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Abstract. The paper outlines a generalisation of the awareness-based
epistemic semantics by Fagin and Halpern. Awareness is construed as a
relation between agents and pieces of information instead of formulas.
The main motive for introducing the generalisation is that it shows sub-
structural logics to be a natural component of information-based epis-
temic logic: substructural logics can be seen as describing the logical
behaviour of pieces of information. Substructural epistemic logics are
introduced and some of their properties are discussed. In addition, ex-
tensions of substructural epistemic logics invoking group-epistemic and
dynamic modalities are sketched.
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1 Introduction

The present paper provides a generalisation of the awareness-based epistemic
framework by Fagin and Halpern [17]: awareness is construed as a relation be-
tween agents and pieces of information. The main motive for introducing the gen-
eralisation is that it connects epistemic logics with substructural logics [29,32]. It
is shown that the latter are a natural component of information-based epistemic
logics: substructural logics can be seen as describing the logical behaviour of
pieces of information.

The generalisation provides a framework for studying a large class of substruc-
tural epistemic logics. The paper is an introductory overview of the framework,
focusing on a general discussion of substructural epistemic logics. Consequently,
many standard investigations of specific logics (such as completeness proofs) are
postponed to a sequel. We note that our approach owes much to justification
logics [3,4,5,6] and to the Fitting semantics [19,20] in particular. While being
similar in some respects, our approach and Fitting semantics are motivated by
different goals: we are aiming solely at explaining the possible applications of
substructural logics within epistemic logic.

The paper is organised as follows. Section 2 outlines the awareness-based
framework [17]. Section 3 suggests a generalisation of the framework: ‘pieces of
information’ are discussed explicitly and awareness is construed as pertaining to
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these. Building on the relational semantics for distributive substructural logics,
Sect. 4 explains that the logics can be seen as natural ‘logics of information’.
Section 5 expands on the above observations and introduces substructural epis-
temic logics. Section 6 outlines an information-based generalisation of public
announcements and discusses some of its idiosyncrasies. Section 7 concludes the
paper and outlines some interesting directions for future work. Proofs of some
of the propositions are given in a technical appendix.

2 Logical Omniscience and Awareness

It has been argued since the inception of epistemic logic that the modal-logic-
based approach1 is rather optimistic as to the agents’ epistemic abilities. If ‘α
believes that F ’ is equivalent to ‘F holds in every α-accessible alternative’ and

F1 ∧ . . . ∧ Fn → G (1)

holds in every alternative, then if α believes F1, . . . , Fn, then she is bound to
believe G as well.2 This is rather optimistic indeed. There are no logical reasons
why α should ‘realise’ that (1) holds in every alternative and adjust her beliefs
accordingly. The problem is known as the logical omniscience problem.3

This is a conceptual issue: the notion of belief embodied in the modal-logic-
based epistemic logics is rather specific and it does not conform to many intu-
itions associated with our use of the word ‘belief’.4 The intuitions are numerous,
unclear, and perhaps mutually inconsistent. However, one may try to explicate
one’s intuitions in a little more detail and provide appropriate formalisations.
This has been done by many, which led to a number of sophisticated contribu-
tions to epistemic logic.5

One may argue that the ‘pre-theoretical notion of belief’ includes a crucial
element ignored by the modal-logic-based approach, namely the agent’s active
attitudes towards the believed proposition. Thus, Fagin and Halpern [17] cou-
ple the true-in-every-alternative condition with α’s awareness of the believed
formula. Formally, an awareness model is a quadruple

M = 〈W,R,A, V 〉 (2)

where W is the set of alternatives (or ‘possible worlds’), R is a binary relation
on W (the ‘accessibility’ relation) and V is a valuation. The crucial element is

1 This approach originates in Hintikka’s classic [21]. For a more recent overview, see
[10], for example.

2 To ensure that or discussion is as general as possible, we shall be using the notion of
belief throughout the paper. However, some contexts will allow us to use the stronger
‘true belief’ and even ‘knowledge’.

3 The term has been coined by Hintikka, see [22]. For more details on the problem,
see [18, Ch. 9].

4 Hintikka [21] concludes his discussion of the problem in a similar vein. For a more
recent incarnation of the idea, see [10].

5 See [18, Ch. 9] for an overview.
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A, a function from W to sets of formulas. Informally, F ∈ A(w) means that
α is aware of F at w. ‘α believes that F ’ holds at a world w ∈ W iff i) Rwv
implies that F holds at v (α ‘implicitly’ believes that F ) and, importantly, ii)
F ∈ A(w). The syntactic nature of the awareness function makes it clear that
one may avoid the logical omniscience problem for every instance of (1). Since
A(w) may be arbitrary, it is always possible to construct a pointed model M,w
such that ‘α believes that Fi’ holds at M,w for every 1 ≤ i ≤ n, but G �∈ A(w).

However, one can argue that the syntactic flavour of the approach is, in fact,
a shortcoming. The syntactical nature of the awareness function can be seen as
depriving the approach from the capacity to offer a deeper internal justification
of the respective failures of omniscience. One may strive for a logic of non-
omniscient belief where the properties of belief are arrived at by using a subtler
‘inner semantic mechanism’.

3 Awareness and Information

This section introduces the core notions of the paper. First, the information-
based generalisation of the awareness framework is discussed on an intuitive level
(3.1). After that, information models and related technical notions are defined
(3.2).

3.1 Awareness Generalised

Note that propositions, represented by formulas, can be seen as a special case
of pieces of information. A piece of information can be tentatively characterised
as everything that can corroborate (give support to) a proposition.6

Example 1. Assume that during a murder trial the jury is shown a video of the
defendant entering the victim’s home around the established time of death and
carrying something that could be the murder weapon. The video itself can be
seen as a piece of information that corroborates the proposition ‘The defendant
is guilty’. The prosecution can be said to have made the jury aware of this piece
of information by introducing it during the trial. A statement ‘The defendant
threatened to kill the victim on numerous occasions’ of a witness is another
possible piece of information that corroborates the same proposition.

6 Unfortunately, we do not have space in this paper to provide a satisfactory philo-
sophical analysis of the notions of information and corroboration. However, our being
vague about these notions can be justified. First, depending on the academic dis-
cipline, distinct notions are associated with the term ‘information’, see [1]. Second,
a similar ambiguity pertains to the often used ‘agent’ as well. However, our use of
‘piece of information’ is close to the standard use of ‘signal’, see [16,31]. ‘Corrobo-
ration’ can be seen as a generalisation of ‘carrying’ information: we do not adopt
Dretske’s [16] assumption that if a signal carries information that F , then F is the
case. ‘s corroborates F ’ can be tentatively seen as being close to ‘If accepted by an
agent, s is likely to cause the agent’s belief that F ’.
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The picture can be complemented by adding general corroboration conditions.
For example, it may be stipulated that if a piece of information s corroborates
a conjunction F ∧G, then it corroborates both conjuncts F,G. In this manner,
pieces of information can be endowed with ‘logical character’.

Example 2. A perceptual image of my two hands can be seen as a piece of
information that corroborates the proposition ‘Both of my hands exist now’.
The image then obviously corroborates both ‘My left hand exists now’ and ‘My
right hand exists now’.

Moreover, taking pieces of information into consideration opens door for con-
sidering relations on pieces of information in addition to the pieces themselves.
These may be, in turn, called upon within corroboration conditions. Examples
will be provided later on.

3.2 Information Models

Definition 1 (The basic epistemic language). Let Φ = {p1, p2, . . .} be a de-
numerable set of propositional variables and let G be a non-empty set (‘agents’).
The set of formulas of the basic epistemic language LG(Φ) is given by:

F ::= p | ¬F | F ∧ F | F ∨ F | F → F | F ↔ F | �αF (3)

where p ∈ Φ and α ∈ G. The set of LG-formulas will be denoted as Form(LG).
Formulas �αF are read ‘α believes that F ’. The Boolean fragment of LG is the
subset of Form(LG) consisting of formulas that do not contain occurrences of
�α, for any α ∈ G.
Definition 2 (Information structure and L-structure). An information
structure is a couple

I = 〈I,�〉 (4)

where I is a non-empty set (‘pieces of information’) and � is a set of relations
on I. Let ‘X ⊆ I’ and ‘s ∈ I’ be short for ‘X ⊆ I ∈ I’ and ‘s ∈ I ∈ I’,
respectively.

Let L be a language. An information L-structure is a couple

I(L) = 〈I,�〉 (5)

where I is an information structure and � is a subset of I ×Form(L) (‘corrob-
oration relation’). We shall use ‘s � F ’ instead of ‘〈s, F 〉 ∈ �’.

A familiar special case of information structure are sets of atomic programs
together with the program operators, known from propositional dynamic logic
[23]. A special case of information L-structure are action models, known from
dynamic epistemic logics [7,8].

Definition 3 (Information frames and models). An information frame for
LG is a tuple

F = 〈W,R, I, A〉 (6)
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where W is a non-empty set (‘possible worlds’), R : G → P(W×W ) is a function
from the set of agents to binary relations on W , I is an information structure,
A : (G × W ) → (P(I) − ∅) is a function that assigns to every agent α and
possible world w a non-empty set of pieces of information A(α,w) ⊆ I. We
shall write ‘Rαwv’ instead of ‘〈w, v〉 ∈ R(α)’ and Rα shall be referred to as the
‘α-accessibility’ relation.

An information model for LG is a tuple

M = 〈F , V,�〉 (7)

where F is an information frame for LG, V : Φ → P(W ) is a valuation and �
is a corroboration relation.

The α-accessibility relations are interpreted in the usual way (implicit belief).
A(α,w) is to be thought of as the set of pieces of information α is aware of at
w. Our target notion of belief can be characterised as follows: α believes that
F iff α implicitly believes that F and is aware of a piece of information that
corroborates F .7

It is clear that awareness models are a special case of information models.
Just consider information structures where I = Form(LG) and � is the identity
relation on I. Specific closure principles may be validated by incorporating extra
corroboration conditions. For example, closure under ∧-elimination corresponds
to the condition:

– If s � F ∧G, then s � F and s � G

Definition 4 (Truth conditions). The truth conditions of the Boolean for-
mulas are as usual and we state only some:

– M,w |= p iff w ∈ V (p)

– M,w |= ¬F iff M,w �|= F

– M,w |= F ∧G iff M,w |= F and M,w |= G

The target notion of belief is formalised in an obvious way:

– M,w |= �αF iff i) Rαwv implies M, v |= F and ii) there is a s ∈ A(α,w)
such that s � F

The usual notions of validity in a model, frame and class of frames are assumed.

Note that, to ensure maximal generality, we have not introduced specific cor-
roboration conditions yet. However, Sect. 4 points out that truth conditions in
substructural models are natural candidates.

7 The requirement that the awareness sets be non-empty is a useful idealisation, see
the proof of Prop. 3.
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4 Information and Substructural Logics

‘Pieces of information’ have been invoked within informal interpretations of the
semantics of many substructural logics. For example, Kripke [24] describes the
points of intuitionistic models as ‘points in time (or “evidential situations”),
at which we may have various pieces of information’ [24, p. 98]. Urquhart’s
interpretation of his semi-lattice semantics for relevant implication [33] invokes
‘pieces of information’ together with specific operations on them. More recent
interpretations [26,28] invoke a related notion of situation. Hence, there is hope
that epistemic models where pieces of information are considered explicitly will
be a natural ‘meeting point’ of epistemic and substructural logics.

Definition 5 (Substructural frames and models). We shall use a slight
modification of the standard definitions [29, Ch. 11]. A substructural frame is a
tuple

F = 〈P,, •, C〉 (8)

where P is a non-empty set (‘points’),  is a partial order on P (‘informational
containment’), • is a binary operation on P (‘application’) and C is a symmetric
binary relation on P (‘compatibility’). It is assumed that

– If Cxy, x′  x and y′  y, then Cx′y′
– if x • y  z, x′  x, y′  y and z  z′, then x′ • y′  z′

A substructural model for LG is a couple

M = 〈F,�〉 (9)

where F is a frame and � is a relation between points and members of Form(LG)
such that:

– x  y and x � p implies y � p
– x � ¬F iff Cxy implies y �� F for all y
– x � F ∧G iff x � F and x � G
– x � F ∨G iff x � F or x � G
– x � F → G iff y � F and x • y  z imply z � G, for all y, z
– x � F ↔ G iff x � F → G and x � G → F

F entails G in M iff x � F implies x � G for every x ∈ M. Entailment in
frames and classes of frames is then defined in the usual way.

Substructural frames (models) clearly are a special case of information structures
(LG-structures). Substructural frames correspond to a set of pieces of information
together with a binary relation  of informational containment, a relation of
compatibility C and an operation of application •. Let us discuss these in reverse
order.

Example 3. Application corresponds to ‘taking two pieces of information to-
gether’: the two pieces of information taken together can be seen as a ‘new’
piece of information. For example, two consecutive statements s, t by witnesses
during a trial can be seen as a ‘complex’ piece of information s • t, considered
by the jury.
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Example 4. As an example of two compatible pieces of information, consider a
sworn statement of a witness to the effect that the defendant’s car was parked
somewhere far away from the crime scene around the time of the victim’s death
(s) and the video from Exam. 1 (t). The two are obviously compatible. Conse-
quently, s does not corroborate the proposition ‘The defendant is not guilty’,
¬F , since it is consistent with t, a piece of information that corroborates F .

Proposition 1. Let F be a member of the Boolean fragment of LG, M a sub-
structural model and x, y points of M. If x � F and x  y, then y � F .

Hence, if x is informationally contained in y, then every Boolean formula that
holds at x holds at y as well. The Proposition is a standard result in substructural
logic and a simple consequence of Def. 5.

Example 5. Informational containment can be seen as a complex relation: s  t
iff i) s is contained in t and ii) every F corroborated by s is corroborated by t
as well. For an example of a piece of information contained in a ‘larger’ piece,
consider two fingerprints found on a crime scene. The couple of prints can be
seen as a piece of information containing the two single prints. It is plausible
to assume automatically that if one of the prints corroborates a proposition
(e.g. that a given suspect is guilty), then the couple does so as well. However,
this is not plausible in general. For example, consider a sworn statement that the
defendant was playing poker at a local casino at the estimated time of the murder
(s) and, again, the video from Exam. 1 (t). The jury can take these together,
i.e. consider s • t. In a sense, both s, t are contained in s • t. However, they are
not so in the informational sense: while s alone can be said to corroborate ¬F ,
s • t cannot. The new piece of information t ‘neutralised’ the force of s.

Consequently, the corroboration condition for F → G makes sense: s can
be said to corroborate F → G iff taking s together with any possible piece of
information t that corroborates F results in s • t that corroborates G, and so
does every u such that s • t  u.

Observe that the ‘boxed’ formulas �αF have not received attention yet. To retain
generality, we shall not provide truth conditions, but we will focus on a specific
class of substructural models.

Definition 6 (Intended substructural models). An intended substructural
model for LG is a substructural model for LG such that

s � F only if s � �αF for every α ∈ G (10)

In intended models, boxed formulas behave somewhat like propositional atoms.
Extension of Prop. 1 to the whole LG within intended models is a trivial conse-
quence of Def. 6. The clause (10) is included also for technical reasons that will
become clear in Sect. 5.2. But it can be motivated independently as well: if s
corroborates F , then s should be a sufficient reason to believe F . Of course, (10)
can be dropped in case it is not considered intuitive enough, but we choose to
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keep it.8 Another reason to keep the clause is that it allows for a natural way of
dealing with common belief (Sect. 5.3).

5 Substructural Epistemic Logics

Substructural epistemic logics emerge as soon as we use substructural models as
the information structures in information models.

5.1 Substructural Information Models

Definition 7 (Substructural information C-frames and C-models). Let
C be a class of substructural frames. A substructural information C-frame is a
tuple

F = 〈W,R,F, A〉 (11)

where W,R,A are as in Def. 3 and F is a substructural frame such that F ∈ C.
Moreover, let us assume for technical convenience9 that

s ∈ A(α,w) and s′  s only if s′ ∈ A(α,w) (12)

A substructural information C-model built on F = 〈W,R,F, A〉 is a tuple

M = 〈W,R,M, A, V 〉 (13)

where W,R,A are as in Def. 3, M = 〈F,�〉 is an intended substructural model
and V is a valuation.

The truth conditions of LG-formulas are those of Def. 4. The usual notions of
validity in a model and a frame are assumed. F is C-valid iff it is valid in every
substructural information C-frame. The set of C-valid formulas shall be denoted
as K(C).
The sets K(C) can be seen as basic information-based epistemic logics where the
pieces of information are ‘described’ by the logic of C. The actual choice of C
will depend on the application.10 However, since this paper is focused on the
general framework, we shall not discuss such special cases here. We shall limit
our discussion to a rather general observation instead.

Proposition 2. F is C-valid if (but not only if) i) F is a propositional tautology
or ii) F = �αG → �αG

′, where G entails G′ in C.
8 There is a standard way of dealing with ‘boxes’ that invokes additional relations, see

[29]. A different evidence-based approach that builds only on C and � is discussed
in [12].

9 See the proof of Prop. 4 in the appendix.
10 For example, Sequoiah-Grayson [30] argues that, when modelling the flow of infor-

mation in inference, associativity s • (t • u) = (s • t) • u, contraction s • s = s and
other assumptions have to be rejected, leaving only weak commutativity s• t = t•s.
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Hence, substructural epistemic logics in general respect propositional validity
and belief is closed under C-entailment.

Example 6. An example of such a closure principle would be closure under con-
junction elimination:

�α(F ∧G) → (�αF ∧ �αG) (14)

On the other hand, some of the more problematic closure principles are not valid.

Example 7. Examples of invalid closure principles include closure under conjunc-
tion introduction and Modus Ponens:

(�αF ∧ �αG) → �α(F ∧G) (15)

�α(F → G) → (�αF → �αG) (16)

The construction of counterexamples is easy and the reader may try it as an
exercise.

Closure under logical equivalence does not hold either, i.e. it is not the case
that if F ↔ G is C-valid, then �αF ↔ �αG is C-valid as well. For example,
counterexamples concerning the classical tautology (p → q) ↔ (¬p ∨ q) are
easily constructed for most classes C.
Consequently, substructural epistemic logics achieve the goal mentioned in Sect.
2: the non-omniscient properties of belief are explained by reference to the ‘logical
character’ of pieces of information.

5.2 Factive and Introspective Models

Definition 8 (Factive frames and models). A substructural information
frame

F = 〈W,R,F, A〉
is factive iff every R(α) is reflexive on W . A substructural information model
M built on F is factive iff F is factive. The set of formulas valid in every factive
C-frame will be denoted T(C).
Proposition 3. �αF → F is F-valid iff F is a factive frame. Consequently,
�αF → F ∈ T(C) for every C.
Hence, in the context of factive models and frames, �α may be read in terms of
‘true belief’ or even ‘knowledge’.

Definition 9 (Introspective frames and models). A substructural infor-
mation frame F = 〈W,R,F, A〉 is introspective iff every R(α) is transitive on
W and Rαwv implies A(α,w) ⊆ A(α, v) for every α and w. A substructural
information model M built on F is introspective iff F is introspective. The set
of formulas valid in every introspective C-frame will be denoted K4(C) and the
set of formulas valid in every factive and introspective C-frame will be denoted
S4(C).
Proposition 4. �αF → �α�αF is F-valid iff F is an introspective frame.
Consequently, �αF → �α�αF ∈ K4(C) for every C.
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5.3 Common Belief

This section outlines a way to deal with common belief in the substructural
epistemic framework. We will work with the standard construal of common be-
lief as an infinite iteration of the ‘everybody-believes-operator’. It is noted that
common belief lacks some of the standard properties.

Definition 10 (Language with common belief). The language with com-
mon belief L∗

G extends the basic epistemic language with a family of operators
�B for every B ⊆ G. Formulas �BF are read ‘It is common belief in B that F ’.
Moreover, �BF is a shorthand for

∧
α∈B

�αF , read ‘every agent in B believes
that F ’.

Definition 11 (Common belief information structures). A B-sequence
σB is a sequence of belief-operators �α1 . . .�αn where n ≥ 1 and every αi ∈ B.
I(L∗

G) is a common belief information L∗
G-structure iff it is the case that

– s � �BF iff s � σBF for every B-sequence σB

A common belief C-model is a substructural information C-model where the infor-
mation L∗

G-structure is a common belief information L∗
G-structure. K

∗(C), T∗(C),
K4∗(C) and S4∗(C) are sets of L∗

G-formulas valid in every common belief C-model,
every factive, introspective and factive and introspective common belief C-model,
respectively.

Lemma 1. If s � F , then s � σBF for every B-sequence σB and every B ⊆ G.
Definition 12 (Group accessibility). Let B ⊆ G. Let a B-path from w to
v be a sequence of couples 〈w1, w2〉, . . . , 〈wn−1, wn〉 such that w1 = w, wn = v
and every 〈wi, wi+1〉 ∈ R(α) for some α ∈ B. Let R(B) (‘B-accessibility’) be a
binary relation on W such that 〈w, v〉 ∈ R(B) iff there is a B-path from w to v.

Definition 13 (Truth conditions for common belief). The truth condi-
tions for every L∗

G-formula are specified by adding the following clause to Def.
4:

– M, w |= �BF iff i) M, w |= �BF and ii) RBwv implies M, v |= �BF .

Let us close the section by pointing out that two of the well known axioms for
‘common knowledge’ hold also for common belief in the substructural epistemic
setting, if we limit our attention to factive frames (i.e. if we are studying ‘common
true belief’ or ‘common knowledge’).

Proposition 5. The following belong to T∗(C) for every C:
1. �BF → (F ∧ �B�BF ) (‘Mix’)
2. �B(F → �BF ) → (F → �BF ) (‘Induction’)

However, other standard axioms, such as �B-closure under Modus Ponens and
�B-necessitation, do not hold due to the specifics of the simple �α-belief.
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6 Public Information Introduction

This section investigates into a generalisation of public announcements (not nec-
essarily truthful). If we see formulas as special cases of pieces of information, then
the action of publicly announcing a formula is a special case of publicly intro-
ducing a piece of information. Hence, it is interesting to look at the more general
case.

Definition 14 (The announcement language). Let AI (‘active pieces of in-
formation’) and G (‘agents’) be non-empty sets of labels. Formulas of the an-
nouncement language L+

G (Φ,AI) are constructed as follows:

F ::= p | ¬F | F ∧ F | F ∨ F | F → F | F ↔ F | �αF | s : F | [+s]F (17)

where p ∈ Φ, α ∈ G and s ∈ AI.

Formulas s : F are read ‘s corroborates F ’ and [+s]F is read ‘F is the case
after the public introduction of s’. We shall not assume special corroboration
conditions for formulas s : F and [+s]F .11

Definition 15 (Information models for the announcement language).
We shall use the models of Def. 7 with the proviso that I ⊆ AI. Validity of for-
mulas in models, frames and classes of frames is defined in the usual way. Truth
conditions for the ‘basic epistemic fragment’ of the announcement language are
as before (Def. 4). Moreover:

– M, w |= s : F iff s ∈ I and s � F
– M, w |= [+s]F iff s ∈ I implies M+s, w |= F

where
M+s = 〈W+s, R+s, I(L+

G )
+s, A+s, V +s〉 (18)

such that

– W+s = W , I(L+
G )

+s = I(L+
G ) and V +s(p) = V (p) for all p ∈ Φ

– R+s
α (w) = Rα(w) − �s�M for every α,w

– A+s(α,w) = A(α,w) ∪ {s} for every α,w

where Rα(w) = {v | Rαwv} and �s�M = {w |M, w |= ¬F for some F such that
s � F}.

K+(C) is the class of L+
G -formulas valid in every information C-model for L+

G .
T+(C), K4+(C) and S4+(C) are the classes of L+

G -formulas valid in every factive,

introspective, and factive and introspective C-model for L+
G .

‘s corroborates F ’ holds in a pointed model only if s is ‘active’ in the model, i.e.
if s ∈ I ⊆ AI. A public introduction of s inserts s into every A(α,w) and ‘cuts
off’ the accessibility arrows leading to points where the negation of a formula
corroborated by s holds. Such an introduction is ‘persuasive’ and ‘monotonic’:

11 However, it might be plausible to assume that s � [+t]F iff s • t � F .
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Lemma 2 (Persuasiveness and monotonicity). The following are contained
in K+(C), for every C:
1. s : F → [+s]�αF
2. �αF → [+s]�αF

There is a stronger version of information introduction for which these properties
do not hold. It is possible to add the assumption that Cst holds for every t ∈
A+s(α,w). In other words, we could assume that the introduction of s results in
‘removing’ every t that is not consistent with s from the awareness set. For sake
of simplicity, we shall not discuss this version in more detail here.12

Note that application of the standard ‘reduction-axioms-technique’ is seriously
limited in the substructural epistemic framework. Importantly, there is no hope
of being able to find an equivalent LG-formula for every L+

G -formula. The reason
is explained by Exam. 7: it is possible that there are formulas [+s]F and G such
that [+s]F ↔ G is valid, but �α[+s]F ↔ �αG is not. However, variants of some
of the well-known reduction axioms are still valid.

Proposition 6. The following belong to K+(C), for every C:

1. s : G → ([+s]p ↔ p)
2. s : G → ([+s]¬F ↔ ¬[+s]F )
3. [+s](F ∧G) ↔ ([+s]F ∧ [+s]G)
4. [+s](F ∨G) ↔ ([+s]F ∨ [+s]G)
5. [+s](F → G) ↔ ([+s]F → [+s]G)

6. [+s](F ↔ G) ↔ ([+s]F ↔ [+s]G)
7. s : G → ([+s]�αF ↔ (s : F ∨

�αF ))
8. s : G → ([+s]t : F ↔ t : F )

Notice items 1., 2., 7. and 8.: the antecedent s : G is necessary, since not every
s is ‘active’ in every model.13 To sidestep this, we could narrow our attention
down to models where every piece of information expressible in the language is
active.

Definition 16 (Full frames). An information frame is AI-full iff I = 〈AI,�〉.
Corollary 1. The following are valid in every AI-full information frame:

1. [+s]p ↔ p
2. [+s]¬F ↔ ¬[+s]F

3. [+s]�αF ↔ (s : F ∨ �αF )
4. [+s]t : F ↔ t : F

A note on related work. Combinations of public announcements and information-
based epistemic logics are widely studied within dynamic justification logics.
However, there are notable differences between the justification-logic-based

12 However, there is hope that working with both of these versions will yield interesting
results concerning the relation of the present framework to the AGM belief revision
theory, see [2].

13 This fact partly justifies our inclusion of formulas s : F into the announcement
language. The other part of the justification is the fact that without such formulas,
no interesting ‘recursion implication’ for formulas [+s]�αF would be provable.
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approaches and the approach of the present paper. Bucheli et al. [13,14] and
Renne [27] combine justification logic with announcements, but the latter are
classical formula announcements. Kuznets and Studer [25] combine formula an-
nouncements with evidence introduction, in that the announcement itself is con-
sidered as a new piece of evidence. The rich framework of Baltag et al. [9] deals
with various versions of evidence dynamics, but does so only for the singe-agent
case and the ‘pieces of information’ are considered from the viewpoint of jus-
tification logic, not substructural logic. Apart from the justification-logic-based
approaches, an interesting contribution has been made by van Benthem and
Pacuit [11], but they construe evidence in terms of sets of possible worlds and
their announcements are formula-based as well.

7 Conclusion

Our primary goal in this paper was to explain that substructural logics are a
natural part of information-based epistemic logic. This observation may stim-
ulate productive collaborations between sub-fields of logic that have perhaps
been thought of as rather remote from one another. The paper is an introduc-
tory outline and, consequently, there are many interesting directions for future
work. First, we plan to concentrate on specific substructural epistemic logics:
to explain their respective philosophical motivations in more detail and to pro-
vide axiomatisations. Second, as the present framework is rather general, its
will be interesting to expound connections to the established formalisms. Third,
the information-introduction-extensions of substructural epistemic logics deserve
systematic attention: sound and complete axiomatisations are a natural goal, as
is establishing connections with the well-known version of dynamic-epistemic
logics. Moreover, there are many other dynamic extensions that have been left
out of the present outline. In addition, it is interesting to dwell upon the ‘philo-
sophical background’ of the present framework: one could formulate different
readings of ‘corroboration’ and ‘piece of information’ and provide various ver-
sions of information-based logics built to fit the different readings. There is hope
that this will result in non-trivial applications of the present framework in epis-
temology.
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Appendix: Proofs of Propositions

This technical appendix contains proofs of some of the Propositions stated in
the paper.

Proof of Prop. 3. The implication from right to left is trivial. The converse
implication is easily demonstrated in the usual way. Assume that F is not a
factive frame. Hence, there are α and w such that ¬Rαww. Since A(α,w) is
non-empty by Def. 3, we may choose an arbitrary s ∈ A(α,w). Now define a
model M built on F such that s � p, M, w �|= p and Rαwv implies M, v |= p for
every v. It is obvious that M �|= �αp → p.

Proof of Prop. 4. The implication from right to left is trivial. Again, the converse
implication is easily demostrated in the usual way. Assume that F is not intro-
spective. The assumption entails that 1) there are α,w, v, v′ such that Rαwv,
Rαvv

′ and ¬Rαwv
′, or 2) there are α,w, v such that Rαwv and A(α,w) �⊆

A(α, v).
Assume 1). Build a model M as follows. Choose an arbitrary s ∈ A(α,w) and

set s � p. In addition, set M, u |= p for every u such that Rαwu and M, u′ �|= p
for every u′ such that Rαvu

′. It is plain that M, w �|= �αp → �α�αp.
Now assume 2). There is a s ∈ A(α,w) such that s �∈ A(α, v). Build a model

M as follows. Let t � p iff t ∈ {s′ | s  s′} for all t. Moreover, let t �� p for every
t ∈ A(α, v). This choice is possible due to (12) of Def. 7. Moreover, set M, u |= p
for every u such that Rαwu. It is plain that M, w �|= �αp → �α�αp.

Proof of Prop. 5. Item 1. �BF obviously entails F (Def. 8, 13 and Prop. 3). It
remains to prove that �BF entails �B�BF . Now M, w |= �BF entails M, w |=
�αF for every α ∈ B (Def. 13). The latter entails that there is a t ∈ A(α,w)
such that t � F . Consequently, t � σBF for every B-sequence σB (Lem. 1) and
t � �BF .

Hence, it remains to prove that Rαwv and M, w |= �BF together imply
M, v |= �BF for every v and α ∈ B. Assume to the contrary. The assumption
entails that a) M, v �|= �BF or b) RBvu and M, u �|= �BF for some u. How-
ever, both are impossible, since RBwv and RBwu: consequently, the assumption
entails that M, v |= �BF and M, u |= �BF .

Item 2. The proof is virtually identical to the standard inductive proof of
a similar claim in modal-logic-based epistemic logic [15, p. 37]. Assume that
M, w |= �B(F → �BF ) ∧ F . We have to show that M, w |= �BF , i.e. that
Rn

Bwv entails M, v |= �BF for every n ≥ 0, where R0
Bwv iff w = v and Rm

Bwv
iff v is reachable from w by a B-path of length m. The base case for n = 0 is
trivial. Now assume that the claim holds for a specific m: there is a v such that
Rm

Bwv and M, v |= �BF . To prove the claim for m + 1, pick an α ∈ B and a
u such that Rαvu. Now M, v |= �αF obviously entails M, u |= F . But RBwu
and, consequently, M, u |= F → �BF . Thus, M, u |= �BF as desired.
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Proof of Prop. 6. Item 1. For every M, w: M, w |= s : G → [+s]p iff (s ∈
I and s � G) implies (s ∈ I and M+s, w |= p) iff (s ∈ I and s � G) implies
(s ∈ I and M, w |= p) iff M, w |= s : G → p. By propositional logic, M, w |= s :
G → ([+s]p ↔ p), for every M, w.

Item 2. First, let us prove that s : G ∧ ¬[+s]F implies [+s]¬F . By Def.
15, ¬[+s]F is equivalent to the conjunction of s ∈ I and M+s, w |= ¬F . The
conjunction implies that s ∈ I ⇒ M+s, w |= ¬F , i.e. that M, w |= [+s]¬F .
The desired result follows by propositional logic. Second, let us prove that s :
G∧[+s]¬F implies ¬[+s]F . The assumptionM, w |= s : G∧[+s]¬F is equivalent
to the conjunction of s ∈ I, s � G and (s ∈ I ⇒ M+s, w |= ¬F ). The
conjunction obviously entails s ∈ I and M+s, w �|= F , i.e. M, w |= ¬[+s]F .

Items 3. – 6. can be demonstrated by simple propositional reasoning. Item 7.
One half of the result follows from Lemma 2. To prove the second half, assume
that M, w |= s : G ∧ ¬s : F ∧ ¬�αF . The first two conjuncts entail that s �� F .
The third conjunct entails that i) there is a v such that Rαwv and M, v |= ¬F ,
or ii) there is no t ∈ A(α,w) such that t � F . Assume i). Since s �� F , R+s

α wv
for the ¬F -world v. Consequently, M, w �|= [+s]�αF . Assume ii). Since, s �� F ,
there is no t′ ∈ A+s(α,w) such that t′ � F and, consequently, M, w �|= [+s]�αF .

Item 8. can be proved easily by propositional reasoning and by using the fact
that I(L+

G )
+s = I(L+

G ) (Def. 15).
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