
ELDAMeth Design Process

Giancarlo Fortino, Francesco Rango, and Wilma Russo

Abstract
In this paper the design process documentation template defined in the context
of the IEEE FIPA DPDF Working Group (FIPA Design Process Documentation
Template, http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm, accessed
June 2012) is exploited to describe the ELDAMeth agent-oriented methodology.
ELDAMeth, which is based on the ELDA agent model and related frameworks
and tools, fully supports the development of distributed agent systems and has
been applied both stand-alone and in conjunction with other agent-oriented meth-
odologies to different application domains: e-Commerce, information retrieval,
conference management systems, content delivery networks, and wireless sensor
networks.

1 Introduction

ELDAMeth [7] is an agent-oriented methodology specifically designed for the
simulation-based prototyping of distributed agent systems (DAS). It is centered
on the ELDA (Event-driven Lightweight Distilled StateCharts Agent) model [9,
12] and on an iterative development process covering DAS Modeling, simulation,
and implementation for a target agent platform (currently JADE [2]) and exploits
specifically defined frameworks and CASE tools. In particular, the ELDA model is
based on three main concepts which are important for enabling dynamic and distrib-
uted computation [15, 16]: (1) lightweight agent architecture and agent behaviors
driven by events that trigger reactive and proactive computation; (2) agent interac-
tion and cooperation based on multiple coordination spaces that are exploited by

G. Fortino (�) • F. Rango • W. Russo
Department of Informatics, Modeling, Electronics and Systems (DIMES), University of Calabria,
Via P. Bucci, Cubo 41C, 87036 Rende (CS), Italy
e-mail: g.fortino@unical.it; frango@deis.unical.it; w.russo@unical.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__5,
© Springer-Verlag Berlin Heidelberg 2014

115

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm
mailto:g.fortino@unical.it
mailto:frango@deis.unical.it
mailto:w.russo@unical.it

116 G. Fortino et al.

the agents at run-time; (3) coarse-grained strong mobility through which agents can
migrate across agent locations by transparently retaining their execution state [6].

Moreover, ELDAMeth can be used either stand-alone, according to the
ELDAMeth process reported in Fig. 1, or in conjunction/integration with other
agent-oriented methodologies which support the analysis and (high-level) design
phases.

In particular, ELDAMeth has been integrated with Gaia [11], PASSI [4], and
MCP [9] by using a process-driven method engineering approach [3]. Moreover,
ELDAMeth (or previously defined models and frameworks that are now in
ELDAMeth) was applied in different application domains: e-Commerce [4, 11],
distributed information retrieval [7–9, 12, 14], content distribution networks [10],
distributed data mining [5], and wireless sensor networks [1].

Useful references for ELDAMeth:
Fortino, G., Russo, W.: ELDAMeth: a methodology for simulation-based prototyp-

ing of DAS. Inform. Softw. Technol. 54, 608–624 (2012)
Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven light-weight

DSC-based agents for MAS modeling. Int. J. Agent Orient. Softw. Eng. 4(2)
(2010)

Fortino, G., Rango, F., Russo, W.: Engineering multi-agent systems through
statecharts-based JADE agents and tools. Trans. Comput. Collect. Intell. LNCS
7270 VII, 61–81 (2012)

Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development
process for mobile agents. Inform. Softw. Technol. 46(13), 907–921 (2004)
Useful references for ELDAMeth integrations and extensions:

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM:
a simulation-based process for the development of multi-agent systems. Int. J.
Agent Orient. Softw. Eng. 2(2), 132–170 (2008)

Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A multi-coordination based
process for the design of mobile agent interactions. In: Proceedings of IEEE
Symposium on Intelligent Agents (2009)

Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and
validation of multi agent systems. Comput. Syst. Sci. Eng. 20(4), 94–107 (2005)

1.1 The ELDAMeth Process Lifecycle

ELDAMeth is based on the three phases of the iterative process model shown in
Fig. 2:
• The Modeling phase produces a specification of a Multi-Agent System (ELDA

MAS) fully compliant with the ELDA MAS Meta-model [9] (see Sect. 1.2).
Moreover, the platform-independent code of the ELDA MAS is generated in this
phase.

• The Simulation phase produces MAS execution traces and computes perform-
ance indices that are evaluated with respect to the functional and non-functional
requirements of the MAS under-development. On the basis of such evaluation,

ELDAMeth Design Process 117

Fig. 1 The traditional ELDAMeth process

118 G. Fortino et al.

Implementa�onModeling Simula�on

[! Requirements Fully Sa�sfied]

Fig. 2 The ELDAMeth process phases (and iterations)

Fig. 3 The ELDA MAS Meta-model

if requirements are satisfied, the Implementation phase is carried out; otherwise,
the Modeling phase is iterated.

• The Implementation phase produces the ELDA-based MAS code targeting a
specific platform. Currently the JADE platform is exploited [13].

1.2 The ELDA MAS Meta-Model

The MAS Meta-model [9] adopted by ELDAMeth is represented in Fig. 3. The
definitions of the MAS Meta-model Elements (MMMElements) are reported in
Table 1.

ELDAMeth Design Process 119

Table 1 Definitions of ELDA MAS Meta-model elements

Concept Definition

Agent An ELDA agent with multiple behaviors
Role A role represented by an agent
Behavior An ELDA agent’s behavior is specified through a Distilled StateChart

(DSC) [14], which is a hierarchical state machine obtained from Stat-
echarts and based on ECA rules, OR-decomposition, history entrance
mechanisms, and UML-like execution semantics based on the run-to-
completion step

FIPATemplate An ELDA behavior is compliant to an extended version of the FIPA agent
lifecycle template that allows restoring the agent execution state after
agent migration or agent suspension

Event The interactions of ELDA agents are based on events:
– Internal (i.e., self-triggering events)
– Management, coordination, and exception (i.e., requests to or notifica-
tions from the local agent server).
Events can be either OUT-events (generated by the agent and always
targeting the local agent server) or IN-events (generated by the local agent
server and delivered to target agents)

SystemSpace SystemSpace provides extensible system services through management
(ManagementOUT and ManagementIN) events which allow for agent
lifecycle management, timer setting, and resource access

CoordinationSpace CoordinationSpace provides extensible coordination services through
Coordination (CoordinationOUT and CoordinationIN) events which
enable coordination acts between agents and between agents and non-
agent components (e.g. remote objects, web services) according to spe-
cific coordination models. The currently defined inter-agent coordination
models are: Direct (synchronous and asynchronous), Tuple-based, and
publish/subscribe event-based. The interactions between agent/non-agent
components can be based on a general RMI object model or on the Web
Services model

2 Phases of the ELDAMeth Process

2.1 The Modeling Phase

The goal of the Modeling phase is to provide a detailed design of the MAS under-
development in terms of a set of interconnected DSCs [14] representing agent
behaviors and/or roles. Figure 4 presents the flow of activities of the Modeling
phase. In particular, the two main activities are ELDA Modeling and ELDA
Coding. Figure 5 shows the Modeling described in terms of activities, roles, and
work products. The Modeling involves a process role and five work products. The
Modeling is fully supported by ELDATool, a CASE tool specifically developed to
automate modeling, validation and implementation of ELDA-based MAS.

120 G. Fortino et al.

ELDA Modeling ELDA Coding

Fig. 4 The Modeling flow of activities

ELDA Modeling ELDA Coding

<<predecessor>>

Iden�fy States Iden�fy
Transi�ons Iden�fy Events

Iden�fy Ac�ons

Iden�fy Guards

Iden�fy Func�ons

Iden�fy Variables

<<output>>

Modeler

ELDATool

<<output>>

<<input>> <<
in

pu
t>

>

<<perfo
rm

s,

assi
st>

>

<<
pe

rf
or

m
s,

 p
rim

ar
y>

>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<performs,

primary>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<performs,
primary>> <<performs,

primary>>
<<performs, primary>>

Structural
ELDA MAS

Design Model

Behavioral
ELDA MAS

Design Model

<<input>>

<<output>>

a

Func�onal and
Non-Func�onal
Requirements

High-level
Design Model

Pla�orm-independent
ELDA MAS Code

Fig. 5 The Modeling phase described in terms of activities, roles, and work products

2.1.1 Process Roles
One role is involved in the Modeling: the Modeler.

Modeler
The Modeler produces a detailed design of the MAS under-development and
generates a platform-independent code through the following activities:
• ELDA Modeling: this activity allows the design of the MAS under-development,

specifying agent behaviors and/or roles.
• ELDA Coding: the objective of this activity is to generate a platform-independent

code for the MAS under-development through ELDATool.

2.1.2 Activity Details
The ELDA Coding activity is an atomic activity that has no tasks and is usu-
ally carried out by the Modeler with support of the ELDATool that is able to
automatically translate the models produced in the ELDA Modeling activity into

ELDAMeth Design Process 121

Iden�fy
States

Iden�fy
Variables

Iden�fy
Ac�ons

Iden�fy
Func�ons

Iden�fy
Events

Iden�fy
Transi�ons

Iden�fy
Guards

Modeler

<<mandatory, output>><<mandatory, input>>

<<mandatory, input>>

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

<<op�onal, output>>

a

Func�onal and
Non-Func�onal
Requirements

High-level
Design Model

Fig. 6 The flow of tasks of the ELDA Modeling activity

platform-independent code according to the ELDA Framework [9]. Conversely, the
ELDA Modeling activity has seven tasks described in the following.

ELDA Modeling Activity
The ELDA Modeling activity is a fundamental activity carried out by the Modeler
that produces the behavioral and structural ELDA MAS design based on defined
functional and non-functional requirements and on a high-level design model, both
deriving from an external system analysis phase not included in ELDAMeth. This
activity is composed of seven tasks as shown in Fig. 6; their description is reported
in Table 2.

Tasks can be carried out in parallel and iteratively. The mandatory inputs to the
ELDA Modeling are the Functional and Non-Functional Requirements document
and the High-Level Design Model. The outputs are the (mandatory) Behavioral
ELDA MAS Design Model and the (optional) Structural ELDA MAS Design Model.
The former is a set of DSCs, representing agent behaviors and/or roles, whereas
the latter is a class diagram representing the interaction relationships among agents
and/or roles.

122 G. Fortino et al.

Table 2 Tasks of ELDA Modeling activity

Activity Task Task description Role involved

ELDA Modeling Identify states Identification of DSC states Modeler (perform)
ELDA Modeling Identify variables Identification of DSC variables Modeler (perform)
ELDA Modeling Identify actions Identification of DSC actions Modeler (perform)
ELDA Modeling Identify functions Identification of DSC functions Modeler (perform)
ELDA Modeling Identify events Identification of DSC events Modeler (perform)
ELDA Modeling Identify transitions Identification of DSC transitions Modeler (perform)
ELDA Modeling Identify guards Identification of DSC guards Modeler (perform)

Agent

FD

Role

FD

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

ELDA MAS
Design Model

c

Behavior

FD

Event

FD

R

R

Agent

Q

Role

Q

Agent

Q

Role

Q

Behavior

Q

Event

Q

Pla�orm-independent
ELDA MAS Code

Fig. 7 The Modeling work products

2.1.3 Work Products
Figure 7 reports the relationships among the work products of this step (Modeling
phase) and the ELDA MMMElements (see Sect. 1.2).

Work Product Kinds
Table 3 describes the work products of the Modeling.

In the following the Structural ELDA MAS Design Model, the Behavioral ELDA
MAS Design Model, and the Platform-independent ELDA MAS Code (specifically
the Reviewer role code) produced for the CMS case study will be described.

ELDAMeth Design Process 123

Table 3 Modeling work products kinds

Name Description Work product kind

Functional and non-functional
requirements

A document defining functional
and non-functional requirements
of the MAS under-development

Free text

High-level design model A high-level design model
produced by an external
method/methodology

Structured

ELDA MAS design model The detailed design of the MAS
under-development

Composite

Structural ELDA MAS design
model

The class diagram of the MAS
under-development

Structural

Behavioral ELDA MAS design
model

The DSC design of the MAS
under-development

Behavioral

Platform-independent ELDA
MAS code

The platform-independent code
generated for the MAS under-
development

Structured

CMSAuthor

Reviewer ViceChair

Chair

PCMember

1

0..1

1

0..1

<<interaction>>

<<interaction>><<interaction>>

Fig. 8 Class diagram of agents and roles interactions in the CMS case study

Structural ELDA MAS Design Model
In Fig. 8 the Structural ELDA MAS Design Model of the CMS case study is
portrayed. In particular, five roles are identified: Author, Chair, and PCMember,
where a PCMember could be either a Reviewer, or a Vice-Chair, or both. Moreover,
CMS is an agent representing the CMS system.

124 G. Fortino et al.

Fig. 9 Author DSC diagram

Table 4 Author actions

Action Description

sendPaperSubmission Author submits the paper to the CMS system
sendCRCSubmission Author submits the CRC to the CMS system

Table 5 Author guards

Guard Description

paperAccepted Author checks if the submitted paper has been accepted

Behavioral ELDA MAS Design Model
The Behavioral ELDA MAS Design Model of the CMS case study is composed
of the DSCs of the five defined roles (Author, Chair, PCMember, Reviewer, and
Vice-Chair) and the CMS agent. In the following they are detailed in terms of DSC
diagram and event, action and guard tables. The PCMember specification is based
on the specifications of Reviewer and Vice-Chair, so a further specification for the
PCMember was not defined.

Author
See Fig. 9 and Tables 4, 5 and 6.

Reviewer
See Fig. 10 and Tables 7, 8 and 9.

ELDAMeth Design Process 125

Table 6 Author events

Event Sender Description

PaperSubmission Author Internal event sent when Author decides to submit the
paper

DecisionResult CMS Coordination event containing decision about submitted
paper (if it has been accepted or rejected)

CRC Author Internal event sent when Author decides to submit the
CRC

Fig. 10 Reviewer DSC diagram

Table 7 Reviewer actions

Action Description

downloadPaper Reviewer downloads papers that have been assigned to it
submitReview Reviewer sends to the CMS system a review

Table 8 Reviewer guards

Guard Description

allReviewCompleted Reviewer checks if all the assigned papers were reviewed

Table 9 Reviewer events

Event Sender Description

PaperAssignment CMS Coordination event indicating the papers assigned
to the Reviewer

Review Reviewer Internal event sent when Reviewer completes a
review

126 G. Fortino et al.

Fig. 11 Vice-Chair DSC diagram

Table 10 Vice-Chair actions

Action Description

paperAssignment Vice-Chair sends the event to CMS, indicating the assignment of
papers to the reviewers that it manages

checkReview Vice-Chair checks a review
sendReviewCompleted Vice-Chair sends the event to CMS, indicating that all the expected

reviews (sent from the reviewers managed by this Vice-Chair) were
received

Table 11 Vice-Chair guards

Guard Description

reviewCompleted Vice-Chair checks if all the expected reviews (sent from the reviewers
managed by this Vice-Chair) were received

Table 12 Vice-Chair events

Event Sender Description

PaperPartitioning CMS Coordination event indicating which reviewers must be managed
by Vice-Chair and how to distribute the papers to be reviewed

Review CMS Coordination event containing a review

Vice-Chair
See Fig. 11 and Tables 10, 11 and 12.

Chair
See Fig. 12 and Tables 13, 14 and 15.

ELDAMeth Design Process 127

Fig. 12 Chair DSC diagram

128 G. Fortino et al.

Table 13 Chair actions

Action Description

createConference Chair creates and initializes the CMS conference system
openSubmission Chair sends the event to CMS, indicating the opening of

the paper submission phase
checkPaperSubmission Chair checks a submitted paper
closeSubmission Chair sends the event to CMS, indicating the closure of

the paper submission phase
paperPartitioning Chair sends the event to CMS, indicating how to dis-

tribute the papers to be reviewed among the reviewers
and how to involve one or more Vice-Chairs in the
management of a part of them

paperAssignment Chair sends the event to CMS, indicating the assignment
of some papers to be reviewed to the reviewers that it
manages

checkReview Chair checks a review
checkReviewCompletedConfirmation Chair checks if all the reviews were successfully

received
sendReviewCompleted Chair sends the event to CMS, indicating that all the

expected reviews (sent from the reviewers managed by
this Chair) were received

closeReview Chair sends the event to CMS, indicating the closure of
the review phase

takeDecision Chair sends the event to CMS, indicating the decisions
taken on the submitted papers (if they have been accep-
ted or rejected)

openCRC Chair sends the event to CMS, indicating the opening of
the CRC submission phase

checkCRC Chair checks a submitted CRC
closeCRC Chair sends the event to CMS, indicating the closure of

the CRC submission phase

Table 14 Chair guards

Guard Description

reviewCompleted Chair checks if all the expected reviews (sent from the reviewers managed
by Chair) were received

CMS
See Fig. 13 and Tables 16 and 17.

Platform-Independent ELDA MAS Code
In Fig. 14 part of the code (variables, actions, guards, and events) of the active
behavior of the Reviewer role (see earlier section “Reviewer”) produced in the
ELDA Coding activity is reported.

ELDAMeth Design Process 129

Table 15 Chair events

Event Sender Description

OpenSubmission Chair Internal event sent when Chair decides to
open the paper submission phase

PaperSubmission CMS Coordination event containing a submitted
paper

CloseSubmission Chair Internal event sent when Chair decides to
close the paper submission phase

PaperPartitioning Chair Internal event sent when Chair decides to
involve Vice-Chair in the management of the
papers to be reviewed

PaperAssignment Chair Internal event sent when Chair decides to
assign some papers to be reviewed to the
reviewers that it manages

Review CMS Coordination event containing a review
ReviewCompletedConfirmation CMS Coordination event indicating that all the

reviews were received
CloseReview Chair Internal event sent when Chair decides to

close the review phase
TakeDecision Chair Internal event sent when Chair wants to start

the decision process about the submitted
papers

OpenCRC Chair Internal event sent when Chair decides to
open the CRC submission phase

CRC CMS Coordination event containing a submitted
CRC

CloseCRC Chair Internal event sent when Chair decides to
close the CRC submission phase

2.2 The Simulation Phase

The goal of the Simulation phase is to support the functional validation and perform-
ance evaluation of the MAS model produced in the Modeling phase (see Sect. 2.1).
Specifically, the ELDASim simulation framework is exploited to fully support such
phase. The Simulation process is composed of three main activities: Performance
Indices Definition, Simulation Implementation, and Simulation Execution, as shown
in Fig. 15. Simulation specifically involves a process role and five work products, as
described in Fig. 16.

2.2.1 Process Roles
One role is involved in the Simulation: the Simulation Designer.

Simulation Designer
The Simulation Designer is responsible for the functional validation and
performance evaluation of the MAS under-development through the following
activities:

130 G. Fortino et al.

Fig. 13 CMS DSC diagram

• Performance Indices Definition: this activity allows the definition of the perform-
ance indices which will be evaluated during the simulation.

• Simulation Implementation: it produces a simulator program that allows
executing the simulation.

• Simulation Execution: in this activity the simulation is executed and the simula-
tion results are obtained.

ELDAMeth Design Process 131

Table 16 CMS actions

Action Description

init CMS initializes the conference with parameters decided by Chair at
the conference creation and sends the call for paper (CFP) to authors

openSubmission CMS opens the paper submission phase
saveAndSendPaper CMS saves a submitted paper and sends a paper submission notific-

ation to Chair
closeSubmission CMS closes the paper submission phase
paperPartitioning CMS sends the event to Vice-Chair, indicating which reviewers this

Vice-Chair must manage and how to distribute the papers to be
reviewed among the different reviewers

saveAndSendReview CMS stores a review and sends it to the corresponding reviewer
manager (Chair or Vice-Chair)

saveAndSendCRC CMS saves and sends a CRC to Chair
closeReview CMS closes the review phase
sendDecision CMS sends the decisions, taken by Chair about submitted papers, to

authors
closeCRC CMS closes the CRC submission phase
paperAssignment CMS assigns some papers to be reviewed to reviewers
openCRC CMS opens the CRC submission phase
checkAndSendReview
CompletedConfirmation

If all the reviewer managers (Chair or Vice-Chair) received all
reviews from the reviewers that they manage, CMS sends the event
to Chair, indicating that all the reviews have been received

2.2.2 Activity Details
Performance Indices Definition and Simulation Implementation are atomic activities
that have no tasks, whereas Simulation Execution activity has two tasks as described
here.

Simulation Execution Activity
The Simulation Execution activity comprises the two tasks described in Table 18.
The flow of tasks in the Simulation Execution activity is reported in Fig. 17.

2.2.3 Work Products
Figure 18 reports the relationships among the work products of this step and the
ELDA MMMElements (see Sect. 1.2).

Work Product Kinds
Table 19 describes the work products of the Simulation.

Simulator Program
In Fig. 19 the Simulator Program template produced for the CMS case study is
described.

132 G. Fortino et al.

Table 17 CMS events

Event Sender Description

OpenSubmission Chair Coordination event indicating the opening of the
paper submission phase

PaperSubmission Author Coordination event containing a submitted paper
CloseSubmission Chair Coordination event indicating the closure of the

paper submission phase
PaperPartitioning Chair Coordination event sent when Chair decides to

involve the Vice-Chair in the management of the
papers to be reviewed

PaperAssignment Chair/Vice-Chair Coordination event sent by a reviewer manager
(Chair or Vice-Chair) to assign some papers to be
reviewed to the reviewer that it manages

Review Reviewer Coordination event containing a review
ReviewCompleted Chair/Vice-Chair Coordination event sent by a reviewer manager

(Chair or Vice-Chair) indicating that all the reviews
have been received from the reviewers it manages

CloseReview Chair Coordination event indicating the closure of the
review phase

TakeDecision Chair Coordination event sent when Chair wants to decide
about submitted papers

OpenCRC Chair Coordination event indicating the opening of the
CRC submission phase

CRC Author Coordination event containing a submitted CRC
CloseCRC Chair Coordination event indicating the closure of the

CRC submission phase

The methods of the CMS class are:
• void resetSimulationParams(): resets the simulation parameters
• void loadParams(XMLTree configuration): loads and initializes

the simulation parameters
• void setupAS(): performs the setup of the agent servers of the distributed

simulated agent platform
• void createSimPerformanceParamsTabs(): creates database tables

for storing the results obtained from the simulations
• void setupAndStartCustomSimulation(): starts the simulation up
• void setupAgent(): allows the setup of the agents involvedin the

simulation
• void setAgentCodeDimension(): sets the code dimension of the agents
• void startAgent(): starts the agents up
• void traceSimPerformanceParams(): traces the simulation perform-

ance parameter values obtained from the simulation
• void clearAS(): clears the agent servers up
• void resetSimPerformanceParams(): resets the tracing of the simula-

tion results.

ELDAMeth Design Process 133

STATE VARIABLES
ReviewerADSC int reviewCount

ELDAId cms

ACTION CODE
downloadPaper PaperAssignment evt = (PaperAssignment) e;

String paperCode = (String) evt.getData();
download(paperCode);
reviewCount++;

submitReview Object review = ((Review) e).getData();
generate(new ELDAEventMSGRequest(self(),

new Review(self(), cms, review)));
reviewCount--;

GUARD CODE
allReviewCompleted return reviewCount == 0;

EVENT SENDER TYPE
PaperAssignment CMS ELDAEventMSG
Review Reviewer ELDAEventInternal

Fig. 14 ELDAFramework-based code of the Reviewer role

Performance
Indices Defini�on

Simula�on
Implementa�on

Simula�on
Execu�on

[Analysis Refinement]

[Requirements
Fully Sa�sfied

&
! Analysis

Refinement]

Modeling

[! Requirements
Fully Sa�sfied]

Fig. 15 The Simulation flow of activities

2.3 The Implementation Phase

The goal of the Implementation phase is to translate the MAS design model into
code for a target platform. In particular, the translation is semi-automatic, supported
by the ELDATool, and targeting the JADE platform. The Implementation process
is composed of two main activities (Platform-specific ELDA Implementation and
Testing), as shown in Fig. 20. In particular, Implementation involves two process
roles and five work products (see Fig. 21).

2.3.1 Process Roles
Two roles are involved in the Implementation: Developer and Tester.

Developer
The Developer is responsible for:
• Platform-specific ELDA Implementation—this activity translates the MAS

design model into code generated according to a real target platform (e.g.,
JADE) through ELDATool.

134 G. Fortino et al.

Performance
Indices Defini�on

Simula�on
Implementa�on

Simula�on
Execu�on

<<predecessor>> <<predecessor>>

Simula�on
Designer

ELDASim
Simula�on

Control
Simula�on

Configura�on

<<input>>
<<output>> <<input>> <<output>> <<input>> <<output>>

<<input>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<performs, primary>>

<<performs, primary>>

<<performs,
assist>> <<perfo

rm
s,

assis
t>>

<<performs, primary>>

a

Func�onal and
Non-Func�onal
Requirements

Pla�orm-independent
ELDA MAS Code

Performance
Indices

a

Simulator
Program

Simula�on
Results

Fig. 16 The Simulation phase described in terms of activities, roles, and work products

Table 18 Tasks of Simulation Execution activity

Activity Task Task description Role involved

Simulation
Execution

Simulation Config-
uration

Configuration of simu-
lation parameters

Simulation Designer
(perform)

Simulation
Execution

Simulation Control Control of Simulation
Execution

Simulation Designer
(perform)

Simula�on
Designer

Simula�on
Control

Simula�on
Configura�on

<<mandatory, input>> <<mandatory, input>>

<<mandatory, output>> <<mandatory, output>>

Simulator
Program

Simula�on
Results

Fig. 17 The flow of tasks of the Simulation Execution activity

ELDAMeth Design Process 135

Agent

Q

Behavior

Q

Role

Q

Event

Q

Simulator
Program

Fig. 18 The Simulation work products

Table 19 Simulation work products kinds

Name Description Work product kind

Functional and non-
functional require-
ments

A document defining functional and non-
functional requirements of the MAS under-
development

Free text

Performance
indices

The definition of the performance indices
which will be evaluated during the simulation

Free text

Simulator Program The resulting simulator program that allows
executing the simulation

Structured

Platform-
independent ELDA
MAS code

Platform-independent code generated for the
MAS under-development

Structured

Simulation results Results of executed simulation Structured

Tester
The Tester is responsible for:
• Testing—this activity executes some tests on the MAS under-development con-

sidering the performance indices evaluated during the simulation and produces a
document containing the test results.

2.3.2 Activity Details
Platform-specific ELDA implementation and testing activities are atomic and do not
have any tasks.

2.3.3 Work Products
The work products produced in this phase are the platform-specific ELDA MAS
Code, which is the code of the MAS under-development for the JADE platform, and
Testing Results, which is a set of real execution traces and table/plots of computed
performance indices.

136 G. Fortino et al.

public class CMS extends MASSimulation {

private static int nReviewerAgent;
private static int nAuthorAgent;
private static int nChairAgent;
private static int nViceChairAgent;

private static Hashtable<String, SimConfig> simsConfiguration;

protected void resetSimulationParams(){}
protected void loadParams(XMLTree configuration) throws Exception{}
private static void initializeSimsConfiguration(Vector<XMLNode>

simsCfg) throws ClassNotFoundException
InvalidNodeException, InvalidAttributeException{}

protected void setupAS(){}
protected void createSimPerformanceParamsTabs() throws Exception{}
protected void setupAndStartCustomSimulation() throws Exception{}
protected void setupAgent() throws Exception{}
protected void setAgentCodeDimension(){}
protected void startAgent(){}
protected void traceSimPerformanceParams() throws Exception{}
protected void clearAS(){}
protected void resetSimPerformanceParams(){}

}

Fig. 19 Code template of the Simulator Program

Modeling

Pla�orm-specific
ELDA

Implementa�on

[Requirements
Fully Sa�sfied]

[! Requirements Fully Sa�sfied & Phase Itera�on]

[! Requirements Fully Sa�sfied & Process Itera�on]

Tes�ng

Fig. 20 The Implementation flow of activities

Work Product Kinds
Table 20 describes the work products of the Implementation:

Platform-Specific ELDA MAS Code
In Fig. 22 part of the JADE-based code (variables, actions, guards, and events) of
the Reviewer role of the Platform-specific ELDA MAS Code produced for the CMS
case study will be described.

ELDAMeth Design Process 137

Pla�orm-specific
ELDA

Implementa�on

Tes�ng

<<predecessor>>

<<output>>

<<output>>

ELDATool Developer Tester

<<input>>
<<input>>

<<input>>

<<input>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rfo
rm

s,
as

sis
t>

>
Behavioral
ELDA MAS

Design Model

a

Func�onal and
Non-Func�onal
Requirements

Performance
Indices

a

Pla�orm-specific
ELDA MAS Code

Tes�ng
Results

Fig. 21 The Implementation phase described in terms of activities, roles, and work products

Table 20 Implementation work products kinds

Name Description Work product kind

Functional and
non-functional
requirements

A document defining functional and non-
functional requirements of the MAS under-
development

Free text

Behavioral ELDA
MAS design model

The DSC design of the MAS under-
development

Behavioral

Platform-specific
ELDA MAS code

The MAS code generated according to a real
target platform (e.g. JADE)

Structured

Performance indices The definition of the performance indices eval-
uated during the simulation

Free text

Testing results A document containing the results of executed
tests

Structured

3 Work Products Dependencies

The diagram in Fig. 23 depicts the dependencies among the different work
products.

138 G. Fortino et al.

STATE VARIABLES
ReviewerADSC int reviewCount

AID cms

ACTION CODE
downloadPaper PaperAssignment evt = (PaperAssignment) e;

String paperCode = (String) evt.getData();
download(paperCode);
reviewCount++;

submitReview Serializable review = ((Review) e).getData();
ArrayList<AID> target = new ArrayList<AID>();
target.add(cms);
generate(new ELDAEventMSGRequest(self(), new

Review(self(), target, review)));
reviewCount--;

GUARD CODE
allReviewCompleted return reviewCount == 0;

EVENT SENDER TYPE
PaperAssignment CMS ELDAEventMSG
Review Reviewer ELDAEventInternal

Fig. 22 The JADE-based code of the Reviewer role

Simula�on
Results

Performance
Indices

Tes�ng
Results

Simulator
Program

Pla�orm-independent
ELDA MAS Code

Pla�orm-specific
ELDA MAS Code

Func�onal and
Non-Func�onal
Requirements

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

High-level
Design Model

Fig. 23 Work products dependencies diagram

ELDAMeth Design Process 139

References

1. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-based agent platform for program-
ming wireless sensor networks. Comput. J. 54(3), 439–454 (2011)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Softw. Pract. Exper. 31(2), 103–128 (2001)

3. Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: principles of method construc-
tion and tool support. In: Proceedings of the IFIP TC8 WG8.1/8.2 Working Conference on
Method Engineering (1996)

4. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: a simulation-based
process for the development of multi-agent systems. Int. J. Agent Orient. Softw. Eng. 2(2),
132–170 (2008)

5. Di Fatta, G., Fortino, G.: A customizable multi-agent system for distributed data mining. In:
Proceedings of the 22nd Annual ACM Symposium on Applied Computing (2007)

6. Fortino, G., Rango, F.: An application-level technique based on recursive hierarchical state
machines for agent execution state capture. Sci. Comput. Program. 78(6), 725–746 (2013)

7. Fortino, G., Russo, W.: ELDAMeth: a methodology for simulation-based prototyping of
distributed agent systems. Inform. Softw. Technol. 54(6), 608–624 (2012)

8. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A multi-coordination based process for the
design of mobile agent interactions. In: Proceedings of IEEE Symposium on Intelligent Agents
(2009)

9. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-based
agents for MAS modeling. Int. J. Agent Orient. Softw. Eng. 4(2) (2010)

10. Fortino, G., Garro, A., Mascillaro, S., Russo, W., Vaccaro, M. Distributed architectures
for surrogate clustering in CDNs: a simulation-based analysis. In: Proceedings of the 4th
International Workshop on the Use of P2P, GRID and Agents for the Development of Content
Networks (2009)

11. Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and validation
of multi agent systems. Comput. Syst. Sci. Eng. 20(4), 94–107 (2005)

12. Fortino, G., Frattolillo, F., Russo, W., Zimeo, E.: Mobile active objects for highly dynamic dis-
tributed computing. In: Proceedings of IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2002)

13. Fortino, G., Rango, F., Russo, W.: Engineering multi-agent systems through statecharts-based
JADE agents and tools. In: Nguyen, N.T. (ed.) Transactions on Computational Collective
Intelligence VII. Lecture Notes in Computer Science, vol. 7270, pp. 61–81. Springer,
Heidelberg (2012)

14. Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development process for
mobile agents. Inform. Softw. Technol. 46(13), 907–921 (2004)

15. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: towards next generation
computing. Auton. Agents Multi-Agent Syst. 9(3), 203–252 (2004)

16. Omicini, A., Zambonelli, F.: Challenges and research directions in agent-oriented software
engineering. Auton. Agents Multi-Agent Syst. 9(3), 253–283 (2004)

	ELDAMeth Design Process
	1 Introduction
	1.1 The ELDAMeth Process Lifecycle
	1.2 The ELDA MAS Meta-Model

	2 Phases of the ELDAMeth Process
	2.1 The Modeling Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Simulation Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Implementation Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	3 Work Products Dependencies
	References

