
Completeness of Full Lambek Calculus

for Syntactic Concept Lattices

Christian Wurm

Fakultät für Linguistik und Literaturwissenschaften,
CITEC Universität Bielefeld
cwurm@uni-bielefeld.de

Abstract. Syntactic concept lattices are residuated structures which
arise from the distributional analysis of a language. We show that these
structures form a complete class of models with respect to the logic FL⊥;
furthermore, its reducts are complete with respect to FL and L1.

1 Introduction

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [3] has shown how these lattices can
be enriched with a monoid structure to form residuated lattices. This makes it
natural to ask whether they are an appropriate model for some substructural
logics. Natural candidates are L1, the well-studied Lambek calculus (introduced
in [11]) with the extension that it allows conclusions from empty premises, and
its well-known conservative extensions FL and FL⊥ (see [8]).

We give a proof of completeness of FL⊥ for the class of residuated concept
lattices for any language. Our proof will be constructed on top of well-known
completeness results for the class of residuated lattices. We will show that any
residuated lattice can be embedded into a syntactic concept lattice. So if an
inequation fails in a residuated lattice, it also fails in the image. As corollaries,
we get the completeness of syntactic concept lattice reducts for L1 and FL.

2 Residuated Syntactic Concept Lattices

2.1 Equivalences and Concepts

Syntactic concept lattices originally arose in the structuralist approach to syntax,
back when syntacticians tried to capture syntactic structures purely in terms of
distributions of strings1 (see, e.g. [9]). An obvious way to do so is by partition-
ing strings/substrings into equivalence classes : we say that two strings w, v are
equivalent in a language L ⊆ Σ∗, in symbols

1 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 126–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 127

(1) w ∼0
L v iff for all x ∈ Σ∗, wx ∈ L ⇔ vx ∈ L.

This defines the well-known Nerode-equivalence. We can use a richer equivalence
relation, by considering not only left contexts, but also right contexts:

(2) w ∼1
L v iff for all x, y ∈ Σ∗, xwy ∈ L ⇔ xvy ∈ L.

Of course, this can be arbitrarily iterated for tuples of strings. The problem with
equivalence classes is that they are too restrictive for many purposes: assume
we want to induce our grammar on the basis of a given dataset; then it is
quite improbable that we get the equivalence classes we would usually desire
as linguists. And even if we have an unlimited supply of examples, it seems
unrealistic to describe our grammar on the basis of equivalence classes only:
there might be constructions, collocations, idioms which ruin equivalences which
we would intuitively consider to be adequate.

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly resolves the difficulties we have described above.

2.2 Syntactic Concepts: Definitions

For a general introduction to lattices, see [6]; for background on residuated lat-
tices, see [8]. Syntactic concept lattices form a particular case of what is well-
known as formal concept lattice (or formal concept analysis) in computer science.
In linguistics, they have been introduced in [16]. They were brought back to at-
tention and enriched with residuation in [3], [4], as they turn out to be useful
representations for language learning. In this section, we follow the presentation
given in [3].

Given a languageL ⊆ Σ∗, we define two maps: a map � : ℘(Σ∗) → ℘(Σ∗×Σ∗),
and � : ℘(Σ∗ ×Σ∗) → ℘(Σ∗), which are defined as follows:

(3) for M ⊆ Σ∗, M� := {(x, y) : ∀w ∈ M,xwy ∈ L};
and dually

(4) for C ⊆ Σ∗ ×Σ∗, C� := {x : ∀(v, w) ∈ C, vxw ∈ L}.
That is, a set of strings is mapped to the set of contexts, in which all of its
elements can occur. The dual function maps a set of contexts to the set of
strings, which can occur in all of them. Obviously, � and � are only defined with
respect to a given language L, otherwise they are meaningless. As long as it
is clear of which language (if any concrete language) we are speaking, we will
omit however any reference to it. For a set of contexts C, C� can be thought
of as an equivalence class with respect to the contexts in C; but not in general:
there might be elements in C� which can occur in a context (v, w) /∈ C (and
conversely).

The two compositions of the maps, �� and ��, form a closure operator on
subsets of Σ∗ ×Σ∗ and Σ∗, respectively, that is:

128 C. Wurm

1. M ⊆ M��,
2. M�� = M����,
3. M ⊆ N ⇒ M�� ⊆ N��,

for M,N ⊆ Σ∗. The same holds for contexts, where we simply exchange the
order of the mappings, and use subsets of Σ∗ ×Σ∗. We say a set M is closed if
M�� = M . The closure operator �� gives rise to a lattice LS := 〈BS ,≤〉, where
the elements of BS are the closed sets, and ≤ is interpreted as ⊆. The same can
be done with the set of closed contexts. Given these two lattices, � and � make
up a Galois connection between the two:

1. M ≤ N ⇔ M� ≥ N�, and
2. C ≤ D ⇔ C� ≥ D�.

Furthermore, for LS the lattice of closed subsets of strings, LC the lattice of
contexts, it is easy to show that LS

∼= L∂
C , where by [−]∂ we denote the dual

of a lattice, that is, the same lattice with its order relation inverted; and by
∼= we denote that there is an isomorphism between two structures. Therefore,
any statement on the one lattice is by duality a statement on the other. Conse-
quently, we can directly conceive of the two as a single lattice, whose elements
are syntactic concepts:

Definition 1. A syntactic concept A is an (ordered) pair, consisting of a closed
set of strings, and a closed set of contexts, written A = 〈S,C〉, such that S� = C
and C� = S.

Note also that for any set of strings S and contexts C, S� = S��� and C� = C���.
Therefore, any set M of strings gives rise to a concept 〈M��,M�〉, and any set
of C contexts to a concept 〈C�, C��〉. Therefore, we denote the concept which is
induced by a set M , regardless of whether it is a set of strings or contexts, by
C(M). We speak of the extent of a concept A as the set of strings it contains,
which we denote by SA; the intent of A is the set of contexts it contains, denoted
by CA. For example, given a language L, we have SC((ε,ε)) = L, as all and only
the strings in L can occur in L in the context (ε, ε).

We define the partial order ≤ on concepts by

(5) 〈S1, C1〉 ≤ 〈S2, C2〉 ⇐⇒ S1 ⊆ S2;

which gives rise to the syntactic concept lattice L:

Definition 2. The lattice of concepts of a language L, L(L) = 〈B,∧,∨〉, with
the partial order ⊆, is called the syntactic concept lattice, where � = C(Σ∗),
⊥= C(Σ∗×Σ∗), and for 〈Si, Ci〉, 〈Sj , Cj〉 ∈ B, 〈Si, Ci〉∧〈Sj , Cj〉 = 〈Si∩Sj , (Ci∪
Cj)

��〉, and ∨ as 〈(Si ∪ Sj)
��, Ci ∩Cj〉.

It is easy to verify that this forms a complete lattice. Note the close connection
between intersection of stringsets and union of context sets, and vice versa.
Obviously, L ∼= LS , which we defined before.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 129

2.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition,
we can also give it the structure of a monoid: for concepts 〈S1, C1〉, 〈S2, C2〉, we
define:

(6) 〈S1, C1〉 ◦ 〈S2, C2〉 = 〈(S1S2)
��, (S1S2)

�〉,
where S1S2 = {xy : x ∈ S1, y ∈ S2}. Obviously, the result is a concept. ′◦′ is
associative on concepts:

(7) for X,Y, Z ∈ B, X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z.

This follows from the fact that [−]�� is a nucleus, that is, it is a closure operator
and in addition it satisfies

(8) S��T �� ⊆ (ST)��.

Using this property and the associativity of string concatenation, the result easily
follows. Furthermore, it is easy to see that the neutral element of the monoid is
C(ε). This monoid structure respects the partial order of the lattice, that is:

Lemma 3. For concepts X,Y, Z,W ∈ B, if X ≤ Y , then W ◦X◦Z ≤ W ◦Y ◦Z.

We can extend the operation ◦ to the contexts of concepts:

(9) (x, y) ◦ (w, z) = (xw, zy).

This way, we still have f ◦ (g ◦ h) = (f ◦ g) ◦ h for singleton contexts f, g, h. The
operation can be extended to sets in the natural way, preserving associativity.
For example, C ◦(ε, S) = {(x, ay) : (x, y) ∈ C, a ∈ S}. We will use this as follows:

Definition 4. Let X = 〈SX , CX〉, Y = 〈SY , CY 〉 be concepts. We define the
right residual X/Y := C(C1◦(ε, S2)), and the left residual Y \X := C(C1◦(S2, ε)).

For the closed sets of strings S, T , define S/T := {w : for all v ∈ T,wv ∈ S}.
We then have SX/SY = SX/Y . So residuals are unique and satisfy the following
lemma:

Lemma 5. For X,Y, Z ∈ B, we have Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

For a proof, see [3]. This shows that the syntactic concept lattice can be en-
riched to a residuated lattice (see the definition below, or check the references).
Note that every language, whether computable or not, has a syntactic concept
lattice. An important question is whether it is finite or not. This question can
be answered in the following way.

Proposition 6. The syntactic concept lattice for a language L is finite if and
only if L is regular.

130 C. Wurm

This is a rather immediate consequence of the Myhill-Nerode theorem. A short
note is in order about finite/infinite alphabets. Later on, we will embed residu-
ated monoids/lattices into syntactic concept lattices. If these algebras have an
infinite domain, we will need an infinite alphabet for the construction of the
corresponding language; and so we will in general need languages over infinite
alphabets. In case the domain of the algebra is countable, we can encode its
letters with (finite) strings over a finite alphabet; if it is uncountable, however,
this does not work anymore. So in the sequel, by a language we mean a set of
finite strings over some alphabet, regardless of whether it is finite, countable or
uncountable.

This is of course unsatisfactory, as for us the notion “language” implies the
finiteness of the alphabet. We can yield completeness results for languages over
finite alphabets in two ways: 1. we use the Lindenbaum-Tarski construction to
construct the counter-model, which then results in a countable model, whose
domain we can encode in a finite alphabet. 2. there is an even simpler solution
using the finite model property of L1, FL and FL⊥, which says that for each
underivable sequent of the logic, there is a finite model in which it does not hold.
We will use this second solution.2

In the sequel, we will denote by SCL the class of all syntactic concept lattices,
that is, the class of all lattices of the form L(L) for some language L, without
any further requirement regarding L itself except the ones stated above.

2.4 The Linguistic Order

Syntactic concepts are related to an order, which will have some importance in
the sequel. Given a language L ⊆ Σ∗, we write w ≤L v iff xvy ∈ L → xwy ∈ L.
We call ≤L the linguistic order. Note that this is a pre-order, as from w ≤L v
and v ≤L w follows w ∼L v, where ∼L is substitutional equivalence (we denoted
this above as ∼1

L), but not equality. We can however think of ≤L as a partial
order if we define it over [Σ∗]∼L , that is, the set of L-equivalence classes rather
than the set of strings. As is easy to see, either way ≤L respects concatenation of
strings. This way, a language L ⊆ Σ∗ defines a preordered monoid (Σ∗,≤L, ·, ε).

We say a set (of strings) W is downward closed (with respect to ≤L) if
from w ∈ W and v ≤L w it follows that v ∈ W .

Lemma 7. Given a language L ⊆ Σ∗ and a set of strings W ⊆ Σ∗, if W =
W ��, then W is downward closed with respect to ≤L.

Proof. Assume W = W ��, v ≤L w, w ∈ W . We know that for all (a, b) ∈ W �,
awb ∈ L. By v ≤L w it follows that also avb ∈ L if awb ∈ L. Consequently,
v ∈ W ��, and so W �� is downward closed. �
The converse implication does not hold, that is: not every downward closed
set is closed under [−]��. This is because the [−]��-closure considers only the
L-contexts which are common to all strings in W .

2 Thanks to an anonymous reviewer for pointing this out to me.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 131

3 Lambek Calculus and Extensions

3.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [11]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let
Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest set
such that:

1. Pr ⊆ TpC(Pr).

2. if α, β ∈ TpC(Pr), 	 ∈ C, then α 	 β ∈ TpC(Pr).

If there is no danger of confusion regarding the primitive types and construc-
tors, we also simply write Tp for TpC(Pr). We now present the inference rules
corresponding to these constructors. We call an inference of the form Γ � α a
sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the set of all (possi-
bly empty) sequences over Tp, which are concatenated by ′,′ (keep in mind the
difference between sequents, which have the form Γ � α, and sequences like Γ ,
which are in Tp∗).

With one exception, rules of inference in our logics are not given in the form
of sequents Γ � α, but rather as rules to derive new sequents from given ones.
In general, uppercase Greek letters range as variables over sequences of types.
In the inference rules for L, premises of ′ �′ (that is, left hand sides of sequents)
must be non-empty; in L1 they can be empty as well; everything else is equal. In
FL and FL⊥ we also allow for empty sequents. Lowercase Greek letters range
over single types. Below, we present the standard rules of the Lambek calculus
L / L1, with one axiom schema and several (meta-)rules to derive new sequents
from given ones.

(ax) α � α

(I− /)

Γ, α � β

Γ � β/α (I− \)
α, Γ � β

Γ � α\β

(/− I)

Δ, β,Θ � γ Γ � α

Δ, β/α, Γ,Θ � γ (\ − I)

Δ, β,Θ � γ Γ � α

Δ, Γ, α\β,Θ � γ

(• − I)

Δ,α, β, Γ � γ

Δ, α • β, Γ � γ (I− •)
Δ � α Γ � β

Δ, Γ � α • β

These are the standard rules of L / L1 (roughly as in [11]). We have rules
to introduce either slash and ′•′ both on the right hand side of � and on the

132 C. Wurm

left hand side of �. We will now add two additional connectives, which are well-
known from structural logics, namely ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [12], and have been
subsequently studied by [10].

(∧ − I 1)

Γ, α,Δ � γ

Γ, α ∧ β,Δ � γ (∧ − I 2)

Γ, β,Δ � γ

Γ, α ∧ β,Δ � γ

(I− ∧)
Γ � α Γ � β

Γ � α ∧ β

(∨ − I)

Γ, α,Δ � γ Γ, β,Δ � γ

Γ, α ∨ β,Δ � γ

(I− ∨ 1)
Γ � α

Γ � α ∨ β (I− ∨ 2)

Γ � β

Γ � α ∨ β

(1− I)

Γ,Δ � α

Γ, 1, Δ � α (I− 1) � 1

This gives us the logic FL. Note that this slightly deviates from standard ter-
minology, because usually, FL has an additional constant 0. In our formulation,
0 and 1 coincide. In order to have logical counterparts of the bounded lattice
elements � and ⊥, we introduce two logical constants, which are denoted by the
same symbol.3

(⊥ −I) Γ,⊥ Δ � α (I−�) Γ � �

This gives us the calculus FL⊥. From a logical point of view, all these extensions
of L are quite well-behaved: they are conservative, and also allow us to preserve
the important result of [11], namely admissibility of the cut-rule in L:

(cut)

Δ, β,Θ � α Γ � β

Δ, Γ,Θ � α

We say that a sequent Γ � α is derivable in a calculus L or an extension, if it
can be derived by the axiom and the rules of inference; we then write �L Γ � α,
�L1 Γ � α, �FL Γ � α, etc., depending on which calculus we use.

3 Whereas L and L1 are equally powerful in the sense of languages which are recog-
nizable, [10] shows that FL is considerably more powerful than L: whereas L only
recognizes context-free languages by the classical result of [15], FL can recognize any
finite intersection of context-free languages. We only briefly mention this, because
we have no space to make precise what it means for a calculus to recognize a class
of languages.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 133

3.2 The Semantics of L1, FL and FL⊥

The standard model for L is the class of residuated semigroups. We will not
consider L in the sequel, as there are some additional problems if we want to
interpret L in syntactic concept lattices: there is nothing in L corresponding
to the unit element, but we cannot just do away with ε in syntactic concept
lattices without some complications. The standard model for L1 is the class of
residuated monoids. These are structures (M, ·, 1, \, /,≤), where (M, ·, 1) is a
monoid, (M,≤) is a partial order, and ·, /, \ satisfy the law of residuation: for
m,n, o ∈ M ,

(10) m ≤ o/n ⇔ m · n ≤ o ⇔ n ≤ m\o.
Note that this implies that · respects the order ≤. The standard model for FL
is the class of residuated lattices, and for FL⊥, the class of bounded residuated
lattices. A residuated lattice is an algebraic structure 〈M, ·,∨,∧, \, /, 1〉, where
in addition to the previous requirements, (M,∨,∧) is a lattice; the lattice order
≤ need not be stated, as it can be induced by ∨ or ∧: for a, b ∈ M , a ≤
b is a shorthand for a ∨ b = b. A bounded residuated lattice is a structure
〈M, ·,∨,∧, \, /, 1,�,⊥〉, where 〈M, ·,∨,∧, \, /, 1〉 is a residuated lattice, � is the
maximal element of the lattice order ≤ and ⊥ is its minimal element.

For a general introduction see [8]. We will give definitions only once for each
operator; we can do so because each definition for a given connector is valid for
all classes in which it is present.

We call the class of residuated semigroups RS, the class of residuated monoids
RM , the class of residuated lattices RL; the class of bounded residuated lattices
RL⊥. We now give a semantics for the calculi above. We start with an interpre-
tation σ which interprets elements in Pr, and extend σ to σ by defining it induc-
tively over our type constructors, which is for now the set C := {/, \, •,∨,∧}.
Assignment goes as follows, for α, β ∈ TpC(Pr):

1. σ(α) = σ(α) ∈ M , if α ∈ Pr
2. σ(�) = �
3. σ(⊥) =⊥
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that the constructors on the left-hand side and on the right-hand side of
the definition look identical (with the exception of • and ·), but they are not: on
the left-hand side, they are type constructors, on the right hand side, they are
operators of a residuated lattice. The same holds for the constants �,⊥, 1.

This is how we interpret the types of our logic. What we want to interpret
next are the sequents of the form Γ � α. We say that a sequent R = γ1, ..., γi � α

134 C. Wurm

is true in a model M under assignment σ, in symbols: (M, σ) |= γ1, ..., γi � α, if
and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is, we interpret the ′,′, which
denotes concatenation in sequents, as · in the model, and � as ≤. In the sequel,
for Γ a sequence of types, we will often write σ(Γ) as an abbreviation, where we
leave the former translation implicit. For the case of theorems, that is, derivable
sequents with no antecedent, we have the following convention: (M, σ) |= � α
iff 1 ≤ σ(α) in M, where 1 is the unit element of M. Note that this case does
not arise in L.

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi � α,
if for all M ∈ C and all assignments σ, (M, σ) |= γ1, ...γi � α.

4 Completeness: Preliminaries

There are a number of completeness results for the logics we have considered
here. We will consider the most general ones, which will be important in the
sequel.

Theorem 8. (Buszkowski) For the class of residuated semigroups RS, RS |=
Γ � α if and only if �L Γ � α. For the class of residuated monoids RM ,
RM |= Γ � α if and only if �L1 Γ � α.

Theorem 9. For the class RL of residuated lattices, RL |= Γ � α if and only
if �FL Γ � α. For the class RL⊥ of bounded residuated lattices, RL⊥ |= Γ � α
if and only if �FL⊥ Γ � α.

For reference on theorem 8, see [1], [2]. For theorem 9, see [8]. The proofs for the
above completeness theorems usually proceed via the Lindenbaum-Tarski con-
struction: we interpret primitive types as atomic terms modulo mutual derivabil-
ity, and define σ(α) ≤ σ(β) iff α � β. Then we can perform an induction over
constructors to get the same for arbitrary formulas/terms. So there are quite
simple completeness proofs for the general case.

What is much harder to obtain is completeness in the finite case, usually
referred to as finite model property. A logic L has finite model property if
from the fact that a sequent Γ � α is not provable in L, it follows that there is
a finite model M and an assignment σ such that (M, σ) �|= Γ � α.

Theorem 10. 1. L1 has finite model property.
2. FL has finite model property.
3. FL⊥ has finite model property.

For the first claim, consider [7]; the second and third has been established by
[14]. We want to establish soundness and completeness of the calculi with respect
to the class of syntactic concept lattices and their reducts. The latter results are
crucial to show that completeness holds also if we restrict ourselves to languages
over finite alphabets. First we see that our calculus is sound with respect to the
model:

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 135

Theorem 11. (Soundness) If �FL⊥ Γ � α, then for the class of syntactic con-
cept lattices SCL, we have SCL |= Γ � α.

This actually follows from soundness direction of theorem 9, because SCL is just
a particular class of bounded residuated lattices. As L,L1,FL are fragments of
FL⊥, we get the same result for L,L1 and FL, regarding the sequents which
contain only the operators which have a counterpart in the logic. What is much
harder to obtain is completeness.

Theorem 12. (Completeness) If SCL |= Γ � α, then �FL⊥ Γ � α.

Proof idea: our proof of completeness for the class of syntactic concept lattices
is based on the completeness result for the class RL⊥. The idea of the proof is
quite simple: starting from the completeness of FL⊥ for the class of bounded
residuated lattices, we show that each residuated lattice can be isomorphically
embedded into a syntactic concept lattice. So let B be a residuated lattice and L
a syntactic concept lattice, then from the fact that h : B → L is an isomorphic
embedding, we can conclude that if (B, σ) �|= Γ � α, then (L, h ◦ σ) �|= Γ � α.
This in turn means that if there is a residuated lattice, where a certain inequation
does not hold, then there is a syntactic concept lattice for some language where
it does not hold either. This allows us to extend the completeness result from the
general class of bounded residuated lattices, which is obtained by contraposition,
to the class of residuated concept lattices. The finite model property of the
calculi allows us to assume that the countermodels are finite; so we can conclude
that FL⊥ is complete with respect to the class of syntactic concept lattices of
languages over finite alphabets.

The next section will be devoted to presenting the embedding and to show
why it does the job as required.

5 Proof of the Main Theorem

5.1 Isomorphic Embedding in Syntactic Concept Lattices

Let B = (B,∨,∧, /, \, ·, 1,�,⊥) be a bounded residuated lattice. We denote the
partial order of B by ≤B. Recall that different terms over B can denote the
same element of B. To avoid confusion, we denote this by the equality =B. That
means, for terms s, t over B, s =B t states that s, t denote the same element
of B.

Define Σ := {b, b : b ∈ B}. We define a language LB ⊆ Σ∗ as the set of strings
LB := {b1b2...bnb : b1 · b2 · ... · bn ≤B b}. For a string w = b1...bn ∈ B∗, by w• we
denote the term b1 · ... · bn.

Note that we now have an ambiguity as to whether a certain b ∈ B is a letter of
Σ or an element of the lattice. We could have generally avoided this ambiguity at
the price of complicating notation; but we rather try to avoid the ambiguity in all

136 C. Wurm

particular statements, by using ≤B or ≤L, etc. Importantly, the non-atomic
terms over the lattice B are not part of the alphabet Σ, only the elements of
B which these terms denote are in Σ. So we have to take care to not read the
terms as syntactic objects of LB: whereas a term t will not occur in LB unless
it is an atomic term, the element it denotes does occur in LB for any term t.

We define a map γ : ℘(B∗) → ℘(Σ∗) by γ(X) = (X)��, where [−]�� is the
syntactic concept closure with respect to LB. As is easy to see, γ is a closure
operator, as [−]�� is a closure, and we have γ(b1)γ(b2) ≤ γ(b1b2), where by the
concatenation of two sets we simply mean the concatenation of their elements,
that is, VW := {ab : a ∈ V, b ∈ W}.4 As we have said, a map which has these
properties is called nuclear.

A nuclear map gives rise to what is called the nuclear image of ℘(B∗), the
lattice 〈γ[℘(B∗)],∩,∪γ , ◦γ , /, \, γ(�), γ(⊥)〉, which we will call Q(B). From the
fact that γ is nuclear, it follows that Q(B) is a complete residuated lattice (see
[8],p.174), where X ∪γ Y := γ(X ∪ Y), X ◦γ Y := γ(X · Y). Furthermore, Q(B)
is bounded by γ(�) = B∗5 and γ(⊥) = {⊥}, as ⊥ is contained in any γ-closed
set.

It is easy to see that Q(B) can be isomorphically embedded into the syntactic
concept lattice of LB, which we call L(LB): in fact, Q(B) is isomorphic to the
fragment of L(LB) which consists of all concepts from strings in B∗. It is easy
to see that in L(LB) these are closed under meet, join and concatenation; but
note that this does not follow from general considerations, and is rather a con-
sequence of the particular distributional structure of LB. Consequently, we have
an isomorphic embedding C : Q(B) → L(LB) (as we defined it above), which
simply maps closed sets of strings onto their concepts.

What we still need is an appropriate embedding from B into Q(B). The next
lemma will be very helpful to understand what is to follow:

Lemma 13. Let ≤L be the linguistic order of LB, a, b ∈ B. Then a ≤B b ⇐⇒
a ≤L b.

Proof. ⇒ Assume a ≤B b. Then if xby ∈ LB (we know that y �= ε), then it is
easy to see that xay ∈ LB, by the definition of LB: each word of LB corresponds
to an inequation which holds in B, and the inequation remains valid under the
substitution of a for b. Therefore, a ≤L b.

⇐ Assume a ≤L b. As we have b ≤B b, we have bb ∈ LB. By assumption, we
then have ab ∈ LB. This can only be the case if a ≤B b. �
We define a map h : B → Q(B) (equivalently, h : B → γ[℘(B∗)]), where
h(b) = {w ∈ Σ∗ : wb ∈ LB}. This is clearly a γ-closed set (or put differently:
extent of a syntactic concept of LB), as it equals the closed set (ε, b)�.

In the sequel, we will often use h with terms instead of atoms. Of course, here
the same applies as before: h is not defined over terms, it only maps the elements
denoted by the terms. A crucial lemma is the following:

4 The latter inequation follows from our above considerations on syntactic concepts.
5 We assume that � ∈ B!

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 137

Lemma 14. For w ∈ Σ∗, b ∈ B, the following three are equivalent:

1. w ∈ h(b)
2. w• ≤B b
3. w ≤L b

Proof. 2. ⇒ 1.: if w• ≤B b, then wb ∈ LB, and so w ∈ h(b).
1. ⇒ 2.: assume w ∈ h(b). Then we have wb ∈ LB. But wb ∈ LB only if

w• ≤B b, so the implication follows.
The biimplication 2. ⇔ 3. is only a slight generalization of the preceding

lemma. We write w ∼L v as a shorthand for w≤Lv & v≤Lw (recall that ≤L is a
pre-order rather than a partial order). So assume that for a, b, c ∈ B, a · b =B c.
From this it follows that x·(a·b)·y ≤B z if and only if x·c·y ≤B z. Consequently,
ab ∼L c. This can be extended to arbitrary terms over B and ·: for any w ∈ B∗,
we have w ∼L w•. Consequently, we have w• ≤B b if and only if w• ≤L b (lemma
13) if and only if w ≤L b. �
We will now show that h defines a proper isomorphic embedding of B into the
nuclear image Q(B), which forms a fragment of the syntactic concept lattice of
LB.

Theorem 15. For each 	 ∈ {∧,∨, ·, /, \}, we have h(a)	γ h(b) = h(a	b), where
a 	 b denotes the unique element of B denoted by the term, and 	γ denotes the
interpretation of 	 in the γ-image of ℘(B∗). This means that h is an isomorphic
embedding.

Proof. We proceed by cases:

Case 1 : 	 = ∧.
a) h(a) ∩ h(b) ⊇ h(a ∧ b). Assume that c ∈ h(a ∧ b). Then by lemma 14,

c ≤B (a ∧ b). Therefore, c ≤B a, b, and consequently c ≤L a, b. Therefore,
c ∈ h(a), c ∈ h(b), and thus c ∈ h(a) ∩ h(b).

b) h(a)∩h(b) ⊆ h(a∧b). Assume that c ∈ h(a)∩h(b). Then c ∈ h(a), c ∈ h(b);
consequently, c ≤B a, b (by lemma 14); consequently, c ≤ a ∧ b, and therefore
c ∈ h(a ∧ b).

Case 2 : 	 = ∨
a) h(a) ∪γ h(b) ⊇ h(a ∨ b): Assume that c ∈ h(a ∨ b). Then c ≤L a ∨ b.

We now show that a ∨ b ∈ h(a) ∪γ h(b): whenever wav ∈ LB, wbv ∈ LB,
then w(a ∨ b)v ∈ LB. Consequently, a ∨ b ∈ γ({a, b}) ⊆ h(a) ∪γ h(b). As γ-
closed sets are downward closed with respect to the linguistic order, we also
have c ∈ h(a) ∪γ h(b).

b) h(a)∪γh(b) ⊆ h(a∨b): By lemma 14, we know that for all x ∈ h(a), x ≤L a,
and for all y ∈ h(b), y ≤L b. Consequently, by lemma 14 we have z ≤L a ∨ b for
all z ∈ h(a) ∪γ h(b), and so h(a) ∪ h(b) ⊆ h(a ∨ b). As h(a ∨ b) is γ-closed, we
must also have h(a) ∪γ h(b) ⊆ h(a ∨ b) by order preservation of γ.

138 C. Wurm

Case 3 : 	 = ·.
Recall that we use a ∼L b as a shorthand for a≤Lb & b≤La, and that for

a, b, c ∈ B, from a · b =B c it follows that ab ∼L c. This means that we may
interchange the two arbitrarily in LB, and likewise when we talk about the map
h or any γ-closed sets.

a) h(a) ◦γ h(b) ⊇ h(a · b). Assume that c ∈ h(a · b). Then c ≤L a · b, and so
c ≤L ab. As h(a) ◦γ h(b) = γ(h(a)h(b)), we have ab ∈ h(a) ◦γ h(b), and as γ
closed sets are downward closed with respect to ≤L, we have c ∈ h(a) ◦γ h(b).

b) h(a) ◦γ h(b) ⊆ h(a · b). We know that for all x ∈ h(a), x ≤B a, and for all
y ∈ h(b), y ≤B b (lemma 14). Consequently, as it holds in any residuated lattice
that w ≤ y, x ≤ z ⇒ wx ≤ yz, we know that for all x ∈ h(a), y ∈ h(b), x · y ≤B

a · b, and so xy ≤L ab ∼L a · b. Consequently, we have h(a)h(b) ⊆ h(a · b). As
h(a · b) is closed under γ and γ preserves the inclusion order of sets, it follows
that h(a) ◦γ h(b) ⊆ h(a · b).

Case 4 : 	 = /
a) h(a)/h(b) ⊇ h(a/b). Assume c ∈ h(a/b); then c ≤L a/b. We show that

a/b ∈ h(a)/h(b). By definition we have that h(a)/h(b) is the largest element
such that (h(a)/h(b)) ◦γ h(b) ≤Q(B) h(a). As for all d ∈ h(b), d ≤L b, and
a/b · b ≤L a, a ∈ h(a), we have for all d ∈ h(b), a/b · d ≤L a, and therefore
a/b · d ∈ h(a). It follows that a/b ∈ h(a)/h(b), and consequently c ∈ h(a)/h(b).

b) h(a)/h(b) ⊆ h(a/b). We have b ∈ h(b) as the largest element with respect
to ≤L, and a/b is by definition the largest element such that a/b · b ≤B a. Fur-
thermore, as a is the largest element in h(a) with respect to ≤L, we must have
for all x ∈ h(a)/h(b), x ≤L a/b; and therefore, x ∈ h(a/b) by lemma 14.

Case 5 : 	 = \ is parallel to 4. �

5.2 Back to Completeness

We now return to the proof of the main theorem. Assume that ��FL⊥ Γ � α.
Then by completeness and finite model property of FL⊥ for bounded residuated
lattices, there is a finite bounded residuated lattice B and assignment σ, such
that (B, σ) �|= Γ � α, that is, in B we have σ(Γ) �≤ σ(α).

We now take the γ-image Q(B) and the embedding h, as we have described
them in the previous section. We have to show that (Q(B), h ◦ σ) �|= Γ � α, that
is, we have h ◦ σ(Γ) �⊆ h ◦ σ(α), where by h ◦ σ we mean function composition,
such that we have h ◦ σ(γ1 • ... • γn) = h(σ(γ1)) · ... · h(σ(γn)).
Lemma 16. Let B be a (bounded) residuated lattice, s, t terms over B, and
Q(B), h as defined above. Then s ≤B t if and only if h(s) ⊆ h(t).

Actually, for the completeness theorem we would only need the only-if direction;
also, we might obtain this as a corollary to theorem 15. But as the proof is quite
simple, we show both directions for “completeness”.

Proof. If : Assume s ≤B t. Then if u ∈ h(s), we have u ≤B s (lemma 14). By
transitivity, u ≤B t, and therefore u ∈ h(t). Therefore, h(s) ⊆ h(t).

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 139

Only if : Assume h(s) ⊆ h(t). As for all u ∈ B, uu ∈ LB, we have s ∈ h(s).
Therefore, s ∈ h(t). And so, by lemma 14, s ≤B t. �
To complete the proof of the main theorem, there is one step missing, which is
quite straightforward: define LB for B as above. Every residuated lattice B can
be embedded into the γ-image Q(B) by a map h, such that if s �≤ t in B, then
h(s) �≤ h(t) in Q(B). We now have an isomorphic embedding C : Q(B) → L(LB)
of Q(B) into the syntactic concept lattice of LB, which maps the γ closed sets
onto their concepts. We thus have the implication: if s �≤ t in B, then there is a
language LB such that C ◦h(s) �⊆ C ◦h(t), which is to say C ◦h(s) �≤L(LB) C ◦h(t).
Consequently, if ��FL⊥ Γ � α, then there is a language LB over a finite alphabet,
such that (L(LB), C ◦ h ◦ σ) �|= Γ � α. This completes the proof of the main
theorem.

6 Corollaries

An important feature of our proof is the following: let the logic L be a fragment
of FL⊥, such that FL⊥ is a conservative extension of L. We know that there
exist such fragments, as FL is a conservative extension of L1, and FL⊥ is a con-
servative extension of FL. L (and its fragments) do not satisfy this requirement,
and pose some difficulties, which we hope to address in further work.

The algebraic notion corresponding to a fragment in logic is the notion of a
reduct. A reduct of an algebra is the same algebra with only a proper subset of
connectives; the notion extends easily to classes. So let RED be a certain class of
reducts of RL⊥, such that for L a fragment of FL⊥, L is complete with respect
to RED . Then our proof of completeness regarding the class SCL of syntactic
concept lattices can be easily adapted to give a proof of the completeness of
a class of reducts of SCL with respect to L, which corresponds to RED . The
reason is that the crucial step, which is the embedding in theorem 15, is equally
valid for any subset of the operators {∨,∧, ·, /, \}. So the question whether a
reduct of SCL is complete with respect to a fragment L of FL⊥ reduces to the
question whether there is a strongly complete algebraic semantics for L, in the
sense we have specified above.

Now, let SCLL1 be the class of SCL reducts with {◦, /, \}, which specify a
unit, and SCLFL be the class of SCL reducts with operators {◦, /, \,∨,∧}, that
is, without the constants � and ⊥.

We get the following corollaries:

Corollary 17. The following biimplications hold:

1. SCLL1 |= Γ � α if and only if �L1 Γ � α;
2. SCLFL |= Γ � α if and only if �FL Γ � α.

The soundness part follows as a corollary from the soundness theorem 11; the
completeness direction can be shown by a simple modification of theorem 15 in
the completeness proof. By finite model property, we can again conclude that
the same holds if we restrict ourselves to syntactic concept lattices of languages
over finite alphabets.

140 C. Wurm

7 Conclusion and Further Work

We have shown strong completeness of the class of syntactic concept lattices for
languages over finite alphabets with respect to FL⊥ and some of its fragments.
Our main conclusion is that FL⊥, FL and L1 are the logics of syntactic concept
lattices. Apart from intrinsic mathematical interest, we think that the result
presented so far is mainly of preliminary importance for formal linguistic theory.
The reason is the following: the main purpose for using syntactic concept lattices
in a “post-structuralist” setting is learning; so one major interest is to get a
finite axiomatization for an infinite lattice. We hope our results will find some
application in this task, which is however beyond the scope of this paper.

A further interesting open question is the following6: syntactic concept lattices
can be extended in a very natural way (see for example [5],[13]). As extents of
syntactic concepts, we take subsets of Σ∗ × Σ∗ (instead of subsets of Σ∗), and
as intents, we take subsets of Σ∗ × Σ∗ × Σ∗ (instead of Σ∗ × Σ∗). Given a
language L ⊆ Σ∗, and a set of pairs of strings M ⊆ Σ∗ × Σ∗, we put M� :=
{(x, y, z) : ∀(a, b) ∈ M,xaybz ∈ L}; [−]� is defined inversely. Obviously, this
can be easily generalized to sets of arbitrary n, n + 1 tuples. Denote the class
of (generalized) syntactic concept lattices, where extents are sets of n-tuples,
intents sets of n+1-tuples, by SCLn. Now the question is: can our completeness
result be generalized from SCL (that is, SCL1) to SCLn for any n ∈ N?

We think the odds are good: all we need is a family of mappings hn : n ∈ N,
where every hn : SCL1 → SCLn+1 is an appropriate embedding of residuated
lattices. It might well be that a quite simple mapping will do the job, but we
have not found a simple way of verification for the general case. Therefore, we
leave this question open for further research.

Acknowledgements. I would like to thank the three anonymous reviewers for
many good comments and questions, and Professor Wojciech Buszkowski, who
gave me invaluable support in writing this paper.

References

1. Buszkowski, W.: Completeness results for Lambek syntactic calculus. Mathemati-
cal Logic Quarterly 32(1-5), 13–28 (1986)

2. Buszkowski, W.: Algebraic structures in categorial grammar. Theor. Comput.
Sci. 1998(1-2), 5–24 (1998)

3. Clark, A.: A learnable representation for syntax using residuated lattices. In: de
Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS (LNAI), vol. 5591,
pp. 183–198. Springer, Heidelberg (2011)

4. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38–51. Springer,
Heidelberg (2010)

5. Clark, A.: Logical grammars, logical theories. In: Béchet, D., Dikovsky, A. (eds.)
LACL 2012. LNCS, vol. 7351, pp. 1–20. Springer, Heidelberg (2012)

6 This question has been raised by one of the reviewers.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 141

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (1991)

7. Farulewski, M.: On Finite Models of the Lambek Calculus. Studia Logica 80(1),
63–74 (2005)

8. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier (2007)

9. Harris, Z.S.: Structural Linguistics. The University of Chicago Press (1963)
10. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal

of Logic, Language, and Information 1, 141–171 (1992)
11. Lambek, J.: The Mathematics of Sentence Structure. The American Mathematical

Monthly 65, 154–169 (1958)
12. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure

of Language and its Mathematical Aspects, pp. 166–178. American Mathematical
Society, Providence (1961)

13. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language and Information 20(1), 1–48 (2011)

14. Okada, M., Terui, K.: The finite model property for various fragments of intuition-
istic linear logic. J. Symb. Log. 64(2), 790–802 (1999)

15. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th An-
nual IEEE Symposium on Logic in Computer Science, Los Alamitos, California,
pp. 429–433. IEEE Computer Society Press (1993)

16. Sestier, A.: Contributions à une théorie ensembliste des classifications linguis-
tiques (Contributions to a set–theoretical theory of classifications). In: Actes du
Ier Congrès de l’AFCAL, Grenoble, pp. 293–305 (1960)

	Completeness of Full Lambek Calculus for Syntactic Concept Lattices
	1
Introduction
	2
Residuated Syntactic Concept Lattices
	2.1
Equivalences and Concepts
	2.2
Syntactic Concepts: Definitions
	2.3
Monoid Structure and Residuation
	2.4
The Linguistic Order

	3
Lambek Calculus and Extensions
	3.1
The Logics L, L1, FL and FL
	3.2
The Semantics of L1, FL and FL

	4
Completeness: Preliminaries
	5
Proof of the Main Theorem
	5.1
Isomorphic Embedding in Syntactic Concept Lattices
	5.2
Back to Completeness

	6
Corollaries
	7
Conclusion and Further Work
	References

