
The OpenUp Process

Massimo Cossentino, Vincent Hilaire, and Valeria Seidita

Abstract
The Open Unified Process (OpenUp) is an iterative design process that
structures the project lifecycle into four phases: Inception, Elaboration,
Construction, and Transition. It is part of the Eclipse Process Framework and
embraces a pragmatic, agile philosophy that focuses on the collaborative nature
of software development. It is a tools-agnostic, low-ceremony process that can
be extended to address a broad variety of project types. The project lifecycle
provides stakeholders and team members with visibility and decision points
throughout the project and makes them able to manage their work through
micro-increments.

1 Introduction

OpenUp is a lean Unified Process that applies iterative and incremental approaches
within a structured lifecycle. OpenUp embraces a pragmatic, agile philosophy that
focuses on the collaborative nature of software development. It is a tools-agnostic,

M. Cossentino (�)
Istituto di Reti e Calcolo ad Alte Prestazioni – Consiglio Nazionale delle Ricerche, Viale delle
Scienze, 90128 Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

V. Hilaire
IRTES-SET, UTBM, UPR EA 7274, 90010 Belfort Cedex, France
e-mail: vincent.hilaire@utbm.fr

V. Seidita
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Viale delle Scienze,
90128 Palermo, Italy
e-mail: valeria.seidita@unipa.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__15,
© 2010–2013 The Eclipse Foundation and its Contributors – published by permission
under Eclipse Public License (EPL) <http://www.eclipse.org/legal/epl-v10.html>

491

mailto:cossentino@pa.icar.cnr.it
mailto:vincent.hilaire@utbm.fr
mailto:valeria.seidita@unipa.it
http://www.eclipse.org/legal/epl-v10.html

492 M. Cossentino et al.

low-ceremony process that can be extended to address a broad variety of project
types.

Personal efforts on an OpenUp project are organized in micro-increments. These
represent short units of work that produce a steady, measurable pace of project
progress (typically measured in hours or a few days).

The process applies intensive collaboration as the system is incrementally
developed by a committed, self-organized team. These micro-increments provide an
extremely short feedback loop that drives adaptive decisions within each iteration.

OpenUp divides the project into iterations: planned, time-boxed intervals typic-
ally measured in weeks. Iterations focus the team on delivering incremental value
to stakeholders in a predictable manner. The iteration plan defines what should be
delivered within the iteration. The result is a demo-able or shippable build. OpenUp
teams self-organize around how to accomplish iteration objectives and commit to
delivering the results. They do that by defining and “pulling” fine-grained tasks
from a work items list. OpenUp applies an iteration lifecycle that structures how
micro-increments are applied to deliver stable, cohesive builds of the system that
incrementally progresses toward the iteration objectives.

OpenUp structures the project lifecycle into four phases: Inception, Elaboration,
Construction, and Transition. The project lifecycle provides stakeholders and team
members with visibility and decision points throughout the project. This enables
effective oversight, and allows you to make “go or no-go” decisions at appropriate
times. A project plan defines the lifecycle, and the end result is a released
application.

It is worth to note that the OpenUp description largely uses the concept of
work product slot. This is, indeed, one of the peculiarities of this process approach.
The definition of work product slot may be found in [2]: “Work product slots
are indirections for the inputs of tasks of a Practice that allow practices to be
documented independent of any other practice, i.e. independent of the work products
produced by other practices. Practice task refer to work product slots as inputs,
rather than refer directly to specific work products.” It is a little bit different from
the concept of Work Product for which a specific SPEM 2.0 icon exists; we decided
to use the same icon for the two concepts maintaining the name within brackets in
the case of Work Product Slot as the OpenUp documentation does.

The description of the OpenUp process reported in this chapter is taken from
the OpenUp website [1]. The documentation approach adopted in that website
is quite different from the IEEE FIPA SC00097B standard adopted in this book
but it has been possible to retrieve most of the necessary information. In order
not introduce any personal interpretation of OpenUp, the authors of this chapter
preferred not to report the information that may not be explicitly found in the
website. This brought to the omission of a few details but it is coherent with the
spirit of this book where the proposed chapters have been written by people who are
the primary authors of the described process or they are at least deeply involved in
it. In this case, this situation was not verified and therefore a specific care has been
needed (Fig. 1).

The OpenUp Process 493

Fig. 1 An overview of the OpenUp process

1.1 The OpenUp Process Lifecycle

OpenUp is an iterative process with iterations distributed throughout four phases:
Inception, Elaboration, Construction, and Transition.

Each phase may have as many iterations as needed (depending on the degree of
novelty of the business domain, the technology being used, architectural complexity,
and project size, to name a few factors).

To offer a quick start for teams to plan their iterations, OpenUp provides work
breakdown structure (WBS) templates for each iteration, and a WBS template for
an end-to-end process.

Iterations may have variable lengths, depending on project characteristics. One-
month iterations are typically recommended because this timeframe provides:
• A reasonable amount of time for projects to deliver meaningful increments in

functionality.
• Early and frequent customer feedback.
• Timely management of risks and issues during the course of the project.

In the following sections, all the aspects of OpenUp are described by using
SPEM 2.0 [6] and the extensions proposed by Seidita et al. in [7]. Figure 2 shows
the SPEM 2.0 icons the reader can find in the following figures (Fig. 3).

1.2 The OpenUp Process System Metamodel

The OpenUp website (see [1]) does not provide an explicit representation of
the underlying system metamodel. For this reason, it has been preferred to limit

494 M. Cossentino et al.

Keys

Structural
WPKind

Behavioral
WPKind

Structured
WPKind

Free
WPKind

a

Composite
WPKind

c
Task UseRole UseActivity

Fig. 2 The SPEM 2.0 Icons

Inception
Phase

Elaboration
Phase

Construction
Phase

Transition
Phase

Fig. 3 The OpenUp phases

Test Script

Test Case Test VerificationTest Result

Glossary Term

Architectural
Justification

Architectural
Constraints

Architectural
Assumption

Architectural
Dedependency

Architectural
View

Architecture
Architectural

Issue
Architectural

Decision

Code

Analysis Class

Design Pattern

Key Abstraction

SubsystemData File

Executable
Version

Architectural
Mechanism

File

Other File FolderBuild Script

Architectural
Goal

Source Code
File

Source Code

Architectural
Framework

Fig. 4 The OpenUp System Metamodel—the first portion

the information reported in this section to what could be extracted from the
website without any margin for misinterpretation. The elements of the metamodel
have been deduced from the analysis of available work product descriptions.
The following pictures (Figs. 4, 5, 6, and 7) only reports system metamodel
elements whose relationships with others may be unambiguously deduced from
work product descriptions; for readability reasons we split the whole figure in four
ones.

The OpenUp Process 495

c
Guideline

Work Product

Process

c
Procedure

W ow

Report

Role

Architecture

Stakeholder

User
Environment

End User

Need

Feature

Product Position
Statement

Product

Other Product
Requirement

Problem

Requirement

System-Wide
Requirement

Release

Requirement
Realization

Participant Component

Deployment

Location

Scenario

Node

Issue

Work Item
Work Item
Assigment

Use Case Actor

Work Item
Assignment

Fig. 5 The OpenUp System Metamodel—the second portion

1.2.1 Definition of the System Metamodel Elements
In the following table, the “Domain” column prescribed by the FIPA SC00097B
specification has not been reported because there is no precise information on the
OpenUp website about the allocation of concepts to domains like problem, solution
and so on.

Table 1 only reports the elements for which a definition may be found in the
OpenUp website. The other elements identified in the work product descriptions
are reported below the table as a simple list.

List of system metamodel elements without definition: Analysis Class, Architec-
ture, Architectural Issues, Architectural Mechanism, Build scripts, Communication
Procedure, Component, Contingency Measure, Data files, Deployment, Design
Pattern, End User, Implementation Element, Issue, Node, Other files, Product,
Release, Requirement (abstract), Requirement Realization, Rollback, Source code
files, Test Result, Workaround.

2 Phases of the OpenUp Process

2.1 The Inception Phase

The Inception phase is composed by the Inception iteration as described in Fig. 8.
The process flow within the iteration is detailed in Fig. 9.

496 M. Cossentino et al.

Authorizing
Agent

Rollback
Procedure

Rollback Rollback
Performer

Contingency
Measure

Workaround

Backout Plan

Responsible

Communication
Procedure

Communique

Training
Material

Support
Documentation

User
Documentation

Infrastructure

Product
Documentation

Risk

Integrated
Compiled Code

Release Control

Evaluation
Result

Tool

Implementation
Element

Developer Test

Fig. 6 The OpenUp System Metamodel—the third portion

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Inception phase involves 8 different
process roles, 24 work products as described in Figs. 10, 11, 12, and 13. The phase
is composed of four activities as described in Fig. 10, each of them composed of one
or more activities and tasks as described in Figs. 11, 12, 13, 14, and 15.

Details of activities shown in Fig. 10 are reported in Figs. 11, 12, 13, 14, and 15.

2.1.1 Process Roles
Eight roles are involved in the Inception phase, which are described in the following
subsections.

Analyst
She/he is responsible for:
1. Detailing system-wide requirements
2. Detailing use-case scenario

The OpenUp Process 497

Architecture

Requirement

Project Practice

Lesson Learned

Reliability

Usability

Architecturally
cant

Requirement

Performance

Supportability

User Interface

Interface to Ext
System Business Rule

System
Constraint

System
Compliance

System
Documentation

Issue

Iteration Issue

Iteration

Iteration
Milestone

Iteration Plan

Iteration
Objectives

Project Plan

Project MeasureProject
Organization

Deployment
Strategy

Work Item
Assigment

Fig. 7 The OpenUp System Metamodel—the fourth portion

3. Developing technical vision
4. Identifying and outlining requirements

She/he assists in:
1. Assessing results
2. Creating test cases
3. Envisioning the architecture
4. Managing iteration
5. Planning iteration
6. Planning project

Architect
She/he responsible for:
1. Envisioning the architecture.

She/he assists in:
1. Detailing system-wide requirements
2. Detailing use-case scenario
3. Developing technical vision
4. Identifying and outlining requirements
5. Managing iteration
6. Planning iteration
7. Plan project

498 M. Cossentino et al.

Table 1 Definition of the system metamodel elements

Concept Definition

Actor To fully understand the system’s purpose, you must know who the system is for,
that is: Who will use the system? The answer to this question is: the Actors. An
Actor is a role that a person or external system plays when interacting with the
system. Instances of an Actor can be an individual or an external system; however,
each Actor provides a unique and important perspective on the system that is
shared by every instance of the Actor.

Communique While there is no prescribed format for the release communications artifact, each
communique should indicate the preferred delivery mechanisms (e.g., beeper
notification, telephone calls, a posting to an internal release website, live or pre-
recorded presentations by senior management, etc.) and generally answer the
following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release

to production has taken place?
• What specifically (features, functions, components) has been placed into

production?
• Why is this release valuable to stakeholders and what business purpose does

it serve?
• Where is the product available (on which platforms, geographical locations,

business units, etc.)?
• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date

is in the future)?
Design Element The elements that will make up the implemented system. They contribute to define

the abstractions of particular portions of the implementation. Design elements
may be used to describe multiple static and dynamic views of the system for
examination.

Developer Test It covers all of the steps to validate a specific aspect of an implementation element.
A developer test specifies test entries, execution conditions, and expected results.
These details are identified to evaluate a particular aspect of a scenario

Envisioned Core Requirement Define the quality ranges for performance, robustness, fault tolerance, usability,
and similar characteristics that are not captured in the Feature Set.

Evaluation Results Results of the iteration assessment that may be useful for improving the next one
Executable Version The working version of the system or part of the system is the result of putting

the implementation through a build process (typically an automated build script)
that creates an executable version, or one that runs. This executable version will
typically have a number of supporting files that are also considered part of this
artifact.

Feature The view of the stakeholders of the technical solution to be developed is specified
in terms of her/his key needs and features. It also includes envisioned core
requirements.

File Files compose the executable version of the system.
Folder Folders contain File
Glossary Term Terms that are being used on the project so that everyone has a common

understanding of them
Integrated Compiled Code A release consists of integrated, compiled code that runs cleanly, independently,

and in its entirety.

Term Definition

Infrastructure In reference to a release sprint, infrastructure refers to all the hardware, software,
and network facilities necessary to support a deployed release. Infrastructure
normally is defined as anything that supports the flow and processing of inform-
ation in an organization. The infrastructure needed to support a release package
normally includes:
• Software, including: Operating systems and applications for servers and

clients, Desktop applications, Middleware, Protocols
• Hardware
• Networks, including: Routers, Aggregators, Repeaters, Other transmission

media devices that control movement of data and signals
• Facilities

(continued)

The OpenUp Process 499

Table 1 (continued)

Term Definition

Iteration An iteration is a set period of time within a project in which you produce a
stable, executable version of the product, together with any other supporting
documentation, install scripts, or similar, necessary to use this release. Also
referred to as a cycle or a timebox.

Iteration Issue An iteration is a set period of time within a project in which you produce a
stable, executable version of the product, together with any other supporting
documentation, install scripts, or similar, necessary to use this release. Also
referred to as a cycle or a timebox.

Iteration Objectives A few objectives should be written for the iteration, these will help guide the
performers throughout the iteration. Also, assess at the end if those objectives
have been achieved.

Iteration Plan It helps the team to monitor the progress of the iteration, and keeps the results of
the iteration assessment that may be useful for improving the next one. It include
Milestones of the Iteration, task assignment and issues to be solved during the
iteration.

Milestone Milestones of an iteration show start and end dates, intermediate milestones,
synchronization points with other teams, demos, and so on.

Need Capabilities needed by stakeholder
Process The process that a project is to follow in order to produce the project’s desired

results.
Product Documentation It provides a detailed enough understanding of how the product operates and how

it meets stated business goals and needs.
Project Plan It describes how the project is organized, and identifies what practices will be

followed. Additionally, it defines the parameters for tracking project progress, and
specifies the high-level objectives of the iterations and their milestones.

Release Control It identifies the requirements to which a release package must conform to be
considered “deployable”.

Responsible Who will execute the communications when a successful release has been
declared (normally the Deployment Engineer), as well as the timing and depend-
encies of the communiques.

Risk A risk is whatever may stand in the way to success, and is currently unknown
or uncertain. Usually, a risk is qualified by the probability of occurrence and the
impact in the project, if it occurs.

Stakeholder Stakeholders express their needs and requested features.
Support Documentation Support documentation typically includes:

• User manuals with work instructions, process descriptions, and procedures
• Communications, training, and knowledge transfer deliverables
• Support and operations manuals
• Service information, including Help Desk scripts

System-Wide Requirement System-wide requirements are requirements that define necessary system qual-
ity attributes such as performance, usability and reliability, as well as global
functional requirements that are not captured in behavioral requirements artifacts
such as use cases. System-wide requirements are categorized according to the
FURPSC model (Functional, Usability, Reliability, Performance, Supportability
C constraints). Constraints include design, implementation, interfaces, physical
constraints, and business rules. System-wide requirements and use cases, together,
define the requirements of the system. These requirements support the features
listed in the vision statement. Each requirement should support at least one feature,
and each feature should be supported by at least one requirement.

Task Assignment The task assignments for an iteration are a subset of all tasks on the Artifact: Work
Items List

Test Case A test case specifies the conditions that must be validated to enable an assessment
of aspects of the system under test. A test case is more formal than a test idea;
typically, a test case takes the form of a specification. It includes the specification
of test inputs, conditions, and expected results for a system

Test Script Test scripts implement a subset of required tests in an efficient and effective
manner.

(continued)

500 M. Cossentino et al.

Table 1 (continued)

Term Definition

Test Verification It reports that a set of tests was run
Tool The tools needed for supporting the software development effort.
Training Material Training materials that can be used to train end users and production support

personnel might consist of: Presentation slides, Handouts, Job aids, Tutorials, On-
line demos, Video vignettes, Lab exercises, Quizzes, Workshop materials, etc.

Use Case Use cases are used for the following purposes:
• To reach a common understanding of system behavior
• To design elements that support the required behavior
• To identify test cases
• To plan and assess work
• To write user documentation

User Documentation User documentation might include all or parts of user manuals (electronic or
paper-based), tutorials, frequently asked questions (FAQs), on-line Help Files,
installation instructions, work instructions, operational procedures, etc.

Vision Constraint Together with the Stakeholder Requests give an overview of the reasoning,
background, and context for detailed requirements.

Work Item Requests for additional capabilities or enhancement for that application. Work
items can be very large in scope, especially when capturing requests for enhance-
ments. To allow the application to be developed in micro-increments, work items
are analysed and broken down into smaller work items so that they can be assigned
to an iteration.

Lifecycle Objectives
Milestone

Inception
Iteration [1..n]

Fig. 8 The Inception iteration inside the Inception phase

Initiate Project

Plan and Manage
Iteration

Agree on Technical
Approach

Identify and Refine
Requirements

Fig. 9 The Inception phase flow of activities

Developer
She/he assists in
1. Assessing results
2. Creating test cases
3. Detailing use-case scenarios

The OpenUp Process 501

Agree on Technical
ApproachInitiate

Project

Identify and
Refine

Requirements

StakeholderDeveloper TesterAnalyst Architect

Test Case Glossary System-Wide
Requirements

Use Case
ModelUse Case Work Items

List

Developer Architect Analyst Stakeholder Project Manager

Architecture
Notebook

Project PlanGlossaryVision

Analyst ArchitectProject
Manager Stakeholder Developer Tester

Plan and
Manage
Iteration

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

Work Items
List

Iteration
Plan

ToolsProject Defined
Process

Deployment
PlanRisk List

Tools
Specialist

<<Predecessor>>

<<Predecessor>>

Fig. 10 The Inception phase described in terms of activities, output work products and involved
stakeholders

Initiate
ProjectDevelop

Technical Vision
Plan Project

Vision

Glossary

<<input, optional>>

<<output>>

<<output>>

[Project
Work]

<<input>>

[Technical
Specification]

<<input>>

Project
Plan

<<output>>

Analyst Architect Project Manager Stakeholder

<<performs,
primary>>

<<performs, assist>>

<<performs,
primary>>

<<performs,
assist>>

Developer Tester

<<performs, assist>>

Fig. 11 The Initiate Project activity described in terms of tasks, roles and work products

4. Envisioning the architecture
5. Identifying and outlining requirements
6. Managing iteration
7. Outlining deployment plan

502 M. Cossentino et al.

<<input>>

Risk List

Plan and Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst Architect

Project
Manager

Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs, primary>> <<performs, assist>>

Iteration
Plan

a

Work Items
List

a

Iteration
Plan

a

Work Items
List

a

Work Items
List

a

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work Items
List

aRisk List

Iteration
Plan

a

Iteration
Plan

a

[Project Definition
and Scope]

a

Iteration
Plan

a

Work Items
List

a
<<output>>

<<input>>

Iteration
Plan

a

Work Items
List

a

[Project
Definition and

Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

Tools

a

Project Defined
Process

c

<<output>>

Tools

a
Project
Defined
Process

c

Fig. 12 The Plan and Manage Iteration activity described in terms of activities, tasks, roles and
work products (activity Prepare Environment is detailed in Fig. 13)

8. Planning iteration
9. Planning project

Process Engineer
She/he is responsible for
1. Deploying the process
2. Tailoring the process

Project Manager
She/he is responsible for
1. Assessing results
2. Managing iteration
3. Planning iteration
4. Planning project

The OpenUp Process 503

<<output>>

<<performs,
primary>>

<<performs,
primary>>

Prepare
Environment

Setup Tools

Tool Specialist

<<performs,
primary>>

Tools

<<input>>

<<output>>
Tailor the
Process

Project Manager

<<performs,
primary>>

 Project Defined
Process

<<input>>

Project Defined
Process

Tools

Verify Tool
Configuration

and Installation

Tool Specialist

<<input>>
<<output>>

Tools

Deploy the
Process

Project Manager

 Project Defined
Process

<<input>>

Project Defined
Process

<<output>>

Tools

Fig. 13 The Prepare Environment activity of the Plan and Manage Iteration activity described in
terms of tasks, roles, and work products

She/he assists in
1. Developing technical vision
2. Envisioning the architecture

Stakeholder
She/he assists in
1. Assessing results
2. Creating test cases
3. Detailing system-wide requirements
4. Detailing use-case scenarios
5. Developing technical vision
6. Envisioning the architecture
7. Identifying and outlining requirements
8. Managing iteration
9. Planning iteration

10. Planning project

Tester
She/he is responsible for
1. Creating test cases

504 M. Cossentino et al.

Architect

<<performs, primary>>

<<output
>>

<<output>>

<<performs,
primary>>

<<performs, assist>>

<<performs, assist>>

Identify and
Refine

Requirements

<<output>>

<<input,
optional>>

Identify and
Outline

Requirements

Detail System-
Wide

Requirements

Create Test
Cases

<<input>>

<<input>>

<<input, optional>>

Detail
Use-Case
Scenarios

Test Case

c

[Technical
Specification]

a

Glossary
System-Wide
Requirements

a

Use Case
Model

Use
Case Work

Items List

a

Analyst

Architect

Stakeholder

Developer

Tester

GlossaryUse Case
Model Use Case

<<input, optional>>
Glossary

System-Wide
Requirements

a
<<output>>

<<input>>

Test Case

c
<<output>>

<<performs, primary>>

StakeholderDeveloperTester Analyst

<<performs,
primary>>

StakeholderDeveloper TesterAnalyst

<<performs, assist>>

Architect

Analyst

Stakeholder

Developer

Tester

<<performs,
assist>>

Fig. 14 The Identify and Refine Requirements activity described in terms of activities, tasks,
roles, and work products

<<performs, assist>>

<<output>>

<<input>>

Envision the
Architecture

[Technical
Specification]

Analyst

Architect

Stakeholder

Developer

Project Manager

<<input,
optional>>

Architecture
Notebook

Architecture
Notebook

Agree on Technical
Approach

<<performs, primary>>

Fig. 15 The Agree on Technical Approach activity described in terms of activities, tasks, roles,
and work products

She/he assists in
1. Assessing results
2. Detailing system-wide requirements
3. Detailing use-case scenarios

The OpenUp Process 505

Develop
Technical Vision Plan Project

<<input, optional>>

<<output>>

<<output>> <<input>> <<input>>

<<output>>

Analyst

Architect

Project Manager

Stakeholder

Developer

Tester

[Technical
Specification]

[Project
Work]

Glossary

Project
Plan

Vision

Fig. 16 The flow of tasks of the Initiate Project activity

Table 2 Initiate project—the task description

Activity Task Task description Roles involved

Initiate Project Initiate Project The solution is proposed for a
problem that everybody agrees on.
Stakeholders collaborate with the
development team to express and
document their problems, needs,
and potential features for the system
to be, so the project team can better
understand what has to be done.

Analyst (perform), Architect
(assist), Project Manager (as-
sist), Stakeholder (assist).

Initiate Project Plan Project Get stakeholder buy-in for starting
the project and team commitment to
move forward with it. This plan can
be updated as the project progresses
based on feedback and changes in
the environment.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

4. Identifying and outlining requirements
5. Managing iteration
6. Planning iteration
7. Planning project

Tool Specialist
She/he is responsible for
1. Setting up tools
2. Verifying tool configuration and installation

2.1.2 Activity Details
The Inception phase includes four activities, which are described in the following
subsections.

Initiate Project
The flow of tasks inside this activity is reported in Fig. 16, and the tasks are detailed
in Table 2.

506 M. Cossentino et al.

<<input, optional>>

<<output>>

<<output>>

Plan Iteration Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work
Items
List

a

Iteration
Plan

a

Work
Items List

a
Iteration

Plan

a

<<output>>

Work
Items List

a

[Project Definition
and Scope]

a

<<input>>

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical Test
Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

ToolsProject Defined
Process

c

Risk List
Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Iteration
Plan

a

Work
Items
List

a

<<output>>

<<output>>

<<input>>

Prepare
Environment

Iteration
Plan

a

Fig. 17 The flow of tasks of the Plan and Manage Iteration activity

Table 3 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Manage
Iteration

Plan Iteration The purpose of this task is to
identify the next increment of sys-
tem capability, and create a fine-
grained plan for achieving that cap-
ability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Manage
Iteration

Manage Itera-
tion

Help the team meet the iteration
objectives and keep the project
on track. Manage stakeholders’ ex-
pectations as technical and practical
discoveries are made during the
project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Manage
Iteration

Assess Results Demonstrate the value of the solu-
tion increment that was built during
the iteration and apply the lessons
learned to modify the project or
improve the process.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist),Tester
(assist).

Plan and Manage Iteration
The flow of tasks inside this activity is reported in Fig. 17, and the tasks are detailed
in Table 3.

Prepare Environment
The flow of tasks inside this activity is reported in Fig. 18, and the tasks are detailed
in Table 4.

Identify and Refine Requirements
The flow of tasks inside this activity is reported in Fig. 19, and the tasks are detailed
in Table 5.

The OpenUp Process 507

<<input>>

Tailor the
Process

Verify Tool
Configuration

and Installation

Deploy the
Process

Project Engineer

<<output>>

Tools

<<input>>

<<output>>

<<input>>

<<output>>

Set Up Tools

Tool Specialist

<<input>>

Tools

Tools

<<output>>

Project Defined
Process

c

Project Defined
Process

c

Project Defined
Process

c

Fig. 18 The flow of tasks of the Prepare Environment activity

Table 4 Prepare environment—the task description

Activity Task Task description Roles involved

Prepare Envir-
onment

Tailor the Process The purpose of this task is to ensure that
the project team has a defined process
that meets their needs. The purpose of
this task is to
• Install the tools
• Customize the tools
• Make the tools available to the end

users

Process Engineer (per-
form)

Prepare Envir-
onment

Set Up Tools The purpose of this task is to
• Install the tools
• Customize the tools
• Make the tools available to the end

users

Tool Specialist (perform)

Prepare Envir-
onment

Verify Tool Config-
uration and Installa-
tion

The purpose of this task is to verify that
the tools can be used to develop the
system

Tool Specialist (perform)

Prepare Envir-
onment

Deploy the Process The purpose of this task is to
• Ensure that the project members are

properly introduced to the process
• Harvest any feedback on the process

and refine the process, as necessary

Process Engineer (per-
form)

Agree on Technical Approach
The flow of tasks inside this activity is reported in Fig. 20, and the tasks are detailed
in Table 6.

2.1.3 Work Products
The Inception phase generates fourteen work products. Their relationships with the
system meta-model elements are described in Fig. 21.

This diagram represents the Iteration phase in terms of output Work Products.
Each of these reports one or more elements from the OpenUp system metamodel;
each system metamodel element is represented using an UML class icon (yellow
filled) and, in the documents, such elements can be Defined, reFined, Quoted,
Related or Relationship Quoted.

508 M. Cossentino et al.

<<output>>

<<input,
optional>>

Identify and
Outline

Requirements
Detail System-

Wide
Requirements

Create Test
Cases

<<input>>

<<input>>

<<input,
optional>>

Detail Use-Case
Scenarios

Test Case

c

[Technical
Specification]

a

Glossary
System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Analyst

Architect

Stakeholder

Developer

Tester

Glossary Use Case
ModelUse Case

<<output>>

<<input, optional>>

Glossary System-Wide
Requirements

a

<<output>>

<<output>>

<<input>>

<<output>>

Test Case

Fig. 19 The flow of tasks of the Identify and Refine Requirements activity

Table 5 Identify and refine requirements—the task description

Activity Task Task description Roles involved

Identify and Re-
fine Requirements

Identify and Outline
Requirements

This task describes how to identify and
outline the requirements for the system
so that the scope of work can be determ-
ined.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Detail Use-Case
Scenarios

This task describes how to detail use-
case scenarios for the system.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Detail System-Wide
Requirements

This task details one or more require-
ment(s) that do(es) not apply to a specific
use case.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Create Test Cases Develop the test cases and test data for
the requirements to be tested.

Tester (perform), Analyst
(assist), Developer (assist),
Stakeholder (assist).

<<output>>

<<input>>

Envision the
Architecture

[Technical
Specification]

Analyst

Architect Stakeholder

Developer

Project Manager

<<input,
optional>>

Architecture
Notebook

Architecture
Notebook

Fig. 20 The flow of tasks of the Agree on Technical Approach activity

The OpenUp Process 509

Table 6 Agree on technical approach—the task description

Activity Task Task description Roles involved

Agree on Tech-
nical Approach

Envision the Archi-
tecture

This task is where the ‘vision” for the ar-
chitecture is developed through analysis
of the architecturally significant require-
ments and identification of architectural
constraints, decisions and objectives.

Architect (perform), Analyst
(assist), Developer (assist),
Stakeholder (assist), Project
Manager (assist).

R
R

Design
Pattern

D

R

Inception
Model

Project
Plan

a

Work
Items List

a
Iteration

Plan

a

Tools

Project Defined
Process

c

Risk List
Glossary

System-Wide
Requirement

a

Use Case
Model

Use Case

Test Case

Actor

D

Actor

Q

Business
Rules

D

Glossary
Term

D

Project-
Specific

Guidelines

DProject-Specific
Procedure

D

Report

D

Role

D R
R

R

R

Work Item

D

Work
Product

D

R

Test Case

D

Interfaces to
External Systems

D

Performances

D

Reliability

D

Supportability

D

System Constraint

D

System
Compliance

D

Documentation

D

Usability
Requirement

D

User Interface

D

Development
Strategy

D
Actor

Q

Development
Strategy

D

Actor

Q R

Lesson
Learnt

D

Project
Measure

D
Project

Organization

D

Project
Practice

D

Project
Plan

D

Process

Q

R

R

Risk List

D
Evaluation

Results

D

Evaluation
Criterion

Q
R

Iteration

D

Iteration
Plan

DR

Iteration

D

Iteration Plan

D
R

Iteration
Issue

D
R

Iteration
Milestone

D
R

Iteration
Milestone

Q

R

Tool

D

Use Case

D

Use Case

Q

Vision

a
Architecture
Notebook

a

Architectural
Assumption

D
Architectural
Constraints

D Architectural
Decision

D
Architectural
Dependency

DArchitectural
Framework

D

Architectural
Goal

D
Architectural

Issues

D

Architectural
Justification

D

Architectural
Mechanism

D

Architectural
Views

D

Architectural
Significant Req.

D

Architecture

D

Feature

D

System-Wide
Requirements

Q

Stakeholder
D

Deployment

Q

R
R

Need

D
R

Other Product
Requirement

D

Problem

D

Product

D
R

R R

Product
Documentation

Q

Product Position
Statement

D

Envisioned
Core Req.

D R

User
Environment

D
R

System-Wide
Requirement

D

R

RR

Code

Q

Analysis
Class

D

Process

D

Fig. 21 The Inception phase documents structure

510 M. Cossentino et al.

Work Product Kinds
Table 7 describes the work products of the Inception phase according to their kinds.

Work products are detailed in the following sections. No specific examples of
notation use are reported since standard UML [3, 4] is supposed to be adopted.

Architecture Notebook
The purpose of this artifact is to capture and make architectural decisions and
to explain those decisions to developers. This artifact describes the Software
Architecture. It provides a place for maintaining the list of architectural issues, along
with the associated architectural decisions, designs, patterns, code documented (or
pointed to), and so forth—all at appropriate levels to make it easy to understand
what architectural decisions have been made and what remain to be made. It is
helpful for architects to use this artifact to collaborate with other team members in
developing the architecture and to help team members understanding the motivation
behind architectural decisions so that those decisions can be robustly implemented.
For example, the architect may put constraints on how data is packaged and
communicated between different parts of the system. This may appear to be a
burden, but the justification in the Architecture Notebook can explain that there
is a significant performance bottleneck when communicating with a legacy system.
The rest of the system must adapt to this bottleneck by following a specific data
packaging scheme. This artifact should also inform the team members how the
system is partitioned or organized so that the team can adapt to the needs of the
system. It also gives a first glimpse of the system and its technical motivations to
whoever must maintain and change the architecture later. At a minimum, this artifact
should do these three things:
• List guidelines, decisions, and constraints to be followed
• Justify those guidelines, decisions, and constraints
• Describe the Architectural Mechanisms and where they should be applied

Team members who were not involved in those architectural decisions need
to understand the reasoning behind the context of the architecture so that they
can address the needs of the system. A small project should not spend a lot of
time documenting the architecture, but all critical elements of the system must be
communicated to current and future team members. This is all useful content:
• Goals and philosophy of the architecture
• Architectural assumptions and dependencies
• References to architecturally significant requirements
• References to architecturally significant design elements
• Critical system interfaces
• Packaging instructions for subsystems and components
• Layers and critical subsystems
• Key abstractions
• Key scenarios that describe critical behavior of the system

The OpenUp Process 511

Table 7 Inception phase—work product kinds

Name Description Work product kind

Architecture Notebook This artifact describes the rationale, assumptions, explana-
tion, and implications of the decisions that were made in
forming the architecture.

Free Text

Build An operational version of a system or part of a system that
demonstrates a subset of the capabilities to be provided in
the final product.

Composite

Design This artifact describes the realization of required system
functionality and serves as an abstraction of the source code.

Composite

Developer Test The Developer Test validates a specific aspect of an imple-
mentation element.

Structured

Glossary This artifact defines important terms used by the project.
The collection of terms clarifies the vocabulary used on the
project.

Structured

Implementation Software code files, data files, and supporting files (such as
online help files) that represent the raw parts of a system that
can be built.

Composite

Iteration Plan A fine-grained plan describing the objectives, work assign-
ments, and evaluation criteria for the iteration.

Free Text

Project Defined Process This work product describes the process that a project is to
follow in order to produce the project’s desired results.

Composite

Project Definition and Scope This slot serves as an abstraction of high-level artifacts
that define the project and its scope. Typical examples of
such artifacts could be a project definition, and a high-level
project schedule identifying major milestones and major
deliverables. Fulfilling Work Products:
• Project Plan

Free Text

Project Plan This artifact gathers all of the information required to man-
age the project on a strategic level. Its main part consists of
a coarse-grained plan, identifying project iterations and their
goals.

Project Work This slot serves as an abstraction for any type of work being
done on the project. It could be represented as a work items
list, an operational schedule, a work breakdown structure,
and so on. Fulfilling Work Products:
• Iteration Plan
• Work Items List

Free Text

Risks List This artifact is a sorted list of known and open risks to the
project, sorted in order of importance and associated with
specific mitigation or contingency actions.

Structured

System-Wide Requirements This artifact captures the quality attributes and constraints
that have system-wide scope. It also captures system-wide
functional requirements.

Free Text

Technical Architecture This slot serves as an abstraction of high-level artifacts that
represent the documentation of the architecture. Fulfilling
Work Products:
• Architecture Notebook

Composite

Technical Specification This slot serves as an abstraction of high-level artifacts
that describe requirements, constraints, and goals for the
solution. Fulfilling Work Products:
• Glossary
• System-Wide Requirements
• Use Case
• Use-Case Model
• Vision

Composite

Technical Test Result This slot serves as an abstraction of high-level artifacts that
define the results of testing the hardware and software for
the system being developed. Fulfilling Work Products:
• Test Log

Free Text

(continued)

512 M. Cossentino et al.

Table 7 (continued)

Name Description Work product kind

Test Case This artifact is the specification of a set of test inputs,
execution conditions, and expected results that you identify
to evaluate a particular aspect of a scenario.

Structured

Test Log This artifact collects the raw output that is captured during a
unique run of one or more tests for a single test cycle run.

Free Text

Test Script This artifact contains the step-by-step instructions that com-
pose a test, enabling its run. Text scripts can take the form
of either documented textual instructions that are manu-
ally followed, or computer-readable instructions that enable
automated testing.

Structured

Tools These work products are the tools needed to support the
software development effort.

Free Text

Use Case This artifact captures the system behavior to yield an observ-
able result of value to those who interact with the system.

Structured Behavioral

Use-Case Model This artifact presents an overview of the intended beha-
vior of the system. It is the basis for agreement between
stakeholders and the project team in regards to the intended
functionality of the system. It also guides various tasks in the
software development lifecycle.

Composite (Structured C
Behavioral)

Vision This artifact provides a high-level basis for more detailed
technical requirements. It captures the technical solution
by describing the high-level stakeholder requests and con-
straints that give an overview of the reasoning, background,
and context for detailed requirements. The vision serves as
input for communicating the fundamental “what and why”
for the project and provides a strategy against which all
future decisions can be validated. The vision should rally
team members behind an idea and give them the context for
decision-making in the requirements area. The vision must
be visible to everyone on the team.

Free Text

Work Items List This artifact contains a list of all of the scheduled work to be
done within the project, as well as proposed work that may
affect the product in this or future projects. Each work item
may contain references to information relevant to carry out
the work described within the work item.

Free Text

Build
The purpose of this work product is to deliver incremental value to the user and
customer, and provide a testable artifact for verification. This working version of
the system, or part of the system, is the result of putting the implementation through
a build process (typically an automated build script) that creates an executable
version. This version will typically have a number of supporting files that are also
considered part of this artifact. This work product is almost always a product made
up of numerous parts required to make the executable system. Therefore, a Build
is more than just executable files; it also includes such things as configuration files,
help files, and data repositories that will be put together, resulting in the product that
the users will run.

Deployment Plan
The purpose of this work product is to capture, in one document, the unique
information that will be consumed by deployment engineers before and during
the deployment to production of a particular release package. The deployment

The OpenUp Process 513

plan should contain the unique instructions for deploying a particular version
of a product. By “unique instructions” we mean those things that are not part
of a deployment engineer’s normal procedures. Rather, they often are specific
procedures and timing constraints that a deployment engineer should be aware of
as they are rolling out a particular release. While a draft version of the deployment
plan is typically developed by a development team, the deployment engineer is
responsible for its contents and existence. A deployment plan normally consists of
the following sections:
• The scope of the release and a general overview of the capabilities to be deployed
• The timing and dependencies for deploying components to various nodes
• The risks or issues associated with the release based on a risk assessment
• The customer organization, stakeholders, and end user community that will be

impacted by the release
• The person or persons who have the authority to approve the release as “ready

for production”
• The development team members responsible for delivering the release package

to the Deployment Manager, along with contact information
• The approach for transitioning the release package to the Deployment Engineer,

including appropriate communications protocols and escalation procedures
• The success criteria for this deployment; in other words, how will the Deploy-

ment Engineer know that the release is successful so it can report success

Design
The purpose of this work product is to describe the elements of the system so
they can be examined and understood in ways not possible by reading the source
code. This work product describes the elements that will make up the implemented
system. It communicates abstractions of particular portions of the implementation.
While architecture focuses on interfaces, patterns, and key decisions, the design
fleshes out the technical details in readiness for implementation, or as part of
implementation. This work product can describe multiple static and dynamic views
of the system for examination. Although various views may focus on divergent,
seemingly independent issues of how the system will be put together and work,
they should fit together without contradiction. It is important that the author of this
work product is able to analyse key decisions about the structure and behavior of
the system and communicate them to other collaborators. It is also important that
these decisions can be communicated at various levels of abstraction and granularity.
Some aspects of the design can be represented by source code, possibly with some
extra annotations. But more abstract representations of the design will be at a
higher-level than source code. The more abstract representation could use various
representation options. UML could be used either strictly or informally, it is the
preferred notation based on its rich semantics and broad usage in the industry. Other
techniques could be used to communicate the design. Or the design could use a mix
of techniques as applicable.

This process does not govern whether to record these representations on a white
board or to use a formal tool. But any representation, whether characterized as

514 M. Cossentino et al.

formal or informal, should unambiguously communicate the technical decisions
embodied by the design.

Developer Test
This artifact is used to evaluate whether an implementation element performs as
specified. This artifact covers all of the steps to validate a specific aspect of an
implementation element. For example, a test could ensure that the parameters of a
method properly accept the uppermost and lowermost required values. A developer
test specifies test entries, execution conditions, and expected results. These details
are identified to evaluate a particular aspect of a scenario. When you collect
developer tests for a specific implementation element, you can validate that the
element performs as specified. The tests should be self-documenting so that it is
clear upon completion of the test whether the implementation element has run
correctly. Although there is no predefined template for this work product, and testing
tools affect how the work product is handled, you should address the following
issues:
• Setup
• Inputs
• Script
• Expected Results
• Evaluation Criteria
• Clean-Up

Suggestions and options for representing this work product: Suggestion: Auto-
mated code unit The most appropriate technique for running these tests is to use
code that tests the implementation element scenarios and that you can run regularly
as you update the system during development. When code is the sole form of the
tests, ensure that the code is self-documenting. The code should document the
specifications of the conditions you are testing and the setup or clean-up that is
required for the test to run properly.

Option: Manual instructions: In some cases, you can use manual instructions. For
example, when testing a user interface, a developer might follow a script, explaining
the implementation element. In this case, it is still valuable to create a test harness
that goes straight to the user interface. That way, the developer can follow the script
without having to follow a complicated set of instructions to find a particular screen
or page.

Option: Embedded code: You can use certain technologies (such as JavaTM 5 Test
Annotation) to embed tests in the implementation. In these cases, there will be a
logical work product, but it will be assimilated into the code that you are testing.
When you use this option, ensure that the code is self-documenting.

Glossary
These are the purposes of this artifact:
• To record the terms that are being used on the project so that everyone has a

common understanding of them

The OpenUp Process 515

• To achieve consistency by promoting the use of common terminology across the
project

• To make explicit different stakeholders’ use of the same terms to mean different
things or different terms to mean the same thing

• To provide important terms to the Analysis and Design team
This artifact helps you avoid miscommunication by providing two essential

resources:
• A central location to look for terms and abbreviations that are new to develop-

ment team members
• Definitions of terms that are used in specific ways within the domain
Definitions for the glossary terms come from several sources, such as requirements
documents, specifications, and discussions with stakeholders and domain experts.

Implementation
The purpose of this artifact is to represent the physical parts that compose the system
to be built and to organize the parts in a way that is understandable and manageable.
This artifact is the collection of one or more of these elements:
• Source code files
• Data files
• Build scripts
• Other files that are transformed into the executable system

Implementation files are represented as files in the local file system. File folders
(directories) are represented as packages, which group the files into logical units.

Iteration Plan
The main objectives of the iteration plan are to provide the team with the
following:
• One central place for information regarding iteration objectives
• A detailed plan with task assignments
• Evaluation results
This artifact also helps the team to monitor the progress of the iteration and keeps
the results of the iteration assessment that may be useful for improving the next
one. This artifact captures the key milestones of an iteration, showing start and end
dates, intermediate milestones, synchronization points with other teams, demos, and
so on. This artifact is also used to capture issues that need to be solved during the
iteration. A few objectives should be written for the iteration, these will help guide
the performers throughout the iteration. Also, assess at the end if those objectives
have been achieved. The task assignments for an iteration are a subset of all tasks
on the Artifact: Work Items List. Therefore, the iteration plan ideally references
those work items. The evaluation criteria and iteration assessment information are
captured in this artifact, so that it is possible to communicate results and actions from
assessments. Work items assigned to an iteration do not necessarily have the same
priority. When selecting work items from the Work Items List, the iteration plan
may end up having work items with different priorities (for example, you assign
the remaining high priority work items, plus a few mid-priority ones from the Work

516 M. Cossentino et al.

Items List). Once work items have been assigned to the iteration, the team ensures
that they can complete all work, regardless of original work item priorities. Deciding
what to develop first on an iteration will vary across projects and iterations. The
level of detail or formality of the plan must be adapted to what you need in order to
meet these objectives successfully. The plan could, for example, be captured on the
following places:
• A whiteboard listing the objectives, task assignments, and evaluation criteria
• A one-page document listing the objectives and evaluation criteria of the

iteration, as well as referencing the Work Items List for assignments for that
iteration

• A more complex document, supported by a Gantt or Pert chart in a project
planning tool

Project Defined Process
The purpose of the project process is to provide guidance and support for the
members of the project. “Information at your finger tips” is a metaphor that aligns
well with the purpose of this work product. A project process typically describes or
references the following items:
• What organizational processes and policies must be adhered to
• What standard process, if any, is being adopted by the project
• Any tailoring of the standard process, or deviations from policy mandates
• Rationale for tailoring and deviations
• Approvals for deviations
• Which work products are reviewed at which milestones, and their level of

completion
• Guidelines and information that the project wants to use in addition to the

information contained in the main process
• What reviews will be performed, and their level of formality
• What approvals are required, by whom, and when

Processes can be captured informally in documents, formally captured in a
Method Composer configuration, or specified by configuring tools. Typically a pro-
ject will use a combination of these: start with a Method Composer configuration,
create a document to describe variations from this configuration and configure tools
to support the process being followed.

Project Plan
The purpose of this artifact is to provide a central document where any project
team member can find the information on how the project will be conducted. This
artifact describes how the project is organized, and identifies what practices will be
followed. Additionally, it defines the parameters for tracking project progress, and
specifies the high-level objectives of the iterations and their milestones. The project
plan allows stakeholders and other team members to understand the big picture and,
roughly, when to expect a certain level of functionality be available. Update the plan
as often as necessary, usually at the end of each iteration, in order to reflect changing
priorities and needs, as well as record the lessons learned from the project. Create

The OpenUp Process 517

and update the project plan in planning sessions that involve the whole team and
appropriate project stakeholders in order to make sure that everybody agrees with it.

Risk List
The purpose of this work product is to capture the perceived risks to the success of
the project. This list identifies, in decreasing order of priority, all the risks associated
to a project. It serves as a focal point for project activities, and is the basis around
which iterations are organized.

System-Wide Requirements
This artifact is used for the following purposes:
• To describe the quality attributes of the system, and the constraints that the design

options must satisfy to deliver the business goals, objectives, or capabilities
• To capture functional requirements that are not expressed as use cases
• To negotiate between, and select from, competing design options
• To assess the sizing, cost, and viability of the proposed system
• To understand the service-level requirements for operational management of the

solution
This artifact captures the quality attributes and constraints that have system-

wide scope. It also captures system-wide functional requirements. This list should
capture the critical and serious risks. If you find this list extending beyond 20 items,
carefully consider whether they are really serious risks. Tracking more than 20 risks
is an onerous task. A representation option for the risk list is to capture it as a section
in the coarse-grained plan for the project. This means the coarse-grained plan has to
be constantly revisited as you update risks. The fine-grained plans will contain only
the tasks that you will be doing to mitigate risks in the short term.

Test Case
The purpose of this work product is
• To provide a way to capture test inputs, conditions, and expected results for a

system
• To systematically identify aspects of the software to test
• To specify whether an expected result has been reached, based on the verification

of a system requirement, set of requirements, or scenario
A test case specifies the conditions that must be validated to enable an assessment of
aspects of the system under test. A test case is more formal than a test idea; typically,
a test case takes the form of a specification. In less formal environments, you can
create test cases by identifying a unique ID, name, associated test data, and expected
results. Test cases can be derived from many sources, and typically include a subset
of the requirements (such as use cases, performance characteristics and reliability
concerns) and other types of quality attributes.

Test Log
The purpose of this work product is
• To provide verification that a set of tests was run

518 M. Cossentino et al.

• To provide information that relates to the success of those tests
This artifact provides a detailed, typically time-based record that both verifies

that a set of tests were run and provides information that relates to the success of
those tests. The focus is typically on providing an accurate audit trail, which enables
you to undertake a post-run diagnosis of failures. This raw data is subsequently
analyzed to determine the results of an aspect of the test effort. Because this is a
collection of raw data for subsequent analysis, it can be represented in a number of
ways:
• For manual tests, log the actual results on a copy of the manual Test Script
• For automated tests, direct the output to log files that you can trace back to the

automated Test Script
• Track raw results data in a test management tool

Test Script
Test scripts implement a subset of required tests in an efficient and effective manner.

Tools
These work products are the tools needed to support the software development
effort.

Use Case
Use cases are used for the following purposes:
• To reach a common understanding of system behavior
• To design elements that support the required behavior
• To identify test cases
• To plan and assess work
• To write user documentation

A use case typically includes the following information:
• Name: The name of the use case.
• Brief Description: A brief description of the role and purpose of the use case.
• Flow of Events: A textual description of what the system does in regard to a use-

case scenario (not how specific problems are solved by the system). Write the
description so that the customer can understand it. The flows can include a basic
flow, alternative flows, and subflows.

• Key scenarios: A textual description of the most important or frequently dis-
cussed scenarios.

• Special Requirements: A textual description that collects all of the requirements
of the use case that are not considered in the use-case model, but that must
be taken care of during design or implementation (e.g., non-functional require-
ments).

• Preconditions: A textual description that defines a constraint on the system when
the use case starts.

• Post-conditions: A textual description that defines a constraint on the system
when the use case ends.

The OpenUp Process 519

• Extension points: A list of locations within the flow of events of the use case at
which additional behavior can be inserted by using the extend-relationship.
You can document the use case as a use-case specification document or you

can incorporate the use case in a use-case model. You can also use a requirements
management tool to capture use cases and parts of use cases.

Use-Case Model
This artifact presents an overview of the intended behavior of the system. It is the
basis for agreement between stakeholders and the project team in regards to the
intended functionality of the system. It also guides various tasks in the software
development lifecycle. Representation options include reports and diagrams from
UML modeling tools, graphical representations created by using drawing tools, and
drawings on whiteboards. Most of the information in the use-case model is captured
in the use-case specifications.

Vision
This artifact provides a high-level basis for more detailed technical requirements.
It captures the technical solution by describing the high-level stakeholder requests
and constraints that give an overview of the reasoning, background, and context
for detailed requirements. The vision serves as input for communicating the
fundamental “what and why” for the project and provides a strategy against which
all future decisions can be validated. The vision should rally team members behind
an idea and give them the context for decision-making in the requirements area.
The vision must be visible to everyone on the team. It is good practice to keep this
artifact brief, so you can release it to stakeholders as soon as possible, and to make
the artifact easy for stakeholders to read and understand. You can accomplish this
by including only the most important features and avoiding details of requirements.
Projects that focus on product development might extend the marketing section and
include a more detailed product position statement that is based on their needs and
research. Typically, the vision is represented in a document. If key stakeholder needs
are captured in a requirements management tool, this part of the document can be
generated by using reporting capabilities. If the vision serves a set of projects or
an entire program, the overall vision might be divided into several vision work
products. In this case, the vision of the program brings the visions together by
providing program-specific content and referencing the subordinate visions.

Work Items List
The purpose of this artifact is to collect all requests for work that will potentially
be taken on within the project, so that work can be prioritized, effort estimated, and
progress tracked. This artifact provides a focal point for the entire team:
• It provides one list containing all requests for additional capabilities or en-

hancement for that application. Note that some of these requests may never be
implemented, or be implemented in later projects.

• It provides one list of all the work to be prioritized, estimated, and assigned
within the project. The risk list is prioritized separately.

520 M. Cossentino et al.

• It provides one place to go to for the development team to understand what micro-
increments need to be delivered, get references to material required to carry out
the work, and report progress made.

These are the typical work items that go on this list:
• Use cases (and references to use-case specifications)
• System-wide requirements
• Changes and enhancement requests
• Defects
• Development tasks

Work items can be very large in scope, especially when capturing requests
for enhancements, such as “Support Financial Planning” for a personal finance
application. To allow the application to be developed in micro-increments, work
items are analyzed and broken down into smaller work items so that they can be
assigned to an iteration, such as a use-case scenario for “Calculate Net Worth”.
Further breakdown may be required to identify suitable tasks to be assigned to
developers, such as “Develop UI for Calculate Net Worth”. This means that work
items often have parent/child relationships, where the lowest level is a specification
and tracking device for micro-increments. This artifact should consist of the
following information for each work item:
• Name and Description
• Priority
• Size Estimate
• State
• References
Assigned work items should also contain the following:
• Target Iteration or Completion Date
• Assignee
• Estimated Effort Remaining
• Hours Worked

Work Items should contain estimates. The recommended representation for the
work items list is to capture it as a separate artifact, represented by a spreadsheet
or database table. See Example: Work Items List. Alternatively, the work items list
may be captured in tools such as project management, requirements management,
or change request. In fact, the work items list may be spread over several tools,
as you may choose to keep different types of work items in different repositories to
take advantage of features in those tools. For example, you could use a requirements
composition or management tool to track information about requirements, and use
another tool to capture defects. Work items may start in one representation (such as
in a spreadsheet) and move to more sophisticated tools over time, as the number of
work items and the metrics you wish to gather grows more sophisticated. As part of
the Iteration Plan, the plan typically references work items that are assigned to that
iteration. If the team is capturing the iteration plan on a whiteboard, for example,
the team may choose to reference high-level work items in the Work Items List that
are assigned to the iteration, and maintain low-level child work items used to track
day-to-day work only in an iteration plan.

The OpenUp Process 521

Lifecycle Architecture
Milestone

Elaboration
Iteration [1..n]

Fig. 22 The elaboration iteration inside the elaboration phase

Develop the
Architecture

Test
Solution

Identify and Refine
Requirements

Plan and Manage
Iteration

Ongoing
Tasks

Develop
Solution

Increment

Fig. 23 The Elaboration phase flow of activities

2.2 The Elaboration Phase

The Elaboration starts when the first Milestone, Lifecycle Objectives Milestone,
from Inception phase, is available. The Elaboration phase is composed by the
Elaboration iteration as described in Fig. 22. The process flow within the iteration is
detailed in Fig. 23.

The number and the length of each Elaboration iteration is dependent on, but
not limited to, factors such as green-field development compared to maintenance
cycle, unprecedented system compared to well-known technology and architecture,
and so on. Typically, on the first iteration, it is better to design, implement, and
test a small number of critical scenarios to identify what type of architecture and
architectural mechanisms you need, so you can mitigate the most crucial risks. You
also detail high-risk requirements that have to be addressed early in the project.
You test enough to validate that the architectural risks are mitigated. During the
subsequent iterations, you fix whatever was not right from the previous iteration.
You design, implement, and test the remaining architecturally significant scenarios,
ensuring that you check all major areas of the system (architectural coverage), so
that potential risks are identified as early as possible [5].

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Elaboration phase involves 10 different
process roles, 29 work products and six activities (i.e., Plan and Manage Iteration,
Identify and Refine Requirements, Develop the Architecture, Develop Solution
Increment, Test Solution, Ongoing Tasks), as described in Fig. 24, each activity is

522 M. Cossentino et al.

Develop the
Architecture

Test
Solution

Identify and
Refine

Requirements

Plan and
Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterDeployment
Engineer

Work Items
List

a
Iteration

Plan

a

Tools

a

Project Defined
Process

c

Deployment
Plan

c

Risk List

Stakeholder

Developer TesterAnalyst
Architect

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Test Case

c

Glossary
System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Developer Architect Analyst Stakeholder Tester Project
Manager

Architecture
Notebook

a
Developer

Test Design

c

Implementation

c

Test Log

a

Build

c

Any Role

Work
Items List

a

Develop Solution
Increment

Developer Architect Analyst Stakeholder Tester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Fig. 24 The elaboration phase described in terms of activities, output work products and involved
stakeholders

composed of one or more tasks/activities as described in Figs. 25, 26, 27, 28, and
29.

The description of the Prepare Environment activity in terms of tasks, roles, and
work products is reported in Fig. 13. The description of the Identify and Refine
Requirements activity in terms of tasks, roles, and work products is reported in
Fig. 14.

The OpenUp Process 523

Plan and
Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<output>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs, primary>>
<<performs, assist>>

Outline
Deployment

Plan

DeveloperDeployment
Engineer

<<performs,
primary>> <<performs,

assist>>

Deployment
Plan

c
<<output>>

Iteration
Plan

a
Work Items

List

a

Iteration
Plan

a

Work Items
List

a

Work Items
List

a

Risk List

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work
Items
List

a
Risk List

Iteration
Plan

a

Iteration
Plan

a

[Project
Definition and

Scope]

a

Iteration
Plan

a

Work Items
List

a<<output>>

<<input>>

Iteration
Plan

a

Work
Items
List

a

[Project
Definition

and Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

<<input>>
Tools

a

Project Defined
Process

c

<<output>>

Tools

a

Project Defined
Process

c

Fig. 25 The Plan and Manage Iteration activity described in terms of tasks, roles, and work
products

2.2.1 Process Roles
Ten roles are involved in the Elaboration phase, which are described in the following
subsections.

Analyst
She/he is responsible for the following tasks:
1. Detail System-Wide Requirements
2. Detail Use-Case Scenarios
3. Identify and Outline Requirements

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Implement Tests

524 M. Cossentino et al.

Develop the
ArchitectureRefine the

Architecture

[Technical
Implementation]

a

Architect Project
Manager

<<input,
optional>>

Developer

<<performs,
assist>>

Develop Solution
Increment

Architecture
Notebook

a
<<input>>

<<performs, primary>>

[Technical
Design]

c

<<input, optional>>

[Technical
Specification]

c

<<input>>

<<input>>

[Technical
Architecture]

a
<<input>>

<<input>>

Developer
Test

Test Script

<<input>>

Design

c
<<output>>

<<output>>

Implementation

c
<<output>>

Test Log

a
<<output>>

Build

c
<<output>>

<<input>>

<<input>>

<<input>>

<<output>>

Fig. 26 The Develop the Architecture activity described in terms of tasks, roles, and work
products

5. Manage Iteration
6. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he is responsible for the following task:
1. Refine the Architecture

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Manage Iteration
7. Plan Iteration

Deployment Engineer
She/he is responsible for the following task:
1. Outline deployment plan

The OpenUp Process 525

<<input>>

<<performs, assist>>Developer

<<input,
optional>>

<<performs, assist>>

[Technical
Implementation]

a

Develop Solution
Increment

Technical
Design

c

[Technical
Specification]

c

Design the
Solution Implement

Developer Tests
Implement
Solution

Run Developer
Tests

Integrate and
Create Build

DeveloperArchitect Analyst StakeholderTester

<<performs,
primary>>

<<input>>

[Technical
Architecture]

a

<<input>>

<<input>>

<<input,
optional>>

<<input>>

<<input,
optional>>

Developer
Test

<<input>>

<<input>>

<<input>>

Test
Script

Design

c
<<output>>

Implementation

c

<<output>>

Test Log

a

<<output>>

Build

c

<<output>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

Developer

Developer
Test

<<performs,
assist>>

<<output>>

[Technical
Implementation]

a

[Technical
Design]

c

Technical
Design

c

[Technical
Specification]

c
[Technical

Implementation]

a

Developer

Stakeholder Tester

Tester

<<input>>

[Technical
Implementati

on]

a

Developer

Fig. 27 The Develop Solution Increment activity described in terms of tasks, roles, and work
products

Test Solution
Implement Tests

Technical
Implementation

a

TesterAnalyst

<<input,
optional>>

Developer

<<performs, assist>>

<<performs, primary>>
<<input>>

Run Tests

Stakeholder

Test Case

Test Script

<<input,optional>>

<<output>>

<<performs,
primary>>

<<input>>
<<input>>

Test Log

a
<<output>>

Fig. 28 The Test Solution activity described in terms of tasks, roles, and work products

Developer
She/he is responsible for the following tasks:
1. Design the Solution
2. Implement Developer Tests

526 M. Cossentino et al.

Ongoing Tasks

Request
Change

Any Role

<<performs,
primary>>

<<output>>
Work
Items
List

a

Fig. 29 The Ongoing Tasks
activity described in terms of
tasks, roles, and work
products

3. Implement Solution
4. Integrate and Create Build
5. Run Developer Tests

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Tests
7. Manage Iteration
8. Outline Deployment Plan
9. Plan Iteration

10. Refine the Architecture

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the process
2. Taylor the process

Project Manager
She/he is responsible for the following task:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

She/he assists in the following task:
1. Refine the Architecture

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Detail System-Wide Requirements
5. Detail Use-Case Scenarios
6. Identify and Outline Requirements
7. Implement Solution

The OpenUp Process 527

8. Implement Tests
9. Manage Iteration

10. Plan Iteration

Tester
She/he is responsible for the following tasks:
1. Create Test Cases
2. Implement Tests
3. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Developer Tests
7. Implement Solution
8. Manage Iteration
9. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

2.2.2 Activity Details
The Elaboration phase includes six activities, which are described in the following
subsections.

Plan and Manage Iteration
The goal of this activity is initiating the iteration, allowing team members to sign
up for development tasks, monitoring and communicating project status to external
stakeholders, and finally, identify and handling exceptions and problems. The flow
of tasks inside this activity is reported in Fig. 30, and the tasks are detailed in Table 8.

Prepare Environment
See section “Prepare Environment” above.

Identify and Refine Requirements
See section “Identify and Refine Requirements” above.

Develop the Architecture
The goal of this activity is to develop the architecturally significant requirements
prioritized for this iteration. The flow of tasks inside this activity is reported in
Fig. 31, and the tasks are detailed in Table 9.

528 M. Cossentino et al.

[Technical
Architecture]

c

<<input, optional>> <<output>>

<<output>>

Plan Iteration Prepare
Environment

Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work
Items
List

a

Iteration
Plan

a

Work
Items List

a
Iteration

Plan

a

<<output>>

Work
Items List

a
Iteration

Plan

a

[Project
Definition

and Scope]

a

<<input>>

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical
Test Results]

a

<<input,
optional>>

<<input>>

Tools
Project
Defined
Process

c

Tools
Project
Defined
Process

c

Risk List

Risk List

Risk List

Outline
Deployment

Plan

Deployment
Engineer

Deployment
Plan

c

<<output>>

[Technical
Specification]

c

Iteration
Plan

a

Work
Items
List

a

<<output>>

<<output>>

Fig. 30 The flow of tasks of the Plan and Manage Iteration activity

Table 8 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Man-
age Iteration

Plan Iteration The purpose of this task is to identify the
next increment of system capability, and
create a fine-grained plan for achieving
that capability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Man-
age Iteration

Manage Iteration Help the team meet the iteration ob-
jectives and keep the project on track.
Manage stakeholders’ expectations as
technical and practical discoveries are
made during the project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist). (perform), Domain
Expert (assist)

Plan and Man-
age Iteration

Outline Deployment
Plan

If a deployment plan for the project
already exists, update it to reflect the
nature of this release. If this document
does not exist, develop a deployment
plan to indicate how this release will be
rolled out to the production environment.

Deployment Engineer (per-
form), Developer (assist).

Plan and Man-
age Iteration

Assess Results Demonstrate the value of the solution
increment that was built during the it-
eration and apply the lessons learned to
modify the project or improve the pro-
cess.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Develop Solution Increment
The goal of this activity is to design, implement, test, and integrate the solution for a
requirement within a given context. The flow of tasks inside this activity is reported
in Fig. 32, and the tasks are detailed in Table 10.

The OpenUp Process 529

<<performs,
assist>>

Refine the
Architecture

[Technical
Implementation]

a

Architect Project
Manager

<<input,optional>>

Developer

Develop Solution
Increment

Architecture
Notebook

a
<<input>>

<<performs, primary>>

[Technical
Design]

c

<<input, optional>>

[Technical
Specification]

c

<<input>>

<<input>>

[Technical
Architecture]

a
<<input>>

<<input>>

Developer Test

Test Script

<<input>>

Design

c
<<output>>

<<output>>

Implementation

c
<<output>>

Test Log

a

<<output>>

Build

c

<<output>>

<<input>>

<<input>>

<<input>>

<<output>>

Fig. 31 The flow of tasks of the Develop the Architecture activity

Table 9 Develop the architecture—the task description

Activity Task Task description Roles involved

Develop the
Architecture

Develop Solution
Increment

• For developers: To create a solution
for the work item for which they are
responsible

• For project managers: To have a
goal-based way of tracking project
status

Developer (Primary),
architect
(additional),
Analyst (additional),
Stakeholder
(additional), Tester
(additional)

Develop the
Architecture

Refine the Archi-
tecture

To make and document the architectural
decisions necessary to support develop-
ment.

Architect (Primary),
Developer
(additional), Project
Manager (additional)

Test Solution
The goal of this activity is to test and evaluate the developed requirements from a
system perspective. The flow of tasks inside this activity is reported in Fig. 33, and
the tasks are detailed in Table 11.

Ongoing Tasks
The goal of this activity is to perform ongoing tasks that are not necessarily part of
the project schedule. The flow of tasks inside this activity is reported in Fig. 34, and
the tasks are detailed in Table 12.

2.2.3 Work Products
The Elaboration phase generates thirteen work products. Their relationships with
the system metamodel elements are described in Fig. 35.

530 M. Cossentino et al.

Design

c
<<output>> Design the

Solution

Implement
Developer Tests

Run
Developer

Tests

Implement
Solution

Integrate and
Create Build

[Technical
Architecture]

a

<<input>>

[Technical
Specification]

c

[Technical
Implementation]

a

<<input>>

[Technical
Design]

c
<<input, optional>>

Developer
Test

<<output>>

[Technical
Implementatio

n]

a

[Technical
Design]

c
[Technical

Specification]

c

<<input, optional>>

<<input>> <<input>>Developer
Test

<<input,
optional>>

Implementation

c
<<output>>

Technical
Implementation

a <<input>>

Developer
Test

<<input>>

Test Log

a
<<output>>

Test Script

<<input>>

Build

c
<<output>>

[more work to do]

[typical change]

[trivial change]

[code needs
refactoring]

[code is well designed]
[test pass]

Architect

Analyst

Developer

Stakeholder

Tester

Fig. 32 The flow of tasks of the Develop Solution Increment activity

Work Product Kinds
Table 13 describes the work products of the Elaboration phase according to their
kinds.

Architecture Notebook
See section “Architecture Notebook” above.

Build
See section “Build” above.

Deployment Plan
The purpose of this work product is to capture, in one document, the unique
information that will be consumed by deployment engineers before and during
the deployment to production of a particular release package. The deployment
plan should contain the unique instructions for deploying a particular version
of a product. By “unique instructions” we mean those things that are not part

The OpenUp Process 531

Table 10 Develop solution increment—the task description

Activity Task Task description Roles involved

Develop Solu-
tion Increment

Design the Solution Identify the elements and devise the
interactions, behavior, relations, and
data necessary to realize some func-
tionality. Render the design visually
to aid in solving the problem and
communicating the solution.

Developer (Primary), Architect
(additional), Analyst (additional),
Stakeholder (additional), Tester
(additional)

Develop Solu-
tion Increment

Implement
Developer Test

Implement one or more tests that
enable the validation of the in-
dividual implementation elements
through execution.

Developer (Primary), Tester (addi-
tional)

Develop Solu-
tion Increment

Implement Solution The purpose of this task is to produce
an implementation for part of the
solution (such as a class or compon-
ent), or to fix one or more defects.
The result is typically new or modi-
fied source code, which is referred to
the implementation.

Developer (Primary), Stakeholder
(additional), Tester (additional)

Develop Solu-
tion Increment

Run Developer Tests Run tests against the individual im-
plementation elements to verify that
their internal structures work as spe-
cified.

Developer (Primary)

Develop Solu-
tion Increment

Integrate and Create
Build

This task describes how to integrate
all changes made by developers into
the code base and perform the min-
imal testing to validate the build.

Developer (Primary)

Implement Tests

Technical
Implementation

a

Tester

Analyst

<<input,optional>>

Developer

<<input>>

Run Tests

Stakeholder

Test Case

Test Script

<<input,optional>>

<<output>>

<<input>>

<<input>>

Test Log

a<<output>>

Fig. 33 The flow of tasks of the Test Solution activity

of a deployment engineer’s normal procedures. Rather, they often are specific
procedures and timing constraints that a deployment engineer should be aware of
as they are rolling out a particular release. While a draft version of the deployment
plan is typically developed by a development team, the deployment engineer is
responsible for its contents and existence. A deployment plan normally consists of
the following sections:
• The scope of the release and a general overview of the capabilities to be deployed
• The timing and dependencies for deploying components to various nodes
• The risks or issues associated with the release based on a risk assessment

532 M. Cossentino et al.

Table 11 Test solution—the task description

Activity Task Task description Roles involved

Test Solution Implement Tests To implement step-by-step Test
Scripts that demonstrate the solu-
tion satisfies the requirements.

Tester (Primary), Analyst (Ad-
ditional), Developer (Additional),
Stakeholder (Additional)

Test Solution Run Tests Run the appropriate tests scripts,
analyze results, articulate issues
and communicate test results to the
team.

Tester (Primary)

Request
Change

<<output>>

Work
Items List

a

Any Role

Fig. 34 The flow of tasks of the Ongoing Tasks activity

Table 12 Ongoing tasks—the task description

Activity Task Task description Roles involved

Ongoing Tasks Request Change Capture and record change requests. Any Role (perform)
Roles
Identification

Design Scenarios Each scenario in designed in form of
sequence diagram thus depicting the de-
tails of agents interactions

System Analyst (perform),
Domain Expert (assist)

• The customer organization, stakeholders, and end user community that will be
impacted by the release

• The person or persons who have the authority to approve the release as “ready
for production”

• The development team members responsible for delivering the release package
to the Deployment Manager, along with contact information

• The approach for transitioning the release package to the Deployment Engineer,
including appropriate communications protocols and escalation procedures

• The success criteria for this deployment; in other words, how will the Deploy-
ment Engineer know that the release is successful so it can report success

Design
See section “Design” above.

Developer Test
See section “Developer Test” above.

The OpenUp Process 533

Project Defined
Process

Elaboration
Model

Work Items
List

Work Item

D

Design
Pattern

D

Design

Participant

D

Requirement
Realization

D

Scenario

D

SubSystem

D

R
R

R

R

Component

Q

Architecture

Q

R
R

Other Files

D

Implementation

Build Script

D

Data Files

D

Folder

D Source Code
Files

D
GlossaryGlossary Term

D,Q

R

Deployment
Plan

Component

D

Deployment

D

End User

D

Feature

Q

Node

D

Release

D

R

R
R

R

Test Case

Test Case

D,Q

Build

Executable
Versione

D

File

D R

Tools

Tool

D,Q

Developer Test

Implementation
Test

D

Developer
Test

D R

Test Script
Test Script

D

Test Case

Q

Use Case

Q
R

Architecture
Notebook

Architectural
Assumption

Q,D

Architectural
Constraint

Q,D

Architectural
Decision

Q,D

Architectural
Dependency

Q,D

Architectural
Framework

Q,D

Architectural
Goal

Q,D

Architectural
Issues

Q,D

Architectural
Justification

Q,D

Architectural
Mechanism

Q,D

Architectural
Views

Q,D

Architectural
Significant Req.

Q,D

Architecture

Q,D

Analysis
Class

Q,D R

R

Code

Q
R

R

Test Log

Test Result

D

Test
Verification

D

Test Case

Q

R

Project-Specific
Guidelines

D,Q
Project-Specific

Procedure

D,Q

Report

D,Q

Role

D,QR

R, QR

R, QR

R, QR

Work Product

D,Q

R, QR

Process

D,Q

System-Wide
Requirement

Business Rules

D,Q

Interfaces to
External
Systems

D,Q

Performances

D,Q

Reliability

D,Q

Supportability

D,Q

System
Constraint

D

System
Compliance

D,Q
Documentation

D,Q

Usability
Requirement

D,Q

User Interface

D,Q

System-Wide
Requirement

D,Q

Risk ListRisk List

D,Q

Use Case
Model

Actor

Q

Use Case

Q

Use Case

Actor

D,Q

Use Case

D,Q

Evaluation
Criterion

Q

R,QR

R,QR
Iteration

Plan

Development
Strategy

D,Q

Actor

Q

R,QR

Evaluation
Results

D,Q
R,QR

Iteration

D,Q

Iteration Plan

D,Q

Iteration
Issue

D,Q

Iteration
Milestone

Q

Fig. 35 The Elaboration phase documents structure

534 M. Cossentino et al.

Table 13 Elaboration phase—work product kinds

Name Description Work product kind

Architecture Notebook See sections “Architecture Notebook” and “Work Product
Kinds”.

Build See sections “Build” and “Work Product Kinds”.
Deployment Plan A deployment plan is used to document all the information

needed by deployment engineers to deploy a release success-
fully.

Composite

Design See sections “Design” and “Work Product Kinds”.
Developer Test See sections “Developer Test” and “Work Product Kinds”.
Glossary See sections “Glossary” and “Work Product Kinds”.
Implementation See sections “Implementation” and “Work Product Kinds”.
Iteration Plan See sections “Iteration Plan” and “Work Product Kinds”.
Project Defined Process See sections “Project Defined Process” and “Work Product

Kinds”.
Project Plan See sections “Project Plan” and “Work Product Kinds”.
Risk List See sections “Risk List” and “Work Product Kinds”.
System-Wide Requirement See sections “System-Wide Requirements” and “Work

Product Kinds”.
Technical Architecture See section “Work Product Kinds”.
Technical Design This slot serves as an abstraction of high-level artifacts that

describe the realization of required system functionality, and
serves as an abstraction of the solution. Fulfilling Work
Products:
• Design

Technical Implementation This slot serves as an abstraction of high-level artifacts that
describe the realization of required system functionality, and
serves as an abstraction of the solution. Fulfilling Work
Products:
• Build
• Implementation

Technical Specification See section “Work Product Kinds”
Technical Test Results See section “Work Product Kinds”.
Test Case See sections “Test Case” and “Work Product Kinds”.
Test Log See sections “Test Log” and “Work Product Kinds”.
Test Script See sections “Test Script” and “Work Product Kinds”.
Tools See sections “Tools” and “Work Product Kinds”.
Use Case See sections “Use Case” and “Work Product Kinds”.
Use-Case Model See sections “Use Case Model” and “Work Product Kinds”.
Vision See sections “Vision” and “Work Product Kinds”.
Work Items List See sections “Work Items List” and “Work Product Kinds”.

Glossary
See section “Glossary” above.

Implementation
See section “Implementation” above.

Iteration Plan
See section “Iteration Plan” above.

Project Defined Process
See section “Project Defined Process” above.

The OpenUp Process 535

Release
The purpose of this work product is to
• Bring, at the team level, closure to a sprint/iteration or series of sprint/iterations

by delivering working, tested software that can be potentially used by the end
user community for whom the system was (or is being) developed.

• Deliver, at the program level, an integrated, value-added product increment to
customers that was developed in parallel by multiple, coordinated, and syn-
chronized development team members A release consists of integrated, compiled
code that runs cleanly, independently, and in its entirety. This is an important
rule because in order to be released or even “potentially shippable,” a release
increment must be able to stand on its own, otherwise it is not shippable. Releases
can be created at either the program or team level.
There are three potential uses for a release:

• It is not used outside of the program: It has been produced to minimize risks
linked to technology and a program’s capability to integrate components and to
produce a Build. This situation usually happens at the beginning of a new product
lifecycle.

• It is used by beta customers and the program manager: It allows end users to test it
in a Beta test environment, which provides immediate feedback and reduces risks
associated with user interface ergonomics. customer feedback will influence the
program backlog for later consideration.

• It is deployed or shipped and used by end users: This result provides immediate
value to the end users.

In many organizations, a program release typically is timeboxed to 2–3 months of
development effort and 2–4 weeks of hardening which results in a scheduled release
approximately every 90 days. Releases for individual development teams usually
occur more often than those for programs, but there are no hard and fast rules
regarding how often releases should be scheduled. The only requirement is that
working software should be delivered “frequently” by both development teams and
programs. Although the example timeframe described above is arbitrary, empirical
evidence suggests it is about right for most companies and fits nicely into quarterly
planning cycles. Each release has a set of release objectives and a projected delivery
date; it also has a planned number of sprint/iterations.

Release Communications
The purpose of this work product is to inform all the various stakeholders that
a release to production has taken place and the implemented features are now
generally available. Sometimes, depending on the product user base, separate
communiques might need to be prepared for each stakeholder group. In that case,
this artifact should specify the different groups to which communications are
directed, the method of communication (e.g., email, text or pager message, bulletin,
newsletter, phone message, etc.). All communiques should be prepared in advance
so that it is a matter of disseminating information when the release to production
has been determined to be successful. Also included in this artifact is a listing of

536 M. Cossentino et al.

the responsible parties who will execute the communications when a successful
release has been declared (normally the Deployment Engineer), as well as the timing
and dependencies of the communiques. While there is no prescribed format for the
release communications artifact, each communique should indicate the preferred
delivery mechanisms (e.g., beeper notification, telephone calls, a posting to an
internal release website, live or pre-recorded presentations by senior management,
etc.) and generally answer the following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release to

production has taken place?
• What specifically (features, functions, components) has been placed into produc-

tion?
• Why is this release valuable to stakeholders and what business purpose does it

serve?
• Where is the product available (on which platforms, geographical locations,

business units, etc.)?
• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date is

in the future)?

Risk List
See section “Risk List” above.

System Wide Requirements
See section “System-Wide Requirements” above.

Test Case
See section “Test Case” above.

Test Log
See section “Test Log” above.

Test Script
See section “Test Script” above.

Tools
See section “Tools” above.

Use Case
See section “Use Case” above.

Use-Case Model
See section “Use Case Model” above.

Vision
See section “Vision” above.

The OpenUp Process 537

Initial Operational
Capability Milestone

Construction
Iteration [1..n]

Fig. 36 The construction iteration inside the construction phase

Develop
Product

Documentation
and Training

Test
Solution

Identify and
Refine

Requirements

Plan and
Manage
Iteration

Ongoing
Tasks

Develop
Solution

Increment

Fig. 37 The construction phase flow of activities

Work Items List
See section “Work Items List” above.

2.3 The Construction Phase

The Construction phase is composed by the Construction iteration as described in
Fig. 36. The process flow within the iteration is detailed in Fig. 37.

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Construction phase involves eight differ-
ent process roles, five work products (four UML models and four text documents)
and four guidance documents (one for each UML model) as described in Fig. 38.
The phase is composed of six activities (i.e., Plan and Manage Iteration, Identify and
Refine Requirements, Develop Solution Increment, Test Solution, Ongoing Tasks,
Develop Product Documentation and Training), each of them composed of one or
more tasks. Details of new activities are reported below (Figs. 39 and 40).

The description of the Identify and Refine Requirements activity in terms of
tasks, roles, and work products is reported in Fig. 14.

The description of the Develop Solution Increment activity in terms of tasks,
roles, and work products is reported in Fig. 27.

The description of the Test Solution activity in terms of tasks, roles, and work
products is reported in Fig. 28. The description of the Ongoing Tasks activity in
terms of tasks, roles, and work products is reported in Fig. 29.

538 M. Cossentino et al.

Develop Solution
Increment

Test
Solution

Identify and
Refine

Requirements

Develop Product
Documentation and

Training

Plan and Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterDeployment
Engineer

Work Items
List

a

Iteration
Plan

a

ToolsProject Defined
Process

c

Deployment
Plan

c

Risk ListUser
Documentation

a
Product

DocumentationSupport
Documentation

a
Training
Materials

c

Developer Product
Owner

Technical
Writer

Course
Developer

StakeholderDeveloper TesterAnalyst Architect

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Test Case

c

Glossary System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Developer Architect Analyst Stakeholder Tester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Any Role

Work
Items
List

a

Fig. 38 The Construction phase described in terms of activities, output work products and
involved stakeholders

2.3.1 Process Roles
Ten roles are involved in the Construction phase, which are described in the
following subsections.

Analyst
She/he is responsible for the following tasks:
1. Detail System-Wide Requirements
2. Detail Use-Case Scenarios
3. Identify and Outline Requirements

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases

The OpenUp Process 539

<<output>>

<<input>>

<<input>>

Plan and
Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst Architect

Project
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs, primary>>
<<performs, assist>>

Outline
Deployment

Plan

DeveloperDeployment
Engineer

<<performs,
primary>>

<<performs,
assist>>

Deployment
Plan

c<<output>>

Iteration
Plan

a
Work
Items
List

a

Iteration
Plan

a

Work
Items
List

a

Work Items
List

a

Risk List

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work Items
List

aRisk List

Iteration
Plan

a

Iteration
Plan

a

[Project
Definition and

Scope]

a

Iteration
Plan

a

Work
Items
List

a
<<output>>

<<input>>

Iteration
Plan

a

Work
Items
List

a

[Project
Definition and

Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

<<output>>

ToolsProject Defined
Process

c

Fig. 39 The Plan and Manage Iteration activity described in terms of tasks, roles, and work
products

3. Design the Solution
4. Implement Tests
5. Manage Iteration
6. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he is responsible for the following task:
1. Refine the Architecture

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution

540 M. Cossentino et al.

Develop Product
Documentation

and Training

Develop User
Documentation

Develop Product
Documentation

Develop Training
Materials

Technical
Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer Product
Owner

Technical
Writer

<<performs,
primary>> <<performs, assist>>

<<output>>

Course
Developer

<<performs, primary>>

Develop
Support

Documentation

Technical
Writer
<<performs,
primary>>

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

User
Documentation

a
<<input,

optional>>

Product
Documentation

Support
Documentation

a<<input,
optional>>

Product
Documentation

User
Documentation

a

Product
Documentation

Training
Materials

c

Fig. 40 The Develop Product Documentation and Training activity described in terms of tasks,
roles, and work products

3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Manage Iteration
7. Plan Iteration

Course Developer
She/he is responsible for the following tasks:
1. Develop Training Materials

Deployment Engineer
She/he is responsible for the following task:
1. Plan deployment

Developer
She/he is responsible for the following tasks:

The OpenUp Process 541

1. Design the Solution
2. Implement Developer Tests
3. Implement Solution
4. Integrate and Create Build
5. Run Developer Tests

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Develop Product Documentation
6. Identify and Outline Requirements
7. Implement Tests
8. Manage Iteration
9. Outline Deployment Plan

10. Plan Iteration

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the process
2. Taylor the process

Product Owner
She/he assists in the following task:
1. Develop Product Documentation

Project Manager
She/he is responsible for the following task:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Detail System-Wide Requirements
5. Detail Use-Case Scenarios
6. Identify and Outline Requirements
7. Implement Solution
8. Implement Tests
9. Manage Iteration

10. Plan Iteration

542 M. Cossentino et al.

Technical Writer
She/he is responsible for the following task:
1. Develop Product Documentation
2. Develop Support Documentation
3. Develop User Documentation

Tester
She/he is responsible for the following tasks:
1. Create Test Cases
2. Implement Tests
3. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Developer Tests
7. Implement Solution
8. Manage Iteration
9. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

2.3.2 Activity Details
The Construction phase includes six activities, which are described in the following
subsections.

Plan and Manage Iteration
This activity is performed throughout the project lifecycle. The goal of this activity
is to identify risks and issues early enough that they can be mitigated, to establish
the goals for the iteration, and to support the development team in reaching these
goals. The project manager and the team launch the iteration. The prioritization
of work for a given iteration takes place. The project manager, stakeholders, and
team members agree on what is supposed to be developed during that iteration.
Team members sign up for the work items they will develop in that iteration. Each
team member breaks down the work items into development tasks and estimates the
effort. This provides a more accurate estimate of the amount of time that will be
spent, and of what can be realistically achieved, in a given iteration. As the iteration
runs, the team meets regularly to report status of work completed, the work to
do next, and issues blocking the progress. In some projects, this status checking
occurs in daily meetings, which allows for a more precise understanding of how

The OpenUp Process 543

<<output>> <<output>>

<<input>>

<<input>>

<<input, optional>>
<<output>>

Plan Iteration Prepare
Environment

Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work Items
List

a

Iteration
Plan

a

Work
Items List

a

Iteration
Plan

a

<<output>>

Work
Items List

a
Iteration

Plan

a

[Project
Definition and

Scope]

a

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical
Test Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

ToolsProject Defined
Process

c

Risk
List

Risk List

Risk List

Plan
Deployment

Deployment
Engineer

Deployment
Plan

c

<<output>>

[Technical
Architecture]

c
[Technical

Specification]

c

Iteration
Plan

a

Work Items
List

a
<<output>>

Fig. 41 The flow of tasks of the Plan and Manage Iteration activity

Table 14 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Man-
age Iteration

Plan Iteration The purpose of this task is to identify the
next increment of system capability, and
create a fine-grained plan for achieving
that capability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Man-
age Iteration

Manage Iteration Help the team meet the iteration ob-
jectives and keep the project on track.
Manage stakeholders’ expectations as
technical and practical discoveries are
made during the project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist). (perform), Domain
Expert (assist)

Plan and Man-
age Iteration

Plan Deployment If a deployment plan for the project
already exists, update it to reflect the
nature of this release. If this document
does not exist, develop a deployment
plan to indicate how this release will be
rolled out to the production environment.

Deployment Engineer (per-
form), Developer (assist).

Plan and Man-
age Iteration

Assess Results Demonstrate the value of the solution
increment that was built during the it-
eration and apply the lessons learned to
modify the project or improve the pro-
cess.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

the work in an iteration is progressing. As necessary, the team makes corrections to
achieve what was planned. The overall idea is that risks and issues are identified and
managed throughout the iteration, and everyone knows the project status in a timely
manner. During iteration assessments, the key success criterion is the demonstration
that planned functionality has been implemented. Lessons learned are captured in
order to modify the project or improve the process. If the iteration end coincides
with the phase end, make sure the objectives for that phase have been met. The
flow of tasks inside this activity is reported in Fig. 41, and the tasks are detailed
in Table 14.

544 M. Cossentino et al.

Develop User
Documentation

Develop Product
Documentation

Develop Training
Materials

<<input,
optional>>

<<output>>

Developer

Product
Owner

Technical
Writer

<<output>>

Course
Developer

Develop Support
Documentation

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

Training
Materials

c

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

Fig. 42 The flow of tasks of the Develop Product Documentation and Training activity

Prepare Environment
See section “Prepare Environment” above.

Identify and Refine Requirements
See section “Identify and Refine Requirements” above.

Develop Solution Increment
See section “Develop Solution Increment” above.

Test Solution
See section “Test Solution” above.

Ongoing Tasks
See section “Ongoing Tasks” above.

Develop Product Documentation and Training
The goal of this activity is to prepare product documentation and training materials.
The flow of tasks inside this activity is reported in Fig. 42, and the tasks are detailed
in Table 15.

2.3.3 Work Products
The Construction phase generates four work products. Their relationships with the
system meta-model elements are described in Fig. 43.

WorkProduct Kinds
Table 16 describes the work products of the Construction phase according to their
kinds.

The OpenUp Process 545

Table 15 Develop product documentation and training—the task description

Activity Task Task Description Roles Involved

Develop Product
Documentation
and Training

Develop
Product Docu-
mentation

The purpose of this task is to document
enough information about the features
that were developed in a particular re-
lease to be useful to customers through-
out the life of the product.

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Develop Product
Documentation
and Training

Develop User
Documenta-
tion

The purpose of this task is to provide
useful information to end users of the
product being released into production.t.

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Develop Product
Documentation
and Training

Develop
Support Docu-
mentation

The purpose of this task is to ensure
that the personnel who are tasked with
supporting the system have enough in-
formation about the product to perform
their jobs effectively after the product
has been placed into production.

Technical Writer (perform)

Develop Product
Documentation
and Training

Develop train-
ing Materials

The purpose of this task is to enable
adoption of the product and to encourage
its proper use.

Course Developer (perform)

Product Documentation
Product documentation is created for the benefit of the marketing arm of an
organization, the program manager, and those people who must assess the business
value of a particular system. This is an often overlooked aspect of development team
implementation. The team should consider that the customers of a particular release
usually are not technical themselves, but do require a detailed enough understanding
of how their product operates and how it meets stated business goals and needs

User Documentation
User documentation might include all or parts of user manuals (electronic or paper-
based), tutorials, frequently asked questions (FAQs), on-line Help Files, installation
instructions, work instructions, operational procedures, etc.

Support Documentation
Support documentation usually is developed for the three common tiers of a support
organization. Tier 1 typically is the Help Desk where users call when they have a
problem with a particular system. Tier 1 support personnel normally answer basic
questions and, if necessary, log a ticket and escalate it to the appropriate Level 2
support desk.

Tier 2 support personnel may deal with more complex questions or issues
regarding an application and might need to do some research on the characteristics
of the system to provide an answer. If that person cannot resolve the issue, the ticket
is escalated to Tier 3 support personnel who have a deeper understanding of the
application’s code and the technology support the system’s architecture.

To properly convey the necessary information to each support tier, the applica-
tion’s code base should be well commented and logically organized. This approach
will facilitate the development of the support documentation. Support documenta-
tion typically includes

546 M. Cossentino et al.

Work Items
List

a

Tools

Deployment
Plan

c

User
Documentation

a

Product
Documentation

Support
Documentation

a
Training
Materials

c

Test
Script

Test Log

a

Developer
Test

Design

c

Implementation

c

Build

c

Construction
Model

Support
Documentation

D

Training
Material

Q

Comunique

Q

User
Documentation

Q

R

R

R

Product
Documentation

D

User
Documentation

D

Support
Documentation

Q Training
Material

D

R

Risk List

Risk
List

D,Q

Component

D,Q

Deployment

D,QEnd
User

D,Q
Feature

Q

Node

D,Q
Release

D,Q

R,RQ

R,RQ
R,
RQ

R,Q

Project
Defined
Process

c
Process

Project-
Specific

Guidelines

D,Q
Project-
Specific

Procedure

D,Q
Report

D,Q

Role

D,QR

R, QR

R, QR

R, QR
Work

Product

D,Q

R, QR D,Q

Build Script

D,Q

Data
Files

D,Q

Folder

D,Q

Other
Files

-

Source
Code Files

D,Q

Work Item

D,Q

Test Script

D,Q
Test Case

Q

R,Q

Use Case

QR,Q

Executable
Version

D,Q

File

D,Q
R,Q

Test Result

D,Q

Test
Verification

D,Q

Test Case

Q

R

R,Q

Tool

D,Q

Iteration
Plan

a

Development
Strategy

D,Q

Actor

Q

R,QR
Evaluation

Results

D,Q

Evaluation
Criterion

Q
R,QR

Iteration

D,Q

Iteration Plan

D,QR,QR

Iteration
Issue

D,Q

R,QR

Iteration
Milestone

Q

Implementation
Test

D,Q

Developer
Test

D,Q R,Q

Participant

D,Q

Requirement
Realization

D,Q

Scenario

D,Q

SubSystem

D,Q
R,Q

R,Q

R,Q

R,Q

Component

Q

Architecture

Q

R,QR,Q

Fig. 43 The Construction phase documents structure

• User manuals with work instructions, process descriptions, and procedures
• Communications, training, and knowledge transfer deliverables
• Support and operations manuals
• Service information, including Help Desk scripts

Training Materials
Training materials that can be used to train end users and production support
personnel might consist of
• Presentation slides
• Handouts
• Job aids
• Tutorials

The OpenUp Process 547

Table 16 Construction phase—work product kinds

Name Description Work product kind

Architecture Notebook See sections “Architecture Notebook” and “Work Product
Kinds”.

Build See sections “Build” and “Work Product Kinds”.
Deployment Plan See sections “Deployment Plan” and “WorkProduct Kinds”. Composite
Design See sections “Design” and “Work Product Kinds”.
Developer Test See sections “Developer Test” and “Work Product Kinds”.
Glossary See sections “Glossary” and “Work Product Kinds”.
Implementation See sections “Implementation” and “Work Product Kinds”.
Iteration Plan See sections “Iteration Plan” and “Work Product Kinds”.
Product Documentation Information about a specific product that has been captured

in an organized format.
Structured

Project Defined Process See sections “Project Defined Process” and “Work Product
Kinds”.

Project Plan See sections “Project Plan” and “Work Product Kinds”.
Risk List See sections “Risk List” and “Work Product Kinds”.
Support Documentation Documents used by members of a production support team

that provide information about how to service and support a
specific product.

Free Text

System-Wide Requirement See sections “System-Wide Requirements” and “Work
Product Kinds”.

Test Case See sections “Test Case” and “Work Product Kinds”.
Test Log See sections “Test Log” and “Work Product Kinds”.
Test Script See sections “Test Script” and “Work Product Kinds”.
Tools See sections “Tools” and “Work Product Kinds”.
Training Materials This work product represents all the materials needed to train

end users and production support personnel on the features
and inner workings of a product for a particular release.

Composite.

Use Case See sections “Use Case” and “Work Product Kinds”.
Use-Case Model See sections “Use Case Model” and “Work Product Kinds”.
User Documentation Documents that can be utilized by the end users of a

particular system or product. This type of documentation
typically is written in a way that enables system users to
easily find information they need to use the product.

Free Text.

Vision See sections “Vision” and “Work Product Kinds”.
Work Items List See sections “Work Items List” and “Work Product Kinds”.

• On-line demos
• Video vignettes
• Lab exercises
• Quizzes
• Workshop materials, etc.

2.4 The Transition Phase

The Transition phase is composed by the Inception iteration as described in Fig. 44.
The process flow within the iteration is detailed in Fig. 45.

548 M. Cossentino et al.

Product Release
Milestone

Transition
Iteration [1..n]

Fig. 44 The Transition iteration inside the Transition phase

Finalize Product
Documentation

and Training

Test
Solution

Prepare for
Release

Plan and
Manage
Iteration

Ongoing
Tasks

Develop Solution
Increment

Deploy Release
to Production

Provide Product
Training

Fig. 45 The Transition phase flow of activities

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Transition phase involves thirteen
different process roles, seventeen work products as described in Fig. 46.

The phase is composed of eight activities each of them composed of one or
more tasks as described in the following. Activities are Plan and Manage Iteration,
Develop Solution Increment, Test Solution, Finalize Product Documentation and
Training, Prepare for Release, Package the Release, Ongoing Tasks, Provide Product
Training. The description of the Plan and Manage Iteration activity, Develop
Solution Increment activity and Test Solution activity in terms of tasks, roles, and
work products can be found respectively in Figs. 12, 27, and 28.

Details of new activities are reported in Figs. 47, 48, 49, and 50.

2.4.1 Process Roles
Analyst
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution

The OpenUp Process 549

Deploy Release
to Production

Test
Solution

Plan and
Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterTool
Specialist

Work Items
List

a

Iteration
Plan

a

ToolsProject Defined
Process

c

Risk
List

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Developer Deployment
Engineer

Product
Owner

Any Role Work
Items List

a

Develop Solution
Increment

Developer Architect Analyst StakeholderTester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Finalize Product
Documentation

and Training

User
Documentation

a

Product
Documentation

Support
Documentation

a

Training
Materials

c

Developer Product
Owner

Technical
Writer

Course
Developer

Prepare for
Release

Infrastructure

a
Backout

Plan

a

DeveloperDeployment
Engineer

Release
Communications

a

Provide Product
Training

Trainer

Release

c
<<Predecessor>> <<Predecessor>>

<<Predecessor>>
<<Predecessor>>

<<Predecessor>> <<Predecessor>>

<<Predecessor>><<Predecessor>>

Fig. 46 The Transition phase described in terms of activities, output work products and involved

3. Implement Tests
4. Manage Iteration
5. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Manage Iteration
4. Plan Iteration

550 M. Cossentino et al.

<<performs, assist>>

Finalize Product
Documentation

and Training

Develop User
Documentation

Develop Product
Documentation

Develop
Training
Materials

Technical Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer Product
OwnerTechnical Writer

<<performs,
primary>>

<<output>>

Course
Developer

<<performs, primary>>

Develop Support
Documentation

Technical Writer

<<performs,
primary>>

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

User
Documentation

a

<<input,
optional>>

Product
Documentation

Support
Documentation

a<<input,
optional>>

Product
Documentation

User
Documentation

a

Product
Documentation

Training Materials

c

Fig. 47 The Finalize Product Documentation and Training activity described in terms of tasks,
roles, and work products

Course Developer
She/he is responsible for the following tasks:
1. Develop Training Materials

Deployment Engineer
She/he is responsible for the following tasks:
1. Deliver Release Communications
2. Develop Release Communications
3. Execute Backout Plan (if necessary)
4. Execute Deployment Plan
5. Install and Validate Infrastructure
6. Verify Successful Deployment
7. Develop Backout Plan

She/he assists in the following tasks:
1. Package the Release

Developer
She/he is responsible for the following tasks:
1. Design the Solution
2. Develop Backout Plan

The OpenUp Process 551

Prepare for
Release

Develop
Backout

Plan

Review and
Conform to

Release
Controls

Develop Release
Communications

Technical
Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer

<<performs,
primary>>

<<input>>

<<performs,
primary>>

Install and
Validate

Infrastructure

Deployment
Engineer

<<performs,
primary>>

<<output>>

Release
Controls

<<output>>

<<input,
optional>>

Infrastructure

a
<<input,

optional>>

Developer

<<performs,
primary>>

Deployment
Plan

c

Release
Controls

<<input>>

Deployment
Plan

c

Backout Plan
Deployment

Engineer

Deployment
Plan

c

Release
Controls

Release
Communications

a
<<input>>

Fig. 48 The Prepare for Release activity described in terms of tasks, roles, and work products

<<input,
optional>>

Provide Product
Training

Deliver End User
Training

Deliver Support
Training

Trainer

<<performs,
primary>>

<<performs, primary>>

Trainer

User
Documentation

Product
Documentation

Training Materials

<<input>>

<<input>>

<<input,
optional>>

User
Documentation

Product
Documentation

Training Materials

<<input>>

<<input>>

Fig. 49 The Provide Product Training activity described in terms of tasks, roles, and work
products

3. Implement Developer Tests
4. Implement Solution
5. Install and Validate Infrastructure
6. Integrate and Create Build
7. Package the Release
8. Review and Conform to Release Controls
9. Run Developer Tests

552 M. Cossentino et al.

<<performs,
assist>>

<<input>>
<<output>>

Deploy Release
to Production

Verify
Successful
Deployment

Package the
Release

Execute
Backout Plan

Deployment
Engineer

<<performs,
primary>>

<<input,
optional>>

Developer

<<performs,
primary>>

<<input>>

<<performs,
primary>>

Execute
Deployment

Plan

Deployment
Engineer

<<performs,
primary>>

Release
Controls

Infrastructur
e

a

<<input,
optional>>

Developer

<<performs,
assist>>

Deployment
Plan

c
Release
Controls

<<input>>

Deployment
Plan

c

Deployment
Engineer

<<input>>

Release

c

Deployment
Engineer

<<performs,
assist>>

Deployment
Plan

c
Release

c

Developer
Product
Owner

<<performs,
assist>>

Release

c <<input>>

Developer

<<performs,
assist>>

Backout
Plan

Release

c <<input>>

Deliver Release
Communications

<<performs,
primary>>

Deployment
Engineer

Release
Communications

a
<<input>>

Developer

<<performs,
assist>>

Release

c <<input,
optional>>

Fig. 50 The Deploy Release to Production activity described in terms of tasks, roles, and work
products

She/he assists in the following tasks:
1. Assess Results
2. Deliver Release Communications
3. Develop Product Documentation
4. Execute Backout Plan (if necessary)
5. Execute Deployment Plan
6. Implement Tests
7. Manage Iteration
8. Outline Deployment Plan
9. Plan Iteration

10. Verify Successful Deployment

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the Process
2. Tailor the Process

Product Owner
She/he assists in the following tasks:
1. Develop Product Documentation
2. Verify Successful Deployment

The OpenUp Process 553

Project Manager
She/he is responsible for the following tasks:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Implement Solution
4. Implement Tests
5. Manage Iteration
6. Plan Iteration

Technical Writer
She/he is responsible for the following tasks:
1. Develop Product Documentation
2. Develop Support Documentation
3. Develop User Documentation

Tester
She/he is responsible for the following tasks:
1. Implement Tests
2. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Implement Developer Tests
4. Implement Solution
5. Manage Iteration
6. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

Trainer
She/he is responsible for the following tasks:
1. Deliver End User Training
2. Deliver Support Training

2.4.2 Activity Details
The Transition phase includes eight activities, which are described in the following
subsections.

554 M. Cossentino et al.

<<input, optional>>

Developer

Product
Owner

Technical
Writer

Course
Developer

Develop Product
Documentation

<<output>>

Product
Documentation

Develop User
Documentation

<<input,
optional>>

<<output>>

User
Documentation

a

Product
Documentation

Develop Support
Documentation

<<output>>

Support
Documentation

a

<<input,
optional>>

Product
Documentation

User
Documentation

a

Develop Training
Materials

<<output>>

Support
Documentation

a

User
Documentation

a

Product
Documentation

Training
Materials

c

Fig. 51 The flow of tasks of the Finalize Product Documentation and Training activity

Plan and Manage Iteration
See section “Plan and Manage Iteration” above.

Develop Solution Increment
See section “Develop Solution Increment” above.

Test Solution
See section “Test Solution” above.

Finalize Product Documentation
This activity prepares product documentation and training materials. The flow of
tasks inside this activity is reported in Fig. 51, and the tasks are detailed in Table 17.

Prepare for Release
This activity prepares product documentation and training materials. The flow of
tasks inside this activity is reported in Fig. 52, and the tasks are detailed in Table 18.

Provide Product Training
This activity provides product training. The flow of tasks inside this activity is
reported in Fig. 53, and the tasks are detailed in Table 19.

Ongoing Tasks
See section “Ongoing Tasks” above.

Deploy Release to Production
This activity results in the release of a set of integrated components into the
production environment. The flow of tasks inside this activity is reported in Fig. 54,
and the tasks are detailed in Table 20.

The OpenUp Process 555

Table 17 Finalize product documentation and training—the task description

Activity Task Task description Roles involved

Finalize
Product
Documentation

Develop
Product
Documentation

Development team members sometimes take doc-
umentation for granted, or do not give it enough
consideration. However, after a product is delivered,
customers who pay for the system and for support
often do not have enough information to effectively
manage the product. If a technical writer is made
available to a development team, that role often
takes the burden off the team for developing the
formal product documentation and for ensuring that
it is in the correct format and business language. If
a technical writer is not available, the development
team and product owner must make every effort to
create enough documentation to ensure that the fea-
tures that have been developed for each release are
understood and can be communicated effectively by
the paying customer to their stakeholders. Deliv-
ering a professionally developed product requires
that a development team provide the customer
with accurate, detailed, and comprehensive product
documentation. This task includes the following
steps:
1. Identify features of current release
2. Document each feature
3. Review product documentation with stakehold-

ers
4. Update product documentation as necessary
5. Deliver product documentation

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Finalize
Product
Documentation

Develop User
Documentation

User documentation might include all or parts of
user manuals (electronic or paper-based), tutorials,
frequently asked questions (FAQs), on-line Help
Files, installation instructions, operational proced-
ures, etc. User documentation often is used as the
basis for training materials - if the documentation
is of poor quality, the training materials might not
be any better. Without good user documentation,
a system might be well developed by a devel-
opment team but might not meet the End User’s
expectations because they will not be able operate
the application effectively. This task includes the
following steps:
1. Determine user documentation contents
2. Leverage product documentation
3. Leverage other materials
4. Write user documentation content
5. Perform quality review
6. Deliver user documentation

Technical Writer (perform)

Finalize
Product
Documentation

Develop
Support
Documentation

Support documentation often is the most over-
looked aspect of a documentation effort. Anyone
who has had the opportunity to provide end user
support for a particular application can appreciate
how important effective, well-written support doc-
umentation can be. This documentation very often
is technical in nature and differs significantly from
user or product documentation, which normally is
written for the lay person. The development team
should do its best to make sure that personnel who
perform an IT support role have the right amount
and the relevant type of information necessary to
support the application, whether they provide Tier
1, Tier 2, or Tier 3 support. Support documentation
often is developed based on these three different
support categories. How effectively the code base

Technical Writer (perform)

(continued)

556 M. Cossentino et al.

Table 17 (continued)

Activity Task Task description Roles involved

is commented and the ease with which those com-
ments are found and understood contributes to the
quality and quantity of support documentation. This
task includes the following steps:
1. Determine support documentation contents
2. Leverage available materials
3. Write support documentation
4. Perform quality review
5. Deliver support documentation

Finalize
Product
Documentation

Develop
Training
Materials

Having the correct amount and type of materials
available to adequately train end users and support-
ers of an application is necessary to promote usab-
ility and to achieve the desired business value. If a
course developer is available, they can assume most
of the burden of creating the training materials,
lab exercises, and workshops for delivery of those
courses to either end users or support personnel.
If a course developer is not available, development
team members should take the time to properly
develop a suite of training materials for the feature
set developed during a release. Although different
parts of training materials should be created during
feature development sprint/iterations, the bulk of
the work (and the integration of the materials)
usually is reserved for the release sprint/iteration
that occurs immediately before a scheduled release.
This task includes the following steps:
1. Determine scope of training materials
2. Develop user training materials
3. Develop support training materials
4. Perform quality review
5. Perform dry run
6. Deliver training materials

Course Developer
(perform)

Develop Backout
Plan

Review and
Conform to

Release Controls

Develop Release
Communications

<<input,
optional>>

<<output>>

<<input>>

Install and Validate
Infrastructure

<<output>>

Release
Controls

<<output>>

<<input,
optional>>

Infrastructure

a

<<input,
optional>>

Deployment Plan

c

Release
Controls

<<input>>

Deployment Plan

c

Backout Plan

Deployment Plan

c

Release
Controls

Release
Communications

a

<<input>>Developer

Deployment
Engineer

Technical Writer

Fig. 52 The flow of tasks of the Prepare for Release activity

2.4.3 Work Products
The Transition phase generates nine work products. Their relationships with the
system meta-model elements are described in Fig. 55.

The OpenUp Process 557

Table 18 Prepare for release—the task description

Activity Task Task description Roles involved

Prepare for Release Review and Con-
form to Release
Controls

Release controls describe the minimum number of
requirements that a software package must adhere
to before being released into production. This is
especially important if a development team is new
or emerging, because they might not be aware of the
great responsibilities a deployment manager has. In
fact, a deployment manager is responsible to senior
management for ensuring that nothing is placed
into production that does not conform to the rigid
controls designed to protect the IT organization’s
ability to successfully deliver IT services to internal
and external customers. Release controls typically
consist of
• Release or deployment plan
• Backout plan
• Release component definitions
• Release package integrity verification
• References to configuration items (CIs)
• Customer approval
• Ready for transfer to operations and support

staff
This task includes the following steps:
1. Locate release controls
2. Review release controls
3. Ensure the team release conforms to the controls

Technical Writer
(perform),
Developer
(perform)

Prepare for Release Install and Valid-
ate Infrastructure

A release package cannot be deployed to production
if the environmental infrastructure within which the
release will be run is not sufficiently built or tested.
Whether the release is deployed as a “push” (where
the application is deployed from a central point
and proactively delivered to target locations) or a
“pull” (where the application is made available at
central point and pulled by a user at a time of their
choosing), the infrastructure needed to support the
application must be considered and implemented.
Some key aspects of installing and/or validating the
desired infrastructure:
• Identify the requirements and components of

the environment configuration
• Determine the lead times required to establish

the infrastructure environments
• Procure and install the infrastructure compon-

ents that are not yet available
• Test the newly installed infrastructure compon-

ents
• Test the integration of newly installed compon-

ents with the rest of the environmental configur-
ation

• Validate other aspects of the infrastructure in-
cluding
– Security components and their integration
– Database connectivity and security
– License management, as appropriate
– Configuration management, in terms of con-

figuration items (CIs)
This task includes the following steps:
1. Identify infrastructure needs
2. Procure components
3. Schedule components for installation
4. Install and test components
5. Validate other component aspects

Deployment
Engineer,
Developer
(perform)

(continued)

558 M. Cossentino et al.

Table 18 (continued)

Activity Task Task description Roles involved

Prepare for Release Develop
Backout Plan

A rollback might be needed for a variety of reasons,
including corruption of the production code base,
inoperable components, an unplanned undesirable
effect of the release on other production systems,
an unhappy customer, etc. The Development team
should provide the production support organization
with a specific plan and decision criteria made
available to them to avoid or minimize service inter-
ruptions. This task includes the following steps:
1. Determine if backout plan exists
2. Develop the backout plan (if applicable)
3. Update the backout plan (if applicable)

Developer
(perform),
Deployment
Engineer (assist)

Prepare for Release Develop Release
Communications

When a release is pushed to production, all the
stakeholders of that product should be notified that
the event has happened and what the release means
to each of the stakeholders. Often, the output of this
task does not need to be created from scratch; for
products that plan multiple releases, just updating
the communique details for each release might be
enough. However, if any of the stakeholder groups
change, or there is a significant difference in the
product distribution, more significant content might
need to be developed. A development team can
develop high quality software, but if messaging
to the stakeholders is conducted poorly or not at
all, the end user experience might be degraded.
By simply answering the questions “who, what,
when, where, why, and how” in a format appropriate
for each stakeholder group, a product release can
become a more satisfying experience for all those
involved. This task includes the following steps:
1. Identify stakeholders for this release
2. Draft communique for each stakeholder group
3. Provide communiques to deployment manager

Deployment En-
gineer (perform)

<<input>><<input,
optional>>

Deliver End User
Training

Deliver Support
Training

User
DocumentationProduct

Documentation
Training
Materials

<<input,
optional>>

User
Documentation

Product
Documentation

Training
Materials

<<input>>

Trainer

Fig. 53 The flow of tasks of the Provide Product Training activity

WorkProduct Kinds
Table 21 describes the work products of the Construction phase according to their
kinds.

The OpenUp Process 559

Table 19 Provide product training—the task description

Activity Task Task description Roles involved

Provide Product
Training

Deliver end user
Training

Often, a trainer will deliver training to end users;
rarely will the development team deliver training
because they are busy developing additional fea-
tures for this or other systems. If a trainer is not
available, the product owner might have to train
the end users. End user training usually consists
of presentation slides, job aids, hands-on labs and
exercises, or workshops that integrate these meth-
ods into an environment that the end users can
understand and relate to. This task includes the
following steps:
1. Validate user training logistics
2. Prepare for user training delivery
3. Deliver user training and gather feedback
4. Provide feedback to the program level

Technical Writer
(perform)

Provide Product
Training

Deliver Support
Training

Because a release ultimately will have to be sup-
ported by Help Desk or other technical personnel,
a set of training materials designed to convey key
concepts to those individuals must be developed
and delivered by the development team or by a
technically oriented trainer. Delivery of this train-
ing might include presentation slides, job aids, lab
exercises, or workshops designed to provide real-
world scenarios to accelerate learning and retention.
In addition, the training materials might be different
for each level (tier) of support. This task includes
the following steps:
1. Validate support training logistics
2. Prepare for support training delivery
3. deliver support training and gather feedback
4. Provide feedback to the program

Trainer
(perform)

Backout Plan
The purpose of this work product is for the development team to provide, in one
document, all the information needed by the production support organization to
determine if a rollback is needed, who will authorize it, how it will be performed,
etc. While someone on the development team normally authors a draft version of the
Backout Plan, the Deployment Engineer is ultimately responsible for its contents
and existence. A backout plan typically answers the following questions:
• Under what circumstances will a rollback be required? Or conversely, under what

circumstances will the deployment be considered a success?
• What is the time period within which a rollback can take place?
• Which authorizing agent will make the decision to revert?
• Who will perform the rollback and how soon after the decision has been made

will the rollback be performed?
• What procedures (manual and automated) will be followed to execute the

rollback?
• What other contingency measures or available workarounds should be con-

sidered?

560 M. Cossentino et al.

<<input,
optional>>

<<input>>

<<input>>

<<output>>

Verify Successful
Deployment

Package the
Release

Execute
Backout Plan

<<input,
optional>>

Execute
Deployment Plan

Release
Controls Infrastructure

a

<<input,
optional>>

Deployment
Plan

c

Release
Controls

<<input>>

Deployment
Plan

c

Release

c

Deployment
Plan

c

Release

c

Release

c

<<input>>

Backout
Plan

Release

c

Deliver Release
Communications

Release
Communications

a

<<input>>

Release

c

Developer

Deployment
Engineer

Product
Owner

Backout
Necessary?

Yes

No

Fig. 54 The flow of tasks of the Deploy Release to Production activity

• What is the expected time required to perform a reversion?
• What are the communication procedures required in the event of a backout?
• Has the Backout Plan been successfully tested?

Infrastructure
Infrastructure normally is defined as anything that supports the flow and processing
of information in an organization. The infrastructure needed to support a release
package normally includes
• Software, including

– Operating systems and applications for servers and clients
– Desktop applications
– Middleware
– Protocols

• Hardware
• Networks, including

– Routers
– Aggregators
– Repeaters
– Other transmission media devices that control movement of data and

signals
• Facilities

The OpenUp Process 561

Table 20 Deploy release to production—the task description

Activity Task Task description Roles involved

Deploy Release
to Production

Package the Re-
lease

The key activities normally used to package a re-
lease:
• Assemble the components and integrate them

through a normal (i.e., continuous integration)
or release build script

• Install the release package in one or more test
environments and verify its integrity

• Tag the elements of the release package in the
code base to create a baseline

• Package appropriate documentation to accom-
pany the release:
– Deployment plan
– Build plan, procedures, and scripts
– Backout plan
– Relevant licensing information
– Relevant infrastructure information
– Release communiques

This task includes the following steps:
1. Assemble components
2. Test the release
3. Tag source code repository
4. Package release documentation
5. Deliver release package

Developer
(perform),
Deployment
Engineer (assist)

Deploy Release
to Production

Execute Deploy-
ment Plan

This task is straightforward: follow the procedures
in the Deployment Plan for the rollout of a specific
product release. If the deployment plan does not
exist or it is poorly constructed, this task might be
much more difficult.
The main point here is that to achieve a high probab-
ility of success, the development team should have
previously developed a detailed plan that organ-
izes and articulates all the unique instructions for
deploying that particular release. Because an exper-
ienced deployment engineer normally executes this
task, they might be able to overcome any missing
deployment procedures or content. However, that is
not an excuse for a development team to not develop
the plan’s contents. This task includes the following
steps:
1. Review deployment plan
2. Release code

Deployment
Engineer
(perform),
Developer
(assist)

Deploy Release
to Production

Verify Success-
ful Deployment

Using the success criteria documented either in
the deployment plan or in the backout plan, the
deployment engineer, in collaboration with the de-
velopment team, will determine whether the rollout
can be declared a success or not. If the deployment
is successful, the previously prepared release com-
muniques should be delivered. If the deployment
is unsuccessful, then the backout plan should be
invoked. This task includes the following steps:
1. Test production release
2. Run manual tests
3. Determine if release should be reversed

Deployment
Engineer
(perform),
Developer,
Product Owner
(assist)

Deploy Release
to Production

Execute Backout
Plan (if neces-
sary)

Assuming a backout plan is available for this re-
lease, the deployment engineer (or development
team) will follow the instructions for reversing the
installation of the product into production, if there is
a problem. While the plan might have been written
with good intentions, sometimes key procedures are

Deployment
Engineer
(perform),
Developer
(assist)

(continued)

562 M. Cossentino et al.

Table 20 (continued)

Activity Task Task description Roles involved

missing or have not been thought out. The team
backing out the release should be aware that blindly
following the backout plan might not be the best
approach. It is best to consider the unique circum-
stances within which the deployment has failed
and rely on common sense and experience when
executing the backout plan. This task includes the
following steps:
1. Identify release problem(s)
2. Backout the release
3. Determine if the backout was successful
4. Communicate the backout

Deploy Release
to Production

Deliver Release
Communications

This task represents the distribution of commu-
niques that were prepared beforehand as part of
the release communications artifact. Although the
development team is responsible for preparing the
communications, the responsibility for sending the
communiques normally is assigned to the deploy-
ment engineer, if that is the organizational protocol.
This task includes the following steps:
1. Validate the communiques
2. Send release communications
3. Validate communications were received

Deployment
Engineer
(perform),
Developer
(assist)

Release Communications
This artifact should specify the different groups to which communications are
directed, the method of communication (e.g., email, text or pager message, bulletin,
newsletter, phone message, etc.). All communiques should be prepared in advance
so that it is a matter of disseminating information when the release to production
has been determined to be successful.

Also included in this artifact is a listing of the responsible parties who will
execute the communications when a successful release has been declared (normally
the Deployment Engineer), as well as the timing and dependencies of the commu-
niques.

While there is no prescribed format for the release communications artifact,
each communique should indicate the preferred delivery mechanisms (e.g., beeper
notification, telephone calls, a posting to an internal release website, live or pre-
recorded presentations by senior management, etc.) and generally answer the
following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release to

production has taken place?
• What specifically (features, functions, components) has been placed into produc-

tion?

The OpenUp Process 563

R,QR

R,QR,Q

Transition
Model

Infrastructure

a
Backout

Plan

a

Release
Communications

a Tools

c

Release

c

Work
Items
List

a
Test

Script
Test
Log

a

c

Implementation

c

c

Build

c

c

Project Defined
Process

c

Project-Specific
Guidelines

D,Q

Project-Specific
Procedure

D,Q

Report

D,Q

Role

D,QR

R,
QR

R, QR

R, QR

Work
Product

D,Q

R, QR

Process

D,Q

Build Script

D,Q

Data
Files

D,Q

Folder

D,Q

Other
Files

D,QSource
Code Files

D,Q

Work Item

D,Q

Test Script

D,Q

Test Case

Q
R,Q

Use Case

Q
Executable
Versione

D,Q

File

D,Q
R,QTest

Result

D,Q

Test
Verification

D,Q

Test
Case

Q
R

c

Design

c

Participant

D,Q

Requirement
Realization

D,Q

Scenario

D,Q SubSystem

D,Q

R,Q

R,Q

R,Q R,Q

Component

Q
R,Q

R,Q

Developer
Test

Iteration
Plan

a

Development
Strategy

D,Q

Actor

Q Evaluation
Results

D,Q

Evaluation
Criterion

Q

Iteration

D,Q

Iteration
Plan

D,QR,QR

Iteration
Issue

D,Q
R,QR

Iteration
Milestone

Q

Implementation
Test

D,Q

Developer
Test

D,Q
R,Q

R,QR

User
Documentation

a
Product

Documentation
Support

Documentation

a c

Training
Materials

c

Support
Documentation

D

Training
Material

Q

Comunique

Q

User
Documentation

Q

R

R
R Product

Documentation

D

User
Documentation

D

Support
Documentation

Q

Training
Material

D

R

Risk List

Risk List

D,Q

Architecture

Q

Infrastructure

D

Communique

D

Integrated Compiled
Code

D Authorized
Agent

D

Backout
Plan

D
Rollback

D

Communication
Procedure

D

Contingency
Measure

D

Rollback
Performer

D

Rollback
Procedure

D

Workaround

D

R

R R
R

R

R

R

Tool

D,Q

Fig. 55 The Transition phase documents structure

• Why is this release valuable to stakeholders and what business purpose does it
serve?

• Where is the product available (on which platforms, geographical locations,
business units, etc.)?

• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date is

in the future)?

Release Controls
Some common release controls are:
• A release or deployment plan must be documented and reviewed with the

Deployment Manager (or the release organization). This plan must address how
risks, issues, or code deviations are to be handled during the key timeframe
leading up to the actual release.

• The components of each release package must be defined, integrated, and
compatible with one another.

• The integrity of each release package must be verified and maintained.
• References to the configuration items (CIs) that the release package represents,

if applicable.

564 M. Cossentino et al.

Table 21 Transition phase—work product kinds

Name Description Work product kind

Backout Plan A backout plan defines the criteria and procedures to be
followed if a release into production needs to be rolled back.

Structured

Deployment Plan See sections “Deployment Plan” and “WorkProduct Kinds.” Composite
Infrastructure In reference to a release sprint, infrastructure refers to all

the hardware, software, and network facilities necessary to
support a deployed release. The purpose of this work product
is to provide the underlying capabilities within which an
application can be run as designed.

Free Text

Product Documentation See sections “Product Documentation” and “WorkProduct
Kinds.”

Release Communications When a release is pushed to production, all the stakeholders
of that product should be notified that the event has happened
and what the release means to each of the stakeholders.
Often, the output of this task does not need to be created
from scratch; for products that plan multiple releases, just
updating the communique details for each release might be
enough. However, if any of the stakeholder groups change,
or there is a significant difference in the product distribution,
more significant content might need to be developed. In any
case, communicating effectively to the end user community
is important. A development team can develop high quality
software, but if messaging to the stakeholders is conducted
poorly or not at all, the end user experience might be
degraded. By simply answering the questions “who, what,
when, where, why, and how” in a format appropriate for
each stakeholder group, a product release can become a more
satisfying experience for all those involved.

Free Text

Release Controls The purpose of this work product is to identify all the
requirements to which a release package must conform to
be considered “deployable.”

Structured

Support Documentation See sections “Support Documentation” and “WorkProduct
Kinds.”

Training Materials See sections “Training Materials” and “WorkProduct
Kinds.”

User Documentation See sections “User Documentation” and “WorkProduct
Kinds.”

• The customer for which the application is being developed must approve the
release, indicating that the user community (or a specific subset) is ready to
receive and use the requisite capabilities of the release.

• Each release package must be capable of being backed out of production without
negatively impacting the remaining production environment.

• The contents of each release package must be transferred to operations
and support staff with sufficient documentation and knowledge transfer so
that those organizations can effectively support the released capabilities in
production.

3 Work Product Dependencies

Figure 56 describes the dependencies among the different work products and work
product slots (see Sect. 1). The list of work products fulfilling the different work
product slots is reported in Table 22.

The OpenUp Process 565

Project Plan

Work Items
List

Iteration
Plan

ToolsProject Defined
Process

Risk List

Glossary

System-Wide
Requirements

Use Case
Model

Use Case

Test Case

Support
Documentation

[Project
Work]

Technical
Specification

[Technical
Architecture]

[Technical
Specification]

[Project
Definition

and Scope]
[Technical

Test Result]

Architecture
Notebook

[Technical Design]

[Technical
Implementation]

Test Script

Test Log

Build

Design

Developer Test

Implementation

User
Documentation

Product
Documentation

Training
Materials

Infrastructure

Deployment Plan

Release
Controls

Backout Plan

Release
Communications

Release

Fig. 56 The Work Product Dependency diagram

Table 22 OpenUp work product slots and the fulfilling work products

Work product slot Fulfilling work product

[Project Definition and Scope] Project Plan
[Project Work] Iteration Plan, Work Items List
[Technical Architecture] Architecture Notebook
[Technical Design] Design
[Technical Implementation] Build, Implementation
[Technical Specification] Glossary, System-Wide Requirements,

Use Case, Use-Case Model, Vision
[Technical Test Results] Test Log

References

1. Eclipse Foundation: The OpenUP Website. Online at: http://epf.eclipse.org/wikis/openup/.
Accessed on 15 Jan 2013

2. Eclipse Foundation: Work Product Slot. Online at: http://epf.eclipse.org/wikis/mam/core.mdev.
common.base/guidances/concepts/work_product_slot_D5B44CE7.html. Accessed on 15 Jan
2013

http://epf.eclipse.org/wikis/openup/
http://epf.eclipse.org/wikis/mam/core.mdev.common.base/guidances/concepts/w ork_product_slot_D5B44CE7.html
http://epf.eclipse.org/wikis/mam/core.mdev.common.base/guidances/concepts/w ork_product_slot_D5B44CE7.html

566 M. Cossentino et al.

3. Object Management Group (OMG): Unified Modeling Language (UML), V2.4.1, Infrastructure
Specification. Doc. number: formal/2011-08-05 (2011)

4. Object Management Group (OMG): Unified Modeling Language (UML), V2.4.1,
Superstructure Specification. Doc. number: formal/2011-08-06 (2011)

5. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy: A Practitioner’s Guide to the
RUP. Addison-Wesley Professional, Boston (2003)

6. Software Process Engineering Metamodel. Version 2.0. Final Adopted Specification
ptc/07 03-03. Object Management Group (OMG) (March 2007)

7. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifications to
represent agent oriented methodologies. In: AOSE, pp. 46–59 (2008)

	The OpenUp Process
	1 Introduction
	1.1 The OpenUp Process Lifecycle
	1.2 The OpenUp Process System Metamodel
	1.2.1 Definition of the System Metamodel Elements

	2 Phases of the OpenUp Process
	2.1 The Inception Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Elaboration Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Construction Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 The Transition Phase
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	3 Work Product Dependencies
	References

