
INGENIAS-Scrum

Juan C. González-Moreno, Alma Gómez-Rodríguez,
Rubén Fuentes-Fernández, and David Ramos-Valcárcel

Abstract
This chapter introduces the definition of an agile process for the INGENIAS
methodology. It is based on a well-known development process: Scrum. The
process adopts the iterative and fast plan presented originally by the methodology
and uses some of the activities and most of the work products of the INGENIAS
proposal with the Unified Development Process (UDP) (introduced in a previous
chapter). The new approach is also based on the INGENIAS metamodel, but
it is more focused on code development than on system specification. It takes
advantage of the INGENIAS Agent Framework (IAF), which is part of the
INGENIAS Development Kit (IDK). As this approach uses the same metamodels
than the UDP based, there are not great differences in the models of the case
study, but, instead, the organization of the work products and the time spent to
get the final results is quite different.

1 Introduction

Agent-Oriented Software Engineering (AOSE) methodologies have adopted dif-
ferent development processes depending on their particular needs and what the
prevalent processes in mainstream software engineering [1] were. From [2], the
process models used in AOSE can be classified into the following groups:
• Waterfall. The waterfall-like process models prescribe a sequential, linear flow

among phases. Although some waterfall models include some kind of return to

J.C. González-Moreno • A. Gómez-Rodríguez (�) • D. Ramos-Valcárcel
Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain
e-mail: alma@uvigo.es; jcmoreno@uvigo.es; david@uvigo.es

R. Fuentes-Fernández
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
e-mail: ruben@fdi.ucm.es

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__8,
© Springer-Verlag Berlin Heidelberg 2014

219

mailto:alma@uvigo.es
mailto:jcmoreno@uvigo.es
mailto:david@uvigo.es
mailto:ruben@fdi.ucm.es


220 J.C. González-Moreno et al.

previous phases, in real projects this return occurs very late and the cost of any
change in the initial specifications is unacceptable.

• Evolutionary and Incremental. The stages of this process model category consist
of expanding increments of an operational software product, with the direction
of evolution being determined by operational experience. Most of AOSE meth-
odologies have process models within this category.

• Transformation. This software development may be seen as a sequence of steps
that gradually transform a set of formal specifications into an implementation.

• Spiral. It organizes the development process in a cyclic way. Each cycle of the
spiral consists of four phases: determining the objectives, evaluating the risks of
these objectives, developing and verifying, and reviewing the previous stages.
Among all of them, agile processes [3] can be included in Evolutionary and

Incremental class. This means that the development is organized to deliver func-
tional increments of high value for the customer in short periods of time. These
processes are code-oriented in the sense that they consider the main product of
development is functional code.

Scrum [4] is an empirical agile project management framework. It relies on
self-organizing, empowered teams to deliver the product increments, but also on
a customer, or Product Owner, that must provide the development team with a
list of desired features, using business value as the priority mechanism. In real
life, Scrum is a mechanism in the sport of rugby for getting an out-of-play ball
back into play. The term was adopted in 1987 by Ikujiro Nonaka and Hirotaka
Takeuchi to describe hyper-productive development. Jeff Sutherland developed the
Scrum process in 1993 while working at the Easel Corporation, and Ken Schwaber
formalized the process in the first published paper on Scrum at OOPSLA 1995 [5].

The Scrum process framework is specially well suited for Knowledge Engineer-
ing Developments based on the use of multi-agent systems (MAS). This chapter
addresses its integration with the INGENIAS methodology [6] using some specific
tools. INGENIAS is a general purpose AOSE methodology that adopts a model-
driven development (MDD) [7]. Its development is organized around the definition
of models that are semi-automatically transformed into different products, for
example, code, tests, and documentation.

The INGENIAS modeling language is defined through a metamodel, following
common practices in MDD [8]. It is the basis to define the transformations that
generate the code of support tools and MAS in INGENIAS. This metamodel
has proved its capability and maturity in the development of MAS for different
domains [6, 9, 10]. The main support tool is the INGENIAS Development Kit
(IDK) [11], which includes a graphical editor for MAS specifications compliant
with the INGENIAS metamodel, and integrates plug-ins to provide additional
functionalities. Among these plug-ins, those to manage developments using the IAF
are the most relevant ones.

The IAF [12] is a set of libraries that facilitate the implementation of INGENIAS
agents built on top of the Java Agent DEvelopment Framework (JADE) [13]. The
tool has been proposed from the experience in the application of the INGENIAS
methodology over several years to enable a MDD.



INGENIAS-Scrum 221

Product
Backlog

Sprint
Backlog

Sprint
Product

24
Hours

2–4
Weeks

Fig. 1 Scrum life cycle

The IAF is fully integrated in the IDK [11] and provides facilities for project
checking, code generation, debugging, and documentation. This means that fol-
lowing the guidelines of the IAF documentation, an experienced developer can
focus most of its effort on specifying the system, converting a great deal of the
implementation in a matter of transforming automatically specifications into code.
This quick transition from specifications to code facilitates the adoption of agile
processes such as Scrum [4].

The rest of this chapter fully specifies the development process based on the
Scrum framework and the use of the IAF proposed in [1]. The INGENIAS with the
UDP chapter in this book also considers the INGENIAS methodology, but with
its original process based on the Unified Development Process (UDP) [14]. The
interested reader can find additional discussion on the INGENIAS methodology in
that chapter.

1.1 The INGENIAS-Scrum Process Life Cycle

Scrum [4] is a suitable process for contexts where developers consider short and
incremental development cycles focused on running code. This scenario is enabled
by the IAF [12] for the INGENIAS methodology (Fig. 1).

Scrum usually addresses the production of a software version (i.e., a release)
every couple of months. Potential features to accomplish in a release are collected in
the product backlog and prioritized. A product owner, who represents the customer,
is in charge of updating this backlog. The release is produced in a number of
iterations called sprints. Each sprint usually lasts from 2 to 4 weeks. The sprint
content is defined by the product owner taking into consideration both priorities and
team capabilities. The team defines the tasks required to develop the functionalities



222 J.C. González-Moreno et al.

Fig. 2 Scrum phases

selected for the sprint. Within a sprint, progress checkpoints are performed during
the daily scrums. This enables the scrum master to assess work progress regarding
the sprint goals, and to suggest adjustments to ensure the sprint success. At the end
of each sprint, the team produces a potentially releasable product increment, whose
evaluation drives the backlog update for the next sprint.

All this work is planned in two kinds of phases (see Fig. 2): the Preparation phase
and the Sprint phases. The Preparation phase includes all the activities to be done
before the first sprint, focused on the elaboration of the product backlog. The Sprint
phases covers the execution of all the sprints required to release the final product.
The following sections discuss the key issues of the integration of this process with
INGENIAS through model-driven practices.

1.2 Metamodel

The INGENIAS metamodel describes the elements that constitute a MAS according
to this methodology. This metamodel is explained in detail in the INGENIAS with
the UDP chapter, so this chapter only offers a short overview. A detailed discussion
of the metamodel can be found in [15, 16].

This metamodel considers several viewpoints (i.e., models) that correspond to
different aspects of a MAS. Figure 3 (shared with the INGENIAS with the UDP
chapter) shows them and their relationships. The viewpoints are
• The MAS organization, that is, the Organization Model.
• The definition, control and management of each agent mental state, that is, the

Agent Model.
• The tasks and goals assigned to each agent, that is, the Tasks and Goals Model.
• The agent interactions, that is, the Interaction Model.
• The external environment where agents interact to satisfy their goals, that is, the

Environment Model.

1.3 Guidelines and Techniques

The process proposed for INGENIAS [6] must be able to guide developers to obtain
the products that meet the development goals. Being INGENIAS a MDD-oriented
methodology, this means that once a specification conforming to the metamodels is
defined, the products are generated through transformations and using, if needed,
additional resources (e.g., code templates, external code, or scripts).



INGENIAS-Scrum 223

Fig. 3 Metamodel of the INGENIAS methodology

1.3.1 Scrum and MDD
Although Scrum [4] does not describe the engineering activities required for product
development, the application of Scrum to INGENIAS does it. INGENIAS-Scrum
relies on the use of the IAF [12], which allows to combine the classic approach for
coding applications with the modern techniques of automatic code generation.

An IAF compliant specification must describe in a sound way the following
aspects:
• Agents. It is the main building block in an INGENIAS MAS. An agent is

defined completely when its perception, main tasks, and coordination means are
described.

• Tasks. They are the basic units of agent’s behavior. A task modifies the agent
mental state and performs actions over the applications.

• Interactions. They describe how agents coordinate in order to satisfy their goals.
Coordination is defined in terms of transferred information units between agents.

• Deployment. It expresses how agents are instantiated and initialized in the final
system.

• Tests. The test define the testing units that the MAS should pass through to ensure
the system will achieve its goals and will work in a sound way along its life cycle.
This information is provided through several INGENIAS models (see Sect. 1.2).

The core ones, in this case, are the Agent Model, the Interaction Model, and the
Tasks and Goals Model. The Environment Model may also be considered, mainly to
point out the relationships with external elements. Nevertheless, its elements can be



224 J.C. González-Moreno et al.

defined by using the rest of models, particularly using the Agent Model (as shown
in Fig. 3). Regarding the Organization Model, it is not strictly necessary to use
it, but it may help to have a global vision of the final solution in what refers to
agents and roles that participate, and responsibilities in the satisfaction of the main
goals. Moreover, it may be used to reflect many of the product items proposed in
the original Scrum framework.

Note that although not all the INGENIAS models are strictly necessary to create
an IAF compliant specification, this does not mean that the models do not provide
information usable for code generation. For instance, the concepts of Autonomous
Entity and Organization presented in Table 2 of the INGENIAS-UDP chapter could
have a translation to code in the form of new capabilities or relationships.

1.3.2 IDK Considerations
The IDK [6, 11] is a graphical tool for MAS model creation. Although it is fully
adapted to cover the INGENIAS metamodel, the editor offers several features that
allow the adaptation to new metamodels or target platforms. At present many of
such features could be used to accurately support the documentation provided for
some non-standard artifacts like user stories, cards, priorities, estimations, etc. For
instance, a good practice to cover users stories is to associate a package to each
one and use the text description to introduce a full description of the story. This
text description may be used also to include information about priority, velocity,
tasks assignation, etc. After, this description can be refined and formalized by
using the diagrams of the metamodel that is associated with such package. Another
good complementary practice is to use a naming protocol for each package to
document the version and level of development for such package. The use of that
package naming convention also facilitates the implementation of an iterative and
incremental process for any system. The capability of the tool, which allows to move
diagrams from a package to another one, is also fundamental to facilitate such kind
of process.

1.3.3 IAF Considerations
During the definition of the product backlog using the INGENIAS models, par-
ticipants must take into account that an agent in the IAF performs a simple
deliberation cycle:
• Identify new tasks to schedule and tasks to remove from the schedule
• Execute one scheduled task

This cycle omits the classic perception step as it is not needed. In fact, the
agent can receive new information at any moment and this does not cause internal
conflicts. The incorporation of new pieces of information does not imply a change
in already scheduled tasks, though it may mean the incorporation of new tasks.



INGENIAS-Scrum 225

Fig. 4 The Preparation phase flow of activities

2 Phases of the INGENIAS-Scrum Process

2.1 Process Documentation: Preparation Phase

As the Scrum framework does not take into account all the aspects of project
planning, the main goal of the Preparation phase is to define the Plan Release. This
implies establishing the features to address in the release and the estimated tasks to
achieve them.

Accordingly with the original Scrum framework, the Preparation phase
comprises the following activities: Initiate Product Backlog, Plan Release, and
Preparation Tasks. Figure 4 shows the workflow of these activities, and Fig. 5
shows the structure of the phase in terms of the tasks and work products to be
accomplished. Section 2.1.1 provides information about the roles responsible of
each task and the kind of responsibility they assume. Section 2.1.2 details the
activities and their tasks, and a description of the work products related with those
tasks appears in Sect. 2.1.3

It is interesting to note that several tasks of this phase have to be done using the
IAF integrated in the IDK. The main guideline to apply correctly both INGENIAS
tools is the technical report [12], which comes with the IDK distribution.

2.1.1 Process Roles
Following the Scrum approach, the roles implied in the Preparation phase are the
Product Owner, the Scrum Team, and the Stakeholder. The following sections
describe them in detail.

Product Owner
This role represents the customer during the development and is in charge of
the Initiate Product Backlog activity. This activity produces a backlog containing
enough features to allow the startup of a number of sprints. The role also participates
in the Plan Release activity to set up the release’s initial planning in order to launch
the sprints.



226 J.C. González-Moreno et al.

Fig. 5 The Preparation phase described in terms of activities and work products

To obtain the backlog, the Product Owner identifies a list of items, prioritizes
them, and includes them in the Product Backlog. In a traditional approach, these
items (on the preparation phase) consist of User Stories that details the requirements
of the system. In the INGENIAS-Scrum approach, the Product Backlog will
consist of an Agent Model and Organization Model (optionally). User stories are
documented using the IDK by the Scrum Team and are stored on the description
part (see Fig. 10) of the goals identified following the Product Owner indications.
As this role is in charge of defining the functionality of the application, it is desirable
that she/he could also determine the acceptance tests while prioritizing each item.



INGENIAS-Scrum 227

Fig. 6 Workflow of the Initiate Product Backlog activity

Scrum Team
It is mainly responsible of the Preparation Tasks activity that will be done jointly
with Initiate Product Backlog. This role also participates actively in the rest of
the activities of the Preparation phase. The main goal at this point of the life cycle
is to specify an initial view of the system to be developed using the IDK and the
INGENIAS metamodels (see Fig. 3). This view comprises the development of an
Organization Model (optionally) and/or an initial Agent Model (mandatory) with
several Agent Diagrams, including the agents, roles, and goals required by the
Product Owner for the MAS. This initial view must include enough information
to provide a planning for the first 2–3 sprints.

Stakeholder
The participation of this role is optional and represents, as usual, anyone that
does not directly participate in the project but can influence the product under
development.

2.1.2 Activity Details
Initiate Product Backlog
The product backlog is a prioritized list of features that contains short descriptions of
all the functionality desired for the product. For INGENIAS, these requirements are
described using the IDK, either by adapting a specification from a previous project
or by defining a new one.

When using Scrum, it is not necessary to start a project with a lengthy,
upfront effort to document all the requirements. Typically, a Scrum Team and its
Product Owner begin by writing down everything they can think of easily, and this
constitutes the first version of the product backlog. This is almost always more than
enough for a first sprint (when documented accordingly with the IDK). The product
backlog (i.e., the INGENIAS specification) is then allowed to grow and change as
more information is learned about the product and the customers. The flow of tasks
needed to perform this activity is described in Fig. 6 and detailed in Table 1.



228 J.C. González-Moreno et al.

Table 1 Description of the tasks of the Initiate Product Backlog activity

Activity Task Description Involved roles

Initiate
Product
Backlog

Collecting
the backlog
items

The Product Owner establishes a first list of
requirements (a requirement becomes a Product
Backlog Item) that she/he wish to be
implemented for the end of the release. After
this, a workshop is organized in which the
Product Owner participates, as well as, the whole
team and the stakeholders (if necessary). The
Product Owner introduces the backlog draft and
the assistants may suggest additional items.

Product Owner
Scrum Team
Stakeholder

Backlog
prioritizing

The full list of backlog items is prioritized by the
Product Owner. Items with higher priority must
be addressed first in the release. If a backlog
contains a lot of items, the definition of Themes,
and the association of one of them to each item,
is suggested. After this, the Product Owner
prioritizes the themes.

Product Owner
Scrum Team
Stakeholder

Preparation Tasks
This activity is performed by the Scrum Team in order to prepare the next meetings
with the Product Owner and the Stakeholders. It creates an ongoing INGENIAS
specification intended to reorganize, formalize, and structure the preliminary spe-
cifications in the product backlog. This implies that this activity is more complex
than the original Scrum one. It requires to perform several tasks which are common
to the INGENIAS activities Create the Organization Model and Create the Agent
Model that have been detailed on the INGENIAS-UDP chapter. Figure 7 shows the
recommended flow of such tasks. As it can be easily seen, they differ a little from
the ones proposed on the INGENIAS-UDP chapter.

At this stage of the process, the considerations introduced at Sect. 1.3.3 must be
taken into account for creating and modifying the Organization and Agent Models.

Plan Release
The previous activities deliver an initial INGENIAS specification. With this inform-
ation, the Scrum Master, jointly with the Product Owner, can establish the Plan
Release, which defines the sprints required to meet the goals. Several tasks have to
be performed, including the definition of the release success criteria, the estimation
of the backlog items and the velocity of the sprint, the definition of the sprints length,
and the association of the backlog items. Figure 8 shows the tasks workflow for this
activity that Table 2 further explains.

2.1.3 Work Products
Work Product Kinds
The unique product produced by the Preparation phase is the initial Product
Backlog. A Product Backlog is a set of items: the Product Backlog Items (PBI).
A PBI in the INGENIAS-Scrum approach is a composed work product of type



INGENIAS-Scrum 229

Fig. 7 Workflow of the Preparation Tasks activity

Fig. 8 Workflow of the Plan Release activity

Composite (Structured C Structural C Behavioural). In the original proposal, each
PBI can be described as free text and refers to one of the following kind of items:
• Features. A feature usually is described with User Stories that comprise a short

and simple description of the desired functionality from the user’s perspective.
An example would be, “As an author, I can send a paper to the conference and I
will be informed about its reception and the identification number assigned to it”



230 J.C. González-Moreno et al.

Table 2 Description of the tasks to be done during the Plan Release activity

Activity Task Description Involved roles

Plan
Release

Defining
release
success
criteria

This task pursues to establish the criteria
to consider a Release successfully finished
by the Product Owner. The Scrum Team
(the Scrum Master, in particular) must
take into account that there are 2 types of
releases: End-Date Driven Release, which
must be available to the end users before a
deadline; and Feature Driven Release, in
which the release finishes when all of the
requirements are implemented.

Product Owner
Scrum Team

Estimating
backlog items

Estimation must be performed by the
team item per item. It is a good idea to
start by the highest priority items. In this
activity, it is usual to use as range of
values for estimations the Fibonacci
Numbers: 1, 2, 3, 5, 8, and 13. Regarding
the estimation techniques, the collective
ones are preferred.

Scrum Team

Defining
Sprint length

Although historically the length of a
sprint is 30 days, INGENIAS-Scrum
recommends 15 days, although a week or
21 days are also acceptable lengths,
according to the difficulty of the work and
the human resources available.

Scrum Team

Estimating
velocity

The velocity (i.e., the number of items that
could be finished) is calculated as the sum
of all items checked and approved as fully
implemented in a Sprint. This activity
makes an estimation of the expected team
velocity. It should be done automatically
because it is supposed that the team has
worked together in previous projects
using the INGENIAS tools and the JADE
platform. Nevertheless, the velocity can
be manually estimated for the first time
and adjusted in the next sprints.

Scrum Team

Associating
backlog items
to sprints

This task takes into consideration the
parameters obtained from the previous
tasks. A slight adjustment of items
prioritization may be done at this stage, so
the velocity can be better adjusted to the
team features. It is not required to make
this association for all sprints of the
release at the beginning, but it should be
done for the 2 or 3 first ones.

Product Owner
Scrum Team

• Bugs. In general, a bug does not present any real difference with a new feature
(in the description), and it will be treated as if a new feature or a change is to be
incorporated.



INGENIAS-Scrum 231

Fig. 9 The Preparation Work Product Model structure

• Technical work. This kind of item introduces detailed aspects related with the
deployment of the system. An example of technical work would be: “Upgrade
the Conference Server Operating System to OS X Mountain Lion” or “Use a
version up to 2.0 of the Mail Manager system”.

• Knowledge acquisition. This item is related to obtain the skills and knowledge
required for the project. The item reflects some kind of external knowledge that
is necessary to better understand the problem or to apply a particular solution. An
example could be asking the team members the study and/or the selection among
several Java libraries to determine the most accurate one for the system or to find
a solution to the problem restricted to the use of such library.
User stories usually determine several goals that must be satisfied by agents

playing certain roles. Bugs must be documented by modifying the description of the
related user story or adding a new one. Regarding technical works and knowledge
acquisition items, a good practice is to document them by defining a test or proof for
a part of the system, or by specifying the concrete API needed to solve the problem
jointly with the agent that is in charge of applying such solution.

In INGENIAS-Scrum, a Product Backlog is described by a set of INGENIAS
models as reflects Fig. 9. For a full description about the Organization and Agent
Model, see INGENIAS-UDP chapter. At the Preparation Phase, each PBI, as
described by the Product Owner and the Stakeholders, is specified as a Package
description as pointed in Sect. 1.3.2, which is refined by the Scrum Team by using
agent and/or organization diagrams to determine the Agent and/or Organization
Models. Agent Model is mandatory at this phase, but could be complemented with
an Organization Model to provide the responsibilities of groups, agents, and roles
in order to satisfy the identified goals. Figure 9 shows the relationships between the
MAS meta-model elements.

Product Backlog Item
In general, a PBI has to include the following general attributes:
• Estimated value, frequently calculated relatively to other items using priorities.
• Estimated development cost.



232 J.C. González-Moreno et al.

Fig. 10 Attributes of a Product Backlog Item specified in the description of an INGENIAS
element

• Eventually the theme (i.e., functional domain) it belongs to.
• Eventually its type, which can be defined as: system goal of the project; bug

resulting from the process; or non-functional requirement.
• The associated criteria for test acceptance.

Through this phase of the development process, a PBI can reach the following
states: created, estimated, planned (associated to a future sprint), associated to
current sprint (implementation is ongoing), and done.

At the end of the Preparation Phase, following the INGENIAS-SCRUM
approach, all the PBI identified jointly with their state must have at least one Goal
associated and its features must be documented in the description of the related
package and detailed on the related goal description. Figure 10 shows a snapshot of
how this information could be documented using the IDK.

2.2 Process Documentation: The Sprint Phases

The Sprint is the main phase of a Scrum project. The INGENIAS-Scrum process
is iterative and incremental, which means that the project is split into consecutive
sprints that will be done with the help of the IDK and IAF tools. In the original
Scrum framework, each sprint is timeboxed between 1 week and a calendar month.
In the INGENIAS-Scrum approach, no more than 21 days for a sprint are suggested
because the most common sprint length for the Scrum framework is 2 weeks and
the use of the INGENIAS model-driven tools promotes short cycles. The usual goal
of each sprints is to implement and test JACE code covering at least one of the MAS
goals. Figure 11 shows the workflow of the activities to be accomplished during the
Sprint Phase.



INGENIAS-Scrum 233

Fig. 11 The Sprint Phases flow of activities

Fig. 12 The Sprint activity workflow

Current Phase (see Fig. 11) is composed of an iterative and complex phase,
the proper Sprint and an optional activity the Release Work. The Sprint phase is
composed of several activities whose workflows are shown in Fig. 12 and that is
described in detail in Sect. 2.2.2. Section 2.2.1 introduces the roles involved on each
Sprint. Finally, Sect. 2.2.3 details the work products of the Sprint Phases.

2.2.1 Process Roles
Following the Scrum approach, the roles that are implied in the Sprint Phases are
described in the following sections.

The Product Owner
During each Sprint Phase, the Product Owner is responsible of analyzing the
suggested changes in order to add them to the backlog and prioritize the added



234 J.C. González-Moreno et al.

items. This is done before the next Sprint Planning. Ideally, this work is done 1 or 2
days before the Sprint Review during a brainstorming session with the Scrum Team.

The Master Team
The iterative Sprint Phases perform the product development. The Master Team is
the responsible for helping the Scrum Team to work autonomously and constantly
improving itself by doing the following kinds of tasks:
• Periodical tasks, whose main goal is to organize and promote the collaborative

work during the meetings: Daily Scrum, Sprint planning, Sprint review, and
Retrospective.

• Event tasks, whose objective is to remove impediments. This task mainly relies
on taking into consideration previous events to solve recurrent problems as soon
as possible, while protecting the team from external distractions.

• Background task, in which the Master Team tries to ensure that the team remains
productive and focused on the project goal: developing backlog items in close
collaboration with the Product Owner.

The Scrum Team
In the Scrum framework, the teams are composed of 3–10 members. In the
INGENIAS approach, this number should be between 3 and 5 people. The Scrum
Team is the main responsible of the Product Increment and its participation is
key in the activities: Plan Sprint, Update Product Backlog, Daily Works, and
Conduct Scrum Daily Meetings. Also, its participation is important on the Review
Sprint and Conduct Retrospective activity. While it performs a secondary role at
the Manage Problems activity. By participating in these activities, it modifies the
Product Backlog and the Sprint Backlog.

The Stakeholder
Like in the Preparation Phase, the participation of Stakeholders is not necessary
in any of the Sprint Phases. They can participate playing a secondary role in the
Update Product Backlog, Conduct Retrospective, and Review Sprint activities. Their
participation is consultive, they make suggestions about the goals that the system
must satisfy and the right solutions from the customer perspective.

2.2.2 Activity Details
Figure 12 shows the workflow of the activities to be performed at each Sprint.
The full structure of this Phase in terms of activities, tasks, and workproducts is
presented in four figures: Figs. 13, 14, 15, and 16.

Figure 13 shows the structure of the activities Plan Sprint and Update Product
Backlog. The Plan Sprint is the first activity to be performed on each Sprint, while
the Update Product Backlog is done in parallel with the Daily Works and the Manage
Problems activities.

The structure presented in Fig. 14 refers to the most complex activity of the full
process. It represents the Daily Work of the Scrum Team that must be accomplished
using the IAF with the IDK tool.



INGENIAS-Scrum 235

Fig. 13 Partial structure of the first activities done on each Sprint Phase

Figures 15 and 16 show the structure and the dependencies among the activities
that control and determine the evolution of each sprint during the current release.

In the following subsections, all the activities jointly with their tasks are detailed
and the workflow suggested to each one are showed.

Plan Sprint
The first activity of each sprint is to perform a Sprint Planning Meeting. During this
meeting, the Product Owner and the Scrum Team discuss about the highest-priority
items in the Product Backlog. External stakeholders may attend by invitation,
although this is unusual in most cases. Team members determine the number of
items they can commit to accomplish and then they create a sprint backlog, which
is a list of the tasks to perform during the sprint. Figure 17 shows the workflow
of the tasks with the work products and roles involved in this activity, and Table 3
describes in detail the tasks.

Update Product Backlog
The main goal of this activity is to update the backlog and adjust the planning,
taking into account changes emerged since the last sprint. During a sprint, no one
can modify the selection of backlog items done at the beginning of the sprint, that is,
the sprint scope remains unchanged. However, anyone, even a external Stakeholder,



236 J.C. González-Moreno et al.

Fig. 14 Structure of the Daily Work activity on each Sprint Phase

can suggest new items for later sprints. These items are studied and prioritized by the
Product Owner prior to the next sprint planning. Bugs and enhancement requests,
coming from partial product tests done at the end of the previous sprint, can also
be used to update the backlog. Figure 18 shows the relations between tasks, work
products, and roles in this activity, and Table 4 describes its tasks in detail.

Daily Works
The team performs backlog tasks to reach the sprint goals. The original Scrum
templates provide no information for technical design, coding, and test tasks. Tasks
are not assigned by the Scrum Master, but chosen by the team members one each
time. Team updates (when necessary) the estimation of their remaining work to
do in the Sprint. The recommendation of the INGENIAS-Scrum process for this
activity is to merge and distribute, accordingly to the needs, the tasks presented in
the Elaboration and Construction subsections of the INGENIAS-UDP chapter for
the following activities:
• Refine organizational models with social relationships, which includes refining

the Organization, Agent, and Environment Models
• Create the Tasks and Goals Model
• Show tasks execution using the Interaction Model
• Create a Component Model



INGENIAS-Scrum 237

Fig. 15 Structure of the Manage Problems and Conduct Scrum Daily Meeting activities

• Create a Deployment Model
• Specify code templates to apply
• Validate code

Figure 14 shows the full structure of this activity, while the workflow and the
details to accomplish such tasks are shown in the INGENIAS-UDP chapter.

Manage Problems
The Scrum Master takes into account the events that happen at any moment in a
project. She/he tries to eliminate the problems experienced by the team members,
so they can focus on their actual goals. The activity generates as output a Sprint
Backlog and can use optionally as input a previous Sprint Backlog, as shown in
Fig. 19. Table 5 describes the tasks to be done by the Scrum Master.

Conduct Scrum Daily Meeting
Every day of the Scrum sprint, all team members attend a Scrum daily meeting,
including the Scrum Master and the Product Owner. This meeting is timeboxed to no
more than 15 min. During the meeting, people participating in the development share
their finished work, what they have to do that day, and identify any impediments or
problems that could affect the team progress. This activity allows to synchronize



238 J.C. González-Moreno et al.

Fig. 16 Structure of the Review Sprints and Conduct Retrospective activities

ongoing work while discussing the progress of the current sprint. Figure 20 shows
the relation between tasks, work products, and roles in this activity, and Table 6
details its tasks.

Review Sprint
At the end of a Scrum sprint, the team conducts a Sprint Review meeting. There,
it demonstrates the functionality added during the current sprint using a demo. The
main objective of this activity is to obtain feedback from the users invited to the
review (such as the product owner or the stakeholders). The feedback can result in
the acceptance of the work, the suggestion of changes to the delivered functionality,
or even the revision or addition of backlog items. Figure 21 shows the relation
between tasks, work products, and roles in this activity, and Table 7 details the tasks.



INGENIAS-Scrum 239

Fig. 17 Workflow of the Plan Sprint activity

Table 3 Description of the tasks of the Sprint Planning activity

Activity Task Description Involved roles

Plan
Sprint

Defining
the Sprint’s
Goal

The goal of a sprint is proposed by the Product
Owner. In the first sprints (2–3), it focuses on
showing the feasibility of the potential architecture
(i.e., the Organization and Agent Models). After
architecture validation, the goals of sprints consist
on satisfying a system Goal.

Product Owner
Scrum Team

Selecting
the items

This task defines the scope of the sprint. The Scrum
Team associates Product Backlog Items to the sprint.
The team does it item by item, trying to balance the
required effort with the team velocity. Then, the
team collectively validates the subset of the backlog
for the sprint.

Scrum Team

Identifying
tasks from
items

This task is addressed in the second part of the
meeting. Here, the team decides how to achieve the
sprint goals. Each selected Item is decomposed into
tasks to enable discussion and figure out solutions.
The Product Owner can provide more details about
the behavior of the selected item. The work planned
in previous sprints, which has not been done,
because of objectives reduction, becomes the
priority for the next sprint.

Product Owner
Scrum Team

Estimating
tasks

In order to distribute the development work between
the team members, the duration of each task is
estimated. Estimation is made in hours and taking
into account that each task should be light

Scrum Team

(continued)



240 J.C. González-Moreno et al.

Table 3 (continued)

Activity Task Description Involved roles

enough(less than 16 hours). The team collectively
addresses this task, reviewing the technical aspects
during the discussion.

Assigning
tasks

The team considers the number of persons required
for each activity. All the activities must be studied,
including work meetings, coding, and document
reviews. It is desirable to delay the assignment of
activities until the availability of the related team
members is known.

Scrum Team

Getting
team com-
mitment

This is a relevant task in which the team collectively
decides what are the backlog items to implement in
the current sprint. This decision constitutes the
agreed and shared commitment of the sprint.

Scrum Team

Fig. 18 Workflow of the Update Product Backlog activity

Table 4 Description of the tasks of the Update Product Backlog activity

Activity Task Description Involved roles

Update
Product
Backlog

Collecting
changes

Stakeholders or any member of the Scrum
Team suggest new goals, functionalities, or
changes to be added to the backlog. The bugs
and enhancement requests obtained from
product tests in the previous sprints are also
incorporated into the collection of items that
can be updated. The Product Owner decides
whether to consider or not these items.

Product Owner
Stakeholder
Scrum Team

Reprioritizing
the items

New considered items must be prioritized. Product Owner

Reestimating
items

New items added to the backlog have to be
estimated by the Scrum Team, ideally during a
brainstorming with the Product Owner
previously to the next Sprint Review. The new
estimation could imply a reestimation of
existing items.

Scrum Team



INGENIAS-Scrum 241

Fig. 19 Workflow of the Manage Problems activity

Table 5 Description of the tasks of the Manage Problems activity

Activity Task Description Involved roles

Manage
Problems

Be aware of the
problem

The objective of the Scrum Master is to be
informed about problems with the project. The
daily meeting is the ideal moment to detect them.
A good practice to follow up on the problem
reporting is an informal chat initiated by the
Scrum Master with the problem reporter.

Scrum Master

Making
decisions on
the action plan

The Scrum Master must try to solve problems as
soon as possible, in order to not disturb team
progress. The master identifies possible
solutions, and schedules meetings with owners if
problems cannot be easily solved or need a
management decision.

Scrum Master

Fig. 20 Workflow for the Conduct Scrum Daily Meeting activity

Conduct Retrospective
The last activity of each sprint iteration is the Sprint Retrospective. This activity
gives an opportunity to reflect at the end of the sprint and to identify the work
to improve in the next sprint. The whole Scrum Team participates together with



242 J.C. González-Moreno et al.

Table 6 Description of the tasks of the Conduct Scrum daily meeting activity

Activity Task Description Involved roles

Conduct
Scrum daily
meeting

Preparing All the people update their planning (this
sprint backlog) considering the remaining
work for each task. As result of this task, an
update or creation of a Sprint Burndown
Chart is done.

Scrum Team

Gathering all Each team member reports her/his progress
by answering the following 3 questions: What
has been done since the previous daily
scrum? What will be done today? What
problems have appeared? Answers to the
questions provide the update of the Sprint
Backlog and changes in the Sprint Burndown
Chart.

Scrum Team

Consolidating The resulting Sprint Backlog will help to take
the right decisions on adjusting the Sprint
Goal by removing forecasting content to be in
time. Submitted problems are solved by the
Scrum Master during the Manage problems
activity.

Scrum Team

Fig. 21 Workflow for the Review Sprint activity

the Product Owner. The detailed tasks of the activity, its work products, and the
collaborations between the roles are presented in Table 8 and Fig. 22. The complete
activity has to be restricted to 2 h, though the average time is 1 h.

Release Work
As pointed previously, this activity is an optional one on the Sprint Phases. Its main
objective is preparing a product release. Its actual execution depends on the way the
product is made available to endusers and may vary from a project to another and



INGENIAS-Scrum 243

Table 7 Description of the tasks of the Review Sprint activity

Activity Task Description Involved roles

Review
Sprint

Preparing the
demo

The schedule of the review is adjusted taking into
account that the meeting must not exceed one
hour.

Scrum Master

Performing
the demo

The team shows a demo of the product focused
on the new goals satisfied during the actual
sprint, allowing users to get a measurement of
the work progress.

Scrum Team

Evaluating
the Sprint
results

During this task, the Product Owner and the
attending Stakeholders interview the team,
provide impressions, make new proposals, and
exchange requests. As a result, the Product
Backlog is enhanced with the new items and with
the bugs found.

Product
Owner
Stakeholders
Scrum Master

Calculating
the actual
velocity

A Release Burndown Chart is commonly used to
compare the Sprint velocity with previous ones.
The velocity is calculated as the sum of all items
checked and approved as fully implemented.

Scrum Master

Adjusting
the Release
planning

After reviewing the sprint, the team may realize
that the initial conditions have changed from the
last release planning. Then, it can be necessary to
adjust it taking into account the items added,
modified, or deleted, the changes in their
priorities, the updated estimations, and of course,
the average velocity of the team.

Scrum Team

Table 8 Description of the tasks of the Conduct Retrospective activity

Activity Task Description Involved roles

Conduct
retrospective

Discussion Each team member is invited to express
her/his bad and good results in the sprint
providing solutions to the detected problems.

Scrum Team

Defining the
action plan

The team talks about potential improvements
for the next sprint and the Scrum Master adds
those approved to the product backlog. After
that, the team sets up priorities with the help
of the product owner and the stakeholder (if
any).

Scrum Team
Product Owner
Stakeholder

among teams. Moreover, the team should rollout this optional activity with tasks
that are not considered during “normal” sprints.

The only recommendation for this activity is trying not to make code changes
because it is too late in the development process and it would imply a high risk
of introducing bugs and errors in the final application. Some tasks that could be
performed in this activity are:
• Hot deployment.
• Product packaging.
• Online download publishing.



244 J.C. González-Moreno et al.

Fig. 22 Workflow for the Conduct Retrospective activity

Fig. 23 The Sprint Work Product Model structure

• Technical documentation.
• User training.
• Product marketing.

2.2.3 Work Products
The Sprint Model generates several composed work products based on an IN-
GENIAS specification. Their relationships with the MAS metamodel elements are
described in Fig. 23.

Work Product Kinds
Table 9 describes the workproducts of each Sprint that are detailed in the next
subsections.



INGENIAS-Scrum 245

Table 9 Work Product kinds for each Sprint phase

Name Description Work product kind

Product Increment Source code for an increment of the product
developed and finished on the previous or actual
sprint

Structured

Product Backlog A set of INGENIAS models that specify the product
to obtain

Composited

Sprint Backlog A set of PBI that the team must complete during the
sprint

Composited

Burndown Chart Graphical charts that show the evolution of the work Structural
INGENIAS Model See IGENIAS-UDP chapter Structural,composite,

behavioural

Product Increment
The primary work product of a Scrum project on each Sprint Phase is the Product
itself. The Scrum Team is expected to bring the product or system to a potentially
shippable state at the end of each Scrum Sprint. A product increment following the
INGENIAS-Scrum approach is obtained from the IDK by generating code using the
IAF. The code will be determined by the specified INGENIAS Models.

Product Backlog
During the iterations produced on the Sprints, each Scrum Product Backlog defined
in the Preparation phase is completed and new ones are proposed and constructed.
To complete the product backlog, the team must complete the life cycle of all its
PBI reaching one after another the following states: created, estimated, planned
(associated to a future sprint), associated to current sprint (implementation is
ongoing), and done.

Sprint Backlog
As indicated in the previous sections, on the first day of a sprint and during the sprint
planning meeting, team members create the Sprint Backlog. The sprint backlog can
be thought of as the team’s to-do list for the sprint. Whereas a product backlog is
a list of features to be built, the sprint backlog is the list of tasks the team needs to
perform in order to deliver the functionality they committed to deliver during the
sprint.

Burndown Charts
Optional work products are the Sprint Burndown Chart and the Release Burndown
Chart. Burndown charts show the amount of work remaining either in a Scrum sprint
or a release. They are used for determining at a glance the evolution of a sprint or
release, showing whether all the planned work will be finished by the desired date.



246 J.C. González-Moreno et al.

Fig. 24 Dependencies among INGENIAS-Scrum work products

INGENIAS Models
The INGENIAS-Scrum approach suggests additional work products for the process.
The INGENIAS models are required in order to use the IDK and IAF tools
for the automated code generation and test production. Nevertheless, part of the
required code must be externally developed. For instance, some functionality related
to resources and applications (e.g., graphical user interfaces or databases) and
also concrete details of behavior (i.e., algorithms). INGENIAS does not provide
modelling primitives to specify graphically these elements, though it has primitives
that act as containers to embed this code in models. This allows that, afterwards,
the IAF uses that information in the code generation. A developer may also find
necessary or useful to modify the generated code.

2.3 Work Product Dependencies

Figure 24 shows an overview of the INGENIAS-Scrum work products, as well as
their dependencies. As shown in the figure, the Agent Model depends on the Organ-
ization and Environment Models, and the Interaction Model has dependencies with
the Agent and Tasks & Goals Models, among others. There are also dependencies



INGENIAS-Scrum 247

between product backlogs (what to get), sprint backlogs (what to do), and Burndown
charts (how much is done).

Regarding the structure of the work products associated to INGENIAS, they are
fully detailed in the INGENIAS-UDP chapter.

3 Case Study: Conference Management System

The Conference Management System (CMS) is an interesting case study that
involves several aspects, from the main organization issues to paper submission and
peer review. These are typically performed by a number of people distributed all
over the world who exploit the Internet as the infrastructure for communication and
cooperation.

This section presents a solution to this problem following the INGENIAS
methodology, and applying an adaptation of the Scrum management framework
to define an agile development process. The proposed process makes use of
the INGENIAS metamodel to define the system through several models, and of
support model-driven tools to generate automatically code from the specifications.
Following this approach, the development of the CMS implies an incremental and
iterative life cycle based on performing two phases: the Preparation phase and the
Sprint phase.

The INGENIAS with the UDP chapter in this book presents a similar solution
to this problem. It follows the original proposal based on the UDP [14] and the
Rational Unified Process (RUP) [17]. Some aspects of this chapter are referred to
the previous one, where the reader can find a more detailed description.

3.1 Preparation Phase

As pointed out in Sect. 2.1, this phase comprises the activities: Initiate Product
Backlog, Preparation Tasks, and Plan Release. The latter is done after completion
of the remaining two, which are developed in parallel.

The initial Product Backlog is a preliminary description of the product
requirements. In this approach, it is a specification conforming to the INGENIAS
metamodel and generated with its tools. It can be developed from scratch or taking
as basis examples provided with the IDK distribution.

In order to apply the first strategy, the team has to be familiarized with the IDK
tool and know what examples the IAF provides with its distribution: the hello world,
a GUI agent example, and an interaction example. Any of these examples can
be used as starting point for this initial backlog, although they do not cover the
complexity of the CMS.

The second approach is the one adopted here, as the CMS is a well-known and
documented case study in the literature. This implies creating an initial Organization
Model applying the three tasks offered by the original INGENIAS process: Identify
groups, Generate group members, and Identify goals. Figure 25 shows the resulting



248 J.C. González-Moreno et al.

Fig. 25 Organization diagram with the main user groups of the CMS and their access to
applications

model. Note that the result is just the same than the one obtained using the original
INGENIAS development process, but without generating use cases in order to
identify the functionality perceived by the user.

This first activity identifies three groups in the CMS case study. The OC
(Organizing Committee) includes the Chairs, the PC (Program Committee) for
the Reviewers, and the Contributors with the Authors. These groups perform tasks
related to certain goals. The main goal that the OC must satisfy is Run a successful
conference. Regarding the PC, it has to satisfy the goals: Identified quality papers
and Evaluated papers. Finally, Contributors have to satisfy the goals Submitted
quality papers and Got papers admitted. There are also two external applications,
that is, the Submission manager and the Mail manager. Group members use them
to get some services, according to certain use constraints. Every group can access
the Submission manager, though not for the same tasks, but only the OC can use the
Mail manager.

The Product Owner prioritizes the goals to be addressed in the sprints in order
to fix the Plan Release. In this case, the choice is to consider in the first sprints the
behavior associated to the Run a successful conference goal, which is associated to
the OC group. The assistants to the meeting agree that the goals associated with the
roles Reviewer and Author can be done in later sprints because the associated risk is
lower than the selected one.



INGENIAS-Scrum 249

Fig. 26 Initial decomposition of the Run a successful conference goal

3.2 Sprint Phase

In the first sprint, the Scrum team performs the Daily Works activity related with the
Run a successful conference goal. Its first results are the diagrams in Figs. 26 and 27
for the Tasks and Goals Model, and Fig. 28 for the Agent Model. Figure 26 shows
the refinement of the selected goal in different subgoals. Figure 27 introduces the
tasks needed to achieve those goals, that is, their products are potentially able to
satisfy the conditions related to those goals. Finally, Fig. 28 shows the initial Agent
Model obtained from the first refinement of the Organization Model, assigning the
identified tasks to the Chair role.

The Daily Works activity follows with the INGENIAS activity cycle that
includes the tasks: Show task execution, Generate a Component Model, Generate a
Deployment Model, Specify code templates to apply, and Validate code. Regarding
these tasks, the team follows short iteration cycles that give a similar result to those
explained in Sect. 3 in the INGENIAS chapter for the Construction Phase. Anyway,
the last activities are beyond the scope of this case study, which is focused on the
development process adopted and not on the application obtained. Nevertheless,
the facilities included in the IDK [11], and in particular the IAF [12], facilitate
generation of testing code for these specifications. These tests will implement the
acceptance tests suggested for each BPI associated with the specified goals.

The product obtained is used in the Scrum Daily Meeting and Review Sprint
activities. At the end of each sprint, the Conduct Retrospective activity is used to
better accomplish the remaining PBI in the future sprints through their revision
regarding the results of the current sprint.



250 J.C. González-Moreno et al.

Fig. 27 Initial assignment of tasks related to the Run a successful conference goal

Fig. 28 Initial assignment of tasks to the Chair role



INGENIAS-Scrum 251

References

1. García-Magariño, I., Gómez-Rodríguez, A., Gómez-Sanz, J., González-Moreno, J.C.: Adv.
Soft Comput. 50, 108 (2009)

2. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Eng. Appl. Artif. Intell. 18(2), 205 (2005)
3. Martin, R.: Agile Software Development: Principles, Patterns, and Practices. Prentice Hall

PTR, Upper Saddle River (2003)
4. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper

Saddle River (2001)
5. Schwaber, K.: In: 10th Annual ACM Conference on Object Oriented Programming Systems,

Languages, and Applications (OOPSLA 1995), pp. 117–134 (1995)
6. Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: In: Henderson-Sellers, B., Giorgini,

P. (eds.) Agent-Oriented Methodologies. Article IX, pp. 236–276. Idea Group Publishing,
Hershey (2005)

7. France, R., Rumpe, B.: In: 2007 Future of Software Engineering (FOSE 2007), pp. 37–54.
IEEE Computer Society, Minneapolis (2007)

8. García-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.: Inf. Softw. Technol. 51(8), 1217
(2009)

9. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: IEICE Trans. Inf. Syst. E90-D(8), 1243
(2007)

10. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Int. J. Agent Oriented Softw. Eng. 1(1), 2
(2007)

11. Gómez-Sanz, J.J., Pavón, J., Fuentes-Fernández, R., García-Magariño, I., Rodríguez-
Fernández, C.: INGENIAS Development Kit, V. 2.8. Tech. rep., Universidad Complutense
de Madrid (2008)

12. Gómez-Sanz, J.: INGENIAS Agent Framework. Development Guide V. 1.0. Tech. rep.,
Universidad Complutense de Madrid (2008)

13. Bellifemine, F., Poggi, A., Rimassa, G.: In: 5th International Conference on Autonomous
Agents (AGENTS 2001), pp. 216–217. ACM, Montreal (2001)

14. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Software Development Process. Addison-
Wesley, Reading (1999)

15. Gómez-Sanz, J.: Modelado de sistemas multi-agente. Ph.D. thesis, Universidad Complutense
de Madrid, Facultad de Informática (2002)

16. Grupo de Investigación en Agentes Software: Ingeniería y Aplicaciones. INGENIAS Section.
http://grasia.fdi.ucm.es/main/?q=es/node/61 (2010)

17. Rational Software. Rational Unified Process: White Paper (1998)

http://grasia.fdi.ucm.es/main/?q=es/node/61

	INGENIAS-Scrum
	1 Introduction
	1.1 The INGENIAS-Scrum Process Life Cycle
	1.2 Metamodel
	1.3 Guidelines and Techniques
	1.3.1 Scrum and MDD
	1.3.2 IDK Considerations
	1.3.3 IAF Considerations


	2 Phases of the INGENIAS-Scrum Process
	2.1 Process Documentation: Preparation Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Process Documentation: The Sprint Phases
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Work Product Dependencies

	3 Case Study: Conference Management System
	3.1 Preparation Phase
	3.2 Sprint Phase

	References


