Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives

Stepan Kuznetsov

Moscow State University sk@lpcs.math.msu.su

Abstract. We prove that any language without the empty word, generated by a conjunctive grammar in Greibach normal form, is generated by a grammar based on the Lambek calculus enriched with additive ("i[nter](#page-7-0)section" and "union") connectives.

1 Conjunctive Grammars

Let Σ be an arbitrary finite alphabet, Σ^* is the set of all words, and Σ^+ is the set of all non-empty words over Σ .

We consider a generalisation of context-free grammars, introduced by Okhotin [9] (and earlier by Szabari [14]).

A *conjunctive grammar* is a quadruple $\mathcal{G} = \langle \Sigma, N, \mathcal{P}, \mathcal{S} \rangle$, where Σ and N are two non-intersecting alphabe[ts \(](#page-7-1) Σ is the alphabet in which the language is being defined, its elements are called *terminal symbols*, and N is an auxiliary alphabet, consisting of *nonterminal symbols)*, $S \in N$ (the *start symbol)*, and P is a finite set of *rules* of the form

$$
A \to \beta_1 \& \dots \& \beta_m,
$$

where $A \in N$, $m \geqslant 1$, $\beta_1, \ldots, \beta_m \in (\Sigma \cup N)^*$.

We define the language generated by this grammar in terms of a formal deduction system associated with the grammar [10]. This formal system derives pairs of the form $[X, w]$, where $X \in \Sigma \cup N$ and $w \in \Sigma^*$. Axioms are pairs $[a, a]$, for all $a \in \Sigma$, and for every rule $A \to B_{11} \dots B_{1m_1} \& \dots \& B_{k1} \dots B_{km_k} \in \mathcal{P}$, $B_{ji} \in \Sigma \cup N$, and for all strings $u_{ji} \in \Sigma^*$, $j \in \{1, \ldots, k\}$, $i \in \{1, \ldots, m_j\}$, that satisfy $u_{11} \dots u_{1m_1} = \dots = u_{k1} \dots u_{km_k} = w$, there is a deduction rule

$$
\frac{[B_{11},u_{11}]\quad \ldots \quad [B_{km_k},u_{km_k}]}{[A,w]}.
$$

The formal system, associated with the grammar \mathcal{G} , is also denoted by \mathcal{G} . Define $\mathfrak{L}_{\mathcal{G}}(X) = \{w \mid \mathcal{G} \vdash [X, w]\}\$ and $\mathfrak{L}(\mathcal{G}) = \mathfrak{L}_{\mathcal{G}}(S)$ (" \cong " here and further means "equals by definition"). $\mathfrak{L}(\mathcal{G})$ is the *language generated by* \mathcal{G} *.*

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 242–249, 2013.

c Springer-Verlag Berlin Heidelberg 2013

Example 1. Consider the following conjunctive grammar (here small letters stand for terminal symbols, capital stand for nonterminal ones; S is the start symbol):

$$
S \to aAB \& aDC
$$

\n
$$
A \to aA
$$

\n
$$
A \to a
$$

\n
$$
B \to bBc
$$

\n
$$
B \to b
$$

\n
$$
C \to cC
$$

\n
$$
C \to c
$$

\n
$$
D \to aDb
$$

\n
$$
D \to b
$$

This grammar generates the language $\{a^{n+1}b^{n+1}c^n \mid n \geq 1\}$ as an intersection of two context-free languages. For example, the word *aaabbbcc* = $a^3b^3c^2$ is generated in the following way: first we derive $[S, aaabbbcc]$ from $[a, a]$, $[A, aa]$, $[B, bbcc], [a, a], [D, aabbb],$ and $[C, cc]$. The pair $[a, a]$ is an axiom; the others are derived as follows:

$$
\frac{[a,a]}{[A,aa]} \quad\n\begin{array}{c|c|c|c|c} \hline [b,b] & & [b,b] & & [c,c] \\ \hline \hline [A,aa] & & [b,b] & & [B,bbc] & & & \\ \hline \hline [A,aa] & & & [B,bbbc] & & & \\ \hline \hline \hline [a,a] & & [D,b] & [b,b] & & & & \\ \hline \hline [a,a] & & [D,abb] & & [b,b] & & & & \\ \hline \hline [C,c] & & & [C,c] & & \\ \hline \hline \hline [C,cc] & & & & & \\ \hline \hline \hline [C,cc] & & & & & \\ \hline \hline \hline [C,cc] & & & & & \\ \hline \hline \hline [C,cc] & & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc] & & & & \\ \hline \hline \hline \hline [C,cc]
$$

For technical reasons we also consider an enlarged version of this deduction system, called \mathcal{G}_{cut} . We allow nonterminal symbols to appear in the second components of the pairs (derivable objects in it are of the form $[X, \omega]$, where $X \in \Sigma \cup N$ and $\omega \in (\Sigma \cup N)^*$ and add new axioms $[A, A]$ for all $A \in N$ and the cut rule:

$$
\frac{[B,\tau] \quad [A,\omega_1 B \omega_2]}{[A,\omega_1 \tau \omega_2]}.
$$

A trivial "cut elimination theorem" holds:

Lemma 1. *If* $A \in N \cup \Sigma$, $w \in \Sigma^*$, then $\mathcal{G}_{\text{cut}} \vdash [A, w]$ *if and only if* $\mathcal{G} \vdash [A, w]$ *.*

Proof. The "if" part is obvious. For the "only if" part, we prove that every pair, derivable in \mathcal{G}_{cut} , is derivable without applying the cut rule (therefore, as w does not contain nonterminal symbols, they do not occur in the derivation, thus this derivation is valid in the original system). Let $[B, \tau]$ and $[A, \omega_1 B \omega_2]$ be 244 S. Kuznetsov

derivable without applying the cut rule. Prove that $[A, \omega_1 \tau \omega_2]$ also has a cut-free proof. Proceed by induction on the derivation of $[A, \omega_1 B \omega_2]$. If it is an axiom, then ω_1 and ω_2 is empty, $B = A$, and our goal coincides with the left premise, [B, τ]. If [A, $\omega_1 B \omega_2$] is derived u[sin](#page-6-0)g an inference rule, then we can perform the substitution of τ for B in the premises of this rule, and apply the induction hypothesis.

2 Greibach Nor[mal](#page-7-3) Form

Consider only languages without the empty word.

A conjunctive gra[mm](#page-6-1)ar is in *Greibach normal form* (a generalisation of Greibach normal form for context-free grammars [3]), if all the rules are of the form $A \to a\beta_1 \& \dots \& a\beta_k, a \in \Sigma, \beta_j \in N^+$ $A \to a\beta_1 \& \dots \& a\beta_k, a \in \Sigma, \beta_j \in N^+$ $A \to a\beta_1 \& \dots \& a\beta_k, a \in \Sigma, \beta_j \in N^+$ or of the form $A \to a, a \in \Sigma$.

The question remains open, whether every conjunctive grammar can be transformed into this form. However, it is true for languages over the one-letter alphabet, as shown by Okhotin and Reitwießner [11]. Therefore, conjunctive grammars in Greibach normal form can capture some languages that are not context-free or even finite intersections of those, since the language $\{a^{4^n} \mid n \geq 1\}$ is generated by a conjunctive grammar found by Jez $[4]$.

Example 2. The grammar from Example 1 can be easily transformed into Greibach normal form: $S \rightarrow aAB \& aDC$

$$
S \rightarrow aAB \& aD
$$

\n
$$
A \rightarrow aA
$$

\n
$$
A \rightarrow a
$$

\n
$$
B \rightarrow bBU
$$

\n
$$
B \rightarrow b
$$

\n
$$
U \rightarrow c
$$

\n
$$
C \rightarrow cC
$$

\n
$$
C \rightarrow c
$$

\n
$$
D \rightarrow aDV
$$

\n
$$
V \rightarrow b
$$

3 Multiplicative-Additive Lambek Calculus

In this section we define an extension of the Lambek calculus (introduced in [7]) with two new connectives, *additive conjunction* and *disjunction*. The additive (intersective) conjunction was already introduced by Lambek [8], and the whole calculus was considered by Kanazawa [5]. We shall call this calculus **MALC**, as in [6], but use the Lambek-style notation for connectives.

A countable set $Pr = \{p_1, p_2, p_3, \ldots\}$ is called the set of *primitive types. Types* of **MALC** are built from primitive types with five binary connectives: · (multiplication, product conjunction), \langle (left division), \langle (right division), \cap (intersection, additive conjunction), \cup (union, additive disjunction). We denote types with capital Latin letters and their finite sequences (possibly empty) with capital Greek ones; Λ stands for the empty sequence. *Sequents* (derivable objects) of **MALC** are of the form $\Pi \to C$.

Axioms: $A \rightarrow A$.

Rules of inference:

$$
\frac{A \Pi \rightarrow B}{\Pi \rightarrow A \setminus B} (\rightarrow \backslash), \Pi \neq A; \qquad \frac{\Pi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma \Pi (A \setminus B) \Delta \rightarrow C} (\backslash \rightarrow);
$$
\n
$$
\frac{\Pi A \rightarrow B}{\Pi \rightarrow B / A} (\rightarrow \slash), \Pi \neq A; \qquad \frac{\Pi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma (B / A) \Pi \Delta \rightarrow C} (\rightarrow);
$$
\n
$$
\frac{\Gamma \rightarrow A \quad \Delta \rightarrow B}{\Gamma \Delta \rightarrow A \cdot B} (\rightarrow \cdot); \qquad \frac{\Gamma A B \Delta \rightarrow C}{\Gamma (A \cdot B) \Delta \rightarrow C} (\cdot \rightarrow);
$$
\n
$$
\frac{\Gamma \rightarrow A_1 \quad \Gamma \rightarrow A_2}{\Gamma \rightarrow A_1 \cap A_2} (\rightarrow \cap); \qquad \frac{\Gamma A_i \Delta \rightarrow C}{\Gamma (A_1 \cap A_2) \Delta \rightarrow C} (\cap \rightarrow)_{i}, i = 1, 2;
$$
\n
$$
\frac{\Gamma \rightarrow A_i}{\Gamma \rightarrow A_1 \cup A_2} (\rightarrow \cup)_{i}, i = 1, 2; \qquad \frac{\Gamma A_1 \Delta \rightarrow C \quad \Gamma A_2 \Delta \rightarrow C}{\Gamma (A_1 \cup A_2) \Delta \rightarrow C} (\cup \rightarrow);
$$
\n
$$
\frac{\Pi \rightarrow A \quad \Gamma A \Delta \rightarrow C}{\Gamma \Pi \Delta \rightarrow C} (\text{cut}).
$$

The cut rule is eliminable using the standard technique [7].

The fragment without \cap and \cup is the ordinary (multiplicative) Lambek calculus, called **MLC** or **L**. We also consider fragments of **MALC** with other restrictions of the set of connectives: **MALC**($/$, \cap), **MALC**($/$, \cdot , \cap), **MLC**($/$).

4 Categorial Grammars

A **MA[LC](#page-6-2)**-grammar is a [tri](#page-6-3)ple $\mathscr{G} = \langle \Sigma, H, \triangleright \rangle$, where Σ is a finite alphabet, $H \in \mathcal{T}_{\mathcal{D}}$, and \triangleright is a finite correspondence between [Tp](#page-7-4) and Σ ($\triangleright \subset \mathcal{T}_{\mathcal{D}} \times \Sigma$). The *language generated by* $\mathscr G$ is the set of all nonempty words $a_1 \ldots a_n$ over Σ for which there exist types B_1, \ldots, B_n such that $\textbf{MALC} \vdash B_1 \ldots B_n \rightarrow H$ and $B_i \triangleright a_i$ for all $i \in \{1, \ldots, n\}$. We denote this language by $\mathfrak{L}(\mathscr{G})$.

The notions of $\textbf{MALC}(\Lambda, \cap)$ -, $\textbf{MALC}(\Lambda, \cdot, \cap)$ -, \textbf{MLC} -, and $\textbf{MLC}(\Lambda)$ grammar are defined similarly.

As shown by Gaifman [1] and Buszkowski [2], any context-free language without the empty word is generated by an MLC ⁻ $)$ -grammar. On the other hand, any language generated by an **MLC**-grammar is context-free (Pentus [12]).

Kanazawa [5] proved that any finite intersection of context-free languages is generated by a $\textbf{MALC}(\Lambda, \cap)$ -grammar (therefore such grammars go beyond context-free). No generalisation of Pentus' theorem for **MALC** is yet known.

Theorem 1. *If a language without the empty word is generated by a conjunctive grammar in Greibach normal form, then this language is generated by a* $\textbf{MALC}(\Lambda, \cdot, \cap)$ -grammar.

246 S. Kuznetsov

5 The Construction

Given a conjunctive grammar $\mathcal{G} = \langle N, \Sigma, \mathcal{P}, \mathcal{S} \rangle$ in Greibach normal form, we shall construct a **MALC**($/$, \cdot , \cap)-grammar \mathscr{G} , such that $\mathfrak{L}(\mathscr{G}) = \mathfrak{L}(\mathcal{G})$.

In order to avoid notation collisions, further we shall use the following naming convention (all these letters can also be decorated with numerical or other indices):

With every $A \in N$ we associate a distinguished primitive type p_A . For $\beta =$ $B_1 \dots B_m$ let $P_\beta \leftrightharpoons p_{B_1} \cdot \dots \cdot p_{B_m}$ (multiplication is associative, so we can omit the brackets).

Since intersection in **MALC** is commutative and associative, we can use intersections of nonempty sets of types, not bothering about order and brackets: $\bigcap_{j=1}^k E_j$ stands for $E_1 \cap \ldots \cap E_k$, and if $\mathcal{M} = \{E_1, \ldots, E_k\}$, then $\bigcap \mathcal{M} \equiv$ $E_1 \cap \ldots \cap E_k$. If $\mathcal{M} = \{E\}$, then $\bigcap \mathcal{M} \leftrightharpoons E$.

For every $a \in \Sigma$ let

$$
\mathcal{M}_a \leftrightharpoons \{p_A \, / \left(\bigcap_{j=1}^k P_{\beta_j}\right) \mid (A \to a\beta_1 \& \dots \& a\beta_k) \in \mathcal{P}\} \cup \{p_A \mid (A \to a) \in \mathcal{P}\}.
$$

Let $G_a \Leftrightarrow \bigcap \mathcal{M}_a$. For $A \in N$ let $G_A \Leftrightarrow p_A$. The following holds due to the $(∩ \rightarrow)$ rule:

Lemma 2. *If* $E \in \mathcal{M}_a$ and **MALC** $\vdash \Phi E \Psi \rightarrow F$, then **MALC** $\vdash \Phi G_a \Psi \rightarrow F$.

For $\omega = x_1 \dots x_n \in (N \cup \Sigma)^+$ let $\Gamma_{\omega} \leftrightharpoons G_{x_1} \dots G_{x_n}$.

Lemma 3. *If* $\mathcal{G} \vdash [A, w]$ *, then* **MALC** $\vdash \Gamma_w \rightarrow p_A$ *.*

Proof. We proceed by induction on the length of w. The base case $(w = a)$ corresponds to an application of a rule of the form $A \to a$ to the [a, a] axiom (this is the only way to derive [A, a]). In this case we have $p_A \in \mathcal{M}_a$, therefore by Lemma 2 we get **MALC** $\vdash G_a \rightarrow p_A$, and $\Gamma_w = G_a$.

Now let w contain at least two symbols and the last step of the derivation of $[A, w]$ be an application of the rule $A \to a\beta_1 \& \dots \& a\beta_k$. Then $w = aw'$, and for every $j \in \{1,\ldots,k\}$, if $\beta_j = B_{j1} \ldots B_{jm_j}$, then $w' = u_{j1} \ldots u_{jm_j}$ and for every $i = \{1, \ldots, m_j\}$ we have $\mathcal{G} \vdash [B_{ji}, u_{ji}]$. Therefore, by induction hypothesis, **MALC** $\vdash \Gamma_{u_{ji}} \rightarrow p_{B_{ji}}$, whence **MALC** $\vdash \Gamma_{w'} \rightarrow P_{\beta_j}$ for every j. Applying the $(\rightarrow \cap)$ rule k times we get

$$
\mathbf{MALC} \vdash \varGamma_{w'} \rightarrow \bigcap_{j=1}^{k} P_{\beta_j},
$$

and, finally, by $(/ \rightarrow)$,

$$
\mathbf{MALC} \vdash p_A / \left(\bigcap_{j=1}^k P_{\beta_j}\right) \Gamma_{w'} \to p_A.
$$

Since $p_A / (\bigcap_{j=1}^k P_{\beta_j}) \in \mathcal{M}_a$, by Lemma 2 we have **MALC** $\vdash G_a \Gamma_{w'} \to p_A$, and $G_a\,\Gamma_{w'}=\Gamma_w.$

Before proving the inverse statement, we shall prove two technical lemmata:

Lemma 4. MALC $\vdash \Phi \rightarrow \bigcap_{j=1}^{k} P_{\beta_j}$ *if and only if* **MALC** $\vdash \Phi \rightarrow P_{\beta_j}$ *for every* $j \in \{1, ..., k\}$ *.*

Proof. The "if" part is just k applications of $(\rightarrow \cap)$. The "only if" part is proved using the cut rule (for every j_0):

$$
\frac{\Gamma \to \bigcap_{j=1}^k P_{\beta_j} \quad \bigcap_{j=1}^k P_{\beta_j} \to P_{\beta_{j_0}}}{\Gamma \to P_{\beta_{j_0}}}
$$
 (cut)

Lemma 5. *If* $\omega \in (N \cup \Sigma)^+$, $\beta = B_1 \dots B_m \in N^+$, and **MALC** $\vdash \Gamma_{\omega} \to P_{\beta}$, *then there exist such* $\tau_1, \ldots, \tau_m \in (N \cup \Sigma)^+$ *, that* $\omega = \tau_1 \ldots \tau_m$ *and* **MALC** \vdash $\Gamma_{\tau_i} \to p_{B_i}$ *for every* $i \in \{1, \ldots, m\}$ *.*

Proof. We can rearrange the derivation, so that the applications of $(\rightarrow \cdot)$ will be in the bottom (they are interchangeable with $(∩ →)$) and $(/ →)$, and these two are the only ones that can be applied below $(\rightarrow \cdot)$). Now the statement of the lemma is obvious.

Lemma 6. *If* **MALC** $\vdash \Gamma_{\omega} \rightarrow p_A$ *, then* $\mathcal{G}_{\text{cut}} \vdash [A, \omega]$ *.*

Proof. Induction by the length of ω . If $\omega = a$, then the only possible case is $p_A \in \mathcal{M}_a$. Then $(A \to a) \in \mathcal{P}$, and $\mathcal{G}_{\text{cut}} \vdash [A, a]$.

Now let ω contain at least two letters. Consider the lowest application of $($ \rightarrow $)$ in the derivation of $\Gamma_{\omega} \rightarrow p_A$. Beneath this application there are only applications of $(\cap \rightarrow)$ —the ones that open the type to which (\rightarrow) is applied, and the ones that deal with other types in Γ_{ω} . We can transform the derivation so that the latter will be applied before the application of $($ $)$ \rightarrow). Then we have $\omega = \omega_1 a \tau \omega_2$, $p_{A'} / (\bigcap_{j=1}^k P_{\beta_j}) \in \mathcal{M}_a$, and the derivation step looks as follows:

$$
\frac{\Gamma_{\tau} \to \bigcap_{j=1}^{k} P_{\beta_j} \quad \Gamma_{\omega_1} \, p_{A'} \, \Gamma_{\omega_2} \to p_A}{\Gamma_{\omega_1} \, p_{A'} \, / (\bigcap_{j=1}^{k} P_{\beta_j}) \, \Gamma_{\tau} \, \Gamma_{\omega_2} \to p_A} \, \left(/ \to \right)
$$

248 S. Kuznetsov

Then, by Lemma 4, **MALC** $\vdash \Gamma_{\tau} \to P_{\beta_j}$ for every $j \in \{1, \ldots, k\}$. By Lemma 5, if $\beta_j = B_{j1} \dots B_{jm_j}$, $\tau = \tau_{j1} \dots \tau_{jm_j}$, [an](#page-4-0)d **MALC** $\vdash \Gamma_{\tau_{ji}} \rightarrow p_{B_{ji}}$ (for every j and i in the ranges). By induction hypothesis, $\mathcal{G}_{\text{cut}} \vdash [B_{ji}, \tau_{ji}]$, and, adding [a, a], we can apply the rule for $A' \to a\beta_1 \& \dots \& a\beta_k$, therefore $\mathcal{G}_{\text{cut}} \vdash [A', a\tau]$.

By induction hypothesis for the right premise of the $($ / \rightarrow) rule, \mathcal{G}_{cut} + $[A, \omega_1 A' \omega_2]$. Finally, applying the cut rule to $[A', a\tau]$ and $[A, \omega_1 A' \omega_2]$, we get $[A, \omega_1 a \tau \omega_2] = [A, \omega].$

Now we are ready to define $\mathscr{G} = \langle \Sigma, \triangleright, H \rangle$. Let $H = p_S$, and $E \triangleright a$ if and only if $E = G_a$ [. If](#page-7-5) $w \in \mathfrak{L}(\mathcal{G})$, then $\mathcal{G} \vdash [S, w]$, and, by Lemma 3, **MALC** $\vdash \Gamma_w \to p_S$, whence $w \in \mathfrak{L}(\mathscr{G})$. Conversely, if $w \in \mathfrak{L}(\mathscr{G})$, then **MALC** $\vdash \Gamma_w \to p_S$. By Lemma 6 we get $\mathcal{G}_{\text{cut}} \vdash [S, w]$, and by Lemma 1 $\mathcal{G} \vdash [S, w]$. Hence, $w \in \mathfrak{L}(\mathcal{G})$.

Note that [in](#page-2-0) $\mathscr G$ every $a \in \Sigma$ is associated with only one type (such grammars are called *grammars with single type assignment* or *deterministic grammars).* Having the intersection connective, it is usually easy to make our grammar deterministic (cf. [5]); for the pure Lambek calculus the fact that any context-free language is generated by a deterministic **MLC**-grammar is not obvious, but still valid, as shown by Safiullin [13].

Example 3. This construction gives the following **MALC**-grammar equivalent to the grammar from Example 2:

$$
a \rhd p_A \cap (p_A / p_A) \cap (p_D / (p_D \cdot p_V)) \cap (p_S / ((p_A \cdot p_B) \cap (p_D \cdot p_C)))
$$

$$
b \rhd p_B \cap p_D \cap p_V \cap (p_B / (p_B \cdot p_U))
$$

$$
c \rhd p_C \cap p_U \cap (p_C / p_C)
$$

Acknowledgements. I am grateful to Prof. Mati Pentus and Alexey Sorokin for fruitful discussions. I am also grateful to Ivan Zakharyashchev for bringing my attention to conjunctive grammars.

This research was supported by the Russian Foundation for Basic Research (grants 11-01-00281-a and 12-01-00888-a) and by the Presidential Council for Support of Leading Scientific Schools (grant $N\tilde{S}$ 5593.2012.1).

References

- 1. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On the categorial and phrase-structure grammars. Bull. of the Research Council of Israel, Sect. F 9F, 1–16 (1960)
- 2. Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars and context-free languages. Zeitschr. für math. Logik und Grundl. der Math. 31, 369–384 (1985)
- 3. Greibach, S.: A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM 12, 42–52 (1965)
- 4. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. International Journal of Foundations of Computer Science 19(3), 597–615 (2008)
- 5. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information 1, 141–171 (1992)
- 6. Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press, Vossiuspers (1999)
- 7. Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65(3), 154–170 (1958)
- 8. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and its Mathematical Aspects. Amer. Math. Soc. (1961)
- 9. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)
- 10. Okhotin, A.: The dual of concatenation. Theor. Comput. Sci. 345(2-3), 425–447 (2005)
- 11. Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theor. Comput. Sci. 411(26-28), 2559–2571 (2010)
- 12. Pentus, M.: Lambek grammars are context-free. In: 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993)
- 13. Safiullin, A.N.: Derivability of admissible rules with simple premises in the Lambek calculus. Moscow University Math. Bull. 62(4), 72–76 (2007)
- 14. Szabari, A.: Alternujúce Zásobníkové Automaty (Alternating Pushdown Au t omata), in Slovak, diploma work $(M. Sc.$ thesis), University of Košice, Czechoslovakia, p. 45 (1991)