
The String-Meaning Relations Definable by

Lambek Grammars and Context-Free Grammars

Makoto Kanazawa1 and Sylvain Salvati2

1 National Institute of Informatics, 2–1–2 Hitotsubashi,
Chiyoda-ku, Tokyo, 101–8430, Japan

2 INRIA Bordeaux Sud-Ouest, LaBRI, 351, cours de la Libération,
F-33405 Talence cedex, France

Abstract. We show that the class of string-meaning relations definable
by the following two types of grammars coincides: (i) Lambek grammars
where each lexical item is assigned a (suitably typed) lambda term as a
representation of its meaning, and the meaning of a sentence is computed
according to the lambda-term corresponding to its derivation; and (ii)
cycle-free context-free grammars that do not generate the empty string
where each rule is associated with a (suitably typed) lambda term that
specifies how the meaning of a phrase is determined by the meanings of
its immediate constituents.

1 Introduction

It is well known since Pentus’s work [4,5,6] that Lambek grammars and context-
free grammars can generate the same class of string languages (modulo the empty
string). We show that the equivalence continues to hold when semantics is taken
into account. Specifically, when Lambek grammars and cycle-free (i.e., finitely
ambiguous) context-free grammars are enriched with Montague semantics, they
define the same class of relations between (non-empty) strings and meanings
(represented as typed λ-terms).

2 Preliminaries

2.1 Lambda Terms over a Higher-Order Signature

If A is a finite set, then the set Tp(A,→) of simple types over A is the smallest
superset of A such that A,B ∈ Tp(A,→) implies A→B ∈ Tp(A,→). A higher-
order signature is a triple Σ = (A, C, τ), where A is a finite set of atomic types,
C is a finite set of constants, and τ is a function from C to Tp(A,→). If Var
is a countably infinite set of variables, disjoint from C, then the set Λ(Σ) of
λ-terms over Σ is the smallest superset of C ∪ Var such that M,N ∈ Λ(Σ) and
x ∈ Var imply MN ∈ Λ(Σ) and λx.M ∈ Λ(Σ). A type environment is a finite
partial function from Var to Tp(A,→), written as a list of typing declarations
x1 :A1, . . . , xn :An. A λ-term M [x1, . . . , xn] with free variables x1, . . . , xn may be
assigned a type B under a typing environment x1 :A1, . . . , xn :An, or in symbols,

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 191–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



192 M. Kanazawa and S. Salvati

x1 :A1, . . . , xn :An �Σ M [x1, . . . , xn] :B. (The subscript Σ may be omitted when
M [x1, . . . , xn] is a pure λ-term, i.e., does not contain any constants.) Such a
typing judgment is derived according to the following rules:

x : A �Σ x :A �Σ c : τ(c)

Γ �Σ M : A→B Δ �Σ N : A

Γ ∪Δ �Σ MN : B

Γ �Σ M : B

Γ − {x :A} �Σ λx.M :A→B

(In the last rule, x may not be in the domain of Γ − {x : A}.)
We assume that the reader is familiar with basic notions in λ-calculus, such

as β-reduction and β-normal form. We write M �β M ′ when M β-reduces to
M ′, and write |M |β for the β-normal form of M . As is customary, we adopt the
informal practice of identifying λ-terms that are identical modulo renaming of
bound variables.

2.2 Product-Free Lambek Calculus

We mostly follow the notations of Pentus [5]. We let Pr = {p1, p2, . . . } be
a countably infinite set of primitive types. If B is a subset of Pr, we let
Tp(B, \, /) denote the smallest superset of B such that A,B ∈ Tp(B, \, /) im-
plies A\B,B/A ∈ Tp(B, \, /). Elements of Tp(Pr, \, /) are called (directional)
types. We let p range over Pr and A,B,C, . . . range over Tp(Pr, \, /). When Γ
is a finite string of types, we let |Γ | denote the number of types in Γ ; thus,
|A1 . . . An| = n.

An expression of the form Γ → A, where Γ is a non-empty finite string of
types and A is a type, is called a sequent. The sequent calculus presentation of
the Lambek calculus consists of the following axioms and rules:

– Axioms: p → p
– Rules:

Π → A ΓBΔ → C
ΓΠ(A\B)Δ → C

(\→) AΠ → B
Π → A\B (→\) where Π �= ε

Π → A ΓBΔ → C
Γ (B/A)ΠΔ → C

(/→) ΠA → B
Π → B/A

(→/) where Π �= ε

Π → C ΓCΔ → A
ΓΠΔ → A

Cut

A derivation is cut-free if it does not contain any applications of the Cut rule.
It is easy to see that every sequent has only finitely many cut-free derivations.

Curry-Howard Homomorphism. Every derivation D is associated with a pure
λ-term h(D) according to the following rules (x1, x2, . . . are specially reserved
variables):



Lambek Grammars and Context-Free Grammars 193

– If D is an axiom p → p, then h(D) = x1.
– If D is of the form ....F

Π → A

.... E
ΓBΔ → C

ΓΠ(A\B)Δ → C
(\→)

then

h(D) = M [x1, . . . , xi−1, xi+nN [xi, . . . , xi+n−1], xi+n+1, . . . , xm+n],

where |Γ | = i− 1, h(E) = M [x1, . . . , xm], and h(F) = N [x1, . . . , xn].
– If D is of the form .... E

AΠ → B
Π → A\B (→\)

then h(D) = λz.M [z, x1, . . . , xm−1], where h(E) = M [x1, . . . , xm].
– If D ends in (/→) or (→/), h(D) is defined similarly to the preceding two

cases.
– If D is of the form ....F

Π → C

.... E
ΓCΔ → A

ΓΠΔ → A
Cut

then

h(D) = M [x1, . . . , xi−1, N [xi, . . . , xi+n−1], xi+n, . . . , xm+n−1],

where |Γ | = i− 1, h(E) = M [x1, . . . , xm], and h(F) = N [x1, . . . , xn].

We also use h for the mapping from directional types to simple types de-
fined by h(p) = p, h(A\B) = h(B/A) = h(A) → h(B). If D is a derivation of
A1 . . . An → B, then we always have

x1 : h(A1), . . . , xn : h(An) � h(D) : h(B).

Another important fact is that if D is cut-free, then h(D) is in β-normal form.

Cut Elimination.

p → p

.... E
ΓpΔ → A

ΓpΔ → A
Cut

�
.... E

ΓpΔ → A
(C1)

.... F
Π → p p → p

Π → p
Cut

�
.... F

Π → p
(C2)

.... F1

Π → A

.... F2

ΓBΔ → C

ΓΠ(A\B)Δ → C
(\→)

.... E
ΦCΨ → D

ΦΓΠ(A\B)ΔΨ → D
Cut

�
.... F1

Π → A

.... F2

ΓBΔ → C

.... E
ΦCΨ → D

ΦΓBΔΨ → D
Cut

ΦΓΠ(A\B)ΔΨ → D
(\→)

(C3)



194 M. Kanazawa and S. Salvati

.... F
Φ → C

.... E1
Π′CΠ′′ → A

.... E2
ΓBΔ → D

ΓΠ′CΠ′′(A\B)Δ → D
(\→)

ΓΠ′ΦΠ′′(A\B)Δ → D
Cut

�

.... F
Φ → C

.... E1
Π′CΠ′′ → A

Π′ΦΠ′′ → A
Cut

.... E2
ΓBΔ → D

ΓΠ′ΦΠ′′(A\B)Δ → D
(\→)

(C4)

.... F
Φ → C

.... E1
Π → A

.... E2
Γ ′CΓ ′′BΔ → D

Γ ′CΓ ′′Π(A\B)Δ → D
(\→)

Γ ′ΦΓ ′′Π(A\B)Δ → D
Cut

�
.... E1

Π → A

.... F
Φ → C

.... E2
Γ ′CΓ ′′BΔ → D

Γ ′ΦΓ ′′BΔ → D
Cut

Γ ′ΦΓ ′′Π(A\B)Δ → D
(\→)

(C5)

.... F
Φ → C

.... E1
Π → A

.... E2
ΓBΔ′CΔ′′ → D

Π(A\B)Δ′CΔ′′ → D
(\→)

ΓΠ(A\B)Δ′ΦΔ′′ → D
Cut

�
.... E1

Π → A

.... F
Φ → C

.... E2
ΓBΔ′CΔ′′ → D

ΓBΔ′ΦΔ′′ → D
Cut

ΓΠ(A\B)Δ′ΦΔ′′ → D
(\→)

(C6)

.... F
Φ → C

.... E1
AΠ′CΠ′′ → B

Π′CΠ′′ → A\B (→\)

Π′ΦΠ′′ → A\B Cut

�

.... F
Φ → C

.... E1
AΠ′CΠ′′ → B

AΠ′ΦΠ′′ → B
Cut

Π′ΦΠ′′ → A\B (→\)
(C7)

Similar to (C3)–(C7), with / in place of \. (C8)–(C12)

.... F1

AΦ → B

Φ → A\B (→\)

.... E1
Π → A

.... E2
ΓBΔ → D

ΓΠ(A\B)Δ → D
(\→)

ΓΠΦΔ → D
Cut

�

.... E1
Π → A

.... F1

AΦ → B
ΠΦ → B

Cut

.... E2
ΓBΔ → D

ΓΠΦΔ → D
Cut

(C13)

.... F1

AΦ → B

Φ → A\B (→\)

.... E1
Π → A

.... E2
ΓBΔ → D

ΓΠ(A\B)Δ → D
(\→)

ΓΠΦΔ → D
Cut

�
.... E1

Π → A

.... F1

AΦ → B

.... E2
ΓBΔ → D

ΓAΦΔ → D
Cut

ΓΠΦΔ → D
Cut

(C14)

Similar to (C13)–(C14), with / in place of \. (C15)–(C16)

If D � D′ by one of (C1)–(C16), then h(D) �β h(D′). Every derivation D
reduces to some cut-free derivation D′ by repeated applications of (C1)–(C16).

In general, a derivation may reduce to many different cut-free derivations,
although the β-normal λ-terms associated with these derivations are all equal.1

1 The non-confluence property is due to the fact that (C3) and (C8) have overlapping
domains of application with (C4)–(C7) and (C9)–(C12), and the fact that (C13) and
(C14) have identical domains of application, as do (C15) and (C16). We note that
(C13) and (C15) were not among the rules described by Lambek [3] in his proof
of cut elimination. For our purposes, it is convenient, though not essential, to have
these rewriting rules, in addition to (C14) and (C16).



Lambek Grammars and Context-Free Grammars 195

2.3 Lambek Grammars with Montague Semantics

A Lambek grammar with Montague semantics (Lambek grammar for short) is a
tuple G = (B, T , Σ, f,R, S), where

– B is a finite subset of Pr,
– T is a finite set of terminals,
– Σ = (A, C, τ) is a higher-order signature called the semantic vocabulary,
– f is a function from B to Tp(A,→),
– R is a finite subset of T × Tp(B, \, /) × Λ(Σ) such that if (a,A,M) ∈ R,

then �Σ M : f(h(A)),2

– S is a distinguished element of Tp(B, \, /).

The string-meaning relation defined by G is

R(G) = { (a1 . . . an, |M [M1, . . . ,Mn]|β) |
D is a derivation of B1 . . . Bn → S,M [x1, . . . , xn] = h(D),

(ai, Bi,Mi) ∈ R for i = 1, . . . , n }.

Whenever (w,M) ∈ R(G), it holds that �Σ M : f(h(S)).

2.4 Context-Free Grammars with Montague Semantics

A context-free grammar with Montague semantics (context-free grammar for
short) is a tuple G = (N , T , Σ, f,P , S), where

– N is a finite set of nonterminals,
– T is a finite set of terminals,
– Σ = (A, C, τ) is a higher-order signature called the semantic vocabulary,
– f is a function from N to Tp(A,→),
– P is a finite set of rules of the form

B → w0B1w1 . . . Bnwn : M [x1, . . . , xn] (1)

where n ≥ 0, B,B1, . . . , Bn ∈ N , w0, w1, . . . , wn ∈ T ∗, M [x1, . . . , xn] ∈
Λ(Σ), and

x1 : f(B1), . . . , xn : f(Bn) �Σ M [x1, . . . , xn] : f(B),

– S is a distinguished element of N called the start symbol.

A derivation tree of sort B is a tree of the form πT1 . . . Tn, where π is a rule
of the form (1) and for i = 1, . . . , n, Ti is a derivation tree of sort Bi. We write

D(G) for the set of derivation trees of G (of any sort). The string yield of a
derivation tree T = πT1 . . . Tn is defined recursively by

y(T ) = w0 y(T1)w1 . . . y(Tn)wn.

2 Here, f is homomorphically extended to a function from Tp(B,→) to Tp(A,→).



196 M. Kanazawa and S. Salvati

The meaning of T is defined by

m(T ) = M [m(T1), . . . ,m(Tn)].

Note that whenever T is a derivation tree of sort B, we have

�Σ m(T ) : f(B).

We write

�G B(w,M)

to mean that there is a derivation tree T of sort B such that y(T ) = w and
m(T ) = M . The string-meaning relation defined by G is

R(G) = { (w, |M |β) | �G S(w,M) }.

In addition to the notion of a derivation tree, we need the notion of a deriva-
tion tree context. A derivation tree context is a derivation tree with holes, each
denoted by a symbol of the form �D, where D is a nonterminal. A derivation
tree context of sort B is defined inductively as follows:

– �B is a derivation tree context of sort B.
– If π is a rule of the form (1) and Ti is a derivation tree context of sort Bi

for i = 1, . . . , n, then πT1 . . . Tn is a derivation tree context of sort B.

The yield and meaning of a derivation tree context are defined as follows:

y(�D) = D,

y(πT1 . . . Tn) = w0 y(T1)w1 . . . y(Tn)wn,

m(�D) = x1,

m(πT1 . . . Tn) = M [P1[x1, . . . , xk1 ], . . . , Pn[xk1+···+kn−1+1, . . . , xk1+···+kn ]],

where Pi[x1, . . . , xki ] = m(Ti).

If T is a derivation tree context of sort B with n holes, labeled �D1 , . . . ,�Dn ,
respectively, from left to right, then

y(T ) ∈ T ∗D1T ∗ . . . DnT ∗,
x1 : f(D1), . . . , xn : f(Dn) �Σ m(T ) : f(B).

We write

�G B(γ,M)

to mean that there is a derivation tree context T of sort B such that y(T ) = γ
and m(T ) = M .

Let T be a derivation tree context of sort B with m holes, and i ∈ {1, . . . ,m}.
If �D is the label of the i-th hole (from the left) of T and U is a derivation tree
context of sort D with n holes, then the result of replacing the i-th hole of T



Lambek Grammars and Context-Free Grammars 197

by U , call it T ′, is a derivation tree context of sort B with m + n − 1 holes. If
γDδ = y(T ), where γ ∈ (T ∗N )i−1T ∗, then

y(T ′) = γy(U)δ,

and
m(T ′) = M [x1, . . . , xi−1, N [xi, . . . , xi+n−1], xi+n, . . . , xm+n−1],

where M [x1, . . . , xm] = m(T ) and N [x1, . . . , xn] = m(U).
If we ignore the components Σ, f of G = (N , T , Σ, f,P , S) and remove colons

and λ-terms from the rules in P , we get an ordinary context-free grammar. We
write ⇒G for the relation of one-step rewriting associated with this context-
free grammar. We write ⇒+

G and ⇒∗
G for the transitive and reflexive transitive

closure of this relation, respectively. Clearly, for every B ∈ N , w ∈ T ∗, and
δ ∈ (N ∪ T )∗, we have

– B ⇒∗
G w iff there is a derivation tree T of sort B such that y(T ) = w, and

– B ⇒∗
G δ iff there is a derivation tree context T of sort B such that y(T ) = δ.

We write L(G) for

{w ∈ T ∗ | S ⇒∗
G w } = {y(T ) | T is a derivation tree of G of sort S }.

We call G = (N , T , Σ, f,P , S) cycle-free if G does not allow a cycle B ⇒+
G B

for any B ∈ N . If G is cycle-free, then for any w ∈ T ∗, the set {T ∈ D(G) |
y(T ) = w } is finite, and a fortiori, the set of meanings associated with each w,
{M | (w,M) ∈R(G) }, is finite.

3 From Lambek to Context-Free Grammars

3.1 Pentus’s Interpolation Lemma and Cut Elimination

Pentus’s proof of his interpolation lemma for product-free Lambek calculus
(Lemma 7 of [5]) amounts to an algorithm that, given a cut-free derivation D of
Γ → C and a partition (Φ,Θ, Ψ) of Γ (i.e., ΦΘΨ = Γ ), returns a sequence of
cut-free derivations (D0,D1, . . . ,Dn) (n ≥ 0) satisfying the following properties:

(i) for i = 1, . . . , n, Di is a derivation of Θi → Di,
(ii) Θ1 . . . Θn = Θ,
(iii) D0 is a derivation of ΦD1 . . .DnΨ → C,
(iv) for every atomic type p, if p occurs in Di, then p occurs in both Θi and

ΦΨC.

We may add the following condition:

(v) ....D1

Θ1 → D1

....Dn

Θn → Dn

....D0

ΦD1 . . . DnΨ → C

ΦD1 . . . Dn−1ΘnΨ → C
Cut

....
ΦD1Θ2 . . . ΘnΨ → C

ΦΘ1 . . . ΘnΨ → C
Cut

�∗
....D

ΦΘ1 . . . ΘnΨ → C



198 M. Kanazawa and S. Salvati

That is, the cut-free derivations found by Pentus’s interpolation algorithm can
be combined by the Cut rule to form a derivation that reduces to the original
one.3

Lemma 1. Condition (v) holds of Pentus’s algorithm for interpolation.

Proof (sketch). We refer to the numbering of cases used in Pentus’s proof [5].
Square brackets indicate the selected (i.e., middle) part of the three-way partition
of antecedents. We only treat two subcases of Case 4.

Case 4. D ends in an application of (\→).
Case 4e.

D =

....F
Π → A

.... E
Γ ′[Γ ′′BΔ′]Δ′′ → C

Γ ′[Γ ′′Π(A\B)Δ′]Δ′′ → C
(\→)

By induction hypothesis, we have

.... E1

Θ1 → E1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ
′′ → C

Γ ′E1 . . . Er−1ΘrΔ
′′ → C

Cut
....

Γ ′E1Θ2 . . . ΘrΔ
′′ → C

Γ ′Θ1 . . . ΘrΔ
′′ → C

Cut

�∗
.... E

Γ ′Θ1 . . . ΘrΔ
′′ → C

where Θ1 . . . Θr = Γ ′′BΔ′. Let k,Ξ, Υ be such that

Θ1 . . . Θk−1Ξ = Γ ′′, Θk = ΞBΥ, ΥΘk+1 . . . Θr = Δ′.

In this case, Pentus’s algorithm gives (E0, E1, . . . , Ek−1, Ẽk, Ek+1, . . . , Er), where

Ẽk =

....F
Π → A

.... Ek
ΞBΥ → Ek

ΞΠ(A\B)Υ → Ek
(\→)

We have

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... F
Π → A

.... Ek

ΞBΥ → Ek

ΞΠ(A\B)Υ → Ek

(\→)

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−2Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

3 For the purpose of the present paper, it is actually enough to know that the λ-terms
corresponding to the two derivations in (v) are β-equal, but the stronger property
may be of independent interest. For an analogous (but more involved) property of
interpolation in the sequent calculus for intuitionistic implicational logic, see [1].



Lambek Grammars and Context-Free Grammars 199

� (C3)

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... F
Π → A

.... Ek

ΞBΥ → Ek

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

Γ ′E1 . . . Ek−2Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

�∗
(C5)

.... F
Π → A

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... Ek

ΞBΥ → Ek

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−2Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

�∗ by I.H.

.... F
Π → A

.... E
Γ ′Θ1 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

Case 4f.

D =

....F
[Π ′]Π ′′ → A

.... E
Γ [BΔ′]Δ′′ → C

ΓΠ ′[Π ′′(A\B)Δ′]Δ′′ → C
(\→)

where Π ′ �= ε. By induction hypothesis, we have

.... F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1 . . . FmΠ ′′ → A

F1 . . . Fm−1ΞmΠ ′′ → A
Cut

....
F1Ξ2 . . . ΞmΠ ′′ → A

Ξ1 . . . ΞmΠ ′′ → A
Cut

�∗
.... F

Ξ1 . . . ΞmΠ ′′ → A



200 M. Kanazawa and S. Salvati

.... E1

Θ1 → E1

.... Er

Θr → Er

.... E0

ΓE1 . . . ErΔ
′′ → C

ΓE1 . . . Er−1ΘrΔ
′′ → C

Cut
....

ΓE1Θ2 . . . ΘrΔ
′′ → C

ΓΘ1 . . . ΘrΔ
′′ → C

Cut

�∗
.... E

ΓΘ1 . . . ΘrΔ
′′ → C

where m, r ≥ 1, Ξ1 . . . Ξm = Π ′, and Θ1 . . . Θr = BΔ′. In this case, Pentus’s
algorithm gives (Ẽ0, Ẽ1, E2, . . . , Er), where

Ẽ0 = .... Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E0

ΓE1 . . . ErΔ
′′ → C

ΓΞ1(F1\E1)E2 . . . ErΔ
′′ → C

(\→)

....
ΓΞ1 . . . Ξm−1(Fm−1\(. . . \(F1\E1) . . . ))E2 . . . ErΔ

′′ → C

ΓΞ1 . . . Ξm(Fm\(. . . \(F1\E1) . . . ))E2 . . . ErΔ
′′ → C

(\→)

Ẽ1 =

.... F0

F1 . . . FmΠ ′′ → A

.... E1

BΥ → E1

F1 . . . FmΠ ′′(A\B)Υ → E1

(\→)

F2 . . . FmΠ ′′(A\B)Υ → (F1\E1)
(→\)

....
FmΠ ′′(A\B)Υ → (Fm−1\(. . . \(F1\E1) . . . ))

Π ′′(A\B)Υ → (Fm\(. . . \(F1\E1) . . . ))
(→\)

with Θ1 = BΥ and Δ′ = ΥΘ2 . . . Θr. In the following derivations, we abbreviate
a sequence of types Ci . . . Cj by Ci..j , a concatenation of sequences of types
Γi . . . Γj by Γi..j , and a type of the form (Ci\(. . . \(Cj\D) . . . )) by (Ci..j\D). We
also omit rule labels other than “Cut”. We have

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Π ′′(A\B)Υ → (Fm . .1\E1)

.... E2

Θ2 → E2

.... Er

Θr → Er

.... Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E0

ΓE1. .r Δ
′′ → C

ΓΞ1(F1\E1)E2. .r Δ
′′ → C....

ΓΞ1. .m−1(Fm−1. .1\E1)E2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)E2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)E2. .r−1Θr Δ
′′ → C

Cut
....

ΓΞ1. .m (Fm . .1\E1)E2Θ3. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)Θ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut



Lambek Grammars and Context-Free Grammars 201

�∗ (C6)

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Π ′′(A\B)Υ → (Fm . .1\E1)

.... Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C13)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
Fm−1FmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)
ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Cut

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

�∗ (C7)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F1. .m−1ΞmΠ ′′(A\B)Υ → E1
Cut

F2. .m−1ΞmΠ ′′(A\B)Υ → (F1\E1)....
Fm−1ΞmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C4)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

.... E1

BΥ → E1

F1. .m−1ΞmΠ ′′(A\B)Υ → E1

F2. .m−1ΞmΠ ′′(A\B)Υ → (F1\E1)....
Fm−1ΞmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1 mΠ ′′(A\B)ΥΘ2 r Δ
′′ → C

Cut



202 M. Kanazawa and S. Salvati

�∗ (C13), (C7), (C4)
.... F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

....
F1Ξ2. .mΠ ′′ → A

Ξ1. .mΠ ′′ → A
Cut

.... E1

BΥ → E1

Ξ1. .mΠ ′′(A\B)Υ → E1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C3) .... F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

....
F1Ξ2. .mΠ ′′ → A

Ξ1. .mΠ ′′ → A
Cut

.... E1

BΥ → E1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓBΥΘ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

�∗ by I.H.

.... F
Ξ1. .mΠ ′′ → A

.... E
ΓBΥΘ2. .r Δ

′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

The remaining cases are handled similarly. 	


3.2 Pentus’s Construction

Define

‖p‖ = 1, ‖A\B‖ = ‖A‖+ ‖B‖, ‖B/A‖ = ‖B‖+ ‖A‖,
‖A1 . . . An‖ = ‖A1‖+ · · ·+ ‖An‖.

An (m, q)-type is a type A such that ‖A‖ ≤ m and the atomic types that
occur in A are among p1, . . . , pq. A sequent A1 . . . An → C is an (m, q)-sequent if
A1, . . . , An, C are all (m, q)-types. The class of Lcut(m, q)-derivations are defined
inductively as follows:

– A cut-free derivation of A1 . . . An → C is an Lcut(m, q)-derivation if
A1 . . . An → C is an (m, q)-sequent and ‖A1 . . . An‖ ≤ 2m.

– If F is an Lcut(m, q)-derivation of Π → C and E is an Lcut(m, q)-derivation
of ΓCΔ → A, then

....F
Π → C

.... E
ΓCΔ → A

ΓΠΔ → A
Cut

is an Lcut(m, q)-derivation.

Pentus uses his interpolation lemma to prove that every derivable (m, q)-
sequent has an Lcut(m, q)-derivation (Theorem 1 of [5]). With Lemma 1, we can
strengthen this theorem to the following:



Lambek Grammars and Context-Free Grammars 203

Lemma 2. For every cut-free derivation D of an (m, q)-sequent, there is an
Lcut(m, q)-derivation D′ of the same sequent such that D′ �∗ D.

Let G = (B, T , Σ, f,R, S) be a Lambek grammar with Montague semantics.
Let q be the least number such that B ⊆ {p1, . . . , pq} and let m = max({ ‖B‖ |
(a,B,M) ∈ R} ∪ {‖S‖}). Construct a context-free grammar with Montague
semantics Gcf = (N , T , Σ, f ′,P , S), where

N = {B ∈ Tp(B, \, /) | B is an (m,q)-type },
f ′(B) = f(h(B)) for all B ∈ N ,

P = {C → A1 . . . An : h(D) | C,A1, . . . , An ∈ N , ‖A1 . . . An‖ ≤ 2m,
D is a cut-free derivation of A1 . . . An → C } ∪

{B → a : M | (a,B,M) ∈ R}.

Note that N and P are both finite.

Lemma 3. Let B1, . . . , Bn, C ∈ N .

(i) If D is an Lcut(m, q)-derivation of B1 . . . Bn → C, then there is a deriva-
tion tree context T of Gcf of sort C such that y(T ) = B1 . . . Bn and
m(T ) = h(D).

(ii) If T is a derivation tree context of Gcf of sort C such that y(T ) = B1 . . . Bn,
then there is an Lcut(m, q)-derivation D of B1 . . . Bn → C such that
h(D) = m(T ).

Theorem 4. For any Lambek grammar with Montague semantics G, R(G) =
R(Gcf).

The grammar Gcf contains cycles B ⇒+
Gcf

B. The next lemma allows us to
modify the construction to obtain a grammar G′

cf that has no rule of the form
B → A : M [x1].

Lemma 5. For any Lcut(m, q)-derivation D, there is an Lcut(m, q)-derivation
D′ of the same sequent such that |h(D)|β = |h(D′)|β and no sequent of the form
A → B appears in D′ as a right premise of the Cut rule.

Proof (sketch). Use the following rewriting to transform D into D′.

.... F1

Π → C

.... F2

ΓCΔ → A
ΓΠΔ → A

Cut

.... E
A → B

ΓΠΔ → B
Cut

���
.... F1

Π → C

.... F2

ΓCΔ → A

.... E
A → B

ΓCΔ → B
Cut

ΓΠΔ → B
Cut

.... F
Γ → A

.... E
A → B

Γ → B
Cut

�∗ a cut-free derivation of Γ → B where ‖Γ‖ ≤ 2m ��



204 M. Kanazawa and S. Salvati

4 From Context-Free to Lambek Grammars

4.1 From Greibach Normal Form Context-Free Grammars to
Lambek Grammars

As with the case of context-free grammars without semantics, the conversion
from context-free grammars with Montague semantics to Lambek grammars is
based on the Greibach normal form. A context-free grammar with Montague
semantics G = (N , T , Σ, f,P , S) is said to be in Greibach normal form if the as-
sociated grammar without semantics is in Greibach normal form, i.e., if each rule
in P is of the form B → aC1 . . . Cn : M [x1, . . . , xn], where a ∈ T and Ci ∈ N .
Such a grammar can be converted to a Lambek grammarG′ = (N , T , Σ, f,R, S)
by letting R consist of all triples

(a, (. . . (B/Cn)/ . . . )/C1, λz1 . . . zn.M [z1, . . . , zn])

such that B → aC1 . . . Cn : M [x1, . . . , xn] is a rule in P . (Here, we assume that
N is identified with some finite subset of Pr.)

4.2 Greibach Normal Form Transformation of Context-Free
Grammars with Montague Semantics

We describe a procedure for converting a cycle-free context-free grammar with
Montague semantics G with ε �∈ L(G) into an equivalent one in Greibach normal
form. This is done in five steps. The first step eliminates all ε-rules from the
grammar. The second step eliminates all unit rules. The third step performs the
left-corner transform, well-known from the work of Rosenkrantz and Lewis [7],
but enriched with semantics. The fourth step takes the result of the previous
step and converts it into extended Greibach normal form. The last step then
converts it into Greibach normal form. The first four steps roughly mirror the
procedure presented in the technical report by Kanazawa and Yoshinaka [2].

Suppose that G = (N , T , Σ, f,P , S) is a cycle-free grammar such that ε �∈
L(G). Let us call a nonterminal B nullable if B ⇒∗

G ε. By assumption, S is not
nullable. Note that the binary relation ⇒+

G restricted to N is a strict partial
order. When A ⇒+

G B holds, we consider A “less than” B with respect to this
partial order.

Elimination of ε-Rules. A rule of the form B → ε : M is called an ε-rule. Let
C be a nullable nonterminal that is maximal with respect to the strict partial
order ⇒+

G. Let P0 be the set of all ε-rules in P with C as the left-hand side
nonterminal. For each rule π of the form

B → w0B1w1 . . . Bnwn : M [x1, . . . , xn],

let π ◦ P0 consist of all rules of the form

B → w0β1w1 . . . βnwn : M [Q1, . . . , Qn]

such that for some k1, . . . , kn, each i ∈ {1, . . . , n} satisfies either



Lambek Grammars and Context-Free Grammars 205

– βi = Bi, Qi = xki , and ki = ki−1 + 1, or
– βi = ε, Bi = C, P0 contains the rule C → ε : Qi, and ki = ki−1,

where k0 = 0. Let

P ′ =
⋃

π∈P−P0

π ◦ P0,

G′ = (N , T , Σ,P ′, S).

Lemma 6. For every B ∈ N and w ∈ T +, the following are equivalent:

(i) �G B(w,N).
(ii) Either �G′ B(w,N) or B = C, w = ε, and P0 contains the rule C → ε : N .

Lemma 7. For every B ∈ N , B is nullable in G′ if and only if B �= C and B
is nullable in G.

Lemma 8. For every B,B′ ∈ N , B ⇒+
G′ B′ if and only if B ⇒+

G B′.

By Lemma 6, R(G′) = R(G), and by Lemmas 7 and 8, G′ is a cycle-free gram-
mar with one fewer nullable nonterminals than G. By repeating this procedure,
we can turn G into an equivalent one that is cycle-free and contains no ε-rules.

Elimination of Unit Rules. A unit rule is a rule of the form B → B1 : M [x1]. If
G = (N , T , Σ, f,P , S) is a cycle-free grammar with no ε-rules, we can eliminate
unit rules from G by a procedure similar to the one used for the previous step.
Let C be a nonterminal in N that is maximal, but not minimal, with respect
to the strict partial order ⇒+

G. This means that there is a unit rule with C as
its right-hand side nonterminal, but there is no unit rule with C as its left-hand
side nonterminal. Let Pleft be the set of all rules in P with C as their left-hand
side nonterminal, and let Pright be the set of all unit rules in P with C as their
right-hand side nonterminal. Let Pright ◦ Pleft consist of all rules of the form

B → v0D1v1 . . . vm−1Dmvm : N [M [x1, . . . , xm]]

such that Pright contains the rule

B → C : N [x1]

and Pleft contains the rule

C → v0D1v1 . . . vm−1Dmvm : M [x1, . . . , xm].

Let
P ′ = (P − Pright) ∪ (Pright ◦ Pleft),

G′ = (N , T , Σ,P ′, S).

Lemma 9. �G′ B(w,M) if and only if �G B(w,M).

Lemma 10. B ⇒+
G′ B′ if and only if B ⇒+

G B′ and B′ �= C.

By Lemma 9, R(G′) = R(G). It is clear that G′ is a cycle-free grammar with
no ε-rules, and G′ has one fewer nonterminals that appear on the right-hand
side of unit rules than G. By repeating this procedure, we can obtain a grammar
equivalent to G that has no ε- or unit rules.



206 M. Kanazawa and S. Salvati

Left-corner Transform. Let G = (N , T , Σ, f,P , S) be a grammar with no ε- or
unit rules. Let

N ′ = N ∪ { [B\C] | B,C ∈ N},
and define f ′ :N ′ → Tp(A) by

f ′(B) = f(B), f ′([B\C]) = f(B)→ f(C).

Define P ′ as follows:

– For each rule in P of the form

B → w0B1w1 . . . Bnwn : M [x1, . . . , xn]

(n ≥ 0) with w0 �= ε and each C ∈ N , P ′ contains the rules

B → w0B1w1 . . . Bnwn : M [x1, . . . , xn],

C → w0B1w1 . . . Bnwn[B\C] : xn+1M [x1, . . . , xn].

– For each rule in P of the form

B → B1w1 . . . Bnwn : M [x1, . . . , xn]

(n ≥ 1) and each C ∈ N , P ′ contains the rules

[B1\B] → w1B2w2 . . . Bnwn : λz.M [z, x1, . . . , xn−1],

[B1\C] → w1B2w2 . . . Bnwn [B\C] : λz.xnM [z, x1, . . . , xn−1],

(Note that here, either n ≥ 2 or w1 �= ε, since G has no ε- or unit rules.)

Define G′ = (N ′, T , Σ, f ′,P ′, S). The following lemma implies R(G′) = R(G).

Lemma 11. For every B,D ∈ N and w ∈ T +, the following equivalences hold:

(i) �G B(w,M) if and only if �G′ B(w,M)
(ii) �G B(Dw,M [x1]) if and only if �G′ [D\B](w, λz.M [z]).

Conversion to Extended Greibach Normal Form. Let G be a grammar with no ε-
or unit rule, and let G′ = (N ′, T , Σ, f ′,P ′, S) be the result of applying the left-
corner transform to G. For each rule π of G′, if the left-hand side nonterminal of
π is some B ∈ N , then the right-hand side of π starts with a terminal. If the left-
hand side nonterminal of π is of the form [B\C], the right-hand side of π starts
either with a terminal or with some nonterminal B2 ∈ N . Let P ′

1 be the set of all
rules in P ′ that does not start with a terminal, and for each nonterminal D ∈ N ,
let P ′

D be the set of all rules in P ′ that has D as their left-hand side nonterminal.
If π ∈ P ′

1 is of the form π = [B\C] → Dπw1B2w2 . . . Bnwn : M [x1, . . . , xn], let
π ◦ P ′

Dπ
consist of all rules

[B\C] → v0E1v1 . . . Emvmw1B2w2 . . . Bnwn : M [P [x1, . . . , xm], xm+1, . . . , xm+n−1]



Lambek Grammars and Context-Free Grammars 207

such that Dπ → v0E1v1 . . . Emvm : P [x1, . . . , xm] is a rule in P ′
Dπ

. Let

P ′′ = (P ′ − P ′
1) ∪

⋃

π∈P′
1

π ◦ P ′
Dπ

,

G′′ = (N ′, T , Σ, f ′,P ′′, S).

It is easy to see that R(G′′) = R(G′) and G′′ is in extended Greibach normal
form in the sense that the right-hand side of each rule starts with a terminal.

From Extended Greibach Normal Form to Greibach Normal Form. Let G =
(N , T , Σ, f,P , S) be a grammar in extended Greibach normal form. Let

N ′ = N ∪ { [Ba] | B ∈ N , a ∈ T },

and define f ′ : N ′ → Tp(A) by

f ′(B) = f(B), f ′([Ba]) = f(B) → f(B).

If π is a rule of the form

C → aX1 . . . Xn : M [x1, . . . , xm]

in P , where Xi ∈ N ∪ T , and k1, . . . , km and j1, . . . , jn−m list the elements of
{ i | Xi ∈ N } and { i | Xi ∈ T }, respectively, in increasing order, then let π′ be
the rule

C → aX ′
1 . . . X

′
n : xj1(. . . (xjn−mM [xk1 , . . . , xkm ]) . . . ),

where

X ′
i =

{
Xi if Xi ∈ N ,

[CXi] if Xi ∈ T .

Let
P ′ = { [Ba] → a : λz.z | B ∈ N , a ∈ T } ∪ { π′ | π ∈ P }.

LetG′ = (N ′, T , Σ, f ′,P ′, S). It is clear thatR(G′) =R(G) andG′ is in Greibach
normal form.

The constructions in this and the previous subsection together give the second
half of the main result of this paper:

Theorem 12. Given any cycle-free context-free grammar with Montague se-
mantics G such that ε �∈ L(G), one can construct a Lambek grammar GL such
that R(G) =R(GL).

References

1. Kanazawa, M.: Computing interpolants in implicational logics. Annals of Pure and
Applied Logic 142, 125–201 (2006)

2. Kanazawa, M., Yoshinaka, R.: Lexicalization of second-order ACGs. NII Technical
Report NII-2005-012E, National Institute of Informatics, Tokyo (2005)



208 M. Kanazawa and S. Salvati

3. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

4. Pentus, M.: Lambek grammars are context free. In: Proceedings of the Eighth An-
nual IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)

5. Pentus, M.: Product-free Lambek calculus and context-free grammars. Journal of
Symbolic Logic 62, 648–660 (1997)

6. Pentus, M.: Lambek calculus and formal grammars. In: Provability, Complexity,
Grammars. American Mathematical Society Translations–Series 2, vol. (192), pp.
57–86. American Mathematical Society, Providence (1999)

7. Rosenkrantz, D.J., Lewis II, P.M.: Deterministic left corner parsing. In: IEEE Con-
ference Record of the 11th Annual Symposium on Switching and Automata, pp.
139–152. IEEE (1970)


	The String-Meaning Relations Definable by Lambek Grammars and Context-Free Grammars
	1 Introduction
	2 Preliminaries
	2.1 Lambda Terms over a Higher-Order Signature
	2.2 Product-Free Lambek Calculus
	2.3 Lambek Grammars with Montague Semantics
	2.4 Context-Free Grammars with Montague Semantics

	3 From Lambek to Context-Free Grammars
	3.1 Pentus’s Interpolation Lemma and Cut Elimination
	3.2 Pentus’s Construction

	4 From Context-Free to Lambek Grammars
	4.1 From Greibach Normal Form Context-Free Grammars to Lambek Grammars
	4.2 Greibach Normal Form Transformation of Context-Free

	References




