-
ments of industrial applications even ZigBee and WirelessHART use the same phys-
ical layer of IEEE 802.15.4. HART Communication Foundation and its member
companies made some efforts to create a wireless alternative add-on to the exist-
ing wired HART technology to provide a complete solution for industrial appli-
cations and provide end-to-end reliable and secure communication with a wireless
technology. With the WirelessHART open standard, field devices have a wireless
interface and form a self-organizing and self-healing wireless mesh network with
easy-installation and maintenance efforts. WirelessHART technology has a lot of
advantages for process automation and control applications, since the data on plant
operations can be securely and reliably collected, stored, analyzed and monitored,
physical interventions for monitoring and maintenance of plants or expensive-wire
installations are reduced.

5 6LoWPAN

Low-power wireless personal area networks (LoWPANs) is a promising technology
for embedded applications, e.g., monitoring and control applications that require
severe sensor nodes to cover a large geographic area with low-cost, low-power
consumption and low-computation capabilities. However, LoWPANs may not meet
the reliability, security requirements all the time because of short-range, low-power
features, the wireless sensor node failures and sleep duty cycles. Hence, Internet Engi-
neering Task Force (IETF) 6LoWPAN working group released 6LoWPAN technol-

23 Network Architectures and Standards 805

ogy to overcome these problems by enabling IPv6 to work with low-power, low-rate
wireless embedded applications and networks with the integration of an adoption
layer, new packet format and address management [56, 82]. The idea of providing
wireless internet connectivity at low data rates with a low duty cycle for low-capacity
devices was very promising to scale the wireless networks and guarantee the end-
to-end communication capability. The previous assumptions about extending IP to
LoWPANs were not encouraging due to the high resource-consuming feature and
larger packet sizes (at least 1280 bytes in length) of IP technology. To overcome this
issue, 6LoWPAN’s adaption layer creates smaller packets to fit into IEEE 802.15.4
frame size (128 bytes) with its header compression functionality. Physical and data
link layer of 6LoWPAN were adopted from IEEE 802.15.4 protocol. Here are some
of the key characteristics of 6LoWPAN technology [58].

• Scalability: Most of the wireless sensor network technologies cannot overcome
the scalability problem when the network size has become bigger. 6LoWPAN
overcomes this issue by adopting an adaption layer with its header compression
functionality; hence, connecting to other IP-based networks is easy without addi-
tional gateways.

• Mobility: The wide-spread IP-mobility technology can be used easily for the
mobility feature of 6LoWPAN technology [58].

• Manageability: Network management is very important for 6LoWPAN standard
to be able to scale well while it has limited display and input capabilities. Hence,
6LoWPAN networks can benefit from the advances of IP technology to ease the
network management functionality. The already used tools for managing, com-
missioning and diagnosing, and simple network management protocol (SNMP)
ease the management capability of 6LoWPAN technology [56].

• Interference: 6LoWPAN is based on low-power, low-throughput IEEE 802.15.4
standard, hence, the wireless communications are more prone to link failures and
interference with other technologies which share the same communication band.

• Security: Guaranteeing the end-to-end security at 6LoWPAN networks is still an
open-research issue [18]. There have been some researches towards this specific
area. Granjal et al. proposed new compressed 6LoWPAN security headers to pro-
tect the IPv6 communications on IEEE 802.15.4 WSNs. Furthermore, Raza et al.
proposed a system which adds IPsec (defines an authentication header and an
encapsulating security payload) support to 6LoWPAN network to provide end-to-
end secure communication between IP enabled sensor networks and traditional
internet [50].

The future trend in wireless technologies seems to be towards IP-based WSN
which enables devices in a network to directly connect to other IP-based networks
without the need for translation gateways or proxies, hence, the network scalability,
large-scale network management, reliable data communications, reduction in latency
and data loss while application-layer protocol translations, can be accomplished
successfully [39]. 6LoWPAN is the enabler technology for this future trend.

806 D. Sahin and H. M. Ammari

Fig. 4 6LoWPAN architecture

5.1 The Protocol Structure of 6LoWPAN

Some wireless sensor protocols do not have an IP network layer protocol, how-
ever, future WSNs require an internet connection between thousands of nodes and
networks. IETF defined IPv6 over LoWPAN to provide the integration of TCP/IP
into WSN. Hence, integrating an adaption layer above the IEEE 802.15.4 link layer
enables a sensor node IP communication capabilities with low-power, short-range,
low-cost and low-bit rate features. 6LoWPAN protocol stack is almost identical
with a simple IP stack with some differences. IEEE 802.15.4 standards specifies the
physical and MAC layer of 6LoWPAN protocol. 6LoWPAN implements the IPv6
with LoWPAN adaption layer as its network layer. The transmission control protocol
(TCP) and the user datagram protocol (UDP) are implemented as 6LoWPAN’s trans-
port protocol. Furthermore, The Internet control message protocol v6 (ICMPv6) is
used as 6LoWPAN’s transport protocol which is responsible for control messaging,
e.g., ICMP echo, ICMP destination unreachable and Neighbor Discovery messages.
Here is the protocol structure of 6LoWPAN as depicted in Fig. 4.

• Physical Layer: 6LoWPAN adopts the IEEE 802.15.4 physical layer with a data
rate of 250 Kbps and operating frequency of 2.4 GHz. 27 channels are defined in
PHY layer and they are all allocated into different frequency band with different
data rates, 868–868.6 MHz for European, 902–928 MHz for North America and
2400 MHz for worldwide.

23 Network Architectures and Standards 807

• Data Link Layer: 6LoWPAN adopts the IEEE 802.15.4 MAC layer. The main
responsibilities of data link layer are beacon generation and synchronization, net-
work association, providing channel access via carrier sense multiple access with
collision avoidance (CSMA/CA) mechanism. 6LoWPAN’s data link layer should
provide framing, unicast transmission, strong error-checking and addressing capa-
bilities. To be able to distinguish the nodes on a link, and generate IPv6 addresses,
addressing should be applied by data link layer. 6LoWPAN link layer should
provide different services for different types of links; for instance, a broadcast ser-
vice should be enabled for multi-access links. 6LoWPAN’s data link layer should
provide strong error-checking mechanism for secure and reliable communications
since UDP and ICMP transport protocols have a simple 16-bit checksum mech-
anism. Four MAC frames are supported by the standard, such as beacon frame,
data frame, acknowledgment (ACK) frame and MAC command frame, however,
beacon frame is used only in star topology while other frames are used in both star
and mesh technologies. ACK frame and MAC command frame handle MAC peer
entity control transfers and confirm the successful frame receptions.

• Adoption Layer: Adoption Layer is the main layer of 6LoWPAN technology.
IPv6 adoption for network layer does not meet the MTU (Maximum Transferable
Unit) specifications. At least a MTU of 1280 bytes which is ten times of the one
specified for 802.15.4 networks and 40-bytes length IPv6 header which is a huge
overhead for 6LoWPAN technology are required for IPv6 protocol. Hence, an
adoption layer is needed to take place between network and data link layers to
provide packet fragmentation, header compression and support for data link layer
forwarding of IP packets [29]. In header compression, IPv6 header fields are
eliminated to reduce transmission overhead, in fragmentation process, packets
are fragmented into multiple link layer frames to provide the minimum MTU
requirement when they cannot fit into MAC frame payload size. Adaption layer
supports four basic header types, e.g, dispatch header, mesh header, fragmentation
header and HC1 header (IPv6 header compression header). To be able to provide
a full routing functionality with the headers, additional routing header is required
to be encapsulated in a packet.

• Network Layer: 6LoWPAN adopts IPv6 protocol as its network layer. The net-
work layer of an IP-based wireless technology should be responsive, adaptive and
energy-efficient to overcome interference, link failures, dynamic link qualities,
and asymmetric links of IEEE 802.15.4 radio environment [29].

• Transport Layer: The header compression and fragmentation features of 6LoW-
PAN enables it to adopt the commonly used transport protocols, e.g., UDP and
ICMv6.

5.2 The Network Architecture of 6LoWPAN

6LoWPAN consists of many low-power wireless area networks (LoWPANs) that can
be also called IPv6 stub networks which are responsible from sending and receiving

808 D. Sahin and H. M. Ammari

Table 1 Comparison of wireless technologies

Feature WirelessHART ZigBee 6LoWPAN ISA.100.11a

Security AES-128 plus
data link
layer security

AES-128 plus
application
layer security

AES-128 AES-128, Join
Key, Network
ID, End to
end security

Scalability 80–100 field
devices
supported by
per gateway

65,535 nodes are
supported by
per
coordinator

High High

Reliability Channel
hopping,
TDMA,
DSSSC

ACK, retransmis-
sions, link
quality
estimators

Simple 16-bit
checksum
mechanism

Channel
hopping,
TDMA,
CSMA,
hybrid
channel
blacklisting

Power
consumption

Low Low Medium Low

Network
management

High Medium High with SNMP High

Data rate 250 Kbps 250 Kbps 20–250 Kbps Low data rates
Application types Industrial app. Home

automation,
building
automation

Health care,
industrial
monitoring

Industrial
process and
control app.

IP packets. LoWPANs consists of nodes which can act as a host or as a router, and can
be identified by a unique IPv6. LoWPANs nodes can send and receive IPv6 packets
but they are limited in processing capabilities. In the 6LoWPAN architecture, there are
3 different LoWPANs; Simple LoWPANs that consists of multiple hosts, routers and
one LoWPAN Edge Router to connect other IP networks with a backhaul/backbone
link, Extended LoWPANs that includes many simple LoWPANs with multiple edge
routers with a backbone link, and finally, Ad hoc LoWPANs that do not have any
internet connection and operate without an infrastructure [56].

6LoWPAN supports both star and mesh network topology. In star topology, FFD
acts a coordinator and has direct connection with each node. Furthermore, the net-
work coordinator performs device communication based on guaranteed time slots
hence, the use of collision avoidance techniques are avoided. In mesh topology,
extra mesh header is needed by the 6LoWPAN adaptation layer to keep the origi-
nator and final destination address while the IEEE 802.15.4 MAC layer carries the
source and destination node address that change at each hop [12]. Furthermore, in a
mesh topology, intermediate nodes must provide multi-hop routing services to com-
pensate appropriate number of routing packets, computation capabilities and energy
consumption (Tables 1, 2 and 3).

23 Network Architectures and Standards 809

Table 2 Application types of wireless technologies

WSN Technology Application types

WirelessHART Process automation and control applications
ZigBee ZigBee smart energy, home automation, personal healthcare
6LoWPAN Industrial monitoring, health care, disaster management
Wi-Fi Direct One-to-many infrastructure connection, high affinity with legacy Wi-Fi,

software AP
ISA.100.11a Reliable monitoring and alerting, asset management, predictive

maintenance, condition monitoring

Table 3 General Comparison of wireless technologies [1]

Protocol layers WirelessHART ZigBee 6LoWPAN ISA.100.11a

PHY Layer IEEE 802.15.4-
2006 with
2.4 GHz
Radio only

IEEE 802.15.4-
2003 with
868/915 MHz
or 2.4 GHz
Radio

IEEE 802.15.4
with 2.4 GHz
Radio

IEEE 802.15.4,
2.4 GHz-band

Network
topology

Star, mesh Star, tree, mesh Mesh Star, mesh

Application areas Industrial process
monitoring
and control

Home
automation,
consumer
devices

Environment
monitoring
and control

Industrial process
monitoring
and control

Network routing Graph routing AODV and tree
routing

Ad hoc
on-demand
distance
vector routing
and dynamic
MANET
on-demand
routing

Graph routing

In 6LoWPAN routing, when a sensor node wants to send a packet to an IP-enabled
device outside of the 6LoWPAN network, the packet is firstly sent to the FFD in the
same network. Then, FFD will relay the packet hop by hop manner to the 6LoWPAN
gateway which will make a connection to 6LoWPAN with IPv6 domain and send
the packet to the destination by using its IP address. Basically, there are three types
of 6LoWPAN routing based on AODV routing protocol, such as Adhoc on demand
distance vector routing (LOAD), dynamic MANET on demand (DYMO-low) and
hierarchical routing (HiLow). However, LOAD routing is the most preferred one
among them. LOAD routing is the simplified version of AODV and operates on top
of the adaption layer. LOAD supports a mesh network topology and provides multi-
hop routing between IEEE 802.15.4 devices for establishing routes in a 6LoWPAN
network. In the route discovery, LOAD broadcasts messages to spread the route
request messages. After the route discovery, LOAD provides data structures and
manages local connections, and uses routing tables to store the required information,

810 D. Sahin and H. M. Ammari

such as destination, next hop node, and route request table to store temporary route
information which is used while route discovery process. DYMO-low routing do not
force the data packets to be fragmented since route request messages act as IEEE
802.15.4 broadcast messages. DYMO-low routing uses 16 bit sequence numbers to
provide loop free transmissions. The main purposed to use HiLow routing is to
increase the network scalability since HiLow uses 16 bit short address for memory
optimization and larger scalability.

5.3 The Application Areas of 6LoWPAN

6LoWPAN is the enabler technology for embedded devices to connect to Internet,
or low-power, low-throughput wireless networks to be connected together to scale
and form large network infrastructures with mobility features. Hence, there are lots
of application areas that can benefit from the scalability, reliability and security
features of 6LoWPAN technology. Some of the 6LoWPAN-based applications are
briefly explained.

• Industrial Monitoring: Wireless technologies in industrial environments should
be robust enough to provide secure and reliable data communications. Process
monitoring and control, machine surveillance, supply chain management and asset
tracking, and storage monitoring applications can benefit from scalability, energy
efficiency, and safety features of IP-based low-power WPAN technology [53].

• Health Care: Healthcare applications are suffering environment delay or data
loss which can cause the death of a person. Hence, real-time and reliable data
transmissions are the basic requirements of healthcare applications. Other wireless
technologies may fail in providing these requirements, however, 6LoWPAN can
be a proper choice with its mobility, IP-connectivity features to provide reliable
and real-time data communications for simple wearable remote controls for tele-
assistance or intermediate systems with wearable sensors monitoring systems [53].

• Disaster Management: Disaster management applications are delay-sensitive and
cannot tolerate false alarms. Hence, the wireless technology should provide real-
time and secure communications to be able to detect malicious activities on time
[53]. 6LoWPAN technology can provide the special requirements of disaster man-
agement systems with its interconnectivity feature.

6 ISA.100.11a

The ISA.100 committee which is a part of the international society of automation
(ISA), was founded in 2005 to initiate the establishment of standards, recommenda-
tion of practices and technical reports and definition of technologies and procedures
for implementing wireless systems in the automation and control environment, with

23 Network Architectures and Standards 811

an initial focus on the field level [14, 20]. In 2009, ISA.100 committee approved
ISA.100.11a standard (ISA.100.11a: Wireless Systems for Industrial Automation:
Process Control and Related Applications) which is an open, multi-functional wire-
less networking technology standard to provide reliable, robust and secure data com-
munications for non-critical, alerting, supervisory control, open-loop control, and
closed-loop control industrial applications [14, 48]. ISA.100.11a has a wide range
of application coverage and easily connects to different kinds of communication
networks. Low data rate wireless connectivity is supported with increased security
and system management levels and the applications on the order of 100ms are fully
supported. Here are some of the key characteristics of ISA.100.11a;

• Robust: ISA.100.11a protocol is very robust since it uses three different diver-
sity types, space diversity to utilize multi-paths for data forwarding with mesh
networking capability, frequency diversity to enable slow-frequency hopping, and
time diversity to handle a retry mechanism [48]. These diversity provides the pro-
tocol to be robust with the combination of the performance of PHY layer.

• Scalability: ISA.100.11a network is capable of handling thousand of devices,
however there is a practical limitations not to adversely increase the data traffic of
the network and power consumption of sensor nodes. Hence, devices are allowed
in an ISA.100.11a network in the order of 50–100 [48].

• Security: Security is one of the fundamental requirements of industrial and process
automation systems. ISA100.11a uses integrity checks and optional encryption at
data link layer. Furthermore, a security mechanism is also provided in transport
layer. 128 bits keys are used for both transport and data link layers [84]. A shared
global key, a private symmetric key or certificate are the prerequisites for a sensor
node to have to be able to join a ISA100.11a network [20].

• Power Consumption: The sensor nodes are battery powered, hence this con-
dition puts some limitations for the continuity of reliable and efficient data
communications for ISA.100.11a standard. To overcome this limitation factor,
some techniques are adopted [64]. For noncritical control applications, synchro-
nizing sampling mechanism is implemented. This mechanism provides reduction
of reporting rates since the transmissions take place when the rate of change of the
measured data exceeds a certain threshold. Another technique is adaptive transmis-
sion power control. This control provides ISA.100.11a field devices to dynamically
select a transmit power level, hence, power optimization can be accommodated.
The last technique preferred mostly in star network topologies is to use of non-
routing transmitters which is very effective in prolonging the network lifetime.
Overall, ISA.100.11a is based on IEEE 802.15.4 which has short active periods
to provide significant power consumption reduction, and furthermore, the usage
of DSSS technique have a significant effect on reduction of power consumption
since it employs short settling times in its channel filters and higher frequency
references in its channel spacing [57, 66].

• Reliability: To provide reliability throughout the network, the interference avoid-
ance mechanisms should be developed. ISA.100.11a uses some mechanisms to
overcome the interference and increase the communications reliability [64]. The

812 D. Sahin and H. M. Ammari

first technique which is implemented is DSSS modulation technique. DSSS divides
the ISA.100.11a signal into small fragments to spread over the available frequency
channels and look like noise to the other wireless technologies with in the range
[48, 64]. Furthermore, the adoption of IEEE 802.15.4 PHY provides increased
reliability levels in data communication since IEEE 802.15.4 is a proven technol-
ogy with its coexistence capability within the congested areas. Dynamic power
control capability of ISA.100.11a also increase the reliability level of data com-
munications since this mechanism prolongs the network lifetime.

• Interoperability: ISA.100.11a uses IEEE 802.15.4 standard for its radio com-
munications. Since IEEE 802.15.4 is a worldwide standard, this feature gives
a chance to ISA.100.11a for large-scale implementation for process automation
applications. Furthermore, ISA.100.11a provides smooth communication with the
existing application protocols, e.g., HART, Modbus, Profibus etc. ISA.100.11a
adopts 6LoWPAN protocol for its network and transport layers. Hence, inter-
operability can be managed with internet hosts and sensor nodes in other WSN
networks with the IPv6 compatibility [20].

• Security: ISA.100.11a enables secure data communication throughout the net-
work. Security manager provides secure data communications, moreover, IEEE
802.15.4 standards’ security mechanisms, e.g., AES-128 bits, message authenti-
cation codes, access control list enables security, and also the message integrity
codes and unique symmetric keys of 128 bits of the link and transport layers enable
security throughout the ISA.100.11a network.

6.1 The Protocol Structure of ISA.100.11a

The protocol structure of ISA.100.11a is based on the simplified version of seven
layered open systems interconnection (OSI) reference model and ISA.100.11a adopts
IEEE 802.15.4 PHY and MAC layers specification as most of the other wireless
technologies. Moreover, the network and transport layers of ISA.100.11a are based on
6LoWPAN, IPv6 and UDP standards. Here is the protocol structure of ISA.100.11a
as depicted in Fig. 5.

• Physical Layer: Physical Layer is the interface to the physical medium which
is responsible for performing data transmission and reception, and control mech-
anisms for channel selection and energy detection [48]. ISA.100.11a uses IEEE
802.15.4 PHY standard with minor adjustments and operated on 2.4 GHz band,
using Channels 11–26 with 2.5 MHz bandwidth usage [48]. DSSS divides the
ISA.100.11a signal into small fragments to easily spread over available channels
while FHSS provides random channel changes on a packet level to minimize the
load on one channel.

• Data Link Layer (DLL): The main purpose of data link layer is to provide radio
channel access and radio synchronization while handling the acknowledgment
frames, security controls and defining the data format. Data link layer is divided

23 Network Architectures and Standards 813

Fig. 5 ISA100.11a protocol
stack

into a MAC sublayer, a MAC and an upper DLL. While MAC layer is a subset
of IEEE 802.15.4, MAC extension has some different features not supported by
IEEE 802.15.4 [48]. MAC sublayer sends and receives the individual frames,
and also its security mechanism defends the attackers outside of the system, while
MAC extension focuses on the changes to CSMA-CA mechanisms and upper DLL
provides channel hopping mechanism, mesh routing and TDMA. Furthermore,
DLL implements graph routing and TDMA features, and handles most of the
work of forwarding data messages between sensor nodes which are called as a DL
subnet, since they are connected to a single local mesh or a personal area network.
DLL provides an abstraction to the higher layers since it prevents the messages,
which are received with in a DL subnet or border router, to be used by IP layers.
Since, ISA100.11a supports fully mesh wireless networking, DLL adopts mesh
routing capabilities.

• Network Layer: The basic functionalities of the network layer is to handle rout-
ing, addressing and maintain the quality of service requirements. Network layer
provides mesh to mesh routing and most of the data routing and processing is
performed in the data link layer, hence, this situation enables to minimize the
network layer overhead and increase the payload of the network layer. In this sit-
uation, network layer uses basic header format. Furthermore, the network layer of
ISA.100.11a is compatible with 6LoWPAN protocol. Hence, full (IPv6) header
format is adopted in case of potential future use of 6LoWPAN networks as the
backbone network. ISA100.11a routing takes place at two levels, e.g., mesh level
and backbone level, and when switching between these two levels, an appropri-
ate address translation between 16 bit DL subnet address and 128 bit backbone

814 D. Sahin and H. M. Ammari

address should be performed. Hence, different requirements and resources should
be adopted to be able to meet expectations of flexible routing.

• Transport Layer: Transport layer of ISA100.11a is also compatible with 6LoW-
PAN, hence manages connectionless, unacknowledge service with optional secu-
rity that extends user datagram protocol over IPv6 protocol. Hence, advanced
integrity checks, additional authentication and encryption mechanisms are adopted
[48].

• Application Layer: Application layer enhance ISA.100.11a application environ-
ment by providing the integration of the network to other host control systems with
appropriate field devices and gateways. Application layer also supports object ori-
ented modeling concepts [14]. The ISA.100.11a protocol divides application layer
into 2 sublayers, e.g., the upper application layer and the application sublayer.
the upper application layer is responsible for application processes and handles
input/output hardware, computational function and protocol tunneling, while the
application sublayer manages services needed for upper application layer, such as,
object-oriented communication and routing packets [48].

6.2 The Network Architecture of ISA.100.11a

ISA.100.11a network consist of all the required components to be able to manage
the network resources, route the network data traffic and easily integrate with other
systems. Moreover, there is a backbone network that can be defined as the wired net-
work where different ISA100.11a devices can be connected. Generally, ISA100.11a
has two basic types of devices, e.g., backbone devices and field devices. Field devices
may have routing or non-routing capabilities. For instance, a handled can be recog-
nized as a non-routing device which can be attached to a full-function device for
monitoring or data transmission purposes. On the other hand, backbone devices are
recognized as full-function devices which have continues power sources. Backbone
can be configured as a data network such as, industrial Ethernet, IEEE 802.11, or
any other network within the facility. Backbone router, gateway, system manager,
security manager, routing device, non-routing device are some of the components of
ISA100.11a network. ISA.100.11a network may have non or more than one back-
bone routers or gateways. A general view of the network is depicted in Fig. 6. Here
are some of the ISA100.11a network devices.

• Gateway: Gateway is one of the most important field device in the network. It
acts as an interface between wireless and plant network [48].

• System Manager: System Manager is responsible for controlling the network,
network devices, network resources and communications. After joining to the
network, to be able to optimize the network topology, it starts to assign resources
and provides a list of the appropriate neighbor nodes. For this purpose, system
manager should be aware of connectivity level of the network with the actual
measurements of link qualities [2].

23 Network Architectures and Standards 815

Fig. 6 General view of ZigBee, wirelessHART and ISA100.11a wireless technologies

• Security Manager: Security manager provides key management services to
enable secure data communications with the cooperation of system manager,
authenticates devices. To be able to establish a communication with a neigh-
bor node, the corresponding node should want a new session key from security
manager. Hence, it can guarantees that only authenticated devices can communi-
cate with each other.

• Routing Device: Routing device is capable of routing data to the other devices in
ISA.100.11a network.

• Non-routing (I/O) Device: Non-routing device is not capable of routing data, it
provides sensory data to the other devices or it uses data from other devices.

• Backbone Router: Backbone router is responsible for establishing connection
with other networks by routing data to the backbone network or from backbone
network. It encapsulates the data that is arrived to the ISA100.11a devices.

ISA.100.11a employs three types of network, e.g., star, mesh and star-mesh
topologies according to the roles of devices in the network. For instance, in a
ISA.100.11a network, routing role is separated from sensor and actuator roles. With
this separation, ISA.100.11a field devices are named as the end devices with no
routing capability or router nodes with routing capabilities.

816 D. Sahin and H. M. Ammari

6.3 ISA.100.11a and Industrial Applications

Reliable monitoring and alerting, asset management, predictive maintenance, con-
dition monitoring, factory automation, location services and logistics are all the
application areas which have specific requirements and performance characteristics
that can be covered by ISA.100.11a protocol. ISA.100.11a protocol effectively sup-
ports deterministic timing requirement-based control applications and most of the
industrial plant’s field device applications, e.g., emergency action which is an always
critical application, closed loop regularity control which is often critical, closed loop
supervisory control which is usually non-critical, etc.

7 Hardware Point of View of WSN Technologies

7.1 ZigBee from Hardware Point of View

There are many certified semiconductor companies, e.g., Freescale, Digi Interna-
tional, Ember, that have been providing successful designs for ZigBee products.
Here are some of the hardware products of each companies.

• XBee and XBee-PRO: XBee and XBee PRO are ZigBee embedded RF modules
developed by Digi International to provide low-cost, low-power wireless connec-
tivity in ZigBee mesh networks [70]. XBee modules provide easy-deployment
process for users. They can work in variety of protocols and frequencies.

• MC1319x: FreeScale semiconductor company provides a ZigBee ready platform
with MC1319x family of transceivers for easy-to-use, low-power, low-cost appli-
cations through ZigBee networks [72]. For instance MC13191 RF transceiver can
operate in 2.4 GHz frequency band and supports wireless applications such as,
wireless security systems, remote controls and patient monitoring.

• EM250: Ember company developed a single-chip solution, EM250, to operate at
2.4 GHz frequency band and support low-cost, low-power ZigBee applications,
e.g., building automation and control, home automation and control and asset
tracking [71].

7.2 WirelessHART and ISA.100.11a from Hardware Point of View

• Nivis: Nivis company offers hardware solutions, e.g., radio modules, gateways,
access points, system manager and security manager, for WirelessHART and
ISA.100.11a standards to provide interoperable and flexible industrial automation
and utility management applications [74]. Nivis solutions provide various flexible
network topologies based on the requirements of each specific WirelessHART or
ISA.100.11a application.

23 Network Architectures and Standards 817

• XYR 6000: Honeywell OneWireless XYR 6000 transmitters provide a seamless
integration with ISA.100.11a standard [73]. The system is flexible at connecting
to any plant system and supporting existing protocols with high reliability and
end-to-end security operations.

7.3 6LoWPAN from Hardware Point of View

• SensiNode: SensiNode company provides a complete hardware and software solu-
tion to support low-power wireless networking with IP technology [55].

• Hitachi: Hitachi company provides 6LoWPAN solutions on Renesas Technology
motes with inter-operation of Arch Rock System [23, 52].

8 Other Existing Wireless Sensor Technologies

8.1 Bluetooth

Bluetooth is based on IEEE 802.15.1 standard and designed for short-range wireless
communications between devices, e.g., mouse, keyboards, printers and joy-sticks
[35]. FHSS is used as the radio technology and data is transmitted in range of 2.4 GHz.
Piconet and scatternet are defined as the connectivity topologies. In piconet topology,
a bluetooth device serves as a master and forms the wireless network while one or
more bluetooth devices act as slaves. Slaves an communicate only with master device
while master can perform communications as in point-to-point or point-to-multi point
manner. On the other hand, scatternet is kind of a form where a collection of bluetooth
piconets overlap in time and space [35].

8.2 Z-Wave

Z-Wave is wide-spread, short-distance, low power RF communication technology
which focuses on wireless residential command, control and data exchange applica-
tions [33]. Z-Wave is developed by Zen Sys for automation in residential and light
commercial environments, operates in the 900 MHz ISM bands and allows transmis-
sion at 9.6 and 40 kb/s data rates [17]. Two types of devices, controller and slave,
can be defined with Z-Wave; the controllers poll or send commands to the slaves,
the slaves are like monitoring sensors, which reply to the controllers or execute the
commands [17].

818 D. Sahin and H. M. Ammari

8.3 Wireless M-Bus

M-Bus (Meter-Bus) is a European standard designed to full fill the need of remote
reading of all types of smart meters, such as electric and gas meters [30]. Wireless
M-Bus is the wireless type of the M-Bus technology which has low-cost, low-power
consumption and robustness characteristics.

8.4 Wavenis

Wavenis is a two-way wireless connectivity platform by Coronis Systems and pro-
moted by Wavenis Open Standard Alliance for control and monitoring applications
which requires small amounts of data with low-data rates and low-power manage-
ment. Wavenis provides 4.8 and 100 kb/s data rates and operates mainly in the ISM
bands, 433, 868 and 915 MHz bands in Asia, Europe, and the United States, respec-
tively [17]. Wavenis-enabled devices can be used for in-home comfort, building and
industrial automation, smart metering, alarms and security, access control, medical
and other UHF-active long-range RFID applications.

8.5 Wi-Fi

Wireless Fidelity, “Wi-Fi,” based on the IEEE 802.11 standard has been gaining pop-
ularity in HAN applications [28]. Wi-Fi utilizes the unlicensed spectrum in the 2.4
and 5 GHz frequency bands with maximum raw data rate of 54 Mbps, and provides
free wireless communication at high data rates [8]. Wi-Fi is used for two primary
purposes in [16]; Wi-Fi is described as the technology standard for in-home mul-
timedia applications and on the other hand, it is seen as the alternative choice to
ZigBee which provide communication path between home automation system and
Wi-Fi enabled devices.

8.6 Wifi-Direct

Wi-Fi Alliance has announced a new, breakthrough specification, “Wi-Fi Direct”
[77, 78], which allows peer-to-peer wireless connectivity between devices to trans-
fer, share, print or display the content. The Wi-Fi Direct specification which was pre-
viously code-named “Wi-Fi peer-to-peer” can be implemented to wide range appli-
cations, e.g., digital televisions, printers, cameras, gaming devices, smart phones,
PCs, keyboards, headphones providing one-to-one or one-to-many connections. The
exitance of Wi-Fi access point for device connections is not a mandatory require-

23 Network Architectures and Standards 819

Table 4 Basic characteristics of wireless technologies

WSN technology Basic characteristics

WirelessHART Backward compatible, easy-to-use, simple communications, interoperable
ZigBee Low-cost, long-battery life, usage of DSSS coding, small scale network

support
6LoWPAN Small packet size, low bandwidth, low-power, low-cos, large-scale

network support
ISA.100.11a Highly reliable message delivery, not backward compatible, costly, uses

frequency diversity

ment anymore with Wi-Fi Direct technology. The aim of Wi-Fi Direct is to enable
any-time, any-where connections for Wi-Fi Direct-Certified devices. Here are some
of the key characteristics of Wi-Fi Direct technology.

9 Conclusion and Comparison of Wireless Technologies

There is a wide range of WSN-based applications that differ in reliability, security,
scalability and bandwidth requirements. The proposed technologies address different
requirements of monitoring and control, health care, home automation, and consumer
electronics applications. The communication technology choice should be analyzed
carefully to meet the demands of these specific applications. Here is a brief com-
parison of ZigBee, WirelessHART, ISA.100.11a, 6LoWPAN and Wi-Fi Direct tech-
nologies. Table 4 also gives a brief description of characteristics of wireless sensor
network technologies.

• Scalability and Network Management: All of the mentioned wireless technolo-
gies are scalable, however some of them may have limitations in scalability and
network management. 6LoWPAN is a competitive alternative to ZigBee, since it
uses Internet Protocol version 6 (IPv6) for the network layer which is more promis-
ing when scalability is concerned [39]. 6LoWPAN uses the same IEEE 802.15.4
protocol as ZigBee for its physical and data link layer as depicted in Table 3,
however it differs from ZigBee in its network layer which provides great end-to-
end network communications. For direct communication with Internet, a router is
needed to collect the data from ZigBee network and convert the ZigBee protocol
to IP which causes ZigBee technology to degrade its performance on network
management and routing capabilities [39]. Furthermore, 6LoWPAN can provide
more powerful tools, e.g., SNMP (Simple Network Management Protocol) for
monitoring and analyzing the network in case of the network extension [39]. On
the other hand, Wi-Fi Direct can connect directly to an IP network and form a
scalable network, however, Wi-Fi Direct do not have all the functionalities of a
Wi-Fi Access Point. Hence, Wi-Fi Direct cannot provide a wide range of wireless
network without the help of access points or wireless routers. The management of

820 D. Sahin and H. M. Ammari

Wi-Fi Direct devices in a wireless network is another issue that is hard to accom-
plish. ISA.100.11a adopts 6LoWPAN for its network layer, however, the network
scalability is limited until it starts to affect the real-time and deterministic behavior
of ISA.100.11a network. Hence, not to make the sampling rate slow, non-routing
transmitters and backbone mesh networks are used [64].

• Flexibility: ISA.100.11a provides great flexibility to adopt to various applications,
while WirelessHART puts some limitations to the field devices to behave the same
for different vendors which prevents flexibility to respond specific requirements
of different applications [48].

• Reliability: All of the mentioned wireless technologies are reliable in data trans-
missions, however, the harsh environmental conditions, wireless link quality
and interference may degrade the performances of some them. For instance,
WirelessHART technology is specifically designed for industrial process control
applications and addresses some deficiencies of ZigBee technology in industrial
applications. Industry applications have some stringent timing and high security
requirements and harsh environmental conditions which poses great interferences
and obstacles that are hardly addressable by ZigBee technology [59]. On the other
hand, ZigBee has different spread-spectrum techniques to fight against the interfer-
ence. Hence, ISA.100.11a and WirelessHART technologies are appropriate since
ISA.100.11a use DSSS, channel hopping, channel blacklisting techniques to over-
come interference in industrial environment. However, WirelessHART may have
some coexistence with IEEE 802.11 protocol.

• Energy Efficiency: The underlying radio standard of ZigBee, WirelessHART,
ISA.100.11a and 6LoWPAN technologies is IEEE 802.15.4. Hence, the common
characteristic of these technologies is energy efficiency, and they are preferred
according to the requirements of specific wireless sensor network applications.

• Interoperability: All of the mentioned wireless technologies are interoperable.
WirelessHART is backward compatible with widely-used HART technology in the
process industry; Wi-Fi Direct is backward compatible with widely used Wi-Fi
technology; 6LoWPAN can connect to IP-based technologies that already exist
without additional routers or proxies and can be applied to any low-power, low-
rate wireless radio, while ZigBee can only communicate between 15.4 nodes due to
limitation to a single radio standard. ISA.100.11a adopts 6LoWPAN as its network
layer and can connect to other IP-based networks easily.

• Higher Data Rates: Wi-Fi Direct has 802.11n higher data rates (300 Mbps+),
hence, Wi-Fi Direct can be a proper choice for the applications that need higher
data rates, e.g, multi-player gaming, screen sharing, file sending. On the other
hand, ZigBee, WirelessHART and 6LoWPAN support low data rates (250 Kbps)
as depicted in Table 5.

• Protocol Structure: ZigBee, WirelessHART, ISA.100.11a, 6LoWPAN use IEEE
802.15.4 at the physical layer, while Wi-Fi uses IEEE 802.11 protocol.

• Frequency and Channel Configurations: ZigBee, WirelessHART, ISA.100.11a,
6LoWPAN are based on IEEE 802.15.4 standard while Wi-Fi Direct is based on
IEEE 802.11 standard. 14 channels are defined in 2.4 Ghz band for IEEE 802.11.
IEEE 802.11 uses non overlapping channels, e.g., 1, 6 and 11 to maximize the uti-

23 Network Architectures and Standards 821

Table 5 Wireless sensor nodes

Sensor node RF transceiver Data memory Features

IMote 2.0 ZigBee compliant
radio

32 MB SRAM TinyOS support

KMote 2.4 GHz IEEE
802.15.4
Chipcon wireless
transceiver

10 KB RAM TinyOS and SOS
support

MicaZ IEEE
802.15.4/ZigBee
compliant radio

4 KB RAM TinyOS, SOS and
MantisOS
support

Arago systems
WiSMote
Dev

CC2520 16 Kbytes RAM Contiki and
6LoWPan
supported

T-Mote sky 2.4 GHz IEEE
802.15.4
Chipcon wireless
transceiver

10 KB RAM Contiki, TinyOS,
SOS and
MantisOS
support

INDriya_CS_03A14 IEEE 802.15.4
compliant XBee
radios

4 KB RAM IPv6 network
supportive stacks
for
internetworking

lization of the frequency band, hence, IEEE 802.15.4 can accomplish interference
free operations only in Channels 15, 20 and 26 [48] which provides flexibility
for the technologies that adopt IEEE 802.15.4 as their PHY layer, e.g., ZigBee,
WirelessHART, ISA.100.11a, 6LoWPAN .

9.1 Comparison of WSN Technologies for Different
Application Areas

• Building Automation: The basic expected requirements from WSN technolo-
gies in building automation systems is them to be highly interoperable with other
devices and provide low-power, and low-cost seamless data communications back-
bone since they are realized by a large number of sensor nodes distributed in 3D
space with many specific subsystems, such as, lighting, electricity, HVAC, fire,
security systems [69]. Among the wireless sensor network technologies mentioned
throughout the chapter, ZigBee and Bluetooth seem to be the proper wireless tech-
nologies which can meet the specific demands of building automation systems.
ZigBee technology is designed for periodic data delivery which increases the bat-
tery performance of sensor nodes, hence, it seems a proper technology choice
for building automation systems [69]. On the other hand, for simple point-to-

822 D. Sahin and H. M. Ammari

point communications, Bluetooth which is designed for continuous data transmis-
sions, may be preferred. In the academia, there are lots of researches, experiments
conducted for the performance analysis of ZigBee technology in buildings, for
instance, Yang et al. monitored the performance of a fire hazard system based on
the ZigBee ad hoc system which lead satisfactory results. Park et al. proposed a
building automation model over ZigBee to adopt it as a wireless data link layer
protocol in proposed system, and results have shown that the system is appropriate
to be applied to building automation systems with tolerable response times, e.g.,
10 ms [45]. Furthermore, Yong et al. conducted a research and implementation on
ZigBee networking for building automation systems which resulted in low-cost,
high-security, simple structure ZigBee-based system [83].

• Industrial Applications: The devices for industrial processing and control appli-
cations are robust, hence, there are some strict requirements for wireless sensor
technologies to provide reliable data transmissions between them [79]. ZigBee,
Bluetooth, WiFi are some of the technologies which are not accepted by the indus-
try due to the some shortfalls, such that, ZigBee cannot provide the required QoS
support for handling latency and message flow determinism for industrial appli-
cations which will cause other protocols, e.g., HART, Modbus, Profibus not to
be supported by ZigBee, and Bluetooth, on the other hand, cannot scale well for
large process control systems. ZigBee, on the other hand, can only utilize DSSS,
hence, its performance may easily degrade in case of continues of noise. However,
WirelessHART can handle this obstacle by applying channel hopping and chan-
nel blacklisting. Hence, WirelessHART and ISA100.11a technologies have been
adopted for industrial applications due to their reliability, and low-cost features.
However, WirelessHART does not support multiple protocols as ISA100.11a does.
The transmission of HART messages are the only information specified and sup-
ported by WirelessHART. Hence, ISA100.11a is more preferable technology in
this area since it can scale well and increase the network life-span. A general view
of wireless sensor network applications is provided in Table 2.

• Home Automation: The realization of WSN technologies provided a new dimen-
sion to the process of the home automation systems, with the mobility of nodes,
easy installation and deployment costs [62]. Many wireless sensor network tech-
nologies may fill the needs of home automation systems, however, some of them are
advantageous over others, such that, 6LoWPAN offers low-cost, low-deployment,
and most importantly, adaptability features to the existing technologies. Bluetooth
is not suitable for home automation systems since it is limited in number of sen-
sor nodes and its energy consumption is higher than other competitor wireless
technologies, e.g., ZigBee, while WirelessHART is more suitable for industrial
applications [62].

Acknowledgments The authors gratefully acknowledge the insightful comments of the anonymous
reviewers which helped improve the quality and presentation of the paper significantly. This work
is partially supported by the US National Science Foundation (NSF) grants 0917089 and 1054935.
This work is funded by WiSeMAN Research Lab Department of Computer and Information Science
College of Engineering and Computer Science University of Michigan-Dearborn.

23 Network Architectures and Standards 823

References

1. K. Al Agha, M.-H. Bertin, T. Dang, A. Guitton, P. Minet, T. Val, J.-B. Viollet, Which wireless
technology for industrial wireless sensor networks? the development of OCARI technology.
IEEE Trans. Industr. Electron. 56(10), 4266–4278 (2009)

2. C. Alcaraz, J. Lopez, A security analysis for wireless sensor mesh networks in highly critical
systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(4), 419–428 (2010)

3. A.S. Altaan, Effects of sensor properties on power consumption in wireless sensor network. in
Computer Research and Development, 2010 Second International Conference on, pp. 335–339,
7–10 May 2010

4. A. Ashraf, M. Hashmani, B.S. Chowdhry, M. Mussadiq, Q. Gee, A.Q.K. Rajput, Design and
analysis of the security assessment framework for achieving discrete security values in wireless
sensor networks. in Electrical and Computer Engineering, 2008. CCECE 2008. Canadian
Conference on, pp. 000855–000860, 4–7 May 2008

5. P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, Y. Fun Hu, Wireless sensor networks:
A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun.
(ScienceDirect) 30(7), 1655–1695 (2006)

6. C.-Y. Chang, D. Shiu; Power consumption optimization for information exchange in wireless-
relay sensor networks. in Communications (ICC), 2012 IEEE International Conference on, pp.
745–750, 10–15 June 2012

7. Y. Chengbo, C. Yanzhe, L. Zhang, Y. Shuqiang, ZigBee wireless sensor network in envi-
ronmental monitoring applications. WiCom ’09. in 5th International Conference on Wireless
Communications, Networking and Mobile Computing, pp. 1–5, 24–26 Sept 2009

8. K. Collins, S. Mangold, G.-M. Muntean, Supporting mobile devices with wireless LAN/MAN
in large controlled environments. IEEE Commun. Mag. 48(12), 36–43 (2010)

9. L. De Nardis, M.-G. Di Benedetto, Overview of the IEEE 802.15.4/4a standards for low data
rate Wireless Personal Data Networks. in Positioning, Navigation and Communication, 2007.
WPNC ’07. 4th Workshop on, pp. 285–289, 22–22 March 2007

10. R. Dutta, S. Mukhopadhyay, Improved self-healing key distribution with revocation in wireless
sensor network. in Wireless Communications and Networking Conference, 2007. WCNC 2007.
IEEE, pp. 2963–2968, 11–15 March 2007

11. A.R. Dutta, B.S. Saha, C.A.K. Mukhopadhyay, Efficient clustering techniques to optimize
the system lifetime in Wireless Sensor Network. in Advances in Engineering, Science and
Management (ICAESM), 2012 International Conference on, pp. 679–683, 30–31 March 2012

12. G.K. Ee, C.K. Ng, N.K. Noordin, B.M. Ali, Path recovery mechanism in 6LoWPAN routing.
in International Conference on Computer and Communication Engineering (ICCCE), pp. 1–5,
11–12 May 2010

13. P. Ferrari, A. Flammini, D. Marioli, S. Rinaldi, E. Sisinni, On the implementation and perfor-
mance assessment of a wirelessHART distributed packet analyzer. IEEE Trans. Instrum. Meas.
59(5), 1342–1352 (2010)

14. H. Forbes, White paper, ISA100 and wireless standards convergence, http://www.isa100wci.
org/News-Room/Articles-and-Technical-Papers

15. L. Gang, B. Krishnamachari, C.S. Raghavendra, Performance evaluation of the IEEE 802.15.4
MAC for low-rate low-power wireless networks. in Performance, Computing, and Communi-
cations, 2004 IEEE International Conference on, pp. 701–706, 2004

16. K. Gill, Y. Shuang-Hua, Y. Fang, L. Xin, A zigbee-based home automation system. IEEE Trans.
Consum. Electron. 55(2), 422–430 (2009)

17. C. Gomez, J. Paradells, Wireless home automation networks: a survey of architectures and
technologies. IEEE Commun. Mag. 48(6), 92–101 (2010)

18. J. Granjal, E. Monteiro, J. Sa Silva, Enabling network-layer security on IPv6 wireless sensor
networks. in Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pp.
1–6, 6–10 Dec 2010

http://www.isa100wci.org/News-Room/Articles-and-Technical-Papers
http://www.isa100wci.org/News-Room/Articles-and-Technical-Papers

824 D. Sahin and H. M. Ammari

19. S. Han, B. Tian, M. He, E. Chang, Efficient threshold self-healing key distribution with spon-
sorization for infrastructureless wireless networks. IEEE Trans. Wireless Commun. 8(4),
1876–1887 (2009)

20. T. Hasegawa, H. Hayashi, T. Kitai, H. Sasajima, Industrial wireless standardization scope and
implementation of ISA SP100 standard. in SICE Annual Conference (SICE), 2011 Proceedings
of, pp. 2059–2064, 13–18 Sept 2011

21. M. Healy, T. Newe, E. Lewis, Power management in operating systems for wireless sensor
nodes. in Sensors Applications Symposium, 2007. SAS ’07. IEEE, pp. 1–6, 6–8 Feb 2007

22. A.A.O.A.L. Hester, Y. Huang, Neurfon netform: a self-organizing wireless sensor network. in
11th IEEE ICCCN Conference, Oct 2002

23. Hitachi global. http://www.hitachi.com/
24. E. Holohan, M. Schukat, Authentication using virtual certificate authorities: a new security

paradigm for wireless sensor networks. in Network Computing and Applications (NCA), 2010
9th IEEE International Symposium on, pp. 92–99, 15–17 July 2010

25. http://www.zigbee.org/About/AboutAlliance/TheAlliance.aspx
26. http://www.zigbee.org/Specifications.aspx
27. http://www.zigbee.org/Specifications/ZigBee/Overview.aspx
28. J. Hui, M. Devetsikiotis, The use of metamodeling for VoIP over WiFi capacity evaluation

(Transactions Letters). IEEE Trans. Wireless Commun. 7(1), 1–5 (2008)
29. J.W. Hui, D.E. Culler, Extending IP to low power, wireless personal area networks. IEEE

Internet Comput. 12(4), 37–45 (2008)
30. M.Z. Huq, S. Islam, Home area network technology assessment for demand response in smart

grid environment. in Universities Power Engineering Conference (AUPEC), 20th Australasian,
pp. 1–6, 5–8 Dec 2010

31. C. Karlof, D. Wagner, Secure routing in wireless sensor networks: attacks and countermeasures.
in Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on, pp. 113–127, 11 May 2003

32. A.N. Kim, F. Hekland, S. Petersen, P. Doyle, When HART goes wireless: Understanding and
implementing the wirelessHART standard, emerging technologies and factory automation. in
ETFA 2008. IEEE International Conference on, pp. 899–907, 15–18 Sept 2008

33. M. Knight, Wireless security How safe is Z-wave? Comput. Control. Eng. J. 17(6), 18–23
(2006)

34. J.-S. Lee, C.-C. Chuang, C.-C. Shen, Applications of short-range wireless technologies to indus-
trial automation: a ZigBee approach. in Telecommunications, 2009. AICT ’09. Fifth Advanced
International Conference on, pp. 15–20, 24–28 May 2009

35. J.-S. Lee, Y.-W. Su, C.-C. Shen, A comparative study of wireless protocols: Bluetooth, UWB,
ZigBee, and Wi-Fi. IECON 2007. in 33rd Annual Conference of the IEEE Industrial Electronics
Society, pp. 46–51, 5–8 Nov 2007

36. J. Li, X. Zhu, N. Tang, J. Sui, Study on ZigBee network architecture and routing algorithm.
in Signal Processing Systems (ICSPS), 2010 2nd International Conference on, vol. 2, pp. V2-
389–V2-393, 5–7 July 2010

37. S. Lin, J. Liu, Y. Fang, ZigBee based wireless sensor networks and its applications in industrial.
in IEEE International Conference on Automation and Logistics, pp. 1979–1983, 18–21 Aug
2007

38. A. Liu, P. Ning, TinyECC: a configurable library for elliptic curve cryptography in wireless
sensor networks. in Information Processing in Sensor Networks, 2008. IPSN ’08. International
Conference on, pp. 245–256, 22–24 April 2008

39. C.-W. Lu, S.-C. Li, Q. Wu, Interconnecting ZigBee and 6LoWPAN wireless sensor networks
for smart grid applications. in 2011 Fifth International Conference on Sensing Technology
(ICST), pp. 267–272, Nov 28 2011–Dec 1 2011

40. J. Ma, M. Gao, Q. Zhang, L.M. Ni, Energy-efficient localized topology control algorithms
in IEEE 802.15.4-based sensor networks. IEEE Trans. Parallel Distrib. Syst. 18(5), 711–720
(2007)

http://www.hitachi.com/
http://www.zigbee.org/About/AboutAlliance/TheAlliance.aspx
http://www.zigbee.org/Specifications.aspx
http://www.zigbee.org/Specifications/ZigBee/Overview.aspx

23 Network Architectures and Standards 825

41. L. Mainetti, L. Patrono, A. Vilei, Evolution of wireless sensor networks towards the Internet
of Things: A survey. in Software, Telecommunications and Computer Networks (SoftCOM),
2011 19th International Conference on, pp. 1–6, 15–17 Sept 2011

42. I. Muller, J.C. Netto, C.E. Pereira, WirelessHART field devices. IEEE Instrum. Meas. Mag.
14(6), 20–25 (2011)

43. M. Nagajothy, S. Radha, Network lifetime enhancement in wireless sensor network using
network coding. in Control, Automation, Communication and Energy Conservation, 2009.
INCACEC 2009. 2009 International Conference on, pp. 1–4, 4–6 June 2009

44. Official website of HART communication foundation, http://www.hartcomm.org/protocol/
wihart/wireless_technology.html

45. T.J. Park, Y.J. Chon, D.K. Park, S.H. Hong, BACnet over ZigBee, a new approach to wireless
datalink channel for BACnet. in Industrial Informatics, 2007 5th IEEE International Confer-
ence on, pp. 33–38, 23–27 June 2007

46. L. Pengfei, L. Jiakun, N. Luhua, W. Bo, Research and application of ZigBee protocol stack.
in 2010 International Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), vol. 2, pp. 1031–1034, 13–14 March 2010

47. C. Perkins, E. Royer, Ad hoc on-demand distance vector routing. in 2nd IEEE Workshop on
Mobile Computing Systems and Applications, 1999, pp. 90–100

48. S. Petersen, S. Carlsen, WirelessHART Versus ISA100.11a: the format war hits the factory
floor. IEEE Ind. Electron. Mag. 5(4), 23–34 (2011)

49. M. Petrova, J. Riihijarvi, P. Mahonen, S. Labella, Performance study of IEEE 802.15.4 using
measurements and simulations. in Wireless Communications and Networking Conference,
2006. WCNC 2006. IEEE, vol. 1, pp. 487–492, 3–6 April 2006

50. S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, U. Roedig, Securing communication in
6LoWPAN with compressed IPsec. in Distributed Computing in Sensor Systems and Workshops
(DCOSS), 2011 International Conference on, pp. 1–8, 27–29 June 2011

51. S. Raza, T. Voigt, Interconnecting wirelessHART and legacy HART networks. in 2010 6th IEEE
International Conference on Distributed Computing in Sensor Systems Workshops (DCOSSW),
pp. 1–8, 21–23 June 2010

52. Renesas technology europe. http://eu.renesas.com/
53. R. Riaz, K.-H. Kim, H.F. Ahmed, Security analysis survey and framework design for IP con-

nected LoWPANs. ISADS ’09. in International Symposium on Autonomous Decentralized
Systems, pp. 1–6, 23–25 March 2009

54. M. Saleh, I.A. Khatib, Throughput analysis of WEP security in ad hoc sensor networks. in
Proceedings of The Second International Conference on Innovations in Information Technology
(IIT’05), Dubai, Sept 26–28, 2005

55. Sensinode. http://www.sensinode.com
56. Z. Shelby, C. Bormann, 6LoWPAN: the wireless embedded internet. Wiley Series in Commu-

nications Networking and Distributed Systems, 2009
57. E. Shih et al., Physical layer driven protocol and algorithmdesign for energy efficient wireless

sensor networks. in Proceedings of MOBICOM, 2001, pp. 272–287
58. M.-K. Shin, K. Hyoung-Jun, L3 mobility support in large-scale IP-based sensor networks

(6LoWPAN). ICACT 2009. in 11th International Conference on Advanced Communication
Technology, vol. 02, pp. 941–945, 15–18 Feb 2009

59. J. Song, H. Song, A.K. Mok, D. Chen, M. Lucas, M. Nixon, WirelessHART: applying wireless
technology in real-time industrial process control. in IEE Real-Time and Embedded Technology
and Applications Symposium, RTAS ’08, pp. 377–386, 22–24 April 2008

60. H. Song, J. Song, X. Zhu, A.K. Mok, D. Chen, M. Nixon, W. Pratt, V. Gondhalekar, Wi-
HTest: compliance test suite for Diagnosing Devices in Real-Time WirelessHART Network.
RTAS 2009. in 15th IEEE, Real-Time and Embedded Technology and Applications Symposium,
pp. 327–336, 13–16 April 2009

61. Technical report, Co-existence of wirelessHART with other wireless technologies,
http://www.hartcomm.org/protocol/training/resources/wiHART_resources/CoExistence_
WirelessHART_LIT122.pdf

http://www.hartcomm.org/protocol/wihart/wireless_technology.html
http://www.hartcomm.org/protocol/wihart/wireless_technology.html
http://eu.renesas.com/
http://www.sensinode.com
http://www.hartcomm.org/protocol/training/resources/wiHART_resources/CoExistence_WirelessHART_LIT122.pdf
http://www.hartcomm.org/protocol/training/resources/wiHART_resources/CoExistence_WirelessHART_LIT122.pdf

826 D. Sahin and H. M. Ammari

62. D.S. Tudose, A. Voinescu, M. Petrareanu, A. Bucur, D. Loghin, A. Bostan, N. Tapus, Home
automation design using 6LoWPAN wireless sensor networks. in Distributed Computing in
Sensor Systems and Workshops (DCOSS), 2011 International Conference on, pp. 1–6, 27–29
June 2011

63. H. Unterassinger, M. Dielacher, M. Flatscher, S. Gruber, G. Kowalczyk, J. Prainsack, T. Herndl,
J. Schweighofer, W. Pribyl, A power management unit for ultra-low power wireless sensor
networks. in AFRICON, 2011, pp. 1–6, 13–15 Sept 2011

64. I. Verhamme, Industrial ethernet book, Issue 64/30, http://www.iebmedia.com/index.php
65. A. Viswanathan, T.E. Boult, Power conservation in ZigBee networks using temporal control.

in Wireless Pervasive Computing, 2007. ISWPC ’07. 2nd International Symposium on, 5–7 Feb
2007

66. A.Y. Wang et al., Energy efficient modulation and MAC for asymmetric RF microsen-
sorsystems. in IEEE International Symposium on Low Power Electronics and Design, 2001,
pp. 106–111

67. W. Wang, G. He, J. Wan, Research on Zigbee wireless communication technology. in Electrical
and Control Engineering (ICECE), 2011 International Conference on, pp. 1245–1249, 16–18
Sept 2011

68. Q. Wanzhi, H. Peng, R.J. Evans, An efficient self-healing process for ZigBee sensor networks.
in Communications and Information Technologies, 2007. ISCIT ’07. International Symposium
on, pp. 1389–1394, 17–19 Oct 2007

69. G. Wenqi, W.M. Healy, Z. MengChu, ZigBee-wireless mesh networks for building automation
and control. in Networking, Sensing and Control (ICNSC), 2010 International Conference on,
pp. 731–736, 10–12 April 2010

70. White paper, Digi international, http://www.digi.com/pdf/ds_xbeezbmodules.pdf
71. White paper, Ember, http://www.eet-china.com/ARTICLES/2005OCT/PDF/EM250_

DATASHEET.PDF
72. White paper, freeScale, http://cache.freescale.com/files/rf_if/doc/BRMC1319192FAM.pdf
73. White paper, Honeywel, https://www.honeywellprocess.com/
74. White paper, Nivis, http://www.nivis.com/resources/WirelessHART
75. White paper, vision for the home ZigBee wireless home automation, https://docs.zigbee.org/

zigbee-docs/dcn/06-4720.pdf
76. White paper, ZigBee wireless sensor applications for health, wellness and fitness, https://docs.

zigbee.org/zigbee-docs/dcn/09-4962.pdf
77. Wi-Fi CERTIFIED Wi-Fi direct, frequently asked questions, http://www.wi-fi.org/files/faq_

20101021_Wi-Fi_Direct_FAQ.pdf
78. Wi-Fi CERTIFIED Wi-Fi Direct: Personal, portable Wi-Fi to connect devices anywhere, any

time, http://www.wi-fi.org/register.php?file=wp_Wi-Fi_Direct_20101022_Consumer.pdf
79. J.M. Winter, C. Lima, I. Muller, C.E. Pereira, J.C. Netto, WirelessHART routing analysis soft-

ware. in Computing System Engineering (SBESC), 2011 Brazilian Symposium on, pp. 96–98,
7–11 Nov 2011

80. A.D. Wood, J.A. Stankovic, S.H. Son, in JAM: A Jammed-Area Mapping Service for Sensor
Networks, 24th IEEE Real-Time Systems Symposium, RTSS 2003, pp. 286–297

81. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc routing. in
Proceedings of the 7th Annual International Conference on Mobile Computing and Networking.
ACM, 2001, pp. 7084

82. J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey. Comput. Netw. 52(12),
2292–2330 (2008)

83. S. Yong, Z. Yi, W. Jian, Q. Tinggao, Research and implementation of ZigBee network-
ing. in Mechatronics and Automation, 2009. ICMA 2009. International Conference on,
pp. 3992–3996, 9–12 Aug 2009

84. X. Zhang, M. Wei, P. Wang, Y. Kim, Research and implementation of security mechanism
in ISA100.11a networks. in Electronic Measurement & Instruments, 2009. ICEMI ’09. 9th
International Conference on, pp. 4-716–4-721, 16–19 Aug 2009

http://www.iebmedia.com/index.php
http://www.digi.com/pdf/ds_xbeezbmodules.pdf
http://www.eet-china.com/ARTICLES/2005OCT/PDF/EM250_DATASHEET.PDF
http://www.eet-china.com/ARTICLES/2005OCT/PDF/EM250_DATASHEET.PDF
http://cache.freescale.com/files/rf_if/doc/BRMC1319192FAM.pdf
https://www.honeywellprocess.com/
http://www.nivis.com/resources/WirelessHART
https://docs.zigbee.org/zigbee-docs/dcn/06-4720.pdf
https://docs.zigbee.org/zigbee-docs/dcn/06-4720.pdf
https://docs.zigbee.org/zigbee-docs/dcn/09-4962.pdf
https://docs.zigbee.org/zigbee-docs/dcn/09-4962.pdf
http://www.wi-fi.org/files/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://www.wi-fi.org/files/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://www.wi-fi.org/register.php?file=wp_Wi-Fi_Direct_20101022_Consumer.pdf

23 Network Architectures and Standards 827

85. M. Zhou, Z.-l. Nie, Analysis and design of ZigBee MAC layers protocol. in 2010 International
Conference on Future Information Technology and Management Engineering (FITME), vol. 2,
pp. 211–215, 9–10 Oct 2010

86. Y. Zhou, X. Yang, X. Guo, M. Zhou, L. Wang, A design of greenhouse monitoring & control
system based on ZigBee wireless sensor network. in Wireless Communications, Networking
and Mobile Computing, 2007. WiCom 2007. International Conference on, pp. 2563–2567,
21–25 Sept 2007

87. ZIGBEE sMART eNERGY, http://zigbee.org/Standards/ZigBeeSmartEnergy/

http://zigbee.org/Standards/ZigBeeSmartEnergy/

Editor’s Biography

Habib M. Ammari is an Associate Professor and the
Founding Director of Wireless Sensor and Mobile Ad-hoc
Networks (WiSeMAN) Research Lab, in the Department of
Computer and Information Science, College of Engineer-
ing and Computer Science, University of Michigan- Dear-
born, since September 2011. He obtained his second Ph.D.
degree in Computer Science and Engineering from the Uni-
versity of Texas at Arlington, in May 2008, and his first
Ph.D. in Computer Science from the Faculty of Sciences of
Tunis, in December 1996. He has a strong publication record
in top-quality journals, such as ACM TOSN, ACM TAAS,
IEEE TPDS, IEEE TC, Elsevier COMNET, Elsevier PMC,
Elsevier JPDC, Elsevier COMCOM, and high-quality con-
ferences, such as IEEE SECON, IEEE ICDCS, EWSN, and
IEEE MASS. He published his first Springer book, “Chal-
lenges and Opportunities of Connected k-Covered Wireless
Sensor Networks: From Sensor Deployment to Data Gather-
ing” in August 2009. Also, he is the author and editor of two

Springer books, “The Art of Wireless Sensor Networks: Fundamentals” and “The Art of Wire-
less Sensor Networks: Advanced Topics and Applications,” which will be published in 2014.
He has been selected for inclusion in the AcademicKeys Who’s Who in Engineering Higher
Education in 2012, the AcademicKeys Who’s Who in Sciences Higher Education in 2011, Fea-
ture Alumnus in the University of Texas at Arlington CSE Department’s Newsletter in Spring
2011, Who’s Who in America in 2010, and the 2008-2009 Honors Edition of Madison Who’s
Who Among Executives and Professionals. He received several prestigious awards, including
the Certificate of Appreciation Award at ACM MiSeNet 2013, the Certificate of Appreciation
Award at the IEEE DCoSS 2013, the Certificate of Appreciation Award at the ACM Mobi-
Com 2011, the Outstanding Leadership Award at the IEEE ICCCN 2011, the Best Symposium
Award at the IEEE IWCMC 2011, the Lawrence A. Stessin Prize for Outstanding Scholarly Pub-
lication from Hofstra University in May 2010, the Faculty Research and Development Grant
Award from Hofstra College of Liberal Arts and Sciences in May 2009, the Best Paper Award
at EWSN in 2008, the Best Paper Award at the IEEE PerCom 2008 Google Ph.D. Forum, the
Best Graduate Student Paper Award (Nokia Budding Wireless Innovators Awards First Prize)
in May 2004, the Best Graduate Student Presentation Award (Ericsson Award First Prize) in
February 2004, and Laureate in Physics and Chemistry for academic years 1987 and 1988. Also,
he was selected as the ACM Student Research Competition Finalist at the ACM MobiCom 2005.
He is the recipient of the Nortel Outstanding CSE Doctoral Dissertation Award in February 2009,

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 829
Signals and Communication Technology, DOI: 10.1007/978-3-642-40009-4,
© Springer-Verlag Berlin Heidelberg 2014

830 Editor’s Biography

and the John Steven Schuchman Award for 2006-2007 Outstanding Research by a PhD Student in
February 2008. He received a three-year US National Science Foundation (NSF) Research Grant
Award, in June 2009, and the US NSF CAREER Award, in January 2011. He is the Founding
Coordinator of both of the Research Colloquium Series since September 2011, and the Distin-
guished Lecture Series since January 2012, in the College of Engineering and Computer Science
at the University of Michigan-Dearborn. He has been invited to give invited talks at several reputed
universities. He is the Founder of the ACM Annual International Workshop on Mission-Oriented
Wireless Sensor Networking (ACM MiSeNet), which has been co-located with ACM MobiCom
since 2012. He serves as Associate Editor of several prestigious journals, such as ACM TOSN,
IEEE TC, and Elsevier PMC. Also, he has served as Program Chair, Session Chair, Publicity
Chair, Web Chair, and Technical Program Committee member of numerous ACM and IEEE con-
ferences, symposia, and workshops.

	Foreword
	Contents
	Contributors
	Part IIntroduction and Applications
	1 Introduction
	1 The Art of Wireless Sensor Networks
	2 Book Organization
	3 Acknowledgments

	2 A Decade of Wireless Sensing Applications: Survey and Taxonomy
	1 Introduction
	2 Taxonomy
	3 Survey
	3.1 Low-Rate Data Collection
	3.2 High-Rate Data Collection
	3.3 On-Demand Data Collection
	3.4 Event Detection and Classification
	3.5 Localization and Tracking
	3.6 Actuation

	4 Summary and Outlook
	References

	3 Design of Low Data-Rate Environmental Monitoring Applications
	1 Challenges in Environmental Monitoring
	1.1 Controlling the Total Cost of Ownership
	1.2 Reliability and Performance Metrics
	1.3 Network Metrics for Large Network Design

	2 NatureMONITOR Case Study
	2.1 NatureMONITOR Project Specifications
	2.2 Functional and Non-functional Requirements

	3 Why Applying Taxonomy to a WSN Project?
	4 Discussion and Conclusions
	4.1 NatureMONITOR Project: Discussion
	4.2 NatureMONITOR Project: Preliminary Results
	4.3 Conclusions

	References

	Part IIWireless Communications and Medium Access Control
	4 Physical Layer Communications in Wireless Sensor Networks
	1 Introduction
	2 Coexistence of UWB and IEEE 802.11n: Throughput Optimization for IR-UWB
	2.1 Study on Coexistence Between UWB and NB Systems
	2.2 UWB Radio
	2.3 IEEE 802.11n
	2.4 Coexistence System Model
	2.5 Interference Model
	2.6 Interference Evaluation Based on I/N Criteria
	2.7 Optimal Power Allocation Scheme
	2.8 Numerical Simulation and Discussion

	3 Sensor Optimization and Selection in Wireless Sensor Networks Based on Physical Layer Design
	3.1 System Model and Problem Formulation
	3.2 Improving the Estimation Accuracy Using Sensor Selection
	3.3 Improving the Power Efficiency Using Sensor Selection

	4 Conclusion
	References

	5 Network Coding Techniques for Wireless and Sensor Networks
	1 Introduction
	2 Classification of Network Coding Approaches
	3 Network Coding Methods for Unicast Applications
	3.1 Inter-session Network Coding
	3.2 Intra-session Network Coding
	3.3 Joint Inter and Intra-session Network Coding
	3.4 Summary and Discussion

	4 Network Coding Methods for Multicast Applications
	4.1 Intra-session Network Coding

	5 Network Coding Method for Broadcast Applications
	5.1 Inter-session Network Coding
	5.2 Intra-session Network Coding
	5.3 Summary and Discussion

	6 Conclusion
	References

	6 Sleeping Techniques for Reducing Energy Dissipation
	1 Introduction
	2 Wake-up Techniques
	2.1 Scheduled (Internally Controlled) Wake-up
	2.2 Radio Controlled Wake-up
	2.3 Environmentally Controlled Wake-up
	2.4 Choosing the Wake-up Technique

	3 Medium Access Control Layer Sleeping Techniques
	3.1 Taxonomy of Sleeping MAC Protocols
	3.2 MAC Protocols Employing Scheduled Wake-up
	3.3 MAC Protocols Employing Radio Controlled Wake-up
	3.4 MAC Protocols Employing Environmentally Controlled Wake-up

	4 Routing Layer Sleeping Techniques
	4.1 Topology Control
	4.2 Sleeping Routing
	4.3 Sleeping Multipath Routing

	5 Cross-Layer Sleeping Techniques
	5.1 Effects of Uncoordinated Sleeping in the Stack Layers
	5.2 Cross Layer Sleeping
	5.3 Sleep Manager

	6 Conclusions
	References

	Part IIIRouting
	7 Energy-Aware Routing for Wireless Sensor Networks
	1 Introduction
	2 Single-Hop Versus Multi-Hop Energy Consumption
	3 Flat Multi-Hop Routing Algorithms
	3.1 Minimizing Energy Consumption
	3.2 Maximizing Network Lifetime
	3.3 Recent Innovations
	3.4 Summary

	4 Hierarchical Routing Algorithms
	4.1 LEACH
	4.2 PEGASIS
	4.3 Recent Innovations
	4.4 Summary

	5 Hybrid Routing Algorithms
	5.1 HYMN
	5.2 Summary

	6 Data-Centric Routing Algorithms
	6.1 Basic Schemes and Issues
	6.2 SPIN
	6.3 Directed Diffusion
	6.4 Recent Innovations
	6.5 Summary

	7 Location-Based Routing Algorithms
	7.1 GAF
	7.2 GEAR
	7.3 Recent Innovations
	7.4 Summary

	8 Discussion
	8.1 Data-Aggregation
	8.2 Network Lifetime Definition
	8.3 Routing Overhead
	8.4 Energy Hole Phenomenon
	8.5 Collisions and Interferences

	9 Conclusion
	References

	8 Utility-Based Routing in Wireless Sensor Networks
	1 Introduction
	2 Background
	2.1 Utility-Based Routing
	2.2 Objectives of Different Utilities
	2.3 Reporting Model
	2.4 Additional Issues

	3 Single Utility-Based Routing
	3.1 Packet Delivery Ratio
	3.2 Delay
	3.3 Energy Cost

	4 Composite Utility-Based Metric
	4.1 Composite Utility-Based Routing in Ad hoc Networks
	4.2 Composite Utility-Based Routing Using Opportunistic Routing
	4.3 Composite Utility-Based Routing in Low Duty-Cycle WSNs
	4.4 Composite Utility-Based Broadcast in Low Duty-Cycle WSNs

	5 Additional Discussions
	5.1 The Maximum Utility Model
	5.2 The Other Utility Models
	5.3 The Timed-Benefit with Different Indices
	5.4 Comparisons
	5.5 Future work

	6 Conclusion
	References

	Part IVTopology and Mobility Management
	9 Topology Management Techniques for Tolerating Node Failure
	1 Introduction
	2 Topology Management in Wireless Networks
	2.1 Topology Management in Cellular Networks and MANETs
	2.2 Topology Management Methodologies in WSNs

	3 Classification of Failure and Tolerance Techniques
	3.1 Node Failure Models
	3.2 Taxonomy of Fault-Tolerance Techniques

	4 Tolerance of Coverage Loss Due to Node Failures
	5 Connectivity-Centric Recovery from a Single Node Failure
	5.1 Provisioned Recovery Schemes
	5.2 Reactive Connectivity Restoration Schemes

	6 Tolerating the Failure of Multiple Nodes
	6.1 Objective of the Recovery Process
	6.2 Restoring Connectivity by Node Relocation
	6.3 Recovery Through Deployment of Relays

	7 Conclusion and Open Research Problems
	References

	10 Mobility Management with Integrated Coverage and Connectivity
	1 Introduction
	1.1 Mobility in Sensor Networks
	1.2 Challenges in Mobility Management
	1.3 Chapter Layout

	2 Literature Review
	2.1 Target Tracking
	2.2 Routing Protocols
	2.3 Mobility Management

	3 Tracking Quality Improvement Due to Node Movement
	3.1 Preliminaries
	3.2 Assumptions
	3.3 Probability of Node Movement to a New Location

	4 Estimation of Negative Consequences
	4.1 Energy Consumption
	4.2 Probability of a Node Being Disconnected
	4.3 Potential Loss of Sensing Coverage

	5 Decision on Node Movement
	5.1 Cost Evaluation
	5.2 Decision on Movement
	5.3 Analysis of Time Complexity

	6 Simulation Studies
	6.1 Static Sensor Network Versus Mobile Network with Mobility Management
	6.2 Random Mobile Sensor Network Versus Mobile Network with Mobility Management
	6.3 Localized Versus Centralized Implementations
	6.4 Discussion

	7 Conclusions
	References

	Part VLocalization and Task Management
	11 Range-Free Localization Techniques
	1 Overview
	2 Range-Free Versus Range-Based Localization
	2.1 Overview of Range-Based Localization Techniques
	2.2 Overview of Range-Free Localization Techniques

	3 Case Studies of Range-Free Localization Techniques
	3.1 Convex Position Estimation
	3.2 Ad Hoc Positioning System
	3.3 Approximate Point In Triangulation
	3.4 Ring Overlapping Localization Techniques
	3.5 Multidimensional Scaling
	3.6 Rendered Path Localization
	3.7 Secure Range-Independent Localization
	3.8 Event-Driven Localization

	4 Discussion and Comparison
	5 Research Directions
	6 Summary
	References

	12 Energy-Efficient Task Management
	1 Introduction
	2 Related Work
	3 The Network Model
	4 The Time-Invariant Awake Probability
	5 Network Longevity
	5.1 Optimal Task Management Strategies

	6 Centralized Task Management
	6.1 CTW Messages
	6.2 Leader Election
	6.3 Workforce Selection
	6.4 Estimating the Number of Bidding Slots
	6.5 Determining a Suitable Number of Candidates

	7 Distributed Task Management
	7.1 Phase 1: Estimating the Maximum Energy
	7.2 Phase 2: To Participate or Not to Participate
	7.3 Average Size of the Over-recruited Workforce

	8 Performance Evaluation
	8.1 Simulation Model
	8.2 Simulation Results

	9 Concluding Remarks and Open Problems
	References

	Part VIData Management
	13 Quality-Aware Sensor Data Management
	1 Motivation
	2 A Landscape of Distributed Sensor Applications
	3 Sensor Data Models and Representation
	4 Architectures for Executing Sensor Applications
	5 Sensor Data Collection
	5.1 Quality-Aware Sensor Data Collection
	5.2 Dealing with Composite Requirements

	6 Querying and Query Optimization in Sensor Networks
	7 Conclusions
	References

	14 Geometric Methods of Information Storage and Retrieval in Sensor Networks
	1 Introduction
	1.1 Distribution and Location of Nodes
	1.2 Communication and Routing

	2 Information Brokerage and Range Queries
	2.1 Hashing Data to Points and Curves
	2.2 Hierarchical Partitions

	3 Mobility Management and Tracking
	3.1 Hierarchic Tracking Data
	3.2 Differential Tracking Forms: Aggregate Tracking

	4 Networks with Complex Shape: Segmentation and Virtual Coordinates
	4.1 Network Decomposition
	4.2 Virtual Coordinates

	5 Discussion
	References

	Part VIIData Gathering
	15 Data Gathering, Storage, and Post-Processing
	1 Introduction
	1.1 Soil Monitoring
	1.2 Data Center Monitoring

	2 Collection
	2.1 Koala: Low-Power Data Collection
	2.2 WRAP: High-Throughput Data Collection

	3 Time Reconstruction
	3.1 Phoenix Postmortem Timestamp Reconstruction

	4 Storage and Access
	4.1 Data Storage
	4.2 Data Access
	4.3 Data Analysis

	5 Conclusion
	References

	16 Data Gathering in Wireless Sensor Networks
	1 Introduction
	2 Data Aggregation
	2.1 Introduction of Data Aggregation
	2.2 Overview of Data Aggregation Schemes
	2.3 DAS [76]

	3 Data Collection
	3.1 Overview of Data Collection Schemes
	3.2 Tree-Based Data Collection
	3.3 Cell-Based Data Collection [40]

	4 Conclusions and Future Work
	References

	Part VIIISecurity
	17 Current Challenges and Approaches in Securing Communications for Sensors and Actuators
	1 Background
	1.1 Security Goals
	1.2 Implementation Constraints
	1.3 Potential Attacks and Defenses
	1.4 Evaluation Benchmarks

	2 Basic Security Challenges and Approaches
	2.1 Cryptography Schemes
	2.2 Key Management Schemes
	2.3 Attack Detection and Prevention

	3 Secure Routing
	3.1 Traditional Routing Protocols for Ad Hoc and Sensor Networks
	3.2 Multipath Routing
	3.3 Secure Routing for Cluster or Hierarchical Sensor Networks
	3.4 Broadcast Authentication

	4 Secure Localization Schemes
	4.1 Beacon-Based Schemes
	4.2 Non-Beacon-Based Schemes

	5 Secure Data Aggregation
	5.1 Plaintext-Based Schemes
	5.2 Cipher-Based Schemes

	6 Conclusion
	References

	18 Privacy Enhancing Technologies for Wireless Sensor Networks
	1 Introduction
	2 Overview of This Chapter
	3 System Privacy
	3.1 Data Source Privacy
	3.2 Base Station Privacy

	4 Data Privacy
	4.1 Data Content Privacy
	4.2 Aggregate Data Privacy

	5 Context Privacy
	5.1 Location Privacy
	5.2 Temporal Privacy

	6 Conclusion and Future Directions
	References

	Part IXMiddleware
	19 Middleware Platforms: State of the Art, New Issues, and Future Trends
	1 Introduction
	2 Requirements and Challenges of Middleware for WSN
	2.1 WSN Features
	2.2 WSN Middleware Requirements

	3 Programming Abstractions
	3.1 Programming Abstractions: Abstraction Levels
	3.2 Programming Abstraction: Paradigms and Interface Types
	3.3 WSN Middleware Programming Paradigms

	4 Middleware Services
	4.1 Common Services of WSN Middleware
	4.2 Domain Specific Services of WSN Middleware

	5 New Issues and Future Trends
	5.1 WSN Infrastructure Sharing
	5.2 WSN Interoperability
	5.3 WSN for Critical Applications

	6 Final Remarks
	References

	20 Service-Oriented Middleware: Overview and Illustrative Example
	1 Introduction
	2 Overview on Service-Oriented Middleware for WSN
	2.1 Background Concepts: SOC and SOA
	2.2 Implementation Technologies
	2.3 SOM for WSN

	3 Illustrative Example of WSN SOM
	3.1 System Operation
	3.2 Semantic Extension of the WSN Middleware

	4 Conclusion
	References

	Part XSensor Technology, Standards, and Operating Systems
	21 System Architecture and Operating Systems
	1 Introduction
	1.1 Kernel Scheduler
	1.2 Programming Model
	1.3 Protocol Stack
	1.4 Storage Management
	1.5 Additional Requirements

	2 Hardware Platforms and Architecture
	2.1 Sensor Node Components
	2.2 Commercial Sensor Nodes
	2.3 Comparison of Sensor Nodes

	3 The TinyOS Operating System
	3.1 Introduction
	3.2 System Overview
	3.3 Event-Based Concurrency Model
	3.4 Component-Based System Architecture
	3.5 Networking Architecture
	3.6 New Features in TinyOS 2.x
	3.7 Implementation and Hardware Support

	4 Contiki: A Lightweight and Flexible Operating System
	4.1 Introduction
	4.2 System Overview
	4.3 Key Features
	4.4 Network Protocols
	4.5 Implementation and Hardware Support

	5 The LiteOS Operating System
	5.1 Introduction
	5.2 System Overview
	5.3 Architectural Overview
	5.4 Key Features
	5.5 Programming Model
	5.6 Communication Architecture
	5.7 Implementation and Hardware Support

	6 Comparison of Different Operating Systems
	6.1 The SOS Operating System
	6.2 The Mantis Operating System
	6.3 The Nano-RK Operating System
	6.4 The RETOS Operating System
	6.5 The Enix Operating System
	6.6 Comparison of Sensor Network Operating Systems

	7 Conclusion Remarks
	References

	22 Programming Languages, Network Simulators, and Tools
	1 Introduction
	2 Wireless Sensor Network Modeling
	2.1 Wireless Channel Modeling
	2.2 Energy Consumption Modeling
	2.3 MAC Modeling
	2.4 Routing Modeling

	3 A Quick View on Network Simulators
	3.1 NS-2
	3.2 OMNET++
	3.3 J-Sim
	3.4 OPNET
	3.5 TOSSIM

	4 NS-2
	4.1 WSN Modeling in NS-2
	4.2 NS-2 Simulation and Programming Languages
	4.3 NS-2 Fundamental Components

	5 OMNET++
	5.1 OMNET++ MODEL
	5.2 WSN Modeling in OMNET++
	5.3 OMNET++ NED Language
	5.4 Network Simulation Frameworks
	5.5 OMNET++ Programming

	6 J-Sim
	6.1 WSN Simulation in J-Sim
	6.2 INET Platform

	7 OPNET
	7.1 WSN Simulation OPNET
	7.2 OPNET Simulation

	8 TOSSIM
	8.1 TOSSIM Simulation
	8.2 WSN Simulation of TOSSIM

	9 Other Major Programming Languages for Wireless Sensor Networks
	9.1 nesC
	9.2 Mate

	10 General Comparison of Network Simulators from WSN Perspective with Example Scenarios
	11 Shortcomings of Network Simulators
	12 Other Network Simulators
	References

	23 Network Architectures and Standards
	1 Introduction
	2 IEEE 802.15.4 Protocol
	2.1 Protocol Structure of IEEE 802.15.4
	2.2 Network Architecture of IEEE 802.15.4

	3 ZigBee Wireless Standard
	3.1 The Protocol Structure of ZigBee
	3.2 The Network Architecture of ZigBee
	3.3 ZigBee and Sensor Network Applications

	4 WirelessHART
	4.1 The Protocol Structure of WirelessHART
	4.2 The Network Architecture of WirelessHART
	4.3 WirelessHART and Industrial Applications

	5 6LoWPAN
	5.1 The Protocol Structure of 6LoWPAN
	5.2 The Network Architecture of 6LoWPAN
	5.3 The Application Areas of 6LoWPAN

	6 ISA.100.11a
	6.1 The Protocol Structure of ISA.100.11a
	6.2 The Network Architecture of ISA.100.11a
	6.3 ISA.100.11a and Industrial Applications

	7 Hardware Point of View of WSN Technologies
	7.1 ZigBee from Hardware Point of View
	7.2 WirelessHART and ISA.100.11a from Hardware Point of View
	7.3 6LoWPAN from Hardware Point of View

	8 Other Existing Wireless Sensor Technologies
	8.1 Bluetooth
	8.2 Z-Wave
	8.3 Wireless M-Bus
	8.4 Wavenis
	8.5 Wi-Fi
	8.6 Wifi-Direct

	9 Conclusion and Comparison of Wireless Technologies
	9.1 Comparison of WSN Technologies for Different Application Areas

	References

	 Editor's Biography

