
On IO-Copying and Mildly-Context Sensitive
Formalisms

Pierre Bourreau1, Laura Kallmeyer2, and Sylvain Salvati1

1 Université Bordeaux 1
351, Cours de la Libération

33405 Talence Cedex, France
{bourreau,salvati}@labri.fr

2 Heine-Heinrich Universität Düsseldorf
Universitätstr. 1

40225 Düsseldorf, Germany
kallmeyer@phil.uni-duesseldorf.de

Abstract. The class of mildly context-sensitive languages is commonly regarded
as sufficiently rich to capture most aspects of the syntax of natural languages.
Many formalisms are known to generate families of languages which belong to
this class. Among them are tree-adjoining grammars, multiple context-free gram-
mars and abstract categorial grammars. All these formalisms have in common
that they are based on operations which do not copy already derived material in
the course of a derivation. We propose an extension of the class of languages
captured by these formalisms that is arguably mildly context-sensitive. This ex-
tension is based on a mild use of a copying operation we call IO-substitution.

Keywords: mildly context-sensitive formalisms, abstract categorial grammars,
semilinear and constant-growth languages, IO grammars.

1 Introduction

The question of the amount of expressive power a formalism needs so as to adequately
model natural language syntax is still open. Nevertheless the notion of mildly context
sensitive languages that Joshi [Jos85] proposes plays a structuring role in this debate. A
class L of languages is said to be mildly context-sensitive [Jos85, Wei88] if it satisfies
the following properties:

1. L contains all context-free languages.
2. if L is in L then L describes only some restricted crossing dependencies.
3. every language L ∈ L satisfies the constant-growth property.
4. for every language L ∈ L, recognition can be performed in polynomial-time.

Some well-known formalisms are widely regarded as defining mildly context-sensitive
classes of languages, like Linear Context-Free Rewriting Systems [VSWJ87] (LCFRSs),
Multiple Context-Free Grammars [SMMK91] (MCFGs), Minimalist Grammars [Sta96]
(MGs) and set-local multicomponent Tree Adjoining Grammars [Wei88] (MCTAGs).
All those formalisms actually define the same class of languages. Nevertheless, we

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 P. Bourreau, L. Kallmeyer, and S. Salvati

think it is more appropriate to say that a class of languages is mildly context-sensitive
rather than speaking of the class of mildly context-sensitive languages. Indeed, property
2 is mostly intuitive and not really well formalized. It therefore induces some subjec-
tive judgments about whether a class of languages is mildly context-sensitive. Indeed,
while MCFLs are usually regarded as mildly context sensitive, this second property is
interpreted in [JSW91] as perhaps [excluding] the so-called language MIX, which has
recently been shown to be in the class of MCFLs [Sal11].

Property 3 defining a mildly context-sensitive class of languages is also open to de-
bate. For example, Weir [Wei88] considers that the constant-growth property is too
weak to capture [the linguistic] intuition fully [. . .] the slightly stronger property of
semilinearity may come closer. As it happens, all the formalisms we mention above
are semilinear. So as to understand what difference it makes to consider languages that
satisfy the constant-growth property rather than the semilinearity property, we explore
a way of defining interesting families of languages that are not semilinear but that sat-
isfy the constant-growth property. For this goal, we extend the class of LCFRL/MCFL
following ideas from [Kal10] by adding to these formalisms a limited capacity of copy-
ing during derivations. This approach differs from that of [Kal10] in that it does not
try to find the most general way of achieving this goal. In particular, we try to obtain
formalisms whose derivations are similar to those of context-free grammars, and as a
consequence we secure the decidability of the emptiness problem for the languages we
define.

Our proposal is based on an operation that can be traced back to Fischer [Fis68a]
and that we call IO-substitution. Roughly speaking, an IO-substitution of a language
L2 in a language L1 amounts, for every word w of L2, to replacing in every word of
L1 all the occurrences of a given letter x by w. In such an IO-substitution, one can see
the words of L1 as parametrized by the letter x, this parameter being instantiated with
words taken from L2. In general, when recursively applied, such an operation gives
rise to languages that may have an exponential growth. Interestingly, we show that
under certain simple conditions, a class of languages satisfying the constant-growth
property is closed under IO-substitution. Thus taking the closure of classes of semilinear
languages, such as MCFLs/LCFRLs, under this operation gives rise to classes that have
the constant-growth property but which may not be semilinear anymore.

The structure of the paper is as follows: in the first part of the article, we recall the
notions of semilinearity and constant-growth for languages. We then introduce the op-
eration of IO-substitution on languages and show how the constant-growth (resp. semi-
linearity) property can be preserved when applied on constant-growth (resp. semilinear)
languages. Thanks to this result, we define a new class of languages we call IO(MCFL),
as a candidate for the biggest mildly context-sensitive class. In the second part of the
article, we characterize a grammatical formalism which exactly captures languages in
IO(MCFL). Such grammars are particular abstract categorial grammars of second-
order, the generated languages of which are tree languages. The given formalism enjoys
the property of being analyzable in polynomial-time, which confirms IO(MCFL) as a
candidate for being a mildly context-sensitive class of languages.

On IO-Copying and Mildly-Context Sensitive Formalisms 3

2 IO-Substitutions, Semilinearity and Constant-Growth

2.1 Basic Definitions

Given a finite set Σ, we write Σ∗ for the set of words built on Σ, and ε for the empty
word. Given w in Σ∗, we write |w| for its length, and |w|a for the number of occurrences
of a letter a of Σ in w. A language on Σ is a subset of Σ∗. Given two languages L1,L2 ⊆
Σ∗, L1 · L2, the concatenation of L1 and L2, is the language {w1w2 | w1 ∈ L1∧w2 ∈ L2};
the union of L1 and L2 is written L1 + L2.

We write N for the set of natural numbers. For a given alphabet Σ, NΣ is the set of
vectors whose coordinates are indexed by the letters of Σ. Given a ∈ Σ and −→v ∈ NΣ ,
−→v [a] denotes the value of the coordinate a of −→v . We write −→ea for the unit vector on the
a-dimension, i.e. the vector such that −→ea[c] = 0 when c � a and −→ea[a] = 1.

The constant-growth property expresses some constraint about the distribution of the
possible length of the words in a language:

Definition 1. A language L ⊆ Σ∗ is said to be constant-growth if there exist k,c ∈ N
such that, given w ∈ L if |w| > k, then there is w′ ∈ L such that |w| < |w′| ≤ |w|+ c.

A class of languages L is constant-growth when every L in L is constant-growth.

Most of the mildly context-sensitive classes of languages commonly used verify the
stronger property of semilinearity, which is based on the notion of the Parikh image.

Definition 2. Let us consider a word w in a language L ⊆ Σ∗. The Parikh image of w,
written −→p (w) is the vector of NΣ such that, for every a ∈ Σ, −→p (w)[a] = |w|a. The Parikh
image of L is defined as −→p (L) = {−→p (w) | w ∈ L}.

Definition 3. A set V of vectors of NΣ is called linear when there are vectors −→x0, . . . ,
−→xn in NΣ such that V = {−→x0 + k1

−→x1 + . . .+ kn
−→xn | k1, . . . ,kn ∈ N}. V is called purely linear

when −→x0 =
−→
0 .

A set of vectors is called semilinear (resp. purely semilinear) when it is a finite union
of linear (resp. purely linear) sets.

Given two sets of vectors V1 and V2, we will denote by V1 +V2 the set {−→v1 +
−→v2 | −→v1 ∈

V1,
−→v2 ∈ V2}. Similarly, given k ∈ N and a set of vectors V , we will write kV = {k−→v | −→v ∈

V}.

Definition 4. A language L is called semilinear when −→p (L) is a semilinear set. A class
of languages L is semilinear when all the languages it contains are semilinear.

Given two alphabets Σ1 and Σ2, a string homomorphism h from Σ∗1 to Σ∗2 is a function
such that h(ε) = ε and h(w1w2) = h(w1)h(w2). Given L ⊆ Σ∗1 , we write h(L) for the
language {h(w) ∈ Σ∗2 | w ∈ L}. The homomorphism h is alphabetic when for each a in
Σ1, h(a) is in Σ2.

Definition 5. Let us consider a class L of languages which share the same alphabet Σ.
Given an n-ary operation op : (Σ∗)n
→ Σ∗, where n ∈ N, we say that L is closed under
op if for every L1, . . . ,Ln ∈ L, op(L1, . . . ,Ln) ∈ L.

4 P. Bourreau, L. Kallmeyer, and S. Salvati

In the rest of the paper, we will be particularly interested in MCFL, the class of mul-
tiple context-free languages. This class of languages is known to be mildly context-
sensitive and semilinear. It is also closed by homomorphism, intersection with regular
sets, union and concatenation [SMMK91]. Note that our study could also be done on
other mildly context-sensitive classes of string languages, such as the classes of context
free-languages, or yields of tree-adjoining grammars, or well-nested mildly context-
sensitive grammars.

2.2 IO-Substitution and Copies

In this section, we introduce an operation on languages, which we will use to define
constant-growth languages. This operation, which we call IO-substitution, enables a
specific kind of copying mechanism, which we want to use so as to capture some lan-
guages that do not belong to MCFL, but still satisfy the constant-growth property:

Example 1. The language La,b = {(anbn)m | n,m ∈ N} is not a MCFL (see [Kal10] for a
proof). Nevertheless, it is a semilinear language, as its Parikh image is {k(1,1) | k ∈ N},
a semilinear set.

The language Lcount = {(and)man | n,m ∈N} is not a semilinear language, but satisfies
the constant-growth property: given a word w in Lcount such that |w| ≥ 0 it holds that
|w| < aa|w| ≤ |w|+1.

The language Lexp = {a2n | n ∈ N} is neither semilinear, nor constant-growth.

Interestingly, these three languages are also known to be generated by IO-macro gram-
mars [Fis68b, Fis68a], in which copying operations are allowed in a specific way,
which we will not discuss in detail in this article. We here introduce the notion of
IO-substitution that allows us to mimic in a non-recursive way the copying operations
that are used in IO-macro grammars. This notion of substitution can be compared with
the notion of language substitution which corresponds to the non-recursive counterpart
of the copying operations in OI-macro grammars (another notion of macro grammars
defined by Fischer [Fis68b, Fis68a]). While language substitution consists in replacing
each occurrence of a letter a in the words of a language L1 by some word of a language
L2, IO-substitution requires that every such occurrence of a is replaced by the very same
word of L2.

Definition 6. Let us consider an alphabet Σ, and two languages L1 ⊆ Σ∗ and L2 ⊆ Σ∗.
Given a word w ∈ L2, and a symbol a ∈ Σ, we define the homomorphism ha,w : Σ∗
→ Σ∗
by ha,w(c) = c for c ∈ Σ − {a} and ha,w(a) = w.

The language L1[a := L2]IO is then defined as
⋃

w∈L2
ha,w(L1).

Note that L1[a := L2]IO = L1 if for every word w ∈ L1, a has no occurrence in w.
As an example, we can consider the languages L1 = a∗ and L2 = ab+c; the language

L1[a := L2] is then defined as (ab+ c)∗.

Definition 7. Given a class of languages L built on an alphabet Σ, we define the class
IOn(L) by induction on n ∈ N as

– IO0(L) = L and

On IO-Copying and Mildly-Context Sensitive Formalisms 5

– IOn+1(L) =
⋃

L1,L2∈IOn(L)
⋃

x∈Σ L1[x := L2]IO, for every n ≥ 0

We define IO(L) as
⋃

n∈N IOn(L).

Notice that IO(L) is the smallest class of languages that contains L and that is closed
under IO-substitution.

Based on this operation, we can build the languages La,b and Lcount easily from
context-free languages. Indeed, given L1 = {xn | n ∈ N} and L2 = {ambm | m ∈ N}, the
language La,b is the language L1[x := L2]IO. In the same way, Lcount = L′1[x := L′2]IO,
where L′1 = {(xd)mx | m ∈ N} and L′2 = {a

n | n ∈N}. On the other hand, there is no trivial
way of using the IO-substitution operation on multiple context-free languages to gener-
ate Lexp. One can also remark that L1,L2,L′1 and L′2 are context-free languages, hence
semilinear languages and they satisfy the constant-growth property. It is therefore nat-
ural to investigate the conditions under which semilinearity and the constant-growth
property are preserved by the IO-substitution operation.

2.3 Preserving the Semilinearity and Constant-Growth Properties

In the previous examples, we have seen that the newly introduced operation of IO-
substitution can lead in some particular cases to the construction of semilinear or
constant-growth languages when applied to semilinear languages. In this section, we
investigate the conditions which lead to the preservation of these properties.

Definition 8. Given an alphabet Σ and a ∈ Σ:

– a set of vectors V ⊆ NΣ is a-independent when for every −→v ∈ V, −→v [a] = 0.
– a set of vectors V is a-isolating if it is of the form U + c{k−→ea | k ∈ N} where U is

a-independent, and c ∈ N− {0}.
– a semilinear set is a-isolating when it is a finite union of linear a-isolating sets of

vectors.
– a semilinear language is a-isolating when its Parikh image is a semilinear a-

isolating set of vectors.

Example 2. Let us consider various languages so as to illustrate a-isolating languages:

– the language {xn | n ∈N} is obviously x-isolating, as its Parikh image is {n(1) | n ∈N}.
– the language abxa∗x∗ is not x-isolating as its Parikh image is {(1,1,1)+n(1,0,0)+

m(0,0,1) | n,m ∈ N} (with −→ea = (1,0,0), −→eb = (0,1,0) and −→ex = (0,0,1)).
– the language aba∗x∗ is x-isolating, since its Parikh image is {(1,1,0)+ n(1,0,0)+

m(0,0,1) | n,m ∈ N} = {(1,1,0)+n(1,0,0) | n ∈ N}+1{n(0,0,1) | n ∈ N}.
– the language (xa)∗x is not x-isolating as its Parikh image is {(0,1)+n(1,1) | n ∈ N}

(with −→ea = (1,0), and −→ex = (0,1)).

One can remark that, given a word w in a a-isolating language, the number of occur-
rences of a in w is completely independent from the number of occurrences of any other
symbol in w.

We now show that the IO-substitution of a letter a of a semilinear language in a
a-isolating language generates a semilinear language.

6 P. Bourreau, L. Kallmeyer, and S. Salvati

Lemma 1. Given c ∈N, if V is a purely semilinear set then the set {kc−→v | −→v ∈ V∧k ∈N}
is equal to cV.

Proof. To prove the Lemma, it suffices to prove that when V is a purely linear set of
vectors, then {k−→v | −→v ∈ V ∧ k ∈ N} is equal to cV . If V is purely linear, let −→x1, . . . , −→xn be
the vectors such that V = {

∑n
i=1 ki
−→xi | k1, . . . ,kn ∈N}. We obviously have cV ⊆ {kc−→v | −→v ∈

V ∧ k ∈ N}, by considering k = 1. Moreover given −→u in {kc−→v | −→v ∈ V ∧ k ∈ N}, we must
have −→u = kc−→v with −→v in V , so that −→u = kc

∑n
i=1 ki
−→xi = c

∑n
i=1 kki

−→xi and is thus also in
cV .

Theorem 1. Given a semilinear language L1 ⊆ Σ∗, which is a-isolating, and a purely
semilinear language L2, the language L1[a := L2]IO is semilinear.

Proof. Since L1 is semilinear and a-isolating, its Parikh image is a finite union of linear
a-isolating sets V1, . . . , Vn. It is then easy to show that the Parikh image of L1[a := L2]IO

is the finite union of V′1, . . . , V′n where, for every 1 ≤ i ≤ n, V′i = Ui + {kci
−→u | k ∈ N,−→u ∈

−→p (L2)} (where ci ∈ N and Ui is a-independent). Since −→p (L2) is purely semilinear, by
Lemma 1, {kci

−→u | k ∈ N,−→u ∈ −→p (L2)} = ci
−→p (L2) which is purely semilinear. Thus, V′i is

the sum of two semilinear sets and is semilinear. Therefore
⋃n

i=1 V′i is a semilinear set.
As a conclusion, L1[a := L2]IO is semilinear.

While the semilinearity property is preserved by IO-substitution under some rather re-
strictive constraints, we show that for certain classes of languages, some of their prop-
erties are also satisfied by their closure under IO-substitution. Indeed, it is also easy to
see that L1[x := L2]IO, where L1 and L2 are semilinear languages, is of constant-growth
while not necessarily semilinear (as shown with the languages in Example 2). Interest-
ingly, the constant-growth property can be verified by closure under IO-substitution on
classes of languages which are closed under homomorphism.

Lemma 2. Given L1,L2 ⊆ Σ∗, if L1 is an infinite language that is of constant-growth
and L1 ⊆ L2, then L2 is of constant-growth.

Proof. Let k and c be as in Definition 1 for L1. Since L1 is infinite there are some words
w in L1 such that |w| > k. We let w0 be a shortest word so that |w0| > k. Without loss
of generality we may assume that |w0| = k+ 1. Then using the fact that L1 is constant-
growth we construct a sequence (wi)i∈N such that |wi| < |wi+1| ≤ |wi|+ c. Now, given a
word w in L2, if |w| > k we let n be the integer such that |wn| ≤ |w| < |wn+1|. By definition
of (wi)i∈N we have |wn+1| ≤ |wn|+c so that |wn+1| ≤ |w|+c. Therefore |w|< |wn+1| ≤ |w|+c,
and L2 is constant-growth.

Lemma 3. If a class of languages L is closed under (alphabetic) homomorphism, then
IOn(L) is closed under (alphabetic) homomorphism, for every n ∈ N.

Proof. We proceed by induction on n. For n= 0, IOn(L) is closed under (alphabetic) ho-
momorphism by hypothesis. For n = k+1, let us consider an alphabet Σ, two languages
L1,L2 ⊆ Σ∗ in IOk(L), and a (alphabetic) homomorphism h : Σ∗
→ Σ∗. Given a symbol
a ∈ Σ, we define the (alphabetic) homomorphism g : Σ∗
→ Σ∗ such that g(a) = a and
g(b) = h(b) when b ∈ Σ − {a}. It is then easy to check that h(L1[a := L2]IO) = g(L1)[a :=
h(L2)]IO. But, by the induction hypothesis, both g(L1) and h(L2) are in IOk(L) which
proves that h(L1[a := L2]IO) is in IOn(L).

On IO-Copying and Mildly-Context Sensitive Formalisms 7

We are now in a position to prove the following theorem:

Theorem 2. If a class of languages L is constant-growth and closed under homomor-
phism, then IOn(L) is constant-growth, for every n ∈ N.

Proof. We consider the alphabet Σ on which the languages of L are built. We show by
induction on n that the class IOn(L) is constant-growth. From Lemma 3, we have that
IOn(L) is closed under homomorphism.

The case n = 0 is immediate. For n = k+1, given L1 and L2 in IOk(L), we consider
several cases. Let us first suppose that L1 is infinite; then for w in L2 and a ∈ Σ, we
define ha,w to be the homomorphism such that ha,w(a) = w and ha,w(b) = b if b ∈ Σ−{a}.
By definition L1[a := L2]IO =

⋃
w∈L2

ha,w(L1). The cases where L2 = ∅ or L2 = {ε} are
trivial. So let us suppose that there is w � ε in L2, then ha,w(L1) is infinite and, by
induction hypothesis and because IOk(L) is closed under homomorphism, ha,w(L1) is
constant-growth. As ha,w(L1) ⊆ L1[a := L2]IO, Lemma 2 shows that L1[a := L2]IO is
constant-growth.

Let us now suppose that L1 is finite. The cases where, for every w in L1, |w|a = 0
or where L2 is finite are trivial. So let us consider w in L1 such that |w|a > 0 and L2

infinite. Then {w}[a := L2]IO is infinite and we are going to show that {w}[a := L2]IO

is constant growth. Let k and c be integers as in Definition 1 for L2. We consider l =
k|w|a + |w| − |w|a (i.e. the length of w when weighting an occurrence of a by k, and an
occurrence of any other letter of Σ by 1), d = c|w|a, and a word u ∈ {w}[a := L2]IO

such that |u| > l. This implies that there is v in L2 such that u = ha,v(w), and which
satifies |u| = |v||w|a+ |w| − |w|a. Moreover, |u| > l implies |v| > k; but then, because L2 is
constant-growth, there is v′ in L2 such that |v| < |v′| ≤ |v|+ c. Let u′ be ha,v′ (w); then
|u′| = |v′||w|a+ |w| − |w|a so that |u| < |u′| ≤ |u|+d. This finally shows that {w}[a := L2]IO

is constant-growth. As {w}[a := L2]IO is infinite and {w}[a := L2]IO ⊆ L1[a := L2]IO,
Lemma 2 implies that L1[a := L2]IO is constant-growth.

The string languages generated by multiple-context free-grammars, or second-order
ACGs, for example, are known to be closed under homomorphism [SMMK91, Kan06],
and satisfy the semilinearity property. As a consequence, the closure of these languages
by IO-substitution forms classes of languages which are constant-growth.

As a remark, the following example illustrates the need of the condition of closure
by homomorphism for the class of languages we close by IO-substitution:

Example 3. The language L1 = {anb2m | n,m ∈ N} is a constant-growth language (be-
cause a∗ is constant-growth), but is not a MCFL. The language L1[a := {ε}]IO = {b2m |
m ∈ N} is not constant-growth.

We know prove other desirable closure properties of classes of languages which are
preserved by IO-substitution.

Lemma 4. Given a class of languages L that is closed under alphabetic homomor-
phism, the following holds:

1. if L is closed under union, then so is IO(L),
2. if L is closed under concatenation, then so is IO(L),

8 P. Bourreau, L. Kallmeyer, and S. Salvati

Proof. Lemma 3 shows that IOn(L) is closed under alphabetic homomorphism.
By induction on n, we show that if L1 and L2 are in IOn(L) then L1 ∪ L2 (resp.

L1 · L2) is in IO(L). The base case is given by the fact that L is closed under union
(resp. concatenation). So let us suppose that n= k+1, given L1, L2, L′1 and L′2 in IOk(L)
we show that L1[a := L2]IO ∪ L′1[b := L′2]IO (resp. L1[a := L2]IO · L′1[b := L′2]IO) is in
IOn(L). We suppose that L1 ⊆ Σ∗1 and L′1 ⊆ Σ

′∗
1. We let a′ and b′ be two distinct letters

so that both a′ and b′ are not in Σ1 ∪Σ′1 and we let h be the alphabetic homomorphism
from Σ1 to Σ2 = (Σ1−{a})∪{a′} such that h(a)= a′ and h(c)= c when c� a; similarly we
define the alphabetic homomorphism g from Σ′1 to Σ′2 = (Σ1−{b})∪{b′} such that h(b)=
b′ and h(c)= c when c� b. Then it is easy to check that h(L1)[a′ := L2]IO = L1[a := L2]IO

and g(L′1)[b′ := L′2]IO = L′1[b := L′2]IO and moreover, with the induction hypothesis, we
get that L1[a := L2]IO∪L′1[b := L′2]IO = ((h(L1)∪g(L′1))[a′ := L2]IO)[b′ := L′2]IO (resp.
L1[a := L2]IO · L′1[b := L′2]IO = ((h(L1) ·g(L′1))[a′ := L2]IO)[b′ := L′2]IO) is in IOn(L).

Lemma 5. If L is a class of languages that is closed under union, alphabetic homo-
morphism and intersection with regular sets, then IO(L) is closed under intersection
with regular sets.

Proof. The proof of Lemma 3 entails that IOn(L) is closed under alphabetic homomor-
phism. We prove the theorem by induction on n. Let L1,L2 ⊆ Σ∗ be in IOn(L) and R
be a regular set whose syntactic monoid is M = (M, ·,1) and is recognized by N ⊆M
using the monoid homomorphism ϕ. We are going to show that L1[a := L2]IO ∩R is in
IO(L). For every m inM, we define Rm to be the regular language recognized by {m}
using ϕ and we define the monoid homomorphism ϕm from Σ∗ toM so that ϕm(a) = m
and for every c in Σ, c � a implies ϕm(c) = ϕ(c). We then let Qm be the regular lan-
guage recognized by N with the monoid homomorphism ϕm. For each m inM, we let
Lm = (L1∩Qm)[a := L2∩Rm]IO, it is then easy to see that L1[a := L2]IO∩R =

⋃
m∈M Lm.

But by induction hypothesis, for every m ∈M, L1∩Qm and L2∩Rm are in IO(L) so that
Lm is in IO(L). From Lemma 4, since L is closed under union and under alphabetic ho-
momorphism, IO(L) is closed under union. As R is regular,M is finite, and

⋃
m∈M Lm

(e.g. L1[a := L2]IO) is in IO(L).

As a consequence of the previous Theorems and of the fact that MCFL is closed under
union, concatenation, homomorphism and intersection with regular sets [SMMK91],
we have the following corollary:

Corollary 1. The class of languages IO(MCFL) satisfies the following properties:

1. it is constant-growth,
2. it is closed under homomorphism, union, concatenation and intersection with reg-

ular sets.

In the following section, we seek a grammatical formalism that captures the class
IO(MCFL). Additionally, we show that the membership problem in IO(MCFL) can
be solved in polynomial-time. This result shows that IO(MCFL) can arguably be con-
sidered as a mildly context-sensitive class of languages bigger than MCFL.

On IO-Copying and Mildly-Context Sensitive Formalisms 9

3 IO-Multiple Context-Free Languages

We have introduced in the previous section the notions of IO-substitution, and of IO-
closure of a class of languages. We have showed that IO(MCFL) is of constant-growth.
We are now going to give a grammatical formalism that precisely describes IO(MCFL).
This will allow us to see that languages in IO(MCFL) have a polynomial (more pre-
cisely LOGCFL) membership problem. In order to do so, we are going to encode an
IO(MCFL) as a second order Abstract Categorial Grammars (ACG) ([dG01, Mus01]).

3.1 Abstract Categorial Grammars

Given a set of atomic types A, the set of simple types T (A) on A is the smallest set
containing A and such that (α→ β) is inT (A) wheneverα and β are inT (A). We take the
usual conventions of writing α1→ ·· · → αn→ β instead of (α1→ (· · · → (αn→ β) · · ·)).
The order ord(α) of a type α ∈ T (A) is defined as ord(α) = 1 when α is atomic and
ord(α) = max(1+ord(α1),ord(α2)) when α = α1→ α2.

Definition 9. A higher-order signature (HOS) Σ = (A,C, τ) is a tuple made of a finite
set of atomic types A, a finite set of constants C and a function τ which associates types
in T (A) to constants in C.

The order of a higher-order signature Σ = (A,C, τ) is defined as maxc∈C(ord(τ(c))).
Moreover, we say that a HOS Σ = (A,C, τ) is a tree signature (resp. a string signature)
if ord(Σ) = 2 (resp. τ(c) is of the form o→ o for every c ∈ C).

Given a HOS Σ = (A,C, τ), we define (Λα
Σ

)α∈T (A) as the family of the smallest sets
verifying:

1. a variable xα belongs to Λα
Σ

2. a constant c ∈ C is in Λτ(c)
Σ

3. if M ∈ Λβ
Σ

, then λxα.M ∈ Λα→β
Σ

,
4. if M1 ∈ Λβ→αΣ , M2 ∈ ΛβΣ , then (M1M2) ∈ Λα

Σ
.

The terms are typed a la Church so that variables are explicitly carrying their types as
exponents, but for the sake of readability, we will often omit this typing notation when
it is unnecessary to the understanding.

As usual, we write M0M1 . . .Mn instead of (. . . (M0M1) . . .Mn) and λx1 . . . xn.M for
λx1. . . .λxn.M. We take for granted the notions of β-reduction (→∗β) and of the normal
form |M|β of a term M.

Note that given a tree signature Σ, the construction of a term M ∈ Λo
Σ does not make

use of the rule 3. Its general form is xM1 . . .Mn which can be interpreted as a tree
x(t1, . . . , tn) (ti being the interpretation of Mi as a tree, for every i ∈ {1, . . . ,n}). Similarly,
if Σ is a string signature, a term M ∈ Λo→o

Σ is of the general form λx.a1(. . . (anx)), which
can be interpreted as a string a1 . . .an.

Example 4. Let us consider a tree HOS ({o}, {∧,∨,0,1}, τ) where τ(∧) = τ(∨) = o→
o→ o and τ(0)= τ(1) = o. The terms in this signature are boolean formulas made of the
connectors ∧ and ∨, on the values 0 and 1.

The set FV(M) of free variables of a term M is defined as usual. Moreover, a term M is
called closed if it contains no free variable.

10 P. Bourreau, L. Kallmeyer, and S. Salvati

Definition 10. Given a HOS Σ = (A,C, τ), a λ-term M is called linear if:

1. M = x is a variable or M = c ∈ C, or
2. M = λx.N, x ∈ FV(N) and N is linear, or
3. M = M1 M2 if M1 and M2 are linear and FV(M1)∩FV(M2) = ∅.

The term M is called almost affine if

1’. M = x is a variable or M = c ∈ C, or
2’. M = λx.N and N is almost affine, or
3’. M = M1M2 if M1 and M2 are almost affine and if xα ∈ FV(M1)∩ FV(M2), then
α ∈ A.

Note that given a linear term M and a term M′ such that M→∗βM
′, M′ is also linear.

Given two HOS Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2), we say that Σ1 and Σ2 are disjoint
if C1∩C2 = ∅ and A1∩A2 = ∅.

Given a constant c, we also define

– Σ1∪Σ2 = (A1∪A2,C1∪C2, τ(c)) where Σ1 and Σ2 are disjoint and

τ(c) =

⎧
⎪⎪⎨
⎪⎪⎩

τ1(c) if c ∈ C1

τ2(c) if c ∈ C2

– Σ1 − c = (A1,C1 − {c}, τ′1), where the domain of τ′1 is C1 − {c}, and τ′1(c′) = τ1(c′),
for every c′ ∈ C1− {c}.

Definition 11. Given two HOS Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2), a homomorphism
H from Σ1 to Σ2 is a function that maps T (A1) to T (A2), Λα

Σ1
to ΛH (α)

Σ2
for every α ∈

T (A1) and verifies:

1. H(α→ β) =H(α)→H(β),
2. H(λxα.M) = λxH (α).H(M),H(MN) =H(M)H(N) andH(xα) = xH (α),
3. H(c) is a closed β-normal λ-term of ΛH (τ1(c))

Σ2
.

Finally, an Abstract Categorial Grammar G = (Σ1,Σ2,H , s) is a tuple where:

1. Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2) are HOS, respectively called the abstract and
the object signatures of G.

2. H is a homomorphism from Σ1 to Σ2, called the lexicon.
3. s ∈ A1 is the distinguished type.

An ACG defines two languages:

– its abstract language asA(G) = {M ∈ Λs
Σ1
| FV(M) = ∅ and M is linear},

– its object language as O(G) = {M ∈ ΛH (s)
Σ2
| ∃M′ ∈ A(G), |H(M′)|β = M}.

An ACG is called linear (resp. almost affine) when for every c in Σ1, H(c) is linear
(resp. almost affine). It is called a second-order ACG when Σ1 is a second-order signa-
ture. It is called a tree-ACG when Σ2 is a tree signature andH(s) is atomic.

On IO-Copying and Mildly-Context Sensitive Formalisms 11

It is known that the string languages generated by second-order linear ACGs are
precisely MCFL ([dGP04] and [Sal06]). In particular the yields of the tree-languages
generated by second-order linear ACGs are MCFLs, the yield of a tree being the con-
catenation of its leaves from left to right. Given a tree language L we write yL for the
string language obtained by taking the yields of its trees. In particular given a tree ACG,
G, we write yO(G) for the string language of the yields of the trees in O(G).

Example 5. Let us consider the tree signatures Σ1 = ({s, t1, t2}, {c,c1,c2,c3,c4}, τ1) and
Σ2({o}, {a,b,c,d, ε,e, f }, τ2) where:

– τ1(c) = t1→ t2→ s, τ1(c1) = t1→ t1, τ1(c2) = t1, τ2(c3) = t2→ t2 and τ1(c4) = t2.
– τ2(a,b,c,d, ε) = o, τ2(e) = o→ o→ o and τ2(f) = o→ o→ o→ o→ o

We define the second-order tree-ACG G = (Σ1,Σ2,H , s) such that:

– H(t1) =H(t2) = (o→ o→ o)→ o,H(s) = o
– H(c2) =H(c4) = λz.zεε
– H(c1) = λPz.P(λx1x2.z(eax1)(ecx2)) andH(c3) = λPz.P(λx1x2.z(ebx1)(edx2))
– H(c) = λP1P2.P1(λx1x3.P2(λx2x4. f x1x2x3x4))

Then, a term is in the abstract language of this ACG if it is of the form

c (c1(. . . (c1︸�����︷︷�����︸
n

c2) . . .)) (c3(. . .(c3︸�����︷︷�����︸
m

c4) . . .))

for some n,m ∈ N.
The trees in O(G) are therefore of the following form:

f (ea(. . .(eaε) . . .))
︸��������������︷︷��������������︸

n

(eb(. . .(ebε) . . .))
︸��������������︷︷��������������︸

m

(ec(. . .(ecε) . . .))
︸��������������︷︷��������������︸

n

(ed(. . .(edε) . . .))
︸��������������︷︷��������������︸

m

Finally, the yield of this language is the language {anbmcndm | n,m ∈N}, which is known
to be a MCFL.

We finish this section by mentioning the following complexity results, which will be
used in the next section. We recall that LOGCFL is the set of problems which can be
reduced in logarithmic space into the problem of recognizability of context-free gram-
mars. This class is known to be a subclass of the problems solvable in polynomial-
time (see [Ven87] for more details).

Theorem 3 ([Yos06, Kan07]). The membership problem of a second-order almost
affine ACG is in LOGCFL.1

3.2 IO-MCFGs as Almost Affine ACGs
As mentioned in the previous section, abstract categorial grammar gives a general
framework to speak about MCFL as the strings generated by ACGs or, alternatively, as

1 A polynomial recognizer of second-order almost affine ACGs is given in [BS11]; this algo-
rithm is not known yet to be in LOGCFL.

12 P. Bourreau, L. Kallmeyer, and S. Salvati

the string languages generated by some tree grammars (which are linear second-order
tree-ACGs). In what follows, we seek the characterization of some tree-ACGs which
generate tree languages such that their yields form exactly IO-MCFLs. While the con-
struction we give can be applied to string-ACGs, we use tree-ACGs in order to prove
the membership problem is LOGCFL; indeed the grammars constructed in this way are
almost affine tree-ACGs, for which such a complexity result is known [Kan07, Yos06].

Intuitively, given two multiple context-free languages L1 ⊆ (Σ ∪ {x})∗ and L2 ⊆ Σ∗,
we can first remark that the letter x may have many occurrences in w1 ∈ L1. Given a
tree-ACG G1 = (Σ1,Σ2,H , s1) such that yO(G1) = L1, the idea is to consider x not as
a constant in the trees derived by G1, but as a variable which can be substituted by a
word w2 ∈ L2 (i.e. a tree in a tree-ACG G2 such that yO(G2) = L2). Therefore, we need
to build a tree-ACG G′1 such that t ∈ O(G1) iff λx.t ∈ O(G′1), and then use a constant
c : s′1 → s2 → s such thatH(c) = λx1x2.x1x2 to simulate the IO-substitution of x by L2

into L1, where s′1 and s2 are the distinguished types of G′1 and G2 respectively.
Remark that, because x will now be considered as a variable, the contexts appearing

in the left-hand side of a production rule in G′1 will not be linear as in the case of
linear ACGs defining MCFLs. But x being a leaf, its type is τ(x) = o, and the contexts
will therefore be almost affine, which still ensures the membership problem belongs to
LOGCFL, hence to the class of problems solvable in polynomial-time.

Definition 12. Given a second-order ACG G = (Σ1,Σ2,H , s), where Σi = {Ai,Ci, τi} for
i ∈ {1,2}, and x ∈ C2, we define the second-order ACG abs(G, x) = (Σ1,Σ2 − {x},H′, s)
as follows:

– given a type a ∈ A1,H′(a) = τ2(x)→H(a)
– for every c ∈ C1, given τ1(c)= α1→ . . .→ αn→ a, andH(c)= λy1 . . .yn.M,H′(c)=
λz1 . . .znx.|H(c)(z1 x) . . . (zn x)|β

Note that this construction transforms the constant x of the object signature into a
variable. Moreover, one should remark that given a constant c ∈ C2, the free occur-
rences of x inH(c) are bound by a λ-abstraction inH′(c). Finally, we should note that
A(abs(G)) =A(G).

Example 6. Let us consider the second-order tree-ACG G1 = {Σ1,Σ,H1, s1} where Σ1 =

({s1}, {c1,c2}, τ1) where τ1(c1) = s1, τ1(c2) = s1 → s1, and Σ = ({o}, {e, x, ε}, τ), where
τ(x)= τ(ε)= o, τ(e)= o→ o→ o; moreoverH1(s1)= o andH1(c1)= ε,H1(c2)=λy.cxy.

The abstract language of this grammar is made of trees of the form c2(. . .(c2︸����︷︷����︸
n

c1) . . .),

where n ∈ N.
The tree language derived by G1 is {cx(cx(. . .(cx

︸���������︷︷���������︸
n

ε) . . .)) | n ∈ N}.

The grammar abs(G1, x) = {Σ1,Σ2 − {x},H′1, s1} is such that:

H′1(c1) = λx.ε
H′1(c2) = λzx.|(λy.cxy)(zx)|β = λzx.cx(zx)

and derives tree contexts of the form λx.{cx(cx(. . . (cx
︸���������︷︷���������︸

n

ε) . . .)), where n ∈ N.

On IO-Copying and Mildly-Context Sensitive Formalisms 13

The transformation given by abs intuitively results in considering x as a variable, on
which substitutions can be applied. This is made explicit in the following theorem.

Lemma 6. Given a second-order ACG G = (Σ1,Σ2,H , s), the languageO(abs(G, x)) is
equal to {λx.M ∈ ΛH′(s)(Σ2) | M ∈ O(G)}.

Proof. G being a second-order ACG, so is G′. Moreover, G and G′ share the same ab-
stract language. Let us consider a term M ∈ O(G). By definition, there exists a term N in
A(G), such that |H(N)|β = M. We prove by induction on N that |H′(N)|β = λx.M. The
general form of N is cN1 . . .Np, for some p ∈N. If p= 0, then τ1(c)= s, and by construc-
tion, we obtainH′(s) = τ2(x)→H(s) andH′(c) = λx.|H(c)|β. Otherwise, by induction
hypothesis, |H′(Ni)|β = λx.|H(Ni)|β = Pi such that Pi is a term the type of which is ai ∈
A1, as the grammar is a second-order ACG. Then P =H′(cN1 . . .Np) =H′(c)P1 . . .Pp.
Given the general form λy1 . . .ynx.H(c)(y1x) . . . (ynx) ofH′(c), we obtain

P =β λx.|H(c)(P1x) . . . (Pnx)|β
=β λx.|H(c)(|H(c1)|β . . . |H(cn)|β)|β
=β λx.|H(N)|β

Given two MCFLs L1 and L2, we are now in a position to build the ACG which pro-
duces the substitution of x by L2 in L1. This operation is simulated by application in the
lambda-calculus. Indeed, it suffices to consider the tree-ACGs G1 and G2 which have
languages L1 and L2 as respective yields. We then build abs(G1, x) and add a constant
the image of which is λx1x2.x1x2. Because the IO-substitution substitutes every occur-
rence of a symbol x by a word, we must constrain the corresponding x in the ACG to
be of type o.

First, let us consider that two abstract categorial grammars G1 = (Σ11,Σ12,H1, s1)
and G2 = (Σ21,Σ22,H2, s2) are disjoint if Σ11 and Σ21 are disjoint.

Definition 13. A tree-ACG G is called a tree-IO(ACG) if

1. G is a linear tree-ACG or
2. there exist two disjoint tree-IO(ACGs) G1 = (Σ1,Σ,H1, s1) and G2 = (Σ2,Σ,H2, s2),

a constant x in the HOS Σ = (A,C, τ) that satisfies τ(x) ∈ A, such that, given
abs(G1, x) = (Σ1,Σ − {x},H′, s1), then G = (Σ′,Σ,H , s) where:
(a) Σ′ = Σ1 ∪ Σ2 ∪ Σs where Σs = ({s1, s2, s}, {c}, {c
→ s1 → s2 → s}) and, given
Σi = (Ai,Ci, τi) for i ∈ {1,2}, c � C1∪C2, s � A1∪A2.

(b) H′(e) =Hi(e) if e belongs to the abstract signature of Gi (where i ∈ {1,2}) and
H′(c) = λx1x2.x1x2.

We now prove that this formalism exactly captures tree languages the yields of which
are IO-MCFLs:

Theorem 4. A language L is a IO(MCFL) iff there exists a tree IO(ACG) such that
L = yO(G).

14 P. Bourreau, L. Kallmeyer, and S. Salvati

Proof. If L is in IO(MCFL), then for some n in N, L is in IOn(MCFL). We prove
the Theorem by induction on n. When n = 0, L is a MCFL, and from [dGP04], there
exists a linear tree-ACG G such that yO(G) = L, and G is a tree-IO(ACG) by definition.
Conversely, for G a linear tree-ACG, yO(G) is a IO-MCFL ([Kan10], [Sal06]).

Now, suppose there exist two languages L1,L2 in IOn(L), such that L= L1[x := L2]IO.
By induction hypothesis, there exist two tree-IO(ACGs) G1 = (Σ1,Σ,H1, s1) and G2 =

(Σ2,Σ,H2, s2), which without loss of generality can be assumed to be disjoint, such
that yO(G1) = L1 and yO(G2) = L2. Moreover, x is a constant of Σ = (A,C, τ), τ(x) = o.
According to Lemma 6, O(abs(G1, x)) = {λx.M ∈ ΛH

′(s)
Σ

| M ∈ O(G1)}. We consider the
grammar G = (Σ′,Σ,H , s) where:

1. Σ′ = Σ1∪Σ2∪Σs where Σs = ({s1, s2, s}, {c}, {c
→ s1 → s2→ s}) and c � C11∪C21,
s � A11∪A21.

2. H′(e) = Hi(e) if e belongs to the abstract signature of Gi (where i ∈ {1,2}) and
H′(c) = λx1x2.x1x2.

A term M is recognized by this grammar iff there exist M1 ∈ O(abs(G1, x)) and M2 ∈
O(G2) such that M = |M1M2|βwhich is the result of substituting every occurrence of x in
M1 by M2. Finally, we can conclude yO(G) = {hx,w2 (w1) |w1 ∈ L1,w2 ∈ L2}. Conversely,
we prove that the yield of the language of a tree-IO(ACG) is an IO-MCFL, with similar
arguments.

Example 7. Let us consider the grammar G1 given in the previous example, and a gram-
mar G2 = {Σ2,Σ

′,H2, s2}, where:

– Σ2 = ({s2}, {c′1,c
′
2}, τ2) and τ2(c′1) = s2, τ2(c′2) = s2→ s2

– Σ′ = ({o}, {a,b,d}, τ′) such that τ′(a) = τ′(b) = o and τ′(d) = o→ o→ o→ o
– H2(s2) = o, andH2(c′1) = ε,H(c′2) = λy.dayb

The yield of O(G2) is {anbn | n ∈ N}.
By considering the grammar abs(G1) in Example 6, we build the grammar Ga,b =

{Σ1 ∪ Σ2 ∪Σs,Σ ∪ Σ′ − {x},F , s) where Σs = ({s}, {c}, {c
→ s1 → s2 → s}) and F (e) =
H′1(e) (resp. F (e) =H2(e)) if e is a constant in Σ1 (resp. in Σ2), and F (c) = λx1x2.x1x2.
This grammar is a tree-IO(ACG). Moreover, the yield of the tree language generated by
this grammar is La,b = {(anbn)m | n,m ∈ N}.

Corollary 2. The membership problem of an IO(MCFL) is LOGCFL.

Proof. This is direct consequence of Theorem 3, as we build almost affine ACGs which
capture IO(MCFL).

4 Conclusion

In this paper, we presented the operation of IO-substitution on languages, which in-
troduces some form of copying mechanism. We investigated how the properties of
semilinearity and constant-growth can be preserved by this operation, and exhibited
a new family of languages, which we call IO(MCFL). This class is not semilinear, but
is constant-growth. Moreover, it has a membership problem that is polynomial and it

On IO-Copying and Mildly-Context Sensitive Formalisms 15

contains context-free languages. It can be thus considered as mildly context-sensitive.
Using abstract categorial grammars, we show how to define actual grammars that cap-
ture IO(MCFL). In the meantime we also proved that IO-substitution preserves certain
combinations of the closure properties of classes of languages: closure under homo-
morphism, union, concatenation and intersection with a regular set.

Nevertheless, the class of IO(MCFL) was not proved to be closed under inverse ho-
momorphism, and we conjecture that it is not. Clearly the class of IO(MCFL) is strictly
weaker than the class of languages derived by CNL-LMGs in [Kal10], in particular be-
cause CNL-LMGs contain languages that are intersections of context-free languages.
While IO(MCFL) and CNL-LMGs share some properties, IO(MCFL) and CNL-LMG
use different implementations of copying: in IO(MCFL), copying is based on copying
certain objects that have already been derived; in CNL-LMGs copying is the result of
checking the equality of substrings that are derived independently. In IO(MCFL), the
reason why we do not go beyond constant-growth languages is due to a relative in-
dependence between the recursive nature of derivations and copying. It is likely that
we may find a less syntactic characterization of second-order constant-growth ACG by
studying more carefully how copying and recursion may interact. Yet another question
consists in giving a characterization of the Parikh images of IO(MCFL) that still enjoy
some properties of linearity. Finally, some linguistic examples should be given in order
to give arguments of whether the IO-substitution operation is needed to give account of
the syntactic structure of languages or not. One could, for instance, use IO-substitution
to simulate deletion of material as in gapping, thus:

– L1 = {Peter likes Mary, Jim likes g the dog and Paul likes g the cat} and,
– L2 = {ε}

then L1[likes g := L2]IO = {Peter likes Mary, Jim the dog, and Paul the cat}.

References

[BS11] Bourreau, P., Salvati, S.: A Datalog recognizer for almost affine λ-CFGs. In:
Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878,
pp. 21–38. Springer, Heidelberg (2011)

[dG01] de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-
tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155 (2001)

[dGP04] de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and Infor-
mation 13(4), 421–438 (2004)

[Fis68a] Fischer, M.J.: Grammars with macro-like productions. In: IEEE Conference
Record of 9th Annual Symposium on Switching and Automata Theory,
pp. 131–142. IEEE (1968)

[Fis68b] Fischer, M.J.: Grammars with macro-like productions. PhD thesis, Harvard Univer-
sity (1968)

[Jos85] Joshi, A.K.: Tree-adjoining grammars: How much context-sensitivity is required to
provide reasonable strucutral descriptions? In: Natural Language Parsing: Psycho-
logical, Computational and Theoretical Perspectives, pp. 206–250 (1985)

16 P. Bourreau, L. Kallmeyer, and S. Salvati

[JSW91] Joshi, A.K., Shanker, V.K., Weir, D.J.: The converence of mildly context-sensitive
grammar formalisms. In: Sells, P., Shieber, S.M., Wasow, T. (eds.) Foundational
Issues in Natural Language Processing, pp. 31–81. The MIT Press (1991)

[Kal10] Kallmeyer, L.: On mildly context-sensitive non-linear rewriting. Research on Lan-
guage and Computation 8(2), 341–363 (2010)

[Kan06] Kanazawa, M.: Abstract families of abstract categorial grammars. In: Proceedings
of WoLLIC, Stanford University CSLI (2006)

[Kan07] Kanazawa, M.: Parsing and generation as Datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, Prague,
pp. 176–183. Association for Computational Linguistics (2007)

[Kan10] Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replace-
ment grammars. Journal of Logic, Language and Information 19(2), 137–161
(2010)

[Mus01] Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In: van Rooy,
R., Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium, Am-
sterdam, pp. 150–155 (2001)

[Sal06] Salvati, S.: Encoding second-order ACGs with deterministic tree walking transduc-
ers. In: Proceedings of Formal Grammar, Malaga, Spain (2006)

[Sal11] Salvati, S.: MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and
the OI hierarchies. Technical report, INRIA (2011)

[SMMK91] Seki, H., Matsamura, T., Mamoru, F., Kasami, T.: On multiple context-free gram-
mars. Theoretical Computer Science 88(2), 191–229 (1991)

[Sta96] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

[Ven87] Venkateswaran, H.: Properties that characterize LOGCFL. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, pp. 141–150. ACM
(1987)

[VSWJ87] Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th Annual
Meeting of the Association for Computational Linguistics, Stanford (1987)

[Wei88] Weir, D.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD the-
sis, University of Pennsylvania (1988)

[Yos06] Yoshinaka, R.: Linearization of affine abstract categorial grammars. In: Proceedings
of the 11th Conference on Formal Grammar, Malaga, Spain, pp. 185–199 (2006)

	On IO-Copying and Mildly-Context Sensitive Formalisms
	1
Introduction
	2
IO-Substitutions, Semilinearity and Constant-Growth
	2.1
Basic Definitions
	2.2
IO-Substitution and Copies
	2.3
Preserving the Semilinearity and Constant-Growth Properties

	3
IO-Multiple Context-Free Languages
	3.1
Abstract Categorial Grammars
	3.2
IO-MCFGs as Almost Affine ACGs

	4
Conclusion
	References

