
ADELFE 2.0

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel, and F. Migeon

Abstract
ADELFE is a French acronym that means “Toolkit for Designing Software
with Emergent Functionalities” (“Atelier de DEveloppement de Logiciels à
Fonctionnalité Emergente” in French). ADELFE methodology is dedicated to
applications characterized by openness and the need of the system adaptation
to an environment. Its main goal is to help and guide any designer during
the development of an Adaptive Multi-agent System (AMAS). An AMAS is
characterized by the following points: it is plunged into an environment and
composed of interdependent agents, each agent carries out a partial function and
the agents, organization during runtime makes the system realize an emergent
function. Actually, an agent is locally cooperative, i.e. it is able to recognize
cooperation failures called Non-cooperative Situations (NCS, which could be
related to exceptions in classical programs) and treat them.

ADELFE includes five Work Definitions that were initially inspired from
the Rational Unified Process (RUP) and gathers 21 activities, producing or
refining 12 work products. These products are aggregating modelling diagrams
or structured or free text. ADELFE, which is a Model-Driven (model-centred)
development method, is not hardly dependent on Domain Specific Modelling
Languages (DSML) but currently the recommendation is to use UML2 for
general activities and to use AMASML (AMAS Modelling Language) and
SpeADL (Species-based Modelling Language) for specific activities appearing
in Analysis, Design or Implementation phases.

N. Bonjean (�) • W. Mefteh • M.P. Gleizes • C. Maurel • F. Migeon
Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
e-mail: bonjean@irit.fr

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__3,
© Springer-Verlag Berlin Heidelberg 2014

19

mailto:bonjean@irit.fr


20 N. Bonjean et al.

1 Introduction

ADELFE is a French acronym that means “Toolkit for Designing Software with
Emergent Functionalities” (“Atelier de DEveloppement de Logiciels à Fonction-
nalité Emergente” in French). The main goal of ADELFE is to help and guide
any designer during the development of an Adaptive Multi-agent System (AMAS).
Adaptive software is used in situations in which the requirements are incompletely
expressed, the environment is unpredictable or the system is open. In these cases,
designers cannot implement a global control on the system and cannot list all
situations that the system encounters. In these situations, ADELFE guarantees
that the software is developed according to the AMAS theory. This theory, based
on self-organizing multi-agent systems, enables one to build systems in which
agents only pursue a local goal while trying to keep cooperative relations with
their neighbouring agents. An AMAS is characterized by the following points: it
is plunged into an environment and composed of interdependent agents, each agent
carries out a partial function and the agents organization during runtime makes the
system realize an emergent function.

In the following, the ADELFE process is described by initially considering its
whole process and then its five phases, which gather 21 activities, producing or
refining 12 work products.

Since 2003, ADELFE has been used in many academic and industrial projects,
for a total of more than 20 AMASs produced. Recently, ADELFE has been slightly
modified in order to integrate last research results on Multi-agent Oriented Software
Engineering and practical usages related by the industrial ADELFE partners. This
chapter presents this up-to-date version of the method.

As it can be seen in the following sections, ADELFE is composed of several
activities dedicated to Adaptive Multi-agent Systems. Considering this, it contains
junction activities where the designer has to control if their problem requires an
MAS solution or, even more, an AMAS solution. In the negative case, the design
should be continued with a traditional process or a process dedicated to the problem
characteristics. This documentation does not describe such activities and focuses
only on the process parts dedicated to AMAS development.

Finally, it is important to notice that ADELFE is a Model-Driven (model-centred)
Development method which is still in progress. Works on fragmentation, simulation,
formal methods and AMAS patterns are feeding the method every year in order
to improve the development of complex systems based on the AMAS. As the
maturity of these topics is not sufficient to be included in this chapter, we left their
presentation in research papers.
The following are the relevant references for the ADELFE process and the ADELFE
extensions:
• Bernon, C.; Gleizes, M.-P.; Peyruqueou, S.; Picard, G.; ADELFE, a Methodology

for Adaptive Multi-Agent Systems Engineering International Workshop on
Engineering Societies in the Agents World (ESAW), Madrid, Spain, 16/09/2003–
17/09/2003, Springer-Verlag, 2003, 156–169



ADELFE 2.0 21

• Bernon, C.; Camps, V.; Gleizes, M.-P.; Picard, G. Designing Agents’ Behaviours
within the Framework of ADELFE Methodology International Workshop on
Engineering Societies in the Agents World (ESAW), Imperial College London,
29/10/2003–31/10/2003, Springer-Verlag, 2003, 311–327

• Rougemaille, S.; Arcangeli, J.-P.; Gleizes, M.-P.; Migeon, F. ADELFE Design,
AMAS-ML in Action International Workshop on Engineering Societies in the
Agents World (ESAW), Saint-Etienne, 24/09/2008–26/09/2008,Springer-Verlag,
2008

• Bernon, C.; Gleizes, M.-P.; Picard, G., Enhancing Self-Organising Emergent Sys-
tems Design with Simulation International Workshop on Engineering Societies
in the Agents World (ESAW), Dublin, 06/09/2006–08/09/2006, Springer-Verlag,
2007, 4457, 284–299

• Lemouzy, S.; Bernon, C.; Gleizes, M.-P. Living Design: Simulation for Self-
Designing Agents European Workshop on Multi-Agent Systems (EUMAS),
Hammamet, 13/12/07–14/12/07, Ecole Nationale des Sciences de l’Informatique
(ENSI, Tunisie), 2007

• Mefteh, W.; Migeon, F.; Gleizes, M.-P.; Gargouri, F. Simulation Based Design
International Conference on Information Technology and e-Services, Sousse,
Tunisie, 2012

• Bonjean, N.; Gleizes, M.-P.; Maurel, C.; Migeon, F., Forward Self-Combined
Method Fragments. Workshop on Agent Oriented Software Engineering (AOSE
2012), Valencia, Spain, 04/06/2012–08/06/2012, Jorg Muller, Massimo Cos-
sentino (Eds.), IFAAMAS, p. 65–74, June 2012

1.1 The ADELFE Process Life Cycle

ADELFE includes five Work Definitions (WD1–5) (see Fig. 1):
• Preliminary Requirements (WD1): This phase represents a consensus description

of specifications between customers, users and designers on what must be and
what must give the system its limitations and constraints.

• Final Requirements (WD2): In this work definition, the system achieved with
the preliminary requirements is transformed into a use cases model, and the
requirements (functional or not) and their priorities are organized and managed.

• Analysis (WD3): The analysis begins with a study or analysis of the domain.
Then, identification and definition of agents are processed. The Analysis Phase
defines an understanding view of the system, its structure in terms of components,
and identifies if the AMAS theory is required.

• Design (WD4): This phase details the system architecture in terms of modules,
subsystems, objects and agents. These activities are important from a multi-
agent point of view in that a recursive characterization of a multi-agent system is
achieved at this point.

• Implementation (WD5): Implementation of the framework and agent behaviours
is produced in this work definition.



22 N. Bonjean et al.

Fig. 1 The ADELFE process phases

It is important to notice that ADELFE is not a simple waterfall process but
includes loops and increments that are not depicted in the graphical representation
shown in Fig. 1. For example, at the end of each phase, a validation step is executed,
which requires a possible transition towards an activity previously passed.

Each phase produces at least one document that is aggregated from modelling
diagrams or from structured or free text. ADELFE is not hardly dependent on
Domain Specific Modelling Languages (DSML) but currently the recommendation
is to use UML2 for general activities and to use AMAS Modelling Language
(AMASML) and Species-bAsed moDelling Language (SpeADL) for specific activ-
ities appearing in Analysis, Design or Implementation phases.1

1.2 The ADELFE MAS Metamodel

1.2.1 Definition of MAS Metamodel Elements
The ADELFE method is composed of various tools based on model-driven develop-
ment. To support model transformation and DSML editors an ADELFE metamodel
has been defined. However, this metamodel is too much based on natural language
(precise and complex) to support a designer guidance.

The ADELFE MMM is organized according to the five phases comprising the
process. We give in the following a short description of the main elements of
this metamodel that is presented in five diagrams to simplify the layout and the
discussion.

The Preliminary Requirements Phase (see Fig. 2) focuses on acquiring inform-
ation about the client and their needs. Therefore, a consensual description of the
problem is made in terms of functional and non-functional requirements, keywords,
limits and constraints of the system. A business model with business concepts and
business activities is defined to complement the documentation.

In the Final Requirements Phase (see Fig. 3), the objective is to validate the
requirements and to detail the need through a description of the actors, a use
case model and scenarios. The end of the phase is dedicated to the characterization
of the system environment and the identification of cooperation failures among the
system interactions. This leads to a conclusion on the MAS adequacy to treat the
problem of the client.

1See the SMAC Team website (http://www.irit.fr/-Equipe-SMAC) for more information on
DSML.

http://www.irit.fr/-Equipe-SMAC


ADELFE 2.0 23

Fig. 2 The preliminary requirements phase MAS metamodel

Fig. 3 The final requirements phase MAS metamodel

Fig. 4 The analysis phase MAS metamodel

During the Analysis Phase (see Fig. 4), the entities are characterized as passive
or active and their interactions are described. The work product obtained enables
an AMAS analyst to conclude on the adequacy (or not) of the AMAS to deal
with the problem. If the result is positive, all the interactions between the entities
are described and cooperation failures are identified. From this information, agents
(according to the definition of agent in ADELFE, see Sect. 2.3) are identified and
local AMAS adequacy is studied to conclude the phase.

The heaviest phase of ADELFE is the Design Phase (see Fig. 5) which consists
in defining the multi-agent oriented architecture of the solution. It starts with the



24 N. Bonjean et al.

Fig. 5 The design phase MAS metamodel

definition of a module view. Then, all the communication acts are defined in order
to define precisely the entity interactions and agent interactions that will be useful to
complete the module view and to define a component-connector view of the agents
with their neighbourhood (agents, active and passive entities). The definition of
the structure and behaviour of the agents is made in two steps which lead to the
definition of the knowledge module, the action module, the perception module and
the decision module. These two steps concern respectively the nominal behaviour of
the agent, which enables the agent to reach its goal, and the cooperative behaviour
which enables the agent to self-adapt to abnormal situations. Finally, a prototype is
defined to validate the result.

Currently the last phase of ADELFE, the Implementation Phase (see Fig. 6),
focuses on the definition of the component-oriented architecture that will support
the design. It is mainly composed of automated activities for model or code
generation. However, in this document, we deliberately describe the process as
manual operations in order to give more details on the activities and in order to
simplify the metamodel. The implementation of an AMAS is not dependent on
any MAS platform. On the contrary, it is recommended to produce a dedicated
framework in order to gain in software quality. Actually, this framework is defined
in terms of components (with provided and required ports, composite components,



ADELFE 2.0 25

Fig. 6 The implementation phase MAS metamodel

assembling) which are specified and implemented. First, the implementation focuses
on the components defining entities, action and perception modules. Finally,
decision module is implemented with standard behaviour rules and cooperative
behaviour rules.
Like in every process, unit testing, integration testing and functional testing are
taken into account but not described here.

1.2.2 Definition of MAS Metamodel Elements
The table below gives a set of concepts definitions related to AMAS theory and
ADELFE method. It covers the entire MAS metamodel used during Requirements,
Analysis and Design.

Concept Definition Referred
Concepts

Domain

(Software) System A (software) system is the term
describing the software to be
produced, the application to be
designed. Anything outside the system
is called system environment.

System
Environment

Requirements

System
Environment

It is the entire environment into which
the software system is plunged and
which is not under design. In UML,
the term Actor (primary or secondary)
is often used to characterize the
environment. Of course, the frontier
between environment and software
system will use software entities that
will deal with the interactions between
environment and system.

Software
System

Requirements

(continued)



26 N. Bonjean et al.

Concept Definition Referred
Concepts

Domain

MAS Environment The MAS environment is composed of
all software elements that surround the
MAS and which are not agents.
The elements of the environment are
called MAS entities (active or passive)
and all have at minimum an
interaction that is defined by means of
sensors or effectors.

Passive
Entity, Active
Entity

Analysis

Agent Environment The environment of an agent is the
union of its neighbourhoods during its
life. It represents all the knowledge it
has on other agents and on the MAS
environment.

Agent Neigh-
bourhood,
Agent

Analysis

Agent
Neighbourhood

The neighbourhood of an agent is a
part of the agent’s environment at a
particular time.

Agent
Environment,
Agent

Analysis

Multi-Agent
System (MAS)

An MAS is the set of elements, called
agents, which are not part of the
environment. In an MAS, no agent can
be isolated, that is to say without any
link with another system component.
Therefore, it can be considered as the
set of agents that communicate
(directly or via the environment) to
achieve a common goal.

Goal, Agent Analysis

Goal The goal is an objective set by the
designer to an agent or to the entire
system.

Agent,
(Software)
System

Analysis

Passive Entity In the MAS environment, passive
entities are related to resources or to
data. This implies that they have no
autonomy and that a state transition
can only be the result of an interaction
with another system component.
Moreover, a passive entity is unable to
send or receive messages.

MAS
Environment

Analysis

Active Entity Unlike a passive entity, an active
entity is given behavioural autonomy,
allowing it to change state without
necessarily interacting with another
entity. An active entity can send
messages, possibly proactively, and
receive messages.

Passive Entity Analysis

(Cooperative)
Agent

In ADELFE, an element of an MAS
(i.e. an element that is not part of the
MAS environment) is an agent. This
agent is characterized by a cooperative
attitude.

MAS,
Cooperative
Attitude

Analysis

(continued)



ADELFE 2.0 27

Concept Definition Referred
Concepts

Domain

Cooperation It is a behavioural principle for an
entity that avoids being placed in a
situation of misunderstanding,
ambiguity, incompetence,
unproductiveness, conflict, concurrence
or uselessness. This principle is applied
to agents designed with ADELFE, but
can also describe the behaviour of the
software system as a whole.
The definition of cooperation goes
beyond the simple sharing of resources
or collaboration. This cooperation
includes all behaviours that allow the
agent to prevent and to resolve conflicts
that occur during system execution.

Agent,
Software
System

Analysis

Cooperative
Attitude

An agent has a cooperative attitude
when its activity tends to give priority
to anticipate and solve all the
Non-cooperative Situations (NCS) it
might encounter with its environment.
This implies the following properties:
(i) Sincerity: If an agent knows a
proposition p is true, it cannot say
anything different to others.
(ii) Compassion: An agent temporarily
leaves its individual goal to help
another agent in greater difficulty
(temporary change of goal).
(iii) Reciprocity: An agent knows that it
has a cooperative attitude, like all other
agents have.

Cooperative
Attitude,
Non-
cooperative
Situations,
Agent
Environment,
Agent

Analysis

Communication
Acts

A communication act is a mean
implemented by an agent to interact
with an agent and/or its environment.
A speech act (e.g. FIPA ACL) is a
communication act.

Agent, Agent
Environment

Analysis

Behaviour The behaviour of an agent is a life
cycle consisting of the sequence:
(i) perception of the environment
(including communication aspects),
(ii) decision that allows it to identify
the state in which it lies and actions to
be performed, (iii) execution of decided
actions. The life cycle starts when the
agent is created and completes when
the agent dies. Agent behaviour can be
represented as an automaton whose
states are the situations that the agent
can identify and transitions are actions
it decides to execute.

Agent
Environment,
Agent

Design

(continued)



28 N. Bonjean et al.

Concept Definition Referred
Concepts

Domain

Nominal Behaviour The nominal behaviour is the part of
the behaviour which enables the agent
to reach its goal when it is
in cooperative situation.

Goal, Agent,
Behaviour

Design

Cooperative
Behaviour

The cooperative behaviour of an agent
enables it to detect the set of states
identifying NCS and to describe the
repairing actions to return to a
cooperative situation or anticipatory
attempt to avoid NCSs. In addition, an
agent tries to help the most critical
agent in its neighbourhood. In certain
conditions, it spontaneously
communicates information to agents
that it thinks the information will be
useful. Such a cooperative behaviour
can be divided into three distinct steps:
(i) tuning which consists in the
modification of parameter values for
parameters that influence the
behaviour of the agent;
(ii) reorganization which consists in
the modification of the acquaintances
of the agent that will lead to the
reorganization of the system to make
the resulting global function proper;
(iii) evolution which consists in
creation or suicide of agents.

Goal, Agent,
Behaviour,
NCS

Design

Criticality For an agent, criticality represents the
degree of non-satisfaction of its own
goal. It enables an agent to determine
the relative difficulty of agents in its
neighbourhood. Evaluation methods
and calculation of the criticality are
specific to each type of agent.

Goal, Agent,
Neighbour-
hood

Design

Behaviour
Confidence

The behaviour confidence of an agent
is an internal measure that provides
information on the reliability of the
decision on actions intended.

Agent,
Behaviour

Design

Skills The skills of an agent are capabilities
in a domain that enables an agent to
perform actions to achieve its goal.

Agent, Goal Design

Characteristics A characteristic is an intrinsic property
of the agent. It can be visible or not
and it can be modified by the agent or
other agents.

Agent Design

Aptitudes The aptitudes of an agent are generic
capabilities which are independent of
its competence domain.

Agent Design

(continued)



ADELFE 2.0 29

Concept Definition Referred
Concepts

Domain

Representations Representations of an agent are the
image that the agent has of its
environment and itself, that is to say
all of its perceptions and beliefs. They
can be updated by means of its
perceptions.

Agent,
Agent
Environment

Design

Interaction
Language

The interaction language is a set of
tools required by the agent to
communicate with other agents.
This communication can be done
through messages (direct) or via the
environment (indirect
communication).

Agent Design

1.3 Guidelines and Techniques

ADELFE is based on object-oriented methodology, inspired from the Rational
Unified Process (RUP). Some steps have been added in the classical workflow fitting
with the adaptive MAS.
ADELFE is based on UML2 notation with the complementary use of DSML
AMASML (AMAS Modelling Language) and SpeADL (Species-based Architec-
ture Description Language), a design methodology, several model-driven tools and
a library of components that can be used to facilitate the application development.
Guidance of the development process is supported by AdelfeToolkit (Fig. 7a).
The general idea is to help the designer to follow the process, with descriptions,
examples and presents a summary of works and artifacts already performed and
those remaining.
As mentioned in A11 and A13 activities of the ADELFE process, the analyst must
verify whether the problem needs the AMAS or not. For this, a tool (Fig. 7b) is
provided to answer the questions at the macro-level (eight criteria) and the micro-
level (three criteria). Answers to questions are graded from 0 to 20.

2 Phases of the ADELFE Process

ADELFE defines its five phases from the RUP definition. They are respectively
dedicated to Preliminary Requirements, Final Requirements, Analysis, Design and
Implementation.

2.1 Preliminary Requirements Phase (WD1)

The Preliminary Requirements Phase involves traditional software development
stakeholders which are assigned classical activities. The goal of this phase is to



30 N. Bonjean et al.

Fig. 7 Tool for monitoring the ADELFE process: AdelfeToolkit (a); tool for AMAS adequacy (b)

obtain a precise and consensual description of the problem as well as the client’s
business. No specific modelling language is used. The process flow at the level of
activities is depicted in Fig. 8, and Fig. 9 depicts this phase according to documents,
roles and work products involved.

2.1.1 Process Roles
Four roles are involved in the Preliminary Requirements Phase: the End-user, the
Client, the Software analyst and the Business analyst.
• End-User: The end-user is responsible for the list of functional and non-

functional requirements during the Define Users Requirements activity. These
requirements are used to define the system and its environment.

• Client: The main role of a client is to validate product documents drawn up by
other experts. The client is responsible for approving the set of requirements
during the Define Users Requirements activity and during the Define Consensual
Requirements activity.

• Software Analyst: Actually the software analyst gives a definition for the main
concepts used to describe the system and its environment. He/she is responsible
for: consensual requirements list during the Define Consensual Requirements
activity, keywords during the Establish Keywords activity and limits and con-
straints of the system during the Extract Limits and Constraints activity.

• Business Analyst: A business analyst is responsible for the business model during
the Determine Business Model activity. He/she defines the business concept and
the relationships between them. He/she also describes formally what are the
business activities involved, what are the products provided or required and who
are the persons responsible for these activities.



ADELFE 2.0 31

Fig. 8 The preliminary requirements phase flow of activities

Fig. 9 The preliminary requirements phase described in terms of activities and work products

2.1.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 8 and detailed in the
following.

A01: Define Users Requirements
This first activity concerns the description of the system and the environment in
which it will be deployed. This activity consists in defining what to build or what
is the most appropriate system for end-users. End-users and clients have to list,
check and approve the requirements. The context in which the system will be
deployed must be understood. The functional and non-functional requirements must
be established. The flow of tasks inside this activity is depicted in Fig. 10, and the
tasks are detailed in the following table.



32 N. Bonjean et al.

Fig. 10 Flow of tasks of the Define Users Requirements activity

Fig. 11 Flow of tasks of the Define Consensual Requirements activity

A01: Define Users Requirements
Tasks Task Descriptions Roles Involved

S1: define users’
requirements

End-users list the functional and non-functional
requirements.

End-users

S2: validate users’
requirements

The client has to check and approve the set of
requirements. If this document is not validated,
the requirements have to be improved; the
previous step is repeated again.

Client

A02: Define Consensual Requirements
This activity consists in defining what conditions or capabilities the system has
to conform. The consensual requirements set is defined by the software analyst.
The flow of tasks inside this activity is depicted in Fig. 11, and the tasks are detailed
in the following table.

A02: Define Consensual Requirements
Tasks Tasks Descriptions Roles Involved

S1: define consensual
requirements

The software analyst defines the requirements
set with the consensual requirements.

Software Analyst

S2: validate consensual
requirements

If there is no agreement on the Requirements Set
document, a backtrack must be performed to
study again the previous step.

Client



ADELFE 2.0 33

Fig. 12 Flow of tasks of the Determine Business Model activity

Fig. 13 Flow of tasks of the Establish Keywords activity

A03: Determine Business Model
This activity provides an overview of the problem, the related concepts and the
activities linked to it. The flow of tasks inside this activity is depicted in Fig. 12, and
the tasks are detailed in the following table.

A03: Determine Business Model
Tasks Tasks Descriptions Roles Involved

S1: determine
business concepts

This step enables one to understand the static and
dynamic structure of the system.

Business Analyst

S2: determine
business process

In this step, the sequence of actors’ actions that
achieve the goal of the system is determined.

Business Analyst

A04: Establish Keywords
The main concepts used to describe the application and its business model are listed.
This activity, carried out by the software analyst, is composed of one task giving the
definition of each keyword. These definitions will be stored in the glossary. The flow
of this activity is depicted in Fig. 13.

A05: Extract Limits and Constraints
In this activity, the limits and constraints of the system are defined by a software
analyst. They can be found in the expression of non-functional requirements and in
the definition of the context in which the system will be deployed. This information



34 N. Bonjean et al.

Fig. 14 Flow of tasks of the Extract Limits and Constraints activity

will be defined mainly from the consensual requirements set documents. The flow
of this activity is depicted in Fig. 14.

2.1.3 Work Products
The Preliminary Requirements Phase generates five work products (text document
including textual description and/or diagrams). Their relationships with the MAS
metamodel elements are depicted in Fig. 15.

Work Products Kind

Name Description Work Product Kind

Users Requirements Set Textual description of the
functional and non-functional
requirements

Free Text

Consensual
Requirements Set

Textual description composed of
consensual requirements

Free Text

Business Model A document composed of:
1) a diagram modelling the
domain-specific data structure; 2) a
diagram showing the workflow of
activities performed by the business
actors

Composite (Structural
and Behavioural)

Glossary A glossary of terms Free Text
Constraints Set Textual description composed of

the limits and constraints of the
system

Free Text

Example: Conference Management Study
The description of the system has already been provided in the introductory chapter.
As the requirements are common to all methods and because ADELFE is not
really dedicated to preliminary requirements, only the business model is shown in
this phase. Figure 16 shows the business concepts and Fig. 17 shows the business
process.



ADELFE 2.0 35

Fig. 15 The preliminary requirements documents structure

Fig. 16 Business concepts

2.2 Final Requirements Phase (WD2)

The Final Requirements Phase is a classical requirement-oriented phase where the
Business Analyst gives a detailed description of the system environment. It also
embeds MAS-oriented tasks. The analysis, done by an MAS specialist, must add
sufficient details to the description of the system environment in order to conclude



36 N. Bonjean et al.

Fig. 17 Business process

Fig. 18 The final requirements phase flow of activities

if an MAS approach is needed to solve the problem with gains. The process flow at
the level of activities is depicted in Fig. 18, and Fig. 19 depicts this phase according
to documents, roles and work products involved.



ADELFE 2.0 37

Fig. 19 The preliminary requirements phase described in terms of activities and work products

2.2.1 Process Roles
Four roles are involved in the Final Requirements Phase: the Business Process
Analyst, the Client, the MAS Analyst and the Ergonomist.
• Business Process Analyst: A business process analyst is responsible for use cases

identification during the Determine Use Case activity, drawing diagrams that
represent the interactions between actors and the system.

• Client: The main role of a client is to validate product documents drawn up by
other experts. He/she is responsible for approving the use cases defined during the
Determine Use Case activity. Besides, the client agrees the UI prototype during
the Elaborate UI Prototype activity.

• MAS Analyst: An MAS analyst is responsible for verifying the MAS adequacy
during the Verify MAS Adequacy activity. It consists in (1) the characterization
of the system environment according to Russel and Norvig definition, (2)
the identification of the possible “bad” interactions between the actors and
the system, and (3) the analysis of the previous results to justify the MAS use.

• Ergonomist: An ergonomist is responsible for graphic user interfaces prototype
during the Elaborate UI Prototype activity. He/she understands the interactions
among humans and the system, and designs a prototype which optimizes human
well-being and overall system performance.



38 N. Bonjean et al.

Fig. 20 Flow of tasks of the Characterize System Environment activity

2.2.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 18 and is detailed in the
following.

A06: Characterize System Environment
The main objective of this activity is to define the system environment in the
system environment description document. This activity enables one to identify
and to describe briefly actors interacting with the system. The possible encountered
constraints are also explained. The flow of tasks inside this activity is depicted in
Fig. 20.

A07: Determine Use Cases
The main objective of this activity is to clarify the different functionalities that the
studied system must provide. The flow of tasks inside this activity is depicted in
Fig. 21, and the tasks are detailed in the following table.

A07: Determine Use Cases
Tasks Tasks Descriptions Roles Involved

S1: take inventory of
use cases

A set of steps defining interactions between an
actor and a system are listed.

Business Process
Analyst

S2: draw system
scenario diagrams

This step explicates the system behaviour from
users’ point of view. The interactions between
the actors and the system are drawn.

Business Process
Analyst

S3: validate use cases Approval of the System Environment
Description document by the client. If the use
cases have to be improved, the two previous
steps have to be repeated again.

Client

A08: Verify MAS Adequacy
In this activity, one must verify that a Multi-agent System (MAS) approach is
needed to realize the system to be built. The question to answer is “Is a traditional
(Object-Oriented) approach sufficient to solve the problem or has the problem some
characteristics which implies an MAS approach for the solving?”. The flow of



ADELFE 2.0 39

Fig. 21 Flow of tasks of the Determine Use Cases activity

Fig. 22 Flow of tasks of the Verify MAS Adequacy activity

tasks inside this activity is depicted in Fig. 22, and the tasks are detailed in the
following table.

A08: Verify MAS Adequacy
Tasks Tasks Descriptions Roles Involved

S1: qualify system
environment

During this step, the MAS analyst characterizes
the system environment according to the Russel
and Norvig definition.

MAS Analyst

S2: identify cooperation
failures actors-system

The aim of this step is to show the inadequate
interactions that may occur between the actors
and the system.

MAS Analyst

S3: verify MAS
adequacy

This step verifies the MAS adequacy by
analysing the results obtained during the two
previous steps.

MAS Analyst

A09: Elaborate UI Prototypes
The GUIs described in the UI Prototype document have to be defined, judged and
validated from functional or non-functional (ergonomic, design, etc.) points of view.
The flow of tasks inside this activity is depicted in Fig. 23, and the tasks are detailed
in the following table.



40 N. Bonjean et al.

Fig. 23 Flow of tasks of the Elaborate UI Prototypes activity

A09: Elaborate UI Prototypes
Tasks Tasks Descriptions Roles Involved

S1: specify UI
prototypes

In this step, the interfaces supplying all needed
functionalities are specified.

Ergonomist

S2: validate UI
prototypes

The UIs are used and assessed from functional
and non-functional points of view.

Client

2.2.3 Work Products
The Final Requirements Phase generates four work products (text document
including textual description and/or diagrams). Their relationships with the MAS
meta-model elements are depicted in Fig. 24.

Work Products Kind

Name Description Work Product Kind

System
Environment
Structure

A textual description describing the actors which
interact with the system and the possible
constraints. Moreover, this document contains a
brief text of actors description.

Free Text

System
Environment
Behaviour

A document composed of: 1) a use case diagram
representing actors and the functionalities
assigned to them; 2) a structured text description
of the actors; 3) diagrams representing the
interactions between the actors and the system.

Composite (Structural
and Behavioural and
Free text)

MAS
Qualification

A text document composed of the description of
the environment according to the Russel and
Norvig definition, the description of “bad”
interaction between actors and system and the
justification of an implementation that using an
MAS is needed.

Free Text

UI Prototype This document is composed of the GUIs
description through which the user(s) interact
with the system and the links between the GUIs.

Free Text



ADELFE 2.0 41

Fig. 24 The final requirements documents structure

Fig. 25 Use cases diagram

Example: Conference Management Study
From the business model and the requirements previously established, four actors
are defined. For each of them, the functionalities are detailed and depicted in a use
cases diagram (see Fig. 25).

Moreover the interactions between the system and the actors are studied and
shown in Fig. 26. From these diagrams, the following cooperative failures have been
identified:
• at least one paper is not allocated
• not enough papers are accepted for the conference
• the chair committee disagrees with the paper allocation



42 N. Bonjean et al.

Fig. 26 System sequence diagrams

• a reviewer does not have a paper to review
• the reviewer disagrees with the paper allocation

Besides, according to Russel and Norvig’s definition, the environment of the
system is described as
• inaccessible because knowing all about the environment (papers, keywords, etc.)

is difficult
• discrete because the number of distinct percepts and actions is limited
• non-deterministic because the actions have multiple unpredictable outcomes
• dynamic because the state of the environment depends upon actions of the system

that is within this environment

2.3 Analysis Phase (WD3)

The Analysis Phase aims at identifying the system structure and justifying the
AMAS adequacy. This phase is composed of four activities enabling one to analyse
the domain characteristics, determine the agents and validate an AMAS approach



ADELFE 2.0 43

Fig. 27 The analysis phase flow of activities

Fig. 28 The analysis phase described in terms of activities and work products

at the global and local level. The process flow at the level of activities is depicted
in Fig. 27, and Fig. 28 depicts this phase according to documents, roles and work
products involved.

2.3.1 Process Roles
Two roles are involved in the Analysis Phase: the MAS Analyst and AMAS
Analyst.
• MAS Analyst: An MAS analyst is responsible for detailing the MAS Environment

in Analysis Domain Characteristics activity. It consists in (1) the identification
of what are the entities which are active and the ones which are not (passive), (2)
the identification of the interactions between the entities. An MAS analyst is also
responsible for Identify agent of the step which consists in defining autonomy,
goal and negotiation abilities of active entities.

• AMAS Analyst: An AMAS analyst is responsible for every activity dealing with
the specificities of AMAS principles. They can be found in Verify the global
level AMAS adequacy activity, in Identify agent activity and in Verify the local
level AMAS adequacy activity. The identification of (cooperative) agents needs



44 N. Bonjean et al.

Fig. 29 Flow of tasks of the Analyse Domain Characteristics activity

to determine the cooperation failures that can occur between entities and then to
define the agents regarding the results of previous steps.

2.3.2 Activity Details
The flow of activities inside this phase is depicted in Fig. 27 and detailed in the
following.

A10: Analyse Domain Characteristics
The main goal of this activity is to analyse the Business Domain and the System
Environment Description in order to detail the entities of the domain and their
interactions. The flow of tasks inside this activity is depicted in Fig. 29, and the
tasks are detailed in the following table.

A10: Analyse Domain Characteristics
Tasks Tasks Descriptions Roles Involved

S1: identify
passive and
active entities

The MAS analyst splits the system into passive
and active entities.

MAS Analyst

S2: study
interactions
between entities

This step shows the interactions between entities. MAS Analyst

A11: Verify the Global Level AMAS Adequacy
In this activity, the AMAS analyst must verify that an AMAS approach is needed to
realize the system to be built. For example, having a system which is able to adapt
itself is sometimes completely useless if the algorithm required to solve the task
is already known, if the task is not complex or if the system is closed and nothing
unexpected can occur. In this activity, the adequacy at the global level is studied to
answer the question “is an AMAS required to implement the system?”. This is done
throw several simple questions related to the global level. The flow of this activity
is depicted in Fig. 30.



ADELFE 2.0 45

Fig. 30 Flow of tasks of the Verify the Global Level AMAS Adequacy activity

Fig. 31 Flow of tasks of the Identify Agent activity

A12: Identify Agent
This activity aims at finding what will be considered as agents in the desired
system. These agents are defined among the previously defined entities. The flow
of tasks inside this activity is depicted in Fig. 31, and the tasks are detailed in the
following table.

A12: Identify Agent
Tasks Tasks Descriptions Roles Involved

S1: study active
entities

For each previously defined active entity, its
autonomy, its goal and its negotiation abilities are
studied.

MAS Analyst

S2: identify
cooperation failures
during interaction
between entities

During its interactions with other entities, an entity
can encounter failures to respect the protocol or
failures in the content of the interaction
(misunderstanding, etc.). This step extracts this kind
of interactions.

AMAS Analyst

S3: determine
cooperative agents

The entities pertaining to the previous step are
considered as agents. In addition, the AMAS
diagram is drawn.

AMAS Analyst

A13: Verify the Local Level AMAS Adequacy
In this activity, the AMAS adequacy is studied at the local level in order to determine
if some agents are needed to be implemented as an AMAS i.e. if a certain kind of
decomposition or recursion is required during the building of the system. The flow
of this activity is depicted in Fig. 32.



46 N. Bonjean et al.

Fig. 32 Flow of tasks of the Verify the Local Level AMAS Adequacy activity

2.3.3 Work Products
The Analysis Phase generates four work products (text document including tex-
tual description and/or diagrams). Their relationships with the MAS metamodel
elements are depicted in Fig. 33.

Work Products Kind

Name Description Work Product Kind

System Analysis A document composed of: 1) a textual
description of the entities described as
active or passive; 2) diagrams depicting the
interactions between entities.

Composite (Free Text
and Behavioural)

Global AMAS
Adequacy Synthesis

This document stores the answers to the
questions regarding the global level about
an implementation using an AMAS.

Structured Text

Agent Extraction This document supplements the System
Analysis document with: 1) the definition
of the goal, the study of autonomy and the
negotiation abilities for each active entity;
2) the list of the cooperation failure
interactions between entities or between
entity and its environment; 3) the definition
of the cooperative agent and the AMAS
diagram which represents them.

Composite (Free Text
and Behavioural)

Local AMAS
Adequacy Synthesis

This document completes the Global
AMAS adequacy synthesis with the
answers to the questions regarding the local
level about an implementation using an
AMAS.

Structured Text

Example: Conference Management Study
From the business concepts model, we define the active and passive entities. In our
case, we define six active entities and the other concepts as passive entities. The
entities system structure is depicted in Fig. 34. Broadly speaking, entities which are



ADELFE 2.0 47

Fig. 33 The analysis documents structure

Fig. 34 Entities structure system diagram

linked to users are considered as active because users may change their mind, which
implies a change in the state of the related entity. Moreover, papers and sessions are
considered as active because they will need negotiation while finding a review or a
session organization.

The following step is the interactions study between entities shown in Figs. 35
and 36. The started interactions and the other one show the interaction after the
paper notification, they are represented in Fig. 35.



48 N. Bonjean et al.

Fig. 35 Entities interactions system structure (beginning)

Verifying the AMAS adequacy consists in studying some specific features of
AMAS with respect to the target application. The designer is provided with a tool
which helps him to answer some questions. Here are the eight questions that are
asked and some answers for our case study:
• Is the global task incompletely specified? Is an algorithm a priori unknown?

YES: the CMS is precisely defined and some algorithms may be found to solve
this kind of problem.

• If several entities are required to solve the global task, do they need to act in a
certain order? YES: there are dependencies in the interactions needed between
entities.

• Is the solution generally obtained by repetitive tests? Are different attempts
required before finding a solution? NO: no need for that.



ADELFE 2.0 49

Fig. 36 Entities interactions system structure (ending)

• Can the system environment evolve? Is it dynamic? YES: it is highly dynamic.
Authors, reviewers and papers may appear or disappear while a solution is
calculated.

• Is the system process functionally or physically distributed? Are several phys-
ically distributed entities needed to solve the global task? Or is a conceptual
distribution needed? YES/NO: people is physically distributed but there is no
need for a distributed solving of the problem.

• Are a great number of entities needed? YES: depending on the conference, but
potentially, in conferences like AAMAS, there are a great number of entities.

• Is the studied system non-linear? RATHER YES: in the nominal case, it can be
rather easy to find a linear decomposition of the problem, but with the openness
described earlier, the great number of interactions may lead to a complex system.

• Is the system evolutionary or open? Can new entities appear or disappear
dynamically? YES: it is highly dynamic. Authors, reviewers and papers may
appear or disappear while a solution is calculated.
In the “Identify Agents” activity, the active entities previously defined are

studied. The following table depicts the autonomy, the goal and the negotiation
abilities of each of them.



50 N. Bonjean et al.

Fig. 37 AMAS system diagram

Active Entities Autonomy Goal Negotiation Abilities

Paper Take its own decision Know its result:
acceptance or
rejection

Talk with other papers
to choose reviewer and
find its position in the
acceptance

Reviewer Act according to the paper
and users

Review papers

Program
Committee

Act according to the users Validate

Publisher Act according to the users Give constraints and
proceedings

Author Act according to the users Deal with a paper
Session Select itself the right papers

to insert for the conference
management

Select paper to be
full

Discuss with the other
sessions to select papers

From the interactions between entities which have been previously identified,
three other cooperative failure interactions are identified: (1) a paper does not find a
review; (2) several papers want to rise to the same rank; (3) sessions select the same
paper. Two kinds of agent are therefore deduced: the paper agent and the session
agent. The resulting AMAS is represented in Fig. 37.

2.4 Design Phase (WD4)

The Design Phase aims at providing a detailed architecture of the system. During
this phase, the definition of a module view is proposed, the communication acts
are studied and the different behaviours are determined. The process flow at the



ADELFE 2.0 51

Fig. 38 The design phase flow of activities

Fig. 39 The design phase described in terms of activities and work products

level of activities is depicted in Fig. 38, and Fig. 39 depicts this phase according to
documents, roles and work products involved.

2.4.1 Process Roles
Three roles are involved in the Design Phase: the architectural designer, the MAS
designer and the AMAS designer.
• Architectural Designer: An architectural designer is responsible for module

organization during the Define Module View activity. He/she defines the detailed
architecture of the system in terms of modules.

• MAS Designer: An MAS designer is responsible for communication acts during
the Study Communication Acts activity and the definition of the entities behaviour
during the Define Entity Behaviour activity. He/she defines how the entities and
the agents interact together or with their own environment.

• AMAS Designer: An AMAS designer is responsible for nominal behaviour of
agents during the Define Nominal Behaviour activity, cooperative behaviour



52 N. Bonjean et al.

Fig. 40 Flow of tasks of the Define Module View activity

of agents in the Define Cooperative Behaviour activity and fast prototyping
during the Validate Design Phase activity. Indeed, from the structure analysis
and the communication acts previously detailed, an AMAS designer defines
skills, aptitudes, an interaction language, a world representation, a criticality and
the characteristics of an agent. He/she fulfils the agent behaviour by adding a
cooperative attitude i.e. giving rules which enable anticipating or detecting and
repair of the non-cooperative situations. For that, skills, aptitudes, an interaction
language, a world representation, a criticality and the characteristics are filled
out. Finally, an AMAS designer tests the behaviour of agents i.e. the protocols,
the methods and the general behaviour of agents.

2.4.2 Activity Details
The flow of activities inside this phase is depicted in Fig. 38 and detailed in the
following.

A14: Define Module View
This activity shows how the architectural designer maps the key elements of the
software to the modules. Their organization and dependencies are defined. The
following kinds of dependencies can be used: use, allowToUse, include/decompose,
CrossCut, EnvModel. The flow of this activity is depicted in Fig. 40.

A15: Study Communication Acts
This activity aims at making clear interactions between the entities and/or the agents
previously identified. The flow of tasks inside this activity is depicted in Fig. 41, and
the tasks are detailed in the following table.

A15: Study Communication Acts
Tasks Tasks Descriptions Roles Involved

S1: define agents
interaction

This step consists in defining the way in
which an agent is going to interact with the
others and its environment.

MAS Designer

S2: define entities
interaction

This step consists in defining the way in
which an entity is going to interact with
others entities.

MAS Designer



ADELFE 2.0 53

Fig. 41 Flow of tasks of the Study Communication Acts activity

A16: Define Entity Behaviour
The aim of this activity is to define the entity behaviour. It can be illustrated by an
inner state related to its current role. This activity is performed by an MAS analyst.
The flow of this activity is depicted in Fig. 42.

A17: Define Nominal Behaviour
The purpose of this activity is to define the nominal behaviour. The AMAS designer
has to define skills, aptitudes, an interaction language, a world representation and
a criticality, which compose the nominal behaviour. Agents may also have physical
characteristics such as weight, colour, etc. which may be necessarily found during
this activity. The structural diagrams of agents are drawn and the structural rules are
described. In addition, an agent can be defined by an inner state related to its current
role in the MAS organization. The flow of tasks inside this activity is depicted in
Fig. 43, and the tasks are detailed in the following table.

A17: Define Nominal Behavior
Tasks Tasks Descriptions Roles Involved

S1: define its
skills

The knowledge about a domain allowing the agent to
execute actions is defined.

AMAS Designer

S2: define its
aptitudes

The aim of this activity is to determine the
capabilities of an agent to reason on its knowledge
about the domain or on its representation of the world.

AMAS Designer

S3: define its
interaction
language

This step consists in defining the way in which agents
are going to interact. Actually, if agents interact to
communicate, information exchanges between agents
are described. Technically, these protocols are
specified through protocol diagrams.

AMAS Designer

S4: define its
world repres-
entation

The AMAS designer defines the way to describe the
representations of an agent about other agents, itself
and its environment.

AMAS Designer

S5: define
criticality and
confidence of
agent
behaviour

This step determines the relative difficulty of agents
in its neighbourhood and its internal measure that
provides information on the reliability of the decision
on actions intended.

AMAS Designer



54 N. Bonjean et al.

Fig. 42 Flow of tasks of the Define Entity Behaviour activity

Fig. 43 Flow of tasks of the Define Nominal Behavior activity

Fig. 44 Flow of tasks of the Define Cooperative Behavior activity

A18: Define Cooperative Behaviour
This activity is a key step. Indeed, the AMAS designer defines the cooperative
behaviour by the allocation of cooperation rules. These rules enable an agent to
have a cooperative attitude i.e. anticipate or detect and repair the non-cooperative
situations. During this activity, the structural diagram is completed by appropriated
skills, representations, the attitudes or any other agent characteristic. The flow of
tasks inside this activity is depicted in Fig. 44, and the tasks are detailed in the
following table.



ADELFE 2.0 55

Fig. 45 Flow of tasks of the Validate Design Phase activity

A18: Define Cooperative Behaviour
Tasks Tasks Descriptions Roles Involved

S1: define its skills The knowledge about a domain allowing the
agent to execute actions is defined.

AMAS Designer

S2: define its aptitudes The aim of this activity is to determine the
capabilities of an agent to reason on its
knowledge about the domain or on its
representation of the world.

AMAS Designer

S3: define its interaction
language

This step consists in defining the way in
which agents are going to interact. Actually,
if agents interact to communicate,
information exchanges between agents are
described. Technically, these protocols are
specified through protocol diagrams.

AMAS Designer

S4: define its world
representation

The AMAS designer defines the way to
describe the representations of an agent
about other agents, itself and its
environment.

AMAS Designer

S5: define criticality and
confidence of agent
behaviour

This step determines the relative difficulty of
agents in its neighbourhood and its internal
measure that provides information on the
reliability of the decision on actions
intended.

AMAS Designer

A19: Validate Design Phase
During this activity, the AMAS designer may test the behaviour of the agents. This
test can lead to improve an agent’s behaviour if it is not adequate. The flow of
tasks inside this activity is depicted in Fig. 45, and the tasks are detailed in the
following table.



56 N. Bonjean et al.

A19: Validate Design Phase
Tasks Tasks Descriptions Roles Involved

S1: fast prototyping During this step, the agents’ behaviour is
tested. The prototype has to point out the
possible lack of an agent behaviour and of
cooperative attitude.

AMAS Designer

S2: complete design
diagrams

The aim of this step is to finalize the module
organization and finish the Design Phase.

AMAS Designer

2.4.3 Work Products
The Design Phase generates six work products. Their relationships with the MAS
metamodel elements are depicted in Fig. 46.

Work Products Kind

Name Description Work Product Kind

Module
Organization

This document depicts the organization and
the dependencies of the key elements of the
software.

Structural

Communication
Acts

This document is composed of the specific
textual description of the entity interactions
and the agent interactions and the precise
diagrams depicting this.

Composite (Free and
Behavioural)

MAS
Environment

This document contains the description of the
entities behaviour. It is illustrated with inner
state related to their current role.

Composite (Free and
Behavioural)

MAS
Architecture

This document is composed of the agent
nominal behaviour description, illustrated
with inner state related to their current role
and depicted by structural diagram of the
agents. Skills, aptitudes, an interaction
language, a world representation and a
criticality define cooperative agent behaviour.
Moreover, it contains the physical
characteristics of the agent and its structural
rules.

Composite (Free and
Structural and
Behavioural)

Cooperative
MAS
Architecture

This document contains the elements of a
cooperative agent behaviour, enabling
anticipation or detection and repair of the
non-cooperative situations. A cooperative
agent behaviour is composed of skills,
aptitudes, an interaction language, a world
representation and a criticality.

Composite (Free and
Structural and
Behavioural)

Software
Architecture

This document is composed of the fast
prototyping of the agent behaviour and the
refinement of the Software architecture
entities, Software architecture nominal and
Software architecture cooperative document.

Composite (Free and
Structural and
Behavioural)



ADELFE 2.0 57

Fig. 46 The design documents structure

Fig. 47 Paper agent structural diagram

Example: Conference Management Study
In this section where the phase settles the design of the software architecture of
each agent and entity, we only describe the paper agent behaviour. Actually, its
skills, its aptitudes, its interaction language and its representations are depicted in
Fig. 47. Figure 48 represents an inner state related to the current state of the paper
agent. The nominal behaviour of a paper agent starts in a Submitted state which



58 N. Bonjean et al.

Fig. 48 Inner state related to
paper agent behaviour

corresponds to the creation of a paper agent. In this state, the paper agent is looking
for reviews. It is in IsReviewing state when it finds all reviews it needs. It becomes
Reviewed when all its reviews are complete. In order to reach the following state,
Accepted or Rejected, the paper agent self-evaluates the reviews’ results and changes
its state. If the paper agent is Accepted, it informs the session of its state and becomes
IsImproving. Finally, the paper agent is Printed when the proceedings are published.

Moreover, this cooperative agent can meet some non-cooperative situations. For
a paper agent, two situations are detected: (1) a review can be linked to a limited
number of papers; it can happen that several paper agents want the same review;
(2) when the paper agents have to deal with the acceptance, they can be put in
concurrence or competition.

2.5 Implementation Phase (WD5)

The Implementation Phase aims at providing the desired system. Actually, the
aspects of the detailed architecture are first described using SpeADL, then imple-
mented using the Java programming language by relying on code generated from
the ADL, and finally executed to deliver the desired system. The process flow at the
level of activities is depicted in Fig. 49, and Fig. 50 depicts this phase according to
documents, roles and work products involved.

2.5.1 Process Roles
Two roles are involved in the Implementation Phase: the AMAS Framework
Developer, and the AMAS Developer.
• AMAS Framework Developer: An AMAS framework developer is responsible

for the description of the system architecture in the SpeAD (Species-based
Architecture Description) model language during the Implement Framework
activity and the implementation of everything that is not an agent. Actually, the
AMAS framework developer implements the passive entities, the active entities
and all programs required by the system such as a scheduler.

• AMAS Developer: An AMAS developer is responsible for the agent behaviour
implementation during the Implement Agent Behaviour activity. He/she
implements the nominal and cooperative behaviour according to the designed
software architecture.



ADELFE 2.0 59

Fig. 49 The implementation phase flow of activities

Fig. 50 The implementation phase described in terms of activities and work products

2.5.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 49, and the tasks are
detailed in the following table.

A20: Implement Framework
During this activity, the mechanisms are software components with provided
and required services that can be composed together to form the architecture of
the system. Entities and agents’ architecture is therefore described in terms of
components. The architecture is described using the textual architecture description
language SpeADL (Species-based Architecture Description Language). Then the
architectural elements which are not a cooperative agent are implemented. The flow
of tasks inside this activity is depicted in Fig. 51, and the tasks are detailed in the
following table.

A20: Implement Framework
Tasks Tasks Descriptions Roles Involved

S1: extract micro
architecture

The previously defined software architecture
is translated into SpeAD model language.

AMAS Framework
Developer

S2: implement
component

The AMAS framework developer implements
everything that is not related to the agent or
entity behaviour in the system.

AMAS Framework
Developer

S3: implement entities The AMAS framework developer implements
the active and passive entities behaviour.

AMAS Framework
Developer



60 N. Bonjean et al.

Fig. 51 Flow of tasks of the Implement Framework activity

Fig. 52 Flow of tasks of the Implement Agent Behaviour activity

A21: Implement Agent Behaviour
During this activity, the behaviour of the cooperative agent is implemented. The
flow of tasks inside this activity is depicted in Fig. 52, and the tasks are detailed in
the following table.

A21: Implement Agent Behaviour
Tasks Tasks Descriptions Roles Involved

S1: implement nominal
behaviour

The nominal behaviour of agents is
implemented by working out the agents’
process decision.

AMAS Developer

S2: implement
cooperative behaviour

The cooperative behaviour of agents is
implemented by working out the agents’
process decision which enables anticipation
or detection and repair of the
non-cooperative situations.

AMAS Developer

2.5.3 Work Products
The Implementation Phase generates two work products. Their relationships with
the MAS metamodel elements are depicted in Fig. 53.



ADELFE 2.0 61

Fig. 53 The implementation documents structure

Work Products Kind

Name Description Work Product Kind

Framework Code This document is composed of: 1)a textual
description of the architecture of the system,
according to the SpeADL language; 2) the
implementation of all what is not agent.

Composite (Structured
Text and Free Text)

AMAS code This document is composed of the
implementation of the cooperative agent
behaviour (nominal behaviour and
cooperative behaviour).

Composite (Structured
Text and Free Text)

Example: Conference Management Study
Figure 54 is a graphic description of an SpeADL. This architecture defined with
SpeAD is made of components connected together with simple connectors. The
components externally provide ports, for which they have an implementation, and
require ports that they can use in their implementation. Note that the description of
components made with SpeADL will then be translated to Java.



62 N. Bonjean et al.

Fig. 54 Architectural description of paper agent

Fig. 55 The work products dependencies



ADELFE 2.0 63

3 Work Product Dependencies

Figure 55 depicts the dependencies among the different work products produced by
the process. A dashed arrow is used to relate two of them if one is an input document
to the other. Its direction points from the consumer document to the input one.


	ADELFE 2.0
	1 Introduction
	1.1 The ADELFE Process Life Cycle
	1.2 The ADELFE MAS Metamodel
	1.2.1 Definition of MAS Metamodel Elements
	1.2.2 Definition of MAS Metamodel Elements

	1.3 Guidelines and Techniques

	2 Phases of the ADELFE Process
	2.1 Preliminary Requirements Phase (WD1)
	2.1.1 Process Roles
	2.1.2 Activities Details
	2.1.3 Work Products

	2.2 Final Requirements Phase (WD2)
	2.2.1 Process Roles
	2.2.2 Activities Details
	2.2.3 Work Products

	2.3 Analysis Phase (WD3)
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 Design Phase (WD4)
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	2.5 Implementation Phase (WD5)
	2.5.1 Process Roles
	2.5.2 Activities Details
	2.5.3 Work Products


	3 Work Product Dependencies


