
Parsing Pregroup Grammars with Letter

Promotions in Polynomial Time

Katarzyna Moroz

Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań

moroz@amu.edu.pl

Abstract. We consider pregroup grammars with letter promotions of
the form p(m) ⇒ q(n), p ⇒ 1, 1 ⇒ q. We prove a variant of Lam-
bek’s normalization theorem [5] for the calculus of pregroups enriched
with such promotions and present a polynomial parsing algorithm for
the corresponding pregroup grammars. The algorithm extends that from
[8], elaborated for pregroup grammars without letter promotions. The
normalization theorem, restricted to letter promotions without 1, was
proved in [3,4] while the present version was stated in [4] without proof
and used to show that the word problem for letter promotions with unit
is polynomial. Our results are contained in the unpublished PhD thesis
[9].

1 Introduction and Preliminaries

The paper continues and extends some results of [4] and [8]. [4] considered pre-
groups and pregroup grammars with letter promotions and with letter promo-
tions with unit. A Lambek-style normalization theorem for pregroups with letter
promotions is proved. A similar theorem for pregroups with letter promotions
with unit is stated and here we give the proof of the theorem. The proof of
the normalization theorem for letter promotions with 1 essentially refines that
from [3,4], but does not follow directly from them, since one must handle new
contraction and expansion steps. In [4] it is also proved that the word problem
and the membership problem for pregroups with letter promotions can be solved
in polynomial time. Similar results are given for pregroups with letter promo-
tions with unit. In [8] we propose a polynomial dynamic parsing algorithm for
pregroup grammars and give the proof of its correctness. In this paper we show
that the algorithm can be modified to work for pregroup grammars with letter
promotions with unit. The results were stated in an unpublished PhD thesis [9].

Pregroups were introduced by Lambek [5] as an algebraic tool for the syntac-
tical analysis of sentences. Pregroup grammars belong to lexical grammars since
most of linguistic information is encoded in the lexicon. Similarly as in Lambek
categorial grammars, syntactical properties of words are described by a finite
set of pregroup types. However, the structure of types is different and so is the
logic. Pregroup types are elements of a free monoid, generated by iterated ad-
joints of some atoms, and they are processed using a calculus of free pregroups,

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 52–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 53

also called Compact Bilinear Logic CBL. The computational complexity of pre-
group grammars is polynomial in contrast to the computational complexity of
categorial grammars. Pregroups and pregroup grammars have been successfully
applied to parsing diverse natural languages like English, Italian, Polish and
Japanese.

However, not all natural language phenomena can be easily described by the
formalism of pregroups. Therefore some extensions to pregroup grammars have
been proposed. Mater and Fix [7] consider pregroup grammars enriched with
some more general assumptions. An interesting problem they propose is called a
letter promotion problem for pregroups. Their idea is further developed in [3], [4].
Buszkowski and Lin [3] show that the word problem for pregroups with letter
promotions, that is assumptions of the form p(m) ⇒ q(n), is polynomial when
the size of p(n) is counted as |n|+1. [4] extends this result for letter promotions
with unit p(m) ⇒ 1, 1 ⇒ q(n).

CBL enriched with some assumptions is interesting for a few reasons. First
of all, we look for extensions to pregroups allowing easier description of some
natural language phenomena, see [6]. Moreover, we know that the calculus of
pregroups is solvable in polynomial time (see [1]), but the associative Lambek
calculus is NP-complete. The calculi admitting letter promotions and letter pro-
motions with unit are still polynomial. It is interesting how far the calculus
of pregroups can be generalized while remaining polynomial. Finally, pregroup
grammars with letter promotions can directly simulate any cancelation gram-
mar. Cancelation grammars are defined by Buszkowski in [4].

Definition 1. A cancelation grammar is a tuple G = (Σ, V,X,R, I), where Σ
and V are finite disjoint alphabets (terminal and auxiliary respectively), X ∈ V ∗,
R is a finite set of cancelation rules and I assigns a finite set of strings over
V to any element of Σ. The cancelation rules are of the form A,B ⇒ ε and
A ⇒ B, for A,B ∈ V . G assigns a string Y ∈ V ∗ to a string a1...an of elements
from Σ if there exist strings Y1...Yn such that Yi = I(ai), i = 1, ..., n and Y1...Yn

reduces to Y by a finite number of applications of rules from R.

The language of a cancelation grammar consists of all strings on Σ+ which
are assigned the designated type X by G. Pregroup grammars (also with let-
ter promotions) are a special kind of cancelation grammars. Conversely, every
cancelation rule A,B ⇒ ε can directly be simulated by the letter promotion
A ⇒ Bl, i.e. A ⇒ B(−1).

Definition 2. A pregroup is an algebra (M,�, ·, l, r, 1), such that (M,�, ·, 1) is
a partially ordered monoid and l, r are unary operations on M satisfying adjoint
laws:

(Al) ala � 1 � aal

(Ar) aar � 1 � ara,

for all a ∈ M .

The elements al and ar are called left and right adjoint, respectively. Let us
notice that left and right adjoints are unique for each element of M .

54 K. Moroz

One defines iterated adjoints a(n) = arr...r and a(−n) = all...l, where n is a
non-negative integer, r and l are iterated n times and a is any element of a
pregroup M . By definition a(0) = a.

To apply pregroups to parsing natural languages Lambek uses the notion of
a free pregroup generated by a poset. Let us assume (P,�) is a nonempty, finite
poset. Then elements of P are called atoms and they are denoted by letters
p, q, r. Expressions of the form p(n), where p ∈ P and n is any integer, are called
terms and denoted by t, u. Finite strings of terms are called types and denoted
by X,Y, Z. Types are assigned to words in the lexicon and they refer to the
role the given word takes in a sentence. Usually, one word can be assigned many
different types.

The following rules define a binary relation ⇒ on the set of types:

(CON) X, p(n), p(n+1), Y ⇒ X,Y,
(EXP) X,Y ⇒ X, p(n+1), p(n), Y,
(POS) X, p(n), Y ⇒ X, q(n), Y, if p � q and n is even or q � p and n is
odd.

(CON), (EXP), (POS) are called Contraction, Expansion and Poset rules, re-
spectively. Poset rules were originally called Induced Step (IND) by Lambek [5].
Actually, ⇒ is a reflexive and transitive closure of the relation defined by these
clauses. Let us notice that X ⇒ Y is true iff X can be rewritten into Y by a
finite number of applications of these rules. This rewriting system is Lambek’s
original form of the logic of pregroups, which is also called CBL.

Additionaly, one defines a useful rule called Generalized Contraction, which
combines (CON) and (POS) and similarly Generalized Expansion (GEXP):

(GCON) X, p(n), q(n+1), Y ⇒ X,Y ,
(GEXP) X,Y ⇒ X, p(n+1), q(n)Y ,

where in both cases p � q and n is even, or q � p and n is odd.
Lambek proves a normalization theorem for CBL [5]:

if X ⇒ Y in CBL, then there exist Z and U such that X ⇒ Z by
applying (GCON) only, Z ⇒ U by applying (POS) only, and U ⇒ Y by
applying (GEXP) only.

Therefore, if Y is a term or Y ⇒ ε, then X ⇒ Y in CBL if and only if X can
be reduced to Y without (GEXP), that is using (CON) and (POS) only.

It is useful to define Xr and X l for any type X :

εl = ε = εr;

Xr = (p
(n1)
1 ...p

(nk)
k)r = p

(nk+1)
k ...p

(n1+1)
1 ,

X l = (p
(n1)
1 ...p

(nk)
k)l = p

(nk−1)
k ...p

(n1−1)
1 ,

where n1, ..., nm are arbitrary integers.

Definition 3. A pregroup grammar is a structure G = (Σ,P, I, s, R) where Σ
is a finite alphabet (that is a lexicon), P is a finite set of atoms, I is a finite
relation assigning types on P to symbols from Σ, s is the denoted type s, and R
is a partial ordering on P .

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 55

If R is fixed, one writes p � r for pRq. For a ∈ Σ, I(a) denotes the set of all
types X such that (a,X) ∈ I. Let us assume x ∈ Σ+, x = a1...an (ai ∈ Σ). One
says that the grammar G assigns type Y to x if there exist types Xi ∈ I(ai), i =
1, ..., n, such that X1, ..., Xn ⇒ Y in CBL; we write x →G Y . Then the language
of a pregroup grammar G, denoted by L(G), consists of all strings x ∈ Σ+ to
which the grammar G assigns the denoted type s. Due to the normalization
theorem while parsing pregroup grammars, one may restrict the rules to only
(CON) and (POS).

To describe a pregroup grammar for a given language one has to define a set
of terms, fix a lexicon consisting of words of the language and types assigned
to them and define a partial order on types, that is, fix the assumptions. One
can say that assumptions express different forms of subtyping. Let us consider a
few examples. If he is assigned type π3 (subject in third person), likes - πr

3 s1 ol

and books - n2 (plural noun), then the sentence He likes books. can be parsed as
follows: (π3)(π

r
3 s1 ol)(n2) � s1o

ln2 � s1o
lo � s1 (using the assumption n2 � o,

as a plural noun can take part of an object in a sentence). The string is assigned
type s1 i.e. the type of statement in present tense and by the assumption s1 � s,
it is a statement (type s). Clearly, the types assigned above are not unique. For
example books is also of type πr

3s1o
l (a transitive verb in third person, present

tense). The above reduction can be depicted by the following links:
He likes books.
(π3)(π

r
3 s1 o

l)(n2)

Let us consider a complete system of CBL with letter promotions obtained
by modifying (POS) to Promotion Rules (PRO):

(PRO) X, p(m+k), Y ⇒ X, q(n+k), Y if either k is even and p(m) ⇒ q(n)

is an assumption, or k is odd and q(n) ⇒ p(m) is an assumption.

A pregroup grammar with letter promotions is defined similarly to a pregroup
grammar.

Definition 4. A pregroup grammar with letter promotions is a pregroup gram-
mar G = (Σ,P, I, s, R) in which R is the set of assumptions extended by a set
of letter promotions. We require that P (R) ⊆ P , where P (R) denotes the set of
atoms appearing in assumptions from R.

By R �CBL X ⇒ Y we mean that X can be transformed into Y by a finite num-
ber of applications of (CON), (EXP) and (PRO), restricted to the assumption
from a set of letter promotions R. (POS) is treated as an instance of (PRO).

Assuming that t ⇒ u is an instance of (PRO) restricted to the assumptions
from R, that is X,Y are empty, we write t ⇒R u. We write t ⇒∗

R u if there
exist terms t0, . . . , tk such that k � 0, t0 = t, tk = u, and ti−1 ⇒R ti, for all
i = 1, . . . , k. Hence, ⇒∗

R is the reflexive and transitive closure of ⇒R.
For CBL with letter promotions one defines a generalization of the rules

(CON) and (EXP), which are derivable in CBL with assumptions from R.

(GCON-R) X, p(m), q(n+1), Y ⇒ X,Y if p(m) ⇒∗
R q(n),

(GEXP-R) X,Y ⇒ X, p(m+1), q(n), Y if p(m) ⇒∗
R q(n).

56 K. Moroz

Clearly, (CON) is a special instance of (GCON-R) while (EXP) is a special
instance of (GEXP-R). One can treat any iteration of (PRO) as a single step.

(PRO-R) X, t, Y ⇒ X, u, Y if t ⇒∗
R u.

As a consequence of the normalization theorem, we get R �CBL t ⇒ u iff t ⇒∗
R u;

see [3,4].

Definition 5. The letter promotion problem for pregroups (LPPP) is stated
as follows: for the given finite set R of letter promotions, and terms t, u, verify
whether t ⇒ u in CBL enriched with all promotions from R as assumptions.

Shortly, (LPPP) consists of verifying whether t ⇒∗
R u for given R, t, u.

Buszkowski and Lin [3] prove that LPPP is polynomial, provided that the
size of p(n) is counted as |n| + 1 (it is natural, since p(n) abbreviates the n-th
iteration of l’s or r’s). This count is used in the present paper. [4] extends this
result for letter promotions with unit and shows that the membership problem
for the corresponding pregroup grammars is polynomial, and these grammars
are equivalent to CFGs (but the latter does not directly imply the polynomiality
of the membership problem; see [2] for discussion).

The main result of the present paper is a polynomial parsing algorithm for
pregroup grammars admitting letter promotions of the form p(m) ⇒ q(n), p ⇒
1, 1 ⇒ q. This algorithm refines an earlier one for pregroup grammars [8]; the
latter adapts a method of Savateev [11], elaborated for Unidirectional Lambek
Calculus. Section 3 presents our algorithm, the proof of its correctness and a
related algorithm returning the reduction. Since a Lambek-style normalization
theorem is essentially used, we give its full proof in section 2 (the theorem was
proved in [9] and stated without proof in [4]).

2 The Normalization Theorem

Letter promotions with unit are promotions allowing 1, that is letter promotions
of the form: p(m) ⇒ 1 or 1 ⇒ q(n). We add 1 to the set of terms. Notice that in
pregroups the assumption p(m) ⇒ 1 is equivalent to p ⇒ 1 if m is even and to
1 ⇒ p if m is odd. Similarly, the assumption 1 ⇒ p(m) is equivalent to 1 ⇒ p
if m is even and to p ⇒ 1 if m is odd. Therefore, in what follows, we consider
letter promotions with unit only of the form p ⇒ 1 and 1 ⇒ q.

A complete system of CBL with letter promotions with unit is obtained by
adding two new rules to CBL with letter promotions.

Definition 6. A complete system of CBL with letter promotions with unit
consists of the following rules:

(CON) X, p(n), p(n+1), Y ⇒ X,Y,
(EXP) X,Y ⇒ X, p(n+1), p(n), Y,
(PRO) X, p(m+k), Y ⇒ X, q(n+k), Y, if either k is even and p(m) ⇒ q(n)

is an assumption, or k is odd and q(n) ⇒ p(m) is an assumption.

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 57

(PRO-C) X, p(m), Y ⇒ X,Y , if either m is even and p ⇒ 1 is an as-
sumption, or m is odd and 1 ⇒ p is an assumption,
(PRO-E) X,Y ⇒ X, q(n), Y , if either n is even and 1 ⇒ q is an assump-
tion, or n is odd and q ⇒ 1 is an assumption.

Consequently, (PRO-C) is a contracting promotion step, (PRO-E) is an expand-
ing promotion step and (PRO) is a neutral promotion step.

We fix a finite set R1 of letter promotions, possibly with unit. We write
t ⇒R1 u if t ⇒ u is an instance of (PRO), (PRO-C) or (PRO-E) restricted to
the set of assumptions R1 (X,Y are empty). We write t ⇒∗

R1 u if there exist
terms t0, ..., tk such that k � 0, t0 = t, tk = u, ti−1 ⇒R1 ti, for all i = 1, ..., k.

We introduce some new rules derivable in CBL with assumptions from R1.

(GCON-R1) X, p(m), q(n+1), Y ⇒ X,Y, if p(m) ⇒∗
R1 q(n)

(GEXP-R1) X,Y ⇒ X, p(n+1), q(m), Y, if p(n) ⇒∗
R1 q(m)

(PRO-R1) X, t, Y ⇒ X, u, Y if t ⇒∗
R1 u and t �= 1 and u �= 1

(PRO-C-R1) X, t, Y ⇒ X,Y if t ⇒∗
R1 1 and t �= 1

(PRO-E-R1) X,Y ⇒ X, u, Y if 1 ⇒∗
R1 u and u �= 1

There holds a normalization theorem for CBL with letter promotions with unit:

Theorem 1. If R1 �CBL X ⇒ Y , then there exist Z,U such that X ⇒ Z by a
finite number of instances of (GCON-R1) and (PRO-C-R1), Z ⇒ U by a finite
number of instances of (PRO-R1) and U ⇒ Y by a finite number of instances
of (GEXP-R1) and (PRO-E-R1).

Proof. Let us start with some notions. A sequence X0, . . . , Xk such that X =
X0, Y = Xk and, for any i = 1, . . . , k, Xi−1 ⇒ Xi is an instance of (GCON-R1),
(GEXP-R1), (PRO-E-R1), (PRO-C-R1) or (PRO-R1) is called a derivation of
X ⇒ Y from the set of assumptions R1. Clearly, R1 � X ⇒ Y iff there exists a
derivation of X ⇒ Y of this form. k is the length of the derivation. If a derivation
has a form required by the Theorem, then it is called a normal derivation.

We prove that every derivation X0, . . . , Xk of X ⇒ Y can be transformed
into a normal derivation of length not greater than k. We proceed by induction
on k.

We should notice that for k = 0 and k = 1 the initial derivation is normal.
For k = 0, it suffices to take X = Z = U = Y . For k = 1, if X ⇒ Y is an
instance of (GCON-R1) or (PRO-C-R1), one takes Z = U = Y , if X ⇒ Y is an
instance of (GEXP-R1) or (PRO-E-R1), one takes X = Z = U , and if X ⇒ Y
is an instance of (PRO-R1), one takes X = Z and U = Y .

Assume now k > 1. The derivation X1, . . . , Xk is shorter, whence it can be
transformed into a normal derivation Y1, . . . , Yl such that X1 = Y1, Xk = Yl

and l � k. If l < k, then X0, Y1, . . . , Yl is a derivation of X ⇒ Y of length less
than k, whence it can be transformed into a normal derivation, by the induction
hypothesis. So assume l = k.

Case 1. X0 ⇒ X1 is an instance of (GCON-R1). Then X0, Y1,, Yl is a nor-
mal derivation of X ⇒ Y from R1.

58 K. Moroz

Case 2. X0 ⇒ X1 is an instance of (PRO-C-R1). Then X0, Y1,, Yl is a
normal derivation of X ⇒ Y from R1.

Case 3. X0 ⇒ X1 is an instance of (GEXP-R1), assume X0 = UV ; X1 =
Up(n+1)q(m)V, and p(n) ⇒∗

R1 q(m). We consider two subcases.

Case 3.1. Neither any (GCON-R1)-step nor any (PRO-C-R1)-step of
Y1, . . . , Yl acts on the designated occurrences of p(n+1), q(m). If also no
(PRO-R1)-step of Y1, . . . , Yl acts on these designated terms, then we drop
p(n+1)q(m) from all types appearing in (GCON-R1)-steps, (PRO-C-R1)-
steps and (PRO-R1)-steps of Y1, . . . , Yl, then we introduce p(n+1)q(m)

by a single instance of (GEXP-R1), and continue the (GEXP-R1)-steps
and (PRO-E-R1)-steps of Y1, . . . , Yl; this yields a normal derivation of
X ⇒ Y of length k. Otherwise, let Yi−1 ⇒ Yi be the first (PRO-R1)-step
of Y1, . . . , Yl which acts on p(n+1) or q(m).

(I) If Yi−1 ⇒ Yi acts on p(n+1), then there exists a term r(m
′) and types

T,W such that Yi−1 = Tp(n+1)W, Yi = Tr(m
′)W and p(n+1) ⇒∗

R1 r(m
′).

Consequently, r(m
′−1) ⇒∗

R1 p(n), whence r(m
′−1) ⇒∗

R1 q(m). Then we
can replace the derivation X0, Y1, . . . , Yl by a shorter derivation: first
apply (GEXP-R1) of the form U, V ⇒ U, r(m

′), q(m), V , then derive
Y1, . . . , Yi−1 in which p(n+1) is replaced by r(m

′), drop Yi, and continue
Yi+1, . . . , Yl. By the induction hypothesis, this derivation can be trans-
formed into a normal derivation of length less than k.

(II) If Yi−1 ⇒ Yi acts on q(m), then there exist a term r(m
′) and types

T,W such that Yi−1 = Tq(m)W, Yi = Tr(m
′)W and q(m) ⇒∗

R1 r(m
′).

Consequently, p(n) ⇒∗
R1 r(m

′), and we can replace the derivation X0, Y1,
ldots, Yl by a shorter derivation: first apply (GEXP-R1) of the form
U, V ⇒ U, p(n+1), r(m

′), V , then derive Y1, . . . , Yi−1 in which q(m) is re-
placed by r(m

′), drop Yi, and continue Yi+1, . . . , Yl. Again we apply the
induction hypothesis.

Case 3.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on (some of) the desig-
nated occurrences of p(n+1), q(m). Let Yi−1 ⇒ Yi be the first step of that
kind. There are three possibilities.

(I) This step acts on both p(n+1) and q(m). Then, the derivation X0, Y1,
. . . , Yl can be replaced by a shorter derivation: drop the first application
of (GEXP-R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted,
drop Yi, and continue Yi+1, . . . , Yl. We apply the induction hypothesis.

(II) This step acts on p(n+1) only. Then, Yi−1 = Tr(m
′)p(n+1)q(m)W, Yi =

Tq(m)W and r(m
′) ⇒∗

R1 p(n). The derivation X0, Y1, . . . , Yl can be re-
placed by a shorter, normal derivation: drop the first application of
(GEXP-R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted,
derive Yi by a (PRO-R1)-step (notice r(m

′) ⇒∗
R1 q(m)), and continue

Yi+1, . . . , Yl.

(III) This step acts on q(m) only. Then, Yi−1 = Tp(n+1)q(m)r(m
′+1)W, Yi

= Tp(n+1)W and q(m) ⇒∗
R1 r(m

′). The derivation X0, Y1, . . . , Yl can be
replaced by a shorter derivation: drop the first application of (GEXP-
R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted, derive Yi by

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 59

a (PRO-R1)-step (notice r(m
′+1) ⇒∗

R1 p(n+1)), and continue Yi+1, . . . , Yl.
We apply the induction hypothesis.

Case 3.3. Some (PRO-C-R1)-step of Y1, . . . , Yl acts on (some of) the des-
ignated occurrences of p(n+1), q(m). Let Yi−1 ⇒ Yi be the first step of
that kind. There are two possibilities.

(I) This step acts on p(n+1). Then Yi−1 = Tp(n+1)W, Yi = TW and
p(n+1) ⇒∗

R1 1. Thus, 1 ⇒∗
R1 p(n), and hence 1 ⇒∗

R1 q(m). We can replace
the derivation X0, Y 1, . . . , Yl by a shorter derivation: start with an appli-
cation of (PRO-E-R1) of the form UV ⇒ Uq(m)V derive Y1, . . . , Yi−1 in
which p(n+1) is replaced by 1, drop Yi, and continue Yi+1, . . . , Yl. Again
we apply the induction hypothesis.

(II) This step acts on q(m). Then, Yi−1 = Tq(m)W, Yi = TW and
q(m) ⇒∗

R1 1. Thus, p(n) ⇒∗
R1 1, and we can replace the derivation

X0, Y1, . . . , Yl by a shorter derivation: start with an application of (PRO-
E-R1) of the form U, V ⇒ U, p(n+1), V , derive Y1, . . . , Yi−1 in which q(m)

is replaced by 1, drop Yi, and continue Yi+1, . . . , Yl. Again we apply the
induction hypothesis.

Case 4. X0 ⇒ X1 is an instance of (PRO-E-R1), assume X0 = UV, X1 =
Uq(m)V, and 1 ⇒∗

R1 q(m). There are three subcases.

Case 4.1. Neither any (GCON-R1)-step nor any (PRO-C-R1) of Y1, . . . , Yl

acts on the designated occurrence of q(m). If also no (PRO-R1)-step
of Y1, . . . , Yl acts on this designated term, then we drop the first ap-
plication of the (PRO-E-R1)-step, omit q(m) in all types appearing in
(GCON-R1)-steps, (PRO-C-R1)-steps and (PRO-R1)-steps of Y1, . . . , Yl,
then introduce q(m) by a single instance of (PRO-E-R1), and continue
with the (GEXP-R1)-steps of Y1, . . . , Yl; this yields a normal derivation
of X ⇒ Y of length k.

Otherwise, let Yi−1 ⇒ Yi be the first (PRO-R1)-step of Y1, . . . , Yl which
acts on q(m). Then, there exist a term r(m

′) and types T,W such that
Yi−1 = Tq(m)W, Yi = Tr(m

′)W and q(m) ⇒∗
R1 r(m

′). Thus 1 ⇒∗
R1 r(m

′),
and we can replace the derivation X0, Y1, . . . , Yl by a shorter deriva-
tion: first apply (PRO-E-R1) of the form UV ⇒ Ur(m

′)V , then derive
Y1, . . . , Yi−1 in which q(m) is replaced by r(m

′), drop Yi, and continue
Yi+1, . . . , Yl. Again we apply the induction hypothesis.

Case 4.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of q(m). Let Yi−1 ⇒ Yi be the first step of that kind. Then,
Yi−1 = Tq(m)r(m

′+1)W, Yi = TW and q(m) ⇒∗
R1 r(m

′). The deriva-
tion X0, Y1, . . . , Yl can be replaced by a shorter derivation: drop the first
application of (PRO-E-R1), then derive Y1, . . . , Yi−1 in which q(m) is
omitted, derive Yi by a (PRO-C-R1)-step (notice r(m

′+1) ⇒∗
R1 1), and

continue Yi+1, . . . , Yl. We apply the induction hypothesis.

Case 4.3. Some (PRO-C-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of q(m). Let Yi−1 ⇒ Yi be the first step of that kind. Then,
Yi−1 = Tq(m)W, Yi = TW and q(m) ⇒∗

R1 1. Then we can replace the
derivation X0, Y1, . . . , Yl by a shorter, normal derivation: drop the first

60 K. Moroz

application of the (PRO-E-R1)-step, derive Y1, . . . , Yi−1 in which q(m) is
omitted, drop Yi, and continue Yi+1, . . . , Yl.

Case 5. X0 ⇒ X1 is an instance of (PRO-R1), say X0 = UtV , X1 = UuV ,
t ⇒∗

R1 u, u �= 1 and t �= 1.

Case 5.1. Neither any (GCON-R1)-step nor any (PRO-C-R1)-step of Y1,
. . . , Yl acts on the designated occurrence of u. Then X0, Y1, . . . , Yl can
be transformed into a normal derivation of the length k: drop the first
application of (PRO-R1), apply all (GCON-R1)-steps of Y1, . . . , Yl in
which the designated occurrence of u is replaced by t and apply all
(PRO-C-R1)-steps, then apply a (PRO-R1)-step which changes t into u,
and continue the remaining steps of Y1, . . . , Yl.

Case 5.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of u. Let Yi−1 ⇒ Yi be the first step of that kind. There are
two possibilities.
(I) Yi−1 = Tuq(n+1)W, Yi = TW and u ⇒∗

R1 q(n). Since t ⇒∗
R1 q(n), then

X,Y1, . . . , Yl can be transformed into a shorter derivation: drop the first
application of (PRO-R1), derive Y1, . . . , Yi−1 in which the designated
occurrence of u is replaced by t, derive Yi by a (GCON-R1)-step of the
form T, t, q(n+1),W ⇒ T,W , and continue Yi+1, . . . , Yl. We apply the
induction hypothesis.
(II) u = q(n+1), Yi−1 = Tp(m)uW, Yi = TW and p(m) ⇒∗

R1 q(n). Let

t = r(n′). We have q(n) ⇒∗
R1 r(n

′−1), whence p(m) ⇒∗
R1 r(n

′−1). The
derivation X0, Y1, . . . , Yl can be transformed into a shorter derivation:
drop the first application of (PRO-R1), derive Y1, . . . , Yi−1 in which the
designated occurrence of u is replaced by t, derive Yi by a (GCON-R1)-
step of the form T, p(m), r(n

′),W ⇒ T,W , and continue Yi+1, . . . , Yl. We
apply the induction hypothesis.

Case 5.3. Some (PRO-C)-step of Y1, . . . , Yl acts on the designated occur-
rence of u. Let Yi−1 ⇒ Yi be the first step of that kind. Then there
exists types T,W , such that Yi−1 = TuW, Yi = TW and u ⇒∗

R1 1. Thus
t ⇒∗

R1 1. The derivation X0, Y1, . . . , Yl can be transformed into a nor-
mal derivation of length k: drop the first application of (PRO-R1), apply
a (PRO-C-R1)-step of the form: T tW ⇒∗

R1 TW derive Y1, . . . , Yi−1 in
which the designated occurrence of u is omitted, drop Yi and continue
Yi+1, . . . , Yl.

Consequently, there holds: if R1 �CBL X ⇒ t, where t is a term, then X can be
reduced to t by (GCON-R1), (PRO-C-R1) and (PRO-R1) only. Moreover one
can prove that: R1 �CBL t ⇒ u if, and only if, t ⇒∗

R1 u ([4,9]).

Definition 7. The letter promotion problem for pregroups with unit (LPPP1)
can be stated as follows: verify, whether t ⇒∗

R1 u for given t, u and R1.

The problem can be solved in polynomial time. The algorithm for solving the
problem is based on the idea given for pregroups with letter promotions. For
details see [4,9].

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 61

3 The Parsing Algorithm

Definition 8. A pregroup grammar with letter promotions with unit is a tuple
G = (Σ,P,R1, s, I), such that R1 is the set of assumptions (letter promotions)
and P (R1) ⊆ P , where P (R1) is the set of atoms appearing in assumptions from
R1. Σ,P, s, I are defined in the same way as for pregroup grammars.

Assume T+(G) is a set of all types appearing in I and T (G) is a set of all
terms forming types from T+(G). Then all generalized contractions tu ⇒ ε
(t, u ∈ T (G)) derivable from R1 in CBL can be computed in polynomial time.

We define a polynomial, dynamic, parsing algorithm for pregroup grammars
with letter promotions with unit on the basis of the algorithm for pregroup gram-
mars described in [8]. The algorithm can also be used for pregroup grammars
with letter promotions without unit by omitting the cases when promotions with
1 are considered, see [9]. Our goal is to obtain an appropriate derivation of the
given string x = a1, . . . , an, ai ∈ Σ, i = 1, . . . , n if x is a member of the language
generated by a pregroup grammar with letter promotions with unit G, that is
if x ∈ L(G). The algorithm is constructed in a style proposed by Savateev (see
[11]) for Unidirectional Lambek Calculus. It is a dynamic algorithm working on
a special form of a string, containing all possible type assignments for words of
the sentence to parse.

We fix a grammar G = (Σ,P,R1, s, I). We take a string of words x ∈ Σ+

such that x = a1...an. We use special symbols ∗, 〈, 〉. Let us denote:
- Z - the set of integers,
- T = {p(n) : p ∈ P, n ∈ Z} - the set of terms,
- X,Y, Z, .. - elements of T ∗,
- ka = |I(a)|,
- Xa

j - the j-th possible assignment of type to a, 1 � j � ka (hence
I(a) = {Xa

1 , ...X
a
ka}),

- Qa = 〈∗Xa
1 ∗Xa

2 ∗ ... ∗Xa
ka∗〉,

- W x = Qa1 ...Qan〈∗s(1), W x ∈ (T ∪ {∗, 〈, 〉})∗
- W x

i - the i-th symbol of the string W x, 1 � i � |W x|,
- W x

[i,j] = W x
i W

x
i+1...W

x
j - the substring of W x, 1 � i � j � |W x| (W x

[i,i]

stands for W x
i).

In the following, by a reduction to 1 we mean a reduction to ε in CBL with
letter promotions with 1. We define an auxiliary function M as follows. Let
M ′(i, j), 1 � i � j � |W x| be a function such that M ′(i, j) = 1 iff one of the
following conditions holds:

– M1. W x
[i,j] ∈ T+ and it reduces to 1.

– M2a. W x
[i,j] is of the form 〈...〉...〈V ∗ Z, where:

- Z ∈ T+

- V contains no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string X1...XgZ reduces to 1

62 K. Moroz

– M2b. W x
[i,j] is of the form Y ∗U〉...〈...〉, where:

- Y ∈ T+

- U contains no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string Y X1...Xg reduces to 1

– M3. W x
[i,j] is of the form Y ∗U〉...〈V ∗ Z, where:

- Y, Z ∈ T+

- U,V contain no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string Y X1...XgZ reduces to 1

– M4. W x
[i,j] is of the form 〈...〉...〈...〉, where:

- in W x
[i,j] there are precisely g (g � 1) pairs of matching angle brackets; for

the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string X1...Xg reduces to 1

In all other cases M ′(i, j) = 0.
Clearly, the whole string W x is of the form M2a. Therefore, M ′(1, |W x|) = 1

entails the existence of a string X1 . . .Xns
r reducing to 1. Each Xi is the type

that needs to be found for ai. Thus, a solution to the recognition problem is
found, i.e. x ∈ L(G). On the other hand, if M ′(1, |W x|) = 0, then there is no
string reducing to 1, in which exactly one element comes from each pair of angle
brackets and which reduces to 1. It means x /∈ L(G).

We start the algorithm by determining the set Pairs of all pairs (p(m), q(n+1))
such that p, q ∈ P and p(m) ⇒∗

R1 q(n), and a set Reducible of terms t such that
t ⇒∗

R1 1, which can be done in polynomial time, see [3].
We compute M ′(i, j) dynamically. There are two initial cases. The first one

computes M ′(i, i) = 1 in the case when W x
i = t and t ∈ Reducible. Secondly,

one looks for two adjacent terms W x
i and W x

i+j belonging to the set Pairs. If
(W x

i ,W
x
i+j) ∈ Pairs then we put M ′(i, i+ 1) = 1.

When we already know M ′(g, h), for all 1 � g < h � |W x| such that h− g <
j − i, we can compute M ′(i, j). There are several cases:

– A0. W x
[i,j] is of the form p(m) ∗ U〉〈V ∗ q(n+1), (pm, q(n+1)) ∈ Pairs and

strings U, V contain no angle brackets. Then, we put M ′(i, j) = 1.
– A1a. W x

i ,W
x
j ∈ T . If there exists k such that i � k < j, W x

k ∈ T , W x
(k+1) ∈

T and bothM ′(i, k) and M ′(k+1, j) are equal to 1, then we put M ′(i, j) = 1.

– A1a’. W x
i ,W

x
j ∈ T . If there exists k such that i < k � j, W x

k ∈ T , W x
(k+1) ∈

T and bothM ′(i, k−1) andM ′(k, j) are equal to 1, then we put M ′(i, j) = 1.

– A1b. W x
i ,W

x
j ∈ T . If there exists k such that i < k < j − 1, W x

k =〉,
W x

(k+1) = 〈 and both M ′(i, k) and M ′(k + 1, j) are equal to 1, then we put

M ′(i, j) = 1.

– A2. W x
i = p(m), W x

j = q(n+1) and (p(m), q(n+1)) ∈ Pairs.
If M ′(i+ 1, j − 1) = 1, then M ′(i, j) = 1.

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 63

– A3a. W x
[i,j] is of the form 〈...〉...〈...p(m), p ∈ P,m ∈ Z. If there exists k

such that i < k < j, W x
k = ∗,W x

[i+1,k] contains no angle brackets and

M ′(k + 1, j) = 1, then M ′(i, j) = 1.
– A3b.W x

[i,j] is of the form p(m)...〉...〈...〉, p ∈ P,m ∈ Z. If there exists k
such that i < k < j, W x

k = ∗,W x
[k,j−1] contains no angle brackets and

M ′(i, k − 1) = 1, then we put M ′(i, j) = 1.
– A4a. W x

[i,j] is of the form p(m) ∗ ...〉...〈...q(n+1) and (p(m), q(n+1)) ∈ Pairs.

If M ′(k, j − 1) = 1, where k is the position of the first left angle bracket in
the string W x

[i,j], then we put M ′(i, j) = 1.

– A4b. W x
[i,j] is of the form p(m)...〉...〈... ∗ q(n+1) and (p(m), q(n+1)) ∈ Pairs.

If M ′(i+ 1, k) = 1, where k is the position of the last right angle bracket in
the string W x

[i,j], then M ′(i, j) = 1.

– A4c. W x
[i,j] is of the form p(m) ∗ ...〉〈... ∗ q(n+1), where the string ”...” in

between the angle brackets is not empty and (p(m), q(n+1)) ∈ Pairs. If
M ′(k, k′) = 1, where k is the position of the first left angle bracket in the
string W x

[i,j] and k′ is the position of the last right angle bracket in the string

W x
[i,j], then M ′(i, j) = 1.

– A4d. W x
[i,j] is of the form p(m)∗ ...〉...〈..., and p(m) ∈ Reducible. If M ′(k, j) =

1, where k is the position of the first left angle bracket in the string W x
[i,j],

then we put M ′(i, j) = 1.
– A4e.W x

[i,j] is of the form ...〉...〈...∗q(n), and q(n) ∈ Reducible. IfM ′(i, k) = 1,
where k is the position of the last right angle bracket in the string W x

[i,j],

then M ′(i, j) = 1.
– A5. W x

[i,j] is of the form 〈...〉...〈...〉. If M ′(k, k′) = 1, where W x
k is a term in

between the first pair of angle brackets, W x
k′ is a term in between last pair

of angle brackets in the string W x
[i,j] and W x

k−1 = ∗ and W x
k′+1 = ∗, then

M ′(i, j) = 1.
– A6a. W x

[i,j] is of the form p(m)q(n)..., and p(m) ∈ Reducible. If M ′(i+1, j) =

1, then we put M ′(i, j) = 1.
– A6b. W x

[i,j] is of the form ...p(m)q(n), and q(n) ∈ Reducible. If M ′(i, j− 1) =

1, then we put M ′(i, j) = 1.

In all other cases M ′(i, j) = 0.
Note that the high number of cases is due to the variety of the form of the

string W x. Moreover, observe that from each pair of matching angle brackets
exactly one type must be chosen. Let us call any substring of W x that satisfies all
conditions of any of the forms of M accepted. We start with finding all terms and
pairs of adjacent terms that can be reduced to 1, that is the shortest accepted
substrings. Then we try to extend them to obtain a longer accepted substring.
Obviously the procedure is continued until there are no more possibilities of
extending obtained substrings in an acceptable way or the whole string W x can
be reached. For example, cases (A1a), (A1a’) and (A1b) show which conditions
two substrings have to satisfy to be concatenated. Case (A2.) explains when the
substring can be surrounded by a link (i.e. two terms that reduce to 1) while all

64 K. Moroz

of the cases A3, A4 and A5 ensure all possibilities of lengthening the substring
by terms from the adjacent pair of angle bracket (and all symbols between).

We claim:

Theorem 2. The algorithm computes M ′(i, j) correctly.

Proof. We will show at first that, if the algorithm computes M ′(i, j) = 1, then
M ′(i, j) = 1 according to the definition of M . We will prove it by induction on
the length of the string W x

(i,j).

For strings of length one, M ′(i, j) = 1 only in case when W x
i = p(m) and

p(m) ∈ Reducible. W x
[i,i] is then of the form (M1), since W x

[i,i] ∈ T+ and the

string W x
[i,i] reduces to 1. Hence, M ′(i, i) = 1 according to the definition of M .

Consider now the strings of length two. The algorithm computes M ′(i, i+1) =
1 only in case when W x

i = p(m) and W x
i+1 = q(n+1) and (p(m), q(n+1)) ∈ Pairs.

W x
[i,j] is then of the form (M1), since W x

[i,i+1] ∈ T+ and the string W x
[i,i+1]

reduces to 1. Hence, M ′(i, i+ 1) = 1 according to the definition of M .
Now let us consider the recursive cases when the algorithm computes

M ′(i, j) = 1. We present only some cases different from those in the proof for
pregroup grammars, given in [8] (see [9] for the full proof).

Case A4d. W x
[i,j] is of the form (A4d). W x

[i,j] = p(m) ∗ ...∗〉〈 . . . ,
i
︸ ︷︷ ︸

no 〈,〉
k j
︸ ︷︷ ︸

M ′(k,j)=1

where p(m) ∈ Reducible and k is the position of the first left angle bracket in the
string W x

[i,j]. W
x
[k,j] is shorter than W x

[i,j]. Hence, by the induction hypothesis,

M ′(k, j) = 1 according to the definition of M . The string W x
[k,j] must then be

of the form:

- (M2a). Then W x
[k,j] = 〈...〉...〈V ∗ Z, where Z is the string of terms, V con-

tains no angle brackets and there are precisely g (g � 0) pairs of matching
angle brackets, for the h-th of them there is the substring ∗Xh∗ in between
them, such that Xh ∈ T+ and X1...XgZ reduces to 1. Let Y = p(m). Then
Y X1...XgZ also reduces to 1, and the string W x

[i,j] is therefore of the form

(M3). Then M ′(i, j) = 1 in accordance with the definition of M .
- (M4). Then W x

[k,j] = 〈...〉...〈...〉 and there are precisely g (g > 0) pairs of
matching angle brackets, for the h-th of them there is the substring ∗Xh∗ in
between them, such that Xh ∈ T+ and X1...Xg reduces to 1. Let Y = p(m).
Then Y X1...Xg also reduces to 1, and the string W x

[i,j] is therefore of the

form (M2b). Then M ′(i, j) = 1 in accordance with the definition of M .

Case A6b. W x
[i,j] is of the form W x

[i,j] = . . . p(m)q(n),
i j − 1
︸ ︷︷ ︸

M ′(i,j−1)=1

j

where q(n) ∈ Reducible. W x
[i,j−1] is shorter than W x

[i,j]. Hence, by the induction

hypothesis, M ′(i, j−1) = 1 according to the definition of M . The string W x
[i,j−1]

can therefore be of the form:

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 65

- (M1). Then W x
[i,j−1] ∈ T+ and W x

[i,j−1] reduces to 1. Then W x
[i,j] is also of the

form (M4) and it reduces to 1. Thus, M ′(i, j) = 1 in accordance with the
definition of M ..

- (M2a). Then W x
[i,j−1] = 〈...〉...〈V ∗ Z, where Z is the string of terms, V

contains no angle brackets and there are precisely g (g � 0) pairs of matching
angle brackets, for the h-th of them there is the substring ∗Xh∗ in between
them, such that Xh ∈ T+ and X1...XgZ reduces to 1. Let Z ′ = Zq(n). Then
X1...XgZ

′ also reduces to 1, and the string W x
[i,j] is therefore of the form

(M2a). Then M ′(i, j) = 1 in accordance with the definition of M .
- (M3). Then W x

[i,j−1] = Y ∗U〉...〈...〉V∗Z, where Y, Z are the strings of terms,

U,V contain no angle brackets and there are precisely g (g � 0) pairs of
matching angle brackets, for the h-th of them there is the substring ∗Xh∗
in between them, such that Xh ∈ T+ and Y X1...XgZ reduces to 1. Let
Z ′ = Zq(n). Then Y X1...XgZ

′ reduces to 1, and the string W x
[i,j] is therefore

also of the form (M3). Then M ′(i, j) = 1 in accordance with the definition
of M .

We will prove that the algorithm correctly finds all substrings for which the
function M ′(i, j) = 1 by induction on the length of the substring of W x. Note
that there are no such substrings that contain asterisks but no angle brackets.

The only strings of length one for which M ′(i, j) = 1 is of the form p(m), where
p(m) ∈ T and p(m) ∈ Reducible and the algorithm finds them correctly (the string
is of the form M1). The only strings of length two, for which M ′(i, j) = 1, are
of the form p(m)q(n+1), where (p(m), q(n+1)) ∈ Pairs (that is of the form (M1)),
and the algorithm finds them correctly.

Let us now consider the substrings of the length l > 2 such that for all l′ < l
the algorithm finds the substrings of the length l′ correctly (we present some
chosen cases).

Case 3. W x
[i,j] is of the form (M3). W x

i W
x
j takes part in the reduction to 1

in W x
[i,j].

First, let us assume W x
i W

x
i′ reduce to 1 where i′ �= j. Then W x

i′+1 can be:

- term. Then W x
[i,i′] and W x

[i′+1,j] are of the form (M1) or (M3), they are

shorter and both M ′(i, i′) = 1 and M ′(i′+1, j) = 1. Hence, by the induction
hypothesis, these strings are found by the algorithm correctly, soM ′(i, j) = 1
(case (A1a)).

- asterisk. Then W x
[i,i′] is of the form (M1) or (M3), it is shorter and M ′(i, i′) =

1. Hence, by the induction hypothesis, the string is found by the algorithm
correctly. Let k be the position of the first right angle bracket following
i′. W x

[i,k] is shorter than W x
[i,j] and it is of the form (M2b). So, by the

induction hypothesis M ′(i, k) = 1 (case (A3b)). Similarly, the substring
W x

[k+1,j] is of the form (M2a), it is shorter than W x
[i,j]. So, by the induction

hypothesis M ′(k + 1, j) = 1 (case (A3a)). Hence, M ′(i, j) = 1, by the
induction hypothesis (case (A1b)).

66 K. Moroz

Otherwise, let us assume W x
i ∈ Reducible. Then W x

i+1 can be:

- term. Then W x
[i+1,j] is of the form (M3), it is shorter, so by the induction

hypothesis M ′(i+1, j) = 1. Moreover, W x
[i,i] is of the form M1, it is shorter

and M ′(i, i) = 1. Hence, by the induction hypothesis, these strings are found
by the algorithm correctly. Then M ′(i, j) = 1 (case (A1a)).

- asterisk. Let k be the position of the first right angle bracket following i. W x
[i,k]

is shorter than W x
[i,j] and it is of the form (M2b). So, by the induction

hypothesis M ′(i, k) = 1. Similarly, the substring W x
[k+1,j] is of the form

(M2a), it is shorter than W x
[i,j]. So, by the induction hypothesis M ′(k +

1, j) = 1. Hence, M ′(i, j) = 1, by the induction hypothesis (case (A1b)).

Let us assume i′ = j so W x
i W

x
j reduces to 1. There are the following cases.

- W x
i+1,W

x
j−1 are terms. Then the substring W x

[i+1,j−1] is of the form (M3).

It is shorter than W x
[i,j], therefore M ′(i + 1, j − 1) = 1, as by the induction

hypothesis, that string is found by the algorithm correctly. Then M ′(i, j) = 1
(case (A2)).

- W x
i+1 = ∗,W x

j−1 ∈ T . So W x
[i,j] is of the form p(m) ∗ ...〉...〈...q(n+1). Let i′ be the

position of the first left angle bracket in W x
[i,j]. There exists i′ < k � j − 1

such that W x
k W

x
j−1 reduces to, or if k = j − 1, then W x

j−1 ∈ Reducible.
Hence, W x

[i′,j−1] is of the form (M2a). It is shorter than W x
[i,j], therefore

M ′(i′, j− 1) = 1, as by the induction hypothesis, that string is found by the
algorithm correctly. Then M ′(i, j) = 1 (case (A4a)).

- W x
i+1 ∈ T , W x

j−1 = ∗. It is proved symmetrically to the case W x
i+1 = ∗,W x

j−1 ∈
T .

- W x
i+1 = ∗,W x

j−1 = ∗. Then the string W x
[i,j] can be of the form

p(m)∗U〉〈V∗q(n+1) and thenM ′(i, j) = 1 by the initial case of the description
of the algorithm. If W x

[i,j] contains more brackets, then there is a string
W x

[k,k′], where k is the index of the first left angle bracket in the string W x
[i,j]

and k′ is the index of the last right angle bracket in the string W x
[i,j]. W

x
[k,k′]

is of the form (M4). It is shorter than W x
[i,j], therefore, by the induction

hypothesis, M ′(k, k′) = 1. So, M ′(i, j) = 1 by (A4c).

Obviously, the algorithm is not yet a real parsing algorithm since it answers only
the question whether there exists any reduction to the designated type. However
it can easily be modified to find such reductions, still in polynomial time. It can
be done exactly as in the algorithm for pregroup grammars.

Each obtained reduction is described by the set of links involved in the reduc-
tion. If we want to obtain only one reduction, the complexity of the algorithm
does not increase. The set of links L(i, j) represents a reduction of some term to
1. Links are denoted by pairs of integers (k, l) such that i � k < l � j. We find
the set of links by backtracking the indices of the function M ′(i, j) = 1, obvi-
ously starting with M ′(1, |W x|). We also define an auxiliary function Prev(i, j)
to help us follow the backtracking (as the value of the function M ′(i, j) does

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 67

not say how it was obtained). The value of the function Prev(i, j) is a sequence
of three pairs ((l1, l2), (m11,m12), (m21,m22)), where l1, l2 are indices of the
link, m11,m12,m21,m22 are indices of function M on which the computation
M ′(i, j) = 1 is based. If any of the values is not used, it is set to 0. Every time
when the algorithm computes the value of the function M ′(i, j) = 1 we set the
value of the function Prev(i, j) in the following way. If the computation was
executed by one of the cases:

- any initial case or (A0), then Prev(i, j) = ((i, j), (0, 0), (0, 0)),
- (A2), (A4a), (A4b), (A4c), then Prev(i, j) = ((i, j), (k, l), (0, 0)),
where (k, l) is the pair of indices for which the value of the function M
was 1 in the current computation (that is e.g. in (A2) a pair (k, l) =
(i+ 1, j − 1)),
- (A3a), (A3b), (A5), then Prev(i, j) = ((0, 0), (k, l), (0, 0)), where (k, l)
is the pair of indices for which the value of the function M was 1 in the
current computation,
- (A1a), (A1a’), (A1b), then Prev(i, j) = ((0, 0), (i, k), (k + 1, j)),
- (A4d), then Prev(i, j) = ((i, i), (k, j), (0, 0)), where (k, j) is the pair
of indices for which the value of the function M was 1 in the current
computation,
- (A4e), then Prev(i, j) = ((j, j), (i, k), (0, 0)), where (i, k) is the pair
of indices for which the value of the function M was 1 in the current
computation,
- (A6a), then Prev(i, j) = ((i, i), (i+ 1, j), (0, 0)),
- (A6b), then Prev(i, j) = ((j, j), (i, j − 1), (0, 0)).

Obviously, one can choose whether the algorithm should remember the first com-
puted reduction or the last computed reduction. In the first case if Prev(i, j) �=
((0, 0), (0, 0), (0, 0)), then it cannot be modified. In the latter, Prev(i, j) is up-
dated every time when the algorithms computes M ′(i, j) = 1. When the com-
putation of the functions M and Prev is finished, we easily compute the set
L(1, |W x|). The definition of the function L(i, j) is as follows:

- if Prev(i, j) = ((i, j), (0, 0), (0, 0)), where 0 < i < j, then
L(i, j) = {(i, j)},
- if Prev(i, j) = ((i, j), (k, l), (0, 0)), where 0 < i � k < l � j, then
L(i, j) = L(k, l) ∪ {(i, j)},
- if Prev(i, j) = ((0, 0), (k, l), (0, 0)), where 0 < i � k < l � j, then
L(i, j) = L(k, l),
- if Prev(i, j) = ((0, 0), (i, k), (k + 1, j)), where 0 < i < k < j, then
L(i, j) = L(i, k) ∪ L(k + 1, j).

The algorithm is polynomial and works in time proportional to n3, where n is
the length of the string Wx, assuming the set Pairs and Reducible are deter-
mined. The procedures for computing the set Pairs and the set Reducible are
polynomial.

68 K. Moroz

References

1. Buszkowski, W.: Lambek Grammars Based on Pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

2. Buszkowski, W., Moroz, K.: Pregroup grammars and context-free grammars. In:
Casadio, C., Lambek, J. (eds.) Computational Algebraic Approaches to Natural
Language, Polimetrica, pp. 1–21 (2008)

3. Buszkowski, W., Lin, Z.: Pregroup Grammars with Letter Promotions. In:
Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031,
pp. 130–141. Springer, Heidelberg (2010)

4. Buszkowski, W., Lin, Z., Moroz, K.: Pregroup Grammars with Letter Promo-
tions: Complexity and Context-Freeness. Journal of Computer and System Sci-
ences 78(6), 1899–1909 (2012)

5. Lambek, J.: Type Grammars Revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

6. Lambek, J.: From Word to Sentence: a computational algebraic approach to gram-
mar. Polimetrica (2008)

7. Mater, A.H., Fix, J.D.: Finite Presentations of Pregroups and the Identity Problem.
In: Proceedings of FG-MoL 2005, pp. 63–72. CSLI (electronic) (2005)

8. Moroz, K.: A Savateev-style parsing algorithm for pregroup grammars. In:
de Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS, vol. 5591,
pp. 133–149. Springer, Heidelberg (2011)

9. Moroz, K.: Algorithmic questions for pregroup grammars, PhD thesis, Adam Mick-
iewicz University, Poznań (2010)

10. Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357,
186–201 (2006)

11. Savateev, Y.: Unidirectional Lambek Grammars in Polynomial Time. Theory of
Computing Systems 46, 662–672 (2010)

	Parsing Pregroup Grammars with Letter Promotions in Polynomial Time
	1 Introduction and Preliminaries
	2 The Normalization Theorem
	3 The Parsing Algorithm
	References

