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Abstract. I prove that there are phonological patterns which are
expressible by ordered rewrite rules but not by any Optimality
Theoretic (OT) grammar whose constraint set contains only marked-
ness constraints and single–state faithfulness constraints, i.e. faithfulness
constraints that assign violation marks to pairs of single input–output
segments in correspondence, with no reference to other segments in the
input or output. The intention is to capture formally the widespread in-
tuition that certain opaque patterns, which are expressible by ordered
rewrite rules, are problematic for classic, or traditional, OT.

1 Introduction

Generative phonology takes the phonetic form of an utterance to be the sur-
face realization (or output) of an abstract, underlying phonological form (or
input). Natural languages therefore exhibit input–output patterns, which the
phonologist is tasked with describing in a formal, algorithmic way. Phonologists
have largely described these patterns using two types of grammar: (i) serial
rule grammars, e.g. as laid out in The Sound Patterns of English (SPE) [1],
in which an input is mapped serially to intermediate outputs and finally to a
terminal output via ordered, context–sensitive rewrite rules; and (ii) parallel
constraint grammars, e.g. as in Optimality Theory (OT) [2], in which an input
is mapped directly to that output which is optimal with respect to a set of ranked
constraints, with no intermediate mappings (i.e. everything happens
in parallel).

This paper addresses the following two questions: (i) Are there input–output
patterns that can be expressed by one type of grammar but not by the other,
and (ii) if so, are those patterns attested in natural language? The first is a
formal question about the classes of input–output relations expressible by the
two formalisms. The second is an empirical question that bears on whether
phonologists should favor one type of grammar over another on the basis of
empirical coverage.
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Under the assumption that a rule may not rewrite within that part of a string
which it has already rewritten,1 the patterns expressible by ordered rewrite rules
correspond exactly to the regular relations [3–5].2 Without any restrictions, the
patterns expressible by OT grammars include non–regular relations, i.e. patterns
that are inexpressible by ordered rewrite rules [6, 7].3

What is not known is whether every regular relation is expressible by some OT
grammar [10]. Put differently, the question is still open whether every pattern
expressible by ordered rewrite rules is expressible by some OT grammar.

Nevertheless, there is a widespread intuition that certain opaque phonolog-
ical patterns, which are expressible by ordered rewrite rules (hence, they are
regular), are problematic for classic [11], or traditional [10], OT grammars, con-
sisting of just two basic types of constraints (output markedness and input–
output faithfulness). However, to my knowledge, no one has yet formally proved
this claim. Such a proof could reach two possible conclusions: (i) there are reg-
ular relations that are completely inexpressible by classic OT grammars, or
(ii) all regular relations are expressible in principle by classic OT, albeit some-
times only with ad hoc, linguistically unmotivated, but formally sound
constraints.

In this paper I define classic OT grammars as OT grammars that contain
only markedness and single–state faithfulness constraints, i.e. faithfulness con-
straints that assign violation marks to pairs of single input–output segments
in correspondence, with no reference to other segments in the input or output.
These constraints include many, if not most, of the standard constraints proposed
in the OT phonology literature, e.g. Ident, Max, and Dep. I then prove
that there are regular relations that cannot be expressed by any such
OT grammar.

Section 2 reviews SPE–style and OT–style grammars, as well as the notion of
opacity. In section 3, I prove, using data from Canadian English, that there are
input–output patterns which are expressible by ordered rewrite rules but not by
any classic OT grammar, as defined here. In section 4, I discuss several other
cases of opacity that are likewise provably expressible by ordered rewrite rules
but not by classic OT grammars; and I discuss cases of opacity that seem, in
principle, to be expressible by classic OT grammars. Section 5 concludes.

1 Nowhere in this paper is this assumption violated. Henceforth, when I write “ordered
rewrite rules,” I mean rule–based grammars in which this assumption is in place.

2 The definition of a regular relation is not important for this paper; for details,
see [4].

3 Under certain assumptions, however, the patterns expressible by OT grammars lie
within the regular relations [8–10]. These assumptions are (i) that both the con-
straints and the function Gen mapping inputs to sets of output candidates are
regular, and (ii) that there is an upper bound on the number of violation marks
assigned by any constraint. Without either assumption, OT can describe
non–regular relations. I thank an anonymous referee for helping me to clarify these
points.
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2 Preliminaries

In this section I lay out the architectures of SPE–style, rule–based phonologies
and OT–style, constraint–based phonologies, and I explain the notion of phono-
logical opacity.4

2.1 Rule–Based Phonology

In an SPE–style, rule–based grammar, inputs are mapped to outputs via ordered,
context–sensitive rewrite rules of the form

A → B / C D

read as, “A is rewritten as B whenever A occurs immediately after C and imme-
diately before D.”5 A is the focus of the rule, while C D is the environment.
The focus and environment together are called the input description. Under a
single such rule, an input like /CAD/ is mapped to the output [CBD].6 If a rule
does not effect any change from input to output, then it applies vacuously.

Since rules simply map strings to strings, it is possible for ordered rules to
interact in the following ways (adapted from [12]).7

Definition 1. R1 feeds R2 iff R1 creates part of R2’s input description.

Definition 2. R1 bleeds R2 iff R1 removes part of R2’s input description.

Consider, for example, the rule

R : aI → 2I / t

4 Many phonologists take features, rather than segments, to be phonological primitives.
That is, rules and constraints are assumed to target natural classes of segments,
rather than individual segments or arbitrary sets of segments. In principle, this means
that feature–based phonologies are expressively more restrictive than segment–based
ones. However, in this paper the distinction is immaterial: the patterns considered
here are expressible by feature–based rules (hence, also by segment–based rules), and
they are not expressible by segment–based constraints (hence, neither by feature–
based constraints). Accordingly, I assume that rules and constraints generally target
features, but in the proof in section 3, I allow constraints to target arbitrary (sets
of) segments, demonstrating that even with such added power, classic OT grammars
still cannot express the relevant patterns.

5 The more familiar notation in formal language theory is: CAD → CBD.
6 By convention, symbols between forward slashes are inputs (underlying forms), and

those between square brackets are terminal outputs (surface forms). I write non–
terminal, i.e. intermediate, outputs with no brackets at all. These conventions also
apply to OT inputs and output candidates.

7 Rather than creating (removing) part of R2’s input description, Baković [12] writes
that R1 “creates (removes) additional (potential) inputs” to R2. The two formula-
tions are equivalent. I prefer the former because it facilitates defining feeding and
bleeding on environment and focus (below).
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where the vowel /aI/ before /t/ raises to [2I], and the rule

F : t, d → R / V V

where /t/ or /d/ between two vowels surfaces as a flap, [R]. If F is ordered before
R, then an input like /raIt@r/ is mapped by F to raIR@r, which R maps vacuously
to [raIR@r]. F bleeds R because if F were absent, then R would map /raIt@r/
to [r2It@r]. The application of F before R removes part of R’s input description
( t), so that R no longer applies non–vacuously.

Feeding and bleeding can both be further subcategorized (adapted from [13]).

Definition 3. R1 feeds on R2’s focus iff R1 feeds R2 by creating R2’s focus. R1

feeds on R2’s environment iff R1 feeds R2 by creating part of R2’s environment.

Definition 4. R1 bleeds on R2’s focus iff R1 bleeds R2 by removing R2’s fo-
cus. R1 bleeds on R2’s environment iff R1 bleeds R2 by removing part of R2’s
environment.

The example above, with F ordered before R, is one of bleeding on environment:
the change effected by F , i.e. mapping the /t/ in /raIt@r/ to [R], removes part of
R’s environment ( t).

By convention, when I write that R1 “feeds (bleeds)” R2, it is implied that
R1 is ordered before R2, even though strictly speaking, feeding (bleeding), as
defined here, is independent of rule ordering. When a feeding (bleeding) rule is
ordered after the rule it feeds (bleeds), the following terms are used.

Definition 5. R1 counterfeeds (counterbleeds) R2 iff R1 both feeds (bleeds) and
is ordered after R2.

In the example above, if is ordered F after R, then F counterbleeds on R’s
environment.

These notions of rule interaction have been useful in characterizing phonologi-
cal opacity. Kiparsky [14, 15] was the first to identify the phenomenon of opacity,
defining it as follows, where “process” can be construed as a rewrite rule.

Definition 6. A process P of the form A → B / C D is opaque to the
extent that there are surface representations (outputs) of the form (i) A in the
environment C D, or (ii) B derived by P in environments other than C D.

The idea is that opaque phonological generalizations are (i) generalizations that
appear not to hold true of a surface form, or (ii) generalizations that are true of
a surface form, but the motivation for their application is obscured.

These two types of opacity are typically associated with counterfeeding and
counterbleeding rule ordering, respectively [11, 12, 16]. In counterfeeding, a later
rule creates part of the input description of an earlier rule, such that the earlier
rule seems not to have applied to the surface form, even though it matches the
rule’s input description. In counterbleeding, a later rule removes part of the input
description of an earlier rule, such that the earlier rule seems, on the surface, to
have applied without satisfying its input description.



146 B. Buccola

/raIt@r/ *aIt *VtV Id(low) Id(son)
a. raIt@r 1 1 0 0
b. r2It@r 0 1 1 0
c. raIR@r 0 0 0 1
d. r2IR@r 0 0 1 1

Fig. 1. An example OT tableau

For example, if rule F from above is ordered after R, giving rise to a coun-
terbleeding on environment rule interaction, then the input /raIt@r/ is mapped
by R to r2It@r, which F maps to [r2IR@r]. R is then opaque in the sense of (ii):
[2I] occurs in an environment other than t. In such a case, I will often abstract
away from the rules and say that the input–output pattern /raIt@r/ → [r2IR@r]
is opaque.

Although opacity is defined here in terms of rules, a natural question is
whether opaque input–output patterns like /raIt@r/ → [r2IR@r] are expressible
by other formalisms, like OT grammars. In the next section, I describe the ar-
chitecture of OT grammars, for which such patterns have been problematic.

2.2 Optimality Theoretic Phonology

In an OT grammar, an input like /raIt@r/ is first fed into a function Gen that
generates an infinite set of output candidates. In practice, every possible output is
a candidate. This set is then filtered down via a potentially infinite set of strictly,
totally ordered constraints until a unique output candidate remains. The entire
process can be visualized using an OT tableau.

For example, Fig. 1 presents a tableau with four output candidates for the in-
put /raIt@r/ and four constraints, ranked left to right from highest to lowest. The
process begins with the leftmost constraint, *aIt, which is an output–markedness
constraint that assigns a violation for each occurrence of the sequence [aIt] in
an output candidate. Candidate (a) thus incurs a violation of 1, while the other
candidates incur 0 violations; hence, candidate (a) is eliminated. The next con-
straint, *VtV, which assigns a violation mark for each intervocalic [t] in an out-
put candidate, eliminates candidate (b). Next, Ident–IO(low), an input–output
faithfulness constraint which penalizes each occurrence of a low vowel like /aI/
mapping to a non–low vowel like [2I], eliminates candidate (d). At this point,
only candidate (c) remains and is therefore the optimal output. The last con-
straint, Ident–IO(sonorant), which penalizes mapping a non–sonorant segment
like /t/ to a sonorant one like [R], effectively does no work here.

Note that in this tableau the opaque input–output pattern /raIt@r/ → [r2IR@r]
is not optimal. Moreover, the violations assigned to [r2IR@r] are a proper super-
set of those assigned to [raIR@r]. Consequently, no reranking of these particular
constraints can possibly make [r2IR@r] more optimal than [raIR@r]. This is the sort
of reasoning that underlies the intuition that opacity is problematic for OT.
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I now give a formal characterization of OT grammars, following [8, 17]. If
inputs and output candidates are taken to be strings of symbols over Σ, then
Gen is a relation over Σ∗ × Σ∗: it pairs input strings with (sets of) output
candidate strings.8 An OT grammar can then be defined formally as follows.

Definition 7. An OT grammar is a tuple 〈Σ,Gen, C,>C〉, where Gen ⊆ Σ∗×
Σ∗; C is a set of functions from Gen to N; and >C is a strict, total order on C.

A relation >G over Gen defines optimality relative to two input–output pairs:
〈i, o〉 >G 〈i, o′〉 means that 〈i, o〉 is more optimal than 〈i, o′〉 in the OT grammar
G. In such a case, I will often write that o is more optimal than o′ with respect
to i (in G).

Definition 8. Given an OT grammar G = 〈Σ,Gen, C,>C〉, with 〈i, o〉, 〈i, o′〉
∈ Gen, 〈i, o〉 >G 〈i, o′〉 iff there is some cj ∈ C such that cj(〈i, o〉) < cj(〈i, o′〉),
and for each ck such that ck >C cj, ck(〈i, o〉) = ck(〈i, o′〉).

A single output candidate for some input is then optimal just in case it is more
optimal than every other candidate with respect to that input.

Definition 9. Given an OT grammar G = 〈Σ,Gen, C,>C〉, 〈i, o〉 ∈ Gen is
optimal in G iff for each 〈i, o′〉 ∈ Gen (o different from o′), 〈i, o〉 >G 〈i, o′〉.
Turning now to the constraint set, an OT constraint can be represented by a
weighted finite state transducer (FST) [7–9], called a finite state OT constraint.
This FST essentially “reads” or “processes” pairs of input–output strings, one
input–output symbol pair at a time, transitioning from state to state and as-
signing 0 or 1 violations to each pair of corresponding input–output symbols.
The symbol ε here denotes the empty string. (It should not be confused with the
IPA symbol E, which denotes an open–mid front vowel.)

Definition 10. A finite state OT constraint is a tuple 〈Q,Σ, δ, q0, F 〉, where:

1. Q is a non–empty set of states;
2. Σ is a set of symbols;
3. δ is a transition function from Q×Σε×Σε to {0, 1}×Q, where Σε = Σ∪{ε};
4. q0 ∈ Q is the unique start state;
5. F ⊆ Q is the non–empty set of final states.

The transition function δ takes in a triple 〈qj , i, o〉 consisting of some initial state
qj ∈ Q, an input symbol i ∈ Σε, and an output symbol o ∈ Σε and returns a
pair 〈n, qk〉 consisting of some number of violations n ∈ {0, 1} and some terminal
state qk ∈ Q. For ease of exposition, I will write members of δ as 〈qj , i, o, n, qk〉
instead of 〈〈qj , i, o〉, 〈n, qk〉〉 and say that δ assigns n violations to the pair i → o
(on the transition from qj to qk).

8 Recall that Σ∗ denotes the set of all strings over the symbols in Σ, including the
empty string.
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id(low)0start

aI→2I (1)

other (0)

Fig. 2. A visualization of id(low)

*aIt0start *aIt1

• → other (0) • →aI (0) • →aI (0)

• → other (0); • →t (1)

Fig. 3. A visualization of *aIt

Consider, for example, the faithfulness constraint Ident–IO(low), which, to
repeat, penalizes each mapping of a low vowel like /aI/ to a non–low vowel
like [2I]. I assume that diphthongs like [aI] and [2I] are single units rather than
segments composed of two vowels. Formally, this means aI and 2I are each single
symbols in Σ. Ident–IO(low) can then be represented by the single–state FST

id(low) = 〈{id(low)0}, {aI, 2I, . . . }, δ, id(low)0, {id(low)0}〉

where δ assigns 1 to the pair aI→2I and 0 to every other pair. This FST is
conventionally visualized as in Fig. 2. Thus, an input–output pair like 〈raIt@r,
raIt@r〉 incurs 0 total violations, whereas 〈raIt@r, r2It@r〉 incurs 1 total violation.

A markedness constraint like *aIt, which penalizes each occurrence of the
sequence [aIt] in an output candidate, can be represented by the two–state FST

*aIt = 〈{*aIt0, *aIt1}, {aI, 2I, t, . . . }, δ, *aIt0, {*aIt0, *aIt1}〉

where δ assigns 1 whenever the sequence [aIt] occurs in an output, regardless of
the input, and 0 otherwise. This FST is visualized as in Fig. 3, where • stands
for any symbol from the symbol set (or the empty string).
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Of note is that the violations assigned by a markedness FST are independent
of the input (hence the • on every transition). By contrast, the violations assigned
by a faithfulness FST depend on the input. This can be formalized as follows.9

Definition 11. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a markedness constraint iff it can be represented by a finite state constraint
〈Q,Σ, δ, q0, F 〉 such that, if 〈qj , α, β, 1, qk〉 ∈ δ, then for any γ ∈ Σε such that
〈qj , γ, β, n, qk〉 ∈ δ, it follows that n = 1. An FST that represents a markedness
constraint is a finite state markedness constraint.

Definition 12. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a faithfulness constraint iff it can be represented by a finite state constraint
〈Q,Σ, δ, q0, F 〉 such that 〈qj , α, β, 1, qk〉 ∈ δ and 〈qj , γ, β, 0, qk〉 ∈ δ, for some
α, β, γ ∈ Σε and for some qj , qk ∈ Q. An FST that represents a faithfulness
constraint is a finite state faithfulness constraint.

Moreover, whereas (finite state) markedness constraints may have one or more
states, standard faithfulness constraints like Ident, Max, and Dep have just one
state: when assigning a violation mark to an input–output symbol pair a → b,
these constraints do not “look ahead” or “look behind” at other symbols in the
input or output. I call this sort of constraint a single–state faithfulness constraint.

Definition 13. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a single–state faithfulness constraint iff it can be represented by a finite
state faithfulness constraint 〈Q,Σ, δ, q0, F 〉 such that |Q| = 1.

The definition of a classic OT grammar can now be stated as follows.10,11

Definition 14. A classic OT grammar is an OT grammar G = 〈Σ,Gen, C,>C〉
such that (i) if 〈i, o〉 ∈ Gen, then 〈i, o′〉 ∈ Gen, for each o′ ∈ Σ∗; and (ii)
each c ∈ C is either is a markedness constraint or a single–state faithfulness
constraint.

3 The Proof

In this section I prove the following claim.
9 When there is no confusion, I will write “markedness (faithfulness) constraint” rather

than “finite state markedness (faithfulness) constraint” to refer to the FST represent-
ing some OT constraint.

10 The requirement on Gen in (i) is intended to capture the assumption, stated above,
that every possible output of a given input is considered to be a candidate. See the
discussion of freedom of analysis in [16, p. 20]. This requirement also ensures that the
relevant candidates are in competition in order for the proof in section 3 to proceed,
though any weaker requirement that ensures this would suffice, too.

11 Some phonologists might object that the single–state restriction on faithfulness con-
straints in (ii) is not enough, since, for example, faithfulness constraints penalizing
arbitrary input–output symbols are allowed. However, if, as I prove in section 3,
even this relatively powerful version of classic OT is incapable of expressing certain
regular relations, then so is any more restrictive version of it.
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Input Output
a. /raIt/ → [r2It] “write”
b. /raId/ → [raId] “ride”
c. /raIt@r/ → [r2IR@r] “writer”
d. /raId@r/ → [raIR@r] “rider”

Fig. 4. Canadian raising data

R F
a. /raIt/ → r2It → [r2It]
b. /raId/ → raId → [raId]
c. /raIt@r/ → r2It@r → [r2IR@r]
d. /raId@r/ → raId@r → [raIR@r]

Fig. 5. Rule–based derivations of Canadian raising

Claim. There is a relation R such that (i) R is regular, and (ii) there is no classic
OT grammar G such that each 〈i, o〉 ∈ R is optimal in G.

The patterns I will use are the Canadian raising patterns already discussed,
presented in Fig. 4. I first show that these patterns are expressible by ordered
rewrite rules; hence, they are regular, proving part (i) of the claim. I then show,
less trivially, that the patterns cannot be expressed by any classic OT grammar,
proving part (ii) of the claim. The main result is proved as Theorem 2.

All four patterns in Fig. 4 can be captured by a rule R of raising /aI/ to [2I]
before underlying /t/

R : aI → 2I / t

ordered before a rule F of flapping (changing intervocalic /t/ or /d/ to [R])

F : t, d → R / V V

where V stands for any vowel, e.g. /aI/, /2I/, and /@/. Fig. 5 shows how the four
patterns are expressed by the interaction of these two rules.

Recall that the pattern /raIt@r/ → [r2IR@r] is the crucial opaque pattern: /aI/
raises to [2I] because of the underlying /t/ (R’s environment), but /t/ is changed
to [R] by F . Thus, F removes the environment that motivates the application of
R, obscuring, on the surface, the reason for raising.

These patterns are intuitively problematic for classic OT for the following
reason: given the evidence from /raId@r/ that [raIR@r] is an unmarked output, it
is always more optimal to map /raIt@r/ to [raIR@r], incurring just one faithful-
ness violation (t→R), than to map /raIt@r/ to [r2IR@r], incurring two faithfulness
violations (t→R, aI→2I). (This explains why in Fig. 1 of the previous section,
[raIR@r] is a more optimal output of /raIt@r/ than [r2IR@r].)

Informally, the patterns /raIt@r/ → [r2IR@r] and /raId@r/ → [raIR@r] are con-
flicting. More formally, we have the following theorem.
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Theorem 1. Let G = 〈Σ,Gen, C,>C〉 be a classic OT grammar such that
〈raIt@r, r2IR@r〉 and 〈raId@r, raIR@r〉 are members of Gen. Then it is not the
case both that 〈raIt@r, r2IR@r〉 is optimal in G and that 〈raId@r, raIR@r〉 is optimal
in G.

Proof. The proof is by contradiction. Assume both that 〈raIt@r, r2IR@r〉 is optimal
in G and that 〈raId@r, raIR@r〉 is optimal in G. Then for each 〈raIt@r, o〉 ∈ Gen
(with o different from [r2IR@r]), 〈raIt@r, r2IR@r〉 >G 〈raIt@r, o〉; and for each 〈raId@r,
o〉 ∈ Gen (with o different from [raIR@r]), 〈raId@r, raIR@r〉 >G 〈raId@r, o〉.

Since 〈raIt@r, r2IR@r〉 and 〈raId@r, raIR@r〉 are members of Gen, then so are
〈raIt@r, raIR@r〉 and 〈raId@r, r2IR@r〉. It follows both that 〈raIt@r, r2IR@r〉 >G 〈raIt@r,
raIR@r〉 and that 〈raId@r, raIR@r〉 >G 〈raId@r, r2IR@r〉. By the definition of optimal-
ity, the following statements are derived.

There is a cj ∈ C such that cj(〈raIt@r, r2IR@r〉) < cj(〈raIt@r, raIR@r〉). (1)
For all c′ ∈ C such that c′ >C cj , c

′(〈raIt@r, r2IR@r〉) = c′(〈raIt@r, raIR@r〉). (2)
There is a ck ∈ C such that ck(〈raId@r, raIR@r〉) < ck(〈raId@r, r2IR@r〉). (3)

For all c′ ∈ C such that c′ >C ck, c
′(〈raId@r, raIR@r〉) = c′(〈raId@r, r2IR@r〉). (4)

Recall that, as defined here, classic OT grammars contain only markedness and
single–state faithfulness constraints. Thus, to prove the theorem, it must be
shown that at least one of cj , ck is neither of these types. There are four cases
to consider.

Case 1. Suppose that both cj and ck are markedness constraints. Then cj
assigns m violation marks to [r2IR@r] and n violations to [raIR@r], regardless of
input; hence, from (1) it follows that m < n. Similarly, ck assigns p violation
marks to [r2IR@r] and q violations to [raIR@r], regardless of input; hence, from (3)
it follows that q < p.

It cannot be the case that cj and ck are the same constraint, for then m = p
and n = q, deriving a contradiction. Thus, cj and ck are different constraints,
with one ranked above the other. Suppose that cj >C ck. Then it follows from
(4) that

cj(〈raId@r, raIR@r〉) = cj(〈raId@r, r2IR@r〉)
and hence n = m. But it was already established that m < n, so it cannot be
that cj >C ck.

Now suppose that ck >C cj . Then it follows from (2) that

ck(〈raIt@r, r2IR@r〉) = ck(〈raIt@r, raIR@r〉)

and hence p = q. But it was already established that q < p, so it cannot be
that ck >C cj. We have reached a contradiction, so cj and ck cannot both
be markedness constraints. At least one of them is a single–state faithfulness
constraint.
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Case 2. Suppose that cj is a single–state faithfulness constraint and that ck is a
markedness constraint. From (1) it follows that the FST representing cj assigns
1 violation to the pair aI→aI and 0 violations to the pair aI→2I, because the two
inputs are the same and the two output candidates differ only in having [aI] or
[2I] as the second segment. Thus, it follows that

cj(〈raId@r, r2IR@r〉) < cj(〈raId@r, raIR@r〉)
since, again, the two inputs are the same and the two output candidates differ
only in the second segment.

Since cj and ck are different constraints, one must outrank the other. It cannot
be that cj >C ck, for it was just established that

cj(〈raId@r, r2IR@r〉) �= cj(〈raId@r, raIR@r〉)
which contradicts (4). Suppose, then, that ck >C cj . Since by hypothesis ck is a
markedness constraint, then from (3) it follows that ck assigns fewer violations
to [raIR@r] than to [r2IR@r], regardless of input, so that

ck(〈raIt@r, raIR@r〉) �= ck(〈raIt@r, r2IR@r〉)
But this contradicts (2). We have reached a contradiction: if cj is a single–state
faithfulness constraint, then ck cannot be a markedness constraint.

Case 3. Suppose that cj and ck are both single–state faithfulness constraints.
From (3) it follows that the FST representing ck assigns 1 violation to the pair
aI→2I and 0 violations to the pair aI→aI. Thus, it follows that

ck(〈raIt@r, raIR@r〉) < ck(〈raIt@r, r2IR@r〉)
Since this statement is different from (1), cj and ck must be different constraints
and hence ranked one over the other. It cannot be that ck >C cj , for the above
statement contradicts (2). However, as was established in case 2, if cj is a single–
state faithfulness constraint, then it cannot be that cj >C ck. We have reached
a contradiction: if ck is a single–state faithfulness constraint, then cj must be a
markedness constraint.

Case 4. Suppose that cj is a markedness constraint and that ck is a single–
state faithfulness constraint. From (1) it follows that cj assigns fewer violations
to [r2IR@r] than to [raIR@r], regardless of input; hence, from the statement derived
in case 3 concerning ck as a single–state faithfulness constraint, it follows that
cj and ck are different constraints, with one ranked above the other.

It cannot be that cj >C ck, for otherwise

cj(〈raId@r, r2IR@r〉) < cj(〈raId@r, raIR@r〉)
which contradicts (4). Thus, ck >C cj . However, as already established in case
3, if ck is a single–state faithfulness constraint, then it cannot be that ck >C cj .
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We have reached a contradiction and have exhausted all cases: there are no
markedness or single–state faithfulness constraints that satisfy (1–4). Hence, it
is not the case both that 〈raIt@r, r2IR@r〉 is optimal in G and that 〈raId@r, raIR@r〉
is optimal in G.

	

From Theorem 1, together with the rule–based analysis above, the claim at the
start of this section follows easily.

Theorem 2. There is a relation R such that (i) R is regular, and (ii) there is
no classic OT grammar G such that each 〈i, o〉 ∈ R is optimal in G.

Proof. Let R = {〈raIt@r, r2IR@r〉, 〈raId@r, raIR@r〉}. For part (i), since there are
ordered rewrite rules (R and F above) that map /raIt@r/ to [r2IR@r] and map
/raId@r/ to [raIR@r], it follows that R is regular. Part (ii) follows from Theorem 1.

	


4 Discussion

In the previous section, I proved that Canadian raising, which is an example of
counterbleeding on environment opacity, is expressible by ordered rewrite rules
but not by classic OT grammars. I now show that there are other examples of
counterbleeding on environment opacity, as well as examples of counterfeeding
on environment opacity, that are likewise inexpressible by classic OT grammars.
Though the patterns are all different, I discuss several formal properties that
they share.12

4.1 Other Examples of Counterbleeding on Environment Opacity

Polish. Consider the data from Polish in Fig. 6 [12, 18, 19]. All four patterns
can be captured by a rule R of raising /o/ to [u] before voiced segments (/l, b/),
ordered before a rule D of devoicing word–final obstruents, i.e. mapping word–
final /z, b/ to [s, p]. D counterbleeds on R’s environment because D removes
part of R’s environment ( l, b) by mapping /b/ to [p].

The patterns /Zwob/ → [Zwup] and /Zwop/ → [Zwop] cannot be expressed by
any classic OT grammar. The proof is essentially the same as that of Theorem 1,
and the reason is that the Canadian raising patterns and the Polish patterns are
formally almost identical. In Canadian raising, /aI/ surfaces as [2I] before /t/,
which (along with /d/) surfaces as [R]. In Polish, /o/ surfaces as [u] before /b/,
which (along with /p/) surfaces as [p]. The difference is that in Canadian raising,
/t, d/ surface as a third segment, [R], whereas in Polish, /b, p/ surface as [p].
12 In each of the following examples, I employ a hypothetical input that is not actually

part of that language’s lexicon, as far as I know. Nonetheless, I take such absences
to simply be accidental lexical gaps. Moreover, the formal result that these sets of
input–outputs patterns are expressible by ordered rules but not by classic OT still
holds; the empirical question of whether the patterns are attested is a separate issue.
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Input Output
a. /sol/ → [sul] “rubble”
b. /gruz/ → [grus] “salt”
c. /Zwob/ → [Zwup] “crib”
d. /Zwop/ → [Zwop] hypothetical

Fig. 6. Polish data

Input Output
a. /èa:kimi:n/ → [èa:kjmi:n] “ruling (masc. pl.)
b. /èa:kmi:n/ → [èa:kmi:n] hypothetical

Fig. 7. Bedouin Arabic data 1

Bedouin Arabic 1. Consider the data from Bedouin Arabic in Fig. 7 [11].
Both patterns are expressible by a rule P of palatalizing /k/ to [kj] before /i/,
ordered before a rule D of deleting /i/ (mapping /i/ to ε). D counterbleeds on
P ’s environment because D removes part of P ’s environment ( i) by deleting
/i/. These two patterns cannot be expressed by any classic OT grammar, and the
reason, again, is that these patterns are formally similar to those in Canadian
raising: /k/ surfaces as [kj] before /i/, which (along with ε) surfaces as ε.

4.2 Examples of Counterfeeding on Environment Opacity

Isthmus Nahuat. Consider the data from Isthmus Nahuat in Fig. 8 [16, 19, 20].
All four patterns are expressible by a rule D of devoicing /l/ to [l

˚
] word–finally,

ordered before a rule A of apocope, i.e. deleting /i/ word–finally. A counterfeeds
on D’s environment because A creates part of D’s environment ( #, where #
denotes a word boundary) by deleting a word–final /i/ (mapping i# to ε#).

The patterns /SikAḱIli/ → [SikAḱIl] and /SikAḱIl/ → [SikAḱIl
˚

] are not express-
ible by any classic OT grammar. The proof, omitted here, is essentially the
same as that of Theorem 1 for counterbleeding on environment opacity, using
〈SikAḱIli, SikAḱIl〉, 〈SikAḱIli, SikAḱIl〉̊, 〈SikAḱIl, SikAḱIl〉, and 〈SikAḱIl, SikAḱIl〉̊ as
the relevant members of Gen. Informally, the reason that these patterns are
inexpressible is the following: given the evidence from /SikAḱIli/ that [SikAḱIl]
is an unmarked output, it is always more optimal to map /SikAḱIl/ to [SikAḱIl],
incurring no faithfulness violations, than to map /SikAḱIl/ to [SikAḱIl

˚
], incurring

one faithfulness violation (l → l
˚
). Or, in terms of the formalism presented here,

/i/ surfaces as ε word–finally, and /l/ surfaces as [l
˚

], but only if /l/ does not
precede a word–final /i/; and this latter condition on the identity of /l/ can be
expressed only by a multistate faithfulness constraint.

Bedouin Arabic 2. Fig. 9 presents more data from Bedouin Arabic [11]. Both
patterns can be captured by a rule R of raising /a/ to [i] in an open syllable,
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Input Output
a. /támi/ → [tám] “it ends”
b. /tájo:l/ → [tájo:l

˚
] “shelled corn”

c. /SikAḱIli/ → [SikAḱIl] “put it in it”
d. /SikAḱIl/ → [SikAḱIl

˚
] hypothetical

Fig. 8. Isthmus Nahuat data

Input Output
a. /gabr/ → [gabur] “grave”
b. /gabur/ → [gibur] hypothetical

Fig. 9. Bedouin Arabic data 2

ordered before a rule E of epenthesis, i.e. inserting a [u] (mapping ε to [u])
between two consonants like /br/. E counterfeeds on R’s environment because
E creates part of R’s environment ( bV) by inserting a vowel, [i], after [b].
These two patterns cannot be expressed by any classic OT grammar, and the
reason is that these patterns are formally similar to those in Isthmus Nahuat. In
Bedouin Arabic, ε surfaces as [u] between /br/, and /a/ surfaces as [i], but only
when /a/ does not precede a consonant cluster.

Lomongo. Consider, finally, the data from Lomongo in Fig. 10 [12, 19, 21]. Both
patterns can be captured by a rule G of prevocalic gliding, i.e. mapping /o/ to
[w] before a vowel, ordered before a rule D of intervocalic obstruent deletion,
i.e. deleting /b/ between two vowels. D counterfeeds on G’s environment because
D creates part of G’s environment ( V) by deleting a prevocalic /b/, i.e. by
mapping /bV/ to just [V]. These patterns are not expressible by any classic OT
grammar, and the reason, once more, is that these patterns are similar to those
in Isthmus Nahuat. In this case, /b/ surfaces as ε between two vowels, and /o/
surfaces as [w], but only when /o/ does not precede a prevocalic /b/.

Summary. Fig. 11 summarizes all of the sets of input–output candidate pairs
that have been discussed in this paper, with the empty string symbol (ε) included
where appropriate. Each of the six sets exhibits the following three properties:
(i) the two inputs differ by exactly one segment x; (ii) the two output candidates
differ by exactly one segment y; and (iii) x is different from y, i.e. they occupy
different string positions. (In Fig. 11, the differing segments are in bold.) For-
mally, then, these sets are essentially the same; hence, it is not surprising that in
all six examples the relevant input–output patterns cannot be made optimal by
classic OT grammars, as defined here. Moreover, from this perspective it emerges
that the difference between the counterbleeding on environment examples and
the counterfeeding on environment examples boils down to which two (of the
four possible) input–output candidate pairs are supposed to be optimal.
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Input Output
a. /obina/ → [oina] “you (sg.) dance”
b. /oina/ → [wina] hypothetical

Fig. 10. Lomongo data

Language Inputs Outputs
Canadian English raIt@r raId@r raIR@r r2IR@r
Polish Zwob Zwop Zwop Zwup
Bedouin Arabic 1 èa:kimi:n èa:kεmi:n èa:kεmi:n èa:kjεmi:n
Isthmus Nahuat SikAḱIli SikAḱIlε SikAḱIlε SikAḱIl

˚
ε

Bedouin Arabic 2 gabεr gabur gabur gibur
Lomongo obina oεina oεina wεina

Fig. 11. A summary of all the input–output candidate pairs in this paper

Notably, the proof technique used in this paper (finding two conflicting input–
output patterns) does not seem to work for cases of focus opacity. To give just
one example of counterfeeding on focus opacity, in Western Basque [22], /a/
raises to [e], and /e/ raises to [i], but /a/ does not raise to [i]. To express the
latter generalization in OT, it suffices to posit an undominated, single–state
faithfulness constraint that assigns 1 to the pair a→i and 0 to every other pair.
Such a constraint may seem intuitively ad hoc, yet it is formally sound.

More generally, the reason that focus opacity seems unproblematic for OT
from this paper’s perspective is twofold: (i) classic faithfulness constraints, as
defined here, are single–state faithfulness constraints that can penalize arbitrary,
single input–output segment pairs; and (ii) in focus opacity, all change occurs
at a single focus. Thus, it suffices to posit a single–state faithfulness constraint
that assigns 1 violation to those focus changes that are undesired, like a→i, and
0 to those that are desired. Moreover, taking into account Fig. 11 and the three
properties of environment opacity mentioned above, it comes as no surprise that
the focus opacity of Western Basque works differently: it necessarily lacks at
least one of the three properties. Specifically, if the first two properties hold,
i.e. the relevant inputs differ by exactly one segment x and the relevant output
candidates differ by exactly one segment y, then the third property, according to
which x and y occupy different string positions, must not hold, because in focus
opacity the segments that change (a, e, i) all occupy the same string position.

5 Conclusion

In this paper I defined a classic OT grammar as any OT grammar that con-
tains only markedness constraints, i.e. constraints representable by an FST that
is input–independent, and single–state faithfulness constraints, i.e. constraints
representable by an FST that is both input–dependent and single–state. I then
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proved, using data from Canadian English, that there are input–output pat-
terns which can be expressed by SPE–style, ordered, context–sensitive rewrite
rules, but which cannot be expressed by any classic OT grammar (Theorem 1).
Hence, there are regular relations that classic OT grammars, as defined here,
cannot express (Theorem 2). I also demonstrated that several other cases of
counterbleeding on environment opacity, as well as several cases of counterfeed-
ing on environment opacity, are likewise expressible by ordered rewrite rules but
not by classic OT. Lastly, I argued that focus opacity, unlike environment opacity,
seems unproblematic for classic OT grammars that allow arbitrary single–state
faithfulness constraints.

Regarding empirical coverage, assuming that the Canadian raising data are
attested, then classic OT, as defined here, undergenerates. Assuming also that
natural language phonology is strictly subregular (see [5]), then, since I did not
place any upper bound on the number of violations that any constraint may
assign, classic OT also overgenerates: it can express unattested, non–regular
patterns (see footnote 3). Ordered rewrite rules, under the same assumptions,
only overgenerate.13 However, whether or not this serves as a basis to favor rules
over classic OT remains to be seen: it could be, for example, that the classes of
patterns by which classic OT grammars over– and undergenerate are in some
formal sense smaller (or more manageable) than the class of patterns by which
rules overgenerate.
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