
Glyn Morrill
Mark-Jan Nederhof (Eds.)

 123

LN
CS

 8
03

6

Formal Grammar
17th and 18th International Conferences
FG 2012 Opole, Poland, August 2012, Revised Selected Papers
FG 2013 Düsseldorf, Germany, August 2013, Proceedings

Lecture Notes in Computer Science 8036
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark

Erich Grädel, RWTH Aachen University, Germany

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Imperial College London, UK

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, Tilburg University, The Netherlands

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

Glyn Morrill Mark-Jan Nederhof (Eds.)

Formal Grammar
17th and 18th International Conferences, FG 2012/2013
Opole, Poland, August 2012, Revised Selected Papers
Düsseldorf, Germany, August 2013, Proceedings

13

Volume Editors

Glyn Morrill
Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics
Jordi Girona Salgado 1-3
08034 Barcelona, Spain
E-mail: morrill@lsi.upc.edu

Mark-Jan Nederhof
University of St Andrews
School of Computer Science
North Haugh
St. Andrews KY16 9SX, UK
E-mail: markjan.nederhof@googlemail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39997-8 e-ISBN 978-3-642-39998-5
DOI 10.1007/978-3-642-39998-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943908

CR Subject Classification (1998): F.4, I.1, I.2.7

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Formal Grammar is a conference dedicated to empirical and theoretical linguis-
tics expressed technically and mathematically. Topics addressed include:

– Formal and computational phonology, morphology, syntax, semantics and
pragmatics

– Model-theoretic and proof-theoretic methods in linguistics
– Logical aspects of linguistic structure
– Constraint-based and resource-sensitive approaches to grammar
– Learnability of formal grammar
– Integration of stochastic and symbolic models of grammar
– Foundational, methodological and architectural issues in grammar and lin-

guistics
– Mathematical foundations of statistical approaches to linguistic analysis

Formal Grammar has been celebrated in Barcelona (1995), Prague (1996), Aix-
en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento
(2002), Vienna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin
(2007), Hamburg (2008), Bordeaux (2009), Copenhagen (2010), Ljubljana (2011),
Opole (2012) and Düsseldorf (2013).

The present volume collects the papers from the 17th Conference on Formal
Grammar held in Opole in 2012 and the 18th Conference on Formal Grammar
held in Düsseldorf in 2013. Together, these two conferences comprise 18 con-
tributed papers selected from 27 high-quality submissions. In addition, the 2012
meeting featured invited talks by Larry Moss and Reinhard Muskens, and the
2013 meeting featured invited talks by Carl Pollard and Chung-chieh Shan, for
which we are most grateful. We would also like to thank the local organizers of
ESSLLI 2012 and ESSLLI 2013, with which the conferences were colocated.

May 2013 Glyn Morrill
Mark-Jan Nederhof

Organization

Program Committee 2012

Alexander Clark Royal Holloway University, UK
Berthold Crysmann CNRS - LLF, France
Alexandre Dikovsky Université de Nantes, France
Denys Duchier Université d’Orleans, France
Annie Foret IRISA - IFSIC, France
Nissim Francez Technion, Israel
Laura Kallmeyer University of Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Valia Kordoni Universität des Saarlandes, Saarbrücken,

Germany
Stefan Müller Freie Universität Berlin, Germany
Gerald Penn University of Toronto, Canada
Christian Retoré Université Bordeaux 1, France
Manfred Sailer Goethe University Frankfurt, Germany
Ed Stabler UCLA, USA
Anders Søgaard University of Copenhagen, Denmark
Jesse Tseng CNRS - CLLE-ERSS, France

Standing Committee 2012

Markus Egg Humboldt-Universität Berlin,
(Program Co-chair) Germany

Glyn Morrill Universitat Politècnica de Catalunya,
(Program Co-chair) Spain

Mark-Jan Nederhof
(Program Co-chair) University of St Andrews, UK

Frank Richter
(Program Co-chair) University of Tübingen, Germany

Program Committee 2013

Alexander Clark King’s College London, UK
Benoit Crabbé Université Paris 7, France
Berthold Crysmann CNRS - LLF, France
Denys Duchier Université d’Orleans, France
Annie Foret IRISA - IFSIC, France

VIII Organization

Nissim Francez Technion, Israel
Laura Kallmeyer University of Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Valia Kordoni Humboldt-Universität Berlin, Germany
Wolfgang Maier University of Düsseldorf, Germany
Stefan Müller Freie Universität Berlin, Germany
Gerald Penn University of Toronto, Canada
Christian Retoré Université Bordeaux 1, France
Manfred Sailer Goethe University Frankfurt, Germany
Anders Søgaard University of Copenhagen, Denmark
Ed Stabler UCLA, USA
Jesse Tseng CNRS - CLLE-ERSS, France

Standing Committee 2013

Glyn Morrill Universitat Politècnica de Catalunya,
Spain

Mark-Jan Nederhof
(Program Co-chair) University of St Andrews, UK

Rainer Osswald Heinrich-Heine-Universität Düsseldorf,
Germany

Frank Richter
(Program Co-chair) University of Tübingen, Germany

Table of Contents

Formal Grammar 2012

On IO-Copying and Mildly-Context Sensitive Formalisms 1
Pierre Bourreau, Laura Kallmeyer, and Sylvain Salvati

The Distribution and Interpretation of Hausa Subjunctives: An HPSG
Approach . 17

Berthold Crysmann

Memory Resource Allocation in Top-Down Minimalist Parsing 32
Gregory M. Kobele, Sabrina Gerth, and John Hale

Parsing Pregroup Grammars with Letter Promotions in Polynomial
Time . 52

Katarzyna Moroz

Towards an HPSG Analysis of Object Shift in Danish 69
Stefan Müller and Bjarne Ørsnes

Cognitive and Sub-regular Complexity . 90
James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst,
Dakotah Lambert, and Sean Wibel

Is Malay Grammar Uniform? A Constraint-Based Analysis 109
Sharifah Raihan Syed Jaafar

Completeness of Full Lambek Calculus for Syntactic Concept
Lattices . 126

Christian Wurm

Formal Grammar 2013

On the Expressivity of Optimality Theory versus Ordered Rewrite
Rules . 142

Brian Buccola

Adjectives in a Modern Type-Theoretical Setting . 159
Stergios Chatzikyriakidis and Zhaohui Luo

Tree Wrapping for Role and Reference Grammar . 175
Laura Kallmeyer, Rainer Osswald, and Robert D. Van Valin Jr.

The String-Meaning Relations Definable by Lambek Grammars and
Context-Free Grammars . 191

Makoto Kanazawa and Sylvain Salvati

X Table of Contents

On the Complexity of Free Word Orders . 209
Jérôme Kirman and Sylvain Salvati

Determiner Gapping as Higher-Order Discontinuous Constituency 225
Yusuke Kubota and Robert Levine

Conjunctive Grammars in Greibach Normal Form and the Lambek
Calculus with Additive Connectives . 242

Stepan Kuznetsov

On the Generative Power of Discontinuous Lambek Calculus 250
Alexey Sorokin

A Count Invariant for Lambek Calculus with Additives and Bracket
Modalities . 263

Oriol Valent́ın, Daniel Serret, and Glyn Morrill

Some Higher Order Functions on Binary Relations 277
R. Zuber

Author Index . 293

On IO-Copying and Mildly-Context Sensitive
Formalisms

Pierre Bourreau1, Laura Kallmeyer2, and Sylvain Salvati1

1 Université Bordeaux 1
351, Cours de la Libération

33405 Talence Cedex, France
{bourreau,salvati}@labri.fr

2 Heine-Heinrich Universität Düsseldorf
Universitätstr. 1

40225 Düsseldorf, Germany
kallmeyer@phil.uni-duesseldorf.de

Abstract. The class of mildly context-sensitive languages is commonly regarded
as sufficiently rich to capture most aspects of the syntax of natural languages.
Many formalisms are known to generate families of languages which belong to
this class. Among them are tree-adjoining grammars, multiple context-free gram-
mars and abstract categorial grammars. All these formalisms have in common
that they are based on operations which do not copy already derived material in
the course of a derivation. We propose an extension of the class of languages
captured by these formalisms that is arguably mildly context-sensitive. This ex-
tension is based on a mild use of a copying operation we call IO-substitution.

Keywords: mildly context-sensitive formalisms, abstract categorial grammars,
semilinear and constant-growth languages, IO grammars.

1 Introduction

The question of the amount of expressive power a formalism needs so as to adequately
model natural language syntax is still open. Nevertheless the notion of mildly context
sensitive languages that Joshi [Jos85] proposes plays a structuring role in this debate. A
class L of languages is said to be mildly context-sensitive [Jos85, Wei88] if it satisfies
the following properties:

1. L contains all context-free languages.
2. if L is in L then L describes only some restricted crossing dependencies.
3. every language L ∈ L satisfies the constant-growth property.
4. for every language L ∈ L, recognition can be performed in polynomial-time.

Some well-known formalisms are widely regarded as defining mildly context-sensitive
classes of languages, like Linear Context-Free Rewriting Systems [VSWJ87] (LCFRSs),
Multiple Context-Free Grammars [SMMK91] (MCFGs), Minimalist Grammars [Sta96]
(MGs) and set-local multicomponent Tree Adjoining Grammars [Wei88] (MCTAGs).
All those formalisms actually define the same class of languages. Nevertheless, we

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 P. Bourreau, L. Kallmeyer, and S. Salvati

think it is more appropriate to say that a class of languages is mildly context-sensitive
rather than speaking of the class of mildly context-sensitive languages. Indeed, property
2 is mostly intuitive and not really well formalized. It therefore induces some subjec-
tive judgments about whether a class of languages is mildly context-sensitive. Indeed,
while MCFLs are usually regarded as mildly context sensitive, this second property is
interpreted in [JSW91] as perhaps [excluding] the so-called language MIX, which has
recently been shown to be in the class of MCFLs [Sal11].

Property 3 defining a mildly context-sensitive class of languages is also open to de-
bate. For example, Weir [Wei88] considers that the constant-growth property is too
weak to capture [the linguistic] intuition fully [. . .] the slightly stronger property of
semilinearity may come closer. As it happens, all the formalisms we mention above
are semilinear. So as to understand what difference it makes to consider languages that
satisfy the constant-growth property rather than the semilinearity property, we explore
a way of defining interesting families of languages that are not semilinear but that sat-
isfy the constant-growth property. For this goal, we extend the class of LCFRL/MCFL
following ideas from [Kal10] by adding to these formalisms a limited capacity of copy-
ing during derivations. This approach differs from that of [Kal10] in that it does not
try to find the most general way of achieving this goal. In particular, we try to obtain
formalisms whose derivations are similar to those of context-free grammars, and as a
consequence we secure the decidability of the emptiness problem for the languages we
define.

Our proposal is based on an operation that can be traced back to Fischer [Fis68a]
and that we call IO-substitution. Roughly speaking, an IO-substitution of a language
L2 in a language L1 amounts, for every word w of L2, to replacing in every word of
L1 all the occurrences of a given letter x by w. In such an IO-substitution, one can see
the words of L1 as parametrized by the letter x, this parameter being instantiated with
words taken from L2. In general, when recursively applied, such an operation gives
rise to languages that may have an exponential growth. Interestingly, we show that
under certain simple conditions, a class of languages satisfying the constant-growth
property is closed under IO-substitution. Thus taking the closure of classes of semilinear
languages, such as MCFLs/LCFRLs, under this operation gives rise to classes that have
the constant-growth property but which may not be semilinear anymore.

The structure of the paper is as follows: in the first part of the article, we recall the
notions of semilinearity and constant-growth for languages. We then introduce the op-
eration of IO-substitution on languages and show how the constant-growth (resp. semi-
linearity) property can be preserved when applied on constant-growth (resp. semilinear)
languages. Thanks to this result, we define a new class of languages we call IO(MCFL),
as a candidate for the biggest mildly context-sensitive class. In the second part of the
article, we characterize a grammatical formalism which exactly captures languages in
IO(MCFL). Such grammars are particular abstract categorial grammars of second-
order, the generated languages of which are tree languages. The given formalism enjoys
the property of being analyzable in polynomial-time, which confirms IO(MCFL) as a
candidate for being a mildly context-sensitive class of languages.

On IO-Copying and Mildly-Context Sensitive Formalisms 3

2 IO-Substitutions, Semilinearity and Constant-Growth

2.1 Basic Definitions

Given a finite set Σ, we write Σ∗ for the set of words built on Σ, and ε for the empty
word. Given w in Σ∗, we write |w| for its length, and |w|a for the number of occurrences
of a letter a of Σ in w. A language on Σ is a subset of Σ∗. Given two languages L1,L2 ⊆
Σ∗, L1 · L2, the concatenation of L1 and L2, is the language {w1w2 | w1 ∈ L1∧w2 ∈ L2};
the union of L1 and L2 is written L1 + L2.

We write N for the set of natural numbers. For a given alphabet Σ, NΣ is the set of
vectors whose coordinates are indexed by the letters of Σ. Given a ∈ Σ and −→v ∈ NΣ ,
−→v [a] denotes the value of the coordinate a of −→v . We write −→ea for the unit vector on the
a-dimension, i.e. the vector such that −→ea[c] = 0 when c � a and −→ea[a] = 1.

The constant-growth property expresses some constraint about the distribution of the
possible length of the words in a language:

Definition 1. A language L ⊆ Σ∗ is said to be constant-growth if there exist k,c ∈ N
such that, given w ∈ L if |w| > k, then there is w′ ∈ L such that |w| < |w′| ≤ |w|+ c.

A class of languages L is constant-growth when every L in L is constant-growth.

Most of the mildly context-sensitive classes of languages commonly used verify the
stronger property of semilinearity, which is based on the notion of the Parikh image.

Definition 2. Let us consider a word w in a language L ⊆ Σ∗. The Parikh image of w,
written −→p (w) is the vector of NΣ such that, for every a ∈ Σ, −→p (w)[a] = |w|a. The Parikh
image of L is defined as −→p (L) = {−→p (w) | w ∈ L}.

Definition 3. A set V of vectors of NΣ is called linear when there are vectors −→x0, . . . ,
−→xn in NΣ such that V = {−→x0 + k1

−→x1 + . . .+ kn
−→xn | k1, . . . ,kn ∈ N}. V is called purely linear

when −→x0 =
−→
0 .

A set of vectors is called semilinear (resp. purely semilinear) when it is a finite union
of linear (resp. purely linear) sets.

Given two sets of vectors V1 and V2, we will denote by V1 +V2 the set {−→v1 +
−→v2 | −→v1 ∈

V1,
−→v2 ∈ V2}. Similarly, given k ∈ N and a set of vectors V , we will write kV = {k−→v | −→v ∈

V}.

Definition 4. A language L is called semilinear when −→p (L) is a semilinear set. A class
of languages L is semilinear when all the languages it contains are semilinear.

Given two alphabets Σ1 and Σ2, a string homomorphism h from Σ∗1 to Σ∗2 is a function
such that h(ε) = ε and h(w1w2) = h(w1)h(w2). Given L ⊆ Σ∗1 , we write h(L) for the
language {h(w) ∈ Σ∗2 | w ∈ L}. The homomorphism h is alphabetic when for each a in
Σ1, h(a) is in Σ2.

Definition 5. Let us consider a class L of languages which share the same alphabet Σ.
Given an n-ary operation op : (Σ∗)n
→ Σ∗, where n ∈ N, we say that L is closed under
op if for every L1, . . . ,Ln ∈ L, op(L1, . . . ,Ln) ∈ L.

4 P. Bourreau, L. Kallmeyer, and S. Salvati

In the rest of the paper, we will be particularly interested in MCFL, the class of mul-
tiple context-free languages. This class of languages is known to be mildly context-
sensitive and semilinear. It is also closed by homomorphism, intersection with regular
sets, union and concatenation [SMMK91]. Note that our study could also be done on
other mildly context-sensitive classes of string languages, such as the classes of context
free-languages, or yields of tree-adjoining grammars, or well-nested mildly context-
sensitive grammars.

2.2 IO-Substitution and Copies

In this section, we introduce an operation on languages, which we will use to define
constant-growth languages. This operation, which we call IO-substitution, enables a
specific kind of copying mechanism, which we want to use so as to capture some lan-
guages that do not belong to MCFL, but still satisfy the constant-growth property:

Example 1. The language La,b = {(anbn)m | n,m ∈ N} is not a MCFL (see [Kal10] for a
proof). Nevertheless, it is a semilinear language, as its Parikh image is {k(1,1) | k ∈ N},
a semilinear set.

The language Lcount = {(and)man | n,m ∈N} is not a semilinear language, but satisfies
the constant-growth property: given a word w in Lcount such that |w| ≥ 0 it holds that
|w| < aa|w| ≤ |w|+1.

The language Lexp = {a2n | n ∈ N} is neither semilinear, nor constant-growth.

Interestingly, these three languages are also known to be generated by IO-macro gram-
mars [Fis68b, Fis68a], in which copying operations are allowed in a specific way,
which we will not discuss in detail in this article. We here introduce the notion of
IO-substitution that allows us to mimic in a non-recursive way the copying operations
that are used in IO-macro grammars. This notion of substitution can be compared with
the notion of language substitution which corresponds to the non-recursive counterpart
of the copying operations in OI-macro grammars (another notion of macro grammars
defined by Fischer [Fis68b, Fis68a]). While language substitution consists in replacing
each occurrence of a letter a in the words of a language L1 by some word of a language
L2, IO-substitution requires that every such occurrence of a is replaced by the very same
word of L2.

Definition 6. Let us consider an alphabet Σ, and two languages L1 ⊆ Σ∗ and L2 ⊆ Σ∗.
Given a word w ∈ L2, and a symbol a ∈ Σ, we define the homomorphism ha,w : Σ∗
→ Σ∗
by ha,w(c) = c for c ∈ Σ − {a} and ha,w(a) = w.

The language L1[a := L2]IO is then defined as
⋃

w∈L2
ha,w(L1).

Note that L1[a := L2]IO = L1 if for every word w ∈ L1, a has no occurrence in w.
As an example, we can consider the languages L1 = a∗ and L2 = ab+c; the language

L1[a := L2] is then defined as (ab+ c)∗.

Definition 7. Given a class of languages L built on an alphabet Σ, we define the class
IOn(L) by induction on n ∈ N as

– IO0(L) = L and

On IO-Copying and Mildly-Context Sensitive Formalisms 5

– IOn+1(L) =
⋃

L1,L2∈IOn(L)
⋃

x∈Σ L1[x := L2]IO, for every n ≥ 0

We define IO(L) as
⋃

n∈N IOn(L).

Notice that IO(L) is the smallest class of languages that contains L and that is closed
under IO-substitution.

Based on this operation, we can build the languages La,b and Lcount easily from
context-free languages. Indeed, given L1 = {xn | n ∈ N} and L2 = {ambm | m ∈ N}, the
language La,b is the language L1[x := L2]IO. In the same way, Lcount = L′1[x := L′2]IO,
where L′1 = {(xd)mx | m ∈ N} and L′2 = {a

n | n ∈N}. On the other hand, there is no trivial
way of using the IO-substitution operation on multiple context-free languages to gener-
ate Lexp. One can also remark that L1,L2,L′1 and L′2 are context-free languages, hence
semilinear languages and they satisfy the constant-growth property. It is therefore nat-
ural to investigate the conditions under which semilinearity and the constant-growth
property are preserved by the IO-substitution operation.

2.3 Preserving the Semilinearity and Constant-Growth Properties

In the previous examples, we have seen that the newly introduced operation of IO-
substitution can lead in some particular cases to the construction of semilinear or
constant-growth languages when applied to semilinear languages. In this section, we
investigate the conditions which lead to the preservation of these properties.

Definition 8. Given an alphabet Σ and a ∈ Σ:

– a set of vectors V ⊆ NΣ is a-independent when for every −→v ∈ V, −→v [a] = 0.
– a set of vectors V is a-isolating if it is of the form U + c{k−→ea | k ∈ N} where U is

a-independent, and c ∈ N− {0}.
– a semilinear set is a-isolating when it is a finite union of linear a-isolating sets of

vectors.
– a semilinear language is a-isolating when its Parikh image is a semilinear a-

isolating set of vectors.

Example 2. Let us consider various languages so as to illustrate a-isolating languages:

– the language {xn | n ∈N} is obviously x-isolating, as its Parikh image is {n(1) | n ∈N}.
– the language abxa∗x∗ is not x-isolating as its Parikh image is {(1,1,1)+n(1,0,0)+

m(0,0,1) | n,m ∈ N} (with −→ea = (1,0,0), −→eb = (0,1,0) and −→ex = (0,0,1)).
– the language aba∗x∗ is x-isolating, since its Parikh image is {(1,1,0)+ n(1,0,0)+

m(0,0,1) | n,m ∈ N} = {(1,1,0)+n(1,0,0) | n ∈ N}+1{n(0,0,1) | n ∈ N}.
– the language (xa)∗x is not x-isolating as its Parikh image is {(0,1)+n(1,1) | n ∈ N}

(with −→ea = (1,0), and −→ex = (0,1)).

One can remark that, given a word w in a a-isolating language, the number of occur-
rences of a in w is completely independent from the number of occurrences of any other
symbol in w.

We now show that the IO-substitution of a letter a of a semilinear language in a
a-isolating language generates a semilinear language.

6 P. Bourreau, L. Kallmeyer, and S. Salvati

Lemma 1. Given c ∈N, if V is a purely semilinear set then the set {kc−→v | −→v ∈ V∧k ∈N}
is equal to cV.

Proof. To prove the Lemma, it suffices to prove that when V is a purely linear set of
vectors, then {k−→v | −→v ∈ V ∧ k ∈ N} is equal to cV . If V is purely linear, let −→x1, . . . , −→xn be
the vectors such that V = {

∑n
i=1 ki
−→xi | k1, . . . ,kn ∈N}. We obviously have cV ⊆ {kc−→v | −→v ∈

V ∧ k ∈ N}, by considering k = 1. Moreover given −→u in {kc−→v | −→v ∈ V ∧ k ∈ N}, we must
have −→u = kc−→v with −→v in V , so that −→u = kc

∑n
i=1 ki
−→xi = c

∑n
i=1 kki

−→xi and is thus also in
cV .

Theorem 1. Given a semilinear language L1 ⊆ Σ∗, which is a-isolating, and a purely
semilinear language L2, the language L1[a := L2]IO is semilinear.

Proof. Since L1 is semilinear and a-isolating, its Parikh image is a finite union of linear
a-isolating sets V1, . . . , Vn. It is then easy to show that the Parikh image of L1[a := L2]IO

is the finite union of V′1, . . . , V′n where, for every 1 ≤ i ≤ n, V′i = Ui + {kci
−→u | k ∈ N,−→u ∈

−→p (L2)} (where ci ∈ N and Ui is a-independent). Since −→p (L2) is purely semilinear, by
Lemma 1, {kci

−→u | k ∈ N,−→u ∈ −→p (L2)} = ci
−→p (L2) which is purely semilinear. Thus, V′i is

the sum of two semilinear sets and is semilinear. Therefore
⋃n

i=1 V′i is a semilinear set.
As a conclusion, L1[a := L2]IO is semilinear.

While the semilinearity property is preserved by IO-substitution under some rather re-
strictive constraints, we show that for certain classes of languages, some of their prop-
erties are also satisfied by their closure under IO-substitution. Indeed, it is also easy to
see that L1[x := L2]IO, where L1 and L2 are semilinear languages, is of constant-growth
while not necessarily semilinear (as shown with the languages in Example 2). Interest-
ingly, the constant-growth property can be verified by closure under IO-substitution on
classes of languages which are closed under homomorphism.

Lemma 2. Given L1,L2 ⊆ Σ∗, if L1 is an infinite language that is of constant-growth
and L1 ⊆ L2, then L2 is of constant-growth.

Proof. Let k and c be as in Definition 1 for L1. Since L1 is infinite there are some words
w in L1 such that |w| > k. We let w0 be a shortest word so that |w0| > k. Without loss
of generality we may assume that |w0| = k+ 1. Then using the fact that L1 is constant-
growth we construct a sequence (wi)i∈N such that |wi| < |wi+1| ≤ |wi|+ c. Now, given a
word w in L2, if |w| > k we let n be the integer such that |wn| ≤ |w| < |wn+1|. By definition
of (wi)i∈N we have |wn+1| ≤ |wn|+c so that |wn+1| ≤ |w|+c. Therefore |w|< |wn+1| ≤ |w|+c,
and L2 is constant-growth.

Lemma 3. If a class of languages L is closed under (alphabetic) homomorphism, then
IOn(L) is closed under (alphabetic) homomorphism, for every n ∈ N.

Proof. We proceed by induction on n. For n= 0, IOn(L) is closed under (alphabetic) ho-
momorphism by hypothesis. For n = k+1, let us consider an alphabet Σ, two languages
L1,L2 ⊆ Σ∗ in IOk(L), and a (alphabetic) homomorphism h : Σ∗
→ Σ∗. Given a symbol
a ∈ Σ, we define the (alphabetic) homomorphism g : Σ∗
→ Σ∗ such that g(a) = a and
g(b) = h(b) when b ∈ Σ − {a}. It is then easy to check that h(L1[a := L2]IO) = g(L1)[a :=
h(L2)]IO. But, by the induction hypothesis, both g(L1) and h(L2) are in IOk(L) which
proves that h(L1[a := L2]IO) is in IOn(L).

On IO-Copying and Mildly-Context Sensitive Formalisms 7

We are now in a position to prove the following theorem:

Theorem 2. If a class of languages L is constant-growth and closed under homomor-
phism, then IOn(L) is constant-growth, for every n ∈ N.

Proof. We consider the alphabet Σ on which the languages of L are built. We show by
induction on n that the class IOn(L) is constant-growth. From Lemma 3, we have that
IOn(L) is closed under homomorphism.

The case n = 0 is immediate. For n = k+1, given L1 and L2 in IOk(L), we consider
several cases. Let us first suppose that L1 is infinite; then for w in L2 and a ∈ Σ, we
define ha,w to be the homomorphism such that ha,w(a) = w and ha,w(b) = b if b ∈ Σ−{a}.
By definition L1[a := L2]IO =

⋃
w∈L2

ha,w(L1). The cases where L2 = ∅ or L2 = {ε} are
trivial. So let us suppose that there is w � ε in L2, then ha,w(L1) is infinite and, by
induction hypothesis and because IOk(L) is closed under homomorphism, ha,w(L1) is
constant-growth. As ha,w(L1) ⊆ L1[a := L2]IO, Lemma 2 shows that L1[a := L2]IO is
constant-growth.

Let us now suppose that L1 is finite. The cases where, for every w in L1, |w|a = 0
or where L2 is finite are trivial. So let us consider w in L1 such that |w|a > 0 and L2

infinite. Then {w}[a := L2]IO is infinite and we are going to show that {w}[a := L2]IO

is constant growth. Let k and c be integers as in Definition 1 for L2. We consider l =
k|w|a + |w| − |w|a (i.e. the length of w when weighting an occurrence of a by k, and an
occurrence of any other letter of Σ by 1), d = c|w|a, and a word u ∈ {w}[a := L2]IO

such that |u| > l. This implies that there is v in L2 such that u = ha,v(w), and which
satifies |u| = |v||w|a+ |w| − |w|a. Moreover, |u| > l implies |v| > k; but then, because L2 is
constant-growth, there is v′ in L2 such that |v| < |v′| ≤ |v|+ c. Let u′ be ha,v′ (w); then
|u′| = |v′||w|a+ |w| − |w|a so that |u| < |u′| ≤ |u|+d. This finally shows that {w}[a := L2]IO

is constant-growth. As {w}[a := L2]IO is infinite and {w}[a := L2]IO ⊆ L1[a := L2]IO,
Lemma 2 implies that L1[a := L2]IO is constant-growth.

The string languages generated by multiple-context free-grammars, or second-order
ACGs, for example, are known to be closed under homomorphism [SMMK91, Kan06],
and satisfy the semilinearity property. As a consequence, the closure of these languages
by IO-substitution forms classes of languages which are constant-growth.

As a remark, the following example illustrates the need of the condition of closure
by homomorphism for the class of languages we close by IO-substitution:

Example 3. The language L1 = {anb2m | n,m ∈ N} is a constant-growth language (be-
cause a∗ is constant-growth), but is not a MCFL. The language L1[a := {ε}]IO = {b2m |
m ∈ N} is not constant-growth.

We know prove other desirable closure properties of classes of languages which are
preserved by IO-substitution.

Lemma 4. Given a class of languages L that is closed under alphabetic homomor-
phism, the following holds:

1. if L is closed under union, then so is IO(L),
2. if L is closed under concatenation, then so is IO(L),

8 P. Bourreau, L. Kallmeyer, and S. Salvati

Proof. Lemma 3 shows that IOn(L) is closed under alphabetic homomorphism.
By induction on n, we show that if L1 and L2 are in IOn(L) then L1 ∪ L2 (resp.

L1 · L2) is in IO(L). The base case is given by the fact that L is closed under union
(resp. concatenation). So let us suppose that n= k+1, given L1, L2, L′1 and L′2 in IOk(L)
we show that L1[a := L2]IO ∪ L′1[b := L′2]IO (resp. L1[a := L2]IO · L′1[b := L′2]IO) is in
IOn(L). We suppose that L1 ⊆ Σ∗1 and L′1 ⊆ Σ

′∗
1. We let a′ and b′ be two distinct letters

so that both a′ and b′ are not in Σ1 ∪Σ′1 and we let h be the alphabetic homomorphism
from Σ1 to Σ2 = (Σ1−{a})∪{a′} such that h(a)= a′ and h(c)= c when c� a; similarly we
define the alphabetic homomorphism g from Σ′1 to Σ′2 = (Σ1−{b})∪{b′} such that h(b)=
b′ and h(c)= c when c� b. Then it is easy to check that h(L1)[a′ := L2]IO = L1[a := L2]IO

and g(L′1)[b′ := L′2]IO = L′1[b := L′2]IO and moreover, with the induction hypothesis, we
get that L1[a := L2]IO∪L′1[b := L′2]IO = ((h(L1)∪g(L′1))[a′ := L2]IO)[b′ := L′2]IO (resp.
L1[a := L2]IO · L′1[b := L′2]IO = ((h(L1) ·g(L′1))[a′ := L2]IO)[b′ := L′2]IO) is in IOn(L).

Lemma 5. If L is a class of languages that is closed under union, alphabetic homo-
morphism and intersection with regular sets, then IO(L) is closed under intersection
with regular sets.

Proof. The proof of Lemma 3 entails that IOn(L) is closed under alphabetic homomor-
phism. We prove the theorem by induction on n. Let L1,L2 ⊆ Σ∗ be in IOn(L) and R
be a regular set whose syntactic monoid is M = (M, ·,1) and is recognized by N ⊆M
using the monoid homomorphism ϕ. We are going to show that L1[a := L2]IO ∩R is in
IO(L). For every m inM, we define Rm to be the regular language recognized by {m}
using ϕ and we define the monoid homomorphism ϕm from Σ∗ toM so that ϕm(a) = m
and for every c in Σ, c � a implies ϕm(c) = ϕ(c). We then let Qm be the regular lan-
guage recognized by N with the monoid homomorphism ϕm. For each m inM, we let
Lm = (L1∩Qm)[a := L2∩Rm]IO, it is then easy to see that L1[a := L2]IO∩R =

⋃
m∈M Lm.

But by induction hypothesis, for every m ∈M, L1∩Qm and L2∩Rm are in IO(L) so that
Lm is in IO(L). From Lemma 4, since L is closed under union and under alphabetic ho-
momorphism, IO(L) is closed under union. As R is regular,M is finite, and

⋃
m∈M Lm

(e.g. L1[a := L2]IO) is in IO(L).

As a consequence of the previous Theorems and of the fact that MCFL is closed under
union, concatenation, homomorphism and intersection with regular sets [SMMK91],
we have the following corollary:

Corollary 1. The class of languages IO(MCFL) satisfies the following properties:

1. it is constant-growth,
2. it is closed under homomorphism, union, concatenation and intersection with reg-

ular sets.

In the following section, we seek a grammatical formalism that captures the class
IO(MCFL). Additionally, we show that the membership problem in IO(MCFL) can
be solved in polynomial-time. This result shows that IO(MCFL) can arguably be con-
sidered as a mildly context-sensitive class of languages bigger than MCFL.

On IO-Copying and Mildly-Context Sensitive Formalisms 9

3 IO-Multiple Context-Free Languages

We have introduced in the previous section the notions of IO-substitution, and of IO-
closure of a class of languages. We have showed that IO(MCFL) is of constant-growth.
We are now going to give a grammatical formalism that precisely describes IO(MCFL).
This will allow us to see that languages in IO(MCFL) have a polynomial (more pre-
cisely LOGCFL) membership problem. In order to do so, we are going to encode an
IO(MCFL) as a second order Abstract Categorial Grammars (ACG) ([dG01, Mus01]).

3.1 Abstract Categorial Grammars

Given a set of atomic types A, the set of simple types T (A) on A is the smallest set
containing A and such that (α→ β) is inT (A) wheneverα and β are inT (A). We take the
usual conventions of writing α1→ ·· · → αn→ β instead of (α1→ (· · · → (αn→ β) · · ·)).
The order ord(α) of a type α ∈ T (A) is defined as ord(α) = 1 when α is atomic and
ord(α) = max(1+ord(α1),ord(α2)) when α = α1→ α2.

Definition 9. A higher-order signature (HOS) Σ = (A,C, τ) is a tuple made of a finite
set of atomic types A, a finite set of constants C and a function τ which associates types
in T (A) to constants in C.

The order of a higher-order signature Σ = (A,C, τ) is defined as maxc∈C(ord(τ(c))).
Moreover, we say that a HOS Σ = (A,C, τ) is a tree signature (resp. a string signature)
if ord(Σ) = 2 (resp. τ(c) is of the form o→ o for every c ∈ C).

Given a HOS Σ = (A,C, τ), we define (Λα
Σ

)α∈T (A) as the family of the smallest sets
verifying:

1. a variable xα belongs to Λα
Σ

2. a constant c ∈ C is in Λτ(c)
Σ

3. if M ∈ Λβ
Σ

, then λxα.M ∈ Λα→β
Σ

,
4. if M1 ∈ Λβ→αΣ , M2 ∈ ΛβΣ , then (M1M2) ∈ Λα

Σ
.

The terms are typed a la Church so that variables are explicitly carrying their types as
exponents, but for the sake of readability, we will often omit this typing notation when
it is unnecessary to the understanding.

As usual, we write M0M1 . . .Mn instead of (. . . (M0M1) . . .Mn) and λx1 . . . xn.M for
λx1. . . .λxn.M. We take for granted the notions of β-reduction (→∗β) and of the normal
form |M|β of a term M.

Note that given a tree signature Σ, the construction of a term M ∈ Λo
Σ does not make

use of the rule 3. Its general form is xM1 . . .Mn which can be interpreted as a tree
x(t1, . . . , tn) (ti being the interpretation of Mi as a tree, for every i ∈ {1, . . . ,n}). Similarly,
if Σ is a string signature, a term M ∈ Λo→o

Σ is of the general form λx.a1(. . . (anx)), which
can be interpreted as a string a1 . . .an.

Example 4. Let us consider a tree HOS ({o}, {∧,∨,0,1}, τ) where τ(∧) = τ(∨) = o→
o→ o and τ(0)= τ(1) = o. The terms in this signature are boolean formulas made of the
connectors ∧ and ∨, on the values 0 and 1.

The set FV(M) of free variables of a term M is defined as usual. Moreover, a term M is
called closed if it contains no free variable.

10 P. Bourreau, L. Kallmeyer, and S. Salvati

Definition 10. Given a HOS Σ = (A,C, τ), a λ-term M is called linear if:

1. M = x is a variable or M = c ∈ C, or
2. M = λx.N, x ∈ FV(N) and N is linear, or
3. M = M1 M2 if M1 and M2 are linear and FV(M1)∩FV(M2) = ∅.

The term M is called almost affine if

1’. M = x is a variable or M = c ∈ C, or
2’. M = λx.N and N is almost affine, or
3’. M = M1M2 if M1 and M2 are almost affine and if xα ∈ FV(M1)∩ FV(M2), then
α ∈ A.

Note that given a linear term M and a term M′ such that M→∗βM
′, M′ is also linear.

Given two HOS Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2), we say that Σ1 and Σ2 are disjoint
if C1∩C2 = ∅ and A1∩A2 = ∅.

Given a constant c, we also define

– Σ1∪Σ2 = (A1∪A2,C1∪C2, τ(c)) where Σ1 and Σ2 are disjoint and

τ(c) =

⎧
⎪⎪⎨
⎪⎪⎩

τ1(c) if c ∈ C1

τ2(c) if c ∈ C2

– Σ1 − c = (A1,C1 − {c}, τ′1), where the domain of τ′1 is C1 − {c}, and τ′1(c′) = τ1(c′),
for every c′ ∈ C1− {c}.

Definition 11. Given two HOS Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2), a homomorphism
H from Σ1 to Σ2 is a function that maps T (A1) to T (A2), Λα

Σ1
to ΛH (α)

Σ2
for every α ∈

T (A1) and verifies:

1. H(α→ β) =H(α)→H(β),
2. H(λxα.M) = λxH (α).H(M),H(MN) =H(M)H(N) andH(xα) = xH (α),
3. H(c) is a closed β-normal λ-term of ΛH (τ1(c))

Σ2
.

Finally, an Abstract Categorial Grammar G = (Σ1,Σ2,H , s) is a tuple where:

1. Σ1 = (A1,C1, τ1) and Σ2 = (A2,C2, τ2) are HOS, respectively called the abstract and
the object signatures of G.

2. H is a homomorphism from Σ1 to Σ2, called the lexicon.
3. s ∈ A1 is the distinguished type.

An ACG defines two languages:

– its abstract language asA(G) = {M ∈ Λs
Σ1
| FV(M) = ∅ and M is linear},

– its object language as O(G) = {M ∈ ΛH (s)
Σ2
| ∃M′ ∈ A(G), |H(M′)|β = M}.

An ACG is called linear (resp. almost affine) when for every c in Σ1, H(c) is linear
(resp. almost affine). It is called a second-order ACG when Σ1 is a second-order signa-
ture. It is called a tree-ACG when Σ2 is a tree signature andH(s) is atomic.

On IO-Copying and Mildly-Context Sensitive Formalisms 11

It is known that the string languages generated by second-order linear ACGs are
precisely MCFL ([dGP04] and [Sal06]). In particular the yields of the tree-languages
generated by second-order linear ACGs are MCFLs, the yield of a tree being the con-
catenation of its leaves from left to right. Given a tree language L we write yL for the
string language obtained by taking the yields of its trees. In particular given a tree ACG,
G, we write yO(G) for the string language of the yields of the trees in O(G).

Example 5. Let us consider the tree signatures Σ1 = ({s, t1, t2}, {c,c1,c2,c3,c4}, τ1) and
Σ2({o}, {a,b,c,d, ε,e, f }, τ2) where:

– τ1(c) = t1→ t2→ s, τ1(c1) = t1→ t1, τ1(c2) = t1, τ2(c3) = t2→ t2 and τ1(c4) = t2.
– τ2(a,b,c,d, ε) = o, τ2(e) = o→ o→ o and τ2(f) = o→ o→ o→ o→ o

We define the second-order tree-ACG G = (Σ1,Σ2,H , s) such that:

– H(t1) =H(t2) = (o→ o→ o)→ o,H(s) = o
– H(c2) =H(c4) = λz.zεε
– H(c1) = λPz.P(λx1x2.z(eax1)(ecx2)) andH(c3) = λPz.P(λx1x2.z(ebx1)(edx2))
– H(c) = λP1P2.P1(λx1x3.P2(λx2x4. f x1x2x3x4))

Then, a term is in the abstract language of this ACG if it is of the form

c (c1(. . . (c1︸�����︷︷�����︸
n

c2) . . .)) (c3(. . .(c3︸�����︷︷�����︸
m

c4) . . .))

for some n,m ∈ N.
The trees in O(G) are therefore of the following form:

f (ea(. . .(eaε) . . .))
︸��������������︷︷��������������︸

n

(eb(. . .(ebε) . . .))
︸��������������︷︷��������������︸

m

(ec(. . .(ecε) . . .))
︸��������������︷︷��������������︸

n

(ed(. . .(edε) . . .))
︸��������������︷︷��������������︸

m

Finally, the yield of this language is the language {anbmcndm | n,m ∈N}, which is known
to be a MCFL.

We finish this section by mentioning the following complexity results, which will be
used in the next section. We recall that LOGCFL is the set of problems which can be
reduced in logarithmic space into the problem of recognizability of context-free gram-
mars. This class is known to be a subclass of the problems solvable in polynomial-
time (see [Ven87] for more details).

Theorem 3 ([Yos06, Kan07]). The membership problem of a second-order almost
affine ACG is in LOGCFL.1

3.2 IO-MCFGs as Almost Affine ACGs
As mentioned in the previous section, abstract categorial grammar gives a general
framework to speak about MCFL as the strings generated by ACGs or, alternatively, as

1 A polynomial recognizer of second-order almost affine ACGs is given in [BS11]; this algo-
rithm is not known yet to be in LOGCFL.

12 P. Bourreau, L. Kallmeyer, and S. Salvati

the string languages generated by some tree grammars (which are linear second-order
tree-ACGs). In what follows, we seek the characterization of some tree-ACGs which
generate tree languages such that their yields form exactly IO-MCFLs. While the con-
struction we give can be applied to string-ACGs, we use tree-ACGs in order to prove
the membership problem is LOGCFL; indeed the grammars constructed in this way are
almost affine tree-ACGs, for which such a complexity result is known [Kan07, Yos06].

Intuitively, given two multiple context-free languages L1 ⊆ (Σ ∪ {x})∗ and L2 ⊆ Σ∗,
we can first remark that the letter x may have many occurrences in w1 ∈ L1. Given a
tree-ACG G1 = (Σ1,Σ2,H , s1) such that yO(G1) = L1, the idea is to consider x not as
a constant in the trees derived by G1, but as a variable which can be substituted by a
word w2 ∈ L2 (i.e. a tree in a tree-ACG G2 such that yO(G2) = L2). Therefore, we need
to build a tree-ACG G′1 such that t ∈ O(G1) iff λx.t ∈ O(G′1), and then use a constant
c : s′1 → s2 → s such thatH(c) = λx1x2.x1x2 to simulate the IO-substitution of x by L2

into L1, where s′1 and s2 are the distinguished types of G′1 and G2 respectively.
Remark that, because x will now be considered as a variable, the contexts appearing

in the left-hand side of a production rule in G′1 will not be linear as in the case of
linear ACGs defining MCFLs. But x being a leaf, its type is τ(x) = o, and the contexts
will therefore be almost affine, which still ensures the membership problem belongs to
LOGCFL, hence to the class of problems solvable in polynomial-time.

Definition 12. Given a second-order ACG G = (Σ1,Σ2,H , s), where Σi = {Ai,Ci, τi} for
i ∈ {1,2}, and x ∈ C2, we define the second-order ACG abs(G, x) = (Σ1,Σ2 − {x},H′, s)
as follows:

– given a type a ∈ A1,H′(a) = τ2(x)→H(a)
– for every c ∈ C1, given τ1(c)= α1→ . . .→ αn→ a, andH(c)= λy1 . . .yn.M,H′(c)=
λz1 . . .znx.|H(c)(z1 x) . . . (zn x)|β

Note that this construction transforms the constant x of the object signature into a
variable. Moreover, one should remark that given a constant c ∈ C2, the free occur-
rences of x inH(c) are bound by a λ-abstraction inH′(c). Finally, we should note that
A(abs(G)) =A(G).

Example 6. Let us consider the second-order tree-ACG G1 = {Σ1,Σ,H1, s1} where Σ1 =

({s1}, {c1,c2}, τ1) where τ1(c1) = s1, τ1(c2) = s1 → s1, and Σ = ({o}, {e, x, ε}, τ), where
τ(x)= τ(ε)= o, τ(e)= o→ o→ o; moreoverH1(s1)= o andH1(c1)= ε,H1(c2)=λy.cxy.

The abstract language of this grammar is made of trees of the form c2(. . .(c2︸����︷︷����︸
n

c1) . . .),

where n ∈ N.
The tree language derived by G1 is {cx(cx(. . .(cx

︸���������︷︷���������︸
n

ε) . . .)) | n ∈ N}.

The grammar abs(G1, x) = {Σ1,Σ2 − {x},H′1, s1} is such that:

H′1(c1) = λx.ε
H′1(c2) = λzx.|(λy.cxy)(zx)|β = λzx.cx(zx)

and derives tree contexts of the form λx.{cx(cx(. . . (cx
︸���������︷︷���������︸

n

ε) . . .)), where n ∈ N.

On IO-Copying and Mildly-Context Sensitive Formalisms 13

The transformation given by abs intuitively results in considering x as a variable, on
which substitutions can be applied. This is made explicit in the following theorem.

Lemma 6. Given a second-order ACG G = (Σ1,Σ2,H , s), the languageO(abs(G, x)) is
equal to {λx.M ∈ ΛH′(s)(Σ2) | M ∈ O(G)}.

Proof. G being a second-order ACG, so is G′. Moreover, G and G′ share the same ab-
stract language. Let us consider a term M ∈ O(G). By definition, there exists a term N in
A(G), such that |H(N)|β = M. We prove by induction on N that |H′(N)|β = λx.M. The
general form of N is cN1 . . .Np, for some p ∈N. If p= 0, then τ1(c)= s, and by construc-
tion, we obtainH′(s) = τ2(x)→H(s) andH′(c) = λx.|H(c)|β. Otherwise, by induction
hypothesis, |H′(Ni)|β = λx.|H(Ni)|β = Pi such that Pi is a term the type of which is ai ∈
A1, as the grammar is a second-order ACG. Then P =H′(cN1 . . .Np) =H′(c)P1 . . .Pp.
Given the general form λy1 . . .ynx.H(c)(y1x) . . . (ynx) ofH′(c), we obtain

P =β λx.|H(c)(P1x) . . . (Pnx)|β
=β λx.|H(c)(|H(c1)|β . . . |H(cn)|β)|β
=β λx.|H(N)|β

Given two MCFLs L1 and L2, we are now in a position to build the ACG which pro-
duces the substitution of x by L2 in L1. This operation is simulated by application in the
lambda-calculus. Indeed, it suffices to consider the tree-ACGs G1 and G2 which have
languages L1 and L2 as respective yields. We then build abs(G1, x) and add a constant
the image of which is λx1x2.x1x2. Because the IO-substitution substitutes every occur-
rence of a symbol x by a word, we must constrain the corresponding x in the ACG to
be of type o.

First, let us consider that two abstract categorial grammars G1 = (Σ11,Σ12,H1, s1)
and G2 = (Σ21,Σ22,H2, s2) are disjoint if Σ11 and Σ21 are disjoint.

Definition 13. A tree-ACG G is called a tree-IO(ACG) if

1. G is a linear tree-ACG or
2. there exist two disjoint tree-IO(ACGs) G1 = (Σ1,Σ,H1, s1) and G2 = (Σ2,Σ,H2, s2),

a constant x in the HOS Σ = (A,C, τ) that satisfies τ(x) ∈ A, such that, given
abs(G1, x) = (Σ1,Σ − {x},H′, s1), then G = (Σ′,Σ,H , s) where:
(a) Σ′ = Σ1 ∪ Σ2 ∪ Σs where Σs = ({s1, s2, s}, {c}, {c
→ s1 → s2 → s}) and, given
Σi = (Ai,Ci, τi) for i ∈ {1,2}, c � C1∪C2, s � A1∪A2.

(b) H′(e) =Hi(e) if e belongs to the abstract signature of Gi (where i ∈ {1,2}) and
H′(c) = λx1x2.x1x2.

We now prove that this formalism exactly captures tree languages the yields of which
are IO-MCFLs:

Theorem 4. A language L is a IO(MCFL) iff there exists a tree IO(ACG) such that
L = yO(G).

14 P. Bourreau, L. Kallmeyer, and S. Salvati

Proof. If L is in IO(MCFL), then for some n in N, L is in IOn(MCFL). We prove
the Theorem by induction on n. When n = 0, L is a MCFL, and from [dGP04], there
exists a linear tree-ACG G such that yO(G) = L, and G is a tree-IO(ACG) by definition.
Conversely, for G a linear tree-ACG, yO(G) is a IO-MCFL ([Kan10], [Sal06]).

Now, suppose there exist two languages L1,L2 in IOn(L), such that L= L1[x := L2]IO.
By induction hypothesis, there exist two tree-IO(ACGs) G1 = (Σ1,Σ,H1, s1) and G2 =

(Σ2,Σ,H2, s2), which without loss of generality can be assumed to be disjoint, such
that yO(G1) = L1 and yO(G2) = L2. Moreover, x is a constant of Σ = (A,C, τ), τ(x) = o.
According to Lemma 6, O(abs(G1, x)) = {λx.M ∈ ΛH

′(s)
Σ

| M ∈ O(G1)}. We consider the
grammar G = (Σ′,Σ,H , s) where:

1. Σ′ = Σ1∪Σ2∪Σs where Σs = ({s1, s2, s}, {c}, {c
→ s1 → s2→ s}) and c � C11∪C21,
s � A11∪A21.

2. H′(e) = Hi(e) if e belongs to the abstract signature of Gi (where i ∈ {1,2}) and
H′(c) = λx1x2.x1x2.

A term M is recognized by this grammar iff there exist M1 ∈ O(abs(G1, x)) and M2 ∈
O(G2) such that M = |M1M2|βwhich is the result of substituting every occurrence of x in
M1 by M2. Finally, we can conclude yO(G) = {hx,w2 (w1) |w1 ∈ L1,w2 ∈ L2}. Conversely,
we prove that the yield of the language of a tree-IO(ACG) is an IO-MCFL, with similar
arguments.

Example 7. Let us consider the grammar G1 given in the previous example, and a gram-
mar G2 = {Σ2,Σ

′,H2, s2}, where:

– Σ2 = ({s2}, {c′1,c
′
2}, τ2) and τ2(c′1) = s2, τ2(c′2) = s2→ s2

– Σ′ = ({o}, {a,b,d}, τ′) such that τ′(a) = τ′(b) = o and τ′(d) = o→ o→ o→ o
– H2(s2) = o, andH2(c′1) = ε,H(c′2) = λy.dayb

The yield of O(G2) is {anbn | n ∈ N}.
By considering the grammar abs(G1) in Example 6, we build the grammar Ga,b =

{Σ1 ∪ Σ2 ∪Σs,Σ ∪ Σ′ − {x},F , s) where Σs = ({s}, {c}, {c
→ s1 → s2 → s}) and F (e) =
H′1(e) (resp. F (e) =H2(e)) if e is a constant in Σ1 (resp. in Σ2), and F (c) = λx1x2.x1x2.
This grammar is a tree-IO(ACG). Moreover, the yield of the tree language generated by
this grammar is La,b = {(anbn)m | n,m ∈ N}.

Corollary 2. The membership problem of an IO(MCFL) is LOGCFL.

Proof. This is direct consequence of Theorem 3, as we build almost affine ACGs which
capture IO(MCFL).

4 Conclusion

In this paper, we presented the operation of IO-substitution on languages, which in-
troduces some form of copying mechanism. We investigated how the properties of
semilinearity and constant-growth can be preserved by this operation, and exhibited
a new family of languages, which we call IO(MCFL). This class is not semilinear, but
is constant-growth. Moreover, it has a membership problem that is polynomial and it

On IO-Copying and Mildly-Context Sensitive Formalisms 15

contains context-free languages. It can be thus considered as mildly context-sensitive.
Using abstract categorial grammars, we show how to define actual grammars that cap-
ture IO(MCFL). In the meantime we also proved that IO-substitution preserves certain
combinations of the closure properties of classes of languages: closure under homo-
morphism, union, concatenation and intersection with a regular set.

Nevertheless, the class of IO(MCFL) was not proved to be closed under inverse ho-
momorphism, and we conjecture that it is not. Clearly the class of IO(MCFL) is strictly
weaker than the class of languages derived by CNL-LMGs in [Kal10], in particular be-
cause CNL-LMGs contain languages that are intersections of context-free languages.
While IO(MCFL) and CNL-LMGs share some properties, IO(MCFL) and CNL-LMG
use different implementations of copying: in IO(MCFL), copying is based on copying
certain objects that have already been derived; in CNL-LMGs copying is the result of
checking the equality of substrings that are derived independently. In IO(MCFL), the
reason why we do not go beyond constant-growth languages is due to a relative in-
dependence between the recursive nature of derivations and copying. It is likely that
we may find a less syntactic characterization of second-order constant-growth ACG by
studying more carefully how copying and recursion may interact. Yet another question
consists in giving a characterization of the Parikh images of IO(MCFL) that still enjoy
some properties of linearity. Finally, some linguistic examples should be given in order
to give arguments of whether the IO-substitution operation is needed to give account of
the syntactic structure of languages or not. One could, for instance, use IO-substitution
to simulate deletion of material as in gapping, thus:

– L1 = {Peter likes Mary, Jim likes g the dog and Paul likes g the cat} and,
– L2 = {ε}

then L1[likes g := L2]IO = {Peter likes Mary, Jim the dog, and Paul the cat}.

References

[BS11] Bourreau, P., Salvati, S.: A Datalog recognizer for almost affine λ-CFGs. In:
Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878,
pp. 21–38. Springer, Heidelberg (2011)

[dG01] de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-
tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155 (2001)

[dGP04] de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and Infor-
mation 13(4), 421–438 (2004)

[Fis68a] Fischer, M.J.: Grammars with macro-like productions. In: IEEE Conference
Record of 9th Annual Symposium on Switching and Automata Theory,
pp. 131–142. IEEE (1968)

[Fis68b] Fischer, M.J.: Grammars with macro-like productions. PhD thesis, Harvard Univer-
sity (1968)

[Jos85] Joshi, A.K.: Tree-adjoining grammars: How much context-sensitivity is required to
provide reasonable strucutral descriptions? In: Natural Language Parsing: Psycho-
logical, Computational and Theoretical Perspectives, pp. 206–250 (1985)

16 P. Bourreau, L. Kallmeyer, and S. Salvati

[JSW91] Joshi, A.K., Shanker, V.K., Weir, D.J.: The converence of mildly context-sensitive
grammar formalisms. In: Sells, P., Shieber, S.M., Wasow, T. (eds.) Foundational
Issues in Natural Language Processing, pp. 31–81. The MIT Press (1991)

[Kal10] Kallmeyer, L.: On mildly context-sensitive non-linear rewriting. Research on Lan-
guage and Computation 8(2), 341–363 (2010)

[Kan06] Kanazawa, M.: Abstract families of abstract categorial grammars. In: Proceedings
of WoLLIC, Stanford University CSLI (2006)

[Kan07] Kanazawa, M.: Parsing and generation as Datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, Prague,
pp. 176–183. Association for Computational Linguistics (2007)

[Kan10] Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replace-
ment grammars. Journal of Logic, Language and Information 19(2), 137–161
(2010)

[Mus01] Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In: van Rooy,
R., Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium, Am-
sterdam, pp. 150–155 (2001)

[Sal06] Salvati, S.: Encoding second-order ACGs with deterministic tree walking transduc-
ers. In: Proceedings of Formal Grammar, Malaga, Spain (2006)

[Sal11] Salvati, S.: MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and
the OI hierarchies. Technical report, INRIA (2011)

[SMMK91] Seki, H., Matsamura, T., Mamoru, F., Kasami, T.: On multiple context-free gram-
mars. Theoretical Computer Science 88(2), 191–229 (1991)

[Sta96] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

[Ven87] Venkateswaran, H.: Properties that characterize LOGCFL. In: Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, pp. 141–150. ACM
(1987)

[VSWJ87] Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th Annual
Meeting of the Association for Computational Linguistics, Stanford (1987)

[Wei88] Weir, D.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD the-
sis, University of Pennsylvania (1988)

[Yos06] Yoshinaka, R.: Linearization of affine abstract categorial grammars. In: Proceedings
of the 11th Conference on Formal Grammar, Malaga, Spain, pp. 185–199 (2006)

The Distribution and Interpretation of Hausa
Subjunctives: An HPSG Approach

Berthold Crysmann

CNRS — Laboratoire de linguistique formelle (UMR 7110) — Paris-Diderot
crysmann@linguist.jussieu.fr

Abstract. Hausa subjunctive markers have been claimed (Wolff, 1993;
Newman, 2000; Jaggar, 2001) to correspond to two functionally distinct
paradigms: a true subjunctive, and a “neutral”, unspecified for tense,
aspect and mood, the latter being used, inter alia, in constructions in-
volving sequences of events. In this paper, I shall demonstrate that the
deletion approach advanced by Newman (2000) is not only limited in its
empirical scope, but also theoretically questionable. Building on previ-
ous work by Schuh (2003), I shall argue instead for a single category and
propose a formal treatment in HPSG which crucially builds on Schuh’s
notion of the subjunctive as a dependent category, modelled as an em-
bedding (qeq) requirement in Minimal Recursion Semantics. Using asym-
metric projection of TAM information, together with constructional in-
troduction of content, the present paper derives the distribution of the
Hausa subjunctive and its specific interpretation by means of constraint
interaction.

1 Data

1.1 The Hausa TAM System

Hausa1 marks tense, aspect, mood (TAM) categories, as well as polarity (nega-
tion) by means of a set of discrete markers syntactically preceding the verb (VP).
In contrast to, e.g., Creole languages, these markers cannot be stacked. Further-
more, TAM markers agree with the subject in person, number, and gender (2nd
and 3rd singular). While in some paradigms (e.g. future, habitual, continuous,
rhetorical), TAM and agreement information can be segmented, other TAM

1 Hausa is an Afroasiatic language spoken mainly in Northern Nigeria and bordering
areas of Niger. Both tone (high, low, falling) and length (long vs. short) are lexically
and grammatically distinctive. Following common practise, I shall mark low tone
with a grave accent and falling tone with a circumflex. Vowels unmarked for tone
are high. Length distinctions are signalled by macron.

I shall make use of the following inventory of morphological tags in the glosses: s =
singular, p = plural, m = masculine, f = feminine, iom = indirect object marker, rel
= relativiser, comp = complementiser, foc = focus marker, compl = completive
aspect, cont = continuous aspect, hab = habitual, pot = potential, fut = future,
subj = subjunctive, and neut.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 17–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 B. Crysmann

markers are fusional (e.g., completive, subjunctive, potential), using supraseg-
mental means, like grammatical tone and vowel length, to mark TAM infor-
mation. Where TAM is marked segmentally, the order of agreement and TAM
markers varies according to paradigm: while in the future, exponents of agree-
ment follow those of tense, they precede the TAM marker in the habitual and
rhetorical.

Table 1. Hausa TAM markers (excerpt)

1.sg 2.sg.m 2.sg.f 3.sg.m 3.sg.f 4 1.pl 2.pl 3.pl
Abs. Completive nā kā kin yā tā an mun kun sun
Rel. Completive na ka kikà ya ta akà mukà kukà sukà

Abs. Continuous ’n`̄a kan`̄a kin`̄a yan`̄a tan`̄a an`̄a mun`̄a kun`̄a sun`̄a
Rel. Continuous nak`̄e kak`̄e kik`̄e yak`̄e tak`̄e ak`̄e muk`̄e kuk`̄e suk`̄e

Potential (Abs.) nâ kâ kyâ yâ tâ â mâ kwâ sâ
Rhetorical (Rel.) nik`̄a kak`̄a kik`̄a yak`̄a tak`̄a ak`̄a muk`̄a kuk`̄a suk`̄a

Habitual nakàn kakàn kikàn yakàn takàn akàn mukàn kukàn sukàn
Future zân zā kà zā k̀ı zâi zā tà zā à zā mù zā kù zā sù
Subjunctive ’ǹ/nà kà k̀ı yà tà à mù kù sù

Absolute vs. Relative Paradigms. Certain TAM paradigms, namely the
completive, continuous, and potential/rhetorical2 display an alternation between
absolutive and relative paradigms, depending on the presence vs. absence of a
wh-filler at the top of the local clause: thus, with wh-extraction, focus fronting,
and relativisation, forms of the relative paradigm are used, instead of the general
or absolute paradigm employed elsewhere. Choice of relative forms is triggered
by the presence of a local filler, not by the presence of a gap (Tuller, 1986; Davis,
1986)3:

(1) m`̄e
what

suk`̄e
3.p.cont.rel

/ *sun`̄a
3.p.cont.abs

fatan
hoping

sun
3.p.compl.abs

/ *sukà
3.p.compl.rel

gam`̄a
finish
‘What did they hope they have finished?’

As illustrated by the example above, long extraction of the complement of the
embedded verb gam`̄a ‘finish’ only features relative marking in the matrix clause,
i.e., in the local domain of the wh-filler m`̄e, whereas the completive marker in
the embedded clause appears in the general or absolute form.

1.2 The Subjunctive TAM

As illustrated in Table 1, the subjunctive TAM is characterised by an all-L
short vowel paradigm. The Hausa subjunctive is used to express a variety of

2 The observation that the potential alternates with the rhetorical in extraction con-
texts is due to Newman. See Newman (2000) for details.

3 See Crysmann (2005) for an in-depth discussion of extraction marking in Hausa.

Distribution and Interpretation of Hausa Subjunctives 19

functions. In independent clauses, the subjunctive is used to express commands,
prohibitions and wishes. In subordinate contexts, the subjunctive appears as
the complement of permissive, volitional, and causal verbs, as well as modal
verbs (kàmātà ‘should’, càncantà ‘deserve’, ỳıwu ‘be possible’) and non-verbal
modal predicates, such as dōlè/t̄ılàs ‘necessary’ or , gāra ‘better’. Furthermore,
subjunctive is also governed by certain subordinating conjunctions, including
don/d`̄omin ‘in order to’ or k`̄afin ‘before’.

Syntactic Constraints on Subjunctives. Despite the plurifunctionality of
the subjunctive marker, there are a couple of syntactic environments in which
the use of this marker is apparently illicit: as noted, e.g., by Schuh (2003), sub-
junctives cannot be used as complements to epistemic verbs such as san̄ı ‘know’.
Another constraint regarding its syntactic distribution is the ban on subjunc-
tives in clauses involving a filler (Tuller, 1986; Newman, 2000; Jaggar, 2001):
thus, wh-fronting, focus fronting, and relative clauses are equally incompatible
with subjunctive TAM.

(2) **mùtumı̀n
man

dà
rel

yà
3.s.m.subj

kāwō
bring

ruwā
water

‘the man who should bring water’ (Newman, 2000, 537)

Subjunctives are fine, however, in these environments, once they are more deeply
embedded (Newman, 2000), e.g., under a modal predicate like dōlè.

(3) à
at

cikin
inside

âāk̀ın
hut

wândà
rel.m.s

dōlè
necessity

nē
cop

kà
2.s.m.subj

yi
do

barc̄ı
sleep

‘inside the room which you must sleep in’ (Newman, 2000, 537)

Given the fact that only direct use of a subjunctive to express necessity or obliga-
tion is ruled out in these constructions, but embedding under an explicit modal
predicate having the same denotation is fine, I conclude that the constraint under
consideration is a syntactic, rather than semantic one. This conclusion appears
to be supported by the fact that Hausa TAM markers independently display
sensitivity to these contexts (see above).

1.3 The Neutral TAM

Subjunctive form TAM markers also surface in certain constructions without any
modal force. Recent grammars of Hausa (Wolff, 1993; Newman, 2000; Jaggar,
2001) unanimously distinguish this form from the subjunctive, calling it the
“neutral” aspect, or “Grundaspekt”. Newman (2000), e.g., argues that Hausa
synchronically features two functionally distinct, though fully homophonous
paradigms (cf. Wolff, 1993).

Newman (2000) cites three major constructions in which the “neutral” TAM
surfaces, which I shall discuss in turn:

– Non-initial conjuncts in sequences of events in the continuous, future, po-
tential, and habitual

20 B. Crysmann

– Main clauses following conditionals
– Initial and non-initial TAM in a sequence of two events receiving a habitual

interpretation

Sequences of Events. In sequences of non-completive TAMs, i.e., continu-
ous, future, potential, and habitual, only the first event is marked with a non-
completive, non-subjunctive TAM, whereas non-initial conjuncts typically sur-
face in the subjunctive or “neutral”.

(4) kullum
every day

yan`̄a
3.s.m.cont

gyārà
tidy

âāk̀ın
hut

yà
3.s.m.neut

tsabtàcē
clean

shi
3.s.m

yà
3.s.m.neut

shār`̄e
sweep
‘Every day he tidies the room and cleans it and sweeps (it).’ (Jaggar, 2001,

191)

(5) zā tà
3.s.f.fut

karàntà
read

littāf̀ın
book

tà
3.s.f.neut

rub`̄utà
write

takàrdā
paper

tà
3.s.f.neut

kai
carry

wà
IOM

mālàmintà
teacher.3.s.f.poss
‘She will read the book, write a paper and take (it) to her teacher.’ (Jaggar,

2001, 192)

(6) mâ
1.p.pot

gamà
finish

aik̀ın
work

mù
1.p.neut

tāsh̀ı
leave

mù
1.p.neut

tàfi
go

gidā
home

dà
with

yâmmā
afternoon

‘We’ll probably finish the work, leave and go home in the afternoon.’ (Jaggar,

2001, 192)

(7) Nakàn
1.s.hab

tāsh̀ı
get.up

dà Îarf`̄e
clock

bakwài
seven

ı̀n
1.s.neut

yi
do

wankā
washing

ı̀n
1.s.neut

ci
eat

àbinci
food

‘I get up at seven, wash and eat.’ (Jaggar, 2001, 191)

As witnessed by the data above, in particular the examples involving the poten-
tial (6) and habitual (7), TAM interpretation is not confined to the one conjunct
explicitly marked, but rather extends to all conjuncts (or the coordinate event
as a whole).

A second observation regarding the peculiarity of the “neutral” in this con-
struction pertains to the fact that across-the-board (ATB) extraction apparently
triggers relative TAM marking in the first conjunct, but surprisingly does not
impede presence of what looks like a subjunctive marker in the second or later
conjuncts, as illustrated for continuous (8) and rhetorical (=relative potential;
9) below.

(8) don m`̄e
why

yârā
children

suk`̄e
3.p.cont.rel

masà
to.him

ba’`̄a
mockery

sù
3.p.neut

yi
do

ta
throwing.3.s.m.poss

j̄ıfànsà
with

dà
stone

duts`̄e

‘Why are the children mocking him and throwing stones at him?’ (Newman,

2000, 595)

Distribution and Interpretation of Hausa Subjunctives 21

(9) r̀ıkic̄ı
crisis

ir̀ın
kind.of

wândà
rel

yak`̄a
3.s.m.rhet

iyà
can

tāsôwā
arise

yà
3.s.m.neut

tād`̄a
raise

manà
to.us

hankàl̄ı
concern

‘the kind of crisis that could arise and worry us’ (Jaggar, 2001, 192)

Newman (2000) explicitly states that this constitutes a reliable syntactic test to
tell the subjunctive and the homophonous “neutral” apart.

Conditional Construction. The second construction where the supposed
“neutral” TAM surfaces, is in the consequent of conditional (and temporal)
constructions. Again, as detailed by Newman (2000), no subjunctive interpre-
tation necessarily ensues. Rather, what looks like a subjunctive marker will be
interpreted as future, potential (Newman, 2000) or habitual (Jaggar, 2001).

(10) In
if

sun
3.p.compl

zō,
come

ı̀n
1.s.neut

tàfi
go

k`̄asuwā
market

‘If/when they come, I’ll go to the market.’ (Newman, 2000, 594)

(11) dà
as soon as

cêwā
comp

yā
3.s.m.compl

shā
drink

wùyā,
trouble

sai
then

yà
3.s.m.neut

fash`̄e
break

dà
with

kūkā
crying
‘As soon as he has any trouble, then he bursts out crying.’ (Jaggar, 2001, 193)

Habitual Construction. The third construction cited by Newman (2000) and
Jaggar (2001) as an instance of the “neutral” concerns sequences of events, both
marked with a subjunctive or “neutral” marker, yet receiving a generic, habitual
interpretation. Again, none of the interpretations typically associated with the
Hausa subjunctive, like purpose, volition, obligation, etc. can be detected.

(12) dal`̄a
dollar

tà
3.s.f.neut

hau
rise

tà
3.s.f.neut

sàuka
fall

‘The dollar rises and falls.’ (Newman, 2000, 596)

(13) k`̄oĝın
river

yà
3.s.m.neut

sh̀ıga
enter

nân
here

yà
3.s.m.neut

f̀ıta
exit

cân
there

‘The river meanders here and there.’ (Jaggar, 2001, 193)

In contrast to event sequences initiated by non-subjunctive TAMs, however, the
habitual interpretation of the subjunctives does not derive from any overt TAM
marker, but is associated with the construction as a whole.

To summarise, the Hausa “neutral” TAM is a category postulated in all three
contemporary grammars of Hausa (Wolff, 1993; Newman, 2000; Jaggar, 2001)
that is morphologically indistinguishable from the subjunctive, yet apparently
fails to receive standard subjunctive interpretation. Rather, its semantic value
is derived from the construction it appears in.

22 B. Crysmann

2 Previous Approaches

2.1 Newman’s TAM Deletion Account

In order to account for the apparent lack of inherent TAM information of “neu-
tral” markers in event sequences, together with the fact that interpretation de-
rives somewhat parasitically from the TAM category overtly marked on the first
conjunct, Newman (2000) analyses the neutral marker in non-initial conjuncts as
the result of deletion of the TAM part of the agreement-TAM complex, leaving
behind a pure “reference tracking” weak subject pronoun.

(14) sukàn t`̄aru sukàn shā t̂ı �→ sukàn t`̄aru [sù ()] shā t̂ı
(Newman, 2000, 595)

In order to account for the tonal (=all low) properties of the neutral marker
which may contrast with that of the agreement part of the TAM category it is
derived from (as e.g., in the habitual), Newman (2000) suggests a treatment in
phonological terms: assuming that the agreement part of a complex marker is
not inherently specified for tone, but rather polar to that of the TAM marker
(an observation which is indeed correct for non-fusional markers), deletion of the
TAM part leads to assignment of default low tone, as schematised in (15) below.

(15) a. su+kàn �→ súkàn (Newman, 2000, 595)

b. su+() �→ sù (Newman, 2000, 595)

In order to account for the equally low-tone ordinary subjunctive, Newman
(2000) draws a distinction between the TAM-less “neutral”, as a result of TAM
deletion, and a zero-marked subjunctive TAM. Since absence of TAM and zero
realisation are phonologically indistinguishable, Newman’s default L tone assign-
ment successfully derives the tonal identity of subjunctive and “neutral”.

Problems with TAM Deletion. In this paragraph, I shall discuss different
possible interpretations of a deletion approach to the neutral in sequences of
events and show that neither a pure surface-phonological nor a pure surface-
syntactic interpretation of this rule is viable, both for theoretical and empirical
reasons. Furthermore, I shall argue that the deletion account is empirically fairly
restricted in that it fails to generalise, e.g. to habitual interpretation of all sub-
junctive or “neutral” sequences.

The first observation that should cast some doubt on the viability of a dele-
tion operation like the one advanced by Newman (2000) pertains to phonologi-
cal predictability: as witnessed by the putative derivations in (16), the deletion
operation cannot be a fully regular surface-phonological process. While, e.g.,
potential mâ gets reduced to mù, there is a round vowel in the target, but no
such round vowel present in the source, despite the fact that the sequence mwa
is phonotactically possible and even attested in the Hausa negative continuous
bā mw`̄a. Similar observations can be made regarding the future or rhetorical:
again, neither do all the possible realisations in the source have a segmentally

Distribution and Interpretation of Hausa Subjunctives 23

predictable counterpart in the target, nor do all target realisations have an at-
tested correspondence in the source form.

(16) a. mâ/*mwâ �→ mù/*m

b. zā ǹı/*zā ’ǹ/*zā nà �→ ’ǹ/nà/*ǹı

c. nik`̄a/*nak`̄a/*’nk`̄a �→ ’ǹ/nà/*ǹı

Thus, rather than being the product of a general surface-phonological rule, the
inventory of attested “neutral” forms is bounded by the set of available forms in
the subjunctive paradigm.

The second possible interpretation, namely that of surface-syntactic deletion,
does not appear to be a viable option either. In Hausa, TAM markers select
for the form of their complement, either a verb, or, in the continuous, a ver-
bal noun. In event sequences initiated by a continuous, however, only the first
conjunct features a verbal noun, whereas in non-initial conjuncts, the “neutral”
marker selects a standard verb. Under a surface-deletion approach this is quite
unexpected, since selectional restrictions established at the base should actually
be preserved.

(17) w`̄acē
who

c`̄e
foc

tak`̄e
3.s.f.cont.rel

âink̀ın
sowing.VN

h`̄ulā
cap

tà
3.s.f.neut

kai
carry.V

/ *kâiwā
carrying.VN

k`̄asuwā
market

‘Who is sowing the cap and taking it to the market?’ (Newman, 2000, 595)

If, however, deletion operates at the base already, it will fail to capture re-
construction of TAM information. Moreover, the idea that TAM information
be completely absent from non-initial conjuncts appears counter-intuitive, since
choice in the form of complement is otherwise clearly conditioned by an aspectual
distinction.

Finally, the surface-syntactic deletion begs the question as to why the resulting
exponents are necessarily taken from the same set of forms as the subjunctive:
an approach that simultaneously makes reference to morphological paradigms
and syntactic configuration is incompatible with basic assumptions of almost
every current grammatical theory.

To conclude our discussion of the deletion approach, I should like to point
out that its empirical scope is pretty much limited to cases of event sequences
initiated by non-subjunctive TAMs: in non-initial consequent clauses of condi-
tionals, no overt full TAM is actually present which can serve as the basis for
deletion under identity. Yet, interpretation of neutral draws on the same range
of TAM categories (future, potential, habitual, continuous) as those observed
in sequences of events. A similar criticism applies to habitual interpretation of
subjunctive-only sequences: a deletion account is either incapable of deriving the
interpretation of the initial TAM, or else fails to constrain the operation of TAM
deletion, harbouring the risk of considerable overgeneration.

24 B. Crysmann

2.2 Schuh’s Criticism of the “Neutral” TAM

Schuh (2003), in a reply to the analyses advanced by Newman (2000) and
Jaggar (2001), questions the validity of a TAM-less paradigm homophonous with
the subjunctive, both synchronically and diachronically. Instead, he suggests a
largely underspecified denotation of the subjunctive, namely “dependent subor-
dinate inception” which characterises the use of the subjunctive in all contexts,
including those referred to as the “neutral”.

The Subjunctive signals an event which will have its inception subsequent
to the moment of speaking and/or to an event in a superordinate clause.
The [...] TAM interpretation of the event represented by the Subjunc-
tive is dependent on that of the superordinate clause or operator. This
statement has the caveat that the Subjunctive can never function to show
simple sequentiality in a string initiated by the Completive or Preterite.

(Schuh, 2003, p. 20)

The most fundamental insight of Schuh’s approach is that different interpre-
tations of the subjunctive that are typically associated with the subjunctive,
like, e.g., hortative, purposive, or volitional, and which clearly go beyond this
very basic concept of dependent subsequent inception are contributed not by the
subjunctive TAM itself, but rather by the constructions the subjunctive is used
in.

In order to substantiate his claim that the Hausa subjunctive is a full TAM
category, Schuh (2003) shows that in sequences of events initiated by the contin-
uous, the interpretation of a subjunctive in the second conjunct is distinct from
that of an overt continuous: while the use of two continuous markers denotes
simultaneity of individual events, use of the subjunctive implies sequentiality of
the second event to the first.

(18) sun`̄a
3.p.cont

tāsh̀ı
arise

sun`̄a
3.p.cont

gudù
run

‘They are arising and running.’

(19) sun`̄a
3.p.cont

tāsh̀ı
arise

sù
3.p.cont

gudù
run

‘They arise and run.’

Schuh further observes that in embedded contexts, typical functions of the sub-
junctive, such as permission, prohibition, volition, purpose etc. are provided by
the embedding semantic relation. Thus, “subjunctive” functions in addition to
dependent subordinate inception are imposed by the embedding context. In ma-
trix clauses, however, an embedding context on which the subjunctive could be
dependent is obviously absent. He sketches two possible solutions, namely, to
either extend the licensing conditions of the subjunctive to include reference
to extra-sentential context, or else to capture the hortative interpretation as-
sociated with matrix subjunctive by the introduction of an implicit hortative
operator.

Distribution and Interpretation of Hausa Subjunctives 25

Schuh tries to extend the scope of his definition of the subjunctive to ex-
plain its unacceptability in relative and focus contexts. With respect to relatives
he states that they “assert a property of the antecedent”, something he claims
to be “antithetical to the dependent nature of the subjunctive.” (Schuh, 2003,
p. 30). However, the ban on subjunctive TAM in relative clause constructions
appears to me to be a syntactic, rather than semantic constraint, since, e.g.,
interpretation as an implicit hortative is equally impossible in this environment.
Conversely, the possibility to employ paraphrases to circumvent the apparent
restriction towards the subjunctive also militates in favour of the syntactic na-
ture of the constraint. Moreover, the syntactic perspective relates the ban on
subjunctives to the equally syntactically conditioned (Tuller, 1986) alternation
between relative and absolute paradigms. Similar to his take on relatives, Schuh
also pursues a semantic approach to explain the impossibility of the subjunctive
as complement to verbs of perception and cognition, claiming independence of
events. Again, since acceptability does not improve with semantic reinterpreta-
tion, ban on subjunctive is best understood as a syntactic restriction.

Before I close the discussion of Schuh’s approach to the Hausa subjunctive,
I shall point out a few remaining issues with his account that I should hope to
resolve in the formal analysis in the next section. First, the proposal is not always
very explicit about the syntactic analysis assumed, in particular the question of
whether sequences are treated as coordinations or as subordinations. Similarly, it
remains unclear whether “dependent” is supposed to be a syntactic or a semantic
concept, and whether this concept is to be interpreted in terms of dominance
or precedence: while the discussion of embedded subjunctives indeed implies
dominance, that of sequences in relative contexts makes reference to precedence:

But the governing factor for the TAM [...] is not the focus [...] construc-
tion [...], but rather sequentiality to the preceding Continuous TAM.

(Schuh, 2003, p. 31)

Similarly, subjunctives in conditional constructions correspond to the matrix
event, so, again, the exact notion of dependence will need to be subjected to
some further refinement.

Once these notions are made precise the approach by Schuh (2003) according
to which both subjunctive and “neutral” TAM receive a unified account as a
temporally dependent category can provide a sound basis for a formal account
of the Hausa subjunctive that directly constrains its distribution and interpre-
tation. Given the theoretical and empirical limitations of the deletion approach
discussed in the previous section, I conclude that a direct, surface-syntactic ap-
proach to the distribution of the subjunctive is clearly to be preferred.

3 An HPSG Account

In this section, I shall outline a formal syntactic analysis of the Hausa subjunc-
tive, developed within the framework of Head-driven Phrase Structure Gram-
mar (HPSG; Pollard and Sag, 1987, 1994), using Minimal Recursion Semantics
(MRS; Copestake et al., 2005) as meaning representation language.

26 B. Crysmann

As for the linguistic analysis, I shall follow Schuh (2003) in assuming a single
subjunctive TAM category devoid of any modal force. Essentially, I shall derive
modal properties occasionally associated with particular uses of the subjunctive
by means of either overt embedding predicates/operators or else by means of
modal coercion, implemented as properties of particular constructions.

In particular, I shall interpret the subordination requirement identified by
Schuh (2003) as a semantic condition which will enforce introduction of implicit
modal operators where appropriate, i.e., in matrix contexts. The net effect of such
a semantic constraint will be coercion into a hortative interpretation. Syntactic
constructions that impose an absolute ban on subjunctive TAMs, by contrast,
will be analysed in syntactic rather than semantic terms.

As for event sequences, I shall formally model these constructions as a specific
subtype of coordinate structures where the TAM information expressed on the
first conjunct is asymmetrically projected to the group event, thereby capturing
the intuition expressed by Newman (2000) and Jaggar (2001) that TAM-marking
of the first conjunct has scope over the entire sequence.

As a first step towards an HPSG treatment of the Hausa subjunctive we
need to make precise the condition regarding the subjunctive as a subjoined, i.e.
embedded TAM category. As we have seen in the previous section, obligatory
hortative coercion is essentially limited to root contexts, i.e., it is triggered,
whenever the subjunctive would otherwise remain semantically undominated.
Thus, I shall depart from the hypothesis that Schuh’s empirical generalisation
of the subjunctive as a dependent TAM category can be largely equated with a
qeq relation in Minimal Recursion Semantics.

⎡
⎢⎣synsem | loc |cont |rels

〈
...

⎡
⎣arg0

[
tam subj

]

lbl l

⎤
⎦...

〉⎤
⎥⎦

→

⎡
⎢⎢⎣synsem | loc |cont

⎡
⎢⎢⎣
rels

〈
...

[
α h

]
...

〉

hcons
〈
... h =q l ...

〉

⎤
⎥⎥⎦

⎤
⎥⎥⎦

where α ∈ {arg1,arg2,arg3,arg4,l-hndl,r-hndl}

Fig. 1. Subjunctive subordination constraint (root condition)

As depicted by the root condition in Figure 1, the distinguished label of an
event marked with the subjunctive must be equal (modulo quantification) to an
argument handle of some other elementary predication, i.e., must be semantically
embedded as an argument of some other predicate. Some trivial cases include
conjunctions and complement taking predicates, comprising modal, volitional,
and permissive ones.

Implicit Modal Force. If subjunctive mood is a largely underspecified TAM
category, modal force, if present, must be introduced by independent predicates.

Distribution and Interpretation of Hausa Subjunctives 27

In the absence of an appropriate governing lexical predicate, such introduction
can only be constructional.

In the discussion of the empirical data, we have identified exactly two such
situations where the meaning of the whole was not strictly composed of the
meaning of its parts, i.e. where the subjunctive was associated with a meaning
that cannot be identified as part of its inherent core meaning as a TAM category.
The first one is the hortative interpretation that ensues with root subjunctives,
the second one a conventionalised habitual generic interpretation associated with
sequences of subjunctive events.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c-cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hook

[
index e

ltop t

]

rels

〈⎡
⎢⎣
pred hortative-rel

lbl t

arg1 h

⎤
⎥⎦
〉

hcons
〈

h =q l

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dtrs

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
ss | l |cont

⎡
⎢⎢⎢⎢⎢⎢⎣

hook

⎡
⎣index e

[
tam subj

]

ltop l

⎤
⎦

rels

〈
...

[
arg0 e

lbl l

]
...

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Hortative construction

In order to capture the hortative, I shall suggest a unary construction as
schematised in Figure 2. Essentially, this unary phrase structure schema syntac-
tically dominates a subjunctive event and contributes an implicit hortative rela-
tion that outscopes an elementary predication corresponding to the subjunctive
event. Together with the general constraint on semantic dependence introduced
above, this construction successfully models obligatory hortative coercion in root
contexts. I.e., introduction of an implicit dominating relation is the only way to
license root subjunctives in Hausa.

Event Sequence Constructions. Before I enter into the discussion of how
event sequences can be modelled, I shall briefly summarise how coordinate
structures are treated in HPSG and then proceed towards an analysis of event
sequences as a special subtype of asyndetic coordination.

The standard treatment of coordinated events in HPSG is symmetric:
i.e., coordinate constructions do not possess a unique head, but rather iden-
tify the categorial and non-local information of the mother with that of both
conjunct daughters (Pollard and Sag, 1994). Categorial (cat) values comprise

28 B. Crysmann

both head information, i.e., basic part of speech, as well as valence informa-
tion, capturing the observation that degree of saturation enters into categorial
likeness conditions in coordinate structures. Identity of non-local values im-
plements the Across-the-board (ATB) constraint. Semantically, however, event
coordinations contribute a group event which embeds the events of the con-
juncts (Copestake et al., 2005) via distinguished argument roles (L-HNDL and
R-HNDL). TAM information of coordinate structure is typically not shared
across conjuncts, as illustrated by the fact that sentences with different TAM
specifications can easily coordinate.

(20) I bought a record yesterday and will probably resell it, once I have made
a copy.

The assumption that Hausa event sequences are best understood as coordinate
structures is motivated by the fact that asyndetic coordination is independently
a common strategy for coordinations of events, but not for coordinations of
individuals.

The event sequence construction, however, differs from ordinary coordinations
in that it places tighter restrictions on the TAM categories of the conjuncts.
A trivial observation pertains to the fact that the second conjunct appears in
the subjunctive. Furthermore, Newman (2000) and Jaggar (2001) observe that
the TAM information encoded on the first verb is pertinent to all events in the
sequence. Thus, even if the second sub-event is sequentially dependent on the first
(Schuh, 2003), it is still interpreted as part of a group event whose TAM value
is fixed by the first conjunct. I shall therefore assume that in this construction,
the interpretation of, e.g., habitual, potential, and (generic) continuous clearly
shows that TAM information of the initial event projects to the group event.

Under this perspective, subjunctive TAM in non-initial conjuncts merely
marks a subsequence relation between subevents.

Note that the absence of any modal force in event sequence constructions
(Figure 3) that was the major motivation behind the postulation of a “neutral”
TAM distinct from the subjunctive is readily accounted for by the fact that
conjuncts in coordinated constructions are always dominated by the group event.
Thus, there is no obligatory coercion into, e.g., a hortative reading.

Subjunctive in Relative Contexts. We have seen above that subjunctive
TAM observes a blanket ban to surface in relative contexts, independent of
interpretation. This ban on subjunctives can be modelled straightforwardly on
the assumption that head-filler structures constrain the head not to be specified
with an absolute TAM, but that the subjunctive is indeed an inherently absolute
TAM category. Embedding of the subjunctive under some predicate, e.g., dōlè,
renders it acceptable in clauses containing a local filler, since dōlè, rather than
the more deeply embedded subjunctive will be the relevant head. Put differently,
syntactic intervention of dōlè (and other predicates) will remove the subjunctive
from the local configuration.

Embedding under sequential coordination apparently has the same effect: be-
cause the conjoined structure as a whole will be the sister of the filler in a

Distribution and Interpretation of Hausa Subjunctives 29

⎡
⎢⎢⎢⎣

synsem

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hook

[
ltop l

index e event

]

rels

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pred coord-rel

lbl l

arg0 e

[
TAM t

]
l-index le

[
TAM t

]
l-hndl lh

r-index re

r-hndl rh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

hcons
〈

lh =q ll , rh =q rl

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nloc nl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dtrs

〈

⎡
⎢⎢⎢⎢⎢⎢⎣
synsem

⎡
⎢⎢⎢⎢⎢⎢⎣
loc

⎡
⎢⎢⎢⎣
cat c

cont

⎡
⎣hook

[
index le

ltop ll

]⎤
⎦
⎤
⎥⎥⎥⎦

nloc nl

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣
synsem

⎡
⎢⎢⎢⎢⎢⎢⎣
loc

⎡
⎢⎢⎢⎣
cat c

cont

⎡
⎣hook

[
index re

ltop rl

]⎤⎦
⎤
⎥⎥⎥⎦

nonloc nl

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎦

Fig. 3. Event sequence construction

filler-head structure, it is the conjoined structure’s TAM specification that is con-
strained to relative TAM. Since TAM information is asymmetrically projected
from the initial conjunct, the left conjunct-daughter is equally constrained to rel-
ative TAM, ruling out all-subjunctive sequences. The right conjunct daughter,
however, is unconstrained by the head-filler structure, since it is syntactically
and semantically embedded.

Constructional Interpretation of Event Sequences — Habitual/generic.
The last construction we will address concerns sequences of subjunctives receiv-
ing a habitual interpretation, a construction which has so far not received an
analysis in the linguistic literature on Hausa.

30 B. Crysmann

Note that sequential coordination opens up the possibility for both events to
be in the subjunctive. Furthermore, our current outscoping requirement licenses
non-modal interpretation for both conjuncts, since we merely require semantic
dominance. Projection of the left conjunct TAM, however, subjects the entire
coordinate structure to licensing, giving rise to the following possibilities: sub-
ordination under an explicit predicate, be it a conjunction, or a suitable verb,
or else embedding under an implicit modal, such as the hortative construction
introduced above. Thus, in order to capture the habitual interpretation, all that
is required is to expand our inventory of constructions.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c-cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hook

⎡
⎣index e

[
tam hab

]
ltop t

⎤
⎦

rels

〈⎡⎢⎢⎢⎣
pred implicit-v-rel

lbl t

arg0 e

arg1 h

⎤
⎥⎥⎥⎦
〉

hcons
〈

h =q l

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dtrs

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ss | l |cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hook

⎡
⎣index i

[
tam s subj

]
ltop l

⎤
⎦

rels

〈
...

⎡
⎢⎢⎢⎢⎢⎣

arg0 i

lbl l

l-index
[
tam s

]
r-index

[
tam s

]

⎤
⎥⎥⎥⎥⎥⎦...

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Habitual construction

The unary schema in Figure 4 introduces an implicit habitual relation that
takes a coordinated event structure as its complement. The fact that habitual
interpretation only arises with subjunctive TAM sequences can be captured quite
naturally by placing appropriate constraints on the semantics of the daughter.

4 Conclusion

In this paper, I have addressed the distribution and interpretation of the Hausa
subjunctive, investigating contrasts between constructions where the subjunctive
is or fails to be associated with additional modal force.

Distribution and Interpretation of Hausa Subjunctives 31

I have shown in particular that a deletion account of the Hausa subjunc-
tive/neutral in event sequence constructions (Newman, 2000) is not only plagued
with conceptional problems, like the postulation of two homophonous paradigms,
but also theoretically questionable. I have argued that the underspecified char-
acterisation of the subjunctive as a “dependent subsequent inception” (Schuh,
2003) paves the way for a unified analysis of modal and non-modal subjunctive
uses.

By giving the dependent nature of the Hausa subjunctive a formal interpreta-
tion as an outscopes requirement on some elementary predication, we were able
to capture not only the modal coercion facts, but also to extend the analysis
to cover event sequences, including generic interpretation. Finally, we saw how
asymmetric projection of TAM values from initial conjuncts could capture the
intuition of Newman (2000), regarding interpretation of “neutral” as indirectly
TAM-marked, as well as make the right predictions with respect to relative con-
texts.

References

Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: an
introduction. Research on Language and Computation 3(4), 281–332 (2005)

Crysmann, B.: An inflectional approach to Hausa final vowel shortening. In: Booij, G.,
van Marle, J. (eds.) Yearbook of Morphology 2004, pp. 73–112. Kluwer (2005)

Davis, A.: Syntactic binding and relative aspect markers in Hausa. In: Proceedings
of the Fifteenth Annual Conference on African Linguistics, Los Angeles, CA (1984,
1986)

Jaggar, P.: Hausa. John Benjamins, Amsterdam (2001)
Newman, P.: The Hausa Language. An Encyclopedic Reference Grammar. Yale Uni-

versity Press, New Haven (2000)
Pollard, C., Sag, I.: Information–Based Syntax and Semantics, vol. 1. CSLI, Stanford

(1987)
Pollard, C., Sag, I.: Head–Driven Phrase Structure Grammar. CSLI and University of

Chicago Press, Stanford (1994)
Schuh, R.: The functional unity of the Hausa and Chadic subjunctive. Kandybowicz

(ed.) Papers in African Linguistics 3. UCLA Working Papers in Linguistics, vol. (9).
UCLA (2003)

Tuller, L.A.: Bijective Relations in Universal Grammar and the Syntax of Hausa. PhD
thesis, UCLA, Ann Arbor (1986)

Wolff, E.: Referenzgrammatik des Hausa. LIT, Münster (1993)

Memory Resource Allocation in Top-Down Minimalist
Parsing�

Gregory M. Kobele1, Sabrina Gerth2, and John Hale3

1 University of Chicago, Chicago, Illinois, USA
2 Universität Potsdam, Potsdam, Germany

3 Cornell University, Ithaca, New York, USA

Abstract. This paper provides a linking theory between the minimalist grammar
formalism and off-line behavioural data. We examine the transient stack states
of a top-down parser for Minimalist Grammars as it analyzes embedded sen-
tences in English, Dutch and German. We find that the number of time steps that
a derivation tree node persist on the parser’s stack derives the observed contrasts
in English center embedding, and the difference between German and Dutch em-
bedding. This particular stack occupancy measure formalizes the leading idea of
“memory burden” in a way that links predictive, incremental parsing to specific
syntactic analyses.

1 Introduction

An important goal of linguistics is to account for human linguistic behavior. A cogni-
tive scientist might, following David Marr [25], attempt to analyze behavioral data by
viewing the syntactician’s grammatical analysis as a high level description of a parser
(cf. [20]). Deviations from the categoricity ‘predicted’ by the grammar could be given
a natural explanation using the more refined vocabulary of parser states, and memory
resource consumption.

A number of theoretical proposals within psycholinguistics over the years
[13,42,6,22] have been built around the idea that our capacity to remember words and
phrases plays an important role in normal human language comprehension. These the-
ories link observed processing contrasts between sentences to differences in theorized
memory requirements. These contrasts are observed empirically in sentence types whose
grammatical analysis is a matter of active research within the field of syntax. This
presents a problem: ideally, the same analysis that is supported by comparative lin-
guistic research ought to derive observed processing contrasts. But in some previous
memory burden theories, syntactic assumptions were left implicit or oversimplified (but
cf. [32]). Under these conditions, it becomes difficult to say exactly which aspect or as-
pects of sentence structure motivates the memory burdens to which the theory appeals
as explanations. Yet an emerging body of work suggests that the choice of syntactic
analysis may matter greatly [9,40] (cf. section 5.2).

� An anonymous reviewer provided very helpful comments, which have greatly improved the
quality of this paper.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 32–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Memory Resources in Minimalist Parsing 33

This work strives to address this problem. We proceed by defining grammar frag-
ments whose syntactic commitments are clear. Starting from a mildly context sensitive
grammar [37] we assume a top-down parsing strategy [36]. This additional assumption
is motivated by evidence for predictive human sentence comprehension [26,39]. Using
independently motivated syntactic analyses, we derive complexity profiles consistent
with two key contrasts that have been traditionally acknowledged in the literature. An
additional benefit of this is that the pathway to semantic interpretation is entirely stan-
dard [30,18].

2 Methodology

We investigate a measure of parsing complexity for minimalist grammars [37], a for-
malism based on transformational generative grammar [4]. Parsing, like other non-
deterministic algorithms, is naturally viewed as a search problem [14], where the non-
determinicity is resolved by an independent search strategy such as depth-first, breadth-
first or A∗. In an ideal parser, heuristics would perfectly guide its actions at every
choice point. In this optimal case, the amount of resources consumed during a parse
of a sentence is identical to the amount of resources needed to traverse its parse tree
(no additional resources are consumed by working on ultimately ‘incorrect’ parses, and
backtracking). We adopt this simplifying assumption here, noting that something like
it (beam search with a narrow beam) has been proposed as a natural way to capture
the ‘dual nature – generally good and occasionally pathological – of human linguistic
performance’ [5].

Our methodology extends [12]. The main idea is to advance a particular automaton
model of sentence processing, examining certain aspects of the automaton’s configu-
ration as it parses strings whose abstract structure mirrors that of the sentences used
in comprehension experiments with humans. We explore a measure of parsing com-
plexity based on the allocation of memory resources during a successful parse. One
memory unit is considered allocated per item on the parser stack, where the parser stack
holds predictions yet to be verified. Following Joshi and Rambow [12,33], our complex-
ity metric reflects the amount of “time” that an item is retained in memory; we call this
stack tenure (even though the actual data structure is a priority queue, cf. Section4.1).
From the state-trajectory of the top-down automaton over the correct derivation tree,
we calculate the number of time steps that an item is retained. The length of the longest
sequence of automaton transitions for which the same item remains in memory we
identify as the maximal tenure of the parse.

The remainder of this paper is structured as follows. Section 3 briefly introduces
the processing phenomena that this modelling work addresses. Section 4 then intro-
duces Minimalist Grammars, and a top-down parser for them. Section 5 reports the
stack tenure measures obtained by simulating the parser on the sentences in question.
Section 6 takes up the relationship between this approach and other related proposals in
the literature. Section 7 concludes, and mentions some directions for future work.

34 G.M. Kobele, S. Gerth, and J. Hale

3 Embedding Phenomena

The notion of tenure (to be introduced in Section 4.1) can be thought of as a way of
formalising intuitions about dependency length [6]. The following phenomena are nat-
urally understood in these terms, and we will see (Section 5) that this intuitive under-
standing can in fact be cashed out rigorously in terms of tenure.

3.1 English Center Embedding, as Compared to Right-Branching

Center embedding in English is notoriously difficult to comprehend, in comparison to a
right-branching alternative [28]. Center-embedded examples like 1 below can be made
more and more difficult by interposing additional relative clause modifiers after each
new subject noun phrase. This embedded material intervenes between the subject and
the verb. By contrast, in right-branching examples like 2, it is the object that is modified.
In these cases, the distance between subject and verb remains the same.

(1) The boy that the girl that the cat licked loves laughed.
(2) The cat licked the girl that loves the boy that laughed.

Resnik [34] (cf. [11,1]) expresses what has become the standard account of this contrast.
He proposes that an explanation for the radical unacceptability of center embedded
sentences can be made to follow elegantly from constraints on memory resources in
a parser. He shows that a left-corner, but not a bottom-up or a top-down, parser for
a context-free grammar requires more memory to process center embedded structures
than peripherally embedded ones.

It is, however, widely accepted [35] that context-free grammars are unable to assign
structures to sentences which allow for a transparant description of their meaning. Un-
fortunately, once we move to more sophisticated grammar formalisms, which do seem
able to assign semantically appropriate structures to sentences, the notion of left-corner
parsing is either ill-defined or not yet discovered. In other words, the explanation of
the processing difficulty of center embedded structures based on imposing memory
restrictions on a left-corner parser does not transfer directly to linguistically plausi-
ble grammar formalisms. To reconcile the evidence motivating mild context-sensitivity
with the selectively greater difficulty of center-embedding requires some alternative au-
tomaton model, such as the one to be presented in section 4.

3.2 Embedded vs Cross-Serial Verb Clusters

Bach et al. [2] observe that the rated comprehensibility of German embeddings with
sentence-final verb clusters (3) increases more sharply than does the corresponding rat-
ing of Dutch cross-serial items (4), as the number of verbs in the cluster grows.

(3) daß
that

Hans
Hans

Peter
Peter

Marie
Mary

schwimmen
swim

lassen
let

sah
saw

“that Hans saw Peter let Mary swim”

Memory Resources in Minimalist Parsing 35

(4) dat
that

Jan
Jan

Piet
Peter

Marie
Mary

zag
saw

laten
let

zwemmen
swim

“that Jan saw Peter let Mary swim”

In other words, German examples such as 3 are more difficult to process than Dutch
examples such as 4.

From a formal perspective, this is surprising, as the Dutch cross serial pattern, un-
der the semantically appropriate pairing of nouns and verbs, is mildly context sensitive
(N1N2N3 V1 V2 V3 ∈ ww), whereas the German nested pattern (N1N2N3 V3 V2 V1 ∈
wwR) can be generated by a less expressive context-free grammar. This is thus an ex-
ample where language theoretic complexity does not coincide with ‘behavioural com-
plexity’. A natural intuition is to link this contrast to the length of the dependencies
between nouns and their selecting verbs – in the Dutch case, the longest dependency is
checked first, whereas in German it is checked last (N1 and V1).

4 Minimalist Grammars

Minimalist grammars make use of two syntactic structure building operations; binary
merge and unary move. Whether a structure building operation is defined on a partic-
ular object in its domain (a pair of expressions or a single expression) is determined
solely by the syntactic categories of these objects. In minimalist grammars, syntactic
categories are finite sequences of ‘features’. The currently accessible feature is the fea-
ture at the beginning (leftmost) position of the list. In order for merge to apply, the
heads of its arguments must have matching first features. These features are eliminated
in the derived structure which results from their merger. In the case of move, the head
of its argument must have a feature matching a feature of the head of one of its subcon-
stituents. In the result, both features are eliminated. Each feature type has an attractor
and an attractee variant, and for two features to match, one must be an attractor and the
other an attractee. For merge, the attractee feature is a simple categorial feature, writ-
ten x. There are two kinds of attractor features, =x and x=, depending on whether the
selected expression is to be merged on the right (=x) or on the left (x=). For the move
operation, there is a single attractor feature, written +y, and a single attractee, -y.

We write lexical items using the notation 〈σ, δ〉, where σ is a (phonological) string,
and δ is a feature bundle. Complex expressions are written using the notation of [37] for
the ‘bare phrase structure’ trees of [4]. These trees are essentially X-bar trees without
phrase and category information represented at internal nodes. Instead, internal nodes
are labeled with ‘arrows’ > and <, which point to the head of their phrase. A tree of the
form [< α β] indicates that the head is to be found in the subtree α, and we say that
α projects over β, while one of the form [> α β] that its head is in β, and we say that
β projects over α. Leaves are labeled with lexeme/feature pairs (and so a lexical item
〈α, δ〉 is a special case of a tree with only a single node). The head of a tree t is the leaf
one arrives at from the root by following the arrows at the internal nodes. If t is a bare
phrase structure tree with head H, then we will write t[H] to indicate this. (This means
we can write lexical items 〈α, δ〉 as 〈α, δ〉[〈α, δ〉].) The merge operation is defined on
a pair of trees t1, t2 if and only if the head of t1 has a feature bundle which begins with
either =x or x=, and the head of t2 has a feature bundle beginning with the matching x

36 G.M. Kobele, S. Gerth, and J. Hale

feature. The bare phrase structure tree which results from the merger of t1 and t2 has t1
projecting over t2, which is attached either to the right of t1 (if the first feature of the
head was =x) or to the left of t1 (if the first feature of the head was x=). In either case,
both selection features are checked in the result.

merge(t1[〈α,=xδ〉], t2[〈β, xγ〉]) =
<

t1[〈α, δ〉] t2[〈β, γ〉]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[〈β, γ〉] t1[〈α, δ〉]

If the selecting tree is both a lexical item and an affix (which I notate by means of a
hyphen preceding/following the lexeme in the case of a suffix/prefix), then head move-
ment is triggered from the head of the selected tree to the head of the selecting tree.

merge(〈-α,=xδ〉, t2[〈β, xγ〉]) =
<

〈β-α, δ〉 t2[〈ε, γ〉]

The operation move applies to a single tree t[〈α,+yδ〉] only if there is exactly one leaf �
in t with matching first feature -y or �y. This is a radical version of the shortest move
constraint [4], and will be called the SMC – it requires that an expression move to the
first possible landing site. If there is competition for that landing site, the derivation
crashes (because the losing expression will have to make a longer movement than ab-
solutely necessary). If it applies, move moves the maximal projection of � to a newly
created specifier position in t, and deletes both licensing features. To make this precise,
let t{t1 �→ t2} denote the result of replacing all subtrees t1 in t with t2, for any tree t,
and let �Mt denote the maximal projection of � in t, for any leaf �.

move(t[〈α,+yδ〉]) =
>

t′[〈β, γ〉] t[〈α, δ〉]{t′ �→ 〈ε, ε〉}
(where t′ = 〈β,-yγ〉Mt)

A derivation tree is an element of the term language over the ranked alphabet A0 ∪
A1 ∪ A2, where A0 = Lex is the set of nullary symbols, A1 = {v} is the set of
unary symbols, and A2 = {r} the set of binary symbols. As a consequence of the
translation of minimalist grammars into multiple context free grammars [27,10], the set
of derivation trees in a minimalist grammar of an expression with unchecked feature
string γ at the root and no features anywhere else is regular.

As an example, the lexical item John in figure 3(b) has the feature sequence ‘d -k’,
which indicates that it must first be the second argument to the merge operation (where
the first argument has a matching =d feature), and then it will, as part of a larger ex-
pression whose head has a +k feature, be targeted by the move operation. Similarly,
the lexical item laugh with feature sequence ‘=d v’ indicates that it must first be the

Memory Resources in Minimalist Parsing 37

0v1

1r2

2r3

3John4
3laugh6

2will5

(a) derivation

John d -k
laugh =d v
will =v +k i

(b) lexicon

>

<

<

εlaugh

will

John

(c) surface

Fig. 1. Structures for “John will laugh”

first argument to the merge operation (where the second argument has a matching d
feature), and then it may be the second argument to the merge operation (where the first
argument has matching =v feature). The sequence of rule applications used in the con-
struction of a sentence can itself be viewed as a tree, as in figure 1(a), which describes
the derivation of the surface structure in 1(c). In figure 1(a), internal nodes are labeled
either v (for move) or r (for merge), and leaves are labeled with lexical items (we have
suppressed the features for reasons of space). The internal node immediately dominat-
ing the leaves laugh and John is labeled r, which indicates that the lexical items laugh
and John were merged together. The parent of this node is also labeled r, and indicates
that the lexical item will was merged together with the result of merging together laugh
and John. The derived tree in figure 1(c) is therefore the result of applying the move
rule (v) to the result of merging will together with the result of merging together laugh
and John.

The nodes of the derivation tree in figure 1(a) are superscripted (on the left) and
subscripted (on the right). Derivation trees marked up in this way are a very condensed
yet complete representation of a parse of a sentence. Nodes represent parser items, the
superscript indicates at which parsing step that node is put into the parser’s stack and
the subscript indicates at which parsing step it is removed from the parser’s stack.1 The
order in which predicted items are expanded is determined by their order in the surface
tree, which is only computed implicitly by the parser. Compare the order of terminals
in the surface tree 1(c) with the order the leaves of the derivation tree are expanded.
Table 1 reconstructs the parser stack at each step from the marked-up derivation tree in
1(a). The underlining in table 1 indicates which item is operated on in the subsequent
step. Items are represented in the table as terms, where S is the initial item, and for
α an item, v(α), r(α)1, and r(α)2 is the result of applying an unmove rule to α, the
first element of the pair resulting from applying an unmerge rule to α, and the second

1 A more precise characterization of the relation between a marked up derivation tree and the
sequence of parser states in a successful top down parse of that derivation is that an item
corresponding to a node iαj is in the stack at time t iff i ≤ t < j.

38 G.M. Kobele, S. Gerth, and J. Hale

Table 1. The sequence of parser configurations corresponding to figure 1(a)

0 — {S}
1 — {v(S)}
2 — {r(v(S))1, r(v(S))2}
3 — {r(v(S))1, r(r(v(S))2)1, r(r(v(S))2)2}
4 — {r(v(S))1, r(r(v(S))2)1}
5 — {r(r(v(S))2)1}
6 — ∅

element of the same, respectively. (See Section 4.1 for more details.) Observe that in,
for example, step 2, all and only items corresponding to nodes in figure 1(a) with a
superscript less than or equal to 2 and a subscript greater than 2 appear in the stack – at
parsing step 2, there are two items in the parser state; one corresponding to a prediction
of the lexical item will (r(v(S))1), and one to a prediction of a VP-like constituent
(r(v(S))2) – the node labelled 2r3). In the next step, instead of scanning a word from
the input as would a context-free parser, the prediction 2r3 is expanded. The prediction
of will remains in the parser state until the fifth step.

Because the marked up derivation tree concisely encodes the entire parse history of
an expression, we use it exclusively in the remainder of this paper.

4.1 Parsing

A top down minimalist parser explores a search space defined by inverting the oper-
ations of merge and move (and called in [10] unmerge and unmove). As mentioned
in section 2, we assume that the parser is equipped with a perfect oracle, and will ig-
nore the bookkeeping necessary to perform backtracking.2 This assumption amounts
to claiming that the asymmetries in acceptability judgements in the constructions we
examine here are not due to (local) ambiguities; either because there are none, as we
assume here, or because all sentences involved have roughly the same amount.

As in the case of context-free parsing, a minimalist parser item corresponds to a node
in a derivation tree, and a minimalist parser state is a sequence of minimalist parser
items. Just like with context-free parsing, a (top-down) parser state represents the set
of derivation tree contexts with the same open positions; the parser items it contains
correspond to the categories of the open positions, and the order in which these open
positions might correspond to the input string. Differences between them, however,
stem from the following difference between the grammar formalisms: the language of a
given nonterminal in a minimalist grammar consists of tuples of derived objects [38], as
opposed to single derived object as in the case of context-free grammars. Accordingly,
the minimalist parser’s ‘stack’ needs to take the form of a priority queue. As shown by
[24], an ordering on derivation tree nodes reflecting the corresponding node in the sur-
face tree can be computed efficiently by the parser online (a finite copying transduction

2 This decision is motivated also by the fact that search strategy and oracle are highly underde-
termined by the search space, and that we do not know how to select among the alternatives in
a principled way.

Memory Resources in Minimalist Parsing 39

relates the two [19,29]). The order on queue elements is given by this relation. In some
sense, the crucial difference between minimalist parsing and context-free parsing is that
the ordering relation between nodes in the minimalist derivation tree (defined as per the
above in terms of the surface string position of the leftmost component) is not inherited
through dominance, whereas that in the context-free derivation tree is.3 This allows the
priority queue for context-free parsing to behave as a simple stack.

We do not present the full set of parser rules here, for reasons of space and simplicity
(we leave out the rules for head movement, as this complicates things even more; see
footnote 5); see [24] and [36] for more optimized versions hereof.4 The parser rules are
presented as (upside down) inference rules, such as the below.

P

R1 . . . Rn

This rule is to be understood as saying that the items R1, . . . , Rn are derivable in one
step from item P . Given a stack (or some similar data structure) whose top item is P ,
applying this rule removes P from the stack, and adds R1 . . . Rn. If n < 1, this means
that P is simply removed from the stack.

A parser item takes the form 〈γ0, α0; γ1, α1; . . . ; γn, αn〉, where for 0 ≤ i ≤ n, αi

is the feature sequence of the ith moving expression, and γi is the gorn address of its
position in the derived tree.5 The parser items are totally ordered, where p < p′ iff the
leftmost γi in p is to the left of the leftmost γ′j in p′.6

The scan rule is given below. Here, a parser item is assumed to correspond to a
lexical item, and is removed from the stack.

〈γ, α〉
where u is the next word and 〈u, α〉 ∈ Lex (scan)

For conciseness, we write an item 〈γ0, α0; γ1, α1; . . . ; γn, αn〉 as 〈γ0, α0;A〉. We use
the notation 〈γ0, α0;A[φ]〉 to indicate thatA containsφ. IfA[ψ] occurs in the antecedent
of a rule, then A[φ] in the consequent indicates that ψ has been replaced by φ in A. We
write A[−] to indicate that ψ has been removed. We write A = B ⊕ C to indicate that
A can be partitioned into B and C.

unmerge1s unmerge2s

〈γ, α;A⊕B〉
〈γ1, x=α;A〉 〈γ0, x;B〉

〈γ0, α0;A⊕B[γ, α]〉
〈γ01, x=α;A〉 〈γ, xα;B[−]〉

3 An ordering (<) over derivation tree nodes is inherited through dominance in this sense just
in case for any two nodes a and b, a < b implies that, for any children ca and cb of a and b,
ca < cb.

4 In particular, we should restrict the feature sequences in predicted items to lexical feature
suffixes.

5 To incorporate head movement, we need to decompose γ0 into the triple γ0
0 , γ

1
0 , γ

2
0 ; see

e.g. [16].
6 This is a total order because the gorn addresses assigned to items in the stack are unique,

corresponding as they do to positions in the derived tree.

40 G.M. Kobele, S. Gerth, and J. Hale

unmerge1c unmerge2c

〈γ, α;A⊕B〉
〈γ0,=xα;A〉 〈γ1, x;B〉

〈γ0, α0;A⊕B[γ, α]〉
〈γ00,=xα;A〉 〈γ, xα;B[−]〉

In the case of the unmerge rules, the moving components (described above as A ⊕B)
must be split among the two newly predicted items. Illustrative are the gorn addresses of
the predicted items. In the case of unmerge1s we are assuming that the second argument
to the merge operation was a specifier (merged on the left – x=) and was pronounced
there (i.e. it did not later move as it has no further features) – we can therefore conclude
that the item representing the second argument to merge is the left sister of the item
representing the first argument in the derived surface tree.

unmove1 unmove2

〈γ0, α0;A[−]〉
〈γ01,+xα;A[γ00,-x]〉

〈γ0, α0;A[γ, α]〉
〈γ01,+xα;A[γ,-xα]〉

In unmove2, which corresponds to an application of move where the moving expres-
sion has not moved its last (i.e. it has movement features left over), the predicted item
only updates the gorn address of the head, as the moving item’s surface position is not
changed by this movement. This contrasts with unmove1, which corresponds to an ap-
plication of move where the moving expression moves to its final resting place. Here
we know that the moving expression is the left daughter of the head of the popped item,
and the head of the predicted item is the right daughter (as movement is to the left).

5 Modeling

Here we report the results of our complexity measures on sentences of the kind in sec-
tions 3.1 and 3.2. We begin (in Section 5.1) with an analysis of verb clusters, and show
that a simple but linguistically motivated analysis of Dutch and German predicts maxi-
mum tenure differences which line up with the behavioural data. Then (in Section 5.2)
we consider the stark constrast in English between center embedded and peripherally
embedded structures. We provide two syntactic analyses of this phenomenon, which
differ from one another only on their analysis of verbal inflection. Somewhat surpris-
ingly, this matters, and highlights the degree to which tenure is dependent upon the
particulars of a syntactic analysis.

5.1 Verb Clusters

We assume a verb-raising analysis, depicted in figure 2.7 On this analysis, verbal com-
plexes in both German and in Dutch have the same deep structure 2(a), one in which
verbs and their objects are in a strict sisterhood relation [43]. The different surface word
orders arise as a consequence of verbal head movement up and to the left (as shown in
2(c) in the case of German) or to the right (as shown in 3(c) in the case of Dutch). The

7 This particular analysis is a variation of [31].

Memory Resources in Minimalist Parsing 41

only difference between the two grammar fragments is that the verb cluster is formed
via leftward head movement in German, and via rightward head movement in Dutch.

The lexical items in both figures, which are identical but for the direction of head
movement (indicated by means of the hyphen attached to the lexeme), are schematic
representations of either nominal phrases (‘DPs’), sequence initiating verbs (Vi), serial
verbs (V) and inflectional heads (I).

0r1

1r2

2DP3
2r4

4r5

5DP6
5Vi7

4V8

1I9

(a) derivation

Vi d= v
-V v= d= v
-I v= i
(b) lexicon

>

Vi-V-I>

>

ε>

εDP

DP

(c) surface

Fig. 2. Structures for German

Max Tenure
Embeddings German Dutch

1 8 6
2 12 9
3 16 12
4 20 15

Figures 2 and 3 correspond to the first row in the table above. In the German derivation
2(a) and surface structure 2(c), the maximal tenure is had by the parser item correspond-
ing to the node labelled 1I9 in the figure, which is predicted at the first step, and which
is removed from the queue only at the ninth and last step. The reason why this item is
predicted already in the first step is because it is a child of the root/starting item. It is
removed from the queue so late because every other parser state contains an item which
can be expanded into items which correspond to words in the input which come before
this one.

The Dutch deep structure is traversed identically to the German one up until step 7,
where, instead of operating on the prediction for a Vi, the prediction of an inflectional
element is operated on.

42 G.M. Kobele, S. Gerth, and J. Hale

0r1

1r2

2DP3
2r4

4r5

5DP6
5Vi9

4V8

1I7

(a) derivation

Vi d= v
V- v= d= v
I- v= i
(b) lexicon

>

I-V-Vi>

>

ε>

εDP

DP

(c) surface

Fig. 3. Structures for Dutch

5.2 English Center and Right Embeddings

We adopt a promotion-style analysis of relative clauses, according to which the relative
clause head is an argument of the embedded verb, and then moves to a clause-peripheral
position [15,8,17]. We report the results of applying our complexity metric to two gram-
mar fragments which differ in their analyses of verbal inflection. One (4(c)) relies on
phrasal movement which conspires to position the verb before the inflectional ending
as suggested by [23]. The other (4(a)) uses head movement to build a complex head
consisting of a verb and its inflections, an analysis which has its roots in [3].

-s =v +k s
laugh =d v
-ε =V +k d= v
praise =d V

(a) head

that =s +w n
ε =n d -k -w
the =n d -k
boy n

(b) shared

s =v +z +k s
laugh =d v -z
ε =V +k d= v
praise =d V -z

(c) phrasal

Fig. 4. Lexica

Head Mvt Phrasal Mvt
Depth Right Center Right Center

1 11 23 18 24
2 11 40 36 42
3 11 57 54 60
4 11 74 72 78
5 11 91 90 96
6 11 108 108 114

Memory Resources in Minimalist Parsing 43

Under the phrasal movement analyis of inflection, although sentences with right branch-
ing embedding have a lower maximal tenure than do those with center embeddings, they
have the same rate of growth – in other words, there is no bound on maximal tenure
which will correctly rule out (as unacceptable) center embedded sentences of nesting
degree greater than (say) 3, but allow peripheral embedding to (much) higher degrees.

Under the head movement analysis of inflection (4(a)), however, sentences with right
branching embedding (2) have a lower maximal tenure than those with center embed-
ding (1). Indeed, the maximal tenure of right branching sentences remains constant up
to 6 embeddings, whereas the maximal tenure of center embedded structures contin-
ues to increase (by seventeen steps) with each additional embedding. Derivation trees
for center and peripherally embedded sentences under the head movement analysis of
inflection are given in figures 6(a) and 7(a) respectively. In both cases, it is the matrix
clause inflectional head (the present tense suffix -s) which is the parser item with the
maximal tenure. The crucial aspect of the minimalist analysis is that the inflectional
head is predicted very early, due to the fact that inflection is assumed to merge with the
verb only after all its arguments have been merged with it.

6 General Discussion

Our proposal is that the maximal tenure of an item on the stack reflects a memory re-
quirement that burdens human comprehenders. This is related to different aspects of
previous work in psycholinguistics. Since it views a memory cell being occupied as op-
posed to unoccupied, our proposal can be viewed as a generalization of the HOLD
hypothesis [13,42]. One could also view long tenure as an approximation to work-
ing memory decay [22].

We have focussed here on off-line difficulty measures. However, various on-line no-
tions of stack tenure are easily derivable, such as maximal tenure up to a particular
point in the sentence, or average tenure of stack items. In particular, we derive inter-
esting predictions for on-line judgements in the Dutch versus German data. In figure 5,
we report for each of the last six parser steps (steps 13 to 18) of a parse of a sentence
with four DPs the maximal tenure of a current stack item, the average tenure of items
on the stack, and the sum tenure of all items on the stack. Note that the steps taken by
the parser on the Dutch and German sentences are identical up to and including step 13,
at which point the verbal cluster begins to be parsed.

6.1 Difficulties with Maximal Tenure

Although simple and well-defined, the notion of maximal tenure (or incremental ver-
sions thereof, cf. Section 7) in minimalist grammars is difficult to relate to geometric
properties of a derivation. (As, for example, it is possible to relate memory burden
in left-corner parsing to the geometric property of center embedding in the context-
free parse tree.) Still, a high tenure will obtain whenever an unmerge rule introduces
derivational sisters, which are separated on the surface by a large number of derived
tree leaves. In particular, as pointed out by a reviewer, the top-down minimalist parser
should assign high tenure to left-branching structures (as in 5), just as would a top-down
context-free parser, which does not seem to accurately reflect the behavioural data.

44 G.M. Kobele, S. Gerth, and J. Hale

step max average sum
13 12 6.4 32
14 13 8.5 34
15 14 11 33
16 15 13.5 27
17 16 16 16
18 (empty)

(a) German

step max average sum
13 12 6.4 32
14 10 6 24
15 8 5.7 17
16 6 5.5 11
17 6 6 6
18 (empty)

(b) Dutch

max(stack) = maxx∈stack tenure(x)

average(stack) = sum(stack)/ |stack|
sum(stack) = Σx∈stacktenure(x)

Fig. 5. The parser on the German/Dutch sentence with 3 embeddings

(5) John’s neighbor’s dentist’s uncle laughed.

Additionally, the more words which intervene between a wh-word and its extraction
site, the higher the tenure. Sentence 7 has a higher tenure than 6, despite the fact that
the paths between the wh-words and their extraction sites are of the same length.

(6) Who did the boy kiss.
(7) Who did the very tall boy kiss.

To the extent that this is not reflected in the behavioural data, one potential (but radical)
solution could be to change the way tenure is measured.

There are three currently existing proposals in this regard. First, the Dependency Lo-
cality Theory [6] can be thought of in the present terms as measuring not the number of
steps taken by the parser while a given item is on the stack, but the number of discourse
referents introduced. This change would then equate the tenures of 6 and 7, but would
still predict a high tenure score for structures like example 5. In the computational liter-
ature, Joshi [12] (see also [33]) presents an account of the observed processing contrast
between German and Dutch verbal complexes in the context of tree adjoining gram-
mar (TAG). Using the fact that a TAG can be compiled into an equivalent (embedded)
push down automaton (EPDA), he notes that the total amount of time the EPDA for
the Dutch sentences stores any symbol on its stack is less than that of the EPDA for
the German sentences.8 The complexity measure of ‘sum total tenure of stack items’ is
equivalent to the sum of the sizes of the stack after each step (the sum of the number
of symbols on stack one plus the number of symbols on stack two plus . . .). However,
the notion of a step is taken in [12] to be a scan of an overt word, and intermediate
steps are not taken into account. In [33], a step is indeed taken to be a single operation
of the automaton, but symbols corresponding to empty nodes in an elementary tree are
crucially not counted toward stack size.

8 He also observes that the maximal stack size is lower for the Dutch EPDA than for the German
one.

Memory Resources in Minimalist Parsing 45

0v1

1r2

2-s25 2r3

3laugh24
3r4

4the5
4v6

6r7

7that17 7v8

8r9

9-s23 9r10

10v11

11r12

12
22

12r13

13praise21
13r14

14
15

14boy16

10r18

18the19
18boy20

(a) derivation tree

>

<1

the >

<3

ε boy

<

that >

<2

the boy

<

praise-ε-s >

t2 >

t3 <

praise-ε <

praise t3

<

laugh-s <

laugh t1

(b) derived tree

Fig. 6. Center Embedding with Head Movement

46 G.M. Kobele, S. Gerth, and J. Hale

0v1

1r2

2-s12 2r3

3v7

7r8

8
11

8r9

9praise10
9r13

13the14
13v15

15r16

16that23 16v17

17r18

18-s25 18r19

19laugh24
19r20

20
21

20boy22

3r4

4the5
4boy6

(a) derivation tree

>

<1

the boy

<

praise-ε-s >

t1 >

<2

the >

<3

ε boy

<

that >

t3 <

laugh-s >

laugh t3

<

praise-ε <

praise t2

(b) derived tree

Fig. 7. Peripheral Embedding with Head Movement

Memory Resources in Minimalist Parsing 47

0v1

1v2

2r3

3s27 3r4

4laugh26
4r5

5the6
5v7

7r8

8that19 8v9

9v10

10r11

11s24 11r12

12v13

13r14

14
25

14r15

15praise23
15r16

16
17

16boy18

12r20

20the21
20boy22

(a) derivation tree

>

<2

the >

<4

ε boy

<

that >

<3

the boy

>

<5

praise t4

<

s >

t3 >

t4 <

ε t5

>

<1

laugh t2

<

s t1

(b) derived tree

Fig. 8. Center Embedding with Phrasal Movement

48 G.M. Kobele, S. Gerth, and J. Hale

0v1

1v2

2r3

3-s12 3r4

4v8

8r9

9
27

9r10

10praise11
10r13

13the14
13v15

15r16

16that24 16v17

17v18

18r19

19-s26 19r20

20laugh25
20r21

21
22

21boy23

4r5

5the6
5boy7

(a) derivation tree

>

<1

the boy

>

<2

praise t3

<

s >

t1 >

<3

the >

<4

ε boy

<

that >

t4 >

<5

laugh t4

<

s t5

<

ε t2

(b) derived tree

Fig. 9. Peripheral Embedding with Phrasal Movement

Memory Resources in Minimalist Parsing 49

7 Conclusion

We have shown that longstanding and influential psycholinguistic ideas about memory
resources can be connected with specific and explicit syntactic analyses in rigorous
ways. The results of section 5.2 show that the syntactic analysis can indeed play a
significant role in the memory requirements of parsing.

The notion of tenure, while useful (at least to a first approximation), is not able to
account for all aspects of psycholinguistic data. In particular, we have idealized non-
determinism in the parsing process away, while complexity measures which focus on
the resolution of non-determinism, such as entropy reduction [8] or surprisal [7], have
been demonstrated to have explanatory value [21,41]. Furthermore, although tenure is
a measure related to memory burden, we have made very weak assumptions about the
nature of memory — incorporating psychological insights into the nature and limita-
tions of human memory [22] may allow a reductive explanation of our tenure measure,
or at least for a more refined and nuanced theory.

Future work will investigate how best to relate tenure to online data, how to integrate
various independent notions of psycholinguistic ‘difficulty’, and how to most appropri-
ately account for examples like those presented in Section 6.1.

References

1. Abney, S., Johnson, M.: Memory requirements and local ambiguities of parsing strategies.
Journal of Psycholinguistic Research 20(3), 233–249 (1991)

2. Bach, E., Brown, C., Marslen-Wilson, W.: Crossed and nested dependencies in German and
Dutch: A psycholinguistic study. Language and Cognitive Processes 1(4), 249–262 (1986)

3. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)
4. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
5. Crocker, M.W., Brants, T.: Wide-coverage probabilistic sentence processing. Journal of Psy-

cholinguistic Research 29(6), 647–669 (2000)
6. Gibson, E.: The dependency locality theory: A distance-based theory of linguistic complex-

ity. In: Miyashita, Y., Marantz, A., O’Neil, W. (eds.) Image, Language, Brain, pp. 95–126.
MIT Press, Cambridge (2000)

7. Hale, J.: A Probabilistic Earley Parser as a Psycholinguistic Model. In: Proceedings of the
Second Meeting of the North American Chapter of the Association for Computational Lin-
guistics (2001)

8. Hale, J.T.: Grammar, Uncertainty and Sentence Processing. Ph.D. thesis, The Johns Hopkins
University (2003)

9. Hale, J.T.: Uncertainty about the rest of the sentence. Cognitive Science 30, 643–672 (2006)
10. Harkema, H.: Parsing Minimalist Languages. Ph.D. thesis, University of California, Los An-

geles (2001)
11. Johnson-Laird, P.N.: Mental Models. Cambridge University Press (1983)
12. Joshi, A.K.: Processing crossed and nested dependencies: An automation perspective on the

psycholinguistic results. Language and Cognitive Processes 5(1), 1–27 (1990)
13. Kaplan, R.M.: Transient Processing Load in Relative Clauses. Ph.D. thesis, Harvard (1975)
14. Kay, M.: Algorithm schemata and data structures in syntactic processing. In: Grosz, B.J.,

Jones, K.S., Webber, B.L. (eds.) Readings in Natural Language Processing. Morgan Kaufman
(1986)

50 G.M. Kobele, S. Gerth, and J. Hale

15. Kayne, R.: The Antisymmetry of Syntax. MIT Press, Cambridge (1994)
16. Kobele, G.M.: Formalizing mirror theory. Grammars 5(3), 177–221 (2002)
17. Kobele, G.M.: Generating Copies: An investigation into structural identity in language and

grammar. Ph.D. thesis, University of California, Los Angeles (2006)
18. Kobele, G.M.: Importing montagovian dynamics into minimalism. In: Béchet, D., Dikovsky,

A. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol. 7351, pp. 103–118.
Springer, Heidelberg (2012)

19. Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimalism. In:
Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-Theoretic Syntax at 10;
ESSLLI 2007, Dublin (2007)

20. Kowalski, R.: Algorithm = logic + control. Communications of the ACM 22(7), 424–436
(1979)

21. Levy, R.: Expectation-based syntactic comprehension. Cognition 106, 1126–1177 (2008)
22. Lewis, R.L., Vasishth, S.: An activation-based model of sentence processing as skilled mem-

ory retrieval. Cognitive Science 29, 375–419 (2005)
23. Mahajan, A.: Word order and (remnant) VP movement. In: Karimi, S. (ed.) Word Order and

Scrambling, ch. 10. Blackwell (2003)
24. Mainguy, T.: A probabilistic top-down parser for minimalist grammars. CoRR abs/1010.1826

(2010)
25. Marr, D.: Vision. W. H. Freeman and Company, New York (1982)
26. Marslen-Wilson, W.: Linguistic structure and speech shadowing at very short latencies. Na-

ture 244, 522–523 (1973)
27. Michaelis, J.: On Formal Properties of Minimalist Grammars. Ph.D. thesis, Universität Pots-

dam (2001)
28. Miller, G.A., Chomsky, N.: Finitary models of language users. In: Luce, R.D., Bush, R.R.,

Galanter, E. (eds.) Handbook of Mathematical Psychology, ch. 13, pp. 419–491. John Wiley,
New York (1963)

29. Mönnich, U.: Minimalist syntax, multiple regular tree grammars and direction preserving
tree transductions. In: Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-
Theoretic Syntax at 10; ESSLLI 2007, Dublin (2007)

30. Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J.,
Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, pp. 221–242. D. Reidel,
Dordrecht (1973)

31. Morawietz, F.: Two-Step Approaches to Natural Language Formalisms, Studies in Genera-
tive Grammar, vol. 64. Mouton de Gruyter (2003)

32. Rambow, O., Joshi, A.K.: A processing model for free word order languages. In: Clifton, C.,
Frazier, L., Rayner, K. (eds.) Perspectives on Sentence Processing, pp. 267–301. Lawrence
Erlbaum (1994)

33. Rambow, O., Joshi, A.K.: A processing model for free word order languages. Tech. Rep.
IRCS-95-13, University of Pennsylvania (1995)

34. Resnik, P.: Left-corner parsing and psychological plausibility. In: Proceedings of the Four-
teenth International Conference on Computational Linguistics, Nantes, France (1992)

35. Shieber, S.M.: Evidence against the context-freeness of natural language. Linguistics and
Philosophy 8, 333–343 (1985)

36. Stabler, E.: Top-down recognizers for MCFGs and MGs. In: Proceedings of CMCL (2011)
37. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI),

vol. 1328, pp. 68–95. Springer, Heidelberg (1997)
38. Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages. Theoretical

Computer Science 293, 345–363 (2003)
39. Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., Sedivy, J.: Integration of visual and

linguistic information in spoken language comprehension. Science 268, 1632–1634 (1995)

Memory Resources in Minimalist Parsing 51

40. VanWagenen, S., Brennan, J., Stabler, E.P.: Evaluating parsing strategies in sentence process-
ing. Poster Presented at CUNY 2011 (2011)

41. Vasishth, S., Drenhaus, H.: Locality in German. Dialogue and Discourse 1(2), 59–82 (2011)
42. Wanner, E., Maratsos, M.: An ATN approach to comprehension. In: Halle, M., Bresnan, J.,

Miller, G.A. (eds.) Linguistic Theory and Psychological Reality, ch. 3, pp. 119–161. MIT
Press, Cambridge (1978)

43. Wurmbrand, S.: How complex are complex predicates. Syntax 10(3), 243–288 (2007)

Parsing Pregroup Grammars with Letter

Promotions in Polynomial Time

Katarzyna Moroz

Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań

moroz@amu.edu.pl

Abstract. We consider pregroup grammars with letter promotions of
the form p(m) ⇒ q(n), p ⇒ 1, 1 ⇒ q. We prove a variant of Lam-
bek’s normalization theorem [5] for the calculus of pregroups enriched
with such promotions and present a polynomial parsing algorithm for
the corresponding pregroup grammars. The algorithm extends that from
[8], elaborated for pregroup grammars without letter promotions. The
normalization theorem, restricted to letter promotions without 1, was
proved in [3,4] while the present version was stated in [4] without proof
and used to show that the word problem for letter promotions with unit
is polynomial. Our results are contained in the unpublished PhD thesis
[9].

1 Introduction and Preliminaries

The paper continues and extends some results of [4] and [8]. [4] considered pre-
groups and pregroup grammars with letter promotions and with letter promo-
tions with unit. A Lambek-style normalization theorem for pregroups with letter
promotions is proved. A similar theorem for pregroups with letter promotions
with unit is stated and here we give the proof of the theorem. The proof of
the normalization theorem for letter promotions with 1 essentially refines that
from [3,4], but does not follow directly from them, since one must handle new
contraction and expansion steps. In [4] it is also proved that the word problem
and the membership problem for pregroups with letter promotions can be solved
in polynomial time. Similar results are given for pregroups with letter promo-
tions with unit. In [8] we propose a polynomial dynamic parsing algorithm for
pregroup grammars and give the proof of its correctness. In this paper we show
that the algorithm can be modified to work for pregroup grammars with letter
promotions with unit. The results were stated in an unpublished PhD thesis [9].

Pregroups were introduced by Lambek [5] as an algebraic tool for the syntac-
tical analysis of sentences. Pregroup grammars belong to lexical grammars since
most of linguistic information is encoded in the lexicon. Similarly as in Lambek
categorial grammars, syntactical properties of words are described by a finite
set of pregroup types. However, the structure of types is different and so is the
logic. Pregroup types are elements of a free monoid, generated by iterated ad-
joints of some atoms, and they are processed using a calculus of free pregroups,

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 52–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 53

also called Compact Bilinear Logic CBL. The computational complexity of pre-
group grammars is polynomial in contrast to the computational complexity of
categorial grammars. Pregroups and pregroup grammars have been successfully
applied to parsing diverse natural languages like English, Italian, Polish and
Japanese.

However, not all natural language phenomena can be easily described by the
formalism of pregroups. Therefore some extensions to pregroup grammars have
been proposed. Mater and Fix [7] consider pregroup grammars enriched with
some more general assumptions. An interesting problem they propose is called a
letter promotion problem for pregroups. Their idea is further developed in [3], [4].
Buszkowski and Lin [3] show that the word problem for pregroups with letter
promotions, that is assumptions of the form p(m) ⇒ q(n), is polynomial when
the size of p(n) is counted as |n|+1. [4] extends this result for letter promotions
with unit p(m) ⇒ 1, 1⇒ q(n).

CBL enriched with some assumptions is interesting for a few reasons. First
of all, we look for extensions to pregroups allowing easier description of some
natural language phenomena, see [6]. Moreover, we know that the calculus of
pregroups is solvable in polynomial time (see [1]), but the associative Lambek
calculus is NP-complete. The calculi admitting letter promotions and letter pro-
motions with unit are still polynomial. It is interesting how far the calculus
of pregroups can be generalized while remaining polynomial. Finally, pregroup
grammars with letter promotions can directly simulate any cancelation gram-
mar. Cancelation grammars are defined by Buszkowski in [4].

Definition 1. A cancelation grammar is a tuple G = (Σ, V,X,R, I), where Σ
and V are finite disjoint alphabets (terminal and auxiliary respectively), X ∈ V ∗,
R is a finite set of cancelation rules and I assigns a finite set of strings over
V to any element of Σ. The cancelation rules are of the form A,B ⇒ ε and
A⇒ B, for A,B ∈ V . G assigns a string Y ∈ V ∗ to a string a1...an of elements
from Σ if there exist strings Y1...Yn such that Yi = I(ai), i = 1, ..., n and Y1...Yn
reduces to Y by a finite number of applications of rules from R.

The language of a cancelation grammar consists of all strings on Σ+ which
are assigned the designated type X by G. Pregroup grammars (also with let-
ter promotions) are a special kind of cancelation grammars. Conversely, every
cancelation rule A,B ⇒ ε can directly be simulated by the letter promotion
A⇒ Bl, i.e. A⇒ B(−1).

Definition 2. A pregroup is an algebra (M,�, ·, l, r, 1), such that (M,�, ·, 1) is
a partially ordered monoid and l, r are unary operations on M satisfying adjoint
laws:

(Al) ala � 1 � aal

(Ar) aar � 1 � ara,

for all a ∈M .

The elements al and ar are called left and right adjoint, respectively. Let us
notice that left and right adjoints are unique for each element of M .

54 K. Moroz

One defines iterated adjoints a(n) = arr...r and a(−n) = all...l, where n is a
non-negative integer, r and l are iterated n times and a is any element of a
pregroup M . By definition a(0) = a.

To apply pregroups to parsing natural languages Lambek uses the notion of
a free pregroup generated by a poset. Let us assume (P,�) is a nonempty, finite
poset. Then elements of P are called atoms and they are denoted by letters
p, q, r. Expressions of the form p(n), where p ∈ P and n is any integer, are called
terms and denoted by t, u. Finite strings of terms are called types and denoted
by X,Y, Z. Types are assigned to words in the lexicon and they refer to the
role the given word takes in a sentence. Usually, one word can be assigned many
different types.

The following rules define a binary relation ⇒ on the set of types:

(CON) X, p(n), p(n+1), Y ⇒ X,Y,
(EXP) X,Y ⇒ X, p(n+1), p(n), Y,
(POS) X, p(n), Y ⇒ X, q(n), Y, if p � q and n is even or q � p and n is
odd.

(CON), (EXP), (POS) are called Contraction, Expansion and Poset rules, re-
spectively. Poset rules were originally called Induced Step (IND) by Lambek [5].
Actually, ⇒ is a reflexive and transitive closure of the relation defined by these
clauses. Let us notice that X ⇒ Y is true iff X can be rewritten into Y by a
finite number of applications of these rules. This rewriting system is Lambek’s
original form of the logic of pregroups, which is also called CBL.

Additionaly, one defines a useful rule called Generalized Contraction, which
combines (CON) and (POS) and similarly Generalized Expansion (GEXP):

(GCON) X, p(n), q(n+1), Y ⇒ X,Y ,
(GEXP) X,Y ⇒ X, p(n+1), q(n)Y ,

where in both cases p � q and n is even, or q � p and n is odd.
Lambek proves a normalization theorem for CBL [5]:

if X ⇒ Y in CBL, then there exist Z and U such that X ⇒ Z by
applying (GCON) only, Z ⇒ U by applying (POS) only, and U ⇒ Y by
applying (GEXP) only.

Therefore, if Y is a term or Y ⇒ ε, then X ⇒ Y in CBL if and only if X can
be reduced to Y without (GEXP), that is using (CON) and (POS) only.

It is useful to define Xr and X l for any type X :

εl = ε = εr;

Xr = (p
(n1)
1 ...p

(nk)
k)r = p

(nk+1)
k ...p

(n1+1)
1 ,

X l = (p
(n1)
1 ...p

(nk)
k)l = p

(nk−1)
k ...p

(n1−1)
1 ,

where n1, ..., nm are arbitrary integers.

Definition 3. A pregroup grammar is a structure G = (Σ,P, I, s, R) where Σ
is a finite alphabet (that is a lexicon), P is a finite set of atoms, I is a finite
relation assigning types on P to symbols from Σ, s is the denoted type s, and R
is a partial ordering on P .

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 55

If R is fixed, one writes p � r for pRq. For a ∈ Σ, I(a) denotes the set of all
types X such that (a,X) ∈ I. Let us assume x ∈ Σ+, x = a1...an (ai ∈ Σ). One
says that the grammar G assigns type Y to x if there exist types Xi ∈ I(ai), i =
1, ..., n, such that X1, ..., Xn ⇒ Y in CBL; we write x→G Y . Then the language
of a pregroup grammar G, denoted by L(G), consists of all strings x ∈ Σ+ to
which the grammar G assigns the denoted type s. Due to the normalization
theorem while parsing pregroup grammars, one may restrict the rules to only
(CON) and (POS).

To describe a pregroup grammar for a given language one has to define a set
of terms, fix a lexicon consisting of words of the language and types assigned
to them and define a partial order on types, that is, fix the assumptions. One
can say that assumptions express different forms of subtyping. Let us consider a
few examples. If he is assigned type π3 (subject in third person), likes - πr

3 s1 o
l

and books - n2 (plural noun), then the sentence He likes books. can be parsed as
follows: (π3)(π

r
3 s1 o

l)(n2) � s1o
ln2 � s1o

lo � s1 (using the assumption n2 � o,
as a plural noun can take part of an object in a sentence). The string is assigned
type s1 i.e. the type of statement in present tense and by the assumption s1 � s,
it is a statement (type s). Clearly, the types assigned above are not unique. For
example books is also of type πr

3s1o
l (a transitive verb in third person, present

tense). The above reduction can be depicted by the following links:
He likes books.
(π3)(π

r
3 s1 o

l)(n2)

Let us consider a complete system of CBL with letter promotions obtained
by modifying (POS) to Promotion Rules (PRO):

(PRO) X, p(m+k), Y ⇒ X, q(n+k), Y if either k is even and p(m) ⇒ q(n)

is an assumption, or k is odd and q(n) ⇒ p(m) is an assumption.

A pregroup grammar with letter promotions is defined similarly to a pregroup
grammar.

Definition 4. A pregroup grammar with letter promotions is a pregroup gram-
mar G = (Σ,P, I, s, R) in which R is the set of assumptions extended by a set
of letter promotions. We require that P (R) ⊆ P , where P (R) denotes the set of
atoms appearing in assumptions from R.

By R CBL X ⇒ Y we mean that X can be transformed into Y by a finite num-
ber of applications of (CON), (EXP) and (PRO), restricted to the assumption
from a set of letter promotions R. (POS) is treated as an instance of (PRO).

Assuming that t ⇒ u is an instance of (PRO) restricted to the assumptions
from R, that is X,Y are empty, we write t ⇒R u. We write t ⇒∗

R u if there
exist terms t0, . . . , tk such that k � 0, t0 = t, tk = u, and ti−1 ⇒R ti, for all
i = 1, . . . , k. Hence, ⇒∗

R is the reflexive and transitive closure of ⇒R.
For CBL with letter promotions one defines a generalization of the rules

(CON) and (EXP), which are derivable in CBL with assumptions from R.

(GCON-R) X, p(m), q(n+1), Y ⇒ X,Y if p(m) ⇒∗
R q(n),

(GEXP-R) X,Y ⇒ X, p(m+1), q(n), Y if p(m) ⇒∗
R q(n).

56 K. Moroz

Clearly, (CON) is a special instance of (GCON-R) while (EXP) is a special
instance of (GEXP-R). One can treat any iteration of (PRO) as a single step.

(PRO-R) X, t, Y ⇒ X, u, Y if t⇒∗
R u.

As a consequence of the normalization theorem, we get R CBL t⇒ u iff t⇒∗
R u;

see [3,4].

Definition 5. The letter promotion problem for pregroups (LPPP) is stated
as follows: for the given finite set R of letter promotions, and terms t, u, verify
whether t⇒ u in CBL enriched with all promotions from R as assumptions.

Shortly, (LPPP) consists of verifying whether t⇒∗
R u for given R, t, u.

Buszkowski and Lin [3] prove that LPPP is polynomial, provided that the
size of p(n) is counted as |n| + 1 (it is natural, since p(n) abbreviates the n-th
iteration of l’s or r’s). This count is used in the present paper. [4] extends this
result for letter promotions with unit and shows that the membership problem
for the corresponding pregroup grammars is polynomial, and these grammars
are equivalent to CFGs (but the latter does not directly imply the polynomiality
of the membership problem; see [2] for discussion).

The main result of the present paper is a polynomial parsing algorithm for
pregroup grammars admitting letter promotions of the form p(m) ⇒ q(n), p ⇒
1, 1 ⇒ q. This algorithm refines an earlier one for pregroup grammars [8]; the
latter adapts a method of Savateev [11], elaborated for Unidirectional Lambek
Calculus. Section 3 presents our algorithm, the proof of its correctness and a
related algorithm returning the reduction. Since a Lambek-style normalization
theorem is essentially used, we give its full proof in section 2 (the theorem was
proved in [9] and stated without proof in [4]).

2 The Normalization Theorem

Letter promotions with unit are promotions allowing 1, that is letter promotions
of the form: p(m) ⇒ 1 or 1⇒ q(n). We add 1 to the set of terms. Notice that in
pregroups the assumption p(m) ⇒ 1 is equivalent to p ⇒ 1 if m is even and to
1 ⇒ p if m is odd. Similarly, the assumption 1 ⇒ p(m) is equivalent to 1 ⇒ p
if m is even and to p ⇒ 1 if m is odd. Therefore, in what follows, we consider
letter promotions with unit only of the form p⇒ 1 and 1⇒ q.

A complete system of CBL with letter promotions with unit is obtained by
adding two new rules to CBL with letter promotions.

Definition 6. A complete system of CBL with letter promotions with unit
consists of the following rules:

(CON) X, p(n), p(n+1), Y ⇒ X,Y,
(EXP) X,Y ⇒ X, p(n+1), p(n), Y,
(PRO) X, p(m+k), Y ⇒ X, q(n+k), Y, if either k is even and p(m) ⇒ q(n)

is an assumption, or k is odd and q(n) ⇒ p(m) is an assumption.

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 57

(PRO-C) X, p(m), Y ⇒ X,Y , if either m is even and p ⇒ 1 is an as-
sumption, or m is odd and 1⇒ p is an assumption,
(PRO-E) X,Y ⇒ X, q(n), Y , if either n is even and 1⇒ q is an assump-
tion, or n is odd and q ⇒ 1 is an assumption.

Consequently, (PRO-C) is a contracting promotion step, (PRO-E) is an expand-
ing promotion step and (PRO) is a neutral promotion step.

We fix a finite set R1 of letter promotions, possibly with unit. We write
t ⇒R1 u if t ⇒ u is an instance of (PRO), (PRO-C) or (PRO-E) restricted to
the set of assumptions R1 (X,Y are empty). We write t ⇒∗

R1 u if there exist
terms t0, ..., tk such that k � 0, t0 = t, tk = u, ti−1 ⇒R1 ti, for all i = 1, ..., k.

We introduce some new rules derivable in CBL with assumptions from R1.

(GCON-R1) X, p(m), q(n+1), Y ⇒ X,Y, if p(m) ⇒∗
R1 q

(n)

(GEXP-R1) X,Y ⇒ X, p(n+1), q(m), Y, if p(n) ⇒∗
R1 q

(m)

(PRO-R1) X, t, Y ⇒ X, u, Y if t⇒∗
R1 u and t �= 1 and u �= 1

(PRO-C-R1) X, t, Y ⇒ X,Y if t⇒∗
R1 1 and t �= 1

(PRO-E-R1) X,Y ⇒ X, u, Y if 1⇒∗
R1 u and u �= 1

There holds a normalization theorem for CBL with letter promotions with unit:

Theorem 1. If R1 CBL X ⇒ Y , then there exist Z,U such that X ⇒ Z by a
finite number of instances of (GCON-R1) and (PRO-C-R1), Z ⇒ U by a finite
number of instances of (PRO-R1) and U ⇒ Y by a finite number of instances
of (GEXP-R1) and (PRO-E-R1).

Proof. Let us start with some notions. A sequence X0, . . . , Xk such that X =
X0, Y = Xk and, for any i = 1, . . . , k, Xi−1 ⇒ Xi is an instance of (GCON-R1),
(GEXP-R1), (PRO-E-R1), (PRO-C-R1) or (PRO-R1) is called a derivation of
X ⇒ Y from the set of assumptions R1. Clearly, R1 X ⇒ Y iff there exists a
derivation of X ⇒ Y of this form. k is the length of the derivation. If a derivation
has a form required by the Theorem, then it is called a normal derivation.

We prove that every derivation X0, . . . , Xk of X ⇒ Y can be transformed
into a normal derivation of length not greater than k. We proceed by induction
on k.

We should notice that for k = 0 and k = 1 the initial derivation is normal.
For k = 0, it suffices to take X = Z = U = Y . For k = 1, if X ⇒ Y is an
instance of (GCON-R1) or (PRO-C-R1), one takes Z = U = Y , if X ⇒ Y is an
instance of (GEXP-R1) or (PRO-E-R1), one takes X = Z = U , and if X ⇒ Y
is an instance of (PRO-R1), one takes X = Z and U = Y .

Assume now k > 1. The derivation X1, . . . , Xk is shorter, whence it can be
transformed into a normal derivation Y1, . . . , Yl such that X1 = Y1, Xk = Yl
and l � k. If l < k, then X0, Y1, . . . , Yl is a derivation of X ⇒ Y of length less
than k, whence it can be transformed into a normal derivation, by the induction
hypothesis. So assume l = k.

Case 1. X0 ⇒ X1 is an instance of (GCON-R1). Then X0, Y1,, Yl is a nor-
mal derivation of X ⇒ Y from R1.

58 K. Moroz

Case 2. X0 ⇒ X1 is an instance of (PRO-C-R1). Then X0, Y1,, Yl is a
normal derivation of X ⇒ Y from R1.

Case 3. X0 ⇒ X1 is an instance of (GEXP-R1), assume X0 = UV ; X1 =
Up(n+1)q(m)V, and p(n) ⇒∗

R1 q
(m). We consider two subcases.

Case 3.1. Neither any (GCON-R1)-step nor any (PRO-C-R1)-step of
Y1, . . . , Yl acts on the designated occurrences of p(n+1), q(m). If also no
(PRO-R1)-step of Y1, . . . , Yl acts on these designated terms, then we drop
p(n+1)q(m) from all types appearing in (GCON-R1)-steps, (PRO-C-R1)-
steps and (PRO-R1)-steps of Y1, . . . , Yl, then we introduce p(n+1)q(m)

by a single instance of (GEXP-R1), and continue the (GEXP-R1)-steps
and (PRO-E-R1)-steps of Y1, . . . , Yl; this yields a normal derivation of
X ⇒ Y of length k. Otherwise, let Yi−1 ⇒ Yi be the first (PRO-R1)-step
of Y1, . . . , Yl which acts on p(n+1) or q(m).

(I) If Yi−1 ⇒ Yi acts on p
(n+1), then there exists a term r(m

′) and types
T,W such that Yi−1 = Tp(n+1)W, Yi = Tr(m

′)W and p(n+1) ⇒∗
R1 r

(m′).

Consequently, r(m
′−1) ⇒∗

R1 p(n), whence r(m
′−1) ⇒∗

R1 q(m). Then we
can replace the derivation X0, Y1, . . . , Yl by a shorter derivation: first
apply (GEXP-R1) of the form U, V ⇒ U, r(m

′), q(m), V , then derive
Y1, . . . , Yi−1 in which p(n+1) is replaced by r(m

′), drop Yi, and continue
Yi+1, . . . , Yl. By the induction hypothesis, this derivation can be trans-
formed into a normal derivation of length less than k.

(II) If Yi−1 ⇒ Yi acts on q(m), then there exist a term r(m
′) and types

T,W such that Yi−1 = Tq(m)W, Yi = Tr(m
′)W and q(m) ⇒∗

R1 r(m
′).

Consequently, p(n) ⇒∗
R1 r

(m′), and we can replace the derivation X0, Y1,
ldots, Yl by a shorter derivation: first apply (GEXP-R1) of the form
U, V ⇒ U, p(n+1), r(m

′), V , then derive Y1, . . . , Yi−1 in which q(m) is re-
placed by r(m

′), drop Yi, and continue Yi+1, . . . , Yl. Again we apply the
induction hypothesis.

Case 3.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on (some of) the desig-
nated occurrences of p(n+1), q(m). Let Yi−1 ⇒ Yi be the first step of that
kind. There are three possibilities.

(I) This step acts on both p(n+1) and q(m). Then, the derivation X0, Y1,
. . . , Yl can be replaced by a shorter derivation: drop the first application
of (GEXP-R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted,
drop Yi, and continue Yi+1, . . . , Yl. We apply the induction hypothesis.

(II) This step acts on p(n+1) only. Then, Yi−1 = Tr(m
′)p(n+1)q(m)W, Yi =

Tq(m)W and r(m
′) ⇒∗

R1 p(n). The derivation X0, Y1, . . . , Yl can be re-
placed by a shorter, normal derivation: drop the first application of
(GEXP-R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted,
derive Yi by a (PRO-R1)-step (notice r(m

′) ⇒∗
R1 q(m)), and continue

Yi+1, . . . , Yl.

(III) This step acts on q(m) only. Then, Yi−1 = Tp(n+1)q(m)r(m
′+1)W, Yi

= Tp(n+1)W and q(m) ⇒∗
R1 r

(m′). The derivation X0, Y1, . . . , Yl can be
replaced by a shorter derivation: drop the first application of (GEXP-
R1), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted, derive Yi by

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 59

a (PRO-R1)-step (notice r(m
′+1) ⇒∗

R1 p
(n+1)), and continue Yi+1, . . . , Yl.

We apply the induction hypothesis.

Case 3.3. Some (PRO-C-R1)-step of Y1, . . . , Yl acts on (some of) the des-
ignated occurrences of p(n+1), q(m). Let Yi−1 ⇒ Yi be the first step of
that kind. There are two possibilities.

(I) This step acts on p(n+1). Then Yi−1 = Tp(n+1)W, Yi = TW and
p(n+1) ⇒∗

R1 1. Thus, 1⇒∗
R1 p

(n), and hence 1⇒∗
R1 q

(m). We can replace
the derivation X0, Y 1, . . . , Yl by a shorter derivation: start with an appli-
cation of (PRO-E-R1) of the form UV ⇒ Uq(m)V derive Y1, . . . , Yi−1 in
which p(n+1) is replaced by 1, drop Yi, and continue Yi+1, . . . , Yl. Again
we apply the induction hypothesis.

(II) This step acts on q(m). Then, Yi−1 = Tq(m)W, Yi = TW and
q(m) ⇒∗

R1 1. Thus, p(n) ⇒∗
R1 1, and we can replace the derivation

X0, Y1, . . . , Yl by a shorter derivation: start with an application of (PRO-
E-R1) of the form U, V ⇒ U, p(n+1), V , derive Y1, . . . , Yi−1 in which q(m)

is replaced by 1, drop Yi, and continue Yi+1, . . . , Yl. Again we apply the
induction hypothesis.

Case 4. X0 ⇒ X1 is an instance of (PRO-E-R1), assume X0 = UV, X1 =
Uq(m)V, and 1⇒∗

R1 q
(m). There are three subcases.

Case 4.1. Neither any (GCON-R1)-step nor any (PRO-C-R1) of Y1, . . . , Yl
acts on the designated occurrence of q(m). If also no (PRO-R1)-step
of Y1, . . . , Yl acts on this designated term, then we drop the first ap-
plication of the (PRO-E-R1)-step, omit q(m) in all types appearing in
(GCON-R1)-steps, (PRO-C-R1)-steps and (PRO-R1)-steps of Y1, . . . , Yl,
then introduce q(m) by a single instance of (PRO-E-R1), and continue
with the (GEXP-R1)-steps of Y1, . . . , Yl; this yields a normal derivation
of X ⇒ Y of length k.

Otherwise, let Yi−1 ⇒ Yi be the first (PRO-R1)-step of Y1, . . . , Yl which
acts on q(m). Then, there exist a term r(m

′) and types T,W such that
Yi−1 = Tq(m)W, Yi = Tr(m

′)W and q(m) ⇒∗
R1 r

(m′). Thus 1⇒∗
R1 r

(m′),
and we can replace the derivation X0, Y1, . . . , Yl by a shorter deriva-
tion: first apply (PRO-E-R1) of the form UV ⇒ Ur(m

′)V , then derive
Y1, . . . , Yi−1 in which q(m) is replaced by r(m

′), drop Yi, and continue
Yi+1, . . . , Yl. Again we apply the induction hypothesis.

Case 4.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of q(m). Let Yi−1 ⇒ Yi be the first step of that kind. Then,
Yi−1 = Tq(m)r(m

′+1)W, Yi = TW and q(m) ⇒∗
R1 r(m

′). The deriva-
tion X0, Y1, . . . , Yl can be replaced by a shorter derivation: drop the first
application of (PRO-E-R1), then derive Y1, . . . , Yi−1 in which q(m) is
omitted, derive Yi by a (PRO-C-R1)-step (notice r(m

′+1) ⇒∗
R1 1), and

continue Yi+1, . . . , Yl. We apply the induction hypothesis.

Case 4.3. Some (PRO-C-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of q(m). Let Yi−1 ⇒ Yi be the first step of that kind. Then,
Yi−1 = Tq(m)W, Yi = TW and q(m) ⇒∗

R1 1. Then we can replace the
derivation X0, Y1, . . . , Yl by a shorter, normal derivation: drop the first

60 K. Moroz

application of the (PRO-E-R1)-step, derive Y1, . . . , Yi−1 in which q(m) is
omitted, drop Yi, and continue Yi+1, . . . , Yl.

Case 5. X0 ⇒ X1 is an instance of (PRO-R1), say X0 = UtV , X1 = UuV ,
t⇒∗

R1 u, u �= 1 and t �= 1.

Case 5.1. Neither any (GCON-R1)-step nor any (PRO-C-R1)-step of Y1,
. . . , Yl acts on the designated occurrence of u. Then X0, Y1, . . . , Yl can
be transformed into a normal derivation of the length k: drop the first
application of (PRO-R1), apply all (GCON-R1)-steps of Y1, . . . , Yl in
which the designated occurrence of u is replaced by t and apply all
(PRO-C-R1)-steps, then apply a (PRO-R1)-step which changes t into u,
and continue the remaining steps of Y1, . . . , Yl.

Case 5.2. Some (GCON-R1)-step of Y1, . . . , Yl acts on the designated oc-
currence of u. Let Yi−1 ⇒ Yi be the first step of that kind. There are
two possibilities.
(I) Yi−1 = Tuq(n+1)W, Yi = TW and u⇒∗

R1 q
(n). Since t⇒∗

R1 q
(n), then

X,Y1, . . . , Yl can be transformed into a shorter derivation: drop the first
application of (PRO-R1), derive Y1, . . . , Yi−1 in which the designated
occurrence of u is replaced by t, derive Yi by a (GCON-R1)-step of the
form T, t, q(n+1),W ⇒ T,W , and continue Yi+1, . . . , Yl. We apply the
induction hypothesis.
(II) u = q(n+1), Yi−1 = Tp(m)uW, Yi = TW and p(m) ⇒∗

R1 q(n). Let

t = r(n′). We have q(n) ⇒∗
R1 r(n

′−1), whence p(m) ⇒∗
R1 r(n

′−1). The
derivation X0, Y1, . . . , Yl can be transformed into a shorter derivation:
drop the first application of (PRO-R1), derive Y1, . . . , Yi−1 in which the
designated occurrence of u is replaced by t, derive Yi by a (GCON-R1)-
step of the form T, p(m), r(n

′),W ⇒ T,W , and continue Yi+1, . . . , Yl. We
apply the induction hypothesis.

Case 5.3. Some (PRO-C)-step of Y1, . . . , Yl acts on the designated occur-
rence of u. Let Yi−1 ⇒ Yi be the first step of that kind. Then there
exists types T,W , such that Yi−1 = TuW, Yi = TW and u⇒∗

R1 1. Thus
t ⇒∗

R1 1. The derivation X0, Y1, . . . , Yl can be transformed into a nor-
mal derivation of length k: drop the first application of (PRO-R1), apply
a (PRO-C-R1)-step of the form: T tW ⇒∗

R1 TW derive Y1, . . . , Yi−1 in
which the designated occurrence of u is omitted, drop Yi and continue
Yi+1, . . . , Yl.

Consequently, there holds: if R1 CBL X ⇒ t, where t is a term, then X can be
reduced to t by (GCON-R1), (PRO-C-R1) and (PRO-R1) only. Moreover one
can prove that: R1 CBL t⇒ u if, and only if, t⇒∗

R1 u ([4,9]).

Definition 7. The letter promotion problem for pregroups with unit (LPPP1)
can be stated as follows: verify, whether t⇒∗

R1 u for given t, u and R1.

The problem can be solved in polynomial time. The algorithm for solving the
problem is based on the idea given for pregroups with letter promotions. For
details see [4,9].

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 61

3 The Parsing Algorithm

Definition 8. A pregroup grammar with letter promotions with unit is a tuple
G = (Σ,P,R1, s, I), such that R1 is the set of assumptions (letter promotions)
and P (R1) ⊆ P , where P (R1) is the set of atoms appearing in assumptions from
R1. Σ,P, s, I are defined in the same way as for pregroup grammars.

Assume T+(G) is a set of all types appearing in I and T (G) is a set of all
terms forming types from T+(G). Then all generalized contractions tu ⇒ ε
(t, u ∈ T (G)) derivable from R1 in CBL can be computed in polynomial time.

We define a polynomial, dynamic, parsing algorithm for pregroup grammars
with letter promotions with unit on the basis of the algorithm for pregroup gram-
mars described in [8]. The algorithm can also be used for pregroup grammars
with letter promotions without unit by omitting the cases when promotions with
1 are considered, see [9]. Our goal is to obtain an appropriate derivation of the
given string x = a1, . . . , an, ai ∈ Σ, i = 1, . . . , n if x is a member of the language
generated by a pregroup grammar with letter promotions with unit G, that is
if x ∈ L(G). The algorithm is constructed in a style proposed by Savateev (see
[11]) for Unidirectional Lambek Calculus. It is a dynamic algorithm working on
a special form of a string, containing all possible type assignments for words of
the sentence to parse.

We fix a grammar G = (Σ,P,R1, s, I). We take a string of words x ∈ Σ+

such that x = a1...an. We use special symbols ∗, 〈, 〉. Let us denote:
- Z - the set of integers,
- T = {p(n) : p ∈ P, n ∈ Z} - the set of terms,
- X,Y, Z, .. - elements of T ∗,
- ka = |I(a)|,
- Xa

j - the j-th possible assignment of type to a, 1 � j � ka (hence
I(a) = {Xa

1 , ...X
a
ka}),

- Qa = 〈∗Xa
1 ∗Xa

2 ∗ ... ∗Xa
ka∗〉,

- W x = Qa1 ...Qan〈∗s(1), W x ∈ (T ∪ {∗, 〈, 〉})∗
- W x

i - the i-th symbol of the string W x, 1 � i � |W x|,
- W x

[i,j] = W x
i W

x
i+1...W

x
j - the substring of W x, 1 � i � j � |W x| (W x

[i,i]

stands for W x
i).

In the following, by a reduction to 1 we mean a reduction to ε in CBL with
letter promotions with 1. We define an auxiliary function M as follows. Let
M ′(i, j), 1 � i � j � |W x| be a function such that M ′(i, j) = 1 iff one of the
following conditions holds:

– M1. W x
[i,j] ∈ T+ and it reduces to 1.

– M2a. W x
[i,j] is of the form 〈...〉...〈V ∗ Z, where:

- Z ∈ T+

- V contains no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string X1...XgZ reduces to 1

62 K. Moroz

– M2b. W x
[i,j] is of the form Y ∗U〉...〈...〉, where:

- Y ∈ T+

- U contains no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string Y X1...Xg reduces to 1

– M3. W x
[i,j] is of the form Y ∗U〉...〈V ∗ Z, where:

- Y, Z ∈ T+

- U,V contain no angle brackets
- in W x

[i,j] there are precisely g (g � 0) pairs of matching angle brackets; for
the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string Y X1...XgZ reduces to 1

– M4. W x
[i,j] is of the form 〈...〉...〈...〉, where:

- in W x
[i,j] there are precisely g (g � 1) pairs of matching angle brackets; for

the h-th pair of them there is a substring of the form ∗Xh∗ in between them
such that Xh ∈ T+ and the string X1...Xg reduces to 1

In all other cases M ′(i, j) = 0.
Clearly, the whole string W x is of the form M2a. Therefore, M ′(1, |W x|) = 1

entails the existence of a string X1 . . .Xns
r reducing to 1. Each Xi is the type

that needs to be found for ai. Thus, a solution to the recognition problem is
found, i.e. x ∈ L(G). On the other hand, if M ′(1, |W x|) = 0, then there is no
string reducing to 1, in which exactly one element comes from each pair of angle
brackets and which reduces to 1. It means x /∈ L(G).

We start the algorithm by determining the set Pairs of all pairs (p(m), q(n+1))
such that p, q ∈ P and p(m) ⇒∗

R1 q
(n), and a set Reducible of terms t such that

t⇒∗
R1 1, which can be done in polynomial time, see [3].

We compute M ′(i, j) dynamically. There are two initial cases. The first one
computes M ′(i, i) = 1 in the case when W x

i = t and t ∈ Reducible. Secondly,
one looks for two adjacent terms W x

i and W x
i+j belonging to the set Pairs. If

(W x
i ,W

x
i+j) ∈ Pairs then we put M ′(i, i+ 1) = 1.

When we already know M ′(g, h), for all 1 � g < h � |W x| such that h− g <
j − i, we can compute M ′(i, j). There are several cases:

– A0. W x
[i,j] is of the form p(m) ∗ U〉〈V ∗ q(n+1), (pm, q(n+1)) ∈ Pairs and

strings U, V contain no angle brackets. Then, we put M ′(i, j) = 1.
– A1a. W x

i ,W
x
j ∈ T . If there exists k such that i � k < j, W x

k ∈ T , W x
(k+1) ∈

T and bothM ′(i, k) andM ′(k+1, j) are equal to 1, then we putM ′(i, j) = 1.

– A1a’.W x
i ,W

x
j ∈ T . If there exists k such that i < k � j,W x

k ∈ T ,W x
(k+1) ∈

T and bothM ′(i, k−1) andM ′(k, j) are equal to 1, then we putM ′(i, j) = 1.

– A1b. W x
i ,W

x
j ∈ T . If there exists k such that i < k < j − 1, W x

k =〉,
W x

(k+1) = 〈 and both M ′(i, k) and M ′(k + 1, j) are equal to 1, then we put

M ′(i, j) = 1.

– A2. W x
i = p(m), W x

j = q(n+1) and (p(m), q(n+1)) ∈ Pairs.
If M ′(i+ 1, j − 1) = 1, then M ′(i, j) = 1.

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 63

– A3a. W x
[i,j] is of the form 〈...〉...〈...p(m), p ∈ P,m ∈ Z. If there exists k

such that i < k < j, W x
k = ∗,W x

[i+1,k] contains no angle brackets and

M ′(k + 1, j) = 1, then M ′(i, j) = 1.
– A3b.W x

[i,j] is of the form p(m)...〉...〈...〉, p ∈ P,m ∈ Z. If there exists k
such that i < k < j, W x

k = ∗,W x
[k,j−1] contains no angle brackets and

M ′(i, k − 1) = 1, then we put M ′(i, j) = 1.
– A4a. W x

[i,j] is of the form p(m) ∗ ...〉...〈...q(n+1) and (p(m), q(n+1)) ∈ Pairs.

If M ′(k, j − 1) = 1, where k is the position of the first left angle bracket in
the string W x

[i,j], then we put M ′(i, j) = 1.

– A4b. W x
[i,j] is of the form p(m)...〉...〈... ∗ q(n+1) and (p(m), q(n+1)) ∈ Pairs.

If M ′(i+ 1, k) = 1, where k is the position of the last right angle bracket in
the string W x

[i,j], then M
′(i, j) = 1.

– A4c. W x
[i,j] is of the form p(m) ∗ ...〉〈... ∗ q(n+1), where the string ”...” in

between the angle brackets is not empty and (p(m), q(n+1)) ∈ Pairs. If
M ′(k, k′) = 1, where k is the position of the first left angle bracket in the
stringW x

[i,j] and k
′ is the position of the last right angle bracket in the string

W x
[i,j], then M

′(i, j) = 1.

– A4d.W x
[i,j] is of the form p(m)∗ ...〉...〈..., and p(m) ∈ Reducible. IfM ′(k, j) =

1, where k is the position of the first left angle bracket in the string W x
[i,j],

then we put M ′(i, j) = 1.
– A4e.W x

[i,j] is of the form ...〉...〈...∗q(n), and q(n) ∈ Reducible. IfM ′(i, k) = 1,
where k is the position of the last right angle bracket in the string W x

[i,j],

then M ′(i, j) = 1.
– A5. W x

[i,j] is of the form 〈...〉...〈...〉. If M ′(k, k′) = 1, where W x
k is a term in

between the first pair of angle brackets, W x
k′ is a term in between last pair

of angle brackets in the string W x
[i,j] and W x

k−1 = ∗ and W x
k′+1 = ∗, then

M ′(i, j) = 1.
– A6a. W x

[i,j] is of the form p(m)q(n)..., and p(m) ∈ Reducible. IfM ′(i+1, j) =

1, then we put M ′(i, j) = 1.
– A6b. W x

[i,j] is of the form ...p(m)q(n), and q(n) ∈ Reducible. If M ′(i, j− 1) =

1, then we put M ′(i, j) = 1.

In all other cases M ′(i, j) = 0.
Note that the high number of cases is due to the variety of the form of the

string W x. Moreover, observe that from each pair of matching angle brackets
exactly one type must be chosen. Let us call any substring ofW x that satisfies all
conditions of any of the forms of M accepted. We start with finding all terms and
pairs of adjacent terms that can be reduced to 1, that is the shortest accepted
substrings. Then we try to extend them to obtain a longer accepted substring.
Obviously the procedure is continued until there are no more possibilities of
extending obtained substrings in an acceptable way or the whole string W x can
be reached. For example, cases (A1a), (A1a’) and (A1b) show which conditions
two substrings have to satisfy to be concatenated. Case (A2.) explains when the
substring can be surrounded by a link (i.e. two terms that reduce to 1) while all

64 K. Moroz

of the cases A3, A4 and A5 ensure all possibilities of lengthening the substring
by terms from the adjacent pair of angle bracket (and all symbols between).

We claim:

Theorem 2. The algorithm computes M ′(i, j) correctly.

Proof. We will show at first that, if the algorithm computes M ′(i, j) = 1, then
M ′(i, j) = 1 according to the definition of M . We will prove it by induction on
the length of the string W x

(i,j).

For strings of length one, M ′(i, j) = 1 only in case when W x
i = p(m) and

p(m) ∈ Reducible. W x
[i,i] is then of the form (M1), since W x

[i,i] ∈ T+ and the

string W x
[i,i] reduces to 1. Hence, M ′(i, i) = 1 according to the definition of M .

Consider now the strings of length two. The algorithm computesM ′(i, i+1) =
1 only in case when W x

i = p(m) and W x
i+1 = q(n+1) and (p(m), q(n+1)) ∈ Pairs.

W x
[i,j] is then of the form (M1), since W x

[i,i+1] ∈ T+ and the string W x
[i,i+1]

reduces to 1. Hence, M ′(i, i+ 1) = 1 according to the definition of M .
Now let us consider the recursive cases when the algorithm computes

M ′(i, j) = 1. We present only some cases different from those in the proof for
pregroup grammars, given in [8] (see [9] for the full proof).

Case A4d. W x
[i,j] is of the form (A4d). W x

[i,j] = p(m) ∗ ...∗〉〈 . . . ,
i ︸ ︷︷ ︸

no 〈,〉

k j︸ ︷︷ ︸
M ′(k,j)=1

where p(m) ∈ Reducible and k is the position of the first left angle bracket in the
string W x

[i,j]. W
x
[k,j] is shorter than W x

[i,j]. Hence, by the induction hypothesis,

M ′(k, j) = 1 according to the definition of M . The string W x
[k,j] must then be

of the form:

- (M2a). Then W x
[k,j] = 〈...〉...〈V ∗ Z, where Z is the string of terms, V con-

tains no angle brackets and there are precisely g (g � 0) pairs of matching
angle brackets, for the h-th of them there is the substring ∗Xh∗ in between
them, such that Xh ∈ T+ and X1...XgZ reduces to 1. Let Y = p(m). Then
Y X1...XgZ also reduces to 1, and the string W x

[i,j] is therefore of the form

(M3). Then M ′(i, j) = 1 in accordance with the definition of M .
- (M4). Then W x

[k,j] = 〈...〉...〈...〉 and there are precisely g (g > 0) pairs of
matching angle brackets, for the h-th of them there is the substring ∗Xh∗ in
between them, such that Xh ∈ T+ and X1...Xg reduces to 1. Let Y = p(m).
Then Y X1...Xg also reduces to 1, and the string W x

[i,j] is therefore of the

form (M2b). Then M ′(i, j) = 1 in accordance with the definition of M .

Case A6b. W x
[i,j] is of the form W x

[i,j] = . . . p(m)q(n),
i j − 1︸ ︷︷ ︸
M ′(i,j−1)=1

j

where q(n) ∈ Reducible. W x
[i,j−1] is shorter than W

x
[i,j]. Hence, by the induction

hypothesis,M ′(i, j−1) = 1 according to the definition ofM . The string W x
[i,j−1]

can therefore be of the form:

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 65

- (M1). ThenW x
[i,j−1] ∈ T+ andW x

[i,j−1] reduces to 1. Then W x
[i,j] is also of the

form (M4) and it reduces to 1. Thus, M ′(i, j) = 1 in accordance with the
definition of M ..

- (M2a). Then W x
[i,j−1] = 〈...〉...〈V ∗ Z, where Z is the string of terms, V

contains no angle brackets and there are precisely g (g � 0) pairs of matching
angle brackets, for the h-th of them there is the substring ∗Xh∗ in between
them, such that Xh ∈ T+ and X1...XgZ reduces to 1. Let Z ′ = Zq(n). Then
X1...XgZ

′ also reduces to 1, and the string W x
[i,j] is therefore of the form

(M2a). Then M ′(i, j) = 1 in accordance with the definition of M .
- (M3). Then W x

[i,j−1] = Y ∗U〉...〈...〉V∗Z, where Y, Z are the strings of terms,

U,V contain no angle brackets and there are precisely g (g � 0) pairs of
matching angle brackets, for the h-th of them there is the substring ∗Xh∗
in between them, such that Xh ∈ T+ and Y X1...XgZ reduces to 1. Let
Z ′ = Zq(n). Then Y X1...XgZ

′ reduces to 1, and the string W x
[i,j] is therefore

also of the form (M3). Then M ′(i, j) = 1 in accordance with the definition
of M .

We will prove that the algorithm correctly finds all substrings for which the
function M ′(i, j) = 1 by induction on the length of the substring of W x. Note
that there are no such substrings that contain asterisks but no angle brackets.

The only strings of length one for whichM ′(i, j) = 1 is of the form p(m), where
p(m) ∈ T and p(m) ∈ Reducible and the algorithm finds them correctly (the string
is of the form M1). The only strings of length two, for which M ′(i, j) = 1, are
of the form p(m)q(n+1), where (p(m), q(n+1)) ∈ Pairs (that is of the form (M1)),
and the algorithm finds them correctly.

Let us now consider the substrings of the length l > 2 such that for all l′ < l
the algorithm finds the substrings of the length l′ correctly (we present some
chosen cases).

Case 3. W x
[i,j] is of the form (M3). W x

i W
x
j takes part in the reduction to 1

in W x
[i,j].

First, let us assume W x
i W

x
i′ reduce to 1 where i′ �= j. Then W x

i′+1 can be:

- term. Then W x
[i,i′] and W x

[i′+1,j] are of the form (M1) or (M3), they are

shorter and both M ′(i, i′) = 1 andM ′(i′+1, j) = 1. Hence, by the induction
hypothesis, these strings are found by the algorithm correctly, soM ′(i, j) = 1
(case (A1a)).

- asterisk. ThenW x
[i,i′] is of the form (M1) or (M3), it is shorter andM ′(i, i′) =

1. Hence, by the induction hypothesis, the string is found by the algorithm
correctly. Let k be the position of the first right angle bracket following
i′. W x

[i,k] is shorter than W x
[i,j] and it is of the form (M2b). So, by the

induction hypothesis M ′(i, k) = 1 (case (A3b)). Similarly, the substring
W x

[k+1,j] is of the form (M2a), it is shorter than W x
[i,j]. So, by the induction

hypothesis M ′(k + 1, j) = 1 (case (A3a)). Hence, M ′(i, j) = 1, by the
induction hypothesis (case (A1b)).

66 K. Moroz

Otherwise, let us assume W x
i ∈ Reducible. Then W x

i+1 can be:

- term. Then W x
[i+1,j] is of the form (M3), it is shorter, so by the induction

hypothesis M ′(i+1, j) = 1. Moreover,W x
[i,i] is of the form M1, it is shorter

andM ′(i, i) = 1. Hence, by the induction hypothesis, these strings are found
by the algorithm correctly. Then M ′(i, j) = 1 (case (A1a)).

- asterisk. Let k be the position of the first right angle bracket following i.W x
[i,k]

is shorter than W x
[i,j] and it is of the form (M2b). So, by the induction

hypothesis M ′(i, k) = 1. Similarly, the substring W x
[k+1,j] is of the form

(M2a), it is shorter than W x
[i,j]. So, by the induction hypothesis M ′(k +

1, j) = 1. Hence, M ′(i, j) = 1, by the induction hypothesis (case (A1b)).

Let us assume i′ = j so W x
i W

x
j reduces to 1. There are the following cases.

- W x
i+1,W

x
j−1 are terms. Then the substring W x

[i+1,j−1] is of the form (M3).

It is shorter than W x
[i,j], therefore M

′(i + 1, j − 1) = 1, as by the induction

hypothesis, that string is found by the algorithm correctly. ThenM ′(i, j) = 1
(case (A2)).

- W x
i+1 = ∗,W x

j−1 ∈ T . So W x
[i,j] is of the form p(m) ∗ ...〉...〈...q(n+1). Let i′ be the

position of the first left angle bracket in W x
[i,j]. There exists i′ < k � j − 1

such that W x
kW

x
j−1 reduces to, or if k = j − 1, then W x

j−1 ∈ Reducible.
Hence, W x

[i′,j−1] is of the form (M2a). It is shorter than W x
[i,j], therefore

M ′(i′, j− 1) = 1, as by the induction hypothesis, that string is found by the
algorithm correctly. Then M ′(i, j) = 1 (case (A4a)).

- W x
i+1 ∈ T ,W x

j−1 = ∗. It is proved symmetrically to the caseW x
i+1 = ∗,W x

j−1 ∈
T .

- W x
i+1 = ∗,W x

j−1 = ∗. Then the string W x
[i,j] can be of the form

p(m)∗U〉〈V∗q(n+1) and thenM ′(i, j) = 1 by the initial case of the description
of the algorithm. If W x

[i,j] contains more brackets, then there is a string
W x

[k,k′], where k is the index of the first left angle bracket in the string W x
[i,j]

and k′ is the index of the last right angle bracket in the string W x
[i,j]. W

x
[k,k′]

is of the form (M4). It is shorter than W x
[i,j], therefore, by the induction

hypothesis, M ′(k, k′) = 1. So, M ′(i, j) = 1 by (A4c).

Obviously, the algorithm is not yet a real parsing algorithm since it answers only
the question whether there exists any reduction to the designated type. However
it can easily be modified to find such reductions, still in polynomial time. It can
be done exactly as in the algorithm for pregroup grammars.

Each obtained reduction is described by the set of links involved in the reduc-
tion. If we want to obtain only one reduction, the complexity of the algorithm
does not increase. The set of links L(i, j) represents a reduction of some term to
1. Links are denoted by pairs of integers (k, l) such that i � k < l � j. We find
the set of links by backtracking the indices of the function M ′(i, j) = 1, obvi-
ously starting with M ′(1, |W x|). We also define an auxiliary function Prev(i, j)
to help us follow the backtracking (as the value of the function M ′(i, j) does

Parsing Pregroup Grammars with Letter Promotions in Polynomial Time 67

not say how it was obtained). The value of the function Prev(i, j) is a sequence
of three pairs ((l1, l2), (m11,m12), (m21,m22)), where l1, l2 are indices of the
link, m11,m12,m21,m22 are indices of function M on which the computation
M ′(i, j) = 1 is based. If any of the values is not used, it is set to 0. Every time
when the algorithm computes the value of the function M ′(i, j) = 1 we set the
value of the function Prev(i, j) in the following way. If the computation was
executed by one of the cases:

- any initial case or (A0), then Prev(i, j) = ((i, j), (0, 0), (0, 0)),
- (A2), (A4a), (A4b), (A4c), then Prev(i, j) = ((i, j), (k, l), (0, 0)),
where (k, l) is the pair of indices for which the value of the function M
was 1 in the current computation (that is e.g. in (A2) a pair (k, l) =
(i+ 1, j − 1)),
- (A3a), (A3b), (A5), then Prev(i, j) = ((0, 0), (k, l), (0, 0)), where (k, l)
is the pair of indices for which the value of the function M was 1 in the
current computation,
- (A1a), (A1a’), (A1b), then Prev(i, j) = ((0, 0), (i, k), (k + 1, j)),
- (A4d), then Prev(i, j) = ((i, i), (k, j), (0, 0)), where (k, j) is the pair
of indices for which the value of the function M was 1 in the current
computation,
- (A4e), then Prev(i, j) = ((j, j), (i, k), (0, 0)), where (i, k) is the pair
of indices for which the value of the function M was 1 in the current
computation,
- (A6a), then Prev(i, j) = ((i, i), (i+ 1, j), (0, 0)),
- (A6b), then Prev(i, j) = ((j, j), (i, j − 1), (0, 0)).

Obviously, one can choose whether the algorithm should remember the first com-
puted reduction or the last computed reduction. In the first case if Prev(i, j) �=
((0, 0), (0, 0), (0, 0)), then it cannot be modified. In the latter, Prev(i, j) is up-
dated every time when the algorithms computes M ′(i, j) = 1. When the com-
putation of the functions M and Prev is finished, we easily compute the set
L(1, |W x|). The definition of the function L(i, j) is as follows:

- if Prev(i, j) = ((i, j), (0, 0), (0, 0)), where 0 < i < j, then
L(i, j) = {(i, j)},
- if Prev(i, j) = ((i, j), (k, l), (0, 0)), where 0 < i � k < l � j, then
L(i, j) = L(k, l) ∪ {(i, j)},
- if Prev(i, j) = ((0, 0), (k, l), (0, 0)), where 0 < i � k < l � j, then
L(i, j) = L(k, l),
- if Prev(i, j) = ((0, 0), (i, k), (k + 1, j)), where 0 < i < k < j, then
L(i, j) = L(i, k) ∪ L(k + 1, j).

The algorithm is polynomial and works in time proportional to n3, where n is
the length of the string Wx, assuming the set Pairs and Reducible are deter-
mined. The procedures for computing the set Pairs and the set Reducible are
polynomial.

68 K. Moroz

References

1. Buszkowski, W.: Lambek Grammars Based on Pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

2. Buszkowski, W., Moroz, K.: Pregroup grammars and context-free grammars. In:
Casadio, C., Lambek, J. (eds.) Computational Algebraic Approaches to Natural
Language, Polimetrica, pp. 1–21 (2008)

3. Buszkowski, W., Lin, Z.: Pregroup Grammars with Letter Promotions. In:
Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031,
pp. 130–141. Springer, Heidelberg (2010)

4. Buszkowski, W., Lin, Z., Moroz, K.: Pregroup Grammars with Letter Promo-
tions: Complexity and Context-Freeness. Journal of Computer and System Sci-
ences 78(6), 1899–1909 (2012)

5. Lambek, J.: Type Grammars Revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

6. Lambek, J.: From Word to Sentence: a computational algebraic approach to gram-
mar. Polimetrica (2008)

7. Mater, A.H., Fix, J.D.: Finite Presentations of Pregroups and the Identity Problem.
In: Proceedings of FG-MoL 2005, pp. 63–72. CSLI (electronic) (2005)

8. Moroz, K.: A Savateev-style parsing algorithm for pregroup grammars. In:
de Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS, vol. 5591,
pp. 133–149. Springer, Heidelberg (2011)

9. Moroz, K.: Algorithmic questions for pregroup grammars, PhD thesis, Adam Mick-
iewicz University, Poznań (2010)

10. Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357,
186–201 (2006)

11. Savateev, Y.: Unidirectional Lambek Grammars in Polynomial Time. Theory of
Computing Systems 46, 662–672 (2010)

Towards an HPSG Analysis of Object Shift

in Danish

Stefan Müller� and Bjarne Ørsnes

German Grammar, FU Berlin

Abstract. This paper develops an analysis of object shift in Danish. We
suggest that object shift is best analyzed as an alternative mapping from
the arg-st list to spr and comps.

1 Introduction

Danish is an SVO language. This order is demonstrated by the following subor-
dinated clause:

(1) at
that

Jens
Jens

har
has

læst
read

bogen
book.def

‘that Jens has read the book’

Apart from being an SVO language, Danish is a verb second (V2) language,
that is, any constituent can appear in front of the position of the finite verb in
declarative main clauses. (2) shows an example in which the object is fronted:

(2) Bogen
book.def

har
has

Jens
Jens

læst.
read

‘Jens has read the book.’

Adjuncts attach to the VP and are serialized either to the left or to the right.
The negation obligatorily attaches to the left:

(3) at
that

Jens
Jens

ikke
not

[VP læser
reads

bogen]
book.def

‘that Jens does not read the book’

In V2 sentences the finite verb is inverted, that is, placed to the left of the
subject. One common analysis in GB/Minimalism and HPSG is to assume that
the inverted verb is related to a verb trace in the VP. (4) shows the structure:

� We want to thank the audiences of the Third International Workshop on Ger-
manic Languages (With Special Focus on Scandinavian) that was held 2012 at the
Freie Universit[Pleaseinsert“PrerenderUnicode–˝intopreamble]t Berlin and the par-
ticipants of the HPSG workshop in Frankfurt, 2012 for discussion. Special thanks
go to Sten Vikner for intense discussion of object shift. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG MU 2822/2-1).

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 69–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 S. Müller and B. Ørsnes

(4) Jens
Jens

læseri
reads

ikke
not

[VP i bogen].
book.def

The negation can then be used as an indicator that marks the left periphery of
the VP even in sentences with an inverted verb.

This paper deals with a certain order that is required for personal, reflexive,
or locative pronouns in a non-subject function. These pronouns do not occur in
the canonical position inside the VP (to the right of sentential adjuncts), but
rather outside the VP to the left of sentential adjuncts. The examples in (5)
show that a full NP bogen (‘the book’) must occur inside the VP to the right of
sentential negation. The examples in (6) show that the unstressed pronoun den
(‘it’) occurs outside the VP linearly preceding the sentential adverb ikke (‘not’).

(5) a. Jens
Jens

læser
reads

ikke
not

bogen.
book.def

‘Jens is not reading the book.’

b. * Jens
Jens

læser
reads

bogen
book.def

ikke.
not

(6) a. Jens
Jens

læser
reads

den
it

ikke.
not

‘Jens is not reading it.’

b. * Jens
Jens

læser
reads

ikke
not

den.
it

The paper will be structured as follows: in the next section we discuss the shifting
in double object constructions and interactions of verb inversion, verb fronting,
and object shift (facts that are known under the term Holmberg’s Generaliza-
tion). We then briefly discuss alternative proposals in Section 3 and provide our
analysis in Section 4. Section 5 draws some conclusions.

2 The Phenomenon

Object shift applies in verb initial (V1) or V2 clauses, but is not possible in
embedded clauses without verb inversion:1

(7) a. at
that

Jens
Jens

ikke
not

giver
gives

dem
them

bogen
book.def

‘that Jens did not give the book to them’

b. * at
that

Jens
Jens

dem
them

ikke
not

giver
gives

bogen
book.def

c. Jens
Jens

giveri
gives

demj

them
ikke
not

[i j bogen]
book.def

1 Note, that the traces are used to mark the positions that full objects would take.
While we are using traces for verb movement in our analysis, we do not assume a
movement-based approach of object shift.

Towards an HPSG Analysis of Object Shift in Danish 71

Object shift is strictly clause-bound (Vikner, 2006, p. 405). A pronoun can never
shift into the matrix construction of an embedding verb. This situation would
only obtain in a context with embedded V2, that is, when a verb selects a clause
with verb fronting, since object shift is only observed in V1- and V2-clauses. In
clauses with embedded V2, a pronoun cannot shift across its selecting head into
the matrix clause. In the examples in (8), the complement clause is V2 with the
object forretten (‘the starter’) in position before the finite verb, the so-called
the prefield. As (8b) shows the reflexive pronoun sig (‘REFL’) cannot occur in
the matrix clause.

(8) a. Jeg
I

ved
know

at
that

forretten
starter.def

brød
cared

han
he

[sig]
REFL

ikke
not

om.
about

‘I know that he didn’t like the starter.’

b. * Jeg
I

ved
know

[sig]
REFL

at
that

forretten
starter.def

brød
cared

han
he

ikke
not

om.
about

While Icelandic allows full NPs to shift, shifting is limited to weak pronouns in
Danish: As Mikkelsen (2011, p. 252) shows, shifted elements have to be unstressed
and they may not be phrase structurally complex.

It is possible to shift both objects of a ditransitive verb (9a), but the relative
order of the objects has to be preserved, that is, the indirect object precedes the
direct object as in sentences with full objects (9c).

(9) a. Han
he

giver
is.giving

ham
him

det
it

ikke.
not

‘He is not giving it to him.’

b. * Han
he

giver
is.giving

det
it

ham
him

ikke.
not

c. Han
he

giver
is.giving

ikke
not

manden
man.def

bogen.
book.def

‘He is not giving the man the book.’

It is not possible to shift the DO over the IO, as the contrast in (10) shows:

(10) a. Han
he

skænkede
donated

ikke
not

biblioteket
library.def

bogen.
book.def

‘He did not donate the book to the library

b. ?* Han
he

skænkedej
donated

denk
it

ikke
not

[j biblioteket
library.def

k].

‘He didn’t donate it to the library.’

Interestingly though, if the IO is extracted, the DO can be shifted:

(11) Biblioteketi
library

skænkedej
donated

han
he

denk
it

ikke
not

[j i k].

‘He didn’t donate it to the library.’

The only situation in which a DO can precede an IO is a configuration in which
the DO is positioned to the left of the finite verb in the so-called prefield. (12)
gives an example:

72 S. Müller and B. Ørsnes

(12) Bogenk
book.def

skænkedej
donated

han
he

[j biblioteket
library.def

k].

Having discussed examples with transitive and ditransitive verbs we now turn
to prepositional objects: Full PPs do not shift as (13) shows:

(13) a. Vi
we

venter
wait

ikke
not

p̊a
for

dig.
you

‘We are not waiting for you.’

b. * Vi
we

venter
wait

p̊a
for

dig
you

ikke.
not

Shifting of a pronoun out of a PP is also impossible despite the general possibility
of P stranding:

(14) a. * Vi
we

venter
wait

dig
you

ikke
not

p̊a.
for

Intended: ‘We are not waiting for you.’

b. Dig
you

venter
wait

vi
we

ikke
not

p̊a.
for

‘We are not waiting for you.’

The generalization about the data is that shifted elements have to be arguments
of a verb. This generalization also captures valence-bound locatives.

V2 clauses (for instance, (2) and (14b)) are analyzed as nonlocal dependencies
(that is, movement in GB/Minimalism and slashed categories in GPSG/HPSG),
since the element before the finite verb may be a dependent of a deeply embedded
head. The question now is whether reorderings of pronouns should be treated
with the same mechanisms. There is evidence against analyses that treat shifting
parallel to extractions of the prefield filling kind: For instance, Holmberg (1999,
p. 18) and Vikner (2006) discussed shifted pronouns and argued that they do not
license parasitic gaps. Extracted elements like hvad for en bog (‘which book’) in
(15a) licence a second gap in an adjunct as for instance the phrase uden at læse
først (‘without reading first’) (see Vikner 2006, p. 11 for a discussion of the ex-
amples in (15)). In example (15a) the fronted wh-constituent hvad for en bog
(‘which book’) is co-indexed with a gap in the object position of the verb stille
(‘to put’). This gap, in turn, licenses the second gap (the object of læse (‘to
read’)). If shifted pronouns would leave a trace inside the VP, we should expect
them to be able to license parasitic gaps. However, in example (15b) the shifted
object den (‘it’) is co-indexed with the first gap, and here the second gap (the
object of læse (‘to read’)) is not licensed.

(15) a. [Hvad for en
which

bog]i
book

stillede
put

alle
all

i hen p̊a
onto

reolen
bookcase.def

uden
without

at
to

læse
read

i først?
first

‘Which book did everyone put on the shelf without reading first?’

Towards an HPSG Analysis of Object Shift in Danish 73

b. * Alle
all

stillede
put

deni
it

straks
immediately

i hen p̊a
onto

reolen
bookcase.def

uden
without

at
to

læse
read

i først.
first

‘Everyone put it on the shelf without reading it first.’

This suggests that there is a fundamental difference between object shift and
extraction to the prefield.

The examples in (7) showed that object shift does not occur in embedded
clauses, that is, pronouns do not shift over finite verbs. The same observation
can be made with regard to non-finite verbs:

(16) a. Jeg
I

har
have

ikke
not

kysset
kissed

hende.
her

‘I hav not kissed her.’

b. * Jeg
I

har
have

hende
her

ikke
not

kysset.
kissed

But the shifting of pronouns becomes possible if the non-finite verb is extracted
(Vikner, 2006, p. 407):

(17) a. Kysseti
kissed

harj
have

jeg
I

hendek
her

ikke
not

[j i k], bare
only

holdt
held

hendes
her

h̊and.
hand

‘I have not kissed her. I only held her hand.’

b. men
but

helt
wholly

[udelukke]
exclude

kan
can

man
you

[det]
it

da
then

ikke
not

eller
or

hvad2

what
‘but you cannot wholly exclude it, can you?’

The facts about the necessity to invert the verb to V1/V2 order, to extract the
non-finite verb, and to extract the IO if the DO is shifted have subsumed under
Holmberg’s Generalization (1999) in Transformational Grammar: Pronouns can
shift only if they are the left-most overt element in the VP. This explains, why
the finite and the non-finite verb has to be out of the way and why the DO cannot
shift unless the IO is extracted. However, as will be shown in Section 3 a purely
movement-based proposal runs into problems. A different way to describe the
situation is to say that the verbs have to precede their arguments independent of
shifting and that the IO has to precede the weak pronominal DO independent of
extraction and shifting. (Note that weak pronouns cannot occupy the prefield, so
the statement just made cannot be falsified by DO extractions to the prefield.)

3 Previous Analyses

3.1 Cliticisation

Erteschik-Shir (2005) suggested a cliticization approach to object shift. She as-
sumes that weak pronouns cannot be pronounced on their own and hence must

2 http://hope.pointblog.dk/svaert-at-vide-.html, 26.03.2012.

http://hope.pointblog.dk/svaert-at-vide-.html

74 S. Müller and B. Ørsnes

incorporate into a host. In her approach adverbials (by stipulation) cannot serve
as hosts for prosodic incorporation and hence the pronoun must shift over adver-
bials. In an example like (18) the pronoun attaches to the subject and subject,
pronoun, and negation form a prosodic unit.

(18) Læser
reads

Peter+den+ikke?
Peter+it+not

‘Dosn’t Peter read it?’

As Holmberg (1999, p. 28, Footnote 26) pointed out while discussing Hellan’s
analysis of object shift in Norwegian (1994), the analysis in Erteschik-Shir (2005)
fails to explain why a weak pronoun also has to shift in the presence of a PP-
adjunct. In the examples in (19) the sentential adjunct is syntactically a PP with
a preposition and a DP object. Therefore, we should expect the pronoun to be
able to incorporate into the DP stor sandsynlighed (‘great probability’), given
that DPs are possible hosts for phonological incorporation. But the pronoun
does not incorporate into these constituents, instead it shifts.

(19) a. * Hun
she

kender
knows

med
with

stor
big

sandsynlighed
probability

ham
him

ikke.
not

Intended: ‘It is most likely that she doesn’t know him.’

b. Hun
she

kender
knows

ham
him

med
with

stor
big

sandsynlighed
probability

ikke.
not

Finally, Holmberg (1999, p. 27) pointed out another problem for the clitic anal-
ysis: it does not extend to object shift in Icelandic and Faroese that allow for
complete NPs to undergo object shift.

3.2 Movement

As was shown in Section 2 the parasitic gap data is evidence against movement-
based approaches. Furthermore there are problems, if one wants to capture Holm-
berg’s generalization in a movement approach. To see this consider the analysis
in Figure 1 on the facing page. If the DO can move only when the IO has moved
already, the IO would have to move and to attach to the VP (or IP). The DO
would be the next thing to move. However, the resulting order is ungrammatical
and there is no way to get the correct order, if Holmberg’s view has to play a
role in the analysis.

3.3 Linearization-Based Analyses

Bjerre (2006) suggested a linearization-based approach in the framework of
HPSG. In such approaches the dependents of a head are inserted into one flat list
and linearization rules (LP rules) restrict the possible linearizations of elements
in this list (Reape, 1994). Bjerre assumes traditional topological fields and sets
up the LP statements accordingly.

Consider the analysis for the sentence in (20) which is given in
Figure 2 on the next page:

Towards an HPSG Analysis of Object Shift in Danish 75

CP

C IP

NP VP

NP VP

NP VP

V NP NP

* forklareri Peter detk hendej i j k

(‘explains’) (‘Peter’) (‘it’) (‘her’)

Fig. 1. Problems for movement-based approaches

CP[dom 〈 at, Jens, læser, bogen 〉]

C[dom 〈 at 〉] S[dom 〈 Jens, læser, bogen 〉]

NP[dom 〈 Jens 〉] VP[dom 〈 læser, bogen 〉]

V[dom 〈 læser 〉] NP[dom 〈 bogen 〉]

at Jens læser bogen

Fig. 2. Linearization-based analysis of Danish clauses

(20) at
that

Jens
Jens

læser
reads

bogen
book.def

‘that Peter reads the book’

The domain objects are complex linguistic objects that are similar to the ones
that we are using here. In the figure only the phon values are given. Every lexical
item comes with a domain object that represents its phonological, syntactic, and
semantic properties. When a complex object is build, the domain objects of the
daughters are inserted into the domain of the mother node. As Figure 2 shows,
we end up with a flat representation of all constituents at the top-most node in
the tree.

Bjerre (2006) suggests that syntactic functions are assigned to syntactic po-
sitions (by means of an appropriate type hierarchy) and that linear precedence
is stated in terms of these syntactic positions. The type verbal is assigned to
the position m (corresponding to the fronted position) and the position V (the
base position within the VP). The syntactic function object is assigned to the

76 S. Müller and B. Ørsnes

positions I and N, saying that an object can occur in position I (the position for
shifted objects) or in the position N (the position of full NP objects within the
VP). n is the field for the subject and a1 the field for VP adjuncts. F is the
field the corresponds to the prefield. The order of elements on the dom list is
constrained by precedence rules of the following (simplified) kind.

(21) F < m < n < I < a1 < V < N

Figure 3 shows our example augmented with the negation ikke and with the
topological field assignment. The interesting case is now the analysis of object
shift, which has the same structure as the non-shifted example but a different
linearization. The analysis is given in Figure 4 on the next page.3 The object
pronoun is assigned to the field I rather than N and hence is linearized to the
left of the adverb. Since the verb is assigned to the field m it precedes both
the shifted pronoun and the adverb. It should be clear from the pictures that
in linearization-based analyses the dominance structure is independent of the
actual serialization of components. In particular discontinuous constituents are
allowed in such models.

According to Bjerre the elements that are inserted into the prefield are inserted
as a single domain object. With these basic assumptions it is unclear how the
following example can be captured:

CP[〈 m:at, n:Jens, a1:ikke, V:læser, N:bogen 〉]

C[〈 m:at 〉] S[〈 n:Jens, a1:ikke, V:læser, N:bogen 〉]

NP[〈 n:Jens 〉] VP[〈 a1:ikke, V:læser, N:bogen 〉]

Adv[〈 a1:ikke 〉] VP[〈 V:læser, N:bogen 〉]

V[〈 V:læser 〉] NP[〈 N:bogen 〉]

at Jens ikke læser bogen

Fig. 3. Linearization-based analysis of Danish clauses with topological labels

3 Bjerre assumes that objects that are positioned in the prefield are licenced there
in head-filler structures. Probably he would apply this to subjects as well. Figure 4
would have to be augmented with a trace in the subject position and a Head-Filler
combination at the top of the structure. However, this would not change the dom
values and assignment of topological fields, since traces are assumed to not contribute
any domain objects.

Towards an HPSG Analysis of Object Shift in Danish 77

S[〈 n:Jens, m:læser, I:den, a1:ikke 〉]

NP[〈 n:Jens 〉] VP[〈 m:læser, I:den, a1:ikke 〉]

Adv[〈 a1:ikke 〉] VP[〈 m:læser, I:den 〉]

V[〈 m:læser 〉] NP[〈 I:den 〉]

Jens ikke læser den

Fig. 4. Linearization-based analysis of object shift

(22) Læst
read

har
has

Jens
Jens

den
it

ikke.
not

‘Jens did not read it.’

The problem is that the argument of the auxiliary verb har (‘has’) is a VP,
but the VP is discontinuous in (22) since the object den (‘it’) appears in shifted
position to the left of the negation. One could claim that auxiliaries form a single
linearization domain with the verb that they embed and with the arguments
of the embedded verb. This would be the clause union analysis that Reape
suggested for the treatment of so-called coherent constructions in German, that
is, for verbal complex formation. However, this would overgenerate, since this
would allow sentences like (23):

(23) * Læst
read

har
has

Bjarne
Bjarne

ikke
not

bogen
book.DEF

‘Bjarne did not read the book.’

The problem with (23) is that the object of læst (‘read’) is a full noun. It is not
possible to front bare verbs in Danish, if the object is a full NP. If the object is
a full NP it has to be fronted together with the verb as in (24):

(24) Læst
read

bogen
book.DEF

har
has

Bjarne
Bjarne

ikke
not

‘Bjarne did not read the book.’

This is explained in approaches that assume that the argument of the auxiliary
verb is a VP, that is, a verbal projection that includes all complements. Note
that (23) cannot be ruled out by linearization constraints that refer to tradi-
tional topological fields since all constituents are in fields in which they can be
linearized: The full NP is to the right of the negation as in (5a), the finite verb
is in second position and the non-finite verb is in the prefield as in (22).

The problem could be solved by assuming partial compaction of domain ob-
jects à la Kathol and Pollard 1995. In such an approach one domain object would
be inserted into the prefield if the object is a full NP and two objects would be

78 S. Müller and B. Ørsnes

inserted into the matrix domain if the object in the extracted VP is a pronoun.
Such an approach seems to be stipulative since it would have to formulate a
complicated mechanism that applies only to the domain insertion of extracted
VPs.

4 The Analysis

This section will provide an analysis in the framework of HPSG (Pollard and Sag,
1994). We will give the background assumtions in Section 4.1, develop the core of
the analysis in Section 4.2. Section 4.3 deals with prepositional arguments and
Section 4.4 describes the analysis of partial fronting and Section 4.5 explains
how Holmberg’s Generalization is captured in the analysis.

4.1 Background

Following Pollard and Sag (1994, Chapter 9) we assume that arguments of a head
are represented in a list that is ordered according to the obliqueness hierarchy,
that is, in the order Subj < IO < DO < Obliques (Pollard and Sag, 1992, p. 266,
280). In recent publications this list is called the argument structure list (arg-
st). The elements from the arg-st list are mapped to the valence features spr
and comps. spr stands for specifier and comps for complements. The spr list
may contain the determiner of an NP or the subject of a verb. (25) shows an
example of a lexical item of a ditransitive verb with the arguments in the arg-
st list linked to the semantic contribution of the verb and with the respective
mapping to spr and comps:

(25) give:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

spr
〈
NP 1

〉
comps

〈
NP 2 , NP 3

〉
arg-st

〈
NP 1 , NP 2 , NP 3

〉

rels

〈⎡⎢⎢⎣
agent 1

goal 2

theme 3

give

⎤
⎥⎥⎦
〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We follow Müller (To appear) in assuming binary branching structures and
hence assume binary branching schemata for specifier head and head com-
plement combinations. The analysis of an embedded clause is shown in Fig-
ure 5 on the facing page. The verb is combined with the IO first and the
resulting object is combined with the DO and the result of this combination
is a complete VP (the abbreviation VP stands for a linguistic object with the
head category verb and an empty comps list). The VP is combined with the
specifier to the left resulting in a complete clause (abbreviated as S). The com-
plementizer selects for an S and the result of the combination of complementizer
and S is a CP.

Towards an HPSG Analysis of Object Shift in Danish 79

CP

C[comps 〈 S 〉] S

1 NP VP[spr 〈 1 〉]

V[spr 〈 1 〉,
comps 〈 3 〉]

3 NP

V[spr 〈 1 〉,
comps 〈 2 , 3 〉]

2 NP

at jeg giver manden bogen

Fig. 5. Analysis of at jeg giver manden bogen (‘that I give man.def book.def’)

For the analysis of V1 and V2 sentences we follow proposals by Borsley (1989b)
for English and Kiss and Wesche (1991); Kiss (1995); Meurers (2000); Müller
(2007b) for German and assume a head movement analysis. The head move-
ment analysis has the advantage that a uniform treatment of VP adjuncts is
possible: the adjuncts attach to the left or to the right of VP and there is no
difference between main and embedded clauses in this respect. The Danish verb
inversion is similar to auxiliary inversion in English except that it applies to
all finite verbs. While analyses involving empty elements should be avoided if
possible it has been shown that so-called multiple frontings in German are best
analyzed as combinations of the fronted elements with an empty verbal head.
This empty verbal head is availible in verb movement analyses and the verb
movement analysis blends nicely with the analysis of multiple frontings (Müller,
2005). So, we assume that it is justified to treat these closely related Germanic
languages in a parallel way and hence assume a verb movement analysis for
Danish as well.

The analysis is sketched in Figure 6 on the next page. The verb læser is
mapped into a verb that selects for a saturated verbal projection (an S) that
contains a verbal trace (represented as ‘//V’). The dsl feature that is used to
represent information about the missing verb is a head feature and hence the
information is percolated through the tree to the verb trace. In the verb trace
the dsl value is shared with the local value of the trace and hence the verb
trace has the same local value as the verb in initial position. In the case of
our example this means that the verb trace selects for an NP via comps and for
another one via spr. The verb trace forms a VP with its complement. This VP
is modified by ikke (‘not’) and afterwards combined with its subject in a head-
specifier-phrase. The subject is a trace and the information about the missing

80 S. Müller and B. Ørsnes

S

NP S/NP

V〈 S//V 〉 S//V/NP

V 1 NP/NP VP//V[spr 〈 1 〉]

Adv VP//V[spr 〈 1 〉]

V//V[spr 〈 1 〉] NP

Jens læser ikke bogen

Fig. 6. Analysis of the V2 sentence Jens læser ikke bogen. (‘Jens reads not book.def

constituent is percolated up to the mother nodes until it is finally bound off by
the element in the prefield.

Danish is a language with rather fixed constituent order. The correct order
of the objects in sentences with ditransitive verbs is guaranteed by combining
the verb with its argument in order of their obliqueness, that is, the verb is
combined with the IO first and the result of this combination is combined with
the DO. However, there are languages with much freer constituent order. For
instance, languages like German basically allow the arguments to be combined
in any order with the verb. The Head Complement Schema of German will not
be sensitive to the ordering of the complements on the comps list but allows
the combination of a verb or verbal projection with any of the elements on its
comps list that has not been saturated yet. While it is easy to enforce the rela-
tive order of a head with respect to its arguments and adjuncts in a system with
binary branching structures, it is not obvious how LP constraints that order the
complements relative to each other can be enforced. For instance there is a ten-
dency for short elements (for instance pronouns) to precede heavy constituents.
Of course one way of enforcing the order among coarguments is to licence all
possible orderings in the lexicon (Uszkoreit, 1986) but this would result in a
combinatorical explosion in the lexicon and spurious ambiguities that have to
be excluded by ad hoc stipulations (Müller, 2004, p. 217–218). The alternative
is to have a representation that corresponds to the linearization domain that
one would have if one assumed flat structures. Therefore we assume a list in
which all dependents of a head are inserted (the domain list of Reape (1994)).
However, our approach is more restrictive than Reape’s proposal in not allowing
discontinuous constituents.

Towards an HPSG Analysis of Object Shift in Danish 81

4.2 Object Shift as Alternative Mapping to Valence Features

The key feature of our analysis of object shift is an alternative mapping to the
valence features. We assume that weak pronouns may be mapped to the spr list
rather than to the comps list, which would be their usual place. The following
lexical item shows the cat value for the verb læser (‘to read’):

(26) cat value for læser (‘to read’) with both arguments mapped to spr:⎡
⎣spr 1 ⊕ 2

comps 〈〉
arg-st 1 〈 NP 〉 ⊕ 2 〈 NP 〉

⎤
⎦ ∧ 2 = list of weak pronouns

Rather than just mapping the first element of the arg-st list onto the spr list,
both arguments are mapped to the spr list. Note that we do not claim that
both arguments are subjects. Any properties that are specific to subjects and
do not hold of all members of the spr list have to be stated as constraints on
the first element of the arg-st list in our approach. Note also that there are
earlier proposals in the HPSG framework that suggested listing the subject in
certain languages on the comps list (Borsley, 1989a for Welsh; Pollard, 1996
and following Pollard almost all researchers working on German) and similarly
there are other analysis that map more than one argument to the valence list
that usually contains a single subject (see Grover 1995 for an analysis of missing
object constructions in English and Hahn 2012 for an analysis of so-called broad
subjects in Arabic. We are also aware of the fact that predicative NPs require
a determiner and a subject which they predicate over. The determiner and the
subject are usually selected via different valence features. For predicative con-
structions, we follow Pollard (1996) and Kiss (1992) and assume a head feature
subj. While elements in spr can be combined with their head in principle, this
is never possible for elements in the subj list, since there is no schema that refers
to this head feature. See Müller 2009 for details on Predication.

The analysis of the example with a shifted pronoun is parallel to what we
saw in Figure 6. The only difference is that the object is not realized as a
complement but as a specifier. The respective analysis is shown in
Figure 7. The fact that læser starts out as a VP may seem strange, but VP
is just a shorthand for a verbal object with an empty comps list. As was shown
in (26), læser has both arguments in the spr list. The V1 rule licences a verbal
item that selects for a fully saturated clausal projection with a verbal trace that
has the properties of læser, that is, a verbal trace with two elements in the spr
list and an empty comps list. Since the information about the missing verb (the
dsl value) is a head feature it is present at the verbal trace as well and since the
dsl value of the verbal trace is identified with the local value of the trace, it
is ensured that the verbal trace has the right properties. The adverb ikke selects
for a VP and the combination of adverb and verbal trace can be combined with
the two specifiers. The first specifier is the shifted object and the second specifier
is a trace of the subject, which is bound off later in a head-filler structure.

It remains to be explained why the adverb cannot combine with a projection
that consists of the VP and one specifier as in Figure 8. This structure is ruled out

82 S. Müller and B. Ørsnes

S

NP S/NP

V〈 S//VP 〉 S//VP/NP

VP 1 NP/NP VP//VP[spr 〈 1 〉]

2 NP VP//VP[spr 〈 1 , 2 〉]

Adv VP//VP[spr 〈 1 , 2 〉]

Jens læser det ikke

Fig. 7. Analysis of the sentence Jens læser det ikke. with object shift with a transitive
verb.

VP//VP[spr 〈 1 〉]

Adv VP//VP[spr 〈 1 〉]

2 NP VP//VP[spr 〈 1 , 2 〉]

ikke det

Fig. 8. A structure that is ruled out by a linearization constraint requiring the weak
pronoun to precede the adverb

by a linearization constraint that requires shifted pronouns to precede adverbials.
As was explained in Section 4.1, we assume that every head has a linearization
domain into which the non-head sisters are inserted. Therefore the weak pronoun
det (‘it’) and the adverbial ikke (‘not’) are in the same linearization domain
and their relative order can be enforced by an LP constraint. Hence, the whole
structure in Figure 8 is ruled out, while the one in Figure 7 does not violate the
linearization constraint.

An alternative way of ruling out the structure in Figure 8 would be to require
that the VP that the adverb combines with does not have any specifiers realized
yet. This can be done easily in versions of HPSG that keep saturated arguments
on the valence lists (Meurers, 1998; Przepiórkowski, 1999; Müller, 2008; Bender,
2008). Due to space limitations we did not introduce this concept here.

Towards an HPSG Analysis of Object Shift in Danish 83

4.3 Shifting and Prepositional Objects

As was shown in Section 2, prepositional objects do not shift and neither do NPs
inside of prepositional objects. This is explained by our analysis, since appart
from the subject only light pronominals can be mapped to the spr list.4 So for
the verb arbejder (‘to work’) there is only one mapping possible:

(27)

⎡
⎣spr 1 〈 NP 〉
comps 2 〈 PP[p̊a] 〉
arg-st 1 〈 NP 〉 ⊕ 2 〈 PP[p̊a] 〉

⎤
⎦

Since complements licensed by the Head Complement Schema have to be realized
to the right of the verb (or verb trace), it is clear that full PPs cannot precede
the verb or the negation. This explains the ungrammaticality of (14a). For the
same reasons sentences like (14b), repeated here as (28), are ruled out: There is
no way for the NP object of the preposition to get into the spr list of the verb
and hence it cannot be realized to the left of the negation. The NP argument of
the preposition can be extracted but then it has to be realized in a Head-Filler
configuration in the prefield.

(28) * Vi
we

venter
wait

[dig]
you

ikke
not

[p̊a].
for

Intended: ‘We are not waiting for you.’

4.4 Partial Fronting

We assume passive and perfect auxiliaries to be raising verbs that just take over
the spr list of the verb that they embed. Auxiliaries are assigned the following
argument structure:

(29) argument structure of the passive and perfect auxiliaries:[
arg-st 1 ⊕ 〈 VP[spr 1] 〉

]

This argument structure is mapped to spr and comps in the following way:

(30) argument structure and valence of the passive and perfect auxiliaries:⎡
⎣spr 1

comps 〈 VP[spr 1] 〉
arg-st 1 ⊕ 〈 VP[spr 1] 〉

⎤
⎦

4 It remains an open question why PPs cannot shift in Icelandic. Icelandic does allow
shifting of full NPs and therefore a constraint on weakness could not be assumed
to rule out the shifting of PPs (Engels and Vikner, 2012, p. 19). Engels and Vikner
(2012, p. 76) suggest an OT constraint StayBranchNoCase that says that branch-
ing constituents that do not get case must not be moved. This is basically a stipula-
tion of the observable facts and of course we can stipulate an analogous constraint.

84 S. Müller and B. Ørsnes

The example in (17), which is repeated as (31) for convenience, can then be
analyzed as shown in Figure 9 on page 85.

(31) Kysset
kissed

har
have

jeg
I

hende
her

ikke.
not

‘I have not kissed her.’

In (31) the object of kysset (‘kissed’) is shifted. This means that the analysis
of (31) involves a lexical item for the participle that has an empty comps list
and two elements on the spr list. As far as the valence features are concerned,
this is parallel to the lexical item for læser with a shifted object that was given
in (26) on page 81. The difference between læser and kysset ist that the former
is a finite verb and hence has the vform value finite, while the latter is a past
participle and therefore has the vform value perf. The respective specification
of kysset is provided in (32):

(32) cat value for past participle kysset (‘kissed’) with both arguments mapped
to spr:⎡
⎢⎢⎢⎢⎢⎣
head

[
vform perf

verb

]
spr 1 ⊕ 2

comps 〈〉
arg-st 1 〈 NP 〉 ⊕ 2 〈 NP 〉

⎤
⎥⎥⎥⎥⎥⎦ ∧ 2 = list of weak pronouns

The perfect auxiliary have (‘to have’) selects for a VP with the vform value
perf.

Since the lexical item for kysset has an empty comps list, it can function as
the VP complement of the auxiliary. In the analysis of (31) the VP argument
of the auxiliary is realized in the prefield. The VP in the prefield is connected
to an extraction trace that functions as the complement of the verb trace. The
verb trace has the same syntactic properties as the auxiliary in initial position,
that is, it selects for a VP and attracts the spr list from this VP in the way
that was depicted in (30). The result of combining the verb trace and the VP
trace is a VP that has two elements in its spr list. This VP is combined with
the negation and after this the two specifiers are realized.

There is a language particular fact about Danish that has not been mentioned
so far. Partial fronting is possible with single verbs only. So either a full VP is
fronted as in (33a) or a lexical verb as in (33b). In the latter case all objects of
the verb have to be shifted.

(33) a. Foræret
given.as.a.present

Anne
Anne

bogen
book.DEF

har
has

Peter
Peter

ikke.
not

‘Peter has not given Anne the book as a present.’

b. Foræret
given.as.a.present

har
has

Peter
Peter

hende
her

den
it

ikke.
not

‘Peter has not given it as a present to her.’

Fronting verbs with some of their arguments in the fronted VP is ungrammatical:

Towards an HPSG Analysis of Object Shift in Danish 85

S

VP[spr 〈 1 , 2 〉] S/VP

V〈 S//V 〉 S//V/VP

V 1 NP VP//V/VP[spr 〈 1 〉]

2 NP VP//V/VP[spr 〈 1 , 2 〉]

Adv VP//V/VP[spr 〈 1 , 2 〉]

V//V[spr 〈 1 , 2 〉] VP/VP[spr 〈 1 , 2 〉]

Kysset har jeg hende ikke

Fig. 9. Object shift with perfect tense and partial VP fronting

(34) * Foræret
given.as.a.present

bogen
book.def

har
has

Peter
Peter

hende
her

ikke.
not

Intended: ‘Peter has not given her the book as a present.’

This can be captured by the following constraint on head filler phrases:5

(35)

⎡
⎢⎣non-head-dtrs

〈[
synsem|loc|cat

[
head verb

spr 〈 [] 〉 ⊕ ne list

]]〉

head-filler-phrase

⎤
⎥⎦ ⇒

[
non-head-dtrs

〈[
synsem|lex +

]〉]

This constraint says: If the filler daughter has more than one element in the spr
list (that is, we have a case of object shift and hence a partial VP), the filler
daughter has to be lex+, that is, a lexical verb. We assume that the Head-
Argument Schema specifys the lex value of the mother node to be ‘–’ and hence
combinations of verbs with one ore more of their dependents would be ruled out
by (35).

The constraint does not affect frontings of complete VPs, which are possible
in Danish. A full VP has exactly one element in the spr list and hence does not
match the antecedent of the implication in (35).

5 Engels and Vikner (2012, p. 109) discuss Danish data similar to Swedish data from
Fox and Pesetzky 2005, which is discussed below in (37). These examples contain
ditransitive verbs with one argument fronted and one left behind. We do not find
the Danish examples acceptable. Speakers who admit such examples do not have the
constraint in (35) in their grammars.

86 S. Müller and B. Ørsnes

4.5 Holmberg’s Generalization

The fact that object shift is only possible if the left-most element is shifted can
be captured by two LP constraints, which may be surprising at first glance.6

The constraints are given in (36):

(36) a. V < Pron[¬nom, weak+]

b. IO < DO

(36a) ensures that the pronoun may not be shifted over a verb and hence for
shifting to be possible, the finite verbs have to be inverted and non-finite verbs
have to be extracted. In a first attempt to capture the data, we formulated a
constraint that required that heads with multiple specifiers that enter a head-
specifier structure are required to be phonologically empty. While this is sufficient
to rule out sentence like (7b), it does not capture that the fronting of non-finite
verbs is required as well. In order to explain the ungrammaticality of sentences
like (16b) we had to state a separate constraint to the effect that heads that
select for more than one specifier and a VP require their VP argument to be
extracted. That is, the fact that weak pronouns cannot be reordered across
verbs was stated as a conjunction of two rather specific constraints that affected
two different types of ‘movement’: head movement and non-head movement.
Instead of the two complex constraints that we proposed earlier, we now use the
linearization rule in (36a), which captures the phenomenon rather directly.

In addition to the LP statement in (36a), we assume the constraint in (36b),
which requires the IO to shift or to extract for DO shift to be possible. In
an earlier version of our analysis we assumed that a prefix of the arg-st list
has to be mapped to spr. If extracted elements are not mapped to the va-
lence features, it follows that the DO cannot be mapped to the spr list unless
the IO is either mapped to spr or extracted. While this is a rather nice ap-
proach for Danish, it does not extend to Swedish. As the following examples
by Fox and Pesetzky (2005, p. 25) show, Swedish is more liberal than Danish in
allowing partial frontings like (37):

(37) a. ? Get
given

henne
her

har
have

jag
I

den
it

inte.
not

b. * Get
given

den
it

har
have

jag
I

henne
her

inte.
not

The point about these examples is that an account that relies on mapping pre-
fixes of arg-st onto spr would predict the oposit judgement, that is, (37a)
should be impossible and (37b) marked but possible. What is needed to account
for (37a) is the possibility to map the DO to spr and realize the IO in the fronted
VP. So, the mapping from arg-st to spr has to allow more than just prefixes

6 See also Engdahl, Andréasson and Börjars 2004 for an analysis in Optimality Theory
that relies on linearization constraints. While it is possible to introduce into HPSG
ranked linearization constraints in the spirit of Uszkoreit 1987, Section 3.1, we do
not assume factorial typology.

Towards an HPSG Analysis of Object Shift in Danish 87

of arg-st to appear in the spr list. For (37b) one would assume, as we do for
Danish, that it is ruled out since the DO is serialized before the IO and hence
violates the linearization rule in (36b).

Note, that the DO is part of the VP get den. In order for the linearization rule
in (36b) to apply to IO and DO in (37b), the IO and DO have to be members
of the same linearization domain. We assume that VP complements are domain
unioned into the domain of the auxiliary (Reape, 1994). For (37b) this results in
a linearization domain that contains the linguistic objects that correspond to the
words of this sentence. In this respect our approach is rather similar to the one
suggested by Bjarre, but it differs in not allowing for discontinuous constituents.
Therefore the VP get den is always realized continuously and problems like those
that were discussed above are avoided.

It is also important to note here that traces do not contribute anything to the
linearization domains. If they would, sentences like (11) were ruled out since the
DO den preceedes the trace of the IO i.

5 Conclusion

In this chapter we have presented an analysis of object shift in Danish without
assuming any kind of movement or dislocation and without reducing object shift
to a mere linearization phenomenon. We have suggested that lexical pronouns
are members of the spr list of their verbs. The analysis of auxiliaries and partial
fronting involves argument attraction as in analyses of German partial verb
phrase fronting (Müller, 1996, 1999, 2002; Meurers, 2000), but the arguments
are attracted from the spr list rather than from the comps list.

Linearization constraints account for the observations that have been summa-
rized as Holmberg’s Generalization.

The analysis has been partly implemented in the TRALE system
(Meurers, Penn and Richter, 2002; Penn, 2004; Müller, 2007a) as part of a gram-
mar fragment of Danish which uses a core grammar for German, Mandarin
Chinese, Persian, Maltese, and Yiddish. See Müller 2013 on the CoreGram
project. The respective grammars can be downloaded at http://
hpsg.fu-berlin.de/Projects/CoreGram.html. The Danish grammar is described
in Müller and Ørsnes In Preparation.

References

Bender, E.M.: Radical Non-Configurationality without Shuffle Operators: An Analy-
sis of Wambaya. In: Müller, S. (ed.) Proc. Int. Conf. Head-Driven Phrase Struct.
Grammar, pp. 6–24. CSLI Publications, Stanford (2008)

Bjerre, T.: Object Positions in a Topological Sentence Model for Danish – a
Linearization-Based HPSG Approach. Presentation at Ph.D.-course at Sandbjerg,
Denmark (2006)

Borsley, R.D.: An HPSG Approach to Welsh. J. of Linguistics 25, 333–354 (1989a)
Borsley, R.D.: Phrase-Structure Grammar and the Barriers Conception of Clause Struc-

ture. Linguistics 27, 843–863 (1989b)

http://
hpsg.fu-berlin.de/Projects/CoreGram.html

88 S. Müller and B. Ørsnes

Engdahl, E., Andréasson, M., Börjars, K.: Word Order in the Swedish Midfield – an OT
Approach. In: Karlsson, F. (ed.) Proceedings of the 20th Scandinavian Conference
of Linguistics, Helsinki, January 7-9, University of Helsinki, Department of General
Linguistics, Helsinki (2004)

Engels, E., Vikner, S.: Scandinavian Object Shift and Optimality Theory. Ms, Univer-
sity of Aarhus (2012)

Erteschik-Shir, N.: Sound Patterns of Syntax: Object Shift. Theoretical Linguis-
tics 31(1-2), 47–93 (2005)

Fox, D., Pesetzky, D.: Cyclic Linearization of Syntactic Structure. Theoretical Linguis-
tics 31(1-2), 1–45 (2005)

Grover, C.: Rethinking Some Empty Categories: Missing Objects and Parasitic Gaps
in HPSG. Ph. D.thesis, University of Essex (1995)

Hahn, M.: Arabic Relativization Patterns: A Unified HPSG Analysis. In: Müller, S.
(ed.) Proceedings of the 19th International Conference on Head-Driven Phrase Struc-
ture Grammar, Chungnam National University Daejeon, pp. 144–164. CSLI Publi-
cations, Stanford (2012)

Hellan, L.: On Pronominal Clitics in Norwegian. In: Holmberg, A., Hedlund, C. (eds.)
Proceedings of the XIVth Scandinavian Conference of Linguistics, University of
Gothenberg, pp. 1–14 (1994)

Holmberg, A.: Remarks on Holmberg’s Generalization. Studia Linguistica 53(1), 1–39
(1999)

Kathol, A., Pollard, C.J.: Extraposition via Complex Domain Formation. In: Proceed-
ings of the 33rd Annual Meeting of the ACL, Boston (1995)

Kiss, T.: Variable Subkategorisierung. Linguistische Berichte 140, 256–293 (1992)
Kiss, T.: Infinite Komplementation. Neue Studien zum deutschen Verbum infinitum.

Niemeyer, Tübingen (1995)
Kiss, T., Wesche, B.: Verb Order and Head Movement. In: Herzog, O., Rollinger, C.-R.

(eds.) LILOG 1991. LNCS, vol. 546, pp. 216–242. Springer, Heidelberg (1991)
Meurers, D.: Lexical Generalizations in the Syntax of German Non-Finite Construc-

tions. Arbeitspapiere des SFB 340 No. 145, Universität Tübingen (2000)
Meurers, W.D.: Raising Spirits and Assigning Them Case, vortrag auf dem Workshop

Current Topics in Constraint-Based Theories of Germanic Syntax (1998)
Meurers, W.D., Penn, G., Richter, F.: A Web-Based Instructional Platform for

Constraint-Based Grammar Formalisms and Parsing. In: Radev, D., Brew, C. (eds.)
Effective Tools and Methodologies for Teaching NLP and CL, pp. 18–25 (2002)

Mikkelsen, L.: On Prosody and Focus in Object Shift. Syntax 14(3), 230–264 (2011)
Müller, S.: Yet another Paper about Partial Verb Phrase Fronting in German. In:

Proceedings of Coling 1996, pp. 800–805. ACL, Copenhagen (1996)
Müller, S.: Deutsche Syntax deklarativ. Head-Driven Phrase Structure Grammar für

das Deutsche. Niemeyer, Tübingen (1999)
Müller, S.: Complex Predicates: Verbal Complexes, Resultative Constructions, and

Particle Verbs in German. CSLI Publications, Stanford (2002)
Müller, S.: Continuous or Discontinuous Constituents? A Comparison between Syn-

tactic Analyses for Constituent Order and Their Processing Systems. Research on
Language and Computation 2(2), 209–257 (2004)

Müller, S.: Zur Analyse der scheinbar mehrfachen Vorfeldbesetzung. Linguistische
Berichte 203, 297–330 (2005)

Müller, S.: The Grammix CD Rom. A Software Collection for Developing Typed Fea-
ture Structure Grammars. In: King, T.H., Bender, E.M. (eds.) Grammar Engineering
across Frameworks 2007. CSLI Publications, Stanford (2007a)

Towards an HPSG Analysis of Object Shift in Danish 89

Müller, S.: Head-Driven Phrase Structure Grammar: Eine Einführung, 1st edn. Stauf-
fenburg Verlag, Tübingen (2007b)

Müller, S.: Depictive Secondary Predicates in German and English. In: Hentschel, G.,
et al. (eds.) Secondary Predicates in Eastern European Languages and Beyond,
pp. 255–273. BIS-Verlag, Oldenburg (2008)

Müller, S.: On Predication. In: Müller, S. (ed.) Proceedings of the 16th International
Conference on Head-Driven Phrase Structure Grammar, pp. 213–233. CSLI Publi-
cations, Stanford (2009)

Müller, S.: The CoreGram Project: Theoretical Linguistics. Theory Development and
Verification. Ms. Freie Universität, Berlin (2013)

Müller, S.: HPSG – A Synopsis. In: Alexiadou, A., Kiss, T. (eds.) Syntax – Ein interna-
tionales Handbuch zeitgenössischer Forschung, 2nd edn. Walter de Gruyter Verlag,
Berlin (to appear)

Müller, S., Ørsnes, B.: Danish in Head-Driven Phrase Structure Grammar. Language
Science Press, Berlin (in preparation)

Penn, G.: Balancing Clarity and Efficiency in Typed Feature Logic Through Delaying.
In: Scott, D. (ed.) Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics, Barcelona, Spain, pp. 239–246 (2004)

Pollard, C.J.: On Head Non-Movement. In: Bunt, H., van Horck, A. (eds.) Discontinu-
ous Constituency, pp. 279–305. Mouton de Gruyter, Berlin (1996) (published version
of a Ms. dated January 1990)

Pollard, C.J., Sag, I.A.: Anaphors in English and the Scope of Binding Theory. Lin-
guistic Inquiry 23(2), 261–303 (1992)

Pollard, C.J., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of Chicago
Press, Chicago (1994)

Przepiórkowski, A.: On Case Assignment and “Adjuncts as Complements”. In: We-
belhuth, G., Koenig, J.-P., Kathol, A. (eds.) Lexical and Constructional Aspects of
Linguistic Explanation, pp. 231–245. CSLI, Stanford (1999)

Reape, M.: Domain Union and Word Order Variation in German. In: Nerbonne, J.,
Netter, K., Pollard, C.J. (eds.) German in Head-Driven Phrase Structure Grammar,
pp. 151–198. CSLI Publications, Stanford (1994)

Uszkoreit, H.: Linear Precedence in Discontinuous Constituents: Complex Fronting in
German. Report No. CSLI-86-47. CSLI, Stanford (1986)

Uszkoreit, H.: Word Order and Constituent Structure in German. CSLI Publications,
Stanford (1987)

Vikner, S.: Object Shift. In: Everaert, M., et al. (eds.) The Blackwell Companion to
Syntax, pp. 392–436. Blackwell Publishing Ltd., Oxford (2006)

Cognitive and Sub-regular Complexity

James Rogers1, Jeffrey Heinz2, Margaret Fero1, Jeremy Hurst1,
Dakotah Lambert1, and Sean Wibel1

1 Earlham College, Richmond IN 47374, USA
2 University of Delaware, Newark DE 19716, USA

Abstract. We present a measure of cognitive complexity for subclasses
of the regular languages that is based on model-theoretic complexity
rather than on description length of particular classes of grammars or
automata. Unlike description length approaches, this complexity measure
is independent of the implementation details of the cognitive mechanism.
Hence, it provides a basis for making inferences about cognitive mech-
anisms that are valid regardless of how those mechanisms are actually
realized.

Keywords: Cognitive complexity, sub-regular hierarchy, descriptive
complexity, phonological stress.

1 Introduction

Identifying the nature of the cognitive mechanisms employed by various species,
and the evidence which helps determine this nature, are fundamental goals of
cognitive science. The question of the relative degree of difficulty of distinguishing
(proto-) linguistic patterns has received a considerable amount of attention in
recent Artificial Grammar Learning (AGL) research [1,2], as well as in current
research in phonology [3,4]. In the AGL research, as in the phonological research,
the complexity of the learning task has been central. This in no small part
depends on the complexity of the patterns being learned.

This paper studies the pattern complexity of subclasses of the class of regular
stringsets1 from a model-theoretic perspective, which has its roots in the seminal
work of McNaughton and Papert [5] (and, ultimately, Büchi [6] and Elgot [7]).
An important aspect of this analysis is that it is independent of any particular
representation. We argue that descriptive complexity of this model-theoretic
sort provides a more consistent measure of complexity than typical complexity
measures based on minimum description length. More importantly, we show
how this notion of cognitive complexity can provide concrete evidence about
the capabilities of the recognition mechanism that is valid for all mechanisms,
regardless of their implementation.

1 To minimize confusion between natural and formal languages will generally use the
term “stringset” to denote a set of strings rather than the more traditional “lan-
guage”, except that we will use the original terminology when referring by name to
concepts defined elsewhere in the literature.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 90–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cognitive and Sub-regular Complexity 91

This complexity analysis is exemplified with stress patterns in the world’s
languages. Stress patterns are rules that govern which syllables are emphasized,
or stressed, in words. The reason we use stress patterns to illustrate the com-
plexity hierarchy is because the cross-linguistic typology of stress patterns has
been well-studied [8,9] and because finite-state representations of these patterns
already exist [10,11].

In the next section, we explain why approaches based on minimum descrip-
tion length fail to provide an adequate notion of cognitive complexity in these
domains. We then (Section 3) develop a model-theoretic foundation for build-
ing hierarchies of descriptive complexity that do provide a consistent and useful
notion of cognitive complexity. In Section 4 we develop such a hierarchy based
on adjacency. This is the Local hierarchy of McNaughton and Papert, although
our presentation is more abstract and provides a basis for the generalizations
that follow. Section 4.1 treats the Strictly-Local sets. We do this in greater de-
tail than we do in the subsequent sections, providing the general framework and
allowing us to focus on specific variations at the higher levels of the hierarchy.
Sections 4.2, 4.3 and 4.4 treat the Locally Testable, Locally Threshold Testable
and Star-Free sets, respectively.

In Section 5 we repeat this structure for a hierarchy based on precedence rather
than adjacency. The Piecewise Testable level (Section 5.2) of this hierarchy is
well known, but the Strictly Piecewise level (Section 5.1) has only been studied
relatively recently. The two hierarchies converge at the level of the Star-Free
sets.

We conclude with a brief description of our current work applying these results
to the phonology of stress patterns.

While most of the language-theoretic details we present here are not new, we
present them within a more general framework that provides better insight into
the common characteristics of and parameters of variation between the classes.
Our main contribution, however, is the use of these descriptive hierarchies as
the basis of a measure of cognitive complexity capable of providing clear and
reliable insights about obscure cognitive mechanisms.

2 Cognitive Complexity of Simple Patterns

The formal foundation for comparisons of the complexity of patterns has primar-
ily been the information theoretic notion of minimum description length. This
compares the total number of bits needed to encode a model of computation—for
our purposes, a general recognition algorithm—plus the number of bits required
to specify the pattern with respect to that model.

Our focus, here, is on patterns that can be described as regular stringsets.
While there are many computational models that we might choose, we will fo-
cus on a few standard ones: Regular Grammars, Deterministic Finite State Au-
tomata (DFAs) and Regular Expressions [12]. All of these computational models
are equivalent in their formal power and there is no significant difference in the

92 J. Rogers et al.

size of the encodings of the computational models themselves2 (the recognition
algorithms), so there is no a priori reason to prefer one over another. The ques-
tion is how well the relative size of the descriptions of patterns with respect to a
given computational model reflects pre-theoretic notions of the relative complex-
ity of processing the patterns. So we will concentrate on comparing complexity
within a given computational model. This allows us to ignore the encoding of
the computational model itself.

One does not have to look far to find examples of pairs of stringsets in which
these three computational models disagree with each other about the relative
complexity of the stringsets. Moreover each get the apparent relative complexity
wrong on one or another of these examples. Figure 1 compares minimal descrip-
tions, with respect to each of these computational models, of the set of strings
of ‘A’s and ‘B’s that end with ‘B’, which we will refer to as EndB, and minimal
descriptions of the set of strings of ‘A’s and ‘B’s in which there is an odd number
of occurrences of ‘B’, which we will refer to as OddB.3 Thinking simply in terms
of what a mechanism has to distinguish about a string to determine whether it
meets the pattern or not, what properties of strings distinguish those that fit
the pattern from those that do not, EndB is clearly less complex than OddB. In
the first case, the mechanism can ignore everything about the string except the
last (or most recent) symbol; the pattern is 1-Definite, i.e., fully determined by
the last symbol in the string. In the second, it needs to make its decision based
on the number of occurrences of a particular symbol modulo two; it is properly
regular in the sense that it is regular but not star-free (see Section 4.4).

The Regular Grammars get this intuition right, as do the regular expressions.
The DFAs, on the other hand, differ only in the label of two transitions. There
is no obvious attribute of the DFAs, themselves, that distinguishes the two.

Figure 2 compares minimal descriptions of the set of strings of ‘A’s and ‘B’s in
which there is at least one occurrence of ‘B’s (SomeB) with minimal descriptions
of strings in which there is exactly one occurrence of ‘B’ (OneB). Here, there
can be no question of the relative complexity of the two stringsets: in order to
recognize that exactly one ‘B’ occurs, one must be able to recognize that at least
one ‘B’ occurs; in order to generate a string in which exactly one ‘B’ occurs, one
must be able to generate a string with at least one ‘B’. But for both the Regular
Grammars and the Regular Expressions the size of the description of SomeB is
greater than that of OneB. If we insist that DFAs be total, in the sense of having
a total transition function—an out edge from each state for each symbol of the
alphabet—then the minimal DFA for OneB is larger than that for SomeB. But
if we trim the DFAs, deleting states that cannot fall on paths from the start
state to an accepting state, the DFAs are identical except that OneB actually
requires one fewer transition.

2 Note that what is in question here is the encoding of the model, a representation
of, say, a Turing machine program to process the descriptions, not the descriptions
themselves. The encodings of the models vary in size by at most a constant.

3 In the case of the DFAs, the minimality is easy to verify. For the other computational
models minimality could be verified by enumeration, although this seems excessive.

Cognitive and Sub-regular Complexity 93

Sequences of ‘A’s and ‘B’s which end in ‘B’ (EndB)

Regular Grammar: S0 −→ AS0, S0 −→ BS0, S0 −→ B

DFA:
A B B

A

Regular Expression: (A+B)∗B

Sequences of ‘A’s and ‘B’s which contain an odd number of ‘B’s (OddB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ BS0, S1 −→ ε

DFA:
A B A

B

Regular Expression: (A∗BA∗BA∗)∗A∗BA∗

Fig. 1. Minimal descriptions: strings which end in ‘B’ vs. strings with an odd number
of ‘B’s

The point of these comparisons is that, even with just these four extremely
simple patterns, all of these computational models disagree with each other
about relative complexity and each of them gets some of the relative complexi-
ties wrong. Relative information theoretic complexity, at this level, depends on
the choice of computational model and none of these computational models con-
sistently reflects the actual pre-theoretic relative complexity of distinguishing
the patterns.

There are many ways to describe regular stringsets beyond the ones considered
here [13] so the above is not a deductive proof that no such computational
model exists. While searching for an appropriate computational model is one line
of research, this program faces a fundamental limitation. Encoding complexity
with respect to a particular computational model severely limits the validity
of conclusions we might draw about actual cognitive mechanisms from relative
complexity results. In the domain of language, the structure of the cognitive
mechanisms that an organism uses to recognize a pattern is hotly debated. If a
complexity measure is going to provide useful insights into the characteristics of
the cognitive mechanisms that can distinguish a pattern, it is an advantage if it
is agnostic about the operational details of the mechanisms themselves.

The alternative to searching for a computational model is to develop an ab-
stract measure of complexity. This measure should be invariant across all possible
cognitive mechanisms and depend only on properties that are necessarily com-
mon to all computational models that can distinguish a pattern. Such a measure

94 J. Rogers et al.

Sequences of ‘A’s and ‘B’s which contain at least one ‘B’ (SomeB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ BS1, S1 −→ ε

DFA:
A B

A,B

Regular Expression A∗B(A+B)∗

Sequences of ‘A’s and ‘B’s which contain exactly one ‘B’ (OneB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ ε

DFA:
B

A,B
A B A

Regular Expression: A∗BA∗

Fig. 2. Minimal descriptions: strings that contain at least one ‘B’ vs. strings that
contain exactly one ‘B’

has to be based on intrinsic properties of the (generally infinite) set of stimuli
that match a pattern. We will take as the basis of the measure the properties of
the stimuli that distinguish those that satisfy a pattern from those that do not.
These are the things to which a cognitive mechanism needs to be sensitive—the
properties of strings it must be able to detect—in order to correctly classify a
stimulus with respect to a pattern.

3 Cognitive Complexity from First Principles

At the most fundamental level, we need to decide what kind of objects (entities,
things) we are reasoning about and what relationships between them we are
reasoning with. Since we are focusing on linguistic-like behaviors, we will assume
that the cognitive mechanisms of interest perceive (process, generate) linear
sequences of events.4

These we can model as strings, linear sequences of abstract symbols, which
we will take to consist of a finite discrete linear order (isomorphic to an initial

4 Historically, the term “event” has referred to the entire sequence. But, in general the
overall pattern may be hierarchically structured, i.e., sequences of subsequences each
of which would, itself, be an event. So the distinction, here, seems to be spurious
and we will refer to the elements of any sequence as an event.

Cognitive and Sub-regular Complexity 95

segment of the natural numbers) that is labeled with an alphabet of events. The
labeling partitions the domain of the linear order into subsets, each the set of
positions at which some event occurs. Representing these as ordinary relational
structures [14], we get word models of Figure 3, in which we use the symbol
‘’ to denote successor (adjacency) and ‘+’ to denote less-than (precedence).
Concatenation with respect to these models is just the ordered sum of the linear
orders.5 We take these models simply to be strings; we use no other formalization.

We will distinguish three classes of models: (+1)—models which include only
successor (restricted to be successor with respect to some linear order), (<)—
models which include only less-than, and models which include both (word mod-
els in general).

4 Adjacency—Substrings

The first hierarchy of complexity classes we will consider is based on reasoning
about adjacency, in general about substrings, i.e., blocks of consecutive symbols
within a string. This gives us a well known sequence of stringset classes, based
on generalizations of the Strictly Local Languages [5]. We formalize these classes
here in a way that will support generalization to stringset classes that are based
on other ways of reasoning about strings.

〈D, �, �+, Pσ〉σ∈Σ

(+1) 〈D, �, Pσ〉σ∈Σ (<) 〈D, �+, Pσ〉σ∈Σ
D — Finite domain
�+ — Linear order on D (⊆ D ×D)
� — Successor wrt �+ (⊆ D ×D)

Pσ — Subset of D at which σ occurs
(Pσ partition D)

Fig. 3. Word models. (+1) models are the restriction of the general word models to �;
(<) models are the restriction to ≤2.

All stringsets within these classes are defined in terms of their constituent
substrings with the variation between the classes corresponding to how descrip-
tions can be built from those substrings. Traditionally, the substrings that occur
within a string are referred to as its factors (with respect to concatenation).

5 That is to say, the concatenation of two word models is the disjoint union of their
domains and of their interpretations of the relation symbols extended so that the
minimum point of the domain of the right word is the successor of the maximum
point of the domain of the left. Note that the empty string is represented by a model
with an empty domain, which is usually avoided, but this presents no problems for
our applications.

96 J. Rogers et al.

Definition 1 (k-Factor).
v is a factor of w if w = uvx for some u, v ∈ Σ∗.
v is a k-factor of w if it is a factor of w and |v| = k.
The set of k-factors of a string w is:

Fk(w)
def
=

{
{v ∈ Σk | (∃u, x ∈ Σ∗)[w = uvx]} if |w| ≥ k,
{w} otherwise.

This lifts to sets in the standard way Fk(L)
def
= {Fk(w) | w ∈ L}.

k-factors are essentially k-grams without probabilities. Note that the set of k-
factors of a word w which is shorter than k includes just w, itself. The set of all
k-factors over an alphabet Σ is Fk(Σ

∗) = {w ∈ Σ∗ | |w| ≤ k}, where |w| denotes
the length of w. Fk(Σ

∗) properly includes Fk−i(Σ
∗) for all i < k.

4.1 Strictly Local Sets

Definition 2 (Strictly Local Sets). A strictly k-Local definition G, over some
alphabet Σ, is a set of k-factors over Σ ∪ {�,�}, where ‘�’ and ‘�’ are new
symbols: initial and final markers, respectively.

G ⊆ Fk({�} ·Σ∗ · {�})

A string w satisfies G (w |= G) iff the set of k-factors of � · w ·� is a subset of
G.

w |= G def⇐⇒ Fk(� · w ·�) ⊆ G

The stringset licensed by a description G is the set of words that satisfy it.

L(G) def
= {w | w |= G}

A set of strings is Strictly k-local (SLk) iff it is L(G) for some strictly k-local
definition G. It is Strictly Local (SL) iff it is SLk for some k.

The expression � · w · � denotes w augmented with explicit initial and final
markers. A strictly k-local description is the set of k-factors that are licensed
to occur in the augmented string. Again, Fk({�} ·Σ∗ · {�}) contains factors of
length less than k, but in this case they all begin with ‘�’ and end with ‘�’.
Hence, they license only words of length less than k − 1.

The characteristic property of Strictly k-local sets is that they are closed under
substitution of suffixes that start with the same (k − 1)-factor.

Theorem 1 (Suffix Substitution Closure). A stringset L is strictly k-local
iff whenever there is a string x of length k − 1 and strings w, y, v, and z, such
that

w ·
k−1︷︸︸︷
x · y ∈ L and v ·

k−1︷︸︸︷
x · z ∈ L⇒ w ·

k−1︷︸︸︷
x · z ∈ L

Cognitive and Sub-regular Complexity 97

(Sketch of proof:) Closure of SLk stringsets under substitution of suffixes in this
way is nearly immediate. If w · x · y and v · x · z ∈ L(G) for some SLk definition
G, and |x| = k − 1 then

Fk(� · w · x · z ·�) ⊆ Fk(� · w · x · y ·�) ∪ Fk(� · w · x · y ·�) ⊆ G

For the other direction, suppose that a stringset L is closed under substitution
of suffixes that start with the same (k − 1)-factor. Let GL = Fk({�} · L · {�}).
That L ⊆ L(GL) is immediate by construction. One can show that L(GL) ⊆
L by constructing an arbitrary w ∈ L(GL) in stages from strings in L that
share successively long prefixes of w, extending the prefix, at each stage, by
substitution of suffixes.

Note that this is a characterization: every SLk stringset is closed under sub-
stitution of suffixes in this way and every stringset that is SSC-closed for some
k can be defined by a SLk definition.

SLk and SL, as a whole, are closed under intersection but not union, comple-
ment, concatenation or Kleene-∗ [5].

Example 1. Stress in the language Alawa is governed by two (actually three)
phonological rules [11]:

– In words of all sizes, primary stress falls on the penultimate syllable.
– In words of all sizes, there is no secondary stress.

The third rule is implicit in all stress patterns

– Every word has exactly one syllable that receives primary stress.

This pattern is not SL2 as witnessed by:

�σ σ́ σ� ∈ LAlawa, � σ́ � ∈ LAlawa, but �σ σ́ � �∈ LAlawa.

On the other hand, we can capture LAlawa with the constraints:

1. Do not permit 3-factors with multiple primary stress.
2. Do not permit unstressed penultimate syllables.
3. Do not permit primary stress to be followed by more than one syllable.
4. Do not permit unstressed monosyllables.
5. Do not permit empty words.

LAlawa = L(F3(� ·Σ+ ·�)
− { �σ́σ́, σ́σ́�, σσ́σ́, σ́σσ́, σ́σ́σ, σ́σ́σ́, (1)

σσ́�, σσ�, (2)
σ́σσ, (3)
�σ�, (4)
��}) (5)

= L({�σσ, �σσ́, �σ́σ, σσσ, σσσ́, σσ́σ, σ́σ�, �σ́�})
Hence LAlawa ∈ SL3 − SL2.

98 J. Rogers et al.

The strictly local classes form a proper hierarchy in k.

Theorem 2 (SL-Hierarchy).

SL1 � SL2 � SL3 � · · · � SLi � SLi+1 � · · · � SL

(Sketch of proof) The inclusions follow nearly immediately from the definition
of an SLk definition. The separations are easy to obtain using generalizations of
the proof that the Alawa stress pattern is not SL2.

The proper inclusions reflect the intuition that distinguishing a pattern that
requires attending to a larger block of symbols is likely to be cognitively more
difficult than distinguishing one that can be recognized by attending to smaller
blocks.

While every finite stringset is SLk for some k, there is no k for which SLk

includes all finite stringsets. Note, also, that given fixed k and Σ, there are only
finitely many SLk stringsets. SLk is learnable in the limit from positive data in
the sense of Gold [15]; SL as a whole is not [16].

Example 2. Edlefsen, et al. [17] have categorized the 109 patterns in Heinz’s
Stress Pattern Database [18]:

9 are SL2 Abun West, Afrikans, . . . Cambodian, . . .Maranungku
44 are SL3 Alawa, Arabic (Bani-Hassan), . . .
24 are SL4 Arabic (Cairene),6. . .
3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)
1 is SL6 Icua Tupi
28 are not SL Amele, Bhojpuri (Shukla Tiwari), Arabic Classical,

Hindi (Keldar), Yidin,. . .
72% are SL, all k ≤ 6. 49% are SL3.
This suggests that the majority of stress patterns in natural languages are

cognitively very simple, and perhaps even learnable in the limit.

Cognitive Interpretation of SL. It is important to note that the definition
of the class SL and its characterization by suffix substition closure make no
reference to any computational model of any sort. They are stated purely in
terms of the structure of the stringset itself. Members of an SLk stringset are
distinguished from non-members purely on the basis of their k-factors. This
assumes nothing about how those distinctions might be made by a particular
computational mechanism. Any mechanism that can distinguish members of an
SLk stringset from non-members must be able, at least, to distinguish strings in
this way. Any capabilities they may have beyond that are, in a sense, wasted, at
least with respect to that stringset.

This gives us a general characterization of cognitive mechanisms that are
capable of recognizing SLk stringsets.

6 The formalization of Arabic (Cairene) is controversial. Thomas Graf formalizes this
in a way that is properly regular [19].

Cognitive and Sub-regular Complexity 99

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SLk stringset must be sensitive, at least, to the
length k blocks of consecutive events that occur in the presentation of the
string.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the immediately
prior sequence of k − 1 events.

Note, again, that the cognitive mechanism is not required to analyze strings in
terms of blocks of consecutive events, even if they are presented as sequences
of events in time. It just needs to be able to make judgements, at each point
in the presentation of the string, that depend on the sequences of k − 1 events
which occur prior to that point. Every regular stringset can be generated by a
context-free grammar that is not a regular grammar, that does not analyze the
string in terms of contiguous blocks of symbols. Nevertheless, if the stringset is
strictly local, it will still need to get the judgements right; the set of all strings
that it generates will be closed under substitution of suffixes; it will differ from
the set it does not generate only in the blocks of consecutive symbols that occur
in the strings.

4.2 Locally Testable Languages

The standard phonological assumption that in every word there is some syllable
that receives primary stress [20] is problematic for SL. Letting Σ = {σ, σ́, σ̀}
(representing unstressed syllables, those with primary stress and those with sec-
ondary stress, respectively), this assumption can be described with the following
regular expression: Σ∗σ́Σ∗. Note that we are not (yet) ruling out the possiblity
that more than one syllable receives primary stress. To see that this is not SL,
suppose, for contradiction, that it was. Then it would necessarily be SLk for
some particular k. But then

�

k−1︷ ︸︸ ︷
σ · · ·σ σ́�, �σ́

k−1︷ ︸︸ ︷
σ · · ·σ� ∈ LSomeσ́ but �

k−1︷ ︸︸ ︷
σ · · ·σ� �∈ LSomeσ́

SL patterns cannot, in general, require a factor to occur; they can, at most,
forbid factors from occurring. Hence, they cannot enforce the requirement that
primary stress occurs unless either the stress is required to fall within a fixed
radius of one end of the word (as in the case of Alawa) or the factors preceding
the stress can be distinguished in some other way from those following it.

The next level of the Local Hierarchy, the class of Locally Testable (LT) lan-
guages is the closure of SL under Boolean operations. Since this includes com-
plement, it allows one to require the occurrence of specific factors. Rather than
taking LT descriptions to be Boolean combinations of SL descriptions, we use a
simple propositional calculus to describe LT sets. This provides a foundation for
extending the descriptions to First Order descriptions.

100 J. Rogers et al.

Definition 3 (Local k-expressions). The logic of Local k-expressions is based
on the smallest set including the following forms, with the intended semantics
as indicated.

f ∈ Fk(� ·Σ∗ ·�) w |= f
def⇐⇒ f ∈ Fk(� · w ·�)

ϕ ∧ ψ w |= ϕ ∧ ψ def⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ def⇐⇒ w �|= ϕ

The k-factors serve as our atomic propositions. While these are not devoid of
internal structure, they are either a factor of a string or not. Hence, strings can
be seen as valuations of the factors in the ordinary propositional sense. The
calculus of k-expressions is just an idiosyncratic propositional calculus.

Definition 4 (Locally Testable Sets). A stringset L over Σ is k-Locally
Testable iff (by definition) there is some local k-expression ϕ over Σ (for some
k) such that L is the set of all strings that satisfy ϕ:

L = L(ϕ)
def
= {w ∈ Σ∗ | w |= ϕ}

A stringset is LT iff it is LTk for some k.

Note that SLk descriptions can be interpreted by local k-expressions:

L(G) = L(
∧
fi �∈G

[¬fi])

Thus SLk � LTk. In particular, SL stringsets are exactly those LT stringsets
that can be expressed as conjunctions of negative constraints.

Since strings are, in effect, propositional valuations, the Locally Testable
stringsets can be characterized by the fact that they must be the union of finitely
many classes of strings that are equivalent with respect to the k-factors they
comprise.

Theorem 3 (Local Test Invariance). A stringset L is Locally Testable iff
there is some k such that, for all strings x and y, if � · x ·� and � · y ·� have
exactly the same set of k-factors then either both x and y are members of L or
neither is.

In other words, if

w ≡L
k v

def⇐⇒ Fk(�w�) = Fk(�v�)

the LTk stringsets cannot break the equivalence classes of Σ∗ with respect to
≡L

k . (The superscript L here refers to the fact that this is an equivalence with
respect to Local criteria.)

LTk and LT as a whole are closed under Boolean operations, by definition,
but are not closed under concatenation or Kleene-∗ [5].

Since there are finitely many ≡L
k equivalence classes, for fixed k, there are

finitely many LTk stringsets over a given alphabet. LTk is learnable in the limit,
although LT is not [21].

Cognitive and Sub-regular Complexity 101

Example 3. Stress in the Mongolic language Buriat is governed by two explicit
constraints:

– Primary stress falls on the right-most non-final heavy syllable, else on the
final syllable if it is heavy, else on the initial syllable.

– Secondary stress falls on the initial syllable and on heavy syllables.

The second constraint forbids any unstressed H . One of the consequences of
these constraints is that if a word ends with H́ then there is no non-final H̀ .
This is LT2 as witnessed by the 2-expression:

¬(H́� ∧ H̀σ)

It is not, on the other hand, SL since

�H̀

k−1︷ ︸︸ ︷
L · · ·L H́L�, �L̀

k−1︷ ︸︸ ︷
L · · ·L H́� ∈ LBuriat but �H̀

k−1︷ ︸︸ ︷
L · · ·LH́� �∈ LBuriat

Furthermore, it is not LT1, either:

�H̀H́H̀� ≡L
1 �H̀H̀H́�

Theorem 4 (LT-Hierarchy).

LT1 � LT2 � LT3 � · · · � LTi � LTi+1 � · · · � LT

Again, the hierarchy reflects the intuition that attention to larger blocks is likely
to be cognitively more difficult than attention to smaller blocks (because, for
one thing, it requires more memory).

Local Test Invariance implies that, in order to distinguish strings that satisfy
an LTk pattern from those that do not, a mechanism has to be sensitive to the
set of k-factors that occur in a string, not just whether specific k-factors occur
or not.

Cognitive Interpretation of LT

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) LTk stringset must be sensitive, at least, to the set
of length k contiguous blocks of events that occur in the presentation of the
string—both those that do occur and those that do not.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the set of length k
blocks of events that occurred at any prior point.

Here again, this interpretation is fully independent of the way that the mech-
anism actually parses the strings. However it may do that, it must be able to
distinguish strings purely on the basis of their sets of k-factors.

102 J. Rogers et al.

4.3 FO(+1)—Locally Threshold Testable Languages

LT constraints can require primary stress, but they cannot rule out multiple
occurrences of primary stress. To see this, let LOneσ́ be the set of strings over
{σ, σ́, σ̀} in which exactly one σ́ occurs. Suppose, for contradiction, that it is LT,
hence LTk for some k. Then

�

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ� ≡L

k �

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ�

but the former is in LOneσ́ while the latter is not. The problem is that LT
automata cannot count. Or, more precisely, they can count only to 1.

In order to distinguish strings in which some σ́ occurs from those in which
more than one occurs, we will need to be able to distinguish one instance of
σ́ from another. We need to state our constraints in terms of specific positions
within a string. We do this with a standard First Order language for our (+1)
word models, strings with successor but not less-than.

Definition 5. FO(+1) is the standard First Order logical system over the mod-
els 〈D, , Pσ〉σ∈Σ with equality on the domain:

x y w, [x �→ i, y �→ j] |= x y
def⇐⇒ j = i+ 1

x ≈ y w, [x �→ i, y �→ j] |= x ≈ y
def⇐⇒ j = i

Pσ(x) w, [x �→ i] |= Pσ(x)
def⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)] def⇐⇒ w, s[x �→ i] |= ϕ(x)]
for some i ∈ D

where w, s[x �→ i] |= ϕ(x) says that the string w satisfies the formula ϕ(x), in
which the variable x possibly occurs, with the position i taken to be the value of
x. (So i witnesses that there is some position which satisfies the formula.)

We take FO(+1) to denote the class of FO(+1)-definable stringsets, as well.
A stringset L is in the class FO(+1) iff it is FO(+1)-definable:

L = L(ϕ)
def
= {w | w |= ϕ}.

Note that local k-expressions can be captured in FO(+1) by Boolean combi-
nations of existential formulae with k variables. (The same k variables can be
reused in each existential subformula.) Hence LT � FO(+1).

Example 4. LSomeσ́ is FO(+1) as witnessed by the formula (∃x)[σ́(x)].
LAt-Most-Oneσ́ is FO(+1) as witnessed by (∀x, y)[¬(σ́(x) ∧ σ́(y) ∧ x �≈ y)]
Consequently, LOneσ́ is also FO(+1).

Cognitive and Sub-regular Complexity 103

Thomas [22] characterizes FO(+1) in terms of Local Threshold Testability, equiv-
alence in terms of the multiplicity of k-factors up to some fixed finite threshold t.

Definition 6 (Locally Threshold Testable). A set L is Locally Threshold
Testable (LTT) iff there is some k and t such that, for all w, v ∈ Σ∗:

if for all f ∈ Fk(� · w ·�) ∪ Fk(� · v ·�)
either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.
So a stringset is LTTk,t iff it does not distinguish between strings that, for any
k-factor w, either have the same number of occurrences of w or have at least t
occurrences; a stringset is LTT iff it is LTTk,t for some k and t.

Theorem 5 ([22]). A set of strings is First-order definable over 〈D, , Pσ〉σ∈Σ

iff it is Locally Threshold Testable.

Once again, there are only finitely many stringsets over a given alphabet if k
and t are fixed. So LTTk,t is learnable in the limit, although LTT, and FO(+1),
are not.

Cognitive Interpretation of FO(+1)

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) FO(+1) stringset must be sensitive, at least, to the
multiplicity of the length k blocks of events, for some fixed k, that occur in
the presentation of the string, distinguishing multiplicities only up to some
fixed threshold t.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being able to count up to some fixed threshold.

4.4 FO(<)—Star Free Languages

While FO(+1) formulae can distinguish strings on the multiplicity of their k-
factors, they cannot distinguish the order in which those factors occur.

Example 5. A second primitive constraint on stress in Buriat is that no syllable
with primary stress can properly precede a non-final heavy syllable (which, nec-
essarily would have secondary stress). But this is not a constraint that is FO(+1)
definable since

�L̀

k−1︷ ︸︸ ︷
L · · ·L H̀

k−1︷ ︸︸ ︷
L · · ·L H́

k−1︷ ︸︸ ︷
L · · ·L�

and
�L̀ L · · ·L︸ ︷︷ ︸

k−1

H́ L · · ·L︸ ︷︷ ︸
k−1

H̀ L · · ·L︸ ︷︷ ︸
k−1

�

have the same number of each k-factor.
This is a constraint that can be enforced in terms of less-than:

¬(∃x, y)[σ́(x) ∧ H̀(y) ∧ x < y]

104 J. Rogers et al.

Note that less-than is not FO definable from successor (as witnessed by the
example) although successor is FO definable from less-than. Hence FO(+1) �

FO(<).
The characterization of FO(<) is the primary result of McNaughton and Pa-

pert [5].

Definition 7 (Local Testability with Order). The class of stringsets that
are Locally Testable with Order (LTO) is the closure of LT under concatenation
and Boolean operations.

Note that threshold testability is not required, since it can be reduced to con-
catenation. Any fixed number of occurrences of a factor can be captured as the
concatenation of a fixed number of single occurrences [5].

Definition 8 (Star-Free Languages). The class of star-free stringsets is the
closure of the class of finite stringsets under union, concatenation and comple-
ment with respect to Σ∗.

This is the class of stringsets that are the denotation of regular expressions
extended with a complement operator but without Kleene star.

Theorem 6 ([5]). For any stringset L, the following are equivalent

– L is First-order definable over 〈D, +, Pσ〉σ∈Σ

– L is LTO
– L is Star-Free.

This class of languages is not learnable in the limit because it contains every
finite language and at least one infinite language [15].

Cognitive Interpretation of SF (FO(<))

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SF stringset must be sensitive, at least, to both the
order and the multiplicity of the length k blocks of events, for some fixed
k, that occur in the presentation of the string, distinguishing multiplicities
only up to some fixed threshold t.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being able not only to count events up to some threshold but also
to track the sequence in which those events occur.

5 Precedence—Subsequences

The Buriat constraint of Example 5 is a simple negative constraint on the order
of syllables. If we specify our constraints in terms of precedence rather than
adjacency this can be captured at the level corresponding to SL. We can do this
simply by interpreting our atomic formulae as subsequences rather than factors.
Let:

v � w
def⇐⇒ v = σ1 · · ·σn and w ∈ Σ∗ · σ1 ·Σ∗ · · ·Σ∗ · σn ·Σ∗

So v � w iff v is a subsequence of w.

Cognitive and Sub-regular Complexity 105

The logic of Piecewise k-expressions is identical in form and meaning to that
of local k-expressions except that the atomic formulae are now strings of length
less than or equal to k over Σ (with no end markers) which are interpreted as
subsequences.

s ∈ Σ≤k w |= s
def⇐⇒ s � w

To emphasize that we are working with subsequences rather than substrings, we
will generally write the subsequence σ1σ2 as σ1 . . σ2.

5.1 Strictly Piecewise Testable Sets

Strictly k-Piecewise Testable sets are those sets that are definable as conjunctions
of negative atomic piecewise k-expressions. As with SL these are closed under
intersection but not union, complement, concatenation or Kleene-∗. And they
form a proper hierarchy in k.

The class of SP constraints was characterized by Rogers, et al. [23]. Strikingly
these are exactly the sets of strings that are closed under subsequence. The
parameter k is the length of the longest string that is not included although all
of its subsequences are. One immediate consequence of this is that no set of SP
constraints will suffice to define the stress pattern of a human language since SP
constraints cannot require some primary stress to occur.

Example 6. While SP constraints cannot require primary stress to occur, they
can prohibit more than one primary stress, as witnessed by the piecewise 2-
expression ¬σ́ . . σ́.

The Buriat constraint of Example 5 is SP3, as witnessed by ¬σ́ . . H̀ . . σ.
Since the sequence σ́H̀σ must be excluded but none of its subsequences may

be (on the basis of this constraint) it is not an SP2 definable constraint.

Note that while SP constraints can neither require strings to start or end with
a particular symbol nor require them not to start or end with a particular sym-
bol, they can forbid particular symbols from occurring anywhere except at the
beginning or end of a string.

As with SLk, SPk is learnable in the limit if k is fixed. SP in general is not.

Cognitive Interpretation of SP

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SPk stringset must be sensitive, at least, to the
length k (not necessarily consecutive) sequences of events that occur in the
presentation of the string.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to up to k − 1 events
distributed arbitrarily among the prior events.

106 J. Rogers et al.

5.2 Piecewise Testable Sets

Continuing to follow the pattern of the local hierarchy, the Piecewise Testable
sets are those which are definable by arbitrary piecewise k-expressions. These
are well studied, having been introduced in Simon [24]. As with the LT sets,
they can be characterized as the union of finitely many equivalence classes, but
with strings being equivalent if they share the same set of subsequences, rather
than the same set of factors.

Theorem 7 (k-Subsequence Invariance). A stringset L is Piecewise Testable
iff there is some k such that, for all strings x and y, if x and y have exactly the
same set of subsequences of length less than or equal to k then either both x and
y are members of L or neither is.

Example 7. PT constraints can require primary stress to occur on exactly one
syllable: σ́ ∧ ¬σ́ . . σ́.

In general, they cannot require a syllable to occur initially or finally unless that
syllable cannot occur more than once. Hence the Buriat constraint of Example 3
can be captured in PT2 with the expression (H́ ∧ ¬H́ . . σ) → ¬H̀ . This asserts
that if there is some H́ but no non-final H́ (thus there is a final H́) then there
are no H̀ .

In parallel with LTk, PTk for fixed k is learnable in the limit, but PT in general
is not [21].

Cognitive Interpretation of PT

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) PTk stringset must be sensitive, at least, to the
set of length k subsequences of events that occur in the presentation of the
string—both those that do occur and those that do not.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the set of all length
k subsequences of the sequence of prior events.

5.3 First Order

Still following the pattern of the local hierarchy, the next step is to move to a
First Order language over (<) models. But successor is FO definable from less-
than, so at the FO level (<) models are equivalent to models with both successor
and less-than. It is at this point, the Star-Free sets, that the local and piecewise
hierarchies meet.

6 Further Work

From a practical point of view, one of the most important characteristics of these
hierarchies is that all of the classes are closed under intersection. This means that

Cognitive and Sub-regular Complexity 107

complicated patterns can be factored into the co-occurrence of primitive patterns
of one type or the other (local or piecewise), as we have done here with Alawa
and (partially) Buriat, with the overall complexity being the supremum of the
complexities of the primitive constraints.

We are currently factoring all of the stress patterns in Heinz’s database into
primitive constraints for which we have determined the complexities with re-
spect to the local and piecewise hierarchy. The results, though preliminary, are
exciting. With the possible (controversial) exception of Cairene Arabic, all of
the patterns are at worst Star-Free. Moreover, while there are patterns that are
properly Star-Free from either the local or piecewise perspective (Buriat is an
example), all of the patterns we have factored (nearly all of the patterns in the
database) are co-occurrences of either LT and SP constraints or SL and PT con-
straints. This suggests that stress in every human language can be factored into
co-occurrence of simple constraints, all of which are potentially learnable in the
limit at least in principle if an upper bound on the length of the (sub)sequence
is established.

These preliminary results are made possible by the abstract complexity mea-
sures introduced here. It is unclear how an approach based on the minimal
description length of a particular model could have obtained this result. Further-
more, this complexity analysis, while introduced with examples from phonology,
is much more far-reaching than that. They can be, and are being, applied to
syntactic structures [25]. One reason this is possible is because these measures
are sufficiently and appropriately abstract. They are agnostic about the opera-
tional details of models themselves, and therefore they provide a basis for making
inferences about cognitive mechanisms that are valid, regardless of how those
mechanisms are actually realized.

References

1. Folia, V., Uddén, J., de Vries, M., Forkstam, C., Petersson, K.M.: Artificial lan-
guage learning in adults and children. Language Learning 60, 188–220 (2010)

2. Hauser, M.D., Chomsky, N., Fitch, W.T.: The faculty of language: What is it, who
has it, and how did it evolve? Science 298(5598), 1569–1579 (2002)

3. Heinz, J.: Learning long-distance phonotactics. Linguistic Inquiry 41(4), 623–661
(2010)

4. Heinz, J., Idsardi, W.: Sentence and word complexity. Science 333(6040), 295–297
(2011)

5. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)
7. Elgot, C.C.: Decision problems of finite automata and related arithmetics. Trans-

actions of the American Mathematical Society 98, 21–51 (1961)
8. Hayes, B.: Metrical Stress Theory. Chicago University Press (1995)
9. van der Hulst, H., Goedemans, R., van Zanten, E. (eds.): A survey of word accentual

patterns in the languages of the world. Mouton de Gruyter, Berlin (2010)
10. Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University

of California, Los Angeles (2007)

108 J. Rogers et al.

11. Heinz, J.: On the role of locality in learning stress patterns. Phonology 26(2),
303–351 (2009)

12. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (2001)

13. Kracht, M.: The Mathematics of Language. Mouton de Gruyter (2003)
14. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
15. Gold, E.: Language identification in the limit. Information and Control 10, 447–474

(1967)
16. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict

sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, pp. 325–
338 (1990)

17. Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M., Wellcome, D.: De-
ciding strictly local (SL) languages. In: Breitenbucher, J. (ed.) Proceedings of the
Midstates Conference for Undergraduate Research in Computer Science and Math-
ematics, pp. 66–73 (2008)

18. Heinz, J.: UD phonology lab stress pattern database (March 2012),
http://phonology.cogsci.udel.edu/dbs/stress/

19. Graf, T.: Comparing incomparable frameworks: A model theoretic approach to
phonology. University of Pennsylvania Working Papers in Linguistics 16(2), Article
10 (2010), http://repository.upenn.edu/pwpl/vol16/iss1/10

20. Hyman, L.M.: How (not) to do phonological typology: the case of pitch-accent.
Language Sciences 31(2-3), 213–238 (2009); Data and Theory: Papers in Phonology
in Celebration of Charles W. Kisseberth

21. Garćıa, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars 7, 125–140 (2004)

22. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
Systems Sciences 25, 360–376 (1982)

23. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,
S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G.,
Michaelis, J. (eds.) MOL 10. LNCS (LNAI), vol. 6149, pp. 255–265. Springer,
Heidelberg (2010)

24. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

25. Graf, T.: Locality and the complexity of minimalist derivation tree languages. In: de
Groote, P., Nederhof, M.-J. (eds.) Formal Grammar 2010/2011. LNCS, vol. 7395,
pp. 208–227. Springer, Heidelberg (2012)

http://phonology.cogsci.udel.edu/dbs/stress/
http://repository.upenn.edu/pwpl/vol16/iss1/10

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 109–125, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Is Malay Grammar Uniform? A Constraint-Based
Analysis

Sharifah Raihan Syed Jaafar

National University of Malaysia
s_raihan@ukm.my

Abstract. This paper presents phonological systems of Malay grammar.
Focusing on prefixation, which includes single and multiple prefixation in
Malay, this study claims that the grammar of Malay is not completely uniform.
The occurrence of nasal and voiceless obstruent clusters is not always resolved
by nasal substitution, as claimed by previous Malay scholars regarding the
clusters. Based on evidence from one million words obtained from the DBP-
UKM corpus database, I further claim that Malay has co-existent grammars,
one of which allows nasal and voiceless obstruent clusters, while another does
not. This paper proposes that the co-existent grammars in Malay can
satisfactorily be explained by adopting a constraint-based analysis named
Optimality theory (Prince and Smolensky, 1993).

Keywords: Malay, prefixation, nasal substitution, Optimality theory.

1 Introduction

It has long been observed that the phonological patterns of a language are not
completely uniform (e.g. Inkelas and Zoll 2007). This means that the grammar of a
language can possibly have more than one phonological pattern. As stated in Inkelas
and Zoll (2007), a language can vary systematically like in social register, lexical
stratum (native vs. non-native), and morphological category (e.g. stem vs. affix,
reduplicant vs. base).

According to what Inkelas and Zoll have claimed above, this paper intends to
discuss the phonological system of Malay. By focusing on the issue of nasal and
voiceless obstruent clusters in Malay prefixation, I am in agreement with the
statement made by Inkelas and Zoll. Transformation and innovation happen
continuously in languages. Malay is a member of the Malayic sub-group of the
Malayo-Polynesian branch of the Austronesian language family. It is widely used in a
number of countries including Malaysia, Indonesian, Brunei, Singapore and
surrounding areas. As stated in Act 152 of the Federal Constitution of Malaysia,
Malay is the national and the official language of Malaysia. As the national and
official language of Malaysia, the Malay language or Bahasa Malaysia has undergone
a long process of development towards its function as the national and official
language. The language therefore has undergone much transformation and innovation

110 S.R. Syed Jaafar

which have affected the language systems. One of the language systems that was
affected is the phonological system of the language. In this paper, I am going to focus
on nasal and voiceless obstruent clusters in Malay prefixation.

2 Previous Studies on Malay

It has been widely claimed by previous Malay scholars (e.g. Hassan, 1974; Omar,
1986; Koh, 1981; Othman, 1983; Ahmad, 1993; Karim et al., 1989, 1994; Karim,
1995; and many others) that a nasal segment is always homorganic to the following
consonant. In the case of prefixation, when nasal final prefixes are attached to roots,
the nasal segments in the prefixes must be homorganic to the initial consonants of the
bases. Besides the homorganic nasal, previous Malay scholars have also claimed that
bases beginning with voiceless obstruents following nasal segments undergo deletion.
Voiced obstruents after nasal segments however are retained – no deletion occurs.
This is because the language disallows that a sequence of nasal and voiceless
obstruents would emerge in the surface representation.

It has long been observed that the obstruent voiceless consonants, /p, t, k and s/, in
Malay affixation are deleted when the consonants are concatenated with nasal final
prefixes /pəN-/ and /məN-/. At the same time, the phonological behaviour of the nasal
segments in the prefixes is always homorganic to the following consonant of the root.
Let us consider some relevant examples below, as cited in Karim et al. (1994).

Nasal final prefixes in Malay (from Karim et al., 1994: 147)

a) /məŋ-pukul/ [məmukul]
ACT.PRF-scold ‘to scold’

b) /məŋ-tari/ [mənari]
ACT.PRF-dance ‘to dance’

c) /məŋ-karaŋ/ [məŋaraŋ]
ACT.PRF-compose ‘to compose’

d) /məŋ-sinar/ [məŋinar]
ACT.PRF-ray ‘to ray’

In rule-based analyses, two rules have been postulated to ensure the phonological
restriction mentioned above is obeyed. The two rules are: (1) Nasal Assimilation, and
(2) Voiceless Obstruent Deletion. These two rules have to be applied in order. I show
below how these two rules apply:

Nasal substitution in rule-based analysis

Input /məŋ-təmu-i/
1) Nasal assimilation mən-təmu-wi
2) Voiceless obstruent deletion mən-əmu-wi
Output [mənəmuwi]

From the ordering of rules above, correct output is obtained whereby nasal and
voiceless obstruent clusters do not emerge on the surface. In this study, I will argue

 Is Malay Grammar Uniform? A Constraint-Based Analysis 111

that the analysis proposed by scholars for this group does not work for some prefixed
words. As observed in the DBP-UKM (The Institute of Language and Literature,
National University of Malaysia) corpus, there are counter-examples where the
clusters emerge in the surface representations, as shown below. This poses a question,
as the language does not allow clusters to emerge in the surface representation, yet
there are counter-examples showing the presence of clusters on the surface.

(i) /məŋ-tadbir/ [mən-tadbe]
 ACT.PRF-administrative ‘to administer’
 (ii) /məŋ-protes/ [məm-pγotes]
 ACT.PRF-protest ‘to protest’

The voiceless obstruents [t] and [p] in the above examples remain undeleted after the
assimilated nasal. The rules: nasal assimilation and voiceless obstruent deletion, as
postulated in a rule-based approach, fail to account for the actual process of
prefixation in Malay, whereby voiceless obstruents following nasal segments in some
prefixes do not undergo the deletion process. As a result, nasal and voiceless
obstruent clusters emerge in the surface representation. This disobeys absolutely the
grammar of the language whereby nasal and voiceless obstruent clusters are not
permitted to surface.

Besides the aforementioned examples, there is another case where we can find the
occurrence of nasal and voiceless obstruent clusters in the language. It occurs in
multiple prefixation in Malay, i.e. when two prefixes are attached to a root. To the
best of my knowledge, only two rule-based analyses concerning nasal and voiceless
obstruent clusters in multiple prefixation have been performed by scholars. These are
by Omar (1986) and Karim et al. (1989). I shall now demonstrate how the analyses
postulated by these scholars pose a problem when accounting for nasal and voiceless
obstruent clusters in multiple prefixation.

Nasal and voiceless obstruent clusters in multiple prefixation (from the DBP-UKM
corpus).

i) /pəŋ-pər-kaja-an/ [pə.mər.ka.ja.an]
NOM.PRF-VERBL.PRF-rich-NOM.SUF
‘enrichment’

ii) /məŋ-pər-luas-kan/ [məm.pər.lu.was.kan]
VERBL.PRF-NOM.PRF-strength-CAUS.SUF
‘to cause to broaden’

When the two rules, nasal assimilation and voiceless obstruent deletion, are applied to
the words, the outputs are:

(i) Input /pəŋ-pər-kaja-an/
 1) Nasal assimilation pəm-pər-kaja-an
 2) Voiceless obstruent deletion pəm-ər-kaja-an
 Output [pə.mər.ka.ja.an]
(ii) Input /məŋ-pər-luwas-kan/
 1) Nasal assimilation məm-pər-luwas-kan
 2) Voiceless obstruent deletion məm-ər-luwas-kan
 Output *[mə.mər.lu.was.kan]

112 S.R. Syed Jaafar

As we can see in the above examples, the rule ordering, nasal assimilation and
voiceless obstruent deletion, as postulated in rule-based analysis to account for nasal
and voiceless obstruent clusters, only works for the data in (i). These rules, however,
fail to account for the data in (ii), as *[mə.mər.lu.as.kan] is not the right output,
although the cluster has been successfully eliminated. This clearly shows that the
proposed solution to avoid nasal and voiceless obstruent clusters does not always
work to explain the occurrence of the clusters in multiple prefixation.

Although some of the examples given fulfil the descriptive rules, they may not be
able to explain the real process of prefixation in Malay, since there is evidence that
some voiceless obstruent consonants are not deleted when the combining process
occurs. This phenomenon of undeleted voiceless obstruents, as claimed by scholars in
many cases, has been retained. Most of them resort to the same solution, which is to
treat the phenomenon as somehow exceptional.

I shall discuss how the rule-based analysis poses a problem when accounting for
Malay prefixation, particularly nasal final prefixes. We will then see that the problem
can be accounted for by constraint-based analysis i.e. Optimality theory.

3 Data and Methodology

In order to investigate the actual process of prefixation in Malay, corpus data from the
DBP-UKM corpus database were collected. As many as one million words were
collected for this study. Corpus data were chosen to prove the existence of the
peculiar phonological behaviour of nasal and voiceless obstruent clusters in Malay
grammar, i.e. in its process of prefixation. The data are essentially needed to verify
what previous studies have claimed regarding the clusters. Furthermore, corpus data
were chosen because the data comprise examples of real usage of the language. As
was claimed by previous Malay scholars, nasal substitution is the regular
phonological process applied to break up nasal and voiceless obstruent clusters in
Malay prefixation. They further claim that the occurrence of the clusters in some
Malay prefixed words as listed above are exceptional cases in the language. This
paper argues against this claim. By adopting a constraint-based analysis, i.e. OT, this
paper claims that the cases are due to different lexical strata, i.e. native vs. non-native.
The claim then reveals that Malay has co-existent grammars.

Since the data accessed from the DBP-UKM corpus are raw data, they need to be
categorised according to the type of prefixes they belong to. It would be difficult to
categorise one million data manually. I have therefore used corpus software named
‘AntConc’ to do the categorisation.

For single prefixation, I grouped the data according to the initial obstruent
consonants of the bases: voiced and voiceless obstruents. These are two different sorts
of data in which voiceless obstruents form the initial consonant of the root. There are
voiceless obstruents with and without nasal substitution. The ones without nasal
substitution are the type of data which violate the phonological requirements of the
language since the voiceless obstruents remain undeleted. This type of data therefore
violates *NC, the markedness constraint. I now explain how those groups, i.e. voiced

 Is Malay Grammar Uniform? A Constraint-Based Analysis 113

and voiceless obstruents (with or without nasal substitution), are categorised using
AntConc software.

(1) Voiced Obstruents

Before the relevant data for this group can be generated, we must choose a text file(s)
where the data are stored by clicking on the file which is located at the top left of the
software page and then select open file(s). It looks like this:

A standard file-open will then appear. We can double click on the text folder which
contains the data, select the text files by clicking on them, and then click on the open
button on the bottom – as the following screen shows:

114 S.R. Syed Jaafar

After all the text files have been selected, the data are now listed on the main page
of AntConc, as shown below:

Now, we start searching for nasal and voiced obstruent clusters in the text files. To

do that, we have to use some regular expressions (Regex) to search for the pattern we
are looking for – nasal plus voiced obstruent. As the position of the nasal segment of
the prefix is determined by the following initial consonant of the base, i.e. voiced
obstruent, we cannot search for whole allomorphs of /məŋ+/ i.e. [məm], [mən] and
[məŋ] at the same time. Searching for each of the allomorphs must be done one by
one.

In what follows, I show how to search for the allomorph [məm]. Please bear in
mind that the initial consonant following [məm] is a bilabial voiced obstruent, i.e. [b].
As just mentioned, some regular expressions must be used to search for the relevant
words where the clusters are situated. Thus, a right character must be set for this. To
search for [məm] followed by a voiced obstruent [b], the regular expression
\bmem[b] is used. Observe that \b is added before mem in the regular expression
\bmem[b] to indicate a word boundary. This regular expression, \bmem[b], must be
typed in the search term box on the main page of AntConc. Make sure to tick the
regex box on the concordance screen. A concordance list will appear in the central
area of the main page with all the occurrences of [mem+b]. All the steps mentioned
above are shown in the screenshot below:

 Is M

As we can see in this An

know how many example
Concordance Hits. If we
[mem] + b initial base. Our
the corpus files is now don
[g], the steps discussed abo

(2) Voiceless Obstruents

To search for nasal plus vo
searching for nasal plus v
before voiceless obstruents
substitution). As we know
nasal undergoes assimilatio
get such outputs as /pəŋ-pot

There are two possible w
the corpus. First, if we set
/p/ initial base, the concord
whereby the root actually b
(2) the wrong words where
single nasal final prefix but
the underlying form is /p

Malay Grammar Uniform? A Constraint-Based Analysis

ntConc screenshot, the concordance list is for [mem+b].
es of the word were found, just refer to the box

e look at Concordance Hits, there are 9,143 words
search to find [mem] + b initial base examples of word

ne. To search for other voiced obstruents, such as [d]
ve are repeated.

oiceless obstruent clusters in the corpus is not as easy
voiced obstruent clusters. This is because nasal segme
s undergo assimilation (for voiceless obstruents with na

w, when a nasal combines with a voiceless obstruent,
on, while the voiceless obstruent is deleted. Therefore
toŋ/ → [pə-motoŋ] and /məŋ-tarik/ → [mə-nareʔ].
ways to search for nasal and voiceless obstruent cluster
\bpem as the regular expression to search for /pəŋ+/ p
dance words that will appear can be: (1) the right wo
begins with /p/ combined with a single nasal final pre

e the root does not actually begin with /p/ combined wit
t is a sonorant consonant instead, such as [pəminat] wh

pəŋ+minat/; (3) nominal multiple prefixes /pəŋ+pər/

115

. To
x of

for
ds in
and

y as
ents
asal
the
we

s in
plus
ords
efix;
th a
here
→

116 S.R. Syed Jaafar

[pəmər], as in /pəŋ+pər+badan+an] → [pə.mər.ba.da.nan]. Second, if we only write
\bpe as the regular expression, the software will generate all the words starting with
[pə+]. Examples of the words that appear are as follows. For convenience, the words
that start with [pə+] are underlined.

79 "Yang penting pemegang jawatan persatuan tidak bol BHES7
21 sendirian kerana pelumba di BHC34
424 Zahid yang juga pemenang pingat perak Kejohanan Lumb
BHKS99
623 Daripada penelitian dan pemerhatian yang dibuat,
didapati BHBC15

The examples of concordance words listed above are generated when the regular
expression \bpe is used. None of the concordances listed above are words that we are
looking for except concordance (79), which is the correct form of /pəŋ/ + /p/ initial
base where the underlying form is /pəŋ+pəgaŋ/ → [pəməgaŋ]. Concordance (21) is
wrong since the initial consonant of the root is not a voiceless obstruent, i.e. [lumba].
The word [perak] in concordance (424) is not a prefixed word but a root word. Since
the word starts with [pe] it also appears in the concordance list. The other form we get
from the search is that of multiple prefixed words, such as in concordance (623),
/pəŋ+pər+hati+an/ → [pə.mər.hati.jan].

To search for nasal and voiceless obstruent clusters in the corpus, I use a second
way, i.e. \bpe, as the regular expression to find any initial voiceless roots that
combine with prefix /pəŋ+/. Since the examples of words that appear in the
concordance list contain more than one phonological character, the results can be
categorised into five groups: (1) /pəŋ+/ combines with a voiceless obstruent initial
root (with or without nasal substitution; (2) /pəŋ+/ with a sonorant initial root; (3)
nominal prefixes /pəŋ+ mər/ → [pə-mər]; (4) /pəŋ+/ with a monosyllabic root; and (5)
/pəŋ+/ with a voiced obstruent initial root. Thus the categorisation has to be done
manually whereby all the examples are categorised according to their phonological
character. This means that we have five types of data, two of which are only useful
for our analysis, i.e. (1) and (3). I briefly lay out some examples from the concordance
list to represent those groups:

(1) /pəŋ+/ with voiceless obstruent initial root.

 (i) With nasal substitution

921 206 mengesan penipuan apabila pemeriksaan
pengesahan BHA198

941 bahawa kemunculan tanda pemesongan bearis
bukanlah alasan BHA176

980 Mengenai aduan ke atas pengilang atau
pengimport yang disyaki

89177 Mengenai ekonomi pula, penubuhan Zon
Pemprosesan Eksport adalah

 Is Malay Grammar Uniform? A Constraint-Based Analysis 117

 (ii) Without nasal substitution.

2446 untuk memudah dan mempercepatkan pemprosesan
permohonan
3748 selain pengalaman meluas dalam pentadbiran di
kementerian
9643 berisi air dan memasukkan tiub pensterilan ke
dalamnya untuk
89242 terus diberikan kepada kegiatan
pengkomersialan keluaran

(2) Nominal prefixes /pəŋ+mer/ → [pə-mər]

902 BSKL) membingungkan pemerhatian apabila terus
mencatat BHDE81
903 Deutsche itu kerana pemerhati berpendapat ia
mungkin BHDE26
937 teknologi pemerolehan minyak di tempat
pengeluar BHFE61

The same situation occurs for the prefix /məŋ+/ plus initial voiceless obstruent base.
All the groups mentioned above appear in the concordance list except for the third
group. When \bme as the regular expression is entered into the Search Term box, we
do not find any examples of words for the nominal prefixes /pəŋ+mər/ as we found
before for the prefix /pəŋ+/. Verbal prefixes, i.e. /məŋ+per/ → [məmpər], are found
instead. Here are examples of words for those groups:

(1) /məŋ+/ with voiceless obstruent initial root

 (i) With nasal substitution

20 iaitu membuat pemecahan secara mengejut. Dia
yang BHLS54
33 kerana dikatakan tidak muntuk memikul tugas
sebagai BHBC16
35 itu, cukup Itali itu, pernah menewaskan pemecut
handalan BHj99
94 dwitahunan 570 ini boleh memisahkan antara
pemenang dan BHES60

(ii) Without nasal substitution

1409 Menjadi harapannya, lirik yang dihasilkan
tidak mengkhayalkan
4038 untuk menjadikannya lebih bijak dari segi
memproses dan mengawal

118 S.R. Syed Jaafar

6061 Penduduk Palestin sebelum ini pernah
memfailkan saman terhadap
6691 di luar bangunan muzium. Muzium itu turut
mempamerkan

(2) Verbal prefixes /məŋ+per/ → [məm-pər]

209 mereka ke Itali untuk berla 539 paksa
mempercepatkan tarikh BHC43
185 berdiri di pentas pemenang, barulah McRae
memperlihatkan BHES65
462 zi yang mengenal pasti mereka yang disyaki
selain memperincikan
526 Majlis Usahawan di Peringkat Daerah (MPUD) dan
memperkukuhkan

4 Malay Co-existent Grammars: Constraint-Based Analysis

Observations from the DBP-UKM corpus show that the claim regarding nasal
substitution postulated by previous Malay scholars on prefixation does not hold for
the whole dataset. The generalization postulated by previous studies can only explain
some of the output derived from the process of prefixation. This shows that the
proposed rule-based analysis does not adequately explain the real process of
prefixation in Malay. I am going to discuss the two patterns that occur in Malay i.e.
(1) outputs with nasal and voiceless obstruent clusters, and (2) outputs without nasal
and voiceless obstruent clusters. Why do these two patterns occur in the language?
Supposedly, outputs with nasal and voiceless obstruent clusters should not emerge in
the surface representation as the language precludes such clusters.

The occurrence of the two patterns in single prefixation is analysed in terms of
different strata of Malay words, according to their etymology: native or non-native
(Itô and Mester 1999). Based on the corpus data, I thus postulate the following lexical
strata for Malay:

Fig. 1. The three strata of Malay lexicon (Syed Jaafar 2010)

Constraints are ranked differently in each lexical stratum according to the role
played by the crucial constraints in the ranking, i.e. the markedness constraint *NC,

 Is Malay Grammar Uniform? A Constraint-Based Analysis 119

which bans a sequence of nasal and voiceless obstruents in the surface and the
faithfulness constraint, which requires the output to be as faithful as possible to the
input, i.e. UNIFORMITY.

In what follows, I am going to present how the three lexical strata proposed for the
Malay lexicon are analysed. As we see below, the phenomenon of inconsistency of
the occurrence of nasal and voiceless obstruent clusters is analysed by the same set of
constraints but they are ranked differently. Each lexical stratum has its own constraint
ranking. As was mentioned, Malay has co-existent grammars, where one does not
allow nasal and voiceless obstruent clusters, while the other one does. As we shall see
in the following tableau analyses, nasal substitution as the regular strategy to
eliminate the clusters, as claimed by previous Malay scholars, only applies when the
roots are Malay native words. This means that *NC, a constraint which bans a
sequence of nasal and voiceless obstruents on the surface, is obeyed for Malay native
words but is violated for foreign words.

*NC
 No nasal/ voiceless obstruent sequences.

As we will see, *NC is violated by foreign words as nasal substitution is not the way
to resolve the clusters. Nasal and voiceless obstruent clusters in monosyllabic foreign
and undeleted voiceless obstruent foreign are resolved by vowel epenthesis and nasal
assimilation, respectively. The relevant constraints that play an important role to
explain these phonological processes are DEP-IO and NASAL ASSIMILATION.
When the clusters undergo nasal assimilation, the two segments, i.e. the nasal
segment and the initial voiceless obstruent, are preserved. The preservation segments
can be explained by a faithfulness constraint named UNIFORMITY. All the three
constraints are defined below:

DEP-IO
Every segment in the input must have a correspondent in the output.

NAS ASS (cf.: Jun, 1995; Padgett, 1995; Boersma, 1998; Pater, 2001)
 A nasal must share place features with a following consonant.

UNIFORMITY (‘No Coalescence’) (McCarthy and Prince, 1999: 296)
No element of S2 has multiple correspondents in S1.

For the monosyllabic foreign lexicon, a nasal and voiceless obstruent occurring in the
input representation is resolved by vowel epenthesis. Nasal substitution, which is
claimed to be the regular strategy to eliminate the clusters in the language, is not
applied however. I briefly exemplify some of the relevant data from the corpus:

a) məŋ-ə-cam

ACT.PRF-STEMEX-recognise ‘to recognise’
b) məŋ-ə-cap

ACT.PRF-STEMEX-stamp ‘to stamp’
c) məŋ-ə-sah

ACT.PRF-STEMEX-validate ‘to validate’
d) məŋ-ə-kod

ACT.PRF-STEMEX-code ‘to code’

120 S.R. Syed Jaafar

Bringing together all the constraints introduced thus far, I establish the following
tableau to account for the monosyllabic foreign words. The relevant constraint
ranking is: NASAL ASSIMILATION >> *NC >> UNIFORMITY >> DEP-IO.

/məŋ1+p2am/ NAS

ASS
*NC UNI DEP-IO

a. məm12am *!
b. məm1p2am *!
c. məŋ1p2am *!
d.mə.ŋ1ə.p2am *

We now see how words in the group of undeleted voiceless obstruent foreign

words are analysed. Before I establish a tableau analysis for this group, let us observe
first some of the relevant data below:

Nasal final prefixes (from the DBP-UKM corpus)

i) /məŋ-kritik/
ACT.PRF-critic ‘to criticise’

[məŋ-kritik]

ii) /pəŋ-struktur-an/
NOM.PRF-structure-NOM.SUF
‘structure’

[pən-struktu-ran]

iii) məŋ-xatan/
ACT.PRF-circumcision ‘to circumcise’

[məŋ-xatan]

iv) məŋ-fasakh/
ACT.PRF-divorce ‘to annul a marriage’

[məm-fasakh]

With the same set of constraints in the monosyllabic foreign lexical strata, I establish
the following tableau for undeleted voiceless obstruent foreign words. Observe that
the constraints are ranked differently from monosyllabic foreign words. The *NC
constraint which bans the clusters to emerge in the surface is ranked lower as this
group allows nasal and voiceless obstruent clusters.

/məŋ1+p2roses/ NAS
ASS

DEP-
IO

UNIFORMITY *NC

a. məm12ro.ses *!
b. məm1p2roses *
c. məŋ1p2roses *!
d. məŋ1əp2roses *!
/məŋ1+t2auhid/
e. mən12auhid *!
f. mən1t2auhid *
g. məŋ1t2auhid *!
h. məŋ1ət2auhid *!

 Is Malay Grammar Uniform? A Constraint-Based Analysis 121

The third group is that of native words. Before I start the analysis, let us first
consider some relevant examples of this group:

(i) /məŋ-potoŋ/

ACT.PRF-cut ‘to cut’
[mə-motoŋ]

(ii) /məŋ-kuat-kan/
ACT.PRF-strong-CAUS.SUF ‘to cause to
strengthen for’

[mə-ŋuwat-kan]

(iii) /pəŋ-pindah-an/
NOM.PRF-migrate-NOM.SUF ‘migration’

[pə-mindah-an]

(iv) /məŋ-kunjuŋ-i/
ACT.PRF-visit-LOC.SUF ‘to cause to visit’

[mə-ŋunʤung-i]

The tableau analysis for this group is shown below:

/məŋ1+p2otoŋ/ NAS

ASS
*NC DEP-

IO
UNIFORMITY

a. məm12otoŋ *
b. məm1p2otoŋ *!

c. məŋ1p2otoŋ *!

d. məŋ1əp2otoŋ *!

In multiple prefixation, the co-existent grammars occur at prefix-prefix boundaries
when two prefixes end with nasal segments attached to voiceless obstruent initial
roots. At this morphological boundary, the clusters emerge in the surface
representation in verbal multiple prefixes /məŋ+pər/. The clusters however undergo
nasal substitution in nominal multiple prefixes, /pəŋ+pər/. I exemplify some of the
data taken from the corpus:

a) Verbal prefixes

i) məm.pər.kuwat.kan
VERBL.PRF-NOM.PRF-strength-CAUS.SUF
‘to cause to strengthen for’

ii) məm-pər-luas-kan
VERBL.PRF-NOM.PRF-strength-CAUS.SUF
‘to cause to broaden for’

iii) mən-tər-taʤam-kan
VERBL.PRF-VERBL.PRF-sharp- CAUS.SUF
‘to cause to sharpen for’

b) Nominal prefixes

i) pə-mər-kaja-an
NOM.PRF-VERBL.PRF-rich-NOM.SUF
‘enrichment’

122 S.R. Syed Jaafar

ii) pə-mər-badan-an
NOM.PRF-VERBL.PRF-body-NOM.SUF
‘organisation’

iii) pə-məl-bagai-an
NOM.PRF-VERBL.PRF-various-NOM.SUF
‘variety’

A generalisation from the above examples can be summarised as: Nasal substitution
occurs when the multiple prefixes produce a nominal prefixed word, as shown in (a).
On the other hand, when the multiple prefixes form a verbal word, as in (b), nasal
substitution is blocked. In this analysis, I will claim that nasal and voiceless obstruent
clusters occurring in /məŋ+pər/ are due to the morphological boundary prefix-prefix
where the clusters exist.

As already noted, the language does not allow nasal and voiceless obstruent
clusters in the surface representation. Therefore, voiceless obstruents following nasals
regularly undergo nasal substitution, as claimed by previous scholars. One question
that can be asked here is: Is it obligatory for a sequence of nasal and voiceless
obstruents to undergo nasal substitution? Or to put it in another way: Must nasal
substitution be applied whenever there is a nasal and voiceless obstruent cluster since
the phonetic requirements are already met? To answer this question in the context of
multiple prefixation, I suggest that another factor, as well as the phonetic
environment, i.e. the morphological environment, is worthy of consideration.
Considering both factors, I claim that the process of multiple prefixation should
differentiate between the verbal and the nominal prefixes. As nasal substitution is
blocked in the verbal prefixes, the EDGE INTEGRITY constraint thus plays a crucial
role to account for the blocking process of nasal substitution.

EDGE INTEGRITY (McCarthy and Prince, 1995)
Edge segments in the input preserve their segments at the edge of the
corresponding prosodic structure.

As defined, EDGE INTEGRITY requires that the morphological unit preserves its
edge segments in the input by keeping them at the edge of a corresponding prosodic
structure. There is a strict faithfulness constraint on the segments at the edges so that
every segment at the edge of a morphological unit is protected and is immune to
phonological processes like epenthesis (Kang, 2002).

In the following diagram, we see the structure in (a) violates EDGE INTEGRITY
since the final segment C1 of MCat1 is linked to MCat2 and is not affiliated with PCat1.

Recall that the process of nasal substitution causes the two segments in the input to
merge into a single segment in the output, due to the process of nasal substitution.
Therefore, we see that the final segment C1 of MCat1 is also linked to the initial
segment C2 of MCat2. The structure in (b) does not violate EDGE-INTEGRITY at all,
since the two segments C1 and C2 are at the edges of their prosodic constituents.

 Is Malay Grammar Uniform? A Constraint-Based Analysis 123

/CVC + CVC/ (‘+’ stands for a morphological boundary) (from Kang, 2002).

I now establish the following constraint ranking for verbal multiple prefixes: EDGE-
INTEGRITY >> NASAL ASSIMILATION >> *NC >> DEP-IO >> UNIFORMITY.

 a) Verbal prefixes

/məŋ1+p2ər+bəsar/ EDGE

INTEG
NAS
ASS

*NC DEP-
IO

UNI

a. məm12ərbəsar *! *
b.məm1p2ərbəsar *

c. məŋ1p2ərbəsar *!

The tableau above shows that the faithfulness constraint EDGE-INTEGRITY dominates
the markedness constraint *NC. Because of that, candidate (a), with nasal substitution,
loses due to a fatal violation of the faithfulness constraint. In contrast, candidate (b)
violates the markedness constraint *NC, as the candidate does not undergo nasal
substitution. Since the markedness constraint *NC is ranked beneath the faithfulness
constraint, EDGE INTEGRITY, the least unmarked output is preferable to the unmarked
ones. Therefore [məm1p2ərbəsar] emerges as the winner, not *[məm12ərbəsar]. This
ranking, EDGE INTEGRITY >> *NC, can thus account straightforwardly for why nasal
substitution does not occur in the environment of the prefix-prefix juncture.

 b) Nominal prefixes

/pəŋ1+p2ər+kasa/ NAS

ASS
*NC EDGE

INTEG
DEP-
IO

UNI

a. pəm12ərkasa * *
b. pəm1p2ərkasa *!

c. pəŋ1p2ərkasa *!

With a rule-based analysis, two rules, (1) nasal assimilation and (2) voiceless
obstruent deletion, would be applied to account for nasal and voiceless obstruent
clusters. These two rules have to be applied in order, in that the nasal assimilation rule

124 S.R. Syed Jaafar

must precede the voiceless obstruent deletion rule. It is assumed that the same rules
have also been applied to explain nasal and voiceless obstruent clusters in multiple
prefixation, since there is a nasal and voiceless obstruent cluster. I illustrate how the
rules apply:

 Input: /pəŋ+pər+badan+an/
(1) Nasal Assimilation: pəm+pər+badan+an
(2) Voiceless Obstruent Deletion: pəm+ər+badan+an
 Output: [pə.mər.bada.nan]

The above derivation shows that by applying the same rules, in order, to nominal
multiple prefixes /pəŋ+pər/, the correct output is obtained. However, if this method of
analysis were to be applied to another type of data, as we have in 145(b) for verbal
prefixes /məŋ+pər/, we would instead get an incorrect output, as the following
derivation shows:

 Input: /məŋ+pər+kuat+kan/
(1) Nasal Assimilation: məm+pər+kuwat+kan
(2) Voiceless Obstruent Deletion: məm+ər+kuwat+kan
 Output: *[mə.mər.kuwat.kan]

The above derivation clearly shows that the two rules, taken in order, fail to account
for /məŋ+pər/. From the above derivation we derive an output with nasal substitution.
This is incorrect since /məŋ+pər/ does not undergo nasal substitution.

5 Conclusions

The above discussion has presented some important points about the grammar of
Malay. As we saw, nasal and voiceless obstruent clusters are not entirely prohibited in
Malay. Nasal and voiceless obstruent clusters are disfavoured in the language. This
can be seen in the analysis of single prefixation, where words in the native group obey
*NC – the constraint which bans the clusters from occurring – while in the remaining
groups, monosyllabic foreign and undeleted voiceless plosive in loanwords do not.

On the other hand, nasal and voiceless obstruent clusters at the prefix-prefix
juncture are not resolved by nasal substitution. The clusters at this morphological
boundary are permitted to emerge in surface representation as the edges of a
morphological word are preserved by the faithfulness constraint called EDGE-
INTEGRITY. However, as we saw, nasal substitution applies to nominal prefixes. In
the above analysis, it is clearly shown that OT offers a much better solution to
handling all the problems in both single and multiple prefixes, as opposed to any other
model.

Those phonological processes occurring in Malay prefixation clearly show that
Malay has co-existent grammars. As a result of transformation and innovation, Malay
allows nasal and voiceless obstruent clusters in the language, as occurring in foreign
words, next to an absence of nasal and voiceless obstruent clusters in native words.

 Is Malay Grammar Uniform? A Constraint-Based Analysis 125

References

1. Ahmad, Z.: Fonologi generatif: teori dan penerapan. Institute of Language and Literature,
Kuala Lumpur (1993)

2. Boersma, P.: Typology and acquisition in functional and arbitrary phonology. Ms.
University of Amsterdam (1998)

3. Hassan, A.: The morphology of Malay. Institute of Language and Literature, Kuala
Lumpur (1974)

4. Inkelas, S., Zoll, C.: Is grammar dependence real? A comparison between cophonological
and indexed constraint approaches to morphologically conditioned phonology.
Linguistics 45, 133–171 (2007)

5. Ito, J., Mester, A.: The phonological lexicon. In: Tsujimura, N. (ed.) The Handbook of
Japanese Linguistics. Oxford Blackwell (1999)

6. Jun, J.: Perceptual and articulator factors in place assimilation: an Optimality theoretic
approach. Doctoral dissertation. UCLA, Los Angelas (1995)

7. Kang, E.: Edge integrity and the syllable structure in Korea. In: The Proceedings of the
16th Pacific-Asia of Language. Informations and Computation. The Society of Korean
Information Society, Seoul (2002)

8. Karim, N.S., Onn, F., Musa, H., Mahmood, A.H.: Tatabahasa dewan, 2nd edn. perkataan.
Institute of Language and Literature, Kuala Lumpur (1989)

9. Karim, N.S., Onn, F., Musa, H., Mahmood, A.H.: Tatabahasa dewan. Institute of
Language and Literature, Kuala Lumpur (1994)

10. Karim, N.S.: Malay grammar for academics and professionals. Institute of Language and
Litrature, Kuala Lumpur (1995)

11. Koh, B.B.: Pengajaran bahasa Malaysia. Utusan Publications & Distributors Sdn. Bhd,
Kuala Lumpur (1981)

12. McCarthy, J.J., Prince, A.S.: Faithfulness and Identity in Prosodic Morphology. In: Kager,
R., van der Hulst, H., Zonneveld, W. (eds.), pp. 218–384 (1999)

13. Omar, A.: Nahu Melayu mutakhir, 2nd edn. Institute of Language and Literature, Kuala
Lumpur (1986)

14. Othman, A.: Imbuhan me- dan pentingnya dalam pengajaran tatabahasa bahasa Melayu.
Institute of Language and Literature (1983)

15. Padgett, J.: Partial class behaviour and nasal place assimilation. In: Proceedings of the
Arizona Phonology Conference: Workshop on Features in Optimality Theory. Coyote
Working Papers. University of Arizona Department of Linguistics, Tuscon (1995)

16. Pater, J.: Austronesian nasal substitution revisited. In: Lombardi, L. (ed.) Segmental
Phonology in Optimality Theory: Constraints and Representations, pp. 159–182.
Cambridge University Press (2001)

17. Prince, A., Smolensky, P.: Optimality theory: constraint interaction in generative grammar.
Available on Rutgers Optimality Archive, ROA-537 (1993)

18. Jaafar, S., Raihan, S.: Newcastle Working Papers in Linguistics, Newcastle University,
vol. 16 (2010)

Completeness of Full Lambek Calculus

for Syntactic Concept Lattices

Christian Wurm

Fakultät für Linguistik und Literaturwissenschaften,
CITEC Universität Bielefeld
cwurm@uni-bielefeld.de

Abstract. Syntactic concept lattices are residuated structures which
arise from the distributional analysis of a language. We show that these
structures form a complete class of models with respect to the logic FL⊥;
furthermore, its reducts are complete with respect to FL and L1.

1 Introduction

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [3] has shown how these lattices can
be enriched with a monoid structure to form residuated lattices. This makes it
natural to ask whether they are an appropriate model for some substructural
logics. Natural candidates are L1, the well-studied Lambek calculus (introduced
in [11]) with the extension that it allows conclusions from empty premises, and
its well-known conservative extensions FL and FL⊥ (see [8]).

We give a proof of completeness of FL⊥ for the class of residuated concept
lattices for any language. Our proof will be constructed on top of well-known
completeness results for the class of residuated lattices. We will show that any
residuated lattice can be embedded into a syntactic concept lattice. So if an
inequation fails in a residuated lattice, it also fails in the image. As corollaries,
we get the completeness of syntactic concept lattice reducts for L1 and FL.

2 Residuated Syntactic Concept Lattices

2.1 Equivalences and Concepts

Syntactic concept lattices originally arose in the structuralist approach to syntax,
back when syntacticians tried to capture syntactic structures purely in terms of
distributions of strings1 (see, e.g. [9]). An obvious way to do so is by partition-
ing strings/substrings into equivalence classes : we say that two strings w, v are
equivalent in a language L ⊆ Σ∗, in symbols

1 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 126–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 127

(1) w ∼0
L v iff for all x ∈ Σ∗, wx ∈ L⇔ vx ∈ L.

This defines the well-known Nerode-equivalence. We can use a richer equivalence
relation, by considering not only left contexts, but also right contexts:

(2) w ∼1
L v iff for all x, y ∈ Σ∗, xwy ∈ L⇔ xvy ∈ L.

Of course, this can be arbitrarily iterated for tuples of strings. The problem with
equivalence classes is that they are too restrictive for many purposes: assume
we want to induce our grammar on the basis of a given dataset; then it is
quite improbable that we get the equivalence classes we would usually desire
as linguists. And even if we have an unlimited supply of examples, it seems
unrealistic to describe our grammar on the basis of equivalence classes only:
there might be constructions, collocations, idioms which ruin equivalences which
we would intuitively consider to be adequate.

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly resolves the difficulties we have described above.

2.2 Syntactic Concepts: Definitions

For a general introduction to lattices, see [6]; for background on residuated lat-
tices, see [8]. Syntactic concept lattices form a particular case of what is well-
known as formal concept lattice (or formal concept analysis) in computer science.
In linguistics, they have been introduced in [16]. They were brought back to at-
tention and enriched with residuation in [3], [4], as they turn out to be useful
representations for language learning. In this section, we follow the presentation
given in [3].

Given a languageL ⊆ Σ∗, we define two maps: a map � : ℘(Σ∗)→ ℘(Σ∗×Σ∗),
and : ℘(Σ∗ ×Σ∗)→ ℘(Σ∗), which are defined as follows:

(3) for M ⊆ Σ∗, M� := {(x, y) : ∀w ∈M,xwy ∈ L};

and dually

(4) for C ⊆ Σ∗ ×Σ∗, C� := {x : ∀(v, w) ∈ C, vxw ∈ L}.

That is, a set of strings is mapped to the set of contexts, in which all of its
elements can occur. The dual function maps a set of contexts to the set of
strings, which can occur in all of them. Obviously, and � are only defined with
respect to a given language L, otherwise they are meaningless. As long as it
is clear of which language (if any concrete language) we are speaking, we will
omit however any reference to it. For a set of contexts C, C� can be thought
of as an equivalence class with respect to the contexts in C; but not in general:
there might be elements in C� which can occur in a context (v, w) /∈ C (and
conversely).

The two compositions of the maps, � and �, form a closure operator on
subsets of Σ∗ ×Σ∗ and Σ∗, respectively, that is:

128 C. Wurm

1. M ⊆M��,
2. M�� =M����,
3. M ⊆ N ⇒M�� ⊆ N��,

for M,N ⊆ Σ∗. The same holds for contexts, where we simply exchange the
order of the mappings, and use subsets of Σ∗×Σ∗. We say a set M is closed if
M�� = M . The closure operator � gives rise to a lattice LS := 〈BS ,≤〉, where
the elements of BS are the closed sets, and ≤ is interpreted as ⊆. The same can
be done with the set of closed contexts. Given these two lattices, � and make
up a Galois connection between the two:

1. M ≤ N ⇔M� ≥ N�, and
2. C ≤ D ⇔ C� ≥ D�.

Furthermore, for LS the lattice of closed subsets of strings, LC the lattice of
contexts, it is easy to show that LS

∼= L∂
C , where by [−]∂ we denote the dual

of a lattice, that is, the same lattice with its order relation inverted; and by
∼= we denote that there is an isomorphism between two structures. Therefore,
any statement on the one lattice is by duality a statement on the other. Conse-
quently, we can directly conceive of the two as a single lattice, whose elements
are syntactic concepts:

Definition 1. A syntactic concept A is an (ordered) pair, consisting of a closed
set of strings, and a closed set of contexts, written A = 〈S,C〉, such that S� = C
and C� = S.

Note also that for any set of strings S and contexts C, S� = S��� and C� = C���.
Therefore, any set M of strings gives rise to a concept 〈M��,M�〉, and any set
of C contexts to a concept 〈C�, C��〉. Therefore, we denote the concept which is
induced by a set M , regardless of whether it is a set of strings or contexts, by
C(M). We speak of the extent of a concept A as the set of strings it contains,
which we denote by SA; the intent of A is the set of contexts it contains, denoted
by CA. For example, given a language L, we have SC((ε,ε)) = L, as all and only
the strings in L can occur in L in the context (ε, ε).

We define the partial order ≤ on concepts by

(5) 〈S1, C1〉 ≤ 〈S2, C2〉 ⇐⇒ S1 ⊆ S2;

which gives rise to the syntactic concept lattice L:

Definition 2. The lattice of concepts of a language L, L(L) = 〈B,∧,∨〉, with
the partial order ⊆, is called the syntactic concept lattice, where � = C(Σ∗),
⊥= C(Σ∗×Σ∗), and for 〈Si, Ci〉, 〈Sj , Cj〉 ∈ B, 〈Si, Ci〉∧〈Sj , Cj〉 = 〈Si∩Sj , (Ci∪
Cj)

��〉, and ∨ as 〈(Si ∪ Sj)
��, Ci ∩Cj〉.

It is easy to verify that this forms a complete lattice. Note the close connection
between intersection of stringsets and union of context sets, and vice versa.
Obviously, L ∼= LS , which we defined before.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 129

2.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition,
we can also give it the structure of a monoid: for concepts 〈S1, C1〉, 〈S2, C2〉, we
define:

(6) 〈S1, C1〉 ◦ 〈S2, C2〉 = 〈(S1S2)
��, (S1S2)

�〉,

where S1S2 = {xy : x ∈ S1, y ∈ S2}. Obviously, the result is a concept. ′◦′ is
associative on concepts:

(7) for X,Y, Z ∈ B, X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z.

This follows from the fact that [−]�� is a nucleus, that is, it is a closure operator
and in addition it satisfies

(8) S��T �� ⊆ (ST)��.

Using this property and the associativity of string concatenation, the result easily
follows. Furthermore, it is easy to see that the neutral element of the monoid is
C(ε). This monoid structure respects the partial order of the lattice, that is:

Lemma 3. For concepts X,Y, Z,W ∈ B, if X ≤ Y , then W ◦X◦Z ≤W ◦Y ◦Z.

We can extend the operation ◦ to the contexts of concepts:

(9) (x, y) ◦ (w, z) = (xw, zy).

This way, we still have f ◦ (g ◦ h) = (f ◦ g) ◦ h for singleton contexts f, g, h. The
operation can be extended to sets in the natural way, preserving associativity.
For example, C ◦(ε, S) = {(x, ay) : (x, y) ∈ C, a ∈ S}. We will use this as follows:

Definition 4. Let X = 〈SX , CX〉, Y = 〈SY , CY 〉 be concepts. We define the
right residual X/Y := C(C1◦(ε, S2)), and the left residual Y \X := C(C1◦(S2, ε)).

For the closed sets of strings S, T , define S/T := {w : for all v ∈ T,wv ∈ S}.
We then have SX/SY = SX/Y . So residuals are unique and satisfy the following
lemma:

Lemma 5. For X,Y, Z ∈ B, we have Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

For a proof, see [3]. This shows that the syntactic concept lattice can be en-
riched to a residuated lattice (see the definition below, or check the references).
Note that every language, whether computable or not, has a syntactic concept
lattice. An important question is whether it is finite or not. This question can
be answered in the following way.

Proposition 6. The syntactic concept lattice for a language L is finite if and
only if L is regular.

130 C. Wurm

This is a rather immediate consequence of the Myhill-Nerode theorem. A short
note is in order about finite/infinite alphabets. Later on, we will embed residu-
ated monoids/lattices into syntactic concept lattices. If these algebras have an
infinite domain, we will need an infinite alphabet for the construction of the
corresponding language; and so we will in general need languages over infinite
alphabets. In case the domain of the algebra is countable, we can encode its
letters with (finite) strings over a finite alphabet; if it is uncountable, however,
this does not work anymore. So in the sequel, by a language we mean a set of
finite strings over some alphabet, regardless of whether it is finite, countable or
uncountable.

This is of course unsatisfactory, as for us the notion “language” implies the
finiteness of the alphabet. We can yield completeness results for languages over
finite alphabets in two ways: 1. we use the Lindenbaum-Tarski construction to
construct the counter-model, which then results in a countable model, whose
domain we can encode in a finite alphabet. 2. there is an even simpler solution
using the finite model property of L1, FL and FL⊥, which says that for each
underivable sequent of the logic, there is a finite model in which it does not hold.
We will use this second solution.2

In the sequel, we will denote by SCL the class of all syntactic concept lattices,
that is, the class of all lattices of the form L(L) for some language L, without
any further requirement regarding L itself except the ones stated above.

2.4 The Linguistic Order

Syntactic concepts are related to an order, which will have some importance in
the sequel. Given a language L ⊆ Σ∗, we write w ≤L v iff xvy ∈ L→ xwy ∈ L.
We call ≤L the linguistic order. Note that this is a pre-order, as from w ≤L v
and v ≤L w follows w ∼L v, where ∼L is substitutional equivalence (we denoted
this above as ∼1

L), but not equality. We can however think of ≤L as a partial
order if we define it over [Σ∗]∼L , that is, the set of L-equivalence classes rather
than the set of strings. As is easy to see, either way ≤L respects concatenation of
strings. This way, a language L ⊆ Σ∗ defines a preordered monoid (Σ∗,≤L, ·, ε).

We say a set (of strings) W is downward closed (with respect to ≤L) if
from w ∈W and v ≤L w it follows that v ∈W .

Lemma 7. Given a language L ⊆ Σ∗ and a set of strings W ⊆ Σ∗, if W =
W ��, then W is downward closed with respect to ≤L.

Proof. Assume W = W ��, v ≤L w, w ∈ W . We know that for all (a, b) ∈ W �,
awb ∈ L. By v ≤L w it follows that also avb ∈ L if awb ∈ L. Consequently,
v ∈ W ��, and so W �� is downward closed. �
The converse implication does not hold, that is: not every downward closed
set is closed under [−]��. This is because the [−]��-closure considers only the
L-contexts which are common to all strings in W .

2 Thanks to an anonymous reviewer for pointing this out to me.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 131

3 Lambek Calculus and Extensions

3.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [11]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let
Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest set
such that:

1. Pr ⊆ TpC(Pr).

2. if α, β ∈ TpC(Pr), � ∈ C, then α � β ∈ TpC(Pr).

If there is no danger of confusion regarding the primitive types and construc-
tors, we also simply write Tp for TpC(Pr). We now present the inference rules
corresponding to these constructors. We call an inference of the form Γ α a
sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the set of all (possi-
bly empty) sequences over Tp, which are concatenated by ′,′ (keep in mind the
difference between sequents, which have the form Γ α, and sequences like Γ ,
which are in Tp∗).

With one exception, rules of inference in our logics are not given in the form
of sequents Γ α, but rather as rules to derive new sequents from given ones.
In general, uppercase Greek letters range as variables over sequences of types.
In the inference rules for L, premises of ′ ′ (that is, left hand sides of sequents)
must be non-empty; in L1 they can be empty as well; everything else is equal. In
FL and FL⊥ we also allow for empty sequents. Lowercase Greek letters range
over single types. Below, we present the standard rules of the Lambek calculus
L / L1, with one axiom schema and several (meta-)rules to derive new sequents
from given ones.

(ax) α α

(I− /)

Γ, α β
Γ β/α (I− \)

α, Γ β
Γ α\β

(/− I)

Δ, β,Θ γ Γ α
Δ, β/α, Γ,Θ γ (\ − I)

Δ, β,Θ γ Γ α
Δ, Γ, α\β,Θ γ

(• − I)

Δ,α, β, Γ γ
Δ, α • β, Γ γ (I− •)

Δ α Γ β
Δ, Γ α • β

These are the standard rules of L / L1 (roughly as in [11]). We have rules
to introduce either slash and ′•′ both on the right hand side of and on the

132 C. Wurm

left hand side of . We will now add two additional connectives, which are well-
known from structural logics, namely ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [12], and have been
subsequently studied by [10].

(∧ − I 1)

Γ, α,Δ γ
Γ, α ∧ β,Δ γ (∧ − I 2)

Γ, β,Δ γ
Γ, α ∧ β,Δ γ

(I− ∧)
Γ α Γ β
Γ α ∧ β

(∨ − I)

Γ, α,Δ γ Γ, β,Δ γ
Γ, α ∨ β,Δ γ

(I− ∨ 1)
Γ α

Γ α ∨ β (I− ∨ 2)

Γ β
Γ α ∨ β

(1− I)

Γ,Δ α
Γ, 1, Δ α (I− 1) 1

This gives us the logic FL. Note that this slightly deviates from standard ter-
minology, because usually, FL has an additional constant 0. In our formulation,
0 and 1 coincide. In order to have logical counterparts of the bounded lattice
elements � and ⊥, we introduce two logical constants, which are denoted by the
same symbol.3

(⊥ −I) Γ,⊥ Δ α (I−�) Γ �

This gives us the calculus FL⊥. From a logical point of view, all these extensions
of L are quite well-behaved: they are conservative, and also allow us to preserve
the important result of [11], namely admissibility of the cut-rule in L:

(cut)

Δ, β,Θ α Γ β
Δ, Γ,Θ α

We say that a sequent Γ α is derivable in a calculus L or an extension, if it
can be derived by the axiom and the rules of inference; we then write �L Γ α,
�L1 Γ α, �FL Γ α, etc., depending on which calculus we use.

3 Whereas L and L1 are equally powerful in the sense of languages which are recog-
nizable, [10] shows that FL is considerably more powerful than L: whereas L only
recognizes context-free languages by the classical result of [15], FL can recognize any
finite intersection of context-free languages. We only briefly mention this, because
we have no space to make precise what it means for a calculus to recognize a class
of languages.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 133

3.2 The Semantics of L1, FL and FL⊥

The standard model for L is the class of residuated semigroups. We will not
consider L in the sequel, as there are some additional problems if we want to
interpret L in syntactic concept lattices: there is nothing in L corresponding
to the unit element, but we cannot just do away with ε in syntactic concept
lattices without some complications. The standard model for L1 is the class of
residuated monoids. These are structures (M, ·, 1, \, /,≤), where (M, ·, 1) is a
monoid, (M,≤) is a partial order, and ·, /, \ satisfy the law of residuation: for
m,n, o ∈M ,

(10) m ≤ o/n⇔ m · n ≤ o⇔ n ≤ m\o.

Note that this implies that · respects the order ≤. The standard model for FL
is the class of residuated lattices, and for FL⊥, the class of bounded residuated
lattices. A residuated lattice is an algebraic structure 〈M, ·,∨,∧, \, /, 1〉, where
in addition to the previous requirements, (M,∨,∧) is a lattice; the lattice order
≤ need not be stated, as it can be induced by ∨ or ∧: for a, b ∈ M , a ≤
b is a shorthand for a ∨ b = b. A bounded residuated lattice is a structure
〈M, ·,∨,∧, \, /, 1,�,⊥〉, where 〈M, ·,∨,∧, \, /, 1〉 is a residuated lattice, � is the
maximal element of the lattice order ≤ and ⊥ is its minimal element.

For a general introduction see [8]. We will give definitions only once for each
operator; we can do so because each definition for a given connector is valid for
all classes in which it is present.

We call the class of residuated semigroups RS, the class of residuated monoids
RM , the class of residuated lattices RL; the class of bounded residuated lattices
RL⊥. We now give a semantics for the calculi above. We start with an interpre-
tation σ which interprets elements in Pr, and extend σ to σ by defining it induc-
tively over our type constructors, which is for now the set C := {/, \, •,∨,∧}.
Assignment goes as follows, for α, β ∈ TpC(Pr):

1. σ(α) = σ(α) ∈M , if α ∈ Pr
2. σ(�) = �
3. σ(⊥) =⊥
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that the constructors on the left-hand side and on the right-hand side of
the definition look identical (with the exception of • and ·), but they are not: on
the left-hand side, they are type constructors, on the right hand side, they are
operators of a residuated lattice. The same holds for the constants �,⊥, 1.

This is how we interpret the types of our logic. What we want to interpret
next are the sequents of the form Γ α. We say that a sequent R = γ1, ..., γi α

134 C. Wurm

is true in a model M under assignment σ, in symbols: (M, σ) |= γ1, ..., γi α, if
and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is, we interpret the ′,′, which
denotes concatenation in sequents, as · in the model, and as ≤. In the sequel,
for Γ a sequence of types, we will often write σ(Γ) as an abbreviation, where we
leave the former translation implicit. For the case of theorems, that is, derivable
sequents with no antecedent, we have the following convention: (M, σ) |= α
iff 1 ≤ σ(α) in M, where 1 is the unit element of M. Note that this case does
not arise in L.

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi α,
if for all M ∈ C and all assignments σ, (M, σ) |= γ1, ...γi α.

4 Completeness: Preliminaries

There are a number of completeness results for the logics we have considered
here. We will consider the most general ones, which will be important in the
sequel.

Theorem 8. (Buszkowski) For the class of residuated semigroups RS, RS |=
Γ α if and only if �L Γ α. For the class of residuated monoids RM ,
RM |= Γ α if and only if �L1 Γ α.

Theorem 9. For the class RL of residuated lattices, RL |= Γ α if and only
if �FL Γ α. For the class RL⊥ of bounded residuated lattices, RL⊥ |= Γ α
if and only if �FL⊥ Γ α.

For reference on theorem 8, see [1], [2]. For theorem 9, see [8]. The proofs for the
above completeness theorems usually proceed via the Lindenbaum-Tarski con-
struction: we interpret primitive types as atomic terms modulo mutual derivabil-
ity, and define σ(α) ≤ σ(β) iff α β. Then we can perform an induction over
constructors to get the same for arbitrary formulas/terms. So there are quite
simple completeness proofs for the general case.

What is much harder to obtain is completeness in the finite case, usually
referred to as finite model property. A logic L has finite model property if
from the fact that a sequent Γ α is not provable in L, it follows that there is
a finite model M and an assignment σ such that (M, σ) �|= Γ α.

Theorem 10. 1. L1 has finite model property.
2. FL has finite model property.
3. FL⊥ has finite model property.

For the first claim, consider [7]; the second and third has been established by
[14]. We want to establish soundness and completeness of the calculi with respect
to the class of syntactic concept lattices and their reducts. The latter results are
crucial to show that completeness holds also if we restrict ourselves to languages
over finite alphabets. First we see that our calculus is sound with respect to the
model:

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 135

Theorem 11. (Soundness) If �FL⊥ Γ α, then for the class of syntactic con-
cept lattices SCL, we have SCL |= Γ α.

This actually follows from soundness direction of theorem 9, because SCL is just
a particular class of bounded residuated lattices. As L,L1,FL are fragments of
FL⊥, we get the same result for L,L1 and FL, regarding the sequents which
contain only the operators which have a counterpart in the logic. What is much
harder to obtain is completeness.

Theorem 12. (Completeness) If SCL |= Γ α, then �FL⊥ Γ α.

Proof idea: our proof of completeness for the class of syntactic concept lattices
is based on the completeness result for the class RL⊥. The idea of the proof is
quite simple: starting from the completeness of FL⊥ for the class of bounded
residuated lattices, we show that each residuated lattice can be isomorphically
embedded into a syntactic concept lattice. So let B be a residuated lattice and L
a syntactic concept lattice, then from the fact that h : B → L is an isomorphic
embedding, we can conclude that if (B, σ) �|= Γ α, then (L, h ◦ σ) �|= Γ α.
This in turn means that if there is a residuated lattice, where a certain inequation
does not hold, then there is a syntactic concept lattice for some language where
it does not hold either. This allows us to extend the completeness result from the
general class of bounded residuated lattices, which is obtained by contraposition,
to the class of residuated concept lattices. The finite model property of the
calculi allows us to assume that the countermodels are finite; so we can conclude
that FL⊥ is complete with respect to the class of syntactic concept lattices of
languages over finite alphabets.

The next section will be devoted to presenting the embedding and to show
why it does the job as required.

5 Proof of the Main Theorem

5.1 Isomorphic Embedding in Syntactic Concept Lattices

Let B = (B,∨,∧, /, \, ·, 1,�,⊥) be a bounded residuated lattice. We denote the
partial order of B by ≤B. Recall that different terms over B can denote the
same element of B. To avoid confusion, we denote this by the equality =B. That
means, for terms s, t over B, s =B t states that s, t denote the same element
of B.

Define Σ := {b, b : b ∈ B}. We define a language LB ⊆ Σ∗ as the set of strings
LB := {b1b2...bnb : b1 · b2 · ... · bn ≤B b}. For a string w = b1...bn ∈ B∗, by w• we
denote the term b1 · ... · bn.

Note that we now have an ambiguity as to whether a certain b ∈ B is a letter of
Σ or an element of the lattice. We could have generally avoided this ambiguity at
the price of complicating notation; but we rather try to avoid the ambiguity in all

136 C. Wurm

particular statements, by using ≤B or ≤L, etc. Importantly, the non-atomic
terms over the lattice B are not part of the alphabet Σ, only the elements of
B which these terms denote are in Σ. So we have to take care to not read the
terms as syntactic objects of LB: whereas a term t will not occur in LB unless
it is an atomic term, the element it denotes does occur in LB for any term t.

We define a map γ : ℘(B∗) → ℘(Σ∗) by γ(X) = (X)��, where [−]�� is the
syntactic concept closure with respect to LB. As is easy to see, γ is a closure
operator, as [−]�� is a closure, and we have γ(b1)γ(b2) ≤ γ(b1b2), where by the
concatenation of two sets we simply mean the concatenation of their elements,
that is, VW := {ab : a ∈ V, b ∈ W}.4 As we have said, a map which has these
properties is called nuclear.

A nuclear map gives rise to what is called the nuclear image of ℘(B∗), the
lattice 〈γ[℘(B∗)],∩,∪γ , ◦γ , /, \, γ(�), γ(⊥)〉, which we will call Q(B). From the
fact that γ is nuclear, it follows that Q(B) is a complete residuated lattice (see
[8],p.174), where X ∪γ Y := γ(X ∪ Y), X ◦γ Y := γ(X · Y). Furthermore, Q(B)
is bounded by γ(�) = B∗5 and γ(⊥) = {⊥}, as ⊥ is contained in any γ-closed
set.

It is easy to see that Q(B) can be isomorphically embedded into the syntactic
concept lattice of LB, which we call L(LB): in fact, Q(B) is isomorphic to the
fragment of L(LB) which consists of all concepts from strings in B∗. It is easy
to see that in L(LB) these are closed under meet, join and concatenation; but
note that this does not follow from general considerations, and is rather a con-
sequence of the particular distributional structure of LB. Consequently, we have
an isomorphic embedding C : Q(B) → L(LB) (as we defined it above), which
simply maps closed sets of strings onto their concepts.

What we still need is an appropriate embedding from B into Q(B). The next
lemma will be very helpful to understand what is to follow:

Lemma 13. Let ≤L be the linguistic order of LB, a, b ∈ B. Then a ≤B b ⇐⇒
a ≤L b.

Proof. ⇒ Assume a ≤B b. Then if xby ∈ LB (we know that y �= ε), then it is
easy to see that xay ∈ LB, by the definition of LB: each word of LB corresponds
to an inequation which holds in B, and the inequation remains valid under the
substitution of a for b. Therefore, a ≤L b.
⇐ Assume a ≤L b. As we have b ≤B b, we have bb ∈ LB. By assumption, we

then have ab ∈ LB. This can only be the case if a ≤B b. �
We define a map h : B → Q(B) (equivalently, h : B → γ[℘(B∗)]), where
h(b) = {w ∈ Σ∗ : wb ∈ LB}. This is clearly a γ-closed set (or put differently:
extent of a syntactic concept of LB), as it equals the closed set (ε, b)�.

In the sequel, we will often use h with terms instead of atoms. Of course, here
the same applies as before: h is not defined over terms, it only maps the elements
denoted by the terms. A crucial lemma is the following:

4 The latter inequation follows from our above considerations on syntactic concepts.
5 We assume that
 ∈ B!

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 137

Lemma 14. For w ∈ Σ∗, b ∈ B, the following three are equivalent:

1. w ∈ h(b)
2. w• ≤B b
3. w ≤L b

Proof. 2.⇒ 1.: if w• ≤B b, then wb ∈ LB, and so w ∈ h(b).
1. ⇒ 2.: assume w ∈ h(b). Then we have wb ∈ LB. But wb ∈ LB only if

w• ≤B b, so the implication follows.
The biimplication 2. ⇔ 3. is only a slight generalization of the preceding

lemma. We write w ∼L v as a shorthand for w≤Lv & v≤Lw (recall that ≤L is a
pre-order rather than a partial order). So assume that for a, b, c ∈ B, a · b =B c.
From this it follows that x·(a·b)·y ≤B z if and only if x·c·y ≤B z. Consequently,
ab ∼L c. This can be extended to arbitrary terms over B and ·: for any w ∈ B∗,
we have w ∼L w•. Consequently, we have w• ≤B b if and only if w• ≤L b (lemma
13) if and only if w ≤L b. �
We will now show that h defines a proper isomorphic embedding of B into the
nuclear image Q(B), which forms a fragment of the syntactic concept lattice of
LB.

Theorem 15. For each � ∈ {∧,∨, ·, /, \}, we have h(a)�γ h(b) = h(a�b), where
a � b denotes the unique element of B denoted by the term, and �γ denotes the
interpretation of � in the γ-image of ℘(B∗). This means that h is an isomorphic
embedding.

Proof. We proceed by cases:

Case 1 : � = ∧.
a) h(a) ∩ h(b) ⊇ h(a ∧ b). Assume that c ∈ h(a ∧ b). Then by lemma 14,

c ≤B (a ∧ b). Therefore, c ≤B a, b, and consequently c ≤L a, b. Therefore,
c ∈ h(a), c ∈ h(b), and thus c ∈ h(a) ∩ h(b).

b) h(a)∩h(b) ⊆ h(a∧b). Assume that c ∈ h(a)∩h(b). Then c ∈ h(a), c ∈ h(b);
consequently, c ≤B a, b (by lemma 14); consequently, c ≤ a ∧ b, and therefore
c ∈ h(a ∧ b).

Case 2 : � = ∨
a) h(a) ∪γ h(b) ⊇ h(a ∨ b): Assume that c ∈ h(a ∨ b). Then c ≤L a ∨ b.

We now show that a ∨ b ∈ h(a) ∪γ h(b): whenever wav ∈ LB, wbv ∈ LB,
then w(a ∨ b)v ∈ LB. Consequently, a ∨ b ∈ γ({a, b}) ⊆ h(a) ∪γ h(b). As γ-
closed sets are downward closed with respect to the linguistic order, we also
have c ∈ h(a) ∪γ h(b).

b) h(a)∪γh(b) ⊆ h(a∨b): By lemma 14, we know that for all x ∈ h(a), x ≤L a,
and for all y ∈ h(b), y ≤L b. Consequently, by lemma 14 we have z ≤L a ∨ b for
all z ∈ h(a) ∪γ h(b), and so h(a) ∪ h(b) ⊆ h(a ∨ b). As h(a ∨ b) is γ-closed, we
must also have h(a) ∪γ h(b) ⊆ h(a ∨ b) by order preservation of γ.

138 C. Wurm

Case 3 : � = ·.
Recall that we use a ∼L b as a shorthand for a≤Lb & b≤La, and that for

a, b, c ∈ B, from a · b =B c it follows that ab ∼L c. This means that we may
interchange the two arbitrarily in LB, and likewise when we talk about the map
h or any γ-closed sets.

a) h(a) ◦γ h(b) ⊇ h(a · b). Assume that c ∈ h(a · b). Then c ≤L a · b, and so
c ≤L ab. As h(a) ◦γ h(b) = γ(h(a)h(b)), we have ab ∈ h(a) ◦γ h(b), and as γ
closed sets are downward closed with respect to ≤L, we have c ∈ h(a) ◦γ h(b).

b) h(a) ◦γ h(b) ⊆ h(a · b). We know that for all x ∈ h(a), x ≤B a, and for all
y ∈ h(b), y ≤B b (lemma 14). Consequently, as it holds in any residuated lattice
that w ≤ y, x ≤ z ⇒ wx ≤ yz, we know that for all x ∈ h(a), y ∈ h(b), x · y ≤B

a · b, and so xy ≤L ab ∼L a · b. Consequently, we have h(a)h(b) ⊆ h(a · b). As
h(a · b) is closed under γ and γ preserves the inclusion order of sets, it follows
that h(a) ◦γ h(b) ⊆ h(a · b).

Case 4 : � = /
a) h(a)/h(b) ⊇ h(a/b). Assume c ∈ h(a/b); then c ≤L a/b. We show that

a/b ∈ h(a)/h(b). By definition we have that h(a)/h(b) is the largest element
such that (h(a)/h(b)) ◦γ h(b) ≤Q(B) h(a). As for all d ∈ h(b), d ≤L b, and
a/b · b ≤L a, a ∈ h(a), we have for all d ∈ h(b), a/b · d ≤L a, and therefore
a/b · d ∈ h(a). It follows that a/b ∈ h(a)/h(b), and consequently c ∈ h(a)/h(b).

b) h(a)/h(b) ⊆ h(a/b). We have b ∈ h(b) as the largest element with respect
to ≤L, and a/b is by definition the largest element such that a/b · b ≤B a. Fur-
thermore, as a is the largest element in h(a) with respect to ≤L, we must have
for all x ∈ h(a)/h(b), x ≤L a/b; and therefore, x ∈ h(a/b) by lemma 14.

Case 5 : � = \ is parallel to 4. �

5.2 Back to Completeness

We now return to the proof of the main theorem. Assume that ��FL⊥ Γ α.
Then by completeness and finite model property of FL⊥ for bounded residuated
lattices, there is a finite bounded residuated lattice B and assignment σ, such
that (B, σ) �|= Γ α, that is, in B we have σ(Γ) �≤ σ(α).

We now take the γ-image Q(B) and the embedding h, as we have described
them in the previous section. We have to show that (Q(B), h ◦ σ) �|= Γ α, that
is, we have h ◦ σ(Γ) �⊆ h ◦ σ(α), where by h ◦ σ we mean function composition,
such that we have h ◦ σ(γ1 • ... • γn) = h(σ(γ1)) · ... · h(σ(γn)).
Lemma 16. Let B be a (bounded) residuated lattice, s, t terms over B, and
Q(B), h as defined above. Then s ≤B t if and only if h(s) ⊆ h(t).

Actually, for the completeness theorem we would only need the only-if direction;
also, we might obtain this as a corollary to theorem 15. But as the proof is quite
simple, we show both directions for “completeness”.

Proof. If : Assume s ≤B t. Then if u ∈ h(s), we have u ≤B s (lemma 14). By
transitivity, u ≤B t, and therefore u ∈ h(t). Therefore, h(s) ⊆ h(t).

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 139

Only if : Assume h(s) ⊆ h(t). As for all u ∈ B, uu ∈ LB, we have s ∈ h(s).
Therefore, s ∈ h(t). And so, by lemma 14, s ≤B t. �
To complete the proof of the main theorem, there is one step missing, which is
quite straightforward: define LB for B as above. Every residuated lattice B can
be embedded into the γ-image Q(B) by a map h, such that if s �≤ t in B, then
h(s) �≤ h(t) in Q(B). We now have an isomorphic embedding C : Q(B)→ L(LB)
of Q(B) into the syntactic concept lattice of LB, which maps the γ closed sets
onto their concepts. We thus have the implication: if s �≤ t in B, then there is a
language LB such that C ◦h(s) �⊆ C ◦h(t), which is to say C ◦h(s) �≤L(LB) C ◦h(t).
Consequently, if ��FL⊥ Γ α, then there is a language LB over a finite alphabet,
such that (L(LB), C ◦ h ◦ σ) �|= Γ α. This completes the proof of the main
theorem.

6 Corollaries

An important feature of our proof is the following: let the logic L be a fragment
of FL⊥, such that FL⊥ is a conservative extension of L. We know that there
exist such fragments, as FL is a conservative extension of L1, and FL⊥ is a con-
servative extension of FL. L (and its fragments) do not satisfy this requirement,
and pose some difficulties, which we hope to address in further work.

The algebraic notion corresponding to a fragment in logic is the notion of a
reduct. A reduct of an algebra is the same algebra with only a proper subset of
connectives; the notion extends easily to classes. So let RED be a certain class of
reducts of RL⊥, such that for L a fragment of FL⊥, L is complete with respect
to RED . Then our proof of completeness regarding the class SCL of syntactic
concept lattices can be easily adapted to give a proof of the completeness of
a class of reducts of SCL with respect to L, which corresponds to RED . The
reason is that the crucial step, which is the embedding in theorem 15, is equally
valid for any subset of the operators {∨,∧, ·, /, \}. So the question whether a
reduct of SCL is complete with respect to a fragment L of FL⊥ reduces to the
question whether there is a strongly complete algebraic semantics for L, in the
sense we have specified above.

Now, let SCLL1 be the class of SCL reducts with {◦, /, \}, which specify a
unit, and SCLFL be the class of SCL reducts with operators {◦, /, \,∨,∧}, that
is, without the constants � and ⊥.

We get the following corollaries:

Corollary 17. The following biimplications hold:

1. SCLL1 |= Γ α if and only if �L1 Γ α;
2. SCLFL |= Γ α if and only if �FL Γ α.

The soundness part follows as a corollary from the soundness theorem 11; the
completeness direction can be shown by a simple modification of theorem 15 in
the completeness proof. By finite model property, we can again conclude that
the same holds if we restrict ourselves to syntactic concept lattices of languages
over finite alphabets.

140 C. Wurm

7 Conclusion and Further Work

We have shown strong completeness of the class of syntactic concept lattices for
languages over finite alphabets with respect to FL⊥ and some of its fragments.
Our main conclusion is that FL⊥, FL and L1 are the logics of syntactic concept
lattices. Apart from intrinsic mathematical interest, we think that the result
presented so far is mainly of preliminary importance for formal linguistic theory.
The reason is the following: the main purpose for using syntactic concept lattices
in a “post-structuralist” setting is learning; so one major interest is to get a
finite axiomatization for an infinite lattice. We hope our results will find some
application in this task, which is however beyond the scope of this paper.

A further interesting open question is the following6: syntactic concept lattices
can be extended in a very natural way (see for example [5],[13]). As extents of
syntactic concepts, we take subsets of Σ∗ × Σ∗ (instead of subsets of Σ∗), and
as intents, we take subsets of Σ∗ × Σ∗ × Σ∗ (instead of Σ∗ × Σ∗). Given a
language L ⊆ Σ∗, and a set of pairs of strings M ⊆ Σ∗ × Σ∗, we put M� :=
{(x, y, z) : ∀(a, b) ∈ M,xaybz ∈ L}; [−]� is defined inversely. Obviously, this
can be easily generalized to sets of arbitrary n, n + 1 tuples. Denote the class
of (generalized) syntactic concept lattices, where extents are sets of n-tuples,
intents sets of n+1-tuples, by SCLn. Now the question is: can our completeness
result be generalized from SCL (that is, SCL1) to SCLn for any n ∈ N?

We think the odds are good: all we need is a family of mappings hn : n ∈ N,
where every hn : SCL1 → SCLn+1 is an appropriate embedding of residuated
lattices. It might well be that a quite simple mapping will do the job, but we
have not found a simple way of verification for the general case. Therefore, we
leave this question open for further research.

Acknowledgements. I would like to thank the three anonymous reviewers for
many good comments and questions, and Professor Wojciech Buszkowski, who
gave me invaluable support in writing this paper.

References

1. Buszkowski, W.: Completeness results for Lambek syntactic calculus. Mathemati-
cal Logic Quarterly 32(1-5), 13–28 (1986)

2. Buszkowski, W.: Algebraic structures in categorial grammar. Theor. Comput.
Sci. 1998(1-2), 5–24 (1998)

3. Clark, A.: A learnable representation for syntax using residuated lattices. In: de
Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS (LNAI), vol. 5591,
pp. 183–198. Springer, Heidelberg (2011)

4. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38–51. Springer,
Heidelberg (2010)

5. Clark, A.: Logical grammars, logical theories. In: Béchet, D., Dikovsky, A. (eds.)
LACL 2012. LNCS, vol. 7351, pp. 1–20. Springer, Heidelberg (2012)

6 This question has been raised by one of the reviewers.

Completeness of Full Lambek Calculus for Syntactic Concept Lattices 141

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (1991)

7. Farulewski, M.: On Finite Models of the Lambek Calculus. Studia Logica 80(1),
63–74 (2005)

8. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier (2007)

9. Harris, Z.S.: Structural Linguistics. The University of Chicago Press (1963)
10. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal

of Logic, Language, and Information 1, 141–171 (1992)
11. Lambek, J.: The Mathematics of Sentence Structure. The American Mathematical

Monthly 65, 154–169 (1958)
12. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure

of Language and its Mathematical Aspects, pp. 166–178. American Mathematical
Society, Providence (1961)

13. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language and Information 20(1), 1–48 (2011)

14. Okada, M., Terui, K.: The finite model property for various fragments of intuition-
istic linear logic. J. Symb. Log. 64(2), 790–802 (1999)

15. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th An-
nual IEEE Symposium on Logic in Computer Science, Los Alamitos, California,
pp. 429–433. IEEE Computer Society Press (1993)

16. Sestier, A.: Contributions à une théorie ensembliste des classifications linguis-
tiques (Contributions to a set–theoretical theory of classifications). In: Actes du
Ier Congrès de l’AFCAL, Grenoble, pp. 293–305 (1960)

On the Expressivity of Optimality Theory
versus Ordered Rewrite Rules

Brian Buccola

Department of Linguistics, McGill University
brian.buccola@mail.mcgill.ca

Abstract. I prove that there are phonological patterns which are
expressible by ordered rewrite rules but not by any Optimality
Theoretic (OT) grammar whose constraint set contains only marked-
ness constraints and single–state faithfulness constraints, i.e. faithfulness
constraints that assign violation marks to pairs of single input–output
segments in correspondence, with no reference to other segments in the
input or output. The intention is to capture formally the widespread in-
tuition that certain opaque patterns, which are expressible by ordered
rewrite rules, are problematic for classic, or traditional, OT.

1 Introduction

Generative phonology takes the phonetic form of an utterance to be the sur-
face realization (or output) of an abstract, underlying phonological form (or
input). Natural languages therefore exhibit input–output patterns, which the
phonologist is tasked with describing in a formal, algorithmic way. Phonologists
have largely described these patterns using two types of grammar: (i) serial
rule grammars, e.g. as laid out in The Sound Patterns of English (SPE) [1],
in which an input is mapped serially to intermediate outputs and finally to a
terminal output via ordered, context–sensitive rewrite rules; and (ii) parallel
constraint grammars, e.g. as in Optimality Theory (OT) [2], in which an input
is mapped directly to that output which is optimal with respect to a set of ranked
constraints, with no intermediate mappings (i.e. everything happens
in parallel).

This paper addresses the following two questions: (i) Are there input–output
patterns that can be expressed by one type of grammar but not by the other,
and (ii) if so, are those patterns attested in natural language? The first is a
formal question about the classes of input–output relations expressible by the
two formalisms. The second is an empirical question that bears on whether
phonologists should favor one type of grammar over another on the basis of
empirical coverage.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 142–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 143

Under the assumption that a rule may not rewrite within that part of a string
which it has already rewritten,1 the patterns expressible by ordered rewrite rules
correspond exactly to the regular relations [3–5].2 Without any restrictions, the
patterns expressible by OT grammars include non–regular relations, i.e. patterns
that are inexpressible by ordered rewrite rules [6, 7].3

What is not known is whether every regular relation is expressible by some OT
grammar [10]. Put differently, the question is still open whether every pattern
expressible by ordered rewrite rules is expressible by some OT grammar.

Nevertheless, there is a widespread intuition that certain opaque phonolog-
ical patterns, which are expressible by ordered rewrite rules (hence, they are
regular), are problematic for classic [11], or traditional [10], OT grammars, con-
sisting of just two basic types of constraints (output markedness and input–
output faithfulness). However, to my knowledge, no one has yet formally proved
this claim. Such a proof could reach two possible conclusions: (i) there are reg-
ular relations that are completely inexpressible by classic OT grammars, or
(ii) all regular relations are expressible in principle by classic OT, albeit some-
times only with ad hoc, linguistically unmotivated, but formally sound
constraints.

In this paper I define classic OT grammars as OT grammars that contain
only markedness and single–state faithfulness constraints, i.e. faithfulness con-
straints that assign violation marks to pairs of single input–output segments
in correspondence, with no reference to other segments in the input or output.
These constraints include many, if not most, of the standard constraints proposed
in the OT phonology literature, e.g. Ident, Max, and Dep. I then prove
that there are regular relations that cannot be expressed by any such
OT grammar.

Section 2 reviews SPE–style and OT–style grammars, as well as the notion of
opacity. In section 3, I prove, using data from Canadian English, that there are
input–output patterns which are expressible by ordered rewrite rules but not by
any classic OT grammar, as defined here. In section 4, I discuss several other
cases of opacity that are likewise provably expressible by ordered rewrite rules
but not by classic OT grammars; and I discuss cases of opacity that seem, in
principle, to be expressible by classic OT grammars. Section 5 concludes.

1 Nowhere in this paper is this assumption violated. Henceforth, when I write “ordered
rewrite rules,” I mean rule–based grammars in which this assumption is in place.

2 The definition of a regular relation is not important for this paper; for details,
see [4].

3 Under certain assumptions, however, the patterns expressible by OT grammars lie
within the regular relations [8–10]. These assumptions are (i) that both the con-
straints and the function Gen mapping inputs to sets of output candidates are
regular, and (ii) that there is an upper bound on the number of violation marks
assigned by any constraint. Without either assumption, OT can describe
non–regular relations. I thank an anonymous referee for helping me to clarify these
points.

144 B. Buccola

2 Preliminaries

In this section I lay out the architectures of SPE–style, rule–based phonologies
and OT–style, constraint–based phonologies, and I explain the notion of phono-
logical opacity.4

2.1 Rule–Based Phonology

In an SPE–style, rule–based grammar, inputs are mapped to outputs via ordered,
context–sensitive rewrite rules of the form

A→ B / C D

read as, “A is rewritten as B whenever A occurs immediately after C and imme-
diately before D.”5 A is the focus of the rule, while C D is the environment.
The focus and environment together are called the input description. Under a
single such rule, an input like /CAD/ is mapped to the output [CBD].6 If a rule
does not effect any change from input to output, then it applies vacuously.

Since rules simply map strings to strings, it is possible for ordered rules to
interact in the following ways (adapted from [12]).7

Definition 1. R1 feeds R2 iff R1 creates part of R2’s input description.

Definition 2. R1 bleeds R2 iff R1 removes part of R2’s input description.

Consider, for example, the rule

R : aI → 2I / t

4 Many phonologists take features, rather than segments, to be phonological primitives.
That is, rules and constraints are assumed to target natural classes of segments,
rather than individual segments or arbitrary sets of segments. In principle, this means
that feature–based phonologies are expressively more restrictive than segment–based
ones. However, in this paper the distinction is immaterial: the patterns considered
here are expressible by feature–based rules (hence, also by segment–based rules), and
they are not expressible by segment–based constraints (hence, neither by feature–
based constraints). Accordingly, I assume that rules and constraints generally target
features, but in the proof in section 3, I allow constraints to target arbitrary (sets
of) segments, demonstrating that even with such added power, classic OT grammars
still cannot express the relevant patterns.

5 The more familiar notation in formal language theory is: CAD → CBD.
6 By convention, symbols between forward slashes are inputs (underlying forms), and

those between square brackets are terminal outputs (surface forms). I write non–
terminal, i.e. intermediate, outputs with no brackets at all. These conventions also
apply to OT inputs and output candidates.

7 Rather than creating (removing) part of R2’s input description, Baković [12] writes
that R1 “creates (removes) additional (potential) inputs” to R2. The two formula-
tions are equivalent. I prefer the former because it facilitates defining feeding and
bleeding on environment and focus (below).

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 145

where the vowel /aI/ before /t/ raises to [2I], and the rule

F : t, d → R / V V

where /t/ or /d/ between two vowels surfaces as a flap, [R]. If F is ordered before
R, then an input like /raIt@r/ is mapped by F to raIR@r, which R maps vacuously
to [raIR@r]. F bleeds R because if F were absent, then R would map /raIt@r/
to [r2It@r]. The application of F before R removes part of R’s input description
(t), so that R no longer applies non–vacuously.

Feeding and bleeding can both be further subcategorized (adapted from [13]).

Definition 3. R1 feeds onR2’s focus iff R1 feeds R2 by creating R2’s focus. R1

feeds on R2’s environment iff R1 feeds R2 by creating part of R2’s environment.

Definition 4. R1 bleeds on R2’s focus iff R1 bleeds R2 by removing R2’s fo-
cus. R1 bleeds on R2’s environment iff R1 bleeds R2 by removing part of R2’s
environment.

The example above, with F ordered before R, is one of bleeding on environment:
the change effected by F , i.e. mapping the /t/ in /raIt@r/ to [R], removes part of
R’s environment (t).

By convention, when I write that R1 “feeds (bleeds)” R2, it is implied that
R1 is ordered before R2, even though strictly speaking, feeding (bleeding), as
defined here, is independent of rule ordering. When a feeding (bleeding) rule is
ordered after the rule it feeds (bleeds), the following terms are used.

Definition 5. R1 counterfeeds (counterbleeds) R2 iff R1 both feeds (bleeds) and
is ordered after R2.

In the example above, if is ordered F after R, then F counterbleeds on R’s
environment.

These notions of rule interaction have been useful in characterizing phonologi-
cal opacity. Kiparsky [14, 15] was the first to identify the phenomenon of opacity,
defining it as follows, where “process” can be construed as a rewrite rule.

Definition 6. A process P of the form A → B / C D is opaque to the
extent that there are surface representations (outputs) of the form (i) A in the
environment C D, or (ii) B derived by P in environments other than C D.

The idea is that opaque phonological generalizations are (i) generalizations that
appear not to hold true of a surface form, or (ii) generalizations that are true of
a surface form, but the motivation for their application is obscured.

These two types of opacity are typically associated with counterfeeding and
counterbleeding rule ordering, respectively [11, 12, 16]. In counterfeeding, a later
rule creates part of the input description of an earlier rule, such that the earlier
rule seems not to have applied to the surface form, even though it matches the
rule’s input description. In counterbleeding, a later rule removes part of the input
description of an earlier rule, such that the earlier rule seems, on the surface, to
have applied without satisfying its input description.

146 B. Buccola

/raIt@r/ *aIt *VtV Id(low) Id(son)
a. raIt@r 1 1 0 0
b. r2It@r 0 1 1 0
c. raIR@r 0 0 0 1
d. r2IR@r 0 0 1 1

Fig. 1. An example OT tableau

For example, if rule F from above is ordered after R, giving rise to a coun-
terbleeding on environment rule interaction, then the input /raIt@r/ is mapped
by R to r2It@r, which F maps to [r2IR@r]. R is then opaque in the sense of (ii):
[2I] occurs in an environment other than t. In such a case, I will often abstract
away from the rules and say that the input–output pattern /raIt@r/ → [r2IR@r]
is opaque.

Although opacity is defined here in terms of rules, a natural question is
whether opaque input–output patterns like /raIt@r/ → [r2IR@r] are expressible
by other formalisms, like OT grammars. In the next section, I describe the ar-
chitecture of OT grammars, for which such patterns have been problematic.

2.2 Optimality Theoretic Phonology

In an OT grammar, an input like /raIt@r/ is first fed into a function Gen that
generates an infinite set of output candidates. In practice, every possible output is
a candidate. This set is then filtered down via a potentially infinite set of strictly,
totally ordered constraints until a unique output candidate remains. The entire
process can be visualized using an OT tableau.

For example, Fig. 1 presents a tableau with four output candidates for the in-
put /raIt@r/ and four constraints, ranked left to right from highest to lowest. The
process begins with the leftmost constraint, *aIt, which is an output–markedness
constraint that assigns a violation for each occurrence of the sequence [aIt] in
an output candidate. Candidate (a) thus incurs a violation of 1, while the other
candidates incur 0 violations; hence, candidate (a) is eliminated. The next con-
straint, *VtV, which assigns a violation mark for each intervocalic [t] in an out-
put candidate, eliminates candidate (b). Next, Ident–IO(low), an input–output
faithfulness constraint which penalizes each occurrence of a low vowel like /aI/
mapping to a non–low vowel like [2I], eliminates candidate (d). At this point,
only candidate (c) remains and is therefore the optimal output. The last con-
straint, Ident–IO(sonorant), which penalizes mapping a non–sonorant segment
like /t/ to a sonorant one like [R], effectively does no work here.

Note that in this tableau the opaque input–output pattern /raIt@r/ → [r2IR@r]
is not optimal. Moreover, the violations assigned to [r2IR@r] are a proper super-
set of those assigned to [raIR@r]. Consequently, no reranking of these particular
constraints can possibly make [r2IR@r] more optimal than [raIR@r]. This is the sort
of reasoning that underlies the intuition that opacity is problematic for OT.

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 147

I now give a formal characterization of OT grammars, following [8, 17]. If
inputs and output candidates are taken to be strings of symbols over Σ, then
Gen is a relation over Σ∗ × Σ∗: it pairs input strings with (sets of) output
candidate strings.8 An OT grammar can then be defined formally as follows.

Definition 7. An OT grammar is a tuple 〈Σ,Gen, C,>C〉, where Gen ⊆ Σ∗×
Σ∗; C is a set of functions from Gen to N; and >C is a strict, total order on C.

A relation >G over Gen defines optimality relative to two input–output pairs:
〈i, o〉 >G 〈i, o′〉 means that 〈i, o〉 is more optimal than 〈i, o′〉 in the OT grammar
G. In such a case, I will often write that o is more optimal than o′ with respect
to i (in G).

Definition 8. Given an OT grammar G = 〈Σ,Gen, C,>C〉, with 〈i, o〉, 〈i, o′〉
∈ Gen, 〈i, o〉 >G 〈i, o′〉 iff there is some cj ∈ C such that cj(〈i, o〉) < cj(〈i, o′〉),
and for each ck such that ck >C cj, ck(〈i, o〉) = ck(〈i, o′〉).

A single output candidate for some input is then optimal just in case it is more
optimal than every other candidate with respect to that input.

Definition 9. Given an OT grammar G = 〈Σ,Gen, C,>C〉, 〈i, o〉 ∈ Gen is
optimal in G iff for each 〈i, o′〉 ∈ Gen (o different from o′), 〈i, o〉 >G 〈i, o′〉.

Turning now to the constraint set, an OT constraint can be represented by a
weighted finite state transducer (FST) [7–9], called a finite state OT constraint.
This FST essentially “reads” or “processes” pairs of input–output strings, one
input–output symbol pair at a time, transitioning from state to state and as-
signing 0 or 1 violations to each pair of corresponding input–output symbols.
The symbol ε here denotes the empty string. (It should not be confused with the
IPA symbol E, which denotes an open–mid front vowel.)

Definition 10. A finite state OT constraint is a tuple 〈Q,Σ, δ, q0, F 〉, where:

1. Q is a non–empty set of states;
2. Σ is a set of symbols;
3. δ is a transition function from Q×Σε×Σε to {0, 1}×Q, where Σε = Σ∪{ε};
4. q0 ∈ Q is the unique start state;
5. F ⊆ Q is the non–empty set of final states.

The transition function δ takes in a triple 〈qj , i, o〉 consisting of some initial state
qj ∈ Q, an input symbol i ∈ Σε, and an output symbol o ∈ Σε and returns a
pair 〈n, qk〉 consisting of some number of violations n ∈ {0, 1} and some terminal
state qk ∈ Q. For ease of exposition, I will write members of δ as 〈qj , i, o, n, qk〉
instead of 〈〈qj , i, o〉, 〈n, qk〉〉 and say that δ assigns n violations to the pair i→ o
(on the transition from qj to qk).

8 Recall that Σ∗ denotes the set of all strings over the symbols in Σ, including the
empty string.

148 B. Buccola

id(low)0start

aI→2I (1)

other (0)

Fig. 2. A visualization of id(low)

*aIt0start *aIt1

• → other (0) • →aI (0) • →aI (0)

• → other (0); • →t (1)

Fig. 3. A visualization of *aIt

Consider, for example, the faithfulness constraint Ident–IO(low), which, to
repeat, penalizes each mapping of a low vowel like /aI/ to a non–low vowel
like [2I]. I assume that diphthongs like [aI] and [2I] are single units rather than
segments composed of two vowels. Formally, this means aI and 2I are each single
symbols in Σ. Ident–IO(low) can then be represented by the single–state FST

id(low) = 〈{id(low)0}, {aI, 2I, . . . }, δ, id(low)0, {id(low)0}〉

where δ assigns 1 to the pair aI→2I and 0 to every other pair. This FST is
conventionally visualized as in Fig. 2. Thus, an input–output pair like 〈raIt@r,
raIt@r〉 incurs 0 total violations, whereas 〈raIt@r, r2It@r〉 incurs 1 total violation.

A markedness constraint like *aIt, which penalizes each occurrence of the
sequence [aIt] in an output candidate, can be represented by the two–state FST

*aIt = 〈{*aIt0, *aIt1}, {aI, 2I, t, . . . }, δ, *aIt0, {*aIt0, *aIt1}〉

where δ assigns 1 whenever the sequence [aIt] occurs in an output, regardless of
the input, and 0 otherwise. This FST is visualized as in Fig. 3, where • stands
for any symbol from the symbol set (or the empty string).

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 149

Of note is that the violations assigned by a markedness FST are independent
of the input (hence the • on every transition). By contrast, the violations assigned
by a faithfulness FST depend on the input. This can be formalized as follows.9

Definition 11. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a markedness constraint iff it can be represented by a finite state constraint
〈Q,Σ, δ, q0, F 〉 such that, if 〈qj , α, β, 1, qk〉 ∈ δ, then for any γ ∈ Σε such that
〈qj , γ, β, n, qk〉 ∈ δ, it follows that n = 1. An FST that represents a markedness
constraint is a finite state markedness constraint.

Definition 12. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a faithfulness constraint iff it can be represented by a finite state constraint
〈Q,Σ, δ, q0, F 〉 such that 〈qj , α, β, 1, qk〉 ∈ δ and 〈qj , γ, β, 0, qk〉 ∈ δ, for some
α, β, γ ∈ Σε and for some qj , qk ∈ Q. An FST that represents a faithfulness
constraint is a finite state faithfulness constraint.

Moreover, whereas (finite state) markedness constraints may have one or more
states, standard faithfulness constraints like Ident, Max, and Dep have just one
state: when assigning a violation mark to an input–output symbol pair a → b,
these constraints do not “look ahead” or “look behind” at other symbols in the
input or output. I call this sort of constraint a single–state faithfulness constraint.

Definition 13. Given an OT grammar G = 〈Σ,Gen, C,>C〉, a constraint c ∈
C is a single–state faithfulness constraint iff it can be represented by a finite
state faithfulness constraint 〈Q,Σ, δ, q0, F 〉 such that |Q| = 1.

The definition of a classic OT grammar can now be stated as follows.10,11

Definition 14. A classic OT grammar is an OT grammar G = 〈Σ,Gen, C,>C〉
such that (i) if 〈i, o〉 ∈ Gen, then 〈i, o′〉 ∈ Gen, for each o′ ∈ Σ∗; and (ii)
each c ∈ C is either is a markedness constraint or a single–state faithfulness
constraint.

3 The Proof

In this section I prove the following claim.
9 When there is no confusion, I will write “markedness (faithfulness) constraint” rather

than “finite state markedness (faithfulness) constraint” to refer to the FST represent-
ing some OT constraint.

10 The requirement on Gen in (i) is intended to capture the assumption, stated above,
that every possible output of a given input is considered to be a candidate. See the
discussion of freedom of analysis in [16, p. 20]. This requirement also ensures that the
relevant candidates are in competition in order for the proof in section 3 to proceed,
though any weaker requirement that ensures this would suffice, too.

11 Some phonologists might object that the single–state restriction on faithfulness con-
straints in (ii) is not enough, since, for example, faithfulness constraints penalizing
arbitrary input–output symbols are allowed. However, if, as I prove in section 3,
even this relatively powerful version of classic OT is incapable of expressing certain
regular relations, then so is any more restrictive version of it.

150 B. Buccola

Input Output
a. /raIt/ → [r2It] “write”
b. /raId/ → [raId] “ride”
c. /raIt@r/ → [r2IR@r] “writer”
d. /raId@r/ → [raIR@r] “rider”

Fig. 4. Canadian raising data

R F
a. /raIt/ → r2It → [r2It]
b. /raId/ → raId → [raId]
c. /raIt@r/ → r2It@r → [r2IR@r]
d. /raId@r/ → raId@r → [raIR@r]

Fig. 5. Rule–based derivations of Canadian raising

Claim. There is a relation R such that (i) R is regular, and (ii) there is no classic
OT grammar G such that each 〈i, o〉 ∈ R is optimal in G.

The patterns I will use are the Canadian raising patterns already discussed,
presented in Fig. 4. I first show that these patterns are expressible by ordered
rewrite rules; hence, they are regular, proving part (i) of the claim. I then show,
less trivially, that the patterns cannot be expressed by any classic OT grammar,
proving part (ii) of the claim. The main result is proved as Theorem 2.

All four patterns in Fig. 4 can be captured by a rule R of raising /aI/ to [2I]
before underlying /t/

R : aI → 2I / t

ordered before a rule F of flapping (changing intervocalic /t/ or /d/ to [R])

F : t, d → R / V V

where V stands for any vowel, e.g. /aI/, /2I/, and /@/. Fig. 5 shows how the four
patterns are expressed by the interaction of these two rules.

Recall that the pattern /raIt@r/ → [r2IR@r] is the crucial opaque pattern: /aI/
raises to [2I] because of the underlying /t/ (R’s environment), but /t/ is changed
to [R] by F . Thus, F removes the environment that motivates the application of
R, obscuring, on the surface, the reason for raising.

These patterns are intuitively problematic for classic OT for the following
reason: given the evidence from /raId@r/ that [raIR@r] is an unmarked output, it
is always more optimal to map /raIt@r/ to [raIR@r], incurring just one faithful-
ness violation (t→R), than to map /raIt@r/ to [r2IR@r], incurring two faithfulness
violations (t→R, aI→2I). (This explains why in Fig. 1 of the previous section,
[raIR@r] is a more optimal output of /raIt@r/ than [r2IR@r].)

Informally, the patterns /raIt@r/ → [r2IR@r] and /raId@r/ → [raIR@r] are con-
flicting. More formally, we have the following theorem.

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 151

Theorem 1. Let G = 〈Σ,Gen, C,>C〉 be a classic OT grammar such that
〈raIt@r, r2IR@r〉 and 〈raId@r, raIR@r〉 are members of Gen. Then it is not the
case both that 〈raIt@r, r2IR@r〉 is optimal in G and that 〈raId@r, raIR@r〉 is optimal
in G.

Proof. The proof is by contradiction. Assume both that 〈raIt@r, r2IR@r〉 is optimal
in G and that 〈raId@r, raIR@r〉 is optimal in G. Then for each 〈raIt@r, o〉 ∈ Gen
(with o different from [r2IR@r]), 〈raIt@r, r2IR@r〉 >G 〈raIt@r, o〉; and for each 〈raId@r,
o〉 ∈ Gen (with o different from [raIR@r]), 〈raId@r, raIR@r〉 >G 〈raId@r, o〉.

Since 〈raIt@r, r2IR@r〉 and 〈raId@r, raIR@r〉 are members of Gen, then so are
〈raIt@r, raIR@r〉 and 〈raId@r, r2IR@r〉. It follows both that 〈raIt@r, r2IR@r〉 >G 〈raIt@r,
raIR@r〉 and that 〈raId@r, raIR@r〉 >G 〈raId@r, r2IR@r〉. By the definition of optimal-
ity, the following statements are derived.

There is a cj ∈ C such that cj(〈raIt@r, r2IR@r〉) < cj(〈raIt@r, raIR@r〉). (1)
For all c′ ∈ C such that c′ >C cj , c

′(〈raIt@r, r2IR@r〉) = c′(〈raIt@r, raIR@r〉). (2)
There is a ck ∈ C such that ck(〈raId@r, raIR@r〉) < ck(〈raId@r, r2IR@r〉). (3)

For all c′ ∈ C such that c′ >C ck, c
′(〈raId@r, raIR@r〉) = c′(〈raId@r, r2IR@r〉). (4)

Recall that, as defined here, classic OT grammars contain only markedness and
single–state faithfulness constraints. Thus, to prove the theorem, it must be
shown that at least one of cj , ck is neither of these types. There are four cases
to consider.

Case 1. Suppose that both cj and ck are markedness constraints. Then cj
assigns m violation marks to [r2IR@r] and n violations to [raIR@r], regardless of
input; hence, from (1) it follows that m < n. Similarly, ck assigns p violation
marks to [r2IR@r] and q violations to [raIR@r], regardless of input; hence, from (3)
it follows that q < p.

It cannot be the case that cj and ck are the same constraint, for then m = p
and n = q, deriving a contradiction. Thus, cj and ck are different constraints,
with one ranked above the other. Suppose that cj >C ck. Then it follows from
(4) that

cj(〈raId@r, raIR@r〉) = cj(〈raId@r, r2IR@r〉)

and hence n = m. But it was already established that m < n, so it cannot be
that cj >C ck.

Now suppose that ck >C cj . Then it follows from (2) that

ck(〈raIt@r, r2IR@r〉) = ck(〈raIt@r, raIR@r〉)

and hence p = q. But it was already established that q < p, so it cannot be
that ck >C cj. We have reached a contradiction, so cj and ck cannot both
be markedness constraints. At least one of them is a single–state faithfulness
constraint.

152 B. Buccola

Case 2. Suppose that cj is a single–state faithfulness constraint and that ck is a
markedness constraint. From (1) it follows that the FST representing cj assigns
1 violation to the pair aI→aI and 0 violations to the pair aI→2I, because the two
inputs are the same and the two output candidates differ only in having [aI] or
[2I] as the second segment. Thus, it follows that

cj(〈raId@r, r2IR@r〉) < cj(〈raId@r, raIR@r〉)

since, again, the two inputs are the same and the two output candidates differ
only in the second segment.

Since cj and ck are different constraints, one must outrank the other. It cannot
be that cj >C ck, for it was just established that

cj(〈raId@r, r2IR@r〉) �= cj(〈raId@r, raIR@r〉)

which contradicts (4). Suppose, then, that ck >C cj . Since by hypothesis ck is a
markedness constraint, then from (3) it follows that ck assigns fewer violations
to [raIR@r] than to [r2IR@r], regardless of input, so that

ck(〈raIt@r, raIR@r〉) �= ck(〈raIt@r, r2IR@r〉)

But this contradicts (2). We have reached a contradiction: if cj is a single–state
faithfulness constraint, then ck cannot be a markedness constraint.

Case 3. Suppose that cj and ck are both single–state faithfulness constraints.
From (3) it follows that the FST representing ck assigns 1 violation to the pair
aI→2I and 0 violations to the pair aI→aI. Thus, it follows that

ck(〈raIt@r, raIR@r〉) < ck(〈raIt@r, r2IR@r〉)

Since this statement is different from (1), cj and ck must be different constraints
and hence ranked one over the other. It cannot be that ck >C cj , for the above
statement contradicts (2). However, as was established in case 2, if cj is a single–
state faithfulness constraint, then it cannot be that cj >C ck. We have reached
a contradiction: if ck is a single–state faithfulness constraint, then cj must be a
markedness constraint.

Case 4. Suppose that cj is a markedness constraint and that ck is a single–
state faithfulness constraint. From (1) it follows that cj assigns fewer violations
to [r2IR@r] than to [raIR@r], regardless of input; hence, from the statement derived
in case 3 concerning ck as a single–state faithfulness constraint, it follows that
cj and ck are different constraints, with one ranked above the other.

It cannot be that cj >C ck, for otherwise

cj(〈raId@r, r2IR@r〉) < cj(〈raId@r, raIR@r〉)

which contradicts (4). Thus, ck >C cj . However, as already established in case
3, if ck is a single–state faithfulness constraint, then it cannot be that ck >C cj .

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 153

We have reached a contradiction and have exhausted all cases: there are no
markedness or single–state faithfulness constraints that satisfy (1–4). Hence, it
is not the case both that 〈raIt@r, r2IR@r〉 is optimal in G and that 〈raId@r, raIR@r〉
is optimal in G.

 !

From Theorem 1, together with the rule–based analysis above, the claim at the
start of this section follows easily.

Theorem 2. There is a relation R such that (i) R is regular, and (ii) there is
no classic OT grammar G such that each 〈i, o〉 ∈ R is optimal in G.

Proof. Let R = {〈raIt@r, r2IR@r〉, 〈raId@r, raIR@r〉}. For part (i), since there are
ordered rewrite rules (R and F above) that map /raIt@r/ to [r2IR@r] and map
/raId@r/ to [raIR@r], it follows that R is regular. Part (ii) follows from Theorem 1.

 !

4 Discussion

In the previous section, I proved that Canadian raising, which is an example of
counterbleeding on environment opacity, is expressible by ordered rewrite rules
but not by classic OT grammars. I now show that there are other examples of
counterbleeding on environment opacity, as well as examples of counterfeeding
on environment opacity, that are likewise inexpressible by classic OT grammars.
Though the patterns are all different, I discuss several formal properties that
they share.12

4.1 Other Examples of Counterbleeding on Environment Opacity

Polish. Consider the data from Polish in Fig. 6 [12, 18, 19]. All four patterns
can be captured by a rule R of raising /o/ to [u] before voiced segments (/l, b/),
ordered before a rule D of devoicing word–final obstruents, i.e. mapping word–
final /z, b/ to [s, p]. D counterbleeds on R’s environment because D removes
part of R’s environment (l, b) by mapping /b/ to [p].

The patterns /Zwob/ → [Zwup] and /Zwop/ → [Zwop] cannot be expressed by
any classic OT grammar. The proof is essentially the same as that of Theorem 1,
and the reason is that the Canadian raising patterns and the Polish patterns are
formally almost identical. In Canadian raising, /aI/ surfaces as [2I] before /t/,
which (along with /d/) surfaces as [R]. In Polish, /o/ surfaces as [u] before /b/,
which (along with /p/) surfaces as [p]. The difference is that in Canadian raising,
/t, d/ surface as a third segment, [R], whereas in Polish, /b, p/ surface as [p].
12 In each of the following examples, I employ a hypothetical input that is not actually

part of that language’s lexicon, as far as I know. Nonetheless, I take such absences
to simply be accidental lexical gaps. Moreover, the formal result that these sets of
input–outputs patterns are expressible by ordered rules but not by classic OT still
holds; the empirical question of whether the patterns are attested is a separate issue.

154 B. Buccola

Input Output
a. /sol/ → [sul] “rubble”
b. /gruz/ → [grus] “salt”
c. /Zwob/ → [Zwup] “crib”
d. /Zwop/ → [Zwop] hypothetical

Fig. 6. Polish data

Input Output
a. /èa:kimi:n/ → [èa:kjmi:n] “ruling (masc. pl.)
b. /èa:kmi:n/ → [èa:kmi:n] hypothetical

Fig. 7. Bedouin Arabic data 1

Bedouin Arabic 1. Consider the data from Bedouin Arabic in Fig. 7 [11].
Both patterns are expressible by a rule P of palatalizing /k/ to [kj] before /i/,
ordered before a rule D of deleting /i/ (mapping /i/ to ε). D counterbleeds on
P ’s environment because D removes part of P ’s environment (i) by deleting
/i/. These two patterns cannot be expressed by any classic OT grammar, and the
reason, again, is that these patterns are formally similar to those in Canadian
raising: /k/ surfaces as [kj] before /i/, which (along with ε) surfaces as ε.

4.2 Examples of Counterfeeding on Environment Opacity

Isthmus Nahuat. Consider the data from Isthmus Nahuat in Fig. 8 [16, 19, 20].
All four patterns are expressible by a rule D of devoicing /l/ to [l

˚
] word–finally,

ordered before a rule A of apocope, i.e. deleting /i/ word–finally. A counterfeeds
on D’s environment because A creates part of D’s environment (#, where #
denotes a word boundary) by deleting a word–final /i/ (mapping i# to ε#).

The patterns /SikAḱIli/ → [SikAḱIl] and /SikAḱIl/ → [SikAḱIl
˚

] are not express-
ible by any classic OT grammar. The proof, omitted here, is essentially the
same as that of Theorem 1 for counterbleeding on environment opacity, using
〈SikAḱIli, SikAḱIl〉, 〈SikAḱIli, SikAḱIl

˚
〉, 〈SikAḱIl, SikAḱIl〉, and 〈SikAḱIl, SikAḱIl

˚
〉 as

the relevant members of Gen. Informally, the reason that these patterns are
inexpressible is the following: given the evidence from /SikAḱIli/ that [SikAḱIl]
is an unmarked output, it is always more optimal to map /SikAḱIl/ to [SikAḱIl],
incurring no faithfulness violations, than to map /SikAḱIl/ to [SikAḱIl

˚
], incurring

one faithfulness violation (l → l
˚
). Or, in terms of the formalism presented here,

/i/ surfaces as ε word–finally, and /l/ surfaces as [l
˚

], but only if /l/ does not
precede a word–final /i/; and this latter condition on the identity of /l/ can be
expressed only by a multistate faithfulness constraint.

Bedouin Arabic 2. Fig. 9 presents more data from Bedouin Arabic [11]. Both
patterns can be captured by a rule R of raising /a/ to [i] in an open syllable,

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 155

Input Output
a. /támi/ → [tám] “it ends”
b. /tájo:l/ → [tájo:l

˚
] “shelled corn”

c. /SikAḱIli/ → [SikAḱIl] “put it in it”
d. /SikAḱIl/ → [SikAḱIl

˚
] hypothetical

Fig. 8. Isthmus Nahuat data

Input Output
a. /gabr/ → [gabur] “grave”
b. /gabur/ → [gibur] hypothetical

Fig. 9. Bedouin Arabic data 2

ordered before a rule E of epenthesis, i.e. inserting a [u] (mapping ε to [u])
between two consonants like /br/. E counterfeeds on R’s environment because
E creates part of R’s environment (bV) by inserting a vowel, [i], after [b].
These two patterns cannot be expressed by any classic OT grammar, and the
reason is that these patterns are formally similar to those in Isthmus Nahuat. In
Bedouin Arabic, ε surfaces as [u] between /br/, and /a/ surfaces as [i], but only
when /a/ does not precede a consonant cluster.

Lomongo. Consider, finally, the data from Lomongo in Fig. 10 [12, 19, 21]. Both
patterns can be captured by a rule G of prevocalic gliding, i.e. mapping /o/ to
[w] before a vowel, ordered before a rule D of intervocalic obstruent deletion,
i.e. deleting /b/ between two vowels. D counterfeeds on G’s environment because
D creates part of G’s environment (V) by deleting a prevocalic /b/, i.e. by
mapping /bV/ to just [V]. These patterns are not expressible by any classic OT
grammar, and the reason, once more, is that these patterns are similar to those
in Isthmus Nahuat. In this case, /b/ surfaces as ε between two vowels, and /o/
surfaces as [w], but only when /o/ does not precede a prevocalic /b/.

Summary. Fig. 11 summarizes all of the sets of input–output candidate pairs
that have been discussed in this paper, with the empty string symbol (ε) included
where appropriate. Each of the six sets exhibits the following three properties:
(i) the two inputs differ by exactly one segment x; (ii) the two output candidates
differ by exactly one segment y; and (iii) x is different from y, i.e. they occupy
different string positions. (In Fig. 11, the differing segments are in bold.) For-
mally, then, these sets are essentially the same; hence, it is not surprising that in
all six examples the relevant input–output patterns cannot be made optimal by
classic OT grammars, as defined here. Moreover, from this perspective it emerges
that the difference between the counterbleeding on environment examples and
the counterfeeding on environment examples boils down to which two (of the
four possible) input–output candidate pairs are supposed to be optimal.

156 B. Buccola

Input Output
a. /obina/ → [oina] “you (sg.) dance”
b. /oina/ → [wina] hypothetical

Fig. 10. Lomongo data

Language Inputs Outputs
Canadian English raIt@r raId@r raIR@r r2IR@r
Polish Zwob Zwop Zwop Zwup
Bedouin Arabic 1 èa:kimi:n èa:kεmi:n èa:kεmi:n èa:kjεmi:n
Isthmus Nahuat SikAḱIli SikAḱIlε SikAḱIlε SikAḱIl

˚
ε

Bedouin Arabic 2 gabεr gabur gabur gibur
Lomongo obina oεina oεina wεina

Fig. 11. A summary of all the input–output candidate pairs in this paper

Notably, the proof technique used in this paper (finding two conflicting input–
output patterns) does not seem to work for cases of focus opacity. To give just
one example of counterfeeding on focus opacity, in Western Basque [22], /a/
raises to [e], and /e/ raises to [i], but /a/ does not raise to [i]. To express the
latter generalization in OT, it suffices to posit an undominated, single–state
faithfulness constraint that assigns 1 to the pair a→i and 0 to every other pair.
Such a constraint may seem intuitively ad hoc, yet it is formally sound.

More generally, the reason that focus opacity seems unproblematic for OT
from this paper’s perspective is twofold: (i) classic faithfulness constraints, as
defined here, are single–state faithfulness constraints that can penalize arbitrary,
single input–output segment pairs; and (ii) in focus opacity, all change occurs
at a single focus. Thus, it suffices to posit a single–state faithfulness constraint
that assigns 1 violation to those focus changes that are undesired, like a→i, and
0 to those that are desired. Moreover, taking into account Fig. 11 and the three
properties of environment opacity mentioned above, it comes as no surprise that
the focus opacity of Western Basque works differently: it necessarily lacks at
least one of the three properties. Specifically, if the first two properties hold,
i.e. the relevant inputs differ by exactly one segment x and the relevant output
candidates differ by exactly one segment y, then the third property, according to
which x and y occupy different string positions, must not hold, because in focus
opacity the segments that change (a, e, i) all occupy the same string position.

5 Conclusion

In this paper I defined a classic OT grammar as any OT grammar that con-
tains only markedness constraints, i.e. constraints representable by an FST that
is input–independent, and single–state faithfulness constraints, i.e. constraints
representable by an FST that is both input–dependent and single–state. I then

On the Expressivity of Optimality Theory versus Ordered Rewrite Rules 157

proved, using data from Canadian English, that there are input–output pat-
terns which can be expressed by SPE–style, ordered, context–sensitive rewrite
rules, but which cannot be expressed by any classic OT grammar (Theorem 1).
Hence, there are regular relations that classic OT grammars, as defined here,
cannot express (Theorem 2). I also demonstrated that several other cases of
counterbleeding on environment opacity, as well as several cases of counterfeed-
ing on environment opacity, are likewise expressible by ordered rewrite rules but
not by classic OT. Lastly, I argued that focus opacity, unlike environment opacity,
seems unproblematic for classic OT grammars that allow arbitrary single–state
faithfulness constraints.

Regarding empirical coverage, assuming that the Canadian raising data are
attested, then classic OT, as defined here, undergenerates. Assuming also that
natural language phonology is strictly subregular (see [5]), then, since I did not
place any upper bound on the number of violations that any constraint may
assign, classic OT also overgenerates: it can express unattested, non–regular
patterns (see footnote 3). Ordered rewrite rules, under the same assumptions,
only overgenerate.13 However, whether or not this serves as a basis to favor rules
over classic OT remains to be seen: it could be, for example, that the classes of
patterns by which classic OT grammars over– and undergenerate are in some
formal sense smaller (or more manageable) than the class of patterns by which
rules overgenerate.

Acknowledgments. I thank Morgan Sonderegger for his supervision at every
stage of this research; Brendan Gillon, Heather Goad, and Michael Wagner for
helpful discussions; and three anonymous referees for Formal Grammar and two
anonymous referees for Mathematics of Language for their comments, which
included pointing out an incorrect claim in an earlier version of this paper.

References

1. Chomsky, N., Halle, M.: The Sound Pattern of English. The MIT Press (1968)
2. Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generative

Grammar. Blackwell Publishers (2004)
3. Johnson, C.D.: Formal Aspects of Phonological Description. Mouton (1972)
4. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-

tional Linguistics 20(3), 331–378 (1994)
5. Heinz, J.: Computational phonology—part I: Foundations. Language and Linguis-

tics Compass 5, 140–152 (2011)
6. Gerdemann, D., Hulden, M.: Practical finite state optimality theory. In: Proceed-

ings of the 10th International Workshop on Finite State Methods and Natural
Language Processing, pp. 10–19 (2012)

7. Riggle, J.: Generation Recognition and Learning in Finite State Optimality Theory.
PhD thesis, UCLA (2004)

8. Frank, R., Satta, G.: Optimality Theory and the generative complexity of con-
straint violability. Computational Linguistics 24(2), 307–315 (1998)

13 I thank an anonymous referee for raising these points.

158 B. Buccola

9. Karttunen, L.: The proper treatment of optimality in computational phonology.
In: Proceedings of the International Workshop on Finite State Methods in Natural
Language Processing, Association for Computational Linguistics, pp. 1–12 (1998)

10. Heinz, J.: Computational phonology—part II: Grammars, learning, and the future.
Language and Linguistics Compass 5(4), 153–168 (2011)

11. McCarthy, J.: Hidden Generalizations: Phonological Opacity in Optimality Theory.
Equinox Publishing Ltd. (2007)

12. Baković, E.: Opacity and ordering. In: Goldsmith, J.A., Riggle, J., Yu, A.C.L. (eds.)
The Handbook of Phonological Theory, 2nd edn., Blackwell Publishers (2011)

13. McCarthy, J.: Sympathy and phonological opacity. Phonology 16, 331–399 (1999)
14. Kiparsky, P.: Historical linguistics. In: Dingwall, W.O. (ed.) A Survey of Linguistic

Science. University of Maryland Linguistics Program, College Park (1971)
15. Kiparsky, P.: Abstractness, opacity, and global rules. In: Fujimura, O., Smith, D.L.

(eds.) Three Dimensions of Linguistic Theory, TEC (1973)
16. Kager, R.: Optimality Theory. Cambridge University Press (1999)
17. Graf, T.: Reference–set constraints as linear tree transductions via controlled

optimality systems. In: de Groote, P., Nederhof, M.-J. (eds.) Formal Grammar
2010/2011. LNCS, vol. 7395, pp. 97–113. Springer, Heidelberg (2012)

18. Bethin, C.Y.: Phonological rules in the nominative singular and genitive plural of
the Slavic substantive declension. PhD thesis, University of Illinois, Champaign–
Urbana (1978)

19. Kenstowicz, M., Kisseberth, C.: Generative Phonology: Description and Theory.
Academic Press (1979)

20. Law, H.: Morphological structure of Isthmus Nahuat. International Journal of
American Languages 24, 108–129 (1958)

21. Hulstaert, G.: Grammaire du Lomongo. Musée royal de l’Afrique centrale (1961)
22. de Rijk, R.: Vowel interaction in Bizcayan Basque. Fontes Linguae Vasconum 2(5),

149–167 (1970)

Adjectives in a Modern Type-Theoretical

Setting�

Stergios Chatzikyriakidis1 and Zhaohui Luo2

1 Dept. of Computer Science, Royal Holloway, Univ. of London
Egham, Surrey TW20 0EX, U.K. Open University of Cyprus

stergios.chatzikyriakidis@cs.rhul.ac.uk
2 Dept. of Computer Science, Royal Holloway, Univ. of London

Egham, Surrey TW20 0EX, U.K.
zhaohui@hotmail.ac.uk

Abstract. In this paper we discuss the semantics of adjectives from the
perspective of a Modern Type Theory (MTT) with an adequate subtyp-
ing mechanism. In an MTT, common nouns (CNs) can be interpreted
as types and, in particular, CNs modified by intersective and subsective
adjectives can be given semantics by means of Σ-types. However, an in-
terpretation of CNs as types would not be viable without a proper notion
of subtyping which, as we explain, is given by coercive subtyping, an ad-
equate notion of subtyping for MTTs. It is also shown that suitable uses
of universes are one of the key ingredients that have made such an anal-
ysis adequate. Privative and non-committal adjectives require different
treatments than the use of Σ-types. We propose to deal with privative
adjectives using the disjoint union type while non-committal adjectives
by making use of the type-theoretical notion of context, as used by Ranta
[27] to approximate the model-theoretic notion of a possible world. Our
approach to adjectives has a number of advantages over those proposed
within the Montagovian setting, one of which is that the inferences re-
lated with the adjectives arise via typing and not by some kind of extra
semantic meaning in the form of a meaning postulate.

1 Introduction

The semantics of adjectives is a well-studied issue in the Montagovian tradition
and a number of proposals have been put forth by the years (see e.g.[22],[10] [24]
and [25] among others). Another prominent line of research on adjectives is based
on Davidson’s [6] treatment of adverbials and adjectives. In these approaches, the
semantics of adverbial and adjectival modification are derived by exploiting the
additional event argument assumed in Davidsonian semantics (see for example
[11]). In modern Type Theories (MTTs), i.e. TTs within the tradition of Martin-
Löf, adjectival modification has been treated as a Σ-type (see e.g. [27], [15]).
However, such an approach in the form it is proposed (e.g. as in [27]) can only

� This work is supported by the research grant F/07-537/AJ of the Leverhulme Trust
in the U.K.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 159–174, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

160 S. Chatzikyriakidis and Z. Luo

deal with subsective adjectives. The intersective adjectival class can be treated
with Σ-types, but as we shall see, not in the way proposed in the literature.

In this paper, we discuss the issue of adjectival modification within an MTT
equipped with an adequate subtyping mechanism (coercive subtyping). We first
show that a Σ-type analysis can accommodate both intersective and subsective
adjectives. This is due to the subtyping mechanism as well as the use of the uni-
verse cn of (the interpretations of) common nouns for the cases where these are
needed.1 In order to deal with the privative class, we propose to treat privative
adjectival modification via disjoint union types. Such a move is quite close (at
least on a pre-theoretical level) to Partee’s treatment of adjectives like fake as
being subsective but applied to CNs with coerced meanings [25]. Lastly, the case
of non-committal adjectives is discussed arguing that one can have an adequate
MTT account by exploiting the constructive notion of context.

The paper is structured as follows: in §2, we introduce the framework to be
used, concentrating on the features that are relevant for the treatment of ad-
jectives. Starting from §3 to §5, we shall study intersective/subsective, privative
and non-committal adjectives, respectively. In §3 we consider the Σ-type anal-
ysis of CNs modified by intersective and subsective adjectives and discuss how
subsective adjectives should be dealt with in such a context. In §4, by further de-
veloping a proposal by the second author [19], we study how privative adjectives
may be interpreted by means of disjoint union types together with coercive sub-
typing. Non-committal adjectives are studied in §5, where it is shown that they
may be given semantics by considering Ranta’s formulation of belief contexts
[27]. Finally, in §6, adjectives like former are briefly studied as special temporal
cases, while we further make a proposal on how time may be incorporated by
means of dependent types.

2 An MTT with Coercive Subtyping

In this section, we give a brief introduction to the formal semantics based on
Modern Type Theories (MTTs) [27,14,17]. A Modern Type Theory (MTT) is a
variant of a class of type theories as studied by Martin-Löf [20,21] and others,
which have dependent types and inductive types, among others. We choose to call
them Modern Type Theories in order to distinguish them from Church’s simple
type theory [5] that is commonly employed within the Montagovian tradition in
formal semantics.

Among the variants of MTTs, we are going to employ the Unified Theory
of dependent Types (UTT) [12] with the addition of the coercive subtyping
mechanism (see, for example, [13,18] and below). UTT is an impredicative type
theory in which a type of all logical propositions (Prop) exists.2 This stands as
part of the study of linguistic semantics using MTTs rather than simple typed
ones, including the early studies such as [28,27] inter alios.

1 See §2.4 for the notion of a universe.
2 This is similar to the simple type theory where there is a type t of truth values.

Adjectives in a Modern Type-Theoretical Setting 161

Example Montague semantics MTT-based Semantics

CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type

IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop

ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop

MCN handsome man [[handsome]]([[man]]) : e → t Σm : [[man]] . [[handsome]](m) : Type

S A man talks ∃m : e. [[man]](m)& [[talk]](m) : t ∃m : [[man]] . [[talk]](m) : Prop

Fig. 1. Examples in formal semantics

2.1 Formal Semantics Based on MTTs: The Basics

In MTT-based semantics, the basic ways to interpret various linguistic categories
is as follows:3

– A sentence (S) is interpreted as a proposition of type Prop.
– A common noun (CN) can be interpreted as a type.
– A verb (IV) can be interpreted as a predicate over the type D that interprets

the domain of the verb (ie, a function of type D → Prop).
– An adjective (ADJ) can be interpreted as a predicate over the type that

interprets the domain of the adjective (ie, a function of type D → Prop).
– Modified common nouns (MCNs) can be interpreted by means of Σ-types

(see below).

In what follows, we shall give further explanations of various aspects of semantics
based on MTTs, explicating along the way the basic features of MTTs and
coercive subtyping. We try to bring out the linguistic relevance of the system
used rather than being meticulous as regards the formal details in each case.

2.2 Common Nouns as Types and Many-Sortedness of MTTs

A key difference between the formal semantics based on MTTs on the one hand
and Montague semantics on the other, lies in the interpretation of common nouns
(CNs). This is in turn based on the fact that MTTs are essentially ‘many-sorted’
logical systems.

In Montague semantics [23], the underlying logic (Church’s simple type theory
[5]) can be seen as ‘single-sorted’ in the sense that there is only one type e of
all entities. The other types such as t of truth values and the function types
generated from e and t do not stand for types of entities. In this respect, there
are no fine-grained distinctions between the elements of type e and as such all
individuals are interpreted using the same type. For example, John and Mary
have the same type in simple type theories, the type e of individuals. An MTT,
on the other hand, can be regarded as a ‘many-sorted’ logical system in that it
contains many types and. In this respect, in an MTT-based semantics one can
make fine-grained distinctions between individuals and use those different types

3 Basic examples are shown in Figure 1, along with a comparison with their counter-
parts in Montague semantics.

162 S. Chatzikyriakidis and Z. Luo

to interpret subclasses of individuals. For example, we can have John : [[man]]
and Mary : [[woman]], where [[man]] and [[woman]] are different types.

An important trait of MTT-based semantics is the interpretation of common
nouns (CNs) as types [27] rather than sets or predicates (i.e., objects of type
e → t) as in Montague semantics. The CNs man, human, table and book are
interpreted as types [[man]], [[human]], [[table]] and [[book]], respectively. Then,
individuals are interpreted as being of one of the types used to interpret CNs.

Modified common nouns (MCNs in Figure 1) can be interpreted by means of
Σ-types, types of dependent pairs. For instance, ‘handsome man’ can be inter-
preted as the type Σm : [[man]] . [[handsome]](m), the type of pairs of a man
and a proof that the man is handsome.

This many-sortedness (i.e., the fact that there are many types in an MTT)
has the welcoming result that a number of semantically infelicitous sentences like
e.g. the ham sandwich walks, which are however syntactically well-formed, can
be explained easily given that a verb like walks will be specified as being of type
Animal→ Prop while the type for ham sandwich will be [[food]] or [[sandwich]],
which is not compatible with the typing for walks :4

(1) the ham sandwich : [[food]]

(2) walk : [[human]]→ Prop

The idea of common nouns being interpreted as types rather than predicates has
been argued in [16] on philosophical grounds as well. There, the author argues
that Geach’s observation that common nouns, in contrast to other linguistic
categories, have criteria of identity that enable common nouns to be compared,
counted or quantified, has an interesting link with the constructive notion of
set/type: in constructive mathematics, sets (types) are not constructed only by
specifying their objects but they additionally involve an equality relation. The
argument is then that the interpretation of CNs as types in MTTs is explained
and justified to a certain extent.5

Interpreting CNs as types rather than predicates has also a significant method-
ological implication: this is compatible with various subtyping relations one may
consider in formal semantics. For instance, in modelling some linguistic phenom-
ena semantically, one may introduce various subtyping relations by postulating
a collection of subtypes (physical objects, informational objects, eventualities,
etc.) of the type of entities [1]. It has become clear that, if CNs are interpreted
as predicates as in the traditional Montagovian setting, introducing such sub-
typing relations would cause difficult problems: even some basic semantic inter-
pretations would go wrong and it is very difficult to deal with some linguistic
phenomena such as copredication satisfactorily. Instead, if CNs are interpreted
as types, as in the type-theoretical semantics based on MTTs, copredication can
be given a straightforward and satisfactory treatment [14].

4 This is of course based on the assumption that the definite NP is of a lower type
and not a Generalized Quantifier.

5 See [16] for more details on this.

Adjectives in a Modern Type-Theoretical Setting 163

2.3 Subtyping in Formal Semantics

As briefly explained above, because of many-sortedness of MTTs, CNs can be
interpreted as types. For instance, in a Montagovian setting, all of the verbs
below are given the same type e→ t, but in an MTT, we can have

(3) drive : [[human]]→ Prop

(4) eat : [[animal]]→ Prop

(5) disappear : [[object]]→ Prop

which have different domain types. This has the advantage of disallowing inter-
pretations of some infelicitous examples like the ham sandwich walks.

However, interpreting CNs by means of different types could lead to serious
undergeneralizations without a subtyping mechanism: subtyping is crucial for an
MTT-based semantics. For instance, consider the interpretation of the sentence
‘A man talks’ in Figure 1: for m of type [[man]] and [[talk]] of type [[human]] →
Prop, the function application [[talk]](m) is only well-typed because we have that
[[man]] is a subtype of [[human]].

Coercive subtyping [13,18] provides an adequate framework to be employed
for MTT-based formal semantics [14,17].6 It can be seen as an abbreviation
mechanism: A is a (proper) subtype of B (A < B) if there is a unique implicit
coercion c from type A to type B and, if so, an object a of type A can be used in
any context CB[] that expects an object of type B: CB[a] is legal (well-typed)
and equal to CB[c(a)].

As an example, in the case that both [[man]] and [[human]] are base types, one
may introduce the following as a basic subtyping relation:

(6) [[man]] < [[human]]

In case that [[man]] is defined as a composite Σ-type (see §2.4 below for details),
where male : [[human]]→ Prop:

(7) [[man]] = Σh : [[human]] . male(h)

we have that (6) is the case because the above Σ-type is a subtype of [[human]]
via the first projection π1:

(8) (Σh : [[human]] . male(h)) <π1 [[human]]

Equipped with this coercive subtyping mechanism, the undergeneration prob-
lems can be straightforwardly solved while still retaining the ability to rule
out semantically infelicitous cases like the ham sandwich walks. In effect, many-
sortedness in MTTs turns out to be superior than single sortedness in simple

6 It is worth mentioning that subsumptive subtyping, the traditional notion of sub-
typing that adopts the subsumption rule (if A ≤ B, then every object of type A
is also of type B), is inadequate for MTTs in the sense that it would destroy some
important properties of MTTs (see, for example, §4 of [18] for details).

164 S. Chatzikyriakidis and Z. Luo

type theory (at least in this respect). Furthermore, many inferences concerning
the monotonicity on the first argument of generalized quantifiers can be directly
captured using the subtyping mechanism. In effect an inference of the sort exem-
plified in the example (12) below, can be captured given that [[man]] < [[human]]:

(9) Some man runs ⇒ Some human runs

Thus, an x : [[man]] can be used as an x : [[human]], and as such the inference
goes through for ‘free’ in a way.7

2.4 Σ-Types, Π-Types and Universes

Dependent Σ-types. One of the basic features of MTTs is the use of Dependent
Types. A dependent type is a family of types that depend on some values.

The constructor/operator Σ is a generalization of the Cartesian product of
two sets that allows the second set to depend on values of the first. For instance,
if [[human]] is a type and male : [[human]] → Prop, then the Σ-type Σh :
[[human]] . male(h) is intuitively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types, then
Σ(A,B), or sometimes written as Σx:A.B(x), is a type, consisting of pairs (a, b)
such that a is of type A and b is of type B(a). When B(x) is a constant type
(i.e., always the same type no matter what x is), the Σ-type degenerates into
product type A × B of non-dependent pairs. Σ-types (and product types) are
associated projection operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b,
for every (a, b) of type Σ(A,B) or A×B.

The linguistic relevance of Σ-types can be directly appreciated once we un-
derstand that in its dependent case, Σ-types can be used to interpret linguistic
phenomena of central importance, like adjectival modification (see above for in-
terpretation of modified CNs) [27].8 For example, handsome man is interpreted
as Σ-type (10), the type of handsome men (or more precisely, of those men
together with proofs that they are handsome):

(10) Σm : [[man]] . [[handsome]](m)

where [[handsome]](m) is a family of propositions/types that depends on the
man m.

The use of Σ-types for dealing with adjectival modification will be further
explained later on, when our proposal as regards the different classes of adjectives
is going to be discussed.

7 These kinds of inferences can be straightforwardly proven in Coq by using a standard
analysis for quantifier some plus the subtyping relation [[man]] < [[human]]. See [4]
for more details on treating NLIs as valid theorems in Coq.

8 Σ-types also provide tools to give proper semantic interpretations of the so-called
”Donkey-sentences” [28].

Adjectives in a Modern Type-Theoretical Setting 165

Dependent Π-types. The other basic constructor for dependent types is Π . Π-
types can be seen as a generalization of the normal function space where the
second type is a family of types that might be dependent on the values of the first.
A Π-type degenerates to the function type A → B in the non-dependent case.
In more detail, when A is a type and P is a predicate over A, Πx:A.P (x) is the
dependent function type that, in the embedded logic, stands for the universally
quantified proposition ∀x:A.P (x). For example, the following sentence (11) is
interpreted as (12):

(11) Every man walks.

(12) Πx : [[man]] . [[walk]](x)

Π-types are very useful in formulating the typings for a number of linguistic
categories like VP adverbs or quantifiers. The idea is that adverbs and quantifiers
range over the universe of (the interpretations of) CNs and as such we need a way
to represent this fact. In this case, Π-types can be used, universally quantifying
over the universe cn. (13) the type for VP adverbs9 while (14) is the type for
quantifiers:

(13) ΠA : cn. (A→ Prop)→ (A→ Prop)

(14) ΠA : cn. (A→ Prop)→ Prop

Further explanations of the above types are given after we have introduced the
concept of type universe below.

Type Universes. An advanced feature of MTTs, which will be shown to be very
relevant in interpreting NL semantics in general as well as adjectival modification
specifically, is that of universes. Informally, a universe is a collection of (the
names of) types put into a type [21].10 For example, one may want to collect all
the names of the types that interpret common nouns into a universe cn : Type.
The idea is that for each type A that interprets a common noun, there is a name
A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]] : cn. Thus,
the universe includes the collection of the names that interpret common nouns.
For example, in cn, we shall find the following types:

(15) [[man]], [[woman]], [[book]], ...

9 This was proposed for the first time in [15].
10 There is quite a long discussion on how these universes should be like. In particular,

the debate is largely concentrated on whether a universe should be predicative or
impredicative. A strongly impredicative universe U of all types (with U : U and Π-
types) is shown to be paradoxical [7] and as such logically inconsistent. The theory
UTT we use here has only one impredicative universe Prop (representing the world
of logical formulas) together with an infinitely many predicative universes which as
such avoids Girard’s paradox (see [12] for more details).

166 S. Chatzikyriakidis and Z. Luo

(16) Σm : [[man]] . [[handsome]](m)

(17) GR +GF

where the Σ-type in (16 is the proposed interpretation of ‘handsome man’ and
the disjoint union type in (17) is that of ‘gun’ (the disjoint union of real guns
and fake guns – see the discussion in §4).

Having introduced the universe cn, it is now possible to explain (13) and (14).
The type in (14) says that for all elements A of type CN, we get a function type
(A → Prop) → Prop. The idea is that the element A is now the type used.
To illustrate how this works let us imagine the case of quantifier some which
has the typing in (14). The first argument we need, has to be of type cn. Thus
some human is of type ([[human]] → Prop) → Prop given that the A here is
[[human]] : cn (A becomes the type [[human]] in ([[human]] → Prop) → Prop).
Then given a predicate like walk : [[human]]→ Prop, we can apply some human
to get [[some human]]([[walk]]) : Prop.11

3 Σ-Type Analysis of Modified CNs

Not much work focusing on adjectives has been done in formal semantics based
on modern type theories. Adjectives are mainly studied in a Σ-type analysis on
modified common nouns [27,17], but not in general.12 From this section on, we
shall study adjectives in the MTT-based semantics more systematically.

In [27], the use ofΣ-types to interpret common nouns modified by adjectives is
proposed13 and, in [14,17], it is pointed out that subtyping is essential for such
an interpretation of CNs as types to be adequate and proposed that coercive
subtyping provide such a framework where one can have Σx:N.Adj(x) < N ,
where N interprets a CN and Adj an adjective that modifies the CN.14

The Σ-type treatment is quite straightforward. CNs are interpreted as types
and adjectives as predicates. Given that one has many types, the type of a pred-
icate that interprets an adjective can vary according to the adjective. Thus,
for example, black will be of type [[object]] → Prop while married of type

11 The idea of universes has been proved useful in accounting for NL phenomena from an
MTT perspective. For example, in [3], the authors introduce a universe of Linguistic
Types, LType, to capture the flexibility associated with NL coordination and in
this paper we are going to use the universe cn to deal with some cases of adjectival
modification.

12 There is the interesting work by Jespersen & Primiero [9] on using a constructive type
theory to deal with different classes of adjectives. However, the system they have used
seems quite far from being an MTT as we have considered; it lacks multiple types
or a subtyping mechanism, and they have considered CNs as predicates (following
pretty much all of the Montagovian literature) rather than types.

13 In a more traditional logic, Gupta [8] has suggested a special form of formulae
(K,x)A, called restrictions, for interpreting modified CNs. Linking formulae to types,
we can easily see the close correspondence between (K,x)A and Σx:K.A.

14 In the Coq proof assistant, the record types are (top-level) Σ-types and used in [15].

Adjectives in a Modern Type-Theoretical Setting 167

[[human]] → Prop.15 Given subtyping, black man can still be interpreted as
Σm: [[man]] . [[black]](m) because [[man]] < [[object]] and hence, by contravariance,
black of type [[object]]→ Prop can also be regarded as of type [[man]]→ Prop.

Now, intersective adjectives are associated with two main types of inference.
The first one is not specific to intersective adjectives but is rather shared with
subsective adjectives as well. It involves the entailment shown below:

(18) Adj(N) ⇒ N.

Thus, according to the above, a black man is a man, a married man is also a
man, and so on. Given that one can always have that the first projection π1 of
Σ-types be a coercion (see §2.3) the following always holds:

(19) From Σ(N,Adj), infer N .

So, this first type of inference is easily taken care of by subtyping.
The second inference associated with intersective adjectives has to do with

the fact that intersective modification not only entails that a given x of Adj(N)
is a N (e.g. a black man is a man), but further entails that Adj(x) is also the
case (e.g. that a black man is something black). Now, what does this mean in
terms of inference? It implies that, for example, in black man, black can not
only be applied to men (objects of [[man]]) but also to any object whose type is
a supertype of [[man]]. Furthermore, no interpretation arises for the types that
have no subtyping relation with [[man]]; for instance, if beautiful is interpreted
of type [[wowan]] → Prop and [[man]] is not a subtype of [[woman]], there is no
interpretation of beautiful man. Also, it is straightforward to see that the non-
exsistence of a subtyping relation prohibits one from unwanted inferences. The
inferences below are illustrative of the phenomenon:16

(20) A black man ⇒ a black human

(21) A black man � a black woman

The analysis proposed captures this fact given that coercions propagate through
the various type constructors as well, e.g. Σ and Π . As such, besides the
relation [[man]] < [[human]], the subtyping relation Σ([[man]], [[black]]) <
Σ([[human]], [[black]]) also holds via coercion propagation. Thus, the Σ-type anal-
ysis provides us with all the correct inferences as regards intersective adjectives.

It is not difficult to notice that an approach like the one given above will not
work for some of the subsective adjectives. This is because subsective adjectives
do not give rise to entailments like (20). In this sense, one might very well

15 The discussion on how one builds the type ontology is of great importance but it is
something that cannot be discussed here.

16 We are a bit informal here, as an anonymous reviewer has noticed, saying that we
should also deal with the determiner a in these cases. The determiner a is interpreted
as the existential quantifier whose type is the same as the other quantifiers, i.e. (14).
The inference (20), for example, is just saying that if m is of type [[black man]], it is
also of type [[black human]].

168 S. Chatzikyriakidis and Z. Luo

argue that the treatment proposed for intersective adjectives will overgenerate
for subsective adjectives and as such the Σ-type analysis must be abandoned in
these cases. However, this is not the case and as we are going to explain, the
Σ-type analysis can be maintained in the case of subsective adjectives as well.
Let us see how.

The reason why subsective adjectives do not give rise to inferences like (20)
has to do with the fact that they are only relevant for a particular class of words
(CNs) they modify. Thus, a skilful surgeon is only skilful as a surgeon and not
as a man or a human being. Implementing this idea, subsective adjectives like
large can be given the type below:

(22) ΠA : cn. (A→ Prop)

Using the above type, we have many instances of large depending on the choice
of A. large([[man]]) is of type [[man]] → Prop, large([[animal]]) is of type
[[animal]]→ Prop, and so on. In this respect, we get different ‘larges’ as such for
different As. Using this, one can achieve the meaning of subsective adjectives,
i.e. that if something is large, it is only large for its class denoted by the CN (a
large elephant is thus only large as an elephant). This way of treating subsective
adjectives will correctly account for the inferences associated with subsective
adjectives. In particular, inferences like (18) are taken care of via the usual first
projection coercion of the Σ-type, while inferences similar to (20) are avoided
given that the adjective is only meaningful with respect to the specific class in
each case.

However, we are not done yet. This is because, a type like the above, can-
not be used for cases like skilful. The reason is that skilful cannot have such a
general type. If we assume such a type, we will be able to get interpretations
for skilful rock or skilful car, which does not seem correct. Skilful in this re-
spect must apply to CNs of type [[human]] or subtypes of this latter type, e.g.
[[doctor]], [[violonist]] < [[human]]. This problem can be solved as follows: one
can introduce a subuniverse of cn containing the names of the types [[human]]
and its subtypes only. Let us call this universe cnH , which is a subtype of cn:
cnH < cn. Now, we can propose the following type for an adjective like skilful:

(23) ΠA : cnH . (A→ Prop)

Similar cases can be treated accordingly.

4 Privative Adjectives

Besides intersective and subsective adjectives, there is another adjectival class
that does not give rise to any of the inferences associated with the aforementioned
classes. This class of adjectives, is further subdivided into privative and non-
committal adjectives. The former give rise to inferences like (24) while the latter
do not give rise to any inference whatsoever:

Adjectives in a Modern Type-Theoretical Setting 169

(24) Adj(N) ⇒ ¬ N.

The standard way of dealing with privative adjectives as well as with the other
classes of adjectives within the Montagovian tradition is via meaning postulates
(see [24] for example). According to these types of approaches, the inferences are
captured by postulating that certain types of adjectives are associated with the
specific inferences. In the case of privative adjectives ADJ of type (e → t) →
(e→ t), the meaning postulate would be:

(25) ∀Q : e→ t∀x : e. ADJ(Q, x) ⊃ ¬Q(x)

It is worth mentioning that meaning postulates are needed for all adjectival
categories within a Montagovian setting, with an exception when one assumes
that intersective adjectives be of a lower e → t type but again this has the
disadvantage of disrupting type uniformity [24]. Partee in the same paper, and
using data from Polish NP-split phenomena goes on to argue that the class of
privative adjectives does not really exist. The reasoning in [24] as well as in [25] is
that the interpretation of privative adjectives is in fact subsective. Partee argues
that in cases of privative modification the interpretation of the CN is coerced to
include the denotations of CNs modified by privative adjectives. For example in
the case of (26) and (27), Partee argues that the denotation of fur is expanded
to include both real and fake furs:

(26) I don’t care whether that fur is fake fur or real fur.

(27) I don’t care whether that fur is fake or real.

The idea is that in the case of fake fur, fur is coerced to include fake furs as
well, while in the second case it is not. The idea in itself is very intriguing and
indeed plausible given the data.

What we are going to propose is to use the disjoint union type in MTTs to
formalise the semantics of privative adjectives. This was first proposed in an
unpublished note by the second author [19], which can arguably be regarded as
formalising the above idea of Partee in an MTT. Let us see how this can be done
by discussing the case of fake and real guns.

We first assume that GR and GF be the type of (real) guns and that of fake
guns, respectively. Then,

G = GR +GF

is the type of all guns. It consists of the objects of the form inl(r) and inr(f),
where r : GR and f : GF . Furthermore, we declare the associated injection
operators inl : GF → G and inr : GR → G as coercions:

GR <inl G and GF <inr G.

We contend that the above employment of disjoint union type, together with
the above declaration of subtyping relations, gives an adequate semantics of the
privative adjective fake.

170 S. Chatzikyriakidis and Z. Luo

For instance, we can now define the following predicates real gun and
fake gun of type G→ Prop:

real gun(inl(r)) = True and real gun(inr(f)) = False;

fake gun(inl(r)) = False and fake gun(inr(f)) = True.

If is easy to see that, for any g : G,

(28) real gun(g) iff ¬fake gun(g).

Now, the following interpretations can be given (both are true): for g : GR:

(29) [[g is a real gun]] = real gun(g)

and for f : GF ,

(30) [[f is not a real gun]] = ¬real gun(f)

Note that in the above, real gun(f) is only well-typed because GF <inr G and
in fact we have real gun(f) = real gun(inr(f)) = True. Similarly, with the
above, it is not difficult to see that the sentences like those below can easily be
interpreted as expected:

(31) Is that gun real or fake?

(32) A fake gun is not a gun.

In the above, we have only considered guns but not other objects. One may have
the desire to type the word real and fake directly so that they can be applied to
other objects different from guns. A possibility is to consider a type Object (of
all objects) of which, for example, G is a subtype:

G <gun Object.

Employing Object, we could have:

(33) real, fake : Object→ Prop

and it is then easy to see that

GR <gun ◦ inl Object and GF <gun ◦ inr Object.

This allows us to give more general types (33) to real and fake so that we can
cover cases like fake car, real president etc.

Please note that the above is also a rather welcomed result in that it predicts
that a fake gun is an object (and not a fake object). It seems in this respect that
the above MTT analysis of privative adjectives can produce further welcoming

Adjectives in a Modern Type-Theoretical Setting 171

results due to the nature of the subtyping mechanism. Other privative adjectives
like imaginary can be treated accordingly.

5 Non-committal Adjectives

Privative adjectives, as already mentioned, comprise one of the subcategories of
non-subsective adjectives, the other being the class of non-committal adjectives
as these are usually called within the Montagovian tradition. In this category,
we find modal adjectives like alleged, possible and potential. According to Partee
[24], these are the only adjectives that do not give rise to any inferences at all:17

(34) Adj(N) ⇒ ?.

Adjectives like alleged (and similar ones like potential and possible) involve a
flavour of modality missing from the other classes of adjectives. Ranta [27] dis-
cusses the use of the notion of context in MTTs in order to deal with phe-
nomena that have traditionally been dealt with using possible worlds in the
model-theoretic tradition. Ranta in discussing the various issues associated with
epistemic logic, proposes the notion of belief contexts: a belief context is a se-
quence of assumptions that an agent p has made. More precisely, the belief
context of an agent p, notation Γp, is a context of the form:

(35) Γp = x1 : A1, ..., xn : An

Based on this, Ranta proposes the belief operator Bp, defined as

BpA = ΠΓp. A = Πx1:A1...Πxn:An. A.

As a consequence, BpA is true if and only if A is true in Γp.
Now, an adjective like alleged can be interpreted as follows. Let AN : cn be

the interpretation of a common noun N . Then, we interpret

(36) [[alleged N]] = Σp:Human. B(p,AN)

where B(p,A) = ΠΓp. A with Γp being the belief context of p : Human.18

Intuitively, the above says that, for some human being p, p believes that AN (the
semantics of N) is true.19 For example, the following sentence (37) is interpreted
as (38):

17 This of course does not mean that they are devoid of meaning. This is a separate
issue.

18 Note that, strictly speaking, p in Bp is a meta-level entity; we are abusing the
notation here. Formally, we can use a universe U that contains the Π-types and
inductively define B : Human → U → U . Details are omitted.

19 This is the analog of a formula that involves existential quantifications. One may
turn such types into propositions by means of the following operation: for any type
A, Exists(A) = ∃x:A.True. Then, with this mechanism, (36) can be represented as
the proposition ∃p:Human. Exists(B(p,AN)).

172 S. Chatzikyriakidis and Z. Luo

(37) John is an alleged criminal.

(38) [[John]] : [[alleged criminal]] = Σp : Human. B(p, [[criminal]])

Similar cases of adjectives seem in principle to be accountable within the same
line of approach. On a more general note, the constructive notion of context that
has been claimed by Ranta [26,27] to be the equivalent of the notion of a possible
world in model-theoretic semantics is an idea that we believe needs to be taken
into consideration more seriously. Such an approach may potentially provide us
with a general account of intensionality. Indeed, a number of proposals have been
put forth both by Ranta himself as well as other researchers building on work by
Ranta.20 We hope that our work will contribute towards this direction as well.

6 The Case of Former

In the last section, we shall deal with some temporal adjectives such as former
and past. If we follow Partee [24] and assume that former behaves similarly to
adjectives like fake or imaginary, then one is committed to a similar analysis
for former as we have done in §4. Indeed one could propose an analysis for
former within the same lines as the one proposed for fake, assuming the necessary
modifications are made.

Another way to deal with former is not via the disjoint union type but rather
via using an explicit T ime argument. Such an argument is independently needed
if one wants to deal with any kind of tense or aspectual phenomenon. Whether
this T ime parameter will be an argument of the verb or a parameter in a more
complex argument, like for example an event argument is something that we will
not discuss here. For the moment, let’s assume a simple model of tense – a type
T ime with an ordering relation < (see, for example, [27]). Then we assume that
some CNs are indexed by the time parameter. For example, instead just having
a CN president, we have a family of types

president(t) : cn,

indexed by t : T ime. We further assume that now : T ime stand for the ‘current
time’; for example, president(now) is the CN president at the current time.

With the above mechanisms available, we can now interpret CNs modified by
former as follows: for example,21

(39) [[former president]] = ¬president(now)∧∃t : T ime. t < now∧president(t).

20 See for example the work by [9] on adjectives like alleged or the work by [2] on NL
phenomena involving beliefs.

21 For understandability of the readers who are unfamiliar with MTTs, we abuse the
notation here, using ¬A to stand for A → ∅, ∧ for × and ∃ for Σ. One may ignore
these formal details.

Adjectives in a Modern Type-Theoretical Setting 173

In general, we have [[former]] : (T ime → cn) → cn, obtained by abstracting
president in the above definition:22 for any p : T ime→ cn,

(40) [[former]](p) = ¬p(now) ∧ ∃t : T ime. t < now ∧ p(t).

With president : T ime → cn, we have [[former president]] =
[[former]]([[president]]).

The above use of dependent types in semantic interpretations may have the
potential to be generalised. Further research is needed in this direction.

7 Conclusion

In this paper, we proposed an account of the various classes of adjectives within
an MTT setting. We have shown that the Σ-type analysis for adjectives can
cover the subsective and intersective classes adequately thanks to the use of the
subtyping mechanism as well as the use of the notion of a universe. However, it
was shown that privative adjectives require a different treatment and proposed
to treat this type of adjectives via disjoint union types. This type of approach
gives us the correct results as regards the inferences associated with these types
of adjectives. Lastly, non-committal adjectives were discussed and an account
that makes use of the constructive notion of context as approximating possible
worlds was given.

References

1. Asher, N.: Lexical Meaning in Context: a Web of Words. Cambridge University
Press (2012)

2. Boldini, P.: Formalizing context in intuitionistic type theory. Fundamenta Infor-
maticae 42(2), 1–23 (2000)

3. Chatzikyriakidis, S., Luo, Z.: An account of natural language coordination in type
theory with coercive subtyping. In: Proc. of Constraint Solving and Language Pro-
cessing, Orleans (2012)

4. Chatzikyriakidis, S., Luo, Z.: Natural Language Inference Using Coq (2013)
(manuscript)

5. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1)
(1940)

6. Davidson, D.: Compositionality and coercion in semantics: The semantics of ad-
jective meaning. In: Rescher, N. (ed.) The Logical Form of Action Sentences,
pp. 81–95. University of Pittsburgh Press (1967)

22 Note that this type does not give rise to Prop after functional application but rather
to CN . This is compatible with the fact that this type of adjectives cannot appear in
predicative positions. In case one thinks that this is not a semantic issue but rather
a syntactic one, one can use a slightly different definition so that [[former]] has type
(T ime → cn) → Prop, preserving a kind of type uniformity across all adjectival
classes.

174 S. Chatzikyriakidis and Z. Luo

7. Girard, J.Y.: Une extension de l’interpretation fonctionelle de gödel à l’analyse et
son application à l’élimination des coupures dans et la thèorie des types’. In: Proc.
2nd Scandinavian Logic Symposium, North-Holland (1971)

8. Gupta, A.: The Logic of Common Nouns. Yale University Press (1980)
9. Jespersen, B., Primiero, G.: Alleged assassins: realist and constructivist semantics

for modal modification. In: Bezhanishvili, G., Lbner, S., Marra, V., Richter, F.
(eds.) 9th International Tbilisi Symposium on Logic, Language, and Computation
(2012)

10. Kamp, H.: Formal semantics of natural language. In: Keenan, E. (ed.) Two Theories
About Adjectives, pp. 123–155. Cambridge University Press (1975)

11. Larson, R.: Events and modification in nominals. In: Proceedings of Semantics and
Linguistic Theory (SALT) VIII, Tokyo (1998)

12. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Ox-
ford Univ. Press (1994)

13. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130
(1999)

14. Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver (2010)

15. Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In:
Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS, vol. 6736, pp. 159–174.
Springer, Heidelberg (2011)

16. Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012.
LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012)

17. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Lin-
guistics and Philosophy 35(6) (2012)

18. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation.
Information and Computation 223 (2012)

19. Luo, Z.: Adjectives and adverbs in type-theoretical semantics. Notes (2011)
20. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,

Shepherdson, J.C. (eds.) Logic Colloquium’73 (1975)
21. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
22. Montague, R.: The proper treatment of quantification in ordinary English. In:

Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Languages
(1973)

23. Montague, R.: Formal Philosophy. Yale University Press (1974)
24. Partee, B.: Compositionality and coercion in semantics: The semantics of adjective

meaning. In: Bouma, G., Krämer, I., Zwarts, J. (eds.) Cognitive Foundations of
Interpretation, Royal Netherlands Academy of Arts and Sciences (2007)

25. Partee, B.: Presuppositions and discourse: Essays offered to hans kamp. In: Bauerle,
R., Reyle, U. (eds.) Privative Adjectives: Subsective Plus Coercion, pp. 123–155.
Emerald Group Publishing (2010)

26. Ranta, A.: Constructing possible worlds. Theoria 52(1-2), 77–99 (1991)
27. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)
28. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic III: Alternatives to Classical Logic. Reidel (1986)

Tree Wrapping for Role and Reference Grammar

Laura Kallmeyer, Rainer Osswald, and Robert D. Van Valin, Jr.

Sonderforschungsbereich 991�

Heinrich-Heine-Universität Düsseldorf, Germany
{kallmeyer,osswald,vanvalin}@phil.uni-duesseldorf.de

Abstract. We present a tree rewriting system that aims at formalizing the com-
position of syntactic templates in Role and Reference Grammar, a linguistic
grammar developed mainly for typological analysis. Building on ideas from Tree
Adjoining Grammar, we devise two basic operations for syntactic composition:
(wrapping) substitution and sister adjunction. The first operation models plain ar-
gument insertion as well as the construction of long distance dependencies. The
second operation implements adjunction to non-binary trees. We complement
the definition of this tree rewriting system, called Tree Wrapping Grammar, by
giving a CYK parser for grammars of this type.

1 Introduction

The approach to tree construction and parsing presented in this paper is part of a larger
project that aims at a full formalization of Role and Reference Grammar (RRG). RRG
is a theory of the grammar of natural language which has been developed as a de-
scriptive tool for the analysis of typologically distinct languages, and which takes into
account the interaction between syntax, semantics, and pragmatics [1–3]. The focus of
the present paper is on formalizing the syntactic templates proposed in RRG and the
compositional mechanisms operating on them. Building on ideas from Tree Adjoining
Grammar (TAG), we present a tree rewriting system, called Tree Wrapping Grammar,
that captures the basic tree composition principles of RRG. One of the advantages of
such a formalization is that it paves the way for a computational treatment of the gram-
mar. We define a CYK parsing schema for Tree Wrapping Grammars, which can be
employed for RRG parsing.

Role and Reference Grammar. RRG is inspired by both typological and theoretical
concerns. It emphasizes the importance of taking into account typologically diverse
languages in the formulation of a linguistic theory, and it is a theory in which semantics
and pragmatics play significant roles. In contrast to, e.g., minimalist grammar [4], in
RRG there is a direct mapping between the semantic and syntactic representations of
a sentence, unmediated by any kind of abstract syntactic representations. I.e., there is
only a single syntactic representation for a sentence that corresponds to its actual form.

One of the basic assumptions of RRG is that clauses have a layered structure which
reflects the distinction between predicates, arguments, and non-arguments [3]. The core

� This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG) within the
Collaborative Research Center (SFB) 991.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 175–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

176 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

SENTENCE

CLAUSE

PrCS CORE PERIPHERY

NP NUC PP

PRED

NP V PP ADV

What did Robin show to Pat in the library yesterday

Fig. 1. RRG layered structure of an English clause

layer consists of the nucleus, which specifies the (verbal) predicate, and the syntactic
arguments. The clause layer contains the core as well as extracted arguments. Each of
the layers can have a periphery where adjuncts are attached to. As an example consider
the structure of What did Robin show to Pat in the library yesterday? in Fig. 1.

Tree Adjoining Grammar. Tree Adjoining Grammar (TAG; [5–7]) is a grammar for-
malism, which is, per se, neutral with respect to its application domain, be it natural
language, genetic sequences, or any other string domain. In a TAG, so-called elemen-
tary trees are combined into larger trees by two rewriting operations, substitution and
adjunction. Fig. 2 gives a simple linguistic example: The elementary trees anchored by
John, laughs and sometimes are used to compose the derived tree on the right. Substi-
tution consists of replacing a non-terminal leaf with an elementary tree (see the combi-
nation of John and laughs) while adjunction consists of replacing an internal node with
a new tree (see the combination of sometimes and laughs).

NP

John

S

NP VP

V

laughs

VP

ADV VP*

sometimes

=⇒

S
NP VP

John ADV VP

sometimes V

laughs

Fig. 2. Elementary TAG trees and derived tree for John sometimes laughs

It is a common assumption in applications of TAG to natural language that all gram-
matical dependencies imposed by a lexical item are represented “locally” within the
elementary tree selected by the item [8]. The domain of locality with respect to de-
pendency is thus larger than in grammars based on context-free rules. This extended
domain of locality is one of the defining features of Lexicalized Tree Adjoining Gram-
mar (LTAG) [6], where every elementary tree includes a terminal frontier node called
the lexical anchor. The elementary tree associated with a lexical predicate contains
non-terminal leaves (“argument slots”) exactly for all its syntactic arguments.

Tree Wrapping for Role and Reference Grammar 177

Toward a Tree Formalism for RRG. The organization of the syntactic inventory of RRG
has obvious connections to LTAG since the concepts of core and clause are closely re-
lated to the idea of the locality of syntactic dependencies within LTAG elementary trees.
The core/clause part is non-recursive, localizes predicate-argument dependencies, and
contains larger structures than the small structures corresponding to traditional phrase
structure rules. In other words, the basic clause structures of RRG constitute extended
domains of locality.

Viewed from this perspective, a formalization of the grammatical structures of RRG
consists of two parts: the specification of the elementary trees and the definition of
the compositional operations acting on them. Our general proposal is to specify, as in
LTAG, the elementary trees (or, rather, tree templates) by means of a metagrammar [9],
that is, to define the trees as minimal models of a set of appropriate tree constraints.
It is thus part of the metagrammar to capture the linguistic facts and generalizations
expressed within and across the elementary trees.

The present paper focusses on formalizing the composition of elementary trees, that
is, we take them as given and put aside the issue of their metagrammatical specification.
The way in which trees are combined in RRG differs from the standard tree operations
provided by LTAG in several respects. Section 2 gives an overview of the different tree
composition mechanisms used in RRG. In Section 3, we give a formal definition of the
operations on trees as part of a tree rewriting formalism called Tree Wrapping Grammar
(TWG), and Section 4 presents then a parser for TWG.

2 The Composition of Elementary Templates in RRG

In this section, we informally characterize the composition of RRG’s elementary syn-
tactic templates. We will go through a series of examples which are adapted from [3].

Subordination. Let us start with the simple example (1) of nominal complements in
base position. As in LTAG, they can be selected for by corresponding substitution nodes
that have to be filled by NP trees (see the elementary template for carry in Fig. 3).

(1) He carried her.

In contrast to LTAG, we do not assume a fully lexicalized grammar. Templates con-
taining a predicate, such as the templates for the CORE structure of the verb carry are
lexicalized, the lexical anchor being the predicate. In the template, we mark the anchor
node with a diamond, following LTAG conventions. Besides this, there are also general
templates without anchor nodes describing for instance the structure of a sentence.

Clausal Complements. English clausal complements in object position are, in con-
trast to NP arguments, not embedded under the CORE node of the verb but under its
CLAUSE node.1 Complementizers are added by an operation similar to adjunction (see
below). Fig. 4 shows how the templates for the verbs in (2) and the clausal template
combine.

1 Cf. [3, pp. 199f] for a motivation of this assumption. One of the crucial observations is that
peripheral elements such as temporal adverbials can occur immediately after the verb in (2)
but not in (1).

178 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

Derived tree: Derivation:SENTENCE

CLAUSE

CORE

NP NUC NP

PRED

V

he carried her

CORE

NP NUC NP

PRED

V$

SENTENCE

CLAUSE

CORE

Fig. 3. Nominal complements in base position in RRG

Derived tree: Derivation:SENTENCE

CLAUSE

CORE CLM CLAUSE

NP NUC CORE

PRED NP NUC NP

V PRED

V

John claims that Mary won the game

SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

NP NUC

PRED

V$

CLAUSE

CORE

NP NUC NP

PRED

V$

Fig. 4. RRG structure of object clausal complements

(2) John claims that Mary won the game.

The tree templates in Fig. 4 show a fundamental difference between LTAG and our for-
malization of RRG. The standard proposal of LTAG is to treat clausal complements not
by substitution but by adjunction, in order to allow extraction out of them. This is, the
tree of the matrix verb adjoins to the complement tree. In RRG, by comparison, clausal
complements are realized by substitution. RRG thus allows us to define a derivation
structure that is closer to a dependency structure than the LTAG derivation trees are.
(The precise definition of the derivation structure is left to future research.)

(3) Whati does John claim Mary loves ti

For long-distance dependencies as in (3) we have (as in LTAG) a more complex clausal
complement and the substitution is a wrapping substitution. This means that a subtree
of the complement is inserted in a substitution node while the higher part of the com-
plement attaches above the root of the target tree. This operation is similar to the idea
of flexible composition from [10] that allows one to interpret LTAG adjunction as a
wrapping operation, such that the complement is actually added to its predicate. The
derivation for (3) is sketched in Fig. 5. In the complement clause, one of the nominal

Tree Wrapping for Role and Reference Grammar 179

Derived tree: SENTENCE

CLAUSE

PrCS CLAUSE

NP CORE CLAUSE

NP NUC CORE

PRED NP NUC

V PRED

V

what does John claim Mary loves

Elementary templates:
SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

NP NUC

PRED

V$

CLAUSE

PrCS CLAUSE

NP CORE

NP NUC

PRED

V$

Fig. 5. Extraction from complement clauses in RRG

arguments is in pre-clause position. The complement clause wraps around the matrix
clause, which yields the desired extraction tree.2

With this analysis, long-distance dependencies such as (4) can also be treated.

(4) Whomi does Mary think Bill claims Susan likes ti.

The derivation of (4) is sketched in Fig. 6. Note that, crucially, we have to first substitute
the claim tree into the think tree and only then, we can wrap the likes tree around the
resulting derived tree. Otherwise, the upper part of the likes tree would end up between
the think and the claim tree. We can also think of this as a delay in the sense of MCTAG
with delayed tree-locality as defined in [11]: When substituting the lower part of the
complement clause into the clausal substitution node, we need not immediately wrap
the upper part around the target tree. Instead, we can delay this part of the wrapping
substitution, obtaining thereby a long-distance dependency.

The RRG analysis of long-distance dependencies described here is actually less re-
stricted than in LTAG where the analysis starts with the likes tree and the claims and
think trees are subsequently adjoined to the lower CLAUSE node (which would be an
S node in LTAG). The choice of trees that can be adjoined here depends in LTAG on
the information on this CLAUSE node, i.e., depends on the likes tree. With our RRG
analysis, depending on how long we wait until finally adding the likes tree by wrap-
ping substitution, the extracted wh element can be arbitrarily high. In order to restrict
this, RRG assumes that on the path from the lower part of the likes tree to the extracted
elements, only CORE and CLAUSE nodes can occur. In the following, as a first for-
mulation of this subjacency prediction, we assume that, in general, in every wrapping

2 Note that an advantage of this analysis is that the tree of the bridge verb claim does not encode
the fact that extraction out of the complement clause is possible (as is the case in TAG where
the corresponding argument node is a foot node). As a consequence, we can use the same
wrapping mechanism to extract parts of other arguments, as for instance in (i) where parts of
the object NP have been extracted.

(i) which paintingi did John own [NPa copy of ti]

180 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

CLAUSE

CORE CLAUSE

NP NUC

PRED

V

think

CLAUSE

CORE CLAUSE

NP NUC

PRED

V

claims

CLAUSE

PrCS CLAUSE

NP CORE

NP NUC

PRED

V

likes

SENTENCE

CLAUSE

Fig. 6. Long-distance dependencies, analysis of (4)

substitution, all nodes between the substitution site and the root of the target tree must be
labeled either CLAUSE or CORE. This mechanism of formulating island constraints is
comparable to the integrity constraints introduced in V-TAG [12] or the path constraints
from D-Tree Substitution Grammars [13].

A second crucial difference to LTAG is that, in principle, with wrapping substitution,
we could have extractions out of more than one complement.3 This is not the case in
LTAG since there is at most one foot node per elementary tree. Obviously, the number
of parallel wrapping substitutions directly influences parsing complexity. We assume in
the following that there is some limit to the number of wrapping substitutions active at
a time. Our first hypothesis is actually that this limit is 1. In other words, during deriva-
tion, for each node, the number of wrapping substitutions where this node dominates
the substitution node that gets filled, is limited to 1.

The idea of wrapping substitution, namely that a lower part of a tree is added by
substitution while the upper part ends up higher in the derived tree, is also present in
the subsertion operation of D-Tree Grammar (DTG) [15] and in the generalized substi-
tution from D-Tree Substitution Grammar (DSG) [13]. These operations are, however,
less restricted. There can be more than one higher subtree, all of them related by dom-
inance links, and these subtrees may not only be wrapped around the target tree but
they can also be inserted into dominance links inside the target tree. In this sense wrap-
ping substitution is a special case of the operations from DTG and DSG. Because of
this freedom concerning the order of the higher subtrees, DTG and DSG can probably
better deal with free word order phenomena. On the other hand, complex fixed word
orders such as cross-serial dependencies are probably easier to deal with in our RRG

3 More generally, more than one complement could be discontinuous, as in the German example
(i), adapted from [14].

(i) Bücher
books

hat
has

derjenige
that

Student
student

drei
three

gekauft
bought

der
who

am meisten
the most

Geld
money

hatte
had

‘the student with the most money bought three books’

(i) combines a split quantifier with an NP having an extraposed relative clause. In the RRG
analysis, one could wrap the Bücher . . . drei and derjenige Student . . . der am meisten Geld
hatte trees both around the bought tree.

Tree Wrapping for Role and Reference Grammar 181

Derived tree: Elementary templates:SENTENCE

CLAUSE

CORE CORE

NP NUC NP NUC NP

PRED PRED

V V

Chris forced/expected Dana to write a letter

CLAUSE

CORE CORE

NP NUC NP

PRED

V$

SENTENCE

CLAUSE

CORE

NUC NP

PRED

V$

Fig. 7. RRG structure of control and raising constructions

formalization. [13] conjecture that DSG cannot generate the copy language, which ex-
hibits a cross-serial dependency pattern, while our formal grammar framework allows
to generate this language (see Fig. 11 on p. 186).

Control and Raising. RRG treats control and raising cases such as (5-a) and (5-b) in
parallel, in contrast to LTAG. In both cases, the NP (here Dana) fills the object position
of the CORE headed by force or expect; see Fig. 7.4 The infinitive tree has category
CORE and is positioned under the CLAUSE node of the matrix verb.

(5) a. Chris forced Dana to write a letter.
b. Chris expected Dana to write a letter.

(6) Whati did Dana force/expect John to write ti

For (6), we assume elementary templates as for extraction out of clausal complements
(see Fig. 5), except for a label CORE instead of CLAUSE for the substitution node.
However, we have then the further problem that the lower part of the write tree substi-
tutes into a CORE node while the higher part wraps around a CLAUSE node. In order
to deal with this, we assume that nodes where a split can occur have (possibly differ-
ent) top and bottom categories (see Fig. 8). We notate them separated by a horizontal
double line. In a wrapping substitution, the bottom category must equal the one at the
substitution site while the top must equal the root node category of the target tree.

Periphery and Functional Elements. Modifiers such as deliberately and earlier than
usual in (7) and functional elments such as complementizers, auxiliaries etc. do not
constitute arguments and are therefore not added by substitution. RRG assumes a flat
structure concerning the placement of these elements, i.e., they are all added as new
sisters of already existing nodes.

(7) Mary deliberately left the party earlier than usual.

In RRG, some categories allow for modification and their modifiers are taken to be
their periphery. Periphery elements constitute new daughters of the modified category.

4 In LTAG, in (5-a), Dana is substituted into the forced tree while in (5-b), Dana is substituted
into the write tree.

182 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

CLAUSE

PrCS
CLAUSE

CORE

NP NUC

PRED

V$

Fig. 8. RRG elementary template for extraction out of infinitives

We therefore assume that they anchor special periphery trees. These trees are such that
the root category determines the category that can be modified by this tree. The root has
only a single daughter which, when adjoining this tree, is added as a new daughter to the
modified category. In other words, modifiers are adjoined by an operation close to the
sister adjunction sometimes used in LTAG that goes back to the idea that it should be
possible that several modifiers adjoin to the same target node [16] which is not allowed
in standard LTAG. Sister adjunction was defined in [15]; it allows to add a new leftmost
or rightmost subtree below the node that is the adjunction site.

Derived tree: Sister adjunctions:

SENTENCE

CLAUSE

CORE

NP ADV NUC NP ADV

PRED

V

Mary delib. left the party earlier . . .

SENTENCE

CLAUSE

CORE

NP CORE NUC NP CORE

ADV PRED ADV

V

delib. left earlier . . .

Fig. 9. Sister adjunction of periphery elements in RRG

Periphery elements can add a new daughter to a node at any position in between
its daughters. Depending on the language, the positions of modifiers might be more
restricted. But in general, and in particular for English, we have to assume that periphery
elements can be inserted at any position below the modified category.

Functional elements are also added by sister adjunction. But they cannot be added
at any position between the daughters of the node they target. Therefore, in our formal-
ization, we assume that some adjunct trees are restricted to adding always a rightmost
(resp. always a leftmost) daughter.

The fact that the adjunction of functional elements can be very restricted (for in-
stance, at most one complementizer can be added) is left aside in this paper. In order to
decide on the exact formulation of these constraints, we have to inspect a larger range

Tree Wrapping for Role and Reference Grammar 183

of examples. One way to implement constraints would be to use features, similarly to
the ones in LTAG, to prevent ungrammatical adjunctions.

Another reason for using features could be that they provide an elegant way to per-
colate syntactic information and to express certain requirement as, for instance, the
equality of the subject and the verb agreement features in a finite clause. We leave this
to future research. The formalization given in the next section and the parsing algorithm
presented here can be extended to a feature structure based version, if needed.

3 Formalization of the Syntactic Inventory

We now give a formal definition of the elementary trees and the composition operations
(wrapping) substitution and sister adjunction that operate on them. We call the resulting
grammar formalism a Tree Wrapping Grammar. The syntactic inventory of RRG can
thus be characterized by a formal grammar of this type.

Tree Wrapping Grammar. An ordered finite labeled tree 〈V,E,≺,r, l〉 consists of a set V
of nodes, an immediate dominance relation E on V , an immediate linear precedence re-
lation ≺ defined on sister nodes, a root node r, and a labeling function l. Two nodes are
sisters if they are daughters of the same mother. A node v′ ∈V is a daughter of v∈V iff
〈v,v′〉 ∈E , in which case v is called the mother of v′. A leaf is a node without daughters.
Let N and T be disjoint alphabets of non-terminal and terminal symbols. A syntactic
tree is an ordered labeled tree such that l(v) ∈ N ∪N2 for each non-leaf v, where at
most one node has a label from N2, and l(v) ∈ N ∪ T if v is a leaf. A non-terminal
leaf is called a substitution node.5 The labels from N2 represent the split categories
motivated in the previous section. Whether a syntactic tree is used for a standard sub-
stitution or a wrapping substitution depends on whether it has an internal node with a
split category. Following the LTAG terminology, trees that can be added by substitution
are called initial trees. In addition, we need adjunct trees for modeling modifiers and
functional elements in RRG. These trees are added by sister adjunction. We distinguish
left-adjoining, right-adjoining and unrestricted adjunct trees, resp. called l-adjunct, r-
adjunct and d-adjunct trees. (The latter can add a daughter at any position.)

Definition 1 (Tree Wrapping Grammar). A Tree Wrapping Grammar (TWG) is a
tuple G = 〈N,T, I,A,AL,AR,C〉 where

• N,T are disjoint alphabets of non-terminal and terminal symbols,
• I,A,AL and AR are disjoint finite sets of syntactic trees, and the root of each tree in

A∪AL∪AR has exactly one daughter.
• C ⊆ N is the set of non-terminals that can occur on a wrapping spine (i.e., between

root and substitution site of the target tree of a wrapping substitution).

Every tree in I is called an initial tree, every tree in A∪AL ∪AR an adjunct tree and
every tree in I∪A∪AL∪AR an elementary tree.

5 Note that, in contrast to TAG, there is no need for auxiliary trees, i.e., there are no foot nodes.

184 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

Wrapping substitution:

γ X

Y

α

X
Y

�

X

Y

Sister adjunction:

γ

X

β X

Y �
X

Y

Fig. 10. Operations in TWG

Syntactic Composition. There are two composition operations on the elementary and
derived trees of a TWG (see Fig. 10):

• Standard/Wrapping substitution: a substitution node v in a tree γ gets replaced with
a subtree α′ of an initial tree α. If α′ is not the entire tree α, then the root node v′ of
α′ must be labeled with a split category 〈X ,Y 〉 such that the root of γ is labeled X
and the substitution node v is labeled Y . In this case, α is split at v′ and wraps around
γ, i.e., the upper part of α ends up above the root of γ while α′ fills the substitution
slot. Otherwise (α = α′), the root of α (i.e., v′) must have the same label as the
substitution node that gets replaced with α. We notate such a substitution γ[v,α,v′].

• Sister adjunction: an adjunct tree β with root category X is added to a node v of
γ labeled with category X . As a result, the root of β is identified with v and the
(unique) daughter of β’s root node is added as a new ith daughter to v. Furthermore,
if β ∈ AL (resp. β ∈ AR), then the new daughter must be a leftmost (resp. rightmost)
daughter. We notate the resulting tree γ[v,β, i].

Definition 2 (Standard/Wrapping substitution). Let γ = 〈V,E,≺,r, l〉 be a syntactic
tree and α = 〈V ′,E ′,≺′,r′, l′〉 an initial tree with V ∩V ′ = /0, and let v be a substitution
node of γ and v′ a node of α. If either a) v′ = r′ and l(v′) = l(v) or b) v′ �= r′ and
l(v′) = 〈l(r), l(v)〉, then γ[v,α,v′] = 〈V ′′,E ′′,≺′′,r′′, l′′〉, the result of substituting α with
respect to v′ into γ at node v is defined as follows:

(1) V ′′ =V ∪V ′ \ {v′},

(2) E ′′ = E ∪ (E ′ \ {〈v1,v2〉 |v1 = v′ or v2 = v′})
∪ {〈v1,r〉 |〈v1,v′〉 ∈ E ′}∪{〈v,v2〉 |〈v′,v2〉 ∈ E ′}

(3) ≺′′ = ≺ ∪ (≺′ \{〈v1,v2〉 |v1 = v′ or v2 = v′})
∪ {〈v1,r〉 |〈v1,v′〉 ∈≺′}∪{〈r,v2〉 |〈v′,v2〉 ∈≺′}

(4) If v′ = r′, then r′′ = r, otherwise (v′ �= r′), r′′ = r′.

(5) l′′(x) = l(x) for all x ∈V and l′′(x) = l′(x) for all x ∈V ′ \ {v′}.

Otherwise, γ[v,α,v′] is undefined.

In a wrapping substitution, the subtree of α rooted by v′ is called the substituting tree,
α without the nodes strictly dominated by v′ is called the wrapping tree, and the nodes
dominating the substitution node in γ are called the wrapping spine.

Tree Wrapping for Role and Reference Grammar 185

Definition 3 (Sister adjunction). Let γ = 〈V,E,≺,r, l〉 be a syntactic tree and β =
〈V ′,E ′,≺′,r′, l′〉 an adjunct tree, and let v ∈V. If a) l(v) = l(r′), b) v has at least i− 1
daughters and c) it is not the case that v = r and γ is an adjunct tree, then γ[v,β, i] =
〈V ′′,E ′′,≺′′,r′′, l′′〉, the result of sister adjoining β into γ at node v as its i-th daughter
is defined as follows:

(1) V ′′ =V ∪V ′ \ {r′} and r′′ = r,

(2) E ′′ = E ∪ (E ′ \ {〈v1,v2〉 |v1 = r′})∪{〈v,v1〉 |〈r′,v1〉 ∈ E ′}
(3) ≺′′ = (≺ \{〈v1,v2〉 |v1 is the (i− 1)th daughter of v in γ}) ∪ ≺′

∪ {〈v1,v2〉 |v1 is the (i− 1)th daughter of v in γ and 〈r′,v2〉 ∈ E ′}
∪ {〈v1,v2〉 |v2 is the (i)th daughter of v in γ and 〈r′,v1〉 ∈ E ′}

(4) l′′(x) = l(x) for all x ∈V and l′′(x) = l′(x) for all x ∈V ′ \ {r′}.

Otherwise, γ[v,β, i] is not defined.

Tree Language. In the following, we call a tree an instance of a tree γ if it is isomorphic
to γ while preserving the labeling. TWG derived trees have as a further component a
function ws that assigns to every node a wrapping substitution count that specifies the
number of wrapping spines that this node belongs to.

Definition 4 (Derived trees). Let G = 〈N,T, I,A,AL,AR,C〉 be an TWG.
1. For every instance γ = 〈V,E,≺,r, l〉 of a γe ∈ I (resp. ∈ A, ∈ AL or ∈ AR), the tuple
〈V,E,≺,r, l,ws〉 with ws(v) = 0 for all v ∈V is a derived initial (resp. d-adjunct or
l-adjunct or r-adjunct) tree in G.

2. For every derived initial (resp. d/l/r-adjunct) tree γ = 〈V,E,≺,r, l,ws〉 with v ∈ V
and every derived initial tree γ′ = 〈V ′,E ′,≺′,r′, l′,ws′〉 with v′ ∈V ′:
If γ′′ = γ[v,γ′,v′] = 〈V ′′,E ′′,≺′′,r′′, l′′〉 is defined

a) and v′ = r′, then 〈V ′′,E ′′,≺′′,r′′, l′′,ws′′〉 is a derived initial (resp. d/l/r-adjunct)
tree with ws′′(x) = ws(x) for all x ∈V and ws′′(x) = ws′(x) for all x ∈V ′ \ {v′}.

b) and v′ �= r′, γ is an initial tree, and for all v′′ ∈ V with 〈r,v′′〉,〈v′′,v〉 ∈ E+ or
r = v′′ (i.e., v′′ on the wrapping spine), v′′ is a node coming from an instance of an
elementary initial tree, l(v′′) ∈C and ws(v′′) = 0, then 〈V ′′,E ′′,≺′′,r′′, l′′,ws′′〉is
a derived initial tree with ws′′(x) = ws(x)+1 for all x ∈V with 〈r,x〉,〈x,v〉 ∈ E∗

and for all other x ∈ V ′′, we set ws′′(x) = ws(x) if x ∈ V and ws′′(x) = ws′(x) if
x ∈V ′.

3. For every derived initial (resp. d/l/r-adjunct) tree γ = 〈V,E,≺,r, l,ws〉 with v ∈ V
and every derived adjunct tree γ′ = 〈V ′,E ′,≺′,r′, l′,ws′〉: If
a) 〈V,E,≺,r, l〉[v,〈V ′,E ′,≺′,r′, l′〉, i] = 〈V ′′,E ′′,≺′′,r′′, l′′〉 is defined for some i,
b) if γ′ is an l-adjunct tree, then i = 1, and
c) if γ′ is an r-adjunct tree, then i = |{v2 | 〈v,v2〉 ∈ E}|+ 1
then 〈V ′′,E ′′,≺′′,r′′, l′′,ws′′〉 with ws′′(x) = ws(x) for all x ∈V and ws′′(x) = ws′(x)
for all x ∈V ′′ \V is a derived initial (resp. d/l/r-adjunct) tree.

4. These are all derived trees in G.

Wrapping substitutions require that all categories on the wrapping spine are in C. Fur-
thermore, for every node v the count ws(v) (initially 0) is incremented whenever v is on

186 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

G = 〈{S, A},{a,b}, I, /0, /0,{S, A}〉 with I =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S

a A

A a

S

b A

A b

S

a A

a

S

b A

b

S

a
S
A

A a

S

b
S
A

A b

S

a
S
A

a

S

b
S
A

b

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Sample derivation of baabaa:
S

b
S
A

b

S

a
S
A

A a

S

a A

A a

Fig. 11. TWG for the copy language {ww |w ∈ {a,b}+}

the wrapping spine in a wrapping substitution. I.e., ws(v) tells us how many wrapping
substitutions stretch across v. In our definition we assume ws(v) to be limited to 1. If
needed, one could later extend this to the general case of maximally k wrapping substi-
tutions stretching across a node. A further constraint is that wrapping substitution can
target only initial trees, i.e., we cannot wrap a tree around an adjunct tree.

Definition 5 (Tree language). Let G = 〈N,T, I,AP,AF ,C〉 be an TWG.

1. A saturated derived tree is a derived tree without substitution nodes and without
nodes with labels from N2, i.e., split categories.

2. The tree language of G is LT (G) = {γ |γ is a saturated derived initial tree in G}. The
string language of G is the set of yields of trees in LT (G).

As an example, Fig. 11 gives a TWG for the copy language. In this grammar, all sub-
stitution nodes must be filled by wrapping substitutions since there are no initial trees
with root label A, and the nodes with the split categories are always the middle nodes.
Along the same lines, one can analyze cross-serial dependencies, occurring in Dutch
[17] or Swiss German [18], that cannot be treated with context-free grammars.

4 A CYK Parsing Scheme

So far, the only RRG parser is [19, 20]. It starts with a POS tagging and then uses the
POS tags in order to determine which parts of a sentence are adjuncts, i.e., modifiers.
These are removed and then the remaining sentence is parsed with a bottom-up chart
parser. It seems counterintuitive to use RRG-external information (the POS tags) to
decide which elements are modifiers. As explained above, a crucial part of RRG is to
provide a distinction between modifiers and arguments, based on a theory of linking.
So the core RRG parser should make use of this instead of relying on RRG-external
information in order to separate modifiers from arguments. Furthermore, a distinction of
modifiers and arguments based on POS tags is not possible in general since, for instance,
NPs such as the whole day can occur not only as arguments but also as modifiers.

In the following, we define a CYK parser for TWG (i.e., a bottom-up chart parser),
along the lines of the CYK parser for LTAG [21–23]. This parser can then be used to
parse an RRG defined as a TWG. The parser is defined using as a deductive system over
appropriate parse items. [24]. The items tell us about the node in an elementary tree we
are in and about the span below this node. As in TAG, the span can have at most one
gap, i.e., we need 4 indices to capture it. The gap contains the span of a substituting tree

Tree Wrapping for Role and Reference Grammar 187

Scan:
[γ, p�, i,−,−, i+1,−,−]

label(γ, p)
= wi+1

Move-
up:

[γ,(p · k)�, i, f1, f2, j, pws,X]

[γ, p⊥, i, f1, f2, j, pws,X]

node address
p · (k+1) does
not exist in γ

Combine-
sisters

:
[γ,(p · k)�, i1, f1, f2, i2, pws,X], [γ,(p · (k+1))⊥, i2, f ′1, f ′2, i3, p′ws,Y]

[γ,(p · (k+1))�, i1, f1⊕ f ′1, f2⊕ f ′2, i3, pws⊕ p′ws,X ⊕Y]

No-left-sister:
[γ, p⊥, i, f1, f2, j, pws,X]

[γ, p�, i, f1, f2, j, pws,X]
there is no left sister of γ(p)
and γ(p) is not the root of a tree in AP ∪AF

Fig. 12. Deduction rules for movements on a single tree

in a wrapping substitution. We need to keep track of its indices since, at some point,
this information needs to be combined with the wrapping tree. Besides the indices, we
distinguish between position ⊥ or � in a node. Furthermore, we need the position of
a node where a wrapping substituion has started and the category of the root node of
a tree targeted by a wrapping substitution. Therefore, our parse items have the form
[γ, pt , i, f1, f2, j, pws,X] where

• γ ∈ I ∪A∪AL∪AR, p a node address6 in γ, and t ∈ {�,⊥} a position on that node
that specifies whether the tree below can be used in a substitution (⊥) or not (�).

• 0≤ i≤ f1 ≤ f2 ≤ j ≤ n are indices with i, j indicating the left and right boundaries
of the yield of the subtree at position p and f1, f2 indicating the yield of a gap, if
such a gap exists. We write f1 = f2 = – if no gap is involved.

• pws is either − or, if a substitution node was filled below with a wrapping substitu-
tion, the position of this substitution node.

• X ∈ N ∪{–} is the root category of a wrapping substitution target tree.

We furthermore require that for every item [γ, pt , i, f1, f2, j, pws,X] with f1 �= − and
f2 �= −, label(γ, p) ∈C holds. Our goal items are all [α,ε�,0,−,−,n,−,−] for α ∈ I.
For combining indices and categories, we use the operator x′ ⊕ x′′ = x where x = x′ if
x′′ =−, x = x′′ if x′ =−, and x is undefined otherwise.

The deduction rules are given in Fig. 12–16. Scan processes terminal leaves.
The position is � since leaves cannot fill substitution nodes. To move in a tree, we
have the following possibilities: In the bottom of a node v, we can a) either combine
with the top of the left sister of v and move to the top of v (Combine-sisters, see Fig. 13)

γ

X

•
Y Z

γ

X

Y Z
•

�

γ

X

Y •
Z

Fig. 13. Illustration of Combine-sisters

6 We use Gorn addresses: ε is the address of the root and p · i the address of the ith daughter of
the node with address p.

188 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

Predict-wrapping:
[α, p⊥, i,−,−, j, pws,−]

[γ, p′⊥, i, i, j, j, p′, label(γ,ε)]
label(α, p)[1] = label(γ, p′),
p �= ε,γ(p′) a substitution node and
γ ∈ I

Substitute-no-gap:
[α,ε⊥, i,−,−, j,−,−]
[γ, p′�, i,−,−, j,−,−]

label(α,ε) = label(γ, p′),
γ(p′) a substitution node

Substitute-with-gap:

[α,ε⊥, i, f1, f2, j,−,X]

[γ, p′�, i, i, j, j, p′,Y]

label(α,ε) = label(γ, p′),
i≤ f1 ≤ f2 ≤ j,γ ∈ I
label(γ,ε) = Y
γ(p′) a substitution node

Complete-
wrapping 1:

[γ,ε�, i, f1, f2, j, p′,X], [α, p⊥, f1,−,−, f2,−,−]
[α, p⊥, i,−,−, j,−,−]

label(α, p)[1] = label(γ, p′),
label(α, p)[0] = X , p �= ε,
γ(p′) a substitution node

Complete-
wrapping 2:

[γ,ε�, i, f1, f2, j, p,X], [α,ε⊥, f1,g1,g2, f2, pws,Y]
[α,ε�, i,g1,g2, j, pws,X]

label(α,ε) = label(γ, p),
p �= ε,
γ(p) a substitution node

As a further condition, we require α ∈ I for all these rules.

Fig. 14. Deduction rules for substitution

Predict-wrapping

α

Y
X
•

i j

�

γ

X
•

i j

Substitute-no-gap

α X
•

i j

�

γ

X
•

Substitute-with-gap

α X
•

i j

f1 f2

�

γ

X
•

i j

Complete-Wrapping 1

γ •
X

Y
i j

f1 f2

α

X
Y
•

f1 f2

�

α

X
Y
•

i j

Complete-Wrapping 2

γ X
•

Y
i j

f1 f2

α Y
•

f1 f2

g1 g2

�

α •
X

i j

g1 g2

Fig. 15. Illustration of substitution operations

or b), if there is no left sister, move to the top (No-left-sister). In the top of a node, we
can move right (Combine-sisters) or, if there is no right sister, move up (Move-up).

(Wrapping) substitutions are triggered when being in the bottom of the root of the
substituting tree. Adjunctions are triggered when being in the bottom of the root of
the adjunct tree and in the top of the node that will become the left/right sister of the
adjoined tree. The substitution rules are given in Fig. 14 and they are illustrated in
Fig. 15. Substitutions are only possible if we are in bottom position in the root of the
substituting tree. If the node is not the root, the substitution is a wrapping substitution
and we have to keep track of the indices of the gap (Predict-Wrapping). If the node
is the root (address ε), it could be the case that below this node, we started a wrapping
substitution that needs to be completed later. Then the item indicates a gap. If there is no
gap, we can perform Substitute-no-gap. If there is such a gap, we have to keep track

Tree Wrapping for Role and Reference Grammar 189

Adjoin-
right:

[γ,(p · k)�, i1, f1, f2, i2, pws,X][β,ε⊥, i2,−,−, i3,−,−],
[γ, p�, i1, f1, f2, i3, pws,X]

label(γ, p) = label(β,ε) and
β ∈ A or (β ∈ AR and
p · (k+1) does not exist in γ)

Adjoin-
left:

[γ,(p ·1)�, i2, f1, f2, i3, pws,X][β,ε⊥, i1,−,−, i2,−,−],
[γ,(p ·1)�, i1, f1, f2, i3, pws,X]

label(γ, p) = label(β,ε) and
β ∈ A∪AL

Fig. 16. Deduction rules for sister adjunction

of the indices of the substituting tree since we have to go back to it later in order to
complete the wrapping substitution (Substitute-with-gap). Once we have finished an
initial tree such that one of its leaves was filled by a wrapping substitution, we must go
back to the argument tree and finish its upper part, i.e., the wrapping part (Complete-
wrapping 1). It could also be the case that the gap did not come from a tree substituted
into γ but from a tree substituted somewhere below some α that was substituted into γ.
In this case, we have to go back to α, passing the information about the root category
of the wrapping target tree (Complete-wrapping 2).

Concerning sister adjunction, in the top of a node, we can add further sisters: To any
such node, we can add adjunct trees to the right (Adjoin-right), thereby increasing its
span. Furthermore, to the leftmost daughter of a node, we can add an adjunct tree to its
left (Adjoin-left). D-adjunct trees can be added at any position while l/r-adjunct trees
are added to the left of the first and right of the last daughter, respectively.

Since the rules contain at most 6 different indices, parsing is of complexity O(n6).

5 Conclusion

This paper contributes to formalizing Role and Reference Grammar (RRG). Motivated
by the fact that RRG assumes an extended domain of locality where the linking takes
place, and inspired by Lexicalized Tree Adjoining Grammar (LTAG), we propose an
RRG formalization along the following lines: A finite set of elementary trees is spec-
ified via a metagrammar, including the formulation of RRG’s linking theory and the
specification of different syntactic realizations of a given valency frame. These elemen-
tary trees are then combined into larger trees by the tree rewriting operations wrapping
substitution and sister adjunction. In this paper, we have focused on the tree generation
process. We have defined Tree Wrapping Grammar (TWG) as a formalization of the un-
derlying tree rewriting grammar. TWG can trivially generate all context-free languages
and, furthermore, cross-serial dependencies can be described with TWG. We have given
a parsing algorithm for TWG that is of complexity O(n6).

References
1. Van Valin Jr., R.D., Foley, W.A.: Role and reference grammar. In: Moravcsik, E.A., Wirth,

J.R. (eds.) Current Approaches to Syntax. Syntax and semantics, vol. 13, pp. 329–352. Aca-
demic Press, New York (1980)

2. Van Valin Jr., R.D., LaPolla, R.: Syntax: Structure, meaning and function. Cambridge Uni-
versity Press (1997)

3. Van Valin Jr., R.D.: Exploring the Syntax-Semantics Interface. Cambridge University Press
(2005)

190 L. Kallmeyer, R. Osswald, and R.D. Van Valin Jr.

4. Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI),
vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

5. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and
System Science 10, 136–163 (1975)

6. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, pp. 69–123. Springer, Berlin (1997)

7. Abeillé, A., Rambow, O.: Tree Adjoining Grammar: An Overview. In: Abeillé, A., Ram-
bow, O. (eds.) Tree Adjoining Grammars: Formalisms, Linguistic Analysis and Processing,
pp. 1–68. CSLI (2000)

8. Frank, R.: Phrase Structure Composition and Syntactic Dependencies. MIT Press, Cam-
bridge (2002)

9. Crabbé, B., Duchier, D.: Metagrammar Redux. In: International Workshop on Constraint
Solving and Language Processing, Copenhagen (2004)

10. Joshi, A.K., Kallmeyer, L., Romero, M.: Flexible composition in LTAG: Quantifier scope
and inverse linking. In: Bunt, H., van der Sluis, I., Morante, R. (eds.) Proceedings of the
Fifth International Workshop on Computational Semantics IWCS-5, Tilburg, pp. 179–194
(2003)

11. Chiang, D., Scheffler, T.: Flexible composition and delayed tree-locality. In: TAG+9 Pro-
ceedings of the Ninth International Workshop on Tree-Adjoining Grammar and Related For-
malisms (TAG+9), Tübingen, pp. 17–24 (June 2008)

12. Rambow, O.: Formal and Computational Aspects of Natural Language Syntax. PhD thesis,
University of Pennsylvania (1994)

13. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Substitution Grammars. Computational
Linguistics (2001)

14. Chen-Main, J., Joshi, A.: A dependency perspective on the adequacy of tree local multi-
component tree adjoining grammar. Journal of Logic and Computation Advance Access
(June 2012)

15. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Grammars. In: Proceedings of ACL (1995)
16. Schabes, Y., Shieber, S.M.: An Alternative Conception of Tree-Adjoining Derivation. Com-

putational Linguistics 20(1), 91–124 (1994)
17. Bresnan, J., Kaplan, R.M., Peters, S., Zaenen, A.: Cross-serial dependencies in Dutch. Lin-

guistic Inquiry 13(4), 613–635 (1982)
18. Shieber, S.M.: Evidence against the context-freeness of natural language. Linguistics and

Philosophy 8, 333–343 (1985)
19. Guest, E.: Parsing for role and reference grammar. In: Van Valin Jr., R.D. (ed.) Investigations

of the Syntax-Semantics-Pragmatics Interface, pp. 435–454. John Benjamins B. V., Amster-
dam (2008)

20. Guest, E.: Parsing using the role and reference grammar paradigm. In: The 13th World Multi-
Conference on Systemics, Cybernetics and Informatics, WMSCI 2009 (July 2009)

21. Vijay-Shanker, K., Joshi, A.K.: Some computational properties of Tree Adjoining Gram-
mars. In: Proceedings of the 23rd Annual Meeting of the Association for Computational
Linguistics, pp. 82–93 (1985)

22. Kallmeyer, L., Satta, G.: A Polynomial-Time Parsing Algorithm for TT-MCTAG. In: Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language Processing of the AFNLP, pp. 994–1002.
Association for Computational Linguistics, Suntec, Singapore (2009)

23. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer,
Heidelberg (2010)

24. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of deductive pars-
ing. Journal of Logic Programming 24(1+2), 3–36 (1995)

The String-Meaning Relations Definable by

Lambek Grammars and Context-Free Grammars

Makoto Kanazawa1 and Sylvain Salvati2

1 National Institute of Informatics, 2–1–2 Hitotsubashi,
Chiyoda-ku, Tokyo, 101–8430, Japan

2 INRIA Bordeaux Sud-Ouest, LaBRI, 351, cours de la Libération,
F-33405 Talence cedex, France

Abstract. We show that the class of string-meaning relations definable
by the following two types of grammars coincides: (i) Lambek grammars
where each lexical item is assigned a (suitably typed) lambda term as a
representation of its meaning, and the meaning of a sentence is computed
according to the lambda-term corresponding to its derivation; and (ii)
cycle-free context-free grammars that do not generate the empty string
where each rule is associated with a (suitably typed) lambda term that
specifies how the meaning of a phrase is determined by the meanings of
its immediate constituents.

1 Introduction

It is well known since Pentus’s work [4,5,6] that Lambek grammars and context-
free grammars can generate the same class of string languages (modulo the empty
string). We show that the equivalence continues to hold when semantics is taken
into account. Specifically, when Lambek grammars and cycle-free (i.e., finitely
ambiguous) context-free grammars are enriched with Montague semantics, they
define the same class of relations between (non-empty) strings and meanings
(represented as typed λ-terms).

2 Preliminaries

2.1 Lambda Terms over a Higher-Order Signature

If A is a finite set, then the set Tp(A,→) of simple types over A is the smallest
superset of A such that A,B ∈ Tp(A,→) implies A→B ∈ Tp(A,→). A higher-
order signature is a triple Σ = (A, C, τ), where A is a finite set of atomic types,
C is a finite set of constants, and τ is a function from C to Tp(A,→). If Var
is a countably infinite set of variables, disjoint from C, then the set Λ(Σ) of
λ-terms over Σ is the smallest superset of C ∪ Var such that M,N ∈ Λ(Σ) and
x ∈ Var imply MN ∈ Λ(Σ) and λx.M ∈ Λ(Σ). A type environment is a finite
partial function from Var to Tp(A,→), written as a list of typing declarations
x1 :A1, . . . , xn :An. A λ-termM [x1, . . . , xn] with free variables x1, . . . , xn may be
assigned a type B under a typing environment x1 :A1, . . . , xn :An, or in symbols,

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 191–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

192 M. Kanazawa and S. Salvati

x1 :A1, . . . , xn :An Σ M [x1, . . . , xn] :B. (The subscript Σ may be omitted when
M [x1, . . . , xn] is a pure λ-term, i.e., does not contain any constants.) Such a
typing judgment is derived according to the following rules:

x : A Σ x :A Σ c : τ(c)

Γ Σ M : A→B Δ Σ N : A

Γ ∪Δ Σ MN : B

Γ Σ M : B

Γ − {x :A} Σ λx.M :A→B

(In the last rule, x may not be in the domain of Γ − {x : A}.)
We assume that the reader is familiar with basic notions in λ-calculus, such

as β-reduction and β-normal form. We write M �β M ′ when M β-reduces to
M ′, and write |M |β for the β-normal form of M . As is customary, we adopt the
informal practice of identifying λ-terms that are identical modulo renaming of
bound variables.

2.2 Product-Free Lambek Calculus

We mostly follow the notations of Pentus [5]. We let Pr = {p1, p2, . . . } be
a countably infinite set of primitive types. If B is a subset of Pr, we let
Tp(B, \, /) denote the smallest superset of B such that A,B ∈ Tp(B, \, /) im-
plies A\B,B/A ∈ Tp(B, \, /). Elements of Tp(Pr, \, /) are called (directional)
types. We let p range over Pr and A,B,C, . . . range over Tp(Pr, \, /). When Γ
is a finite string of types, we let |Γ | denote the number of types in Γ ; thus,
|A1 . . . An| = n.

An expression of the form Γ → A, where Γ is a non-empty finite string of
types and A is a type, is called a sequent. The sequent calculus presentation of
the Lambek calculus consists of the following axioms and rules:

– Axioms: p→ p
– Rules:

Π → A ΓBΔ→ C
ΓΠ(A\B)Δ→ C

(\→) AΠ → B
Π → A\B (→\) where Π �= ε

Π → A ΓBΔ→ C
Γ (B/A)ΠΔ→ C

(/→) ΠA→ B
Π → B/A

(→/) where Π �= ε

Π → C ΓCΔ→ A
ΓΠΔ→ A

Cut

A derivation is cut-free if it does not contain any applications of the Cut rule.
It is easy to see that every sequent has only finitely many cut-free derivations.

Curry-Howard Homomorphism. Every derivation D is associated with a pure
λ-term h(D) according to the following rules (x1, x2, . . . are specially reserved
variables):

Lambek Grammars and Context-Free Grammars 193

– If D is an axiom p→ p, then h(D) = x1.
– If D is of the formF

Π → A

.... E
ΓBΔ→ C

ΓΠ(A\B)Δ→ C
(\→)

then

h(D) = M [x1, . . . , xi−1, xi+nN [xi, . . . , xi+n−1], xi+n+1, . . . , xm+n],

where |Γ | = i− 1, h(E) =M [x1, . . . , xm], and h(F) = N [x1, . . . , xn].
– If D is of the form E

AΠ → B
Π → A\B (→\)

then h(D) = λz.M [z, x1, . . . , xm−1], where h(E) = M [x1, . . . , xm].
– If D ends in (/→) or (→/), h(D) is defined similarly to the preceding two

cases.
– If D is of the formF

Π → C

.... E
ΓCΔ→ A

ΓΠΔ→ A
Cut

then

h(D) = M [x1, . . . , xi−1, N [xi, . . . , xi+n−1], xi+n, . . . , xm+n−1],

where |Γ | = i− 1, h(E) =M [x1, . . . , xm], and h(F) = N [x1, . . . , xn].

We also use h for the mapping from directional types to simple types de-
fined by h(p) = p, h(A\B) = h(B/A) = h(A)→ h(B). If D is a derivation of
A1 . . . An → B, then we always have

x1 : h(A1), . . . , xn : h(An) h(D) : h(B).

Another important fact is that if D is cut-free, then h(D) is in β-normal form.

Cut Elimination.

p → p

.... E
ΓpΔ → A

ΓpΔ → A
Cut

�
.... E

ΓpΔ → A
(C1)

.... F
Π → p p → p

Π → p
Cut

�
.... F

Π → p
(C2)

.... F1

Π → A

.... F2

ΓBΔ → C

ΓΠ(A\B)Δ → C
(\→)

.... E
ΦCΨ → D

ΦΓΠ(A\B)ΔΨ → D
Cut

�
.... F1

Π → A

.... F2

ΓBΔ → C

.... E
ΦCΨ → D

ΦΓBΔΨ → D
Cut

ΦΓΠ(A\B)ΔΨ → D
(\→)

(C3)

194 M. Kanazawa and S. Salvati

.... F
Φ → C

.... E1
Π′CΠ′′ → A

.... E2
ΓBΔ → D

ΓΠ′CΠ′′(A\B)Δ → D
(\→)

ΓΠ′ΦΠ′′(A\B)Δ → D
Cut

�

.... F
Φ → C

.... E1
Π′CΠ′′ → A

Π′ΦΠ′′ → A
Cut

.... E2
ΓBΔ → D

ΓΠ′ΦΠ′′(A\B)Δ → D
(\→)

(C4)

.... F
Φ → C

.... E1
Π → A

.... E2
Γ ′CΓ ′′BΔ → D

Γ ′CΓ ′′Π(A\B)Δ → D
(\→)

Γ ′ΦΓ ′′Π(A\B)Δ → D
Cut

�
.... E1

Π → A

.... F
Φ → C

.... E2
Γ ′CΓ ′′BΔ → D

Γ ′ΦΓ ′′BΔ → D
Cut

Γ ′ΦΓ ′′Π(A\B)Δ → D
(\→)

(C5)

.... F
Φ → C

.... E1
Π → A

.... E2
ΓBΔ′CΔ′′ → D

Π(A\B)Δ′CΔ′′ → D
(\→)

ΓΠ(A\B)Δ′ΦΔ′′ → D
Cut

�
.... E1

Π → A

.... F
Φ → C

.... E2
ΓBΔ′CΔ′′ → D

ΓBΔ′ΦΔ′′ → D
Cut

ΓΠ(A\B)Δ′ΦΔ′′ → D
(\→)

(C6)

.... F
Φ → C

.... E1
AΠ′CΠ′′ → B

Π′CΠ′′ → A\B (→\)

Π′ΦΠ′′ → A\B Cut

�

.... F
Φ → C

.... E1
AΠ′CΠ′′ → B

AΠ′ΦΠ′′ → B
Cut

Π′ΦΠ′′ → A\B (→\)
(C7)

Similar to (C3)–(C7), with / in place of \. (C8)–(C12)

.... F1

AΦ → B

Φ → A\B (→\)

.... E1
Π → A

.... E2
ΓBΔ → D

ΓΠ(A\B)Δ → D
(\→)

ΓΠΦΔ → D
Cut

�

.... E1
Π → A

.... F1

AΦ → B
ΠΦ → B

Cut

.... E2
ΓBΔ → D

ΓΠΦΔ → D
Cut

(C13)

.... F1

AΦ → B

Φ → A\B (→\)

.... E1
Π → A

.... E2
ΓBΔ → D

ΓΠ(A\B)Δ → D
(\→)

ΓΠΦΔ → D
Cut

�
.... E1

Π → A

.... F1

AΦ → B

.... E2
ΓBΔ → D

ΓAΦΔ → D
Cut

ΓΠΦΔ → D
Cut

(C14)

Similar to (C13)–(C14), with / in place of \. (C15)–(C16)

If D � D′ by one of (C1)–(C16), then h(D) �β h(D′). Every derivation D
reduces to some cut-free derivation D′ by repeated applications of (C1)–(C16).

In general, a derivation may reduce to many different cut-free derivations,
although the β-normal λ-terms associated with these derivations are all equal.1

1 The non-confluence property is due to the fact that (C3) and (C8) have overlapping
domains of application with (C4)–(C7) and (C9)–(C12), and the fact that (C13) and
(C14) have identical domains of application, as do (C15) and (C16). We note that
(C13) and (C15) were not among the rules described by Lambek [3] in his proof
of cut elimination. For our purposes, it is convenient, though not essential, to have
these rewriting rules, in addition to (C14) and (C16).

Lambek Grammars and Context-Free Grammars 195

2.3 Lambek Grammars with Montague Semantics

A Lambek grammar with Montague semantics (Lambek grammar for short) is a
tuple G = (B, T , Σ, f,R, S), where

– B is a finite subset of Pr,
– T is a finite set of terminals,
– Σ = (A, C, τ) is a higher-order signature called the semantic vocabulary,
– f is a function from B to Tp(A,→),
– R is a finite subset of T × Tp(B, \, /) × Λ(Σ) such that if (a,A,M) ∈ R,

then Σ M : f(h(A)),2

– S is a distinguished element of Tp(B, \, /).

The string-meaning relation defined by G is

R(G) = { (a1 . . . an, |M [M1, . . . ,Mn]|β) |
D is a derivation of B1 . . . Bn → S,M [x1, . . . , xn] = h(D),

(ai, Bi,Mi) ∈ R for i = 1, . . . , n }.

Whenever (w,M) ∈ R(G), it holds that Σ M : f(h(S)).

2.4 Context-Free Grammars with Montague Semantics

A context-free grammar with Montague semantics (context-free grammar for
short) is a tuple G = (N , T , Σ, f,P , S), where

– N is a finite set of nonterminals,
– T is a finite set of terminals,
– Σ = (A, C, τ) is a higher-order signature called the semantic vocabulary,
– f is a function from N to Tp(A,→),
– P is a finite set of rules of the form

B → w0B1w1 . . . Bnwn :M [x1, . . . , xn] (1)

where n ≥ 0, B,B1, . . . , Bn ∈ N , w0, w1, . . . , wn ∈ T ∗, M [x1, . . . , xn] ∈
Λ(Σ), and

x1 : f(B1), . . . , xn : f(Bn) Σ M [x1, . . . , xn] : f(B),

– S is a distinguished element of N called the start symbol.

A derivation tree of sort B is a tree of the form πT1 . . . Tn, where π is a rule
of the form (1) and for i = 1, . . . , n, Ti is a derivation tree of sort Bi. We write

D(G) for the set of derivation trees of G (of any sort). The string yield of a
derivation tree T = πT1 . . . Tn is defined recursively by

y(T) = w0 y(T1)w1 . . . y(Tn)wn.

2 Here, f is homomorphically extended to a function from Tp(B,→) to Tp(A,→).

196 M. Kanazawa and S. Salvati

The meaning of T is defined by

m(T) = M [m(T1), . . . ,m(Tn)].

Note that whenever T is a derivation tree of sort B, we have

Σ m(T) : f(B).

We write

G B(w,M)

to mean that there is a derivation tree T of sort B such that y(T) = w and
m(T) = M . The string-meaning relation defined by G is

R(G) = { (w, |M |β) | G S(w,M) }.

In addition to the notion of a derivation tree, we need the notion of a deriva-
tion tree context. A derivation tree context is a derivation tree with holes, each
denoted by a symbol of the form �D, where D is a nonterminal. A derivation
tree context of sort B is defined inductively as follows:

– �B is a derivation tree context of sort B.
– If π is a rule of the form (1) and Ti is a derivation tree context of sort Bi

for i = 1, . . . , n, then πT1 . . . Tn is a derivation tree context of sort B.

The yield and meaning of a derivation tree context are defined as follows:

y(�D) = D,

y(πT1 . . . Tn) = w0 y(T1)w1 . . . y(Tn)wn,

m(�D) = x1,

m(πT1 . . . Tn) =M [P1[x1, . . . , xk1], . . . , Pn[xk1+···+kn−1+1, . . . , xk1+···+kn]],

where Pi[x1, . . . , xki] = m(Ti).

If T is a derivation tree context of sort B with n holes, labeled �D1 , . . . ,�Dn ,
respectively, from left to right, then

y(T) ∈ T ∗D1T ∗ . . . DnT ∗,

x1 : f(D1), . . . , xn : f(Dn) Σ m(T) : f(B).

We write

G B(γ,M)

to mean that there is a derivation tree context T of sort B such that y(T) = γ
and m(T) =M .

Let T be a derivation tree context of sort B with m holes, and i ∈ {1, . . . ,m}.
If �D is the label of the i-th hole (from the left) of T and U is a derivation tree
context of sort D with n holes, then the result of replacing the i-th hole of T

Lambek Grammars and Context-Free Grammars 197

by U , call it T ′, is a derivation tree context of sort B with m + n − 1 holes. If
γDδ = y(T), where γ ∈ (T ∗N)i−1T ∗, then

y(T ′) = γy(U)δ,

and
m(T ′) = M [x1, . . . , xi−1, N [xi, . . . , xi+n−1], xi+n, . . . , xm+n−1],

where M [x1, . . . , xm] = m(T) and N [x1, . . . , xn] = m(U).
If we ignore the components Σ, f of G = (N , T , Σ, f,P , S) and remove colons

and λ-terms from the rules in P , we get an ordinary context-free grammar. We
write ⇒G for the relation of one-step rewriting associated with this context-
free grammar. We write ⇒+

G and ⇒∗
G for the transitive and reflexive transitive

closure of this relation, respectively. Clearly, for every B ∈ N , w ∈ T ∗, and
δ ∈ (N ∪ T)∗, we have

– B ⇒∗
G w iff there is a derivation tree T of sort B such that y(T) = w, and

– B ⇒∗
G δ iff there is a derivation tree context T of sort B such that y(T) = δ.

We write L(G) for

{w ∈ T ∗ | S ⇒∗
G w } = {y(T) | T is a derivation tree of G of sort S }.

We call G = (N , T , Σ, f,P , S) cycle-free if G does not allow a cycle B ⇒+
G B

for any B ∈ N . If G is cycle-free, then for any w ∈ T ∗, the set {T ∈ D(G) |
y(T) = w } is finite, and a fortiori, the set of meanings associated with each w,
{M | (w,M) ∈R(G) }, is finite.

3 From Lambek to Context-Free Grammars

3.1 Pentus’s Interpolation Lemma and Cut Elimination

Pentus’s proof of his interpolation lemma for product-free Lambek calculus
(Lemma 7 of [5]) amounts to an algorithm that, given a cut-free derivation D of
Γ → C and a partition (Φ,Θ, Ψ) of Γ (i.e., ΦΘΨ = Γ), returns a sequence of
cut-free derivations (D0,D1, . . . ,Dn) (n ≥ 0) satisfying the following properties:

(i) for i = 1, . . . , n, Di is a derivation of Θi → Di,
(ii) Θ1 . . . Θn = Θ,
(iii) D0 is a derivation of ΦD1 . . .DnΨ → C,
(iv) for every atomic type p, if p occurs in Di, then p occurs in both Θi and

ΦΨC.

We may add the following condition:

(v)D1

Θ1 → D1

....Dn

Θn → Dn

....D0

ΦD1 . . . DnΨ → C

ΦD1 . . . Dn−1ΘnΨ → C
Cut

....
ΦD1Θ2 . . . ΘnΨ → C

ΦΘ1 . . . ΘnΨ → C
Cut

�∗
....D

ΦΘ1 . . . ΘnΨ → C

198 M. Kanazawa and S. Salvati

That is, the cut-free derivations found by Pentus’s interpolation algorithm can
be combined by the Cut rule to form a derivation that reduces to the original
one.3

Lemma 1. Condition (v) holds of Pentus’s algorithm for interpolation.

Proof (sketch). We refer to the numbering of cases used in Pentus’s proof [5].
Square brackets indicate the selected (i.e., middle) part of the three-way partition
of antecedents. We only treat two subcases of Case 4.

Case 4. D ends in an application of (\→).
Case 4e.

D =

....F
Π → A

.... E
Γ ′[Γ ′′BΔ′]Δ′′ → C

Γ ′[Γ ′′Π(A\B)Δ′]Δ′′ → C
(\→)

By induction hypothesis, we have

.... E1

Θ1 → E1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ
′′ → C

Γ ′E1 . . . Er−1ΘrΔ
′′ → C

Cut
....

Γ ′E1Θ2 . . . ΘrΔ
′′ → C

Γ ′Θ1 . . . ΘrΔ
′′ → C

Cut

�∗
.... E

Γ ′Θ1 . . . ΘrΔ
′′ → C

where Θ1 . . . Θr = Γ ′′BΔ′. Let k,Ξ, Υ be such that

Θ1 . . . Θk−1Ξ = Γ ′′, Θk = ΞBΥ, ΥΘk+1 . . . Θr = Δ′.

In this case, Pentus’s algorithm gives (E0, E1, . . . , Ek−1, Ẽk, Ek+1, . . . , Er), where

Ẽk =

....F
Π → A

.... Ek
ΞBΥ → Ek

ΞΠ(A\B)Υ → Ek
(\→)

We have

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... F
Π → A

.... Ek

ΞBΥ → Ek

ΞΠ(A\B)Υ → Ek

(\→)

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−2Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

3 For the purpose of the present paper, it is actually enough to know that the λ-terms
corresponding to the two derivations in (v) are β-equal, but the stronger property
may be of independent interest. For an analogous (but more involved) property of
interpolation in the sequent calculus for intuitionistic implicational logic, see [1].

Lambek Grammars and Context-Free Grammars 199

� (C3)

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... F
Π → A

.... Ek

ΞBΥ → Ek

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

Γ ′E1 . . . Ek−2Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
Cut

�∗
(C5)

.... F
Π → A

.... E1

Θ1 → E1

.... Ek−1

Θk−1 → Ek−1

.... Ek

ΞBΥ → Ek

.... Ek+1

Θk+1 → Ek+1

.... Er

Θr → Er

.... E0

Γ ′E1 . . . ErΔ′′ → C

Γ ′E1 . . . Er−1ΘrΔ′′ → C
Cut

....
Γ ′E1 . . . Ek+1Θk+2 . . . ΘrΔ′′ → C

Γ ′E1 . . . EkΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′E1 . . . Ek−2Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

....
Γ ′E1Θ2 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C
Cut

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

�∗ by I.H.

.... F
Π → A

.... E
Γ ′Θ1 . . . Θk−1ΞBΥΘk+1 . . . ΘrΔ′′ → C

Γ ′Θ1 . . . Θk−1ΞΠ(A\B)ΥΘk+1 . . . ΘrΔ′′ → C
(\→)

Case 4f.

D =

....F
[Π ′]Π ′′ → A

.... E
Γ [BΔ′]Δ′′ → C

ΓΠ ′[Π ′′(A\B)Δ′]Δ′′ → C
(\→)

where Π ′ �= ε. By induction hypothesis, we have

.... F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1 . . . FmΠ ′′ → A

F1 . . . Fm−1ΞmΠ ′′ → A
Cut

....
F1Ξ2 . . . ΞmΠ ′′ → A

Ξ1 . . . ΞmΠ ′′ → A
Cut

�∗
.... F

Ξ1 . . . ΞmΠ ′′ → A

200 M. Kanazawa and S. Salvati

.... E1

Θ1 → E1

.... Er

Θr → Er

.... E0

ΓE1 . . . ErΔ
′′ → C

ΓE1 . . . Er−1ΘrΔ
′′ → C

Cut
....

ΓE1Θ2 . . . ΘrΔ
′′ → C

ΓΘ1 . . . ΘrΔ
′′ → C

Cut

�∗
.... E

ΓΘ1 . . . ΘrΔ
′′ → C

where m, r ≥ 1, Ξ1 . . . Ξm = Π ′, and Θ1 . . . Θr = BΔ′. In this case, Pentus’s
algorithm gives (Ẽ0, Ẽ1, E2, . . . , Er), where

Ẽ0 = Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E0

ΓE1 . . . ErΔ
′′ → C

ΓΞ1(F1\E1)E2 . . . ErΔ
′′ → C

(\→)

....
ΓΞ1 . . . Ξm−1(Fm−1\(. . . \(F1\E1) . . .))E2 . . . ErΔ

′′ → C

ΓΞ1 . . . Ξm(Fm\(. . . \(F1\E1) . . .))E2 . . . ErΔ
′′ → C

(\→)

Ẽ1 =

.... F0

F1 . . . FmΠ ′′ → A

.... E1

BΥ → E1

F1 . . . FmΠ ′′(A\B)Υ → E1

(\→)

F2 . . . FmΠ ′′(A\B)Υ → (F1\E1)
(→\)

....
FmΠ ′′(A\B)Υ → (Fm−1\(. . . \(F1\E1) . . .))

Π ′′(A\B)Υ → (Fm\(. . . \(F1\E1) . . .))
(→\)

with Θ1 = BΥ and Δ′ = ΥΘ2 . . . Θr. In the following derivations, we abbreviate
a sequence of types Ci . . . Cj by Ci..j , a concatenation of sequences of types
Γi . . . Γj by Γi..j , and a type of the form (Ci\(. . . \(Cj\D) . . .)) by (Ci..j\D). We
also omit rule labels other than “Cut”. We have

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Π ′′(A\B)Υ → (Fm . .1\E1)

.... E2

Θ2 → E2

.... Er

Θr → Er

.... Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E0

ΓE1. .r Δ
′′ → C

ΓΞ1(F1\E1)E2. .r Δ
′′ → C....

ΓΞ1. .m−1(Fm−1. .1\E1)E2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)E2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)E2. .r−1Θr Δ
′′ → C

Cut
....

ΓΞ1. .m (Fm . .1\E1)E2Θ3. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)Θ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

Lambek Grammars and Context-Free Grammars 201

�∗ (C6)

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Π ′′(A\B)Υ → (Fm . .1\E1)

.... Fm

Ξm → Fm

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m (Fm . .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C13)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F2. .mΠ ′′(A\B)Υ → (F1\E1)....
Fm−1FmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

FmΠ ′′(A\B)Υ → (Fm−1. .1\E1)
ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

Cut

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

�∗ (C7)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

.... E1

BΥ → E1

F1. .mΠ ′′(A\B)Υ → E1

F1. .m−1ΞmΠ ′′(A\B)Υ → E1
Cut

F2. .m−1ΞmΠ ′′(A\B)Υ → (F1\E1)....
Fm−1ΞmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C4)

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

.... E1

BΥ → E1

F1. .m−1ΞmΠ ′′(A\B)Υ → E1

F2. .m−1ΞmΠ ′′(A\B)Υ → (F1\E1)....
Fm−1ΞmΠ ′′(A\B)Υ → (Fm−2. .1\E1)

ΞmΠ ′′(A\B)Υ → (Fm−1. .1\E1)

.... Fm−1

Ξm−1 → Fm−1

.... F1

Ξ1 → F1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1(F1\E1)Θ2. .r Δ
′′ → C....

ΓΞ1. .m−2(Fm−2. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1. .m−1(Fm−1. .1\E1)Θ2. .r Δ
′′ → C

ΓΞ1 mΠ ′′(A\B)ΥΘ2 r Δ
′′ → C

Cut

202 M. Kanazawa and S. Salvati

�∗ (C13), (C7), (C4)
.... F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

....
F1Ξ2. .mΠ ′′ → A

Ξ1. .mΠ ′′ → A
Cut

.... E1

BΥ → E1

Ξ1. .mΠ ′′(A\B)Υ → E1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

Cut

� (C3) F1

Ξ1 → F1

.... Fm

Ξm → Fm

.... F0

F1. .mΠ ′′ → A

F1. .m−1ΞmΠ ′′ → A
Cut

....
F1Ξ2. .mΠ ′′ → A

Ξ1. .mΠ ′′ → A
Cut

.... E1

BΥ → E1

.... E2

Θ2 → E2

.... Er

Θr → Er

.... E0

ΓE1. .r Δ
′′ → C

ΓE1. .r−1Θr Δ
′′ → C

Cut
....

ΓE1E2Θ3. .r Δ
′′ → C

ΓE1Θ2. .r Δ
′′ → C

Cut

ΓBΥΘ2. .r Δ
′′ → C

Cut

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

�∗ by I.H.

.... F
Ξ1. .mΠ ′′ → A

.... E
ΓBΥΘ2. .r Δ

′′ → C

ΓΞ1. .mΠ ′′(A\B)ΥΘ2. .r Δ
′′ → C

The remaining cases are handled similarly. !

3.2 Pentus’s Construction

Define

‖p‖ = 1, ‖A\B‖ = ‖A‖+ ‖B‖, ‖B/A‖ = ‖B‖+ ‖A‖,
‖A1 . . . An‖ = ‖A1‖+ · · ·+ ‖An‖.

An (m, q)-type is a type A such that ‖A‖ ≤ m and the atomic types that
occur in A are among p1, . . . , pq. A sequent A1 . . . An → C is an (m, q)-sequent if
A1, . . . , An, C are all (m, q)-types. The class of Lcut(m, q)-derivations are defined
inductively as follows:

– A cut-free derivation of A1 . . . An → C is an Lcut(m, q)-derivation if
A1 . . . An → C is an (m, q)-sequent and ‖A1 . . . An‖ ≤ 2m.

– If F is an Lcut(m, q)-derivation of Π → C and E is an Lcut(m, q)-derivation
of ΓCΔ→ A, then

....F
Π → C

.... E
ΓCΔ→ A

ΓΠΔ→ A
Cut

is an Lcut(m, q)-derivation.

Pentus uses his interpolation lemma to prove that every derivable (m, q)-
sequent has an Lcut(m, q)-derivation (Theorem 1 of [5]). With Lemma 1, we can
strengthen this theorem to the following:

Lambek Grammars and Context-Free Grammars 203

Lemma 2. For every cut-free derivation D of an (m, q)-sequent, there is an
Lcut(m, q)-derivation D′ of the same sequent such that D′ �∗ D.

Let G = (B, T , Σ, f,R, S) be a Lambek grammar with Montague semantics.
Let q be the least number such that B ⊆ {p1, . . . , pq} and let m = max({ ‖B‖ |
(a,B,M) ∈ R} ∪ {‖S‖}). Construct a context-free grammar with Montague
semantics Gcf = (N , T , Σ, f ′,P , S), where

N = {B ∈ Tp(B, \, /) | B is an (m,q)-type },
f ′(B) = f(h(B)) for all B ∈ N ,

P = {C → A1 . . . An : h(D) | C,A1, . . . , An ∈ N , ‖A1 . . . An‖ ≤ 2m,
D is a cut-free derivation of A1 . . . An → C } ∪

{B → a : M | (a,B,M) ∈ R}.

Note that N and P are both finite.

Lemma 3. Let B1, . . . , Bn, C ∈ N .

(i) If D is an Lcut(m, q)-derivation of B1 . . . Bn → C, then there is a deriva-
tion tree context T of Gcf of sort C such that y(T) = B1 . . . Bn and
m(T) = h(D).

(ii) If T is a derivation tree context of Gcf of sort C such that y(T) = B1 . . . Bn,
then there is an Lcut(m, q)-derivation D of B1 . . . Bn → C such that
h(D) = m(T).

Theorem 4. For any Lambek grammar with Montague semantics G, R(G) =
R(Gcf).

The grammar Gcf contains cycles B ⇒+
Gcf

B. The next lemma allows us to
modify the construction to obtain a grammar G′

cf that has no rule of the form
B → A : M [x1].

Lemma 5. For any Lcut(m, q)-derivation D, there is an Lcut(m, q)-derivation
D′ of the same sequent such that |h(D)|β = |h(D′)|β and no sequent of the form
A→ B appears in D′ as a right premise of the Cut rule.

Proof (sketch). Use the following rewriting to transform D into D′.

.... F1

Π → C

.... F2

ΓCΔ → A
ΓΠΔ → A

Cut

.... E
A → B

ΓΠΔ → B
Cut

��	
.... F1

Π → C

.... F2

ΓCΔ → A

.... E
A → B

ΓCΔ → B
Cut

ΓΠΔ → B
Cut

.... F
Γ → A

.... E
A → B

Γ → B
Cut

�∗ a cut-free derivation of Γ → B where ‖Γ‖ ≤ 2m ��

204 M. Kanazawa and S. Salvati

4 From Context-Free to Lambek Grammars

4.1 From Greibach Normal Form Context-Free Grammars to
Lambek Grammars

As with the case of context-free grammars without semantics, the conversion
from context-free grammars with Montague semantics to Lambek grammars is
based on the Greibach normal form. A context-free grammar with Montague
semantics G = (N , T , Σ, f,P , S) is said to be in Greibach normal form if the as-
sociated grammar without semantics is in Greibach normal form, i.e., if each rule
in P is of the form B → aC1 . . . Cn : M [x1, . . . , xn], where a ∈ T and Ci ∈ N .
Such a grammar can be converted to a Lambek grammarG′ = (N , T , Σ, f,R, S)
by letting R consist of all triples

(a, (. . . (B/Cn)/ . . .)/C1, λz1 . . . zn.M [z1, . . . , zn])

such that B → aC1 . . . Cn : M [x1, . . . , xn] is a rule in P . (Here, we assume that
N is identified with some finite subset of Pr.)

4.2 Greibach Normal Form Transformation of Context-Free
Grammars with Montague Semantics

We describe a procedure for converting a cycle-free context-free grammar with
Montague semantics G with ε �∈ L(G) into an equivalent one in Greibach normal
form. This is done in five steps. The first step eliminates all ε-rules from the
grammar. The second step eliminates all unit rules. The third step performs the
left-corner transform, well-known from the work of Rosenkrantz and Lewis [7],
but enriched with semantics. The fourth step takes the result of the previous
step and converts it into extended Greibach normal form. The last step then
converts it into Greibach normal form. The first four steps roughly mirror the
procedure presented in the technical report by Kanazawa and Yoshinaka [2].

Suppose that G = (N , T , Σ, f,P , S) is a cycle-free grammar such that ε �∈
L(G). Let us call a nonterminal B nullable if B ⇒∗

G ε. By assumption, S is not
nullable. Note that the binary relation ⇒+

G restricted to N is a strict partial
order. When A ⇒+

G B holds, we consider A “less than” B with respect to this
partial order.

Elimination of ε-Rules. A rule of the form B → ε : M is called an ε-rule. Let
C be a nullable nonterminal that is maximal with respect to the strict partial
order ⇒+

G. Let P0 be the set of all ε-rules in P with C as the left-hand side
nonterminal. For each rule π of the form

B → w0B1w1 . . . Bnwn :M [x1, . . . , xn],

let π ◦ P0 consist of all rules of the form

B → w0β1w1 . . . βnwn :M [Q1, . . . , Qn]

such that for some k1, . . . , kn, each i ∈ {1, . . . , n} satisfies either

Lambek Grammars and Context-Free Grammars 205

– βi = Bi, Qi = xki , and ki = ki−1 + 1, or
– βi = ε, Bi = C, P0 contains the rule C → ε : Qi, and ki = ki−1,

where k0 = 0. Let

P ′ =
⋃

π∈P−P0

π ◦ P0,

G′ = (N , T , Σ,P ′, S).

Lemma 6. For every B ∈ N and w ∈ T +, the following are equivalent:

(i) G B(w,N).
(ii) Either G′ B(w,N) or B = C, w = ε, and P0 contains the rule C → ε : N .

Lemma 7. For every B ∈ N , B is nullable in G′ if and only if B �= C and B
is nullable in G.

Lemma 8. For every B,B′ ∈ N , B ⇒+
G′ B′ if and only if B ⇒+

G B′.

By Lemma 6, R(G′) = R(G), and by Lemmas 7 and 8, G′ is a cycle-free gram-
mar with one fewer nullable nonterminals than G. By repeating this procedure,
we can turn G into an equivalent one that is cycle-free and contains no ε-rules.

Elimination of Unit Rules. A unit rule is a rule of the form B → B1 :M [x1]. If
G = (N , T , Σ, f,P , S) is a cycle-free grammar with no ε-rules, we can eliminate
unit rules from G by a procedure similar to the one used for the previous step.
Let C be a nonterminal in N that is maximal, but not minimal, with respect
to the strict partial order ⇒+

G. This means that there is a unit rule with C as
its right-hand side nonterminal, but there is no unit rule with C as its left-hand
side nonterminal. Let Pleft be the set of all rules in P with C as their left-hand
side nonterminal, and let Pright be the set of all unit rules in P with C as their
right-hand side nonterminal. Let Pright ◦ Pleft consist of all rules of the form

B → v0D1v1 . . . vm−1Dmvm : N [M [x1, . . . , xm]]

such that Pright contains the rule

B → C : N [x1]

and Pleft contains the rule

C → v0D1v1 . . . vm−1Dmvm :M [x1, . . . , xm].

Let
P ′ = (P − Pright) ∪ (Pright ◦ Pleft),

G′ = (N , T , Σ,P ′, S).

Lemma 9. G′ B(w,M) if and only if G B(w,M).

Lemma 10. B ⇒+
G′ B′ if and only if B ⇒+

G B′ and B′ �= C.

By Lemma 9, R(G′) = R(G). It is clear that G′ is a cycle-free grammar with
no ε-rules, and G′ has one fewer nonterminals that appear on the right-hand
side of unit rules than G. By repeating this procedure, we can obtain a grammar
equivalent to G that has no ε- or unit rules.

206 M. Kanazawa and S. Salvati

Left-corner Transform. Let G = (N , T , Σ, f,P , S) be a grammar with no ε- or
unit rules. Let

N ′ = N ∪ { [B\C] | B,C ∈ N},
and define f ′ :N ′ → Tp(A) by

f ′(B) = f(B), f ′([B\C]) = f(B)→ f(C).

Define P ′ as follows:

– For each rule in P of the form

B → w0B1w1 . . . Bnwn :M [x1, . . . , xn]

(n ≥ 0) with w0 �= ε and each C ∈ N , P ′ contains the rules

B → w0B1w1 . . . Bnwn :M [x1, . . . , xn],

C → w0B1w1 . . . Bnwn[B\C] : xn+1M [x1, . . . , xn].

– For each rule in P of the form

B → B1w1 . . . Bnwn :M [x1, . . . , xn]

(n ≥ 1) and each C ∈ N , P ′ contains the rules

[B1\B]→ w1B2w2 . . . Bnwn : λz.M [z, x1, . . . , xn−1],

[B1\C]→ w1B2w2 . . . Bnwn [B\C] : λz.xnM [z, x1, . . . , xn−1],

(Note that here, either n ≥ 2 or w1 �= ε, since G has no ε- or unit rules.)

Define G′ = (N ′, T , Σ, f ′,P ′, S). The following lemma implies R(G′) = R(G).

Lemma 11. For every B,D ∈ N and w ∈ T +, the following equivalences hold:

(i) G B(w,M) if and only if G′ B(w,M)
(ii) G B(Dw,M [x1]) if and only if G′ [D\B](w, λz.M [z]).

Conversion to Extended Greibach Normal Form. Let G be a grammar with no ε-
or unit rule, and let G′ = (N ′, T , Σ, f ′,P ′, S) be the result of applying the left-
corner transform to G. For each rule π of G′, if the left-hand side nonterminal of
π is some B ∈ N , then the right-hand side of π starts with a terminal. If the left-
hand side nonterminal of π is of the form [B\C], the right-hand side of π starts
either with a terminal or with some nonterminal B2 ∈ N . Let P ′

1 be the set of all
rules in P ′ that does not start with a terminal, and for each nonterminal D ∈ N ,
let P ′

D be the set of all rules in P ′ that has D as their left-hand side nonterminal.
If π ∈ P ′

1 is of the form π = [B\C] → Dπw1B2w2 . . . Bnwn : M [x1, . . . , xn], let
π ◦ P ′

Dπ
consist of all rules

[B\C] → v0E1v1 . . . Emvmw1B2w2 . . . Bnwn : M [P [x1, . . . , xm], xm+1, . . . , xm+n−1]

Lambek Grammars and Context-Free Grammars 207

such that Dπ → v0E1v1 . . . Emvm : P [x1, . . . , xm] is a rule in P ′
Dπ

. Let

P ′′ = (P ′ − P ′
1) ∪
⋃

π∈P′
1

π ◦ P ′
Dπ
,

G′′ = (N ′, T , Σ, f ′,P ′′, S).

It is easy to see that R(G′′) = R(G′) and G′′ is in extended Greibach normal
form in the sense that the right-hand side of each rule starts with a terminal.

From Extended Greibach Normal Form to Greibach Normal Form. Let G =
(N , T , Σ, f,P , S) be a grammar in extended Greibach normal form. Let

N ′ = N ∪ { [Ba] | B ∈ N , a ∈ T },

and define f ′ : N ′ → Tp(A) by

f ′(B) = f(B), f ′([Ba]) = f(B)→ f(B).

If π is a rule of the form

C → aX1 . . . Xn :M [x1, . . . , xm]

in P , where Xi ∈ N ∪ T , and k1, . . . , km and j1, . . . , jn−m list the elements of
{ i | Xi ∈ N } and { i | Xi ∈ T }, respectively, in increasing order, then let π′ be
the rule

C → aX ′
1 . . . X

′
n : xj1(. . . (xjn−mM [xk1 , . . . , xkm]) . . .),

where

X ′
i =

{
Xi if Xi ∈ N ,

[CXi] if Xi ∈ T .

Let
P ′ = { [Ba]→ a : λz.z | B ∈ N , a ∈ T } ∪ { π′ | π ∈ P }.

LetG′ = (N ′, T , Σ, f ′,P ′, S). It is clear thatR(G′) =R(G) andG′ is in Greibach
normal form.

The constructions in this and the previous subsection together give the second
half of the main result of this paper:

Theorem 12. Given any cycle-free context-free grammar with Montague se-
mantics G such that ε �∈ L(G), one can construct a Lambek grammar GL such
that R(G) =R(GL).

References

1. Kanazawa, M.: Computing interpolants in implicational logics. Annals of Pure and
Applied Logic 142, 125–201 (2006)

2. Kanazawa, M., Yoshinaka, R.: Lexicalization of second-order ACGs. NII Technical
Report NII-2005-012E, National Institute of Informatics, Tokyo (2005)

208 M. Kanazawa and S. Salvati

3. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

4. Pentus, M.: Lambek grammars are context free. In: Proceedings of the Eighth An-
nual IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)

5. Pentus, M.: Product-free Lambek calculus and context-free grammars. Journal of
Symbolic Logic 62, 648–660 (1997)

6. Pentus, M.: Lambek calculus and formal grammars. In: Provability, Complexity,
Grammars. American Mathematical Society Translations–Series 2, vol. (192), pp.
57–86. American Mathematical Society, Providence (1999)

7. Rosenkrantz, D.J., Lewis II, P.M.: Deterministic left corner parsing. In: IEEE Con-
ference Record of the 11th Annual Symposium on Switching and Automata, pp.
139–152. IEEE (1970)

On the Complexity of Free Word Orders

Jérôme Kirman and Sylvain Salvati

LaBRI, CNRS/Université Bordeaux, INRIA, France

Abstract. We propose some extensions of mildly context-sensitive for-
malisms whose aim is to model free word orders in natural languages. We
give a detailed analysis of the complexity of the formalisms we propose.

1 Introduction

Many natural languages present some free word order phenomena. In some sen-
tences, certain words or phrases can be exchanged freely without changing their
meanings in an essential way. It is rather usual to model free word order phenom-
ena by means of dependency grammars [6,14]. We here take another approach
that is pertaining to the tradition of generative grammars. We try to see how to
enrich formalisms that are considered to be mildly context sensitive [8] so as to
enable them to model free word order phenomena. Even though the capabilities
of mildly context sensitive formalisms to model free word orders remains largely
unknown [20,12], some evidence based on syntactic structures indicate that they
are not well-suited for modeling free word orders in natural languages [2]. Our
motivations are thus twofold: first we wish to close the gap between the depen-
dency approaches and the generative approaches to natural language, following
a research direction proposed by Kuhlmann [13]; second we wish to see how to
increase the expressiveness of well-known mildly context sensitive formalisms so
that they can model free word orders. A question related to the second motiva-
tion consists in understanding how robust mild context sensitivity is with respect
to such extensions. In this paper, we focus on the computational difficulty of the
extensions we propose and show that for certain of them the membership prob-
lem remains polynomial.

As is well-known and emphasized by formalisms like Abstract Categorial
Grammars (ACGs) [5], mildly context sensitive formalisms have a natural
counter-part in terms of tree languages, such as regular tree languages, non-
duplicating context free tree languages, multiple regular tree languages, tree
languages generated by hyperedge replacement grammars. . . Our approach con-
sists in defining an algebra with letters as basic nullary operators and with two
binary operators: (i) an associative and commutative operator that models the
possibility of displacing phrases, (ii) an associative operator that models the
usual concatenation. Then we use the tree counterpart of mildly context sensi-
tive formalisms so as to generate terms over that algebra. Each of these terms,
modulo the equational theory of the algebra denotes a finite set of strings. Then
the tree languages we construct denote string languages that are the union of

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 209–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

210 J. Kirman and S. Salvati

the finite languages denoted by the terms the grammar generates. This amounts
to representing certain sentences up to the ordering of certain of their elements
while the possible orderings still have the same syntactic tree; this models the
fact that the semantics is preserved and is, in our opinion, crucial in modeling
free word order phenomena. A side effect, is that the formalisms we define are
naturally more expressive than their “string” counterparts.

The idea is rather similar to the one proposed by Muskens [15]; we nevertheless
try to be more conservative with respect to formal language theory. In particular,
we try to stay as close as possible to mildly context-sensitive formalisms. It is also
related to the notion of ID/LP grammar [22], but the grammatical formalisms
we propose are more expressive than context-free grammars.

The paper thus defines some extensions of well-known mildly context-sensitive
formalisms using the techniques that are related to ACGs. We nevertheless adopt
a presentation that is close to that of Multiple Context-Free Grammars (MCFG)
so as to emphasize the relation with mildly context-sensitive formalisms. We
then give an analysis of the complexity of the formalisms we obtain. Most of
them have an NP-complete membership problem, but we manage to define two
tractable subclasses, one being in Nlogspace and being an extension of regular
languages, the other being Logcfl-complete and being an extension of context-
free languages. Concerning the universal membership problem, the complexity
ranges from NP-hardness up to Exptime-completeness for the formalisms we
consider.

2 Words Modulo Commutation

2.1 An Algebra for Representing Words Modulo Commutation

We write [n] for the set {1, . . . , n} and given a finite set Σ, we write Σ∗ for the
set of strings over Σ, ε denoting the empty string.

The set of types type is the smallest set containing 0 and so that when α
and β are in type, (α → β) is also in type. As it is usual we consider that the
operator → associates to the right and that α1 → · · · → αn → 0 denotes the
type (α1 → (· · · → (αn → 0) . . .)). The order order(α) of a type α is defined by
order(0) = 1, order(β → γ) = max{order(β) + 1, order(γ)}. The types that have
order 2, or second order types, are all of the form 0→ · · · → 0→ 0. In general, we
shall write 0k → 0 for the type defined as 00 → 0 = 0, 0k+1 → 0 = 0→ (0k → 0).
Notice that when k > 0, 0k → 0 denotes a second order type.

A signature Σ is a finite set of typed constants. These constants cα come with
their types written as superscripts. The order of a signature Σ is order(Σ) =
max{order(α) | cα ∈ Σ}. In this paper we are going to work only with second
order signatures. We assume that for each type α, we have an infinite countable
set of λ-variables xα, yα, zα, . . . On a signature Σ, we can construct typed λ-
terms, (Λα(Σ))α∈type as the smallest sets such that if cα is in Σ, cα is in Λα(Σ),
if xα is a variable of type α, xα is in Λα(Σ), if M is in Λβ→α(Σ) and N is in
Λβ(Σ), (MN) is in Λα(Σ), and if M is in Λα(Σ), λxβ .M is in Λβ→α(Σ). We
let the order of a term be the order of its type and we are going to work mostly

On the Complexity of Free Word Orders 211

with terms of order at most 2. Notice that variables and constants come with
their types, nevertheless, we shall often omit type annotations; we shall also drop
parenthesis following the usual conventions of λ-calculus. We write FV (M) for
the set of free variables of M . Given a term M , we write |M | for the size of M
defined as: |c| = |x| = 1, |MN | = |M | + |N |, |λx.M | = |M |. For a constant a,
we write |M |a for the number of occurrences of the constant a in M ; for a set of
constants C, we write |M |C =

∑
a∈C |M |a. A term is linear when for each of its

subterms, if it is of the form MN , then FV (M)∩FV (N) = ∅ and if it is of the
form λx.M then x ∈ FV (M). Notice that in a linear terms each variable has at
most one free occurrence.

We assume the usual notion of λ-calculus (β, η or βη-
contraction/reduction/conversion, β-normal form. . .) and work up to α-
conversion. The simultaneous capture avoiding substitution of M1, . . . , Mn

respectively for x1, . . . , xn inM is writtenM [M1/x1, . . . ,Mn/xn]. Given a func-
tion σ that maps variables to terms, we writeM.σ forM [σ(x1)/x1, . . . , σ(xn)/xn]
when FV (M) = {x1, . . . , xn} in M .

Given a first order signature (all constants in Σ have type 0) Σ, we define

com(Σ) to be the signature Σ ∪ {ε0, •02→0,⊗02→0} where ε0 is a constant that
is not in Σ. Given a closed term M in β-normal form and of type 0 built on
com(Σ), we can map it to a string of Σ∗ by simply taking the yield of M as
follows:

1. yield(a) = a,
2. yield(ε) = ε,
3. yield(•M1M2) = yield(⊗M1M2) = yield(M1)yield(M2).

We write Σ for Σ ∪{ε0}. In particular, for a term M , |M |Σ denotes the number
of occurrences of the elements of Σ ∪ {ε} that occur in M .

Moreover, we define the least congruence over λ-terms built on com(Σ), writ-
ten ≡c, that includes βη-conversion and so that:

•(•M1M2)M3 ≡c •M1 (•M2M3) (Assoc. •)
⊗(⊗M1M2)M3 ≡c ⊗M1 (⊗M2M3) (Assoc. ⊗)

⊗M1M2 ≡c ⊗M2M1 (Com. ⊗)

In a nutshell • is associative while ⊗ is associative and commutative. We shall
take a flatten notation for terms in β-normal form of type 0 whose free vari-
ables also have type 0. Given a linear λ-term M in normal form and of type
0 built only with ⊗ (resp. •) and the free variables of type 0 x1, . . . , xn ap-
pearing in that order from left to right we write {N1, . . . , Nn} (resp. N1 . . . Nn)
for M [N1/x1, . . . , Nn/xn]. We shall also, given a term N , write Nk to denote
N . . .N︸ ︷︷ ︸
k times

.

Now given a closed term M of type 0, it denotes a finite language L(M) =
{yield(N) |M ≡c N}.

There are other algebras that can be considered so as to represent finite sets
of strings. In particular, a rather natural choice consists in using partial orders

212 J. Kirman and S. Salvati

generated by series/parallel operations. This amounts to taking • and ‖ as bi-
nary operators to represent the sets. Closed terms of type 0 in normal form are
interpreted as languages using a homomorphism as follows:

1. [[a]] = {a},
2. [[ε]] = {ε},
3. [[•M1M2]] = {tu | t ∈ [[M1]] ∧ u ∈ [[M2]]},
4. [[‖M1M2]] = {t1u1 . . . tnun | t1 . . . tn ∈ [[M1]] ∧ u1 . . . un ∈ [[M2]]}.

Such a choice gives some rather different notion of free word order languages:

Lemma 1. The class of finite languages that can be described with • and ⊗ is
incomparable with the one that can be described with • and ‖.

Proof. The language L(⊗(•ε (⊗a b)) c) = {abc, bac, cab, cba} cannot be described
with • and ‖.

The language [[‖(•a b) c]] = {cab, acb, abc} cannot be described with • and ⊗.
 !

We will explain later on the reason why we prefer to take • and ⊗ instead of • and
‖. For the moment we show that the problem of checking whether a word belongs
to the finite language described by a term built on • and ⊗ is NP-complete.

Lemma 2. Given a closed term M of type 0 in β-normal form and a word w,
deciding whether w is in L(M) is NP-complete.

Proof. We here only prove the NP-hardness; the proof that the problem is in
NP relies on the fact that proving that two closed terms of type 0 in β-normal
form are equivalent modulo ≡c can be done in Ptime.

We are now going to see that the problem is NP-hard using a reduction of the
3-PART problem. An instance P of the 3-PART problem is given by a sequence
S = s1, . . . , s3m of natural numbers and a number k so that for 1 ≤ i ≤ 3m,
k
4 < si <

k
2 . Such an instance has a solution when there is a partition S1, . . . ,

Sm of S so that for every 1 ≤ i ≤ m,
∑

s∈Si
s = k.

So given P an instance of the 3-PART problem, we construct M and w so
that w ∈ L(M) iff P has a solution. The term M is constructed on com({a,#}).
To define M we need first to inductively define on k the terms Ak and Hk by:
A0 = H0 = ε, Ak+1 = •aAk and Hk+1 = ⊗#Hk. We then let M and w be
defined by (using the flatten notation):

M = {As1 , . . . , As3m , Hm}
w = (ak#)m.

It is rather obvious that w is in L(M) iff there is M ′ such that M ′ ≡c M , M ′ is
of the form:

{Asσ(1)
, Asσ(2)

, Asσ(3)
,#, . . . , Asσ(3m)

#, ε}

and w = yield(M ′) = ak0# . . . akm−1# where ki = k = sσ(3i+1)+sσ(3i+2)+sσ(4i)
(notice that the fact that M ′ ≡c M implies that σ is a permutation of [1, 3m]).
From this it easily follows that w is in L(M) iff P has a solution. !

On the Complexity of Free Word Orders 213

2.2 Semilinearity

Given a finite set Σ, the set of vectors of dimension Σ is N
Σ . Given v in N

Σ ,
and a in Σ, we write v.a for the value that v associates to a; we write v1 + v2
for the sum of two vectors; for a in Σ, we also denote 1a the vector so that for
b in Σ, 1a.b = 1 when b = a and 1a.b = 0 otherwise. We also write ‖v‖ for
max{v.a | a ∈ Σ}. We now introduce the notion of linear and semilinear sets.

Definition 1. Given a finite set Σ, and v0, v1,. . . , vn in N
Σ, lin(v0, . . . , vn)

denotes the set:

lin(v0, . . . , vn) = {v0 +
n∑

k=1

kivi | k1, . . . , kn ∈ N}

A subset V of NΣ is said linear over Σ either when it is empty or when there
exists v0, v1,. . . , vn in N

Σ so that V = lin(v0, . . . , vn).
A subset V of NΣ is said semilinear over Σ when it is a finite union of linear

sets over Σ.

We are now going to see that for a fixed linear set V = lin(v0, . . . , vn), given k
in N we can compute in nspace(log(‖v‖)) whether a vector v is in V .

Lemma 3. Given a finite set Σ, we fix a linear set V = lin(v0, . . . , vn), the
problem:

input. v in N
Σ

output. yes when v is in V and no when v is not in V

can be solved in nspace(log(‖v‖)).

Proof. When a number p is smaller than ‖v‖, it can be represented in space
log(‖v‖). Thus a vector v′ in N

Σ so that ‖v′‖ ≤ ‖v‖ can be represented in space
|Σ| log(‖v‖). Now v is in V iff v = v0 or there is i in [1, n] so that v − vi is
in V . When ‖v′‖ ≤ ‖v‖, we also have ‖v′ − vi‖ ≤ ‖v‖ so that the new vector
can also be represented in space |Σ| log(‖v‖). This characterization thus yields
a non-deterministic algorithm that executes in space O(log(‖v‖)). !

Corollary 1. Given a finite set Σ, we fix a semilinear set V , the problem:

input. v in N
Σ

output. yes when v is in V and no when v is not in V

can be solved in nspace(log(‖v‖)).

Proof. Since V is semilinear, it is a finite union of linear sets. The algorithm
consists in choosing non-deterministically one of the linear sets composing V
and then check whether v is in this linear set. From lemma 3 this can be done
in nspace(log(‖v‖)). !

Definition 2. Given a word w in Σ∗, we write ψ(w) for the Parikh image of
w, i.e. the vector v of NΣ such that v.a is the number of a occurring in w.

Given a language L included in Σ∗, we say that L is semilinear when the set
ψ(L) = {ψ(w) | w ∈ L} is semilinear.

214 J. Kirman and S. Salvati

3 Commutative λ-Grammars

We are now going to work with the usual mildly context sensitive grammatical
formalisms as term generating devices that will produce sets of closed terms of
type 0 over the signature com(Σ). Thus a grammar G is going to have a term
language T (G) and a string language L(G) so that L(G) =

⋃
t∈T (G) L(t). In

the next sections, we are going to study the computational complexity of the
universal membership and the membership problems for those grammars.

The presentation we are going to give of a grammar is going to be rather gen-
eral and in line with the usual definition of MCFGs. We thus define the grammars
as bottom-up generative devices. We will use some typed predicates A, B, C,
. . . as non-terminals. We shall write their types as a list of types [α1, . . . , αn].
Given a first order signature Σ, we are going to build derivations by means of
Σ-inference rules of the form:

A(M1, . . . ,Mn)← B1(x1,1, . . . , x1,n1), . . . , Bp(xp,1, . . . , xp,np)

where:

1. the xi,j are pairwise distinct λ-variables so that if Bi has type [βi,1, . . . , βi,ni],
then xi,j has type βi,j ,

2. if A has type [α1, . . . , αn] then M1, . . . , Mn are linear λ-terms in normal
form built on com(Σ) and respectively of type α1, . . . , αn

3. the variables xi,j have at most one occurrence in the Mk’s (the rule is non-
deleting when each variable has exactly one occurrences in the Mk’s),

4. the free variables of the Mk’s are the variables xi,j .

Definition 3. A commutative λ-grammar G is a tuple (N , Σ,R, S) so that:

1. N is a finite set of type non-terminals,
2. Σ is a first order signature of terminals,
3. R is a finite set of Σ-inference rules,
4. S is a non-terminal of N with type [0].

A grammar is non-erasing when the rules in R are all non-erasing.
A derivation judgment is of the form Γ G A(M1, . . . ,Mn) where

Γ = B1(x1,1, . . . , x1,n1), . . . , Bp(xp,1, . . . , xp,np)

where the xi,j are pairwise distinct variables whose types are determined by the
Bi. The derivation judgments are derived as follows; given a rule of R:

A(M1, . . . ,Mn)← B1(x1,1, . . . , x1,n1), . . . , Bp(xp,1, . . . , xp,np)

if for every 1 ≤ i ≤ p, Γi G Bi(Pi,1, . . . , Pi,ni) is derivable
1, then Γ1, . . . , Γp G

A(N1, . . . , Nn) is derivable where Nk is obtained by substituting Pi,j for xi,j in
Mk and then normalizing the obtained term. The grammar G defines a term lan-
guage T (G) = {M |G S(M)} and a string language L(G) =

⋃
M∈T (G)L(M).

1 We assume that the variables in the Γi are pairwise distinct. If they were not, a
renaming would resolve the problem.

On the Complexity of Free Word Orders 215

We are not going to study all possible commutative λ-grammars that defini-
tion 3 allows to define. We are going to use restrictions on the possible types
that non-terminals may have and also on the shapes the rules may have. Nev-
ertheless, those restrictions are harmless in terms of expressive power. Due to
results in [11], for every term language T so that there is a λ-grammar G for
which T (G) = T , there will be a λ-grammar G′ satisfying the weakest restriction
that we will consider and so that T (G′) is also equal to T . The reason why we
take those restrictions into account is to make a precise study of the complexities
of the membership and the universal membership problems for the grammars
satisfying those restrictions. Moreover those restrictions shall allow us to make
the connection with various classes of grammars that are used to capture mildly
context sensitive languages.

The restrictions are as follows:

CREG every non-terminal has type [0] and the rules are of the form A[op a x]
← B[x] for op ∈ {•,⊗},

CCFG every non-terminal has type [0],
CMG every non-terminal has type [0k → 0] for some k,

CMREG every non-terminal has type [0, . . . , 0],
CMCFG every non-terminal has type [0k1 → 0, . . . , 0kp → 0], for some k1,. . . ,

kp.

When we forbid the use of⊗ for these restrictions we obtain as string languages for
CREG exactly the class of regular languages, forCCFG, the class of context free
languages, forCMG, the class of languages definable with non-duplicating macro
grammars, forCMREG andCMCFGwe obtain languages definable bymultiple
context-free grammars. If we are concerned with the term languages these classes
of grammars define, we obtain forCREG, right-branching regular tree languages,
for CCFG, regular tree languages, for CMG, non-duplicating context free tree
languages, forCMREG, multiple regular tree languages, and forCMCFG, tree
languages that are definable by hyperedge replacement grammars.

The reason why we do prefer to use the operators • and ⊗ rather than the pair
• and ‖ is that the class corresponding to CREG we would obtain in that con-
text would coincide with the class of shuffle languages [21]. A problem is that the
class obtained by intersecting shuffle languages with regular languages contains
languages which are not semilinear [7]. More importantly the rational cone gen-
erated by shuffle languages (i.e. the class of languages obtained by rational trans-
duction of shuffle languages) is the set of recursively enumerable languages [1].
These results seem to indicate that the class of languages based on the operator
‖ are not suitable for modeling natural languages. We claim here that on the con-
trary the rational transductions of languages that are definable by commutative
λ-grammars are not only recursive languages, and are also semilinear. We leave
the proof of this claim for some future publication. We can nevertheless notice
that the languages that those formalisms define are all semilinear.

Theorem 1. For every commutative λ-grammar G, the language L(G) is
semilinear.

216 J. Kirman and S. Salvati

In the following sections we are going to be interested in two different problems
related to the classes of grammars we have just defined.

Definition 4. The membership problem is as follows; we fix a grammar G:

input. a word w,
output. yes when w is in L(G) and no otherwise.

The universal membership problem is as follows:

input. a word w, and a grammar G,
output. yes when w is in L(G) and no otherwise.

The main difference between the membership and the universal membership
problems is that the grammar G is part of the input of the latter while it is
not for the former. Thus, constants coming from the grammar are considered as
mere constants in the complexity of the membership problem while they are not
in the universal membership problem. For instance, the membership problem for
the languages defined by a formula of Monadic Second Order Logic is that of
the recognition of a finite state machine and is in Logspace while the universal
membership is Pspace-complete.

4 Universal Membership

4.1 Universal Membership Complexity of CMG CMREG CMCFG

We here give an algorithm that solves the recognition problem for CMCFG
and as CMCFG subsume all the classes of grammars we are interested in, we
obtain a recognition algorithm for all of them. This algorithm is going to work in
Exptime in general and is closely related to the one presented in [9] for MCFGs.
The idea behind the algorithm consists mainly in trying to find a derivation using
directly the rules of the grammar. So given a grammar G = (N , Σ,R, S), and
w ∈ Σ∗, the algorithm consists in guessing a term M so that w = yield(M) and
M is in T (G). One of the difficulties is that, due to the possibility of using ε, M
may be of arbitrary size. In order to tackle this difficulty we introduce a simple
rewrite system over terms built on com(Σ). This rewrite system is based on the
two rules

•ε ε→ε ε ⊗ ε ε→ε ε

This rewriting system is obviously terminating and confluent, moreover its union
with β-contraction also yields a terminating and confluent relation. We may
associate to a λ-term M a unique ε-normal form and a unique βε-normal form.
It is also easy to see that the following Lemma holds:

Lemma 4. Given a closed term M of type 0 built on com(Σ), we have:

1. if M
∗→ε N then L(M) = L(N),

2. if w = yield(M) and M is in βε-normal form then |M |ε ≤ |w| and |M | ≤
4|w| − 1.

On the Complexity of Free Word Orders 217

Proof. The first item of the Lemma is obvious, for the second statement, in case
w = yield(M) and M is in βε-normal form , it can easily be established by
induction on M that |M |ε ≤ |w|, then as M can be seen as a binary tree with
at most 2|w| leaves, it follows that it contains at most 4|w| − 1 nodes which
establishes the second identity. !

Lemma 5. Given a linear λ-term, if M
k→ε N , then |M | = |N |+ 2k.

Proof. It suffices to remark that when M →ε N then |M | = |N |+ 2 and iterate
this identity. !

Lemma 6. Given two second order linear terms M and N in βε-normal form,
if all the variables in FV (M) are second order and σ is a substitution so that
for every x, σ(x) is linear and M.σ =βε N , then:

1. |M |Σ +
∑

x∈FV (M) |σ(x)|Σ = |N |Σ
2. for every x, |σ(x)|ε ≤ |N |ε.

Proof. The first item of the Lemma is a simple consequence of the linearity of
the terms. The second comes from the fact that when contracting a β-redex
one may create at most one ε-redex, then analyzing reductions of second order
redices we obtain the inequalities. !

Lemma 7. Given N a term in βε-normal form of type 0k → 0, if |N |Σ = l
then |N | = 2(k + l)− 1.

Proof. Here, N = λx1 . . . xk.P and P can be seen as a binary tree with k + l
leaves; k of its leaves being the variables x1,. . . , xk and l other leaves coming
from Σ. !

Given a commutative λ-grammarG = (N , Σ,R, S), and a word w, the algorithm
consists in:

1. guessing a term M in βε-normal form so that w = yield(M),

2. check whether there is N in T (G) so that N
∗→ε M .

Using Lemma 4, it is easy to see that the first step can be achieved in NP.
For describing how the algorithm solves the second step we introduce fresh

typed constants ⊥α, and items of the form 〈A,P1, . . . , Pn〉 where A is a non-
terminal of N of type [α1, . . . , αn] and for 1 ≤ i ≤ n, either Pi is a linear
λ-term in βε-normal form of type αi or Pi = ⊥αi . An item 〈A,P1, . . . , Pn〉 is
G-valid iff there is a tuple of terms N1, . . . , Nn so that G A(N1, . . . , Nn) is
derivable, and for 1 ≤ i ≤ n, if Pi �= ⊥αi , then Pi is the ε-normal form of Ni.
The algorithm relies on a procedure that decides whether an item is G-valid; it
calls it to check whether 〈S,M〉 is G-valid. Notice that there is M in βε-normal
so that w = yield(M) and 〈S,M〉 is G-valid iff w is in L(G).

We are going to present the procedure that establishes whether an item
〈A,P1, . . . , Pn〉 is G-valid by means of an alternating Turing machine that works

218 J. Kirman and S. Salvati

in Pspace. This means that this algorithm can be implemented using a Turing
machine that computes in Exptime [3]. The machine stores on its working tape
the item 〈A,P1, . . . , Pn〉 it is trying to prove G-valid, then it chooses a rule in R:

A(M1 . . .Mn)← B1(x1,1 . . . x1,n1) . . . Bp(xp,1 . . . xp,np)

Let, for 1 ≤ k ≤ n, Xk = {xi,j | 1 ≤ j ≤ ni ∧ xi,j ∈ FV (Mk)}, X =⋃
k∈[n]∧Pk �=⊥Xk and let Y = {xi,j | 1 ≤ i ≤ p ∧ 1 ≤ j ≤ ni} − X . The al-

gorithm guesses a substitution σ such that:

1. for k in [n], if Pk �= ⊥, Mi.σ
∗→βε Pi,

2. σ(xi,j) is in βε-normal form when xi,j is in X ,
3. σ(xi,j) = ⊥ when xi,j is in Y .

From Lemmas 6 and 7, for every xi,j of type 0ki,j → 0, |σ(xi,j)| ≤ 2(ki,j +
|Pi|Σ) − 1 from which we can conclude that when the algorithm tries to check
whether 〈S,M〉 is G-valid, the item it stores on its working tape is always of
the form 〈A,P1, . . . , Pn〉 with

∑n
i=1 |Pi| ≤ n|M | +

∑n
i=1 ki ≤ 4n|w| +

∑n
i=1 ki.

This implies that the item can be stored in Pspace and that moreover, the
substitution σ can be found in Pspace; the algorithm thus makes each transi-
tion in Pspace. Obviously the algorithm is correct and complete, and therefore
the membership problem can be solved in Exptime [3]. As MCFGs are as spe-
cial kind of CMCFG, and as the universal membership problem for MCFGs is
Exptime-hard [9], we obtain that the universal membership problem for CM-
CFG is Exptime-complete.

Theorem 2. The universal membership problem for CMCFG Exptime-
complete.

It we restrict our attention to non-deleting CMREG we can show that this
algorithm runs in alternating Ptime in a similar way as the case of LCFRSs
is treated in in [9]. As non-deleting CMREG subsume non-deleting LCFRSs
whose universal membership is Pspace-complete, we obtain that:

Theorem 3. The universal membership problem for non-deleting CMREG
Pspace-complete.

For grammars inCMG we know from [9] that the universal membership problem
is Pspace-hard, but we do not know whether it isPspace-complete or Exptime-
complete even for the non-deleting case.

4.2 Universal Memberhip Complexity for CREG and CCFG

We prove here that the universal membership problems for CREG and CCFG
are NP-complete.

Lemma 8. The universal membership problem for CREG is NP-hard.

On the Complexity of Free Word Orders 219

Proof. We use a reduction of the NP-complete Exact 3-cover problem, or X3C.
An instance P of the X3C problem is a finite set M = {a1, . . . , a3m} and a set
F = {S1, . . . , Sn} so that for every i in [1, n], Si ⊆M and Si = {ai,1, ai,2, ai,3}.
The problem P has a solution iff there is a subset F ′ of disjoint elements of F
so that their union is M. Given an instance of X3C such as P , we let GP =
({S},M, R, S) be the CREG grammar so that the rules of R are precisely
the rules of the form S(⊗ai,1(⊗ai,2(⊗ai,3 x))) ← S(x) for i in [1, n] or the rule
S(ε)←. Now it is easy to see that a1 . . . a3m is in L(G) iff P has a solution. !

As an immediate corollary we obtain:

Corollary 2. The universal membership problem for CCFG is NP-hard.

Theorem 4. The universal membership problem for CREG and CCFG is
NP-complete.

Proof. To prove this we only need to find an algorithm in NP that solves this
problem. Let us suppose that we are given a CCFG G = (N , Σ,R, S), and a
word w. Then given a word w, we guess a term M in βε-normal form so that
yield(M) = w and there is M ′ in T (G) so that M ′ ∗→ε M . Lemma 4 shows that
|M | ≤ 4|w| − 1, thus checking that yield(M) = w can be done in polynomial
time. It thus remains to prove that checking the existence of M ′ in T (G) so that

M ′ ∗→ε M can also be done in polynomial time. For this, we remark that, for
A in N , deciding whether there is a term P so that P

∗→ε ε, and G A(P) is
derivable can be decided in polynomial time. For each A in N for which there is
P so that P

∗→ε ε and G A(P) we add a rule A(ε)← to R. The new grammar

G′ = (N , Σ,R′, S) recognizes M iff there is M ′ in T (G) so that M ′ ∗→ε M .
Then checking whether M is in T (G′) can obviously be done in polynomial time
showing that the universal membership problem for CCFG is in NP. !

5 Membership Problem: The Polynomial Cases

Before we turn to proving that the membership problems for the grammars
CREG and CCFG are tractable, we first introduce some technical notions
that will be useful in both cases.

First of all we assume that the rules of the CCFG’s over the set of terminals
Σ we consider are of one of the forms:

A(opx y)← B(x), C(y) where op ∈ {•,⊗} (1)

A(opxa)← B(x) where op ∈ {•,⊗} (2)

A(a)← where a ∈ Σ ∪ {ε} (3)

Usual constructs allow to transform any CCFG G into a CCFG G′ respecting
this restriction and so that T (G) = T (G′) (and thus L(G) = L(G′)). We can also
make similar transformations that allow us to work without loss of generalization
with CCFG whose rules are only of the forms (1) and (3).

220 J. Kirman and S. Salvati

Definition 5. Given a CCFG G = (N , Σ,R, S), we define c(G)=(N , Σ,R′, S)
so that R′ is the set of rules of R that are like the rules (1) or (2) with op = ⊗.
We then define the language ψ(G,A) to be the subset of NN∪Σ so that

{ψ(yield(M.σ)) | B1(x1), . . . , Bn(xn) G′ A(M) ∧ σ(xi) = Bi}

The set of vectors in ψ(G,A) represent the commutative strings over (N ∪Σ)∗

that can be constructed with G from the non-terminal A. It can intuitively be
understood as the set of commutative sentential forms that are derivable from A.

A simple consequence of Theorem 1 is that the sets ψ(G,A) are semilinear.
Moreover, it is easy to get an actual representation those sets using Parikh’s
construction [16].

Lemma 9. Given a CCFG G = (N , Σ,R, S), the sets ψ(G,A) are semilinear.

5.1 Membership Problem for CREG

In this section, we are going to see that the membership problem for CREG is
in Nlogspace.

init
〈S, 0, S, 0〉

〈A, 0, A, i〉 A(• ai+1 B) ∈ R
scan

〈B, 0, B, i+ 1〉
〈A, v,B, i〉 v + 1B ∈ ψ(G,A) v = ψ(w, i, j)

commutative scan
〈B, 0, B, j〉

〈A, v, B, i〉 B(⊗ ax) ← C(x) ∈ R ‖v + 1a‖ ≤ n
commutative guess

〈A, v + 1a, C, i〉
〈A, v,B, j〉 B(a) ← ∈ R v + 1a = ψ(w, j, n)

success

Fig. 1. The Nlogspace recognition algorithm for CREG

Theorem 5. The membership problem for CREG is in Nlogspace.

Proof. Let us fix a CREG grammar G = (N , Σ,R, S), given a word w =
a1 . . . an we solve the problem whether w ∈ L(G) by using items either of the
form �, to denote that w has been recognized, or of the form 〈A, v,B, i〉 where
A, B are in N , v is in N

Σ and ‖v‖ ≤ |w|, and 0 ≤ i ≤ |w|. For describing
the rules of the algorithm we are going to use the notation with ψ(w, i, j) to
denote the Parikh image of the string ai+1 . . . aj when i < j and the vector 0
otherwise. The algorithm is described by the inference rules of Figure 1. In the
rule commutative scan we implicitly assume that in the sum v+1B the vector
v is injected in N

Σ∪N by giving it value 0 on the coordinates in N and 1B is in
N

Σ∪N .

On the Complexity of Free Word Orders 221

We are first going to see that deciding whether an item is derivable can
be done in nspace(log(|w|)). First of all we know the items can all be rep-
resented in space O((|Σ| + 1) log(|w|)); thus, to prove that the algorithm can
be run in nspace(log(|w|)), it suffices that each rule can be executed within
nspace(log(|w|)). The rules init and scan pose no problem. The rules com-
mutative guess and success require checking whether a certain vector has a
norm smaller than |w| which can be easily done in nspace(log(|w|)). Finally the
rule commutative scan requires to checking the equality of two vectors whose
norm is smaller than |w|, which can be done in nspace(log(|w|)), and also that
one of those vectors is in the semilinear set ψ(G,A) which according to corol-
lary 1 can be done in nspace(log(|w|)). This finally shows that the algorithm
described by the inference rules of figure 1 can be executed in Nlogspace.

It is then easy to see that 〈A, v,B, i〉 is derivable iff A(x) G S(M) so that
a1 . . . aix is in L(M), and B(x) G A(N) so that N = ⊗b1(· · · (⊗brx) · · ·) with
b1, . . . , br in Σ ∪ {ε} and ψ(yield(N)) = v. From this it easily follows that � is
derivable iff w is in L(G). !

5.2 Membership Problem for CCFG

In this section we are going to see that the membership problem for CCFG
is Logcfl-complete. As every language definable by a context-free grammar
can be seen as a CCFG we know that the membership problem for CCFG is
Logcfl-hard. We are thus going to see that this problem is actually in Logcfl.

Theorem 6. The membership problem for CCFG is Logcfl-complete.

Proof. We consider a CCFG G = (N , Σ,R, S) whose rules are of the forms (1)
and (3). We are going to show that there is an alternating Turing machine
(ATMs) that recognizes the word w in L(G) in a space O(log(|w|)) whose ac-
cepting computation trees have size O(|w||N |+1) (the size of a computation tree
is the number of nodes that are visited by the machine together with all the
possible successors of existential nodes). The results of Ruzzo [18], imply then
that the problem is in Logcfl. Before we describe the algorithm for a given
word w = a1 . . . an, for 0 ≤ i ≤ j ≤ n we write w[i, j] for ai+1 . . . aj when i < j
and ε when i = j. We describe the machine by means of the inference system
of figure 2 that works with items of the form 〈v, i, j〉 where v is in N

N so that
‖v‖ ≤ |w| and 0 ≤ i ≤ j ≤ |w|. The machine accepts a word w = a1 . . . an if it
can derive the item 〈1S , 0, n〉. The working tape of the machine contains the item
that is the current goal of the inference system. The choice of a rule is made by
an existential choice, and when a rule is chosen, all the premises are needed to be
proven using alternation. For a given item we need to give an upper bound on the
number of instances of the rules that can be applied to pursue the derivation that
is polynomial in |w|. The key observation to prove this consists in noticing that
there are O(log(|w|)|N |+2) possible items so that each rule may have only have
polynomially many instances while the machine is trying to recognize w. More-
over each item can be represented in space O((|N | + 2) log(|w|)) = O(log(|w|)).

222 J. Kirman and S. Salvati

〈v1, i, j〉 〈v2, j, k〉 0 < v1 0 < v2 ‖v1 + v2‖ ≤ |w|
commutative combine

〈v1 + v2, i, k〉
〈v, i, j〉 v ∈ ψ(G,A)

commutative reduction
〈1A, i, j〉

〈1B , i, j〉 〈1C , j, k〉 A(•x y) ← B(x), C(y)
combine

〈1A, i, k〉
A(a) a = w[i, j]

constant
〈1A, i− 1, i〉

Fig. 2. The Logcfl recognition algorithm for CCFG

Finally it is easy to see that a tree that derives an item 〈v, i, j〉 with the inference
system of figure 2 contains exactly 2(j− i− 1)− 1 nodes, which implies that the
accepting derivations of 〈S, 0, n〉 have size 2|w| − 1. An accepting computation
tree of the machine is thus made of a derivation tree of 〈S, 0, n〉 together with
all the possible rules that can be applied at a given node of that tree; therefore
such a tree has size O(log(|w|)|N |+2|w|). This finally shows that the machine is
implementing a Logcfl algorithm. It is rather straightforward to prove that
w is in L(G) iff 〈S, 0, n〉 is derivable with the inference system of figure 2. For
this it suffices to remark that 〈v, i, j〉 iff there is u = A1 . . . Ak in N ∗ so that
ψ(u) = v, and w[i, j] = u1 . . . uk with, for all 1 ≤ i ≤ k, G Ai(ui). This finally
shows that the membership problem is in Logcfl. !

6 Membership Problem: The Intractable Cases

In this section we are going to see that the membership problems for CMG,
CMREG, CMCFG are NP-hard. As every commutative λ-grammar that is
a CMG or a CMREG is also a CMCFG, we only need to prove that the
membership problems for CMG and CMREG are NP-hard.

For this we shall use reductions from the 3-PART problem that we have
already used to prove Lemma 2.

Lemma 10. The membership problem for CMREG is NP-hard.

Proof. We are going to construct a grammar CMREG G = (N , Σ,R, S)
so that for every instance P of 3-PART there is a word wP of size linear
within the size of P so that wP is in L(G) iff P has a solution. We con-
struct G as follows: N = {A,S} with A of type [0, 0, 0, 0] and S of type
[0]; Σ = {a, b,#}; then the rules in R (using the flatten notation) are:
S({x1, x2, x3, x4, y}) ← A(x1, x2, x3, x4)S(y), S(ε) ←, A(a x1, x2, x3, b x4) ←
A(x1, x2, x3, x4), A(x1, a x2, x3, b x4) ← A(x1, x2, x3, x4), A(x1, x2, a x3, b x4) ←

On the Complexity of Free Word Orders 223

A(x1, x2, x3, x4), and A(#,#,#,#)←. It is easy to see that A(M1,M2,M3, N)
is derivable iff M1 = ak1#, M2 = ak2#, M3 = ak3# and N = bk# with
k = k1 + k2 + k3. Then it follows that, G S(M) is derivable iff M =
{ak1,1#, ak1,2#, ak1,3#, bk1#, . . . , akn,1#, akn,2#, akn,3#, bkn#, ε} for some n and
for every 1 ≤ i ≤ n, ki = ki,1 + ki,2 + ki,3. Now, given an instance P of
3-PART that consists in the sequence S = s1, . . . , s3m of natural numbers,
and a number k so that for 1 ≤ i ≤ 3m, k

4 < si <
k
2 , it is easy to see that

wP = as1# . . . as3m#(bk#)m is in L(G) iff P has a solution. !

Lemma 11. The membership problem for CMG is NP-hard.

Proof. The proof is based on the definition of the same language as in the proof
of Lemma 10. !

Lemma 12. The membership problem for CMCFG is in NP.

Proof. Let us consider a grammar G = (N , Σ,R, S) and a word w on Σ∗. Using
the results of [10] we know that there is a grammar G′ that recognizes precisely

the set {M | M in βε-normal form and ∃N ∈ T (G).N
∗→ε M}. Notice that

L(G′) = L(G). We construct an algorithm in NP that checks whether w is in
L(G′). It guesses a term M in βε-normal form so that yield(M) = w and M is
in T (G). Checking that M is in T (G) can be done in Ptime according to [19].
This completes the proof. !

Theorem 7. The membership problems for CMG, CMREG and CMCFG
are NP-complete.

7 Conclusion

The classes of grammars we propose in the paper are quite close to the classes
of grammars that are mildly context sensitive and should thus offer the same
kind of ease in modeling natural languages. Moreover, if we put aside the infor-
mal condition limited cross-serial dependencies, the languages defined by CCFG
satisfy the definition of mildly context sensitive languages. The uniform presen-
tation that we have given to our formalisms together with their closeness to
usual mildly context sensitive formalisms should allow the definition of some
extensions of CCFG that are still mildly context sensitive.

Besides closing the picture concerning the universal memberhip problems for
commutative λ-grammars, there are other research directions that we shall fol-
low. A first one is to give the characterizations of certain natural families of
languages that are generated by the families of languages that are definable
with the grammars we proposed, such as the rational cones or the abstract fam-
ilies of languages they generate. A second one is to give a comparison of their
expressive power with some known formalisms that share the same properties
such as Unordered Vector Grammars [4], or Multiset-Valued LIG [17].

224 J. Kirman and S. Salvati

References

1. Araki, T., Tokura, N.: Flow languages equal recursively enumerable languages.
Acta Informatica 15(3), 209–217 (1981)

2. Becker, T., Rambow, O., Niv, M.: The derivational generative power of formal
systems or scrambling is beyond LCFRS. Technical Report IRCS-92-38, UPENN
(1992)

3. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. JACM 28(1), 114–133 (1981)
4. Dassow, J.: Grammars with regulated rewriting. In: Formal Languages and Appli-

cations, pp. 249–273. Springer (2004)
5. de Groote, P.: Towards abstract categorial grammars. In: ACL (ed.). Proceedings

39th Annual Meeting and 10th Conference of the European Chapter, pp. 148–155
(2001)

6. Gerdes, K., Kahane, S.: Word order in German: A formal dependency grammar
using a topological hierarchy. In: ACL, pp. 220–227 (2001)

7. Jedrzejowicz, J., Szepietowski, A.: On the expressive power of the shuffle operator
matched with intersection by regular sets. RAIRO 35(4), 379–388 (2001)

8. Joshi, A.K.: Tree-adjoining grammars: How much context sensitivity is required
to provide reasonable structural descriptions? In: Natural Language Parsing,
pp. 206–250. CUP (1985)

9. Kaji, Y., Nakanishi, R., Seki, H., Kasmi, T.: The universal recognition problems
for multiple context-free grammars and for linear context-free rewriting systems.
IEICE Trans. Inf. & Syst. E 75-D(1), 78–88 (1992)

10. Kanazawa, M.: Abstract families of abstract categorial languages. In: 13th WoL-
LIC, ENTCS, pp. 65–80 (2006)

11. Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replace-
ment grammars. Journal of Logic, Language and Information 19(2), 137–161 (2010)

12. Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers, vol. 1, pp. 666–674. ACL (2012)

13. Kuhlmann, M., Möhl, M.: Mildly context-sensitive dependency languages. In: ACL
(2007)

14. Lopatková, M., Plátek, M., Kuboň, V.: Modeling syntax of free word-order lan-
guages: Dependency analysis by reduction. In: Matoušek, V., Mautner, P., Pavelka,
T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 140–147. Springer, Heidelberg
(2005)

15. Muskens, R.: Separating syntax and combinatorics in categorial grammar. Research
on Language and Computation 5(3), 267–285 (2007)

16. Parikh, R.: On context-free languages. JACM 13(4), 570–581 (1966)
17. Rambow, O.: Multiset-valued linear index grammars: imposing dominance con-

straints on derivations. In: Proceedings of the 32nd Annual Meeting on Association
for Computational Linguistics, pp. 263–270. ACL (1994)

18. Ruzzo, W.L.: Tree-size bounded alternation. JCSS 21(2), 218–235 (1980)
19. Salvati, S.: Problèmes de filtrage et problème d’analyse pour les grammaires

catégorielles abstraites. PhD thesis, INPL (2005)
20. Salvati, S.: Mix is a 2-MCFL and the word problem in Z

2 is solved by a third-order
collapsible pushdown automaton. Technical report, INRIA (2011)

21. Shaw, A.: Software descriptions with flow expressions. IEEE Transactions on Soft-
ware Engineering 4(3), 242–254 (1978)

22. Shieber, S.: Direct parsing of ID/LP grammars. Linguistics and Philosophy 2(7),
135–154 (1984)

Determiner Gapping as Higher-Order

Discontinuous Constituency

Yusuke Kubota1 and Robert Levine2

1 Ohio State University
kubota@ling.ohio-state.edu

2 Ohio State University
levine@ling.ohio-state.edu

Abstract. We argue that an approach to discontinuous constituency
via prosodic lambda binding initiated by Oehrle (1994) and adopted
by some subsequent authors (de Groote, 2001; Muskens, 2003; Pollard,
2011) needs to recognize higher-order prosodic variables to provide a fully
systematic treatment of two recalcitrant empirical phenomena exhibiting
discontinuity, namely, split gapping involving determiners and compar-
ative subdeletion. Once we admit such higher-order prosodic variables,
straightforward analyses of these phenomena immediately emerge. We
take this result to provide strong support for recognizing such higher-
order prosodic variables in this type of approach. We also touch on the
more general issue of alternative approaches to discontinuity in catego-
rial grammar, and suggest that an approach that recognizes (possibly
higher-order) prosodic functors like the one we propose here leads to a
more principled treatment of certain interactions between phenomena
exhibiting complex types of discontinuity than competing approaches.

Keywords: Gapping, split gapping, split scope, comparative subdele-
tion, categorial grammar, discontinuous constituency.

1 Introduction

An approach that mediates a flexible mapping between the combinatoric com-
ponent of syntax and the surface string component by recognizing functional ex-
pressions in the latter was initiated by Oehrle (1994), and was adopted in certain
subsequent variants of categorial grammar (CG) mainly due to its theoretical
elegance (whereby one can relegate word order from the combinatoric compo-
nent entirely to the prosodic component; see, e.g., de Groote (2001); Muskens
(2003); Pollard (2011)). The original empirical motivation for this approach came
from a simple and systematic treatment of quantification (of generalized quan-
tifiers), but recently a wider range of empirical facts have been adduced to it
by Kubota and Levine (2012) and Pollard and Smith (2012), which respectively
deal with Gapping and the semantics of symmetrical predicates and related phe-
nomena (the latter via the notion of ‘parasitic scope’ a la Barker (2007)). We
here extend this empirical investigation one step further. While previous ap-
proaches in this tradition recognize only variables over string-type expressions,

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 225–241, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

226 Y. Kubota and R. Levine

we argue that certain linguistic phenomena call for recognizing prosodic vari-
ables of a higher type.1 Recognizing such higher-order variables enables treating
types of discontinuity that are much more complex than is possible by just al-
lowing for string-type gaps. We suggest that at least some of the cases in which
the phenomena we deal with below interact with one another call for the fully
general treatment of discontinuity that is made possible by generalizing the ap-
proach this way. We will point out that alternative approaches to discontinuity
that are essentially descriptively equivalent to an approach that recognizes only
string-type variables in the Oehrle-style setup (of which the recent proposal by
Morrill et al. (2011) is representative) cannot adequately deal with such cases.

2 Split Gapping with Determiners

2.1 Split Gapping Is Gapping

Our first case involves a somewhat odd version of gapping first noted by
McCawley (1993), which is exemplified by the following sentence:

(1) Too many setters are named Kelly, and shepherds Fritz.

Here, in addition to the verb, the determiner is missing from the second conjunct.
We call this construction determiner gapping.

McCawley (1993) also noted that in determiner gapping, the verb obligatorily
undergoes gapping, together with the determiner. Thus:

(2) ??Too many setters are named Kelly, and shepherds are named Fritz.

Whatever its exact nature, the reduced acceptability of (2) suggests that deter-
miner gapping is indeed a case of Gapping, since reduced acceptability of the
verb non-gapped version is found in other types of discontinuous gapping as well:

(3) a. Robin wants Leslie to win, and Terry Peter .

b.??Robin wants Leslie to win, and Terry wants Peter .

In other respects too, determiner gapping parallels normal Gapping. Note first
that, in both constructions, the relevant deletion operation (however one char-
acterizes it theoretically) can target strings consisting of chains of verbs:

(4) a. Most professors [want to try to get] extra teaching, and most students,
a summer job.

b. Too many professors want to try to get extra teaching, and students
good-paying jobs, for us to cut the budget for summer.

1 When we say variables of higher-order type, we mean variables posited in the calcu-
lus, which can enter into hypothetical reasoning in the derivation. This shouldn’t be
confused with metavariables for writing functional phonologies of linguistic expres-
sions, for which higher-order types are already present in Oehrle (1994) (cf. below).

Determiner Gapping as Higher-Order Discontinuous Constituency 227

Second, not just (mono-)transitive verbs but verbs taking multiple arguments
can undergo Gapping, and this carries over to determiner gapping as well.

(5) a. Robin sent a chess set to the King of Norway, and Leslie, a box of
chocolates to the Queen of the Netherlands.

b. Too many men sent chess sets to the King of Norway, and women,
boxes of chocolate to the Queen of the Netherlands.

Finally, there is one particularly striking parallel. In addition to examples like
(1) (which may lend themselves to a simple deletion-based analysis), McCawley
(1993) notes examples like the following for which simply recovering the missing
material in the gapped conjunct does not yield a synonymous paraphrase:

(6) a. {No/Few/Hardly any} dog(s) eat(s) Whiskas or cat(s) Alpo.

b. �= {No/Few/Hardly any} dog(s) eat(s) Whiskas or {no/few/hardly
any} cat(s) eat(s) Alpo.

To assign the right meaning to (6a), one has to somehow let the negation that is
part of the negative quantifier scope over the disjunction. In other words, there
is an apparent mismatch between the surface form and semantic scope.

This may look rather anomalous, but in fact, a precisely parallel scope mis-
match is found in ordinary Gapping, as noted by Siegel (1984) and Oehrle (1987):

(7) a. Mrs. J can’t live in LA and Mr. J in Boston.

b. Kim didn’t play bingo or Sandy sit at home all evening.

The preferred reading for (7a) is one in which the negated modal scopes over
the conjunction, i.e., the ¬♦(p ∧ q) interpretation. Similarly for (7b).

The following data provide further parallel between the two types of gapping:

(8) a. No positron can occupy the inner shell and electron the outer shell
of the same atom.

b. A positron can’t occupy the inner shell and some electron the outer
shell of the same atom.

Both (8a) and (8b) correspond to ¬♦(∃xψ(x) ∧ ∃y�(y)) in meaning. So far as
we are aware, Gapping is the only phenomenon in which an auxiliary scopes out
of its local clause. The fact that this possibility is also realized in determiner
gapping convincingly indicates that it is indeed a species of Gapping.

In view of this parallel between ordinary Gapping and determiner gapping,
we propose an analysis which treats the latter as a special case of the former.
For this purpose, we build on the treatment of Gapping by Kubota and Levine
(2012), which is couched in a variant of categorial grammar called Hybrid Type-
Logical Categorial Grammar (Hybrid TLCG). The central feature of this frame-
work is that it recognizes both directional slashes (i.e. forward and backward

228 Y. Kubota and R. Levine

slashes) familiar from standard TLCG (going back to Lambek (1958)), and
a non-directional slash tied to prosodic λ-binding in more recent variants of
CG (Oehrle, 1994; de Groote, 2001; Muskens, 2003; Pollard, 2011). Kubota and
Levine show how the apparently anomalous scoping pattern of auxiliaries falls
out straightforwardly in such a setup. In what follows, building on this analysis
of Gapping, we formulate an analysis of the determiner gapping data above.

Capturing the scopal relation between negative quantifiers and disjunction in
examples like (6a) requires the so-called split scope analysis of negative quanti-
fiers like no and few, where they are decomposed into a wide-scoping sentential
negation and a non-negative quantifier meaning (no = ¬+ ∃, few = ¬+many;
cf., e.g., Jacobs (1980); Johnson (2000); Penka (2011)). To the best of our knowl-
edge, an exact implementation of split scope in CG is still an open question. In
what follows, we suggest two alternatives for implementing split scope in Hy-
brid TLCG. The two approaches have more or less the same empirical coverage,
but they differ in how exactly the decomposition of the two meaning compo-
nents of negative quantifiers is mediated. The simpler approach that we present
first involves an empty operator and a diacritic syntactic category, thereby di-
rectly separating the two meaning components in the combinatoric structure of
the sentence, whereas the more sophisticated approach encodes the scope split
directly within the lexicon, by treating negative determiners as lexically type-
raised determiners. As we show below, the apparent scope anomaly of data like
(6a) becomes a non-anomaly in both approaches, once the analysis of nega-
tive quantifiers is combined with an analysis of determiner gapping which is a
straightforward extension of the Kubota-Levine analysis.

2.2 Kubota and Levine’s (2012) Analysis of Gapping

The key analytic idea of Kubota and Levine’s (2012) analysis of Gapping is that
Gapping involves coordinating two (or more) sentences in which the verb is
missing in the middle. This involves explicitly modelling such gapped sentences
which essentially manifest discontinuous constituency as conjoinable categories.
For this purpose, Kubota and Levine exploit the ‘hybrid’ nature of their calculus,
which is equipped with rules for Elimination and Introduction for both direc-
tional slashes (/ and \) and the order-insensitive non-directional slash (notated
as |). The following is the complete set of inference rules of Hybrid TLCG:

(9) Connective Introduction Elimination

/

...
...

...
...

[ϕ; x; A]n

...
...

...
...

...
...

b ◦ϕ; F ; B
/In

b; λx.F ; B/A

a; F ; A/B b; G ; B
/E

a ◦ b; F (G); A

Determiner Gapping as Higher-Order Discontinuous Constituency 229

\

...
...

...
...

[ϕ; x; A]n

...
...

...
...

...
...

ϕ ◦ b; F ; B
\In

b; λx.F ; A\B

b; G ; B a; F ; B\A
\E

b ◦ a; F (G); A

|

...
...

...
...

[ϕ; x; A]n

...
...

...
...

...
...

b; F ; B
|In

λϕ.b; λx.F ; B|A

a; F ; A|B b; G ; B
|E

a(b); F (G); A

The difference between /,\ and | is that while the rules for /,\ refer to the phono-
logical forms of the input and output strings (so, for example, the applicability
of the /I rule is conditioned on the presence of the phonology of the hypothesis ϕ
on the right periphery of the phonology of the input b ◦ ϕ), the rules for | are not
constrained that way. For reasoning involving |, the phonological terms them-
selves fully specify the ways in which the output phonology is constructed from
the input phonologies. Specifically, for |, the phonological operations associated
with the Introduction and Elimination rules mirror exactly the semantic opera-
tions for these rules: function application and λ-abstraction. Thus, the order of
the premises in the Elimination rules isn’t relevant for any of these connectives;
linear order is recorded in the phonological terms of the linguistic expressions
(and not in the forms of the proofs) for reasoning involving / and \.

As shown by Oehrle (1994), hypothetical reasoning with a mode of implica-
tion associated with λ-binding enables a straightforward and formally explicit
implementation of Montague’s (1973) quantifying-in, as illustrated in (10):

(10)

λσ.σ(everyone);
∀person;
S|(S|NP)

λσ.σ(someone);
∃person;
S|(S|NP)

[ϕ2;
y; NP

]2

talked ◦ to;
talk-to;
(NP\S)/NP

[ϕ1;
x; NP

]1

talked ◦ to ◦ ϕ1;
talk-to(x);NP\S

ϕ2 ◦ talked ◦ to ◦ϕ1;
talk-to(x)(y); S

yesterday;
yest; S\S

ϕ2 ◦ talked ◦ to ◦ ϕ1 ◦ yesterday;
yest(talk-to(x)(y)); S

λϕ2.ϕ2 ◦ talked ◦ to ◦ ϕ1 ◦ yesterday;
λy.yest(talk-to(x)(y)); S|NP

someone ◦ talked ◦ to ◦ϕ1 ◦ yesterday;
∃person(λy.yest(talk-to(x)(y))); S

λϕ1.someone ◦ talked ◦ to ◦ϕ1 ◦ yesterday;
λx.∃person(λy.yest(talk-to(x)(y))); S|NP

someone ◦ talked ◦ to ◦ everyone ◦ yesterday;
∀person(λx.∃person(λy.yest(talk-to(x)(y)))); S

230 Y. Kubota and R. Levine

Quantifiers are entered in the lexicon in the S|(S|NP) type, with the standard
generalized quantifier meaning and a phonology that is a higher-order function
over strings of type (st → st) → st (with st the type of strings), which ‘lowers’
the quantifier string in the position in the sentence (bound by the λ-operator in
the phonology) corresponding to the semantic variable bound. As in Montague’s
quantifying-in, the order in which the quantifier combines with the sentence that
it lowers into determines its scope. Thus, the above derivation yields the inverse
scope interpretation; if the object quantifier is introduced first in the derivation,
we get the surface scope interpretation.

The treatment of discontinuous constituency by recognizing functional
phonologies has wider empirical applications than just quantification.
Kubota and Levine (2012) demonstrate this via an analysis of Gapping. Since
expressions containing medial gaps can be modelled via hypothetical reasoning
with the vertical slash |, expressions like Robin a book in (11) can be directly
analyzed as a sentence missing a transitive verb, of category S|TV (with TV =
(NP\S)/NP), as in (12).

(11) Leslie bought a CD, and Robin, a book.

(12)

λσ1.σ1(a ◦ book); ∃book; S|(S|NP)

robin; r; NP

[ϕ1;P ;VP/NP]1 [ϕ2;x;NP]2

ϕ1 ◦ϕ2; P (x); VP

robin ◦ ϕ1 ◦ ϕ2; P (x)(r); S

λϕ2.robin ◦ϕ1 ◦ϕ2; λx.P (x)(r); S|NP

robin ◦ϕ1 ◦ a ◦ book; ∃book(λx.P (x)(r)); S

λϕ1.robin ◦ϕ1 ◦ a ◦ book; λP.∃book(λx.P (x)(r)); S|(VP/NP)

By binding the hypothetically assumed TV at the last step of (12), we obtain an
expression with a functional phonology (of type st→ st), where the phonological
variable ϕ1 keeps track of the position of the missing verb.

For coordinating such st→ st functions (phonologically), Kubota and Levine
introduce the following Gapping-specific lexical entry for the conjunction:

(13) λσ2λσ1λϕ[σ1(ϕ) ◦ and ◦ σ2(ε)]; λW λV .V W ; (S|TV)|(S|TV)|(S|TV)

Syntactically, (13) coordinates two sentences missing the main verb (i.e. S|TV)
to produce a larger expression of the same type, instantiating the general like-
category coordination schema; correspondingly, the semantics is that of gener-
alized conjunction, again conforming to the general treatment of coordination.
The only slight complication is in the phonology, where it is specified that the
‘gap’ position of the first conjunct is retained (so that the main verb can ‘lower’
into this position at a later step in the derivation) while the corresponding gap
in the second conjunct is closed off by feeding an empty string ε to it.

With this conjunction lexical entry, (11) can be derived as in (14):

Determiner Gapping as Higher-Order Discontinuous Constituency 231

(14)

bought;
buy;
TV

...
...

λϕ1.leslie ◦ϕ1◦
a ◦ CD;
λQ.∃CD(λy.Q(y)(l));
S|TV

λσ2λσ1λϕ0.σ1(ϕ0)◦
and ◦ σ2(ε);
λW λV .V � W ;
(S|TV)|(S|TV)|(S|TV)

...
...

λϕ1.robin ◦ϕ1 ◦ a ◦ book;
λP.∃book(λx.P (x)(r));
S|TV

λσ1λϕ0.σ1(ϕ0) ◦ and ◦ robin ◦ ε ◦ a ◦ book;
λV .V � λP.∃book(λx.P (x)(r)); (S|TV)|(S|TV)

λϕ0[leslie ◦ϕ0 ◦ a ◦ CD ◦ and ◦ robin ◦ ε ◦ a ◦ book];
λQ.∃CD(λy.Q(y)(l))� λP.∃book(λx.P (x)(r)); S|TV

leslie ◦ bought ◦ a ◦ CD ◦ and ◦ robin ◦ ε ◦ a ◦ book;
∃CD(λy.buy(y)(l)) ∧ ∃book(λx.buy(x)(r)); S

In this analysis by Kubota and Levine, the role of both directional and nondi-
rectional implication is crucial: the gapped sentence S|TV (= S|((NP\S)/NP)),
which is associated with the functional phonology λϕ1.robin ◦ϕ1 ◦ a ◦ book, ex-
plicitly keeps track of the position of the medial gap via |, and, since what’s
missing is a transitive verb (i.e. (NP\S)/NP, indicating explicitly the directions
in which it looks for its two arguments via / and \), the subject and the object
appear in the right order in the string part of this functional phonology. Note in
particular that in a uni-implication systems like ACG and Lambda Grammar,
keeping track of the right word order becomes a virtually intractable problem.2

We omit the analysis of scope interactions between auxiliaries and Gapping,
but the key idea should already be clear from the above analysis: the auxiliary
wide scope interpretations for sentences like those in (7) fall out in this analysis
since auxiliaries are introduced in the tectogrammatical derivation essentially
in the same way as main verbs in (14) above, at a point after the coordinate
structure is built. The structure of the derivation determines the relative scope
between the auxiliary and coordination, thus, the former scopes over the latter.3

The mismatch between the surface form of the sentence and the semantic scope
is due to the morpho-syntactic requirement of the Gapping construction that the

2 A reviewer expressed a concern that this analysis would overgenerate examples such
as (†) *Larry thinks Sue is nice and Sue thinks Larry is funny and (‡) *John gave
a book to Mary and Peter gave a book to Mary . However, independent processing-
oriented explanations exist for such examples. The difficulty of interpreting the NP
NP V sequence in (†) without being led to a garden path by taking just the NP NP
substring to be a gapped constituent can be dramatically ameliorated with an explicit
complementizer (. . . and Sue that Larry is funny). For (‡), an alternative parse John
gave a book to [Mary and Peter] seems to create a practically irrecoverable garden
path effect. (‡) additionally violates a functional felicity conditions on Gapping which
requires at least two contrasting elements in the two clauses (Kuno, 1976).

3 However, as noted by Oehrle (1987), in at least some cases a distributive, auxil-
iary narrow-scope reading is available in such examples, and in order to derive this
reading, it becomes necessary to reduce the prosodic type of the auxiliary from
(st → st) → st to st. This type of proof crucially requires inferences involving direc-
tional and non-directional slashes to interact with one another (Kubota and Levine,
2012, 2013). Similar reduction of a (phonologically) higher-order scopal operator to a
lower type is required for licensing distributive readings for generalized quantifiers as
well (Kubota and Levine, 2013) (which can be found in the Gapping context as well,
as in Chris set a problem for her logic exam, and Terry for his cell anatomy class),
providing further empirical evidence for the present hybrid implication system.

232 Y. Kubota and R. Levine

verb (or the auxiliary) be pronounced only once and within the first conjunct,
as specified in the lexical entry for the Gapping-type conjunction in (13).

2.3 Split Scope in Hybrid TLCG

We propose that determiner gapping is just a special case of discontinuous gap-
ping in which both the verb and the determiner are gapped. The negation wide
scope is obtained for examples like (6a) since the negative determiner, being
gapped, takes scope over the whole coordinate structure. Thus, the apparently
anomalous scoping pattern is a predicted consequence of the analysis, much in
the same way that the wide scope auxiliary in (7) is immediately predicted in
Kubota and Levine’s (2012) like-category coordination analysis of Gapping.

To formulate an explicit analysis, we need to work out the relevant details of
the mechanism for split scope. We first illustrate a more or less direct implemen-
tation of the ‘LF decomposition’ analysis widely entertained in the literature.
The key assumption of this approach is that negative quantifiers are semanti-
cally decomposed into two meaning components at the level of representation
relevant for semantic interpretation. For example, no decomposes into an exis-
tential quantifier and sentential negation that scopes above it. The challenge is
how to treat the interdependence between these two meaning components and
make sure that they together realize as one morpheme no in the overt string.

We here propose to model the existential quantifier part via a prosodically
empty operator which is constrained to occur in the scope of the overt negation
morpheme no. To capture the interdependence between the covert existential
and the overt negation, we posit the syntactic category Sneg, which designates a
sentence containing the covert existential somewhere inside and which is waiting
to be ‘scoped over’ by the overt negation no. Thus, the covert existential has
the following lexical entry, which is identical to overt existential quantifiers ex-
cept that it returns Sneg instead of S. Phonologically, expressions with syntactic
category Sneg have a st→ st phonology which keeps track of the ‘gap’ position
that the higher negation morpheme no lowers into.

(15) λϕ1λσλϕ2.σ(ϕ2 ◦ϕ1); λP.∃P ; Sneg|(S|NP)|N

The negation morpheme has the following lexical entry:

(16) λσ.σ(no); ¬; S|Sneg
It takes a Sneg as argument and returns an ordinary S. Semantically, it con-
tributes sentential negation. Phonologically, it lowers the phonology no into the
determiner ‘gap’ position introduced by the empty existential.

A simple sentence containing a negative quantifier is then analyzed as follows:

(17)

λσ.σ(no); ¬; S|Sneg

λϕ1λσλϕ2.σ(ϕ2 ◦ϕ1);
λP.∃P ; Sneg|(S|NP)|N

fish;
fish; N

λσλϕ2.σ(ϕ2 ◦ fish); ∃fish; Sneg|(S|NP)

...
...

λϕ.ϕ ◦ walks;
walk; S|NP

λϕ2.ϕ2 ◦ fish ◦ walks; ∃fish(walk); Sneg

no ◦ fish ◦ walks; ¬∃fish(walk); S

Determiner Gapping as Higher-Order Discontinuous Constituency 233

As shown here, the covert existential takes scope just like ordinary quantifiers
do, but returns the category Sneg instead. The overt negation then takes this
category as an argument to semantically scope over the whole sentence and
prosodically lower itself into the determiner ‘gap’ position introduced by the
covert existential. This yields the right pairing of surface form and interpretation,
embodying the idea of split scope directly in the combinatoric structure.

With this analysis of split scope, the determiner gapping example (6a) can be
analyzed as coordination of expressions of category Sneg|TV, that is, sentences
in which both the verb and the overt negative determiner are missing. With
hypothetical reasoning, deriving such an expression is straightforward, as in (18):

(18)
λϕ1λσλϕ2.σ(ϕ2 ◦ϕ1);
λP.∃P ; Sneg|(S|NP)|N

dog;
dog; N

λσλϕ2.σ(ϕ2 ◦ dog);
∃dog; Sneg|(S|NP)

[ϕ2;x; NP]2
[ϕ1;P ; TV]1 whiskas; w; NP

ϕ1 ◦ whiskas; P (w); VP

ϕ2 ◦ϕ1 ◦ whiskas; P (w)(x); S

λϕ2.ϕ2 ◦ ϕ1 ◦ whiskas; λx.P (w)(x); S|NP

λϕ2.ϕ2 ◦ dog ◦ϕ1 ◦ whiskas; ∃dog(λx.P (w)(x)); Sneg

λϕ1λϕ2.ϕ2 ◦ dog ◦ϕ1 ◦ whiskas; λP.∃dog(λx.P (w)(x)); Sneg|TV

Or then takes two such expressions as arguments and retains only the gap of
the first conjunct. This is only a slight generalization of the Gapping-type con-
junction introduced above. The rest of the derivation is shown in (19).

(19)

λσ.σ(no);
¬; S|Sneg

eats;
eat;
TV

...
...

λϕ1λϕ2.ϕ2 ◦ dog
◦ϕ1 ◦ whiskas;
λP.∃dog(P (w));
Sneg|TV

λσ2λσ1λϕ1λϕ2.
σ1(ϕ1)(ϕ2) ◦ or ◦ σ2(ε)(ε);
λV λW.W � V ;X|X|X

...
...

λϕ1λϕ2.ϕ2 ◦ cat
◦ϕ1 ◦ alpo;
λP.∃cat(P (a));
Sneg|TV

λσ1λϕ1λϕ2.σ1(ϕ1)(ϕ2) ◦ or ◦ cat ◦ alpo;
λW.W � λP.∃cat(P (a)); (Sneg|TV)|(Sneg|TV)

λϕ1λϕ2.ϕ2 ◦ dog ◦ ϕ1 ◦ whiskas ◦ or ◦ cat ◦ alpo;
λP.∃dog(P (w)) � λP.∃cat(P (a)); Sneg|TV

λϕ2.ϕ2 ◦ dog ◦ eats ◦ whiskas ◦ or ◦ cat ◦ alpo;
∃dog(eat(w)) ∨ ∃cat(eat(a)); Sneg

no ◦ dog ◦ eats ◦ whiskas ◦ or ◦ cat ◦ alpo;
¬[∃dog(eat(w)) ∨ ∃cat(eat(a))]; S

After the whole coordinate structure is built, the verb and no are lowered into
their respective positions in the first conjunct. Since the negative morpheme
scopes over the whole coordinate structure in the tectogrammatical structure
reflecting the combinatorial order, the negation wide scope reading is obtained.

2.4 Lexical Treatment of Split Scope via Type-Raised Quantifiers

The analysis of split scope above is a fairly straightforward implementation of
the ‘LF decomposition’ analysis. It works fine and extends straightforwardly to
the treatment of apparent scope anomaly in determiner gapping, but note that it
involves some ad-hoc assumptions. An empty operator like the covert existential

234 Y. Kubota and R. Levine

posited above should be avoided if possible, and the newly introduced syntactic
category Sneg is a purely diacritic device, having no motivation other than to
control the distribution of the overt and covert operators that are stipulated to
correlate with one another. Moreover, without Sneg, there is a straightforward
one-to-one mapping between syntactic and prosodic types such that the prosodic
type of any syntactic category is transparently reflected in the level of embedding
involving the vertical slash (so, for example, any expression of syntactic type
X|(Y|Z), with X–Z all atomic or involving only the directional slashes, is of
type (st → st) → st). The syntactically atomic category Sneg disrupts this
neat correspondence between syntactic and prosodic types, since, despite being
syntactically atomic, it has a functional, st→ st phonological type.

Eliminating these ad-hoc assumptions would thus be desirable, and it is indeed
possible to do away with the diacritic syntactic category Sneg, by lexically en-
coding the two meaning components of negative quantifiers within a single entry.
This involves specifying the scope of the higher negation and the lower existen-
tial separately within the lexical entry for the negative determiner, and requires
treating the determiners forming negative quantifiers as lexically type-raised de-
terminers. In the present setup, determiners take their nominal arguments to
become quantifiers, thus they are of type S|(S|NP)|N. Negative determiners are
lexically type-raised over S on this category, thus, by taking Det to abbreviate
S|(S|NP)|N, they are of type S|(S|Det). Semantically, this lexically type-raised
determiner feeds an ordinary positive quantifier meaning to its argument, thus
saturating the determiner-type variable position of its argument, and addition-
ally contributes sentential negation which scopes over the whole sentence.

Thus, by lexically type-raising the determiner, the separate scoping positions
of the two meaning components of negative quantifiers can be encoded fully
lexically. What remains to be worked out is the phonology of the higher order
determiner. Since ordinary quantificational determiners are of type st→ ((st→
st)→ st), the prosodic type of this type-raised determiner is ((st→ ((st→ st)→
st)) → st) → st. In other words, the phonology of the type-raised determiner
has to be specified in such a way that, by binding the prosodic variable of
type st → ((st → st) → st) of ordinary determiners in the S|Det category
that it takes as an argument, we obtain the right surface string in which the
string phonology of the negative determiner appears in the right position. The
right form of this higher-order phonology of a type-raised determiner can be
inferred from the phonological term that is assigned to a syntactically type-
raised ordinary determiner. This is shown in the following derivation, where
a determiner whose phonology is built from the string c is type-raised to the
syntactic category S|(S|Det), with the corresponding higher-order phonology:

(20)
λϕλσ.σ(c ◦ϕ); γ; Det [ρ;P; S|Det]1

ρ(λϕλσ.σ(c ◦ ϕ)); P(γ); S

λρ.ρ(λϕλσ.σ(c ◦ϕ)); λP.P(γ); S|(S|Det)

Determiner Gapping as Higher-Order Discontinuous Constituency 235

By replacing the string c with no, we obtain the right phonology for the negative
determiner. Thus, putting together the phonology, semantics and the syntactic
category of negative determiners, we have the following lexical entry:

(21) λρ.ρ(λϕλσ.σ(no ◦ϕ)); λP .¬P(∃); S|(S|Det)

The derivation for a sentence with a negative quantifier then goes as follows:

(22)

λρ.ρ(λϕλσ.σ(no ◦ϕ));
λP.¬P(∃); S|(S|Det)

[τ;F ; Det]1 fish; fish; N

τ(fish); F (fish); S|(S|NP) λϕ.ϕ ◦ walks; walk; S|NP

τ(fish)(λϕ.ϕ ◦ walks); F (fish)(walk); S

λτ.τ(fish)(λϕ.ϕ ◦ walks); λF .F (fish)(walk); S|Det

no ◦ fish ◦ walks; ¬∃fishwalk; S

The derivation proceeds by first assuming a hypothetical determiner in the po-
sition that the negative determiner lowers into later. After the whole sentence is
built, this hypothesis is bound and the resultant expression is of the right type to
be given as an argument to the negative determiner. Note in particular that the
right surface string is obtained by applying the higher-order functional phonol-
ogy of the negative determiner to its argument, itself of a functional phonological
type looking for a determiner phonology to return a string.

Just as in the analysis in the previous section, determiner gapping is then
treated as a case of multiple gapping involving both the verb and the determiner.
The only complication here is that the ‘gap’ corresponding to the determiner
is of a higher-order type prosodically, so an identity element of this higher-
order phonological type needs to be fed to the second conjunct. This ‘empty
determiner phonology’ can be modelled on the phonology of ordinary determiners
by replacing the string part of the phonological term with an empty string. Thus:

(23) εd =def λϕλσ.σ(ε ◦ϕ) = λϕλσ.σ(ϕ)

The lexical entry for the conjunction word can then be written as in (24), gen-
eralizing the Gapping-type conjunction entry to the S|Det|TV type:

(24) λρ2λρ1λϕλσ.ρ1(ϕ)(σ) ◦ and ◦ ρ2(ε)(εd); ; GC(S|Det|TV)
where GC(A) = A|A|A for any syntactic type A

Expressions that are of the right type to be coordinated by this conjunction
category can be derived via hypothetical reasoning in the usual way:

(25)

[τ;F ; Det]3 dog; dog; N

τ(dog); F (dog); S|(S|NP)

[ϕ2;x; NP]2
[ϕ1;P ; TV]1 whiskas; w; NP

ϕ1 ◦ whiskas; P (w); VP

ϕ2 ◦ ϕ1 ◦ whiskas; P (w)(x); S

λϕ2.ϕ2 ◦ϕ1 ◦ whiskas; λx.P (w)(x); S|NP

τ(dog)(λϕ2.ϕ2 ◦ ϕ1 ◦ whiskas); F (dog)(λx.P (w)(x)); S

λτ.τ(dog)(λϕ2.ϕ2 ◦ϕ1 ◦ whiskas); λF .F (dog)(λx.P (w)(x)); S|Det

λϕ1λτ.τ(dog)(λϕ2.ϕ2 ◦ϕ1 ◦ whiskas); λPλF .F (dog)(λx.P (w)(x)); S|Det|TV

236 Y. Kubota and R. Levine

This is then conjoined with another expression of the same type via the
determiner-gapping conjunction in (24) to yield the following coordinated
S|Det|TV:

(26)
...

...
λϕ1λτ.
τ(dog)(λϕ2 .ϕ2 ◦ϕ1 ◦ whiskas);
λPλF .F (dog)(λx.P (w)(x));
S|Det|TV

λρ2λρ1λϕλτ.ρ1(ϕ)(τ)◦
or ◦ ρ2(ε)(εd);
�;GC(S|Det|TV)

...
...

λϕ1λτ.
τ(cat)(λϕ2 .ϕ2 ◦ϕ1 ◦ alpo);
λPλF .F (cat)(λx.P (a)(x));
S|Det|TV

λρ1λϕλτ.ρ1(ϕ)(τ) ◦ or ◦ cat ◦ alpo;
λW .W � λPλF .F (cat)(λx.P (a)(x));
(S|TV|Det)|(S|TV|Det)

λϕ1λτ.τ(dog)(λϕ2 .ϕ2 ◦ϕ1 ◦ whiskas) ◦ or ◦ cat ◦ alpo;
λPλF .F (dog)(λx.P (w)(x)) � λPλF .F (cat)(λx.P (a)(x)); S|Det|TV

Note in particular that the right string cat alpo is obtained for the second con-
junct. This is a straightforward result of a couple of β-reduction steps:

(27) λϕλτ[τ(cat)(λϕ′.ϕ′◦ϕ◦alpo)](ε)(εd) = λϕλσ[σ(ϕ)](cat)(λϕ2.ϕ2◦ε◦alpo)
= λϕ2[ϕ2 ◦ ε ◦ alpo](cat) = cat ◦ ε ◦ alpo = cat ◦ alpo

The rest of the derivation just involves combining the main verb and the negative
determiner with this S|Det|TV expression.

(28)

λρ.ρ(λϕλσ.
σ(no ◦ ϕ));
λP.¬P(∃);
S|(S|Det)

eats;
eat;
TV

...
...

λϕ1λτ.τ(dog)(λϕ2.ϕ2 ◦ϕ1 ◦ whiskas) ◦ or ◦ cat ◦ alpo;
λPλF .F (dog)(λx.P (w)(x))�
λPλF .F (cat)(λx.P (a)(x)); S|Det|TV

λτ.τ(dog)(λϕ2.ϕ2 ◦ eats ◦ whiskas) ◦ or ◦ cat ◦ alpo;
λF .F (dog)(λx.eat(w)(x)) � λF .F (cat)(λx.eat(a)(x)); S|Det

no ◦ dog ◦ eats ◦ whiskas ◦ or ◦ cat ◦ alpo;
¬[∃dog(λx.eat(w)(x)) ∨ ∃cat(λx.eat(a)(x))]; S

Crucially, just as in the analysis from the previous section, since the negative
determiner scopes over the whole coordinated gapped sentence in this tectogram-
matical derivation, the right semantic scope between the two operators is pre-
dicted. Thus, here again, the apparently anomalous scope relation between the
negative quantifier and disjunction is a predicted consequence of the ‘gapped’
status of the former. The syntactic analysis of gapping requires the determiner
to syntactically scope over the whole coordinate structure in the combinatoric
structure, and the semantic scope between the two transparently reflects this
underlying structural relationship.

3 Comparative Subdeletion

We now turn to comparative subdeletion, illustrated in (29):

(29) John ate more donuts than Mary bought bagels.

Determiner Gapping as Higher-Order Discontinuous Constituency 237

This construction is similar to Gapping in that there is apparent deletion of
some material in one of the two clauses involved: a determiner is missing in the
than clause in a position where more appears in the main clause.

In the early literature of transformational grammar, there was a debate as to
whether comparative subdeletion involves ellipsis or wh-movement. We here as-
sume, following Hendriks (1995), that comparative subdeletion is in fact neither
wh-movement nor deletion, but is rather to be analyzed along lines similar to
the treatment of split gapping above. The primary motivation for this analysis
comes from the fact that it yields the right compositional semantics immediately.
To see this, note that what the comparative subdeletion sentence (29) compares
is sizes of the sets {x : donut(x) ∧ eat(x)(j)} and {x : bagel(x) ∧buy(x)(m)}.
Such sets can be obtained by abstracting over the determiner positions in the
two clauses and supplying some appropriate operator (λPλQλx[P (x) ∧ Q(x)])
in that semantic argument position. On the prosodic side, more-than fills in an
empty determiner phonology and the type-raised string more in the determiner-
type gap positions of the two clauses and concatenates them with the string than
in between. Thus, the lexical entry for more-than can be formulated as follows:

(30) λρ1λρ2.ρ2(λϕλσ.σ(more ◦ϕ)) ◦ than ◦ ρ1(εd);more-than;
S|(S|Det)|(S|Det)

where the constant more-than stands for the following logical term:

(31) λFλG .|G (λPλQλx[P (x) ∧Q(x)])| > |F (λPλQλx[P (x) ∧Q(x)])|

Note here that since the determiner-type gap involves a higher-order prosodic
variable in the present approach, the same identity element that fills in that gap
in the second conjunct of determiner gapping is involved in ‘closing off’ the gap
position of the than clause, and the phonology of more is identical in form to
the type-raised determiner no from the previous section.

With this lexical entry for more-than, the derivation for (29) goes as follows:

(32)
λρ1λρ2.ρ2(λϕλσ.
σ(more ◦ϕ))◦
than ◦ ρ1(εd);
more-than;
S|(S|Det)|(S|Det)

...
...

λτ.τ(bagels)(λϕ.mary ◦ bought ◦ ϕ);
λF .F (bagel)(λx.buy(x)(m)); S|Det

λρ2.ρ2(λϕλσ.σ(more ◦ϕ)) ◦ than ◦mary ◦ bought ◦ bagels;
more-than(λF .F (bagel)(λx.buy(x)(m))); S|(S|Det)

...
...

λτ.τ(donut)
(λϕ.john ◦ ate ◦ϕ);
λF .F (donut)
(λx.eat(x)(j));
S|Det

john ◦ ate ◦more ◦ donuts ◦ than ◦mary ◦ bought ◦ bagels;
more-than(λF .F (bagel)(λx.buy(x)(m)))(λF .F (donut)(λx.eat(x)(j))); S

The final translation can be unpacked as:

(33) |{x : donut(x) ∧ eat(x)(j)}| > |{x : bagel(x) ∧ buy(x)(m)}|

We finish our discussion with a somewhat complex interaction between the two
phenomena we have analyzed above, exemplified by (34):

238 Y. Kubota and R. Levine

(34) No dog eats more whiskas than Leslie buys pizza, or cat alpo.

This sentence has an interpretation which can be paraphrased as ‘No dog eats
more whiskas than Leslie buys pizza and no cat eats more alpo than Leslie
buys pizza’. That is, it involves determiner gapping where, together with the
determiner and the main verb, the discontinuous constituent more . . . than Leslie
buys pizza (of syntactic type S|(S|Det)) is gapped from the second conjunct.
The analysis is straightforward, the only complication being that this example
involves abstracting over a yet higher-order type category (of type S|(S|Det)) for
the discontinuous type-raised quantifier more . . . than Leslie buys pizza in the
two conjuncts. The identity element of this higher type to be fed to the second
conjunct (εd↑ =def λδ.δ(λϕλσ.σ(ϕ))) can be obtained by simply type-raising
the determiner-type identity element εd over S. The derivation is given in (35).

(35)

...
...

λϕ0λωλρ1.ω(λρ2.
ρ2(whiskas)(λϕ2.ρ1(dog)
(λϕ1.ϕ1 ◦ ϕ0 ◦ϕ2)));
S|Det|(S|(S|Det))|TV

λζ1λζ2λϕλωλρ.
ζ2(ϕ)(ω)(ρ)◦
or ◦ ζ1(ε)(εd↑)(εd);
GC(S|Det|(S|(S|Det))|TV)

...
...

λϕ0λωλρ1.ω(λρ2.
ρ2(alpo)(λϕ2.ρ1(cat)
(λϕ1.ϕ1 ◦ ϕ0 ◦ ϕ2)));
S|Det|(S|(S|Det))|TV

λζ2λϕλωλρ.ζ2(ϕ)(ω)(ρ) ◦ or ◦ cat ◦ alpo;
(S|Det|(S|(S|Det))|TV)|(S|Det|(S|(S|Det))|TV)

λϕλωλρ.ω(λρ2.ρ2(whiskas)(λϕ2.ρ(dog)(λϕ1.ϕ1 ◦ ϕ ◦ϕ2))) ◦ or ◦ cat ◦ alpo;
S|Det|(S|(S|Det))|TV

λρ.ρ(λϕλσ.
σ(no ◦ϕ));
S|(S|Det)

...
...

λρ2.ρ2(λϕλσ.σ(more ◦ϕ))◦
than ◦ leslie ◦ buys ◦ pizza;
S|(S|Det)

eats;
eat;
TV

...
...

λϕλωλρ.ω(λρ2.ρ2(whiskas)
(λϕ2.ρ(dog)(λϕ1.ϕ1 ◦ϕ ◦ϕ2)))◦
or ◦ cat ◦ alpo; S|Det|(S|(S|Det))|TV

λωλρ.ω(λρ2.ρ2(whiskas)
(λϕ2.ρ(dog)(λϕ1.ϕ1 ◦ eats ◦ϕ2)))◦
or ◦ cat ◦ alpo; S|Det|(S|(S|Det))

λτ1.τ1(dog)(λϕ1 .ϕ1 ◦ eats ◦more ◦ whiskas)◦
than ◦ leslie ◦ buys ◦ pizza ◦ or ◦ cat ◦ alpo; S|Det

no ◦ dog ◦ eats ◦more ◦ whiskas ◦
than ◦ leslie ◦ buys ◦ pizza ◦ or ◦ cat ◦ alpo; S

4 Conclusion

Two related conclusions emerge from the above discussion. First, if we adopt
the analysis of quantifier scope due to Oehrle (1994) in which quantificational
determiners are treated as higher-order functors prosodically, then the empir-
ical phenomena considered in this paper show that we need to recognize not
just functors of higher-order prosodic types but also variables ranging over such
higher-order functors. So far as we are aware, this is the first time that the need
for such higher-order prosodic variables has been noted in the literature. This

Determiner Gapping as Higher-Order Discontinuous Constituency 239

obviously raises the issue of how much complexity is needed in this domain, a
question which we have to leave for another occasion.

Another, related point pertains to a comparison of the present proposal with
related approaches to discontinuity. The most recent and well-developed frame-
work for dealing with discontinuity within CG is the Displacement Calculus of
Morrill et al. (2011) (which builds on the previous proposals by Morrill and Solias
(1993); Morrill (1994), etc.). Though our Hybrid TLCG resembles Morrill et al.’s
calculus in that both recognize directional slashes and non-directional syntac-
tic connectives for dealing with discontinuity, there is one important difference
between the two. In Hybrid TLCG, there is only one ‘discontinuous’ connec-
tive | (tied to lambda binding in phonology), whereas Morrill et al. recognize
two counterparts of |, namely, ↑ and ↓, which respectively produce functors
that wrap around their arguments and functors that are wrapped around by
their arguments. With the distinction of these two syntactic connectives, cer-
tain aspects of the analysis can be simplified. Most notably, in the prosodic
component, the only extension from the Lambek calculus is that ‘separators’
that keep track of gap positions are recognized as distinguished objects in the
string algebra. Thus, in Morrill et al.’s calculus, no higher-order, functional en-
tities are recognized in the prosodic component unlike in the Oehrle-style ap-
proach. Quantifiers and quantificational determiners are associated with strings,
and their prosodic behaviors are encoded in the syntactic categories involving
↑ and ↓. Thus, in their approach, determiner gapping can simply be treated
by abstracting over strings, without the complication of the higher-order treat-
ment along lines we described above which is necessitated in the Oehrle-style
treatment.

One might take this to be an advantage of the Morrill-style approach, but
we believe that facts that bear on the comparison between the two types of
approach come from more complex interactions between phenomena displaying
discontinuity of the sort we sketched at the end of the previous section. The
present approach, with a fully general lambda calculus in the prosodic compo-
nent, straightforwardly extends to cases in which what is missing in a discontinu-
ous constituent is itself a complex discontinuous constituent. By contrast, in the
Morrill-style setup, there does not seem to be any straightforward way of treat-
ing the discontinuity exhibited by the gapped more + than S constituent in (34).
Being of type S|(S|Det), this expression takes a determiner-gapped sentence and
fills in the determiner more in the gap and concatenates the than clause to the
resultant string. A lambda term for such a phonological functor is straightfor-
ward to write in the present approach, but in Morrill et al.’s setup, each functor
is either a ‘wrapper’ or a ‘wrappee’, so a single expression cannot be both at
the same time.4 It thus seems reasonable to conclude that the present proposal

4 There are of course ways around this problem, by mediating the interdependence
between more and than via some syntactic mechanism (as indeed proposed by
Morrill et al. (2011)). But such a solution seems to miss the point that the more
+ than clause in comparative subdeletion manifests discontinuous constituency.

240 Y. Kubota and R. Levine

offers the most general and empirically successful approach to discontinuity in
the current CG literature.5

References

Barker, C.: Parasitic scope. Linguistics and Philosophy 30, 407–444 (2007)
Boyer, C.: The History of the Calculus and its Conceptual Development. Dover, New

York (1949)
de Groote, P.: Towards abstract categorial grammars. In: Proceedings of ACL 39,

pp. 148–155 (2001)
Hendriks, P.: Ellipsis and multimodal categorial type logic. In: Morrill, G.V., Oehrle,

R.T. (eds.) Proceedings of Formal Grammar 1995, pp. 107–122 (1995)
Jacobs, J.: Lexical decomposition in Montague grammar. Theoretical Linguis-

tics 7(1/2), 121–136 (1980)
Johnson, K.: Few dogs eat Whiskers or cats Alpo. In: Kusumoto, K., Villalta, E. (eds.)

UMOP 23, pp. 47–60. GLSA, Amherst (2000)
Kubota, Y., Levine, R.: Gapping as like-category coordination. In: Béchet, D.,

Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 135–150. Springer, Heidel-
berg (2012)

Kubota, Y., Levine, R.: Against ellipsis: Arguments for the direct licensing of ‘non-
canonical’ coordinations. MS., OSU (2013)

Kuno, S.: Gapping: A functional analysis. Linguistic Inquiry 7, 300–318 (1976)
Lambek, J.: The mathematics of sentence structure. American Mathematical

Monthly 65, 154–170 (1958)
McCawley, J.D.: Gapping with shared operators. In: Peterson, D.A. (ed.) Berkeley

Linguistics Society, pp. 245–253. University of California, Berkeley (1993)
Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka,

J., Moravcsik, J.M., Suppes, P. (eds.) Approaches to Natural Language, pp. 221–242.
D. Reidel, Dordrecht (1973)

Morrill, G.: Type Logical Grammar. Kluwer, Dordrecht (1994)
Morrill, G., Solias, T.: Tuples, discontinuity, and gapping in categorial grammar. In:

Proceedings of EACL 6, pp. 287–296. ACL, Morristown (1993)
Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,

Language and Information 20, 1–48 (2011)

5 We acknowledge here that there remains an important theoretical issue: the formal
properties of our hybrid implication logic are currently unknown. But note that in the
domain of empirical science (including linguistics), empirical considerations should
always take precedence over purely formal issues. In this connection, the point made
by Boyer in his detailed history of calculus is, we think, particularly relevant:

Perhaps the most manifest deterring force [for the development of calculus]
was the rigid insistence on the exclusion from mathematics of any idea not at
the time allowing of strict logical interpretation . . . it is clear that the indis-
criminate use of methods and ideas which are without logical foundation is not
to be condoned . . . but pending the final establishment of this, the banishment
of suggestive views is a serious mistake. (Boyer, 1949, 301–302)

Our system, so far as we can tell, makes systematic predictions which correspond
to the empirically observed patterns exactly, and hence seems to achieve a level of
‘suggestiveness’ which entitles it to further investigation of its logical foundations.

Determiner Gapping as Higher-Order Discontinuous Constituency 241

Muskens, R.: Language, lambdas, and logic. In: Kruijff, G.-J., Oehrle, R. (eds.) Re-
source Sensitivity in Binding and Anaphora, pp. 23–54. Kluwer (2003)

Oehrle, R.T.: Boolean properties in the analysis of gapping. In: Huck, G.J., Ojeda,
A.E. (eds.) Discontinuous Constituency, pp. 203–240. Academic Press (1987)

Oehrle, R.T.: Term-labeled categorial type systems. Linguistics and Philosophy 17(6),
633–678 (1994)

Penka, D.: Negative Indefinites. Oxford University Press, Oxford (2011)
Pollard, C.: Proof theoretic background for Linear Grammar. MS., OSU (2011)
Pollard, C., Allyn Smith, E.: A unified analysis of the same, phrasal comparatives and

superlatives. In: Proceedings of SALT 2012, pp. 307–325 (2012)
Siegel, M.E.A.: Gapping and interpretation. Linguistic Inquiry 15, 523–530 (1984)

Conjunctive Grammars in Greibach Normal

Form and the Lambek Calculus with Additive
Connectives

Stepan Kuznetsov

Moscow State University
sk@lpcs.math.msu.su

Abstract. We prove that any language without the empty word, gen-
erated by a conjunctive grammar in Greibach normal form, is generated
by a grammar based on the Lambek calculus enriched with additive
(“intersection” and “union”) connectives.

1 Conjunctive Grammars

Let Σ be an arbitrary finite alphabet, Σ∗ is the set of all words, and Σ+ is the
set of all non-empty words over Σ.

We consider a generalisation of context-free grammars, introduced by Okhotin
[9] (and earlier by Szabari [14]).

A conjunctive grammar is a quadruple G = 〈Σ,N,P , S〉, where Σ and N are
two non-intersecting alphabets (Σ is the alphabet in which the language is being
defined, its elements are called terminal symbols, and N is an auxiliary alphabet,
consisting of nonterminal symbols), S ∈ N (the start symbol), and P is a finite
set of rules of the form

A→ β1& . . .&βm,

where A ∈ N , m � 1, β1, . . . , βm ∈ (Σ ∪N)∗.
We define the language generated by this grammar in terms of a formal de-

duction system associated with the grammar [10]. This formal system derives
pairs of the form [X,w], where X ∈ Σ ∪N and w ∈ Σ∗. Axioms are pairs [a, a],
for all a ∈ Σ, and for every rule A → B11 . . . B1m1& . . .&Bk1 . . . Bkmk

∈ P ,
Bji ∈ Σ ∪N , and for all strings uji ∈ Σ∗, j ∈ {1, . . . , k}, i ∈ {1, . . . ,mj}, that
satisfy u11 . . . u1m1 = . . . = uk1 . . . ukmk

= w, there is a deduction rule

[B11, u11] . . . [Bkmk
, ukmk

]

[A,w] .

The formal system, associated with the grammar G, is also denoted by G. Define
LG(X) � {w | G [X,w]} and L(G) � LG(S) (“�” here and further means
“equals by definition”). L(G) is the language generated by G.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 242–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conjunctive Grammars and the Lambek Calculus 243

Example 1. Consider the following conjunctive grammar (here small letters stand
for terminal symbols, capital stand for nonterminal ones; S is the start symbol):

S → aAB& aDC

A→ aA

A→ a

B → bBc

B → b

C → cC

C → c

D → aDb

D → b

This grammar generates the language {an+1bn+1cn | n ≥ 1} as an intersec-
tion of two context-free languages. For example, the word aaabbbcc = a3b3c2 is
generated in the following way: first we derive [S, aaabbbcc] from [a, a], [A, aa],
[B, bbbcc], [a, a], [D, aabbb], and [C, cc]. The pair [a, a] is an axiom; the others
are derived as follows:

[a, a]

[a, a]

[A, a]

[A, aa]

[b, b]

[b, b]

[b, b]

[B, b] [c, c]

[B, bbc] [c, c]

[B, bbbcc]

[a, a]

[a, a]

[b, b]

[D, b] [b, b]

[D, abb] [b, b]

[D, aabbb]

[c, c]

[c, c]

[C, c]

[C, cc]

For technical reasons we also consider an enlarged version of this deduction sys-
tem, called Gcut. We allow nonterminal symbols to appear in the second compo-
nents of the pairs (derivable objects in it are of the form [X,ω], where X ∈ Σ∪N
and ω ∈ (Σ ∪N)∗) and add new axioms [A,A] for all A ∈ N and the cut rule:

[B, τ] [A,ω1Bω2]

[A,ω1τω2] .

A trivial “cut elimination theorem” holds:

Lemma 1. If A ∈ N ∪Σ, w ∈ Σ∗, then Gcut [A,w] if and only if G [A,w].

Proof. The “if” part is obvious. For the “only if” part, we prove that every
pair, derivable in Gcut, is derivable without applying the cut rule (therefore, as
w does not contain nonterminal symbols, they do not occur in the derivation,
thus this derivation is valid in the original system). Let [B, τ] and [A,ω1Bω2] be

244 S. Kuznetsov

derivable without applying the cut rule. Prove that [A,ω1τω2] also has a cut-free
proof. Proceed by induction on the derivation of [A,ω1Bω2]. If it is an axiom,
then ω1 and ω2 is empty, B = A, and our goal coincides with the left premise,
[B, τ]. If [A,ω1Bω2] is derived using an inference rule, then we can perform the
substitution of τ for B in the premises of this rule, and apply the induction
hypothesis.

2 Greibach Normal Form

Consider only languages without the empty word.
A conjunctive grammar is in Greibach normal form (a generalisation of

Greibach normal form for context-free grammars [3]), if all the rules are of the
form A→ aβ1& . . .&aβk, a ∈ Σ, βj ∈ N+ or of the form A→ a, a ∈ Σ.

The question remains open, whether every conjunctive grammar can be trans-
formed into this form. However, it is true for languages over the one-letter alpha-
bet, as shown by Okhotin and Reitwießner [11]. Therefore, conjunctive grammars
in Greibach normal form can capture some languages that are not context-free
or even finite intersections of those, since the language {a4n | n ≥ 1} is generated
by a conjunctive grammar found by Jeż [4].

Example 2. The grammar from Example 1 can be easily transformed into
Greibach normal form:

S → aAB& aDC

A→ aA

A→ a

B → bBU

B → b

U → c

C → cC

C → c

D → aDV

D → b

V → b

3 Multiplicative-Additive Lambek Calculus

In this section we define an extension of the Lambek calculus (introduced in [7])
with two new connectives, additive conjunction and disjunction. The additive
(intersective) conjunction was already introduced by Lambek [8], and the whole
calculus was considered by Kanazawa [5]. We shall call this calculus MALC, as
in [6], but use the Lambek-style notation for connectives.

A countable set Pr = {p1, p2, p3, . . .} is called the set of primitive types. Types
ofMALC are built from primitive types with five binary connectives: · (multipli-
cation, product conjunction), \ (left division), / (right division), ∩ (intersection,

Conjunctive Grammars and the Lambek Calculus 245

additive conjunction), ∪ (union, additive disjunction). We denote types with
capital Latin letters and their finite sequences (possibly empty) with capital
Greek ones; Λ stands for the empty sequence. Sequents (derivable objects) of
MALC are of the form Π → C.

Axioms: A→ A.
Rules of inference:

AΠ → B
Π → A \B (→ \), Π �= Λ;

Π → A Γ BΔ → C
Γ Π (A \B)Δ → C

(\ →);

Π A → B
Π → B /A

(→ /), Π �= Λ;
Π → A Γ BΔ → C
Γ (B /A)ΠΔ → C

(/ →);

Γ → A Δ → B
Γ Δ → A · B (→ ·); Γ ABΔ → C

Γ (A · B)Δ → C
(· →);

Γ → A1 Γ → A2

Γ → A1 ∩A2
(→ ∩); Γ Ai Δ → C

Γ (A1 ∩A2)Δ → C
(∩ →)i, i = 1, 2;

Γ → Ai

Γ → A1 ∪ A2
(→ ∪)i, i = 1, 2;

Γ A1 Δ → C Γ A2 Δ → C

Γ (A1 ∪A2)Δ → C
(∪ →);

Π → A Γ AΔ → C
Γ Π Δ → C

(cut).

The cut rule is eliminable using the standard technique [7].
The fragment without ∩ and ∪ is the ordinary (multiplicative) Lambek cal-

culus, called MLC or L. We also consider fragments of MALC with other
restrictions of the set of connectives: MALC(/,∩), MALC(/, ·,∩), MLC(/).

4 Categorial Grammars

A MALC-grammar is a triple G = 〈Σ,H,�〉, where Σ is a finite alphabet,
H ∈ Tp, and � is a finite correspondence between Tp and Σ (� ⊂ Tp × Σ).
The language generated by G is the set of all nonempty words a1 . . . an over Σ
for which there exist types B1, . . . , Bn such that MALC B1 . . . Bn → H and
Bi � ai for all i ∈ {1, . . . , n}. We denote this language by L(G).

The notions of MALC(/,∩)-, MALC(/, ·,∩)-, MLC-, and MLC(/)-
grammar are defined similarly.

As shown by Gaifman [1] and Buszkowski [2], any context-free language with-
out the empty word is generated by an MLC(/)-grammar. On the other hand,
any language generated by an MLC-grammar is context-free (Pentus [12]).

Kanazawa [5] proved that any finite intersection of context-free languages
is generated by a MALC(/,∩)-grammar (therefore such grammars go beyond
context-free). No generalisation of Pentus’ theorem for MALC is yet known.

Theorem 1. If a language without the empty word is generated by a conjunc-
tive grammar in Greibach normal form, then this language is generated by a
MALC(/, ·,∩)-grammar.

246 S. Kuznetsov

5 The Construction

Given a conjunctive grammar G = 〈N,Σ,P , S〉 in Greibach normal form, we
shall construct a MALC(/, ·,∩)-grammar G , such that L(G) = L(G).

In order to avoid notation collisions, further we shall use the following nam-
ing convention (all these letters can also be decorated with numerical or other
indices):

Letter Range
A, B, S N (nonterminal symbols of G)

a Σ (terminal symbols)
x N ∪Σ

w, u Σ∗ (strings of terminal symbols)
β N+ (strings of nonterminal symbols)
τ , ω (N ∪Σ)∗

p Pr (primitive types of MALC)
E, F , G, P Tp (types of MALC)
Γ , Φ, Ψ Tp∗ (sequences of types)

With every A ∈ N we associate a distinguished primitive type pA. For β =
B1 . . . Bm let Pβ � pB1 · . . . · pBm (multiplication is associative, so we can omit
the brackets).

Since intersection in MALC is commutative and associative, we can use in-
tersections of nonempty sets of types, not bothering about order and brackets:⋂k

j=1 Ej stands for E1 ∩ . . . ∩ Ek, and if M = {E1, . . . , Ek}, then
⋂
M �

E1 ∩ . . . ∩ Ek. If M = {E}, then
⋂
M� E.

For every a ∈ Σ let

Ma � {pA /
(k⋂

j=1

Pβj

)
| (A→ aβ1& . . .&aβk) ∈ P} ∪ {pA | (A→ a) ∈ P}.

Let Ga �
⋂
Ma. For A ∈ N let GA � pA. The following holds due to the

(∩ →) rule:

Lemma 2. If E ∈ Ma and MALC ΦE Ψ → F , then MALC ΦGa Ψ → F .

For ω = x1 . . . xn ∈ (N ∪Σ)+ let Γω � Gx1 . . . Gxn .

Lemma 3. If G [A,w], then MALC Γw → pA.

Proof. We proceed by induction on the length of w. The base case (w = a)
corresponds to an application of a rule of the form A → a to the [a, a] axiom
(this is the only way to derive [A, a]). In this case we have pA ∈ Ma, therefore
by Lemma 2 we get MALC Ga → pA, and Γw = Ga.

Now let w contain at least two symbols and the last step of the derivation
of [A,w] be an application of the rule A → aβ1& . . .&aβk. Then w = aw′, and

Conjunctive Grammars and the Lambek Calculus 247

for every j ∈ {1, . . . , k}, if βj = Bj1 . . . Bjmj , then w′ = uj1 . . . ujmj and for
every i = {1, . . . ,mj} we have G [Bji, uji]. Therefore, by induction hypothesis,
MALC Γuji → pBji , whence MALC Γw′ → Pβj for every j. Applying the
(→ ∩) rule k times we get

MALC Γw′ →
k⋂

j=1

Pβj ,

and, finally, by (/→),

MALC pA /
(k⋂

j=1

Pβj

)
Γw′ → pA.

Since pA /(
⋂k

j=1 Pβj) ∈Ma, by Lemma 2 we have MALC Ga Γw′ → pA, and
Ga Γw′ = Γw.

Before proving the inverse statement, we shall prove two technical lemmata:

Lemma 4. MALC Φ →
⋂k

j=1 Pβj if and only if MALC Φ → Pβj for
every j ∈ {1, . . . , k}.
Proof. The “if” part is just k applications of (→ ∩). The “only if” part is proved
using the cut rule (for every j0):

Γ →
⋂k

j=1 Pβj

⋂k
j=1 Pβj → Pβj0

Γ → Pβj0

(cut)

Lemma 5. If ω ∈ (N ∪ Σ)+, β = B1 . . . Bm ∈ N+, and MALC Γω → Pβ,
then there exist such τ1, . . . , τm ∈ (N ∪ Σ)+, that ω = τ1 . . . τm and MALC
Γτi → pBi for every i ∈ {1, . . . ,m}.
Proof. We can rearrange the derivation, so that the applications of (→ ·) will be
in the bottom (they are interchangeable with (∩ →) and (/ →), and these two
are the only ones that can be applied below (→ ·)). Now the statement of the
lemma is obvious.

Lemma 6. If MALC Γω → pA, then Gcut [A,ω].

Proof. Induction by the length of ω. If ω = a, then the only possible case is
pA ∈Ma. Then (A→ a) ∈ P , and Gcut [A, a].

Now let ω contain at least two letters. Consider the lowest application of
(/ →) in the derivation of Γω → pA. Beneath this application there are only
applications of (∩ →)—the ones that open the type to which (/ →) is applied,
and the ones that deal with other types in Γω. We can transform the derivation
so that the latter will be applied before the application of (/→). Then we have

ω = ω1aτω2, pA′ /(
⋂k

j=1 Pβj) ∈Ma, and the derivation step looks as follows:

Γτ →
⋂k

j=1 Pβj Γω1 pA′ Γω2 → pA

Γω1 pA′ /(
⋂k

j=1 Pβj) Γτ Γω2 → pA
(/→)

248 S. Kuznetsov

Then, by Lemma 4, MALC Γτ → Pβj for every j ∈ {1, . . . , k}. By Lemma 5,
if βj = Bj1 . . . Bjmj , τ = τj1 . . . τjmj , and MALC Γτji → pBji (for every j
and i in the ranges). By induction hypothesis, Gcut [Bji, τji], and, adding [a, a],
we can apply the rule for A′ → aβ1& . . .&aβk, therefore Gcut [A′, aτ].

By induction hypothesis for the right premise of the (/ →) rule, Gcut
[A,ω1A

′ω2]. Finally, applying the cut rule to [A′, aτ] and [A,ω1A
′ω2], we get

[A,ω1aτω2] = [A,ω].

Now we are ready to define G = 〈Σ,�, H〉. Let H = pS , and E � a if and only
if E = Ga. If w ∈ L(G), then G [S,w], and, by Lemma 3, MALC Γw → pS ,
whence w ∈ L(G). Conversely, if w ∈ L(G), then MALC Γw → pS . By
Lemma 6 we get Gcut [S,w], and by Lemma 1 G [S,w]. Hence, w ∈ L(G).

Note that in G every a ∈ Σ is associated with only one type (such grammars
are called grammars with single type assignment or deterministic grammars).
Having the intersection connective, it is usually easy to make our grammar de-
terministic (cf. [5]); for the pure Lambek calculus the fact that any context-free
language is generated by a deterministic MLC-grammar is not obvious, but still
valid, as shown by Safiullin [13].

Example 3. This construction gives the following MALC-grammar equivalent
to the grammar from Example 2:

a� pA ∩ (pA / pA) ∩ (pD /(pD · pV)) ∩
(
pS /((pA · pB) ∩ (pD · pC))

)
b� pB ∩ pD ∩ pV ∩ (pB /(pB · pU))
c� pC ∩ pU ∩ (pC / pC)

Acknowledgements. I am grateful to Prof. Mati Pentus and Alexey Sorokin
for fruitful discussions. I am also grateful to Ivan Zakharyashchev for bringing
my attention to conjunctive grammars.

This research was supported by the Russian Foundation for Basic Research
(grants 11-01-00281-a and 12-01-00888-a) and by the Presidential Council for
Support of Leading Scientific Schools (grant NŠ 5593.2012.1).

References

1. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On the categorial and phrase-structure
grammars. Bull. of the Research Council of Israel, Sect. F 9F, 1–16 (1960)

2. Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars
and context-free languages. Zeitschr. für math. Logik und Grundl. der Math. 31,
369–384 (1985)

3. Greibach, S.: A new normal-form theorem for context-free phrase structure gram-
mars. Journal of the ACM 12, 42–52 (1965)

4. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)

5. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information 1, 141–171 (1992)

Conjunctive Grammars and the Lambek Calculus 249

6. Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy,
J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan
van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press,
Vossiuspers (1999)

7. Lambek, J.: The mathematics of sentence structure. American Math.
Monthly 65(3), 154–170 (1958)

8. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematical Aspects. Amer. Math. Soc. (1961)

9. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

10. Okhotin, A.: The dual of concatenation. Theor. Comput. Sci. 345(2-3), 425–447
(2005)

11. Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction.
Theor. Comput. Sci. 411(26-28), 2559–2571 (2010)

12. Pentus, M.: Lambek grammars are context-free. In: 8th Annual IEEE Symposium
on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los
Alamitos (1993)

13. Safiullin, A.N.: Derivability of admissible rules with simple premises in the Lambek
calculus. Moscow University Math. Bull. 62(4), 72–76 (2007)

14. Szabari, A.: Alternujúce Zásobńıkové Automaty (Alternating Pushdown Au-
tomata), in Slovak, diploma work (M. Sc. thesis), University of Košice, Czechoslo-
vakia, p. 45 (1991)

On the Generative Power of Discontinuous

Lambek Calculus

Alexey Sorokin

Moscow State University, Faculty of Mechanics and Mathematics,
Moscow Institute of Physics and Technology

Abstract. We prove that the class of languages which are generated by
discontinuous Lambek grammars and do not contain the empty word is
closed under intersection with regular languages. The size of the gram-
mar for the intersection is linear with respect to the size of the initial
discontinuous Lambek grammar.

1 Introduction

Lambek calculus was created in 1958 by Joachim Lambek ([5]) for modelling the
syntactic structure of natural language. During last decades it has found various
applications in computational linguistics, nevertheless some of its deficiencies
have emerged. One of that deficiencies is that the standard Lambek calculus
has the same weak generative power as the context-free grammars ([8]), which
is insufficient for adequate representation of several linguistic phenomena, such
as discontinuous idioms, ellipsis or medial extraction. This problem is solved by
adding the discontinuous operations to the traditional Lambek calculus, which
was done by Morrill([6]). The grammars based on the formalism obtained, called
the discontinuous Lambek calculus, present a natural treatment of these phe-
nomena, the work [7] contain numerous examples.

But, on the contrary to the generative mildly context-sensitive systems, such
as multiple context-free grammars or MCFGs ([9]), we know practically noth-
ing about formal properties of discontinuous Lambek grammars. In fact there
are only two results concerning lower bounds: the one of Morrill and Valentin
([6]) shows that all permutation closures of regular languages are generated by
discontinuous Lambek grammars (and in fact by 1-discontinuous grammars).
The result of the author ([10]) shows that all the languages generated by k-
displacement context-free grammars (or, which is the same, by k+1-well-nested
multiple context-free grammars) are also generated by k-discontinuous Lam-
bek grammars. This fact gave us some hope to prove the converse result (the
analogue of Pentus theorem) but this is not the case. As shown by Kanazawa
and Salvati, the MIX language {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} is not a
TAG-language and therefore not a 1-well-nested multiple context-free language,
but is obviously a permutation closure of a regular language. Moreover, it is
argued that it is not well-nested at all (see [3] for the discussion) which im-
plies that discontinuous Lambek grammars generate a wider family of languages

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 250–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Generative Power of Discontinuous Lambek Calculus 251

than well-nested MCFGs. The explanation of this fact is that there is no way to
model the split operation of discontinuous Lambek grammars by the means of
well-nested MCFGs.

The author does not know any other nontrivial results concerning the genera-
tive power of discontinuous Lambek grammars. In our work we show that discon-
tinuous Lambek grammars are closed under intersections with regular languages.
At first we prove that result for usual Lambek grammars, where it is certainly
the easy consequence of Pentus theorem and the well-known fact that context-
free languages are closed under intersections with regular languages. The point is
that the construction from the proof of Pentus theorem leads to the exponential
growth of the size of the grammar, while our construction leads only to linear
growth. Then we apply in fact the same algorithm to the discontinuous Lambek
grammars.

2 Lambek Calculus

2.1 Axiomatics and Basic Definitions

In this section we describe the standard Lambek calculus and introduce the
notion of a Lambek grammar. Let Tp be a countable set of primitive types
which we denote by lower Latin letters p, q, r possibly with subscripts. The types
are constructed from the primitive types with the help of binary connectives
\, /, · (left and right divisions and product). Formally, the set of types Tp is
the smallest set containing Pr such that for any types A,B ∈ Tp the elements
(A\B), (B/A) and A · B also belong to Tp. The sequents of Lambek calculus
have the form Γ → A, where Γ is a sequence of types and A is a type. The
calculus obtained is denoted by L∗ (the asterisk stands for the fact that we allow
the antecedent to be empty).

Lambek calculus has the only axiom A → A, A ∈ Tp and the following
derivation rules:

ΠA→ B
Π → B/A

(→ /) ΓBΦ→ C Π → A
Γ (B/A)ΠΦ→ C

(/→)

AΠ → B
Π → A\B (→ \) ΓBΦ→ C Π → A

ΓΠ(A\B)Φ→ C
(→ /)

Γ → A Φ→ B
ΓΦ→ A · B (→ ·) ΓABΦ→ C

Γ (A ·B)Φ→ C
(· →)

The notation L∗ Γ → A denotes the derivability of the sequent Γ → A
in the Lambek calculus with empty antecedents. It is possible to show by stan-
dard methods that Lambek calculus possesses the subformula property and cut-

elimination, which means that cut rule ΓBΦ→ C Π → B
ΓΠΦ→ C is admissible in

this calculus. The substitution rule is also admissible.
Note that the connectives \, /, · form a residuated triple. Also note that the

product operation is implicitly associative. These statements together imply
that the types (A\B)/C and A\(B/C) are equivalent and consequently can be
interchanged. Therefore we will omit the brackets in such types.

252 A. Sorokin

Example 1. The sequent (p/q)q(p\r) → r is derivable in Lambek calculus. The
derivation is given below.

p→ p q → q

(p/q)q → p r → r

(p/q)q(p\r)→ r

The lemma below contains several statements, which can be easily proved by
induction on cut-free derivation length.

Lemma 1.

1. If L∗ Γ1(B · C)Γ2 → A then the sequent Γ1BCΓ2 → A is also derivable.
2. If L∗ Γ → (B/C) then the sequent ΓC → B is also derivable.
3. If L∗ Γ → (C\B) then the sequent CΓ → B is also derivable.

Lambek grammar is a triple G = 〈Σ,Lex,H〉 where Σ is a finite alphabet, Lex is
a finite subset of the set Σ×Tp called lexicon and H is a distinguished element
of Tp. A language of the grammar consists of all the words a1 . . . ak such that
there are types A1, . . . Ak such that all the pairs 〈ai, Ai〉 are in Lex and the
sequent A1 . . . Ak → H is derivable.

Example 2. The grammar G = 〈{a, b}, Lex, p/p〉 where Lex contains the pairs
〈a, (p/p)/p〉 and 〈b, p〉 generates the language L = {w ∈ {a, b}∗ | |w|a = |w|b,
∀u � w|u|a > |u|b} which is isomorphic to the language of correct bracket
sequences over one type of brackets. Note that the empty word is also in L
because the sequent → p/p is derivable in L∗.

In general, as proved by Gaifman ([2]), all context-free languages without an
empty word are generated by some Lambek grammar, based on the calculus
L. In the work [4] Stepan Kuznetsov strengthened this result and proved that
any context-free language is generated by some L∗-grammar. The opposite re-
sult (that Lambek grammars based on both the calculi L and L∗ generate only
context-free languages) is proved by Pentus in [8]. Hence the class of languages
generated by L∗-grammars coincides with the class of context-free languages.

So it is trivial to prove that the languages generated by L∗-grammars are
closed under intersections with regular languages. To construct the grammar for
the intersection one should at first transform the initial Lambek grammar to
the equivalent context-free grammar by the algorithm from Pentus work, then
obtain the context-free grammar for the intersection (the algorithm can be found
in any textbook on formal languages, for example [1]) and then transform the
context-free grammar back to L∗-grammar by the method from Gaifman’s work.
However, this algorithm is impractical since the construction of Pentus leads to
exponential growth of the grammar size.

Our goal is to construct directly the Lambek grammar for the intersection,
in a way which doesn’t extend the size of the grammar exponentially. Also we
want to describe the construction which can be further adopted to the case of
discontinuous calculus.

On the Generative Power of Discontinuous Lambek Calculus 253

2.2 Lambek Grammars and Regular Languages

In this section we give a direct proof of the fact that the class of languages
generated by L∗-grammars is closed under intersection with regular languages.
Actually all the theorems of that type for different families of generative gram-
mars are proved in the same way. We adopt this algorithm for the case of Lambek
grammar which generates the language without the empty word.

Let R be a particular regular language. By the Kleene theorem we assume that
this language is generated by some nondeterministic finite automaton M with
one-letter transitions. Moreover, since we consider only the languages without the
empty word we can assume that the language R also does not contain the empty
word, so it can be generated by a nondeterministic finite automaton with only
one terminal state. LetM have the set of states Q = {q1, . . . , qn}, Δ ∈ Q×Σ×Q
be the set of transitions and q1, qf be the initial and the final state respectively.

To clarify the further we recall the sketch of the standard proof of the fact
that context-free languages are closed under intersection with regular languages.
We expect the reader to be familiar with the notions of context-free grammar
and Chomsky normal form for them. So let L be a context-free language not
containing the empty word and G = 〈N,Σ, P, S〉 be the grammar in Chomsky
normal form generating L. Here N is a set of nonterminals,Σ is an alphabet, P is
a set of productions and S is an initial nonterminal. LetR be the regular language
defined above. Then the intersection is generated by the grammar GR = 〈Q ×
N ×Q,Σ, PR, 〈q1, S, qf 〉〉 where for any rule B → CD ∈ P and arbitrary states
q′, q′′, q′′′ ∈ Q the set PR contains the rule 〈q′, B, q′′〉 → 〈q′, C, q′′′〉〈q′′′, D, q′′〉
and for any rule A→ a ∈ P and any transition 〈q′, a, q′′〉 ∈ Δ the set PR contains
the rule 〈q′, A, q′′〉 → a. Actually, the nonterminal 〈q′, A, q′′〉 generates exactly
the words with are generated from A in the old grammar and are the labels of
some path from q′ to q′′. We use the same construction for the Lambek calculus.

Let G = 〈Σ,Lex,H〉 be a L∗-grammar generating the language L. We want
to prove that the language L ∩ R is also generated by some Lambek grammar
G′. Let T (G) = {A | 〈a,A〉 ∈ Lex} ∪ {H} be the set of types used in the
grammar and T be the set of all the subtypes of the types in T (G). With-
out the loss of generality we assume that the types of T are constructed from
primitive types p1, p2, We extend the set of primitive types with new types
q1, . . . , qn corresponding to the states from Q. For every type T from T we
denote by Tij the type (qi\T) · qj , i, j > 0. We also denote by T0j the type
T ·qj , j > 0, by Ti0 the type qi\T, i > 0 and set T00 = T . We denote by T ′ the set
{Tij | T ∈ Tp, i, j ∈ 0, n}∪{qi | i ∈ 1, n}. Note that T ′ is closed under subtypes.

Let Q = Q ∪ {q | q ∈ Q}. For every i ∈ 1, n we set Θi = qi, Θi = qi,
Θ0 = Θ0 = Λ, where Λ is an empty sequence. For every type Tij we define its
q-image as the string ΘiΘj , also we define the q-image of qj as qj . For every
sequence Γ ∈ T ′∗ its q-image Γq equals the concatenation of q-images of the
types in Γ . We continue the mapping to sequents of Lambek calculus, setting
(Γ → Tij)q = ΘiΓqΘj and (Γ → qi)q = Γqqi

254 A. Sorokin

The elements of Q in a natural way correspond to brackets of n different types.
Namely, the elements of Q are opening brackets and the overlined elements are
closing brackets. This representation is in fact a light simulation of a proof-net.

Recall that if Q = {qi | 1 ≤ i ≤ n} ∪ {qi | 1 ≤ i ≤ n} is a set of brackets of n
different types, then correct bracket sequences are exactly the words generated
by the context-free grammar with the rules S → ε, S → qiSqiS. Informally, the
brackets of a correct bracket sequence can be partitioned to pairs satisfying the
following conditions: 1) in each pair the left element is qi and the right element
is qi for some i ≤ n, 2) we can connect the brackets of each pair by an arc in
upper semiplane in a way such that these arcs do not intersect.

We want to prove that the q-images of derivable sequents are correct bracket
sequences. To achieve this goal we need some proposition which also plays a
significant role in the following.

Proposition 1. Let Γ ∈ T ′∗ and L∗ Γ → qi. Then Γ = qi.

Proof. Induction on derivation length. Since the succedent includes a single prim-
itive type, then only the application of rules \ →, /→ or · → is possible on the
last step. But then one of the preceding sequents also had qi in the succedent
and due to the definition of T ′ and the induction hypothesis the application of
the mentioned rules is impossible.

Lemma 2. If Γ ∈ T ′∗, A ∈ T ′ and L∗ Γ → A then (Γ → A)q is a correct
bracket sequence.

Proof. Induction on derivation length. There are several cases depending on the
last rule in derivation.

Let the last rule be Γ1 → A1 Γ2 → A2
Γ1Γ2 → A1 · A2

. Then there are two subcases. In

the first A2 ∈ T , then A1 · A2 ∈ T by the definition of the system T ′, so
(Γ1Γ2 → A1 · A2)q = (Γ1Γ2)q = (Γ1)q(Γ2)q = (Γ1 → A1)q(Γ2 → A2)q and
(Γ → A)q is a correct bracket sequence as a concatenation of two correct ones.
In the second case A2 = qj , then A1 = Ti0 for some i, so (Γ1Γ2 → A1 · A2)q =
Θi(Γ1)q(Γ2)qΘj = (Γ1 → A1)q(Γ2 → A2)q and (Γ → A)q is correct by the same
arguments.

Let the last rule be · →. Obviously it does not change the q-image of the se-

quent, so we can use the induction hypothesis. Let the last rule be ΓA2 → A1

Γ → (A1/A2)
then by construction A1/A2 ∈ T , so (Γ → A1/A2)q = (Γ)q = (ΓA2 → A1)q and
(Γ → A)q is a correct bracket sequence by the induction hypothesis.

Let the last rule be A2Γ → A1

Γ → (A2\A1)
. In the case A2 /∈ Q the proof is the same as

for the opposite division. Otherwise A2 = qi for some i and (Γ → (A2\A1))q =
qi(Γ)q = (A2Γ → A1)q and (Γ → A)q is correct by induction hypothesis.

Let the last rule be
Γ1B1Γ2 → Tij Φ→ B2

Γ1(B1/B2)ΦΓ2 → Tij
. Then by definition of T ′ it

holds that (B1/B2) ∈ T , so (Γ1(B1/B2)ΦΓ2 → Tij)q = Θi(Γ1)qΦq(Γ2)qΘj . Since
Φq = (Φ→ B2)q and Θi(Γ1)qΦq(Γ2)qΘj = (Γ1B1Γ2 → Tij)q then the q-image of
the sequent under consideration is obtained by inserting the q-image of one of its

On the Generative Power of Discontinuous Lambek Calculus 255

premises into the q-image of its another premise. Obviously, inserting a correct
bracket sequence inside another correct sequence yields a correct sequence again,
so the statement of the lemma holds. The case of the other division is analogous.
We should consider two subcases, in one of them there is a q-type under division.
We leave the detailed analysis because of its simplicity. The lemma is proved.

Corollary 1. If L∗ T
(1)
i1j1

. . . T
(r)
irjr

→ Tij then i1 = i, il+1 = jl for every

l ∈ 1, r − 1 and jr = j.

The corollary has an easy consequence which we will use in the further: if in the
notation used above i1 > 0 then it also holds that i > 0 which means that there
is a left division on some qi in the succedent.

Corollary 2. If Γ = T
(1)
i1j1

. . . T
(r)
irjr

, i1 > 0 and L∗ Γ → Tij then i > 0.

Proposition 2. If T ∈ T ′, Γ ∈ T ′∗ and L∗ Γqi → T · qj then i = j and
L∗ Γ → T .

Proof. Induction on derivation length. If the last rule is
Γ1 → T Γ2qi → qj
Γ1Γ2qi → T · qj

then by Proposition 1 it follows that Γ2 = Λ and qi = qj , then Γ = Γ1 and the
second statement is also proved. If the last rule was \ → then qi and qj were in
the same premise and we can use the induction hypothesis and apply the last
rule. In the case of the rule → · we also straightforwardly apply the induction
hypothesis.

It remains to consider the case when the last rule application has the form
Γ1BΓ2 → T · qj Π → C
Γ1(B/C)ΠΓ2 → T · qj . If Γ2 includes qi then we proceed just like in the case

of the rule \ →. The remaining case is when Γ2 is empty and Π = Π1qi. By the
definition of the set T ′ the type C does not contain any q-s, so the q-image of
the sequent Π → C must end with qi. But it contradicts with the Lemma 2. All
the cases are inspected and the proposition is proved.

The next lemma is the most important step of the proof.

Lemma 3. If B ∈ T then for all Γ1, Γ2 ∈ T ′∗, qi ∈ Q,C ∈ T ′ the statements
L∗ Γ1BΓ2 → C and L∗ Γ1qi(qi\B)Γ2 → C are equivalent .

Proof. Let the sequent Γ1BΓ2 → C be derivable. Then the derivation
q → q Γ1BΓ2 → C
Γ1qi(qi\B)Γ2 → C

shows that another sequent is also derivable. Now let the se-

quent Γ1qi(qi\B)Γ2 → C be derivable. Then we proceed by induction on deriva-
tion length. If the types qi and qi\B are in the same premise of the last rule,
then we can use the induction hypothesis and then apply the last rule to prove
the derivability of the sequent Γ1BΓ2 → C. It remains to inspect the three cases
when they are in different premises of the last rule. We may assume that the
antecedent does not contain a type of the form A1 · A2 since in this case a rule
· → could be applied.

256 A. Sorokin

The first case: the last rule application was
Γ1qi → C1 (qi\B)Γ2 → C2

Γ1qi(qi\B)Γ2 → C1 · C2
. But

in this case by Corollary 2 the type C2 must have the form qi\C3 which makes
a contradiction with the condition that C1 · C2 ∈ T ′.

The second case: the last rule application was
Γ1qiDΓ3 → C (qi\B)Φ→ E
Γ1qi(qi\B)Φ(E\D)Γ3 → C

where Γ2 = Φ(E\D)Γ3. By the Corollary 2 the type E must have the form
E = qi\E1 which is impossible by the definition of T ′.

The third case: the last rule application was
Γ3BΓ2 → C Φqi → qi
Γ3Φqi(qi\B)Γ2 → C

. By

Lemma 1 Φ = Λ and then we obtain that the first premise of the rule is ex-
actly Γ1BΓ2 → C. That was required.

Now we can construct the grammar for the language L ∩R. The new grammar
is G′ = 〈Σ,Lex′, H ′〉 where H ′ = (q1\H) · qf (recall that q1 and qf are the
initial and the only terminal state in the automaton recognizing R). We set
Lex′ = {〈a, Tij〉 | 〈a, T 〉 ∈ Lex, 〈qi, a, qj〉 ∈ Δ}. Now we should prove that this
grammar generates exactly the desirable language.

Lemma 4. The grammar G′ = 〈Σ,Lex′, H ′〉 generates the language L ∩R.

Proof. At first let us prove that all the words from L ∩ R are in L(G′). Let
w = a1 . . . ar be such a word and T (1), . . . , T (r) be the types such that for every
i it holds that 〈ai, T (i)〉 ∈ Lex and the sequent T (1), . . . , T (r) → H is derivable
in Lambek calculus. Let qi0 = q1, qi1 , qi2 , qir = qf be the path leading in M from
the initial state to the final (recall that M is the automaton recognizing R).

Consider the types T
(1)
i0i1

, T
(2)
i1i2

, . . . , T
(r)
ir−1ir

, it is not difficult to see that for ev-

ery l the pair 〈al, T (l)
il−1il

〉 is in Lex′. Therefore it remains to prove that the sequent

T
(1)
i0i1

. . . , T
(r)
ir−1ir

→ H ′ is derivable in L∗. By the properties of product connective

it suffices to show that the sequent T
(1)
i00
qi1T

(2)
i10
qi2 . . . T

(r)
ir−10

qir → (qi0 H) · qir is
derivable.

Applying the Lemma 3 r − 1 times we obtain that it suffices to show that
the sequent (qi0\T (1))T (2) . . . T (r−1)T (r)qir → (q1\H) · qir is derivable. Using
the rules → \ and → · we reduce this problem to the derivability of the sequent
T (1) . . . T (r) → H . But it is derivable since the word a1 . . . ar was in L.

Now we should prove the lemma in the opposite direction. Let the word

a1 . . . ar belong to L(G′), it means that there are such types T
(1)
i1j1

. . . T
(r)
irjr

that

〈al, T (i)
iljl
〉 ∈ Lex′ for every l and L∗ T (1)

i1j1
. . . T

(r)
irjr

→ (q1\H) · qf . The q-image
of the last sequent equals q1qi1qj1qi2 . . . qjrqf . Then by the Corollary 1 it holds
that i1 = 1, il+1 = jl for l = 1, 2, . . . , r − 1 and qjr = qf . So the sequent has the

form T
(1)
1i2

. . . T
(r)
irf

→ (q1\H) · qf . Applying the Lemma 3 r − 1 times we obtain

that the sequent (q1\T (1))T (2) . . . T (r) · qf → (q1\H) · qf is also derivable. By
the Proposition 2 the sequent (q1\T (1))T (2) . . . T (r) → q1\H is also derivable,
it implies the derivability of the sequent q1(q1\T (1))T (2) . . . T (r) → H which by
Lemma 3 yields the derivability of the sequent T (1)T (2) . . . T (r) → H which was
required. The lemma is proved.

On the Generative Power of Discontinuous Lambek Calculus 257

From this lemma directly follows the theorem below.

Theorem 1. The class of languages which do not contain the empty word and
are generated by a Lambek grammar is closed under intersections with regular
languages.

The proof of the theorem can be significantly simplified by using the technique
of proof-nets. But since the proof-nets of discontinuous Lambek calculus are not
so convenient for the same purpose we have decided to prove the theorem above
directly. In the next section we slightly modify the proof to obtain the analogous
result for discontinuous Lambek calculus.

3 Discontinuous Lambek Calculus

3.1 Axiomatics

Various linguistic phenomena cannot be captured by context-free grammars and,
hence, by usual Lambek grammars. Therefore there were several attempts to
extend the vocabulary of the calculus but preserve its essential features. One of
the most successful extensions of Lambek calculus is the discontinuous Lambek
calculus of Morrill ([6]). In this calculus the discontinuous product operation
, and its residuals ↓ and ↑ were added to the standard set of connectives.
The discontinuous product operation is just a replacement of the distinguished
separator in its first argument by its second argument.

We start by defining the sort function s() from the set of primitive types to
the set of natural numbers. We also extend the set of primitive types with two
constants I and J such that s(I) = 0 and S(J) = 1. The type I corresponds to
the empty word (the neutral element under concatenation) and J corresponds to
the separator (the neutral element under intercalation). The types of discontin-
uous Lambek calculus are constructed from the primitive types with the help of
continuous connectives \, /, · and discontinuous connectives ↓k, ↑k,,k, k ∈ IN+.
The notion of sort is extended to complex types in the following way:

1. If A,B ∈ Tp and s(A) ≥ s(B) then (A/B) ∈ Tp, (B\A) ∈ Tp and s(A/B) =
s(B\A) = sA− sB.

2. If A,B ∈ Tp then (A ·B) ∈ Tp and s(A · B) = sA+ sB.
3. If A,B ∈ Tp and s(A) ≥ s(B)− 1 then for every k ≤ s(B) B ↓k A ∈ Tp and

s(B ↓k A) = s(A)− s(B) + 1.
4. If A,B ∈ Tp and s(A) ≥ s(B) then for every k ≤ sA−sB+1 (A ↑k B) ∈ Tp

and s(A ↑k B) = s(A)− s(B) + 1.
5. If A,B ∈ Tp and s(A) ≥ 1 then for every k ≤ sA (A ,k B) ∈ Tp and

s(A,B) = sA+ sB − 1.

Let Fi denote the set of the types of the sort i, Λ be the empty string and [] be
a metalinguistic separator. Then the set of hyperconfigurations is defined by the
following grammar: O ::== Λ|[]|F0|Fi{O, . . . ,O︸ ︷︷ ︸

iO′s

}|O,O.

258 A. Sorokin

The sort of a hyperconfiguration s(Γ) is the number of separators it con-
tains and is defined inductively: s(Λ) = 0, s([]) = 1; s(A) = 0 for A ∈ F0;
s(A{Γ1, . . . , Γs(A)}) = s(Γ1) + . . . + s(Γs(A)); s(Γ, Φ) = s(Γ) + s(Φ). The se-
quents are of the form Γ → A, where s(Γ) = s(A). For every type A we define

its vector
−→
A , which equals A if sA = 0 and A{[], . . . , []︸ ︷︷ ︸

sA[]′s

} in the other case. For

any two configurations Γ, Φ we denote by Γ |kΦ the result of replacing the k-th
separator in Γ by Φ (it is valid only if k ≤ s(Γ)). If Γ is a configuration of sort
i then we denote by Γ ⊗ 〈Φ1, . . . , Φi〉 the result of simultaneous replacement of
all the successive separators in Γ by the hyperconfigurations Φ1, . . . , Φi.

To formulate the rules of discontinuous Lambek calculus we need to introduce
the notion on a hypercontext. For the standard Lambek calculus a context is just
a sequence of types with a gap in it. If Γ is a context and A is a type, we denote
by G[A] the result of filling the gap in Γ with A. The usual lefthand rules of Lam-
bek calculus can be reformulated more concisely using the context notation,for

example, the rule / → takes the form
Γ [B]→ A Π → C
Γ [(B/C)Π]→ A

. In the discontinu-

ous Lambek calculus we have to generalize the notion of a context, which leads
to a hypercontext. Namely, if Φ0 is a hyperconfiguration with a distinguished
placeholder instead of one of its subhyperconfigurations and Φ1, . . . , Φk are con-
figurations, then the notation Φ〈Γ 〉 stands for Φ0[Γ ⊗ 〈Φ1, . . . , Φk〉].

The axiomatics of discontinuous Lambek calculus DL is given below.

A→ A (ax)
Γ → A Φ〈−→A 〉 → B

Φ〈Γ 〉 → B
(cut)

−→
A,Γ → C
Γ → A\C (→ \) Γ → A Φ〈−→C 〉 → D

Φ〈Γ,−−→A\C〉 → D
(\ →)

Γ,
−→
A → C

Γ → C/A
(→ /)

Γ → A Φ〈−→C 〉 → D

Φ〈−−→C/A, Γ 〉 → D
(/→)

Γ → A Φ→ B
Γ,Φ→ A · B (→ ·) Φ〈−→A,−→B 〉 → D

Φ〈−−−→A ·B〉 → D
(· →)

Λ→ I (→ I)
Φ〈Λ〉 → A
Φ〈I〉 → A

(I →)
−→
A |kΓ → C
Γ → A ↓k C (→↓) Γ → A Φ〈−→C 〉 → D

Φ〈Γ |k
−−−−→
A ↓k C〉 → D

(↓→)

Γ |k
−→
A → C

Γ → C ↑k A (→↑) Γ → A Φ〈−→C 〉 → D

Φ〈−−−−→C ↑k A|kΓ 〉 → D
(↑→)

Γ → A Φ→ B
Γ |kΦ→ A,k B

(→ ,) Φ〈−→A |k
−→
B 〉 → D

Φ〈−−−−−→A,k B〉 → D
(, →)

[]→ J
(→ J)

Φ〈[]〉 → A
Φ〈J〉 → A

(I →)

As well as the basic Lambek calculus, discontinuous Lambek calculus possess
such useful properties as cut-elimination and the subformula property. Hence
it is a conservative extension of the calculus L∗. If we bound the sort of all
types and hyperconfigurations allowed in derivations by some natural number

On the Generative Power of Discontinuous Lambek Calculus 259

k, we obtain the calculus DLk which also is a conservative extension of Lambek
calculus. Note that the sequent is derivable in DL iff it is derivable in some DLk.

3.2 Discontinuous Lambek Grammars

Just like the types of standard Lambek calculus, the types of discontinuous
Lambek calculus can be interpreted as sets of strings. Let 1 be a distinguished
separator and w ∈ (Σ ∪ 1)∗, then we can define a sort of the word s(w) = |w|1.
The types of the sort i are interpreted as sets of i-sorted words.

Now we extend a notion of Lambek grammar to discontinuous calculi. We
give a definition, that slightly differs from one of Morrill ([6]). Our definition is
less general, but is more traditional in the framework of Lambek grammars. In
fact, the definition of Morrill can be simulated in our terms.

So, a DL-grammar is a again a triple G = 〈Σ,Lex,H〉. All the definitions
remain the same up to natural changes. Lex is now a relation in Σ ×Tp, where
Tp is a set of discontinuous types. Also H must be a discontinuous type of the
sort 0. The word w = a1 . . . ar is in the language L(G) generated by the grammar
if there are such types A(1), . . . , A(r) that for every i the pair 〈ai, A(i)〉 is in Lex
and the sequent A(1), . . . , A(r) → H is derivable in DL. Note that commas in
the last sequent are the elements of configuration.

Example 3. The grammar with the target type S and the lexicon a : S/D, T/E,
b : E ↓ D, J\(F ↓ E), c : J\E, T \F generates the language {anbncn | n ≥ 1}.

Let L be a language, which does not contain the empty word and is generated
by some DL-grammar, and R be a regular language. Our aim is to prove that
the language L∩R is also generated by a DL-grammar. Again we assume that R
does not contain the empty word and is generated by finite automaton M with
the set of states Q = {q1, . . . , qn}, the transition relation Δ, the initial state q1
and the final state qf . We define the sets T and T ′ in the same way as we did
for the calculus L∗. Again Tij denotes the type (qi\T) · qj .

The general scheme of the proof is the same as in the case of the calculus L∗.
We start from the following lemma:

Lemma 5.

1. If DL Γ1, (B · C), Γ2 → A then the sequent Γ1, B, C, Γ2 → A is also
derivable.

2. If DL Γ → (B/C) then the sequent Γ,C → B is also derivable.
3. If DL Γ → (C\B) then the sequent C, Γ → B is also derivable.

We denote by C(T ′) the set of hyperconfigurations which contain only the types
from T ′. For every hyperconfiguration Γ ∈ C(T ′) we want to define its q-
image. We use the same notation as in the previous section. Then q-image Γq

of Γ satisfies the following inductive conditions: Λq = []q = Λ, (qi)q = qi,

(
−→
Tij)q = ΘiΘj , (Tij〈Γ1, . . . , Γm〉)q = Θi(Γ1)q . . . (Γm)qΘj , (Γ1, Γ2)q =
(Γ1)q(Γ2)q. We also extend the definition of q-images to the sequents of dis-
continuous Lambek calculus, setting (Γ → Tij)q = Θi(Γ)qΘj . We prove that

260 A. Sorokin

the q-image of a derivable sequent satisfies the same conditions as in the case of
calculus L∗:

Proposition 3. Let Γ ∈ C(T ′) and DL Γ → qi. Then Γ = qi.

Lemma 6. If Γ ∈ C(T ′), A ∈ T ′ and DL Γ → A then (Γ → A)q is a correct
bracket sequence.

Proof. Induction on the length of derivation. Consider the last rule in the deriva-
tions. We will not inspect the cases of the rules that introduce continuous con-
nectives since the proof is the same as in the case of L∗. We will omit the vector
notation when writing the hyperconfigurations which contain a single type.

Let the last rule be , → in the form
Γ 〈B1|kB2〉 → A
Γ 〈B1 ,B2〉 → A

. Then by definition

of the set T ′ the type B1 , B2 does not contain any occurrences of q. So the
application of this rule does not change the q-image and we can use the induction
hypothesis.

Let the last rule be → , in the form Γ1 → A Γ2 → B
Γ1|kΓ2 → A,k B

. By the construction

the succedent does not contain occurrences of q, so (Γ1|kΓ2 → A ,k B)q =
(Γ1|kΓ2)q. Then the q-image of the sequence given is obtained by inserting the
q-image of Γ2 into the middle of the q-image of Γ1. But both these q-images
are correct bracket sequences by induction hypothesis and then the result of the
insertion is also a correct bracket sequence.

If the last rule is →↓ or →↑ then the antecedent also contains no q occur-
rences, so the reverse application of this rule does not change the q-image of the
sequent and we can use the induction hypothesis. In the case when discontin-
uous connectives are introduced in the antecedent it is not difficult to see that
the q-image of the sequent under consideration is again a result of insertion of
q-image of its premise into the q-image of its another premise. By induction both
these q-images are correct bracket sequences and is correct also. The lemma is
proved.

Corollary 3. If DL T
(1)
i1j1

. . . T
(r)
irjr

→ Tij then i1 = i, il+1 = jl, l ∈ 1, r − 1,
j = jr.

Corollary 4. If Γ = T
(1)
i1j1

. . . T
(r)
irjr

, i1 > 0 and L∗ Γ → Tij then i > 0.

Proposition 4. If T ∈ T ′, Γ ∈ C(T ′) and DL Γ, qi → T · qj then i = j and
DL Γ → T .

Proof. Induction on derivation length. If the last rule introduces a “continuous”
connective, then the proof copies the proof of Proposition 4. Otherwise some
discontinuous connective is introduced in the antecedent, namely in Γ . It is not
difficult to see that in this case qi and qj were in the same premise before the
last step, so we can use the induction hypothesis and then apply the last rule of
the derivation to the sequent without qi and qj .

Now we prove the main technical lemma, which allows us to “contract” the qi-s.

On the Generative Power of Discontinuous Lambek Calculus 261

Lemma 7. If B ∈ T then for all contexts Γ that contain only the types from T ′,
qi ∈ Q and C ∈ T ′ the statements DL Γ 〈B〉 → C and DL Γ 〈qi, qi\B〉 → C
are equivalent.

Proof. In one direction the proof repeats the one in Lemma 3. So we need to
prove the converse statement: the derivability of the sequent Γ 〈qi, qi\B〉 → C
implies the derivability of the sequent Γ 〈B〉 → C. We use the induction on
derivation length. Consider the last rule application. Again if qi and qi\B were
in the same premise of the rule, then we could use induction hypothesis to the
premises and then combine them by the last rule of the derivation. So it suffices
to consider the cases when qi and qi\B were in different premises. That could
happen when applying → ·,→ ,, \ →, /→ or ↓→ rules.

The case when the last rule was→ · is verified in the same way as before. If the
last rule was, → and the occurrences of qi and qi\B under consideration were in
different premises, then the rule must have the form
Γ1〈qi, []〉 → C1 (qi\B), Π → C2

Γ1〈qi, (qi\B), Π〉 → C1 , C2
. In this case by Corollary 4 the type C2 should

contain some qi which is impossible due to definition of T ′.
A similar argument works in the case of the rules→ / and→ \ (when it is not

the division in qi\B which is introduced). If the division in qi\B is introduced,

then the Proposition 3 implies that the last rule should be
Γ 〈B〉 → C qi → qi
Γ 〈qi, qi\B〉 → C〉 ,

but the first premise is exactly the statement we need.
It remains to inspect the case of the rule ↓→. There are two variants of its

application, depending on which premise contains the type qi. The first form of

this rule is
Γ1〈qi, D〉 → C qi\B,Π → A
Γ1〈qi, (qi\B)|k(A ↓k D)〉 → C

. It is impossible because by Corollary 4

the type A should contain qi which contradicts the definition of T ′. The second

form is
Π, qi → A Γ1〈D, qi\B〉 → C

Γ1〈(Π, qi)|k(A ↓k D), qi\B〉 → C
. In this case the derivability of the

sequent Π, qi → A by Lemma 6 implies that A contains an occurrence of qi
which again contradicts the definition of T ′. All the cases are inspected and the
lemma is proved.

We construct the grammar for the language L ∩ R just in the way we did it
before. The grammar is G′ = 〈Σ,Lex′, H ′〉 where H ′ = (q1\H) · qf and Lex′ =
{〈a, Tij〉 | 〈a, T 〉 ∈ Lex, 〈qi, a, qj〉 ∈ Δ}. The fact that this grammar generates
exactly the language L ∩R is proved exactly like in standard Lambek calculus.
That leads us to the following theorem:

Theorem 2. The class of languages which do not contain the empty word and
are generated by a discontinuous Lambek grammar is closed under intersections
with regular languages.

Actually, the proof can be applied to DLk-grammars as well. Note that the
number of types in the lexicon of the grammar constructed does not exceed
M |Q|2, where M is the number of types in the initial Lambek grammar.

262 A. Sorokin

4 Conclusion

We have proved that the class of languages, generated by discontinuous Lambek
grammars, is closed under intersections with regular languages. That is not the
strange fact and the proof is quite simple, though there are not many results of
such type for Lambek grammars. The proof works only for the grammars that
do not generate the empty word, but the author supposes that extending the
construction to them is just a matter of technicalities. The interesting direc-
tion is to develop similar constructions to generate the particular examples of
non-context-free languages by the means of discontinuous Lambek grammars.
This could help us to understand better the comparative generative power of
DL-grammars and other formalisms, for example different variants of multiple
context-free grammars or conjunctive grammars of Okhotin.

References

1. Aho, A., Ullman, J.: The theory of parsing, translation, and compiling. Prentice-
Hall, Inc. (1972)

2. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase-structure gram-
mars. Bull. Res. Council Israel Sect. F 9F, 1–16 (1960)

3. Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics,
pp. 666–674 (2012)

4. Kuznetsov, S.: Lambek grammars with one division and one primitive type. Logic
Journal of the IGPL 20(1), 207–221 (2012)

5. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

6. Morrill, G., Valent́ın, O.: On calculus of displacement. In: Proceedings of the 10th
International Workshop on Tree Adjoining Grammars and Related Formalisms,
pp. 45–52 (2010)

7. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language and Information 20(1), 1–48 (2011)

8. Pentus, M.: Lambek grammars are context-free. In: Logic in Computer Science,
Proceedings of the LICS 1993, pp. 429–433 (1993)

9. Seki, H., Matsumoto, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

10. Sorokin, A.: Normal Forms for Multiple Context-Free Languages and Displace-
ment Lambek Grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS,
vol. 7734, pp. 319–334. Springer, Heidelberg (2013)

A Count Invariant for Lambek Calculus with Additives
and Bracket Modalities�

Oriol Valentı́n1, Daniel Serret2, and Glyn Morrill1

1 Universitat Politècnica de Catalunya
oriol.valentin@gmail.com, morrill@lsi.upc.edu

http://www.lsi.upc.edu/˜morrill/
2 Universitat de Barcelona
daniel.serret@gmail.com

Abstract. The count invariance of van Benthem (1991[16]) is that for a sequent
to be a theorem of the Lambek calculus, for each atom, the number of positive
occurrences equals the number of negative occurrences. (The same is true for
multiplicative linear logic.) The count invariance provides for extensive pruning
of the sequent proof search space. In this paper we generalize count invariance
to categorial grammar (or linear logic) with additives and bracket modalities. We
define by mutual recursion two counts, minimum count and maximum count, and
we prove that if a multiplicative-additive sequent is a theorem, then for every
atom, the minimum count is less than or equal to zero and the maximum count is
greater than or equal to zero; in the case of a purely multiplicative sequent, mini-
mum count and maximum count coincide in such a way as to together reconstitute
the van Benthem count criterion. We then define in the same way a bracket count
providing a count check for bracket modalities. This allows for efficient pruning
of the sequent proof search space in parsing categorial grammar with additives
and bracket modalities.

1 Introduction

Van Benthem (1991[16]) showed that a necessary condition for a sequent to be a theo-
rem of the Lambek calculus is that it satisfies a simple count check. Let P be the set of
atoms. Where P ∈ P, the P-count #P(A) of a type A is defined by:

#P(P) = 1
#P(Q) = 0 for Q ∈ P − {P}
#P(A•B) = #P(A) + #P(B)
#P(A\C) = #P(C) − #P(A)
#P(C/B) = #P(C) − #P(B)

 Research partially supported by an ICREA Acadèmia 2012 to the third author, and by
BASMATI MICINN project (TIN2011-27479-C04-03) and SGR2009-1428 (LARCA). Many
thanks to Josefina Sierra and to three Formal Grammar referees for comments and suggestions.
Particular thanks to the referee who pointed towards the simplification of the proposal in the
appendix which we have used in the main text. Any errors are our own.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 263–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 O. Valentı́n, D. Serret, and G. Morrill

Let the P-count be extended to configurations by the following, where Λ is the empty
configuration:

#P(A, Γ) = #P(A) + #P(Γ)
#P(Λ) = 0

The count-invariance property is that

� Γ⇒ A =⇒ ∀P ∈ P, #P(Γ) = #P(A)

This is proved by induction on sequent proofs.
The count invariance forms the basis of an extensive pruning of the sequent proof

search space in categorial parsing-as-deduction/theorem-proving. Every time a subgoal
Γ⇒ A is generated it can be quickly checked whether ∀P, #P(Γ) = #P(A); if not, the
subgoal can be discarded at once. Informal experimentation shows that such count-
checking, together with focusing normalization (Andreoli 1992[1]; König 1989[6]; Hep-
ple 1990[4]; Hendriks 1993[3]; Morrill 2011[11]) makes a critical difference in effi-
ciency of Lambek calculus sequent proof search parsing-as-deduction.

In this paper we consider the case of the Lambek calculus extended with additives
(Lambek 1961[7]; Girard 1987[2]; van Benthem 1991[16]; Morrill 1990[9]; Kanazawa
1992[5]). For linguistic motivation see Morrill (1994[14], ch. 6) or Morrill (2011[15],
ch. 7). Our contribution is to define two new counts, #min and #max, which, for a multiplic-
ative-additive sequent to be a theorem, must be less than or equal to zero and greater
than or equal to zero respectively. In the special case that a sequent has no additives,
#min = #max = the van Benthem count # so that the two inequations together impose
the van Benthem criterion, i.e. our generalisation preserves the particular case of the
van Benthem count for pure multiplicative sequents. We go on to formulate in addition
count invariance for bracket modalities (Morrill 1992[10]; Moortgat 1995[8]).

2 Count Invariance for Additives

Let us consider the sequent formulation of LA, the Lambek calculus with additive con-
nectives. We will denote the additive conjunction as ∧ and the additive disjunction as
∨. The sequent rules are shown in Figure 1. Cut, of course, is eliminable.

Where m =max or min, we define recursively counts #max/min,P on types as follows:1

#m(P) = 1
#m(Q) = 0 for Q ∈ P − {P}
#m(A•B) = #m(A) + #m(B)
#m(A\C) = #m(C) − #m(A)
#m(C/B) = #m(C) − #m(B)
#m(A∧B) = m(#m(A), #m(B))
#m(A∨B) = m(#m(A), #m(B))

We extend the counts #min/max to configurations by the following:

#m(A, Γ) = #m(A) + #m(Γ)
#m(Λ) = 0

1 max = min; min = max. We leave the parameter P ∈ P implicit.

Count Invariance for Additives and Brackets 265

id
A⇒ A

Γ⇒ A Δ(A)⇒ B
Cut

Δ(Γ)⇒ B

Γ⇒ A Δ(B)⇒ C
\L

Δ(Γ, A\B)⇒ C

A, Δ⇒ B
\R

Δ⇒ A\B

Γ⇒ A Δ(B)⇒ C
/L

Δ(B/A, Γ)⇒ C

Δ, A⇒ B
/R

Δ⇒ B/A

Δ(A, B)⇒ C
•L

Δ(A•B)⇒ C

Δ⇒ A Γ⇒ B
•R

Δ, Γ⇒ A•B

Δ(B)⇒ C
∧L1

Δ(A ∧ B)⇒ C

Δ(A)⇒ C
∧L2

Δ(A ∧ B)⇒ C

Δ⇒ B Δ⇒ C
∧R

Δ⇒ B ∧ C

Δ(A)⇒ C Δ(B)⇒ C
∨L

Δ(A ∨ B)⇒ C

Δ⇒ C
∨R1

Δ⇒ B ∨C

Δ⇒ B
∨R2

Δ⇒ B ∨ C

Fig. 1. Rules for the additives and multiplicatives

And we define the counts #min/max of a sequent by:

#m(Δ⇒ A) = #m(A) − #m(Δ)

Given an arbitrary atomic type P we have the following theorem:

(1) Theorem (Soundness of LA w.r.t. #p
m,P(A))

If Δ⇒ A is an LA provable sequent then:

#min(Δ⇒ A) ≤ 0 ≤ #max(Δ⇒ A)

Proof. By induction on the length of Cut-free LA derivations. In the following, i.h. will
abbreviate induction hypothesis.

– Axiom case. If A = P then:

#min(A⇒ A) =

#min(A) − #min(A) = 1 − 1 = 0 = 1 − 1 =
#max(A) − #max(A) =

#max(A⇒ A)

266 O. Valentı́n, D. Serret, and G. Morrill

Otherwise, if A is an atomic type Q different from P we have:

#min(A⇒ A) = 0 − 0 = #max(A⇒ A)

– ∧ left rule:
Δ(A)⇒ C

∧L
Δ(A ∧ B)⇒ C

We have that:

#min(Δ(A ∧ B)⇒ C) =

#min(C) − (#min(A ∧ B) + #min(Δ(Λ))) =

#min(C) − max(#min(A), #min(B)) − #min(Δ(Λ)) ≤
#min(C) − #min(A) − #min(Δ(Λ)) =

#min(Δ(A)⇒ C)
i.h.
≤ 0

On the other hand:

0
i.h.
≤ #max(Δ(A)⇒ C) =

#max(C) − #max(A) − #max(Δ(Λ)) ≤
#max(C) − min(#max(A), #max(B)) − #max(Δ(Λ)) =
#max(C) − #max(A ∧ B) − #max(Δ(Λ)) =
#max(Δ(A ∧ B)⇒ C)

– ∧ right rule:
Δ⇒ B Δ⇒ C

∧R
Δ⇒ B ∧ C

Suppose that max(#min(B), #min(C)) = #min(B). We have that,

#min(Δ⇒ B ∧C) =

#min(B ∧ C) − #min(Δ) =

max(#min(B), #min(C)) − #min(Δ) =
#min(B) − #min(Δ) =

#min(Δ⇒ B)
i.h.
≤ 0

If max(#min(B), #min(C)) = #min(C) we get similarly:

#min(Δ⇒ B ∧C) =

#min(B ∧ C) − #min(Δ) =

max(#min(B), #min(C)) − #min(Δ) =
#min(C) − #min(Δ) =

#min(Δ⇒ C)
i.h.
≤ 0

On the other hand, suppose that min(#max(B), #max(C)) = #max(B)

0
i.h.
≤ #max(Δ⇒ B) =

#max(B) − #max(Δ) =
min(#max(B), #max(C)) − #max(Δ) =
#max(B ∧ C) − #max(Δ) =
#max(Δ⇒ B ∧C)

Count Invariance for Additives and Brackets 267

Similarly, if we have that min(#max(B), #max(C)) = #max(C) we obtain:

0 ≤ #max(Δ⇒ B ∧ C)

– ∨ left rule:
Δ(A)⇒ C Δ(B)⇒ C

∨L
Δ(A ∨ B)⇒ C

Suppose that min(#min(A), #min(B)) = #min(A). We have that:

#min(Δ(A ∨ B)⇒ C) =

#min(C) − #min(A ∨ B) − #min(Δ(Λ)) =

#min(C) − min(#min(A), #min(B)) − #min(Δ(Λ)) =
#min(C) − #min(A) − #min(Δ(Λ)) =

#min(Δ(A)⇒ C)
i.h.
≤ 0

Similarly, if we have that min(#min(A), #min(B)) = #min(B) we obtain:

#min(Δ(A ∨ B)⇒ C) =

#min(C) − #min(A ∨ B) − #min(Δ(Λ)) =

#min(C) − min(#min(A), #min(B)) − #min(Δ(Λ)) =
#min(C) − #min(B) − #min(Δ(Λ)) =

#min(Δ(B)⇒ C)
i.h.
≤ 0

On the other hand, if we have max(#max(A), #max(B)) = #max(A):

0
i.h.
≤ #max(Δ(A)⇒ C) =

#max(C) − #max(A) − #max(Δ(Λ)) =
#max(C) − max(#max(A), #max(B)) + #max(Δ(Λ))
#max(Δ(A ∨ B)⇒ C)

Similarly, if we have max(#max(A), #max(B)) = #max(B) we get the desired result.

– ∨ right rule:
Δ⇒ B

∨R
Δ⇒ B ∨ C

We have that:
#min(Δ⇒ B ∨C) =

#min(B∨ C) − #min(Δ) =

min(#min(B), #min(C)) − #min(Δ) ≤
#min(B) − #min(Δ) =

#min(Δ⇒ B)
i.h.
≤ 0

On the other hand:

0
i.h.
≤ #max(Δ⇒ B) =

#max(B) − #max(Δ) ≤
max(#max(B), #max(C)) − #max(Δ) =
#max(Δ⇒ B ∨ C)

268 O. Valentı́n, D. Serret, and G. Morrill

– / left rule:
Γ⇒ A Δ(B)⇒ C

/L
Δ(B/A, Γ)⇒ C

We have that:

#min(Γ⇒ A)
i.h.
≤ 0 #min(Δ(B)⇒ C)

i.h.
≤ 0

Adding both inequations
#min(C)−(#min(B) − #min(A))

︸��������������������︷︷��������������������︸

= −#min(B/A)

−#min(Γ) − #min(Δ(Λ)) ≤ 0

Where the last inequation corresponds to

#min(Δ(B/A, Γ)⇒ C) ≤ 0

On the other hand:

0
i.h.
≤ #max(Γ⇒ A) 0

i.h.
≤ #max(Δ(B)⇒ C)

Adding both inequations
0 ≤ #max(C) − #max(Δ(Λ)) − #max(Γ)−(#max(B) − #max(A))

︸���������������������︷︷���������������������︸

= −#max(B/A)

Where the last inequation corresponds to:

0 ≤ #max(Δ(B/A, Γ)⇒ C)

– / right rule
Δ, A⇒ B

/R
Δ⇒ B/A

We have that:

#min(Δ, A⇒ B) = #min(B) − #min(A)
︸���������������︷︷���������������︸

= #min(B/A)

−#min(Δ)
i.h.
≤ 0

Where the last inequation corresponds to:

#min(Δ⇒ B/A) ≤ 0

On the other hand:

0
i.h.
≤ #max(Δ, A⇒ B) =

#max(B) − #max(A) − #max(Δ) =
#max(B/A) − #max(Δ)

Where the last inequation corresponds to:

0 ≤ #max(Δ⇒ B/A)

Count Invariance for Additives and Brackets 269

– \L rule: as /L

– \R rule: as /R

– • left rule:
Δ(A, B)⇒ C

•L
Δ(A • B)⇒ C

We have that:

#min(C) − #min(Δ(Λ)) − #min(A) − #min(B)
i.h.
≤ 0

Where the last inequation corresponds to:

#min(Δ(A • B)⇒ C) ≤ 0

On the other hand:

0
i.h.
≤ #max(C) − #max(Δ(Λ)) − #max(A) − #max(B)

Where the last inequation corresponds to:

0 ≤ #max(Δ(A • B)⇒ C)

– • right rule:
Δ⇒ A Γ⇒ B

•R
Δ, Γ⇒ A • B

We have that:

#min(A) − #min(Δ)
i.h.
≤ 0 #min(B) − #min(Γ)

i.h.
≤ 0

Adding both inequations
#min(A • B) − #min(Δ) − #min(Γ) ≤ 0

Where the last inequation corresponds to:

#min(Δ, Γ⇒ A • B) ≤ 0

On the other hand:

0
i.h.
≤ #max(A) − #max(Δ) 0

i.h.
≤ #max(B) − #max(Γ)

Adding both inequations
0 ≤ #max(A • B) − #max(Δ) − #max(Γ)

Where the last inequation corresponds to:

0 ≤ #max(Δ, Γ⇒ A • B)

This completes the proof. �

270 O. Valentı́n, D. Serret, and G. Morrill

2.1 Exemplification

In this section, by way of example we give some underivable sequents which are falsi-
fied by the count check. Let P and Q be two atomic types:

1) �LA P⇒ P∧Q

Consider the count check with respect to P. We have then that:

#max(P⇒ P∧Q) =
#max(P∧Q) − 1 =
min(1, 0) − 1 = −1 � 0

Therefore we falsify sequent 1).

2) �LA P∨Q⇒ P

Consider the count check with respect to Q. We have then that:

#max(P∨Q⇒ P) =

#max(P) − #max(P∨Q) =
0 − max(0, 1) = −1 � 0

Therefore we falsify sequent 2).

3) �LA P∨Q⇒ P∧Q

Consider the count check with respect to P. We have then that:

#max(P∨Q⇒ P∧Q) =

#max(P∧Q) − #max(P∨Q) =
min(1, 0) − max(1, 0) = 0 − 1 = −1 � 0

Therefore we falsify sequent 3).

4) �LA P⇒ P • P

Consider the count check with respect to P. We have then that:

#min(P⇒ P • P) =

#min(P • P) − #min(P) =
2 − 1 = 1 � 0

Therefore we falsify sequent 4).

3 Count Invariance for Bracket Modalities

In the Lambek calculus with bracket modalities (Morrill 1992[10]; Moortgat 1995[8])
configurations are bracketed; for linguistic applications see Morrill (1994[14], ch. 7)

Count Invariance for Additives and Brackets 271

Γ(A)⇒ B
[]−1L

Γ([[]−1A])⇒ B

[Γ]⇒ B
[]−1R

Γ⇒ []−1B

Γ([A])⇒ B
〈〉L

Γ(〈〉A)⇒ B

Γ⇒ B
〈〉R

[Γ]⇒ 〈〉B

Fig. 2. Logical rules for bracket modalities

or Morrill (2011[15], ch. 5). We extend the logic LA with bracket modalities, and we
denote it LAb; configurations may now include brackets. The logical rules for bracket
modalities are as shown in Figure 2.

We can define bracket counts #min/max,[] as follows:2

#m(P) = 0 for P ∈ P
#m(〈〉A) = #m(A) + 1
#m([]−1A) = #m(A) − 1

The clauses for the multiplicative and additive connectives are the same as those given
in the previous section. We extend the bracket count to configurations thus:

#m(A, Γ) = #m(A) + #m(Γ)
#m([Γ]) = #m(Γ) + 1
#m(Λ) = 0

(Naturally for an atom P, #m,P([Γ]) = #m,P(Γ).) Where m ∈ {min,max}, the min/max-
count of a sequent is again:

#m(Δ⇒ A) = #m(A) − #m(Δ)

The soundness theorem (1) extends to bracket modalities.

Proof. Extending the proof of (1) to bracket modalities.

– 〈〉 left rule:
Δ([A])⇒ B

〈〉L
Δ(〈〉A)⇒ B

We have that for m ∈ {min,max}:

#m([A]) = #m(〈〉A)

It follows that for m ∈ {min,max}:

#m(Δ([A])⇒ B) =
#m(Δ(〈〉A)⇒ B)

2 We leave implicit the reference to [].

272 O. Valentı́n, D. Serret, and G. Morrill

And therefore, by i.h.:
#min(Δ(〈〉A)⇒ B) ≤ 0
0 ≤ #max(Δ(〈〉A)⇒ B)

– 〈〉 right rule:
Δ⇒ A

〈〉R
[Δ]⇒ 〈〉B

We have that for m ∈ {min,max}:

#m([Δ]⇒ 〈〉A) = #m(〈〉A) − #m([Δ]) =
(#m(A) + 1) − #m(Δ) − 1 =
#m(A) − #m(Δ) =
#m(Δ⇒ A)

It follows that by i.h:
#min([Δ])⇒ 〈〉B) ≤ 0
0 ≤ #max([Δ]⇒ 〈〉B)

– []−1 left rule:
Δ(A)⇒ B

[]−1L
Δ([[]−1A])⇒ B

We have that for m ∈ {min,max}:

#m([[]−1A]) = (#m(A) − 1) + 1 = #m(A)

It follows that for m ∈ {min,max}:

#m(Δ([[]−1A])⇒ B) = #m(Δ(A)⇒ B)

And therefore by i.h.:
#min(Δ([[]−1A])⇒ B) ≤ 0
0 ≤ #max(Δ([[]−1A]⇒ B)

– []−1 right rule:
[Δ]⇒ A

[]−1R
Δ⇒ []−1A

We have that for m ∈ {min,max}:

#m([Δ]⇒ A) =
#m(A) − #m(Δ) − 1 =
(#m(A) − 1) − #m(Δ) =
#m(Δ⇒ []−1A)

It follows that by i.h.:
#min(Δ⇒ []−1A) ≤ 0
0 ≤ #max(Δ⇒ []−1A)

This completes the proof.

�

Count Invariance for Additives and Brackets 273

3.1 Exemplification

We consider some examples of underivable sequents which are falsified by the count
invariant extended to bracket modalities. Let N and S be two atomic types.

1) �LAb N, (〈〉N)\S ⇒ S

We have that the following count check with respect to []:

#min(N, (〈〉N)\S ⇒ S) = #min(S) − #min(N) − #min((〈〉N)\S)
= #min(S) − #min(N) − #min(S) + #min(〈〉N)
= #min(S) − #min(N) − #min(S) + (#min(N) + 1)
= 0 − 0 − 0 + (0 + 1) = 1 � 0

Therefore we falsify sequent 1).

2) �LAb [[N]], (〈〉N)\S ⇒ S

Consider the count check with repect to []:

#max([[N]], (〈〉N)\S ⇒ S) = #max(S) − #max([[N]]) − #max((〈〉N)\S)
= 0 − (1 + 1 + 0) − (0 − (1 + 0))
= −2 + 1 = −1 � 0

Therefore we falsify sequent 2).

3) �LAb [S , (S \([]−1[]−1S))/S]⇒ S

Consider the count check with repect to []:

#min([S , (S \([]−1[]−1S))/S]⇒ S) = #min(S) − (1 + #min(S) + (#min(S) − 2) − 2 · #min(S))
= 0 − (1 − 2) = 1 � 0

Therefore we falsify sequent 3).

4 Conclusion: Discriminatory Power

Our proposal for count invariance comprises two inequations. These are parameterised
by atoms or brackets. If we assume that the likelyhood of satisfying one arbitrary in-
equation by chance is 1/2, the likelyhood of satisfying one inequation for n atoms or
brackets is 1/2n. But if there are two inequations, as in our case, the chance of satisfy-
ing the two is 1/2 × 1/2 = 1/4, and the probability of satisfying the two equations for
n atoms or brackets is 1/4n. Thus the discriminatory capacities of one or both of our
count invariants together grow with the number of atoms as follows:

274 O. Valentı́n, D. Serret, and G. Morrill

n 2n 4n

1 2 4
2 4 16
3 8 64
4 16 256
5 32 1024
6 64 4096
7 128 16384
8 256 65536

Clearly the count invariant is sound for multiplicative-additive linear logic since it is
a criterion sensitive to occurences and in no way depends on commutativity or non-
commutativity. In the same way it extends immediately to the deterministic connec-
tives of the (dis)placement calculus of Morrill, Valentı́n and Fadda (2011[13]) since
these form residuated families like the Lambek connectives. Furthermore we think it is
possible to extend it to the nondeterministic discontinuous connectives since these are
defined using additives. Finally, we have begun experimenting with implementation of
the new count invariant in the context of the categorial parser/theorem-prover CatLog
(Morrill 2012[12]).

Appendix

Another count invariant could be defined using mutual recursion with respect to polar-
ities (of types) and m = max or min. Where polarity p = • or ◦ represents antecedent
(input) and succedent (output) respectively and m = max or min, we define by mutual
recursion as follows counts #•/◦max/min,P on types, leaving the parameter P ∈ P implicit:3

#p
m(P) = 1

#p
m(Q) = 0 for Q ∈ P − {P}

#p
m(A•B) = #p

m(A) + #p
m(B)

#p
m(A\C) = #p

m(C) − #p
m(A)

#p
m(C/B) = #p

m(C) − #p
m(B)

#◦m(A∧B) = m(#◦m(A), #◦m(B))
#•m(A∧B) = m(#•m(A), #•m(B))
#◦m(A∨B) = m(#◦m(A), #◦m(B))
#•m(A∨B) = m(#•m(A), #•m(B))

We extend the counts #•min/max to configurations by the following:

#•m(A, Γ) = #•m(A) + #•m(Γ)
#•m(Λ) = 0

And we define the counts #min/max of a sequent by:

#m(Δ⇒ A) = #•m(Δ) − #◦m(A)

3 • = ◦; ◦ = •; max = min; min = max.

Count Invariance for Additives and Brackets 275

(2) Lemma
The following equality holds:

#•m(A) = #◦m(A) (
)

Proof. By induction on the complexity of LA types (as usual, i.h. abbreviates induction
hypothesis):

– Atomic case: obvious.
– Product case: obvious (using i.h.).
– Slashes. Consider / (\ is completely similar):

#•m(C/A) = #•m(C) − #◦m(A)
#◦m(C/A) = #◦m(C) − #•m(A)

By i.h. #•m(C) = #◦m(C) and #◦m(A) = #•m(A), whence #•m(C/A) = #◦m(C/A).
– Conjunction:

#•m(A∧B) = m(#•m(A), #•m(B))
#◦m(A∧B) = m(#◦m(A), #◦m(B))

By i.h. #•m(A) = #◦m(A) and #◦m(B) = #•m(B), whence #•m(A∧B) = #◦m(A∧B).
– Disjunction: similar to the case of conjunction.

�
This count invariant satisfies also the soundness theorem (1). By using the previous
lemma (2) we can almost mimick the proof from (1). The definition of count invariant
we present in this appendix has turned out to be interesting for an ongoing research on a
count invariant extended to the exponential modality of linear logic ! (Girard 1987[2]).

References

1. Andreoli, J.M.: Logic programming with focusing in linear logic. Journal of Logic and Com-
putation 2(3), 297–347 (1992)

2. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
3. Hendriks, H.: Studied flexibility. Categories and types in syntax and semantics. PhD thesis,

Universiteit van Amsterdam. ILLC, Amsterdam (1993)
4. Hepple, M.: Normal form theorem proving for the Lambek calculus. In: Karlgren, H. (ed.)

Proceedings of COLING, Stockholm (1990)
5. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal of Logic,

Language and Information 1, 141–171 (1992)
6. König, E.: Parsing as natural deduction. In: Proceedings of the Annual Meeting of the Asso-

ciation for Computational Linguistics, Vancouver (1989)
7. Lambek, J.: On the Calculus of Syntactic Types. In: Jakobson, R. (ed.) Structure of Language

and its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics XII, pp.
166–178. American Mathematical Society, Providence (1961)

8. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and Informa-
tion 5(3,4), 371–401 (1996); Also in Bulletin of the IGPL 3(2,3), 371–401 (1995)

9. Morrill, G.: Grammar and Logical Types. In: Stockhof, M., Torenvliet, L. (eds.) Proceedings
of the Seventh Amsterdam Colloquium, pp. 429–450 (1990); Barry, G., Morrill, G.: Studies
in Categorial Grammar, Edinburgh Working Papers in Cognitive Science, vol. 5, pp. 127–148
(1990); Revised version published as Grammar and Logic. Theoria, LXII 3, 260–293 (1996)

276 O. Valentı́n, D. Serret, and G. Morrill

10. Morrill, G.: Categorial Formalisation of Relativisation: Pied Piping, Islands, and Extraction
Sites. Technical Report LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya (1992)

11. Morrill, G.: Logic Programming of the Displacement Calculus. In: Pogodalla, S., Prost, J.-P.
(eds.) LACL 2011. LNCS, vol. 6736, pp. 175–189. Springer, Heidelberg (2011)

12. Morrill, G.: CatLog: A Categorial Parser/Theorem-Prover. In: LACL 2012 System Demon-
strations, Logical Aspects of Computational Linguistics 2012, Nantes, pp. 13–16 (2012)

13. Morrill, G., Valentı́n, O., Fadda, M.: The Displacement Calculus. Journal of Logic, Language
and Information 20(1), 1–48 (2011), doi:10.1007/s10849-010-9129-2.

14. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic Pub-
lishers, Dordrecht (1994)

15. Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford Uni-
versity Press, New York and Oxford (2011)

16. van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic. Number
130 in Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam
(1991); (revised student edition printed in 1995 by the MIT Press)

Some Higher Order Functions

on Binary Relations

R. Zuber�

Rayé des cadres du CNRS, Paris, France
Richard.Zuber@linguist.univ-paris-diderot.fr

Abstract. Some higher order functions needed in linguistic semantics
are studied. Such functions take binary relations or sets and binary re-
lations as arguments and give sets of type 〈1〉 quantifiers as output.
Formal constraints on such functions are generalisations of similar con-
straints holding for generalised quantifiers and ”simple” functions on
binary relations. Some theorems concerning such constraints, in partic-
ular (generalised) conservativity and cardinality, are proved and some
relationships with (Frege) irreducible quantifiers are indicated.

1 Introduction

Functions taking binary relations as arguments are needed in (linguistic) seman-
tics simply because transitive verb phrases (TVPs) are very naturally interpreted
by binary relations. Thus, to mention the simplest case, functions denoted by
(nominal) direct objects (which form verb phrases (VPs) with TVPs) take bi-
nary relations and give as result denotations of VPs. These functions have been
investigated in connection with the study of type 〈1〉 quantifiers. Indeed, if type
〈1〉 quantifiers are typically denoted by noun phrases (NPs) and typical direct
objects are NPs, then it is natural to allow type 〈1〉 quantifiers to apply also
to binary relations in order to interpret VPs obtained by the application of the
direct object NP to a TVP. Technically (see below) this is done by extending
their domain of application. Extended in that way, type 〈1〉 quantifiers are arity
reducers: they apply to n-ary relations and give n-1-ary relations as result and
in particular they apply to binary relations and give sets as results.

There are obviously other means to obtain syntactically complex VPs. The
analysis presented here is meant eventually to describe the semantics of sentences
of the form given in (1):

(1) NP TVP GNP

In this schema, GNP is a generalised noun phrase. GNPs are linguistic objects
that can play the role of syntactic arguments of TVPs. So ”ordinary” NPs or
DPs (determiner phrases) are GNPs. However there are GNPs which differ from
”ordinary” NPs in that they cannot play the role of all verbal arguments; in

� Thanks to Makoto Kanazawa for some important remarks and to Ross Charnock for
the usual help with English.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 277–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 R. Zuber

particular they cannot occur in subject position. I will be interested in the formal
properties of functions denoted by such GNPs.

Furthermore, GNPs can themselves be syntactically complex, and have the
form GDet(CN), where CN is a common noun and GDet is a generalised deter-
miner, that is an expression which takes CNs as arguments and gives a GNP as
a result. So I will also be interested in functions which are denotations of GDets.

Since CNs are supposed to denote sets and TVPs are supposed to denote
binary relations, I will also study some functions which take (binary) relations
as arguments or sets and binary relations as arguments.

Depending on the type of output one can distinguish two classes of functions
interpreting GNPs and GDets: (1) simple functions, which give sets (of indi-
viduals) as output and (2) higher order functions, which have sets of type 〈1〉
quantifiers as output.

Simple functions are needed to interpret sentences like (2) or (3):

(2) Leo hates himself.

(3) Leo hates every philosopher including himself.

In (2) himself is a syntactic argument of hates with which it forms a VP. It
is thus a GNP and it denotes the function SELF defined as SELF (R) = {x :
〈x, x〉 ∈ R}) which is an arity reducer. It can be shown (Keenan 2007) that
SELF is not an extension of a type 〈1〉 quantifier and thus is not denoted by a
”typical” NP.

In (3) we have an (anaphoric) GDet every...including himself which also de-
notes a simple function (cf. Zuber 2010b). Similarly simple functions are needed
for the semantics of generalised comparative and superlative determiners (Zuber
2011a).

Simple functions have been already studied to various degrees (Keenan and
Westerst̊ahl 1997, Keenan 2007, Zuber 2010b, Zuber 2011a). This paper is de-
voted to a preliminary study of higher order functions needed in linguistic se-
mantics. As will be shown in more detail below, such functions are needed to
interpret reciprocal constructions, constructions with the same and the so-called
cumulative readings of some quantifiers. Moreover, such functions give rise to
Frege irreducible quantifiers.

2 Formal Preliminaries

We will consider binary relations and functions over universeE which is supposed
to be finite. If a function takes only a binary relation as argument, its type is
noted 〈2 : τ〉, where τ is the type of the output; if a function takes a set and
a binary relation as arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the
output of the function is a set of individuals and thus the type of the function is
〈2 : 1〉. For instance the function SELF is of this type. The case we will basically
consider here is when τ corresponds to a set of type 〈1〉 quantifiers and thus τ
equals, in Montagovian notation, 〈〈〈e, t〉t〉t〉. In short, the type of such functions

Some Higher Order Functions on Binary Relations 279

will be noted either 〈2 : 〈1〉〉 (functions from binary relations to sets of type 〈1〉
quantifiers)) or 〈1, 2 : 〈1〉〉 (functions from sets and binary relations to sets of
type 〈1〉 quantifiers).

Let R be a binary relation. Then : dom(R) = {x : ∃y〈x, y〉 ∈ R} and rg(R) =
{x : ∃y〈y, x〉 ∈ R}. Furthermore, for any a ∈ E, aR = {x : 〈a, x〉 ∈ R} and
Ra = {x : 〈x, a〉 ∈ R}. The relation R−1 is the converse of R and the relation
RS is the maximal symmetric relation included in R, that is RS = R ∩ R−1.
A type 〈2 : 1〉 or type 〈2 : 〈1〉〉 function F is convertible iff F (R) = F (R−1).
Relation I is defined as I = {〈x, x〉 : x ∈ E}. The relation Rt is the transitive
closure of the relation R, that is the smallest transitive relation in which R is
included.

Basic type 〈1〉 quantifiers are functions from sets (sub-sets of E) to truth-
values. In this case they are denotations of subject NPs. However, NPs can also
occur in oblique positions and in this case their denotations do not take sets (de-
notations of verb phrases) as arguments but rather denotations of intransitive
verb phrases, that is relations, as arguments. To account for this eventuality it
has been proposed to extend the domain of application of basic type 〈1〉 quan-
tifiers so that they apply to n-ary relations and act as arity reducers, that is
have as output an (n–1)-ary relation (see Keenan 1987). Since we are basically
interested in binary relations, the domain of application of basic type 〈1〉 quan-
tifiers will be extended by adding to their domain the set of binary relations. In
this case the quantifier Q can act as a ”subject” quantifier or a ”direct object”
quantifier giving rise to the nominative case extension Qnom and accusative case
extension Qacc respectively. They are defined as follows (Keenan 1987, Keenan
and Westerstahl 1997):

Definition 1. For each type 〈1〉 quantifier Q, Qnom(R) = {a : Q(Ra) = 1}.

Definition 2. For each type 〈1〉 quantifier Q, Qacc(R) = {a : Q(aR) = 1}.

From now on Qnom(R) will be noted Q(R). Nominative and accusative exten-
sions can thus be considered as functions from binary relations to sets. From
now on, by type 〈1〉 quantifiers I will mean basic type 〈1〉 quantifiers as well as
their nominative and accusative extensions.

Given that type 〈1〉 quantifiers and their arguments form Boolean algebras,
every quantifier Q has its Boolean complement, denoted by ¬Q, and its post-
complement Q¬, defined as follows: Q¬ = {P : P ⊆ E ∧ P ′ ∈ Q} (where P ′ is
the Boolean complement of P). The dual Qd of the quantifier Q is, by definition,
Qd = ¬(Q¬) = (¬Q)¬. A quantifier Q is self-dual iff Q = Qd. These definitions
work also for extended type 〈1〉 quantifiers. It easy to see for instance that
¬(Qacc) = (¬Q)acc and (Qd)acc = (Qacc)

d. A type 〈1〉 quantifier Q is positive iff
Q(∅) = 0 and Q is atomic iff it contains exactly one element that is if Q = {A}
for some A ⊆ E.

A special class of type 〈1〉 quantifiers is formed by individuals, that is ultrafil-
ters generated by an element of E. Thus Ia is an individual (generated by a ∈ E)
iff Ia = {X : a ∈ X}. Ultrafilters are (special) filters. A (principal) filter gener-
ated by the setA ⊆ E is the following quantifier: Ft(A) = {X : X ⊆ E∧A ⊆ X}.

280 R. Zuber

One property that we will use is the property of living on. The basic type 〈1〉
quantifier lives on the set A (where A ⊆ E) iff for all X ⊆ E, Q(X) = Q(X∩A).
If E is finite then there is always the smallest set on which a quantifier Q lives:
it is the meet of all sets on which Q lives. The fact that A is the smallest set on
which the quantifier Q lives will be noted Li(Q,A). If A ∈ Q then A is called the
witness set of Q: A = Wt(Q). The quantifier Q is called plural, noted Q ∈ PL,
iff ∃a,b∈E such that Q ⊆ Ia ∩ Ib.i

Functions from pairs of sets to truth-values or binary relations between sets
are type 〈1, 1〉 quantifiers. In NLs they are denoted by (unary) determiners and
in this case they obey various constraints. Recall first the constraint of conser-
vativity for type 〈1, 1〉 quantifiers:

Definition 3. F ∈ CONS iff F (X,Y) = F (X,X ∩ Y) for any X,Y ⊆ E

Conservative quantifiers have two important sub-classes: intersective and co-
intersective quantifiers (Keenan 1993): a type 〈1, 1〉 quantifier F is intersective
(resp. co-intersective) iff F (X1, Y1) = F (X2, Y2) whenever X1 ∩ Y1 = X2 ∩ Y2
(resp. X1 ∩ Y ′

1 = X2 ∩ Y ′
2). Furthermore, a type 〈1, 1〉 quantifier F is cardinal

(resp. co-cardinal) iff F (X1, Y1) = F (X2, Y2) whenever |X1 ∩ Y1| = |X2 ∩ Y2|
(resp. |X1 ∩ Y ′

1 | = |X2 ∩ Y ′
2 |). For instance numerals denote cardinal quantifiers

and ”exceptive numerals” like every... but n denote co-cardional quantifiers. .
All the above properties of quantifiers can be generalised so that they apply

to simple and higher order functions. The following definitions will be used in
what follows (cf. Zuber 2010a):

Definition 4. A function F of type 〈1, 2 : τ〉 is conservative iff F (X,R) =
F (X, (E ×X) ∩R)

Definition 5. A type 〈1, 2 : τ〉 function is intersective iff F (X1, R1)=F (X2, R2)
whenever (E ×X1) ∩R1 = (E ×X2) ∩R2.

Definition 6. A type 〈1, 2 : τ〉 function is cardinal iff F (X1, R1) = F (X2, R2)
whenever ∀y(|X1 ∩ yR1| = |X2 ∩ yR2|).

One can notice that cardinal functions are intersective and intersective functions
are conservative.

As in the case for type 〈1, 1〉 quantifiers it is possible to give other, equivalent,
definitions of conservativity, intersectivity and co-intersectivity of type 〈1, 2 : τ〉
functions. I will use the definition of intersectivity given by:

Proposition 1. A type 〈1, 2 : τ〉 function F is intersective iff F (X,R) =
F (E, (E ×X) ∩R).

Observe that most of the above definitions do not depend on the type τ of
the result of the application of the function. So obviously they can be used
with higher order functions. Type 〈2 : 1〉 functions can also be (predicate or
argument) invariant and invariance is a property depending on the type of the
output of the function. Thus (see Keenan and Westerst̊ahl 1997) a type 〈2 : 1〉

Some Higher Order Functions on Binary Relations 281

function F is predicate invariant iff a ∈ F (R) ≡ a ∈ F (S) whenever aR = aS.
For instance the function SELF is predicate invariant. Similarly, a type 〈2 : 1〉
function F is argument invariant iff a ∈ F (R) ≡ b ∈ F (R) whenever aR = bR.
Functions interpreting some superlatives or comparatives are argument invariant
(see Zuber 2011a). The following definitions are generalisations of predicate and
argument invariance applying to type 〈2 : 〈1〉〉 functions:

Definition 7. A type 〈2 : 〈1〉〉 function F satisfies HPI (higher order predicate
invariance) iff for any positive type 〈1〉 quantifier Q, any A ⊆ E, any binary
relations R,S, if A = Wt(Q) and Ft(A)R = Ft(A)S then Q ∈ F (R) iff Q ∈
F (S).

Definition 8. A type 〈2 : 〈1〉〉 function F satisfies HAI (higher order argument
invariance) iff for any positive type 〈1〉 quantifiers Q1 and Q2, any A,B ⊆ E,
any binary relation R, if A =Wt(Q1) and B = Wt(Q2), and Ft(A)R = Ft(B)R
then Q1 ∈ F (R) iff Q2 ∈ F (R).

To show that a function does not satisfy the HAI the following obvious propo-
sition may be used:

Proposition 2. Let F be a type 〈2 : 〈1〉〉 function which satisfies HAI and let
R = E × C, for C ⊆ E arbitrary. Then for any X ⊆ E, Ft(X) ∈ F (R) or for
any X, Ft(X) /∈ F (R)

I will also use a generalisation of argument invariance applying to type 〈1, 2 : 〈1〉〉
functions which interpret some GDets. It is defined as follows:

Definition 9. A type 〈1, 2 : 〈1〉〉 function F satisfies D1HAI (higher order
argument invariance for unary determiners) iff for any positive type 〈1〉 quan-
tifiers Q1 and Q2, any A,B ⊆ E, any binary relation R, if A = Wt(Q1)
and B = Wt(Q2), and Ft(A)R ∩ X = Ft(B)R ∩ X then Q1 ∈ F (X,R) iff
Q2 ∈ F (X,R).

3 Some Higher Order Functions

I what follows I will show that some GNPs in NLs denote higher order functions.
Before doing this a comment about the categorial status of objects involved is in
order. Recall that GNPs apply to TVPs and give VPs as result. So what is the
category of such VPs. Ignoring directionality, the subject NPs in the construc-
tions we are interested in are of the category S/(S/NP)). This means that, in
order to avoid type mismatch, verb phrases must be raised and have the cate-
gory S/(S/(S/NP)). Then their denotational type is 〈〈〈e, t〉t〉t〉. Consequently,
sentences of the form (1) are true iff the quantifier denoted by the NP is an
element of the set denoted by TV P GNP .

Of course, any type 〈2 : 1〉 function whose output is denoted by a VP can
be lifted to the type 〈〈〈e, t〉t〉t〉 function. This is in particular the case with the
acusative and nominative extensions of a type 〈1〉 quantifier. For instance the

282 R. Zuber

accusative extension of a type 〈1〉 quantifier can be lifted to type 〈〈〈e, t〉t〉t〉
function in the way indicated in (4). Such functions will be called accusative
lifts. More generally iff F is a type 〈2 : 1〉 function, its lift FL, a type 〈2 : 〈1〉〉
function, is defined in (5):

(4) QL
acc(R) = {Z : Z(Qacc(R)) = 1}.

(5) FL(R) = {Z : Z(F (R)) = 1}

The variable Z above runs over the set of type 〈1〉 quantifiers.
There are of course genuine type 〈〈〈e, t〉t〉t〉 (or type 〈2 : 〈1〉〉 in our notation)

functions, that is such that they are not lifts of simple type 〈2 : 1〉 functions. I
will now briefly present three classes of type 〈2 : 〈1〉〉 which are denoted by GNPs
and show that they are not accusative lifts. These are, first, functions denoted
by reciprocals, possibly Booleanly complex (Zuber 2012a), second, functions in-
volved in the interpretation of constructions with the same and, third, functions
needed to interpret cummulative readings.

Reciprocal sentences have a general form given in (6) and an example of such
a reciprocal sentence is given in (7):

(6) NP TV P EACH-OTHER.

(7) Three philosophers hit each other.

The semantics of reciprocal sentences is a complex matter (as shown for instance
in Dalrymple et al. 1998). In fact there does not seem that there is a general
agreement concerning the data and the interpretation of reciprocal constructions
(cf. Beck 2000). The situation is even more complex because in many languages
reflexive markers on verb can give rise to reciprocal interpretation of the action
associated with the verb marked in that way, without necessarily excluding the
reflexive interpretation. For that reason we can start with the function given
in (8):

(8) RFL-RECIP (R) = {Q : A = Wt(Q) ∧Q(Dom((A ×A) ∩RS) = 1}

Informally, this function can be considered as denotation of an anaphor like
each other or oneself or themselves. In other words it does not make a priori a
distinction between ”purely” reflexive and ”purely” reciprocal interpretation, as
apparently it happens in many languages. Observe in particular that individuals
can be in the output of this function. Furthermore, the meet of two individuals
can be in the output of this function even if they are in the relation R with
themselves only.

The following function excludes the ”reflexive part” and interprets purely
reciprocal anaphors (in their strong logical reading, with ”full” reciprocity):

(9) LEA(R) = {Q : Li(Q.A)∧Q ∈ PL∧Q(Dom((A×A)∩(R∩R−1)∩I ′)) =
1}, where I ′ is the complement of the identity relation I.

Some Higher Order Functions on Binary Relations 283

The function LEA can Booleanly combine with other, possibly lifted, higher
order functions and give a ”complex” higher order function. Such complex func-
tions are needed to interpret sentences in which each other is modified by a
categorially polyvalent particle (like only, also at least, even) or is a part of a
Boolean compound. The following examples illustrate some of such cases :

(10) Leo and Lea hug each other and most teachers.

(11) Most philosophers hate each other and themselves.

(12) Two monks hug only/even each other.

Since the functions we are considering form a Boolean algebra, the higher order
functions interpreting Boolean compounds with each other are easy to define.
As an illustration, in (13) we have the function which interprets the GNP each
other and themselves in (11) and in (14) - the function which can be used to
interprets the GNP which is a conjunction of each other and an NP (in these
examples the variable Z runs over the set of type 〈1〉 quantifiers:

(13) LEA-SELF (R) = LEA(R) ∩ SELFL(R)

(14) LEAQconj(R) = LEA(R) ∩QL
acc(R)

The above functions are based on the relation RS . Sentences in (15) have some-
what illogical interpretation. Functions corresponding to these interpretations
are given in (16):

(15) a. Five students followed each other.

b. All pupils followed each other and two teachers.

(16) a. ILEA(R) = {Z : ∃A⊆E(Li(Z,A) ∧ A×A ∩ I ′ ⊆ Rt}
b. ILEAQconj(R) = ILEA(R) ∩QL

acc(R)

Let us see now some constraints on the above functions. First we have:

Proposition 3. Let F ∈ {RFL-RECIP,LEA, ILEA} and R = S−1. Then
F (R) = F (S)

Proof. We prove the above property only for ILEA. Suppose a contrario that
Q ∈ ILEA(R) and Q /∈ ILEA(S). This means that for A such that Li(Q,A),
(A×A)∩ I ′ ⊆ Rt and (A×A)∩ I ′ �⊆ St. Thus for some a �= b, a, b ∈ A we have
〈a, b〉 ∈ Rt and 〈b, a〉 ∈ Rt and 〈a, b〉 /∈ St. Consequently 〈b, a〉 /∈ R. But then,
since Rt is the smallest transitive relation containing R, for some c ∈ E we have
〈b, c〉 ∈ R and 〈c, a〉 ∈ R and thus 〈c, b〉 ∈ S and 〈a, c〉 ∈ S. Hence 〈a, b〉 ∈ St.
Contradiction. !

Proposition 3 has an interesting consequence: since R = (R−1)−1, it follows from
proposition 3 that functions RFL-RECIP,LEA and ILEA are convertible.

The above properties do not hold for complex higher order functions that is
functions denoted by syntactically complex reciprocals. For higher order func-
tions based on the relation RS the following proposition holds:

284 R. Zuber

Proposition 4. Let F ∈ {RFL-RECIP,LEA,LEAQ}, R = S−1 and Dom(R)
= Dom(S). Then F (R) = F (S).

The above functions satisfy also predicate invariance:

Proposition 5. If F ∈ {RFL-RECIP,LEA,LEAQ} then F satisfies HPI

Proof. We prove only that RFL-RECIP satisfies HPI. Suppose that A =
Wt(Q) and that Q ∈ REF -RECIP (R). We have to show that if for some binary
relation S (i) holds (i): ∀x∈A(xR = xS) then Q ∈ RFL-RECIP (S). Given the
definition of RFL-RECIP this happens when Q(Dom((A×A)∩ (S ∩S−1) = 1.
But if (i) holds then (A×A)∩(R∩R−1) = (A×A)∩(S∩S−1). Hence Q ∈ RFL-
RECIP (S). !

Interestingly, the above functions do not satisfy argument invariance:

Proposition 6. If F ∈ {RFL-RECIP,LEA,LEAQ} then F does not satisfy
HAI

Proof. We prove only that the function RFL-RECIP does not satisfy HAI.
Given its definition in (8) we can see that for C ⊆ E arbitrary , for any C1 such
that C ⊆ C1 we have Ft(C1) /∈ RFL-RECIP (E × C) and for any C2 ⊆ C we
have Ft(C2) ∈ RFL-RECIP (E×C). Hence, given proposition 2, RFL-RECIP
does not satisfy HPI. !

There are clear cases of higher order functions having sets and relations as argu-
ments. They are involved in the semantics of constructions with the same and
different. Consider the following examples:

(17) a. Leo and Lea read the same books.

b. Most teachers/every teacher/no two students read the same books.

There are some restrictions on the subject NPs which can occur in sentences like
the above. I will consider that they have to denote a plural type 〈1〉 quantifier.
The generalised determiner the same takes the common noun books as argument
and forms a GNP. As example (17b) shows this GNP applies to a TVP and
gives a VP of the category S/(S/(S/NP)). Consequently the same denotes a
type 〈1.2 : τ〉 function, where τ is, in Montagovian notation, of type 〈〈〈e, t〉t〉t〉.

To obtain the description of the function denoted by the same in the above
examples the following observation is useful: this function is fixed by the com-
plement of its relational argument: F (X,R) = F (X,R′). Thus if (18a) is true
then the set of books that Leo and Lea did not read is also the same: (18a) and
(18b) have the same truth value:

(18) a. The books that Leo and Lea read are the same.

b. The books that Leo and Lea did not read are the same.

Furthermore, the union of the set of books read by Leo and Lea with the set
of books not read by Leo and Lea equals the set of all books. In other words,

Some Higher Order Functions on Binary Relations 285

there is a set of books such that every book from this set was read by both Leo
and Lea and no book from the complement set (of books) was read by Leo or
Lea. This observation leads directly to the description of the needed function:
sentence of the form given in (19) is true iff the quantifier denoted by NP is an
element of the set SAME(X,R) defined in (20), where X is the denotation of
the CN and R the denotation of TV P :

(19) NP TV P THE-SAME(CN).

(20) SAME(X,R) = {Z : Z ∈ PL ∧ ∃A⊆X(A ⊆ QR) ∧ ((X ∩A′) ⊆ QR)}.

We need also functions expressing ”numerical sameness” to analyse examples
like (21a). One can suppose that in this example ”exactly the same number”
is involved and thus that (21a) cannot mean, with the subject Leo and Lea,
something like (21b). The corresponding function needed to interpret (21a) is
given in (22), where n(X) is a type 〈1〉 quantifier such that n(X)(Y) = 1 iff
|X ∩ Y | = n and N+ = N ∪ {0}:

(21) a. Leo and Lea/most students/two teachers read the same number of
books.

b. Leo and Lea read the same number of books and, in addition, Leo
read two more.

(22) SAME-N(X,R) = {Z : ∃n∈N+Z((n(X)acc(R) = 1}

Both functions, in (20) and in (22), have their Boolean complements. They are
denoted, respectively, by different and different number number of. For instance
the function DIFF -N given in (24b) is needed to interpret the sentence in (24a):

(23) a. Leo and Lea read a different number of books.

b. DIFF -N(X,R) = {Z : ∀n∈N+Z((n(X)acc(R) = 0}.

The example in (21a) should be distinguished from the one in (24a). Observe
that (24a) does not entail (17a) given that both (24a) and (24b) can be true at
the same time. What is interesting, however, in connection with (24b), is the fact
that the total number of books read by both Leo and Lea is the same: as (24b)
shows the number of different books read by both cannot be different for each
reader. In other words, the number of books that they did not read is also the
same. Thus the function needed to analyse (24a) is given in (25), where (24a) is
taken in the ”exactly” reading:

(24) a. Leo and Lea read the same 5 books.

b. Leo and Lea read the same 5 books and 7 different ones.

(25) SAMEn(X,R) = {Z : |Z(R) ∩X | = n ∧ ∃m≥nZ((m(X)acc(R) = 1}

286 R. Zuber

Thus, even if (25a) does not entail (16a), it is true that (25a) entails (22a) (with
Leo and Lea as grammatical subject).

Let us see some formal properties of the above functions related to the inter-
pretation of the same in various linguistic contexts. It is easy to show that the
functions in (19) (and thus in (20), in (21)), in (23), in (24b) and in (26), are all
conservative. Moreover, using Proposition 1 it is easy to prove:

Proposition 7. The function SAME(X,R) is intersective.

We also have the following proposition:

Proposition 8. The function SAME-N is cardinal.

Proof. We have to show that SAME-N(X1, R1) = SAME-N(X2, R2) if (i):
∀y∈E(|X1 ∩ yR1| = |X2∩ yR2|) holds. But if (i) holds then (n(X1)acc(R1) = {y :
|X1 ∩ yR1| = n} = {y : |X2 ∩ yR2| = n} = (n(X2)acc(R2) and we get the needed
equality by the replacement of equals. !

Consider finally example (26a) with the intended reading entailing (26b). To
interpret this sentence we need the function given in (27):

(26) a. Leo and Lea read only the same 5 books.

b. Both Leo and Lea read exactly 5 books.

(27) ONLY -SAMEn(X,R) = {Z : Z ∈ SAMEn(X,R) ∧
ZdMOREn(X)accR = 0}, where MOREn(X) = {Y : |X ∩ Y | > n}

All the above functions related to the interpretation of the GNP formed with the
same behave like simple functions interpreting various comparative and superla-
tive constructions because they satisfy the higher order argument invariance as
defined in definition 8.

The second class of higher order functions taking sets and relations as ar-
guments are functions needed to interpret the so-called cumulative readings of
some sentences. Consider (28):

(28) Leo and Lea/three philosophers wrote nine articles (for the journal).

The cumulative reading of this sentence is the reading under which it does not
mean that Leo and Lea (or every of the three philosophers) wrote 9 articles each
but that some articles were written by Leo or Lea (or some philosopher), maybe
jointly, and that every article was written by (at least) one contributor indicated
by the subject of the sentence. Sentences which give rise to cumulative reading
have the general form given in (29):

(29) NP TVP CumDet(CN).

The CumDet is a cumulative determiner which is a GDet. Usually, on the ”sur-
face”, it is not formally distinguished from an ordinary determiner (at least in
English); in (28) it is the determiner nine ”interpreted” cumulatively. There
are of course constraints on which determiners can be interpreted cumulatively.
They are ignored here.

Some Higher Order Functions on Binary Relations 287

The CumDet in (29) denotes a type 〈1, 2 : 〈1〉〉 function Fcum defined in (30):

(30) If Det denotes D, then Fcum(X,R) = {Z : ∃ALi(Z,A) ∧
Z(SOME(X)accR) = 1∧D(X)(SOME(A)accR

−1) = 1}, where Z runs
over the set of plural type 〈1〉 quantifiers and SOME is a type 〈1, 1〉
quantifier defined as SOME(X)(Y) = 1 iff X ∩ Y �= ∅

The following proposition holds:

Proposition 9. If D is conservative then the function Fcum is conservative.

Thus all higher order functions taking sets and binary relations as arguments
considered above are conservative.

To conclude this section I indicate two conditions, which functions which are
accusative lifts, should satisfy:

(31) If a type 〈2 : 〈1〉〉 function F is an accusative lift, then for any a, b ∈ E,
any A,B ⊆ E and any binary relation R and S the following conditions
hold: (i) if aR = bS then Ia ∈ F (R) iff Ib ∈ F (S) and (ii) Ft(A) ∈ F (R)
and Ft(B) ∈ F (R) iff Ft(A ∪B) ∈ F (R).

Using the above conditions it is easy to show that SELFL, LEA and SAME(C),
for instance, are not accusative lifts.

4 Higher Order Functions and Fregean Quantifiers

One can observe that the functions we have discussed above are related to so-
called non-Fregean (or Frege irreducible) quantifiers. A type 〈2〉 quantifier F
is Fregean, or Frege reducible, (cf. Keenan 1992) iff there exist two type 〈1〉
quantifiers Q and Q1 such that F (R) = Q1(Qacc(R)). A type 〈2〉 quantifier is
non-Fregean iff it is not Frege reducible.

Various tests showing that a type 〈2〉 quantifier is Fregean have been es-
tablished and various type 〈2〉 quantifiers have been shown to be non-Fregean
(Keenan 1992, van Eijck 2005) with their help. Keenan 1992 proved the following
theorem which can be used to show that some functions are not Fregean (see
also van Eijck 2005):

Proposition 10. (Keenan) If F1 and F2 are Fregean (type 〈2〉) quantifiers then
F1 = F2 iff for all A,B ⊆ E it holds that F1(A×B) = F2(A×B)

Let me illustrate by a somewhat abstract example how proposition 9 can be used
to show that some type 〈2〉 quantifiers are not Fregean. For this the following
proposition is useful (Zuber 2007):

Proposition 11. Let Q be a type 〈1〉 quantifier which is self-dual and positive.
Then, for any A,B ⊆ E and any type 〈1〉 quantifier Q1, the following holds:
Q(Q1)acc(A×B) = Q1Qacc(B × A).

288 R. Zuber

We will construct a non-Fregean quantifier from two quantifiers Q and Q1. The
quantifierQ is defined as follows: Q = AT -LEAST (n,C) and Y ∈ Q iff |C∩Y | ≥
n ∧ n = |C|/2 and n is even. The quantifier Q is self-dual and positive. The
quantifier Q1 = ¬(Ia∨Ib) for some a, b ∈ E. Given proposition 6 the equivalence
in (32) holds for any A,B ⊆ E:

(32) Q(Q1)acc(A×B) = Q1(Qacc(B ×A))

We can now construct a non-Fregean type 〈2〉 quantifier F from quantifiers Q
and Q1: the type 〈2〉 quantifier F defined in (33) is non-Fregean:

(33) F (R) = Q1(Qacc(R
−1)) (or F (R) = Q1(Q(R))

Indeed, it follows from proposition 11 that F takes the same value on product
relations as the Fregean quantifier Q(Q1)acc. Given definition equivalence (32)
and proposition 11 we have: F (A×B) = Q1(Qacc(B ×A) = Q(Q1)acc(A×B).
It is easy to show, however, that F and Q(Q1)acc do not take the same value on
the relation R defined as follows: R = A× {a} ∪ B × {b} (if |A| + |B| ≥ |C|/2,
A ≤ |C|/2 and |B| ≤ |C|/2). Thus, following proposition 11, F is not Fregean.

The following proposition is a direct consequence of proposition 11:

Proposition 12. If F1 and F2 are type 〈2 : 〈1〉〉 functions which are accusative
lifts then F1(R) = F2(R) iff for all A,B ⊆ E it holds that F1(A×B) = F2(A×B)

It follows from proposition 12 that to show that a type 〈1, 2 : 〈1〉〉 function F
is not an accusative lift it is enough to find an accusative lift G and a plural
quantifier Q such that Q ∈ F (A×B) iff Q ∈ G(A×B) for any product-relation
A×B but for some R non product Q ∈ F (R) �≡ Q ∈ G(R).

To illustrate proposition 12, consider the the function F1 defined with the help
of the function ONLY -SAMEn given in (28): F1(R) = ONLY -SAMEn(C,R),
for a fixed C ⊆ E. Using proposition 10 one shows that function F1 is not an
accusative lift by comparing it with the accusative lift of the type 〈1〉 quantifier
EXACTLY (n)(C) defined as EXACTLY (n)(C)(Y) = 1 iff |C∩Y | = n. Indeed
the following equality holds for any A,B ⊆ E and any plural quantifier Q =
Ia ∧ Ib, eher a, b ∈ E):

(34) Q ∈ ONLY -SAMEn(C,A×B) iff Q ∈ (EXACTLY (n)(C)acc)
L(A×B)

Since obviously Q ∈ ONLY -SAMEn(C) and EXACTLY (n)(C) are different
on at least one non product relation, it follows from (34) and proposition 8 that
F1 is not an accusative lift.

One can show in the similar way, using some results from Keenan 1992, that
the function LEA is not an accusative lift. Similarly type 〈2 : 〈1〉〉 functions ob-
tained from SAME and Fcum by fixing their set argument, that is the functions
GC(R) = SAME(C,R) and HC(R) = Fcum(A,R), are not accusative lifts.

Type 〈2 : 〈1〉〉 functions and type 〈1〉 quantifiers give rise to type 〈2〉 quantifiers
in the following way. Let F be a type 〈2 : 〈1〉〉 function and Q a type 〈1〉
quantifier. We will say that F and Q give rise to the type 〈2〉 quantifier GF,Q iff
the following holds: GF,Q(R) = 1 iff Q ∈ F (R).

Accusative lifts give rise to Fregean quantifiers. More precisely we have:

Some Higher Order Functions on Binary Relations 289

Proposition 13. Let F be a type 〈2 : 〈1〉〉 function and Q a type 〈1〉 quantifier.
Define a type 〈2〉 quantifier GF,Q as follows: GF,Q(R) = 1 iff Q ∈ F (R). Then
F is an accusative lift iff GF,Q is Fregean for any Q.

Interestingly Fregean quantifiers can also be obtained in a systematic way from
lifts of some type 〈2 : 1〉 functions which are not accusative lifts. Consider the
following definition (Keenan and Westerst̊ahl 1997), which can be considered as
a particular case of definition 7:

Definition 10. A type 〈2 : 1〉 function F is predicate invariant iff for any a ∈ E
and any binary relations R,S, if aR = aS then a ∈ F (R) iff a ∈ F (S).

Obviously the accusative extension of a type 〈1〉 quantifier is predicate invariant.
Moreover, the functions SELF and SELF ∧Qacc (where Q is a type 〈1〉 quanti-
fier), for instance, are also predicate invariant. For predicate invariant functions
we have (Zuber 2012b):

Proposition 14. Let F be a type 〈2 : 1〉 predicate invariant function. Define a
type 〈2〉 quantifier GF,Ia as follows: GF,Ia(R) = 1 iff Ia ∈ FL(R). Then GF,Ia

is Fregean for any a ∈ E.

Proof. Define the function hF which maps every a ∈ E to a type 〈1〉 quantifier
in the following way: hF (a)(Y) = 1 iff a ∈ F ({a} × Y). Since F is predicate
invariant we have y ∈ F (R) iff y ∈ F ({y} × yR) (because yR = y({y} × yR)).
From this it follows that GF,Ia(R) = Ia((hF (a))acc(R))) for any a ∈ E. Thus
GF,Ia is equivalent to Q1(Qacc) where Q1 = Ia and Q = hF (a). !
The function SELF gives rise also to non-Fregean quantifiers. To obtain a suffi-
cient condition showing that SELF gives rise to non-Fregean quantifiers we will
use the following criterion (cf. van Eijck 2005):

Proposition 15. (van Eijck) : Let F be a type 〈2〉 quantifier such that F (∅) = 0.
The reduct F ∗ of F is defined as follows: F ∗ = Q1(Q2)acc where Q1 and Q2 are
positive type 〈1〉 quantifiers such that Q1(X �= ∅) = 1 iff ∃B⊆EF (X × B) = 1
and Q2(Y �= ∅) = 1 iff ∃A⊆EF (A× Y) = 1. Then F is Fregean iff F ∗ = F .

Consider now a type 〈2〉 quantifier F defined as F (R) = Q(SELF (R)), where
Q is a positive type 〈1〉 quantifier. Observe first that F is convertible, that
is F (R) = F (R−1). Furthermore, the reduct F ∗ of F has the following form:
F ∗ = Q(Qacc). Westerst̊ahl (1996) proved that for Q positive the equality
Q(Qacc(R)) = Q(Qacc(R

−1)) holds iff Q is either a union or intersection of
individuals or a finite symmetric difference of individuals. Thus if Q is neither
of them, the type 〈2〉 quantifier F = Q(SELF) is not Fregean. This is the case
for instance with atomic quantifiers, which are neither unions nor intersections
nor finite differences of individuals. An illustration is given in (35):

(35) Only Leo hates himself.

The NP only Leo denotes the atomic quantifier whose only member contains
just the singleton to which Leo refers. This means that the type 〈2〉 quantifier
involved in the intertpretation of (35), that is the type 〈2〉 quantifier denoted by
only Leo...himself, is not Fregean.

290 R. Zuber

5 Conclusive Remarks

To interpret complex VPs formed from transitive verb phrases, one needs func-
tions taking binary relations as arguments. In this paper, higher order functions,
that is functions which have sets of type 〈1〉 quantifiers as output (and binary
relations and, possibly sets, as arguments), have been studied. All these func-
tions are ”conceptually simple” in the sense that they can be defined by the
usual means of elementary set theory.

The output of higher order functions is denoted by VPs whose category is
raised to S/(S/(S/NP)) in order to avoid type mismatch. Many of these func-
tions are not lifts of ”simple” functions. Various constraints obeyed by both
kinds of functions have been presented. These constraints are natural generali-
sations, often not trivial, of similar constraints known from generalised quantifier
theory and the analysis of simple functions on binary relations. In particular, it
is shown that such functions are conservative, in the generalised sense. Some of
these functions have a stronger property such as intersectivity or evencardinality.

It has been shown that it is preferable to treat some expressions as denoting
higher order functions, and not quantifiers, given the fact that they can very
easily form Boolean compounds. In particular reciprocals are considered as de-
noting higher order functions on binary relations, and not polyadic quantifiers,
because they form Boolean compounds with reflexives or NPs in object positions.
Syntactic arguments supporting this choice are easy to find.

However, it has also been shown that higher order functions give rise (in asso-
ciation with a type 〈1〉 quantifier) to Frege irreducible type 〈2〉 quantifiers. Some
relationships between (Frege) reducibility of quantifiers obtained in this way and
properties of some higher order functions involved have been established.

One can hope that the results presented in this paper will help us to an-
swer various questions concerning the expressive power of natural languages. It
is well-known (Keenan 2007, Zuber 2010b) that the existence of anaphors and
anaphoric determiners in NLs shows that the expressive power of natural lan-
guages would be less than it is if the only noun phrases we needed were those
interpretable as subjects of main clause intransitive verbs. The reason is that
anaphors like himself, herself must be interpreted by functions from relations
to sets which lie outside the class of generalised quantifiers as classically de-
fined since, in particular they give rise to non-Fregean quantifiers and to verbal
arguments which are not lifts of ”classical” NPs. Similarly, some comparative
constructions used in object positions cannot be interpreted by extended gener-
alised quantifiers and their existence also extends the expressive power of natural
languages (Zuber 2011a). In this paper some preliminary results are presented to
show that the existence of higher order anaphors and comparatives even further
extends the expressive power of NLs. However, functions denoted by such higher
order anaphors and comparatives obey constraints similar to those interpreting
simple anaphors and comparatives since the former are natural generalisations
of the latter.

Some Higher Order Functions on Binary Relations 291

References

Beck, S.: Exceptions in Relational Plurals. In: Jackson, B., Matthews, T. (eds.) SALT
X, pp. 1–16. Cornell University (2000)

Dalrymple, M., et al.: Reciprocal expressions and the concept of reciprocity. Linguistics
and Philosophy 21, 159–210 (1998)

Keenan, E.L.: Semantic Case Theory. In: Groenendijk, J., Stokhof, M. (eds.) Proc. of
the Sixth Amsterdam Colloquium (1987)

Keenan, E.L.: Beyond the Frege boundary. Linguistics and Philosophy 15, 199–221
(1992)

Keenan, E.L.: On the denotations of anaphors. Research on Language and Computa-
tion 5(1), 5–17 (2007)

Keenan, E.L., Westerst̊ahl, D.: Generalized Quantifiers in Linguistics and Logic. In: van
Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–893.
Elsevier, Amsterdam (1997)

van Eijck, J.: Normal Forms for Characteristic Functions. Journal of Logic and Com-
putation 15(2), 85–98 (2005)

Westerst̊ahl, D.: Self-commuting quantifiers. The Journal of Symbolic Logic 61(1),
212–224 (1996)

Zuber, R.: Indépendance faible des quantificateurs. Logique et Analyse 198, 173–178
(2007)

Zuber, R.: Generalising Conservativity. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC
2010. LNCS (LNAI), vol. 6188, pp. 247–258. Springer, Heidelberg (2010a)

Zuber, R.: Semantic Constraints on Anaphoric Determiners. Research on Language
and Computation 8, 255–271 (2010b)

Zuber, R.: Some generalised comparative determiners. In: Pogodalla, S., Prost, J.-P.
(eds.) LACL 2011. LNCS, vol. 6736, pp. 267–281. Springer, Heidelberg (2011a)

Zuber, R.: Generalised Quantifiers and the Semantics of the same. In: Ashton, N., et
al. (eds.) Proceedings of SALT 21, e-Language, pp. 515–531 (2011b)

Zuber, R.: Reciprocals as higher order functions. In: Proceedings of the Ninth Interna-
tional Workshop of Logic and Engineering of Natural Language Semantics 9 (LENLS
9), pp. 118–129 (2012a)

Zuber, R.: Reflexives and non-Fregean quantifiers. In: Graf, T., et al. (eds.) Theories of
Everything: in Honor of Ed Keenan, UCLA Working Papers in Linguistics, vol. 17,
pp. 439–445 (2012b)

Author Index

Bourreau, Pierre 1
Buccola, Brian 142

Chatzikyriakidis, Stergios 159
Crysmann, Berthold 17

Fero, Margaret 90

Gerth, Sabrina 32

Hale, John 32
Heinz, Jeffrey 90
Hurst, Jeremy 90

Kallmeyer, Laura 1, 175
Kanazawa, Makoto 191
Kirman, Jérôme 209
Kobele, Gregory M. 32
Kubota, Yusuke 225
Kuznetsov, Stepan 242

Lambert, Dakotah 90
Levine, Robert 225
Luo, Zhaohui 159

Moroz, Katarzyna 52
Morrill, Glyn 263
Müller, Stefan 69

Ørsnes, Bjarne 69
Osswald, Rainer 175

Rogers, James 90

Salvati, Sylvain 1, 191, 209
Serret, Daniel 263
Sorokin, Alexey 250
Syed Jaafar, Sharifah Raihan 109

Valent́ın, Oriol 263
Van Valin Jr., Robert D. 175

Wibel, Sean 90
Wurm, Christian 126

Zuber, R. 277

	Preface
	Organization
	Table of Contents
	Formal Grammar 2012
	On IO-Copying and Mildly-Context Sensitive Formalisms
	1 Introduction
	2 IO-Substitutions, Semilinearity and Constant-Growth
	2.1 Basic Definitions
	2.2 IO-Substitution and Copies
	2.3 Preserving the Semilinearity and Constant-Growth Properties

	3 IO-Multiple Context-Free Languages
	3.1 Abstract Categorial Grammars
	3.2 IO-MCFGs as Almost Affine ACGs

	4 Conclusion
	References

	The Distribution and Interpretation of Hausa Subjunctives: An HPSG Approach
	1 Data
	1.1 The Hausa TAM System
	1.2 The Subjunctive TAM
	1.3 The Neutral TAM

	2 Previous Approaches
	2.1 Newman’s TAM Deletion Account
	2.2 Schuh’s Criticism of the “Neutral” TAM

	3 An HPSG Account
	4 Conclusion
	References

	Memory Resource Allocation in Top-Down Minimalist Parsing
	1 Introduction
	2 Methodology
	3 Embedding Phenomena
	3.1 English Center Embedding, as Compared to Right-Branching
	3.2 Embedded vs Cross-Serial Verb Clusters

	4 Minimalist Grammars
	5 Modeling
	5.1 Verb Clusters
	5.2 English Center and Right Embeddings

	6 General Discussion
	6.1 Difficulties with Maximal Tenure

	7 Conclusion
	References

	Parsing Pregroup Grammars with Letter Promotions in Polynomial Time
	1 Introduction and Preliminaries
	2 The Normalization Theorem
	3 The Parsing Algorithm
	References

	Towards an HPSG Analysis of Object Shift in Danish
	1 Introduction
	2 The Phenomenon
	3 Previous Analyses
	3.1 Cliticisation
	3.2 Movement
	3.3 Linearization-Based Analyses

	4 The Analysis
	4.1 Background
	4.2 Object Shift as Alternative Mapping to Valence Features
	4.3 Shifting and Prepositional Objects
	4.4 Partial Fronting
	4.5 Holmberg’s Generalization

	5 Conclusion
	References

	Cognitive and Sub-regular Complexity
	1 Introduction
	2 Cognitive Complexity of Simple Patterns
	3 Cognitive Complexity from First Principles
	4 Adjacency—Substrings
	4.1 Strictly Local Sets
	4.2 Locally Testable Languages
	4.3 FO(+1)—Locally Threshold Testable Languages
	4.4 FO(<)—Star Free Languages

	5 Precedence—Subsequences
	5.1 Strictly Piecewise Testable Sets
	5.2 Piecewise Testable Sets
	5.3 First Order

	6 FurtherWork
	References

	Is Malay Grammar Uniform? A Constraint-Based Analysis
	1 Introduction
	2 Previous Studies on Malay
	3 Data and Methodology
	4 Malay Co-existent Grammars: Constraint-Based Analysis
	5 Conclusions
	References

	Completeness of Full Lambek Calculus for Syntactic Concept Lattices
	1 Introduction
	2 Residuated Syntactic Concept Lattices
	2.1 Equivalences and Concepts
	2.2 Syntactic Concepts: Definitions
	2.3 Monoid Structure and Residuation
	2.4 The Linguistic Order

	3 Lambek Calculus and Extensions
	3.1 The Logics
	3.2 The Semantics of L1, FL and FL

	4 Completeness: Preliminaries
	5 Proof of the Main Theorem
	5.1 Isomorphic Embedding in Syntactic Concept Lattices
	5.2 Back to Completeness

	6 Corollaries
	7 Conclusion and Further Work
	References

	Formal Grammar 2013
	On the Expressivity of Optimality Theory versus Ordered Rewrite Rules
	1 Introduction
	2 Preliminaries
	2.1 Rule–Based Phonology
	2.2 Optimality Theoretic Phonology

	3 The Proof
	4 Discussion
	4.1 Other Examples of Counterbleeding on Environment Opacity
	4.2 Examples of Counterfeeding on Environment Opacity

	5 Conclusion
	References

	Adjectives in a Modern Type-Theoretical Setting
	1 Introduction
	2 An MTT with Coercive Subtyping
	2.1 Formal Semantics Based on MTTs: The Basics
	2.2 Common Nouns as Types and Many-Sortedness of MTTs
	2.3 Subtyping in Formal Semantics
	2.4 Σ-Types, Π-Types and Universes

	3 Σ-Type Analysis of Modified CNs
	4 Privative Adjectives
	5 Non-committal Adjectives
	6 TheCaseof
	7 Conclusion
	References

	Tree Wrapping for Role and Reference Grammar
	1 Introduction
	2 The Composition of Elementary Templates in RRG
	3 Formalization of the Syntactic Inventory
	4 A CYK Parsing Scheme
	5 Conclusion
	References

	The String-Meaning Relations Definable by Lambek Grammars and Context-Free Grammars
	1 Introduction
	2 Preliminaries
	2.1 Lambda Terms over a Higher-Order Signature
	2.2 Product-Free Lambek Calculus
	2.3 Lambek Grammars with Montague Semantics
	2.4 Context-Free Grammars with Montague Semantics

	3 From Lambek to Context-Free Grammars
	3.1 Pentus’s Interpolation Lemma and Cut Elimination
	3.2 Pentus’s Construction

	4 From Context-Free to Lambek Grammars
	4.1 From Greibach Normal Form Context-Free Grammars to Lambek Grammars
	4.2 Greibach Normal Form Transformation of Context-Free

	References

	On the Complexity of Free Word Orders
	1 Introduction
	2 Words Modulo Commutation
	2.1 An Algebra for Representing Words Modulo Commutation
	2.2 Semilinearity

	3 Commutative λ-Grammars
	4 Universal Membership
	4.1 Universal Membership Complexity of CMG CMREG CMCFG
	4.2 Universal Memberhip Complexity for CREG and CCFG

	5 Membership Problem: The Polynomial Cases
	5.1 Membership Problem for CREG
	5.2 Membership Problem for CCFG

	6 Membership Problem: The Intractable Cases
	7 Conclusion
	References

	Determiner Gapping as Higher-Order Discontinuous Constituency
	1 Introduction
	2 Split Gapping with Determiners
	2.1 Split Gapping Is Gapping
	2.2 Kubota and Levine’s (2012) Analysis of Gapping
	2.3 Split Scope in Hybrid TLCG
	2.4 Lexical Treatment of Split Scope via Type-Raised Quantifiers

	3 Comparative Subdeletion
	4 Conclusion
	References

	Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives
	1 Conjunctive Grammars
	2 Greibach Normal Form
	3 Multiplicative-Additive Lambek Calculus
	4 Categorial Grammars
	5 The Construction
	References

	On the Generative Power of Discontinuous Lambek Calculus
	1 Introduction
	2 Lambek Calculus
	2.1 Axiomatics and Basic Definitions
	2.2 Lambek Grammars and Regular Languages

	3 Discontinuous Lambek Calculus
	3.1 Axiomatics
	3.2 Discontinuous Lambek Grammars

	4 Conclusion
	References

	A Count Invariant for Lambek Calculus with Additives and Bracket Modalities
	1 Introduction
	2 Count Invariance for Additives
	2.1 Exemplification

	3 Count Invariance for Bracket Modalities
	3.1 Exemplification

	4 Conclusion: Discriminatory Power
	References

	Some Higher Order Functions on Binary Relations
	1 Introduction
	2 Formal Preliminaries
	3 Some Higher Order Functions
	4 Higher Order Functions and Fregean Quantifiers
	5 Conclusive Remarks
	References

	Author Index

