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Abstract. We prove that any language without the empty word, gen-
erated by a conjunctive grammar in Greibach normal form, is generated
by a grammar based on the Lambek calculus enriched with additive
(“intersection” and “union”) connectives.

1 Conjunctive Grammars

Let X be an arbitrary finite alphabet, X* is the set of all words, and YT is the
set of all non-empty words over X.

We consider a generalisation of context-free grammars, introduced by Okhotin
[9) (and earlier by Szabari [14]).

A conjunctive grammar is a quadruple G = (¥, N, P, S), where X and N are
two non-intersecting alphabets (X' is the alphabet in which the language is being
defined, its elements are called terminal symbols, and N is an auxiliary alphabet,
consisting of nonterminal symbols), S € N (the start symbol), and P is a finite
set of rules of the form

A= Bi&. . &P,

where Ae Nym > 1, f1,...,8m € (XUN)

We define the language generated by this grammar in terms of a formal de-
duction system associated with the grammar [I0]. This formal system derives
pairs of the form [X, w], where X € YU N and w € X*. Axioms are pairs [a, al,
for all @ € X, and for every rule A — By1...Bim, & ... &Bg1 ... Bgm, € P,
Bj; € ¥ UN, and for all strings uj; € 2*, j € {1,...,k}, i € {1,...,m;}, that
satisfy w11 ... Utm, = ... = Ukl - .. Ukm, = W, there is a deduction rule

[Bi1,ui1]  --- [Blmy s Wemy)
[A, w]

The formal system, associated with the grammar G, is also denoted by G. Define
L£o(X) ={w | G F [X,w]} and £(G) = £5(S) (“=" here and further means
“equals by definition”). £(G) is the language generated by G.
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Ezample 1. Consider the following conjunctive grammar (here small letters stand
for terminal symbols, capital stand for nonterminal ones; S is the start symbol):

S = aAB & aDC
A — aA

A—a

B — bBc
B—=b

C —cC

C—c

D — aDb
D—b

This grammar generates the language {a"T'6"*1c® | n > 1} as an intersec-
tion of two context-free languages. For example, the word aaabbbce = a®b3c? is
generated in the following way: first we derive [S, aaabbbcc] from [a, a], [A, aal,
[B, bbb, |a,al, [D,aabbb], and [C,cc]. The pair [a,a] is an axiom; the others
are derived as follows:

[b, 0]

[a, a] [b,b] [B,b] e, (]

[a,a] [A,a] [b, ] [B, bbc] e, ]
[A, ad] [B, bbbec]
[b, 0]

[a,a] [D,b] [b,b] e, c]

[a, a] [D, abb] [b, ] [e,c] [C,(]
[D, aabbb) [C, cc]

For technical reasons we also consider an enlarged version of this deduction sys-
tem, called G- We allow nonterminal symbols to appear in the second compo-
nents of the pairs (derivable objects in it are of the form [X, w], where X € YUN
and w € (Y UN)*) and add new axioms [4, 4] for all A € N and the cut rule:

[B,7]  [A, w1 Buw]
[A, w1 Tws]
A trivial “cut elimination theorem” holds:
Lemma l. [fAe NUXY, w € X*, then Geut F [A,w] if and only if G - [A, w].

Proof. The “if” part is obvious. For the “only if” part, we prove that every
pair, derivable in Gy, is derivable without applying the cut rule (therefore, as
w does not contain nonterminal symbols, they do not occur in the derivation,
thus this derivation is valid in the original system). Let [B, 7] and [A, w1 Bws] be
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derivable without applying the cut rule. Prove that [A4, wiTws] also has a cut-free
proof. Proceed by induction on the derivation of [A,w; Bws]. If it is an axiom,
then w; and wsy is empty, B = A, and our goal coincides with the left premise,
[B, 7]. If [A, w1 Bws] is derived using an inference rule, then we can perform the
substitution of 7 for B in the premises of this rule, and apply the induction
hypothesis.

2 Greibach Normal Form

Consider only languages without the empty word.

A conjunctive grammar is in Greibach normal form (a generalisation of
Greibach normal form for context-free grammars [3]), if all the rules are of the
form A — af1& ... &afk, a € X, B; € NT or of the form A — a, a € X.

The question remains open, whether every conjunctive grammar can be trans-
formed into this form. However, it is true for languages over the one-letter alpha-
bet, as shown by Okhotin and Reitwiefiner [11]. Therefore, conjunctive grammars
in Greibach normal form can capture some languages that are not context-free
or even finite intersections of those, since the language {a*" | n > 1} is generated
by a conjunctive grammar found by Jez [4].

Ezample 2. The grammar from Example [Il can be easily transformed into
Greibach normal form:

S — aAB & aDC
A — aA
A—a
B — bBU
B—b
U—c
C —cC
C—c
D — aDV
D—=b
V—=b

3 Multiplicative-Additive Lambek Calculus

In this section we define an extension of the Lambek calculus (introduced in [7])
with two new connectives, additive conjunction and disjunction. The additive
(intersective) conjunction was already introduced by Lambek [8], and the whole
calculus was considered by Kanazawa [5]. We shall call this calculus MALC, as
in [6], but use the Lambek-style notation for connectives.

A countable set Pr = {p1, pa, ps, ...} is called the set of primitive types. Types
of MALC are built from primitive types with five binary connectives: - (multipli-
cation, product conjunction), \ (left division), / (right division), N (intersection,
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additive conjunction), U (union, additive disjunction). We denote types with
capital Latin letters and their finite sequences (possibly empty) with capital
Greek ones; A stands for the empty sequence. Sequents (derivable objects) of
MALC are of the form IT — C.

Axioms: A — A.

Rules of inference:

AlIl - B II—A I'BA—C

- avp VAL FIHA\B)A—C 07

gi ;/BA (= /) 24 ?&?AfzfAA:cc (/=)
F?AAHQ-_;BB (=); Fl(j,f-%)AAHHCC (=);
F?ilAll;wZzAQ (=) F(i?ﬁijz)_gic N=)wi=13
Fizlﬁ"AQ (= U)iyi = 1,2 FAIFA(ATUCA;Z‘:A;C U—);

II—-A T''AA-=C (cut).
rna—c
The cut rule is eliminable using the standard technique [7].

The fragment without N and U is the ordinary (multiplicative) Lambek cal-
culus, called MLC or L. We also consider fragments of MALC with other
restrictions of the set of connectives: MALC(/,N), MALC(/,-,N), MLC(/).

4 Categorial Grammars

A MALC-grammar is a triple 4 = (X, H,>), where X is a finite alphabet,
H € Tp, and 1> is a finite correspondence between Tp and X (> C Tp x X).
The language generated by ¢ is the set of all nonempty words ay . ..a, over X
for which there exist types Bi,..., B, such that MALC + B;...B,, — H and
B; 1> a; for all i € {1,...,n}. We denote this language by £(9).

The notions of MALC(/,Nn)-, MALC(/,-,Nn)-, MLC-, and MLC(/)-
grammar are defined similarly.

As shown by Gaifman [I] and Buszkowski [2], any context-free language with-
out the empty word is generated by an MILC(/)-grammar. On the other hand,
any language generated by an MLC-grammar is context-free (Pentus [12]).

Kanazawa [0] proved that any finite intersection of context-free languages
is generated by a MALC(/, N)-grammar (therefore such grammars go beyond
context-free). No generalisation of Pentus’ theorem for MALC is yet known.

Theorem 1. If a language without the empty word is generated by a conjunc-
tive grammar in Greibach normal form, then this language is generated by a
MALC(/,-,N)-grammar.
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5 The Construction

Given a conjunctive grammar G = (N, X, P,S) in Greibach normal form, we
shall construct a MALC(/, -, N)-grammar ¢, such that £(¥4) = £(G).

In order to avoid notation collisions, further we shall use the following nam-
ing convention (all these letters can also be decorated with numerical or other
indices):

Letter Range
A B, S N (nonterminal symbols of G)
a XY (terminal symbols)
T NuUXY
w, U X* (strings of terminal symbols)
g N7 (strings of nonterminal symbols)
T, W (NuUX)*
D Pr (primitive types of MALC)
E,F,G, P Tp (types of MALC)
r,ovw Tp* (sequences of types)

With every A € N we associate a distinguished primitive type p4. For g =
Bi...By, let P = pp, ... pp,, (multiplication is associative, so we can omit
the brackets).

Since intersection in MALC is commutative and associative, we can use in-
tersections of nonempty sets of types, not bothering about order and brackets:
ﬂ?zl E; stands for £y N ... N Eg, and if M = {E4,...,E}, then M =
EiNn...NEy. U M ={E}, then M = E.

For every a € X let

k
M, = {pA/(ﬂ Pﬁj) | (A= afi&...&aB) € P}U{pa | (A — a) € P}.

Let G, = (Y\M,. For A € N let G4 = pa. The following holds due to the
(N —) rule:

Lemma 2. IfE € M, and MALCF®FEV — F, then MALCF &G,V — F.
Forw=mx1...0, € (NUX)T let I, = Gy, ... Gy, .
Lemma 3. If G F [A,w], then MALC+F Iy, — pa.

Proof. We proceed by induction on the length of w. The base case (w = a)
corresponds to an application of a rule of the form A — a to the [a,a] axiom
(this is the only way to derive [4,a]). In this case we have p4 € M,, therefore
by Lemma 2l we get MALC + G, — pa, and [, = G,.

Now let w contain at least two symbols and the last step of the derivation
of [A4,w] be an application of the rule A — af1& ... &afk. Then w = aw’, and
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for every j € {1,...,k}, if B; = Bj1...Bjm,, then w' = wuji ... ujny, and for
every i = {1,...,m;} we have G - [Bj;, u;;]. Therefore, by induction hypothesis,
MALC ~ Iy;;, = pB;,, whence MALC + Iy, — Pg, for every j. Applying the
(— N) rule k times we get
k
MALC + Iy — ﬂ P,

Jj=1

and, finally, by (/ —),

k
MALC + pA/<ﬂ Pﬁj) Ly = pa.
j=1
Since pa /(ﬂf=1 Pg;) € Mg, by Lemma 2 we have MALC + G, I,y — pa, and
Gy Ly =T

Before proving the inverse statement, we shall prove two technical lemmata:

Lemma 4. MALC + ¢ — ﬂjzl Pg, if and only if MALC +~ & — Pg, for
every j € {1,...,k}.

Proof. The “if” part is just k applications of (— N). The “only if” part is proved
using the cut rule (for every jo):

k k
I'— (o Ps; o Py, — Py,
(cut)
I — ngo

Lemma 5. I[fw e (NUX)", 8 =B;...B, € Nt, and MALC + I, — Pg,
then there ewist such T1,...,Tm € (N UX)T, that w = 71 ... Ty and MALC
I, — pp, for everyi € {1,...,m}.

Proof. We can rearrange the derivation, so that the applications of (— -) will be
in the bottom (they are interchangeable with (N —) and (/ —), and these two
are the only ones that can be applied below (— -)). Now the statement of the
lemma is obvious.

Lemma 6. If MALCF I, — pa, then Gew F [A,w].

Proof. Induction by the length of w. If w = a, then the only possible case is
pa € M,. Then (A — a) € P, and Geut - [4, al.

Now let w contain at least two letters. Consider the lowest application of
(/ =) in the derivation of I, — pa. Beneath this application there are only
applications of (N —)—the ones that open the type to which (/ —) is applied,
and the ones that deal with other types in I,,. We can transform the derivation
so that the latter will be applied before the application of (/ —). Then we have

W = w1aTws, pa’ /(ﬂf:1 Pgs;) € M, and the derivation step looks as follows:
k
FT_>mj:1PBg FUJ1pA/FUJ2%pA

i /=)
I, pA’/(ﬂj:lpﬁj) 157 T, = pa
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Then, by Lemmald MALC & I, — Pg, for every j € {1,...,k}. By Lemmal[g]
if Bj = Bj1...Bjm;, T = Tj1...Tjm,;, and MALC F I, — pp,, (for every j
and ¢ in the ranges). By induction hypothesis, Gous & [Bjs, 7ji], and, adding [a, al,
we can apply the rule for A" — af1& ... &afy, therefore Geyt F [A', aT].

By induction hypothesis for the right premise of the (/ —) rule, Geut F
[A, w1 A'ws]. Finally, applying the cut rule to [A’,a7r] and [A,w; A'ws], we get
[A,wiaTws] = [A,w].

Now we are ready to define 4 = (X, 1>, H). Let H = pg, and F 1> a if and only
if £ =G, If we £(G), then G F [S,w], and, by Lemma Bl MALC + I, — pg,
whence w € £(¥¢). Conversely, if w € £(¥), then MALC + I, — pg. By
Lemma [6l we get Geyt - [S, w], and by Lemma [l G F [S,w]. Hence, w € £(G).

Note that in & every a € X' is associated with only one type (such grammars
are called grammars with single type assignment or deterministic grammars).
Having the intersection connective, it is usually easy to make our grammar de-
terministic (cf. [5]); for the pure Lambek calculus the fact that any context-free
language is generated by a deterministic MLC-grammar is not obvious, but still
valid, as shown by Safiullin [I3].

Example 3. This construction gives the following M ALC-grammar equivalent
to the grammar from Example

a>pan(pa/pa)N(pp/(pp-pv)) N (ps/((pa-pr) N (pp - pc)))
b>ppNppNpv N (ps /(P - pU))
c>poNpuN(pc/pc)
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