
The O-MASE Methodology

Scott A. DeLoach and Juan C. Garcia-Ojeda

Abstract
Today’s software industry is tasked with building evermore complex software
applications, and multiagent system technology is a promising approach capable
of meeting these new demands. Unfortunately, multiagent systems have not been
widely adopted in industry for reasons that include lack of industrial strength
methods and tools to support multiagent development. Method engineering, an
approach to constructing processes from a set of existing method fragments,
has been suggested as a solution to this problem. This chapter presents the
Organization-based Multiagent Software Engineering (O-MaSE) methodology
framework, which integrates a set of concrete technologies aimed at facilitating
industrial acceptance. Specifically, O-MaSE is a customizable agent-oriented
methodology based on consistent, well-defined concepts supported by plug-ins
to an industrial strength development environment, agentTool III. O-MaSE is
defined, and demonstrations of customizing O-MaSE for the CMS problem as
well applying the customized process to the CMS design are presented.

1 Introduction

Organization-based Multiagent Software Engineering (O-MaSE) [4] is a new
approach in the analysis and design of agent-based systems, being designed from
the start as a set of method fragments to be used in a method engineering

S.A. DeLoach (�)
Kansas State University, 234 Nichols Hall, Manhattan, KS 66506, USA
e-mail: sdeloach@ksu.edu; sdeloach@k-state.edu

J.C. Garcia-Ojeda
Facultad de Ingenieria de Sistemas, Universidad Autonoma de Bucaramanga,
Avenida 42 No 48-11, El Jardin. Bucaramanga, Santander, Colombia
e-mail: jgarciao@unab.edu.co

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__9,
© Springer-Verlag Berlin Heidelberg 2014

253

mailto:sdeloach@ksu.edu
mailto:sdeloach@k-state.edu
mailto:jgarciao@unab.edu.co


254 S.A. DeLoach and J.C. Garcia-Ojeda

framework [1,2,12]. The goal of O-MaSE is to allow designers to create customized
agent-oriented software development processes. O-MaSE consists of three basic
structures: (1) a metamodel, (2) a set of method fragments, and (3) a set of
guidelines. The O-MaSE metamodel defines the key concepts needed to design and
implement multiagent systems. The method fragments are tasks that are executed
to produce a set of work products, which may include models, documentation, or
code. The guidelines define how the method fragments are related to one another.

The aT3 Process Editor (APE) shown in Fig. 1 is a tool that supports the creation
of custom O-MaSE-compliant processes [10]. APE is part of the agentTool III tool-
set, which provides tool support to developing multiagent systems using O-MaSE
[11]. There are five key elements of APE: a Method Fragment Library, the Process
Editor, a set of Task Constraints, a Process Consistency checker, and a Process
Management tool. The Library is a repository of O-MaSE method fragments, which
can be extended by APE users. The Process Editor allows users to create and
maintain O-MaSE-compliant processes. The Task Constraints view helps process
engineers specify Process Construction Guidelines to constrain how tasks can be
assembled, while the Process Consistency mechanism verifies the consistency of
custom processes against those constraints. Finally, the Process Management tool
provides a way to measure project progress using the custom process.

O-MaSE also provides a set of Method Construction Guidelines that states
how O-MaSE method fragments may be combined to form O-MaSE-compliant
processes. Table 1 shows the Method Construction Guidelines for the O-MaSE
Tasks. These Method Construction Guidelines are defined in terms of a precondition
and post-condition. The precondition specifies the set of Work Products that must
be available prior to the Task being undertaken while the post-conditions specify the
Work Products produced by the task. For example, for the Model Goals task, either
a Requirements Spec must be available or a Goal Model/GMoDS and a Role Model
must be available. The Requirements Spec is used when the Model Goals task is
used to model system-level goals, while the Goal Model/GMoDS and Role Model
are used when the task is used to model role-level goals. Disjunctive preconditions
generally specify alternative ways the Task can be used. However, it does not limit
what information can be used in the definition of a model. For instance, the Model
Domain task only requires a Requirements Spec as input; however, that does not
mean that other Work Products such as Goal Models cannot be used in the Task. This
additional information is generally documented in the individual task definitions.
Useful references related to O-MaSE include the following:
• Scott A. DeLoach and Juan Carlos Garcia-Ojeda. O-MaSE: a customizable

approach to designing and building complex, adaptive multiagent systems.
International Journal of Agent-Oriented Software Engineering. Volume 4, no.
3, 2010, pp. 244–280.

• Juan C. Garcia-Ojeda, Scott A. DeLoach, and Robby. agentTool Process Editor:
Supporting the Design of Tailored Agent-based Processes. Proceedings of the
24th Annual ACM Symposium on Applied Computing to be held at the Hilton
Hawaiian Village Beach Resort and Spa Waikiki Beach, Honolulu, Hawaii, USA.
March 8–12, 2009.



The O-MASE Methodology 255

Fi
g

.
1

ag
en

tT
oo

lI
II

Pr
oc

es
s

E
di

to
r



256 S.A. DeLoach and J.C. Garcia-Ojeda

Table 1 Method construction guidelines

Task Pre-condition Post-condition

Requirements True Requirements Spec
Specification
Model Goals Requirements Spec _ ((Goal Model _ GMoDS) Goal Model

^ Role Model)
Refine Goals Goal Model GMoDS
Model Domain Requirements Spec Domain Model
Model Organization Requirements Spec ^ GMoDS Organization Model
Interfaces
Model Roles GMoDS ^ Organization Model Role Model
Define Roles Role Model Role Description
Model Agent Classes GMoDS _ Role Model _ Organization Model Agent Class Model
Model Protocols Role Model _ Agent Class Model Protocol Model
Model Policies GMoDS _ Organization Model Policy Model

_ Role Description _ Agent Class Model
Model Plans (GMoDS ^ Role Model) Plan Model

_ (GMoDS ^ Agent Class Model)
Model Capabilities Role Model ^ Agent Class Model Capability Model

_ Domain Model
Model Actions Capability Model ^ Domain Model Action Model
Code Generation (Plan Model _ Protocol Model) Source Code

^ (Capability Model _ Action Model)

• Scott DeLoach, Lin Padgham, Anna Perini, Angelo Susi, and John Thangara-
jah. Using Three AOSE Toolkits to Develop a Sample Design. International
Journal of Agent Oriented Software Engineering. Volume 3, no. 4, 2009, 2009,
pp 416–476.

• Scott A. DeLoach. Organizational Model for Adaptive Complex Systems. in
Virginia Dignum (ed.) Multi-Agent Systems: Semantics and Dynamics of Or-
ganizational Models. IGI Global: Hershey, PA. ISBN: 1-60566-256-9 (March
2009). This chapter copyright 2008, IGI Global, www.igi-pub.com. Posted by
permission of the publisher.

• Lin Padgham, Michael Winikoff, Scott DeLoach, and Massimo Cossentino.
A Unified Graphical Notation for AOSE. Proceedings of the 9th International
Workshop on Agent Oriented Software Engineering, Estoril Portugal, May 2008.

• Scott A. DeLoach. Developing a Multiagent Conference Management System
Using the O-MaSE Process Framework. Proceedings of the 8th International
Workshop on Agent Oriented Software Engineering, May 14, 2007, Honolulu,
Hawaii.

• Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan and
Jorge Valenzuela. O-MaSE: A Customizable Approach to Developing Multiagent
Development Processes. Proceedings of the 8th International Workshop on Agent
Oriented Software Engineering, Honolulu HI, May 2007.

www.igi-pub.com


The O-MASE Methodology 257

Table 2 O-MaSE overview

Entity Task Work Product Role

Requirements Requirements Requirements Spec Requirements Engineer
Gathering Specification
Problem Model Goals Goal Model Goal Modeler
Analysis Refine Goals

Model Domain Domain Model Domain Modeler
Solution Model Organization Organization Model Organization Modeler
Analysis Interfaces

Model Roles Role Model Role Modeler
Define Roles Role Description Document
Define Role Goals Role Goal Model

Architecture Model Agent Classes Agent Class Model Agent Class Modeler
Design Model Protocols Protocol Model Protocol Modeler

Model Policies Policy Model Policy Modeler
Low Level Model Plans Agent Plan Model Plan Modeler
Design Model Capabilities Capabilities Model Capabilities Modeler

Model Actions Action Model Action Modeler
Code Generate Code Source code Programmer
Generation

• Scott A. DeLoach and Jorge L. Valenzuela. An Agent-Environment Interaction
Model. in L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 1–
18, 2007. Springer-Verlag, Berlin Heidelberg 2007.

• Scott A. DeLoach. Multiagent Systems Engineering of Organization-based
Multiagent Systems. 4th International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’05). May 15–16, 2005, St. Louis,
MO. Springer LNCS Vol 3914, Apr 2006, pp 109–125.

1.1 The O-MaSE Life Cycle

O-MaSE was designed from scratch as a set of fragments that could be assembled by
developers to meet the specific requirements of their project. While SPEM [15] uses
Phases to organize the various Activities of a development method, O-MaSE makes
no commitments to a predefined set of Phases. Instead, O-MaSE explicitly defines
Activities and Tasks (see an overview in Table 2) and allows method engineers to
organize Activities in different ways based on project need. For instance, O-MaSE
has been used to support modern iterative, incremental approaches as well as much
simpler waterfall-based approaches. The fact that O-MaSE does not commit to any
specific set of phases causes a minor problem when trying to map O-MaSE directly
to the DPDT. To alleviate this problem, we assume that we follow a traditional
waterfall approach when describing O-MaSE as shown in Fig. 2. As shown, there
are three main Phases: Requirement Analysis, Design, and Implementation, with



258 S.A. DeLoach and J.C. Garcia-Ojeda

DesignRequirement
Analysis

Implementation

Fig. 2 Using waterfall phases with O-MaSE

the main Activities allocated as shown. When using O-MaSE on a real project, the
process designer is free to define their own set of phases and iterations and to assign
Activities and Tasks to those phases and iterations as appropriate. As this will be
unique for each system being developed, there are no hard-and-fast rules on what
activities should be placed in which phases.

1.2 The O-MaSE Metamodel

The O-MaSE metamodel defines the main concepts and relationships used to
define multiagent systems. The O-MaSE metamodel is based on an organizational
approach and includes notions that allow for hierarchical, holonic, and team-
based decomposition of organizations. The O-MaSE metamodel was derived from
the Organization Model for Adaptive Computational Systems (OMACS), which
captures the knowledge required of a system’s organizational structure and cap-
abilities to allow it to organize and reorganize at runtime [5]. The key decision in
OMACS-based systems is which agent to assign to which role in order to achieve
which goal. As shown in Fig. 3, an Organization is composed of six entity types:
Goals, Roles, Agents, Organizational Agents, a Domain Model, and Policies. Each
of these entities is discussed below, and a concise definition is given in Table 3.

While a variety of subtle interpretations of goals exist in the artificial intelligence
and agent communities, O-MaSE defines a Goal as an objective of the organization,
which is generally described in terms of some desired state of the world. A Role
defines a position within an organization whose behavior is expected to achieve a
particular goal or set of goals. (Due to the naming conflict between O-MaSE Roles
and SPEM roles, the term method role is used to refer to SPEM roles throughout the
remainder of this chapter.) Agents are assigned to play those roles and perform the
behavior expected of those roles. Agents are autonomous entities that can perceive
and act upon their environment [19]. To carry out perception and action, an agent
possesses a set of capabilities. Capabilities can be used to capture soft abilities
(i.e., algorithms) or hard abilities (i.e., physical sensors or effectors). An agent that
possesses all the capabilities required to play a role may be assigned that role in the
organization. Capabilities can be defined as (1) a set of sub-capabilities, (2) a set
of actions that may interact with the environment, or (3) a plan that uses actions in
specific ways.



The O-MASE Methodology 259

achieves

requires

Policy

Role

constrains

Goal

External
Protocol

Actor participates-in

participates-in

initiates

interacts-with

Internal
Protocol

Protocol

usesDomain
Model

Organization

possesses

plays

Message

Agent

Capability

responds

relation

Environment
Property

Environment
Object

Organizational
Agent

Plan Action

Fig. 3 O-MaSE metamodel

Table 3 Metamodel entities

Entity Definition

Goal A desirable state; goals capture organizational objectives
Role Capture behavior that achieves a particular goal or set of goals
Agent Autonomous entities that perceive and act upon their environment; agents

play roles in the organization
Organizational
Agent

A sub-organization that functions as an agent in a higher-level organization

Capability Soft abilities (algorithms) or hard abilities of agents
Domain model Captures the environment including objects and general properties describ-

ing how objects behave and interact
Policy Constrain organization behavior often in the form of liveness and safety

properties
Protocol Define interaction between agents, roles, or external Actors; they may be

internal or external
Actor Actors that exist outside the system and interact with the system
Plan Abstractions of algorithms used by agents; plans are specified in terms of

actions with the environment and messages in protocols



260 S.A. DeLoach and J.C. Garcia-Ojeda

Organizational Agents (OAs) are organizations that act as agents in a higher level
organization and thus capture the notion of organizational hierarchy. As agents, OAs
may possess capabilities, coordinate with other agents, and be assigned to play roles.
OAs are similar to the notion of non-atomic holons in the ASPECS methodology [3].
Therefore, OAs represent an extension to the traditional Agent–Group–Role (AGR)
model [8, 9] and the organizational metamodel proposed by Odell et al. in [17].

The Domain Model is used to capture the key elements of the environment in
which agents will operate. These elements are captured as Domain Object Types
from the environment, which includes agents, and the relationships between those
object types. It can also be used to capture general Environment Properties that
describe how the objects behave and interact [6]. A designer may use entities defined
in the O-MaSE model (goals, roles, agents, etc.) along with entities defined in the
Domain Model to specify organizational Policies to constrain how an organization
may behave in a particular situation. Policies are often used to specify liveness and
safety properties of the system being designed.

Protocols define interactions between roles or between the organization and
external Actors. Protocols are generally defined as patterns of communication
between such entities [16]. A protocol can be of two types, External or Internal.
External Protocols specify interactions between the organization and external actors
(i.e., humans or other software applications), while Internal Protocols specify
interactions between agents playing specific roles in the organization. Either
messages or actions can be used to define protocols. Messages are typically used
for communications; however, actions may be used to modify the environment as a
means of communication [14].

2 Phases

The first step in using O-MaSE to define a system is to define an O-MaSE compliant
process. There may be several ways to define an O-MaSE compliant process;
however, the simplest approach is to perform a bottom-up analysis of the work
products required to produce the desired system. In a bottom-up approach, the key
decision is what type of system we need to develop and what are the final work
products that are needed to support the implementation of such a system. From there
we work backwards to determine which other work products are required to produce
the final work products. The example given here for the CMS is an appropriate
O-MaSE compliant process [12].

Ultimately, the CMS is a centralized system with which a variety of humans
interact. The roles of the system and humans are well defined, and, outside of
major system shutdown, there is little chance of failure that would require that
various agents might need to be reassigned goals in order for the system to work
efficiently and robustly. Therefore, there is no requirement for an autonomously
adaptive system such as produced by OMACS [7]. Thus, the definition of individual
capabilities of the roles and agents is not required. Therefore, we can implement the
system by defining a set of agent classes, the protocols between those classes, a set of



The O-MASE Methodology 261

<<output>>

<<output>>
<<output>>

<<output>>

<<output>>

Problem
Analysis

Solution
Analysis

System
Description

Goal Model GMoDS

Organization
Model

<<predecessor>>

<<input>>

<<input>>

<<input>> <<input>>

<<input>>

<<input>>

Domain
Model

Model Goals Refine Goals Model RolesModel Domain Model Organization
Interfaces

Role Model

Fig. 4 CMS O-MaSE-compliant process—analysis phase

policies to constrain agent behavior and interaction, and a set of plans to implement
the agent behavior. This information is provided by the Agent Class Model, Protocol
Model, Policy Model, and Plan Model, which are defined using the Model Agent
Classes, Model Protocols, Model Policies, and Model Plans tasks.

In order to provide the appropriate inputs to the tasks, we need to define a set
of roles and goals for the system. Also, to allow us to define the parameters of the
goal model, the protocols between the agents, and the policies and plans, we need to
have a valid domain model. Thus, the work products we need to create to support the
design phase include a Domain Model, a Goal Model, a Goal Model for Dynamic
Systems (GMoDS) model, an Organizational Model, and a Role Model. These work
products are defined using the Model Domain, Model Goals, Refine Goals, Model
Organizational Interfaces, and Model Roles tasks.

The final step is to define the phases and possible iterations for our process. Since
this is a fairly simple system, we choose a simple waterfall approach. The input to
the process is the system specification of the CMS, while the output is the design
models discussed above. We do not consider an implementation phase as the system
can be implemented in a number of ways depending on where and how the final
system is to be used.

Thus, the final process chosen for designing the CMS is a basic waterfall
approach as shown in Fig. 2. However, because the system does not require
adaptivity in terms of assigning agents to roles, we have simplified the Requirement
Analysis and Design phases as shown in Figs. 4 and 5. Requirement Analysis begins
by using the existing system requirements to define a Domain Model in the Model
Domain task. Next, we define the basic Goal Model and refining it into a GMoDS
Goal Model via the Model Goals and Goal Refinement tasks. Once the Goal Model
is complete, the GMoDS Goal Model is used to create the initial Role Model.

The Design Phase begins by creating an Agent Class Model based on the Role
Model and GMoDS model created during the Requirement Analysis phase. The
details of the protocols identified in the Agent Class Model are further refined into
several Protocol Models. While we chose to define the Protocol Models based on the
Agent Class Model, we could have also defined the protocols after creating the Role



262 S.A. DeLoach and J.C. Garcia-Ojeda

<<predecessor>>

<<input>>

Model
Protocols

Model
Policies

Low-level
Design

<<output>>

<<output>> <<output>>

<<output>>

Protocol
Model

<<input>>
<<input>>

<<input>>

<<input>> <<input>>

<<input>>

<<input>>

<<input>>
<<input>>

Policy Model

Agent Class
Model

Plan
ModelGMoDSRole Model

Model PlansModel Agent
Classes

Organization
Model

Architecture
Design

Fig. 5 CMS O-MaSE-compliant process—design phase

CMS DesignCMS
Requirement

Analysis

PC DesignPC Requirement
Analysis

Fig. 6 O-MaSE-compliant process for CMS and PC organizations

Model as it also identifies protocols. Next, we model the policies that the agents
and their protocols must adhere to. Finally, the plans of the agents are defined in the
Model Plans task and produce a set of plans that implement the agent behavior.

However, to manage the complexity of the Conference Management System
(CMS) provided earlier in the book, we decided to make use of the decomposition
and abstraction mechanisms available in O-MaSE. Specifically, we decided that
since the Program Committee (PC) (including the PC Chair, Vice-Chairs, and PC
Members) operated as a single entity in relation to the other system actors (Authors,
Publishers, and Reviewers), we would treat the PC as a separate entity in the design
process and use the O-MaSE notion of an Organizational Agent to capture the PC.
Thus, at the top-level description of the system, the PC is a single entity that is
further decomposed in terms of its own organization. This actually requires a slight
modification to the waterfall model. In actuality, this approach simply requires one
iteration of the Requirement Analysis and Design phases for the CMS organization
and a second iteration for the PC organization. However, to clarify the situation, we
show an extended version of the CMS process in Fig. 6.

Again, as a reminder, the phases used to define O-MaSE as presented below are
not actually part of the O-MaSE definition but only included to help define O-MaSE
according to the DPDT. The process shown in Figs. 6, 4, and 5 is actually a subset



The O-MASE Methodology 263

Requirements
Gathering

Problem
Analysis

Solution
Analysis

Fig. 7 Requirement Analysis phase flow of activities

<<output>>

<<performs primary>>

<<predecessor>>

<<output>> <<output>>

<<output>>

<<performs primary>>

<<performs
primary>>

<<output>>

<<output>>

<<output>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

<<output>>

<<performs primary>>

Requirements
Gathering

Problem
Analysis

Solution
Analysis

Specify
Requirements

Model
Domain

Model
Goals

Refine
Goals

Model
Organization

Interfaces

Model
Roles

Define
Roles

Define
Role-Goals

System
Description

Domain
Model

Goal Model

GMoDS

Role
Description
Document

Role Goal
Model

Requirement
Engineer

Goal
Modeler

Organization
Modeler

Role Modeler

<<predecessor>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<performs,
primary>>

Role
Model

Organization
Model

<<input>>

Domain
Modeler

Fig. 8 Requirement Analysis phase in terms of activities and work products

of the phases, tasks, and activities discussed below, and examples of work products
produced from this process are presented where appropriate.

2.1 Requirement Analysis

In traditional software engineering practice, the requirement analysis phase attempts
to define and validate requirements for a new or modified software product, taking
into account the views of all major stakeholders. A generic example of an O-MaSE
requirement analysis phase is shown in Fig. 7 in terms of process flow and Fig. 8 in
terms of process roles, work products, and tasks.



264 S.A. DeLoach and J.C. Garcia-Ojeda

2.1.1 Process Roles
This phase uses five roles: Requirement Engineer, Goal Modeler, Domain Modeler,
Organization Modeler, and Role Modeler.

Requirement Engineer
The Requirement Engineer captures and validates the requirements of the system.
Thus, the person in this role must be able to think abstractly, work at high levels
of abstraction, and collaborate with stakeholders, domain modelers, and project
managers.

Goal Modeler
The Goal Modeler is responsible for the generation of the GMoDS goal model.
Thus, Goal Modeler must understand the system description/SRS, be able to interact
openly with various domain experts and customers, and be proficient in GMoDS
AND/OR Decomposition and ATP Analysis [5].

Domain Modeler
The Domain Modeler captures the key concepts and vocabulary in the current
and envisioned environment of the system, helping to further refine and validate
requirements.

Organization Modeler
The Organization Modeler is responsible for documenting the Organization Model.
Thus, the Organization Modeler must understand the system requirements, Goal
Model, and Domain Model and be skilled in organizational modeling techniques.

Role Modeler
The Role Modeler creates the Role Model and the Role Description work products,
which requires knowledge of the role model specification and a general knowledge
of the system.

2.1.2 Activity Details
In the Requirement Analysis phase, there are three activities: Requirement Gather-
ing, Problem Analysis, and Solution Analysis.

Requirement Gathering
Requirement Gathering is the process of identifying software requirements from a
variety of sources. Typically, requirements are either functional requirements, which
define the functions required by the software, or nonfunctional requirements, which
specify traits of the software such as performance quality and usability. An overview
of the Requirement Gathering tasks and work products used is shown in Fig. 9.

Problem Analysis
Problem Analysis captures the purpose of the product and documents the environ-
ment in which it will be deployed using three tasks: Model Domain, Model Goals,



The O-MASE Methodology 265

<<output>><<performs primary>>

Specify
Requirements

System
Description

Requirement
Engineer

Fig. 9 Requirement Gathering activity diagram

<<output>> <<output>>

<<output>> <<performs primary>><<performs, primary>>

<<performs primary>>

Model Domain Model Goals Refine Goals

System
Description

Domain
Model

Goal Model GMoDSDomain
Modeler

Goal
Modeler

<<input>> <<input>> <<input>>

Fig. 10 Problem Analysis activity diagram

and Refine Goals. The Model Domain task captures the object types, relationships,
and behaviors within the domain in which system will operate. The Domain Model
captures the environment as a set of Object Types and Agents that are situated in the
environment. Object types are defined by a name and a set of attributes. In O-MaSE,
domain object types are similar to object classes rather than instances. The Model
Goals task transforms the initial system requirements into a set of structured goals
for the system. The deliverable of the Model Goals task is an initial Goal Model.
The Refine Goals task captures the dynamic aspects of the Goal Model and further
defines each goal using a technique called Attribute–Precede–Trigger Analysis. The
result is a refined version of the Goal Model called a GMoDS goal model [5]. An
overview of the Problem Analysis tasks and work products used is shown in Fig. 10.

Solution Analysis
Solution Analysis defines the required system behavior based on the goal and
domain models. The end result is a set of roles and interactions in the Organization
Model. Solution Analysis is decomposed into four tasks: Model Organizational
Interfaces, Model Roles, and either Define Roles or Define Role Goals. The
Model Organization Interfaces task identifies the organization’s interfaces with
external entities, which can include other agents, organizations, or external actors.



266 S.A. DeLoach and J.C. Garcia-Ojeda

<<output>>

<<output>>

<<output>>
<<performs primary>>

<<performs primary>>

<<performs primary>>

<<output>><<performs primary>>

Model Organization Interfaces Model
Roles

Define
Roles

Define
Role-Goals

System
Description GMoDS

Organization
Model

Role
Model

Role
Description
Document

Role Goal
Model

Organization
Modeler

Role Modeler

<<input>>

<<input>>

<<input>>

<<input>>
<<input>>

Fig. 11 Solution Analysis activity diagram

The Model Roles task identifies all the roles in the organization as well as their
interactions with each other and with external actors, resulting in a Role Model. The
goal of role modeling is to assign each leaf goal from the organization Goal Model
to a specific role and to identify interactions between roles as well as with external
actors. Interactions with external actors should be consistent with the Organization
Model. The internal behavior of roles can be defined either through the Define Roles
or Define Role Goal tasks and both types of definitions can be used within the same
system. In the Define Roles task, the designer specifies the capabilities required by
a role, the goals the role is able to achieve, constraints associated with the role, and
the plan(s) that implements the role, which are defined via the Model Plan task as
described below. In the Define Role Goals task, role behavior is defined by a role-
level Goal Model. The top-level goal in a role-level Goal Model is the leaf goal
from the organization that is to be achieved by the role. An overview of the Solution
Analysis tasks and work products used is shown in Fig. 11.

2.1.3 Work Products
The Requirement Analysis phase produces eight work products. One is a pure text
document, the System Description. The other seven work products are models that
create various elements in the O-MaSE metamodel. The relationships between these
models and the O-MaSE metamodel are documented in Fig. 12. Each model is
defined in terms of elements from the O-MaSE metamodel, which are represented
with UML class icons. Within each model, each metamodel element may be
Defined, reFined, Quoted, Related, or Relationship Quoted.

Work Product Kinds
There are six possible work products produced in the Requirement Analysis phase:
System Description Specification, Goal Model, GMoDS Model, Domain Model,
Organization Model, and Role Model as defined in Table 4. Examples of most of
these models are provided in the sections below. Each work product is specified in



The O-MASE Methodology 267

Role

Goal

Actor

Protocol

Organization

Environment
Property

Environment
Object

Organization
Model

Role Goal
Model

Role
Model

GMoDS

D

D

D

D

D

D

F

F

F

D

D

Q

R

D

Q

Q

Q

Q

R

R

R

R

Role Description
Document

Domain
Model

Goal Model

Fig. 12 Requirement Analysis document structure

Table 4 Requirement Analysis work products

Name Description Kind

System Description describes the technical requirements for a Structural
Specification particular agent-oriented software
Goal Model captures the purpose of the organization as a goal Behavioral

tree; includes goal attributes, precedence and
triggering relationships

Domain Model defines the language that can be used when Structural
defining the operation of the system

Organizational Model documents the interaction between the Structural
organization and the external actors

Role Model depicts organization roles, the goals they achieve Structural
and interactions between roles/external actors

terms of the kind of model, information, or data documented. A structural work
product is used to model static aspects of the system, a behavioral work product is
used to model dynamic aspects of the system, and a composite work product is used
to model both static and dynamic aspects of the system. For further details on the
differences between types of work products see [20].

System Description
There are many ways to capture and categorize requirements for use in systems.
O-MaSE assumes that either traditional or multiagent-focused requirement gath-
ering techniques are sufficient and thus does not stipulate a specific document
structure.

Goal Model
The top-level CMS GMoDS goal model is shown in Fig. 13. (The initial version
of the Goal Model from the Model Goals task is simply the GMoDS model with



268 S.A. DeLoach and J.C. Garcia-Ojeda

«G
oa

l»
0

M
an

ag
eC

M
S

«G
oa

l»
1

G
at

he
rP

ap
er

s

«G
oa

l»
3

Re
vi

ew
Pa

pe
r

p 
: P

ap
er

r :
 R

ev
ie

w
er

«G
oa

l»
4

Se
le

ct
Pa

pe
rs

«G
oa

l»
6

Pr
in

tP
ro

ce
ed

in
gs

«G
oa

l»
1.

3
Co

lle
ct

Pa
pe

rs
«G

oa
l»

6.
1

Co
lle

ct
Fi

na
ls

p 
: P

ap
er

«G
oa

l»
6.

2
Se

nd
To

Pu
bl

is
he

r
«G

oa
l»

1.
1

Re
gi

st
er

Au
th

or

«G
oa

l»
2

D
is

tr
ib

ut
eP

ap
er

s

«G
oa

l»
1.

2
Re

gi
st

er
Re

vi
ew

er
s

«a
nd

»
«a

nd
»

«a
nd

»
«a

nd
»

«a
nd

»

«p
re

ce
de

s»

«p
re

ce
de

s»
as

si
gn

(p
, r

)
ac

ce
pt

ed
(p

, a
)

«a
nd

»
«a

nd
»

«p
re

ce
de

s»

«a
nd

»
«a

nd
»

«a
nd

»

Fi
g

.
1

3
To

p-
le

ve
l

G
M

oD
S

G
oa

lM
od

el
fo

r
co

nf
er

en
ce

m
an

ag
em

en
ts

ys
te

m



The O-MASE Methodology 269

the precede and trigger relations removed.) The overall goal of ManageCMS is
broken down into five sub-goals: GatherPapers, DistributePapers, ReviewPaper,
SelectPapers, and PrintProceedings. The GatherPapers goals is further decomposed
into two sub-goals, RegisterAuthor and CollectPapers, while the PrintProceedings
goal is also decomposed into the CollectFinals and SendToPublisher sub-goals.
GMoDS allows new goal instances to be created via an event trigger, which is
denoted by an arrow between two goals labeled by an event signature such as
assign(p,r) on the arrow between the DistributePapers and ReviewPaper goals.
In this case, it means that when an assign even occurs during pursuit of the
DistributePapers goal, a new ReviewPaper goal is created. We use this to create a
ReviewPaper goal for each reviewer assigned to review a given paper. Similarly,
the accepted event during pursuit of the SelectPapers goal will create a new
CollectFinals goal to collect each paper accepted for the proceedings.

The GMoDS precedence relation (denoted by an arrow labeled with «precedes»)
is used in the goal model to ensure proper sequence of actions in the system.
Thus, since the papers must be gathered before they can be distributed for review,
the GatherPapers goal precedes the DistributePapers goal (i.e., GatherPapers must
be achieved before DistributePapers can begin to be pursued). Likewise, all the
reviews must be performed (ReviewPapers goal) before papers can be selected
(SelectPapers) for the conference, and all CollectFinals goals must be achieved
before the SendToPublisher goal is attempted.

The PC organization is actually designed to achieve three top level goals:
SendToPublisher, DistributePapers, and SelectPapers goals. The DistributePapers
and SelectPapers goals are further decomposed as shown in Fig. 14 while the
SendToPublisher is not.

The DistributePapers goal is decomposed in the AssignPapers and Disseminate-
Papers goals. While the description of the CMS provides for several ways to assign
papers, there is only a single goal that drives that assignment process. How the PC
actually achieves the assignment goal is defined by the process they use. Therefore,
this aspect of the CMS definition should be captured as a process, which in the case
of O-MaSE would be captured as variations to a plan.

The SelectPapers goal is decomposed into several sub-goals: CollectReviews,
MakeDecision, and InformAuthors. Since all the reviews should be collected prior
to making a decision, a precedence relation exists between the CollectReviews and
MakeDecision goals. As a decision is made on each paper, a declined or an accepted
event triggers either an InformDeclined or an InformAccepted goal for that paper.
In addition, an accepted event triggers a CollectFinals goal in the CMS goal model
as shown in Fig. 13.

Domain Model
The Domain Model is an essential part of problem analysis and is very important to
the O-MaSE approach in general. The Domain Model defines the language that can
be used by designer to ensure that everyone is talking about this same thing. It is
also essential in formally defining the operation of the system from the attributes in
the goal model to the information passed via system protocols to the policies of the
system. The Domain Model for the CMS is shown in Fig. 15.



270 S.A. DeLoach and J.C. Garcia-Ojeda

«Goal»
4.1 CollectReviews

«Goal»
4.2 MakeDecision

«Goal»
4.3 InformAuthors

«Goal»
4.3.1 InformDeclined

p : Paper
a : Author

«Goal»
4.3.2 InformAccepted

p : Paper
a : Author

«Goal»
4 SelectPapers

«Goal»
2.1 DisseminatePapers

«Goal»
2.2 AssignPapers

«Goal»
2 DistributePapers

«precedes»

«and»«and»

«precedes»

«and»

declined(p, a)

accepted(p, a)

«and»

«and»«and»

«and»

Fig. 14 Program committee Goal Model

«Object»
Review

«Object»
Reviews

«Object»
Paper

ID : integer

«Object»
Reviewer

«Object»
Papers

«Object»
Author

1

*

PapersReviewed
Reviewer

writes
1..n1..n

AuthorPaper
prepares

*

assignedTo*

Fig. 15 Domain Model for conference management system



The O-MASE Methodology 271

Author

Publisher

Reviewer

«Organization»
CMS

«achieves» ManageCMSsubmitFinal

submitPaper

register

inform printProceedings

writeReview

register

Fig. 16 Organization Model for conference management system

There are four main objects of interest in the CMS domain: Author, Paper,
Reviewer, and Review. Each of these and their relationships are shown explicitly
in the Domain Model. In addition, an aggregation of individual papers (Papers) and
reviews (Reviews) is also defined. The model uses standard UML notation to define
the multiplicities that are allowed between Objects. For instance, an Author must
have at least one Author, and to be valid, an Author must have at least one Paper.
It also shows that a Reviewer prepares a Review, and each Review has exactly one
Paper that it can be written over. In addition, the Domain Model allows the definition
of Object attributes. As shown, each Paper object has an ID.

Organizational Model
The Organization Model for the CMS is shown in Fig. 16. Here, the decision to make
the PC a sub-organization shows up in the absence of the PC as an external actor.
As shown, since the PC is a sub-organization, we are essentially considering it
to be part of the system at this level. The three external actors shown, Author,
Publisher, and Reviewer, all interact with the system through the given protocols.
As the organization is refined into a Role and Agent Class Models, these external
actors and protocols should show up in a consistent manner.

Role Model
The role model for the top-level CMS is shown in Fig. 17. There are six roles
defined to carry out the goals defined in Fig. 13. Each role is designed to achieve
a single goal as denoted by the «achieves» attribute in each role. Two exceptions
are the PaperCollector role, which is designed to collect the initial and final copies
of the papers, and the Registrar role, which is designed to register both authors and
reviewers.

The role model also shows the external actors that interact with each of the roles.
(As discussed above, the PC will actually be a sub-organization and thus the PC



272 S.A. DeLoach and J.C. Garcia-Ojeda

«Role»
Registrar

«achieves» RegisterAuthor
«achieves» RegisterReviewer

«Role»
PaperCollector

«achieves» CollectPapers
«achieves» CollectFinals

«Role»
Selector

«achieves» SelectPapers

«Role»
Reviewer

«achieves» ReviewPapers

Reviewer
«Role»

Distributor

«achieves» DistributePapers

«Role»
Editor

«achieves» SendToPublisher

Publisher
Author

submitPaper
register

submitFinal

inform

printProceedings

writeReview

register

makeAssignment

getExpertise

submitReviews

retrievePaper

collectFinals

getPapers

Fig. 17 Role Model for conference management system

Chair, Vice-Chairs, and PC Member external actors show up at a lower level of
the design shown later.) The arrows between roles and between actors and roles
represent protocols that support the passing of information. The direction of the
arrow denotes who initiates the protocol and not the flow of information itself, which
may occur in both directions. Each protocol is defined by a Protocol Model that
shows the details of the messages and data passed. However, by studying both the
goal model and role model, one can begin to understand the overall flow of the
system.

The system begins with Author and Reviewer actors registering with the
Registrar role and the Authors submitting papers to the PaperCollector role. Next,
the Distributor role (which will eventually performed by the PC) gets the papers
from the PaperCollector and the reviewer expertise from the Registrar and then
assigns those papers to the reviewers. After all the Reviewers have submitted their
reviews to the Selector, the Selector decides which papers are accepted and declined
and informs the appropriate Authors. Once all the Authors have submitted the final
version of their paper to the PaperCollector, the Editor takes those papers and sends
them to the Publisher for publication.

The Role Model for the PC organization is shown in Fig. 18. Since the PC
organization is designed to achieve three different CMS goals, the role model must



The O-MASE Methodology 273

«Role»
Assigner

«achieves» AssignPapers

Chair

ViceChair «Role»
Selector

«achieves» MakeDecision

«Role»
Collector

«achieves» CollectReviews

«Role»
Disseminater

«achieves» DisseminatePapers

«Role»
Editor

«achieves» SendToPublisher Publisher

CMS

«Role»
Informer

«achieves» InformDeclined
«achieves» InformAccepted

Member

Author

printProceedings

collectFinals

submitReviews

getExpertise

makeAssignments

getPapers

assignments

getReviewschoose

assign

inform

selection

bidding

select

Fig. 18 Program Committee Role Model

accommodate all three. Notice that the actors of the PC organization include the PC
Chair, Vice-chairs, and Members. In addition, the CMS is modeled as an external
actor since its functionality lies outside the PC organization. As shown in the CMS
Agent Class Model in Fig. 17, the PC organization must play the Editor, Distributor,
and Selector roles defined in the CMS Role Model (Fig. 17).

The key to the correct decomposition of the PC organization is ensuring that
the interfaces defined in the CMS Agent Class and Role models are consistently
implemented in the PC organization. The easiest example of this is the CMS Editor
role, which is implemented directly as a single Editor role in the PC organization.
Notice that the protocols from the Editor to the Publisher and PaperCollector in the
CMS Role Model are implemented as protocols to the CMS and Publisher actors in
the PC Role Model. Thus, the CMS’s PaperCollector role is captured as part of the
CMS actor in the PC Role Model.

The CMS Distributor role is implemented as two separate roles in the PC
organization: Assigner and Disseminater. The Assigner role is used to encapsulate
the various approaches to assigning papers to PC Members as defined in the CMS
description. While the approaches are not defined in the Role Model, the protocols
required for the various approaches are. For instance, the PC Chair can assign them
directly and thus assign protocol from the PC Chair to the Assigner role. The PC
Members can also be involved in selecting papers or can be part of a bidding
process; these options require separate protocols: select and bidding. The process
can also be carried out automatically by the Assigner role. Once the assignments
have been made the Assigner role sends the assignments to the Disseminater role



274 S.A. DeLoach and J.C. Garcia-Ojeda

Architecture
Design

Low-level
Design

Fig. 19 Design-Phase flow of activities

<<predecessor>>

<<input>>

Agent Class
Modeler

Protocol
Modeler

Policy
Modeler

Capability
Modeler

Plan
Modeler Action

Modeler

Model Agent
Classes

Model
Protocols

Model
Policies

Model
Capabilities

Model
Plans

Model
Actions

Low-level
Design

Architecture
Design

<<output>>

<<output>>

<<output>>

<<output>>

<<output>>

<<output>>

Agent Class
Model

Protocol
Model

Capability
Model<<performs primary>>

<<performs,
primary>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

Organization
Model

Role
Model

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

Domain
Model

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

GMoDS

Policy
Model

Action
Model

Plan
Model

Fig. 20 Design Phase in terms of activities and work products

who is responsible for making assignments. These assignments are sent to the CMS
actor, which includes the Reviewer role as defined in the CMS Role Model. We
assume that if PC Members are Reviewers, they are registered in the system as both
and are thus included as both an external PC Member actor and a CMS Reviewer.

2.2 Design

The design phase consists of two activities: Architecture Design and Low-Level
Design. Once the goals, environment, behavior, and interactions of the system
are known, Architecture Design is used to create a high-level description of the
main system components and their interactions. This high-level description is then
used to drive Low-Level Design, where the detailed specification of the internal
agent behavior is defined. This low-level specification is then used to implement
the individual agents during the Implementation phase. A generic example of an
O-MaSE design phase is shown in Fig. 19 in terms of process flow and Fig. 20 in
terms of process roles, work products, and tasks.



The O-MASE Methodology 275

2.2.1 Process Roles
There are six roles in the design phase: Agent Class Modeler, Protocol Modeler,
Policy Modeler, Capability Modeler, Plan Modeler, and Action Modeler.

Agent Class Modeler
The Agent Class Modeler is responsible for creating the Agent Class Model and
requires general modeling skills and knowledge of the O-MaSE Agent Class Model
specification.

Protocol Modeler
The Protocol Modeler designs the protocols required between agents, roles, and
external actors and requires protocol modeling skills.

Policy Modeler
The Policy Modeler is responsible for designing the policies that govern the
organization.

Capability Modeler
The Capability Modeler is responsible for defining the Capability Model and
requires modeling skills and O-MaSE Capability Model specification knowledge.

Plan Modeler
The Plan Modeler designs the plans necessary to play a role; required skills include
understanding of Finite State Automata and O-MaSE Plan Model specification
knowledge.

Action Modeler
The Action Modeler documents the Action Model, which requires the ability to
specify appropriate pre- and post-conditions for capability actions.

2.2.2 Activity Details
The Design phase has two activities: Architecture Design and Low-level Design. In
the Architecture Design we focus on documenting the different agents, protocols,
and policies using three tasks: Model Agent Classes, Model Protocols, and Model
Policies. In the low-level design we focus on the capabilities possessed by, actions
performed by, and plans followed by agents. The tasks of low-level design include
Model Capabilities, Model Plans, and Model Actions.

Architecture Design
Architecture Design consists of three tasks as shown in Fig. 21. The Model Agent
Classes task identifies the types of agents in the organization and the protocols
between them. Agent classes may be defined by the roles they play or the capabilities
they possess, which implicitly defines the roles they can play. Thus, an Agent Class
provides a template for a type of agent in the system.



276 S.A. DeLoach and J.C. Garcia-Ojeda

<<input>>

Protocol
Modeler

Policy
Modeler

Model Agent
Classes

Model
Policies

<<output>>

<<output>>

<<output>>

Agent Class
Model

<<performs primary>>

<<performs primary>>

<<performs primary>><<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

GMoDS Policy Model

Agent Class
Modeler

Model
Protocols

Protocol ModelRole Model

Organization
Model

Fig. 21 Architecture Design activity diagram

The Model Protocols task specifies the details of the interactions between agents
or roles. Since protocols can be specified in Organization Models, Role Models,
and Agent Class Models, the method engineer may decide which set of protocols to
define. If the Role Model protocols are defined via Protocol Models, agent classes
playing those roles should inherit those protocols. The Protocol Model defines the
types of messages sent between the two entities and is similar to UML interaction
models [18].

The Model Policies task defines a set of rules that describe how an organization
should behave. In general, policies are used to restrict agent behavior and may be
enforced at design time or at runtime. How policies are enforced is a critical decision
that affects the way the Policy Model is used during development. If there is no
runtime mechanism designed or provided by the runtime environment, designs and
implementations must be evaluated to ensure that they conform to the policies.

Low-Level Design
Low-level Design consists of three tasks as shown in Fig. 22. The Model Capab-
ilities task defines the internal structure of the capabilities possessed by agents in
the organization, which may be modeled as an Action or a Plan. An action is an
atomic functionality possessed by an Agent and defined using the Model Actions
task. A plan is an algorithmic definition of a capability and is defined using the
Model Plans task.

The Model Plans task captures how an agent can achieve a specific type of goal
using a set of actions specified as a Plan Model (a Finite State Machine). The Model
Actions task defines the low-level actions used by agents to perform plans and
achieve goals. Actions are typically defined as a function with a signature and a set
of pre- and post-conditions. In some cases, actions may be modeled by providing
detailed algorithmic information.



The O-MASE Methodology 277

Capability
Modeler

Plan
Modeler

Action
Modeler

Model
Capabilities

Model
Plans

Model
Actions

<<output>>

<<output>>

<<output>>

Agent Class
Model

Capability
Model

<<performs,
primary>>

<<performs primary>>

<<performs primary>>

Role
Model

Domain
Model

<<input>>

<<input>>

<<input>>

<<input>><<input>>

<<input>>

<<input>>

<<input>>

GMoDS

Action
Model

Plan
Model

Fig. 22 Low-level Design activity diagram

Policy

Role

Goal

Actor Protocol

Message

Agent

Environment
Object

Organizational
Agent

Plan

Action

Policy
Model

Plan
Model

Action
Model

F

D

R

Protocol
Model

Agent Class
Model

Q D

D

Q

Q
D

Q

D

Q

Q

D

D

Capability

D

R

R

Q

QQ

Q

Capability
Model

Fig. 23 Design document structure

2.2.3 Work Products
The Design phase produces six work products, each of which is a model that
creates various elements in the O-MaSE metamodel. The relationships between
these models and the O-MaSE metamodel are documented in Fig. 23. Each model is
defined in terms of elements from the O-MaSE metamodel, which are represented
with UML class icons. Within each model, each metamodel element may be
Defined, reFined, Quoted, Related, or Relationship Quoted.

Work Product Kinds
There are six work products produced in the Design phase: Agent Class Model,
Protocol Model, Policy model, Capability Model, Plan Model, and Action Model as
defined in Table 5.



278 S.A. DeLoach and J.C. Garcia-Ojeda

Table 5 Design work products

Name Description Kind

Agent Class Model defines the agent classes and sub-organizations Structural
that will populate the organization.

Protocol Model represents the different relations/interaction Structural
between external actors and agents/roles.

Policy Model describes all the rules/constraints of the system Behavioral
Capability Model defines the internal structure of the capabilities Structural

possessed by agents in the organization.
Plan Model captures how an agent can achieve a specific type Behavioral

of goal using a set of actions (which includes
sending and receiving messages).

Action Model defines the low-level actions used by agents to Behavioral
perform plans and achieve goals.

Agent Class Model
The Agent Class Model is shown in Fig. 24. There are three agents and one sub-
organization (an organizational agent) defined to implement the six roles defined in
the role model. The Database agent plays the PaperCollector role, the Registration
agent plays the Registrar role, and the Reviewer agent plays the Reviewer role. The
protocols defined in the role model are each inherited by the agent class model based
on the roles assigned to the various agents.

A unique aspect of this design is the use of an organizational agent to capture the
PC. In this design, the PC organization plays the Distributor, Selector, and Editor
roles within the CMS. A further decomposition of this organizational agent is given
below.

The Agent Class Model for the PC organization is shown in Fig. 25. The six
roles from the PC Role Model result in four separate agents in the PC organization.
Two agents simply implement single roles: the ReviewCollector agent plays the
Collector role, while the Editor agent plays the Editor role. However, four other
roles are combined into two agents. The reason for combining these roles is the
fact that in both cases, there were two roles that communicated directly with each
other and operated in a basically sequential manner. Therefore, the Disseminater
and Assigner roles were combined into the PaperAssigner agent, while the Informer
and Selector roles were combined into the PaperSelector role. The protocols and
external agents were inherited directly from the Role Model, and no new protocols
or external agents were added.

Protocol Model
The Model Protocols activity defines the internal details of each protocol identified
in the Role and Agent Class models. At this point, all of the protocols in the CMS
or the PC organization are modeled. One of the more interesting examples of a
Protocol Model is shown in Fig. 26, which shows the bidding protocol between the
Member actor and the Assigner agent. In reality, this protocol would likely be more



The O-MASE Methodology 279

Publisher

Author
Reviewer

«Agent»
Database

«plays» PaperCollector

«Agent»
Registration

«plays» Registrar

«Organization»
PC

«plays» Editor
«plays» Distributor
«plays» Selector

«Agent»
Reviewer

«plays» Reviewer

printProceedings register

submitPaper

submitFinal

inform
writeReview

register

retrievePaper

collectFinals

getExpertise

submitReviews

makeAssignment

Fig. 24 Agent Class Model for conference management system

complex, possibly allowing the member to change bids or to protest an assignment;
however, for the purposes of this example, we will take a simple approach. When
the PC distributes papers via a bidding process, this protocol is used between the
Assigner role and each Member of the PC committee. The protocol only captures
the interactions between the Assigner and one Member—this protocol is repeated
for each member. First, the PC Assigner role sends the callForBids message to the
Member with a list of available papers. Next, the Member decides what bid to place
on each of the papers in the set of papers received. For each paper the Member would
like to bid on, a bid message is sent back to the Assigner. When the Member has
completed bidding on papers, the Member sends a done message to the Assigner.
Once the Assigner receives all the bids from all the Members, the Assigner decides
the final assignments for each Member and a assignment message is sent to the
Member and the protocol is complete.

Policy Model
As defined in [13], we use a language that includes temporal formula with
quantification. For simplicity, we limit our examples to first-order predicate logic
in this example. The language used to specify policies comes from entities defined
in the various models, for example, objects defined in the Domain Model, the Roles
defined in the Role Model, and the Agents defined in the Agent Class Model. While
most of the interesting policies apply the PC organization, we do want each paper
to have a unique ID. Thus, a policy to ensure that each paper has a unique ID can be
stated as



280 S.A. DeLoach and J.C. Garcia-Ojeda

Chair

«Agent»
Editor

«plays» Editor

«Agent»
PaperSelector

«plays» Informer
«plays» Selector

«Agent»
PaperAssigner

«plays» Disseminater
«plays» Assigner

Member

Author

«Agent»
ReviewCollector

«plays» Collector

CMS

Publisher

choose

assign

select bidding

getReviews

inform

protocol

makeAssignments

getPapers

getExpertise

printProceedings

collectFinals

Fig. 25 Program Committee Agent Class Model

8p1; p2 W Paper p1:ID D p2:ID ) p1 D p2

The CMS requires that a PC Member or Reviewer may not see or infer information
about their own submissions. Essentially, this requires that PC Members would not
be able to see any reviews or decisions made about their papers except through the
normal inform protocol with Authors. We assume here that the design of the system
only allows a PC Member (not the Chair) to see submitted reviews through the
submittReview protocol with the Collector role. We also assume that the Member
can only see reviews related to papers that the member has submitted a review for.
Thus to specify that a member cannot review their own paper and that a Member
may not view reviews related to their papers, we can specify the following policies:

8p W Paper; m W Member; a W Author a D m ^ writes.a; p/ ) m: 2 assignedTo.p; m/

8p W Paper; m W Member submitReview.m; p/ ) m 2 assignedTo.p; m/



The O-MASE Methodology 281

Alternative

Loop

[not done]

«Role»
Assigner

«Actor»
Member

callForBids(papers)

bid(paper)

done()

assignment(papers)

Fig. 26 Program Committee bidding protocol

The first policy states that if a Member is also an Author and writes a paper, that
Member cannot be in the set of Reviewers in the assignedTo association with that
paper. The second policy states that if a Member submits a review of a paper, then
that Member must be in the set of assigned reviewers in the assignedTo association
with that paper.

Capability Model
Capability Model captures the internal structure of the capabilities possessed by
agents in the organization. Each capability may be modeled as an Action or a
Plan. An action is an atomic functionality possessed by an Agent and defined
using an Action Model as described in section “Action Model”. A plan is an
algorithmic definition (defined via a state machine) of a capability that uses actions
and implements protocols. Each plan is defined using a Plan Model as presented in
section “Plan Model”.



282 S.A. DeLoach and J.C. Garcia-Ojeda

«State»
Evaluate

OK = getOK()

«State»
Review

review = getReview()

receive(reviewPapers(papers), PC)

[not OK] ^ send(decline(), PC)

[OK] ^ send(accept(), PC)

[moreReviews] ^ send(submit(review), PC)

[lastReview] ^ send(submit(review), PC)

Fig. 27 Program Committee bidding protocol

Plan Model
Typically, a plan is required for each type of goal that an agent can achieve. Thus,
since agents are defined by the roles they play, one must look at the goals that can be
achieved by each role the agent can play. We illustrate this process with the Reviewer
agent. Since the Agent Class Model in Fig. 24 defines that Reviewer agent can only
play the Reviewer role, we only need to look at the goals that can be achieved by
the Reviewer role. In the Role Model of Fig. 17 we can see that the Reviewer role is
designed to only achieve the ReviewPapers goal. Therefore, we only need to define
a single plan to fully define the behavior of the Reviewer agent.

The ReviewPapers plan for the Review agent is shown in Fig. 27. It is defined by
a simple-state machine that starts when the agent receives a reviewPapers message
from the PC organization (denoted by the label on the transition from the start state
to the Evaluate state). The Reviewer has the right to accept or reject the papers
presented. If accepted, the Reviewer sends an accept message to the PC and enters
the Review state. Here the Reviewer agent waits for the actual human reviewer to
enter reviews. As each review is received, the Reviewer sends the review to the PC
via a review message. When all reviews have been received, the Review plans end.

Action Model
The Action Model defines the low-level actions used by agents to perform plans
and achieve goals. Actions belong to capabilities possessed by agents. Actions are
typically defined as a function with a signature and a set of pre- and post-conditions.
In some cases, actions may be modeled by providing detailed algorithmic inform-
ation. If using automatic code generation techniques, this information is generally
captured as a function or an operation in the language being generated. In either
case, the Action Model is usually just a textual document.



The O-MASE Methodology 283

Role Goal
Model

Goal
Model

Organization
Model

Agent Class
Model

Protocol
Model

Policy
Model

Plan
Model

Action
Model

Domain
Model

Role Description
Document Capability

Model

System
Description

GMoDS
Role

Model

Fig. 28 Work Product Dependencies

2.3 Implementation

Finally, the design is translated to code. The purpose of this phase is to take
all the design models created during the design and convert them into code that
correctly implements the models. Obviously, there are numerous approaches to code
generation based on the runtime platform and implementation language chosen.
In this phase there is a single Role, the Programmer who is responsible for
writing code based on the various models produced during the Design phase. The
output of the Generate Code task is the source code of the application. While not
currently covered in the process, system creation ends with testing, evaluation, and
deployment of the systems.

3 Work Product Dependencies

Figure 28 identifies the dependencies between all the work products in O-MaSE.
These dependencies characterize different pieces of information produced during
the different stages of the development process and serve as inputs to and outputs of
work units (i.e., either activities or tasks).

References

1. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38, 275–280 (1996)

2. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardization to research. Int. J. Agent Oriented Softw. Eng. 1, 91–121
(2007)



284 S.A. DeLoach and J.C. Garcia-Ojeda

3. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an agent-oriented
software process for engineering complex systems. J. Auton. Agent Multi Agent Syst. 20,
260–304 (2009)

4. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE: a customizable approach to designing and
building complex, adaptive multiagent systems. Int. J. Agent Oriented Softw. Eng. 4, 244–280
(2010)

5. DeLoach, S.A., Miller, M.: A goal model for adaptive complex systems. Int. J. Comput. Intell.
Theory Pract. 5, 83–92 (2010)

6. DeLoach, S.A., Valenzuela Jorge, L.: An agent-environment interaction model. In:
Padgham, L., Zambonelli, F. (eds.) Agent-Oriented Software Engineering VII: 7th Interna-
tional Workshop, AOSE 2006. Lecture Notes in Computer Science, vol. 4405, pp. 1–18.
Springer, Heidelberg (2006)

7. DeLoach, S.A., Oyenan, W., Matson, E.T.: A capabilities based model for artificial organiza-
tions. Auton. Agent Multi Agent Syst. 16, 13–56 (2008)

8. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agent systems. In: Proceedings of the 3rd International Conference on Multi Agent Systems,
pp. 128–135. IEEE Computer Society, Washington (1998)

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multi-agent systems. In: Giorgini, P., Muller, J.P., Odell, J. (eds.) Agent-Oriented Software
Engineering IV. Lecture Notes in Computer Science, vol. 2935, pp. 214–230. Springer, Berlin
(2003)

10. Garcia-Ojeda, J.C., DeLoach, S.A.: Robby: agentTool process editor: supporting the design
of tailored agent-based processes. In: Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC ’09), pp. 707–714. ACM, New York (2009)

11. Garcia-Ojeda, J.C., DeLoach, S.A.: Robby: agentTool III: from process definition to code
generation. In: Decker, K., Sichman, J., Sierra, G., Castelfranchi, C. (eds.) Proceedings of
the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’09), vol. 2, pp. 1393–1394. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2009)

12. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-MaSE: a custom-
izable approach to developing multiagent development processes. In: Luck, M., Padgham, L.
(eds.) Proceedings of the 8th International Conference on Agent-oriented Software Engineer-
ing VIII (AOSE’07). Lecture Notes in Computer Science, vol. 4951, pp. 1–15. Springer, Berlin
(2007)

13. Harmon, S., DeLoach, S.A., Robby: trace-based specification of law and guidance policies for
multiagent systems. In: Artikis, A., O’Hare, G.M., Stathis, K., Vouros, G. (eds.) Engineering
Societies in the Agents World VIII. Lecture Notes in Artificial Intelligence, vol. 4995,
pp. 333–349. Springer, Berlin (2008)

14. Holland, O., Melhuish, C.: Sigmergy, self-organization, and sorting in collective robotics. Artif.
Life 5, 173–202 (1999)

15. Object Management Group. Software and systems process engineering meta-Model
specification, v2.0. Object Management Group. http://www.omg.org/spec/SPEM/2.0/PDF
(2008). Accessed 14 May 2012

16. Odell, J., Parunak, H., Bauer, B.: Representing agent interaction protocols in UML. In:
Wooldridge, M.J., Ciancarini, P. (eds.) First International Workshop, AOSE 2000 on Agent-
oriented Software Engineering, pp. 121–140. Springer, New York (2001)

17. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell, J.
Giorgini, P., Muller, J. (eds.) Proceedings of the 5th International Conference on Agent-
Oriented Software Engineering (AOSE’04). Lecture Notes in Computer Science, vol. 3382,
pp. 78–92. Springer, Berlin (2005)

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual,
2nd edn. Addison-Wesley, Upper Saddle River (2004)

http://www.omg.org/spec/SPEM/2.0/PDF


The O-MASE Methodology 285

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Upper Saddle River (2002)

20. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems design. In:
Proceedings of the 7th Workshop from Objects to Agents (WOA 2006), pp. 130–137 (2006)


	The O-MASE Methodology
	1 Introduction
	1.1 The O-MaSE Life Cycle
	1.2 The O-MaSE Metamodel

	2 Phases
	2.1 Requirement Analysis
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Design
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Implementation

	3 Work Product Dependencies
	References


