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Abstract. This paper provides a linking theory between the minimalist grammar
formalism and off-line behavioural data. We examine the transient stack states
of a top-down parser for Minimalist Grammars as it analyzes embedded sen-
tences in English, Dutch and German. We find that the number of time steps that
a derivation tree node persist on the parser’s stack derives the observed contrasts
in English center embedding, and the difference between German and Dutch em-
bedding. This particular stack occupancy measure formalizes the leading idea of
“memory burden” in a way that links predictive, incremental parsing to specific
syntactic analyses.

1 Introduction

An important goal of linguistics is to account for human linguistic behavior. A cogni-
tive scientist might, following David Marr [25], attempt to analyze behavioral data by
viewing the syntactician’s grammatical analysis as a high level description of a parser
(cf. [20]). Deviations from the categoricity ‘predicted’ by the grammar could be given
a natural explanation using the more refined vocabulary of parser states, and memory
resource consumption.

A number of theoretical proposals within psycholinguistics over the years
[13,42,6,22] have been built around the idea that our capacity to remember words and
phrases plays an important role in normal human language comprehension. These the-
ories link observed processing contrasts between sentences to differences in theorized
memory requirements. These contrasts are observed empirically in sentence types whose
grammatical analysis is a matter of active research within the field of syntax. This
presents a problem: ideally, the same analysis that is supported by comparative lin-
guistic research ought to derive observed processing contrasts. But in some previous
memory burden theories, syntactic assumptions were left implicit or oversimplified (but
cf. [32]). Under these conditions, it becomes difficult to say exactly which aspect or as-
pects of sentence structure motivates the memory burdens to which the theory appeals
as explanations. Yet an emerging body of work suggests that the choice of syntactic
analysis may matter greatly [9,40] (cf. section 5.2).
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This work strives to address this problem. We proceed by defining grammar frag-
ments whose syntactic commitments are clear. Starting from a mildly context sensitive
grammar [37] we assume a top-down parsing strategy [36]. This additional assumption
is motivated by evidence for predictive human sentence comprehension [26,39]. Using
independently motivated syntactic analyses, we derive complexity profiles consistent
with two key contrasts that have been traditionally acknowledged in the literature. An
additional benefit of this is that the pathway to semantic interpretation is entirely stan-
dard [30,18].

2 Methodology

We investigate a measure of parsing complexity for minimalist grammars [37], a for-
malism based on transformational generative grammar [4]. Parsing, like other non-
deterministic algorithms, is naturally viewed as a search problem [14], where the non-
determinicity is resolved by an independent search strategy such as depth-first, breadth-
first or A∗. In an ideal parser, heuristics would perfectly guide its actions at every
choice point. In this optimal case, the amount of resources consumed during a parse
of a sentence is identical to the amount of resources needed to traverse its parse tree
(no additional resources are consumed by working on ultimately ‘incorrect’ parses, and
backtracking). We adopt this simplifying assumption here, noting that something like
it (beam search with a narrow beam) has been proposed as a natural way to capture
the ‘dual nature – generally good and occasionally pathological – of human linguistic
performance’ [5].

Our methodology extends [12]. The main idea is to advance a particular automaton
model of sentence processing, examining certain aspects of the automaton’s configu-
ration as it parses strings whose abstract structure mirrors that of the sentences used
in comprehension experiments with humans. We explore a measure of parsing com-
plexity based on the allocation of memory resources during a successful parse. One
memory unit is considered allocated per item on the parser stack, where the parser stack
holds predictions yet to be verified. Following Joshi and Rambow [12,33], our complex-
ity metric reflects the amount of “time” that an item is retained in memory; we call this
stack tenure (even though the actual data structure is a priority queue, cf. Section4.1).
From the state-trajectory of the top-down automaton over the correct derivation tree,
we calculate the number of time steps that an item is retained. The length of the longest
sequence of automaton transitions for which the same item remains in memory we
identify as the maximal tenure of the parse.

The remainder of this paper is structured as follows. Section 3 briefly introduces
the processing phenomena that this modelling work addresses. Section 4 then intro-
duces Minimalist Grammars, and a top-down parser for them. Section 5 reports the
stack tenure measures obtained by simulating the parser on the sentences in question.
Section 6 takes up the relationship between this approach and other related proposals in
the literature. Section 7 concludes, and mentions some directions for future work.
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3 Embedding Phenomena

The notion of tenure (to be introduced in Section 4.1) can be thought of as a way of
formalising intuitions about dependency length [6]. The following phenomena are nat-
urally understood in these terms, and we will see (Section 5) that this intuitive under-
standing can in fact be cashed out rigorously in terms of tenure.

3.1 English Center Embedding, as Compared to Right-Branching

Center embedding in English is notoriously difficult to comprehend, in comparison to a
right-branching alternative [28]. Center-embedded examples like 1 below can be made
more and more difficult by interposing additional relative clause modifiers after each
new subject noun phrase. This embedded material intervenes between the subject and
the verb. By contrast, in right-branching examples like 2, it is the object that is modified.
In these cases, the distance between subject and verb remains the same.

(1) The boy that the girl that the cat licked loves laughed.
(2) The cat licked the girl that loves the boy that laughed.

Resnik [34] (cf. [11,1]) expresses what has become the standard account of this contrast.
He proposes that an explanation for the radical unacceptability of center embedded
sentences can be made to follow elegantly from constraints on memory resources in
a parser. He shows that a left-corner, but not a bottom-up or a top-down, parser for
a context-free grammar requires more memory to process center embedded structures
than peripherally embedded ones.

It is, however, widely accepted [35] that context-free grammars are unable to assign
structures to sentences which allow for a transparant description of their meaning. Un-
fortunately, once we move to more sophisticated grammar formalisms, which do seem
able to assign semantically appropriate structures to sentences, the notion of left-corner
parsing is either ill-defined or not yet discovered. In other words, the explanation of
the processing difficulty of center embedded structures based on imposing memory
restrictions on a left-corner parser does not transfer directly to linguistically plausi-
ble grammar formalisms. To reconcile the evidence motivating mild context-sensitivity
with the selectively greater difficulty of center-embedding requires some alternative au-
tomaton model, such as the one to be presented in section 4.

3.2 Embedded vs Cross-Serial Verb Clusters

Bach et al. [2] observe that the rated comprehensibility of German embeddings with
sentence-final verb clusters (3) increases more sharply than does the corresponding rat-
ing of Dutch cross-serial items (4), as the number of verbs in the cluster grows.

(3) daß
that

Hans
Hans

Peter
Peter

Marie
Mary

schwimmen
swim

lassen
let

sah
saw

“that Hans saw Peter let Mary swim”
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(4) dat
that

Jan
Jan

Piet
Peter

Marie
Mary

zag
saw

laten
let

zwemmen
swim

“that Jan saw Peter let Mary swim”

In other words, German examples such as 3 are more difficult to process than Dutch
examples such as 4.

From a formal perspective, this is surprising, as the Dutch cross serial pattern, un-
der the semantically appropriate pairing of nouns and verbs, is mildly context sensitive
(N1N2N3 V1 V2 V3 ∈ ww), whereas the German nested pattern (N1N2N3 V3 V2 V1 ∈
wwR) can be generated by a less expressive context-free grammar. This is thus an ex-
ample where language theoretic complexity does not coincide with ‘behavioural com-
plexity’. A natural intuition is to link this contrast to the length of the dependencies
between nouns and their selecting verbs – in the Dutch case, the longest dependency is
checked first, whereas in German it is checked last (N1 and V1).

4 Minimalist Grammars

Minimalist grammars make use of two syntactic structure building operations; binary
merge and unary move. Whether a structure building operation is defined on a partic-
ular object in its domain (a pair of expressions or a single expression) is determined
solely by the syntactic categories of these objects. In minimalist grammars, syntactic
categories are finite sequences of ‘features’. The currently accessible feature is the fea-
ture at the beginning (leftmost) position of the list. In order for merge to apply, the
heads of its arguments must have matching first features. These features are eliminated
in the derived structure which results from their merger. In the case of move, the head
of its argument must have a feature matching a feature of the head of one of its subcon-
stituents. In the result, both features are eliminated. Each feature type has an attractor
and an attractee variant, and for two features to match, one must be an attractor and the
other an attractee. For merge, the attractee feature is a simple categorial feature, writ-
ten x. There are two kinds of attractor features, =x and x=, depending on whether the
selected expression is to be merged on the right (=x) or on the left (x=). For the move
operation, there is a single attractor feature, written +y, and a single attractee, -y.

We write lexical items using the notation 〈σ, δ〉, where σ is a (phonological) string,
and δ is a feature bundle. Complex expressions are written using the notation of [37] for
the ‘bare phrase structure’ trees of [4]. These trees are essentially X-bar trees without
phrase and category information represented at internal nodes. Instead, internal nodes
are labeled with ‘arrows’ > and <, which point to the head of their phrase. A tree of the
form [< α β] indicates that the head is to be found in the subtree α, and we say that
α projects over β, while one of the form [> α β] that its head is in β, and we say that
β projects over α. Leaves are labeled with lexeme/feature pairs (and so a lexical item
〈α, δ〉 is a special case of a tree with only a single node). The head of a tree t is the leaf
one arrives at from the root by following the arrows at the internal nodes. If t is a bare
phrase structure tree with head H, then we will write t[H] to indicate this. (This means
we can write lexical items 〈α, δ〉 as 〈α, δ〉[〈α, δ〉].) The merge operation is defined on
a pair of trees t1, t2 if and only if the head of t1 has a feature bundle which begins with
either =x or x=, and the head of t2 has a feature bundle beginning with the matching x
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feature. The bare phrase structure tree which results from the merger of t1 and t2 has t1
projecting over t2, which is attached either to the right of t1 (if the first feature of the
head was =x) or to the left of t1 (if the first feature of the head was x=). In either case,
both selection features are checked in the result.

merge(t1[〈α,=xδ〉], t2[〈β, xγ〉]) =
<

t1[〈α, δ〉] t2[〈β, γ〉]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[〈β, γ〉] t1[〈α, δ〉]

If the selecting tree is both a lexical item and an affix (which I notate by means of a
hyphen preceding/following the lexeme in the case of a suffix/prefix), then head move-
ment is triggered from the head of the selected tree to the head of the selecting tree.

merge(〈-α,=xδ〉, t2[〈β, xγ〉]) =
<

〈β-α, δ〉 t2[〈ε, γ〉]

The operation move applies to a single tree t[〈α,+yδ〉] only if there is exactly one leaf �
in t with matching first feature -y or �y. This is a radical version of the shortest move
constraint [4], and will be called the SMC – it requires that an expression move to the
first possible landing site. If there is competition for that landing site, the derivation
crashes (because the losing expression will have to make a longer movement than ab-
solutely necessary). If it applies, move moves the maximal projection of � to a newly
created specifier position in t, and deletes both licensing features. To make this precise,
let t{t1 �→ t2} denote the result of replacing all subtrees t1 in t with t2, for any tree t,
and let �Mt denote the maximal projection of � in t, for any leaf �.

move(t[〈α,+yδ〉]) =
>

t′[〈β, γ〉] t[〈α, δ〉]{t′ �→ 〈ε, ε〉}
(where t′ = 〈β,-yγ〉Mt )

A derivation tree is an element of the term language over the ranked alphabet A0 ∪
A1 ∪ A2, where A0 = Lex is the set of nullary symbols, A1 = {v} is the set of
unary symbols, and A2 = {r} the set of binary symbols. As a consequence of the
translation of minimalist grammars into multiple context free grammars [27,10], the set
of derivation trees in a minimalist grammar of an expression with unchecked feature
string γ at the root and no features anywhere else is regular.

As an example, the lexical item John in figure 3(b) has the feature sequence ‘d -k’,
which indicates that it must first be the second argument to the merge operation (where
the first argument has a matching =d feature), and then it will, as part of a larger ex-
pression whose head has a +k feature, be targeted by the move operation. Similarly,
the lexical item laugh with feature sequence ‘=d v’ indicates that it must first be the
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0v1

1r2

2r3

3John4
3laugh6

2will5

(a) derivation

John d -k
laugh =d v
will =v +k i

(b) lexicon

>

<

<

εlaugh

will

John

(c) surface

Fig. 1. Structures for “John will laugh”

first argument to the merge operation (where the second argument has a matching d
feature), and then it may be the second argument to the merge operation (where the first
argument has matching =v feature). The sequence of rule applications used in the con-
struction of a sentence can itself be viewed as a tree, as in figure 1(a), which describes
the derivation of the surface structure in 1(c). In figure 1(a), internal nodes are labeled
either v (for move) or r (for merge), and leaves are labeled with lexical items (we have
suppressed the features for reasons of space). The internal node immediately dominat-
ing the leaves laugh and John is labeled r, which indicates that the lexical items laugh
and John were merged together. The parent of this node is also labeled r, and indicates
that the lexical item will was merged together with the result of merging together laugh
and John. The derived tree in figure 1(c) is therefore the result of applying the move
rule (v) to the result of merging will together with the result of merging together laugh
and John.

The nodes of the derivation tree in figure 1(a) are superscripted (on the left) and
subscripted (on the right). Derivation trees marked up in this way are a very condensed
yet complete representation of a parse of a sentence. Nodes represent parser items, the
superscript indicates at which parsing step that node is put into the parser’s stack and
the subscript indicates at which parsing step it is removed from the parser’s stack.1 The
order in which predicted items are expanded is determined by their order in the surface
tree, which is only computed implicitly by the parser. Compare the order of terminals
in the surface tree 1(c) with the order the leaves of the derivation tree are expanded.
Table 1 reconstructs the parser stack at each step from the marked-up derivation tree in
1(a). The underlining in table 1 indicates which item is operated on in the subsequent
step. Items are represented in the table as terms, where S is the initial item, and for
α an item, v(α), r(α)1, and r(α)2 is the result of applying an unmove rule to α, the
first element of the pair resulting from applying an unmerge rule to α, and the second

1 A more precise characterization of the relation between a marked up derivation tree and the
sequence of parser states in a successful top down parse of that derivation is that an item
corresponding to a node iαj is in the stack at time t iff i ≤ t < j.
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Table 1. The sequence of parser configurations corresponding to figure 1(a)

0 — {S}
1 — {v(S)}
2 — {r(v(S))1, r(v(S))2}
3 — {r(v(S))1, r(r(v(S))2)1, r(r(v(S))2)2}
4 — {r(v(S))1, r(r(v(S))2)1}
5 — {r(r(v(S))2)1}
6 — ∅

element of the same, respectively. (See Section 4.1 for more details.) Observe that in,
for example, step 2, all and only items corresponding to nodes in figure 1(a) with a
superscript less than or equal to 2 and a subscript greater than 2 appear in the stack – at
parsing step 2, there are two items in the parser state; one corresponding to a prediction
of the lexical item will (r(v(S))1), and one to a prediction of a VP-like constituent
(r(v(S))2) – the node labelled 2r3). In the next step, instead of scanning a word from
the input as would a context-free parser, the prediction 2r3 is expanded. The prediction
of will remains in the parser state until the fifth step.

Because the marked up derivation tree concisely encodes the entire parse history of
an expression, we use it exclusively in the remainder of this paper.

4.1 Parsing

A top down minimalist parser explores a search space defined by inverting the oper-
ations of merge and move (and called in [10] unmerge and unmove). As mentioned
in section 2, we assume that the parser is equipped with a perfect oracle, and will ig-
nore the bookkeeping necessary to perform backtracking.2 This assumption amounts
to claiming that the asymmetries in acceptability judgements in the constructions we
examine here are not due to (local) ambiguities; either because there are none, as we
assume here, or because all sentences involved have roughly the same amount.

As in the case of context-free parsing, a minimalist parser item corresponds to a node
in a derivation tree, and a minimalist parser state is a sequence of minimalist parser
items. Just like with context-free parsing, a (top-down) parser state represents the set
of derivation tree contexts with the same open positions; the parser items it contains
correspond to the categories of the open positions, and the order in which these open
positions might correspond to the input string. Differences between them, however,
stem from the following difference between the grammar formalisms: the language of a
given nonterminal in a minimalist grammar consists of tuples of derived objects [38], as
opposed to single derived object as in the case of context-free grammars. Accordingly,
the minimalist parser’s ‘stack’ needs to take the form of a priority queue. As shown by
[24], an ordering on derivation tree nodes reflecting the corresponding node in the sur-
face tree can be computed efficiently by the parser online (a finite copying transduction

2 This decision is motivated also by the fact that search strategy and oracle are highly underde-
termined by the search space, and that we do not know how to select among the alternatives in
a principled way.
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relates the two [19,29]). The order on queue elements is given by this relation. In some
sense, the crucial difference between minimalist parsing and context-free parsing is that
the ordering relation between nodes in the minimalist derivation tree (defined as per the
above in terms of the surface string position of the leftmost component) is not inherited
through dominance, whereas that in the context-free derivation tree is.3 This allows the
priority queue for context-free parsing to behave as a simple stack.

We do not present the full set of parser rules here, for reasons of space and simplicity
(we leave out the rules for head movement, as this complicates things even more; see
footnote 5); see [24] and [36] for more optimized versions hereof.4 The parser rules are
presented as (upside down) inference rules, such as the below.

P

R1 . . . Rn

This rule is to be understood as saying that the items R1, . . . , Rn are derivable in one
step from item P . Given a stack (or some similar data structure) whose top item is P ,
applying this rule removes P from the stack, and adds R1 . . . Rn. If n < 1, this means
that P is simply removed from the stack.

A parser item takes the form 〈γ0, α0; γ1, α1; . . . ; γn, αn〉, where for 0 ≤ i ≤ n, αi

is the feature sequence of the ith moving expression, and γi is the gorn address of its
position in the derived tree.5 The parser items are totally ordered, where p < p′ iff the
leftmost γi in p is to the left of the leftmost γ′j in p′.6

The scan rule is given below. Here, a parser item is assumed to correspond to a
lexical item, and is removed from the stack.

〈γ, α〉
where u is the next word and 〈u, α〉 ∈ Lex (scan)

For conciseness, we write an item 〈γ0, α0; γ1, α1; . . . ; γn, αn〉 as 〈γ0, α0;A〉. We use
the notation 〈γ0, α0;A[φ]〉 to indicate thatA containsφ. IfA[ψ] occurs in the antecedent
of a rule, then A[φ] in the consequent indicates that ψ has been replaced by φ in A. We
write A[−] to indicate that ψ has been removed. We write A = B ⊕ C to indicate that
A can be partitioned into B and C.

unmerge1s unmerge2s

〈γ, α;A⊕B〉
〈γ1, x=α;A〉 〈γ0, x;B〉

〈γ0, α0;A⊕B[γ, α]〉
〈γ01, x=α;A〉 〈γ, xα;B[−]〉

3 An ordering (<) over derivation tree nodes is inherited through dominance in this sense just
in case for any two nodes a and b, a < b implies that, for any children ca and cb of a and b,
ca < cb.

4 In particular, we should restrict the feature sequences in predicted items to lexical feature
suffixes.

5 To incorporate head movement, we need to decompose γ0 into the triple γ0
0 , γ

1
0 , γ

2
0 ; see

e.g. [16].
6 This is a total order because the gorn addresses assigned to items in the stack are unique,

corresponding as they do to positions in the derived tree.
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unmerge1c unmerge2c

〈γ, α;A⊕B〉
〈γ0,=xα;A〉 〈γ1, x;B〉

〈γ0, α0;A⊕B[γ, α]〉
〈γ00,=xα;A〉 〈γ, xα;B[−]〉

In the case of the unmerge rules, the moving components (described above as A ⊕B)
must be split among the two newly predicted items. Illustrative are the gorn addresses of
the predicted items. In the case of unmerge1s we are assuming that the second argument
to the merge operation was a specifier (merged on the left – x=) and was pronounced
there (i.e. it did not later move as it has no further features) – we can therefore conclude
that the item representing the second argument to merge is the left sister of the item
representing the first argument in the derived surface tree.

unmove1 unmove2

〈γ0, α0;A[−]〉
〈γ01,+xα;A[γ00,-x]〉

〈γ0, α0;A[γ, α]〉
〈γ01,+xα;A[γ,-xα]〉

In unmove2, which corresponds to an application of move where the moving expres-
sion has not moved its last (i.e. it has movement features left over), the predicted item
only updates the gorn address of the head, as the moving item’s surface position is not
changed by this movement. This contrasts with unmove1, which corresponds to an ap-
plication of move where the moving expression moves to its final resting place. Here
we know that the moving expression is the left daughter of the head of the popped item,
and the head of the predicted item is the right daughter (as movement is to the left).

5 Modeling

Here we report the results of our complexity measures on sentences of the kind in sec-
tions 3.1 and 3.2. We begin (in Section 5.1) with an analysis of verb clusters, and show
that a simple but linguistically motivated analysis of Dutch and German predicts maxi-
mum tenure differences which line up with the behavioural data. Then (in Section 5.2)
we consider the stark constrast in English between center embedded and peripherally
embedded structures. We provide two syntactic analyses of this phenomenon, which
differ from one another only on their analysis of verbal inflection. Somewhat surpris-
ingly, this matters, and highlights the degree to which tenure is dependent upon the
particulars of a syntactic analysis.

5.1 Verb Clusters

We assume a verb-raising analysis, depicted in figure 2.7 On this analysis, verbal com-
plexes in both German and in Dutch have the same deep structure 2(a), one in which
verbs and their objects are in a strict sisterhood relation [43]. The different surface word
orders arise as a consequence of verbal head movement up and to the left (as shown in
2(c) in the case of German) or to the right (as shown in 3(c) in the case of Dutch). The

7 This particular analysis is a variation of [31].
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only difference between the two grammar fragments is that the verb cluster is formed
via leftward head movement in German, and via rightward head movement in Dutch.

The lexical items in both figures, which are identical but for the direction of head
movement (indicated by means of the hyphen attached to the lexeme), are schematic
representations of either nominal phrases (‘DPs’), sequence initiating verbs (Vi), serial
verbs (V) and inflectional heads (I).

0r1

1r2

2DP3
2r4

4r5

5DP6
5Vi7

4V8

1I9

(a) derivation

Vi d= v
-V v= d= v
-I v= i
(b) lexicon

>

Vi-V-I>

>

ε>

εDP

DP

(c) surface

Fig. 2. Structures for German

Max Tenure
Embeddings German Dutch

1 8 6
2 12 9
3 16 12
4 20 15

Figures 2 and 3 correspond to the first row in the table above. In the German derivation
2(a) and surface structure 2(c), the maximal tenure is had by the parser item correspond-
ing to the node labelled 1I9 in the figure, which is predicted at the first step, and which
is removed from the queue only at the ninth and last step. The reason why this item is
predicted already in the first step is because it is a child of the root/starting item. It is
removed from the queue so late because every other parser state contains an item which
can be expanded into items which correspond to words in the input which come before
this one.

The Dutch deep structure is traversed identically to the German one up until step 7,
where, instead of operating on the prediction for a Vi, the prediction of an inflectional
element is operated on.
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0r1

1r2

2DP3
2r4

4r5

5DP6
5Vi9

4V8

1I7

(a) derivation

Vi d= v
V- v= d= v
I- v= i
(b) lexicon

>

I-V-Vi>

>

ε>

εDP

DP

(c) surface

Fig. 3. Structures for Dutch

5.2 English Center and Right Embeddings

We adopt a promotion-style analysis of relative clauses, according to which the relative
clause head is an argument of the embedded verb, and then moves to a clause-peripheral
position [15,8,17]. We report the results of applying our complexity metric to two gram-
mar fragments which differ in their analyses of verbal inflection. One (4(c)) relies on
phrasal movement which conspires to position the verb before the inflectional ending
as suggested by [23]. The other (4(a)) uses head movement to build a complex head
consisting of a verb and its inflections, an analysis which has its roots in [3].

-s =v +k s
laugh =d v
-ε =V +k d= v
praise =d V

(a) head

that =s +w n
ε =n d -k -w
the =n d -k
boy n

(b) shared

s =v +z +k s
laugh =d v -z
ε =V +k d= v
praise =d V -z

(c) phrasal

Fig. 4. Lexica

Head Mvt Phrasal Mvt
Depth Right Center Right Center

1 11 23 18 24
2 11 40 36 42
3 11 57 54 60
4 11 74 72 78
5 11 91 90 96
6 11 108 108 114
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Under the phrasal movement analyis of inflection, although sentences with right branch-
ing embedding have a lower maximal tenure than do those with center embeddings, they
have the same rate of growth – in other words, there is no bound on maximal tenure
which will correctly rule out (as unacceptable) center embedded sentences of nesting
degree greater than (say) 3, but allow peripheral embedding to (much) higher degrees.

Under the head movement analysis of inflection (4(a)), however, sentences with right
branching embedding (2) have a lower maximal tenure than those with center embed-
ding (1). Indeed, the maximal tenure of right branching sentences remains constant up
to 6 embeddings, whereas the maximal tenure of center embedded structures contin-
ues to increase (by seventeen steps) with each additional embedding. Derivation trees
for center and peripherally embedded sentences under the head movement analysis of
inflection are given in figures 6(a) and 7(a) respectively. In both cases, it is the matrix
clause inflectional head (the present tense suffix -s) which is the parser item with the
maximal tenure. The crucial aspect of the minimalist analysis is that the inflectional
head is predicted very early, due to the fact that inflection is assumed to merge with the
verb only after all its arguments have been merged with it.

6 General Discussion

Our proposal is that the maximal tenure of an item on the stack reflects a memory re-
quirement that burdens human comprehenders. This is related to different aspects of
previous work in psycholinguistics. Since it views a memory cell being occupied as op-
posed to unoccupied, our proposal can be viewed as a generalization of the HOLD
hypothesis [13,42]. One could also view long tenure as an approximation to work-
ing memory decay [22].

We have focussed here on off-line difficulty measures. However, various on-line no-
tions of stack tenure are easily derivable, such as maximal tenure up to a particular
point in the sentence, or average tenure of stack items. In particular, we derive inter-
esting predictions for on-line judgements in the Dutch versus German data. In figure 5,
we report for each of the last six parser steps (steps 13 to 18) of a parse of a sentence
with four DPs the maximal tenure of a current stack item, the average tenure of items
on the stack, and the sum tenure of all items on the stack. Note that the steps taken by
the parser on the Dutch and German sentences are identical up to and including step 13,
at which point the verbal cluster begins to be parsed.

6.1 Difficulties with Maximal Tenure

Although simple and well-defined, the notion of maximal tenure (or incremental ver-
sions thereof, cf. Section 7) in minimalist grammars is difficult to relate to geometric
properties of a derivation. (As, for example, it is possible to relate memory burden
in left-corner parsing to the geometric property of center embedding in the context-
free parse tree.) Still, a high tenure will obtain whenever an unmerge rule introduces
derivational sisters, which are separated on the surface by a large number of derived
tree leaves. In particular, as pointed out by a reviewer, the top-down minimalist parser
should assign high tenure to left-branching structures (as in 5), just as would a top-down
context-free parser, which does not seem to accurately reflect the behavioural data.
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step max average sum
13 12 6.4 32
14 13 8.5 34
15 14 11 33
16 15 13.5 27
17 16 16 16
18 (empty)

(a) German

step max average sum
13 12 6.4 32
14 10 6 24
15 8 5.7 17
16 6 5.5 11
17 6 6 6
18 (empty)

(b) Dutch

max(stack) = maxx∈stack tenure(x)

average(stack) = sum(stack)/ |stack|
sum(stack) = Σx∈stacktenure(x)

Fig. 5. The parser on the German/Dutch sentence with 3 embeddings

(5) John’s neighbor’s dentist’s uncle laughed.

Additionally, the more words which intervene between a wh-word and its extraction
site, the higher the tenure. Sentence 7 has a higher tenure than 6, despite the fact that
the paths between the wh-words and their extraction sites are of the same length.

(6) Who did the boy kiss.
(7) Who did the very tall boy kiss.

To the extent that this is not reflected in the behavioural data, one potential (but radical)
solution could be to change the way tenure is measured.

There are three currently existing proposals in this regard. First, the Dependency Lo-
cality Theory [6] can be thought of in the present terms as measuring not the number of
steps taken by the parser while a given item is on the stack, but the number of discourse
referents introduced. This change would then equate the tenures of 6 and 7, but would
still predict a high tenure score for structures like example 5. In the computational liter-
ature, Joshi [12] (see also [33]) presents an account of the observed processing contrast
between German and Dutch verbal complexes in the context of tree adjoining gram-
mar (TAG). Using the fact that a TAG can be compiled into an equivalent (embedded)
push down automaton (EPDA), he notes that the total amount of time the EPDA for
the Dutch sentences stores any symbol on its stack is less than that of the EPDA for
the German sentences.8 The complexity measure of ‘sum total tenure of stack items’ is
equivalent to the sum of the sizes of the stack after each step (the sum of the number
of symbols on stack one plus the number of symbols on stack two plus . . . ). However,
the notion of a step is taken in [12] to be a scan of an overt word, and intermediate
steps are not taken into account. In [33], a step is indeed taken to be a single operation
of the automaton, but symbols corresponding to empty nodes in an elementary tree are
crucially not counted toward stack size.

8 He also observes that the maximal stack size is lower for the Dutch EPDA than for the German
one.
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3r4

4the5
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(a) derivation tree
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(b) derived tree

Fig. 6. Center Embedding with Head Movement



46 G.M. Kobele, S. Gerth, and J. Hale

0v1

1r2

2-s12 2r3

3v7

7r8

8
11

8r9

9praise10
9r13

13the14
13v15

15r16

16that23 16v17

17r18

18-s25 18r19

19laugh24
19r20

20
21

20boy22

3r4

4the5
4boy6

(a) derivation tree

>

<1

the boy

<

praise-ε-s >

t1 >

<2

the >

<3

ε boy

<

that >

t3 <

laugh-s >

laugh t3

<

praise-ε <

praise t2

(b) derived tree

Fig. 7. Peripheral Embedding with Head Movement
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Fig. 8. Center Embedding with Phrasal Movement
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7 Conclusion

We have shown that longstanding and influential psycholinguistic ideas about memory
resources can be connected with specific and explicit syntactic analyses in rigorous
ways. The results of section 5.2 show that the syntactic analysis can indeed play a
significant role in the memory requirements of parsing.

The notion of tenure, while useful (at least to a first approximation), is not able to
account for all aspects of psycholinguistic data. In particular, we have idealized non-
determinism in the parsing process away, while complexity measures which focus on
the resolution of non-determinism, such as entropy reduction [8] or surprisal [7], have
been demonstrated to have explanatory value [21,41]. Furthermore, although tenure is
a measure related to memory burden, we have made very weak assumptions about the
nature of memory — incorporating psychological insights into the nature and limita-
tions of human memory [22] may allow a reductive explanation of our tenure measure,
or at least for a more refined and nuanced theory.

Future work will investigate how best to relate tenure to online data, how to integrate
various independent notions of psycholinguistic ‘difficulty’, and how to most appropri-
ately account for examples like those presented in Section 6.1.
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