
Handbook on
Agent-Oriented
Design Processes

Massimo Cossentino · Vincent Hilaire
Ambra Molesini · Valeria Seidita Editors

Handbook on
Agent-Oriented Design Processes

Massimo Cossentino • Vincent Hilaire •
Ambra Molesini • Valeria Seidita
Editors

Handbook on
Agent-Oriented Design
Processes

123

Editors
Massimo Cossentino
ICAR-CNR
Palermo
Italy

Vincent Hilaire
University of Technology

of Belfort Montbéliard
Belfort cedex
France

Ambra Molesini
Alma Mater Studiorum
Università di Bologna
Bologna
Italy

Valeria Seidita
DICGIM
University of Palermo
Palermo
Italy

ISBN 978-3-642-39974-9 ISBN 978-3-642-39975-6 (eBook)
DOI 10.1007/978-3-642-39975-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932973

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

Designing a multi-agent system (MAS) is not an easy task: creating agents,
environments, norms, organizations, and make them cooperate in order to solve a
collective task is both an art and a science.

MAS have to deal with two important and difficult issues: autonomy and
interaction. Autonomy is the ability for an agent to solve local and individual
problems using its own memory and ability to decide what to do next in accordance
with what kind of information it perceives. Of course, agents do not have free will:
everything is programmed. It is generally possible at this individual level to have
a perfect control of the agent’s behavior and to specify its functioning through
standard computer design tools and methods. Interaction, on the other hand, may be
defined as the mutual influence agents—and the environment—exert to one another.
Interaction is a kind of glue that makes agents behave in a loosely coupled way,
coordinating their behavior in order to achieve a task, leaving all the little details
of the adjustments of actions to their ability to adapt themselves to the dynamic’s
minor alterations of the whole system.

Autonomy and interaction lead to something that usually computer scientists
don’t like: the inability to have a perfect control on the whole system. Unpredictab-
ility is not something you like when you design software systems. Another amazing
thing that happens when you program MAS is that your program does not bug : : :

Usually, when programming standard computer programs, your program fails until
you have what you want, and programmers spend their time in the debugger,
understanding what is wrong, and why the program breaks down : : : But this is not
true with MAS. Your program does work nearly all the time, but what you see is not
what you expect : : : So debuggers and breakpoints are not as useful as in standard
programming, and the MAS programmer has to rely on other tools to understand
what is programmed and why the results do not correspond to what is expected.

Why do MAS show such strange behaviors? The main reason is that, in MAS,
programming is done at the agent level while results are observed at the system
level. And this is both the marvel and the curse of MAS programming. Taken aside,
each agent is carefully crafted and programmed to achieve what is expected. But
when a group of agents interact in a more or less coordinated way, new properties
arise as the result of those interactions, which are difficult to foresee. This collective
behavior can solve a lot of tricky issues that would have required hours and hours
of delicate design and programming without MAS, if we had to plan everything

v

vi Foreword

ahead. And even though, the system would not adapt to new situations as neatly as
a MAS. From interaction and autonomy comes magic! Actually this is not magic.
It is called emergence, i.e. the ability to produce new results and solve complex
problems as a side effect of all the particular actions that agents perform through
their coordination of action with other agents. In a MAS, everything is dynamic by
nature. Nothing remains the same, and this is this dynamicity which is both required
and feared.

But this fantastic feature of MAS has a terrible drawback: the difficulty to control
and constrain the global behavior of the system in order for the system to do what
you want. And this is precisely why standard methods and tools cannot cope with
the specificity of MAS, and why it has been necessary to propose new ones that are
collected in this volume.

This book is an invaluable guide, providing both students and advanced prac-
titioners with a thorough compilation of the main methodologies used in MAS.
Contributions come from international authors well renowned in the field, who have
dedicated their time and effort to the development and application of MAS. This
book is the result of decades of intense work while analyzing, designing, and testing
multi-agent systems in both research and application domains.

For the first time, a wide panel of MAS methodologies is presented. They range
from the reactive point of view, where a solution is obtained as a side effect of an
adaptive process, to the more cognitive approach, where agents have beliefs and
goals and are defined as members of organizations. Thus, there are both bottom-up
and top-down methodologies, allowing MAS designers to get a practical overview
of the many approaches available.

Therefore, it is my pleasure to recommend this book that will stand as a reference
which long-term users could consult to improve their knowledge and know-how in
developing MAS.

Montpellier, France Jacques Ferber
May 2013

Contents

Introduction . 1
Massimo Cossentino, Ambra Molesini, Vincent Hilaire,
and Valeria Seidita

The IEEE-FIPA Standard on the Design Process
Documentation Template . 7
Massimo Cossentino, Vincent Hilaire, Ambra Molesini,
and Valeria Seidita

ADELFE 2.0 . 19
N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel, and F. Migeon

The ASPECS Process . 65
Massimo Cossentino, Vincent Hilaire, Nicolas Gaud,
Stephane Galland, and Abderrafiaa Koukam

ELDAMeth Design Process . 115
Giancarlo Fortino, Francesco Rango, and Wilma Russo

The Gaia Methodology Process . 141
Luca Cernuzzi, Ambra Molesini, and Andrea Omicini

GORMAS: A Methodological Guideline
for Organizational-Oriented Open MAS . 173
Sergio Esparcia, Estefanía Argente, Vicente Julián,
and Vicente Botti

INGENIAS-Scrum . 219
Juan C. González-Moreno, Alma Gómez-Rodríguez,
Rubén Fuentes-Fernández, and David Ramos-Valcárcel

The O-MASE Methodology . 253
Scott A. DeLoach and Juan C. Garcia-Ojeda

PASSI: Process for Agent Societies Specification and Implementation 287
Massimo Cossentino and Valeria Seidita

vii

viii Contents

ROMAS Methodology . 331
Emilia Garcia, Adriana Giret, and Vicente Botti

INGENIAS with the Unified Development Process . 371
Alma Gómez-Rodríguez, Rubén Fuentes-Fernández,
Juan C. González-Moreno, and Francisco J. Rodríguez-Martínez

The SODA Methodology: Meta-model and Process Documentation 407
Ambra Molesini and Andrea Omicini

The Tropos Software Engineering Methodology . 463
Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen,
and Alberto Siena

The OpenUp Process . 491
Massimo Cossentino, Vincent Hilaire, and Valeria Seidita

Index . 567

Introduction

Massimo Cossentino, Ambra Molesini, Vincent Hilaire,
and Valeria Seidita

Nowadays, software engineers face a wide range of particular application domains
such as electronic commerce, enterprise resource planning, mobile computing, self-
organisation, pervasive and adaptive computing, etc. The resulting heterogeneity
and required functionalities call for complex systems and open architectures that
may evolve dynamically over time so as to accommodate new components and meet
new requirements. This is probably one of the main reasons why the agent metaphor
and agent-based computing are gaining momentum in these areas.

As far as software engineering is concerned, the key implication is that the design
and development of software systems according to a (new) paradigm can by no
means rely on conceptual tools and methodologies conceived for a totally different
(old) paradigm [19]. In this book we do not want to enter the debate about the
differences in the definition of methodology and design process or simply process.
For the aim of this book we may consider them as synonymous.

Even if it is still possible to develop a complex distributed system in terms
of objects and client–server interactions, for example, such a choice appears
odd and ill-adapted when the system is a Multi-agent System (MAS) or can be
assimilated to an MAS. Rather, a brand new set of conceptual and practical tools—

M. Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

A. Molesini
Alma Mater Studiorum – Università di Bologna Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: ambra.molesini@unibo.it

V. Seidita (�)
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo,
Palermo, Italy
e-mail: valeria.seidita@unipa.it

V. Hilaire
IRTES-SET, UTBM, UPR EA 7274 90 010 Belfort cedex, France
vincent.hilaire@utbm.fr

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__1,
© Springer-Verlag Berlin Heidelberg 2014

1

mailto:cossentino@pa.icar.cnr.it
mailto:ambra.molesini@unibo.it
mailto:valeria.seidita@unipa.it
mailto:vincent.hilaire@utbm.fr

2 M. Cossentino et al.

specifically suited to the abstractions of agent-based computing—is needed to
facilitate, promote and support the analysis, design and development of MASs, and
to fulfil the great general-purpose potential of agent-based computing.

The definition of agent-specific methodologies is definitely one of the most
explored topics in Agent-Oriented Software Engineering (AOSE). A great number
of special-purpose methodologies were developed in the last few years to tackle the
challenges of specific application domains.

A methodology has several constituent parts, including a full life cycle process,
a comprehensive set of concepts, a set of rules, heuristics and guidelines, a set of
metrics, information on quality assurance, a set of coding and other organisational
standards, techniques for reuse and project management procedures [5, 10, 12].
Among the different methodologies developed [2, 6, 11, 14–16, 18, 20] there is a
great consent to organise the process life cycle according to two classical phases:
Analysis and Design. However, apart from this consensus, the cited methodologies
exhibit many differences. Indeed, and it is not the only difference, regarding the
abstractions adopted for modelling the systems there is no agreement among the
different methodologies: each methodology proposes an own set of abstractions
for modelling the systems. Due to this missing agreement, AOSE methodologies
typically define their abstractions through a metamodel [1, 7, 8] that details all
the abstractions adopted by the methodology and their relationships. Even if a
lot of abstractions are labelled in the same way in the different methodologies,
these abstractions frequently present different meaning and may belong to different
process phases. For example, the “agent” concept is always present in the AOSE
methodologies, however in some methodologies such as [6,15,18] the agent appears
since Analysis phase, while in other methodologies such as [2,16,20] “agent” is only
a design concept.

A key concept both in traditional software engineering and in agent-oriented
one is a common agreement that the “ideal methodology” [17] for any system
does not exist. This means that the methodology must be adapted to the particular
characteristics of the adopted usage scenarios. There are two major ways of ad-
apting methodologies: tailoring (particularisation or customisation of a pre-existing
methodology) or Situational Method Engineering (SME)[3,4]. SME is the discipline
that studies the composition of new, ad hoc software engineering processes for each
specific need. This is based on the assumption that the “situation” is the information
leading to the identification of the right design approach. This paradigm provides
tools for the construction of ad hoc processes by means of reuse of the existing
portion of methodologies (called method fragments) stored in a repository.

In order to be effective, this approach requires the design process and its
fragments to be suitably documented and modelled.

In this context, the work of the IEEE-FIPA Design Process Documentation and
Fragmentation (FIPA-DPDF) Working Group [9] aims at providing the possibility of
representing design processes and method fragments through the use of standardised
templates, thus allowing the creation of easily sharable repositories and enabling an
easier composition of new design processes. At the beginning of 2012 the Process
Documentation Template became an IEEE FIPA standard specification with number
SC00097B [13].

Introduction 3

Following this standardisation work, this book gathers the documentations of
some of the most known AOSE methodologies. Chapters describing the meth-
odologies have been produced, in several cases, by the original authors of the
methodology itself. In all cases, authors are FIPA-DPDF WG Members who with
their effort also aimed at validating the effectiveness of the Process Documentation
Template specification. In particular, the methodologies documented in this book
are as follows:
• ADELFE—it is dedicated to applications characterised by openness and the need

of system adaptation to an environment. Its main goal is to help and guide any
designer during the development of an Adaptive Multi-agent System.

• ASPECS—it is a step-by-step requirement-to-code iterative development process
for engineering Complex Systems using Multi-agent Systems and Holonic Multi-
agent Systems.

• ELDAMeth—it is an agent-oriented methodology specifically designed for the
simulation-based prototyping of distributed agent systems. It is centred on the
ELDA agent model and on an iterative development process covering distributed
agent system modelling, simulation and implementation for a target agent
platform.

• Gaia—it focuses on the use of organisational abstractions to drive the analysis
and design of MAS. Gaia models both the macro (social) aspects and the micro
(agent internals) aspects of MAS, and it devotes a specific effort to model
the organisational structure and the organisational rules that govern the global
behaviour of the agents in the organisation.

• GORMAS—it is focused on designing large scale, open, service-oriented
Organisation-Centred Multi-agent Systems, where organisations are able to
accept external agents into them. GORMAS is based on a specific method for
designing human organisations.

• INGENIAS—it covers the full development cycle of Multi-agent Systems. It
includes support for requirements elicitation (basic), analysis, design, coding and
testing. It is intended for general use, that is, with no restrictions on application
domains.

• INGENIAS-Agile—it introduces the definition of an agile process for the
INGENIAS methodology according to a well-known development process:
Scrum. The process adopts the iterative and fast plan presented originally by
the methodology and uses some of the activities and most of the work products
of the INGENIAS proposal with the Unified Development Process.

• O-MaSE—it is a new approach in the analysis and design of agent-based systems,
being designed from the start as a set of method fragments to be used in a method
engineering framework. The goal of O-MaSE is to allow designers to create
customised agent-oriented software development processes.

• OpenUp—it is an open source process framework developed within the Eclipse
Foundation. It aims at enabling an easy adoption of the core of the RUP/Unified
Process. It proposes an iterative and incremental approach within a structured life
cycle. OpenUp embraces a pragmatic, agile philosophy that focuses on the col-
laborative nature of software development; this is the unique not agent-oriented

4 M. Cossentino et al.

methodology reported in this book and it demonstrates the feasibility of the
adopted Process Documentation Template even in the OO context.

• PASSI—it is a step-by-step requirement-to-code methodology for designing and
developing multi-agent societies integrating design models and concepts from
both OO software engineering and artificial intelligence approaches using the
UML notation.

• ROMAS—it defines a set of activities for the analysis and design of regulated
open multi-agent systems. The defining characteristics of systems of this kind
are that they are social, open and regulated.

• SODA—it deals with MAS analysis and design, and focuses on critical issues
such as agent coordination and MAS–environment interaction. SODA adopts
the Agents & Artifacts meta-model, and it introduces a layering principle as an
effective tool for scaling with system complexity.

• Tropos—it is a comprehensive, agent-oriented methodology for developing
socio-technical systems. Such systems explicitly recognise the existence of and
interplay between technical systems (software) and social actors (humans and
organisations).
The book is organised as follows:

• Chapter “The IEEE-FIPA Standard on Design Process Document Template”
presents the motivations and some basic concepts of the Process Documentation
Template.

• Chapters “ADELFE 2.0” to “The OpenUp Process” present (with the exception
of report) the documentation of the AOSE methodologies.

• Chapter “ROMAS Methodology” presents the documentation of a non-AOSE
methodology (OpenUP).
Finally, to conclude this short introduction, we would like to highlight that this

book represents a collective effort of the IEEE-FIPA DPDF Working Group, which
would not have been possible to realise without the contributions of a number
of individuals, to whom we are deeply grateful. In particular, we thank all the
authors who accepted to contribute to this book and who took effort to contribute
original chapters presenting their methodologies and design processes according
to the Process Documentation Template. We would also like to thank all the other
WG members for their contribution to the definition of the IEEE FIPA SC00097B
specification. Finally, we would like to thank Prof. J. Ferber for having kindly
written his interesting preface to this book.

We all hope you will enjoy reading this book.

References

1. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of some multi-
agent meta-models. In: Odell, J., Giorgini, P., Müller, J.P. (eds.) Agent Oriented Software
Engineering V. Lecture Notes in Computer Science, vol. 3382, pp. 62–77. Springer, New York
(2004)

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: an agent-oriented
software development methodology. Auton. Agent Multi Agent Syst. 8(3), 203–236 (2004).
http://www.springerlink.com/content/g757056736223u65/

http://www.springerlink.com/content/g757056736223u65/

Introduction 5

3. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38(4), 275–280 (1996)

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for
situational method engineering. Inf. Syst. 24(3), 209–228 (1999)

5. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based development.
Eng. Appl. Artif. Intell. 18(2), 205–222 (2005)

6. Cossentino, M.: From requirements to code with the PASSI methodology. In: Henderson-
Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies, Chap. IV, pp. 79–106. Idea
Group Publishing, Hershey (2005). http://www.idea-group.com/books/details.asp?id=4931

7. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The passi and agile passi mas meta-
models compared with a unifying proposal. In: Proceedings of the CEEMAS’05 Conference,
Budapest, Hungary, pp. 183–192 (2005)

8. Cossentino, M., Gaglio, S., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Seidita, V.:
A MAS metamodel-driven approach to process fragments selection. In: Luck, M., Gómez-
Sanz, J.J. (eds.) Agent-Oriented Software Engineering IX. Lecture Notes in Computer Science,
vol. 5386, pp. 86–100. Springer, Berlin (2009)

9. Cossentino, M., Hilaire, V., Molesini, A.: Fipa design process documentation and fragmenta-
tion working group. http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/ (2010)

10. Fuggetta, A.: Software process: a roadmap. In: ICSE ’00: Proceedings of the Conference on
The Future of Software Engineering, pp. 25–34. ACM Press, New York (2000). http://doi.acm.
org/10.1145/336512.336521

11. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodology for agent-oriented
analysis and design. In: Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodo-
logies, Chap. 8, pp. 203–235. Idea Group Publishing, Hershey (2005). http://www.idea-group.
com/books/details.asp?id=4931

12. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamental of Software Engineering, 2nd edn.
Prentice Hall, Englewood Cliffs (2002)

13. IEEE-FIPA: Design Process Documentation Template. http://fipa.org/specs/fipa
00097/SC00097B.pdf (2012)

14. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. In:
Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies, Chap. IX, pp. 236–
276. Idea Group Publishing, Hershey (2005). http://www.idea-group.com/books/details.asp?
id=4931

15. Picard, G., Bernon, C., Gleizes, M.P.: Cooperative agent model within ADELFE framework:
an application to a timetabling problem. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe,
M. (eds.) Autonomous Agents and Multi Agent Systems, vol. 3, pp. 1506–1507. ACM Press,
New York (2004). http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10200

16. SODA: Home page. http://soda.apice.unibo.it. http://soda.alice.unibo.it (2012)
17. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2007)
18. Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineering methodology.

In: Ciancarini, P., Wooldridge, M.J. (eds.) Agent-Oriented Software Engineering. Lecture
Notes in Computer Science, vol. 1957, pp. 207–221. Springer, Berlin (2001). http://www.
springerlink.com/link.asp?id=0pw8rqj5kpbdnflx. 1st International Workshop (AOSE 2000),
Limerick, Ireland, 10 June 2000. Revised Papers

19. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Auton. Agent Multi Agent Syst. 9(3), 253–283 (2004).
doi:10.1023/B:AGNT.0000038028.66672.1e. http://journals.kluweronline.com/article.asp?
PIPS=5276775. Special Issue: Challenges for Agent-Based Computing

20. Zambonelli, F., Jennings, N., Wooldridge, M.: Multiagent systems as computational organiz-
ations: the Gaia methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented
Methodologies, Chap. 6, pp. 136–171. Idea Group Publishing, Hershey (2005). http://www.
idea-group.com/books/details.asp?id=4931

http://www.idea-group.com/books/details.asp?id=4931
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/
http://doi.acm.org/10.1145/336512.336521
http://doi.acm.org/10.1145/336512.336521
http://www.idea-group.com/books/details.asp?id=4931
http://www.idea-group.com/books/details.asp?id=4931
http://www.idea-group.com/books/details.asp?id=4931
http://www.idea-group.com/books/details.asp?id=4931
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10200
http://soda.alice.unibo.it
http://www.springerlink.com/link.asp?id=0pw8rqj5kpbdnflx
http://www.springerlink.com/link.asp?id=0pw8rqj5kpbdnflx
http://journals.kluweronline.com/article.asp?PIPS=5276775
http://journals.kluweronline.com/article.asp?PIPS=5276775
http://www.idea-group.com/books/details.asp?id=4931
http://www.idea-group.com/books/details.asp?id=4931

The IEEE-FIPA Standard on the Design Process
Documentation Template

Massimo Cossentino, Vincent Hilaire, Ambra Molesini,
and Valeria Seidita

Abstract
Nowadays, it is a matter of fact that a “one-size-fit-all” methodology or design
process useful and fitting every kind of problem, situation, or design context
does not exist. (Situational) Method Engineering (SME) discipline aims at
determining techniques and tools for developing ad hoc design methodologies.
SME mainly and highly focuses on the reuse of portion of existing design
processes or methodologies (the method fragments). In order to have means
for creating SME techniques and tools and for creating new design processes,
some key elements are needed: a unique process metamodel for representing
design processes and fragments, a proper template for the description of AO
design processes and for the description of method fragments. The FIPA Design
Process Documentation and Fragmentation Working Group gave an important
contribution to the SME research area in terms of the IEEE-FIPA standard Design
Process Documentation Template (DPDT) that provides a standardized template
for the description of design processes.

M. Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

V. Hilaire
IRTES-SET, UTBM, UPR EA 7274, 90 010 Belfort cedex, France
e-mail: vincent.hilaire@utbm.fr

A. Molesini
DISI - Alma Mater Studiorum – Università di Bologna, Viale Risorgimento 2,
40136 Bologna, Italy
e-mail: ambra.molesini@unibo.it

V. Seidita (�)
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo,
Palermo, Italy
e-mail: valeria.seidita@unipa.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__2,
© Springer-Verlag Berlin Heidelberg 2014

7

mailto:cossentino@pa.icar.cnr.it
mailto:vincent.hilaire@utbm.fr
mailto:ambra.molesini@unibo.it
mailto:valeria.seidita@unipa.it

8 M. Cossentino et al.

1 Introduction

The Design Process Documentation Template (DPDT) is the result of the work
done within the FIPA Design Process Documentation and Fragmentation Working
Group.1 This Working Group was created and is inserted in the research context of
Method Engineering and Situational Method Engineering for the creation of ad hoc
agent-oriented methodologies.

It is currently admitted in both mainstream software engineering and agent-
oriented software engineering that there is not a “one-size-fits-all” methodology
or design process for designing and developing systems able to solve any kind of
problems. It is to date a factual data that software systems are strictly dependent on
the environment they will work, on the people who will use them, and above all on
the class of problems they will solve; for instance software systems for high-risk
military applications are intrinsically different from e-commerce applications, or
from health care, etc. The different features that software systems present greatly
affect the designer choice about the right design process (or methodology) to use.

Designers often spend a lot of time in studying, adapting, and customizing, when
possible, existing design processes, thus also increasing software development costs.
It would be useful to have the possibility (techniques, tools, and so on) for the
designer to create the design process best fitting his/her needs in a quick and useful
way.

In order to overcome this problem, in the 1990s the Method Engineering dis-
cipline rose. Method Engineering is the “engineering discipline to design, construct
and adapt methods, techniques and tools for the development of systems”; this is
the definition generally accepted since 1996 [1]. Then several researchers coined the
term Situational Method Engineering (SME) for indicating the part of ME dealing
with the creation of method(ologies) (or design process) for specific situations
[7,14,15]. SME provides means for constructing ad hoc software engineering design
processes following an approach based on the reuse of portions of existing design
processes, the so-called method fragments, stored in a repository called method
base.

Method fragment is the main concept in an SME approach and several different
definitions exist in the literature [1, 5, 9, 13]. All the SME approaches in the
literature are based on the assumption that a generic SME process is composed of
three main phases: method requirements engineering, method design, and method
construction [4]. During the method requirements engineering the method engineer
analyzes all the elements useful for identifying the right method fragments to
be retrieved from the repository. During method design and method construction
phases, the method fragments are, respectively, selected and modified, if necessary,
and then assembled in the new method(ology).

One need, raised by this type of approaches, is having fragments description or
documentation available in a way that aids a method engineer in easily choosing

1http://www.fipa.org/subgroups/DPDF-WG.html

http://www.fipa.org/subgroups/DPDF-WG.html

The IEEE-FIPA Standard on the Design Process Documentation Template 9

among a pertinent subset of fragments among existing ones in order to build a new
process. To date, several method fragments exist but they are not described in a
homogeneous fashion, thus severely affecting the selection and assembly. A unique,
versatile, and standard description and documentation of method fragments would
inevitably derive from a standard description of design processes.

The FIPA Design Process Documentation and Fragmentation Working Group has
three main goals:
– identifying the most suitable process metamodel and notation for representing

existing design processes and for representing fragments themselves.
– defining a proper template for the description of agent-oriented design processes.
– defining a proper template for the description of method fragment structure.

An important contribution to the first objective has been identified in the OMG
specification, the Software Process Engineering Metamodel 2.0 (SPEM) [11] that
meets the definition of design process the WG adopts and provides means for easily
representing the elements it is composed of. Roughly speaking, a design process
represents the work to be done by roles in order to deliver products. The work to
be done is supposed to be divided into three main levels: phases, activities, and
tasks. SPEM provides means for representing design processes using the following
elements: phase, activity, task, role, and work product. Moreover, in order to have
a complete set of concepts for representing design processes and above all because
of agent-oriented specific needs, some extensions were needed and were identified
in the work of Cossentino and Seidita [2, 12]. Here the notion of MAS metamodel,
MAS metamodel concepts, work product kind, and work product content diagram
have been introduced.

The IEEE-FIPA standard DPDT [6]—shown below—is the contribution to the
second objective of the WG. Indeed, it provides a standardized template that
allows the description of design processes. A standardized description is a good
feasible way to help method engineers in fragmenting existing design processes
and thus choosing pertinent fragments; it is also particularly relevant to researchers
and practitioners working on SME approaches. Even if this template addresses
the documentation of full processes—it is not intended to document portions of
processes—the definition of substantial fragments of a process is facilitated if
the whole process has been previously described in a standard way that makes
identification and definition of fragments easier. Hence, this phase is preparatory
and preliminary to the third WG objective.

The DPDT intends to solve the process description problem by proposing a
standard way to describe design processes in order to study and reuse them as they
are, or for fragmentation and extraction of method fragments. Even if the idea of
this specification was born in the context of multi-agent system design processes,
this template has been conceived without considering any particular process or
methodology, and this should guarantee that all processes can be documented using
the DPDT. Moreover, the DPDT is also neutral in regard to: (1) the MAS (or system)
metamodel and/or the modeling notation adopted in the process deliverables as well
as in describing the process itself; (2) the content of the process since it may (or not)
include activities such as testing, maintenance, and so on; (3) the process life cycle,

10 M. Cossentino et al.

Introduction

Phase 1

Process Roles

Role 1

Role 2

Activity Details

Decomposition of Task x of Activity 1

Work Products

Work Product 1

Work Product 2

Phase 2

Activity 1

Activity 2

Phases of the Process Work Product Dependencies

Process Documentation
Template

Lifecycle

Metamodel

Guidelines and Techniques

Definition of MAS metamodel elements

Fig. 1 The design process documentation template structure [6]

since waterfall, iterative-incremental, spiral, and many other kinds of life cycle are
fully supported.

The template has a simple structure resembling a tree (see Fig. 1). This implies
that the documentation is built in a natural and progressive way, initially addressing
the process general description and the metamodel definition, which constitute the
root elements of the process itself. After that, the process phases are described
as branches of the tree, and also thinner branches like activities or sub-activities
are documented. This means the template can support complex processes and very
different situations.

Finally, in the DPDT the notation used for modeling some aspects of the process
is not considered fundamental. Nevertheless, the use of standards is important.
In particular, as already said, the OMG’s standard Software Process Engineering
Metamodel 2.0 (SPEM) is suggested for modeling such parts of the template. In any
case, this does not mean that other standards cannot be used with the template as
far as the concepts implied and the underlying view of the system proposed by the
work product is reflected in the notation used.

To sum up, the goal of the DPDT is twofold: providing method designers with
templates describing design processes in a standard and homogeneous fashion thus
highlighting the main concepts they are composed of, supporting the fragmentation
process, and the choice of fragments.

In the rest of this chapter we first introduce some basic notions that are useful for
understanding the document structure (Sect. 2); then we describe the DPDT outline,
and how each part of the document has to be created (Sect. 3).

The IEEE-FIPA Standard on the Design Process Documentation Template 11

2 Documentation Template Basic Notions

Before going on with the description of the IEEE FIPA SC00097B specification it is
necessary to introduce the reader with some important notions related to the Multi-
agent Systems (MAS) metamodel (Sect. 2.1), the set of work product kind used to
detail the outcome (work product) of a specific portion of design process, and the
work product content diagram that gives the possibility to model all the concepts a
specific outcome is devoted to manage/produce (Sect. 2.2).

First of all it is worth noting the notion of design process on which the whole
WG’s work is based. According to Fuggetta [3], a design process is “the coherent
set of policies, organizational structures, technologies, procedures, and artifacts
that are needed to conceive, develop, deploy and maintain (evolve) a software
product”. In such a view, a design process includes components devoted to describe
the work—the set of activities and/or tasks—to be done for pursuing an objective,
hence delivering some kind of work products, and the stakeholder responsible for
doing this work.

The following subsections will introduce the multi-agent system metamodel,
some SPEM extensions adopted (better say suggested) to model the process, and
the design process documentation template structure suggested by specification
SC00097B.

2.1 The Multi-agent System Metamodel

Metamodeling is an essential foundation of Model Driven Engineering (MDE)
proposed by OMG2 where the language for describing metamodels is the Meta
Object Facility (MOF) [8,10] standard. Metamodeling consists in identifying a set of
concepts (or elements) to use for describing the properties of models. A model is an
instance of a metamodel and it is an abstraction of real world’s elements, phenom-
ena, etc. represented in the outcome of the design process phases/activities/tasks. In
plain terms, “metamodel is a model of models” that is composed of concepts and
relationships among them used for ruling the creation of models.

Some agent-oriented methodologists represent the metamodel of their own
methodology by separating the elements into three logical areas: the Problem
domain, the Agency domain, and the Solution domain.
The Problem domain includes concepts coming from the world where the multi-
agent system has to operate; here concepts like requirements, scenario, and so on
may be found.
The Agency domain collects concepts used to define an agent-based solution for the
class of problems the methodology is devoted to address; concepts like agent, role,
group, society and communication can be found.

2http://www.omg.org/index.htm

http://www.omg.org/index.htm

12 M. Cossentino et al.

The Solution domain is composed of concepts representing a well specific mapping
among agency domain concepts and the chosen implementation platform, hence the
code of the solution.

The metamodel of a methodology gives information about all the concepts that
the designer has to manage during his/her work and has to instantiate in, at least one
work product. Moreover, the metamodel relationships represent the intra and inter
work products dependencies among metamodel concepts, thus establishing logical
connections among different parts of a methodology (or of different methodologies).

2.2 The SPEM 2.0 Extensions

The SPEM 2.0 covers almost all the work essentials needed by this working group
for representing design processes. Only few extensions to SPEM 2.0 proved to be
necessary and were identified in [2, 12]; they extend the elements of the Process
with Method Package (see [11] for a detailed description of all the SPEM packages).
Some details about these extensions will be provided in the following paragraphs.

Work Product Kind
Different processes adopt different modeling styles, thus using different kinds of
work products in their flow of work. It is obviously very useful to clearly identify
whether a work product follows a specific notation and it points out the structural
or the behavioral aspects of the system; or whether it is “intangible” or does not
present a specific defined form or more if it aggregates different kinds of work
product. What is important to note is that the approach adopted by this working
group is hardly grounded on the hypothesis that a work product is something that is
produced, consumed or modified during the execution of a portion of work and that
each work product serves to model at least one metamodel concept. Moreover, for
each metamodel concept drawn in a work product, a set of possible design actions
may be identified, giving information about the kind of work to be done during a
specific portion of a design process.

The set of work product kinds used to detail the outcome of a specific portion of
process is:
• Behavioral, it is a graphical kind of work product and it is used to represent a

dynamic view of the system (for instance an UML sequence diagram representing
the flow of messages among agents along time).

• Structural, it is a graphical kind of work product too, and it is used for
representing a structural view of the system (for instance a UML class diagram).

• Structured, it is a text document ruled by a particular template or grammar, for
instance a table or a programming code document.

• Free, it is a document freely written in natural language.
• Composite, this work product can be made by composing the previous work

product kinds, for instance a diagram with a portion of text used for its
description.

The IEEE-FIPA Standard on the Design Process Documentation Template 13

Composite
WPKind

c

Behavioral
WPKind

Free
WPKind

a

Structural
WPKind

Structured
WPKind

Fig. 2 SPEM 2.0 extensions icons

To complete the presented SPEM 2.0 extensions, the icons shown in Fig. 2 were
created.

Work Product Content Diagram
For each work product of the methodology, the work product content diagram gives
an overview of the metamodel elements there reported; for each metamodel element
the actions to be done are also specified. This diagram is complementary to the
textual guidelines useful for drawing the work product.

Design actions that can be made on a metamodel element while composing a
work product are:
• Define: instantiating an element in the work product. This corresponds to create

a new model element. This modeling action is labelled with a D.
• Relate: instantiating a relationship between two metamodel elements.
• Quote: reporting an already defined metamodel element in the work product.

Sometimes a newly defined element in a work product has to be related
with a previously defined one, this latter element is therefore quoted and
related to the defined one. The same action may be done in the metamodel
relationships.

• Refine: this happens when an already defined element in the work product is
in some way refined. For instance, consider to have already defined the A
metamodel element, refining that might mean adding an attribute to it in its
representation in a class diagram.
Figure 3 shows an example of a work product content diagram; the adopted nota-

tion implies a package for representing the work product, a class for representing
the metamodel element, a label for representing the action made on the element and
lines for representing relationships among elements.

The work product content diagrams collect only the elements managed during a
portion of design work that are also reported in the work product. During the design
process enactment, there can be elements of the metamodel used for reasoning on
the output to be produced or used as an input for defining other elements; these
elements are not reported in the work product content diagram since they do not
appear in the work product.

The DPDT standard does not prescribe the description of one work product
content diagram for each activity of the methodology but a unique work product
content diagram per phase.

14 M. Cossentino et al.

Work Product Name

Element 3

Element 2

D

D

R

Element

Element 8

Q

Element 7

Q

Element 9

Q

Element 4

Q

Element 5

D/QElement 1

D

R

R

R

c

R R R

R
Keys

MAS
Metamodel

Element

Composite
WPKind

c

D=Define,
R=Relate,
Q=Quote,
QR=Quote Relationship

Fig. 3 An example of a work product content diagram

Further refinements and discussions about the notion of metamodel, design
actions, and work product content diagram can be found in [2].

3 The Design Process Documentation Template Structure

As it can be seen in Fig. 1 the description of a design process by using this IEEE
FIPA standard goes through three main sections: the introduction (see Sect. 3.1), the
phases of the process (see Sect. 3.2) and the work products dependency section (see
Sect. 3.3). As already said, the work to be done in the process is supposed to be
divided into three main levels: phases, activities, and tasks. Phases are composed of
activities, which in turn are composed of other activities or tasks. In addition, from
a work product point of view, phases are supposed to deliver a major artefact (for
instance a requirement analysis document or a detailed design document). Activities
are supposed to produce finer grained artifacts (like a diagram often complemented
by a text description of the elements reported within it). Tasks are supposed to
concur to the definition of activity-level artifacts. The first and the second section of
the template contain several subsections, each one structured according to a specific
format:

Goal: describing the goal addressed in this part of the documentation. Examples
of goals include the documentation of the general philosophy that is behind a
design process or the description of the involved stakeholders.

Structure: describing what is to be reported in this part of the process document-
ation. This may include diagrams as well as the textual description of specific
process elements.

The IEEE-FIPA Standard on the Design Process Documentation Template 15

Guidelines: describing best practices suggested for a good application of the pro-
cess documentation template or techniques about how to perform the prescribed
work.

Example: addressing an example of outcome produced by the process.

3.1 The Introduction Section

The DPDT Introduction section aims at introducing the philosophy, basic ideas,
scope, and limits of the process. It is composed of three subsections:
• Global process overview (Life cycle): the aim of this subsection is to organize the

process phases according to the selected life cycle (or process model) in order to
provide a bird-eye view of the whole process at the highest level of details.

• Metamodel: the aim of this subsection is to provide a complete description of
the MAS metamodel adopted in the process with the definition of its composing
elements.

• Guidelines and techniques: the goal of this subsection is to provide some
guidelines on how to apply the process or to clarify techniques to be used in
process enactment whose validity spreads throughout the whole process.
It is very important that the Introduction gives an overview of the methodology

from the creators point of view in order to maintain a feeling with the original
methodology, thus possibly including original figures, reference materials, and
documents.

3.2 The Phases of the Process Section

The Phases of the Process section aims at pointing out the process view of the
methodology by describing, in a top-down fashion, the activities and comprised
tasks each phase is composed of. Moreover, for each phase the list of the involved
process roles with the related responsibilities and the list of work products is
given.

One different section should be devoted to the discussion of each phase. Indeed,
each phase should be studied from a process-oriented point of view: workflow, work
products, and process roles are the center of the discussion. The workflow is detailed
by means of activities and one subsection for each activity is devoted to describe
activities/tasks composing that. The description includes a SPEM activity diagram
reporting involved roles (as swim lanes). Further details about each activity can be
provided in additional sections. In particular, the subsection discussing each phase
should:
• introduce the phase workflow by using a SPEM activity diagram. It reports

activities that compose the phase, and it includes a quick description of work
products and roles.

• introduce a SPEM diagram reporting the structural decomposition of the activit-
ies in terms of the involved elements: tasks, roles, and work products.

16 M. Cossentino et al.

The subsection describing each activity should include details about tasks and
sub-activities that may be illustrated by a stereotyped UML Activity Diagram.
This kind of diagram explains the execution of complicated Tasks by denoting
the possible sequences of Steps, which are identified by the «steps» stereotype.
Moreover, each diagram is discussed in a separated paragraph that explains the
illustrated steps and their relations. Finally a table is required for summarizing:
• Activity name
• Tasks/Sub-activity
• Task/Sub-activity description
• Roles involved

As regards the subsection for the description of work products, it has a twofold
aim: (1) detailing the information content of each work product by representing
which MAS metamodel elements are reported in it and which design actions are
performed on them through one work product content diagram for each phase;
(2) describing the notation adopted by the process in the specific work product,
also using an example to show it.

Moreover, a table is used to further detail each work product through three
columns:
• name of the work product
• description of the content
• classification of the work product according to the already cited paper (categor-

ies: Free/Structured Text, Behavioral, Structural, and Composite)

3.3 The Work Products Dependencies Section

The goal of this section is highlighting the dependencies among all the work
products produced during the enactment of the design process. Dependencies among
work products reflect the dependencies among the portions of work delivering them.
Indeed, if the information presented in one work product is used for producing
another one, then the two portions of work are obviously related to each other. Work
Products Dependencies are represented by a classic diagram (specified by SPEM)
called Work Product Dependencies diagram.

This diagram can prove to be very important for different reasons, for instance for
project managers who have to reschedule project activities according to new needs
occurring at design time or for designers who want to keep track of changes in the
development process and in the system model documents. For the sake of Situational
Method Engineering approaches and for the objectives of this working group the
Work Product Dependencies diagram helps the method engineer in identifying
dependencies among the fragments that he/she might extract from a design process
and above all in identifying the set of MAS metamodel elements each fragment
needs.

In fact, it is to be noted that according to the importance that is paid to the MAS
metamodel in the Agent-Oriented Software Engineering (AOSE) field, the real input
of each portion of a process is a subset of model elements (instances of the MAS
metamodel) that constitute the portion of design reported in the input documents.

The IEEE-FIPA Standard on the Design Process Documentation Template 17

References

1. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38(4), 275–280 (1996)

2. Cossentino, M., Seidita, V.: Metamodeling: representing and modeling system knowledge in
design processes. In: Proceedings of the 10th European Workshop on Multi-agent Systems,
EUMAS 2012, pp. 103–117, 17–19 December 2012

3. Fuggetta, A.: Software process: a roadmap. In: Proceedings of the Conference on the Future of
Software Engineering, Limerick, Ireland, 4–11 June 2000, pp. 25–34. ACM Press, New York
(2000)

4. Gupta, D., Prakash, N.: Engineering methods from method requirements specifications. Requir.
Eng. 6(3), 135–160 (2001)

5. Henderson-Sellers, B.: Method engineering: theory and practice. In: Karagiannis, D., Mayr,
H.C. (eds.) Information Systems Technology and its Applications. 5th International Conference
ISTA’2006, 30–31 May 2006, Klagenfurt. LNI, vol. 84, pp. 13–23. GI (2006)

6. IEEE-FIPA. Design Process Documentation Template. http://fipa.org/specs/fipa
00097/SC00097B.pdf, January 2012

7. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific meth-
odology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Challenges and Strategies for
Research in Systems Development, pp. 257–269. Wiley, New York (1992)

8. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Technical Report omg/2003-06-01, Object
Management Group (2003)

9. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requir. Eng. 11(1), 58–78 (2006)

10. MOF. OMG meta object facility home page. http://www.omg.org/technology/documents/
formal/mof.htm

11. Object Management Group. Software & Systems Process Engineering Meta-model Specifica-
tion 2.0. http://www.omg.org/spec/SPEM/2.0/PDF, April 2008

12. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the spem specifications to
represent agent oriented methodologies. In: Luck, M., Gomez-Sanz, J.J. (eds.) Agent-Oriented
Software Engineering IX, pp. 46–59. Springer, Berlin (2009)

13. Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam, A., Gaglio, S.: The
metamodel: a starting point for design processes construction. Int. J. Softw. Eng. Knowl. Eng.
20(4), 575–608 (2010)

14. Slooten, K., Brinkkemper, S.: A method engineering approach to information systems
development. In: Proceedings of the IFIP WG8.1 Working Conference on Information System
Development Process, pp. 167–186. North-Holland Publishing, Como (1993)

15. ter Hofstede, A.H.M., Verhoef, T.F.: On the feasibility of situational method engineering. Inf.
Syst. 22(6/7), 401–422 (1997)

http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

ADELFE 2.0

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel, and F. Migeon

Abstract
ADELFE is a French acronym that means “Toolkit for Designing Software
with Emergent Functionalities” (“Atelier de DEveloppement de Logiciels à
Fonctionnalité Emergente” in French). ADELFE methodology is dedicated to
applications characterized by openness and the need of the system adaptation
to an environment. Its main goal is to help and guide any designer during
the development of an Adaptive Multi-agent System (AMAS). An AMAS is
characterized by the following points: it is plunged into an environment and
composed of interdependent agents, each agent carries out a partial function and
the agents, organization during runtime makes the system realize an emergent
function. Actually, an agent is locally cooperative, i.e. it is able to recognize
cooperation failures called Non-cooperative Situations (NCS, which could be
related to exceptions in classical programs) and treat them.

ADELFE includes five Work Definitions that were initially inspired from
the Rational Unified Process (RUP) and gathers 21 activities, producing or
refining 12 work products. These products are aggregating modelling diagrams
or structured or free text. ADELFE, which is a Model-Driven (model-centred)
development method, is not hardly dependent on Domain Specific Modelling
Languages (DSML) but currently the recommendation is to use UML2 for
general activities and to use AMASML (AMAS Modelling Language) and
SpeADL (Species-based Modelling Language) for specific activities appearing
in Analysis, Design or Implementation phases.

N. Bonjean (�) • W. Mefteh • M.P. Gleizes • C. Maurel • F. Migeon
Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
e-mail: bonjean@irit.fr

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__3,
© Springer-Verlag Berlin Heidelberg 2014

19

mailto:bonjean@irit.fr

20 N. Bonjean et al.

1 Introduction

ADELFE is a French acronym that means “Toolkit for Designing Software with
Emergent Functionalities” (“Atelier de DEveloppement de Logiciels à Fonction-
nalité Emergente” in French). The main goal of ADELFE is to help and guide
any designer during the development of an Adaptive Multi-agent System (AMAS).
Adaptive software is used in situations in which the requirements are incompletely
expressed, the environment is unpredictable or the system is open. In these cases,
designers cannot implement a global control on the system and cannot list all
situations that the system encounters. In these situations, ADELFE guarantees
that the software is developed according to the AMAS theory. This theory, based
on self-organizing multi-agent systems, enables one to build systems in which
agents only pursue a local goal while trying to keep cooperative relations with
their neighbouring agents. An AMAS is characterized by the following points: it
is plunged into an environment and composed of interdependent agents, each agent
carries out a partial function and the agents organization during runtime makes the
system realize an emergent function.

In the following, the ADELFE process is described by initially considering its
whole process and then its five phases, which gather 21 activities, producing or
refining 12 work products.

Since 2003, ADELFE has been used in many academic and industrial projects,
for a total of more than 20 AMASs produced. Recently, ADELFE has been slightly
modified in order to integrate last research results on Multi-agent Oriented Software
Engineering and practical usages related by the industrial ADELFE partners. This
chapter presents this up-to-date version of the method.

As it can be seen in the following sections, ADELFE is composed of several
activities dedicated to Adaptive Multi-agent Systems. Considering this, it contains
junction activities where the designer has to control if their problem requires an
MAS solution or, even more, an AMAS solution. In the negative case, the design
should be continued with a traditional process or a process dedicated to the problem
characteristics. This documentation does not describe such activities and focuses
only on the process parts dedicated to AMAS development.

Finally, it is important to notice that ADELFE is a Model-Driven (model-centred)
Development method which is still in progress. Works on fragmentation, simulation,
formal methods and AMAS patterns are feeding the method every year in order
to improve the development of complex systems based on the AMAS. As the
maturity of these topics is not sufficient to be included in this chapter, we left their
presentation in research papers.
The following are the relevant references for the ADELFE process and the ADELFE
extensions:
• Bernon, C.; Gleizes, M.-P.; Peyruqueou, S.; Picard, G.; ADELFE, a Methodology

for Adaptive Multi-Agent Systems Engineering International Workshop on
Engineering Societies in the Agents World (ESAW), Madrid, Spain, 16/09/2003–
17/09/2003, Springer-Verlag, 2003, 156–169

ADELFE 2.0 21

• Bernon, C.; Camps, V.; Gleizes, M.-P.; Picard, G. Designing Agents’ Behaviours
within the Framework of ADELFE Methodology International Workshop on
Engineering Societies in the Agents World (ESAW), Imperial College London,
29/10/2003–31/10/2003, Springer-Verlag, 2003, 311–327

• Rougemaille, S.; Arcangeli, J.-P.; Gleizes, M.-P.; Migeon, F. ADELFE Design,
AMAS-ML in Action International Workshop on Engineering Societies in the
Agents World (ESAW), Saint-Etienne, 24/09/2008–26/09/2008,Springer-Verlag,
2008

• Bernon, C.; Gleizes, M.-P.; Picard, G., Enhancing Self-Organising Emergent Sys-
tems Design with Simulation International Workshop on Engineering Societies
in the Agents World (ESAW), Dublin, 06/09/2006–08/09/2006, Springer-Verlag,
2007, 4457, 284–299

• Lemouzy, S.; Bernon, C.; Gleizes, M.-P. Living Design: Simulation for Self-
Designing Agents European Workshop on Multi-Agent Systems (EUMAS),
Hammamet, 13/12/07–14/12/07, Ecole Nationale des Sciences de l’Informatique
(ENSI, Tunisie), 2007

• Mefteh, W.; Migeon, F.; Gleizes, M.-P.; Gargouri, F. Simulation Based Design
International Conference on Information Technology and e-Services, Sousse,
Tunisie, 2012

• Bonjean, N.; Gleizes, M.-P.; Maurel, C.; Migeon, F., Forward Self-Combined
Method Fragments. Workshop on Agent Oriented Software Engineering (AOSE
2012), Valencia, Spain, 04/06/2012–08/06/2012, Jorg Muller, Massimo Cos-
sentino (Eds.), IFAAMAS, p. 65–74, June 2012

1.1 The ADELFE Process Life Cycle

ADELFE includes five Work Definitions (WD1–5) (see Fig. 1):
• Preliminary Requirements (WD1): This phase represents a consensus description

of specifications between customers, users and designers on what must be and
what must give the system its limitations and constraints.

• Final Requirements (WD2): In this work definition, the system achieved with
the preliminary requirements is transformed into a use cases model, and the
requirements (functional or not) and their priorities are organized and managed.

• Analysis (WD3): The analysis begins with a study or analysis of the domain.
Then, identification and definition of agents are processed. The Analysis Phase
defines an understanding view of the system, its structure in terms of components,
and identifies if the AMAS theory is required.

• Design (WD4): This phase details the system architecture in terms of modules,
subsystems, objects and agents. These activities are important from a multi-
agent point of view in that a recursive characterization of a multi-agent system is
achieved at this point.

• Implementation (WD5): Implementation of the framework and agent behaviours
is produced in this work definition.

22 N. Bonjean et al.

Fig. 1 The ADELFE process phases

It is important to notice that ADELFE is not a simple waterfall process but
includes loops and increments that are not depicted in the graphical representation
shown in Fig. 1. For example, at the end of each phase, a validation step is executed,
which requires a possible transition towards an activity previously passed.

Each phase produces at least one document that is aggregated from modelling
diagrams or from structured or free text. ADELFE is not hardly dependent on
Domain Specific Modelling Languages (DSML) but currently the recommendation
is to use UML2 for general activities and to use AMAS Modelling Language
(AMASML) and Species-bAsed moDelling Language (SpeADL) for specific activ-
ities appearing in Analysis, Design or Implementation phases.1

1.2 The ADELFE MAS Metamodel

1.2.1 Definition of MAS Metamodel Elements
The ADELFE method is composed of various tools based on model-driven develop-
ment. To support model transformation and DSML editors an ADELFE metamodel
has been defined. However, this metamodel is too much based on natural language
(precise and complex) to support a designer guidance.

The ADELFE MMM is organized according to the five phases comprising the
process. We give in the following a short description of the main elements of
this metamodel that is presented in five diagrams to simplify the layout and the
discussion.

The Preliminary Requirements Phase (see Fig. 2) focuses on acquiring inform-
ation about the client and their needs. Therefore, a consensual description of the
problem is made in terms of functional and non-functional requirements, keywords,
limits and constraints of the system. A business model with business concepts and
business activities is defined to complement the documentation.

In the Final Requirements Phase (see Fig. 3), the objective is to validate the
requirements and to detail the need through a description of the actors, a use
case model and scenarios. The end of the phase is dedicated to the characterization
of the system environment and the identification of cooperation failures among the
system interactions. This leads to a conclusion on the MAS adequacy to treat the
problem of the client.

1See the SMAC Team website (http://www.irit.fr/-Equipe-SMAC) for more information on
DSML.

http://www.irit.fr/-Equipe-SMAC

ADELFE 2.0 23

Fig. 2 The preliminary requirements phase MAS metamodel

Fig. 3 The final requirements phase MAS metamodel

Fig. 4 The analysis phase MAS metamodel

During the Analysis Phase (see Fig. 4), the entities are characterized as passive
or active and their interactions are described. The work product obtained enables
an AMAS analyst to conclude on the adequacy (or not) of the AMAS to deal
with the problem. If the result is positive, all the interactions between the entities
are described and cooperation failures are identified. From this information, agents
(according to the definition of agent in ADELFE, see Sect. 2.3) are identified and
local AMAS adequacy is studied to conclude the phase.

The heaviest phase of ADELFE is the Design Phase (see Fig. 5) which consists
in defining the multi-agent oriented architecture of the solution. It starts with the

24 N. Bonjean et al.

Fig. 5 The design phase MAS metamodel

definition of a module view. Then, all the communication acts are defined in order
to define precisely the entity interactions and agent interactions that will be useful to
complete the module view and to define a component-connector view of the agents
with their neighbourhood (agents, active and passive entities). The definition of
the structure and behaviour of the agents is made in two steps which lead to the
definition of the knowledge module, the action module, the perception module and
the decision module. These two steps concern respectively the nominal behaviour of
the agent, which enables the agent to reach its goal, and the cooperative behaviour
which enables the agent to self-adapt to abnormal situations. Finally, a prototype is
defined to validate the result.

Currently the last phase of ADELFE, the Implementation Phase (see Fig. 6),
focuses on the definition of the component-oriented architecture that will support
the design. It is mainly composed of automated activities for model or code
generation. However, in this document, we deliberately describe the process as
manual operations in order to give more details on the activities and in order to
simplify the metamodel. The implementation of an AMAS is not dependent on
any MAS platform. On the contrary, it is recommended to produce a dedicated
framework in order to gain in software quality. Actually, this framework is defined
in terms of components (with provided and required ports, composite components,

ADELFE 2.0 25

Fig. 6 The implementation phase MAS metamodel

assembling) which are specified and implemented. First, the implementation focuses
on the components defining entities, action and perception modules. Finally,
decision module is implemented with standard behaviour rules and cooperative
behaviour rules.
Like in every process, unit testing, integration testing and functional testing are
taken into account but not described here.

1.2.2 Definition of MAS Metamodel Elements
The table below gives a set of concepts definitions related to AMAS theory and
ADELFE method. It covers the entire MAS metamodel used during Requirements,
Analysis and Design.

Concept Definition Referred
Concepts

Domain

(Software) System A (software) system is the term
describing the software to be
produced, the application to be
designed. Anything outside the system
is called system environment.

System
Environment

Requirements

System
Environment

It is the entire environment into which
the software system is plunged and
which is not under design. In UML,
the term Actor (primary or secondary)
is often used to characterize the
environment. Of course, the frontier
between environment and software
system will use software entities that
will deal with the interactions between
environment and system.

Software
System

Requirements

(continued)

26 N. Bonjean et al.

Concept Definition Referred
Concepts

Domain

MAS Environment The MAS environment is composed of
all software elements that surround the
MAS and which are not agents.
The elements of the environment are
called MAS entities (active or passive)
and all have at minimum an
interaction that is defined by means of
sensors or effectors.

Passive
Entity, Active
Entity

Analysis

Agent Environment The environment of an agent is the
union of its neighbourhoods during its
life. It represents all the knowledge it
has on other agents and on the MAS
environment.

Agent Neigh-
bourhood,
Agent

Analysis

Agent
Neighbourhood

The neighbourhood of an agent is a
part of the agent’s environment at a
particular time.

Agent
Environment,
Agent

Analysis

Multi-Agent
System (MAS)

An MAS is the set of elements, called
agents, which are not part of the
environment. In an MAS, no agent can
be isolated, that is to say without any
link with another system component.
Therefore, it can be considered as the
set of agents that communicate
(directly or via the environment) to
achieve a common goal.

Goal, Agent Analysis

Goal The goal is an objective set by the
designer to an agent or to the entire
system.

Agent,
(Software)
System

Analysis

Passive Entity In the MAS environment, passive
entities are related to resources or to
data. This implies that they have no
autonomy and that a state transition
can only be the result of an interaction
with another system component.
Moreover, a passive entity is unable to
send or receive messages.

MAS
Environment

Analysis

Active Entity Unlike a passive entity, an active
entity is given behavioural autonomy,
allowing it to change state without
necessarily interacting with another
entity. An active entity can send
messages, possibly proactively, and
receive messages.

Passive Entity Analysis

(Cooperative)
Agent

In ADELFE, an element of an MAS
(i.e. an element that is not part of the
MAS environment) is an agent. This
agent is characterized by a cooperative
attitude.

MAS,
Cooperative
Attitude

Analysis

(continued)

ADELFE 2.0 27

Concept Definition Referred
Concepts

Domain

Cooperation It is a behavioural principle for an
entity that avoids being placed in a
situation of misunderstanding,
ambiguity, incompetence,
unproductiveness, conflict, concurrence
or uselessness. This principle is applied
to agents designed with ADELFE, but
can also describe the behaviour of the
software system as a whole.
The definition of cooperation goes
beyond the simple sharing of resources
or collaboration. This cooperation
includes all behaviours that allow the
agent to prevent and to resolve conflicts
that occur during system execution.

Agent,
Software
System

Analysis

Cooperative
Attitude

An agent has a cooperative attitude
when its activity tends to give priority
to anticipate and solve all the
Non-cooperative Situations (NCS) it
might encounter with its environment.
This implies the following properties:
(i) Sincerity: If an agent knows a
proposition p is true, it cannot say
anything different to others.
(ii) Compassion: An agent temporarily
leaves its individual goal to help
another agent in greater difficulty
(temporary change of goal).
(iii) Reciprocity: An agent knows that it
has a cooperative attitude, like all other
agents have.

Cooperative
Attitude,
Non-
cooperative
Situations,
Agent
Environment,
Agent

Analysis

Communication
Acts

A communication act is a mean
implemented by an agent to interact
with an agent and/or its environment.
A speech act (e.g. FIPA ACL) is a
communication act.

Agent, Agent
Environment

Analysis

Behaviour The behaviour of an agent is a life
cycle consisting of the sequence:
(i) perception of the environment
(including communication aspects),
(ii) decision that allows it to identify
the state in which it lies and actions to
be performed, (iii) execution of decided
actions. The life cycle starts when the
agent is created and completes when
the agent dies. Agent behaviour can be
represented as an automaton whose
states are the situations that the agent
can identify and transitions are actions
it decides to execute.

Agent
Environment,
Agent

Design

(continued)

28 N. Bonjean et al.

Concept Definition Referred
Concepts

Domain

Nominal Behaviour The nominal behaviour is the part of
the behaviour which enables the agent
to reach its goal when it is
in cooperative situation.

Goal, Agent,
Behaviour

Design

Cooperative
Behaviour

The cooperative behaviour of an agent
enables it to detect the set of states
identifying NCS and to describe the
repairing actions to return to a
cooperative situation or anticipatory
attempt to avoid NCSs. In addition, an
agent tries to help the most critical
agent in its neighbourhood. In certain
conditions, it spontaneously
communicates information to agents
that it thinks the information will be
useful. Such a cooperative behaviour
can be divided into three distinct steps:
(i) tuning which consists in the
modification of parameter values for
parameters that influence the
behaviour of the agent;
(ii) reorganization which consists in
the modification of the acquaintances
of the agent that will lead to the
reorganization of the system to make
the resulting global function proper;
(iii) evolution which consists in
creation or suicide of agents.

Goal, Agent,
Behaviour,
NCS

Design

Criticality For an agent, criticality represents the
degree of non-satisfaction of its own
goal. It enables an agent to determine
the relative difficulty of agents in its
neighbourhood. Evaluation methods
and calculation of the criticality are
specific to each type of agent.

Goal, Agent,
Neighbour-
hood

Design

Behaviour
Confidence

The behaviour confidence of an agent
is an internal measure that provides
information on the reliability of the
decision on actions intended.

Agent,
Behaviour

Design

Skills The skills of an agent are capabilities
in a domain that enables an agent to
perform actions to achieve its goal.

Agent, Goal Design

Characteristics A characteristic is an intrinsic property
of the agent. It can be visible or not
and it can be modified by the agent or
other agents.

Agent Design

Aptitudes The aptitudes of an agent are generic
capabilities which are independent of
its competence domain.

Agent Design

(continued)

ADELFE 2.0 29

Concept Definition Referred
Concepts

Domain

Representations Representations of an agent are the
image that the agent has of its
environment and itself, that is to say
all of its perceptions and beliefs. They
can be updated by means of its
perceptions.

Agent,
Agent
Environment

Design

Interaction
Language

The interaction language is a set of
tools required by the agent to
communicate with other agents.
This communication can be done
through messages (direct) or via the
environment (indirect
communication).

Agent Design

1.3 Guidelines and Techniques

ADELFE is based on object-oriented methodology, inspired from the Rational
Unified Process (RUP). Some steps have been added in the classical workflow fitting
with the adaptive MAS.
ADELFE is based on UML2 notation with the complementary use of DSML
AMASML (AMAS Modelling Language) and SpeADL (Species-based Architec-
ture Description Language), a design methodology, several model-driven tools and
a library of components that can be used to facilitate the application development.
Guidance of the development process is supported by AdelfeToolkit (Fig. 7a).
The general idea is to help the designer to follow the process, with descriptions,
examples and presents a summary of works and artifacts already performed and
those remaining.
As mentioned in A11 and A13 activities of the ADELFE process, the analyst must
verify whether the problem needs the AMAS or not. For this, a tool (Fig. 7b) is
provided to answer the questions at the macro-level (eight criteria) and the micro-
level (three criteria). Answers to questions are graded from 0 to 20.

2 Phases of the ADELFE Process

ADELFE defines its five phases from the RUP definition. They are respectively
dedicated to Preliminary Requirements, Final Requirements, Analysis, Design and
Implementation.

2.1 Preliminary Requirements Phase (WD1)

The Preliminary Requirements Phase involves traditional software development
stakeholders which are assigned classical activities. The goal of this phase is to

30 N. Bonjean et al.

Fig. 7 Tool for monitoring the ADELFE process: AdelfeToolkit (a); tool for AMAS adequacy (b)

obtain a precise and consensual description of the problem as well as the client’s
business. No specific modelling language is used. The process flow at the level of
activities is depicted in Fig. 8, and Fig. 9 depicts this phase according to documents,
roles and work products involved.

2.1.1 Process Roles
Four roles are involved in the Preliminary Requirements Phase: the End-user, the
Client, the Software analyst and the Business analyst.
• End-User: The end-user is responsible for the list of functional and non-

functional requirements during the Define Users Requirements activity. These
requirements are used to define the system and its environment.

• Client: The main role of a client is to validate product documents drawn up by
other experts. The client is responsible for approving the set of requirements
during the Define Users Requirements activity and during the Define Consensual
Requirements activity.

• Software Analyst: Actually the software analyst gives a definition for the main
concepts used to describe the system and its environment. He/she is responsible
for: consensual requirements list during the Define Consensual Requirements
activity, keywords during the Establish Keywords activity and limits and con-
straints of the system during the Extract Limits and Constraints activity.

• Business Analyst: A business analyst is responsible for the business model during
the Determine Business Model activity. He/she defines the business concept and
the relationships between them. He/she also describes formally what are the
business activities involved, what are the products provided or required and who
are the persons responsible for these activities.

ADELFE 2.0 31

Fig. 8 The preliminary requirements phase flow of activities

Fig. 9 The preliminary requirements phase described in terms of activities and work products

2.1.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 8 and detailed in the
following.

A01: Define Users Requirements
This first activity concerns the description of the system and the environment in
which it will be deployed. This activity consists in defining what to build or what
is the most appropriate system for end-users. End-users and clients have to list,
check and approve the requirements. The context in which the system will be
deployed must be understood. The functional and non-functional requirements must
be established. The flow of tasks inside this activity is depicted in Fig. 10, and the
tasks are detailed in the following table.

32 N. Bonjean et al.

Fig. 10 Flow of tasks of the Define Users Requirements activity

Fig. 11 Flow of tasks of the Define Consensual Requirements activity

A01: Define Users Requirements
Tasks Task Descriptions Roles Involved

S1: define users’
requirements

End-users list the functional and non-functional
requirements.

End-users

S2: validate users’
requirements

The client has to check and approve the set of
requirements. If this document is not validated,
the requirements have to be improved; the
previous step is repeated again.

Client

A02: Define Consensual Requirements
This activity consists in defining what conditions or capabilities the system has
to conform. The consensual requirements set is defined by the software analyst.
The flow of tasks inside this activity is depicted in Fig. 11, and the tasks are detailed
in the following table.

A02: Define Consensual Requirements
Tasks Tasks Descriptions Roles Involved

S1: define consensual
requirements

The software analyst defines the requirements
set with the consensual requirements.

Software Analyst

S2: validate consensual
requirements

If there is no agreement on the Requirements Set
document, a backtrack must be performed to
study again the previous step.

Client

ADELFE 2.0 33

Fig. 12 Flow of tasks of the Determine Business Model activity

Fig. 13 Flow of tasks of the Establish Keywords activity

A03: Determine Business Model
This activity provides an overview of the problem, the related concepts and the
activities linked to it. The flow of tasks inside this activity is depicted in Fig. 12, and
the tasks are detailed in the following table.

A03: Determine Business Model
Tasks Tasks Descriptions Roles Involved

S1: determine
business concepts

This step enables one to understand the static and
dynamic structure of the system.

Business Analyst

S2: determine
business process

In this step, the sequence of actors’ actions that
achieve the goal of the system is determined.

Business Analyst

A04: Establish Keywords
The main concepts used to describe the application and its business model are listed.
This activity, carried out by the software analyst, is composed of one task giving the
definition of each keyword. These definitions will be stored in the glossary. The flow
of this activity is depicted in Fig. 13.

A05: Extract Limits and Constraints
In this activity, the limits and constraints of the system are defined by a software
analyst. They can be found in the expression of non-functional requirements and in
the definition of the context in which the system will be deployed. This information

34 N. Bonjean et al.

Fig. 14 Flow of tasks of the Extract Limits and Constraints activity

will be defined mainly from the consensual requirements set documents. The flow
of this activity is depicted in Fig. 14.

2.1.3 Work Products
The Preliminary Requirements Phase generates five work products (text document
including textual description and/or diagrams). Their relationships with the MAS
metamodel elements are depicted in Fig. 15.

Work Products Kind

Name Description Work Product Kind

Users Requirements Set Textual description of the
functional and non-functional
requirements

Free Text

Consensual
Requirements Set

Textual description composed of
consensual requirements

Free Text

Business Model A document composed of:
1) a diagram modelling the
domain-specific data structure; 2) a
diagram showing the workflow of
activities performed by the business
actors

Composite (Structural
and Behavioural)

Glossary A glossary of terms Free Text
Constraints Set Textual description composed of

the limits and constraints of the
system

Free Text

Example: Conference Management Study
The description of the system has already been provided in the introductory chapter.
As the requirements are common to all methods and because ADELFE is not
really dedicated to preliminary requirements, only the business model is shown in
this phase. Figure 16 shows the business concepts and Fig. 17 shows the business
process.

ADELFE 2.0 35

Fig. 15 The preliminary requirements documents structure

Fig. 16 Business concepts

2.2 Final Requirements Phase (WD2)

The Final Requirements Phase is a classical requirement-oriented phase where the
Business Analyst gives a detailed description of the system environment. It also
embeds MAS-oriented tasks. The analysis, done by an MAS specialist, must add
sufficient details to the description of the system environment in order to conclude

36 N. Bonjean et al.

Fig. 17 Business process

Fig. 18 The final requirements phase flow of activities

if an MAS approach is needed to solve the problem with gains. The process flow at
the level of activities is depicted in Fig. 18, and Fig. 19 depicts this phase according
to documents, roles and work products involved.

ADELFE 2.0 37

Fig. 19 The preliminary requirements phase described in terms of activities and work products

2.2.1 Process Roles
Four roles are involved in the Final Requirements Phase: the Business Process
Analyst, the Client, the MAS Analyst and the Ergonomist.
• Business Process Analyst: A business process analyst is responsible for use cases

identification during the Determine Use Case activity, drawing diagrams that
represent the interactions between actors and the system.

• Client: The main role of a client is to validate product documents drawn up by
other experts. He/she is responsible for approving the use cases defined during the
Determine Use Case activity. Besides, the client agrees the UI prototype during
the Elaborate UI Prototype activity.

• MAS Analyst: An MAS analyst is responsible for verifying the MAS adequacy
during the Verify MAS Adequacy activity. It consists in (1) the characterization
of the system environment according to Russel and Norvig definition, (2)
the identification of the possible “bad” interactions between the actors and
the system, and (3) the analysis of the previous results to justify the MAS use.

• Ergonomist: An ergonomist is responsible for graphic user interfaces prototype
during the Elaborate UI Prototype activity. He/she understands the interactions
among humans and the system, and designs a prototype which optimizes human
well-being and overall system performance.

38 N. Bonjean et al.

Fig. 20 Flow of tasks of the Characterize System Environment activity

2.2.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 18 and is detailed in the
following.

A06: Characterize System Environment
The main objective of this activity is to define the system environment in the
system environment description document. This activity enables one to identify
and to describe briefly actors interacting with the system. The possible encountered
constraints are also explained. The flow of tasks inside this activity is depicted in
Fig. 20.

A07: Determine Use Cases
The main objective of this activity is to clarify the different functionalities that the
studied system must provide. The flow of tasks inside this activity is depicted in
Fig. 21, and the tasks are detailed in the following table.

A07: Determine Use Cases
Tasks Tasks Descriptions Roles Involved

S1: take inventory of
use cases

A set of steps defining interactions between an
actor and a system are listed.

Business Process
Analyst

S2: draw system
scenario diagrams

This step explicates the system behaviour from
users’ point of view. The interactions between
the actors and the system are drawn.

Business Process
Analyst

S3: validate use cases Approval of the System Environment
Description document by the client. If the use
cases have to be improved, the two previous
steps have to be repeated again.

Client

A08: Verify MAS Adequacy
In this activity, one must verify that a Multi-agent System (MAS) approach is
needed to realize the system to be built. The question to answer is “Is a traditional
(Object-Oriented) approach sufficient to solve the problem or has the problem some
characteristics which implies an MAS approach for the solving?”. The flow of

ADELFE 2.0 39

Fig. 21 Flow of tasks of the Determine Use Cases activity

Fig. 22 Flow of tasks of the Verify MAS Adequacy activity

tasks inside this activity is depicted in Fig. 22, and the tasks are detailed in the
following table.

A08: Verify MAS Adequacy
Tasks Tasks Descriptions Roles Involved

S1: qualify system
environment

During this step, the MAS analyst characterizes
the system environment according to the Russel
and Norvig definition.

MAS Analyst

S2: identify cooperation
failures actors-system

The aim of this step is to show the inadequate
interactions that may occur between the actors
and the system.

MAS Analyst

S3: verify MAS
adequacy

This step verifies the MAS adequacy by
analysing the results obtained during the two
previous steps.

MAS Analyst

A09: Elaborate UI Prototypes
The GUIs described in the UI Prototype document have to be defined, judged and
validated from functional or non-functional (ergonomic, design, etc.) points of view.
The flow of tasks inside this activity is depicted in Fig. 23, and the tasks are detailed
in the following table.

40 N. Bonjean et al.

Fig. 23 Flow of tasks of the Elaborate UI Prototypes activity

A09: Elaborate UI Prototypes
Tasks Tasks Descriptions Roles Involved

S1: specify UI
prototypes

In this step, the interfaces supplying all needed
functionalities are specified.

Ergonomist

S2: validate UI
prototypes

The UIs are used and assessed from functional
and non-functional points of view.

Client

2.2.3 Work Products
The Final Requirements Phase generates four work products (text document
including textual description and/or diagrams). Their relationships with the MAS
meta-model elements are depicted in Fig. 24.

Work Products Kind

Name Description Work Product Kind

System
Environment
Structure

A textual description describing the actors which
interact with the system and the possible
constraints. Moreover, this document contains a
brief text of actors description.

Free Text

System
Environment
Behaviour

A document composed of: 1) a use case diagram
representing actors and the functionalities
assigned to them; 2) a structured text description
of the actors; 3) diagrams representing the
interactions between the actors and the system.

Composite (Structural
and Behavioural and
Free text)

MAS
Qualification

A text document composed of the description of
the environment according to the Russel and
Norvig definition, the description of “bad”
interaction between actors and system and the
justification of an implementation that using an
MAS is needed.

Free Text

UI Prototype This document is composed of the GUIs
description through which the user(s) interact
with the system and the links between the GUIs.

Free Text

ADELFE 2.0 41

Fig. 24 The final requirements documents structure

Fig. 25 Use cases diagram

Example: Conference Management Study
From the business model and the requirements previously established, four actors
are defined. For each of them, the functionalities are detailed and depicted in a use
cases diagram (see Fig. 25).

Moreover the interactions between the system and the actors are studied and
shown in Fig. 26. From these diagrams, the following cooperative failures have been
identified:
• at least one paper is not allocated
• not enough papers are accepted for the conference
• the chair committee disagrees with the paper allocation

42 N. Bonjean et al.

Fig. 26 System sequence diagrams

• a reviewer does not have a paper to review
• the reviewer disagrees with the paper allocation

Besides, according to Russel and Norvig’s definition, the environment of the
system is described as
• inaccessible because knowing all about the environment (papers, keywords, etc.)

is difficult
• discrete because the number of distinct percepts and actions is limited
• non-deterministic because the actions have multiple unpredictable outcomes
• dynamic because the state of the environment depends upon actions of the system

that is within this environment

2.3 Analysis Phase (WD3)

The Analysis Phase aims at identifying the system structure and justifying the
AMAS adequacy. This phase is composed of four activities enabling one to analyse
the domain characteristics, determine the agents and validate an AMAS approach

ADELFE 2.0 43

Fig. 27 The analysis phase flow of activities

Fig. 28 The analysis phase described in terms of activities and work products

at the global and local level. The process flow at the level of activities is depicted
in Fig. 27, and Fig. 28 depicts this phase according to documents, roles and work
products involved.

2.3.1 Process Roles
Two roles are involved in the Analysis Phase: the MAS Analyst and AMAS
Analyst.
• MAS Analyst: An MAS analyst is responsible for detailing the MAS Environment

in Analysis Domain Characteristics activity. It consists in (1) the identification
of what are the entities which are active and the ones which are not (passive), (2)
the identification of the interactions between the entities. An MAS analyst is also
responsible for Identify agent of the step which consists in defining autonomy,
goal and negotiation abilities of active entities.

• AMAS Analyst: An AMAS analyst is responsible for every activity dealing with
the specificities of AMAS principles. They can be found in Verify the global
level AMAS adequacy activity, in Identify agent activity and in Verify the local
level AMAS adequacy activity. The identification of (cooperative) agents needs

44 N. Bonjean et al.

Fig. 29 Flow of tasks of the Analyse Domain Characteristics activity

to determine the cooperation failures that can occur between entities and then to
define the agents regarding the results of previous steps.

2.3.2 Activity Details
The flow of activities inside this phase is depicted in Fig. 27 and detailed in the
following.

A10: Analyse Domain Characteristics
The main goal of this activity is to analyse the Business Domain and the System
Environment Description in order to detail the entities of the domain and their
interactions. The flow of tasks inside this activity is depicted in Fig. 29, and the
tasks are detailed in the following table.

A10: Analyse Domain Characteristics
Tasks Tasks Descriptions Roles Involved

S1: identify
passive and
active entities

The MAS analyst splits the system into passive
and active entities.

MAS Analyst

S2: study
interactions
between entities

This step shows the interactions between entities. MAS Analyst

A11: Verify the Global Level AMAS Adequacy
In this activity, the AMAS analyst must verify that an AMAS approach is needed to
realize the system to be built. For example, having a system which is able to adapt
itself is sometimes completely useless if the algorithm required to solve the task
is already known, if the task is not complex or if the system is closed and nothing
unexpected can occur. In this activity, the adequacy at the global level is studied to
answer the question “is an AMAS required to implement the system?”. This is done
throw several simple questions related to the global level. The flow of this activity
is depicted in Fig. 30.

ADELFE 2.0 45

Fig. 30 Flow of tasks of the Verify the Global Level AMAS Adequacy activity

Fig. 31 Flow of tasks of the Identify Agent activity

A12: Identify Agent
This activity aims at finding what will be considered as agents in the desired
system. These agents are defined among the previously defined entities. The flow
of tasks inside this activity is depicted in Fig. 31, and the tasks are detailed in the
following table.

A12: Identify Agent
Tasks Tasks Descriptions Roles Involved

S1: study active
entities

For each previously defined active entity, its
autonomy, its goal and its negotiation abilities are
studied.

MAS Analyst

S2: identify
cooperation failures
during interaction
between entities

During its interactions with other entities, an entity
can encounter failures to respect the protocol or
failures in the content of the interaction
(misunderstanding, etc.). This step extracts this kind
of interactions.

AMAS Analyst

S3: determine
cooperative agents

The entities pertaining to the previous step are
considered as agents. In addition, the AMAS
diagram is drawn.

AMAS Analyst

A13: Verify the Local Level AMAS Adequacy
In this activity, the AMAS adequacy is studied at the local level in order to determine
if some agents are needed to be implemented as an AMAS i.e. if a certain kind of
decomposition or recursion is required during the building of the system. The flow
of this activity is depicted in Fig. 32.

46 N. Bonjean et al.

Fig. 32 Flow of tasks of the Verify the Local Level AMAS Adequacy activity

2.3.3 Work Products
The Analysis Phase generates four work products (text document including tex-
tual description and/or diagrams). Their relationships with the MAS metamodel
elements are depicted in Fig. 33.

Work Products Kind

Name Description Work Product Kind

System Analysis A document composed of: 1) a textual
description of the entities described as
active or passive; 2) diagrams depicting the
interactions between entities.

Composite (Free Text
and Behavioural)

Global AMAS
Adequacy Synthesis

This document stores the answers to the
questions regarding the global level about
an implementation using an AMAS.

Structured Text

Agent Extraction This document supplements the System
Analysis document with: 1) the definition
of the goal, the study of autonomy and the
negotiation abilities for each active entity;
2) the list of the cooperation failure
interactions between entities or between
entity and its environment; 3) the definition
of the cooperative agent and the AMAS
diagram which represents them.

Composite (Free Text
and Behavioural)

Local AMAS
Adequacy Synthesis

This document completes the Global
AMAS adequacy synthesis with the
answers to the questions regarding the local
level about an implementation using an
AMAS.

Structured Text

Example: Conference Management Study
From the business concepts model, we define the active and passive entities. In our
case, we define six active entities and the other concepts as passive entities. The
entities system structure is depicted in Fig. 34. Broadly speaking, entities which are

ADELFE 2.0 47

Fig. 33 The analysis documents structure

Fig. 34 Entities structure system diagram

linked to users are considered as active because users may change their mind, which
implies a change in the state of the related entity. Moreover, papers and sessions are
considered as active because they will need negotiation while finding a review or a
session organization.

The following step is the interactions study between entities shown in Figs. 35
and 36. The started interactions and the other one show the interaction after the
paper notification, they are represented in Fig. 35.

48 N. Bonjean et al.

Fig. 35 Entities interactions system structure (beginning)

Verifying the AMAS adequacy consists in studying some specific features of
AMAS with respect to the target application. The designer is provided with a tool
which helps him to answer some questions. Here are the eight questions that are
asked and some answers for our case study:
• Is the global task incompletely specified? Is an algorithm a priori unknown?

YES: the CMS is precisely defined and some algorithms may be found to solve
this kind of problem.

• If several entities are required to solve the global task, do they need to act in a
certain order? YES: there are dependencies in the interactions needed between
entities.

• Is the solution generally obtained by repetitive tests? Are different attempts
required before finding a solution? NO: no need for that.

ADELFE 2.0 49

Fig. 36 Entities interactions system structure (ending)

• Can the system environment evolve? Is it dynamic? YES: it is highly dynamic.
Authors, reviewers and papers may appear or disappear while a solution is
calculated.

• Is the system process functionally or physically distributed? Are several phys-
ically distributed entities needed to solve the global task? Or is a conceptual
distribution needed? YES/NO: people is physically distributed but there is no
need for a distributed solving of the problem.

• Are a great number of entities needed? YES: depending on the conference, but
potentially, in conferences like AAMAS, there are a great number of entities.

• Is the studied system non-linear? RATHER YES: in the nominal case, it can be
rather easy to find a linear decomposition of the problem, but with the openness
described earlier, the great number of interactions may lead to a complex system.

• Is the system evolutionary or open? Can new entities appear or disappear
dynamically? YES: it is highly dynamic. Authors, reviewers and papers may
appear or disappear while a solution is calculated.
In the “Identify Agents” activity, the active entities previously defined are

studied. The following table depicts the autonomy, the goal and the negotiation
abilities of each of them.

50 N. Bonjean et al.

Fig. 37 AMAS system diagram

Active Entities Autonomy Goal Negotiation Abilities

Paper Take its own decision Know its result:
acceptance or
rejection

Talk with other papers
to choose reviewer and
find its position in the
acceptance

Reviewer Act according to the paper
and users

Review papers

Program
Committee

Act according to the users Validate

Publisher Act according to the users Give constraints and
proceedings

Author Act according to the users Deal with a paper
Session Select itself the right papers

to insert for the conference
management

Select paper to be
full

Discuss with the other
sessions to select papers

From the interactions between entities which have been previously identified,
three other cooperative failure interactions are identified: (1) a paper does not find a
review; (2) several papers want to rise to the same rank; (3) sessions select the same
paper. Two kinds of agent are therefore deduced: the paper agent and the session
agent. The resulting AMAS is represented in Fig. 37.

2.4 Design Phase (WD4)

The Design Phase aims at providing a detailed architecture of the system. During
this phase, the definition of a module view is proposed, the communication acts
are studied and the different behaviours are determined. The process flow at the

ADELFE 2.0 51

Fig. 38 The design phase flow of activities

Fig. 39 The design phase described in terms of activities and work products

level of activities is depicted in Fig. 38, and Fig. 39 depicts this phase according to
documents, roles and work products involved.

2.4.1 Process Roles
Three roles are involved in the Design Phase: the architectural designer, the MAS
designer and the AMAS designer.
• Architectural Designer: An architectural designer is responsible for module

organization during the Define Module View activity. He/she defines the detailed
architecture of the system in terms of modules.

• MAS Designer: An MAS designer is responsible for communication acts during
the Study Communication Acts activity and the definition of the entities behaviour
during the Define Entity Behaviour activity. He/she defines how the entities and
the agents interact together or with their own environment.

• AMAS Designer: An AMAS designer is responsible for nominal behaviour of
agents during the Define Nominal Behaviour activity, cooperative behaviour

52 N. Bonjean et al.

Fig. 40 Flow of tasks of the Define Module View activity

of agents in the Define Cooperative Behaviour activity and fast prototyping
during the Validate Design Phase activity. Indeed, from the structure analysis
and the communication acts previously detailed, an AMAS designer defines
skills, aptitudes, an interaction language, a world representation, a criticality and
the characteristics of an agent. He/she fulfils the agent behaviour by adding a
cooperative attitude i.e. giving rules which enable anticipating or detecting and
repair of the non-cooperative situations. For that, skills, aptitudes, an interaction
language, a world representation, a criticality and the characteristics are filled
out. Finally, an AMAS designer tests the behaviour of agents i.e. the protocols,
the methods and the general behaviour of agents.

2.4.2 Activity Details
The flow of activities inside this phase is depicted in Fig. 38 and detailed in the
following.

A14: Define Module View
This activity shows how the architectural designer maps the key elements of the
software to the modules. Their organization and dependencies are defined. The
following kinds of dependencies can be used: use, allowToUse, include/decompose,
CrossCut, EnvModel. The flow of this activity is depicted in Fig. 40.

A15: Study Communication Acts
This activity aims at making clear interactions between the entities and/or the agents
previously identified. The flow of tasks inside this activity is depicted in Fig. 41, and
the tasks are detailed in the following table.

A15: Study Communication Acts
Tasks Tasks Descriptions Roles Involved

S1: define agents
interaction

This step consists in defining the way in
which an agent is going to interact with the
others and its environment.

MAS Designer

S2: define entities
interaction

This step consists in defining the way in
which an entity is going to interact with
others entities.

MAS Designer

ADELFE 2.0 53

Fig. 41 Flow of tasks of the Study Communication Acts activity

A16: Define Entity Behaviour
The aim of this activity is to define the entity behaviour. It can be illustrated by an
inner state related to its current role. This activity is performed by an MAS analyst.
The flow of this activity is depicted in Fig. 42.

A17: Define Nominal Behaviour
The purpose of this activity is to define the nominal behaviour. The AMAS designer
has to define skills, aptitudes, an interaction language, a world representation and
a criticality, which compose the nominal behaviour. Agents may also have physical
characteristics such as weight, colour, etc. which may be necessarily found during
this activity. The structural diagrams of agents are drawn and the structural rules are
described. In addition, an agent can be defined by an inner state related to its current
role in the MAS organization. The flow of tasks inside this activity is depicted in
Fig. 43, and the tasks are detailed in the following table.

A17: Define Nominal Behavior
Tasks Tasks Descriptions Roles Involved

S1: define its
skills

The knowledge about a domain allowing the agent to
execute actions is defined.

AMAS Designer

S2: define its
aptitudes

The aim of this activity is to determine the
capabilities of an agent to reason on its knowledge
about the domain or on its representation of the world.

AMAS Designer

S3: define its
interaction
language

This step consists in defining the way in which agents
are going to interact. Actually, if agents interact to
communicate, information exchanges between agents
are described. Technically, these protocols are
specified through protocol diagrams.

AMAS Designer

S4: define its
world repres-
entation

The AMAS designer defines the way to describe the
representations of an agent about other agents, itself
and its environment.

AMAS Designer

S5: define
criticality and
confidence of
agent
behaviour

This step determines the relative difficulty of agents
in its neighbourhood and its internal measure that
provides information on the reliability of the decision
on actions intended.

AMAS Designer

54 N. Bonjean et al.

Fig. 42 Flow of tasks of the Define Entity Behaviour activity

Fig. 43 Flow of tasks of the Define Nominal Behavior activity

Fig. 44 Flow of tasks of the Define Cooperative Behavior activity

A18: Define Cooperative Behaviour
This activity is a key step. Indeed, the AMAS designer defines the cooperative
behaviour by the allocation of cooperation rules. These rules enable an agent to
have a cooperative attitude i.e. anticipate or detect and repair the non-cooperative
situations. During this activity, the structural diagram is completed by appropriated
skills, representations, the attitudes or any other agent characteristic. The flow of
tasks inside this activity is depicted in Fig. 44, and the tasks are detailed in the
following table.

ADELFE 2.0 55

Fig. 45 Flow of tasks of the Validate Design Phase activity

A18: Define Cooperative Behaviour
Tasks Tasks Descriptions Roles Involved

S1: define its skills The knowledge about a domain allowing the
agent to execute actions is defined.

AMAS Designer

S2: define its aptitudes The aim of this activity is to determine the
capabilities of an agent to reason on its
knowledge about the domain or on its
representation of the world.

AMAS Designer

S3: define its interaction
language

This step consists in defining the way in
which agents are going to interact. Actually,
if agents interact to communicate,
information exchanges between agents are
described. Technically, these protocols are
specified through protocol diagrams.

AMAS Designer

S4: define its world
representation

The AMAS designer defines the way to
describe the representations of an agent
about other agents, itself and its
environment.

AMAS Designer

S5: define criticality and
confidence of agent
behaviour

This step determines the relative difficulty of
agents in its neighbourhood and its internal
measure that provides information on the
reliability of the decision on actions
intended.

AMAS Designer

A19: Validate Design Phase
During this activity, the AMAS designer may test the behaviour of the agents. This
test can lead to improve an agent’s behaviour if it is not adequate. The flow of
tasks inside this activity is depicted in Fig. 45, and the tasks are detailed in the
following table.

56 N. Bonjean et al.

A19: Validate Design Phase
Tasks Tasks Descriptions Roles Involved

S1: fast prototyping During this step, the agents’ behaviour is
tested. The prototype has to point out the
possible lack of an agent behaviour and of
cooperative attitude.

AMAS Designer

S2: complete design
diagrams

The aim of this step is to finalize the module
organization and finish the Design Phase.

AMAS Designer

2.4.3 Work Products
The Design Phase generates six work products. Their relationships with the MAS
metamodel elements are depicted in Fig. 46.

Work Products Kind

Name Description Work Product Kind

Module
Organization

This document depicts the organization and
the dependencies of the key elements of the
software.

Structural

Communication
Acts

This document is composed of the specific
textual description of the entity interactions
and the agent interactions and the precise
diagrams depicting this.

Composite (Free and
Behavioural)

MAS
Environment

This document contains the description of the
entities behaviour. It is illustrated with inner
state related to their current role.

Composite (Free and
Behavioural)

MAS
Architecture

This document is composed of the agent
nominal behaviour description, illustrated
with inner state related to their current role
and depicted by structural diagram of the
agents. Skills, aptitudes, an interaction
language, a world representation and a
criticality define cooperative agent behaviour.
Moreover, it contains the physical
characteristics of the agent and its structural
rules.

Composite (Free and
Structural and
Behavioural)

Cooperative
MAS
Architecture

This document contains the elements of a
cooperative agent behaviour, enabling
anticipation or detection and repair of the
non-cooperative situations. A cooperative
agent behaviour is composed of skills,
aptitudes, an interaction language, a world
representation and a criticality.

Composite (Free and
Structural and
Behavioural)

Software
Architecture

This document is composed of the fast
prototyping of the agent behaviour and the
refinement of the Software architecture
entities, Software architecture nominal and
Software architecture cooperative document.

Composite (Free and
Structural and
Behavioural)

ADELFE 2.0 57

Fig. 46 The design documents structure

Fig. 47 Paper agent structural diagram

Example: Conference Management Study
In this section where the phase settles the design of the software architecture of
each agent and entity, we only describe the paper agent behaviour. Actually, its
skills, its aptitudes, its interaction language and its representations are depicted in
Fig. 47. Figure 48 represents an inner state related to the current state of the paper
agent. The nominal behaviour of a paper agent starts in a Submitted state which

58 N. Bonjean et al.

Fig. 48 Inner state related to
paper agent behaviour

corresponds to the creation of a paper agent. In this state, the paper agent is looking
for reviews. It is in IsReviewing state when it finds all reviews it needs. It becomes
Reviewed when all its reviews are complete. In order to reach the following state,
Accepted or Rejected, the paper agent self-evaluates the reviews’ results and changes
its state. If the paper agent is Accepted, it informs the session of its state and becomes
IsImproving. Finally, the paper agent is Printed when the proceedings are published.

Moreover, this cooperative agent can meet some non-cooperative situations. For
a paper agent, two situations are detected: (1) a review can be linked to a limited
number of papers; it can happen that several paper agents want the same review;
(2) when the paper agents have to deal with the acceptance, they can be put in
concurrence or competition.

2.5 Implementation Phase (WD5)

The Implementation Phase aims at providing the desired system. Actually, the
aspects of the detailed architecture are first described using SpeADL, then imple-
mented using the Java programming language by relying on code generated from
the ADL, and finally executed to deliver the desired system. The process flow at the
level of activities is depicted in Fig. 49, and Fig. 50 depicts this phase according to
documents, roles and work products involved.

2.5.1 Process Roles
Two roles are involved in the Implementation Phase: the AMAS Framework
Developer, and the AMAS Developer.
• AMAS Framework Developer: An AMAS framework developer is responsible

for the description of the system architecture in the SpeAD (Species-based
Architecture Description) model language during the Implement Framework
activity and the implementation of everything that is not an agent. Actually, the
AMAS framework developer implements the passive entities, the active entities
and all programs required by the system such as a scheduler.

• AMAS Developer: An AMAS developer is responsible for the agent behaviour
implementation during the Implement Agent Behaviour activity. He/she
implements the nominal and cooperative behaviour according to the designed
software architecture.

ADELFE 2.0 59

Fig. 49 The implementation phase flow of activities

Fig. 50 The implementation phase described in terms of activities and work products

2.5.2 Activities Details
The flow of activities inside this phase is depicted in Fig. 49, and the tasks are
detailed in the following table.

A20: Implement Framework
During this activity, the mechanisms are software components with provided
and required services that can be composed together to form the architecture of
the system. Entities and agents’ architecture is therefore described in terms of
components. The architecture is described using the textual architecture description
language SpeADL (Species-based Architecture Description Language). Then the
architectural elements which are not a cooperative agent are implemented. The flow
of tasks inside this activity is depicted in Fig. 51, and the tasks are detailed in the
following table.

A20: Implement Framework
Tasks Tasks Descriptions Roles Involved

S1: extract micro
architecture

The previously defined software architecture
is translated into SpeAD model language.

AMAS Framework
Developer

S2: implement
component

The AMAS framework developer implements
everything that is not related to the agent or
entity behaviour in the system.

AMAS Framework
Developer

S3: implement entities The AMAS framework developer implements
the active and passive entities behaviour.

AMAS Framework
Developer

60 N. Bonjean et al.

Fig. 51 Flow of tasks of the Implement Framework activity

Fig. 52 Flow of tasks of the Implement Agent Behaviour activity

A21: Implement Agent Behaviour
During this activity, the behaviour of the cooperative agent is implemented. The
flow of tasks inside this activity is depicted in Fig. 52, and the tasks are detailed in
the following table.

A21: Implement Agent Behaviour
Tasks Tasks Descriptions Roles Involved

S1: implement nominal
behaviour

The nominal behaviour of agents is
implemented by working out the agents’
process decision.

AMAS Developer

S2: implement
cooperative behaviour

The cooperative behaviour of agents is
implemented by working out the agents’
process decision which enables anticipation
or detection and repair of the
non-cooperative situations.

AMAS Developer

2.5.3 Work Products
The Implementation Phase generates two work products. Their relationships with
the MAS metamodel elements are depicted in Fig. 53.

ADELFE 2.0 61

Fig. 53 The implementation documents structure

Work Products Kind

Name Description Work Product Kind

Framework Code This document is composed of: 1)a textual
description of the architecture of the system,
according to the SpeADL language; 2) the
implementation of all what is not agent.

Composite (Structured
Text and Free Text)

AMAS code This document is composed of the
implementation of the cooperative agent
behaviour (nominal behaviour and
cooperative behaviour).

Composite (Structured
Text and Free Text)

Example: Conference Management Study
Figure 54 is a graphic description of an SpeADL. This architecture defined with
SpeAD is made of components connected together with simple connectors. The
components externally provide ports, for which they have an implementation, and
require ports that they can use in their implementation. Note that the description of
components made with SpeADL will then be translated to Java.

62 N. Bonjean et al.

Fig. 54 Architectural description of paper agent

Fig. 55 The work products dependencies

ADELFE 2.0 63

3 Work Product Dependencies

Figure 55 depicts the dependencies among the different work products produced by
the process. A dashed arrow is used to relate two of them if one is an input document
to the other. Its direction points from the consumer document to the input one.

The ASPECS Process

Massimo Cossentino, Vincent Hilaire, Nicolas Gaud,
Stephane Galland, and Abderrafiaa Koukam

Abstract
This chapter introduces an agent-oriented software process for engineering
complex systems called ASPECS. ASPECS is based on a holonic organizational
metamodel and provides a step-by-step guide from requirements to code,
allowing the modeling of a system with different levels of details using a set
of refinement methods. This chapter introduces the ASPECS process using the
documentation template provided by the IEEE FIPA DPDF Working Group. One
of the founding principles of ASPECS is to combine both holonic structures and
organizational approaches to ease the modeling and development of complex
software applications. The target scope for the proposed approach can be found
in complex systems and, especially, hierarchical complex systems. ASPECS is
mainly suitable for open large-scale MAS. The main vocation of ASPECS is
toward the development of holonic (as well as not-holonic) societies of software
agents.

1 Introduction

ASPECS is a step-by-step requirement-to-code software process for engineering
Complex Systems using Multiagent Systems and Holonic Multiagent Systems [5].
To deal with all aspects of complex systems, multiagent systems must deal with
multiple levels of abstractions and openness. These multiple levels are frequently
not taken into account for most solutions [12].

M. Cossentino
ICAR Institute, National Research Council, Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

V. Hilaire (�) • N. Gaud • S. Galland • A. Koukam
IRTES-SET, UTBM, UPR EA 7274, 90 010 Belfort cedex, France
e-mail: vincent.hilaire@utbm.fr

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__4,
© Springer-Verlag Berlin Heidelberg 2014

65

mailto:cossentino@pa.icar.cnr.it
mailto:vincent.hilaire@utbm.fr

66 M. Cossentino et al.

The presence of multiple levels is emphasized in many works, such as that of
Simon [15], who postulates that complex systems often (if not always) exhibit a
hierarchical configuration.1 The idea is that the architecture of a complex system can
be explained and understood using hierarchical organization structures as presented
in [16]. Several metamodels and methodologies have been proposed for Multiagent
systems [1]. However, most of them consider agents as atomic entities. There
is no intuitive or natural way to deal with hierarchical organization structures.
Considering agents as composed entities thus enables the modeling of nested
hierarchies and proposes a solution to this problem.

Based on this statement, ASPECS exploits the concepts of holons: agents who
may be composed of agents. ASPECS combines both holonic and organizational
perspectives within a single metamodel, allowing the modeling of a system at
different levels of details using a set of refinement methods.

The authors of ASPECS tried to gather the advantages of organizational
approaches as well as those of the holonic vision in modeling complex systems. The
result is a set of organization-oriented abstractions that have been integrated into
a complete methodological process. The target scope for the proposed approach
can be found in complex systems and, especially, hierarchical complex systems.
The main vocation of ASPECS is toward the development of societies of holonic
(as well as not-holonic) multiagent systems. The interested reader could find
information about ASPECS on the ASPECS website http://www.aspecs.org and
in [3–5]. A specific deployment platform has been developed [8] and may be
accessed through the website http://www.janus-project.org.

1.1 Global Process Overview (Life Cycle)

The ASPECS life cycle consists of three phases organized in an iterative incremental
process (see Fig. 1). Each phase is briefly described below.

The System Requirements phase aims at identifying a hierarchy of organizations,
whose global behavior may fulfill the system requirements under the chosen
perspective. It starts with a Domain Requirements Description (DRD) activity
where requirements are identified by using classical techniques such as use cases.
Domain knowledge and vocabulary associated to the Problem Domain are then
collected and explicitly described in the Problem Ontology Description (POD)
activity. Then, requirements are associated to newly defined organizations. Each
organization will therefore be responsible for exhibiting a behavior that fulfills the
requirements it is responsible for. This activity is called Organization Identification,
and it produces an initial hierarchy of organizations that will later be extended and
updated, with further iterations, in order to obtain the global organization hierarchy
representing the system structure and behavior. The behavior of each organization
is realized by a set of interacting roles whose goals consist in contributing to the

1Hierarchical here is meant as a “loose” hierarchy as presented by Simon.

http://www.aspecs.org
http://www.janus-project.org

ASPECS 67

Fig. 1 The ASPECS process phases (and iterations)

fulfillment of (a part of) the requirements of the organization within which they
are defined. In order to design modular and reusable organization models, roles
are specified without making any assumptions about the structure of the agent who
may play them. To meet this objective, the concept of capacity has been introduced.
A capacity is an abstract description of a know-how, i.e., a competence of a role.
Each role requires certain skills to define its behavior, and these skills are modeled
by means of a capacity. Besides, an entity that wants to play a role has to be able
to provide a concrete realization for all the capacities required by the role. Finally,
the last step of the System Requirements phase, the Capacity Identification activity,
aims at determining the capacities required by each role.

The second phase is the Agent Society Design phase that aims at designing
a society of agents whose global behavior can provide an effective solution to
the problem described in the previous phase and to satisfy associated require-
ments. The objective is to provide a model in terms of social interactions and
dependencies between entities (holons and agents). Previously identified elements
such as ontology, roles, and interactions are now refined from the social point
of view (interactions, dependencies, constraints, etc.). At the end of this design
phase, the hierarchical organization structure is mapped into a holarchy (hierarchy
of holons) in charge of realizing the expected behaviors. Each of the previously
identified organizations is instantiated in form of groups. Corresponding roles are
then associated to holons or agents. This last activity also aims at describing the
various rules that govern the decision-making process performed inside composed
holons as well as the holons’ dynamics in the system (creation of a new holon,
recruitment of members, etc.). All of these elements are finally merged to obtain the
complete set of holons involved in the solution.

The third and last phase, namely Implementation and Deployment, firstly, aims
at implementing the agent-oriented solution designed in the previous phase by
deploying it to the chosen implementation platform, in our case, JANUS. Secondly,
it aims at detailing how to deploy the application over various computational nodes
(JANUS kernels in our experiments). Based on JANUS, the implementation phase
details activities that allow the description of the solution architecture and the
production of associated source code and tests. It also deals with the solution
reusability by encouraging the adoption of patterns. The Code Reuse activity
aims at integrating the code of these patterns and adapting the source code of

68 M. Cossentino et al.

previous applications inside the new one. It is worth noting that although we
will refer to a JANUS-based implementation, systems developed by using other
platforms can be designed as well with the described process. This phase ends
with the description of the deployment configuration; it also details how the
previously developed application will be concretely deployed; this includes studying
distribution aspects, holons physical location(s) and their relationships with external
devices and resources. This activity also describes how to perform the integration
of parts of the application that have been designed and developed by using other
modeling approaches (i.e., object-oriented ones) with parts designed with ASPECS.

1.2 Metamodel

ASPECS has been built by adopting the Model Driven Architecture (MDA) [11],
and thus we defined three levels of models, each referring to a different metamodel.
We also label the three metamodels “domains,” thus maintaining the link with the
PASSI metamodel that was one of our inspiration sources. The three domains we
define are:

Problem Domain. It provides the organizational description of the problem in-
dependently of a specific solution. The concepts introduced in this domain are
mainly used during the analysis phase and at the beginning of the design phase.

Agency Domain. It introduces agent-related concepts and provides a description
of the holonic, multiagent solution resulting from a refinement of the Problem
Domain elements.

Solution Domain. It is related to the implementation of the solution on a specific
platform. This domain is thus dependent on a particular implementation and
deployment platform. In our case, this part of the process is based upon
the JANUS platform that we specifically designed to ease the implementation
of holonic and organizational models. A complete description of the JANUS

platform would take too much space to be dealt by this paper, and therefore, we
prefer to present only the most significant JANUS issues. The interested reader
can find more details in [8] and on the JANUS website2.

The following sub-sections detail the three domain metamodels and some
fundamental concepts within them. A complete description of all the elements
reported in the metamodels is present on the ASPECS website and will not be
reported here because of space concerns.

1.2.1 Problem Domain
The Problem Domain metamodel (see Fig. 2) includes elements that are used to
catch the problem requirements and perform their initial analysis: Requirements
(both functional and non-functional) are related to the organization that fulfills them.

2JANUS: http://www.janus-project.org/

http://www.janus-project.org/

ASPECS 69

Fig. 2 The ASPECS Problem Domain MAS metamodel

An organization is composed of Roles, which are interacting within scenarios while
executing their Role plans. An organization has a context that is described in terms
of an ontology. Roles participate in the achievement of their organization goals by
means of their Capacities. Definitions of MAS metamodel elements may be found
in Table 1, on the ASPECS website, and in [5].

1.2.2 Agency Domain
The Agency Domain metamodel (see Fig. 3) includes the elements that are used to
define an agent-oriented solution for the problem analyzed in the previous stage. By
adopting an organizational approach, the solution will be mainly composed of the
necessary social structures designed in a multi-perspective way. Definitions of the
MAS metamodel elements may be found in Table 2, further details on the ASPECS

website, and in [5].

1.2.3 Solution Domain
The Solution Domain metamodel contains elements used for the implementation
of the designed solution in the chosen platform. These elements are general
enough to be applied to several existing platforms with minor or no changes but
nonetheless, the most suitable choice is JANUS that directly inspired this portion of
the metamodel.

JANUS (see [8]) was designed to facilitate the transition between the design and
implementation phases of holonic systems development processes. It is implemen-
ted in Java, and it supports the direct implementation of the five key concepts used
in the design phase: organization, group, role, agent, and capacity.

The definitions of the ASPECS Solution Domain MAS metamodel elements are
given in Table 3, further details on the ASPECS website, and in [5].

70 M. Cossentino et al.

Table 1 Definition of the Problem Domain concepts (from [5])

Concept Definition

Ontology An explicit specification of a conceptualization of a knowledge domain [10]. An
ontology is composed of abstract ontology elements having three possible
concrete types: Concept, Predicate or Action.

Concept A category, an abstraction that shortens and summarizes a variety/multiplicity of
objects by generalizing common identifiable properties.

Predicate Assertions on concepts properties.
Action A change realized by an entity that modifies one or more properties of one or

more concepts.
Organization An organization is defined by a collection of roles that take part in systematic

institutionalized patterns of interactions with other roles in a common context.
This context consists in shared knowledge and social rules/norms, social
feelings, and is defined according to an ontology. The aim of an organization is
to fulfill some requirements.

Role An expected behavior (a set of role tasks ordered by a plan) and a set of rights
and obligations in the organization context. The goal of each Role is to contribute
to the fulfillment of (a part of) the requirements of the organization within which
it is defined. A role can be instantiated either as a Common Role or Boundary
Role. A Common Role is a role located inside the designed system and
interacting with either Common or Boundary Roles. A Boundary Role is a role
located at the boundary between the system and its outside, and it is responsible
for interactions happening at this border (i.e., GUI, Database, etc.).

Interaction A dynamic, not a priori known sequence of events (a specification of some
occurrence that may potentially trigger effects on the system) exchanged among
roles, or between roles and entities outside the agent system to be designed.
Roles may react to the events according to theirs behaviors.

Capacity A capacity is an abstract description of a know-how, i.e., a competence of a role.
Each role requires certain skills to define its behavior, and these skills are
modeled by means of a capacity. It may be considered as a specification of the
pre- and post-conditions of a goal achievement.

Role Task An activity that defines a part of a role behavior. A Role Task may be atomic or
composed by a coordinated sequence of subordinate Role Tasks. The definition
of these Role Tasks can be based on capacities, required by roles.

Role plan The behavior of a Role is specified within a Role plan. It is the description of
how to combine and order Role Tasks and interactions to fulfill a (part of a)
requirement.

Scenario Describes a sequence of role interactions, which fulfills a (part of) requirement.

2 Phases of the Process

2.1 System Requirement Analysis

The process flow at the level of activities is reported in Fig. 4. The process
flow inside each activity will be detailed in the following subsections (after the
description of process roles). The System Requirement Analysis phase involves
two different process roles, seven work products as described in Figs. 5 and 6. The

ASPECS 71

Fig. 3 The ASPECS Agency Domain MAS metamodel

phase has been divided in two figures for clarity reasons. Each figure is complete
in terms of activities and corresponding roles and work products. The second figure
adds the required predecessor reference(s) to activitie(s) presented in the first figure.
The phase is composed of seven activities (i.e., Domain Requirements Description,
Problem Ontology Identification, Organization Identification, Interaction and Role
Identification, Scenario Description, Role Plan, and Capacity Identification), each
of them composed of one or more tasks.

2.1.1 Process Roles
Two roles are involved in the System Requirements phase: the System Analyst and
the Domain Expert. They are described in the following subsections.

System Analyst
She/he is responsible for:
1. Use cases identification during the DRD activity. Use cases are used to represent

system requirements.
2. Use cases refinement during the DRD activity. Use cases are refined with the help

of a Domain Expert.
3. Definition of an ontology for the conceptualization of the problem during the

POD activity.
4. Use cases clustering during the Organization Identification (OID) activity. The

System Analyst analyzes the use case diagrams resulting from the first activity
and the domain concepts resulting from the second activity and attempts to assign
use case to organizations in charge of their realization.

72 M. Cossentino et al.

Table 2 Definition of the Agency Domain concepts extracted from [5]

Concept Definition

Communication An interaction between two or more roles where the content (language,
ontology, and encoding) and the sequence of communication acts
(protocol) are explicitly detailed. A communication is composed of
messages expressing communicative acts [6, 7]. In a communication,
participants are Agent Roles, and the knowledge exchanged between them
is explicitly represented by a set of ontology elements.

Protocol The sequence of expected message communicative acts; it represents a
common pattern of communication, a high-level strategy that governs the
exchange of information between Agent Roles.

Group An instance in the Agency Domain of an Organization defined in the
Problem Domain. It is used to model an aggregation of Agent Roles
played by holons.

Agent Role An instance of the Problem Domain Role. It is a behavior (expressed by a
set of Agent Tasks), and it owns a set of rights and obligations in a
specific group context. Agent Roles interact with each other by using
communications within the context of the group they belong to. Several
Agent Roles are usually aggregated in the Autonomous Entity that plays
them. An Agent Role may be responsible for providing one of more
services to the remaining part of the society.

Holonic Group A group that is devoted to contain holonic roles and takes care of the
holon internal decision-making process (composed-holon’s government).
Holonic roles are used to represent in an organizational way the notion of
moderated group (see [9]). They describe the level of authority of a
member inside the holon members’ community and the degree of
commitment of a member to its super-holon.

Agent Task An Agent Task is a refinement of a Problem Domain Role Task. It is a
portion of a role behavior, and it may be composed by other Agent Tasks
or atomic Agent Actions. It may contribute to provide (a portion of) an
Agent Role’s service.

Agent Action The atomic composing unit of a behavior. An action takes a set of inputs
and converts them into a set of outputs, though either or both sets may be
empty. An example of the most basic Agent Action consists in invoking a
capacity or a service requiring the same inputs.

Autonomous Entity An abstract rational entity that adopts a decision in order to obtain the
satisfaction of one or more of its own goals. An autonomous entity may
play a set of Agent Roles within various groups. These roles interact with
each other in the specific context provided by the entity itself. The entity
context is given by the knowledge, the capacities owned by the entity
itself. Roles share this context by the simple fact of being part of the same
entity.

Agent An autonomous entity that has specific individual goals and the intrinsic
ability to realize some capacities.

Goal A description of an objective to pursue and represents an abstraction of a
projected state of affairs to obtain.

Individual Goal A goal pursued by an individual agent that may be related to its personal
desires or intentions. This agent will deliberate to determine a plan or a
strategy to achieve its individual goals.

(continued)

ASPECS 73

Table 2 (continued)

Concept Definition

Collective Goal A goal pursued by a community of individuals, which has the commitment of
(a part of) the community members. Usually members commit to collective
goals because achieving these goals contributes to the achievement of
members’ individual goals.

Service It provides the result of the execution of a capacity thus accomplishing a set
of functionalities on behalf of its owner: a role, a group, an agent or a holon.
These functionalities can be effectively considered as the concrete
implementation of various capacities. A role can thus publish some of its
capacities and other members of the group can profit of them by means of a
service exchange. Similarly a group, able to provide a collective capacity can
share it with other groups by providing a service. A capacity is an internal
aspect of an organization or an agent, while the service is designed to be
shared between various organization or entities. To publish a capacity and
thus allow other entities to benefit from it, a service is created.

Resource The abstraction of an environmental entity. It may be manipulated by roles
through specific capacities.

Table 3 Definition of the Solution Domain concepts extracted from [5]

Concept Definition

JOrganization A JOrganization is defined by a set of roles and a set of
constraints to instantiate these roles (e.g., maximal number of
authorized instances).

JGroup JGroup is the runtime context of interaction. It contains a set of
roles and a set of Holons playing at least one of these roles. In
addition to its characteristics and its personal knowledge, each
agent/holon has mechanisms to manage the scheduling of its own
roles. It can change dynamically its roles during the execution of
the application (leave a role and request a new one). The life
cycle of a Janus agent is composed of three main phases:
activation, life, termination. The life of an agent consists in
consecutively executing its set of roles and capacities.

JRole An implementation of the Agency Domain Agent Role.
JHolonicRole Four JHolonicRoles are defined to describe the status of a

member inside a super-holon: Head, Representative, Part, and
Multi-Part.

JHolon A JHolon is primarily a roles and capacities container. The roles
container provides the necessary means for the roles of a holon to
interact in the internal interaction context of a holon. The local
mechanism of interaction inside a holon is called influence and it
is implemented using an event-based communication. Each role
can register itself to inform its holon that it wishes to receive all
the influences of a given type.

JCapacity Implementation A capacity can be implemented in various ways, and each of
these implementations is modeled by the notion of
JCapacityImplementation.

(continued)

74 M. Cossentino et al.

Table 3 (continued)

Concept Definition

JCapacity The JCapacity concept is an interface between the holon and the roles it
plays. The role requires some capacities to define its behavior, which can
then be invoked in one of the tasks that make up the behavior of the role.
The set of capacities required by a role are specified in the role access
conditions.

JCommunication To communicate, holons must belong to a common group and play a role
in this group. If a group is distributed among several kernels, an instance
of this group exists in each kernel, and all the instances have the same
name. Communication in JANUS is based on the roles. Messages are
delivered to agents according to their roles. This mode of interaction
allows the implementation of communications between an emitter and
several receivers (one-to-many communication). The address of the
receiver agents is dynamically discovered according to the roles they play.
When several agents play the same role within the same group, a mode of
communication based on role and agents identifier may also be used to
distinguish which role player will receive the message.

Fig. 4 The System Requirement Analysis phase flow of activities

5. Identification of interacting roles for the previously identified organizations and
use cases constitutes the Interaction and Role Identification (IRI) activity.

6. Refinement of the interactions between roles during the Scenario Description
(SD) activity by means of scenarios designed in the form of sequence diagrams
thus depicting the details of role interaction.

7. Refinement of role behaviors during Role Plan (RP) activity by means of state-
transition diagrams specifying each role behavior.

8. Identification of capacities that are required by roles or provided by the organiz-
ations during the Capacity Identification (CI) activity. The capacities are added
to the class diagram depicting the organizations composed of interacting roles.

Domain Expert
The Domain Expert has knowledge about the domain of the problem to be solved.
S(he) is responsible for:
1. Assisting the System Analyst with the proper knowledge on the domain.
2. Contributing in the decision whether requirements are correctly identified (end

of the Domain Requirements phase).

ASPECS 75

Fi
g

.
5

T
he

Sy
st

em
R

eq
ui

re
m

en
tA

na
ly

si
s

ph
as

e
de

sc
ri

be
d

in
te

rm
s

of
ac

tiv
it

ie
s

an
d

w
or

k
pr

od
uc

ts
I

76 M. Cossentino et al.

Fi
g

.
6

T
he

Sy
st

em
R

eq
ui

re
m

en
tA

na
ly

si
s

ph
as

e
de

sc
ri

be
d

in
te

rm
s

of
ac

tiv
it

ie
s

an
d

w
or

k
pr

od
uc

ts
II

ASPECS 77

2.1.2 Activity Details
Domain Requirement Description
The DRD activity aims at an initial requirements elicitation. The expected result
is a description of the application behavior. Several different approaches can be
used. For example, use cases diagrams and documented version to introduce user
annotations can specify functional and non-functional requirements. Tasks of this
activity are detailed in Table 4 and their flow is represented in Fig. 7.

Problem Ontology Description
The Domain Ontology Description activity defines a conceptual overview of the
domain concerned. This ontology aims at the conceptualization of experts know-
ledge that will provide the applications context. Moreover, this ontology helps to
understand the problem to be solved and allows requirements refinements. Among
the subsequent refinements, the identification of organizations, roles, and capacities
is one of the most important. Tasks of this activity are detailed in Table 5 and their
flow is represented in Fig. 8.

Organization Identification
The Organization Identification activity goal consists in assigning to each require-
ment a behavior, which is not detailed at this level and which is represented by
an organization. The meaning of this assignment is that a requirement should
be satisfied by an organization. The behavior represented by the organization
is the result of the interacting roles within a common context. The latter is
conceptualized in the POD defined in the previous activity. This activity starts
from the requirements defined in the DRD activity. From this starting point
different approaches are possible to define organizations and assign requirements. A
possible way is to jointly use a structural (ontological-based) approach based on the
structural features already identified and a functional approach based on requirement
clustering. Tasks of this activity are detailed in Table 6 and their flow is represented
in Fig. 9.

Interaction and Role Identification
The IRI activity should decompose the behavior represented by an organization
into finer grain behaviors represented by roles. Tasks of this activity are detailed
in Table 7 and their flow is represented in Fig. 10.

Scenario Description
The Scenario Description activity should describe a set of possible interactions
within an organization. The objective is to refine and explore the possible sequences
of interactions between roles of a same organization. Obviously the required
elements are organizations, with both roles and interactions, and requirements
assigned. The challenge of this activity is to specify the fulfillment of requirements
by the interactions of organization roles. Tasks of this activity are detailed in Table 8
and their flow is represented in Fig. 11.

78 M. Cossentino et al.

Table 4 Task descriptions of the Domain Requirement Description activity

Activity Task Task description Roles involved

Domain
Requirement
Description

Identify Use Cases Use cases are used to
represent system
requirements

System Analyst (perform)

Domain
Requirement
Description

Refine Use Cases Use cases are refined with the
help of a Domain Expert

System Analyst (perform)
Domain Expert (assist)

Fig. 7 The flow of tasks of the Domain Requirement Description activity

Table 5 Task descriptions of the Problem Ontology Description activity

Activity Task Task description Roles involved

Problem Ontology
Description

Identify Concepts Recurrent and most
significant concepts are
identified in use case
descriptions

System Analyst (perform),
Domain Expert (assist)

Problem Ontology
Description

Generalize and
Abstract Concepts

Concepts are arranged by
means of inheritance and
abstraction.

System Analyst (perform),
Domain Expert (assist)

Problem Ontology
Description

Relate Concepts Determine concept
relationships and especially
composition ones.

System Analyst (perform),
Domain Expert (assist)

Role Plan
The Role Plan activity details the behavior of each role by a general plan. This
plan is a partial fulfillment of the organization objectives. The plan is composed of
RoleTasks that are elementary units of action. The different plans should conform
to the scenarios described in the previous activity. One different diagram is drawn
for detailing the behavior of each organization. Very complex plans may require a
specific diagram depicted for each role. Tasks of this activity are detailed in Table 9
and their flow is represented in Fig. 12.

ASPECS 79

Fig. 8 The flow of tasks of the Problem Ontology Description activity

Table 6 Task descriptions of the Organization Identification activity

Activity Task Task description Roles involved

Organization
Identification

Identify
Agent-Oriented
Subsystem

Identify the parts of the systems that will be
realized by using an agent-oriented
approach.

System Analyst
(perform)

Organization
Identification

Structural
Analysis

Cluster use cases considering their
associations and related ontological
concepts.

System Analyst
(perform)

Organization
Identification

Behavioral
Analysis

Cluster use cases dealing with related
pieces of system behavior, consider
organizational design patterns too.

System Analyst
(perform)

Fig. 9 The flow of tasks of the Organization Identification activity

Capacity Identification
The Capacity Identification activity contributes to the definition of generic beha-
viors. The underlying principle is to abstract the know-hows that are necessary

80 M. Cossentino et al.

Table 7 Task descriptions of the Interaction and Role Identification activity

Activity Task Task description Roles involved

Interaction and
Role Identification

Identify Roles Identify roles from problem
ontology and the previously
identified organizations.

System Analyst
(perform)

Interaction and
Role Identification

Assign
Responsibilities to
Roles

Responsibilities correspond to
a part of the requirements
associated to the role’s
organization.

System Analyst
(perform)

Interaction and
Role Identification

Identify Interactions Role interactions can be
deduced from the study of the
relationship between use cases
and the associated roles.

System Analyst
(perform)

Interactions and
Roles
Identification

Verify
Decomposition

Verify the goodness of the
decomposition by studying the
contributions from
organizations at a given level to
roles belonging to the upper
level.

System Analyst
(perform)

Fig. 10 The flow of tasks of the Interaction and Role Identification activity

Table 8 Task descriptions of the Scenario Description activity

Activity Task Task description Roles involved

Scenario
Description

Describe
Scenario

Describe scenarios as a set of interacting roles
working to achieve a required behavior of the
system.

System Analyst
(perform)

for playing the roles of an organization. This additional abstraction will allow the
modularization and parameterization of the system to be (especially these choices
can be made during the next phase). Indeed, the abstraction represented by a
capacity can be fulfilled by any means, some unknown at this stage. The identified
capacities are added to the already designed IRI diagram by adding relationships
between capacities and roles. Tasks of this activity are detailed in Table 10 and their
flow is represented in Fig. 13.

ASPECS 81

Fig. 11 The flow of tasks of the Scenario Description activity

Table 9 Task descriptions of the Role Plan activity

Activity Task Task description Roles involved

Role Plan Detail
Responsibilities

Detail responsibilities
assigned to the role
studied in the current
diagram.

System Analyst (perform)

Role Plan Define Tasks Identify a set of
RoleTasks for
accomplishing the
assigned responsibilities.

System Analyst (perform)

Role Plan Define Transitions Define transitions among
the various tasks and the
set of associated
conditions.

System Analyst (perform)

Role Plan Decompose Roles Decompose roles if they
require external
contributions and/or are
not correctly
encapsulated/coherent.

System Analyst (perform)

Fig. 12 The flow of tasks of the Role Plan activity

2.1.3 Work Products
The System Requirements phase generates eight work products. Their relationships
with the MAS metamodel elements are described in Fig. 14.

This diagram represents the System Requirements model in terms of work
products. Each of these reports one or more elements from the ASPECS MAS

82 M. Cossentino et al.

Table 10 Task descriptions of the Capacity Identification activity

Activity Task Task description Roles involved

Capacity
Identification

Identify Capacities Identify the generic part of the
role behavior and distinguish it
from all behaviors which could
depend on internal properties and
data of the entity which will play
the role.

System Analyst
(perform)

Fig. 13 The flow of tasks of the Capacity Identification activity

Fig. 14 ASPECS System Requirements phase work products

ASPECS 83

Table 11 ASPECS System Requirements phase work product kinds

Name Description Workproduct kinds

Domain
Requirement
Description
(DRD)

A document composed by standard UML use case
diagrams, textual documentation of use cases and
textual description of non-functional requirements

Composite (Structured
C Behavioral)

Glossary A structured text document defining terms used in
the development phases.

Structured

Problem
Ontology
Description
(POD)

The ontology is described in terms of concepts
(categories of the domain), predicates (assertions on
concept properties), actions (performed in the
domain, affecting the status of concepts), and their
relationships. A profile for UML class diagrams is
used to describe the ontology.

Composite (Structured
C Structural)

Organization
Identification
(OID)

A class diagram reporting use cases and
organizations as packages containing them. First
level organizations can be decomposed into smaller
ones in order to describe an organizational hierarchy.

Behavioral

Interactions and
Roles
Identification
(IRI)

A class diagram where each role is represented by a
stereotyped class and interactions are represented by
associations between roles. Roles are positioned
inside packages representing organizations they
belong to.

Structural

Scenarios
Description (SD)

Scenarios are described using stereotyped sequence
diagrams

Behavioral

Role Plan (RP) An activity diagram where swimlanes are used to
partition activities of different roles and one
swimlane is left for hosting external events.

Behavioral

Capacity
Identification
(CI)

A stereotyped class diagram where capacities are
related to the roles that require them through
associations. Capacity description is completed by a
table detailing, for each capacity, the following
fields: Name, Input, Output, Requires, Ensures, and
Textual Description.

Composite (Structured
C Structural)

metamodel; each MAS metamodel element is represented using a UML class icon
(yellow filled) and, in the documents, such elements can be Defined, reFined,
Quoted, Related or their Relationships Quoted.

Work-Product Kinds
Work-product kinds are briefly described in Table 11. In the following paragraphs
a description of the notation adopted in each work product will be provided.
Generally speaking, ASPECS uses UML as a modeling language but because of
the specific needs of agent and holonic organizational design, the UML semantics
and notation are used as reference points, and they have been extended using
specific profiles (stereotypes); in fact, UML diagrams are often used to represent
concepts that are not completely considered in UML and the notation has been

84 M. Cossentino et al.

Fig. 15 CMS case study: Domain Requirement Description

modified to better meet the need of modeling agents. Almost all UML diagrams are
associated with a textual document documenting and completing the content of the
diagram.

Domain Requirement Description
The global objective of the Domain Requirement Description (DRD) activity is
gathering needs and expectations of application stake-holders and providing a
complete description of the behavior of the application to be developed. In the
proposed approach, these requirements should be described by using the specific
language of the application domain and a user perspective. This is usually done
by adopting use case diagrams for the description of functional requirements (see
Fig. 15); besides, conventional text annotations are applied to use cases documenta-
tion for describing non-functional requirements. The use cases are elicited from text
scenarios and stake-holders interviews.

Problem Ontology Description
The global objective of the POD is to provide an overview of the Problem Domain.
Problem ontology is modeled by using a class diagram where concepts, predicates,
and actions are identified by specific stereotypes. Problem Ontology of the CMS
Case study is depicted in Fig. 16. The POD is the result of the analysis of DRD,
scenarios, and stake-holders interviews.

ASPECS 85

Fig. 16 CMS case study: Problem Ontology Description

Organization Identification
The work product of the Organization Identification activity (OID) refines the use
case diagram produced by the DRD activity and adds organizations as packages
encapsulating the fulfilled use cases. The use case diagram presented in Fig. 17
presents the organization identification diagram for the CMS Case study. The OID
uses DRD and POD.

Interaction and Role Identification
The result of the IRI is a class diagram where classes represent roles (stereotypes
are used to differentiate common and boundary roles), packages represent organiz-
ations and relationships describe interactions among roles or contributions (to the
achievement of a goal) from one organization to another. Figure 18 shows the IRI
diagram for the CMS Case study. The organizations come from OID. Scenarios are
used to identify roles and interactions.

Scenario Description
Scenarios of the Scenario Description (SD) activity are drawn in the form of UML
sequence diagrams and participating roles are depicted as object-roles. The role
name is specified together with the organization it belongs to. Figure 19 shows the
Scenario Description diagram for the example of the Paper Submission use case for
the Paper Management organization of the CMS Case study. In this use case, only

86 M. Cossentino et al.

Fig. 17 CMS case study: Organization Identification Description

two of the three roles of the organization are interacting. Organizations, roles, and
interactions come from OID and IRI. Obviously, scenarios are used.

Role Plan
The resulting work product of the Role Plan (RP) activity is an UML activity
diagram reporting one swimlane for each role. Activities of each role are positioned
in the corresponding swimlane and interactions with other roles are depicted in
the form of signal events or object flows corresponding to exchanged messages.

ASPECS 87

Fig. 18 CMS case study: Interaction and Role Identification

Fig. 19 CMS case study: example of the Scenario Description for the Paper Submission use case
for the Paper Management organization

Figure 20 shows part of the Role Plan Description Diagram for the Paper Manage-
ment organization of the CMS Case study. Roles and interactions come from IRI.
SD are also used.

Capacity Identification
The work product produced by the Capacity Identification activity is a refinement
of the IRI diagram including capacities (represented by classes) and relating them
to the roles that require them. Figure 21 shows the Capacity Identification Diagram
for the Paper Management organization of the CMS Case study. Organizations and
roles come from OID and IRI.

88 M. Cossentino et al.

Fig. 20 CMS case study: part of the Role Plan Description for the Paper Management organiza-
tion

Fig. 21 CMS case study: Capacity Identification for the Paper Management organization

2.2 Agent Society Design

The complete sequence of activities is described in Figs. 22, 23 and 24. As it was
the case for the first phase the description in terms of activities and work products
has been divided in two figures for clarity reasons. Each figure is complete in terms
of activities and corresponding roles and work products. The second figure adds the
required predecessor reference(s) to activitie(s) presented in the first figure.

ASPECS 89

Fig. 22 The Agent Society Design phase flow of activities

2.2.1 Process Roles
In this second phase of the ASPECS process three roles are employed: Agent
Designer, Domain Expert, and System Analyst. The first is a generic role which
generally corresponds to a senior developer or a software architect with a good
expertise in multiagent systems. The second is an expert in the Problem Domain able
to help the designer in analyzing the problem and understanding its peculiarities.
The third collaborates to some design activities by bringing her/his understanding
of requirements to be satisfied.

Domain Expert
She/he assists in:
1. The refinement and identification of concepts.
2. The identification of actions and predicates.

Agent Designer
She/he is responsible for:
1. Refining concepts of Problem Ontology and identification of new solution-

dependent concepts during Solution Ontology Description (SOD) activity.
2. Action and predicate identification and their association with previously iden-

tified concepts during SOD activity.
3. Identifying individual agents and their personal goals during Agent Identific-

ation activity. The Agent designer analyzes the solution ontology to identify
individuals who are usually concepts linked to actions. Action’s analysis is
considered as a useful guideline to identify agent responsibilities since an
individual acts according to personal motivations and goals.

4. Defining agent’s architecture in Agent Architecture Description (ADD) activity.
5. Clustering interactions in communications or conversations during Communic-

ation Ontological Description (COD) activity.
6. Describing role plans using statecharts during the Role Behavior Description

activity.

90 M. Cossentino et al.

Fig. 23 The Agent Society phase described in terms of activities and work products I

7. Describing tasks and actions needed by roles to realize a capacity.
8. Defining purpose-specific interaction protocols during Protocol Description

(PD) activity when the description of communications done during COD
and Scenario Description activities does not match any of the existing FIPA
protocols.

9. Identifying resources and services related to the different roles of solution’s
organizations during Organization Dependencies Description (ODD) activity.

10. Identifying constraints between roles during Role Constraints Identification
(RCI) activity.

11. Identifying agents’ responsibilities, defining lowest level roles and identifying
agents during the Agent Identification (AI) activity.

12. Determining agent’s personal plan during Agent Plan Description (APD)
activity.

ASPECS 91

R
ol

e
C

on
st

ra
in

ts
Id

en
tif

ic
at

io
n <

<
in

pu
t>

>
<

<
in

pu
t>

>

<
<

pr
ed

ec
es

so
r>

>

<
<

pr
ed

ec
es

so
r>

>

<
<

pr
ed

ec
es

so
r>

>
<

<
pr

ed
ec

es
so

r>
>

<
<

pr
ed

ec
es

so
r>

>

<
<

pr
ed

ec
es

so
r>

>

<
<

ou
tp

ut
>

>
<

<
op

tio
na

l,
ou

tp
ut

>
>

<
<

op
tio

na
l,

ou
tp

ut
>

>

<
<

in
pu

t>
>

<
<

ou
tin

pu
t>

>
<

<
in

pu
t>

>

<
<

in
pu

t>
>

<
<

in
pu

t>
>

<
<

in
pu

t>
>

<
<

pe
rf

or
m

,
as

si
st

>
>

<
<

pe
rf

or
m

,
as

si
st

>
>

<
<

pe
rf

or
m

,
as

si
st

>
>

<
<

pe
rf

or
m

,
pr

im
ar

y>
>

<
<

pe
rf

or
m

,
pr

im
ar

y>
>

<
<

pe
rf

or
m

,
pr

im
ar

y>
>

<
<

pe
rf

or
m

,
pr

im
ar

y>
>

<
<

in
pu

t>
>

<
<

ou
tp

ut
>

> <
<

ou
tp

ut
>

>
<

<
ou

tp
ut

>
>

O
rg

an
iz

at
io

n
D

ep
en

de
nc

ie
s

D
es

cr
ip

tio
n

O
rg

an
iz

at
io

n
D

ep
en

de
nc

ie
s

D
es

cr
ip

tio
n

O
rg

an
iz

at
io

n
D

ep
en

de
nc

ie
s

D
es

cr
ip

tio
n

R
ol

e
B

ah
av

io
ra

l
D

es
cr

ip
iti

on

A
ge

nt
 A

rc
hi

te
ct

ur
e

D
es

cr
ip

iti
on

A
rc

hi
te

ct
ur

e
co

m
pl

et
io

n

A
ge

nt

Id
en

tif
ic

at
io

n

A
ge

nt

Id
en

tif
ic

at
io

n

A
ge

nt

Id
en

tif
ic

at
io

n

A
ge

nt

A
rc

hi
te

ct
ur

e
D

es
cr

ip
tio

n

C
ap

ac
iti

es
C

ol
le

ct
io

n

H
ol

ar
ch

y
D

es
ig

n
H

ol
ar

ch
y

D
ef

in
iti

on
H

ol
on

 G
ov

er
nm

en
t

M
od

el
 D

ef
in

iti
on

H
ol

on
 S

el
f-

or
ga

ni
za

tio
n

M
ec

ha
ni

sm
s

D
ef

in
iti

on

A
ge

nt

D
es

ig
ne

r

A
ge

nt

D
es

ig
ne

r

A
ge

nt

D
es

ig
ne

r

A
ge

nt
 A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

A
ge

nt
 P

la
n

D
es

cr
ip

tio
n

R
ol

e
C

os
tr

ai
nt

s
Id

en
tif

ic
at

io
n

C
os

tr
ai

nt
s

D
ef

in
iti

on
R

ol
e

C
os

tr
ai

nt
s

Id
en

tif
ic

at
io

n

D
ep

en
de

nc
ie

s
Id

en
tif

ic
at

io
n

A
ge

nt
 P

la
n

D
es

cr
ip

tio
n

R
ol

e
A

ss
ig

nm
en

t
R

ol
e

S
tr

at
eg

y
S

el
ec

tio
n

R
ol

e
B

eh
av

io
ra

l
D

es
cr

ip
tio

n

O
rg

an
iz

at
io

n
D

ep
en

de
nc

ie
s

D
es

cr
ip

tio
n

S
ys

te
m

A
na

ly
st

S
ys

te
m

A
na

ly
st

A
na

ly
ze

 In
te

ra
ct

io
ns

an
d

R
ol

es
S

ol
ut

io
n

O
nt

ol
og

y
A

na
ly

si
s

G
at

he
r

R
es

po
ns

ab
ili

tie
s

C
ap

ac
ity

Id
en

tif
ic

at
io

n

Id
en

tif
yi

ng
A

ge
nt

s

S
ol

ut
io

n
O

nt
ol

og
y

D
es

cr
ip

tio
n

D
om

ai
n

R
eq

ui
re

m
en

t
D

es
cr

ip
tio

n

In
te

ra
ct

io
ns

an
d

R
ol

es
Id

en
tif

ic
at

io
n

S
ol

ut
io

n
O

nt
ol

og
y

D
es

cr
ip

tio
n

A
ge

nt
ifi

ca
tio

n

H
ol

on
ic

C
he

es
e-

B
oa

rd
D

ia
gr

am

H
ol

on
G

ov
er

nm
en

t
D

es
cr

ip
tio

n

H
ol

on
 D

yn
am

ic
R

ul
es

 D
es

cr
ip

tio
n

A
ge

nt
 P

la
n

D
es

cr
ip

tio
n

Fi
g

.
2

4
T

he
A

ge
nt

So
ci

et
y

ph
as

e
de

sc
ri

be
d

in
te

rm
s

of
ac

tiv
it

ie
s

an
d

w
or

k
pr

od
uc

ts
II

92 M. Cossentino et al.

Table 12 Task descriptions of the Solution Ontology Description activity

Activity Task Task Description Roles involved

Solution
Ontology
Description

Concepts
refinement and
identification

Existing concepts are refined and new
ones may be identified

Agent Designer
(perform), Domain
Expert (assist)

Solution
Ontology
Description

Actions and
predicates
identification

Actions and predicates are identified with
the help of the Domain Expert

Agent Designer
(perform), Domain
Expert (assist)

13. Defining the complete solution structure during Holarchy Design (HD) activity:
mapping between agent and role, agent composition.

14. Specifying the rules that govern the dynamics of holarchies during HD activity.

System Analyst
She/he assists in:
1. Identifying agents’ responsibilities, defining lowest level roles and identifying

agents during the Agent Identification (AI) activity.
2. Defining agent’s architecture in ADD activity.
3. Identifying constraints between roles during RCI activity.

2.2.2 Activity Details
Solution Ontology Description
The objective of this activity consists in refining the problem ontology described
during POD by adding new concepts related to the agent-based solution and refining
the existing ones.

For concept identification, a guideline consists in looking into previously iden-
tified organizations. The hierarchical composition of two organizations generally
hides a composition between concepts. This can also be done by looking into role
plans and scenarios. Identification of actions and predicates can be facilitated by
results of the capacity identification activity. As we have already said, if a capacity
deals with some ontological knowledge, manipulated concepts should be connected
to an action in the corresponding ontology. Moreover, the solution ontology will
also be exchanged in agent communications; an indication about which knowledge
will be necessary to roles’ behaviors and in which activities it will be used can
be found in role plans and scenarios. From these, actions and predicates can
generally easily be identified. Of course, this description of the ontology is also
an iterative process, and it is generally refined during the communication ontology
description (the second activity of the Agent Society phase). Concepts, predicates,
and actions of this ontology will also be used to describe information exchanged
during communications among roles. Tasks of this activity are detailed in Table 12
and their flow is represented in Fig. 25.

ASPECS 93

Fig. 25 The flow of tasks of the Solution Ontology Description (SOD)

Communication Ontological Description
This activity aims at describing communications among roles in terms of ontology,
interaction protocol, and content language.

A communication is an interaction between two or more roles where the content
(language, ontology, and encoding) and the control of the communication (protocol)
are explicitly detailed. A communication mainly consists of FIPA speech acts and
protocols. The model of role communication we adopt is based on the assumption
that two roles during their interaction have to share a common ontology. This
common knowledge is represented in the communication by a set of Ontology
elements. A communication is an interaction composed of several messages ordered
by a Protocol. Each set of interactions between two roles has to be clustered in
one or more communications. At this stage, we could regard the previous studied
interactions as messages of the communication. Interactions linking a boundary role
to another boundary one are generally refined in communications (usually these
interactions are mediated by the environment and therefore). They can be based
on events or other stimuli sent from one role to the other. Interactions between
classical (i.e., non-boundary) roles are refined in communications with a defined
protocol, a referred ontology and an associated content language. As a consequence,
in communications, the sequence of messages will be ruled by a proper interaction
protocol, and the content will be related to the exchanged information or required
exhibition of a capacity through an explicit reference to the adopted ontology. This
is in accordance with the FIPA specifications [6] (that we largely adopt), where
communications consist of speech acts [14]. FIPA also specifies a relevant number
of interaction protocols but a new one, if necessary, can be designed.

This activity should also describe data structures required in each role to store
exchanged data. These are based upon the elements of the solution ontology. Tasks
of this activity are detailed in Table 13 and their flow is represented in Fig. 26.

94 M. Cossentino et al.

Table 13 Task descriptions of the Communication Ontology Description activity

Activity Task Task Description Roles involved

Communication
Ontology
Description

Interactions
identification

Among the existing interactions some are
refined into communications

Agent Designer
(perform)

Communication
Ontology
Description

Protocol
definitions

For each communication, a protocol and
speech acts are defined

Agent Designer
(perform),
Domain Expert
(assist)

Fig. 26 The flow of tasks of the Communication Ontological Description (COD)

Role Behavior Description
This activity aims at defining the complete life cycle of a role by integrating
previously identified RoleTasks, capacities, communications/conversations in which
it is involved and the set of (or part of) requirements it has to fulfill. The behavior of
the role is described by a set of AgentTasks and AgentActions.

Role Behavior Description is a refinement at the Agent Society level of out-
puts produced by the Role Plan activity during the System Requirements phase.
Each RoleTask is refined and decomposed into a set of atomic behavioral units.
The behavior of each role is now described using a statechart or an activity
diagram.

If a role requires capacities or provides services, this activity has to describe
tasks and actions in which they are really used or provided. The designer describes
the dynamical behavior of the role starting from the Role Plan drawn in the previous
phase, and the capacities used by the role.

Tasks of this activity are detailed in Table 14 and their flow is represented in
Fig. 27.

ASPECS 95

Table 14 Task descriptions of the Role Behavior Description activity

Activity Task Task Description Roles involved

Role Behavior
Description

Role Plan
Refinement

Role plans are described in the form of a
statechart

Agent Designer
(perform)

Role Behavior
Description

Capacity
Realization

If a role requires capacities or provides
services, tasks, and actions in which they
are really used or provided have to be
described.

Agent Designer
(perform)

Fig. 27 The flow of tasks of the Role Behavior Description (RBD) activity

Protocol Description
The aim of this activity is to define purpose-specific interaction protocols whose
need may arise when the description of communications done during the COD
(Communication Ontology Description) and SD (Scenario description) activities
does not match any of the existing FIPA protocols. The designer starts from
scenarios and the ontological description of communications in order to find the
need for a new specific interaction protocol. If this is the case, then he can proceed
to the definition of a new protocol that is compliant with the interactions described
in scenarios and the semantics of the communication. It is advisable to refer to the
FIPA Interaction protocols library3 in order to see if a satisfying protocol already
exists and if not, probably an existing one can be the basis for changes that can
successfully solve the specific problem. Tasks of this activity are detailed in Table 15
and their flow is represented in Fig. 28.

Organization Dependencies Description
The first aim of this activity is to identify resources manipulated by roles; this often
implies identifying new capacities devoted to manipulate these resources. Moreover,
since organizations depend on each other through service exchange, services
provided by roles (while exploiting their capacities and accessing resources) can
be identified in this activity.

3FIPA Interaction Protocols specifications: http://www.fipa.org/repository/ips.php3

http://www.fipa.org/repository/ips.php3

96 M. Cossentino et al.

Table 15 Task descriptions of the Protocol Description activity

Activity Task Task Description Roles involved

Protocol Description Need for new
protocol discovery

The designer starts from
scenarios and the ontological
description of
communications in order to
find the need for a new
specific interaction protocol.

Agent Designer
(perform)

Protocol Description Role plan refinement Refine the defined role plan
by decomposing activities
into atomic behavior units

Agent Designer
(perform)

Fig. 28 The flow of tasks of the Protocol Description (PD)

Identification of resources can be done by identifying resources that can be
accessed and manipulated by different roles: databases, files, hardware devices, etc.
Resources are external to the role; a capacity is generally used to interface the role
with the new resource. Each capacity needs a realization in the form of a service
that is purposefully defined for that.

When capacities and services are completely described, a verification is neces-
sary to ensure that each capacity is associated with its set of possible service-level
realizations. This matching between service and capacity allows the initialization of
a repository that may be used to inform agents on how to dynamically obtain a given
capacity. Moreover, it is also a verification of the goodness of the system hierarchical
decomposition. This matching should validate the contribution that organizations
acting at a given level give to upper-level organizations. It will be assumed that an
organization can provide a service if the service is provided by one of its roles.
A role may provide a service if it owns a capacity with a compatible description,
and it manages/supervises a workflow where:
• The service is implemented in one of its own behaviors or
• The service is obtained from a subset of other roles of the same organization

by interacting with them using a known protocol; this is a service composition
scenario where the work plan is a priori known, and performance may be
someway ensured or

• The service is obtained from the interaction of roles of the same organization, but
the work plan is not a priori known and the service results in an emergent way

ASPECS 97

Table 16 Task descriptions of the Organization Dependencies Description activity

Activity Task Task Description Roles involved

Organizations
Dependencies
Description

Resource
Identification

Identify resources manipulated by roles. Agent Designer
(perform)

Organizations
Dependencies
Description

Service
Identification
and
Description

Identify and describe services provided by
roles and organizations

Agent Designer
(perform)

Organizations
Dependencies
Description

Capacity
Realization

Match capacities with services that can
realize them and with resources accessed
by capacities

Agent Designer
(perform)

Organizations
Dependencies
Description

Find
Organization
Dependencies

Check dependencies between
organizations for possible capacities to be
published/realized

Agent Designer
(perform)

Fig. 29 The flow of tasks of the Organizations Dependencies Description (ODD)

In the previous cases, the management of a service provided by the global
organization behavior is generally associated to one of the organization’s roles. It
can also be managed by at least one of the representatives of the various holons
playing roles defined in the corresponding organization. Service exchange is often
a need arising from the beginning of the Requirements Analysis phase. In the
proposed approach, some services can be identified by exploiting relationships
among use cases, especially those crossing different organizational packages. If two
use cases belonging to two different organizations are related by an include or extend
relationship, it is very likely that the corresponding organizations will cooperate in
a service exchange. Tasks of this activity are detailed in Table 16 and their flow is
represented in Fig. 29.

Agent Identification
The Agent Identification (AI) activity consists in identifying the agents that will
compose the lowest level of the system hierarchy and their responsibilities. Respons-

98 M. Cossentino et al.

Table 17 Task descriptions of the Agent Identification activity

Activity Task Task Description Roles involved

Agent
Identification

Gather
responsibilities

Identify the set of lowest level
requirements

Agent Designer (perform),
System Analyst (assist)

Agent
Identification

Analyze
Interactions
and Roles

Find lowest level roles Agent Designer (perform),
System Analyst (assist)

Agent
Identification

Solution
Ontology
analysis

Analyze the Solution Ontology
to identify concepts linked to
actions

Agent Designer (perform),
System Analyst (assist)

Agent
Identification

Identifying
agents

Combine the results of previous
tasks to identify agents

Agent Designer (perform),
System Analyst (assist)

ibilities are modeled using the notion of individual goals, and they will be the basis
to determine the agent architecture in the next activity. The Domain Requirements
Description, Interactions, and Role Identification and Solution Ontology Descrip-
tion Document are the main inputs for this activity. Results of this activity may be
reported by adopting TROPOS[2] goal and actor diagram. Other options may be
preferred like, for instance, the system and agent overview diagrams proposed in
PROMETHEUS[13] .

The work flow of this activity begins with the identification of Agents goals;
this mainly consists in gathering organization responsibilities located at the lowest
level of the system organizational hierarchy. These responsibilities are expressed in
terms of requirements described by using a combination between a use-case driven
and a goal-oriented approach. A second task exploits the Interactions and Role
Identification activity results. Indeed, Agents are conceived to play lowest-level
roles; their personal goals should at least correspond to the set of the goals pursued
by these roles. In order to be able to play these roles, agents have also to provide an
implementation for the capacities required by these roles. This aspect will be studied
in the next activity. A third task, consists in the analysis of the Solution Ontology
in order to identify concepts that represent system individuals (concepts linked to
ontology actions). The results of these three tasks are effectively considered as
useful guidelines to identify agent responsibilities since an individual acts according
to personal motivations and goals. Tasks of this activity are detailed in Table 17 and
their flow is represented in Fig. 30.

Agent Architecture Description
The AAD activity defines the architecture to be adopted by agents. Such agent
architecture should at least define the set of roles that the agent should play and
the minimal set of services implementing the capacities required by these roles. The
association between Agents and Agent Roles allows the identification of the set of
capacities that are required by Agent Roles in order to be played by Agents. In
this activity, a UML class diagram is used to describe agents and their capacities
realizations in terms of attributes and methods.

ASPECS 99

Fig. 30 The flow of tasks of the Agent Identification (AI) activity

Table 18 Task descriptions of the Agent Architecture Description activity

Activity Task Task Description Roles involved

Agent
Architecture
Description

Capacities
Collection

Capacities needed by the agent to
play roles are related to the agent.

Agent Designer (perform),
System Analyst (assist)

Agent
Architecture
Description

Agent
Architecture
Description

Other agents’ architectural details
(for instance knowledge) are
added to the architecture
definition.

Agent Designer (perform),
System Analyst (assist)

Based on the previous activity, Agent Identification, this activity is composed of
two tasks: Capacities collection and Architecture completion. The first task consists
in collecting the capacities needed by the roles played by the agent, the second in
adding all the necessary agent architectural elements (for instance knowledge slots
necessary to manage the concepts related to role playing and capacities enacting).
Tasks of this activity are detailed in Table 18 and their flow is represented in
Fig. 31.

Role Constraints Identification
This activity aims at identifying constraints among roles. The objective consists
in characterizing roles that have to be played simultaneously, priorities or mutual

100 M. Cossentino et al.

Fig. 31 The flow of tasks of the Agent Architecture Description (AAD) activity

Table 19 Task descriptions of the Role Constraints Identification activity

Activity Task Task Description Roles involved

Role
Constraints
Identification

Dependencies
Identification

Identification of possible
conflicts, dependencies, and
the constraints that relate
roles

Agent Designer (perform),
System Analyst (assist)

Role
Constraints
Identification

Constraints
Definition

Formalization of constraints
in the output diagram

Agent Designer (perform),
System Analyst (assist)

exclusion between roles, preconditions for one role generated by another one, etc.
Concurrency constraints are also important because they will drive the definition
of role scheduling policies. Constraints between roles that prevent their concurrent
execution and force a precise execution sequence have to be defined as well. Roles
can be played simultaneously if and only if they allow an exchange of information
between two different organizations. A means for realizing this exchange may
consist in using the agent internal context when both roles belong to the same
agent. This constitutes an alternative to the use of services and a simplification of
information transfer.

The first task of the work consists in identifying constraints between roles thanks
to roles’ dependencies and associated knowledge as described in the Organization
Dependency Description and Role Behavior Description activities. This allows the
definition of precise constraints between roles in the second activity’s task. Results
of this activity are added to the ODD diagram, thus refining that work product.
Tasks of this activity are detailed in Table 19 and their flow is represented in
Fig. 32.

ASPECS 101

Fig. 32 The flow of tasks of the Role Constraints Identification (RCI) activity

Table 20 Task descriptions of the Agent Plan Description activity

Activity Task Task Description Roles involved

Agent Plan
Description

Role
Assignment

Select, for each agent the roles it
plays

Agent Designer
(perform)

Agent Plan
Description

Role Strategy
Selection

Define a role strategy selection for
each agent

Agent Designer
(perform)

Agent Plan Description
This activity refines the design of the agent internal architecture. Plans of each agent
are defined according to its goals, starting from the Agent Architecture Description
and RCI work products. In the plan, the designer makes explicit the strategy the
agent will use for choosing the roles it will play. In this activity, a statechart or
activity diagram is used to describe the plan of each agent.

In this activity, each agent within the system is associated with the set of roles
it has to play according to the set of capacities it owns. In a second step, the
strategy for selecting the current role-playing relationship is defined. It may consist
in a scheduling algorithm or a rule-based or norm-based mechanism. Tasks of this
activity are detailed in Table 20 and their flow is represented in Fig. 33.

Holarchy Design
A super-holon is a community of holons that cooperate to achieve a commonly
agreed objective. In order to allow a fruitful evolution of the super-holon structure
at runtime, certain rules have to be defined.

102 M. Cossentino et al.

Fig. 33 The flow of tasks of the Agent Plan Description (APD) activity

Trying to enumerate all possible issues would probably result in an incomplete
or domain-dependent list. Conversely, we prefer to only discuss the most common
and important rules that must be defined in the presented approach. The first rule
is about managing Inclusion/Exclusion of holons members. Once a super-holon
has been created, new members may request to join it or the super-holon itself
may require new members to achieve its goal/task (the new member admission
process is called Merging). Two aspects of that should be analyzed: (1) who is in
charge for taking the decisions and how this happens (head, vote, etc.); (2) how
the requesting process could be started (who is to be contacted by the external
holon who wants to enter the super-holon to play a role within it). The decision
process for the admission of a new member can be done accordingly to several
different internal policies representing different levels of involvement of the holon
members’ community: federation is positioned at one side of the spectrum; in this
configuration, all members are equal when a decision has to be taken. Opposite to
that there is the dictatorship, where heads are omnipotent; a decision taken by one of
them does not have to be validated by any other member. In this government form,
members loose most of their autonomy having to request permission of the head to
provide a service or request a collective action.

Even if these configurations may be useful in specific domains, generally an
intermediate configuration will be desirable. In order to identify the right choice,
it is, firstly, necessary to analyze the functionalities that will be provided by the
holon, and then define the level of authority that the Head will have.

A versatile solution to this problem consists in establishing a voting mechanism
for each functionality. In order to parameterize a voting mechanism, three elements
have to be defined: Requester, Participants, and Adoption Mechanism.

The vote Requester defines which members are allowed to request for a vote,
Participants are members who are authorized to participate in the voting process,
and, finally, the adoption mechanism defines how a proposal is accepted or rejected.
This scheme can be easily modeled as an organization as shown in Fig. 34.

ASPECS 103

Fig. 34 Voting organization

Table 21 A part of the Holon government description template

Related aspects Questions to answer

The addition of new functioning rules • Is it possible to add new rules?
• By what process can we add a new functioning

rule?
Integration/Exclusion of a member • How are the new members integrated?

• How to exclude a member?
New tasks acceptance • How are the new tasks accepted or refused?
Choice and Acceptance of new objectives
for the super-holon

• Is it possible to add new goals to the super-
holon?

• If yes, how?
Super-holon actions • Who can take decisions about action selec-

tion?
Multi-Part authorized • Are the members authorized to join other

holons?
• If yes, under which conditions?

Holon Destruction: Leaving one of the
members

• Is it possible that a part leaves the super-holon
without implying its destruction?

• If yes, under which conditions?

Solution Ontology gives important information for the definition of the holonic
structure: rules and constraints are generally described in the ontology. Normally, at
this step, these constraints have already been associated to each organization.

Table 21 also provides a set of questions that may guide the design of holon
government and the determination of rules that govern holons dynamic. Answer to

104 M. Cossentino et al.

Table 22 Task descriptions of the Holarchy Design activity

Activity Task Task Description Roles involved

Holarchy Design Agentification Identification of the
holons for all levels and
their composition
relationships

Agent Designer (perform),
System Analyst (assist)

Holarchy Design Holon
Government
Model
Definition

For each holon,
definition of a decision
making mechanism

Agent Designer (perform),
System Analyst (assist)

Holarchy Design Holarchy
Definition

Definition of the initial
holarchies properties

Agent Designer (perform),
System Analyst (assist)

Holarchy Design Holon Self-
Organization
Mechanisms
Definition

Definition of the rules
that will describe the
dynamics of holarchies

Agent Designer (perform),
System Analyst (assist)

these questions facilitates the definition of the future super-holons functioning: not
authorized process, decisions are made by a vote, the heads take the decision, and
so on.

This activity aims at refining the solution architecture, and it is composed of
four tasks: firstly, the agentification task consists in identifying all the required
holons and associating them with the set of roles they can play. This allows the
identification of the set of capacities required by each holon, thus giving precise
indications on the architecture that should be adopted for it. Indeed, the holon
architecture is at least defined by the set of roles that the holon should play, the
minimal set of services that implement capacities required by its role. The second
task focusses on composed holons and aims at identifying a government type
for each of them. The objective consists in describing the various rules used to
take decisions inside each super-holon. At this point, all the previously described
elements are merged in order to obtain the complete set of holons (composed or
not) involved in the solution. In this way, the complete holarchy of the system at the
instance level is described.

The description obtained with the previous tasks is just the initial structure of the
system, the last objective is now to specify rules that govern holons’ dynamics in the
system (creation, new member integration, specific self-organization mechanisms,
scheduling policies for roles) in order to support a dynamic evolution of the system
holarchy. Tasks of this activity are detailed in Table 22 and their flow is represented
in Fig. 35.

2.2.3 Work Products
The System Requirements phase generates eight work products. Their relationships
with the MAS metamodel elements are described in Fig. 36. This diagram represents
the Agent Society Model in terms of work products. Each of these latter reports one
or more elements from the ASPECS metamodel Agency Domain.

ASPECS 105

Fig. 35 The flow of tasks of the Holarchy Design (HD)

Work-Product Kinds
Table 23 briefly describes the nature and content of each work product kind.
Almost every work-product could be considered as a composite one as each UML
diagram is associated to a structured text document detailing the content of the
diagram. We consider that this documentation is part of the diagram, the nature
of the work product is thus defined with respect to the description given in the
diagram.

Due to space concerns we present the three most representative examples of
workproducts.

Role Behavior Description
This activity produces a behavioral work product where role behaviors are refined
and detailed under the form of states and transitions. Transitions classically specify
the dynamic conditions under which roles change their states. The notation is that
of the UML state machine diagram for describing a single role behavior. Figure 37
shows an example of notation of the Role Behavior Diagram for the CMS case study.
Roles come from the IRI diagram and their general behavior from the PD diagram.

Role Constraints Identification
This activity produces a structural work product that describes roles and the
constraints that are to be verified at runtime. The notation used is an UML class
diagram where roles are represented as classes and constraints are expressed as
stereotyped relationships between roles. Figure 38 shows an example of notation
of the RCI diagram for the CMS case study. It is a refinement of the ODD diagram.

106 M. Cossentino et al.

Fig. 36 The Agent Society phase model documents structure

Holarchy Design
The Holarchy Design activity produces a diagram called cheeseboard diagram that
represents the different levels of the Holarchy, and, for each level, the different
holons and their corresponding groups and roles. A free text description can
complement this diagram to explain the adopted design choices. Figure 39 shows
an example of notation of the Holarchy Design diagram for the CMS case study.
Holons come from AI diagrams, groups and levels come from ODD diagrams.

ASPECS 107

Table 23 Work-product kinds of the Agent Society phase

Name Description Work-Product Kind

Solution Ontology
Description (SOD)

A UML Class Diagram with a specific profile
and its associated documentation describing
concepts, actions, predicates, and their
relationships of the agent-based solution
ontology

Structural & Structured
Text

Agent Identification (AI) Tropos goal and actor diagram or
PROMETEHEUS agent overview diagram
and their associated textual documentation to
identify agents and their individual goals

Behavioral &
Structured Text

Agent Architecture (AA) A UML Class Diagram with a specific profile
and its associated documentation describing
attributes and behavioral methods of each
agent and their personal capacities

Structural & Structured
Text

Communication
Ontological Description
(COD)

A UML Class Diagram with a specific profile
and its associated documentation describing
agents’ roles and their communications.
Interactions previously identified are now
clustered in conversation or communications
and represented by an association. Attributes
of each communication (Ontology) and each
conversation (Ontology, Content Language,
and Interaction Protocol) are specified in an
association class. Each conversation is
oriented from the initiator of the conversation
to the other participant roles.

Structural & Structured
Text

Role Behavior
Description (RBD)

UML State machine Diagram describing
role’s internal behavior in terms of
AgentActions, AgentTasks, and
AgentRoleStates.

Behavioral &
Structured Text

Protocol Description
(PD)

A UML Class Diagram with a specific profile
(or AUML) and its associated documentation
defining purpose-specific interaction
protocols when communications’ description
does not match any of the existing FIPA
protocols

Behavioral &
Structured Text

Organization
Dependencies
Description (ODD)

A UML Class Diagram with a specific profile
and its associated documentation describing
service, resources, capacities, and roles of
each organization. Refinement of Capacity
Identification diagram

Structural & Structured
Text

Role Constraints
Identification (RCI)

Refinement of ODD diagram with the
additional constraints between roles to be
played simultaneously.

Structural & Structured
Text

Agent Plan Description
(APD)

UML State Machine diagram with specific
profile and its associated documentation
defining an agent’s personal plan according to
its individual motivations and pursued goals.
The plan represents the strategy used by the

Behavioral &
Structured Text

(continued)

108 M. Cossentino et al.

Table 23 (continued)

Name Description Work-Product Kind

agent to choose the roles to play. Each agent
is associated to the set of roles it has to play
according to the set of capacities that it owns.

Behavioral &
Structured Text

Holarchy Design (HD),
Holonic Cheese-board

Cheese-board diagram and its associated
documentation describing the complete
structure of the system mapping the hierarchy
of organizations to a holarchy. This mapping
is based on the association between holons
composing the holarchy with the set of roles
they play in the various groups (instance of
organizations) composing the system.

Structural & Structured
Text

Holarchy Design (HD),
Holon Government
Description

Text document describing the various rules
used to take decisions inside each
super-holon: the holon decision-making
process.

Free text

Holarchy Design (HD),
Holon Dynamic Rules
Description

Text document specifying holons
self-organization mechanisms (creation, new
member integration, and scheduling policies
for roles) in order to support a dynamic
evolution of the system holarchy.

Free text

2.3 Implementation and Deployment

The objectives of the Implementation and Deployment phase are to implement and
deploy an agent-oriented solution resulting from the Agent Society Design phase.
Due to space restrictions this phase will not be fully described according to the
FIPA Standard but only synthesized in this section. The interested reader could find
information concerning this phase in [5] and on the ASPECS website.4

The complete sequence of activities is described in Fig. 40.

2.3.1 Process Roles
The roles involved in the activities and tasks of this phase are two: Developer and
Tester.

2.3.2 Activity Details
Some details about the activities of this phase are presented in Table 24. In the
following the different objectives for each activity are introduced.

The Holon Architecture Definition activity should define the architecture of each
agent/holon identified within the Agent Society Design phase. For each organiza-
tion, a description detailed enough to allow implementation should be provided. The

4http://www.aspecs.org

http://www.aspecs.org

ASPECS 109

Fig. 37 Role Behavior Description diagram—a portion of the CMS case study

Fig. 38 Role Constraints Identification diagram—a portion of the CMS case study

role playing relationship of each agent/holon and the sets of capacities/services are
completely defined.

The Code Reuse activity aims at integrating the set of organizational patterns
identified during the OID (Organization Identification) and IRI (Interactions and
Roles Identification) activities and for the Holon Government identification task.
The second aim is to allow the reuse of code from other existing applications.

The Code Production for Organizations and Roles activity should produce code
for each organization and role. The ideal case is when the chosen implementation
platform natively supports these concepts as it happens for Janus [8].

The Organizations and Roles Units Tests activity is the first level of test in
ASPECS. The principle is to test at organization and role levels for each specific
context.

The Code Production for Holons activity focusses on code production for each
Holon. The principle is to implement, depending on the platform primitives, the
results of the Holarchy Design activity from the previous phase.

110 M. Cossentino et al.

Fig. 39 Holarchy Design diagram—a portion of the CMS case study

Fig. 40 The Implementation and Deployment phase flow of activities

The Holon Unit Test activity is the second level of test in the ASPECS process.
The focus is on holon’s behavior validation. Each holon is thus individually tested.

The Deployment and Configuration activity details the concrete deployment
of the application. The elements to be detailed are, for example, a network
configuration, holon(s) physical location, external devices, external applications,
etc.

Integration Tests is the third and final test activity of the ASPECS process. The
testing scope is on system functionalities and on the interfaces between system parts.

ASPECS 111

Table 24 Activity details for the Implementation and Deployment phase

Activity name Task Task description Roles involved

Holon
Architecture
Definition

Static architecture
definition

Each architecture designed in the
Holarchy Design is detailed

Developer (perform)

Dynamic
architecture
definition

A dynamic architecture is
defined to take into account the
Holarchy Design

Developer (perform)

Code Reuse Organizations
Pattern Integration

OID model is used to identify
organizational patterns

Developer (perform)

Role-Interactions
Pattern Integration

IRI model is used to identify role
and interactions patterns

Developer (perform)

Holonic Pattern
Integration

Holarchy Design is used to
identify holonic patterns

Developer (perform)

Pattern Integration Identified patterns are merged
and adapted

Developer (perform)

Code Production
for Organizations
and Roles

Organization, Role
code production

IRI model and Role plan models
are detailed with platform
specific primitives

Developer (perform)

Organizations and
Roles Units Tests

Organization test SD model are used to define
organizations tests

Tester (perform),
Developer (assist)

Role test RP models are used to define
roles tests

Tester (perform),
Developer (assist)

Code Production
for Holons

Holons
CodeProduction

The HD model is used to define
tests dealing with rules about
holon government, task
management, and new members
entrance

Developer (perform)

Holon Unit Test Unit Test Definition The HD model is used to define
the most adapted implementation
and platform specific primitives

Tester (perform),
Developer (assist)

Deployment and
Configuration

Holon Partitioning The HD model is used to
establish a partition between the
various holons used to develop
the application

Developer (perform)

Dynamic
Configuration Rules

The configuration specification is
used to define rules for kernel
distribution/integration

Developer (perform)

Integration Tests Interfaces Tests The HD model is used to define
interface tests between
sub-systems

Tester (perform),
Developer (assist)

Functionality Tests The DRD model is used to define
functionality tests

Tester (perform),
Developer (assist)

112 M. Cossentino et al.

Table 25 Work-product kinds of the Implementation and Deployment phase

Name Description Work-Product Kind

Holarchy Architecture
Definition (HAD)

A UML Class Diagram with a specific
profile

Structural & Struc-
tured Text

Code Reuse (AI) A document describing the reused code Structured
Code Production for
Organizations and Roles
(CPOR)

A document describing code for
organizations and roles

Structured

Organizations and Roles
Unit Tests (ORUT)

A document describing tests for
organizations and roles.

Structured

Code Production for
Holons (CPH)

A document describing code for holons. Structured

Holons Unit Tests
(HUT)

A document describing tests for holons. Structured

Deployment and
Configuration

A UML Deployment Diagram with a
specific profile representing where the
agents are located, the resources and
communication channels.

Structural

Integration Test (IT) A document describing integration tests. Structured

Fig. 41 The work-product dependency diagram of the System Requirements phase

ASPECS 113

Fig. 42 The work-product dependency diagram of the Agent Society phase

2.3.3 Work Products
The Implementation and Deployment phase generates eight work products which
are listed in Table 25.

Work-Product Kinds
Work-product kinds are briefly described in Table 25.

3 Work-Product Dependencies

Figures 41 and 42 describe the dependencies among the work products of the first
two ASPECS phases.

114 M. Cossentino et al.

References

1. Bernon, C., Cossentino, M., Pavón, J.: An overview of current trends in european aose research.
Informatica 29(4), 379–390 (2005)

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini., A.: TROPOS: an agent-
oriented software development methodology. J. Auton. Agent Multi Agent Syst. 8(3), 203–236
(2004)

3. Cossentino, M., Gaud, N., Galland, S., Hilaire, V., Koukam, A.: Holomas’07, Regensburg,
Germany, pp. 237–246 (2007)

4. Cossentino, M., Galland, S., Gaud, N., Hilaire, V., Koukam, A.: How to control emergence
of behaviours in a holarchy. In: Self-adaptation for Robustness and Cooperation in Holonic
Multi-agent Systems (SARC), Workshop of the Second IEEE International Conference on Self-
adaptive and Self-organizing Systems (SASO). Isola di San Servolo, Venice, Italy (2008)

5. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs: an agent-oriented
software process for engineering complex systems. Auton. Agent Multi Agent Syst. 20(2),
260–304 (2010). doi:10.1007/s10458-009-9099-4

6. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specification (2002).
Standard, SC00061G

7. Foundation For Intelligent Physical Agents: FIPA Communicative Act Library Specification
(2002). Standard, SC00037J

8. Gaud, N., Galland, S., Hilaire, V., Koukam, A.: An organisational platform for holonic and
multiagent systems. In: PROMAS-6@AAMAS’08, Estoril, Portugal (2008)

9. Gerber, C., Siekmann, J., Vierke, G.: Holonic multi-agent systems. Tech. Rep. DFKI-RR-99-
03, DFKI - GmbH (1999)

10. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. Int.
J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

11. Object Management Group: MDA Guide, v1.0.1, OMG/2003-06-01 (2003)
12. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell,

J., Giorgini, P., Müller, J. (eds.) Agent-Oriented Software Engineering. Lecture Notes in
Computer Science. Springer, Berlin (2005)

13. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents. In:
Agent-Oriented Software Engineering III. Lecture Notes in Computer Science, vol. 2585, pp
174–185. Springer, Berlin (2003)

14. Searle, J.: Speech Acts. Cambridge University Press, Cambridge (1969)
15. Simon, H.A.: The Science of Artificial, 3rd edn. MIT, Cambridge (1996)
16. Wilber, K.: Sex, Ecology, Spirituality. Shambhala, Boston (1995). http://207.44.196.94/~

wilber/20tenets.html

http://207.44.196.94/~wilber/20tenets.html
http://207.44.196.94/~wilber/20tenets.html

ELDAMeth Design Process

Giancarlo Fortino, Francesco Rango, and Wilma Russo

Abstract
In this paper the design process documentation template defined in the context
of the IEEE FIPA DPDF Working Group (FIPA Design Process Documentation
Template, http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm, accessed
June 2012) is exploited to describe the ELDAMeth agent-oriented methodology.
ELDAMeth, which is based on the ELDA agent model and related frameworks
and tools, fully supports the development of distributed agent systems and has
been applied both stand-alone and in conjunction with other agent-oriented meth-
odologies to different application domains: e-Commerce, information retrieval,
conference management systems, content delivery networks, and wireless sensor
networks.

1 Introduction

ELDAMeth [7] is an agent-oriented methodology specifically designed for the
simulation-based prototyping of distributed agent systems (DAS). It is centered
on the ELDA (Event-driven Lightweight Distilled StateCharts Agent) model [9,
12] and on an iterative development process covering DAS Modeling, simulation,
and implementation for a target agent platform (currently JADE [2]) and exploits
specifically defined frameworks and CASE tools. In particular, the ELDA model is
based on three main concepts which are important for enabling dynamic and distrib-
uted computation [15, 16]: (1) lightweight agent architecture and agent behaviors
driven by events that trigger reactive and proactive computation; (2) agent interac-
tion and cooperation based on multiple coordination spaces that are exploited by

G. Fortino (�) • F. Rango • W. Russo
Department of Informatics, Modeling, Electronics and Systems (DIMES), University of Calabria,
Via P. Bucci, Cubo 41C, 87036 Rende (CS), Italy
e-mail: g.fortino@unical.it; frango@deis.unical.it; w.russo@unical.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__5,
© Springer-Verlag Berlin Heidelberg 2014

115

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm
mailto:g.fortino@unical.it
mailto:frango@deis.unical.it
mailto:w.russo@unical.it

116 G. Fortino et al.

the agents at run-time; (3) coarse-grained strong mobility through which agents can
migrate across agent locations by transparently retaining their execution state [6].

Moreover, ELDAMeth can be used either stand-alone, according to the
ELDAMeth process reported in Fig. 1, or in conjunction/integration with other
agent-oriented methodologies which support the analysis and (high-level) design
phases.

In particular, ELDAMeth has been integrated with Gaia [11], PASSI [4], and
MCP [9] by using a process-driven method engineering approach [3]. Moreover,
ELDAMeth (or previously defined models and frameworks that are now in
ELDAMeth) was applied in different application domains: e-Commerce [4, 11],
distributed information retrieval [7–9, 12, 14], content distribution networks [10],
distributed data mining [5], and wireless sensor networks [1].

Useful references for ELDAMeth:
Fortino, G., Russo, W.: ELDAMeth: a methodology for simulation-based prototyp-

ing of DAS. Inform. Softw. Technol. 54, 608–624 (2012)
Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven light-weight

DSC-based agents for MAS modeling. Int. J. Agent Orient. Softw. Eng. 4(2)
(2010)

Fortino, G., Rango, F., Russo, W.: Engineering multi-agent systems through
statecharts-based JADE agents and tools. Trans. Comput. Collect. Intell. LNCS
7270 VII, 61–81 (2012)

Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development
process for mobile agents. Inform. Softw. Technol. 46(13), 907–921 (2004)
Useful references for ELDAMeth integrations and extensions:

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM:
a simulation-based process for the development of multi-agent systems. Int. J.
Agent Orient. Softw. Eng. 2(2), 132–170 (2008)

Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A multi-coordination based
process for the design of mobile agent interactions. In: Proceedings of IEEE
Symposium on Intelligent Agents (2009)

Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and
validation of multi agent systems. Comput. Syst. Sci. Eng. 20(4), 94–107 (2005)

1.1 The ELDAMeth Process Lifecycle

ELDAMeth is based on the three phases of the iterative process model shown in
Fig. 2:
• The Modeling phase produces a specification of a Multi-Agent System (ELDA

MAS) fully compliant with the ELDA MAS Meta-model [9] (see Sect. 1.2).
Moreover, the platform-independent code of the ELDA MAS is generated in this
phase.

• The Simulation phase produces MAS execution traces and computes perform-
ance indices that are evaluated with respect to the functional and non-functional
requirements of the MAS under-development. On the basis of such evaluation,

ELDAMeth Design Process 117

Fig. 1 The traditional ELDAMeth process

118 G. Fortino et al.

Implementa�onModeling Simula�on

[! Requirements Fully Sa�sfied]

Fig. 2 The ELDAMeth process phases (and iterations)

Fig. 3 The ELDA MAS Meta-model

if requirements are satisfied, the Implementation phase is carried out; otherwise,
the Modeling phase is iterated.

• The Implementation phase produces the ELDA-based MAS code targeting a
specific platform. Currently the JADE platform is exploited [13].

1.2 The ELDA MAS Meta-Model

The MAS Meta-model [9] adopted by ELDAMeth is represented in Fig. 3. The
definitions of the MAS Meta-model Elements (MMMElements) are reported in
Table 1.

ELDAMeth Design Process 119

Table 1 Definitions of ELDA MAS Meta-model elements

Concept Definition

Agent An ELDA agent with multiple behaviors
Role A role represented by an agent
Behavior An ELDA agent’s behavior is specified through a Distilled StateChart

(DSC) [14], which is a hierarchical state machine obtained from Stat-
echarts and based on ECA rules, OR-decomposition, history entrance
mechanisms, and UML-like execution semantics based on the run-to-
completion step

FIPATemplate An ELDA behavior is compliant to an extended version of the FIPA agent
lifecycle template that allows restoring the agent execution state after
agent migration or agent suspension

Event The interactions of ELDA agents are based on events:
– Internal (i.e., self-triggering events)
– Management, coordination, and exception (i.e., requests to or notifica-
tions from the local agent server).
Events can be either OUT-events (generated by the agent and always
targeting the local agent server) or IN-events (generated by the local agent
server and delivered to target agents)

SystemSpace SystemSpace provides extensible system services through management
(ManagementOUT and ManagementIN) events which allow for agent
lifecycle management, timer setting, and resource access

CoordinationSpace CoordinationSpace provides extensible coordination services through
Coordination (CoordinationOUT and CoordinationIN) events which
enable coordination acts between agents and between agents and non-
agent components (e.g. remote objects, web services) according to spe-
cific coordination models. The currently defined inter-agent coordination
models are: Direct (synchronous and asynchronous), Tuple-based, and
publish/subscribe event-based. The interactions between agent/non-agent
components can be based on a general RMI object model or on the Web
Services model

2 Phases of the ELDAMeth Process

2.1 The Modeling Phase

The goal of the Modeling phase is to provide a detailed design of the MAS under-
development in terms of a set of interconnected DSCs [14] representing agent
behaviors and/or roles. Figure 4 presents the flow of activities of the Modeling
phase. In particular, the two main activities are ELDA Modeling and ELDA
Coding. Figure 5 shows the Modeling described in terms of activities, roles, and
work products. The Modeling involves a process role and five work products. The
Modeling is fully supported by ELDATool, a CASE tool specifically developed to
automate modeling, validation and implementation of ELDA-based MAS.

120 G. Fortino et al.

ELDA Modeling ELDA Coding

Fig. 4 The Modeling flow of activities

ELDA Modeling ELDA Coding

<<predecessor>>

Iden�fy States Iden�fy
Transi�ons Iden�fy Events

Iden�fy Ac�ons

Iden�fy Guards

Iden�fy Func�ons

Iden�fy Variables

<<output>>

Modeler

ELDATool

<<output>>

<<input>> <<
in

pu
t>

>

<<perfo
rm

s,

assi
st>

>

<<
pe

rf
or

m
s,

 p
rim

ar
y>

>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<performs,

primary>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<performs,
primary>> <<performs,

primary>>
<<performs, primary>>

Structural
ELDA MAS

Design Model

Behavioral
ELDA MAS

Design Model

<<input>>

<<output>>

a

Func�onal and
Non-Func�onal
Requirements

High-level
Design Model

Pla�orm-independent
ELDA MAS Code

Fig. 5 The Modeling phase described in terms of activities, roles, and work products

2.1.1 Process Roles
One role is involved in the Modeling: the Modeler.

Modeler
The Modeler produces a detailed design of the MAS under-development and
generates a platform-independent code through the following activities:
• ELDA Modeling: this activity allows the design of the MAS under-development,

specifying agent behaviors and/or roles.
• ELDA Coding: the objective of this activity is to generate a platform-independent

code for the MAS under-development through ELDATool.

2.1.2 Activity Details
The ELDA Coding activity is an atomic activity that has no tasks and is usu-
ally carried out by the Modeler with support of the ELDATool that is able to
automatically translate the models produced in the ELDA Modeling activity into

ELDAMeth Design Process 121

Iden�fy
States

Iden�fy
Variables

Iden�fy
Ac�ons

Iden�fy
Func�ons

Iden�fy
Events

Iden�fy
Transi�ons

Iden�fy
Guards

Modeler

<<mandatory, output>><<mandatory, input>>

<<mandatory, input>>

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

<<op�onal, output>>

a

Func�onal and
Non-Func�onal
Requirements

High-level
Design Model

Fig. 6 The flow of tasks of the ELDA Modeling activity

platform-independent code according to the ELDA Framework [9]. Conversely, the
ELDA Modeling activity has seven tasks described in the following.

ELDA Modeling Activity
The ELDA Modeling activity is a fundamental activity carried out by the Modeler
that produces the behavioral and structural ELDA MAS design based on defined
functional and non-functional requirements and on a high-level design model, both
deriving from an external system analysis phase not included in ELDAMeth. This
activity is composed of seven tasks as shown in Fig. 6; their description is reported
in Table 2.

Tasks can be carried out in parallel and iteratively. The mandatory inputs to the
ELDA Modeling are the Functional and Non-Functional Requirements document
and the High-Level Design Model. The outputs are the (mandatory) Behavioral
ELDA MAS Design Model and the (optional) Structural ELDA MAS Design Model.
The former is a set of DSCs, representing agent behaviors and/or roles, whereas
the latter is a class diagram representing the interaction relationships among agents
and/or roles.

122 G. Fortino et al.

Table 2 Tasks of ELDA Modeling activity

Activity Task Task description Role involved

ELDA Modeling Identify states Identification of DSC states Modeler (perform)
ELDA Modeling Identify variables Identification of DSC variables Modeler (perform)
ELDA Modeling Identify actions Identification of DSC actions Modeler (perform)
ELDA Modeling Identify functions Identification of DSC functions Modeler (perform)
ELDA Modeling Identify events Identification of DSC events Modeler (perform)
ELDA Modeling Identify transitions Identification of DSC transitions Modeler (perform)
ELDA Modeling Identify guards Identification of DSC guards Modeler (perform)

Agent

FD

Role

FD

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

ELDA MAS
Design Model

c

Behavior

FD

Event

FD

R

R

Agent

Q

Role

Q

Agent

Q

Role

Q

Behavior

Q

Event

Q

Pla�orm-independent
ELDA MAS Code

Fig. 7 The Modeling work products

2.1.3 Work Products
Figure 7 reports the relationships among the work products of this step (Modeling
phase) and the ELDA MMMElements (see Sect. 1.2).

Work Product Kinds
Table 3 describes the work products of the Modeling.

In the following the Structural ELDA MAS Design Model, the Behavioral ELDA
MAS Design Model, and the Platform-independent ELDA MAS Code (specifically
the Reviewer role code) produced for the CMS case study will be described.

ELDAMeth Design Process 123

Table 3 Modeling work products kinds

Name Description Work product kind

Functional and non-functional
requirements

A document defining functional
and non-functional requirements
of the MAS under-development

Free text

High-level design model A high-level design model
produced by an external
method/methodology

Structured

ELDA MAS design model The detailed design of the MAS
under-development

Composite

Structural ELDA MAS design
model

The class diagram of the MAS
under-development

Structural

Behavioral ELDA MAS design
model

The DSC design of the MAS
under-development

Behavioral

Platform-independent ELDA
MAS code

The platform-independent code
generated for the MAS under-
development

Structured

CMSAuthor

Reviewer ViceChair

Chair

PCMember

1

0..1

1

0..1

<<interaction>>

<<interaction>><<interaction>>

Fig. 8 Class diagram of agents and roles interactions in the CMS case study

Structural ELDA MAS Design Model
In Fig. 8 the Structural ELDA MAS Design Model of the CMS case study is
portrayed. In particular, five roles are identified: Author, Chair, and PCMember,
where a PCMember could be either a Reviewer, or a Vice-Chair, or both. Moreover,
CMS is an agent representing the CMS system.

124 G. Fortino et al.

Fig. 9 Author DSC diagram

Table 4 Author actions

Action Description

sendPaperSubmission Author submits the paper to the CMS system
sendCRCSubmission Author submits the CRC to the CMS system

Table 5 Author guards

Guard Description

paperAccepted Author checks if the submitted paper has been accepted

Behavioral ELDA MAS Design Model
The Behavioral ELDA MAS Design Model of the CMS case study is composed
of the DSCs of the five defined roles (Author, Chair, PCMember, Reviewer, and
Vice-Chair) and the CMS agent. In the following they are detailed in terms of DSC
diagram and event, action and guard tables. The PCMember specification is based
on the specifications of Reviewer and Vice-Chair, so a further specification for the
PCMember was not defined.

Author
See Fig. 9 and Tables 4, 5 and 6.

Reviewer
See Fig. 10 and Tables 7, 8 and 9.

ELDAMeth Design Process 125

Table 6 Author events

Event Sender Description

PaperSubmission Author Internal event sent when Author decides to submit the
paper

DecisionResult CMS Coordination event containing decision about submitted
paper (if it has been accepted or rejected)

CRC Author Internal event sent when Author decides to submit the
CRC

Fig. 10 Reviewer DSC diagram

Table 7 Reviewer actions

Action Description

downloadPaper Reviewer downloads papers that have been assigned to it
submitReview Reviewer sends to the CMS system a review

Table 8 Reviewer guards

Guard Description

allReviewCompleted Reviewer checks if all the assigned papers were reviewed

Table 9 Reviewer events

Event Sender Description

PaperAssignment CMS Coordination event indicating the papers assigned
to the Reviewer

Review Reviewer Internal event sent when Reviewer completes a
review

126 G. Fortino et al.

Fig. 11 Vice-Chair DSC diagram

Table 10 Vice-Chair actions

Action Description

paperAssignment Vice-Chair sends the event to CMS, indicating the assignment of
papers to the reviewers that it manages

checkReview Vice-Chair checks a review
sendReviewCompleted Vice-Chair sends the event to CMS, indicating that all the expected

reviews (sent from the reviewers managed by this Vice-Chair) were
received

Table 11 Vice-Chair guards

Guard Description

reviewCompleted Vice-Chair checks if all the expected reviews (sent from the reviewers
managed by this Vice-Chair) were received

Table 12 Vice-Chair events

Event Sender Description

PaperPartitioning CMS Coordination event indicating which reviewers must be managed
by Vice-Chair and how to distribute the papers to be reviewed

Review CMS Coordination event containing a review

Vice-Chair
See Fig. 11 and Tables 10, 11 and 12.

Chair
See Fig. 12 and Tables 13, 14 and 15.

ELDAMeth Design Process 127

Fig. 12 Chair DSC diagram

128 G. Fortino et al.

Table 13 Chair actions

Action Description

createConference Chair creates and initializes the CMS conference system
openSubmission Chair sends the event to CMS, indicating the opening of

the paper submission phase
checkPaperSubmission Chair checks a submitted paper
closeSubmission Chair sends the event to CMS, indicating the closure of

the paper submission phase
paperPartitioning Chair sends the event to CMS, indicating how to dis-

tribute the papers to be reviewed among the reviewers
and how to involve one or more Vice-Chairs in the
management of a part of them

paperAssignment Chair sends the event to CMS, indicating the assignment
of some papers to be reviewed to the reviewers that it
manages

checkReview Chair checks a review
checkReviewCompletedConfirmation Chair checks if all the reviews were successfully

received
sendReviewCompleted Chair sends the event to CMS, indicating that all the

expected reviews (sent from the reviewers managed by
this Chair) were received

closeReview Chair sends the event to CMS, indicating the closure of
the review phase

takeDecision Chair sends the event to CMS, indicating the decisions
taken on the submitted papers (if they have been accep-
ted or rejected)

openCRC Chair sends the event to CMS, indicating the opening of
the CRC submission phase

checkCRC Chair checks a submitted CRC
closeCRC Chair sends the event to CMS, indicating the closure of

the CRC submission phase

Table 14 Chair guards

Guard Description

reviewCompleted Chair checks if all the expected reviews (sent from the reviewers managed
by Chair) were received

CMS
See Fig. 13 and Tables 16 and 17.

Platform-Independent ELDA MAS Code
In Fig. 14 part of the code (variables, actions, guards, and events) of the active
behavior of the Reviewer role (see earlier section “Reviewer”) produced in the
ELDA Coding activity is reported.

ELDAMeth Design Process 129

Table 15 Chair events

Event Sender Description

OpenSubmission Chair Internal event sent when Chair decides to
open the paper submission phase

PaperSubmission CMS Coordination event containing a submitted
paper

CloseSubmission Chair Internal event sent when Chair decides to
close the paper submission phase

PaperPartitioning Chair Internal event sent when Chair decides to
involve Vice-Chair in the management of the
papers to be reviewed

PaperAssignment Chair Internal event sent when Chair decides to
assign some papers to be reviewed to the
reviewers that it manages

Review CMS Coordination event containing a review
ReviewCompletedConfirmation CMS Coordination event indicating that all the

reviews were received
CloseReview Chair Internal event sent when Chair decides to

close the review phase
TakeDecision Chair Internal event sent when Chair wants to start

the decision process about the submitted
papers

OpenCRC Chair Internal event sent when Chair decides to
open the CRC submission phase

CRC CMS Coordination event containing a submitted
CRC

CloseCRC Chair Internal event sent when Chair decides to
close the CRC submission phase

2.2 The Simulation Phase

The goal of the Simulation phase is to support the functional validation and perform-
ance evaluation of the MAS model produced in the Modeling phase (see Sect. 2.1).
Specifically, the ELDASim simulation framework is exploited to fully support such
phase. The Simulation process is composed of three main activities: Performance
Indices Definition, Simulation Implementation, and Simulation Execution, as shown
in Fig. 15. Simulation specifically involves a process role and five work products, as
described in Fig. 16.

2.2.1 Process Roles
One role is involved in the Simulation: the Simulation Designer.

Simulation Designer
The Simulation Designer is responsible for the functional validation and
performance evaluation of the MAS under-development through the following
activities:

130 G. Fortino et al.

Fig. 13 CMS DSC diagram

• Performance Indices Definition: this activity allows the definition of the perform-
ance indices which will be evaluated during the simulation.

• Simulation Implementation: it produces a simulator program that allows
executing the simulation.

• Simulation Execution: in this activity the simulation is executed and the simula-
tion results are obtained.

ELDAMeth Design Process 131

Table 16 CMS actions

Action Description

init CMS initializes the conference with parameters decided by Chair at
the conference creation and sends the call for paper (CFP) to authors

openSubmission CMS opens the paper submission phase
saveAndSendPaper CMS saves a submitted paper and sends a paper submission notific-

ation to Chair
closeSubmission CMS closes the paper submission phase
paperPartitioning CMS sends the event to Vice-Chair, indicating which reviewers this

Vice-Chair must manage and how to distribute the papers to be
reviewed among the different reviewers

saveAndSendReview CMS stores a review and sends it to the corresponding reviewer
manager (Chair or Vice-Chair)

saveAndSendCRC CMS saves and sends a CRC to Chair
closeReview CMS closes the review phase
sendDecision CMS sends the decisions, taken by Chair about submitted papers, to

authors
closeCRC CMS closes the CRC submission phase
paperAssignment CMS assigns some papers to be reviewed to reviewers
openCRC CMS opens the CRC submission phase
checkAndSendReview
CompletedConfirmation

If all the reviewer managers (Chair or Vice-Chair) received all
reviews from the reviewers that they manage, CMS sends the event
to Chair, indicating that all the reviews have been received

2.2.2 Activity Details
Performance Indices Definition and Simulation Implementation are atomic activities
that have no tasks, whereas Simulation Execution activity has two tasks as described
here.

Simulation Execution Activity
The Simulation Execution activity comprises the two tasks described in Table 18.
The flow of tasks in the Simulation Execution activity is reported in Fig. 17.

2.2.3 Work Products
Figure 18 reports the relationships among the work products of this step and the
ELDA MMMElements (see Sect. 1.2).

Work Product Kinds
Table 19 describes the work products of the Simulation.

Simulator Program
In Fig. 19 the Simulator Program template produced for the CMS case study is
described.

132 G. Fortino et al.

Table 17 CMS events

Event Sender Description

OpenSubmission Chair Coordination event indicating the opening of the
paper submission phase

PaperSubmission Author Coordination event containing a submitted paper
CloseSubmission Chair Coordination event indicating the closure of the

paper submission phase
PaperPartitioning Chair Coordination event sent when Chair decides to

involve the Vice-Chair in the management of the
papers to be reviewed

PaperAssignment Chair/Vice-Chair Coordination event sent by a reviewer manager
(Chair or Vice-Chair) to assign some papers to be
reviewed to the reviewer that it manages

Review Reviewer Coordination event containing a review
ReviewCompleted Chair/Vice-Chair Coordination event sent by a reviewer manager

(Chair or Vice-Chair) indicating that all the reviews
have been received from the reviewers it manages

CloseReview Chair Coordination event indicating the closure of the
review phase

TakeDecision Chair Coordination event sent when Chair wants to decide
about submitted papers

OpenCRC Chair Coordination event indicating the opening of the
CRC submission phase

CRC Author Coordination event containing a submitted CRC
CloseCRC Chair Coordination event indicating the closure of the

CRC submission phase

The methods of the CMS class are:
• void resetSimulationParams(): resets the simulation parameters
• void loadParams(XMLTree configuration): loads and initializes

the simulation parameters
• void setupAS(): performs the setup of the agent servers of the distributed

simulated agent platform
• void createSimPerformanceParamsTabs(): creates database tables

for storing the results obtained from the simulations
• void setupAndStartCustomSimulation(): starts the simulation up
• void setupAgent(): allows the setup of the agents involvedin the

simulation
• void setAgentCodeDimension(): sets the code dimension of the agents
• void startAgent(): starts the agents up
• void traceSimPerformanceParams(): traces the simulation perform-

ance parameter values obtained from the simulation
• void clearAS(): clears the agent servers up
• void resetSimPerformanceParams(): resets the tracing of the simula-

tion results.

ELDAMeth Design Process 133

STATE VARIABLES
ReviewerADSC int reviewCount

ELDAId cms

ACTION CODE
downloadPaper PaperAssignment evt = (PaperAssignment) e;

String paperCode = (String) evt.getData();
download(paperCode);
reviewCount++;

submitReview Object review = ((Review) e).getData();
generate(new ELDAEventMSGRequest(self(),

new Review(self(), cms, review)));
reviewCount--;

GUARD CODE
allReviewCompleted return reviewCount == 0;

EVENT SENDER TYPE
PaperAssignment CMS ELDAEventMSG
Review Reviewer ELDAEventInternal

Fig. 14 ELDAFramework-based code of the Reviewer role

Performance
Indices Defini�on

Simula�on
Implementa�on

Simula�on
Execu�on

[Analysis Refinement]

[Requirements
Fully Sa�sfied

&
! Analysis

Refinement]

Modeling

[! Requirements
Fully Sa�sfied]

Fig. 15 The Simulation flow of activities

2.3 The Implementation Phase

The goal of the Implementation phase is to translate the MAS design model into
code for a target platform. In particular, the translation is semi-automatic, supported
by the ELDATool, and targeting the JADE platform. The Implementation process
is composed of two main activities (Platform-specific ELDA Implementation and
Testing), as shown in Fig. 20. In particular, Implementation involves two process
roles and five work products (see Fig. 21).

2.3.1 Process Roles
Two roles are involved in the Implementation: Developer and Tester.

Developer
The Developer is responsible for:
• Platform-specific ELDA Implementation—this activity translates the MAS

design model into code generated according to a real target platform (e.g.,
JADE) through ELDATool.

134 G. Fortino et al.

Performance
Indices Defini�on

Simula�on
Implementa�on

Simula�on
Execu�on

<<predecessor>> <<predecessor>>

Simula�on
Designer

ELDASim
Simula�on

Control
Simula�on

Configura�on

<<input>>
<<output>> <<input>> <<output>> <<input>> <<output>>

<<input>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<performs, primary>>

<<performs, primary>>

<<performs,
assist>> <<perfo

rm
s,

assis
t>>

<<performs, primary>>

a

Func�onal and
Non-Func�onal
Requirements

Pla�orm-independent
ELDA MAS Code

Performance
Indices

a

Simulator
Program

Simula�on
Results

Fig. 16 The Simulation phase described in terms of activities, roles, and work products

Table 18 Tasks of Simulation Execution activity

Activity Task Task description Role involved

Simulation
Execution

Simulation Config-
uration

Configuration of simu-
lation parameters

Simulation Designer
(perform)

Simulation
Execution

Simulation Control Control of Simulation
Execution

Simulation Designer
(perform)

Simula�on
Designer

Simula�on
Control

Simula�on
Configura�on

<<mandatory, input>> <<mandatory, input>>

<<mandatory, output>> <<mandatory, output>>

Simulator
Program

Simula�on
Results

Fig. 17 The flow of tasks of the Simulation Execution activity

ELDAMeth Design Process 135

Agent

Q

Behavior

Q

Role

Q

Event

Q

Simulator
Program

Fig. 18 The Simulation work products

Table 19 Simulation work products kinds

Name Description Work product kind

Functional and non-
functional require-
ments

A document defining functional and non-
functional requirements of the MAS under-
development

Free text

Performance
indices

The definition of the performance indices
which will be evaluated during the simulation

Free text

Simulator Program The resulting simulator program that allows
executing the simulation

Structured

Platform-
independent ELDA
MAS code

Platform-independent code generated for the
MAS under-development

Structured

Simulation results Results of executed simulation Structured

Tester
The Tester is responsible for:
• Testing—this activity executes some tests on the MAS under-development con-

sidering the performance indices evaluated during the simulation and produces a
document containing the test results.

2.3.2 Activity Details
Platform-specific ELDA implementation and testing activities are atomic and do not
have any tasks.

2.3.3 Work Products
The work products produced in this phase are the platform-specific ELDA MAS
Code, which is the code of the MAS under-development for the JADE platform, and
Testing Results, which is a set of real execution traces and table/plots of computed
performance indices.

136 G. Fortino et al.

public class CMS extends MASSimulation {

private static int nReviewerAgent;
private static int nAuthorAgent;
private static int nChairAgent;
private static int nViceChairAgent;

private static Hashtable<String, SimConfig> simsConfiguration;

protected void resetSimulationParams(){}
protected void loadParams(XMLTree configuration) throws Exception{}
private static void initializeSimsConfiguration(Vector<XMLNode>

simsCfg) throws ClassNotFoundException
InvalidNodeException, InvalidAttributeException{}

protected void setupAS(){}
protected void createSimPerformanceParamsTabs() throws Exception{}
protected void setupAndStartCustomSimulation() throws Exception{}
protected void setupAgent() throws Exception{}
protected void setAgentCodeDimension(){}
protected void startAgent(){}
protected void traceSimPerformanceParams() throws Exception{}
protected void clearAS(){}
protected void resetSimPerformanceParams(){}

}

Fig. 19 Code template of the Simulator Program

Modeling

Pla�orm-specific
ELDA

Implementa�on

[Requirements
Fully Sa�sfied]

[! Requirements Fully Sa�sfied & Phase Itera�on]

[! Requirements Fully Sa�sfied & Process Itera�on]

Tes�ng

Fig. 20 The Implementation flow of activities

Work Product Kinds
Table 20 describes the work products of the Implementation:

Platform-Specific ELDA MAS Code
In Fig. 22 part of the JADE-based code (variables, actions, guards, and events) of
the Reviewer role of the Platform-specific ELDA MAS Code produced for the CMS
case study will be described.

ELDAMeth Design Process 137

Pla�orm-specific
ELDA

Implementa�on

Tes�ng

<<predecessor>>

<<output>>

<<output>>

ELDATool Developer Tester

<<input>>
<<input>>

<<input>>

<<input>>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rf
or

m
s,

pr

im
ar

y>
>

<<
pe

rfo
rm

s,
as

sis
t>

>
Behavioral
ELDA MAS

Design Model

a

Func�onal and
Non-Func�onal
Requirements

Performance
Indices

a

Pla�orm-specific
ELDA MAS Code

Tes�ng
Results

Fig. 21 The Implementation phase described in terms of activities, roles, and work products

Table 20 Implementation work products kinds

Name Description Work product kind

Functional and
non-functional
requirements

A document defining functional and non-
functional requirements of the MAS under-
development

Free text

Behavioral ELDA
MAS design model

The DSC design of the MAS under-
development

Behavioral

Platform-specific
ELDA MAS code

The MAS code generated according to a real
target platform (e.g. JADE)

Structured

Performance indices The definition of the performance indices eval-
uated during the simulation

Free text

Testing results A document containing the results of executed
tests

Structured

3 Work Products Dependencies

The diagram in Fig. 23 depicts the dependencies among the different work
products.

138 G. Fortino et al.

STATE VARIABLES
ReviewerADSC int reviewCount

AID cms

ACTION CODE
downloadPaper PaperAssignment evt = (PaperAssignment) e;

String paperCode = (String) evt.getData();
download(paperCode);
reviewCount++;

submitReview Serializable review = ((Review) e).getData();
ArrayList<AID> target = new ArrayList<AID>();
target.add(cms);
generate(new ELDAEventMSGRequest(self(), new

Review(self(), target, review)));
reviewCount--;

GUARD CODE
allReviewCompleted return reviewCount == 0;

EVENT SENDER TYPE
PaperAssignment CMS ELDAEventMSG
Review Reviewer ELDAEventInternal

Fig. 22 The JADE-based code of the Reviewer role

Simula�on
Results

Performance
Indices

Tes�ng
Results

Simulator
Program

Pla�orm-independent
ELDA MAS Code

Pla�orm-specific
ELDA MAS Code

Func�onal and
Non-Func�onal
Requirements

Behavioral
ELDA MAS

Design Model

Structural
ELDA MAS

Design Model

High-level
Design Model

Fig. 23 Work products dependencies diagram

ELDAMeth Design Process 139

References

1. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-based agent platform for program-
ming wireless sensor networks. Comput. J. 54(3), 439–454 (2011)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Softw. Pract. Exper. 31(2), 103–128 (2001)

3. Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: principles of method construc-
tion and tool support. In: Proceedings of the IFIP TC8 WG8.1/8.2 Working Conference on
Method Engineering (1996)

4. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: a simulation-based
process for the development of multi-agent systems. Int. J. Agent Orient. Softw. Eng. 2(2),
132–170 (2008)

5. Di Fatta, G., Fortino, G.: A customizable multi-agent system for distributed data mining. In:
Proceedings of the 22nd Annual ACM Symposium on Applied Computing (2007)

6. Fortino, G., Rango, F.: An application-level technique based on recursive hierarchical state
machines for agent execution state capture. Sci. Comput. Program. 78(6), 725–746 (2013)

7. Fortino, G., Russo, W.: ELDAMeth: a methodology for simulation-based prototyping of
distributed agent systems. Inform. Softw. Technol. 54(6), 608–624 (2012)

8. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A multi-coordination based process for the
design of mobile agent interactions. In: Proceedings of IEEE Symposium on Intelligent Agents
(2009)

9. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-based
agents for MAS modeling. Int. J. Agent Orient. Softw. Eng. 4(2) (2010)

10. Fortino, G., Garro, A., Mascillaro, S., Russo, W., Vaccaro, M. Distributed architectures
for surrogate clustering in CDNs: a simulation-based analysis. In: Proceedings of the 4th
International Workshop on the Use of P2P, GRID and Agents for the Development of Content
Networks (2009)

11. Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and validation
of multi agent systems. Comput. Syst. Sci. Eng. 20(4), 94–107 (2005)

12. Fortino, G., Frattolillo, F., Russo, W., Zimeo, E.: Mobile active objects for highly dynamic dis-
tributed computing. In: Proceedings of IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2002)

13. Fortino, G., Rango, F., Russo, W.: Engineering multi-agent systems through statecharts-based
JADE agents and tools. In: Nguyen, N.T. (ed.) Transactions on Computational Collective
Intelligence VII. Lecture Notes in Computer Science, vol. 7270, pp. 61–81. Springer,
Heidelberg (2012)

14. Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development process for
mobile agents. Inform. Softw. Technol. 46(13), 907–921 (2004)

15. Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology: towards next generation
computing. Auton. Agents Multi-Agent Syst. 9(3), 203–252 (2004)

16. Omicini, A., Zambonelli, F.: Challenges and research directions in agent-oriented software
engineering. Auton. Agents Multi-Agent Syst. 9(3), 253–283 (2004)

The Gaia Methodology Process

Luca Cernuzzi, Ambra Molesini, and Andrea Omicini

Abstract
Gaia was the first complete methodology proposed for the development of
multi-agent systems (MASs), and was subsequently improved to designing and
building systems in complex, open environments. Gaia focuses on the use of
the organizational abstractions to drive the analysis and design of MAS. Gaia
models both the macro (social) aspects and the micro (agent internals) aspects
of MAS, and devotes a specific effort to model the organizational structure and
the organizational rules that govern the global behavior of the agents in the
organization. In this chapter we present the complete documentation of the Gaia
process following the IEEE-FIPA Documentation Template.

1 Introduction

The Gaia methodology was initially proposed by Wooldridge et al. in [5,6], extended
toward social issues and open systems in [7], and largely revised and improved
by Zambonelli et al. in [8]. The original version of Gaia focuses on the analysis
and design of closed Multi-agent Systems (MASs), assuming the benevolence

L. Cernuzzi
Departamento de Ingeniería Electrónica e Informática, Universidad Católica “Nuestra Señora de
la Asunción” Campus Universitario, C.C. 1683, Asunción, Paraguay
e-mail: lcernuzz@uca.edu.py

A. Molesini (�)
DISI, Alma Mater Studiorum – Università di Bologna, Viale Risorgimento 2, 40136 Bologna,
Italy
e-mail: ambra.molesini@unibo.it

A. Omicini
DISI, Alma Mater Studiorum – Università di Bologna, Via Sacchi 3, 47521 Cesena, Italy
e-mail: andrea.omicini@unibo.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__6,
© Springer-Verlag Berlin Heidelberg 2014

141

mailto:lcernuzz@uca.edu.py
mailto:ambra.molesini@unibo.it
mailto:andrea.omicini@unibo.it

142 L. Cernuzzi et al.

Analysis

Subdivide System into
sub–organizations

Preliminary Role
Model

Environmental
model Preliminary

Interaction Model

Role Model Interaction Model

Service ModelAgent Model

Organizational
Rules

Organizational
Structure

Organizational
Patterns

Detailed
Design

Architectural
Design

Fig. 1 An overview of the Gaia process

and predisposition to collaborate of the agents in the organizations. The extended
version of Gaia is more oriented to designing and building systems in complex,
open environments. The Gaia methodology was one of the first appeared in the
AOSE field, and offered interesting insights into the development of different
other Agent Oriented Software Engineering methodologies. It explicitly focuses on
using organizational abstractions to drive the analysis and design of MAS usually
characterizing complex and open environments. It models both the macro (social)
aspect and the micro (agent internals) aspects of a MAS. Moreover, Gaia devotes a
special effort to model the organizational structure and to specify the organizational
rules that govern the global behavior of the agents in the organization, avoiding
conflict based on self-interest actions. An overview of the Gaia methodologies is
presented in Fig. 1. The following are useful references for the Gaia process:
• M. Wooldridge, N.R. Jennings, D. Kinny. A Methodology for Agent-oriented

Analysis and Design [5]
• M. Wooldridge, N.R. Jennings, D. Kinny. The Gaia Methodology for Agent-

oriented Analysis and Design [6]
• F. Zambonelli, N.R. Jennings, A. Omicini, M. Wooldridge. Agent-Oriented

Software Engineering for Internet Applications [7].
• F. Zambonelli, M. Wooldridge, N.R. Jennings. Developing Multiagent Systems:

The Gaia Methodology [8].

The Gaia Methodology Process 143

Analysis Architectural
Design

Detailed Design

Fig. 2 The Gaia process phases

• F. Zambonelli, N.R. Jennings, M. Wooldridge. Multiagent Systems as Computa-
tional Organizations: The Gaia Methodology [9].

• L. Cernuzzi, F. Zambonelli. Experiencing AUML in the Gaia Methodology [1].
• L. Cernuzzi, F. Zambonelli. Adaptive Organizational Changes in Agent-Oriented

Methodologies [2].
• L. Cernuzzi, A. Molesini, A. Omicini, F. Zambonelli. Adaptable Multi-Agent

Systems: The Case of the Gaia Methodology [4].

1.1 Process Life Cycle

In the original version [6] the development process underpinning Gaia was com-
posed by only two phases: Analysis and Design. However, due to different limitation
of the original version of Gaia [3], the work in [8] introduced relevant improvements
to better exploit the organizational perspective in the analysis and design activities.

These improvements led to a reformulation of the Gaia process, including the
introduction of a new phase—Architectural Design—and a set of new models.
Therefore, Gaia currently proposes three main phases—namely, the Analysis, the
Architectural Design, and the Detailed Design, as represented in Fig. 2.

It is worth noting that Gaia does not directly deal with the requirement
phase, although the difference with the analysis phase is not always obvious, and
implementation issues. The authors believe that requirement elicitation activities
should be neutral with respect to the adopted paradigm for the design and the
eventual solution technology. Finally, the result of the design phase is assumed to be
something that could be implemented in a technology neutral way, that is, by using a
traditional method (such as object orientation or component-ware) or an appropriate
agent-programming framework. The details of each step will be discussed in the
following sections.

1.2 Meta-model

The MAS meta-model of Gaia is mostly devoted to represent a MAS as a social
organization, and adopts organizations, agents, roles, protocols, organizational
rules, and environment as its basic building blocks. The meta-model adopted by

144 L. Cernuzzi et al.

Fig. 3 The Gaia meta-model

Gaia is represented in Fig. 3, where Gaia abstract entities—MAS Meta-Model
Elements (MMMEs)—are depicted along with their mutual relations. In particular:
the Gaia agent is an entity that plays one or more roles; a role represents specific
behaviors to be played by an agent, defined in terms of responsibilities and activities,
and of its interactions with other roles (i.e., protocols); an agent plays a role by
actualizing the behavior in terms of services.

The primary role of organizational abstractions is represented by means of the
organization and the associated organizational rules elements. The MAS organiz-
ation could be composed by different sub-organizations, each one with a specific
structure (i.e., topology) and goals. In turn, each sub-organization is defined as a
composition of agents and organizational rules.

The organizational structure describes the overall architecture of the system
characterizing the position of each agent (better, of the agents playing specific roles)
in it, and the structural relationships with the other agents. Organizational rules
have the goal of specifying some constraints that agents in the organization (or sub-
organization) have to observe. To some extent, they could be considered as the social
laws that have to drive all interactions in the organization and the evolution of the
organization itself. They may be either global, affecting the behavior of the society
as a whole, or concerning only specific roles or protocols.

The Gaia Methodology Process 145

Finally, the environment abstraction explicitly specifies all the entities and
resources a MAS may interact with, according to defined permissions.

Analysis
In the Analysis, Gaia covers different concepts of the meta-model. Gaia starts with
the identification of the Sub-organizations for the MAS with their respective Goals.

Then, for each sub-organization it prescribes to specify the Preliminary Role
Model identifying a set of Roles (i.e., the functional requirement to achieve the sub-
organizational goals). Each Role includes a set of Activities and Responsibilities that
are in turn composed by LivenessProperty and SafetyProperty (to state the active and
safe behaviors of an agent playing such a role).

Roles are usually interacting among them according to different Protocols that
are specified in the Preliminary Interaction Model. Moreover, in order to achieve
their objectives, Roles have to interact with the MAS operation Environment (i.e.,
the Environmental Model) that is composed of a set of computational Resources.
Each resource enables the role to perform different Actions according to specific
Permission. Finally, system analysts have to specify the OrganizationalRules that
govern the general behavior of the MAS. Such rules include LivenessRules and
SafetyRules (to specify norms and constraints on the desirable and undesirable
behaviors in the sub-organization or in the overall MAS).

Architectural Design
The main goal of the Architectural Design phase is defining the most proper
Organizational Structure for the MAS, i.e., the Topology of the overall MAS
and/or of each sub-organization. The Topology complements the Goals and the
Organizational Rules (i.e., the control regime) of the sub-organizations. It is
possible that new Roles and Protocols arise according to the adopted organizational
structure.

Detailed Design
Finally, the Detailed Design covers the specification of the set of Agent Types, i.e.,
the agent classes in the MAS. Each instance of an Agent Type is an Agent playing
one or more Roles. In addition, the set of activities an agent is able to perform are
described in terms of Services (Table 1).

2 Phases of the Gaia Process

2.1 Analysis

The Analysis phase in Gaia covers the requirements in terms of functions and
activities adopting the agent paradigm according to the organizational perspective.
This involves firstly identifying which loosely coupled sub-organizations possibly

146 L. Cernuzzi et al.

Table 1 The Gaia entities definitions

Concepts Definition Phase

Role Entity representing specific behaviors to
accomplish some tasks

Analysis,
Architectural Design

Activity action that a role can perform to reach some
specific goal

Analysis,
Architectural Design

Responsibility is the key attribute associated with a role and
determines functionality of the role

Analysis,
Architectural Design

LivenessProperty describes those states of affairs that an agent must
bring about (intuitively states that “something
good happens”, and hence that the agent carrying
out the role is alive)

Analysis,
Architectural Design

SafetyProperty an acceptable state of affairs maintained across
all states of execution (intuitively states that
“nothing bad happens”)

Analysis,
Architectural Design

Environment involves determining all the entities and resources
that the MAS, as a whole, can exploit, control, or
consume when it is working toward the
achievement of the organizational goal

Analysis

Resource elements in the environment for agents to interact
with

Analysis

Action an activity impacting resources of the environment
according to roles objectives

Analysis

Permission identifies the resources that are available to a role
in order to realize its responsibilities (i.e., the
“rights” associated with a role)

Analysis,
Architectural Design

Protocol defines the way that a role can interact with other
roles

Analysis,
Architectural Design

OrganizationalRule expresses general requirements for the proper
instantiation and execution of a MAS in terms of
relationships and constraints between roles,
between protocols, and between roles and
protocols in the organization

Analysis,
Architectural Design

SafetyRule properties that the system must guarantee to
prevent undesirable behaviors in the organization

Analysis,
Architectural Design

LivenessRule properties that the system must guarantee to
enable desirable behaviors in the organization

Analysis,
Architectural Design

Organization a group of agents interacting according to a
specific organizational structure (i.e., topology)
and respecting some defined organizational rules

Architectural Design

Topology describes the relationships between roles (and
therefore their positions) in an organization

Analysis,
Architectural Design

Goal a single objective of an organization that has to be
accomplished by one or more agents in the
organization

Analysis,
Architectural Design

AgentType defines a class of pro-active, autonomous entity
that plays one or more roles

Detailed Design

Service a function of the agent; that is, simply a single,
coherent block of activity that an agent will
engage in

Detailed Design

The Gaia Methodology Process 147

Organizations Identification

Environment Model Preliminary Role ModelPreliminary Interaction Model

Organizational Rules

refine other models? refine other models?

yes

yes

refine other models?

no

no
no

yes

Fig. 4 The Analysis process

compose the whole systems; then, for each of these, producing four basic abstract
models: (1) the environmental model, to capture the characteristics and their compu-
tational representation of the MAS operational environment; (2) a preliminary roles
model, to capture the key task-oriented activities to be played in the MAS; (3) a
preliminary interactions model, to capture basic inter-dependencies between roles
and their corresponding protocols; and (4) a set of organizational rules, expressing
global constraints/directives that must underlie the MAS functioning. The different
models can in principle be performed concurrently. However, there exists a strict
interdependence between them, since the modification of one specific diagram (e.g.,
the introduction of a new preliminary role in the sub-organization) typically implies
the modification of other diagrams, too.

Figure 4 shows the Analysis process, while Fig. 5 presents the flow of activities,
the involved roles, and the work products.

2.1.1 Process Roles
One role is involved in the Analysis phase: the System Analyst.

148 L. Cernuzzi et al.

<<output>>

<<input>>

System Analyst

<<performs,

primary>>

<<input>>

<<input>>

<<input>>

<<
inp

ut>
>

<<predecessor>>

<<output>>

<<predecessor>>

<<predecessor>>

System Analyst

<<performs, primary>>

<<
in

pu
t>

>

<<output>>

<<predecessor>>

<<predecessor>>

<<input>>

System Analyst

<<performs
, primary>>

<<
ou

t

pu
t>>

<<predecessor>>

<<input>>

<<perform
s,

prim
ary>>

System Analyst

<<
pe

rfo
rm

s,
 p

rim
ar

y>
>

Identify
Organizations

Identify Sub-
organizations

Identify Couple
Degree

Identify Sub-goals

<<input>>

<<performs, prim
ary>>

System Analyst
<<performs,
primary>>

<<performs,

primary>>

<<output>>

Identify Abstract
Computational

Resources

Describe Abstract
Computational

Resources

<<performs, primary>>

Environment
Model

<<output>>

<<input>>

<<input>>

<<
in

pu
t>

>

Identify Protocol
Identify Role

Dependencies<<performs, primary>>

1

Preliminary
Interaction

Model

<<output>>

<<
inp

ut>
>

<<input>> <<input>>

<<input>>

<<input>>

Identify Skills Identify Preliminary
Roles

Create Role-
Resource Diagram

Identify
Permissions

Identify
Responsibility

1

Environment
Model

<<input>>

<<input>
>

<<input>>

<<input
>> <<input>>

Preliminary
Interaction

Model

<<performs, primary>>

<<performs, primary>>

<<performs, primary>>

<<performs, primary>>

Identify Environmental
Constraints

Identify Role-Protocol
Dependencies

Identify Role-Role
Dependencies

Identify
Organizational

Rules

Identify Protocol-
Protocol Dependencies

<<performs, primary>>

<<performs,

primary>>

<<performs,
primary>>

<<
pe

rfo
rm

s,
pri

mary
>>

Environment
Model

<<input>>

System Analyst

Preliminary
Interaction

Model

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

Organizational
Rules

<<output>>

<<output>>

<<output>>

<<output>>
<<output

>>

<<output>>

<<outp ut>>

<<output>>

<<ioutput
>

Requirements
Specification

a

Requirements
Specification

a

Requirements
Specification

a

Requirements
Specification

a
Requirements
Specification

a
Organization Model

c

Organization Model

c
Organization Model

c

Organization Model

c

Organization Model

c

Preliminary Role
Model

c

Preliminary Role
Model

c

Preliminary Role
Model

c

Preliminary Role
Model

c

Organizations
Indentification

Environment
Model

Preliminary
Interaction Model

Preliminary
Role Model

<<input>>

Organizational
Rules

Fig. 5 The Analysis flow of activities, roles, and work products

System Analyst
A System Analyst is responsible for:
• Identification of the organization structure and its main characteristics such as

the couple degree, sub-organizations, and organizational rules
• Identification of the preliminary roles and their main characteristics such as skills,

permissions, and responsibilities
• Identification of the preliminary protocols
• Identification of the resources presented in the system environment.

2.1.2 Activity Details
Organizations Identification Activity
The flow of tasks in the Organizations Identification activity is reported in Fig. 6
and the tasks are detailed in the following table.

Environment Model Activity (Fig. 7)
Preliminary Role Model Activity
The flow of tasks in this activity is reported in Fig. 8 and the tasks are detailed in the
following table.

The Gaia Methodology Process 149

Identify Couple
Degree

Identify
Organizations

System Analyst
Identify Sub-goals

Organization
Names

Identify Sub-
organizations

Couple Degree

Sub-organization
Names

Sub-goals

<<mandatory, input>>

<<mandatory,output>>

Requirements
Specification

a

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory,output>>

<<mandatory,output>>

<<mandatory,output>>

Fig. 6 The flow of tasks in the Organizations Identification activity

Activity Task Task Description Role Involved

Organizations
identification

Identify organization the MAS could be seen as a
global organization with its
general goals

System Analyst
(perform)

Organizations
identification

Identify couple degree identifying the couple degree
of the sub-organizations

System Analyst
(perform)

Organizations
identification

Identify
sub-organizations

identifying how to fruitfully
decompose the global
organization into loosely
coupled sub-organizations

System Analyst
(perform)

Organizations
identification

Identify sub-goals each sub-organization has its
own goals that contribute to
the goals of the overall MAS

System Analyst
(perform)

Preliminary Interaction Model Activity
The flow of tasks in this activity is reported in Fig. 9 and the tasks are detailed in the
following table.

Organizational Rules Activity
The flow of tasks in this activity is reported in Fig. 10 and the tasks are detailed in
the following table.

150 L. Cernuzzi et al.

System Analyst Identify Abstract
Computational

Resources

Describe Abstract
Computational

Resources

Environment
Model

<<mandatory,output>>

<<mandatory, input>>

Requirements
Specification

a

Preliminary Role
Model

c

Organization Model

c

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>

<<mandatory,output>>

Fig. 7 The flow of task in the Environment Model activity

Activity Task Task Description Role Involved

Environment
Model

Identify abstract compu-
tational resources

A set of variables or tuples,
made available to the agents
for sensing (e.g., reading their
values), for effecting (e.g.,
changing their values) or for
consuming (e.g., extracting
them from the environment)

System Analyst
(perform)

Environment
Model

Describe abstract com-
putational resources

Each resource is described in
terms of a symbolic name, is
characterized by the type of
actions that the agents can
perform on it, and could
present additional textual
comments and descriptions

System Analyst
(perform)

2.1.3 Work Products
Figure 11 reports the relationships among the work products of this phase and the
MMMEs of the Analysis.

Kinds of Work Products
Table 2 describes all the work products of the Analysis.

The Gaia Methodology Process 151

System Analyst
Identify Skills Identify Preliminary

Roles

Skills

Preliminary
Interaction Model

Create Role-
Resource Diagram

Identify
Permissions

Identify
Responsibility

Environment
Model

Preliminary
Role Model

Role-Resource
Diagram

<<mandatory, input>>

Organization Model

c

Requirements
Specification

a

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>><<mandatory, output>>

<<mandatory, output>>

<<mandatory, output>> <<mandatory, output>><<mandatory, output>>

Fig. 8 The flow of tasks in the Preliminary Role Model activity

Activity Task Task Description Role Involved

Preliminary
Role Model

Identify
skills

some characteristics that are required
by the organization to achieve its goals

System Analyst
(perform)

Preliminary
Role Model

Identify
preliminary
roles

basic skills of the organization. Each of
them, with their activities, can be
carried out (from) by an agent

System Analyst
(perform)

Preliminary
Role Model

Identify
permissions

permissions relate agent roles to the
environment identifying the resources
that can be used to carry out the role
and stating the resource limits within
which the role must operate (e.g.,
possibly change or consume them)

System Analyst
(perform)

Preliminary
Role Model

Identify
responsibilities

determine the expected behavior of a
role in terms of liveness properties and
safety properties

System Analyst
(perform)

Preliminary
Role Model

Create a
role-resource
diagram

a graphical diagram representing what
the agents playing the role must be
allowed to do or must not be allowed to
do with the available environmental
resources

System Analyst
(perform)

Organization Model
The following table presents an example of the Organization Model for the
conference management case study.

152 L. Cernuzzi et al.

System Analyst
Identify Protocol Identify Role

Dependencies

Preliminary
Interaction

Model

<<mandatory, input>>

Requirements
Specification

a

Organization Model

c

Preliminary Role
Model

c

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, output>> <<mandatory,output>>

Fig. 9 The flow of tasks in the Preliminary Interaction Model activity

Activity Task Task Description Role Involved

Preliminary
Interaction Model

Identify
protocol

A pattern of interaction that has
been formally defined and
abstracted away from any
particular sequence of execution
steps

System Analyst
(perform)

Preliminary
Interaction Model

Identify role
dependencies

Relationships and interactions
between the various roles in the
MAS organization that allow roles
to reach their own goals

System Analyst
(perform)

Environment Model
Table 3 presents an example of the Environment Model for the conference manage-
ment case study.

The Gaia Methodology Process 153

System Analyst

Identify Role-Role
Dependencies

Identify
Organizational

Rules

Organizational
Rules Preliminary

Interaction Model

Identify Environmental
Constraints

Identify Role-Protocol
Dependencies

Identify Protocol-
Protocol Dependencies

Environment
Model

<<mandatory, input>>

Preliminary Role
Model

c

Organization Model

c

<<mandatory, input>> <<mandatory, input>><<mandatory, input>>

Requirements
Specification

a

<<mandatory, input>>
<<mandatory, input>>

<<mandatory,output>>

<<mandatory,output>>

<<mandatory, input>>

Fig. 10 The flow of tasks in the Organizational Rules activity

Activity Task Task Description Role Involved

Organizational
Rules

Identify
Organizational
Rules

Organizational rules are considered as
responsibilities of the organization as a
whole and are represented in terms of
liveness and safety organizational rules

System Analyst
(perform)

Organizational
Rules

Identify role-role
dependencies

Norms and constraints on relationships
between roles (e.g., a role can be played
only if another role has been played
before; or that two roles can never be
played concurrently by the same entity)

System Analyst
(perform)

Organizational
Rules

Identify
role-protocol
dependencies

Norms and constraints that relate roles
and their interactions (e.g., the protocol
must be executed only once by the role)

System Analyst
(perform)

Organizational
Rules

Identify
protocol-protocol
dependencies

Norms and constraints on the
interactions among roles (e.g., the
protocol P1 must necessarily be
executed before the execution of
protocol P2)

System Analyst
(perform)

Organizational
Rules

Identify
environmental
constraints

Norms and constraints on the
environmental resources (e.g., each
paper will receive three reviews from
different referees)

System Analyst
(perform)

154 L. Cernuzzi et al.

R

Organization
Names

Couple Degree

Sub-organization
Names

Sub-goals

Organization

Environment
Model

Action

D

Resource

Skills

Preliminary
Role Model

Role-Resource
Diagram

Preliminary
Interaction Model

Organizational
Rules

D

Protocol
Organizational

Rules

1

D

Organization

1

D

Goal

D

Topology

D

LivenessRule

SafetyRule

R

Role

R

Role

D

Activity

Role

Responsibility

LivenessProperty

SafetyProperty

Organization
Model

c

D

D

D

D

D

D

D

Preliminary Role
Model

c

Fig. 11 The Analysis work products

Table 2 Analysis work products kinds

Name Description Work Product Kind

Requirement
Specification

A description of the problem to be solved (out of
the scope of Gaia)

Free text

Organization Model A composition of other work products that defines
the MAS and its components

Composite
(structural)

Organization Names The name of the overall organization Structural
Couple Degree The degree of relationships and dependencies

among sub-organizations
Structural

Sub-organization Names The name of each sub-organization Structural
Sub-goals The goals of a sub-organization Structural
Environment Model A set of computational resources with their

description and the actions an agent can perform
on them

Structural

Preliminary Role Model A composition of other work products that defines
the roles

Composite
(structural)

Preliminary Role Model The basic skills of the organization that can be
carried out from an agent

Structural

Skills Set of basic characteristics that are required by
the organization to achieve its goals

Structural

Role-Resource Diagram A diagram representing the actions allowed or
not acceptable on the available environmental
resources

Structural

Organizational Rule A set of norms and constraints that governs the
organization (or a sub-organization) as a whole

Structural

Preliminary Interaction
Model

Relationships and interactions between the
various roles in the MAS

Structural

The Gaia Methodology Process 155

Table 3 The environment model for the review sub-organization

Action Environment Abstraction Description

Reads Paper submitted the web site receives a paper
Review submitted the web site receives a review

Changes DB submission insert in the database the paper or the review
received; one per each track

DB reviewer insert in the database the personal data of the
reviewer, the topic of expertise, and the maximum
number of papers the referee accepted to review

Table 4 The ReviewCatcher functional role schema

Role name: ReviewCatcher
Description:
This role is in charge of selecting reviewers and distributing papers among them.
Protocol and activities:
GetPaper, CheckPaperTopic, CheckRefereeExpertise,
CheckRefereeConstraints, AssignPaperReferee,
ReceiveRefereeRefuse, UpdateDBSubmission, UpdateDBReferee
Permissions:

Reads paper_submitted in order to check the topic and authors
referee-data in order to check the expertise and constraint (i.e., the referee

is one of the authors, or belongs to the same organization
Changes DB Submission assigning a referee to the paper

DB Referee assigning the paper to the referee incrementing the number
of assigned papers

Responsibilities:

Liveness: ReviewCatcher = (GetPaper.CheckPaperTopic.CheckRefereeExpertise.
CheckRefereeConstraints.AssignPaperReferee.[ReceiveRefereeRefuse] j
UpdateDBSubmission.UpdateDBReferee)n

Safety: 8 paper: number_of_referees � n
Referee ¤ Author
Referee_organization ¤ Author_organization

Preliminary Role Model
Table 4 presents an example of the Preliminary Role Model for the conference
management case study.

Preliminary Interaction Model
Figure 12 presents an example of the Preliminary Interaction Model for the
conference management case study.

156 L. Cernuzzi et al.

Sub-organization Couple degree Sub-goals

Submission Org Loosely coupled Distribution of CFP; paper submission; papers
classification; assignment of a submission
number; authors notification

Review Org Loosely coupled Papers assignment; providing reviews; collections
of reviews; acceptance/rejection; authors
notification

Publication Org Loosely coupled Camera-ready production; collecting camera
ready; program preparation; composing the
proceedings

2.2 The Architectural Design

The Architectural Design phase defines the most proper organizational structure
for the MAS, i.e., the topology of interactions in the MAS and the control
regime of these interactions, which most effectively enables the MAS goals to
be fulfilled. The definition of the organizational structure has to account for a
variety of factors, including the characteristics of the environment, the need of
reflecting the structure of the real-world organization, the need of respecting and
enforcing the organizational rules, as well as the obvious need to keep the design
as simple as possible. In choosing the most appropriate organizational structure
it is strongly recommended to exploit well-known organizational patterns. Once
the most appropriate organizational structure is defined, the roles and interactions
models identified in the analysis phase (which were preliminary, in that they were
organizational-independent aspects) can be finalized, to account for all possibly
newly identified roles and interactions. These activities result in two models:
the Complete Role Model and Complete Interaction Model. The Complete Role
and Complete Interaction models are strongly related to each other since any
modification of one of the models directly affects the other model.

Figure 13 presents the Architectural Design process, while Fig. 14 presents the
flow of activities, the involved roles, and the work products.

2.2.1 Process Roles
One role is involved in the Architectural Design: the Architectural Designer.

Architectural Designer
An Architectural Designer is responsible for:
• Identifying the best organizational structure according to a specific evaluation of

organizational forces
• Completing role model according to the chosen organizational structure
• Completing interaction model according to the chosen organizational structure

and the role model
• Categorizing roles and protocols

The Gaia Methodology Process 157

Fig. 12 The AssignPaperReferee interaction protocol

2.2.2 Activity Details
Organizational Structure Activity
The flow of tasks in the Organizational Structure activity is reported in Fig. 15; the
tasks are detailed in the following table.

158 L. Cernuzzi et al.

Organizational Structure

Complete Role Model Complete Interaction Model

Categorize Roles Categorize Protocols

refine interactions?

yes

refine roles?
yes

no no

Fig. 13 The Architectural Design process

Complete Role Model Activity
The flow of tasks in the Complete Role Model activity is reported in Fig. 16; the
tasks are detailed in the following table.

The Gaia Methodology Process 159

Architectural
Designer

<<performs,

primary>>

<<
inp

ut>
>

<<input>>

<<output>>

<<input>> <<output>>

<<performs, primary>>

<<performs, primary>>

<<input>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>
>

<<output>>

<<input>>

<<perform
s, prim

ary>>

<<output>>

Architectural
Designer

Architectural
Designer

Architectural
Designer

<<predecessor>>

<<predecessor>>

<<predecessor>>

<<input>>

Architectural
Designer<<performs, primary>>

<<output
>>

<<input>>

<<
in

pu
t>

>

<<performs, primary>>

<<input>>

<<input>>

Exploit Organizational
Patterns

Represent Organizational
Structure

Choose Organizational
Structure

Evaluate Forces

Preliminary
Interaction ModelEnvironment

Model

Organizational
Structure

Organizational
Rules

Refine Role Model

Identify New Roles

<<input>>
Role Model

Refine Interaction Model
Identify New Protocols

Organizational
Structure

Interaction
Model

Preliminary
Interaction Model

<<performs,

primary>>

Identify Structure
Independent Role

Role ModelIdentify Structure
Dependent Role

<<input>>

<<perform
s,

prim
ary>>

<<performs, primary>>

<<input>>

<<
pre

de
ce

ss
or>

>

Identify Structure
Independent Protocol

Identify Structure
Dependent Protocol

Interaction Model

Preliminary
Interaction Model

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<performs, primary>>

Architectural
Designer

<<input>>

<<
pe

rfo
rm

s,

pri
mary

>>

<<input>>

<<input>>
<<input>>

Organization
Model

c

Organization
Model

c

Organization
Model

c

Preliminary Role
Model

c

Preliminary Role
Model

c

Preliminary Role
Model

c

<<input>>

Organizational
Structure

Complete Role
Model

<<output>>

Complete
Interaction

Model

Categorize
Protocols

<<output>>

Categorize
Roles

Fig. 14 The Architectural Design flow of activities, roles, and work products

Activity Task Task Description Role Involved

Organizational
structure

Evaluate forces considering forces like the need to
achieve organizational efficiency, the
need to respect organizational rules
(i.e., control regime), and the need to
minimize the distance from the
real-world organization

Architectural
designer (perform)

Organizational
structure

Choose
organizational
structure

identifying an efficient and reliable way
to structure the MAS organization (i.e.,
topology)

Architectural
designer (perform)

Organizational
structure

Exploit
organizational
patterns

analyzing and possibly adopting
well-documented patterns that already
demonstrated how and when to exploit a
specific organizational structure

Architectural
designer (perform)

Organizational
structure

Represent
organizational
structure

using a diagram to represent the
topology of the MAS organization

Architectural
designer (perform)

Complete Interaction Model Activity
The flow of tasks in the Complete Interaction Model activity is reported in Fig. 17;
the tasks are detailed in the following table.

160 L. Cernuzzi et al.

Architectural
Designer

Preliminary
Interaction Model

Exploit Organizational
Patterns

Represent Organizational
Structure

Choose Organizational
Structure

Environment
Model Organizational

Structure

Evaluate Forces

Organizational
Rules

<<mandatory, input>>
<<mandatory, input>> <<mandatory, input>>

<<mandatory, input>>

Organization Model

c

<<mandatory, input>>

<<mandatory, input>>

Preliminary Role
Model

c
<<mandatory, output>>

Fig. 15 The flow of tasks in the Organizational Structure activity

Activity Task Task Description Role Involved

Complete
Role Model

Identify new roles identification of new roles deriving
directly from the adoption of a given
organizational structure (i.e.,
organizational roles)

Architectural
designer (perform)

Complete
Role Model

Refine role model the definitive identification of activities
and services of the roles, including the
new organizational roles

Architectural
designer (perform)

Activity Task Task Description Role Involved

Complete Inter-
action Model

Identify new
protocols

identification of new protocols deriving
from the adopted organizational
structure (i.e., organizational protocols)

Architectural
designer (perform)

Complete Inter-
action Model

Refine
interaction
model

completing the definition of the
protocols required by the MAS, by
specifying which roles the protocol will
involve

Architectural
designer (perform)

The Gaia Methodology Process 161

Architectural
Designer Refine Role ModelIdentify New Roles

Organizational
Structure

Role Model

Preliminary Role
Model

c

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>

<<mandatory,output>>

Fig. 16 The flow of tasks in the Complete Role Model activity

Architectural
Designer

Refine Interaction ModelIdentify New Protocols

Organizational
Structure

Interaction
Model

Preliminary
Interaction Model

<<mandatory, input>>
<<mandatory, input>><<mandatory, input>>

<<mandatory,output>>

Fig. 17 The flow of tasks in the Complete Interaction Model activity

162 L. Cernuzzi et al.

Architectural
Designer

Role Model

Identify Structure
Independent Role

Role Model

Identify Structure
Dependent Role

Organizational
Structure

<<mandatory, input>> <<mandatory, input>>

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, output><<mandatory, output>

Preliminary Role
Model

c

Fig. 18 The flow of tasks in the Categorize Role activity

Categorize Role Activity
The flow of tasks in the Categorize Role activity is reported in Fig. 18; the tasks are
detailed in the following table.

Activity Task Task Description Role Involved

Categorize Role Identify structure
dependent role

specify which roles are deriving from the
adopted organizational structure (i.e.,
organizational roles)

Architectural
designer (perform)

Categorize Role Identify structure
independent role

specify which roles represent basic skills
of the MAS that are independent from
the adopted organizational structure

Architectural
designer (perform)

Categorize Protocols Activity
The flow of tasks in the Categorize Protocols activity is reported in Fig. 19; the tasks
are detailed in the following table.

The Gaia Methodology Process 163

Architectural
Designer

Identify Structure
Independent Protocol

Interaction Model

Identify Structure
Dependent Protocol

Interaction Model

Preliminary
Interaction Model Organizational

Structure

<<mandatory, input>>

<<mandatory, input>><<mandatory, input>>

<<mandatory, input>>

<<mandatory, output>><<mandatory, output>>

Fig. 19 The flow of tasks in the Categorize Protocol activity

Activity Task Task Description Role Involved

Categorize
Protocol

Identify structure
dependent protocol

specify which protocols are
deriving from the adopted
organizational structure (i.e.,
organizational protocols)

Architectural
designer (perform)

Categorize
Protocol

Identify structure in-
dependent protocol

specify which protocols are
independent from the adopted
organizational structure

Architectural
designer (perform)

2.2.3 Work Products
Figure 20 reports the relationships among the work products of this phase and the
MMMEs of the Architectural Design phase.

Kinds of Work Products
Table 5 describes all the work products of the Architectural Design.

164 L. Cernuzzi et al.

R

Organization

Organizational
Rule

Goal

Topology

Role Model

R 1

Role

Interaction
Model

R 1

ProtocolOrganizational
Structure

R

R

R

Fig. 20 The Architectural Design work products

Table 5 Architectural Design work products kinds

Name Description Work Product Kind

Organizational structure Diagram representing the topology of the
MAS organization

Structural

Role model The definitive specification of activities and
services of the basic roles and the
organizational roles (depending on the
adopted organizational structure)

Structural

Interaction model The definitive specification of the protocols
(and the corresponding roles involved)
required by the MAS

Structural

Organizational Structure
Figure 21 presents an example of the Organizational Structure for the conference
management.

Complete Role Model
Table 6 presents an example of the Complete Role Model for the conference
management case study.

Complete Interaction Model
Figure 22 presents an example of the Complete Interaction Model for the conference
management case study.

The Gaia Methodology Process 165

Vice-Chair1
Role: ReviewCatcher

ReviewCollector

PC-Member1
Role:Reviewer

PC- Chair
Role:

ReviewPartitioner

Vice-ChairN
Role: ReviewCatcher

ReviewCollector

PC-MemberN
Role:Reviewer

PC-MemberX
Role:Reviewer

PC-MemberZ
Role:Reviewer

Fig. 21 Organizational Structure in the conference management case study

2.3 The Detailed Design

Past the Architectural Design phase, the Detailed Design involves identifying: (1) an
agent model, i.e., the set of agent classes in the MAS, implementing the identified
roles, and the specific instances of these classes; and (2) a services model, expressing
services (a service is a single, coherent block of activity in which an agent will
engage) and interaction protocols to be provided within agent classes. An agent class
could package a number of closely related roles for the purposes of convenience
or efficiency. It is worth remembering that the Detailed Design models avoid any
specification oriented to the implementation in a specific technology, leaving this
issue to the programmer. Figure 23 presents the Detailed Design process, while
Fig. 24 presents the flow of activities, the involved roles, and the work products.

2.3.1 Process Roles
Detailed Designer
Detailed Designer is responsible for:
• identifying agent-types and their cardinalities
• identifying services
• specifying actions

166 L. Cernuzzi et al.

Table 6 The ReviewPartitioner organizational role schema

Role name: ReviewPartitioner
Description:
This role is in charge of distributing papers among Vice-Chairs
according the area of competence.
Category:
organizational role
Protocol and activities:
GetPaper, CheckPaperTopic, CheckViceChairArea,
AssignPaperViceChair, UpdateDBSubmission.
Permissions:

Reads paper_submitted in order to check the topic and authors
Vice-Chair-data in order to check the area

Changes DB Submission assigning the paper to a Vice-Chair area
Responsibilities:

Liveness: ReviewPartitioner = (GetPaper.CheckPaperTopic.CheckViceChairArea.
AssignPaperViceChair.UpdateDBSubmission)w

Safety: 8 paper assigned to a ViceChairArea

Fig. 22 The ReceivePaperAssignment interaction protocol

The Gaia Methodology Process 167

Agent Model Service Model

refine services?

yes

refine agents?

yes

nono

Fig. 23 The Detailed Design process

Detailed Designer
<<performs, primary>>

<<input>>

<<input>>

<<output>>
<<

pe
rfo

rm
s,

pr

im
ar

y>
>

Detailed Designer

<<output>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<input>>

<<output>>

<<input>>

<<perfo
rm

s, p
rim

ary>
>

Detailed Designer

<<
inp

ut>
>

<<predecessor>>

<<predecessor>>

Interaction Model

Choose Agent
Cardinality

Agent Model

Identify Agent Class

Role Model

Organizational
Structure

Role Model

Interaction Model

Specify Action

Service Model

Identify Service

Role Model

Organizational
Structure

<<input>>

<<input>>

Interaction Model

<<
in

pu
t>

>

Service
ModelAgent Model

<<output>>

Fig. 24 The Detailed Design flow of activities, roles, and work products

2.3.2 Activity Details
Agent Model Activity
The flow of tasks in the Agent Model activity is reported in Fig. 25; the tasks are
detailed in the following table.

168 L. Cernuzzi et al.

Detailed
Designer

Interaction Model

Choose Agent
Cardinality

Agent Model

Identify Agent Class

Role Model

Organizational
Structure

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, output>><<mandatory, output>

Fig. 25 The flow of tasks in the Agent Model activity

Activity Task Task Description Role Involved

Agent
Model

Identify agent class identification of a set of pro-active,
autonomous entities (i.e., agents), each
of them playing one or more roles, and
the instances of each class that will
appear in the MAS

Detailed designer
(perform)

Agent
Model

Choose agent
Cardinality

specifying how many instances of each
class will appear in the MAS using the
cardinality standard

Detailed designer
(perform)

Service Model Activity
The flow of tasks in the Service Model activity is reported in Fig. 26; the tasks are
detailed in the following table.

2.3.3 Work Products
Figure 27 reports the relationships among the work products of this step and the
MMMEs of the Detailed Design step.

Kinds of Work Products
Table 7 describes all the work products of the Detailed Design.

The Gaia Methodology Process 169

Detailed
Designer

Interaction Model

Specify Action

Service Model

Identify Service

Role Model Organizational
Structure

<<mandatory, output>><<mandatory, output>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

Fig. 26 The flow of tasks in the Service Model activity

Activity Task Task Description Role Involved

Service
Model

Identify
service

identify the services associated with
each agent class with their inputs,
outputs, pre-conditions, and
post-conditions

Detailed designer
(perform)

Service
Model

Specify
action

each service specifies a single, coherent
block of activity in which an agent will
be engaged

Detailed designer
(perform)

Agent Model
Figure 28 presents an example of the Agent Model for the conference management
case study.

Service Model
Table 8 presents an example of the Service Model for the conference management
case study.

170 L. Cernuzzi et al.

Agent Model

D

AgentType

Service Model

D

Service

Fig. 27 The Detailed Design work products

Table 7 Detailed Design work products kinds

Name Description Work Product Kind

Agent Model Diagram of the agents and the roles they are playing Structural
Service Model Specification of the actions associated with each agent class Structural

Fig. 28 An example of the Agent Model

Table 8 An example of the Service Model

Service Input Output Pre-conditions Post-conditions

Accept/Decline
papers
assignment

Request for
reviewing
papers

Papers to be
reviewed

Papers are available for
reading (see
Environmental Model)

List of papers accepted
for reviewing

Accepted review Assigned
paper

Review
form
fulfilled

Paper is available for
reading. Agent has not
already reviewed the
maximum allowed
number of papers

The Review Form has
been correctly
completed

3 Work Products Dependencies

The diagram in Fig. 29 describes the dependencies among the different work
products.

The Gaia Methodology Process 171

Environment
Model

Preliminary
Interaction Model

Organizational
Rules

Organizational
StructureInteraction Model

Role Model

Agent Model
Service Model

Organization
Model

c

Preliminary Role
Model

c

Fig. 29 The work products dependencies

Acknowledgment This work has been partially supported by the EU-FP7-FET Proactive project
SAPERE—Self-aware Pervasive Service Ecosystems, under contract no. 256873.

172 L. Cernuzzi et al.

References

1. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the Gaia methodology. In: 6th Interna-
tional Conference on Enterprise Information Systems (ICEIS 2004), Porto, Portugal, vol. 3, pp.
283–288 (2004)

2. Cernuzzi, L., Zambonelli, F.: Adaptive organizational changes in agent-oriented methodologies.
Knowl. Eng. Rev. 26(2), 175–190 (2011). doi:10.1017/S0269888911000014

3. Cernuzzi, L., Juan, T., Sterling, L., Zambonelli, F.: The Gaia methodology. In: Bergenti,
F., Gleizes, M.P., Zambonelli, F. (eds.) Methodologies and Software Engineering for Agent
Systems: The Agent-Oriented Software Engineering Handbook. Multiagent Systems, Artificial
Societies, and Simulated Organization, Chap. 4, vol. 11, pp. 69–88. Kluwer, Boston (2004).
doi:10.1007/1-4020-8058-1_6

4. Cernuzzi, L., Molesini, A., Omicini, A., Zambonelli, F.: Adaptable multi-agent systems: the
case of the Gaia methodology. Int. J. Softw. Eng. Knowl. Eng. 21(4), 491–521 (2011).
doi:10.1142/S0218194011005384

5. Wooldridge, M.J., Jennings, N.R., Kinny, D.: A methodology for agent-oriented analysis and
design. In: Etzioni, O., Müller, J.P., Bradshaw, J.M. (eds.) 3rd Annual Conference on Autonom-
ous Agents (AGENTS’99), pp. 69–76. ACM, New York (1999). doi:10.1145/301136.301165

6. Wooldridge, M.J., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Auton. Agent Multi Agent Syst. 3(3), 285–312 (2000).
doi:10.1023/A:1010071910869

7. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.J.: Agent-oriented software engin-
eering for Internet applications. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R.
(eds.) Coordination of Internet Agents: Models, Technologies, and Applications, Chap. 13, pp.
326–346. Springer, Berlin (2001)

8. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems: the
Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003).
doi:10.1145/958961.958963

9. Zambonelli, F., Jennings, N., Wooldridge, M.J.: Multiagent systems as computational or-
ganizations: the Gaia methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent
Oriented Methodologies, Chap. 6, pp. 136–171. Idea Group Publishing, Hershey (2005).
doi:10.4018/978-1-59140-581-8.ch006

GORMAS: A Methodological Guideline
for Organizational-Oriented Open MAS

Sergio Esparcia, Estefanía Argente, Vicente Julián, and Vicente Botti

Abstract
The design of Organization-Oriented Multi-Agent Systems requires method-
ologies that use the agent organization as a key concept, defining concepts
such as organizational goals, roles, norms, organizational services, etc., in an
explicit way. GORMAS (Guidelines for Organizational Multi-agent Systems) is
an Agent-Oriented Software Engineering methodology to develop Virtual Organ-
izations that allows describing and designing Organization-Oriented Multi-Agent
Systems. This methodology is composed of four phases: Mission Analysis,
Service Analysis, Organizational Design and Organization Dynamics Design.
Moreover, it is supported by a specific metamodel, named Virtual Organiza-
tion Model, which defines five organizational dimensions, by which an agent
organization can be specified: Structural, Functional, Dynamical, Environment
and Normative. This chapter describes the four phases of the GORMAS meth-
odology, following the template developed within the FIPA Design Process
Documentation and Fragmentation working group. Thus, the activities developed
on each phase, and the products generated during the whole process are detailed.

1 Introduction

Organization-Centered Multi-agent Systems (OCMAS) [1, 2] are a specific type
of MAS where the organization is explicitly defined, and the agents populating it
are focused on achieving the organizational goals. Organizations describe system
functionality, structure, environment and dynamics, and an OCMAS is defined
following a top-down approach (i.e., first, the organization is defined, and then the

S. Esparcia • E. Argente (�) • V. Julián • V. Botti
Dept. Sistemas Informáticos y Computación, Universitat Politècnica de València, Grupo de
Tecnología Informática - Inteligencia Artificial, Camino de Vera, s/n 46022, Valencia, Spain
e-mail: sesparcia@dsic.upv.es; eargente@dsic.upv.es; vinglada@dsic.upv.es; vbotti@dsic.upv.es

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__7,
© Springer-Verlag Berlin Heidelberg 2014

173

mailto:sesparcia@dsic.upv.es
mailto:eargente@dsic.upv.es
mailto:vinglada@dsic.upv.es
mailto:vbotti@dsic.upv.es

174 S. Esparcia et al.

agents that will populate it). OCMAS are open, so external agents coming from
other organizations or the environment will enter into the organization. Thus, it
is necessary to introduce regulative elements such as norms to avoid interested or
malicious behavior by these agents.

Therefore, it is required to be provided with an Agent-Oriented Software Engin-
eering (AOSE) methodology to help designers and developers to define OCMAS.
The Guidelines for Organizational Multi-agent Systems (GORMAS) methodology
is focused on designing large scale, open, service-oriented OCMAS, where or-
ganizations are able to accept external agents into them. GORMAS is based on a
specific method for designing human organizations [3], which consists on diverse
phases for analysis and design: Mission Analysis, Service Analysis, Organizational
Design and Organizational Dynamics Design. These phases have been appropriately
adapted to the MAS field, this way to catch all the requirements of the design
of an organization from agents’ perspective. Thus, the methodological guidelines
proposed in GORMAS cover the common requirement analysis, architectural and
detailed designs of many relevant AOSE methodologies (such as PASSI [4], SODA
[5], and INGENIAS [6]), but it also includes a deeper analysis of the system as an
open organization that provides services to its environment.

GORMAS is supported by a CASE tool named EMFGormas [7], which uses
the MDA Eclipse Technology. This technology requires defining a platform inde-
pendent unified metamodel that describes the modeling language in a formal way,
establishing the primitives and syntactic-semantic properties of organizations and
MAS. The tool offers several graphical editors, one for each view of the model, but
diagrams are stored in a unique model. Thus, GORMAS is supported by the Virtual
Organization Model (VOM) [8], a metamodel that describes a Virtual Organization
by means of five dimensions: Structural, Functional, Dynamical, Environment and
Normative Dimensions.

GORMAS methodological guideline can be integrated into a complete software
development process, which may include the analysis, design, implementation,
deployment and maintenance phases of a MAS. Implementation of GORMAS
designs of several cases of study and actual problems have been carried out using
the THOMAS framework [9].

In this chapter, GORMAS methodology will be described using the template [10]
proposed by the FIPA Design Process Documentation and Fragmentation working
group (using SPEM 2.0 notation [11]), by initially considering its whole process
and its metamodel, and then its four phases, describing the roles, activity details and
work products involved on each phase. All phases are exemplified by means of
a common case of study based on a Conference Management System (CMS),
which is a real-life domain that can be easily translated into MAS domain. Then,
this definition will be used to identify and extract the fragments that compose
GORMAS. The rest of this chapter is structured as follows: Sect. 1.1 gives an
overview on the GORMAS process life cycle and details VOM. Section 2 details
all phases followed by GORMAS.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 175

Mission Analysis

[Is the problem well-specified?]

[no]

[no]

[no]

[yes] [yes] [yes]

[Is the organization of the
 system well-defined?]

[Are the dynamics of the
system well-specified?]

Service Analysis Organizaional
Design

Organizaional
Dynamics Design

Fig. 1 GORMAS life cycle design process

Some interesting GORMAS references are as follows:
• E. Argente. GORMAS: Guias para el desarrollo de Sistemas multi-agente abier-

tos basados en organizaciones. PhD thesis, Universitat Politècnica de València,
2008.

• E. Argente, V. Julian, and V. Botti. MAS Modelling based on Organizations. In
Proc. Agent Oriented Software Engineering 2008, pp. 16–30, 2008.

• E. Argente, V. Botti and V. Julian. GORMAS: An Organizational-Oriented
Methodological Guideline for Open MAS. In Proc. Agent Oriented Software
Engineering 2009, pp. 85–96, 2009.

• E. Argente, V. Botti, V. Julian. GORMAS: An Organizational-Oriented Method-
ological Guideline for Open MAS. In: Agent-Oriented Software Engineering X,
pp. 32–47, Springer, Berlin (2011).

1.1 The GORMAS Process Life Cycle

GORMAS follows a four-phase, iterative life cycle (see Fig. 1):
• Mission Analysis: Describes the global goals of the system, the services and

products that the system provides to other entities, the stakeholders and the
conditions of the environment.

• Service Analysis: Describes the type of products and services, and the tasks and
goals related to its production; the resources and applications needed for offering
the system functionality and the roles related with the stakeholders.

• Organizational Design: Organizational dimensions are defined and they are
employed to define a suitable structure for the organization.

• Organization Dynamics Design: Communication between agents, processes
concerning roles and agents, mechanisms for the control of the system (like
norms) and a reward system, are defined.
On each phase, one or some of the diagrams that represent the five dimensions of

the VOM (that will be described in the next subsection) are updated. Additionally,
some documents or guidelines for describing the environment conditions, system
mission, stakeholders, services and products, are fulfilled in the first two phases of
the methodology and are lately employed throughout the whole process. All four
phases will be detailed in Sect. 2.

176 S. Esparcia et al.

Fig. 2 Structural Dimension metamodel of VOM

1.1.1 The GORMAS MAS Metamodel
This section describes the metamodel that supports GORMAS, named VOM
[8]. Organizations are structured by means of Organizational Units (OU), which
represent a set of agents that carry out some specific and differentiated activities or
tasks, following a predefined pattern of cooperation and communication. An OU is
made up of different entities along its life cycle that can be both single agents or
other Organizational Units, viewed as a single entity. OUs act as a link between the
different GORMAS diagrams.

System entities are capable of offering and/or requesting services and their
behavior is motivated by their pursued goals. Services represent the functionality
that agents offer to other entities, independently from the specific agent that makes
use of it. Moreover, an OU can also publish its service requirements, so then external
agents can decide whether to participate inside, providing these services.

The VOM is made up of five dimensions: Structural, Functional, Dynamical,
Environment and Normative Dimensions.

The Structural Dimension (Fig. 2) describes the components of the system and
their relationships. It allows defining all elements that are independent from the final
executed entities. More specifically, it defines:
• The entities of the system (AAgent), so that an entity represents an atomic entity

(Agent) or a group of members of the organization (Organizational Unit), seen
as a unique entity from outside.

• The Organizational Units (OUs) of the system, which can also include other units
in a recursive way, as well as single agents.

• The Roles defined inside the OUs. In the contains relationship, a minimum and
maximum quantity of entities that can acquire this role can be specified. For each
role, the Accessibility attribute indicates whether a role can be adopted by an

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 177

Fig. 3 Functional Dimension metamodel of VOM

entity on demand (external) or it is always predefined by design (internal). The
Visibility attribute indicates whether entities can obtain information from this
role on demand, from outside the OU (public role) or from inside, once they are
already members of this OU (i.e., private role). A hierarchy of roles can also be
defined using the InheritanceOf relationship.

• The organizational social relationships (SocialRelationship). The type of a social
relationship between two entities is related to their position in the structure of the
organization (i.e., information, monitoring, supervision), but other types are also
possible. Moreover, a condition on when this social relationship is active or not,
and the number of minimum and maximum allowed relationships is established.

• The products (resources/applications) available to the OU. They are the tangible
results of the organization, which will be consumed by its members or its clients.

• The norms that control the global behavior of the members of the OU.
• All contains relationships include conditions for enabling a dynamical registra-

tion/deregistration of the elements of an OU through its lifetime.
The Functional Dimension (Fig. 3) details the specific functionality of the

system, based on services, tasks and goals, as well as system interactions, activated
by means of goals or service usage. It allows defining the functionality of the
organizational units, roles and agents of the MAS. More specifically, it defines:

178 S. Esparcia et al.

• The functionality of the Organizational Units:
– The functional objectives that are pursued by the organization, i.e., non-

functional requirements (softgoals) that can be defined for describing the global
behavior of this organization.

– The stakeholders that interact with the OU.
– The results that the organization offers (products and services, which are

described using service profiles) to those stakeholders. In case of services, a
specific implementation of the service can be defined in the offers relationship
(ServiceImplementation attribute), which may be registered in a service direct-
ory (RegisterPort attribute), so then other entities can find it. Conditions for
controlling this registration process can also be specified (RegisterCondition and
DeregisterCondition attributes).

– The services that are required by the organization (Require relationship).
This “requires” relationship is similar to job offer advertising in human organ-
izations, in the sense that it represents a necessity of finding agents capable of
providing these required services as members of the organization.

– The organization needs from its providers (Consumes relationship).
• The composition of goals:

– The AObjective components, which can be functional objectives (i.e.,
softgoals or non-functional requirements) or operational goals (i.e., hardgoals
or objective).

– The Functional objectives represent the expected results of organizational
units, which are split into the specific and measurable results that their members
are expected to achieve.

– The Objectives represent operational goals, that is, specific goals that agents
have to fulfill. They can be refined into more specific objectives. They might be
related with a Task or Interaction needed for satisfying this objective.

• The functionality of the Roles:
– The goals (AObjective) pursued by a role (i.e., attached to a role), which

can be functional objectives (i.e., softgoals or non-functional requirements) or
operational goals (i.e., hardgoals or simply objective). In the pursues relationship,
activation and deadline conditions can be defined to establish a temporal timeline
in which the objective must be followed by the entity playing this role. In case
of an operational goal (objective), a satisfaction or fail condition can be defined
in order to establish when this objective has to be fulfilled, as well as a Task or
Interaction that enables reaching this goal.

– The services (ServiceProfile) related to the role, that is, the services that the
role is assumed to offer or provide to other entities.

– The tasks that the entities playing this role are assumed to be responsible
for, that is, the specific functionality that an entity playing this role is expected to
be able to carry out.

• The functionality of the Agents:
– The objectives pursued by agents. Activation and deadline conditions can

be defined to establish a temporal timeline in which the objective is followed.
Moreover, a satisfaction or fail condition can be defined in order to establish
when this objective has been fulfilled.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 179

– The services (ServiceProfile) related to the agent, that is, the services that
the agent might offer to other entities. When adopting a role as a member of
an organization, the concrete set of services that the agent will be allowed to
provide is determined by its own set of offered services and those ones related to
the adopted role.

– The tasks that the agent is responsible for, that is, the set of tasks that the
agent is capable of carrying out.

• The composition of tasks and services:
– The Service component describes the service functionality and represents

both specific tasks, taskflows or service composition (Invokes relationship). This
Service component can be split into other Service components, thus allowing
service refinement or task composition.

– A Task represents a basic functionality that consumes and produces changes
in the agent’s Mental States.

– The order relationship between tasks, in which ordering conditions can
be defined, as well as interactions. The entity Condition allows defining the
sequence of tasks depending on a condition.

– The service interface (ServiceProfile), which indicates activation conditions
of the service (preconditions), its input and output parameters and its effects over
the environment (postconditions).

– The service specific functionality (ServiceImplementation), which describes
a particular implementation of a service profile.
The Dynamical Dimension (Figs. 4 and 5) defines the role enactment process,

the interactions between agents, as well as the mental states of the entities of the
system. More specifically, it defines:
• The roles that the Organizational Unit may play inside other Organizational Units

(Plays relationship) when considered as a unique entity. ActivationCondition and
LeaveCondition attributes of this relationship indicate in which situation an OU
acquires or leaves a role.

• The roles played by each agent. ActivationCondition and LeaveCondition attrib-
utes of this play relationship indicate in which situation an agent can acquire or
leave a role.

• The Mental States of the agent, using believes (something that an agent, or a role
taken by an agent, thinks that it is true or will happen), events (something that
changes the state of the system when it occurs) and facts (something that it is true
at the domain of the system).

• The sequence of interactions (Fig. 5):
– The participants of the interaction (Executer). The Initiates and Collabor-

ates relationships indicate the sequence of activities (tasks and services) that
have been executed in an interaction. The Collaborates relationship represents
a response activity.

– The performatives (InteractionUnit) employed during the interaction.
– The entity Condition allows changing the sequence of interactions depend-

ing on a condition.

180 S. Esparcia et al.

Fig. 4 Dynamical Dimension metamodel of VOM (I)

Fig. 5 Dynamical Dimension metamodel of VOM (II)

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 181

Fig. 6 Environment Dimension metamodel of VOM

The Environment Dimension [12] (Fig. 6) describes the environment of a
system by means of the Agents & Artifacts (A&A) conceptual framework [13].
In this approach, the environment is structured by means of workspaces, where
organizations are located, and each workspace has a set of artifacts, which are
passive entities that agents use in order to achieve their objectives. More specifically,
it defines:
• The workspaces that structure the environment, where organizational units are

located. Agents are able to perceive a set of workspaces, defining the visibility of
the organization that they have. The combination of all the workspaces defines
the environment of the organization.

• The artifacts, which are the passive entities that agents will use in order to achieve
their objectives. An artifact has a internal state, a set of properties and a set of
operations and link operations that define its functionality. They encapsulate the
functionalities of products, resources and applications defined in other models,
and they are divided into:
– Informative artifacts, which provide information to an agent, based on the

internal state of this agent and the partial view of the environment that the
artifact has.

– Incentive artifacts, which modify the global behavior of the system by
changing the reward system of the MAS.

– Coercive artifacts, which update the actions an agent is able to execute.
Finally, the Normative Dimension (Fig. 7) describes normative restrictions over

the behavior of the system entities, including organizational norms and normative
goals that agents must follow. It defines:

182 S. Esparcia et al.

Fig. 7 Normative Dimension diagram

• The Norm concept, which represents a specific regulation. The properties of the
norm detail all facts and events of the environment that provoke the activation or
deactivation of the norm.

• The entity (Executer) to whom the norm is applied (using the Concerns relation).
• The Executer that is responsible of: monitoring the norm satisfaction (Control-

ler relation); applying punishments (Sanctioner relationship); and/or applying
rewards (Rewarderer relation).

• The Service attribute of all these relationships indicates which task or service will
be invoked when monitoring this norm and when punishing or rewarding agents.
Table 1 defines the elements of the GORMAS metamodel.

2 Phases of the GORMAS Methodology

In this section, the phases that compose the GORMAS methodology will be
described. GORMAS offers a set of guidelines to analyze the requirements of the
system, to design the structure of the organization and to design the dynamics
of an organization for an Organization-Centered MAS. This set of guidelines is
aimed to define the services provided by an organization, its structure and the norms
governing the organization, making it easy to analyze and design OCMAS.

This section will follow the template made within the FIPA Design Process Doc-
umentation and Fragmentation working group. For each phase, a brief description of
its scope will be given. Then, the process roles that are involved in this phase will be
defined and activities and tasks from that phase will be described in detail. Finally,
work products will be identified. Relationships between VOM elements and work
products will be identified. In the following subsections, each step of the GORMAS
process will be detailed.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 183

Table 1 Definition of MAS metamodel elements

Concept Definition Domain

Organizational
Unit (OU)

A set of agents that carry out some specific and differentiated activities or
tasks by following a predefined pattern of cooperation and communication.
An OU is formed by different entities along its life cycle that can be both
single agents or other organizational units, viewed as a single entity.

Structural, Functional,
Dynamical and
Environment dimensions

AAgent An entity of the system, which represents an atomic entity or a group of
members of the organization, seen as unique entity from outside

Structural and
Dynamical dimensions

Agent An entity capable of perceiving and acting into an environment,
communicating with other agents, providing and requesting
services/resources and playing several roles.

Structural, Functional,
Dynamical and
Environment dimensions

Product An entity that is contained into an OU or that belongs to an specific agent.
It can be an application or a resource.

Structural and
Functional dimensions

Resource It is an environment object that does not provide a specific functionality,
but is essential for task execution.

Structural and
Environment dimension

Application It is a functional interface that does not satisfy a rational criteria Structural and
Environment dimensions

Role An entity representing a set of goals and obligations, defining the services
that an Agent or an OU could provide and consume.

Structural, Functional
and Environment
dimensions

AObjective It is a goal pursued by a role. An AObjective could be a functional
objective or an operational goal.

Functional dimension

Functional
Objective

A functional objective is a non-functional requirement (softgoals) that
could be defined to describe the global behavior of the organization.

Functional dimension

Objective An objective is a specific goal that agents or roles have to fulfill. It can be
refined into specific objectives.

Functional dimension

Service
Profile

It is the description of a service that the agent might offer to other entities Functional dimension

Service Im-
plementation

It is a service specific functionality which describes a concrete
implementation of a service profile

Functional dimension

Service An entity describing the service functionality and represents concrete
tasks, taskflows or service composition

Functional dimension

Task An entity that represents a basic functionality, which consumes resources
and produces changes in the agent’s Mental State.

Functional and
Dynamical dimensions

Norm It is a coordination mechanism and represents a specific regulation for the
system.

Structural and
Normative dimensions

Stakeholder It is a group that the organization is oriented to and interacts with the OUs. Functional dimension
Mental State It is a set of believes, events and facts that define the current state of an

agent.
Dynamical dimension

Believe It is something that an agent (or a role taken by an agent) thinks that it is
true or will happen.

Dynamical dimension

Fact It is something that is true at the system’s domain. Dynamical and
Normative dimensions

Event It is something that changes the state of the system when it occurs. Dynamical and
Normative dimensions

Interaction An entity defining an interaction between agents. Dynamical dimension
Interaction
Unit

A performative employed during the interaction. Dynamical dimension

Condition An entity that allows defining the sequence of tasks depending on a
condition.

Dynamical dimension

Executer A participant in an interaction. It can be an AAgent or a Role. Dynamical,
Environment and
Normative dimensions

Environment It is the physical location of the organization. Environment dimension
Workspace An entity that can be nested and aggregated. The sum of all workspaces

built the environment.
Environment dimension

(continued)

184 S. Esparcia et al.

Table 1 (continued)

Concept Definition Domain

Artifact A non-proactive, but reactive entity that agents use to help them to fulfil
their objectives.

Environment dimension

Informative
Artifact

A type of artifact which provides information to the agents. Environment dimension

Incentive
Artifact

A type of artifact that changes the incentive system of the organization. Environment dimension

Coercive
Artifact

A type of artifact that is aimed to modify the action space of an agent. Environment dimension

Fig. 8 Activity diagram of the Mission Analysis phase

2.1 Mission Analysis Phase

The first phase of GORMAS (Fig. 8) implies the analysis of the system requirements
(i.e., the mission of the organization), identifying the stakeholders, the results
(products/applications) that the system provides to these stakeholders and which

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 185

Fig. 9 Resources and products used in Mission Analysis

Fig. 10 Key for the elements contained in SPEM 2.0 diagrams

are the environment conditions that affect to the organization. All these issues are
lately employed as a basis to define the global goals of the system, reflected by its
mission. Moreover, this phase involves two different process roles (System Analyst
and Domain Expert), and four work products (one model diagram and three text
documents), as described in Fig. 9. Thus, this phase is composed of five activities
(Fig. 8): Identify Stakeholders, Identify Organization Results, Identify Environment
Conditions, Define the System Mission and Justify the MAS System. As a result,
a diagram of the Functional Dimension Model is drawn, detailing the products and
services offered by the system, the global goals (mission) pursued, the stakeholders
and the existing links between them, the system results as well as the resources or
services needed. The key to understand Figs. 8 and 9, and the forthcoming, similar
figures represented using SPEM 2.0 is found in Fig. 10.

2.1.1 Process Roles
There are two roles involved in the Mission Analysis phase: the System Analyst and
the Domain Expert:
• System Analyst. He/she is responsible of (1) defining the mission and the context

of the organization, by means of identifying the system results, the stakeholders
and the environment of the organization; (2) creating the documents that define

186 S. Esparcia et al.

Table 2 Mission Analysis phase tasks

Task Task description Roles involved

Define the System
Mission

Identify the global goals pursued by the system. These goals compose
the mission of the organization.

System analyst and
domain expert

Identify
organization results

Describe the results (products or services) that the system provides, to
understand what the result is, what it does and who is interested in.

System analyst and
domain expert

Identify
stakeholders

Identify and describe the main stakeholders that the organization is
related to (external actors, clients, users, etc.)

System analyst and
domain expert

Identify
environment
conditions

Identify and define the kind of environment in which the organization
will be developed, knowing if it is physical or virtual; if it is
distributed, etc.

System analyst and
domain expert

Justify the MAS
system

Justify the existence of this system, comparing it to other existing
similar systems (that can use agents or not), and analyzing the
advantages and disadvantages, and the singularities of the proposed
system.

System analyst

Table 3 Products for Mission Analysis phase

Name Description Work product kind

Functional
Dimension
Model

A diagram using the GORMAS graphical notation (based on GOPPR
notation) that details the specific functionality of the system, based on
services, tasks and goals.

Behavioral

Organizational
Mission

A document describing the basic aspects of the organization that will
be defined.

Structured text

Stakeholders A document describing the stakeholders that will take part on the
organization.

Structured text

Environment
conditions

A document describing the conditions that the environment of the
organization will have.

Structured text

the mission of the system; and (3) instantiating the Functional Dimension Model
diagram from the VOM metamodel.

• Domain Expert. He/she is responsible of supporting the System Analyst during
the Mission Analysis phase, by giving him/her all the information that could be
needed.

2.1.2 Activity Details
In the Mission Analysis phase, five tasks are defined: (1) to define the global goals
of the system (mission); (2) to identify the services and products that the system
provides to other entities; (3) to identify the stakeholders with whom the system
contacts (clients or suppliers of resources/services), describing their needs and
requirements; (4) to identify the conditions of the environment or context in which
the organization exists (i.e., complexity, diversity, restrictions, etc.); and (5) to
justify the existence of the MAS system that is being designed, in order to prove
whether the GORMAS definition could contribute to define an organization or not.
Table 2 summarizes these five tasks.

2.1.3 Work Products
This section defines the products that are generated in this phase (see Table 3):
one behavioral diagram (Functional Dimension Model) and three structured text
products (Organizational Mission, Stakeholders and Environment conditions).
Figure 11 describes the relationship of the generated products on the Mission

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 187

Fig. 11 Mission Analysis phase. Relations between work products and metamodel elements

Analysis phase and the elements of VOM. In this figure, each of the work products
reports one or more elements from VOM; each element is represented using an
UML class icon and, in the documents, such elements can be [10]: (1) Defined: D
label near the element symbol, this means that the element is introduced for the first
time in the design of this work product (i.e., the metamodel element is instantiated
in this diagram); (2) reFined: F label means that the metamodel element is refined
in the work product (for instance by means of attribute definition); (3) Related: R
label, this means that an already defined element is related to another, or from a
different point of view, that one of the metamodel relationships is instantiated in the
document; (4) Quoted: Q label, means that the element has been already defined
and it is reported in this work product only to complete its structure but no work has
to be done on it; or (5) Relationship Quoted: RQ label means that the relationship is
reported in the work product but it has been defined in another part of the process.
As explained before, four work products are generated on this phase: Organizational
Mission, Stakeholders, Environment Conditions, and Functional Dimension Model.

188 S. Esparcia et al.

Table 4 Template for Organizational Mission document

Organizational Mission

Name: general name of the system or organization to be generated
Domain: kind of market or interest area of the organization
Results: set of products or services offered by the organization to its clients
- Purpose: Description of the motivation by which this result is offered.
- Is it tangible?: If the result is storable, printable and/or reusable, it is a “product”. If it is a used up functionality, it is a
“service”.
Stakeholders: actors that set up the market of the organization.
- Is it a consumer?: the actor consumes the products or services that the organization provides.
- Is it a producer?: the actor provides some resources or services that are required by the organization to work.
Kind of environment: location of the system (unique or distributed). Ability to access to the real and physical world.
Context restrictions: a set of restrictions that are imposed by the context or environment of the organization, and could
affect to its structure, services, etc.
Justification: reason of the existence of the organization
- Similar systems: to detail the existing systems that provide a similar orientation than the one we are considering.
- Advantages: set of advantages that we want to afford with the new proposal. i.e., optimal use of the resources or
services.
- Disadvantages: limitations that the new proposal has.
- Singularities: competitive elements of the organization.

Table 5 Example of Organizational Mission document

Organizational Mission

Name: Conference Management System (CMS)
Domain: Scientific conference: education and research
Results:

� Product: Reviews Purpose: The reviews for conference papers done by reviewers, including marks.
� Product: Proceedings Purpose: A set of camera-ready versions of all accepted papers of the conference.
� Service: Submit paper. Purpose: A service to upload a paper to the CMS.
� Service: Review paper. Purpose: A service to review the submitted papers, distributing the work between reviewers

and taking a final decision.
� Service: Prepare proceedings. Purpose: A service to collect and format the camera-ready versions of the accepted

papers of the organization
Stakeholders:

� Authors: They write papers for the conference.
� Reviewers: They review the papers of a conference.
� Program committee members: They handle the paper review, contact the potential referees and ask them to review

one or more papers.
� Chair: distribute papers depending on expertise; accepts or changes system suggestions.
� Vice-Chair: if the conference is big, the chair delegates his/her work on them.

Kind of environment: The environment is distributed between the different members of the organization. The system
will be in touch with the real world.
Context restrictions: The organization must have a chair, and at least one paper (with at least one author), one PC
member and one reviewer.
Justification: This is a system developed to manage the conference management system.

� Similar systems: Other conferences or journals may have similar systems.
� Advantages: To facilitate the tasks and procedures that must be performed by the system users.
� Singularities: The performance of the organization is better using this system that makes the review process faster.

Organizational Mission. This document is employed to define the mission of
the organization that will be described. It is a structured text document. Its template
is shown in Table 4, whereas Table 5 gives an example of this work product. As
shown, it is necessary to give a name, a domain and an environment description for

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 189

Table 6 Stakeholders document

Stakeholders

Name An identifier for the stakeholder.
Beneficiary Indicate whether the stakeholder is a primary (essential) or a secondary beneficiary.
Type Indicate whether the stakeholder is a client, a provider or a regulator.
Objectives Describe the objectives pursued by the stakeholder.
Requires A set of products and/or services that the stakeholder consumes.
Provides A set of products and/or services that the stakeholder offers to the organization.
Frequency To point out whether this stakeholder contacts with the organization frequently, occasionally

or in an established period of time.
Benefits Describe the benefits that the stakeholder wants to achieve.
Decision power Indicate whether their needs are affecting to the requirements of products or services.
Under the influence
of the system?

Indicate whether the organization can affect the interests of the stakeholder.

Contribution To point out what the organization obtains from its relationship with the stakeholder.

Table 7 Example of a Stakeholders document

Stakeholders
Authors Reviewers PC members

Beneficiary Primary Primary Primary
Type Client Client Provider
Objectives Upload papers Review papers Manage conference
Requires

Services Submit paper
Products Reviews, proceedings Reviews

Provides
Services Review paper, prepare proceedings
Products Reviews Proceedings

Frequency Frequent Frequent Frequent
Benefits Publish a paper CV merits CV merits
Decision power No No Yes
Under the influence
of the system?

Yes Yes No

Contribution No authors means no
conference

Reviews are needed
to run a conference

A chair is required

the organization. Additionally, it is necessary to set the results that the system will
provide with and the stakeholders that are interested on keeping a relationship with
the organization. Finally, a justification for designing the system must be provided.

Stakeholders. This document is employed to describe the stakeholders of the
organization that have been previously identified in the Organizational Mission
document. It is a structured text document. Its template is shown in Table 6, and
Table 7 gives an example of this work product, describing three of the stakeholders
(authors, reviewers, chair) from the CMS case study. The description of the
stakeholders is done by providing the type of stakeholder, the objectives that they
follow, their products and services provided and required, the benefits obtained by
them and their position into the organization.

190 S. Esparcia et al.

Table 8 Environment Conditions document

Environment conditions

Change rate: Are the stakeholders constant through time? Are their requirements constant? Are they modified in a
cyclical and a predictable way? Is it possible to estimate the consumption of a product? Is the demand of a product or a
service constant through time? If the answer is affirmative, the environment is stable. If not, it is an unstable or
dynamic environment.
Complexity: Are there a lot of different elements? Are there a lot of clients? Are there a lot of types of products and
services to offer? Are there a lot of types of providers? Are providers not related between them? If any of the answers
is affirmative, the environment is complex. If not, it is a simple environment.
Uncertainty: If the environment is dynamic and complex, uncertainty is high. If the environment is stable and simple,
uncertainty is low.
Receptivity: Are the inputs and resources available? Are they obtained in an easy and secure way? If the answer is
affirmative, the environment is munificent. If not, it is a hostile environment.
Diversity: Are different groups of clients served? Is it provided a set of different products or services, with no
relationship between them? If any of the answers is affirmative, the environment is diverse. If not, it is a uniform
environment.

Table 9 Example of an Environment Conditions document

Environment conditions

Condition Value Justification
Change rate Stable Stakeholders and activities remain unchanged through time.
Complexity Simple Low number of clients, products, and services to being offered.
Uncertainty Low The environment of the organization is stable and simple.
Receptivity Munificent The inputs and resources are obtained in an easy and controlled way from previously

known providers.
Diversity Uniform There are a few different types of clients, products and services.

Fig. 12 Entities from the GORMAS graphical notation

Environment Conditions. This document is employed to describe the environ-
ment conditions in which the organization will be placed. It is a structured text
document. Its template is shown in Table 8, and Table 9 gives an example of
this work product. This document analyzes five conditions: the change rate, the
complexity, the uncertainty, the receptivity and the diversity of an environment.

Functional Dimension Model. This work product is a GORMAS diagram.
GORMAS uses an UML-like graphical notation called GOPPR [14] (used to define
diagrams on INGENIAS and ANEMONA methodologies), but adding some entities
proposed by GORMAS such as services and norms. A caption to understand the
elements of the diagram is shown in Fig. 12.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 191

A

Fig. 13 Example of a Functional Dimension Model diagram

As stated before, the Functional Dimension Model details the specific functional-
ity of the system, based on services, tasks and goals, as well as system interactions.
In this phase of the methodology, the OU representing the system, along with
the stakeholders, the global goals, the products and the services of the system are
instantiated on this diagram. Figure 13 shows an example of a Functional Dimension
Model diagram. An OU is defined (CMS), containing three services (Submit Paper,
Review Paper, Prepare Proceedings) and two resources (Reviews and Proceedings).
The Organization pursues one objective (Optimal Conference Management) and
there are four groups of stakeholders (Authors, Reviewers, Program Committee
members, and Chair), which are consuming and offering services (represented by
a service profile entity) and resources.

2.2 Service Analysis Phase

In this phase (Fig. 14), the services offered by the organization to its clients are
specified, as well as how these services behave (inputs/outpus description and
internal tasks) and which are the relationships (interdependencies) between these
services. Furthermore, goals associated with services are detailed.

Therefore, the Service Analysis phase involves (Fig. 15) two different pro-
cess roles (System Analyst and Domain Expert), and five work products (three
GORMAS model diagrams and two text documents). This step is composed of
five activities (Organization Technology Analysis, Organizational Unit Technology
Analysis, Work Flow and Technological Interdependence Analysis, Define Organiz-
ation Functionality and Analysis of the goals of the organization). The flow of tasks
of this phase is shown in Fig. 14.

Taking the Organization Theory as a basis, three existing types of technology are
considered: (1) the Organization Technology, which refers to the whole organization

192 S. Esparcia et al.

Fig. 14 Activity diagram of Service Analysis phase

and determines if the client has influence in the process of production and the
final aspect of the product or how services are related between them, and with
regard to the clients; (2) the Organizational Unit Technology, which contemplates
the diversity and complexity of the different organizational tasks, identifying the
existing flows of work; and (3) Work Flow and Technological Interdependence,
which defines the interdependent relations originated as a result of the workflow
between OUs.

As a result of this phase, the diagrams of the Structural and Environment
Dimension Models are instantiated and the Functional Dimension Model diagram
is updated. Specifically, in the Functional Dimension Model, both resources and
applications of the system are identified. In the Structural Dimension Model, the
entities representing the clients and/or providers of the system are established.
Moreover, the services required and offered by the system are identified, as well as
the roles that provide or make use of these services. For each service, the Functional
Dimension Model diagram must be updated, detailing the service profile (inputs,

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 193

Fig. 15 Resources and products used in Service Analysis phase

outputs, preconditions and postconditions) and its tasks. Finally, in the Functional
Dimension Model, the mission is split into functional goals, which are related to the
system entities and its services. The functional goals represent the specific actions
of the organizational units and their expected results.

2.2.1 Process Roles
There are two roles involved in this phase:
• System Analyst. He/she is responsible of (1) analyzing the technology of the

system, along with the goals of the organization; (2) identifying and describing
the products and services of the organization; (3) splitting the mission goals
of the organization into functional goals; (4) modeling the Structural and the
Environment Dimension Model diagrams; and (5) updating the Functional
Dimension Model.

• Domain Expert. He/she is in charge of supporting the System Analyst on the
analysis of the technology, the goals, the services and the products of the system.

2.2.2 Activity Details
For the MAS field, we have mapped the technology concept to the set of resources,
applications and knowledge required by agents, as well as the set of processes and
tasks that are necessary to carry out with the services offered by the organization.
The Service Analysis phase is aimed to identify the kind of technology that the
organization will use. Moreover, the designer will describe on detail the generated
products and the provided services of the organization.

194 S. Esparcia et al.

Table 10 Tasks of the Service Analysis phase

Task Task description Roles involved

Organization
Technology Analysis

Determine the way in which products and services are produced. It can
be “organization directed”, “client directed” or “standard production”.

System Analyst
and Domain
Expert

Organizational Unit
Technology Analysis

Existing workflows are determined and services and products are
analyzed using the templates provided by the methodology.

System Analyst
and Domain
Expert

Work Flow and
Technological
Interdependence
Analysis

Identify what is the relationship between organizational units in order to
reach the organizational goals. There are three kinds of
interdependence: independent (coordination between units must be
minimum), sequential (tasks are linked or follow a required workflow)
and reciprocal (units depend on each other).

System Analyst
and Domain
Expert

Define organization
functionality

It must be checked whether services and their related tasks are well
specified. Additionally, for every Agent or Organizational Unit
identified in the functional dimension model, it is assigned a split of the
mission goals, by means of the products it generates, its clients or the
services it attends.

System Analyst

Analysis of the goals
of the organization

For every identified Service, a link is designed between one or some
functional objectives and its Organizational Unit.

System Analyst

Besides the description of services and products, there is another main activity
in this phase of the methodology. The mission of the system must be derived into
other goals or objectives: functional objectives and operative objectives. Functional
objectives represent the results that organizational units are expected to achieve.
The operative objectives are the specific and measurable results that are expected
to be achieved by the members of a unit. Therefore, this activity aims to split
the goals of the system into functional objectives and to set their relationships
with organizational units, agents and services of the organization. Tasks of this
activity are detailed in Table 10. More specifically, at the Service Analysis phase it is
specified: (1) the type of products and services that the system offers to or consumes
from its stakeholders; (2) the tasks related to the production of the products and
services, defining the steps necessary for obtaining them, their relationships and
interdependencies between the different services and tasks; (3) the goals related with
the achievement of these products or services; (4) the resources and applications
needed for offering the system functionality; and (5) the roles related with the
stakeholders, on the basis of the type of services or tasks that they provide or
consume.

2.2.3 Work Products
This section describes the products generated by the Service Analysis phase (see
Table 11). Two models from VOM are instantiated (the Structural and Environment
Dimension Model diagrams), whereas the Functional Dimension Model diagram
is updated. Moreover, two kinds of documents are generated: the Service/Product
Identification, which is a structured text document that allows defining the type
of production of the organization and the kind of technology that the system will
use; and the Product/Service Description, a document describing the features of the
products and services of the organization. Figure 16 describes the relationship of the
generated products in this phase and the elements of VOM.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 195

Table 11 Products for Service Analysis phase

Name Description Work product kind

Functional Dimension
Model

See Table 3. Behavioral

Structural Dimension
Model

A diagram that uses the GORMAS notation that describes the
components of the system and their relationships. It allows defining
the static components of the organization.

Structural

Environment
Dimension Model

A diagram that uses the GORMAS notation that describes
environmental elements (resources and applications), along with
the agents’ behavior. It also allows defining the service ports.

Behavioral

Product / Service
Identification

A document that identifies the kind of production the system will
have and the technology that products will use.

Structured text

Product / Service
Description

A document that describes the features of products and services. Structured text

Product/Service Identification. This document is a couple of structured text
documents that describe the kind of production the system will have and the
technology that products will use. On the one hand, the technology used to obtain
the products is identified. It can be organization directed, client directed or standard
production, depending on who is requesting the products. On the other hand, the
technology followed by the service organization is described. Services can have
interdependence, dependence or variability among them. The template of this
document can be found in Tables 12 and 13; an example is shown in Table 14.

Product/Service Description. This document is a couple of structured text
documents that describe the products and services that the organization will
produce. Services are described by means of their functionality, the roles involved
on them and their profile. For product description, it is necessary to specify the
granularity of each product, its margins, and/or parameters and the resources that
requires. The template of this document can be found in Tables 15 and 16; an
example is shown in Table 17.

Functional Dimension Model. This model was initially instantiated on the
Mission Analysis phase (see Sect. 2.1.3), and in this phase it is updated, so roles are
related with the service they offer or require, services are split into tasks (defining
the resources and applications that they offer and consume) and the mission of the
system is split into functional objectives. As an example, Fig. 17 depicts the mission
of the system split on functional objectives. This split forms the Goal Tree of the
organization.

Structural Dimension Model. It describes the components of the system
and their relationships, allowing the definition of the static components of the
organization. In this phase of the methodology, the Organizational Unit representing
the whole system is depicted, as well as those entities that have been identified in
the previous steps. Figure 18a shows an example of a Structural Dimension Model

196 S. Esparcia et al.

Fig. 16 Service Analysis phase. Relations between work products and VOM elements. D: element
introduced for first time; F: element refined; Q: element already defined; R: element related with
another element

diagram in which a “client directed” technology has been considered. In this figure,
four agents (Author, Reviewer, PC member, and Chair) and four roles with the same
names as agents are defined along with the OU, named CMS, that represents the
Conference Management System, the organization used as case study.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 197

Table 12 Product Identification document

Product identification

Are the obtained products used as resources to make new products? Is the production continuous without a clear start
and a clear end? Are modules from other processes used? Are the modules assembled in order to obtain products under
request? In case of affirmative answer, then it is an organization directed production.

� Tip: Basic products that are components to make more complex products must be identified. They must be
represented as resources.
Do products fit the client’s needs? Is every product made for a concrete client, under his request? Is a wide range of
products managed? Is a big variety of the clients’ requirements taken into account? Are changes on product features
anticipated? In case of affirmative answer, then it is a client directed production.

� Tip: Every client must be represented by an A-Agent. It must be included as a member of the Organizational Unit
that represents the system.
Could a product be consumed by different kinds of clients? Could a product be consumed by different clients that
belong to the same type? Is their production independent from the requirements of their final consumers? In case of
affirmative answer, then it is an standard production.

� Tip: Applications for interacting with the clients must be created. The Organizational Unit that represents the
system must contain at least one application per client. All these applications will allow extracting information related
to specific clients.

Table 13 Service Identification document

Service identification

Is the functionality of every service independent? Is the order that the services are executed making no difference? Are
some types of clients connected by means of services? In case of affirmative answer, then it is service independence.
Is a determined order to execute the services required? Are the inputs of a service depending from the outputs of
another service? Does a client need to use a previously established service to request another service? In case of
affirmative answer, then it is service dependence.
Is the order of the services to offer variable? Does it depend on the decisions and requirements of the clients? Are the
needs of the clients unpredictable? In case of affirmative answer, then it is service variability.

Table 14 Example of a Product/Service Identification document

Product/service identification

Product technology: standard production. Products are made independently from the requirements of final consumers.
Service technology: client dependence. Products are generated after the petition of the clients of the organization.

Table 15 Product Description document

Organizational Unit Technology

Name Name of the product

Description A short description about the product.
Parameters A set of the product features that will be considered.
Lower margin Minimum value used for the service.
Upper margin Maximum value used for the service.
Granularity Grade of variability that the values for every parameter could have.
Resources A set of environment entities that the product will use.
Tip If a “client directed” production is used, then variables defined by the clients must be set.

Environment Dimension Model. It describes the environment of the system by
means of artifacts and workspaces. Figure 18b shows an example of an Environment
Dimension Model diagram, depicting the workspace where the organizational unit
CMS is located, as well as two artifacts, Proceedings and Reviews.

198 S. Esparcia et al.

Table 16 Service Description document

Organizational Unit Technology

Name Name of the service

Description A short description about the service functionality.
Conditions
Context A specification of the environment where the service is executed.
Exceptions A set of conditions that prevent the correct execution of the service.
Consumer An actor that requests the service.
Objective What the consumer is looking for by using the service.
Price The value that the consumer should pay while using the service.
Benefit A description of the benefit obtained by the consumer.
Producer An actor entrusted to provide and execute a service.
Objective What the producer is looking for by providing the service.
Cost A description of the cost to pay while using the service.
Benefit A description about the benefit obtained while providing the service.
Service Profile
Inputs Information that must be supplied to the service.
Preconditions A set of the input conditions and some environment values in order to obtain a correct execution

of the service.
Outputs Information returned by the service.
Postconditions Final states of the parameters of the environment, by means of the different kinds of outputs.
Functionality
Tasks A set of tasks covered by the service. It must be pointed out whether any of these tasks is

another service provided by the organization.
Resources A set of environment entities that the service will use.
Provider An actor that provides the given resources.
Products Tangible results obtained by executing the service.

Table 17 Service
Description document for
the CMS case-study

Organizational Unit Technology

Service Submit paper

Description A service to upload a paper to a conference.
Conditions
Context A conference is being organized and papers are required.
Exceptions There is no conference to upload papers to.
Consumer Authors
Objective To upload a paper to be reviewed for a conference.
Price The previous effort of writing a paper.
Benefit A possible publication.
Producer Chair
Objective To control that the process is correctly carried out.
Cost
Benefit Papers to correctly organize a conference
Service Profile
Inputs – Paper D hPaperID, authors, content i
Preconditions : 9 a 2 Papers j a.PaperID D PaperID
Outputs
Postconditions 9 a 2 Papers j a.PaperID D PaperID 8 Papers
Functionality
Tasks SendPaper.AssID

– SendPaper: Send a paper to the CMS
– AssID: Assign an ID to the received paper

Resources Paper database
Author database

Provider
Products

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 199

A

A

A A
A A

A

Fig. 17 Relationship between mission and functional objectives of the organization

a b

Fig. 18 Examples of (a) Structural and (b) Environment Dimension Models

2.3 Organizational Design Phase

In this phase (Fig. 19), the most suitable structure for the system organization is
selected [15]. This structure will determine the relationships and pre-established
restrictions that exist between the elements of the system, based on specific
dimensions of the organization [16], which impose certain requirements on the types
of work, on the structure of the system and on the interdependence between tasks.

For structure selection, a decision tree (Fig. 20) has been elaborated that enables
the system designer to identify which is the structure that better adjusts to the
conditions imposed by the organizational dimensions. This decision tree can be
applied to the system as a whole or to each of its OUs, so then enabling structure
combinations. At the end of this step of the methodology, context restrictions
identified on Mission Analysis phase will be taken into account in order to modify
the structure of the organization if necessary.

200 S. Esparcia et al.

Fig. 19 Activity diagram of the Organizational Design phase

Fig. 20 Organizational Structure decision tree

Additionally (see Fig. 21), as a result of this phase, Functional and Structural Di-
mension models are updated. Structural Dimension Model is updated by adding new
Organizational Units, Roles, Resources and Norms. Functional Dimension Model is
updated in order to show new relationships between Roles and Organizational Roles
and to describe the functionality of the services.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 201

Fig. 21 Products of the Organizational Design phase

2.3.1 Process Roles
There are two roles involved in the Organizational Design phase:
• System Analyst. He/she is responsible for (1) defining the organizational dimen-

sions of the system; (2) selecting the most suitable structure for the organization;
and (3) adapting the selected structure to the organization.

• Domain Expert. He/she is responsible for supporting the system analyst during
the Organizational Design phase, by giving him/her all the needed information
about the organizational dimensions of the system.

2.3.2 Activity Details
As stated before, the first task to be accomplished in this phase is to identify the spe-
cific dimensions of the organizational structure. The dimensions of organizational
structure [16] are:
• Departmentalization, which details the motivation of work group formation, that

is, functional (on the basis of knowledge, skills or processes) or divisional (on
the basis of the characteristics of the market, clients, products or services).

• Specialization, which indicates the degree of task division, based on the quantity
and diversity of tasks (horizontal job specialization) and the control exercised on
them (vertical job specialization).

• Decision making, which determines the degree of centralization of the organiza-
tion, that is, the degree of concentration of authority and capture of decisions.

• Formalization, which specifies the degree in which tasks and positions are
standardized, by means of norms and rules of behavior.

202 S. Esparcia et al.

Table 18 Organizational Design activity

Task Task description Roles involved

Identify
Organizational
Dimensions

Define the organizational dimensions of the system by assigning tasks
and identifying restrictions.

System Analyst
and Domain
Expert

Assign tasks Tasks are grouped into Organizational Units and assigned to members
of the organization.

System Analyst
and Domain
Expert

Identify restrictions Existing restrictions about the organization members behavior are
identified. Additionally, mechanisms to help coordination and
cooperation between members are described

System Analyst
and Domain
Expert.

Determine
Organizational
Structure

Using the organizational dimensions previously identified, along with
the decision tree (see Fig. 20), the best structure for the organization is
identified. This activity can be applied not only to the whole
organization, but also to some OUs.

System Analyst

Adapt the pattern
design

The identified structure is adapted by modifying Functional and
Structural Dimension Models

System Analyst

Apply the context
restrictions

Context restrictions identified on Mission Analysis phase are applied
to the structure of the organization.

System Analyst

• Coordination Mechanism, which indicates how individuals can coordinate their
tasks, minimizing their interactions and maximizing their efficiency, using
mutual adjustment, direct supervision or standardization.
These organizational dimensions are employed for determining the most suitable

structure for the system specifications. Thus, it is carried out: (1) the analysis of the
organizational dimensions, which allows specifying the functional granularity of the
service, by means of grouping tasks and services together (defining more complex
services) and assigning them to specific roles; and identifying general restrictions
on the coordination and cooperation behavior of the members of the organization;
(2) the selection of the most interesting organizational structure for the system; and
(3) the adoption of the selected structure to the problem under study, using specific
design patterns.

Along with the decision tree, a set of design patterns of different structures has
been defined which include simple hierarchy, team, flat structure, bureaucracy, mat-
rix, federation, coalition and congregation structures. These patterns describe their
intrinsic structural roles, their social relationships, as well as their typical functional-
ity. According to these design patterns, the diagrams of the structural and functional
dimension models are updated, so then these intrinsic roles, relationships and
functionality related to the design pattern are integrated inside the current problem.

At the end of this phase, the context restrictions identified on Mission Analysis
phase (Organizational Mission document) are taken into account to provide a final
design of the organization. Therefore, the structure obtained after integrating the
design pattern must be modified to satisfy the context restrictions. This is an iterative
process. First of all, textual restrictions are needed to be transformed into GORMAS
entities. For example, if one of the restrictions specifies “There must be a manager”,
a role called “Manager” is involved into the organization. Next, it is necessary to
integrate these restrictions into the selected structure that must be adapted until
an optimal structure for the organization is achieved. All tasks of this activity are
detailed in Table 18.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 203

Table 19 Products for Organizational Design phase

Name Description Work product kind

Functional
Dimension Model

See Table 3. Behavioral

Structural
Dimension Model

See Table 11. Structural

Organizational
Dimensions

A document that describes the specific dimensions of the organization:
departmentalization, specialization, decision making, formalization
and coordination mechanism.

Structured text

Fig. 22 Organizational Design phase. Relations between work products and metamodel elements.
F: element refined; Q: element already defined; R: element related with another element

2.3.3 Work Products
This section describes the products generated on the organizational design phase.
Two models are updated: the Structural and Functional Dimension Model diagrams.
Moreover, the Organizational Dimensions structured text document is generated. It
describes the specific dimensions of the organization structure that will be used to
select the structure that best fits the system. Work products are described in Table 19.
Figure 22 describes their relation with VOM elements.

204 S. Esparcia et al.

Table 20 Organizational Dimensions document

Organizational Dimensions

Departmentalization
Is it necessary to act on the same type of resources? Does the offered functionality follow similar behavior patterns?
Do the services require the same kind of inputs? Do they offer similar outputs? In case of affirmative answers, it is a
functional departmentalization.

� Tip: Similar functionalities must be grouped and an Organizational Unit must be created for every group.
Do activities must be particularized by means of the clients or the offered products? Is the functionality different
according to the geographical location? In case of affirmative answers, it is a divisional departmentalization.

� Tip: Functionalities aimed to the same client must be grouped and an Organizational Unit must be created for
every group.
Are similar functionalities for different kinds of clients or products available? Are these functionalities related between
them, following a specific order? In case of affirmative answers, it is a functional and divisional
departmentalization.
Specialization and Decision Making
Have the roles got specialized tasks assigned? Do the roles make few types of tasks? Are the roles lacking of control
over their own work? In case of affirmative answers, it is a high horizontal and high vertical job specialization.

� Tip: Agents’ tasks control will be assumed by supervisor agents that are in charge of their Organizational Units.
Do the roles have assigned specialized tasks but exerting control over them? Can agents select the mechanism to carry
out these tasks? In case of affirmative answers, it is a high horizontal and low vertical job specialization.
Are the roles in charge of different tasks not so related among them? Have these roles a low interdependence? Do the
roles not offer control over their activities? In case of affirmative answers, it is a low horizontal and high vertical job
specialization.
Are the roles in charge of some different tasks, assuming their control? In case of affirmative answers, it is a low
horizontal and low vertical job specialization.
Is the environment simple? Is it necessary to process few quantities of information? In case of affirmative answers,
centralization is recommended.
Is the environment complex? Is it necessary to process big amounts of information? In case of affirmative answers,
centralization is not recommended.
Coordination and Formalization
Is the environment dynamic? Is the way to execute tasks flexible? Can tasks be carried out by different roles? Do roles
present low vertical job specialization? Mutual adjustment (negotiation processes) must be applied.
Do the roles present high vertical job specialization? Are the control and management centralized in some points?
Direct supervision must be applied.
Is the order of execution of tasks very important? Is it more indifferent to the resolution method by which the system
has been obtained? Is it independent from whom is providing? Standardization of skills is applied.
Are the knowledge and skills that are available on certain tasks indispensable? Is there a predefined and globally
assumed behavior for a particular skill? Standardization of skills must be applied.

Table 21 Organizational Dimensions document example

Organizational Dimensions

Departmentalization: Functional. Services are grouped by means of their functionality.
Specialization and Decision making: High horizontal and high vertical job specialization. Roles use and provide a
reduced set of types of services.
Coordination and Formalization: Standardization of work processes. Order of tasks is very important and each task
must be performed by a specific agent.

Organizational Dimensions. This is a structured text document that describes
the dimensions that impose some requirements to the organizational structure. These
dimensions are departmentalization, specialization, decision making, formalization
and coordination mechanism. The template of this document can be found in
Table 20 and an example is shown in Table 21 (for the CMS case study).

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 205

Fig. 23 Example of a Functional Dimension Model diagram updated on Organizational Design
phase, for the CMS case study

Functional Dimension Model. This diagram was previously instantiated on
Mission Analysis phase (see Sect. 2.1.3) and updated on Service Analysis phase
(see Sect. 2.2.3). In the Organizational Design phase, Functional Dimension
Model is updated by adding relationships between roles and the services they
provide/consume, along with the relationships between OUs and roles, and the
services they provide. Also, services must be split into more specific services. An
example of an updated Functional Dimension Model is shown in Fig. 23, which
shows the OU (named CMS) and five services, being three of them (Write review,
Take decision, and Distribute work) the ones that split from the previously defined
Review Paper service. Additionally, there are represented the Contains relationships
between OUs and Roles, showing which roles are consuming or offering each
service.

Structural Dimension Model. This diagram was previously instantiated on
Service Analysis phase (see Sect. 2.2.3). In the Organizational Design phase,
Structural Dimension Model is updated by adding new OUs, roles and their
relationships, and by relating OUs with the roles they contain. It is necessary to
specify the inheritance of roles. Additionally, entities defined by the design pattern
must be added to the diagram and the structure that best fit the organization that is
adopted.

2.4 Organization Dynamics Design Phase

In this phase (Fig. 24), the detailed design of the system is carried out, which implies
the following activities: design of the information decision processes; design of the
system dynamics as an open system; design of the measuring, evaluation and control
methods; definition of a suitable reward system; and design of the system agents,
describing them by means of diagrams of the agent model. Moreover, it involves
one process role (System Analyst) and seven work products (four model diagrams
and three text documents), which are detailed next (see Fig. 25).

206 S. Esparcia et al.

Design of Information-
Decision processes

Design of Open System
Dynamics

Design of Control
Policies

Design of the Reward
System

Agent Design
[Are the models well specified?]

[yes]

[no]

Fig. 24 Activity Diagram of
the Organization Dynamics
Design phase

2.4.1 Process Role
There is one role involved in the Organizational Design phase: System Analyst.
He/she is responsible for (1) detailing services and related workflows; (2) identi-
fying the operative goals; (3) defining the specific interactions between agents
and their collaboration diagrams; (4) defining the ontology of the domain; (5)
determining the services that have to be advertised; (6) determining the policies
for role enactment; (7) identifying the internal and external agents; (8) considering
standardization of work process, outputs and skills; (9) analyzing the types of
behavior needed to promote; (10) selecting the type of reward system to be used;
and (11) applying the selected reward system in the specific domain problem.

2.4.2 Activity Details
The activities that compose this phase of the methodology are detailed as follows.

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 207

Fi
g

.
2

5
St

ru
ct

ur
al

D
ia

gr
am

of
th

e
O

rg
an

iz
at

io
n

D
yn

am
ic

s
D

es
ig

n
ph

as
e

208 S. Esparcia et al.

Design of Information Decision Processes. The flows of information and
adoption of decisions are described in order to determine how the information is
processed and how agents work for obtaining the expected results (Fig. 26). More
specifically:
• The specific functionality of services is specified, which implies (1) detailing

services and related workflows for providing these services and splitting these
workflows in concrete tasks; and (2) identifying the operative goals that represent
the specific and measurable results that the members of an OU are expected to
achieve. Thus, functional goals are split into operative goals, which are lately
assigned to tasks.

• The flow of information of the system is specified, which implies: (1) defining
the specific interactions between agents on the basis of services and their
collaboration diagrams, in which agent messages are defined; and (2) defining
the ontology of the domain, whose concepts will be used during interactions,
taking into account the service inputs and outputs.
As a result, the diagrams of the Dynamic Dimension Model are defined.

Moreover, Structural and Functional Dimension Model diagrams are updated. All
tasks of this activity are detailed in Table 22.

Design of Open System Dynamics. In this activity (Fig. 27), the functionality
offered by the agent organization as an open system is established, which includes
the services that must be advertised as well as the policies of role enactment. In
this sense, it is specified which is the functionality that must be implemented by
the internal agents of the system and which functionality must be advertised in
order to enable this functionality to be provided by external agents. Therefore, there
are determined: (1) the services that have to be advertised; (2) the policies for role
enactment, detailing the specific tasks for the AcquireRole and LeaveRole services
of each OU; and (3) the identification of the internal and external agents.

All roles that need a control of their behaviors require a registration process
inside the OU where they take part, so they are associated with external agents,
who must request the AcquireRole service to play this role. On the contrary, roles
like managers or supervisors are assigned to internal agents, since their functionality
requires safety and efficiency. Figure 27 shows the products and services involved
in this activity. Specific tasks of this activity are described in Table 23.

Design of Control Policies. In this activity (Fig. 28), the set of norms and
restrictions needed for applying the Formalization Dimension of the organizational
structure is defined. Three different types of standardization are considered: stand-
ardization of work processes, outputs, and skills.

The standardization of work processes implies specifying rules for controlling:
(1) invocation and execution order of services; (2) precedence relationships between
tasks; (3) deadline and activation conditions of services; and (4) service access
to resources or applications. The standardization of outputs implies specifying
norms for controlling the service products, based on minimum quality requirements,

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 209

Fig. 26 Flow of tasks of the Design of Information-Decision Processes activity

perceived quality and previous established goals of productivity and performance.
Finally, the standardization of skills is integrated in the role concept, which indicates
the required knowledge and skills for an agent when playing this role. As a result,

210 S. Esparcia et al.

Table 22 Design of Information Decision Processes activity description

Task Task description

Identify Service Providers Functional Dimension Model diagram is updated by adding the management roles for
the OUs that offer services. Additionally, these roles must be added into the Structural
Dimension Model diagram.

Detail Services Every service that the design pattern contributed with must be split into tasks.
Identify Operative Goals Functional objectives are split into operative goals that can be clearly specified.
Update Functional Dimension
Model

After identifying service providers, detailing services and identifying operative goals,
Functional Dimension Model diagram is updated.

Detail Environment System interactions with clients and providers along resources, applications and
agents are analyzed in order to determine their correction. New entities like resources
and applications are defined to collect all the necessary information of the system.

Define Domain Ontology System domain concepts are specified, taking into account the service inputs and
outputs, and their relations. Additionally, existing ontologies can be reused in the
system.

Identify Interactions Relations between OUs are checked in order to create information flows that can
facilitate their relationships and information exchange.

Define Services Interactions An Interaction entity is defined for every Service, indicating its features and the
participants of the interaction.

Update Functional and
Structural Dimension Models

After identifying interactions, Functional and Structural Dimension Model diagrams
are updated.

Generate Dynamical
Dimension Model Diagrams

After defining service interactions, Dynamical Dimension Model diagrams are defined
to represent them.

Fig. 27 Flow of tasks of the Design of Open System Dynamics activity

the diagrams of the Normative Dimension Model are generated, so the norms needed
for controlling the behaviors of the members of the system are detailed. The specific
tasks of this activity are described in Table 24.

Design of the Reward System. This activity defines the reward system needed
for allowing the members of the organization to work toward its strategy (Fig. 29).
Therefore, designer proceeds to:

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 211

Table 23 Design of Open System Dynamics activity description

Task Task description

Determine Functionality to
be published

Agents must be split into internal and external agents. Every service with the
participation of external agents must be published by using a ServicePort entity.

Identify External Agents There are two ways for identifying external agents: (i) every external agents has
associated an internal agent who represents him, and it is familiar with the interaction
protocols; and (ii) external agents act with the system by means of services, so we
need to establish the service management and role enactment rules.

Define Role Enactment
Policies

AcquireRole and LeaveRole services are split into tasks, taking in account activation
conditions, preconditions and restrictions.

Fig. 28 Flow of tasks of the Design of Control Policies activity

Table 24 Design of Control Policies activity description

Task Task description

Define Standardization of
Work Processes

Implies specifying rules for regulating invocation and execution order of services,
precedence relationships between tasks, required deadline for execution, access to
resources, etc.

Define Standardization of
Outputs

Implies establishing norms to control the results obtained by the service providers, by
means of the minimum quality of the produced service or product; and the quality
perceived by the stakeholders and to the previous established goals of productivity and
performance.

Define Standardization of
Skills

Implies defining the permissions, knowledge and aptitudes than an agent must acquire
when taking a role.

Generate Normative
Dimension Model Diagrams

Norms of the Organizational Units are specified, to allow them to establish an
execution order between services; to define deadlines or activation/deactivation
conditions for services; and to control the access to products and services, using ports.

• Analyze the types of behavior needed to promote: (1) the willingness to join and
remain inside the system; (2) the performance dependent on role, so that the
minimal levels of quality and quantity of work to execute are achieved; (3) the
effort on the minimal levels, defining several measures of performance, efficiency

212 S. Esparcia et al.

Fig. 29 Flow of tasks of the Design of Reward System activity

and productivity; and (4) the cooperative behaviors with the rest of members of
the organization.

• Select the type of reward system to be used: (1) individual rewards, which
establish several measures of behavior of unit members, allowing to promote
their efforts over the average; (2) group rewards (competitive or cooperative),
which establish group measures, rewarding unit members based on their specific
performance inside the group; or (3) system rewards, which distribute certain
gratifications (e.g., permissions, resource accesses) to all members of the system,
trying to promote the participation inside the organization.

• Apply the selected reward system in the specific problem domain. Note that the
methodological guideline enables the selection of the type of reward system
that should be employed, but it does not detail the concrete mechanisms for
implementing this system.
As a result, the diagrams of the Normative Dimension Model are updated,

defining new norms and/or adding sanctions and rewards to the existing norms,
according to the selected reward system. The specific tasks of this activity are
described in Table 25.

Agent Design. In this activity, internal agents of the system are defined. Thus,
each agent is related to the set of roles that it plays, specifying its functionality.
Then, the Structural and Functional Dimension Model diagrams are updated.

2.4.3 Work Products
This section describes the products generated by the Organization Dynamics Design
phase (see Table 26). Two models are generated: the Dynamical and Normative

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 213

Table 25 Design of the Reward System activity description

Task Task description

Analyze behavior interests Analyze the types of behavior needed to promote, like the willingness to join and
remain inside the system; the performance dependent of roles; the effort on minimal
levels; and the cooperative behaviors in order to create coalitions or groups formed by
agents.

Select Reward System Select the type of reward system to be used, by describing individual rewards (several
measures of behavior of unit member, allowing to promote their efforts on the
minimal levels), group rewards (can be cooperative or competitive and are several
group measures, rewarding its members based on their specific performance inside the
group) and system rewards (gratifications to all members of the system, just by
belonging to this group, trying to promote the participation inside the organization).

Apply Reward System The selected reward system is applied to the specific problem domain.

Table 26 Products for Organization Dynamics Design phase

Name Description Work product kind

Functional
Dimension Model

See Table 3. Behavioral

Structural
Dimension Model

See Table 11. Structural

Environment
Dimension Model

See Table 11. Behavioral

Dynamical
Dimension Model

A diagram that uses the GORMAS notation that defines the role
enactment process, the interactions between agents, as well as the
mental states of the entities of the system.

Behavioral

Normative
Dimension Model

A diagram that uses the GORMAS notation that describes normative
restrictions over the behavior of the system entities, including
organizational norms and normative goals that agents must follow,
including sanctions or rewards.

Behavioral

Domain Ontology A document that specifies the concepts of the organization domain,
taking into account the service inputs and outputs.

Structured text

Norms in Normative
Language

A document that contains a set of norms concerning entities of the
system and written in normative language

Structured text

Reward System A document containing a description of the reward system that our
organization will apply.

Structured text

Dimension Model diagrams; whereas the Functional and Structural Dimension
Model diagrams are updated. Three structured text documents are generated,
regarding the domain ontology, the norms in normative language and the reward
system of the organization. Figure 30 describes their relation with VOM elements.

Domain Ontology. To define this structured text document, system domain
concepts are specified, taking into account the service inputs and outputs, and their
relations. Moreover, if similar ontologies have already been proposed, correspond-
ences between these ontologies and the specific one for the current problem must be
established. GORMAS proposes an organization ontology that can be employed to
describe a system. A detailed description of this ontology can be found in [17].

Norms in Normative Language. This structured text document describes the
norms that regulate an organization. Norms are employed as mechanisms to limit the
autonomy of the agents in complex systems in order to solve complex coordination

214 S. Esparcia et al.

Fig. 30 Organization Dynamics Design phase. Relations between work products and metamodel
elements. D: element introduced for first time; F: element refined; Q: element already defined; R:
element related with another element

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 215

Fig. 31 Example of management roles identified on Organizational Dynamics Design phase, for
the CMS case study

problems. Norms are presented using a normative language centered on requesting,
serving and registering actions of a concrete service. A detailed description of this
normative language can be found in [8].

Reward System. This document describes the behavior that should be pro-
moted, specially when using an open system. Rewards can be individual, global
or system rewards. GORMAS proposes an analysis about the kind of reward system
that best fits the domain, but specific details of this system are left to the designer.

Functional Dimension Model. This diagram was previously instantiated on
the Mission Analysis phase (see Sect. 2.1.3) and updated on Service Analysis (see
Sect. 2.2.3) and Organizational Design phases (see Sect. 2.3.3). In the Organiza-
tional Dynamics Design phase, the Functional Dimension Model diagram is updated
by adding management roles, new services that they can provide and operational
objectives. As an example, Fig. 31 shows the added management roles of the CMS
case study and relates them with the services they provide.

Structural Dimension Model. It was previously instantiated on the Service
Analysis phase (see Sect. 2.2.3) and updated on the Organizational Design phase
(see Sect. 2.3.3). In the Organizational Dynamics Design phase, the Structural
Dimension Model is updated by adding new roles, resources, applications and their
relationships, norms, agents and by relating OUs with the roles they contain. It is
necessary to specify the inheritance of roles.

Dynamic Dimension Model. As stated before, this diagram defines the role
enactment process, the interaction between agents, as well as the mental states
of the system. In this phase of the methodology, interactions and their participant
roles are identified, along with their relationships with objectives. Figure 32
shows an example for the CMS case study, including an interaction between two
roles (Reviewer and Chair) using an interaction entity (Review Paper), and three
interaction units (performatives) that uttered during the interaction. Also, it is
depicted a condition (the reviewer is also an author) that will change the order to
execute interaction units if it is fulfilled.

Normative Dimension Model. This diagram was previously defined as a
description of normative restrictions over the behavior of the system entities,
including organizational norms and normative goals that agents must follow. In this
phase of the methodology, norms and their relations with roles, agents, services
and objectives are described. Finally, the reward system is specified. Figure 33

216 S. Esparcia et al.

Fig. 32 Example of an interaction in the Dynamical Dimension Model for the CMS case study

Fig. 33 Example of a Normative Dimension Model diagram for the CMS case study

shows an example of a Normative Dimension Model diagram, depicting two norms:
(1) PreventReviewerAuthor, to avoid a PC member that is both a reviewer and
an author to review his own papers, and it is supervised by the conference chair;
and (2) SendCameraReady, a norm that authors have to follow to send a correct
camera-ready version of their work prior to its final publication in the conference
proceedings.

3 Work Product Dependencies

Figure 34 describes the dependencies among the different work products. For ex-
ample, the Organizational Mission document is used to identify the stakeholders of
the organization that will be described in the Stakeholders document. Additionally,

GORMAS: A Methodological Guideline for Organizational-Oriented Open MAS 217

Fig. 34 Work product dependency diagram

the Organizational Mission document is used as a guidance to define the Functional
and Structural Dimension Model diagrams.

Acknowledgements This work was supported by TIN2009-13839-C03-01 and TIN2012-36586-
C03-01 projects of the Spanish government, and CONSOLIDER-INGENIO 2010 under grant
CSD2007-00022.

References

1. Lemaître, C., Excelente, C.B.: Multi-agent organization approach. In: Proceedings of II
Iberoamerican Workshop on DAI and MAS (1998)

2. Argente, E., Julian, V., Botti, V.: MAS modeling based on organizations. In: Agent-Oriented
Software Engineering IX, pp. 16–30. Springer, Berlin (2009)

3. Moreno-Luzón, M.D., Peris, F.J.: Strategic approaches, organizational design and quality
management: integration in a fit and contingency model. Int. J. Qual. Sci. 3(4), 328–347 (1998)

4. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent-Oriented
Methodologies, pp. 79–106. Idea Group Publishing (2005)

5. Omicini, A.: SODA: societies and infrastructures in the analysis and design of agent-based
systems. In: Agent-Oriented Software Engineering, vol. 1957, pp. 185–193. Springer, Berlin
(2001)

218 S. Esparcia et al.

6. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS. In: Multi-
agent Systems and Applications III, pp. 394–403. Springer, Berlin (2003)

7. Garcia, E., Argente, E., Giret, A.: A modeling tool for service-oriented open multiagent
systems modeling tool. In: 12th International Conference on Principles of Practice in Multi-
agent Systems. PRIMA 2009. Lecture Notes in Computer Science, vol. 5925, pp. 345–360.
Springer, Berlin (2009)

8. Criado, N., Julian, V., Botti, V., Argente, E.: A norm-based organization management system.
In: Coordination, Organizations, Institutions, and Norms in Agent Systems. Springer, Berlin
(2009)

9. Giret, A., Julian, V., Rebollo, M., Argente, E., Carrascosa, C., Botti, V.: An open architecture
for service-oriented virtual organizations. In: PROMAS 2009 Post-Proceedings, pp. 1–15.
Springer, Berlin (2010)

10. Cossentino, M.: Design Process Documentation Template. Technical report, FIPA (2011)
11. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the spem specifications to

represent agent oriented methodologies. In: Agent-Oriented Software Engineering IX: 9th
International Workshop, AOSE 2008 Estoril, Portugal, May 12–13, 2008 Revised Selected
Papers, vol. 5386, p. 46. Springer, New York (2009)

12. Esparcia, S., Centeno, R., Hermoso, R., Argente, E.: Artifacting and regulating the environment
of a virtual organization. In: 2011 23rd IEEE International Conference on Tools with Artificial
Intelligence, pp. 547–554. IEEE, Boca Raton (2011)

13. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for
engineering working environments in MAS. In: Proceedings AAMAS, p. 150 (2007)

14. Kelly, S., Lyytinen, K., Rossi, M.: MetaEditC: a fully configurable multi-user and multi-tool
CASE and CAME environment. Lecture Notes in Computer Science, vol. 1080, pp. 1–21.
Springer, Berlin (1996)

15. Argente, E., Julian, V., Botti, V.: Multi-agent system development based on organizations.
Electron. Notes Theor. Comput. Sci. 150(3), 55–71 (2006)

16. Mintzberg, H.: The Structuring of Organizations. Prentice-Hall (1979)
17. Criado, N., Argente, E., Julian, V., Botti, V.: Designing virtual organizations. In: 7th

International Conference on Practical Applications of Agents and Multi-agent Systems
(PAAMS2009). Advances in Soft Computing, vol. 55, pp. 440–449. Springer, Berlin (2009)

INGENIAS-Scrum

Juan C. González-Moreno, Alma Gómez-Rodríguez,
Rubén Fuentes-Fernández, and David Ramos-Valcárcel

Abstract
This chapter introduces the definition of an agile process for the INGENIAS
methodology. It is based on a well-known development process: Scrum. The
process adopts the iterative and fast plan presented originally by the methodology
and uses some of the activities and most of the work products of the INGENIAS
proposal with the Unified Development Process (UDP) (introduced in a previous
chapter). The new approach is also based on the INGENIAS metamodel, but
it is more focused on code development than on system specification. It takes
advantage of the INGENIAS Agent Framework (IAF), which is part of the
INGENIAS Development Kit (IDK). As this approach uses the same metamodels
than the UDP based, there are not great differences in the models of the case
study, but, instead, the organization of the work products and the time spent to
get the final results is quite different.

1 Introduction

Agent-Oriented Software Engineering (AOSE) methodologies have adopted dif-
ferent development processes depending on their particular needs and what the
prevalent processes in mainstream software engineering [1] were. From [2], the
process models used in AOSE can be classified into the following groups:
• Waterfall. The waterfall-like process models prescribe a sequential, linear flow

among phases. Although some waterfall models include some kind of return to

J.C. González-Moreno • A. Gómez-Rodríguez (�) • D. Ramos-Valcárcel
Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain
e-mail: alma@uvigo.es; jcmoreno@uvigo.es; david@uvigo.es

R. Fuentes-Fernández
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
e-mail: ruben@fdi.ucm.es

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__8,
© Springer-Verlag Berlin Heidelberg 2014

219

mailto:alma@uvigo.es
mailto:jcmoreno@uvigo.es
mailto:david@uvigo.es
mailto:ruben@fdi.ucm.es

220 J.C. González-Moreno et al.

previous phases, in real projects this return occurs very late and the cost of any
change in the initial specifications is unacceptable.

• Evolutionary and Incremental. The stages of this process model category consist
of expanding increments of an operational software product, with the direction
of evolution being determined by operational experience. Most of AOSE meth-
odologies have process models within this category.

• Transformation. This software development may be seen as a sequence of steps
that gradually transform a set of formal specifications into an implementation.

• Spiral. It organizes the development process in a cyclic way. Each cycle of the
spiral consists of four phases: determining the objectives, evaluating the risks of
these objectives, developing and verifying, and reviewing the previous stages.
Among all of them, agile processes [3] can be included in Evolutionary and

Incremental class. This means that the development is organized to deliver func-
tional increments of high value for the customer in short periods of time. These
processes are code-oriented in the sense that they consider the main product of
development is functional code.

Scrum [4] is an empirical agile project management framework. It relies on
self-organizing, empowered teams to deliver the product increments, but also on
a customer, or Product Owner, that must provide the development team with a
list of desired features, using business value as the priority mechanism. In real
life, Scrum is a mechanism in the sport of rugby for getting an out-of-play ball
back into play. The term was adopted in 1987 by Ikujiro Nonaka and Hirotaka
Takeuchi to describe hyper-productive development. Jeff Sutherland developed the
Scrum process in 1993 while working at the Easel Corporation, and Ken Schwaber
formalized the process in the first published paper on Scrum at OOPSLA 1995 [5].

The Scrum process framework is specially well suited for Knowledge Engineer-
ing Developments based on the use of multi-agent systems (MAS). This chapter
addresses its integration with the INGENIAS methodology [6] using some specific
tools. INGENIAS is a general purpose AOSE methodology that adopts a model-
driven development (MDD) [7]. Its development is organized around the definition
of models that are semi-automatically transformed into different products, for
example, code, tests, and documentation.

The INGENIAS modeling language is defined through a metamodel, following
common practices in MDD [8]. It is the basis to define the transformations that
generate the code of support tools and MAS in INGENIAS. This metamodel
has proved its capability and maturity in the development of MAS for different
domains [6, 9, 10]. The main support tool is the INGENIAS Development Kit
(IDK) [11], which includes a graphical editor for MAS specifications compliant
with the INGENIAS metamodel, and integrates plug-ins to provide additional
functionalities. Among these plug-ins, those to manage developments using the IAF
are the most relevant ones.

The IAF [12] is a set of libraries that facilitate the implementation of INGENIAS
agents built on top of the Java Agent DEvelopment Framework (JADE) [13]. The
tool has been proposed from the experience in the application of the INGENIAS
methodology over several years to enable a MDD.

INGENIAS-Scrum 221

Product
Backlog

Sprint
Backlog

Sprint
Product

24
Hours

2–4
Weeks

Fig. 1 Scrum life cycle

The IAF is fully integrated in the IDK [11] and provides facilities for project
checking, code generation, debugging, and documentation. This means that fol-
lowing the guidelines of the IAF documentation, an experienced developer can
focus most of its effort on specifying the system, converting a great deal of the
implementation in a matter of transforming automatically specifications into code.
This quick transition from specifications to code facilitates the adoption of agile
processes such as Scrum [4].

The rest of this chapter fully specifies the development process based on the
Scrum framework and the use of the IAF proposed in [1]. The INGENIAS with the
UDP chapter in this book also considers the INGENIAS methodology, but with
its original process based on the Unified Development Process (UDP) [14]. The
interested reader can find additional discussion on the INGENIAS methodology in
that chapter.

1.1 The INGENIAS-Scrum Process Life Cycle

Scrum [4] is a suitable process for contexts where developers consider short and
incremental development cycles focused on running code. This scenario is enabled
by the IAF [12] for the INGENIAS methodology (Fig. 1).

Scrum usually addresses the production of a software version (i.e., a release)
every couple of months. Potential features to accomplish in a release are collected in
the product backlog and prioritized. A product owner, who represents the customer,
is in charge of updating this backlog. The release is produced in a number of
iterations called sprints. Each sprint usually lasts from 2 to 4 weeks. The sprint
content is defined by the product owner taking into consideration both priorities and
team capabilities. The team defines the tasks required to develop the functionalities

222 J.C. González-Moreno et al.

Fig. 2 Scrum phases

selected for the sprint. Within a sprint, progress checkpoints are performed during
the daily scrums. This enables the scrum master to assess work progress regarding
the sprint goals, and to suggest adjustments to ensure the sprint success. At the end
of each sprint, the team produces a potentially releasable product increment, whose
evaluation drives the backlog update for the next sprint.

All this work is planned in two kinds of phases (see Fig. 2): the Preparation phase
and the Sprint phases. The Preparation phase includes all the activities to be done
before the first sprint, focused on the elaboration of the product backlog. The Sprint
phases covers the execution of all the sprints required to release the final product.
The following sections discuss the key issues of the integration of this process with
INGENIAS through model-driven practices.

1.2 Metamodel

The INGENIAS metamodel describes the elements that constitute a MAS according
to this methodology. This metamodel is explained in detail in the INGENIAS with
the UDP chapter, so this chapter only offers a short overview. A detailed discussion
of the metamodel can be found in [15, 16].

This metamodel considers several viewpoints (i.e., models) that correspond to
different aspects of a MAS. Figure 3 (shared with the INGENIAS with the UDP
chapter) shows them and their relationships. The viewpoints are
• The MAS organization, that is, the Organization Model.
• The definition, control and management of each agent mental state, that is, the

Agent Model.
• The tasks and goals assigned to each agent, that is, the Tasks and Goals Model.
• The agent interactions, that is, the Interaction Model.
• The external environment where agents interact to satisfy their goals, that is, the

Environment Model.

1.3 Guidelines and Techniques

The process proposed for INGENIAS [6] must be able to guide developers to obtain
the products that meet the development goals. Being INGENIAS a MDD-oriented
methodology, this means that once a specification conforming to the metamodels is
defined, the products are generated through transformations and using, if needed,
additional resources (e.g., code templates, external code, or scripts).

INGENIAS-Scrum 223

Fig. 3 Metamodel of the INGENIAS methodology

1.3.1 Scrum and MDD
Although Scrum [4] does not describe the engineering activities required for product
development, the application of Scrum to INGENIAS does it. INGENIAS-Scrum
relies on the use of the IAF [12], which allows to combine the classic approach for
coding applications with the modern techniques of automatic code generation.

An IAF compliant specification must describe in a sound way the following
aspects:
• Agents. It is the main building block in an INGENIAS MAS. An agent is

defined completely when its perception, main tasks, and coordination means are
described.

• Tasks. They are the basic units of agent’s behavior. A task modifies the agent
mental state and performs actions over the applications.

• Interactions. They describe how agents coordinate in order to satisfy their goals.
Coordination is defined in terms of transferred information units between agents.

• Deployment. It expresses how agents are instantiated and initialized in the final
system.

• Tests. The test define the testing units that the MAS should pass through to ensure
the system will achieve its goals and will work in a sound way along its life cycle.
This information is provided through several INGENIAS models (see Sect. 1.2).

The core ones, in this case, are the Agent Model, the Interaction Model, and the
Tasks and Goals Model. The Environment Model may also be considered, mainly to
point out the relationships with external elements. Nevertheless, its elements can be

224 J.C. González-Moreno et al.

defined by using the rest of models, particularly using the Agent Model (as shown
in Fig. 3). Regarding the Organization Model, it is not strictly necessary to use
it, but it may help to have a global vision of the final solution in what refers to
agents and roles that participate, and responsibilities in the satisfaction of the main
goals. Moreover, it may be used to reflect many of the product items proposed in
the original Scrum framework.

Note that although not all the INGENIAS models are strictly necessary to create
an IAF compliant specification, this does not mean that the models do not provide
information usable for code generation. For instance, the concepts of Autonomous
Entity and Organization presented in Table 2 of the INGENIAS-UDP chapter could
have a translation to code in the form of new capabilities or relationships.

1.3.2 IDK Considerations
The IDK [6, 11] is a graphical tool for MAS model creation. Although it is fully
adapted to cover the INGENIAS metamodel, the editor offers several features that
allow the adaptation to new metamodels or target platforms. At present many of
such features could be used to accurately support the documentation provided for
some non-standard artifacts like user stories, cards, priorities, estimations, etc. For
instance, a good practice to cover users stories is to associate a package to each
one and use the text description to introduce a full description of the story. This
text description may be used also to include information about priority, velocity,
tasks assignation, etc. After, this description can be refined and formalized by
using the diagrams of the metamodel that is associated with such package. Another
good complementary practice is to use a naming protocol for each package to
document the version and level of development for such package. The use of that
package naming convention also facilitates the implementation of an iterative and
incremental process for any system. The capability of the tool, which allows to move
diagrams from a package to another one, is also fundamental to facilitate such kind
of process.

1.3.3 IAF Considerations
During the definition of the product backlog using the INGENIAS models, par-
ticipants must take into account that an agent in the IAF performs a simple
deliberation cycle:
• Identify new tasks to schedule and tasks to remove from the schedule
• Execute one scheduled task

This cycle omits the classic perception step as it is not needed. In fact, the
agent can receive new information at any moment and this does not cause internal
conflicts. The incorporation of new pieces of information does not imply a change
in already scheduled tasks, though it may mean the incorporation of new tasks.

INGENIAS-Scrum 225

Fig. 4 The Preparation phase flow of activities

2 Phases of the INGENIAS-Scrum Process

2.1 Process Documentation: Preparation Phase

As the Scrum framework does not take into account all the aspects of project
planning, the main goal of the Preparation phase is to define the Plan Release. This
implies establishing the features to address in the release and the estimated tasks to
achieve them.

Accordingly with the original Scrum framework, the Preparation phase
comprises the following activities: Initiate Product Backlog, Plan Release, and
Preparation Tasks. Figure 4 shows the workflow of these activities, and Fig. 5
shows the structure of the phase in terms of the tasks and work products to be
accomplished. Section 2.1.1 provides information about the roles responsible of
each task and the kind of responsibility they assume. Section 2.1.2 details the
activities and their tasks, and a description of the work products related with those
tasks appears in Sect. 2.1.3

It is interesting to note that several tasks of this phase have to be done using the
IAF integrated in the IDK. The main guideline to apply correctly both INGENIAS
tools is the technical report [12], which comes with the IDK distribution.

2.1.1 Process Roles
Following the Scrum approach, the roles implied in the Preparation phase are the
Product Owner, the Scrum Team, and the Stakeholder. The following sections
describe them in detail.

Product Owner
This role represents the customer during the development and is in charge of
the Initiate Product Backlog activity. This activity produces a backlog containing
enough features to allow the startup of a number of sprints. The role also participates
in the Plan Release activity to set up the release’s initial planning in order to launch
the sprints.

226 J.C. González-Moreno et al.

Fig. 5 The Preparation phase described in terms of activities and work products

To obtain the backlog, the Product Owner identifies a list of items, prioritizes
them, and includes them in the Product Backlog. In a traditional approach, these
items (on the preparation phase) consist of User Stories that details the requirements
of the system. In the INGENIAS-Scrum approach, the Product Backlog will
consist of an Agent Model and Organization Model (optionally). User stories are
documented using the IDK by the Scrum Team and are stored on the description
part (see Fig. 10) of the goals identified following the Product Owner indications.
As this role is in charge of defining the functionality of the application, it is desirable
that she/he could also determine the acceptance tests while prioritizing each item.

INGENIAS-Scrum 227

Fig. 6 Workflow of the Initiate Product Backlog activity

Scrum Team
It is mainly responsible of the Preparation Tasks activity that will be done jointly
with Initiate Product Backlog. This role also participates actively in the rest of
the activities of the Preparation phase. The main goal at this point of the life cycle
is to specify an initial view of the system to be developed using the IDK and the
INGENIAS metamodels (see Fig. 3). This view comprises the development of an
Organization Model (optionally) and/or an initial Agent Model (mandatory) with
several Agent Diagrams, including the agents, roles, and goals required by the
Product Owner for the MAS. This initial view must include enough information
to provide a planning for the first 2–3 sprints.

Stakeholder
The participation of this role is optional and represents, as usual, anyone that
does not directly participate in the project but can influence the product under
development.

2.1.2 Activity Details
Initiate Product Backlog
The product backlog is a prioritized list of features that contains short descriptions of
all the functionality desired for the product. For INGENIAS, these requirements are
described using the IDK, either by adapting a specification from a previous project
or by defining a new one.

When using Scrum, it is not necessary to start a project with a lengthy,
upfront effort to document all the requirements. Typically, a Scrum Team and its
Product Owner begin by writing down everything they can think of easily, and this
constitutes the first version of the product backlog. This is almost always more than
enough for a first sprint (when documented accordingly with the IDK). The product
backlog (i.e., the INGENIAS specification) is then allowed to grow and change as
more information is learned about the product and the customers. The flow of tasks
needed to perform this activity is described in Fig. 6 and detailed in Table 1.

228 J.C. González-Moreno et al.

Table 1 Description of the tasks of the Initiate Product Backlog activity

Activity Task Description Involved roles

Initiate
Product
Backlog

Collecting
the backlog
items

The Product Owner establishes a first list of
requirements (a requirement becomes a Product
Backlog Item) that she/he wish to be
implemented for the end of the release. After
this, a workshop is organized in which the
Product Owner participates, as well as, the whole
team and the stakeholders (if necessary). The
Product Owner introduces the backlog draft and
the assistants may suggest additional items.

Product Owner
Scrum Team
Stakeholder

Backlog
prioritizing

The full list of backlog items is prioritized by the
Product Owner. Items with higher priority must
be addressed first in the release. If a backlog
contains a lot of items, the definition of Themes,
and the association of one of them to each item,
is suggested. After this, the Product Owner
prioritizes the themes.

Product Owner
Scrum Team
Stakeholder

Preparation Tasks
This activity is performed by the Scrum Team in order to prepare the next meetings
with the Product Owner and the Stakeholders. It creates an ongoing INGENIAS
specification intended to reorganize, formalize, and structure the preliminary spe-
cifications in the product backlog. This implies that this activity is more complex
than the original Scrum one. It requires to perform several tasks which are common
to the INGENIAS activities Create the Organization Model and Create the Agent
Model that have been detailed on the INGENIAS-UDP chapter. Figure 7 shows the
recommended flow of such tasks. As it can be easily seen, they differ a little from
the ones proposed on the INGENIAS-UDP chapter.

At this stage of the process, the considerations introduced at Sect. 1.3.3 must be
taken into account for creating and modifying the Organization and Agent Models.

Plan Release
The previous activities deliver an initial INGENIAS specification. With this inform-
ation, the Scrum Master, jointly with the Product Owner, can establish the Plan
Release, which defines the sprints required to meet the goals. Several tasks have to
be performed, including the definition of the release success criteria, the estimation
of the backlog items and the velocity of the sprint, the definition of the sprints length,
and the association of the backlog items. Figure 8 shows the tasks workflow for this
activity that Table 2 further explains.

2.1.3 Work Products
Work Product Kinds
The unique product produced by the Preparation phase is the initial Product
Backlog. A Product Backlog is a set of items: the Product Backlog Items (PBI).
A PBI in the INGENIAS-Scrum approach is a composed work product of type

INGENIAS-Scrum 229

Fig. 7 Workflow of the Preparation Tasks activity

Fig. 8 Workflow of the Plan Release activity

Composite (Structured C Structural C Behavioural). In the original proposal, each
PBI can be described as free text and refers to one of the following kind of items:
• Features. A feature usually is described with User Stories that comprise a short

and simple description of the desired functionality from the user’s perspective.
An example would be, “As an author, I can send a paper to the conference and I
will be informed about its reception and the identification number assigned to it”

230 J.C. González-Moreno et al.

Table 2 Description of the tasks to be done during the Plan Release activity

Activity Task Description Involved roles

Plan
Release

Defining
release
success
criteria

This task pursues to establish the criteria
to consider a Release successfully finished
by the Product Owner. The Scrum Team
(the Scrum Master, in particular) must
take into account that there are 2 types of
releases: End-Date Driven Release, which
must be available to the end users before a
deadline; and Feature Driven Release, in
which the release finishes when all of the
requirements are implemented.

Product Owner
Scrum Team

Estimating
backlog items

Estimation must be performed by the
team item per item. It is a good idea to
start by the highest priority items. In this
activity, it is usual to use as range of
values for estimations the Fibonacci
Numbers: 1, 2, 3, 5, 8, and 13. Regarding
the estimation techniques, the collective
ones are preferred.

Scrum Team

Defining
Sprint length

Although historically the length of a
sprint is 30 days, INGENIAS-Scrum
recommends 15 days, although a week or
21 days are also acceptable lengths,
according to the difficulty of the work and
the human resources available.

Scrum Team

Estimating
velocity

The velocity (i.e., the number of items that
could be finished) is calculated as the sum
of all items checked and approved as fully
implemented in a Sprint. This activity
makes an estimation of the expected team
velocity. It should be done automatically
because it is supposed that the team has
worked together in previous projects
using the INGENIAS tools and the JADE
platform. Nevertheless, the velocity can
be manually estimated for the first time
and adjusted in the next sprints.

Scrum Team

Associating
backlog items
to sprints

This task takes into consideration the
parameters obtained from the previous
tasks. A slight adjustment of items
prioritization may be done at this stage, so
the velocity can be better adjusted to the
team features. It is not required to make
this association for all sprints of the
release at the beginning, but it should be
done for the 2 or 3 first ones.

Product Owner
Scrum Team

• Bugs. In general, a bug does not present any real difference with a new feature
(in the description), and it will be treated as if a new feature or a change is to be
incorporated.

INGENIAS-Scrum 231

Fig. 9 The Preparation Work Product Model structure

• Technical work. This kind of item introduces detailed aspects related with the
deployment of the system. An example of technical work would be: “Upgrade
the Conference Server Operating System to OS X Mountain Lion” or “Use a
version up to 2.0 of the Mail Manager system”.

• Knowledge acquisition. This item is related to obtain the skills and knowledge
required for the project. The item reflects some kind of external knowledge that
is necessary to better understand the problem or to apply a particular solution. An
example could be asking the team members the study and/or the selection among
several Java libraries to determine the most accurate one for the system or to find
a solution to the problem restricted to the use of such library.
User stories usually determine several goals that must be satisfied by agents

playing certain roles. Bugs must be documented by modifying the description of the
related user story or adding a new one. Regarding technical works and knowledge
acquisition items, a good practice is to document them by defining a test or proof for
a part of the system, or by specifying the concrete API needed to solve the problem
jointly with the agent that is in charge of applying such solution.

In INGENIAS-Scrum, a Product Backlog is described by a set of INGENIAS
models as reflects Fig. 9. For a full description about the Organization and Agent
Model, see INGENIAS-UDP chapter. At the Preparation Phase, each PBI, as
described by the Product Owner and the Stakeholders, is specified as a Package
description as pointed in Sect. 1.3.2, which is refined by the Scrum Team by using
agent and/or organization diagrams to determine the Agent and/or Organization
Models. Agent Model is mandatory at this phase, but could be complemented with
an Organization Model to provide the responsibilities of groups, agents, and roles
in order to satisfy the identified goals. Figure 9 shows the relationships between the
MAS meta-model elements.

Product Backlog Item
In general, a PBI has to include the following general attributes:
• Estimated value, frequently calculated relatively to other items using priorities.
• Estimated development cost.

232 J.C. González-Moreno et al.

Fig. 10 Attributes of a Product Backlog Item specified in the description of an INGENIAS
element

• Eventually the theme (i.e., functional domain) it belongs to.
• Eventually its type, which can be defined as: system goal of the project; bug

resulting from the process; or non-functional requirement.
• The associated criteria for test acceptance.

Through this phase of the development process, a PBI can reach the following
states: created, estimated, planned (associated to a future sprint), associated to
current sprint (implementation is ongoing), and done.

At the end of the Preparation Phase, following the INGENIAS-SCRUM
approach, all the PBI identified jointly with their state must have at least one Goal
associated and its features must be documented in the description of the related
package and detailed on the related goal description. Figure 10 shows a snapshot of
how this information could be documented using the IDK.

2.2 Process Documentation: The Sprint Phases

The Sprint is the main phase of a Scrum project. The INGENIAS-Scrum process
is iterative and incremental, which means that the project is split into consecutive
sprints that will be done with the help of the IDK and IAF tools. In the original
Scrum framework, each sprint is timeboxed between 1 week and a calendar month.
In the INGENIAS-Scrum approach, no more than 21 days for a sprint are suggested
because the most common sprint length for the Scrum framework is 2 weeks and
the use of the INGENIAS model-driven tools promotes short cycles. The usual goal
of each sprints is to implement and test JACE code covering at least one of the MAS
goals. Figure 11 shows the workflow of the activities to be accomplished during the
Sprint Phase.

INGENIAS-Scrum 233

Fig. 11 The Sprint Phases flow of activities

Fig. 12 The Sprint activity workflow

Current Phase (see Fig. 11) is composed of an iterative and complex phase,
the proper Sprint and an optional activity the Release Work. The Sprint phase is
composed of several activities whose workflows are shown in Fig. 12 and that is
described in detail in Sect. 2.2.2. Section 2.2.1 introduces the roles involved on each
Sprint. Finally, Sect. 2.2.3 details the work products of the Sprint Phases.

2.2.1 Process Roles
Following the Scrum approach, the roles that are implied in the Sprint Phases are
described in the following sections.

The Product Owner
During each Sprint Phase, the Product Owner is responsible of analyzing the
suggested changes in order to add them to the backlog and prioritize the added

234 J.C. González-Moreno et al.

items. This is done before the next Sprint Planning. Ideally, this work is done 1 or 2
days before the Sprint Review during a brainstorming session with the Scrum Team.

The Master Team
The iterative Sprint Phases perform the product development. The Master Team is
the responsible for helping the Scrum Team to work autonomously and constantly
improving itself by doing the following kinds of tasks:
• Periodical tasks, whose main goal is to organize and promote the collaborative

work during the meetings: Daily Scrum, Sprint planning, Sprint review, and
Retrospective.

• Event tasks, whose objective is to remove impediments. This task mainly relies
on taking into consideration previous events to solve recurrent problems as soon
as possible, while protecting the team from external distractions.

• Background task, in which the Master Team tries to ensure that the team remains
productive and focused on the project goal: developing backlog items in close
collaboration with the Product Owner.

The Scrum Team
In the Scrum framework, the teams are composed of 3–10 members. In the
INGENIAS approach, this number should be between 3 and 5 people. The Scrum
Team is the main responsible of the Product Increment and its participation is
key in the activities: Plan Sprint, Update Product Backlog, Daily Works, and
Conduct Scrum Daily Meetings. Also, its participation is important on the Review
Sprint and Conduct Retrospective activity. While it performs a secondary role at
the Manage Problems activity. By participating in these activities, it modifies the
Product Backlog and the Sprint Backlog.

The Stakeholder
Like in the Preparation Phase, the participation of Stakeholders is not necessary
in any of the Sprint Phases. They can participate playing a secondary role in the
Update Product Backlog, Conduct Retrospective, and Review Sprint activities. Their
participation is consultive, they make suggestions about the goals that the system
must satisfy and the right solutions from the customer perspective.

2.2.2 Activity Details
Figure 12 shows the workflow of the activities to be performed at each Sprint.
The full structure of this Phase in terms of activities, tasks, and workproducts is
presented in four figures: Figs. 13, 14, 15, and 16.

Figure 13 shows the structure of the activities Plan Sprint and Update Product
Backlog. The Plan Sprint is the first activity to be performed on each Sprint, while
the Update Product Backlog is done in parallel with the Daily Works and the Manage
Problems activities.

The structure presented in Fig. 14 refers to the most complex activity of the full
process. It represents the Daily Work of the Scrum Team that must be accomplished
using the IAF with the IDK tool.

INGENIAS-Scrum 235

Fig. 13 Partial structure of the first activities done on each Sprint Phase

Figures 15 and 16 show the structure and the dependencies among the activities
that control and determine the evolution of each sprint during the current release.

In the following subsections, all the activities jointly with their tasks are detailed
and the workflow suggested to each one are showed.

Plan Sprint
The first activity of each sprint is to perform a Sprint Planning Meeting. During this
meeting, the Product Owner and the Scrum Team discuss about the highest-priority
items in the Product Backlog. External stakeholders may attend by invitation,
although this is unusual in most cases. Team members determine the number of
items they can commit to accomplish and then they create a sprint backlog, which
is a list of the tasks to perform during the sprint. Figure 17 shows the workflow
of the tasks with the work products and roles involved in this activity, and Table 3
describes in detail the tasks.

Update Product Backlog
The main goal of this activity is to update the backlog and adjust the planning,
taking into account changes emerged since the last sprint. During a sprint, no one
can modify the selection of backlog items done at the beginning of the sprint, that is,
the sprint scope remains unchanged. However, anyone, even a external Stakeholder,

236 J.C. González-Moreno et al.

Fig. 14 Structure of the Daily Work activity on each Sprint Phase

can suggest new items for later sprints. These items are studied and prioritized by the
Product Owner prior to the next sprint planning. Bugs and enhancement requests,
coming from partial product tests done at the end of the previous sprint, can also
be used to update the backlog. Figure 18 shows the relations between tasks, work
products, and roles in this activity, and Table 4 describes its tasks in detail.

Daily Works
The team performs backlog tasks to reach the sprint goals. The original Scrum
templates provide no information for technical design, coding, and test tasks. Tasks
are not assigned by the Scrum Master, but chosen by the team members one each
time. Team updates (when necessary) the estimation of their remaining work to
do in the Sprint. The recommendation of the INGENIAS-Scrum process for this
activity is to merge and distribute, accordingly to the needs, the tasks presented in
the Elaboration and Construction subsections of the INGENIAS-UDP chapter for
the following activities:
• Refine organizational models with social relationships, which includes refining

the Organization, Agent, and Environment Models
• Create the Tasks and Goals Model
• Show tasks execution using the Interaction Model
• Create a Component Model

INGENIAS-Scrum 237

Fig. 15 Structure of the Manage Problems and Conduct Scrum Daily Meeting activities

• Create a Deployment Model
• Specify code templates to apply
• Validate code

Figure 14 shows the full structure of this activity, while the workflow and the
details to accomplish such tasks are shown in the INGENIAS-UDP chapter.

Manage Problems
The Scrum Master takes into account the events that happen at any moment in a
project. She/he tries to eliminate the problems experienced by the team members,
so they can focus on their actual goals. The activity generates as output a Sprint
Backlog and can use optionally as input a previous Sprint Backlog, as shown in
Fig. 19. Table 5 describes the tasks to be done by the Scrum Master.

Conduct Scrum Daily Meeting
Every day of the Scrum sprint, all team members attend a Scrum daily meeting,
including the Scrum Master and the Product Owner. This meeting is timeboxed to no
more than 15 min. During the meeting, people participating in the development share
their finished work, what they have to do that day, and identify any impediments or
problems that could affect the team progress. This activity allows to synchronize

238 J.C. González-Moreno et al.

Fig. 16 Structure of the Review Sprints and Conduct Retrospective activities

ongoing work while discussing the progress of the current sprint. Figure 20 shows
the relation between tasks, work products, and roles in this activity, and Table 6
details its tasks.

Review Sprint
At the end of a Scrum sprint, the team conducts a Sprint Review meeting. There,
it demonstrates the functionality added during the current sprint using a demo. The
main objective of this activity is to obtain feedback from the users invited to the
review (such as the product owner or the stakeholders). The feedback can result in
the acceptance of the work, the suggestion of changes to the delivered functionality,
or even the revision or addition of backlog items. Figure 21 shows the relation
between tasks, work products, and roles in this activity, and Table 7 details the tasks.

INGENIAS-Scrum 239

Fig. 17 Workflow of the Plan Sprint activity

Table 3 Description of the tasks of the Sprint Planning activity

Activity Task Description Involved roles

Plan
Sprint

Defining
the Sprint’s
Goal

The goal of a sprint is proposed by the Product
Owner. In the first sprints (2–3), it focuses on
showing the feasibility of the potential architecture
(i.e., the Organization and Agent Models). After
architecture validation, the goals of sprints consist
on satisfying a system Goal.

Product Owner
Scrum Team

Selecting
the items

This task defines the scope of the sprint. The Scrum
Team associates Product Backlog Items to the sprint.
The team does it item by item, trying to balance the
required effort with the team velocity. Then, the
team collectively validates the subset of the backlog
for the sprint.

Scrum Team

Identifying
tasks from
items

This task is addressed in the second part of the
meeting. Here, the team decides how to achieve the
sprint goals. Each selected Item is decomposed into
tasks to enable discussion and figure out solutions.
The Product Owner can provide more details about
the behavior of the selected item. The work planned
in previous sprints, which has not been done,
because of objectives reduction, becomes the
priority for the next sprint.

Product Owner
Scrum Team

Estimating
tasks

In order to distribute the development work between
the team members, the duration of each task is
estimated. Estimation is made in hours and taking
into account that each task should be light

Scrum Team

(continued)

240 J.C. González-Moreno et al.

Table 3 (continued)

Activity Task Description Involved roles

enough(less than 16 hours). The team collectively
addresses this task, reviewing the technical aspects
during the discussion.

Assigning
tasks

The team considers the number of persons required
for each activity. All the activities must be studied,
including work meetings, coding, and document
reviews. It is desirable to delay the assignment of
activities until the availability of the related team
members is known.

Scrum Team

Getting
team com-
mitment

This is a relevant task in which the team collectively
decides what are the backlog items to implement in
the current sprint. This decision constitutes the
agreed and shared commitment of the sprint.

Scrum Team

Fig. 18 Workflow of the Update Product Backlog activity

Table 4 Description of the tasks of the Update Product Backlog activity

Activity Task Description Involved roles

Update
Product
Backlog

Collecting
changes

Stakeholders or any member of the Scrum
Team suggest new goals, functionalities, or
changes to be added to the backlog. The bugs
and enhancement requests obtained from
product tests in the previous sprints are also
incorporated into the collection of items that
can be updated. The Product Owner decides
whether to consider or not these items.

Product Owner
Stakeholder
Scrum Team

Reprioritizing
the items

New considered items must be prioritized. Product Owner

Reestimating
items

New items added to the backlog have to be
estimated by the Scrum Team, ideally during a
brainstorming with the Product Owner
previously to the next Sprint Review. The new
estimation could imply a reestimation of
existing items.

Scrum Team

INGENIAS-Scrum 241

Fig. 19 Workflow of the Manage Problems activity

Table 5 Description of the tasks of the Manage Problems activity

Activity Task Description Involved roles

Manage
Problems

Be aware of the
problem

The objective of the Scrum Master is to be
informed about problems with the project. The
daily meeting is the ideal moment to detect them.
A good practice to follow up on the problem
reporting is an informal chat initiated by the
Scrum Master with the problem reporter.

Scrum Master

Making
decisions on
the action plan

The Scrum Master must try to solve problems as
soon as possible, in order to not disturb team
progress. The master identifies possible
solutions, and schedules meetings with owners if
problems cannot be easily solved or need a
management decision.

Scrum Master

Fig. 20 Workflow for the Conduct Scrum Daily Meeting activity

Conduct Retrospective
The last activity of each sprint iteration is the Sprint Retrospective. This activity
gives an opportunity to reflect at the end of the sprint and to identify the work
to improve in the next sprint. The whole Scrum Team participates together with

242 J.C. González-Moreno et al.

Table 6 Description of the tasks of the Conduct Scrum daily meeting activity

Activity Task Description Involved roles

Conduct
Scrum daily
meeting

Preparing All the people update their planning (this
sprint backlog) considering the remaining
work for each task. As result of this task, an
update or creation of a Sprint Burndown
Chart is done.

Scrum Team

Gathering all Each team member reports her/his progress
by answering the following 3 questions: What
has been done since the previous daily
scrum? What will be done today? What
problems have appeared? Answers to the
questions provide the update of the Sprint
Backlog and changes in the Sprint Burndown
Chart.

Scrum Team

Consolidating The resulting Sprint Backlog will help to take
the right decisions on adjusting the Sprint
Goal by removing forecasting content to be in
time. Submitted problems are solved by the
Scrum Master during the Manage problems
activity.

Scrum Team

Fig. 21 Workflow for the Review Sprint activity

the Product Owner. The detailed tasks of the activity, its work products, and the
collaborations between the roles are presented in Table 8 and Fig. 22. The complete
activity has to be restricted to 2 h, though the average time is 1 h.

Release Work
As pointed previously, this activity is an optional one on the Sprint Phases. Its main
objective is preparing a product release. Its actual execution depends on the way the
product is made available to endusers and may vary from a project to another and

INGENIAS-Scrum 243

Table 7 Description of the tasks of the Review Sprint activity

Activity Task Description Involved roles

Review
Sprint

Preparing the
demo

The schedule of the review is adjusted taking into
account that the meeting must not exceed one
hour.

Scrum Master

Performing
the demo

The team shows a demo of the product focused
on the new goals satisfied during the actual
sprint, allowing users to get a measurement of
the work progress.

Scrum Team

Evaluating
the Sprint
results

During this task, the Product Owner and the
attending Stakeholders interview the team,
provide impressions, make new proposals, and
exchange requests. As a result, the Product
Backlog is enhanced with the new items and with
the bugs found.

Product
Owner
Stakeholders
Scrum Master

Calculating
the actual
velocity

A Release Burndown Chart is commonly used to
compare the Sprint velocity with previous ones.
The velocity is calculated as the sum of all items
checked and approved as fully implemented.

Scrum Master

Adjusting
the Release
planning

After reviewing the sprint, the team may realize
that the initial conditions have changed from the
last release planning. Then, it can be necessary to
adjust it taking into account the items added,
modified, or deleted, the changes in their
priorities, the updated estimations, and of course,
the average velocity of the team.

Scrum Team

Table 8 Description of the tasks of the Conduct Retrospective activity

Activity Task Description Involved roles

Conduct
retrospective

Discussion Each team member is invited to express
her/his bad and good results in the sprint
providing solutions to the detected problems.

Scrum Team

Defining the
action plan

The team talks about potential improvements
for the next sprint and the Scrum Master adds
those approved to the product backlog. After
that, the team sets up priorities with the help
of the product owner and the stakeholder (if
any).

Scrum Team
Product Owner
Stakeholder

among teams. Moreover, the team should rollout this optional activity with tasks
that are not considered during “normal” sprints.

The only recommendation for this activity is trying not to make code changes
because it is too late in the development process and it would imply a high risk
of introducing bugs and errors in the final application. Some tasks that could be
performed in this activity are:
• Hot deployment.
• Product packaging.
• Online download publishing.

244 J.C. González-Moreno et al.

Fig. 22 Workflow for the Conduct Retrospective activity

Fig. 23 The Sprint Work Product Model structure

• Technical documentation.
• User training.
• Product marketing.

2.2.3 Work Products
The Sprint Model generates several composed work products based on an IN-
GENIAS specification. Their relationships with the MAS metamodel elements are
described in Fig. 23.

Work Product Kinds
Table 9 describes the workproducts of each Sprint that are detailed in the next
subsections.

INGENIAS-Scrum 245

Table 9 Work Product kinds for each Sprint phase

Name Description Work product kind

Product Increment Source code for an increment of the product
developed and finished on the previous or actual
sprint

Structured

Product Backlog A set of INGENIAS models that specify the product
to obtain

Composited

Sprint Backlog A set of PBI that the team must complete during the
sprint

Composited

Burndown Chart Graphical charts that show the evolution of the work Structural
INGENIAS Model See IGENIAS-UDP chapter Structural,composite,

behavioural

Product Increment
The primary work product of a Scrum project on each Sprint Phase is the Product
itself. The Scrum Team is expected to bring the product or system to a potentially
shippable state at the end of each Scrum Sprint. A product increment following the
INGENIAS-Scrum approach is obtained from the IDK by generating code using the
IAF. The code will be determined by the specified INGENIAS Models.

Product Backlog
During the iterations produced on the Sprints, each Scrum Product Backlog defined
in the Preparation phase is completed and new ones are proposed and constructed.
To complete the product backlog, the team must complete the life cycle of all its
PBI reaching one after another the following states: created, estimated, planned
(associated to a future sprint), associated to current sprint (implementation is
ongoing), and done.

Sprint Backlog
As indicated in the previous sections, on the first day of a sprint and during the sprint
planning meeting, team members create the Sprint Backlog. The sprint backlog can
be thought of as the team’s to-do list for the sprint. Whereas a product backlog is
a list of features to be built, the sprint backlog is the list of tasks the team needs to
perform in order to deliver the functionality they committed to deliver during the
sprint.

Burndown Charts
Optional work products are the Sprint Burndown Chart and the Release Burndown
Chart. Burndown charts show the amount of work remaining either in a Scrum sprint
or a release. They are used for determining at a glance the evolution of a sprint or
release, showing whether all the planned work will be finished by the desired date.

246 J.C. González-Moreno et al.

Fig. 24 Dependencies among INGENIAS-Scrum work products

INGENIAS Models
The INGENIAS-Scrum approach suggests additional work products for the process.
The INGENIAS models are required in order to use the IDK and IAF tools
for the automated code generation and test production. Nevertheless, part of the
required code must be externally developed. For instance, some functionality related
to resources and applications (e.g., graphical user interfaces or databases) and
also concrete details of behavior (i.e., algorithms). INGENIAS does not provide
modelling primitives to specify graphically these elements, though it has primitives
that act as containers to embed this code in models. This allows that, afterwards,
the IAF uses that information in the code generation. A developer may also find
necessary or useful to modify the generated code.

2.3 Work Product Dependencies

Figure 24 shows an overview of the INGENIAS-Scrum work products, as well as
their dependencies. As shown in the figure, the Agent Model depends on the Organ-
ization and Environment Models, and the Interaction Model has dependencies with
the Agent and Tasks & Goals Models, among others. There are also dependencies

INGENIAS-Scrum 247

between product backlogs (what to get), sprint backlogs (what to do), and Burndown
charts (how much is done).

Regarding the structure of the work products associated to INGENIAS, they are
fully detailed in the INGENIAS-UDP chapter.

3 Case Study: Conference Management System

The Conference Management System (CMS) is an interesting case study that
involves several aspects, from the main organization issues to paper submission and
peer review. These are typically performed by a number of people distributed all
over the world who exploit the Internet as the infrastructure for communication and
cooperation.

This section presents a solution to this problem following the INGENIAS
methodology, and applying an adaptation of the Scrum management framework
to define an agile development process. The proposed process makes use of
the INGENIAS metamodel to define the system through several models, and of
support model-driven tools to generate automatically code from the specifications.
Following this approach, the development of the CMS implies an incremental and
iterative life cycle based on performing two phases: the Preparation phase and the
Sprint phase.

The INGENIAS with the UDP chapter in this book presents a similar solution
to this problem. It follows the original proposal based on the UDP [14] and the
Rational Unified Process (RUP) [17]. Some aspects of this chapter are referred to
the previous one, where the reader can find a more detailed description.

3.1 Preparation Phase

As pointed out in Sect. 2.1, this phase comprises the activities: Initiate Product
Backlog, Preparation Tasks, and Plan Release. The latter is done after completion
of the remaining two, which are developed in parallel.

The initial Product Backlog is a preliminary description of the product
requirements. In this approach, it is a specification conforming to the INGENIAS
metamodel and generated with its tools. It can be developed from scratch or taking
as basis examples provided with the IDK distribution.

In order to apply the first strategy, the team has to be familiarized with the IDK
tool and know what examples the IAF provides with its distribution: the hello world,
a GUI agent example, and an interaction example. Any of these examples can
be used as starting point for this initial backlog, although they do not cover the
complexity of the CMS.

The second approach is the one adopted here, as the CMS is a well-known and
documented case study in the literature. This implies creating an initial Organization
Model applying the three tasks offered by the original INGENIAS process: Identify
groups, Generate group members, and Identify goals. Figure 25 shows the resulting

248 J.C. González-Moreno et al.

Fig. 25 Organization diagram with the main user groups of the CMS and their access to
applications

model. Note that the result is just the same than the one obtained using the original
INGENIAS development process, but without generating use cases in order to
identify the functionality perceived by the user.

This first activity identifies three groups in the CMS case study. The OC
(Organizing Committee) includes the Chairs, the PC (Program Committee) for
the Reviewers, and the Contributors with the Authors. These groups perform tasks
related to certain goals. The main goal that the OC must satisfy is Run a successful
conference. Regarding the PC, it has to satisfy the goals: Identified quality papers
and Evaluated papers. Finally, Contributors have to satisfy the goals Submitted
quality papers and Got papers admitted. There are also two external applications,
that is, the Submission manager and the Mail manager. Group members use them
to get some services, according to certain use constraints. Every group can access
the Submission manager, though not for the same tasks, but only the OC can use the
Mail manager.

The Product Owner prioritizes the goals to be addressed in the sprints in order
to fix the Plan Release. In this case, the choice is to consider in the first sprints the
behavior associated to the Run a successful conference goal, which is associated to
the OC group. The assistants to the meeting agree that the goals associated with the
roles Reviewer and Author can be done in later sprints because the associated risk is
lower than the selected one.

INGENIAS-Scrum 249

Fig. 26 Initial decomposition of the Run a successful conference goal

3.2 Sprint Phase

In the first sprint, the Scrum team performs the Daily Works activity related with the
Run a successful conference goal. Its first results are the diagrams in Figs. 26 and 27
for the Tasks and Goals Model, and Fig. 28 for the Agent Model. Figure 26 shows
the refinement of the selected goal in different subgoals. Figure 27 introduces the
tasks needed to achieve those goals, that is, their products are potentially able to
satisfy the conditions related to those goals. Finally, Fig. 28 shows the initial Agent
Model obtained from the first refinement of the Organization Model, assigning the
identified tasks to the Chair role.

The Daily Works activity follows with the INGENIAS activity cycle that
includes the tasks: Show task execution, Generate a Component Model, Generate a
Deployment Model, Specify code templates to apply, and Validate code. Regarding
these tasks, the team follows short iteration cycles that give a similar result to those
explained in Sect. 3 in the INGENIAS chapter for the Construction Phase. Anyway,
the last activities are beyond the scope of this case study, which is focused on the
development process adopted and not on the application obtained. Nevertheless,
the facilities included in the IDK [11], and in particular the IAF [12], facilitate
generation of testing code for these specifications. These tests will implement the
acceptance tests suggested for each BPI associated with the specified goals.

The product obtained is used in the Scrum Daily Meeting and Review Sprint
activities. At the end of each sprint, the Conduct Retrospective activity is used to
better accomplish the remaining PBI in the future sprints through their revision
regarding the results of the current sprint.

250 J.C. González-Moreno et al.

Fig. 27 Initial assignment of tasks related to the Run a successful conference goal

Fig. 28 Initial assignment of tasks to the Chair role

INGENIAS-Scrum 251

References

1. García-Magariño, I., Gómez-Rodríguez, A., Gómez-Sanz, J., González-Moreno, J.C.: Adv.
Soft Comput. 50, 108 (2009)

2. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Eng. Appl. Artif. Intell. 18(2), 205 (2005)
3. Martin, R.: Agile Software Development: Principles, Patterns, and Practices. Prentice Hall

PTR, Upper Saddle River (2003)
4. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper

Saddle River (2001)
5. Schwaber, K.: In: 10th Annual ACM Conference on Object Oriented Programming Systems,

Languages, and Applications (OOPSLA 1995), pp. 117–134 (1995)
6. Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: In: Henderson-Sellers, B., Giorgini,

P. (eds.) Agent-Oriented Methodologies. Article IX, pp. 236–276. Idea Group Publishing,
Hershey (2005)

7. France, R., Rumpe, B.: In: 2007 Future of Software Engineering (FOSE 2007), pp. 37–54.
IEEE Computer Society, Minneapolis (2007)

8. García-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.: Inf. Softw. Technol. 51(8), 1217
(2009)

9. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: IEICE Trans. Inf. Syst. E90-D(8), 1243
(2007)

10. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Int. J. Agent Oriented Softw. Eng. 1(1), 2
(2007)

11. Gómez-Sanz, J.J., Pavón, J., Fuentes-Fernández, R., García-Magariño, I., Rodríguez-
Fernández, C.: INGENIAS Development Kit, V. 2.8. Tech. rep., Universidad Complutense
de Madrid (2008)

12. Gómez-Sanz, J.: INGENIAS Agent Framework. Development Guide V. 1.0. Tech. rep.,
Universidad Complutense de Madrid (2008)

13. Bellifemine, F., Poggi, A., Rimassa, G.: In: 5th International Conference on Autonomous
Agents (AGENTS 2001), pp. 216–217. ACM, Montreal (2001)

14. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Software Development Process. Addison-
Wesley, Reading (1999)

15. Gómez-Sanz, J.: Modelado de sistemas multi-agente. Ph.D. thesis, Universidad Complutense
de Madrid, Facultad de Informática (2002)

16. Grupo de Investigación en Agentes Software: Ingeniería y Aplicaciones. INGENIAS Section.
http://grasia.fdi.ucm.es/main/?q=es/node/61 (2010)

17. Rational Software. Rational Unified Process: White Paper (1998)

http://grasia.fdi.ucm.es/main/?q=es/node/61

The O-MASE Methodology

Scott A. DeLoach and Juan C. Garcia-Ojeda

Abstract
Today’s software industry is tasked with building evermore complex software
applications, and multiagent system technology is a promising approach capable
of meeting these new demands. Unfortunately, multiagent systems have not been
widely adopted in industry for reasons that include lack of industrial strength
methods and tools to support multiagent development. Method engineering, an
approach to constructing processes from a set of existing method fragments,
has been suggested as a solution to this problem. This chapter presents the
Organization-based Multiagent Software Engineering (O-MaSE) methodology
framework, which integrates a set of concrete technologies aimed at facilitating
industrial acceptance. Specifically, O-MaSE is a customizable agent-oriented
methodology based on consistent, well-defined concepts supported by plug-ins
to an industrial strength development environment, agentTool III. O-MaSE is
defined, and demonstrations of customizing O-MaSE for the CMS problem as
well applying the customized process to the CMS design are presented.

1 Introduction

Organization-based Multiagent Software Engineering (O-MaSE) [4] is a new
approach in the analysis and design of agent-based systems, being designed from
the start as a set of method fragments to be used in a method engineering

S.A. DeLoach (�)
Kansas State University, 234 Nichols Hall, Manhattan, KS 66506, USA
e-mail: sdeloach@ksu.edu; sdeloach@k-state.edu

J.C. Garcia-Ojeda
Facultad de Ingenieria de Sistemas, Universidad Autonoma de Bucaramanga,
Avenida 42 No 48-11, El Jardin. Bucaramanga, Santander, Colombia
e-mail: jgarciao@unab.edu.co

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__9,
© Springer-Verlag Berlin Heidelberg 2014

253

mailto:sdeloach@ksu.edu
mailto:sdeloach@k-state.edu
mailto:jgarciao@unab.edu.co

254 S.A. DeLoach and J.C. Garcia-Ojeda

framework [1,2,12]. The goal of O-MaSE is to allow designers to create customized
agent-oriented software development processes. O-MaSE consists of three basic
structures: (1) a metamodel, (2) a set of method fragments, and (3) a set of
guidelines. The O-MaSE metamodel defines the key concepts needed to design and
implement multiagent systems. The method fragments are tasks that are executed
to produce a set of work products, which may include models, documentation, or
code. The guidelines define how the method fragments are related to one another.

The aT3 Process Editor (APE) shown in Fig. 1 is a tool that supports the creation
of custom O-MaSE-compliant processes [10]. APE is part of the agentTool III tool-
set, which provides tool support to developing multiagent systems using O-MaSE
[11]. There are five key elements of APE: a Method Fragment Library, the Process
Editor, a set of Task Constraints, a Process Consistency checker, and a Process
Management tool. The Library is a repository of O-MaSE method fragments, which
can be extended by APE users. The Process Editor allows users to create and
maintain O-MaSE-compliant processes. The Task Constraints view helps process
engineers specify Process Construction Guidelines to constrain how tasks can be
assembled, while the Process Consistency mechanism verifies the consistency of
custom processes against those constraints. Finally, the Process Management tool
provides a way to measure project progress using the custom process.

O-MaSE also provides a set of Method Construction Guidelines that states
how O-MaSE method fragments may be combined to form O-MaSE-compliant
processes. Table 1 shows the Method Construction Guidelines for the O-MaSE
Tasks. These Method Construction Guidelines are defined in terms of a precondition
and post-condition. The precondition specifies the set of Work Products that must
be available prior to the Task being undertaken while the post-conditions specify the
Work Products produced by the task. For example, for the Model Goals task, either
a Requirements Spec must be available or a Goal Model/GMoDS and a Role Model
must be available. The Requirements Spec is used when the Model Goals task is
used to model system-level goals, while the Goal Model/GMoDS and Role Model
are used when the task is used to model role-level goals. Disjunctive preconditions
generally specify alternative ways the Task can be used. However, it does not limit
what information can be used in the definition of a model. For instance, the Model
Domain task only requires a Requirements Spec as input; however, that does not
mean that other Work Products such as Goal Models cannot be used in the Task. This
additional information is generally documented in the individual task definitions.
Useful references related to O-MaSE include the following:
• Scott A. DeLoach and Juan Carlos Garcia-Ojeda. O-MaSE: a customizable

approach to designing and building complex, adaptive multiagent systems.
International Journal of Agent-Oriented Software Engineering. Volume 4, no.
3, 2010, pp. 244–280.

• Juan C. Garcia-Ojeda, Scott A. DeLoach, and Robby. agentTool Process Editor:
Supporting the Design of Tailored Agent-based Processes. Proceedings of the
24th Annual ACM Symposium on Applied Computing to be held at the Hilton
Hawaiian Village Beach Resort and Spa Waikiki Beach, Honolulu, Hawaii, USA.
March 8–12, 2009.

The O-MASE Methodology 255

Fi
g

.
1

ag
en

tT
oo

lI
II

Pr
oc

es
s

E
di

to
r

256 S.A. DeLoach and J.C. Garcia-Ojeda

Table 1 Method construction guidelines

Task Pre-condition Post-condition

Requirements True Requirements Spec
Specification
Model Goals Requirements Spec _ ((Goal Model _ GMoDS) Goal Model

^ Role Model)
Refine Goals Goal Model GMoDS
Model Domain Requirements Spec Domain Model
Model Organization Requirements Spec ^ GMoDS Organization Model
Interfaces
Model Roles GMoDS ^ Organization Model Role Model
Define Roles Role Model Role Description
Model Agent Classes GMoDS _ Role Model _ Organization Model Agent Class Model
Model Protocols Role Model _ Agent Class Model Protocol Model
Model Policies GMoDS _ Organization Model Policy Model

_ Role Description _ Agent Class Model
Model Plans (GMoDS ^ Role Model) Plan Model

_ (GMoDS ^ Agent Class Model)
Model Capabilities Role Model ^ Agent Class Model Capability Model

_ Domain Model
Model Actions Capability Model ^ Domain Model Action Model
Code Generation (Plan Model _ Protocol Model) Source Code

^ (Capability Model _ Action Model)

• Scott DeLoach, Lin Padgham, Anna Perini, Angelo Susi, and John Thangara-
jah. Using Three AOSE Toolkits to Develop a Sample Design. International
Journal of Agent Oriented Software Engineering. Volume 3, no. 4, 2009, 2009,
pp 416–476.

• Scott A. DeLoach. Organizational Model for Adaptive Complex Systems. in
Virginia Dignum (ed.) Multi-Agent Systems: Semantics and Dynamics of Or-
ganizational Models. IGI Global: Hershey, PA. ISBN: 1-60566-256-9 (March
2009). This chapter copyright 2008, IGI Global, www.igi-pub.com. Posted by
permission of the publisher.

• Lin Padgham, Michael Winikoff, Scott DeLoach, and Massimo Cossentino.
A Unified Graphical Notation for AOSE. Proceedings of the 9th International
Workshop on Agent Oriented Software Engineering, Estoril Portugal, May 2008.

• Scott A. DeLoach. Developing a Multiagent Conference Management System
Using the O-MaSE Process Framework. Proceedings of the 8th International
Workshop on Agent Oriented Software Engineering, May 14, 2007, Honolulu,
Hawaii.

• Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan and
Jorge Valenzuela. O-MaSE: A Customizable Approach to Developing Multiagent
Development Processes. Proceedings of the 8th International Workshop on Agent
Oriented Software Engineering, Honolulu HI, May 2007.

www.igi-pub.com

The O-MASE Methodology 257

Table 2 O-MaSE overview

Entity Task Work Product Role

Requirements Requirements Requirements Spec Requirements Engineer
Gathering Specification
Problem Model Goals Goal Model Goal Modeler
Analysis Refine Goals

Model Domain Domain Model Domain Modeler
Solution Model Organization Organization Model Organization Modeler
Analysis Interfaces

Model Roles Role Model Role Modeler
Define Roles Role Description Document
Define Role Goals Role Goal Model

Architecture Model Agent Classes Agent Class Model Agent Class Modeler
Design Model Protocols Protocol Model Protocol Modeler

Model Policies Policy Model Policy Modeler
Low Level Model Plans Agent Plan Model Plan Modeler
Design Model Capabilities Capabilities Model Capabilities Modeler

Model Actions Action Model Action Modeler
Code Generate Code Source code Programmer
Generation

• Scott A. DeLoach and Jorge L. Valenzuela. An Agent-Environment Interaction
Model. in L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 1–
18, 2007. Springer-Verlag, Berlin Heidelberg 2007.

• Scott A. DeLoach. Multiagent Systems Engineering of Organization-based
Multiagent Systems. 4th International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’05). May 15–16, 2005, St. Louis,
MO. Springer LNCS Vol 3914, Apr 2006, pp 109–125.

1.1 The O-MaSE Life Cycle

O-MaSE was designed from scratch as a set of fragments that could be assembled by
developers to meet the specific requirements of their project. While SPEM [15] uses
Phases to organize the various Activities of a development method, O-MaSE makes
no commitments to a predefined set of Phases. Instead, O-MaSE explicitly defines
Activities and Tasks (see an overview in Table 2) and allows method engineers to
organize Activities in different ways based on project need. For instance, O-MaSE
has been used to support modern iterative, incremental approaches as well as much
simpler waterfall-based approaches. The fact that O-MaSE does not commit to any
specific set of phases causes a minor problem when trying to map O-MaSE directly
to the DPDT. To alleviate this problem, we assume that we follow a traditional
waterfall approach when describing O-MaSE as shown in Fig. 2. As shown, there
are three main Phases: Requirement Analysis, Design, and Implementation, with

258 S.A. DeLoach and J.C. Garcia-Ojeda

DesignRequirement
Analysis

Implementation

Fig. 2 Using waterfall phases with O-MaSE

the main Activities allocated as shown. When using O-MaSE on a real project, the
process designer is free to define their own set of phases and iterations and to assign
Activities and Tasks to those phases and iterations as appropriate. As this will be
unique for each system being developed, there are no hard-and-fast rules on what
activities should be placed in which phases.

1.2 The O-MaSE Metamodel

The O-MaSE metamodel defines the main concepts and relationships used to
define multiagent systems. The O-MaSE metamodel is based on an organizational
approach and includes notions that allow for hierarchical, holonic, and team-
based decomposition of organizations. The O-MaSE metamodel was derived from
the Organization Model for Adaptive Computational Systems (OMACS), which
captures the knowledge required of a system’s organizational structure and cap-
abilities to allow it to organize and reorganize at runtime [5]. The key decision in
OMACS-based systems is which agent to assign to which role in order to achieve
which goal. As shown in Fig. 3, an Organization is composed of six entity types:
Goals, Roles, Agents, Organizational Agents, a Domain Model, and Policies. Each
of these entities is discussed below, and a concise definition is given in Table 3.

While a variety of subtle interpretations of goals exist in the artificial intelligence
and agent communities, O-MaSE defines a Goal as an objective of the organization,
which is generally described in terms of some desired state of the world. A Role
defines a position within an organization whose behavior is expected to achieve a
particular goal or set of goals. (Due to the naming conflict between O-MaSE Roles
and SPEM roles, the term method role is used to refer to SPEM roles throughout the
remainder of this chapter.) Agents are assigned to play those roles and perform the
behavior expected of those roles. Agents are autonomous entities that can perceive
and act upon their environment [19]. To carry out perception and action, an agent
possesses a set of capabilities. Capabilities can be used to capture soft abilities
(i.e., algorithms) or hard abilities (i.e., physical sensors or effectors). An agent that
possesses all the capabilities required to play a role may be assigned that role in the
organization. Capabilities can be defined as (1) a set of sub-capabilities, (2) a set
of actions that may interact with the environment, or (3) a plan that uses actions in
specific ways.

The O-MASE Methodology 259

achieves

requires

Policy

Role

constrains

Goal

External
Protocol

Actor participates-in

participates-in

initiates

interacts-with

Internal
Protocol

Protocol

usesDomain
Model

Organization

possesses

plays

Message

Agent

Capability

responds

relation

Environment
Property

Environment
Object

Organizational
Agent

Plan Action

Fig. 3 O-MaSE metamodel

Table 3 Metamodel entities

Entity Definition

Goal A desirable state; goals capture organizational objectives
Role Capture behavior that achieves a particular goal or set of goals
Agent Autonomous entities that perceive and act upon their environment; agents

play roles in the organization
Organizational
Agent

A sub-organization that functions as an agent in a higher-level organization

Capability Soft abilities (algorithms) or hard abilities of agents
Domain model Captures the environment including objects and general properties describ-

ing how objects behave and interact
Policy Constrain organization behavior often in the form of liveness and safety

properties
Protocol Define interaction between agents, roles, or external Actors; they may be

internal or external
Actor Actors that exist outside the system and interact with the system
Plan Abstractions of algorithms used by agents; plans are specified in terms of

actions with the environment and messages in protocols

260 S.A. DeLoach and J.C. Garcia-Ojeda

Organizational Agents (OAs) are organizations that act as agents in a higher level
organization and thus capture the notion of organizational hierarchy. As agents, OAs
may possess capabilities, coordinate with other agents, and be assigned to play roles.
OAs are similar to the notion of non-atomic holons in the ASPECS methodology [3].
Therefore, OAs represent an extension to the traditional Agent–Group–Role (AGR)
model [8, 9] and the organizational metamodel proposed by Odell et al. in [17].

The Domain Model is used to capture the key elements of the environment in
which agents will operate. These elements are captured as Domain Object Types
from the environment, which includes agents, and the relationships between those
object types. It can also be used to capture general Environment Properties that
describe how the objects behave and interact [6]. A designer may use entities defined
in the O-MaSE model (goals, roles, agents, etc.) along with entities defined in the
Domain Model to specify organizational Policies to constrain how an organization
may behave in a particular situation. Policies are often used to specify liveness and
safety properties of the system being designed.

Protocols define interactions between roles or between the organization and
external Actors. Protocols are generally defined as patterns of communication
between such entities [16]. A protocol can be of two types, External or Internal.
External Protocols specify interactions between the organization and external actors
(i.e., humans or other software applications), while Internal Protocols specify
interactions between agents playing specific roles in the organization. Either
messages or actions can be used to define protocols. Messages are typically used
for communications; however, actions may be used to modify the environment as a
means of communication [14].

2 Phases

The first step in using O-MaSE to define a system is to define an O-MaSE compliant
process. There may be several ways to define an O-MaSE compliant process;
however, the simplest approach is to perform a bottom-up analysis of the work
products required to produce the desired system. In a bottom-up approach, the key
decision is what type of system we need to develop and what are the final work
products that are needed to support the implementation of such a system. From there
we work backwards to determine which other work products are required to produce
the final work products. The example given here for the CMS is an appropriate
O-MaSE compliant process [12].

Ultimately, the CMS is a centralized system with which a variety of humans
interact. The roles of the system and humans are well defined, and, outside of
major system shutdown, there is little chance of failure that would require that
various agents might need to be reassigned goals in order for the system to work
efficiently and robustly. Therefore, there is no requirement for an autonomously
adaptive system such as produced by OMACS [7]. Thus, the definition of individual
capabilities of the roles and agents is not required. Therefore, we can implement the
system by defining a set of agent classes, the protocols between those classes, a set of

The O-MASE Methodology 261

<<output>>

<<output>>
<<output>>

<<output>>

<<output>>

Problem
Analysis

Solution
Analysis

System
Description

Goal Model GMoDS

Organization
Model

<<predecessor>>

<<input>>

<<input>>

<<input>> <<input>>

<<input>>

<<input>>

Domain
Model

Model Goals Refine Goals Model RolesModel Domain Model Organization
Interfaces

Role Model

Fig. 4 CMS O-MaSE-compliant process—analysis phase

policies to constrain agent behavior and interaction, and a set of plans to implement
the agent behavior. This information is provided by the Agent Class Model, Protocol
Model, Policy Model, and Plan Model, which are defined using the Model Agent
Classes, Model Protocols, Model Policies, and Model Plans tasks.

In order to provide the appropriate inputs to the tasks, we need to define a set
of roles and goals for the system. Also, to allow us to define the parameters of the
goal model, the protocols between the agents, and the policies and plans, we need to
have a valid domain model. Thus, the work products we need to create to support the
design phase include a Domain Model, a Goal Model, a Goal Model for Dynamic
Systems (GMoDS) model, an Organizational Model, and a Role Model. These work
products are defined using the Model Domain, Model Goals, Refine Goals, Model
Organizational Interfaces, and Model Roles tasks.

The final step is to define the phases and possible iterations for our process. Since
this is a fairly simple system, we choose a simple waterfall approach. The input to
the process is the system specification of the CMS, while the output is the design
models discussed above. We do not consider an implementation phase as the system
can be implemented in a number of ways depending on where and how the final
system is to be used.

Thus, the final process chosen for designing the CMS is a basic waterfall
approach as shown in Fig. 2. However, because the system does not require
adaptivity in terms of assigning agents to roles, we have simplified the Requirement
Analysis and Design phases as shown in Figs. 4 and 5. Requirement Analysis begins
by using the existing system requirements to define a Domain Model in the Model
Domain task. Next, we define the basic Goal Model and refining it into a GMoDS
Goal Model via the Model Goals and Goal Refinement tasks. Once the Goal Model
is complete, the GMoDS Goal Model is used to create the initial Role Model.

The Design Phase begins by creating an Agent Class Model based on the Role
Model and GMoDS model created during the Requirement Analysis phase. The
details of the protocols identified in the Agent Class Model are further refined into
several Protocol Models. While we chose to define the Protocol Models based on the
Agent Class Model, we could have also defined the protocols after creating the Role

262 S.A. DeLoach and J.C. Garcia-Ojeda

<<predecessor>>

<<input>>

Model
Protocols

Model
Policies

Low-level
Design

<<output>>

<<output>> <<output>>

<<output>>

Protocol
Model

<<input>>
<<input>>

<<input>>

<<input>> <<input>>

<<input>>

<<input>>

<<input>>
<<input>>

Policy Model

Agent Class
Model

Plan
ModelGMoDSRole Model

Model PlansModel Agent
Classes

Organization
Model

Architecture
Design

Fig. 5 CMS O-MaSE-compliant process—design phase

CMS DesignCMS
Requirement

Analysis

PC DesignPC Requirement
Analysis

Fig. 6 O-MaSE-compliant process for CMS and PC organizations

Model as it also identifies protocols. Next, we model the policies that the agents
and their protocols must adhere to. Finally, the plans of the agents are defined in the
Model Plans task and produce a set of plans that implement the agent behavior.

However, to manage the complexity of the Conference Management System
(CMS) provided earlier in the book, we decided to make use of the decomposition
and abstraction mechanisms available in O-MaSE. Specifically, we decided that
since the Program Committee (PC) (including the PC Chair, Vice-Chairs, and PC
Members) operated as a single entity in relation to the other system actors (Authors,
Publishers, and Reviewers), we would treat the PC as a separate entity in the design
process and use the O-MaSE notion of an Organizational Agent to capture the PC.
Thus, at the top-level description of the system, the PC is a single entity that is
further decomposed in terms of its own organization. This actually requires a slight
modification to the waterfall model. In actuality, this approach simply requires one
iteration of the Requirement Analysis and Design phases for the CMS organization
and a second iteration for the PC organization. However, to clarify the situation, we
show an extended version of the CMS process in Fig. 6.

Again, as a reminder, the phases used to define O-MaSE as presented below are
not actually part of the O-MaSE definition but only included to help define O-MaSE
according to the DPDT. The process shown in Figs. 6, 4, and 5 is actually a subset

The O-MASE Methodology 263

Requirements
Gathering

Problem
Analysis

Solution
Analysis

Fig. 7 Requirement Analysis phase flow of activities

<<output>>

<<performs primary>>

<<predecessor>>

<<output>> <<output>>

<<output>>

<<performs primary>>

<<performs
primary>>

<<output>>

<<output>>

<<output>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

<<output>>

<<performs primary>>

Requirements
Gathering

Problem
Analysis

Solution
Analysis

Specify
Requirements

Model
Domain

Model
Goals

Refine
Goals

Model
Organization

Interfaces

Model
Roles

Define
Roles

Define
Role-Goals

System
Description

Domain
Model

Goal Model

GMoDS

Role
Description
Document

Role Goal
Model

Requirement
Engineer

Goal
Modeler

Organization
Modeler

Role Modeler

<<predecessor>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<performs,
primary>>

Role
Model

Organization
Model

<<input>>

Domain
Modeler

Fig. 8 Requirement Analysis phase in terms of activities and work products

of the phases, tasks, and activities discussed below, and examples of work products
produced from this process are presented where appropriate.

2.1 Requirement Analysis

In traditional software engineering practice, the requirement analysis phase attempts
to define and validate requirements for a new or modified software product, taking
into account the views of all major stakeholders. A generic example of an O-MaSE
requirement analysis phase is shown in Fig. 7 in terms of process flow and Fig. 8 in
terms of process roles, work products, and tasks.

264 S.A. DeLoach and J.C. Garcia-Ojeda

2.1.1 Process Roles
This phase uses five roles: Requirement Engineer, Goal Modeler, Domain Modeler,
Organization Modeler, and Role Modeler.

Requirement Engineer
The Requirement Engineer captures and validates the requirements of the system.
Thus, the person in this role must be able to think abstractly, work at high levels
of abstraction, and collaborate with stakeholders, domain modelers, and project
managers.

Goal Modeler
The Goal Modeler is responsible for the generation of the GMoDS goal model.
Thus, Goal Modeler must understand the system description/SRS, be able to interact
openly with various domain experts and customers, and be proficient in GMoDS
AND/OR Decomposition and ATP Analysis [5].

Domain Modeler
The Domain Modeler captures the key concepts and vocabulary in the current
and envisioned environment of the system, helping to further refine and validate
requirements.

Organization Modeler
The Organization Modeler is responsible for documenting the Organization Model.
Thus, the Organization Modeler must understand the system requirements, Goal
Model, and Domain Model and be skilled in organizational modeling techniques.

Role Modeler
The Role Modeler creates the Role Model and the Role Description work products,
which requires knowledge of the role model specification and a general knowledge
of the system.

2.1.2 Activity Details
In the Requirement Analysis phase, there are three activities: Requirement Gather-
ing, Problem Analysis, and Solution Analysis.

Requirement Gathering
Requirement Gathering is the process of identifying software requirements from a
variety of sources. Typically, requirements are either functional requirements, which
define the functions required by the software, or nonfunctional requirements, which
specify traits of the software such as performance quality and usability. An overview
of the Requirement Gathering tasks and work products used is shown in Fig. 9.

Problem Analysis
Problem Analysis captures the purpose of the product and documents the environ-
ment in which it will be deployed using three tasks: Model Domain, Model Goals,

The O-MASE Methodology 265

<<output>><<performs primary>>

Specify
Requirements

System
Description

Requirement
Engineer

Fig. 9 Requirement Gathering activity diagram

<<output>> <<output>>

<<output>> <<performs primary>><<performs, primary>>

<<performs primary>>

Model Domain Model Goals Refine Goals

System
Description

Domain
Model

Goal Model GMoDSDomain
Modeler

Goal
Modeler

<<input>> <<input>> <<input>>

Fig. 10 Problem Analysis activity diagram

and Refine Goals. The Model Domain task captures the object types, relationships,
and behaviors within the domain in which system will operate. The Domain Model
captures the environment as a set of Object Types and Agents that are situated in the
environment. Object types are defined by a name and a set of attributes. In O-MaSE,
domain object types are similar to object classes rather than instances. The Model
Goals task transforms the initial system requirements into a set of structured goals
for the system. The deliverable of the Model Goals task is an initial Goal Model.
The Refine Goals task captures the dynamic aspects of the Goal Model and further
defines each goal using a technique called Attribute–Precede–Trigger Analysis. The
result is a refined version of the Goal Model called a GMoDS goal model [5]. An
overview of the Problem Analysis tasks and work products used is shown in Fig. 10.

Solution Analysis
Solution Analysis defines the required system behavior based on the goal and
domain models. The end result is a set of roles and interactions in the Organization
Model. Solution Analysis is decomposed into four tasks: Model Organizational
Interfaces, Model Roles, and either Define Roles or Define Role Goals. The
Model Organization Interfaces task identifies the organization’s interfaces with
external entities, which can include other agents, organizations, or external actors.

266 S.A. DeLoach and J.C. Garcia-Ojeda

<<output>>

<<output>>

<<output>>
<<performs primary>>

<<performs primary>>

<<performs primary>>

<<output>><<performs primary>>

Model Organization Interfaces Model
Roles

Define
Roles

Define
Role-Goals

System
Description GMoDS

Organization
Model

Role
Model

Role
Description
Document

Role Goal
Model

Organization
Modeler

Role Modeler

<<input>>

<<input>>

<<input>>

<<input>>
<<input>>

Fig. 11 Solution Analysis activity diagram

The Model Roles task identifies all the roles in the organization as well as their
interactions with each other and with external actors, resulting in a Role Model. The
goal of role modeling is to assign each leaf goal from the organization Goal Model
to a specific role and to identify interactions between roles as well as with external
actors. Interactions with external actors should be consistent with the Organization
Model. The internal behavior of roles can be defined either through the Define Roles
or Define Role Goal tasks and both types of definitions can be used within the same
system. In the Define Roles task, the designer specifies the capabilities required by
a role, the goals the role is able to achieve, constraints associated with the role, and
the plan(s) that implements the role, which are defined via the Model Plan task as
described below. In the Define Role Goals task, role behavior is defined by a role-
level Goal Model. The top-level goal in a role-level Goal Model is the leaf goal
from the organization that is to be achieved by the role. An overview of the Solution
Analysis tasks and work products used is shown in Fig. 11.

2.1.3 Work Products
The Requirement Analysis phase produces eight work products. One is a pure text
document, the System Description. The other seven work products are models that
create various elements in the O-MaSE metamodel. The relationships between these
models and the O-MaSE metamodel are documented in Fig. 12. Each model is
defined in terms of elements from the O-MaSE metamodel, which are represented
with UML class icons. Within each model, each metamodel element may be
Defined, reFined, Quoted, Related, or Relationship Quoted.

Work Product Kinds
There are six possible work products produced in the Requirement Analysis phase:
System Description Specification, Goal Model, GMoDS Model, Domain Model,
Organization Model, and Role Model as defined in Table 4. Examples of most of
these models are provided in the sections below. Each work product is specified in

The O-MASE Methodology 267

Role

Goal

Actor

Protocol

Organization

Environment
Property

Environment
Object

Organization
Model

Role Goal
Model

Role
Model

GMoDS

D

D

D

D

D

D

F

F

F

D

D

Q

R

D

Q

Q

Q

Q

R

R

R

R

Role Description
Document

Domain
Model

Goal Model

Fig. 12 Requirement Analysis document structure

Table 4 Requirement Analysis work products

Name Description Kind

System Description describes the technical requirements for a Structural
Specification particular agent-oriented software
Goal Model captures the purpose of the organization as a goal Behavioral

tree; includes goal attributes, precedence and
triggering relationships

Domain Model defines the language that can be used when Structural
defining the operation of the system

Organizational Model documents the interaction between the Structural
organization and the external actors

Role Model depicts organization roles, the goals they achieve Structural
and interactions between roles/external actors

terms of the kind of model, information, or data documented. A structural work
product is used to model static aspects of the system, a behavioral work product is
used to model dynamic aspects of the system, and a composite work product is used
to model both static and dynamic aspects of the system. For further details on the
differences between types of work products see [20].

System Description
There are many ways to capture and categorize requirements for use in systems.
O-MaSE assumes that either traditional or multiagent-focused requirement gath-
ering techniques are sufficient and thus does not stipulate a specific document
structure.

Goal Model
The top-level CMS GMoDS goal model is shown in Fig. 13. (The initial version
of the Goal Model from the Model Goals task is simply the GMoDS model with

268 S.A. DeLoach and J.C. Garcia-Ojeda

«G
oa

l»
0

M
an

ag
eC

M
S

«G
oa

l»
1

G
at

he
rP

ap
er

s

«G
oa

l»
3

Re
vi

ew
Pa

pe
r

p
: P

ap
er

r :
 R

ev
ie

w
er

«G
oa

l»
4

Se
le

ct
Pa

pe
rs

«G
oa

l»
6

Pr
in

tP
ro

ce
ed

in
gs

«G
oa

l»
1.

3
Co

lle
ct

Pa
pe

rs
«G

oa
l»

6.
1

Co
lle

ct
Fi

na
ls

p
: P

ap
er

«G
oa

l»
6.

2
Se

nd
To

Pu
bl

is
he

r
«G

oa
l»

1.
1

Re
gi

st
er

Au
th

or

«G
oa

l»
2

D
is

tr
ib

ut
eP

ap
er

s

«G
oa

l»
1.

2
Re

gi
st

er
Re

vi
ew

er
s

«a
nd

»
«a

nd
»

«a
nd

»
«a

nd
»

«a
nd

»

«p
re

ce
de

s»

«p
re

ce
de

s»
as

si
gn

(p
, r

)
ac

ce
pt

ed
(p

, a
)

«a
nd

»
«a

nd
»

«p
re

ce
de

s»

«a
nd

»
«a

nd
»

«a
nd

»

Fi
g

.
1

3
To

p-
le

ve
l

G
M

oD
S

G
oa

lM
od

el
fo

r
co

nf
er

en
ce

m
an

ag
em

en
ts

ys
te

m

The O-MASE Methodology 269

the precede and trigger relations removed.) The overall goal of ManageCMS is
broken down into five sub-goals: GatherPapers, DistributePapers, ReviewPaper,
SelectPapers, and PrintProceedings. The GatherPapers goals is further decomposed
into two sub-goals, RegisterAuthor and CollectPapers, while the PrintProceedings
goal is also decomposed into the CollectFinals and SendToPublisher sub-goals.
GMoDS allows new goal instances to be created via an event trigger, which is
denoted by an arrow between two goals labeled by an event signature such as
assign(p,r) on the arrow between the DistributePapers and ReviewPaper goals.
In this case, it means that when an assign even occurs during pursuit of the
DistributePapers goal, a new ReviewPaper goal is created. We use this to create a
ReviewPaper goal for each reviewer assigned to review a given paper. Similarly,
the accepted event during pursuit of the SelectPapers goal will create a new
CollectFinals goal to collect each paper accepted for the proceedings.

The GMoDS precedence relation (denoted by an arrow labeled with «precedes»)
is used in the goal model to ensure proper sequence of actions in the system.
Thus, since the papers must be gathered before they can be distributed for review,
the GatherPapers goal precedes the DistributePapers goal (i.e., GatherPapers must
be achieved before DistributePapers can begin to be pursued). Likewise, all the
reviews must be performed (ReviewPapers goal) before papers can be selected
(SelectPapers) for the conference, and all CollectFinals goals must be achieved
before the SendToPublisher goal is attempted.

The PC organization is actually designed to achieve three top level goals:
SendToPublisher, DistributePapers, and SelectPapers goals. The DistributePapers
and SelectPapers goals are further decomposed as shown in Fig. 14 while the
SendToPublisher is not.

The DistributePapers goal is decomposed in the AssignPapers and Disseminate-
Papers goals. While the description of the CMS provides for several ways to assign
papers, there is only a single goal that drives that assignment process. How the PC
actually achieves the assignment goal is defined by the process they use. Therefore,
this aspect of the CMS definition should be captured as a process, which in the case
of O-MaSE would be captured as variations to a plan.

The SelectPapers goal is decomposed into several sub-goals: CollectReviews,
MakeDecision, and InformAuthors. Since all the reviews should be collected prior
to making a decision, a precedence relation exists between the CollectReviews and
MakeDecision goals. As a decision is made on each paper, a declined or an accepted
event triggers either an InformDeclined or an InformAccepted goal for that paper.
In addition, an accepted event triggers a CollectFinals goal in the CMS goal model
as shown in Fig. 13.

Domain Model
The Domain Model is an essential part of problem analysis and is very important to
the O-MaSE approach in general. The Domain Model defines the language that can
be used by designer to ensure that everyone is talking about this same thing. It is
also essential in formally defining the operation of the system from the attributes in
the goal model to the information passed via system protocols to the policies of the
system. The Domain Model for the CMS is shown in Fig. 15.

270 S.A. DeLoach and J.C. Garcia-Ojeda

«Goal»
4.1 CollectReviews

«Goal»
4.2 MakeDecision

«Goal»
4.3 InformAuthors

«Goal»
4.3.1 InformDeclined

p : Paper
a : Author

«Goal»
4.3.2 InformAccepted

p : Paper
a : Author

«Goal»
4 SelectPapers

«Goal»
2.1 DisseminatePapers

«Goal»
2.2 AssignPapers

«Goal»
2 DistributePapers

«precedes»

«and»«and»

«precedes»

«and»

declined(p, a)

accepted(p, a)

«and»

«and»«and»

«and»

Fig. 14 Program committee Goal Model

«Object»
Review

«Object»
Reviews

«Object»
Paper

ID : integer

«Object»
Reviewer

«Object»
Papers

«Object»
Author

1

*

PapersReviewed
Reviewer

writes
1..n1..n

AuthorPaper
prepares

*

assignedTo*

Fig. 15 Domain Model for conference management system

The O-MASE Methodology 271

Author

Publisher

Reviewer

«Organization»
CMS

«achieves» ManageCMSsubmitFinal

submitPaper

register

inform printProceedings

writeReview

register

Fig. 16 Organization Model for conference management system

There are four main objects of interest in the CMS domain: Author, Paper,
Reviewer, and Review. Each of these and their relationships are shown explicitly
in the Domain Model. In addition, an aggregation of individual papers (Papers) and
reviews (Reviews) is also defined. The model uses standard UML notation to define
the multiplicities that are allowed between Objects. For instance, an Author must
have at least one Author, and to be valid, an Author must have at least one Paper.
It also shows that a Reviewer prepares a Review, and each Review has exactly one
Paper that it can be written over. In addition, the Domain Model allows the definition
of Object attributes. As shown, each Paper object has an ID.

Organizational Model
The Organization Model for the CMS is shown in Fig. 16. Here, the decision to make
the PC a sub-organization shows up in the absence of the PC as an external actor.
As shown, since the PC is a sub-organization, we are essentially considering it
to be part of the system at this level. The three external actors shown, Author,
Publisher, and Reviewer, all interact with the system through the given protocols.
As the organization is refined into a Role and Agent Class Models, these external
actors and protocols should show up in a consistent manner.

Role Model
The role model for the top-level CMS is shown in Fig. 17. There are six roles
defined to carry out the goals defined in Fig. 13. Each role is designed to achieve
a single goal as denoted by the «achieves» attribute in each role. Two exceptions
are the PaperCollector role, which is designed to collect the initial and final copies
of the papers, and the Registrar role, which is designed to register both authors and
reviewers.

The role model also shows the external actors that interact with each of the roles.
(As discussed above, the PC will actually be a sub-organization and thus the PC

272 S.A. DeLoach and J.C. Garcia-Ojeda

«Role»
Registrar

«achieves» RegisterAuthor
«achieves» RegisterReviewer

«Role»
PaperCollector

«achieves» CollectPapers
«achieves» CollectFinals

«Role»
Selector

«achieves» SelectPapers

«Role»
Reviewer

«achieves» ReviewPapers

Reviewer
«Role»

Distributor

«achieves» DistributePapers

«Role»
Editor

«achieves» SendToPublisher

Publisher
Author

submitPaper
register

submitFinal

inform

printProceedings

writeReview

register

makeAssignment

getExpertise

submitReviews

retrievePaper

collectFinals

getPapers

Fig. 17 Role Model for conference management system

Chair, Vice-Chairs, and PC Member external actors show up at a lower level of
the design shown later.) The arrows between roles and between actors and roles
represent protocols that support the passing of information. The direction of the
arrow denotes who initiates the protocol and not the flow of information itself, which
may occur in both directions. Each protocol is defined by a Protocol Model that
shows the details of the messages and data passed. However, by studying both the
goal model and role model, one can begin to understand the overall flow of the
system.

The system begins with Author and Reviewer actors registering with the
Registrar role and the Authors submitting papers to the PaperCollector role. Next,
the Distributor role (which will eventually performed by the PC) gets the papers
from the PaperCollector and the reviewer expertise from the Registrar and then
assigns those papers to the reviewers. After all the Reviewers have submitted their
reviews to the Selector, the Selector decides which papers are accepted and declined
and informs the appropriate Authors. Once all the Authors have submitted the final
version of their paper to the PaperCollector, the Editor takes those papers and sends
them to the Publisher for publication.

The Role Model for the PC organization is shown in Fig. 18. Since the PC
organization is designed to achieve three different CMS goals, the role model must

The O-MASE Methodology 273

«Role»
Assigner

«achieves» AssignPapers

Chair

ViceChair «Role»
Selector

«achieves» MakeDecision

«Role»
Collector

«achieves» CollectReviews

«Role»
Disseminater

«achieves» DisseminatePapers

«Role»
Editor

«achieves» SendToPublisher Publisher

CMS

«Role»
Informer

«achieves» InformDeclined
«achieves» InformAccepted

Member

Author

printProceedings

collectFinals

submitReviews

getExpertise

makeAssignments

getPapers

assignments

getReviewschoose

assign

inform

selection

bidding

select

Fig. 18 Program Committee Role Model

accommodate all three. Notice that the actors of the PC organization include the PC
Chair, Vice-chairs, and Members. In addition, the CMS is modeled as an external
actor since its functionality lies outside the PC organization. As shown in the CMS
Agent Class Model in Fig. 17, the PC organization must play the Editor, Distributor,
and Selector roles defined in the CMS Role Model (Fig. 17).

The key to the correct decomposition of the PC organization is ensuring that
the interfaces defined in the CMS Agent Class and Role models are consistently
implemented in the PC organization. The easiest example of this is the CMS Editor
role, which is implemented directly as a single Editor role in the PC organization.
Notice that the protocols from the Editor to the Publisher and PaperCollector in the
CMS Role Model are implemented as protocols to the CMS and Publisher actors in
the PC Role Model. Thus, the CMS’s PaperCollector role is captured as part of the
CMS actor in the PC Role Model.

The CMS Distributor role is implemented as two separate roles in the PC
organization: Assigner and Disseminater. The Assigner role is used to encapsulate
the various approaches to assigning papers to PC Members as defined in the CMS
description. While the approaches are not defined in the Role Model, the protocols
required for the various approaches are. For instance, the PC Chair can assign them
directly and thus assign protocol from the PC Chair to the Assigner role. The PC
Members can also be involved in selecting papers or can be part of a bidding
process; these options require separate protocols: select and bidding. The process
can also be carried out automatically by the Assigner role. Once the assignments
have been made the Assigner role sends the assignments to the Disseminater role

274 S.A. DeLoach and J.C. Garcia-Ojeda

Architecture
Design

Low-level
Design

Fig. 19 Design-Phase flow of activities

<<predecessor>>

<<input>>

Agent Class
Modeler

Protocol
Modeler

Policy
Modeler

Capability
Modeler

Plan
Modeler Action

Modeler

Model Agent
Classes

Model
Protocols

Model
Policies

Model
Capabilities

Model
Plans

Model
Actions

Low-level
Design

Architecture
Design

<<output>>

<<output>>

<<output>>

<<output>>

<<output>>

<<output>>

Agent Class
Model

Protocol
Model

Capability
Model<<performs primary>>

<<performs,
primary>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

<<performs primary>>

Organization
Model

Role
Model

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

Domain
Model

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

GMoDS

Policy
Model

Action
Model

Plan
Model

Fig. 20 Design Phase in terms of activities and work products

who is responsible for making assignments. These assignments are sent to the CMS
actor, which includes the Reviewer role as defined in the CMS Role Model. We
assume that if PC Members are Reviewers, they are registered in the system as both
and are thus included as both an external PC Member actor and a CMS Reviewer.

2.2 Design

The design phase consists of two activities: Architecture Design and Low-Level
Design. Once the goals, environment, behavior, and interactions of the system
are known, Architecture Design is used to create a high-level description of the
main system components and their interactions. This high-level description is then
used to drive Low-Level Design, where the detailed specification of the internal
agent behavior is defined. This low-level specification is then used to implement
the individual agents during the Implementation phase. A generic example of an
O-MaSE design phase is shown in Fig. 19 in terms of process flow and Fig. 20 in
terms of process roles, work products, and tasks.

The O-MASE Methodology 275

2.2.1 Process Roles
There are six roles in the design phase: Agent Class Modeler, Protocol Modeler,
Policy Modeler, Capability Modeler, Plan Modeler, and Action Modeler.

Agent Class Modeler
The Agent Class Modeler is responsible for creating the Agent Class Model and
requires general modeling skills and knowledge of the O-MaSE Agent Class Model
specification.

Protocol Modeler
The Protocol Modeler designs the protocols required between agents, roles, and
external actors and requires protocol modeling skills.

Policy Modeler
The Policy Modeler is responsible for designing the policies that govern the
organization.

Capability Modeler
The Capability Modeler is responsible for defining the Capability Model and
requires modeling skills and O-MaSE Capability Model specification knowledge.

Plan Modeler
The Plan Modeler designs the plans necessary to play a role; required skills include
understanding of Finite State Automata and O-MaSE Plan Model specification
knowledge.

Action Modeler
The Action Modeler documents the Action Model, which requires the ability to
specify appropriate pre- and post-conditions for capability actions.

2.2.2 Activity Details
The Design phase has two activities: Architecture Design and Low-level Design. In
the Architecture Design we focus on documenting the different agents, protocols,
and policies using three tasks: Model Agent Classes, Model Protocols, and Model
Policies. In the low-level design we focus on the capabilities possessed by, actions
performed by, and plans followed by agents. The tasks of low-level design include
Model Capabilities, Model Plans, and Model Actions.

Architecture Design
Architecture Design consists of three tasks as shown in Fig. 21. The Model Agent
Classes task identifies the types of agents in the organization and the protocols
between them. Agent classes may be defined by the roles they play or the capabilities
they possess, which implicitly defines the roles they can play. Thus, an Agent Class
provides a template for a type of agent in the system.

276 S.A. DeLoach and J.C. Garcia-Ojeda

<<input>>

Protocol
Modeler

Policy
Modeler

Model Agent
Classes

Model
Policies

<<output>>

<<output>>

<<output>>

Agent Class
Model

<<performs primary>>

<<performs primary>>

<<performs primary>><<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

GMoDS Policy Model

Agent Class
Modeler

Model
Protocols

Protocol ModelRole Model

Organization
Model

Fig. 21 Architecture Design activity diagram

The Model Protocols task specifies the details of the interactions between agents
or roles. Since protocols can be specified in Organization Models, Role Models,
and Agent Class Models, the method engineer may decide which set of protocols to
define. If the Role Model protocols are defined via Protocol Models, agent classes
playing those roles should inherit those protocols. The Protocol Model defines the
types of messages sent between the two entities and is similar to UML interaction
models [18].

The Model Policies task defines a set of rules that describe how an organization
should behave. In general, policies are used to restrict agent behavior and may be
enforced at design time or at runtime. How policies are enforced is a critical decision
that affects the way the Policy Model is used during development. If there is no
runtime mechanism designed or provided by the runtime environment, designs and
implementations must be evaluated to ensure that they conform to the policies.

Low-Level Design
Low-level Design consists of three tasks as shown in Fig. 22. The Model Capab-
ilities task defines the internal structure of the capabilities possessed by agents in
the organization, which may be modeled as an Action or a Plan. An action is an
atomic functionality possessed by an Agent and defined using the Model Actions
task. A plan is an algorithmic definition of a capability and is defined using the
Model Plans task.

The Model Plans task captures how an agent can achieve a specific type of goal
using a set of actions specified as a Plan Model (a Finite State Machine). The Model
Actions task defines the low-level actions used by agents to perform plans and
achieve goals. Actions are typically defined as a function with a signature and a set
of pre- and post-conditions. In some cases, actions may be modeled by providing
detailed algorithmic information.

The O-MASE Methodology 277

Capability
Modeler

Plan
Modeler

Action
Modeler

Model
Capabilities

Model
Plans

Model
Actions

<<output>>

<<output>>

<<output>>

Agent Class
Model

Capability
Model

<<performs,
primary>>

<<performs primary>>

<<performs primary>>

Role
Model

Domain
Model

<<input>>

<<input>>

<<input>>

<<input>><<input>>

<<input>>

<<input>>

<<input>>

GMoDS

Action
Model

Plan
Model

Fig. 22 Low-level Design activity diagram

Policy

Role

Goal

Actor Protocol

Message

Agent

Environment
Object

Organizational
Agent

Plan

Action

Policy
Model

Plan
Model

Action
Model

F

D

R

Protocol
Model

Agent Class
Model

Q D

D

Q

Q
D

Q

D

Q

Q

D

D

Capability

D

R

R

Q

QQ

Q

Capability
Model

Fig. 23 Design document structure

2.2.3 Work Products
The Design phase produces six work products, each of which is a model that
creates various elements in the O-MaSE metamodel. The relationships between
these models and the O-MaSE metamodel are documented in Fig. 23. Each model is
defined in terms of elements from the O-MaSE metamodel, which are represented
with UML class icons. Within each model, each metamodel element may be
Defined, reFined, Quoted, Related, or Relationship Quoted.

Work Product Kinds
There are six work products produced in the Design phase: Agent Class Model,
Protocol Model, Policy model, Capability Model, Plan Model, and Action Model as
defined in Table 5.

278 S.A. DeLoach and J.C. Garcia-Ojeda

Table 5 Design work products

Name Description Kind

Agent Class Model defines the agent classes and sub-organizations Structural
that will populate the organization.

Protocol Model represents the different relations/interaction Structural
between external actors and agents/roles.

Policy Model describes all the rules/constraints of the system Behavioral
Capability Model defines the internal structure of the capabilities Structural

possessed by agents in the organization.
Plan Model captures how an agent can achieve a specific type Behavioral

of goal using a set of actions (which includes
sending and receiving messages).

Action Model defines the low-level actions used by agents to Behavioral
perform plans and achieve goals.

Agent Class Model
The Agent Class Model is shown in Fig. 24. There are three agents and one sub-
organization (an organizational agent) defined to implement the six roles defined in
the role model. The Database agent plays the PaperCollector role, the Registration
agent plays the Registrar role, and the Reviewer agent plays the Reviewer role. The
protocols defined in the role model are each inherited by the agent class model based
on the roles assigned to the various agents.

A unique aspect of this design is the use of an organizational agent to capture the
PC. In this design, the PC organization plays the Distributor, Selector, and Editor
roles within the CMS. A further decomposition of this organizational agent is given
below.

The Agent Class Model for the PC organization is shown in Fig. 25. The six
roles from the PC Role Model result in four separate agents in the PC organization.
Two agents simply implement single roles: the ReviewCollector agent plays the
Collector role, while the Editor agent plays the Editor role. However, four other
roles are combined into two agents. The reason for combining these roles is the
fact that in both cases, there were two roles that communicated directly with each
other and operated in a basically sequential manner. Therefore, the Disseminater
and Assigner roles were combined into the PaperAssigner agent, while the Informer
and Selector roles were combined into the PaperSelector role. The protocols and
external agents were inherited directly from the Role Model, and no new protocols
or external agents were added.

Protocol Model
The Model Protocols activity defines the internal details of each protocol identified
in the Role and Agent Class models. At this point, all of the protocols in the CMS
or the PC organization are modeled. One of the more interesting examples of a
Protocol Model is shown in Fig. 26, which shows the bidding protocol between the
Member actor and the Assigner agent. In reality, this protocol would likely be more

The O-MASE Methodology 279

Publisher

Author
Reviewer

«Agent»
Database

«plays» PaperCollector

«Agent»
Registration

«plays» Registrar

«Organization»
PC

«plays» Editor
«plays» Distributor
«plays» Selector

«Agent»
Reviewer

«plays» Reviewer

printProceedings register

submitPaper

submitFinal

inform
writeReview

register

retrievePaper

collectFinals

getExpertise

submitReviews

makeAssignment

Fig. 24 Agent Class Model for conference management system

complex, possibly allowing the member to change bids or to protest an assignment;
however, for the purposes of this example, we will take a simple approach. When
the PC distributes papers via a bidding process, this protocol is used between the
Assigner role and each Member of the PC committee. The protocol only captures
the interactions between the Assigner and one Member—this protocol is repeated
for each member. First, the PC Assigner role sends the callForBids message to the
Member with a list of available papers. Next, the Member decides what bid to place
on each of the papers in the set of papers received. For each paper the Member would
like to bid on, a bid message is sent back to the Assigner. When the Member has
completed bidding on papers, the Member sends a done message to the Assigner.
Once the Assigner receives all the bids from all the Members, the Assigner decides
the final assignments for each Member and a assignment message is sent to the
Member and the protocol is complete.

Policy Model
As defined in [13], we use a language that includes temporal formula with
quantification. For simplicity, we limit our examples to first-order predicate logic
in this example. The language used to specify policies comes from entities defined
in the various models, for example, objects defined in the Domain Model, the Roles
defined in the Role Model, and the Agents defined in the Agent Class Model. While
most of the interesting policies apply the PC organization, we do want each paper
to have a unique ID. Thus, a policy to ensure that each paper has a unique ID can be
stated as

280 S.A. DeLoach and J.C. Garcia-Ojeda

Chair

«Agent»
Editor

«plays» Editor

«Agent»
PaperSelector

«plays» Informer
«plays» Selector

«Agent»
PaperAssigner

«plays» Disseminater
«plays» Assigner

Member

Author

«Agent»
ReviewCollector

«plays» Collector

CMS

Publisher

choose

assign

select bidding

getReviews

inform

protocol

makeAssignments

getPapers

getExpertise

printProceedings

collectFinals

Fig. 25 Program Committee Agent Class Model

8p1; p2 W Paper p1:ID D p2:ID) p1 D p2

The CMS requires that a PC Member or Reviewer may not see or infer information
about their own submissions. Essentially, this requires that PC Members would not
be able to see any reviews or decisions made about their papers except through the
normal inform protocol with Authors. We assume here that the design of the system
only allows a PC Member (not the Chair) to see submitted reviews through the
submittReview protocol with the Collector role. We also assume that the Member
can only see reviews related to papers that the member has submitted a review for.
Thus to specify that a member cannot review their own paper and that a Member
may not view reviews related to their papers, we can specify the following policies:

8p W Paper; m W Member; a W Author a D m ^ writes.a; p/) m: 2 assignedTo.p; m/

8p W Paper; m W Member submitReview.m; p/) m 2 assignedTo.p; m/

The O-MASE Methodology 281

Alternative

Loop

[not done]

«Role»
Assigner

«Actor»
Member

callForBids(papers)

bid(paper)

done()

assignment(papers)

Fig. 26 Program Committee bidding protocol

The first policy states that if a Member is also an Author and writes a paper, that
Member cannot be in the set of Reviewers in the assignedTo association with that
paper. The second policy states that if a Member submits a review of a paper, then
that Member must be in the set of assigned reviewers in the assignedTo association
with that paper.

Capability Model
Capability Model captures the internal structure of the capabilities possessed by
agents in the organization. Each capability may be modeled as an Action or a
Plan. An action is an atomic functionality possessed by an Agent and defined
using an Action Model as described in section “Action Model”. A plan is an
algorithmic definition (defined via a state machine) of a capability that uses actions
and implements protocols. Each plan is defined using a Plan Model as presented in
section “Plan Model”.

282 S.A. DeLoach and J.C. Garcia-Ojeda

«State»
Evaluate

OK = getOK()

«State»
Review

review = getReview()

receive(reviewPapers(papers), PC)

[not OK] ^ send(decline(), PC)

[OK] ^ send(accept(), PC)

[moreReviews] ^ send(submit(review), PC)

[lastReview] ^ send(submit(review), PC)

Fig. 27 Program Committee bidding protocol

Plan Model
Typically, a plan is required for each type of goal that an agent can achieve. Thus,
since agents are defined by the roles they play, one must look at the goals that can be
achieved by each role the agent can play. We illustrate this process with the Reviewer
agent. Since the Agent Class Model in Fig. 24 defines that Reviewer agent can only
play the Reviewer role, we only need to look at the goals that can be achieved by
the Reviewer role. In the Role Model of Fig. 17 we can see that the Reviewer role is
designed to only achieve the ReviewPapers goal. Therefore, we only need to define
a single plan to fully define the behavior of the Reviewer agent.

The ReviewPapers plan for the Review agent is shown in Fig. 27. It is defined by
a simple-state machine that starts when the agent receives a reviewPapers message
from the PC organization (denoted by the label on the transition from the start state
to the Evaluate state). The Reviewer has the right to accept or reject the papers
presented. If accepted, the Reviewer sends an accept message to the PC and enters
the Review state. Here the Reviewer agent waits for the actual human reviewer to
enter reviews. As each review is received, the Reviewer sends the review to the PC
via a review message. When all reviews have been received, the Review plans end.

Action Model
The Action Model defines the low-level actions used by agents to perform plans
and achieve goals. Actions belong to capabilities possessed by agents. Actions are
typically defined as a function with a signature and a set of pre- and post-conditions.
In some cases, actions may be modeled by providing detailed algorithmic inform-
ation. If using automatic code generation techniques, this information is generally
captured as a function or an operation in the language being generated. In either
case, the Action Model is usually just a textual document.

The O-MASE Methodology 283

Role Goal
Model

Goal
Model

Organization
Model

Agent Class
Model

Protocol
Model

Policy
Model

Plan
Model

Action
Model

Domain
Model

Role Description
Document Capability

Model

System
Description

GMoDS
Role

Model

Fig. 28 Work Product Dependencies

2.3 Implementation

Finally, the design is translated to code. The purpose of this phase is to take
all the design models created during the design and convert them into code that
correctly implements the models. Obviously, there are numerous approaches to code
generation based on the runtime platform and implementation language chosen.
In this phase there is a single Role, the Programmer who is responsible for
writing code based on the various models produced during the Design phase. The
output of the Generate Code task is the source code of the application. While not
currently covered in the process, system creation ends with testing, evaluation, and
deployment of the systems.

3 Work Product Dependencies

Figure 28 identifies the dependencies between all the work products in O-MaSE.
These dependencies characterize different pieces of information produced during
the different stages of the development process and serve as inputs to and outputs of
work units (i.e., either activities or tasks).

References

1. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38, 275–280 (1996)

2. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardization to research. Int. J. Agent Oriented Softw. Eng. 1, 91–121
(2007)

284 S.A. DeLoach and J.C. Garcia-Ojeda

3. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an agent-oriented
software process for engineering complex systems. J. Auton. Agent Multi Agent Syst. 20,
260–304 (2009)

4. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE: a customizable approach to designing and
building complex, adaptive multiagent systems. Int. J. Agent Oriented Softw. Eng. 4, 244–280
(2010)

5. DeLoach, S.A., Miller, M.: A goal model for adaptive complex systems. Int. J. Comput. Intell.
Theory Pract. 5, 83–92 (2010)

6. DeLoach, S.A., Valenzuela Jorge, L.: An agent-environment interaction model. In:
Padgham, L., Zambonelli, F. (eds.) Agent-Oriented Software Engineering VII: 7th Interna-
tional Workshop, AOSE 2006. Lecture Notes in Computer Science, vol. 4405, pp. 1–18.
Springer, Heidelberg (2006)

7. DeLoach, S.A., Oyenan, W., Matson, E.T.: A capabilities based model for artificial organiza-
tions. Auton. Agent Multi Agent Syst. 16, 13–56 (2008)

8. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agent systems. In: Proceedings of the 3rd International Conference on Multi Agent Systems,
pp. 128–135. IEEE Computer Society, Washington (1998)

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multi-agent systems. In: Giorgini, P., Muller, J.P., Odell, J. (eds.) Agent-Oriented Software
Engineering IV. Lecture Notes in Computer Science, vol. 2935, pp. 214–230. Springer, Berlin
(2003)

10. Garcia-Ojeda, J.C., DeLoach, S.A.: Robby: agentTool process editor: supporting the design
of tailored agent-based processes. In: Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC ’09), pp. 707–714. ACM, New York (2009)

11. Garcia-Ojeda, J.C., DeLoach, S.A.: Robby: agentTool III: from process definition to code
generation. In: Decker, K., Sichman, J., Sierra, G., Castelfranchi, C. (eds.) Proceedings of
the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’09), vol. 2, pp. 1393–1394. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2009)

12. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-MaSE: a custom-
izable approach to developing multiagent development processes. In: Luck, M., Padgham, L.
(eds.) Proceedings of the 8th International Conference on Agent-oriented Software Engineer-
ing VIII (AOSE’07). Lecture Notes in Computer Science, vol. 4951, pp. 1–15. Springer, Berlin
(2007)

13. Harmon, S., DeLoach, S.A., Robby: trace-based specification of law and guidance policies for
multiagent systems. In: Artikis, A., O’Hare, G.M., Stathis, K., Vouros, G. (eds.) Engineering
Societies in the Agents World VIII. Lecture Notes in Artificial Intelligence, vol. 4995,
pp. 333–349. Springer, Berlin (2008)

14. Holland, O., Melhuish, C.: Sigmergy, self-organization, and sorting in collective robotics. Artif.
Life 5, 173–202 (1999)

15. Object Management Group. Software and systems process engineering meta-Model
specification, v2.0. Object Management Group. http://www.omg.org/spec/SPEM/2.0/PDF
(2008). Accessed 14 May 2012

16. Odell, J., Parunak, H., Bauer, B.: Representing agent interaction protocols in UML. In:
Wooldridge, M.J., Ciancarini, P. (eds.) First International Workshop, AOSE 2000 on Agent-
oriented Software Engineering, pp. 121–140. Springer, New York (2001)

17. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell, J.
Giorgini, P., Muller, J. (eds.) Proceedings of the 5th International Conference on Agent-
Oriented Software Engineering (AOSE’04). Lecture Notes in Computer Science, vol. 3382,
pp. 78–92. Springer, Berlin (2005)

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual,
2nd edn. Addison-Wesley, Upper Saddle River (2004)

http://www.omg.org/spec/SPEM/2.0/PDF

The O-MASE Methodology 285

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Upper Saddle River (2002)

20. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems design. In:
Proceedings of the 7th Workshop from Objects to Agents (WOA 2006), pp. 130–137 (2006)

PASSI: Process for Agent Societies
Specification and Implementation

Massimo Cossentino and Valeria Seidita

Abstract
PASSI (a Process for Agent Societies Specification and Implementation) is a
step-by-step requirement-to-code methodology for designing and developing
multiagent societies, integrating design models and concepts from both Object-
Oriented software engineering and artificial intelligence approaches using the
UML notation. The models and phases of PASSI encompass anthropomorphic
representation of system requirements, social viewpoint, solution architecture,
code production and reuse, and deployment configuration supporting mobility of
agents. PASSI is made up of five models, concerning different design levels, and
12 activities performed to build multiagent systems. In PASSI, the UML notation
is used as the modeling language, since it is widely accepted both in the academic
and industrial environments.

1 Introduction

PASSI (Process for Agent Societies Specification and Implementation) is a step-
by-step requirement-to-code methodology for designing and developing multiagent
societies. The methodology integrates design models and concepts from both
Object-Oriented software engineering and artificial intelligence approaches. PASSI

M. Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

V. Seidita (�)
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo,
Palermo, Italy
e-mail: valeria.seidita@unipa.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__10,
© Springer-Verlag Berlin Heidelberg 2014

287

mailto:cossentino@pa.icar.cnr.it
mailto:valeria.seidita@unipa.it

288 M. Cossentino and V. Seidita

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Domain
Ontology

Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Code Reuse

Communication
Ontological
Description

Fig. 1 The PASSI design process

has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications. Systems designed by using the
PASSI process are usually composed of peer agents (although social structures
can be defined). According to FIPA specifications, agents are supposed to be
mobile, and they can interact by using semantic communications, referring to
an ontology and interaction protocol. PASSI is suitable for the production of
medium–large MASs distributed in several execution nodes. The adoption of
patterns and the support of specific CASE tools (PTK) allow a quick and affordable
production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to
be met.

The design process is composed of five models (see Fig. 1): the System Require-
ments Model is a model of the system requirements; the Agent Society Model
is a model of the agents involved in the solution in terms of their roles, social
interactions, dependencies, and ontology; the Agent Implementation Model is a
model of the solution architecture in terms of classes and methods (at two different
levels of abstraction: multi- and single agent); the Code Model is a model of the
solution at the code level; and the Deployment Model is a model of the distribution
of the parts of the system (i.e., agents) across hardware processing units and their
movements across the different available platforms.

In the following, the PASSI process will be described by initially considering its
whole process and then its five components, each of them representing a phase, a
portion of work for which a specific outcome and milestones can be identified and
represented in the following diagram.

PASSI: Process for Agent Societies Specification and Implementation 289

The Conference Management System (CMS) case study is used for better
illustrating the notation used in all the PASSI work products; the case study is not
completely reported because of space concerns, portions of diagrams are shown,
and we have selected elements with the intent to give a complete view on the used
notation. Useful references about the PASSI process are as follows:
• M. Cossentino. From Requirements to Code with the PASSI Methodology. In

Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors).
Idea Group Inc., Hershey, PA, USA. 2005.

• M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile
PASSI MAS Meta-models Compared with a Unifying Proposal. Lecture Notes
in Computer Science, vol. 3690. Springer-Verlag GmbH. 2005. pp. 183–192.

• M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, April 2004.

• M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI
methodology. In Engineering Societies in the Agents World IV, 4th International
Workshop, ESAW 2003, Revised Selected and Invited Papers, volume 3071 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2004. pp. 294–310

• M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Develop-
ment of Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent
Technology (IAT’03). October, 13–17, 2003. Halifax (Canada)

• Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the
support of case tools and patterns. Exp Journal, 3(3):86–95, Sept 2003.

Useful references about PASSI extensions are as follows:
• M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam. ASPECS: an Agent-

oriented Software Process for Engineering Complex Systems. International
Journal of Autonomous Agents and Multi-Agent Systems (IJAAMAS). 20(2).
2010.

• M. Cossentino, G. Fortino, A. Garro, S. Mascillaro and W. Russo. PASSIM: a
simulation-based process for the development of MASs. International Journal on
Agent Oriented Software Engineering (IJAOSE), 2(2). 2009.

• V. Seidita, M. Cossentino, S. Gaglio. Adapting PASSI to Support a Goal Oriented
Approach: a Situational Method Engineering Experiment. Proc. of the Fifth
European workshop on Multi-Agent Systems (EUMAS’07). 13–14 December,
2007. Hammameth (Tunisia).

• A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. Agile PASSI: An
Agile Process for Designing Agents. International Journal of Computer Systems
Science & Engineering, 21(2). March 2006.
In the following sections, all the aspects of PASSI are described by using SPEM

2.0 [4] and the extensions proposed by Seidita et al. [6]. Figure 2 shows the SPEM
2.0 icons that the reader can find in the following figures.

290 M. Cossentino and V. Seidita

Keys

Structural
WPKind

Behavioral
WPKind

Structured
WPKind

Free
WPKind

a

Composite
WPKind

c
Task UseRole UseActivity

Fig. 2 The SPEM 2.0 icons

System
Requirements CodeAgent

Society
Agent

Implementation Deployment

Fig. 3 The PASSI process phases

1.1 The PASSI Process Life Cycle

PASSI includes five phases arranged in an iterative/incremental process model (see
Fig. 3):
• System Requirements: It covers all the phases related to requirements elicitation,

requirements analysis, and agents/roles identification
• Agent Society: All the aspects of the agent society are addressed: ontology,

communications, roles description, and interaction protocols
• Agent Implementation: A view on the system’s architecture in terms of

classes and methods to describe the structure and the behavior of single
agents.

• Code: A library of class and activity diagrams with associated reusable code and
source code for the target system.

• Deployment: How the agents are deployed and which constraints are defined/
identified for their migration and mobility.
Each phase produces a document that is usually composed by aggregating UML

models and work products produced during the related activities. Each phase is
composed of one or more subphases, each one responsible for designing or refining
one or more artifacts that are part of the corresponding model. For instance, the
System Requirements model includes an agent identification diagram that is a kind
of UML use case diagram but also with some text documents like a glossary and the
system usage scenarios. The details of each phase will be discussed in the following
sections.

PASSI: Process for Agent Societies Specification and Implementation 291

Realizes

constraint

User
Scenario

Actor

Functional
Requirement

Non
Functional

Requirement

Agent

Role

Task

Message_RA

Plan Activity

Glossary
Term

Message_RR

Agent
Scenario

Plays

Problem Domain

Fig. 4 The PASSI system metamodel—problem domain

1.2 The PASSI System Metamodel

The description of the PASSI MAS metamodel (MMM) addresses three logical
areas: (1) the problem domain (Fig. 4), (2) the agency domain (Fig. 5), and (3) the
solution domain (Fig. 6).

In the problem domain, the designer includes components describing the re-
quirements that the system is going to accomplish: these are directly related to the
requirements analysis phase of the PASSI process.

Then the designer introduces the agency domain components, which are used
to define an agent solution for the problem. Finally, in the PASSI MMM solution
domain, agency-level components are mapped to the adopted FIPA-compliant
implementation platform elements. Here, it is supposed that the platform supports
at least the concepts of agent and task. This represents the code-level part of the
solution and the last refinement step. Going into the details of the model, the
Problem Domain deals with the user’s problem in terms of scenarios, requirements,
ontology, and resources. Scenarios describe a sequence of interactions among
actors and the system to be built. The ontological description of the domain
is composed of concepts (categories of the domain), actions (performed in the
domain and effecting the status of concepts), and predicates (asserting something
about a portion of the domain, i.e., the status of concepts). Resources are the
last element of the problem domain. They can be accessed/shared/manipulated by

292 M. Cossentino and V. Seidita

Ontology
Element

Concept

+ Act()

- Actor
- Receiver

Action

Predicate

Resource

Communication

Agency_Role

Agency_Agent Content
Language

Agent Interaction
Protocol

Communication
Role

Message Type

Performative

Agency_Task

Service

Use

Play

Agency Domain

Fig. 5 The PASSI system metamodel—agency domain

Type

Task Action

Artifact

Implementation
Task

Implementation
Agent

Message

Java Type

Implementation
Attribute

Task
Attribute

Agent
Attribute

Platform Task

Platform
AgentState

Agent Code

Task Code

Pattern

Node Network
Connection

AgentAction Message Type

Ontology
Element

implements

Implementation
Class

Implementation
Operation

Communication

Concept
Predicate Solution Domain

Fig. 6 The PASSI system metamodel—solution domain

PASSI: Process for Agent Societies Specification and Implementation 293

agents. A resource could be a repository of data (like a relational database), an
image/video file, or also a product to be sold/bought. The Agency Domain contains
the components of the agent-based solution. None of these components is directly
implemented; they are converted to the correspondent object-oriented entity that
constitutes the real code-level implementation. The key concept of this domain is
the agent. An agent is responsible for realizing some functionalities descending
from one or more functional requirements. It has also to respect some nonfunctional
requirement constraints (like, for instance, performance prescriptions). The agent
is a situated entity that lives in an environment from which it receives perceptions
(the related knowledge is structured according to the designed domain ontology).
Sometimes an agent, has access to available resources, and it is capable of actions
in order to pursue its own objectives or to offer services to the community. The
functionality of an agent is organized through roles. Each agent during its life
plays some roles. A role is a peculiarity of the social behavior of an agent.
When playing a role, an agent may provide a service to other agents executing
tasks and processing messages. A task specifies the computation that generates
the effects of a specific agent behavioral feature. This means that an agent’s
behavior can be composed by assembling its tasks, and the list of actions that
are executed within each task cannot be influenced by the behavior planning.
Tasks are structural internal components of an agent, and they contribute to
define the agent’s abilities. An agent’s tasks cannot be directly accessed by other
agents unless the agent itself offers them as a set of services; this is an obvious
consequence of considering agents as autonomous entities. A communication is
an interaction between two agents and it is composed of one or more messages
seen as speech acts. The information exchanged during a communication is
composed of concepts, predicates, or actions defined in the ontology. The flow
of messages and the semantics of each message are ruled by an agent interaction
protocol (AIP). The last Agency Domain element is the service. It describes a
set of coherent functionalities exported by the agent for the community. The
Implementation Domain describes the structure of the code solution in the chosen
FIPA-compliant implementation platform (for instance, JADE). It is essentially
composed of three elements: (1) the FIPA-Platform Agent, which is the base
class catching the implementation of the Agent entity represented in the Agency
domain; (2) the FIPA-Platform Task, which is the implementation of the agent’s
Task; and (3) the ServiceDescription component, which is the implementation-level
description (for instance, an OWL-S file) of each service specified in the Agent
Domain.

1.2.1 Definition of the System Metamodel Elements (Table 1)

294 M. Cossentino and V. Seidita

Table 1 Definition of the system metamodel elements

Concept Definition Domain

Functional Requirement Functional requirements describe the functions that the software is to
execute. (from IEEE SEBOK 2004)

Problem

Nonfunctional Requirement Nonfunctional requirements constrain the solution and are sometimes
known as constraints or quality requirements. (from IEEE SEBOK
2004)

Problem

Actor An external entity (human or system) interacting with the multi agent
system.

Problem

Glossary Term Terms used in the project so that everyone has a common
understanding of them.

Problem

User Scenario “A narrative description of what people do and experience as they try to
make use of computer systems and applications” [M. Carrol,
Scenario-based Design, Wiley, 1995]

Problem

Agent We consider two different aspects of the agent: during the initial
steps of the design, it is seen (this is the Agency Domain Agent)
as an autonomous entity capable of pursuing an objective through its
autonomous decisions, actions, and social relationships. This helps in
preparing a solution that is later implemented, referring to the agent as
a significant software unit (this is the Solution Domain FIPA-Platform
Agent). In detail, an Agent is an entity that
• Is capable of action in an environment
• Can communicate directly with other agents typically using an

Agent Communication Language
• Is driven by a set of functionalities it has to accomplish
• Possesses resources of its own
• Is capable of perceiving its environment
• Has only a partial representation of this environment in the form of

an instantiation of the domain ontology (knowledge)
• Can offer services
• Can play several different (and sometimes concurrent or mutually

exclusive) roles

Problem

Role A portion of the social behavior of an agent that is characterized by a
goal (accomplishing some specific functionality) and/or provides a
service.

Problem

Message_RR A message exchanged between two roles. Problem
Message_RA An interaction between an agent and a role. This can be a message as

well as another kind of interaction (for instance, GUI-based).
Problem

Plan The behavior of an Agent is specified within its plan. It is the
description of how to combine and order Tasks and interactions to
fulfill a (part of a) requirement.

Problem

Task A task specifies the computation that generates the effects of the
behavioral feature. It is a nondecomposable group of atomic actions
that cannot be directly addressed without referring to their belonging
task.

Problem

Activity The composing unit of a task. An activity takes a set of inputs and
converts them into a set of outputs, though either or both sets may be
empty. An Activity can either be decomposable into other activities or
atomic.

Problem

Message_Type The portion of communication related to the communicative act. Problem
Ontology Element Element (abstract class). An ontology is composed of concepts,

actions, and predicates. An Ontology element is an abstract class used
as a placeholder for the ontology constituting elements (concepts,
predicates, or actions). Concept—Description of a certain identifiable
entity of the domain. Action—It expresses an activity carried out by an
agent. Predicate—Description of a property of an entity of the domain.

Problem

Service A service is a single, coherent block of activity in which an agent will
engage. A set of services can be associated with each agent role.

Agency

(continued)

PASSI: Process for Agent Societies Specification and Implementation 295

Table 1 (continued)

Concept Definition Domain

Agency_Agent An autonomous entity capable of pursuing an objective through its
autonomous decisions, actions, and social relationships. It is capable of
performing actions in the environment it lives; it can communicate
directly with other agents, typically using an Agent Communication
Language; it possesses resources of its own; it is capable of perceiving
its environment; it has a (partial) representation of this environment in
the form of an instantiation of the domain ontology (knowledge); it can
offer services; it can play several, different (and sometimes concurrent
or mutually exclusive) agency_roles. Each agent may be refined by
adding knowledge items necessary to store/manage communication
contents.

Agency

Agency_Task Each task is an entity that aims to reach a subgoal (e.g., dealing with a
communication or executing some transformations on a specific
resource). The term task can be used as a synonym of behavior but with
the significance of atomic part of the overall agent behavior.

Agency

Agency_Role A portion of the behavior of an agent that is characterized by an
objective (accomplishing some specific functionality) and/or that
provides a service.

Agency

Resource A entity existing in the environment. Agency
Communication An interaction among two agents, referring to an Agent Interaction

Protocol and a piece of the domain ontology (knowledge exchanged
during the interaction). Usually it is composed of several messages,
each one associated with one Performative.

Agency

Content Language A language with a precisely defined syntax semantics and pragmatics,
which is the basis of communication between independently designed
and developed agents.

Agency

Communication Role Agent role used in the definition of the agent interaction protocol (see
FIPA specification).

Agency

Performative The message’s performative indicates the adopted FIPA Interaction
Protocol.

Agency

Agent Interaction Protocol It is a pattern specifying the sequence of message types within a
communication. Usually message types are identified by the
performative (or speech act) associated to the message.

Agency

Artifact An element of the world that an agent may perceive or modify. Solution
Task Action It is an implementation operation to be used in the implementation task. Solution
Agent Action It is an implementation operation to be used in the implementation

agent.
Solution

Platform Task The code in the implementation platform of the agency task. Solution
Platform Agent The agent type defined in the chosen agent implementation platform. Solution
Task Attribute A specialization of an implementation attribute to be used inside an

implementation task.
Solution

Agent Attribute A specialization of an implementation attribute to be used inside an
implementation agent.

Solution

Implementation Agent It is the detailed design abstraction used for implementing the
requirements analysis agent. It is a significant portion of the software
and it usually includes some Implementation Tasks and Ontology
Elements (representing the agent’s knowledge). It may belong to social
structures.

Solution

Implementation Task It is the detailed design abstraction used for implementing the
analysis-level task. It may include several atomic actions that can be
composed in a plan.

Solution

Task Code The code of the task. Solution
Agent Code The code of the agent. Solution
Pattern Reusable solution to agent design problems. Solution
Node A computational unit of the system where agent is deployed. Solution
Network Connection The type of connection between two nodes. Solution
State The state of the agent intended as the configuration of its knowledge,

values of concepts, and so on.
Solution

296 M. Cossentino and V. Seidita

Domain
Requirements

Description

Agents
Identification

Roles
Identification

Task
Specification

Fig. 7 The System Requirements phase flow of activities

2 Phases of the PASSI Process

2.1 The System Requirements Phase

The process flow at the level of activities is reported in Fig. 7. The process flow
inside each activity will be detailed in the following sections (after the description
of process roles). The System Requirements phase involves two different process
roles and seven work products as described in Fig. 8. The phase is composed of four
activities (i.e., Domain Requirements Description (DRD), Agents Identification,
Roles Identification, and Task Specification), each of them composed of one or more
tasks (for instance, Identify Use Cases and Refine Use Cases).

2.1.1 Process Roles
Two roles are involved in the System Requirements phase: the System analyst and
the Domain expert. They are described in the following sections.

System Analyst
She or he is responsible for the following:
1. Use case identification during the DRD activity. Use cases are used to represent

system requirements.
2. Use case refinement during the DRD activity. Use cases are refined with the help

of a Domain Expert.
3. Use case clustering during the Agent Identification (AID) activity. The System

Analyst analyzes the use case diagrams resulting from the previous phase and
attempts to cluster them in a set of packages.

4. Naming agents during the AID activity. After grouping the use cases in a con-
venient set of packages, the last activity of this phase consists in designing these
packages with the names that will distinguish the different agents throughout the
project.

5. Roles identification during the Role Identification (RID) activity. The System
Analyst studies (textual) scenarios and system requirements (as defined in the
previous phase) and identifies the roles played by agents.

6. Designing scenarios during the RID activity. Each scenario is designed in the
form of sequence diagrams, thus depicting the details of agent interactions.

7. Tasks identification during the Task Specification (TSP) activity. It consists in the
identification of the behavioral capabilities that each agent needs to perform the
specified roles and fulfill the requirements that are under its responsibility.

PASSI: Process for Agent Societies Specification and Implementation 297

Domain Requirements
Description

Agents Identification

Roles Identification Tasks Specification

Identify Use
Cases Describe Use

Cases

Cluster Use
Cases

Name
Agents

Design
Scenarios

Identify Roles

Identify Task Describe
Control Flow

System
Analyst Domain Expert

Glossary

Domain
Requirements

Description

c
<<mandatory,

output>>

<<mandatory,
output>>

<<performs,primary>>

<<performs,
assist>>

Problem
Statement

a

Scenarios

a

<<mandatory,
input>>

<<mandatory,
input>>

<<performs,
primary>>

System
Analyst

<<performs,
primary>>

<<performs,
primary>>

Agents
Identification

c

<<mandatory,
output>>

<<mandatory,
input>>

<<predecessor>>

System
Analyst

Domain
Expert

Roles
Identification

<<predecessor>>

<<mandatory,
input>>

<<mandatory,
output>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
assist>>

<<predecessor>>

Tasks
Specification

c

<<mandatory,
output>>

System
Analyst

<<mandatory,
input>>

<<performs,
primary>>

<<performs,
primary>>

Agents
Identification

c

<<mandatory,
input>>

Fig. 8 The System Requirements phase described in terms of activities and work products

8. Description of the control flow during the TSP activity. It consists in introducing
the communication relationships among tasks of different agents and the control
flow among tasks of the same agent.

Domain Expert
She or he supports the system analyst during the description of the domain
requirements.

2.1.2 Activity Details
Domain Requirements Description
The DRD aims at representing system functional and nonfunctional requirements.
The flow of tasks inside this activity is reported in Fig. 9 and the tasks are detailed
in the following table (Table 2).

298 M. Cossentino and V. Seidita

System Analyst

Domain Expert

Identify Use
Cases

Describe Use
Cases

Glossary Domain Requirements
Description

<<mandatory, input>>
<<mandatory,

input>>

<<optional,
output>>

<<mandatory,
output>>

Problem
Statement

a

Scenarios

a

c

Fig. 9 The flow of tasks of the Domain Requirements Description (DRD) activity

Table 2 Domain Requirements Description—the task description

Activity Task Task Description Roles Involved

Domain
Requirements
Description

Identify Use Cases Use cases are used to represent system
requirements.

System Analyst
(perform)

Domain
Requirements
Description

Refine Use Cases Use cases are refined with the help of a Domain
Expert.

System Analyst
(perform), Domain
Expert (assist)

<<mandatory,
input>>

System Analyst Cluster Use
Cases Name Agents

Domain Requirements
Description Agents

Idenfication

<<mandatory, output>>
c

c

Fig. 10 The flow of tasks of the Agents Identification (AID) activity

Table 3 Agents Identification—the task description

Activity Task Task Description Roles Involved

Agents
Identification

Cluster Use Cases The System Analyst analyzes the use case
diagrams resulting from the previous phase and
attempts their clustering in a set of packages.

System Analyst
(perform)

Agents
Identification

Name Agents After grouping the use cases in a convenient set
of packages, the last activity of this phase consists
in identifying these packages with the names that
will distinguish the different agents throughout
the project.

System Analyst
(perform)

Agents Identification
The Agents Identification activity aims at assigning system functionalities to the
responsibility of newly defined agents.
The flow of tasks inside this activity is reported in Fig. 10 and the tasks are detailed
in the table (Table 3).

PASSI: Process for Agent Societies Specification and Implementation 299

<<mandatory,
input>>

System Analyst
Identify Roles Describe Scenarios

Agents
Identification

c

Roles
Identification

<<mandatory,
output>>

Fig. 11 The flow of tasks of the Roles Identification (RID) activity

Table 4 Roles Identification—the task description

Activity Task Task Description Roles Involved

Roles
Identification

Identify Roles The System Analyst studies (textual) scenarios
and system requirements (as defined in the
previous phase) and identifies the roles played by
agents.

System Analyst
(perform)

Roles
Identification

Design Scenarios Each scenario is designed in the form of a
sequence diagram thus depicting the details of
agent interactions.

System Analyst
(perform),
Domain Expert
(assist)

<<mandatory, output>>

System Analyst Identify Tasks Describe Control
Flow

<<mandatory, input>>

Roles Identification

Task Specification

c

Fig. 12 The flow of tasks of the Task Specification (TSP) activity

Roles Identification
This activity aims at identifying the roles played by agents and their main interac-
tions.
The flow of tasks inside this activity is reported in Fig. 11 and the tasks are detailed
in the table (Table 4).

Task Specification
This activity aims at describing the behavior of each agent (agent’s plan) by
considering its activities and communications.
The flow of tasks inside this activity is reported in Fig. 12 and the tasks are detailed
in the following table (Table 5).

2.1.3 Work Products
The System Requirements Model generates four composed work products (doc-
uments including text and diagrams) and one structured text document. Their
relationships with the MAS metamodel elements are described in Fig. 13. This
figure represents the System Requirements model in terms of Work Products. Each

300 M. Cossentino and V. Seidita

Table 5 Tasks Specification—the task description

Activity Task Task Description Roles Involved

Tasks
Specification

Identify Tasks It consists in identifying the (agent) roles
involved in fulfilling the requirements that are
under the responsibility of each agent. It also
includes the identification of the activities that
each agent performs while playing a role.

System Analyst
(perform)

Tasks
Specification

Describe the control flow It consists in introducing the communication
relationships among tasks of different agents and
the control flow among tasks of the same agent.

System Analyst
(perform)

Actor

D

Functional
Requirements

D
Non Functional
Requirements

D

R

R

3xR

c
Domain Requirements

Description

R

RR

R

R

R

R

Agent

Q

Role

D

Actor

Q
Message_RR

D

Message_RA

D

Scenario

D

Roles
Identification

QR

R

3xQR

Functional
Requirement

Q

Agent

D

Actor

Q

c
Agents

Identification

R

R

R

R

2xR
Activity

D

Task

D

Plan

D

Agent

Q

2xR
c

Tasks
Identification

System
Requirements

Model

Glossary
Term

D

Glossary

Fig. 13 The System Requirements Model documents structure

of them depicts one or more elements from the PASSI MAS metamodel; each MAS
metamodel element is represented using a UML class icon (yellow filled) and, in
the documents, such elements can be Defined D, Related R, Quoted Q, or Refined
(a refining action corresponds to defining and quoting elements; see [1]).

Work Product Kinds
Table 6 describes the work products of the System Requirements phase according
to their kinds.

Domain Requirements Description
This activity produces a composite document composed of use case diagrams and
portions of (structured) text containing the complete documentation of use cases in

PASSI: Process for Agent Societies Specification and Implementation 301

Table 6 System Requirements Phase—Work Product Kinds

Name Description Work Product Kind

Problem Statement A description of the problem to be solved with the system. It is
complemented by the Scenario document.

Free Text

Scenarios Textual description of the scenarios in which the system to be
developed is involved.

Free Text

Domain Description Composed of the Domain Description diagram, a documentation
of use cases reported in it, and the nonfunctional requirements of
the system.

Composite (Structured
C Behavioral)

Agent Identification A document composed of (1) a use case diagram representing
agents and the functionalities assigned to them and (2) a
structured text description of the agents.

Composite (Structured
C Behavioral)

Roles Identification A document composed of several sequence diagrams (one for
each scenario) and the roles description text.

Composite (Structured
C Behavioral)

Task Specification A document composed of several task specification diagrams
(one for each agent) and a structured text description of each task.

Composite (Structured
C Behavioral)

Glossary A glossary of terms. Structured Text

Manage
Submission

Bidding
Paper

PC
Member

Assign to
Referee

Review
Collection

Results
Communication

Manage
Camera
Ready

Prepare
Proceedings

Author

PC Chair

Publisher

CONTEXT VIEW

Manage
Review

Fig. 14 Domain Requirements Description diagram—a portion of the CMS case study

terms of name, participating actors, entry condition, flow of events, exit condition,
exceptions, and special requirements. It also reports the nonfunctional requirements
identified for the system and associated to each use case. Common UML use case
diagrams are used to represent the system requirements.

Figures 14 and 15 show an example of the notation of the DRD diagram for the
CMS case study. Some guidelines for enacting this work product can be found in
the OpenUP website, Guideline: Identify and Outline Actors and Use Cases, online
at: http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/
guidances/guidelines/ identify_and_outline_actors_and_ucs_BB5516A9.html.

http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/identify_and_outline_actors_and_ucs_BB5516A9.html
http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/identify_and_outline_actors_and_ucs_BB5516A9.html

302 M. Cossentino and V. Seidita

<<include>>

<<extend>>

<<include>>

Author

PC Chair

Create PC
Account

Login

Connection
Down

Create New
Submission

Insert
Author's Data

Insert
Abstract

Insert
Keywords

CMS
Database

<<include>>

<<include>>

<<extend>>

Submit
Paper

Create PDF Submit
Copyright Form

<<include>>

Check PDF

Modify
Submission

Withdraw
Submission

Submit Camera
Ready

<<include>><<include>>

CMS
Database

Notify PC Chair<<include>>

<<include>>

PC Chair

Notify PC Chair

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 15 Domain Requirements Description diagram—a portion of the CMS case study

Agents Identification
The resulting work product of this phase is a composite document including the
following:
• A use case diagram (Agent Identification diagram) reporting use cases now

clustered inside a set of packages, each one representing one agent.
• A table describing agents’ main features (requirements, constraints, . . .). As it

is common, we represent external entities interacting with our system (people,
devices, conventional software systems) as actors.
Relationships between use cases of the same agent follow the usual UML syntax

and stereotypes, whereas relationships between use cases of different agents are
stereotyped as communication (see below).

Figure 16 shows an example of the notation of the Agent Identification diagram
for the CMS case study. In order to enact this diagram starting from a use case
diagram, packages are used to group functionalities that will be assigned to an
agent (whose name is the name of the package). Interactions between agents and
external actors consist of communication acts; this implies that if some kind of
include/extend relationship exists between two use cases belonging to different
agents, this stereotype is to be changed to communication since a conversation is
a unique way of interaction for agents. This is a necessary extension of the UML
specifications that allow communication relationships only among use cases and
actors. The direction of the relationships goes from the initiator of the conversation
to the participant.

PASSI: Process for Agent Societies Specification and Implementation 303

<<Agent>>
SubmissionManager

<<Agent>>
SubmissionManager

<<Agent>>
FilesManager <<Agent>>

AccountManager

<<include>>

<<extend>>

<<include>>

Author

PC Chair

Create PC
Account

Login

Connection
Down

Create New
Submission

Insert
Author's

Data

Insert
Abstract

Insert
Keywords

CMS
Database

<<include>>

<<include>>

<<communicate>>

Submit
Paper

Create
PDF

Submit
Copyright

Form

<<include>> Check
PDF

Modify
Submission

Withdraw
Submission

Submit
Camera
Ready

<<include>>

<<include>>

CMS
Database

Notify PC
Chair

<<communicate>>

<<communicate>>

PC Chair

Notify PC
Chair

<<include>><<include>>

<<communicate>>
<<communicate>>

<<include>>

<<communicate>>

Fig. 16 Agents Identification diagram—a portion of the CMS case study

Roles Identification
This activity delivers one composite document. It is composed of one or more
Roles Identification Diagram, a text description of the scenario reported in each
diagram, and one or more tables describing role features. Usually diagrams are UML
sequence diagrams reporting roles played by agents, actors, and the message they
exchange.

Sequence diagrams describe all the possible communication paths between
agents. A path describes a scenario of interacting agents, working to achieve a
required behavior of the system. Each agent may belong to several scenarios, which
are drawn by means of sequence diagrams in which objects are used to symbolize
roles.

Figure 17 shows an example of the notation of the Roles Identification diagram
for the CMS case study. Common UML sequence diagrams are used to identify
roles. The name of each class is in the form: <role name>:<agent name> Role
names are not underlined because they are not instances of agent classes but rather
they represent a part of the agent behavior.

304 M. Cossentino and V. Seidita

UI:FilesManag
er

paperManag
er:FilesMana

ger

pdfManager:Fil
esManager

DBInterfacer:Fil
esManager

er:Submi
ssionManager

:Author :CMS
Database

:PC
Chair

 selectSubmit

 showTitleForm

 insertTitle notify(title)
 updateTitle

 showUploadForm

insertFolder/
FileName notify(paperFile)

 updatePaper

uploadPaper

 showPdf

acceptPdf PdfAccepted

notify(paperTitle)

Name Description Responsibility

UI Allows interfacing with
authors

Managing forms for inserting data, managing forms for uploading
paper, showing to authors the pdf for checking,

PaperManager Manages the
paper submssion

Uploading paper from author folder, updating the DB,

.........

PdfAccepted

Fig. 17 Roles Identification diagram—a portion of the CMS case study

Task Specification
This activity delivers a Task Specification composite document. This is composed
of the following:
• One or more Task Specification Diagrams, each diagram is used to specify the

plan of a different agent. Usually these diagrams are UML activity diagrams
reporting two swim lanes: the leftmost contains tasks belonging to external
agents, the rightmost contains tasks belonging to the agent whose plan is defined
in the diagram.

• A table describing each task in terms of list of activities, data, and internal plan.
A Task Specification diagram represents the plan of the agent behavior. It shows

the relationships among the external stimuli received by the agent and its behavior
(expressed in terms of fired tasks). Relationships between activities represent
communications between tasks of different agents (these communications cross
the border separating the two swim lanes) or invocation messages triggering task
execution within a single agent (these messages are all located within the rightmost
swim lane).

Figure 18 shows an example of the notation of the Task Specification diagram for
the CMS case study. Common UML activity diagrams are used to specify an agent’s
plan. In the PASSI methodology, tasks can be identified by looking at lifelines

PASSI: Process for Agent Societies Specification and Implementation 305

[if paper data = FALSE]

showCRform

showSubm
issionForm

[click = paper]

[click =
cameraReady]

createPDF

receivePaper

receiveTitle
showPDF

[if paper data
= TRUE]

[PDF Ok = FALSE]

updateDB

[PDF Ok =
TRUE]

SubmissionManager.
notiffyPCChair

SubmissionMa
nager.showDa

taForm

SubmissionMana
ger.receiveData

receiveCopyright
Form

[if paper is cr = TRUE

Task: showSubmissionForm

FilesManager

InteractingAgents

Description

Activities

Data

Behavior

This task deals with managing paper submission form.
Shows form and check paper data

authorName, authorAff, authorAddr, abstract, keyword

manages the paper data check, the communication with the
SubmissionManager agent if the author has not completed the insertion

les receiving activities.
Task: receiveTitle

...........

Fig. 18 Task Specification diagram—a portion of the CMS case study

Domain
Ontology

Description

Communication
Ontological
Description

Roles
Description

Protocol
Description

Fig. 19 The Agent Society phase flow of activities

of roles in PASSI RID sequence diagrams. Plans designed by using this activity
are static, and therefore they are not suitable for agents exploiting dynamic plan
composition capabilities. The Communicate relationship is identified by studying
the Message_RR relationships of the RID (Roles Identification Document) work
product.

2.2 The Agent Society Phase

The Agent Society phase provides a model of the social interactions and depend-
encies among the agents involved in the solution. The process flow at the level
of activities is reported in Fig. 19. The process flow inside each activity will be
detailed in the following sections (after the description of process roles). The
Agent Society phase involves three different process roles and five work products
as described in Fig. 20. The phase is composed of four activities (i.e., Domain
Ontology Description, Communication Ontological Description (COD), Protocol
Description, and Roles Description), each of them composed of one or more tasks
(for instance, Ontology Revision or Performative Identification).

306 M. Cossentino and V. Seidita

<<perform,
primary>>

Domain Ontology
Descritpion

Communication
Ontological
Description

Protocol Description

Roles Description

<<predecessor>>

<<predecessor>>

<<predecessor>>

Define
Concepts

Define Actions

Define
Predicates

Identify Ontology
Elements rel.

Ontology
Revision

System
Analyst

Ontology
Expert

Ontology
Expert

Glossary

Domain
Requirements

Description

c

<<mandatory,
input>>

<<mandatory,
input>>

Glossary

Domain
Requirements

Description

c

<<mandatory,
input>>

<<mandatory,
input>>

Domain
Ontology

Description

c
<<mandatory,

output>> Identify
Communications

Describe
Communication

Refine
Communication

Rel.

<<perform, primary>>

<<perform, assist>>

<<perform,
primary>>

<<perform,
primary>>

<<perform, primary>>

System
Analyst

Comm. Ontol.
Descr.

c
<<mandatory,

output>>

<<perform, primary>>

<<perform,
primary>>

<<perform,
primary>>

Domain
Onotlogy

Description

c

Roles Ident.

Tasks
Specification

c

FIPA Content
Languages

c

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<optional,
input>>

Service
Description

Roles
Dependency

Analys

Roles Rel.
Definition

Describe Role

Roles
 Description

c<<mandatory,
output>>

<<mandatory,
output>>

Roles
Identification

Tasks
Specification

c

<<mandatory,
input>>

<<mandatory,
input>>

System
Analyst

Agent
Designer

<<perform, primary>>

<<perform, primary>>

<<perform, primary>>

<<perform, primary>>

<<perform, assist>>

Communication
Ontological
Description

c

<<mandatory,
input>>

Performative
Identification

Protocol Tree
Definition

System
Analyst

<<mandatory,
input>>

Protocol
Description

c
<<perform, primary>>

<<perform, primary>>

<<mandatory,
output>> FIPA Interaction

Protocols

c

<<mandatory,
input>>

<<mandatory,
input>>

Fig. 20 The Agent Society phase described in terms of activities and work products

2.2.1 Process Roles
Three roles are involved in the Agent Society phase: the System Analyst, the
Ontology Expert, and the Agent Designer. They are described in the following
sections.

System Analyst
She or he is responsible for the following:
1. Ontology revision. The revision of ontological elements in order to define the

pieces of knowledge of each agent and their communication ontology.
2. Communications identification. It consists in introducing an association for each

communication between two agents, looking at exchanged messages in the
scenario.

PASSI: Process for Agent Societies Specification and Implementation 307

3. Communications definition. The description of agents’ communication in terms
of ontology, content language, and interaction protocol.

4. Communication relationships refinement. The identification of association
classes in order to link each communication to the three fundamental elements
of communication itself (ontology, language, and protocol).

5. Generalize the roles listed in the COD in order to identify the Communica-
tion_Roles.

6. Analyze scenarios in order to identify message types and performatives.

Ontology Expert
She or he is responsible for the following:
1. Concepts definition. It consists in the identification of concepts describing the

system domain.
2. Predicates definition. The identification of predicates (assertions about concepts

of the system domain).
3. Actions definition. The identification of activities an agent may perform.
4. Ontology relationships refinement. It consist in relating the previous three

elements with ontological relationships.

Agent Designer
She or he is responsible for the following:
1. Roles description. It consists in the description of role classes arranged in

packages, each package representing one agent, whose behavior is represented
by tasks in the operation compartment.

2. Roles relationships definition. The definition of associations between roles
(communications, dependencies, role changes). Communications derive from
communication ontological description (COD), changes of role from RID, and
dependencies from both COD and RID.

3. Collaboration rules definition. It consists in the introduction of agent society
rules and the analysis of collaborations an agent needs. These depend on the
society model the designer wants to achieve. These rules prevent some roles
from providing services to other roles if they do not satisfy the required condition
(actually reported in the services description document).

4. Knowledge description. It consists in listing agents, specifying their knowledge
represented as attributes.

2.2.2 Activity Details
Domain Ontology Description
The Domain Ontology Description aims at describing the agent environment in
terms of an ontology composed of concepts, predicates, and actions.
The flow of tasks inside this activity is reported in Fig. 21 and the tasks are detailed
in Table 7.

308 M. Cossentino and V. Seidita

Domain Requirements
Description

Define Concepts

Define Predicates

Define Actions

Identify Ontology
Elements Rel.

Ontology
Revision

System
Analyst

Glossary

Ontology
Expert

c

Domain Ontology
Description

c

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
output>>

Fig. 21 The flow of tasks of the Domain Ontology Description (DOD) activity

Table 7 Domain Ontology Description—the task description

Activity Task Task Description Roles Involved

Domain Ontology
Description

Define Concepts The identification of concepts describing the
system domain.

Ontology Expert
(perform)

Domain Ontology
Description

Define Predicates The identification of predicates and the assertions
about concepts of the system domain.

Ontology Expert
(perform)

Domain Ontology
Description

Define Actions The identification of the activities an agent may
perform.

Ontology Expert
(perform)

Domain Ontology
Description

Identify Ont. Elem.
Relationships

It consists in relating the previous three elements
with ontological relationships.

Ontology Expert
(perform)

Domain Ontology
Description

Ontology Revision The revision of ontological elements in order to
define the pieces of knowledge of each agent and
their communication ontology.

System Analyst
(perform),
Ontology Expert
(assist)

<<mandatory,
input>>

<<mandatory, input>>

<<mandatory,
output>>

<<mandatory, input>>

<<mandatory,
input>>

<<mandatory,
input>>

Domain Ontology
Description

Task
Specification

Identify
Communications

System
Analyst

Refine
Communication

Rel.

Describe
Communications

Communication
Ontological
Description

FIPA Interaction
Protocols

FIPA Content
Languages

Roles
Identification

c

c c c

c

Fig. 22 The flow of tasks of the Communication Ontological Description (COD) activity

Communication Ontological Description
The COD aims at describing semantic agent communications in terms of exchanged
knowledge (referred to as an ontology), content language, and interaction protocol.
The flow of tasks inside this activity is reported in Fig. 22, and the tasks are detailed
in Table 8.

PASSI: Process for Agent Societies Specification and Implementation 309

Table 8 Communication Ontological Description—the task description

Activity Task Task Description Roles Involved

Communication
Ontological
Description

Identify
Communications

It consists in defining communications among agents,
looking at exchanged messages in the scenario.

System Analyst
(Performs)

Communication
Ontological
Description

Describe
Communications

It consists in the description of agents’
communications in terms of ontology, content
language, and interaction protocol. Agents’ knowledge
structures necessary to deal with communication
contents have to be introduced in the agents.

System Analyst
(Performs)

Communication
Ontological
Description

Refine
Communication
Relationships

The identification of general communication
association classes in order to enhance reuse and
improve the architecture.

System Analyst
(Performs)

<<mandatory, input>><<mandatory,
input>>

System
Analyst

Performative
Identification

Protocol Tree
Definition

Communication
Ontological
Description

c

Protocol
Description

c

Roles Identification

c

<<mandatory,
output>>

Fig. 23 The flow of tasks of the Protocol Description (PD) activity

Table 9 Protocol Description—the task description

Activity Task Task Description Roles Involved

Protocol
Description

Performative
Identification

For each communication, the System Analyst
identifies the available standard FIPA performatives.

System Analyst (Perform)

Protocol
Description

Protocol Tree
Definition

System Analyst designs some dedicated protocols
by using the same FIPA documentation style.

System Analyst (Perform)

Protocol Description
The Protocol Description aims at designing new protocols for communication
among agents when an existing one may not be reused due to FIPA specifications.
The new protocol is documented by using the FIPA approach.
The flow of tasks inside this activity is reported in Fig. 23, and the tasks are detailed
in Table 9.

Roles Description
The Roles Description aims at modeling the life cycle of each agent, looking at the
roles it can play, at the collaboration it needs, and the communications in which it
participates.
The flow of tasks inside this activity is reported in Fig. 24, and the tasks are detailed
in Table 10.

310 M. Cossentino and V. Seidita

Roles
Identification

Roles
Description

Describe
Roles

Roles Relat.
Definition

Roles
Dependencies

Analysis

Services
Descritpion

Communication
Ontology Description

System
Analyst

Agent
Designer

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory, input>>

<<mandatory, output>>

<<mandatory, output>>

Task
Specification

c c

c

c

Fig. 24 The flow of tasks of the Role Description (RD) activity

Table 10 Roles Description—the task description

Activity Task Task Description Roles Involved

Roles
Description

Describe
Roles

It consists in the description of role classes
arranged in packages, each package representing
one agent, whose behavior is represented by tasks
in the operation compartment.

Agent Designer
(perform)

Roles
Description

Roles
Dependencies
Analysis

It consists in the introduction of agent society
rules and the analysis of collaborations that an
agent needs. These depend on the society model
that the designer wants to introduce. These rules
prevent some roles from providing services to
other roles if they do not satisfy the required
condition (actually reported in the services
description document). Goals of roles are defined
in this activity too and describe the objective of
the specific role (when this is not involved in
providing some service or sharing resources).

Agent Designer
(perform)

Roles
Description

Roles
Relationships
Definition

The definition of associations between roles
(communications, dependencies, role changes).
Communications derive from COD, changes of
role from RID and dependencies from both COD
and RID.

Agent Designer
(perform)

Roles
Description

Service
Description

The description of service dependencies between
two roles (service, resource, soft service, and soft
resource). A resource dependency is seen as a
resource providing service and is modeled in the
services description document.

System Analyst
(perform),
Agent Designer
(assist)

2.2.3 Work Products
The Agent Society phase results in five work products, four of them are composed
and the last one is a free text. The relationships among the phase delivered work
products and the MAS metamodel constructs are reported in Fig. 25.

Work Product Kinds
Table 11 describes the work products of the Agent Society phase according to their
kinds.

PASSI: Process for Agent Societies Specification and Implementation 311

c
Ontology
Element Concept

D

Action

D

Predicate

D

R

R

R

R

R

R Agency_Role

Agency_Agent

D

D

R

Ontology
Element

Concept

Q

Action

Q

Predicate

Q

Content
Language

Q

Agent Interaction
Protocol

D/QCommunication

D
R

R

R

R R R

R

Agency_Age
nt

Q

Service

D

Agency_Role

Q

Agency_Task

D

Resource

D
Communication

Q QR R
QR

R

R

R

R

c
RAgent

Interaction
Protocol

Q

Performative

D

Communication
Role

D
R

Message
Type

DR

R

Domain Ont.
Description

c
Communication

Ontological
Description

Roles
Description

c
Protocol

Description

Agent Society
Model

Fig. 25 The Agent Society phase documents structure

Table 11 Agent Society Phase—Work Product kind

Name Description Work Product Kind

Domain
Ontology
Description

A composite document composed of one class diagram (whose classes
represent concepts, actions, and predicates) and a text document
describing the concepts, predicate, and action elements.

Composite (Structured
C Structural)

Communication
Ontological
Description

A composite document composed of one class diagram (whose classes
represent agents and communications) and a text document describing
the elements reported in the diagram.

Composite (Structural
C Structured)

Roles
Description

A composite document composed of one class diagram (whose classes
represent agents and roles) and a text document describing the
elements reported in the diagram.

Composite (Structured
C Structural)

Protocol
Description

A composite document composed of one sequence diagram and a text
document describing the protocol.

Composite (Structured
C Structural)

Services A textual description of services. Free Text

Domain Ontology Description
This activity produces a composite document composed of a class diagram (whose
classes represent concepts, actions, and predicates) and a text document describing
the elements reported in the diagram with the following details:
• Concepts are described in terms of their attributes
• The returned type is specified for predicates
• Actions have an Actor (that is responsible to do the job), a ResultReceiver (that

is to be notified of the action results), and an Act that describes the action to be
done with the required input and prescribed outcome
Information described in the class diagram is (optionally) completed by a text

document, reporting the following data for each element (concept, action, predicate)
of the ontology.

Figure 26 shows an example of the notation of the Domain Ontology Description
diagram for the CMS case study.

312 M. Cossentino and V. Seidita

- name:string

<<concept>>
Topic

value: Paper

<<predicate>>
ContainAcceptedPap

er

- number: int
- camera_ready:
boolean
- title: string

<<concept>>
Paper - name: string

- aff: string
- address: string
-email:string

<<concept>>
Author

- name: string
- aff: string
- address:
string
-email:string

<<concept>>
PC_Member

<<concept>>
PC_Chair

<<concept>>
Reviewer 1..*

1..*

1..*

1..*

1..* 1..*

- name: string
- maxPageLength:
int

<<concept>>
Type

<<concept>>
RegularPaper

<<concept>>
ShortPaper

<<concept>>
AbstractPaper

- value:
Boolean

<<predicate>
>

isPC_membe
r

+ <<act>> set
(thePaper:Paper)

- acceptanceStatus:
boolean
- setStatus

<<action>>
SetStatus

1..*
1..1

<<concept>>
Proceedings

1..*

1..1

- value: Boolean

<<predicate>>
isAccepted

+ <<act>> select(theTopic:
Topic)

<<action>>
BidPaper-name: string

-minNum: int
-maxMun:int

<<concept>>
Keyword

-theAuthor: Author
- pw: string
- username: string

<<concept>>
Account

Fig. 26 Domain Ontology Description diagram—a portion of the CMS case study

Information described in the class diagram is (optionally) completed by a text
document, reporting the detailed data, such as type and description, for each element
(concept, action, and predicate) of the ontology.

Communication Ontological Description
This activity produces a composite document composed of a class diagram (whose
classes represent agents and communications) and a text document describing the
elements reported in the diagram. The COD diagram is a representation of agents’
(social) interactions; this is a structural diagram (for instance, a class diagram) that
shows all agents and all their interactions (lines connecting agents). According to
FIPA standards, communications consist of speech acts [5] and are grouped by FIPA
in several interaction protocols [2] that define the sequence of expected messages.
As a consequence, each communication is characterized by three attributes, which
we group into an association class. The attributes are: ontology (a piece of the
ontology defined in the PASSI DOD activity), content language (see [3]) and
interaction protocol. This is the characterization of the communication itself (a
communication with different ontology, content language, or interaction protocol
is certainly different from this one), and its name is used to uniquely refer to this
communication (which can have, obviously, several instances at runtime since it
may be enacted more than once).

PASSI: Process for Agent Societies Specification and Implementation 313

+ authorInterface

+ errorHandler

+ accountManager

- acceptedPaper:Paper
- paperAuthor: Author
- paperStatus: setStatus

<<agent>>
FilesManager

- isPC_Member: sPC_Member

<<agent>>
AccountManager

 - acceptedPaper:Paper
- paperAuthor: Author

<<agent>>
SubmissionManager

Ontology: Paper, Type
Language: RDF
Protocol: Inform

<<communication>>
NotifyPdfAcceptance

Ontology: Author, Account
Language: RDF
Protocol: FIPA Request

<<communication>>
CheckAuthorLogin

+ pdfManager

er

+ authorInterface

Ontology: Author, Account
Language: RDF
Protocol: Inform

<<communication>>
HandleConnection

Fig. 27 Communication Ontological Description diagram—a portion of the CMS case study

Figure 27 shows an example of the notation of the COD diagram for the CMS
case study; this portion of communication ontology only reports the agents shown
in Fig. 16 and refers to the messages exchanged as seen in Fig. 17.

Roles Description
This activity produces a composite document composed of a class diagram where
roles are classes grouped in packages representing the agents and a text document
describing the elements reported in the diagram. Roles can be connected by
relationships, representing changes of role, dependencies for a service, or the
availability of a resource and communications. Each role is obtained composing
several tasks, for this reason we specify the tasks involved in the role using the
operation compartment of each class. Figure 28 shows an example of the notation
of the Roles Description diagram for the CMS case study.

Roles come from RID diagrams or from COD diagram, their tasks (Agency_task)
from the TSP diagrams of the agent, agents playing the designed roles come from
RID diagrams, communications come from COD, dependencies come from the
type of communications specified in the COD (a Request means a Service or
SoftService dependency, a Query means a Resource or softResource dependency,
. . .), role_change dependencies come from the analysis of the COD diagram against
the RID when the same agent plays different roles in a sequence. Figure 28
is completed by a text document, listing the expected messages within each
communication and detailing dependencies.

314 M. Cossentino and V. Seidita

[ROLE CHANGE]

SubmissionManager

FilesManager

AccountManager

+ showSubmissionForm()
+ showCRForm()

UI
(from FilesManager)

+ checkPaperData()
+ receiveTitle()
+ receivePaper()

paperManager
(from

FilesManager)

+ createPDF()
+ showPDF()
+ receiveCopyrightForm()

pdfManager
(from FilesManager)

+ updateDB()

DBInterfacer
(from

FilesManager)

+ notifyPCChair()

er
(from

SubmissionManager)

+ setStatusPaper()
+ create()
+ withdraw()

AuthorInterface
(from

SubmissionManager)

+ checkTitle()
+selectAuthor()
+updateDBData()

PaperDataManager
(from

SubmissionManager)
+ insert()
+delete()
+acceptModify()

er
(from

SubmissionManager)

+ createPassword()
+ requestChangePw()

AccountManager
(from AccountManager)

+ listen()
+ saveCurrentData()

ErrorHandler
(from AccountManager)

[ROLE CHANGE]

getPDFAccepted

[ROLE CHANGE]
[ROLE CHANGE]

[ROLE CHANGE]

[ROLE
CHANGE]

[ROLE
CHANGE]

[ROLE CHANGE]

<<service>>
checkLogin

connectionDown

Communication

From To Name MsgID (ref.to COD)

FilesManager:PdfManager er getPDFAccepted 15

....

Dependencies
Dependent Dependee Kind of dependency Description

AuthorInterfacer AccountManager service SubmissionManager
Agent requires for login
data checking.

....

Fig. 28 Roles Description diagram—a portion of the CMS case study

Protocol Description
It is not necessary to design a new protocol if it is possible to reuse a standard
FIPA protocol in the Role Description. If a new protocol has been chosen, this can
be designed using the same approach of the FIPA documents (AUML sequence
diagrams). Figure 29 shows an example of FIPA-Request protocol.

2.3 The Agent Implementation Phase

The Agent Implementation phase provides a model of the solution architecture in
terms of classes and methods. The process flow at the level of activities is reported
in Fig. 30. The process flow inside each activity will be detailed in the following
sections (after the description of process roles). The Agent Implementation phase
involves three different process roles and four work products (four UML models)
as described in Fig. 31. The phase is composed of four activities (i.e., the Multia-
gent Structure Definition, the Multiagent Behavior Description, the Single-Agent
Structure Definition, and the Single-Agent Behavior Description), each of them

PASSI: Process for Agent Societies Specification and Implementation 315

Initiator Participant

request

refuse
[refused]

agree
[agreed and

cation
necessary

[agreed]

inform-result: inform

inform-done: inform

failure

FIPA-Request-Protocol

Fig. 29 Protocol Description diagram—a portion of the CMS case study

Multi-Agent
Structure
Definition

Multi-Agent
Behavior

Description

Single-Agent
Structure
Definition

Single-Agent
Behavior

Description

Fig. 30 The Agent Implementation phase flow of activities

composed of one or more tasks (for instance, List Agent Communication and Set
Up Attributes and Methods).

2.3.1 Process Roles
Three roles are involved in the Agent Implementation phase: the System Analyst,
the Ontology Expert, and the Agent Designer. They are described in the following
sections.

System Analyst
She or he is responsible for
1. Listing agents in the implementation model
2. Identifying Artifacts and their interactions with agents

316 M. Cossentino and V. Seidita

<<mandatory,
ouput>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
output>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<performs,
primary>>

<<predecessor>>

<<mandatory,
input>>

<<mandatory,
output>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<predecessor>>

<<predecessor>>

<<mandatory,
input>>

<<performs,
primary>>

<<mandatory,
input>>

<<mandatory,
input>>

<<performs,
primary>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mand., input>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
assists>>

<<mandatory,
output>>

MASD

SASD

SABD

MABD

Define Tasks

List
Agents Comm.s

List Agents

Define Agent
Knowledge

Comm. Ontological
Descri.

c

Roles Description

c

MASD

c

MABD

System Analyst
Agent Designer

<<mandatory, input>>

Define
Artefact

System Analyst

Agents Id.

c

<<performs,
primary>>

Comm. Ontological
Descr.

c

<<performs,
primary>>

System Analyst

Draw the Flow
of Events

Describe Messages'
Performative

Describe Messages'
Content

Roles
Description

c

Task Spec.

c
MASDComm. Ontological

Descr.

c

<<performs,
assist>>

System Analyst

Ontology Expert

 Domain
Ontology

Description

c

Protocol
Description

c

MABD

c

<<mandatory,
input>>

Set up Agents'
Attributes and

Methods

Set up Tasks'
Classes

Agent Designer

<<performs,
primary>>

Comm.
Ontological Descr.

c
MASD

c

MABD
Roles

Description

c

SASD

c

Draw Flow of
Events

<<mandatory,
input>>

MASD

c

MABD

Agent Designer

SASD

c

SABD

c

<<mandatory,
input>>

Fig. 31 The Agent Implementation phase described in terms of activities and work products

3. Identifying agents’ communications
4. Assisting in defining tasks and knowledge of agents
5. Assisting in describing messages’ contents
6. Drawing the flow of events

Ontology Expert
She or he is responsible for
1. Describing messages’ contents
2. Describing messages’ performatives

Agent Designer
She or he is responsible for
1. Analyzing the flow of event in order to describe the behavior of agents
2. Defining the tasks of each agent
3. Defining the knowledge each agent needs

PASSI: Process for Agent Societies Specification and Implementation 317

<<mandatory,
 input>>

<<mandatory,
 input>>

<<mandatory, input>>

<<optional,
input>>

<<mandatory ,
output>>

<<mandatory, input>>
<<mandatory,

 input>>

<<mandatory,
input>>

System
Analyst

Agent
Designer

List Agents List Agents
Communications

Define Tasks
Define Agent
Knowledge

Roles
Description

c

Communication Ont.
Description

c

MABD MASD

c

Define
Artifacts

Agents
Identification

c

Fig. 32 The flow of tasks of the Multiagent Structure Definition (MASD) activity

Table 12 Multiagent Structure Definition—the task description

Activity Task Task Description Roles Involved

Multiagent
Structure Definition

List Agents The System Analyst identifies and reports the
agents that will constitute the implementation
model.

System Analyst
(perform)

Multiagent
Structure Definition

Define Artifacts The System Analyst defines the Artifacts that the
agent interacts with.

System Analyst
(perform)

Multiagent
Structure Definition

List Agents’
Communications

The System Analyst identifies and reports the
agent communications that will be used in the
implementation model.

System Analyst
(perform)

Multiagent
Structure Definition

Define Tasks The Agent Designer defines the tasks of each
single agent in the implementation model.

Agent Designer
(perform) System
Analyst (assist)

Multiagent
Structure Definition

Define Agent
Knowledge

The Agent Designer defines the knowledge each
agent needs in order to accomplish its duties and
to cope with the communications it is involved in.

Agent Designer
(perform) System
Analyst (assist)

4. Representing knowledge. The description of attributes for each class (agent) in
order to represent a piece of knowledge on the domain

5. Describing method implementation
6. Setting up attributes, methods, and task classes

2.3.2 Activity Details
Multiagent Structure Definition
The Multiagent Structure Definition aims at describing the multi-agent system
structure in terms of tasks, knowledge, and communications. Interactions with
external entities (actors, artifacts) are described as well.
The flow of tasks inside this activity is reported in Fig. 32, and the tasks are detailed
in Table 12.

Multiagent Behavior Description
The Multiagent Behavior Description (MABD) aims at describing the multiagent
system behavior in terms of tasks, actions, the flow of control internal to each agent,
and the messages exchanged among agents.
The flow of tasks inside this activity is reported in Fig. 33, and the tasks are detailed
in Table 13.

318 M. Cossentino and V. Seidita

<<mandatory,
input>>

<<mandatory,
output>>

<<mandatory,
input>><<mandatory,

input>>

<<mandatory,
input>>

<<mandatory,
input>>

System Analyst

Ontology Expert

Draw the Flow of
Events

Describe Messages'
Performative

Describe Messages'
Content

Roles Description

c

Task
Specification

c

MASD Domain Ontology
Description

c

Protocol
Description

c

MABD

c

Communication
Ontological Descr.

c <<mandatory,
input>>

Fig. 33 The flow of tasks of the Multiagent Behavior Description (MABD) activity

Table 13 Multiagent Behavior Description—the task description

Activity Task Task Description Roles Involved

Multiagent
Behavior
Description

Draw the Flow of
Events

The System Analyst describes and completes the agents’
behavior by analyzing the tasks related to communication
among agents.

System Analyst
(perform)

Multiagent
Behavior
Description

Describe
Messages’
Performative

The System Analyst assigns Performatives to messages. System Analyst
(perform)

Multiagent
Behavior
Description

Describe
Messages’
Content

The Ontology Expert assigns Ontology Elements to
messages.

Ontology Expert
(perform) System
Analyst (assist)

<<mandatory,
 input>>

<<mandatory,
input>>

<<mandatory,
 input>>

<<mandatory,
input>>

Agent Designer
Set up Agents'
Attributes and

Methods

MABD

Roles Description

c
Communication

Ontological Description

c <<mandatory,
 input>>

Set up Tasks'
Classes

MASD

c

<<mandatory, output>>

SASD

c

Fig. 34 The flow of tasks of the Single-Agent Structure Definition (SASD) activity

Single-Agent Structure Definition
The Single-Agent Structure Definition aims at defining the agent’s interior structure
through all of the classes making up the agent, which are the agent’s main class and
the inner classes identifying its tasks.
The flow of tasks inside this activity is reported in Fig. 34, and the tasks are detailed
in Table 14.

Single-Agent Behavior Description
The Single-Agent Behavior Description aims at defining the behavior of an Imple-
mentation Agent class or an Implementation Task class.

PASSI: Process for Agent Societies Specification and Implementation 319

Table 14 Single-Agent Structure Definition—the task description

Activity Task Task Description Roles Involved

Single-Agent
Structure
Definition

Set up
Attributes ad
Methods

The Agent Designer illustrates the agent’s interior
structure through all of the classes making up the agent
and sets up attributes and methods of the agent class.

Agent Designer
(perform)

Single-Agent
Structure
Definition

Set up Task’s
Classes

The Agent Designer sets up tasks’ classes (e.g., methods
required to deal with communication events such as the
handleRequest method of the IdleTask invoked when the
agent gets a request communicative act).

Agent Designer
(perform)

<<mandatory,
output>>

<<mandatory,
input>>

Agent Designer Draw the Flow of
Events

MABD SABD

SASD

c
<<mandatory,

input>>

MASD

c
<<mandatory,

input>>

Fig. 35 The flow of tasks of the Single-Agent Behavior Description (SABD) activity

Table 15 Single-Agent Behavior Description—the task description

Activity Task Task Description Roles Involved

Single-Agent
Behavior
Description

Draw the Flow
of Events

The Agent Designer describes the method implementation
in the way she or he considers appropriate, for instance,
using flow charts, state diagrams, or semi-formal text
descriptions.

Agent Designer
(perform)

The flow of tasks inside this activity is reported in Fig. 35, and the tasks are detailed
in Table 15.

2.3.3 Work Products
The Agent Implementation phase results in four composed work products, one
of which is both behavioral and structural. The relationships among the phase-
delivered work products and the MAS metamodel constructs are reported in Fig. 36.

Work Product Kinds
Table 16 describes the work products of the Agent Implementation phase according
to their kinds.

Multiagent Structure Definition
This activity results in a composed work product where one class diagram represents
the whole system with agents and actors involved. Each agent is represented by a
class; its tasks are shown as operations and detailed only by name. An association
can represent a communication or a dependency. The class diagram is completed

320 M. Cossentino and V. Seidita

R

R

QR

QR

QR

R2xR

R
Task Action

D

Implementation
Task

Q

Message

D

Ontology
Element

Concept

Q

Action

Q

Predicate

Q

R R

R

Message Type Performative

Q

Implementation
Agent

Q

MABD

c

R

R

R

2xR

Artifact

D

Implementation
Agent

D

Ontology
Element

Concept

Q

Predicate

Q

Communication

Q

Implementation
Task

D

MASD

c

R
R

R

R

QR

QR
Implementation

Agent

Q

Implementation
Task

Q

Platform Task

D

Concept

Q

Ontology
Element

Platform
Agent

D

Type

Java Type

Q

D

Task
Attribute

A

Task Action
O

Q

Implementation
Attribute

A

D

Agent
Attribute

A
c

R

State

DSABD

SASD

Agent
Implementation

Model

Q

Implementation
Agent

Q

Fig. 36 The Agent Implementation phase documents structure

Table 16 Agent Implementation phase—Work Product kind

Name Description Work Product Kind

Multiagent
Structure Definition

A composite document made of one class diagram
(one class for each agent) and one structured text
document (in the form of a table) describing the
agent’s tasks.

Composite (Structural
C Structured)

Multiagent
Behavior
Description

A composite document made of one or more activity
diagrams, showing the flow of events between and
within both the main agent classes and their inner
classes (representing their tasks) and one structured
text document (in the form of a table) describing
tasks, methods, and events.

Composite (Structural
C Structured)

Single-Agent
Structure Definition

A composite document made of several class
diagrams, describing the internal structure (in terms
of classes and methods) of agents involved in the
process and one structured text document (in the
form of a table) describing agents’ tasks, methods,
and parameters.

Composite (Structural
C Structured)

Single-Agent
Behavior
Description

A behavioral diagram (activity diagram, sequence
diagram, state chart,. . .) specifying the
implementation of each method.

Behavioral

by a table where each task is described. Figure 37 shows an example of MASD for
CMS case study.

Implementation Agents come from the transformation (1:1) of agents (Agency_
Agent) reported in the COD activity; Implementation Tasks come from the

PASSI: Process for Agent Societies Specification and Implementation 321

+ checkPaperData()
+ receiveTitle()
+ receivePaper()
+ showSubmissionForm()
+ showCRForm()
+ createPDF()
+ showPDF()
+ receiveCopyrightForm()
+ updateDB()

- acceptedPaper:Paper
- paperAuthor: Author
- paperStatus: setStatus

<<agent>>
FilesManager

+ listen()
+ saveCurrentData()
+ createPassword()
+ requestChangePw()

- isPC_Member: sPC_Member

<<agent>>
AccountManager

+ insert()
+delete()
+acceptModify()
+ checkTitle()
+selectAuthor()
+updateDBData()
+ notifyPCChair()
+ setStatusPaper()
+ create()
+ withdraw()

 - acceptedPaper:Paper
- paperAuthor: Author

<<agent>>
SubmissionManager

Author

CMS
Database

PC Chair

Fig. 37 Multiagent Structure Definition diagram—a portion of the CMS case study

transformation (1:1) of tasks (Agency_Tasks) reported in the RD activity. New
Implementation Tasks are likely to be introduced as a consequence of the finer
description of the agent behavior that is done in the loop between this activity
and the MABD activity. Communications are reported from the COD activity,
Artifacts of the real world that are perceived and effected by agents (Implementation
Agents) are newly defined looking both at resources the agent controls and
external elements the agent perceives (this also includes human interaction with
the agent using a GUI). The consideration of external actors (reported in the Agent
Identification work product) helps in identifying artifacts. Concept and Predicate
are the knowledge that the agent needs to perform its duty. They are reported from
ontology aggregated to communications in COD. Actions from COD are used to
define new Implementation Tasks.

Multiagent Behavior Description
This activity delivers a composite work product where a sequence diagram shows
the behavior of the multiagent system. Figure 38 shows an example of MABD for
CMS case study. Implementation Agents and Implementation Tasks are reported
from the MASD activity. TaskActions come from the study of actions related to
communications in the COD activity as well as the Activities specified in the Task
Specification. They are related as follows: Invocation and Done relationships among
Task Actions come from the study of Activity Invocation relationships of the TSP or
they are defined from scratch in order to complete the agent behavior, and New Task
relationships come from the Task Invocation relationships of the TSP or they are

322 M. Cossentino and V. Seidita

SubmissionManager.
NotifyPCChair

AccountManager.queryDB SubmissionManager.askLoginCheckingAccountManager.
createUser

AccountManag
er.createUserc

reateUserID

AccountManage
r.createUser.cre

ateUserpw

AccountManag
er.queryDB.rec
eiveRequest

AccountManag
er.queryDB.sql

Query

AccountManager.
queryDB

sendResponse

SubmissionManager.a
skLoginChecking .send

Request

SubmissionManag
er.askLoginChecki
ng .handleAgree

SubmissionManager.a
skLoginChecking.han

dleRefuse

SubmissionManager.
askLoginChecking.h
andleNotUnderstood

SubmissionMana
ger.askLoginChec
king.selectEmail

SubmissionManag
er.askLoginChecki
ng.sendMessage

receiveMessage

message(Request,agree)

message(Request,refuse)

message(Request,
notUnderstood)

newTask(ReceiveMessage)

Invocation

Fig. 38 Multiagent Behavior Description diagram—a portion of the CMS case study

defined from scratch in order to complete the agent behavior. Message relationships
are deduced from the communicate relationships of the TSP. Ontology elements are
assigned to messages according to what is prescribed by communications defined
in the COD diagram. Performatives are assigned to messages according to the
Interaction Protocols reported in the FIPA Agent Interaction Protocol specifications
or the PD document.

Single-Agent Structure Definition
This activity is devoted to deliver a composite work product, several class diagrams
(one for each agent), and the textual description of attributes and methods. Figure 39
shows an example of SASD for CMS case study.

Implementation Agent, Implementation Task, Invocation, and Task Action are
defined by refining what is specified in the MASD–MABD activities with the
addiction of attributes and methods and by specifying the inheritance relationship
with the implementation platforms’ main classes of agents/tasks.

Single-Agent Behavior Description
In this activity, Implementation Agent, Implementation Task, Invocation, and Task
Action are studied from MABD (or even from SASD) in order to understand the
behavior of the agent/task that should be designed. The new behavior is designed
starting from this input in the form of an activity or state diagram. Figure 40 shows
a very simple portion of SABD for CMS case study.

PASSI: Process for Agent Societies Specification and Implementation 323

+ shutdown()
- registerToDF()
- setup()

 - acceptedPaper:Paper
- paperAuthor: Author
- pageNum: int
- copyright: Copyright
- reviewList: List
- authorList: List

<<agent>>
SubmissionManager

<<agent>>
(from JADE)

- showDataForm()
- catchEvent()

<<task>>
showDataForm

- notifyPCChair()
- retrievePaperData()

- thePaper: Paper
-

<<task>>
notifyPCChair

- askLoginChecking()
- handleAgree()
- handleFailure()
- handleRefuse()
- handleNotUnderstood()
- handleInform()
- prepareRequest()

<<task>>
askLoginChecking

SimpleBehaviour
(from JADE)

Fig. 39 Single-Agent Structure Definition diagram—a portion of the CMS case study

Author
Logged

Form
Shown

Paper
Received PDFCre

ated

author selection newSubmission/cameraReady

paper input

author
rmation

Fig. 40 Single-Agent Behavior Description diagram—a portion of the CMS case study

Code Reuse Code Production

Fig. 41 The Code phase flow of activities

2.4 The Code Phase

The Code phase provides the model of the solution at the code level. The process
flow at the level of activities is reported in Fig. 41. The process flow inside each
activity will be detailed in the following sections (after the description of process
roles). The Code phase involves two different process roles and two work products
as described in the following Fig. 42. The phase is composed of two activities: the
Code Reuse and Code Production, each of them composed of one or more tasks.

324 M. Cossentino and V. Seidita

<<mandatory,
input>>

<<performs,
primary>>

<<mandatory,
output>>

<<mandatory,
input>><<mandatory,

input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<optional,
output>> <<performs,

primary>>
<<performs,
primary>>

Code
Reuse

Document
Code

Describe
Pattern Reuse

Code
Designer

Programmer Complete
Code

Code
Production

<<predecessor>>

Patterns
Library

c

MABD

c

SASD

c

SABDMASD

c

Design
Diagrams
(MABD,

MASD, SABD,
SASD)

c

Code Reuse
Document

<<mandatory,
input>>

MABD

c

SASD

c SABD

Code
Document

MASD

c
<<mandatory,

output>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
input>>

Fig. 42 The Code phase described in terms of activities and work products

2.4.1 Process Roles
Two roles are involved in the Code phase: the Agent Designer and the Programmer.
They are described in the following sections.

Agent Designer
She or he is responsible for
1. Analyzing and reporting patterns from a library
2. Analyzing communication in order to select patterns

Programmer
She or he is responsible for
1. Writing the system code

2.4.2 Activity Details
Code Reuse
The Code Reuse aims at reusing existing patterns of agents and tasks. The flow of
tasks inside this activity is reported in Fig. 43, and the tasks are detailed in Table 17.

Code Production
The Code Production aims at completing the code of the application. The flow of
tasks inside this activity is reported in Fig. 44, and the tasks are detailed in Table 18.

2.4.3 Work Products
The Code phase results in two structured work products, one of which reports the
code resulting from the reuse of patterns in the solution and the other is the final
solution code. The relationships among the phase-delivered work products and the
MAS metamodel constructs are reported in Fig. 45.

PASSI: Process for Agent Societies Specification and Implementation 325

<<mandatory, input>>

<<mandatory,
 input>>

MABD

c

<<mandatory, input>>

<<mandatory, input>>
<<mandatory, input>>

<<optional, output>>
<<mandatory, output>>

Describe Pattern
Reused Code

Document
Code

Agent Designer

Code Reuse
Document

Design Diagrams (MABD,
MASD, SABD, SASD)

c

Patterns Library

c

SASD

c

MASD

c

SABD

Fig. 43 The flow of tasks of the Code Reuse activity

Table 17 Code Reuse—the task description

Activity Task Task Description Roles Involved

Code Reuse Describe
Pattern Reused
Code

The Agent Designer iteratively selects elements to
be implemented (an agent, a task, . . .), selects and
applies patterns for his specific needs.

Agent Designer (perform)

Code Reuse Document Code The Agent Designer documents the code. Agent Designer (perform)

<<mandatory,
input>><<mandatory,

 input>>

<<mandatory, input>>

<<mandatory,
input>>

<<mandatory, output>>

Programmer
Complete Code

Code Document

Code Reuse
Document

<<mandatory, input>>

MABD

c

SASD

c

MASD

c

SABD

Fig. 44 The flow of tasks of the Code Production activity

Table 18 Code Production—the task description

Activity Task Task Description Roles Involved

Code Production Complete Code The Programmer completes the code of the
application starting from the design, the skeleton
produced by the CASE tool, and reused patterns

Programmer (perform)

Work Product Kinds
Table 19 describes the work products of the Code phase according to their kinds.

326 M. Cossentino and V. Seidita

D

R

R

Agent Code

D

Task Code

D
Pattern

Q

R/QR

Agent Code

D/Q

Task Code

D/QCode Reuse
Document

Code Model

Code
Document

Fig. 45 The Code phase document structure

Table 19 Code phase—Work Product kind

Name Description Work Product Kind

Code Reuse Document A document describing the code resulting from the
adoption of patterns of agents and tasks in the solution.

Structured

Code Document A document describing the code of the multi-agent
system application.

Structured

Deployment
Configuration

Fig. 46 The Deployment phase flow of activities

Code Reuse
This activity delivers the Code Reuse Document, reporting the code produced by
the adoption of patterns of agents and tasks in the solution.

Code Production
This activity delivers the complete code of the application. This is rather a
conventional activity, and for this reason, here, we do not show any example of
the document.

2.5 The Deployment Phase

The Deployment phase provides details about the position of the agents in distrib-
uted systems or in mobile-agent contexts. The process flow at the level of activities
is reported in Fig.46. The process flow inside each activity will be detailed in the
following sections (after the description of process roles). The Deployment phase
involves one process role and one work product as described in Fig. 47. The phase
is composed of one activity: the Deployment Configuration composed of one task
(Describe Deployment Configuration).

PASSI: Process for Agent Societies Specification and Implementation 327

<<performs,
 primary>>

<<mandatory,
output>>

<<mandatory,
input>>

Deployment
Configuration

Describe
Deployment

Configuration

Agent
Designer Roles Description

c

Deployment
Configuration Diagram

Fig. 47 The Deployment phase described in terms of activities and work products

<<mandatory, input>>

Agent Designer

<<mandatory,
output>>

Describe Deployment
Configuration

Deployment
Configuration DiagramRoles Description

c

Fig. 48 The flow of tasks of the Deployment Configuration activity

Table 20 Deployment Configuration—the task description

Activity Task Task Description Roles Involved

Deployment
Configuration

Describe
Deployment
Configuration

The Agent Designer identifies the number of nodes
by looking at the communications among Agency
Agents

Agent Designer
(perform)

2.5.1 Process Roles
One role is involved in the Deployment phase: the Agent Designer. It is described
in the following sections.

Agent Designer
She or he is responsible for:
1. Identifying the number of nodes to be implemented
2. Specifying the communication channels to be made available among nodes

hosting the different Agency Agents

2.5.2 Activity Details
Deployment Configuration
The Deployment Configuration aims at completing the code of the application. The
flow of tasks inside this activity is reported in Fig. 48, and the tasks are detailed in
Table 20.

2.5.3 Work Products
The Deployment phase results in one work product. The relationships among the
phase-delivered work product and the MAS metamodel constructs are reported in
Fig. 49.

328 M. Cossentino and V. Seidita

Deployment
Model

R

R

R

2R

Agent Code

Q

Node

D

Network
Connection

D

Deployment
Configuration

Fig. 49 The Deployment
phase document structure

Table 21 Deployment phase—Work Product kind

Name Description Work Product Kind

Deployment Configuration One UML diagram representing where the agents
are located and which different elaborating units
and communication channels they need

Structural

Node 1 Node 2

Server

AdministrationCustomer

Central

<<network>>

<<network>><<network>>

move_to

communicate

Fig. 50 Deployment
Configuration Diagram—a
portion of the CMS case
study

Work Product Kinds
Table 21 describes the work products of the Deployment phase according to their
kinds.

Deployment Configuration
This activity delivers the Deployment Configuration diagram that illustrates the
location of the agents (the processing units where they live), their movements, and
their communication support. The standard UML notation is useful for representing
processing units (by boxes), agents (by components), and the like. What is not
supported by UML is the representation of the agent’s mobility, which we have
done by means of a syntax extension consisting of a dashed line with a move_to
stereotype.

Figure 50 shows an example of notation for the Deployment Configuration
Diagram. This diagram does not refer to the CMS case study since, due to the
specificity of this kind of case study, we could not extract an example showing
all the elements used in PASSI for the Deployment Diagram. The number of nodes
to be implemented are deduced from the Agency Role by RD and by the available
Agent Code that is here reported. Communication among nodes are deduced for
Communication between Agency Agents, again from RD.

PASSI: Process for Agent Societies Specification and Implementation 329

Glossary

Domain
Requirements

Description

c

Problem
Statement

a

Scenarios

a
Agents

Identification

c

Roles
Identification

Tasks
Specification

c

Domain Ontology
Description

c

Communication
Ontological
Description

c
FIPA Content
Languages

cFIPA Interaction
Protocols

c

Roles
 Description

c

Protocol
Description

c

MABD

c

SASD

c

MASD

c

SABD

Deployment
Configuration

Diagram

Patterns Library

c
Design Diagrams
(MABD, MASD,
SABD, SASD)

c

Code Reuse
Document

Code Document

Fig. 51 Dependencies diagram

3 Work Product Dependencies

The diagram in Fig. 51 describes the dependencies among the different work
products.

References

1. Cossentino, M., Seidita, V.: Metamodeling: representing and modeling system knowledge in
design processes. In: Proceedings of the Ninth European Workshop on Multi-Agent Systems
(EUMAS’12), 17–19 December 2012

2. Foundation for Intelligent Physical Agents. FIPA Interaction Protocol Library Specification
(2000)

3. Foundation for Intelligent Physical Agents. FIPA Content Languages Specification (2001)
4. Software process engineering metamodel. Version 2.0. Final Adopted Specification ptc/07 03-

03. Object management group (omg), March 2007
5. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)
6. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifications to

represent agent oriented methodologies. In: Luck, M., Gomez-Sanz, J.J. (eds.) Agent-Oriented
Software Engineering IX. Lecture Notes in Computer Science, vol. 5386, pp. 46–59. Springer,
Berlin (2008). doi:10.1007/978-3-642-01338-6_4

ROMAS Methodology

Emilia Garcia, Adriana Giret, and Vicente Botti

Abstract
This chapter presents the ROMAS methodology. ROMAS is an agent-oriented
methodology that guides developers on the analysis and design of regulated open
multiagent systems. These kinds of systems are composed of heterogeneous and
autonomous agents and institutions, which may need to coexist in a complex
social and legal framework that can evolve to address the different and often
conflicting objectives of the many stakeholders involved. Contracts and norms
are used to formalize the normative context and to establish restrictions on the
entities’ behaviors.

1 Introduction

ROMAS methodology defines a set of activities for the analysis and design of
regulated open multiagent systems. The most relevant characteristics of systems
of this kind are that they are social, open, and regulated. First, they are social in
the sense that autonomous and heterogeneous entities interact between themselves
to achieve global and individual objectives. Besides, the entities of the system
can be structured as institutions or groups of agents with similar characteristics,
functionality, or that interact with the rest of the system as a single entity. Second,
they are open in the sense that, dynamically at runtime, external parties can interact
and become part of the system. Third, they are regulated in the sense that every
entity or institution in the system can have associated a set of norms that must fulfill.
Besides, the expected behavior of each entity should be clearly specified by means
of defining its rights and duties inside the system. In ROMAS, we consider the
normative context of a system to be the set of norms that regulates the behavior of

E. Garcia • A. Giret • V. Botti (�)
Universitat Politecnica de Valencia, Valencia, Spain
e-mail: mgarcia@dsic.upv.es; agiret@dsic.upv.es; vbotti@dsic.upv.es

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__11,
© Springer-Verlag Berlin Heidelberg 2014

331

mailto:mgarcia@dsic.upv.es
mailto:agiret@dsic.upv.es
mailto:vbotti@dsic.upv.es

332 E. Garcia et al.

Fig. 1 ROMAS design process

each entity and the set of contracts that formalizes the relationships between these
entities. The normative context of each entity is specified by the set of norms that
directly affects the behavior of a particular entity. ROMAS catchs the requirements
of the design of systems from the global system’s purposes to the specification of
the behavior of each individual entity. The rest of the chapter presents the ROMAS
metamodel and phases. Following some useful references about ROMAS:
• Emilia Garcia, A. Giret and V. Botti Regulated Open multiagent Systems

based on contracts The 19th International Conference on Information Systems
Development (ISD 2010) pp. 235–246. (2010)

• Emilia Garcia, A. Giret and V. Botti A Model-Driven CASE tool for Developing
and Verifying Regulated Open MAS Journal Science of Computer Programming
(2011)

• Emilia Garcia, G. Tyson, S. Miles, M. Luck, A. Taweel, T. Van Staa and
B. Delaney An Analysis of Agent-Oriented Engineering of e-Health Systems
13th International Workshop on Agent-Oriented Software Engineering (AOSE–
AAMAS) (2012)

1.1 The ROMAS Process Lifecycle

ROMAS methodology is composed of five phases that help developers to analyze
and design the system from the highest level of abstraction to the definition of
individual entities. As shown in Fig. 1, this is not a linear process but an iterative
one. The identification of a new element of functionality during one phase may
imply the revision of previous phases. For example, during the second phase, when
a role that can be played by an organization as a whole is detected, it is necessary to
go back to the first phase of the methodology to analyze the characteristics, global
objectives, and structure of this organization.

ROMAS Methodology 333

1.2 ROMAS Metamodel

The analysis and design of these systems are formalized by means of several
diagrams that are instances of the ROMAS metamodel. Table 1 describes the
ROMAS metamodel elements. In order to facilitate the modeling tasks, this unified
metamodel can be instantiated by means of four different views that are described
below:
Organizational View

In this view, the global goals of organizations and the functionality that organ-
izations provide and require from their environment are defined (Fig. 2). The static
components of the organization, that is, all elements that are independent of the final
executing entities, are defined too. More specifically, it defines the following:
– The entities of the system (Executer): AAgents and Roles. The classes Executer

and AAgents are abstractions used to specify the metamodel, but neither of them
are used by designers to model systems.

– An AAgent is an abstract entity that represents an atomic entity (Agent) or a group
of members of the organization (Organizational Unit), which is seen as a unique
entity from outside.

– The Organizational Units (OUs) of the system can also include other units in
a recursive way as well as single agents. The Contains relationships include
conditions for enabling a dynamical registration/deregistration of the elements
of an OU through its lifetime.

– The global Objectives of the main organization. The objectives defined in this
view are nonfunctional requirements (soft goals) that are defined to describe the
global behavior of the organization.

– The Roles defined inside the OUs. In the contains relationship, a minimum and
maximum quantity of entities that can acquire a particular role can be specified.
For each role, the Accessibility attribute indicates whether a role can be adopted
by an entity on demand (external) or it is always predefined by design (internal).
The Visibility attribute indicates whether entities can obtain information from this
role on demand. This attribute can take the value “public” if anyone can obtain
information of this role, and it takes the value “private” if only members of this
organizational unit (i.e., private role). A hierarchy of roles can also be defined
with the InheritanceOf relationship.

– The organization’s social relationships (RelSocialRelationship). The type of
social relationship between two entities is related to their position in the structure
of the organization (i.e., information, monitoring, supervision), but other types
are also possible. Some social relationships can have a ContractTemplate asso-
ciated with them, which can formalize some predefined commitments and rights
that must be accepted or negotiated during the execution time. Each Contract
Template is defined using the Contract Template view.

– The Stakeholders interact with the organization by means of publishing offers
and demands of Products and Services on the Bulletin Board.

– The Bulletin Board can be considered as an information artifact for Open MAS.
This artifact allows the designer to define the interaction with external entities and

334 E. Garcia et al.

Table 1 Definition of ROMAS metamodel elements

Concept Definition Metamodel views

Objective An objective is a specific goal that agents or roles have to fulfill. It
can be refined into other objectives.

Organizational, internal view

Organizational
Unit (OU)

A set of agents that carry out some specific and differentiated
activities or tasks by following a predefined pattern of cooperation
and communication. An OU is formed by different entities
throughout its lifecycle, which can be either single agents or other
organizational units that are viewed as a single entity.

Organizational, internal,
contract template

Role An entity representing part of the functionality of the system. Any
entity that plays a role within an organization acquires a set of
rights and duties.

Organizational, internal,
contract template, activity

Agent An entity capable of perceiving and acting into an environment,
communicating with other agents, providing and requesting
services/resources, and playing several roles.

Organizational, internal,
contract template, activity

Norm A restriction on the behavior of one or more entities. Organizational, internal,
contract template, activity

Contract
template

A set of predefined features and restrictions that all final contract
of a specific type must fulfill. A contract represents a set of rights
and duties that are accepted by the parties.

Organizational, internal,
contract template, activity

Bulletin Board A service publication point that offers the chance of registering
and searching for services by their profile.

Organizational, internal,
contract template, activity

Product An application or a resource. Organizational, internal,
contract template, activity

Service Profile The description of a service that the agent might offer to other
entities.

Organizational, internal,
activity

Service Imple-
mentation

A service-specific functionality that describes a concrete
implementation of a service profile.

Internal, activity

Task An entity that represents a basic functionality that consumes
resources and produces changes in the agent’s mental state.

Organizational, internal,
contract template, activity

Stakeholder A group that the organization is oriented toward and interacts with
the OUs.

Organizational

Believe A claim that an agent thinks that it is true. Internal
Fact A claim that is true at the system’s domain. Internal
Event The result of an action that changes the state of the system when it

occurs.
Internal

Interaction An entity defining an interaction between agents. Activity
Interaction
Unit

A performative employed during the interaction. Activity

Translation
Condition

An artifact that allows to define the sequence of tasks depending
on a condition.

Activity

Executer A participant in an interaction. It can be an Organization, an
Agent, or a Role.

Organizational, internal,
contract template, activity

facilitates trading processes. When an agent wants to trade, they can consult or
publish their offer on the Bulletin Board. Each offer or demand can be associated
with a Contract Template. It means that this offer or demand has some predefined
restrictions that are specified in this Contract Template view.

Internal View
This view allows defining the internal functionality, capabilities, belief, and

objectives of each entity (organizations, agents, and roles) by means of different
instances of this model (Fig. 3). More specifically, it defines the following features
of each entity:

ROMAS Methodology 335

Fig. 2 Organizational view (the class RelXXX represents the attributes of the relationship XXX)

Fig. 3 Internal view (the class RelXXX represents the attributes of the relationship XXX)

– The Objectives represent the operational goals, that is, the specific goals that
agents or roles have to fulfill. They can also be refined into more specific
objectives. They might be related to a Task or Interaction that is needed for
satisfying this objective.

– The Mental States of the agent, using belief, events, and facts.
– The products (resources/applications) available by an OU.
– The tasks that the agent is responsible for, that is, the set of tasks that the agent

is capable of carrying out. A task is an entity that represents a basic functionality
that consumes resources and produces changes in the agent’s Mental State.

336 E. Garcia et al.

– the Implements Service Profile
– Internal entities can publish offers and demands in a BulletinBoard, as external

stakeholders can do by means of the organizational view. This publication
can also have an associated Contract Template to describe some predefined
specifications.

– the roles that an agent or an organizational unit may play inside other
organizational units (Plays relationship). ActivationCondition and LeaveCon-
dition attributes of this relationship indicate in which situation an OU acquires
or leaves a role.

– the roles played by each agent. ActivationCondition and LeaveCondition attrib-
utes of this play relationship indicate in which situation an agent can acquire or
leave a role.

– the Norms specify restrictions on the behavior of the system entities. The
relationship Contains Norm allows defining the rules of an organization and
which norms are applied to each agent or role. Norms control the global behavior
of the members of the OU.

Contract Template View
This view allows defining Contract Templates. Contracts are inherently defined at

runtime. Despite this, designers represent some predefined restrictions that all final
contracts of a specific type should follow by means of a contract template. Contract
templates can be used at runtime as an initial point for the negotiation of contracts
and to verify if the final contract is coherent with the legal context. The syntax of a
contract template is defined in Fig. 4. More specifically, it defines the following:
– The relationship Signants indicates who is allowed to sign this type of contracts.

It could be a specific agent, an agent who plays a specific role, or an organization.
A ThirdPart could be anyone who participates in the negotiation protocol or who
is affected by the final execution of the Contract.

– The relationship Protocol indicates which protocols are recommended to negoti-
ate this type of contract.

– After the negotiation, the Notary is responsible for verifying the correctness
and coherence of the final contract definition. He should check if any term of
a contract violates any norm of the regulated environment.

– Each type of contract can define which Receipts will be generated during the
execution time. Receipts are proof of facts; for example, a receipt can be
generated when an agent successfully provides a service.

– In case of conflict, the Judge has to evaluate the Complaints and the generated
Receipts following the ConflictResolution protocol. If he decides that there has
been a violation of a norm, the RegulationAuthority, who is the main authority in
the context of a contract, can punish or reward the agent behaviors.

– The relationship Hard clause indicates that any instance of this type of contract
has to include this norm. Soft clauses are recommendations, so during the
negotiation stage, Signants will decide whether this norm will be included or
not in the final contract.

ROMAS Methodology 337

Fig. 4 Contract template view (the class RelXXX represents the attributes of the relationship XXX)

Fig. 5 Activity view (the class RelXXX represents the attributes of the relationship XXX)

Activity View
This view allows defining the sequence of actions in which a task, a service, or

a protocol can be decomposed (Fig. 5). Each state represents an action or a set of
actions that must be executed. An action is a first-order formula that indicates which
task or service is executed or which message is interchanged between the agents that
participate in this state. The relationship next indicates the sequence of states. These
sequences can be affected by a translation condition that indicates under which
circumstances the a state is going to be the next step of the process.

1.2.1 ROMAS Metamodel Notation
ROMAS diagrams use an UML-like graphical notation called GOPPR [6]. A caption
to understand the graphical elements of the diagram is shown in Fig. 6. This notation

338 E. Garcia et al.

Fig. 6 Entities from the ROMAS graphical notation

is also used to define diagrams on INGENIAS, GORMAS, and ANEMONA
methodologies. Some metamodel constructions proposed by ROMAS, such as
contract templates, have been added to the notation.

2 Phases of the ROMAS Process

In this section, the phases that compose the ROMAS methodology are described.
ROMAS offers a set of guidelines to analyze and formalize the requirements of
the system, its functionality, the social relationship between the entities, and their
normative context. These guidelines also guide designers to specify the interactions
and service interchanges between the entities of an organization and between
external entities.

2.1 PHASE 1: System Description

During this phase, the analysis of the system requirements, global goals of the
system, and the identification of use cases are carried out. Besides, the global
goals of the organization are refined into more specific goals, which represent
both functional and nonfunctional requirements that should be achieved. Finally,
the suitability of the ROMAS methodology for the specific system to develop is
analyzed.

2.1.1 Process Roles
There are two roles involved in this phase: the system analyst and the domain expert.
The domain expert is responsible for: (1) describing the system requirements, by
means of identifying the system’s main objectives, the stakeholders, the environ-
ment of the organization, and its restrictions; (2) supporting the system analyst in

ROMAS Methodology 339

Fig. 7 Phase 1: activity tasks

Table 2 Phase 1: activity tasks

Roles
ID.task Task Description involved

1.1 Identify
system
requirements

Following the guideline system description document, the requirements
of the system are analyzed, including global objectives of the system,
stakeholders that interact with the system, products and services are
offered and demands to/from stakeholders, external events that the
system handles and normative documents such governmental laws
attached to the system.

Domain expert

1.2 Identify
Operational
Objectives

Following the guideline objective description document, the global
objectives of the system are analyzed and split into operational
objectives, i.e., into more low level objectives that can be achieved by
means of the execution of a task or a protocol.

System analyst
and domain
expert

1.3 Identify use
cases

Using the information obtained in the previous task, the use cases of
the system regarding the tasks and protocols associated to the
operational objectives identified are defined.

System analyst
and domain
expert

1.4 Evaluate
ROMAS
suitability

Following the guideline ROMAS suitability guideline, the suitability of
the ROMAS methodology for the development of the system to be
developed regarding its specific features is evaluated.

System analyst

the analysis of the objectives of the system; and (3) supporting the system analyst
in the description of the use cases of the system. The system analyst is responsible
for: (1) analyzing the objectives of the system; (2) identifying the use cases; and
(3) evaluating the suitability of the ROMAS methodology for the system to be
developed regarding its requirements.

2.1.2 Activity Details
The flow of tasks of this phase is reported in Fig. 7, and each task is detailed in
Table 2.

2.1.3 Work Products
The following section describes the products generated on the System definition
phase and the guidelines used to define them: (1) System definition document;
(2) Objectives description document, (3) Use case diagram, (4) ROMAS suitability
guideline. Figure 8 shows graphically the products used and produced by each task.
System Description Document

This document is employed to identify the main features of the system and its
relationship with the environment. It is a structured text document whose template
is shown in Table 3. Table 4 presents the analysis of CMS case study using this
document.

340 E. Garcia et al.

Fig. 8 Phase 1: resources and products used

Objectives Description Document and Objective Decomposition Diagram
This document analyzes the global objectives of the system and decomposes

them into operational objectives. It is a structured text document whose template
is shown in Table 5. Every global objective specified in the system description
document is described using this document. The global objectives of the systems are
refined into more specific ones that should also be described using this document.
The document will be completed when all the global objectives are decomposed into
operational objectives, that is they are associated to tasks, protocols, or restrictions
that must be fulfilled in order to achieve these objectives. It is recommended to
create one table for each global objective. The first column of each table will contain
the property’s name, the second the description of the global objective, and the
following columns the descriptions of the objectives in which this global objective
has been decomposed.

It is recommended to graphically represent the decomposition of the objectives
by means of a diagram in order to provide a general overview of the purpose of the
system that can be easily understood by domain experts. The graphical overview of
the CMS case study objectives is shown in Fig. 9, where A means abstract objective
and O means operational objective. As an example of the decomposition of a global
objective into operational ones, Table 6 shows the decomposition of the global
objective Conference registration.
Use Case Diagram

These diagrams are UML graphical representations of workflows of stepwise
activities and actions with support for choice, iteration, and concurrency. The actions
identified in the analysis of the operational objectives are related, forming activity
diagrams in order to clarify the sequence of actions that will be performed in the
system. Figure 10 shows the sequence of actions that can be performed in the CMS
case study.
ROMAS Suitability Guideline

After analyzing the requirements of the system, it is recommended to use this
guideline in order to evaluate the suitability of the ROMAS methodology for the

ROMAS Methodology 341

Table 3 Template for system description document

Property Description Guideline

System
identifier

General name of the
system to be
developed.

It is recommended to select a short name or an abbreviation.

System
description

Informal description of
the system.

There is no limitation on the length of this text.
- What is the motivation for developing such a system?
-Is there any system requirement that specify if the system must be
centralized or decentralized?
- Which is the main objective of this system?

Domain Domain or domains of
application.

If this system must be able to be applied in different domains, it is
recommended to add a text that explains each domain and whether it is
necessary to adapt the system to each domain.

Kind of
environment

Identify and specify
the kind of
environment of the
system.

- Can the functionality of the system be distributed between different
entities?
- Are the resources of the system distributed in different locations?
- Are here external events that affect the internal state and behavior of
the system? Is it a reactive system?
- Is it a physical or a virtual environment? Is there any physical agent or
robot that plays a role in the system?
- Is there any human interaction with the system?
- Should the results of the system be presented graphically? Is there
any graphical environment?

Global
objectives

Functional and
non-functional
requirements
(softgoals) that specify
the desired-global
behavior of the system.

- Which are the purposes of the system?
- Which results should provide the system?
- Should the system keep any parameter of the system between an
specific threshold? (ex. the temperature of the room, the quantity of
money in an account and so on)

Stakeholders Identifier An identifier for the stakeholder. Are there external entities or
applications that are able to interact
with the system?

Description Informal description of the
stakeholder.

Type Indicate if the stakeholder is a
client, a provider or a regulator.

Contribution To point out what the
organization obtains from its
relationship with the stakeholder.

Requires A set of products and/or services
that the stakeholder consumes.

Provides A set of products and/or services
that the stakeholder offers to the
organization.

Frequency To point out whether this
stakeholder contacts with the
organization frequently,
occasionally or in an established
period of time.

Resources Resources and
applications available
by the system.

- Is there any application or resource available by the system? - Is this
resource physical or virtual?

Events External events that
produce a system
response.

Which events can produce an effect on the system? How the system
capture these events and how response to them?

Offers A set of products or
services offered by the
organization to its
clients.

Is there any product or service that the system should provide to an
external or internal stakeholder?

Demands A set of products or
services demanded by
the organization to its
clients.

Are there any requirements that the system cannot provide itself? Is it
important who provide this service or product?

(continued)

342 E. Garcia et al.

Table 3 (continued)

Property Description Guideline

Restrictions An overview about
which types of
restrictions the system
should imposed on its
entities.

- Behavioral restrictions: Is there any system requirement that specify
limits on the behavior of the members of the system?
- Critical restrictions: Is there any action whose inadequate usage could
be dangerous for the system?
- Usage restrictions: Is there any restriction on the usage of the system
resources? Is there any restriction on the usage of the services and
products offered by the system? Is there any restriction on who is an
appropriate stakeholder to provide a service or product to the system?
- Legal restrictions: Is there any normative document, such as
governmental law or institutional internal regulations, that affects the
system’s entities behavior?

Table 4 Phase 1—Case study: system description document

Case study: System description document

System
identifier

CMS (Conference Management System)

System
description

This system should support the management of scientific conferences. This system involves several
aspects from the main organization issues to paper submission and peer review, which are typically
performed by a number of people distributed all over the world.

Domain Research
Kind of
environment

Virtual and distributed environment with established policies and norms that should be followed.

Global
objectives

- Management of user registration
- Management of conference registration
- Management of the submission process
- Management of the review process
- Management of the publication process

Stakeholders There is no external entity that interact with the system. Every entity that wants to interact with the
system should be registered and logged in the system.

Resources Database: it should include personal information and affiliation and information about which users
are registered as authors, reviewers or publishers for each conference. Also it should include
information about each conference, i.e., its status, its submitted papers and reviews,. . .

Events Non external events are handled by the system.
Offers - NewUsers_registration();

- Log_in();
Demands
Restrictions - The system should follow the legal documentation about the storage of personal data.

- Each conference should describe its internal normative.

development of the analyzed system. Table 7 shows the criteria used to evaluate
whether ROMAS is suitable.

ROMAS is focused on the development of regulated multiagent systems based
on contracts. ROMAS is appropriate for the development of distributed systems,
with autonomous entities, with a social structure, with the need of interoperability
standards, regulation, and trustworthiness between entities and organizations. RO-
MAS is not suitable for the development of centralized systems or non-multiagent
systems. Although non-normative systems could be analyzed using ROMAS, it is
not recommended.

The analysis of the CMS case study features following this guideline shows
that ROMAS is suitable for the development of this system. It is a distributed
system, composed of intelligent systems with social relationships between them.
The entities of the system should behave following the regulations of the system.

ROMAS Methodology 343

Table 5 Phase 1: Objectives description

Property Description Guideline

Identifier Objective name identifier. It is recommended to select a short name or an abbreviation.
Description Informal description of the

objective that is pursued.
There is no length limitation on this text. It should clearly
describe this objective.

Activation
Condition

First order formula that
indicates under which
circumstances this objective
begins being pursued.

- Does the organization pursue this objective from the initialization
of the system?
- Is there any situation that activates this objective? Common
circumstances that can activate objectives are: when an event
is captured, the failure of other objective, the violation of a
restriction, when an agent plays a specific role, and so on.
- If this objective is deactivated, is there any situation that forces
the objective to be pursued again?

Deactivation
Condition

First order formula that
indicates under which
circumstances this objective
stops being pursued.

- Is this objective pursued during the whole lifecycle of the system?
- Is there any situation that deactivates this objective? Common
circumstances that deactivate an objective are: when it is satisfied,
when other objective is satisfied, when some restriction has been
violated, and so on.

Satisfaction
Condition

First order formula that
indicates in which situation
this objective is satisfied.

- Is the satisfaction of this objective measurable?
- What results should be produced to claim that this objective has
been satisfied?

Fail
Condition

First order formula that
indicates in which situation
this objective has failed.

- Is there any situation that is contrary to this objective and that
will invalidate it?
- Is there any threshold that should not be exceeded?

Type Objectives can be abstract or
operational. An abstract
objective is a non-functional
requirement that could be
defined to describe the global
behavior of the organization.
An operational objective is a
specific goal that agents or
roles have to fulfill.

If there is a task that can be executed in order to satisfy this
objective, it is an operational objective, in other cases it is an
abstract objective. Abstract objectives can be refined into other
abstracts or operational objectives.

Decomposition First order formula that
specified how this objective is
decomposed.

If this is an abstract objective it should be decomposed in several
operational objectives which indicates which tasks should be
executed in order to achieve this objective. Operational objectives
can also be decomposed in order to obtain different subobjectives
that can be pursued by different members of the organization.
This fact simplifies the programming task and facilitates the
distribution of responsibilities.

Related
Action/
Restriction

Objectives can be related to a restriction on the behavior of the
system, or to an action that must be executed in order to achieve
this objective. Actions can be tasks, services or protocols.

The difference between a task
and a protocol is that a task can
be executed by one single
agent, however a protocol is a
set of tasks and interactions
between two or more agents.
Services are pieces of
functionality that an entity of
the system offers to the others,
so the main difference between
services and tasks or protocols
is that they are executed when
an entity request this
functionality. At this phase it is
not necessary to detail all the
parameters of the task. You
should describe in a high
abstraction level what actions
and activities are necessary to
achieve this objective.

Type Task, service or
protocol.

Identifier An identifier for the
task, service or
protocol.

Description Informal description
of the action.

Resources Which applications
or products are
necessary to execute
this task (for
example, access to a
database). This
feature can be known
at this analysis phase
due to requirement
specifications.

(continued)

344 E. Garcia et al.

Table 5 (continued)

Property Description Guideline

However, if there is no
specification, the specific
implementation of each
task should be defined in
following steps of the
methodology.

Activation
condition

First order formula that
indicates under which
circumstances this action
will be activate.

Inputs Information that must be
supplied.

Precondi-
tion

A set of the input
conditions and
environment values that
must occur before
executing the action in
order to perform a correct
execution.

Outputs Information returned by
this action and tangible
results obtained.

Postcondi-
tions

Final states of the
parameters of the
environment, by means of
the different kinds of
outputs.

Fig. 9 Case study: objective decomposition diagram

The rights and duties that an entity acquires when it participates in the system
should be formalized. For example, reviewers should know, before they acquire the
commitment of reviewing a paper, when its revision must be provided. Therefore, a
contract-based approach is recommendable.

ROMAS Methodology 345

Ta
b

le
6

Ph
as

e
1—

C
as

e
st

ud
y:

ob
je

ct
iv

e
de

sc
ri

pt
io

n
do

cu
m

en
t

C
as

e
st

ud
y:

C
on

fe
re

nc
e

re
gi

st
ra

tio
n

ob
je

ct
iv

e
de

co
m

po
si

ti
on

Id
en

ti
fie

r
C

re
at

e
ne

w
co

nf
er

en
ce

A
llo

w
su

pe
rv

is
io

n
M

od
if

y
co

nf
de

ta
ils

G
et

In
fo

su
bm

is
si

on
s

G
et

In
fo

re
vi

ew
s

V
al

id
at

e
re

vi
ew

s
de

ci
si

on
D

es
cr

ip
ti

on
T

he
sy

st
em

sh
ou

ld
al

lo
w

th
e

re
gi

st
ra

tio
n

of
ne

w
co

nf
er

en
ce

s.
T

he
en

tit
y

w
ho

re
gi

st
er

s
th

e
co

nf
er

en
ce

sh
ou

ld
be

th
e

ch
ai

r
of

it.

T
he

au
th

or
iz

ed
en

tit
ie

s
sh

ou
ld

be
ab

le
to

su
pe

rv
is

e
th

e
st

at
us

of
th

e
co

nf
er

en
ce

an
d

m
od

if
y

its
de

ta
ils

.

T
he

de
sc

ri
pt

io
n

de
ta

ils
su

ch
as

de
ad

lin
es

,t
op

ic
s

an
d

ge
ne

ra
ld

es
cr

ip
tio

n
ca

n
be

m
od

ifi
ed

by
th

e
ch

ai
r

or
vi

ce
-c

ha
ir

of
th

e
co

nf
er

en
ce

.

T
he

sy
st

em
sh

ou
ld

pr
ov

id
e

in
fo

rm
at

io
n

ab
ou

tt
he

su
bm

itt
ed

pa
pe

rs
.

T
he

sy
st

em
sh

ou
ld

pr
ov

id
e

in
fo

rm
at

io
n

ab
ou

tt
he

re
vi

ew
s

th
at

ha
s

be
en

up
lo

ad
ed

in
th

e
sy

st
em

.

T
he

ch
ai

r
sh

ou
ld

va
lid

at
e

th
e

de
ci

si
on

s
ab

ou
ta

cc
ep

ta
nc

e
or

re
je

ct
io

n
of

pa
pe

rs
pe

rf
or

m
ed

by
th

e
re

vi
ew

er
s.

A
ct

iv
at

io
n

C
on

di
ti

on
T

ru
e

(a
lw

ay
s

ac
tiv

at
ed

)
C

on
fe

re
nc

e_
st

at
us

D
ac

tiv
at

ed
C

on
fe

re
nc

e_
st

at
us

D
ac

tiv
at

ed
C

on
fe

re
nc

e_
st

at
us

D
ac

tiv
at

ed
C

on
fe

re
nc

e_
st

at
us

D
ac

tiv
at

ed
C

on
fe

re
nc

e_
st

at
us

D
re

vi
si

on

D
ea

ct
iv

at
io

n
C

on
di

ti
on

Fa
ls

e
C

on
fe

re
nc

e_
st

at
us

D
ca

nc
el

ed
C

on
fe

re
nc

e_
st

at
us

D
ca

nc
el

ed
C

on
fe

re
nc

e_
st

at
us

D
ca

nc
el

ed
C

on
fe

re
nc

e_
st

at
us

D
ca

nc
el

ed
C

on
fe

re
nc

e_
st

at
us

D
ca

nc
el

ed
Sa

ti
sf

ac
ti

on
C

on
di

ti
on

F
ai

l
C

on
di

ti
on

T
yp

e
O

pe
ra

tio
na

l
A

bs
tr

ac
t

O
pe

ra
tio

na
l

O
pe

ra
tio

na
l

O
pe

ra
tio

na
l

O
pe

ra
tio

na
l

D
ec

om
po

si
ti

on
M

od
if

y
co

nf
de

ta
ils

A
N

D
G

et
in

fo
su

bm
is

si
on

s
A

N
D

G
et

in
fo

re
vi

ew
s

A
N

D
V

al
id

at
e

re
vi

ew
s

de
ci

si
on

R
el

at
ed

A
ct

io
n/

R
es

tr
ic

ti
on

Id
en

tifi
er

C
re

at
e_

ne
w

_c
on

fe
re

nc
e(

)
M

od
if

y_
co

nf
_d

et
ai

ls
()

G
et

_I
nf

o_
su

bm
is

si
on

s(
)

G
et

_I
nf

o_
re

vi
ew

s(
)

V
al

id
at

e_
re

vi
ew

s_
de

ci
si

on
()

Ty
pe

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Ta
sk

/P
ro

to
co

l
(c

on
ti

nu
ed

)

346 E. Garcia et al.

Ta
b

le
6

(c
on

ti
nu

ed
)

C
as

e
st

ud
y:

C
on

fe
re

nc
e

re
gi

st
ra

tio
n

ob
je

ct
iv

e
de

co
m

po
si

ti
on

D
es

cr
ip

tio
n

T
he

re
gi

st
ra

tio
n

m
us

t
be

pe
rf

or
m

ed
by

m
ea

ns
of

a
gr

ap
hi

ca
l

on
lin

e
ap

pl
ic

at
io

n.

A
ft

er
ch

ec
ki

ng
th

at
th

e
us

er
th

at
is

tr
yi

ng
to

m
od

if
y

th
e

co
nf

er
en

ce
de

ta
ils

is
au

th
or

iz
ed

to
do

th
at

,t
he

sy
st

em
w

ill
pr

ov
id

e
a

gr
ap

hi
ca

lo
nl

in
e

ap
pl

ic
at

io
n

to
up

da
te

th
e

de
ta

ils
.T

he
in

fo
rm

at
io

n
is

sh
ow

n
by

m
ea

ns
of

a
gr

ap
hi

ca
lo

nl
in

e
ap

pl
ic

at
io

n.

O
nl

y
pc

m
em

be
rs

ca
n

ac
ce

ss
to

th
e

in
fo

rm
at

io
n

ab
ou

ts
ub

m
is

si
on

s.
T

he
in

fo
rm

at
io

n
is

sh
ow

n
by

m
ea

ns
of

a
gr

ap
hi

ca
l

on
lin

e
ap

pl
ic

at
io

n

O
nl

y
pc

m
em

be
rs

th
at

ar
e

no
ta

ut
ho

rs
of

th
e

pa
pe

r
ca

n
ac

ce
ss

to
th

e
re

vi
ew

s
of

a
sp

ec
ifi

c
pa

pe
r.

T
he

in
fo

rm
at

io
n

is
sh

ow
n

by
m

ea
ns

of
a

gr
ap

hi
ca

lo
nl

in
e

ap
pl

ic
at

io
n

T
he

ch
ai

r
sh

ou
ld

va
lid

at
e

on
e

pe
r

on
e

th
e

de
ci

si
on

fo
r

ea
ch

pa
pe

r.
If

th
e

ch
ai

r
pe

rf
or

m
s

th
e

ac
tio

n
by

its
el

f
th

is
ob

je
ct

iv
e

w
ou

ld
be

pu
rs

ue
d

by
m

ea
ns

of
a

ta
sk

.I
f

th
e

fin
al

de
ci

si
on

is
ne

go
tia

te
d

be
tw

ee
n

th
e

PC
m

em
be

rs
th

is
ob

je
ct

iv
e

sh
ou

ld
be

pu
rs

ue
d

by
m

ea
ns

of
a

pr
ot

oc
ol

.

R
es

ou
rc

es
A

cc
es

s
to

th
e

co
nf

er
en

ce
s

da
ta

ba
se

A
cc

es
s

to
th

e
co

nf
er

en
ce

s
da

ta
ba

se
A

cc
es

s
to

su
bm

itt
ed

pa
pe

rs
da

ta
ba

se
A

cc
es

s
to

re
vi

ew
s

da
ta

ba
se

A
cc

es
s

to
re

vi
ew

s
da

ta
ba

se
.

A
ct

iv
at

io
n

co
nd

iti
on

R
eg

is
te

re
d

us
er

de
m

an
d

A
ft

er
th

e
re

vi
ew

de
ad

lin
e

is
fin

is
he

d
In

pu
ts

D
ea

dl
in

es
,t

op
ic

s
of

in
te

re
st

s
an

d
ge

ne
ra

l
in

fo
rm

at
io

n
Pr

ec
on

di
-

tio
n

T
he

en
tit

y
th

at
ex

ec
ut

es
th

e
ta

sk
sh

ou
ld

be
a

re
gi

st
er

ed
us

er
.

O
ut

pu
ts

Po
st

co
nd

i-
tio

ns
T

he
us

er
th

at
ex

ec
ut

es
th

e
ta

sk
be

co
m

es
th

e
ch

ai
r

of
th

e
co

nf
er

en
ce

.

A
ft

er
th

e
va

lid
at

io
n

th
e

de
ci

si
on

is
co

ns
id

er
ed

fin
al

an
d

au
th

or
s

sh
ou

ld
be

no
tifi

ed
.

ROMAS Methodology 347

Fig. 10 Case study: use case

2.2 PHASE 2: Organization Description

During this phase, the analysis of the structure of the organization is carried out.
In the previous phase of the methodology, the operational objectives are associated
to specific actions or restrictions. In this phase, these actions and restrictions are
analyzed in order to identify the roles of the system. A role represents part of the
functionality of the system, and the relationships between roles specify the structure
of the system.

2.2.1 Process Roles
The roles involved in this phase are the same as in the previous phase: the system
analyst and the domain expert. The domain expert is in charge of supporting the
system analyst facilitating information about domain requirements and restrictions.

2.2.2 Activity Details
The flow of tasks of this phase is reported in Fig. 11, and each task is detailed in
Table 8.

2.2.3 Work Products
This phase uses the work products produced in the previous phase (System defini-
tion), and it produces the following work products: one role description document
for each role; one internal view diagram for each role; and one organizational view
diagram. Figure 12 shows graphically the products used and produced by each task.

Some of the work products generated are instances of the ROMAS metamodel.
Figure 13 describes the relation between these work products and the metamodel
elements in terms of which elements are defined (D), refined (F), quoted (Q),

348 E. Garcia et al.

Table 7 ROMAS suitability guideline

DISTRIBUTION: It is recommendable to use a distributed approach to develop the system if any of these questions is
affirmative.
- Composed system: Is the system to be developed formed by different entities that interact between them to achieve
global objectives? Are there different institutions involved in the system?
- Subsystems: Is the system composed by existing subsystems that must be integrated?
- Distributed data: Is the required data spread widely in different locations and databases? Are there any resources that
the system uses distributed in different locations?

INTELLIGENT ENTITIES: It is recommendable to use an agent approach to develop the system if any of these
questions is affirmative.
- Personal objectives: Do the entities involved in the system have individual and potentially different objectives?
- Heterogenous: Is possible that entities of the same type had been implemented with different individual objectives and
implementations?
- Proactivity: Are the entities of the system able to react to events and also able to act motivated only by their own
objectives?
- Adaptability: Should be the system able to handle dynamic changes in its requirements and conditions?
SOCIAL STRUCTURE: It is recommendable to use an organizational approach to develop the system if any of these
questions is affirmative.
- Systems of systems: Does the system needs the interaction of existing institutions between which exist a social
relationship in the real-world that must be taken into account?
- Social relationships: Do the entities of the system have social relationships, such as hierarchy or submission, between
them?
- Departments: Is the functionality of the system distributed in departments with their own objectives but that interact
between them to achieve common objectives?
- Regulations: Are there different regulations for different parts of the system, i.e., is there any regulation that should be
applied to a group of different entities but not to the rest of them?
- Domain-like concepts: Is the domain of the system in the real-world structured by means of independent organizations?
INTEROPERABILITY: The system must implement interoperable mechanism to communicate entities if any of these
questions answers is affirmative.
- Technical Interoperability: Is possible that different entities of the system use different (potentially incompatible)
technologies?
- Process Interoperability: Is possible that different entities of the system employ divergent (potentially incompatible)
processes to achieve their goals?
- Semantic Interoperability: Is possible that different entities of the system utilize different vocabularies and coding
schemes, making it difficult to understand the data of others?
REGULATIONS: If the system has regulations associated it is recommended to apply a normative approach to develop
the system. Only in the unlikely possibility that the norms of the system were static (no possibility of changing over
time) and all the entities of the system are implemented by a trustworthy institution taking into account the restrictions
of the system a non normative approach could be used.
- Normative documents: Is the system or part of it under any law or institutional regulation?
- Resources restrictions: Are there specific regulations about who or how system resources can be accessed?
- Dynamic regulations: Should the system be adapted to changes in the regulations?
- Openness: Is the system open to external entities that interact and participate in the system and these entities should
follow the regulations of the system?
- Risky activities: Is there any action that if it is performed the stability of the system would be in danger?
TRUSTWORTHINESS: It is recommended to use a contract-based approach if any of these questions is affirmative.
- Formal interactions: Are there entities that depend on the behavior of the others to achieve their objectives and whose
interactions terms should be formalized?
- Contractual commitments: Should the entities of the system be able to negotiate terms of the interchanges of products
and services and formalize the results of these negotiations?
- Social commitments: Are the entities of the system able to negotiate their rights and duties when they acquire a specific
role? Could the social relationships between agents be negotiated between them?
- Control system: Is the system responsible of controlling the effective interchange of products between entities?
- Openness: Is the system open to external entities that interact and participate in the system acquiring a set of rights
and duties?

ROMAS Methodology 349

Fig. 11 Phase 2: activity tasks

Table 8 Phase 2: activity tasks

ID.task Task Description Roles involved

2.1 Identify roles Following the guideline Role
identification guideline the roles of the
system are identified and associated to
different parts of the system
functionality.

System analyst and domain expert

2.2 Describe roles Following the guideline Role
description document each identified
role is analyzed. The details about
each role are graphically represented
by means of instances of the internal
view diagram.

System analyst and domain expert

2.3 Identify
organizational
structure

Identify how the members of the
organization interact between them,
i.e., which social structure has the
organization and graphically represent
that using an organizational view
diagram

System analyst and domain expert

Fig. 12 Phase 2: resources and products used

related (R), or relationship-quoted (RQ). These terms are described in the specific-
ation of the FIPA template [2].
Role Identification Guideline

A role is an entity representing a set of goals and obligations, defining the
services that an agent or an organization could provide and consume. The set of
roles represents the functionality of the system; therefore, the roles that a system
should have are defined by the objectives of the system and should also take into
account previous system requirements. The relationships and interactions between

350 E. Garcia et al.

Fig. 13 Phase 2: relations between work products and metamodel elements

roles are the basis to define the structure of the organization. This guideline is
designed to help the system analyst to identify the roles that are necessary in the
system. Figure 14 represents de sequence of activities to do.

The first step of the process consists in asking the domain expert and checking in
the system description document whether there is any pre-established role defined
in the requirements of the system.

After that, every operational objective described in the Objective description
document should be analyzed. It is recommended to analyze all the operational
objectives obtained by the decomposition of an abstract objective before analyzing
the next abstract objective.

If this operational objective is associated to a restriction, it would add a norm in
the organization that pursues this objective. Besides, if this restriction is associated
to an external event or a threshold, there must be an entity responsible for handling
this event or measuring this threshold variable.

If this operational objective is associated to a protocol, the system analyst should
revise the sequence of actions necessary to perform this protocol in order to obtain
all the entities that participate in this protocol.

Usually, each task and functionality are associated to a role in order to create a
flexible and distributed system. However, decomposing the system into too many
entities can increase the number of messages between entities, the number of
restrictions, and the complexity of each activity. Although the system analyst is
responsible for finding the balance taking into account the specific features of the
domain, here we present some general guidelines:

ROMAS Methodology 351

Fig. 14 Phase 2: role identification guideline

It is not recommended to assign two functionalities to the same role when
• These functionalities have different physical restrictions, that is, they must be

performed in different places.
• These functionalities have temporary incompatible restrictions, that is, when they

cannot be executed at the same time by the same agent. For example, it is usual
that an entity was able to buy and sell, but as far as he is not able to sell and buy
the same item at the same time, it is recommended to create one role Buyer and
one role Seller. Remember that roles represent functionalities, so any final entity
of the system could be able to play several roles at the same time.

352 E. Garcia et al.

Fig. 15 Case study: roles overview

• These functionalities involve the management of resources that are incompatible.
For example, the functionality of validating who is able to access a database
should not be joint to the functionality of accessing the database. The reason is
that if the entity who is accessing the database is responsible for validating its
own access, the security can be compromised.
It is recommended to assign two functionalities to the same role when

• These functionalities cannot be executed concurrently and they are part of a
sequence.

• These functionalities access the same resources and have the same requirements.
• These functionalities can be considered together as a general functionality.

In order to provide a fast and general overview, it is recommended to create a
graphical representation of the relationships between the identified roles and the
tasks and protocols. A relationship between a role and an action in this diagram
means that the role is responsible for this action, participates in it, or is affected by
its results. Figure 15 gives an overview of the results obtained when applying this
guideline to the CMS case study. As is shown, seven roles have been identified:

ROMAS Methodology 353

Table 9 Phase 2: role description document

Property Description

Identifier General name of role. It is recommended to select a short name or an abbreviation.
Description Informal description of the role. There is no length limitation on this text.

List of
objectives in
which the role
participates

Objective’s
identifier

The identifier of the objective that this role is going to contribute to its
satisfaction

Description of its
contribution

An informal text describing how this role contributes to the satisfaction
of this objective.

Task/Protocol/
Service

Which task is responsibility of this role or in which protocol this role
participates. If this task should be activated as a reaction of a petition
of other entity, this task should be published as a service.

Responsibility
shared with

A text explaining if this role pursue this objective alone or if he
collaborates with others to achieve it.

Resources:
Used

A list of the resources (products, services and applications) that this role requires to develop its
functionality. This text should specify which type of access the role needs (reading, executing,
writing, partial or full access)

Resources:
Provided

A list of the resources (products, services and applications) that this role provides.

Events A list of the events that this role handles and with which task.
Restrictions A list of the restrictions that are inherent to the functionality that this role executes.These

restrictions are mainly derived from the information provided by the Domain Expert.
Other
memberships

A text explaining if this role in order to executes a task inside the organization it must be part of
other different organization. If it is know, its rights and duties in the other organization must be
detailed in order to ensure the coherence its objectives, rights and duties. However, due to privacy
restrictions it is probable that many details cannot be shared between organizations.

Personal
objectives

A role can pursue an objective not directly related to the functionality required by the
organization. For example, it can pursue an objective in order to maintain its integrity.

Who plays the
role

Is this role played by a single entity or by an organization? If it is played by an organization this
organization must be analyzed following each step of the methodology.

• The User role is an entity of the system that must be registered in order to access
the system. On the contrary of the rest of the roles, this role is not related to any
specific conference.

• The Author role is an entity attached to a specific conference in which this role
can submit papers and receive information about the status of its papers.

• The Chair role is the main role responsible for a conference. This role is able
to create a conference and share the responsibility of selecting the reviewers,
validate the revisions, and update the conference details with the Vice-Chair role.

• The PC member role is responsible for managing the reviews, can participate
in the selection of the reviewers, and have access to the information about
submissions and reviews for a specific conference.

• The Reviewer role is responsible for submitting the reviews to the system.
• The Publisher role is responsible for managing the revised versions of the papers

and printing the proceedings.
Role Description Document and Internal View Diagram

Each role should be described by means of the guideline offered in Table 9. This
guideline allows the analysis of the roles and also the analysis of the relationships
between them. After this analysis, this information is graphically represented by
means of an internal view diagram for each role.

354 E. Garcia et al.

Table 10 Phase 2: Case study—reviewer role description document

Property Description

Identifier Reviewer
Description This role is responsible from submit the reviews to the system. It is attached to an specific

conference. It is responsible from submit a review from a paper within the established deadline
and in the specific format that the conference specifies.

List of
objectives in
which the role
participates

Objective’s
identifier

Select reviewers Manage reviews

Description
of its
contribution

Reviewers should negotiate with PC
members which papers are they going
to review, when they are supposed to
provide the reviews and which specific
format these reviews must have.

Reviewers should send to the system
their reviews. PC members would
validate the reviews and contact the
reviewers if there is any doubt in the
information supplied

Task/Protocol/
Service

Reviewers participate in the protocol
Select_reviewers()

Reviewers are responsible from the
protocol Manage_reviews() and they
offer the service Execute_review()

Responsibility
shared with

PC members

Resources:
Used

- Reviews and papers database.

-They use the service Get_info_submissions()

Resources:
Provided
Events Conference details modification event
Restrictions - The same entity cannot be the author and the reviewer of the same paper.

- Reviewers only have access to the information about their own reviews. They do not have access
to other reviews or to the authors’s personal details.

Other
memberships

Any entity that wants to play the role reviewer should be previously registered in the system as a
user.

Personal
objectives

In general, there is no personal objectives for reviewers in the system. However, some conferences
can encourage the productivity of their reviewers by offering rewards for each revised paper or for
presenting the reviews before a specific date.

Who plays the
role

This role is played by a single entity.

Fig. 16 Case study: reviewer role diagram

As an example, Table 10 shows the description of the role reviewer from the case
study. Figure 16 shows its graphical representation using a ROMAS internal view
diagram.
Organizational View Diagram

One organizational view diagram is created to graphically represent the structure
of the system. Besides, this diagram also describes the overview of the system by

ROMAS Methodology 355

Fig. 17 Case study: organizational diagram

means of its global objectives and how the system interacts with the environment
of the system (which services offers and demands to/from the stakeholders and
which events the system is able to handle). The necessary information to fulfill
these diagrams is obtained from the System description document. Due to the
fact that in the literature, there are several well-defined guidelines to identify the
organizational structure of a system, ROMAS does not offer any new guideline.
Instead, the use of the guideline defined by the GORMAS methodology in [1] is
recommended.

Figure 17 shows the organizational view diagram of the CMS case study. Inside
the main system, the Conference organization represents each conference that is
managed by the system. Each conference is represented as an organization because
using this abstraction, each one can define its own internal legislation and can refine
the functionality assigned to each entity of the system.

2.3 PHASE 3: Normative Context Description

During this phase, the normative context of the system is analyzed by means of
identifying and formalizing the norms and the social contracts that regulate the
entities’ behavior inside the system. Norms are formalized using the following
syntax: (normID,Deontic,Target,Activation,Expiration,Action,Sanction,Reward).

2.3.1 Process Roles
The system analyst is responsible for performing the activities of this phase. The
domain expert will support the system analyst during the identification of the norms
that regulate the system.

356 E. Garcia et al.

Fig. 18 Phase 3: activity tasks

Table 11 Phase 3: activity tasks

ID.task Task Description Roles involved

3.1 Identify
restrictions from
requirements

Following the guideline
Organizational norms, the system
analyst formalizes the norms
described in the requirements that
regulate the agent behavior. This
norms refine the organizational view
diagram of the organization associated
to these norms.

System analyst and domain expert

3.2 Identify social
contracts

Following the guideline Social
contracts, the social contracts of the
system are identified and formalized
by means of the contract template
view diagram.

System analyst and domain expert

3.3 Validate
normative
context

Following the guideline Normative
context validation, the coherence
among system’s norms and between
them and the social contracts of the
system is validated.

System analyst

2.3.2 Activity Details
The flow of tasks inside this activity is reported in Fig. 18, and the tasks are detailed
in Table 11. Figure 19 describes the relation between these work products and the
metamodel elements in terms of which elements are defined (D), refined (F), quoted
(Q), related (R), or relationship-quoted (RQ).

2.3.3 Work Products
Figure 20 shows graphically the products used and produced by each task. The
remainder of this section details the following work products: (1) Organizational
norms guideline, (2) Social contracts guideline, (3) Normative context validation
guideline, (4) Contract template view diagram. The organizational view diagram of
the organization associated to the identified norms is refined by means of adding
these norms to the diagram, in the same way that the internal view diagram of each
role is refined by adding the social contracts and norms attached to this role.
Organizational Norms Guideline

This guideline specifies a process to identify and formalize restrictions on
the behavior of entities gained from the analysis of system requirements. These
normative restrictions are associated with specific features of the system and are
usually well known by domain experts but not formally expressed in any document.
This guideline helps the system analyst identify these restrictions with the support
of the domain expert.

ROMAS Methodology 357

Fig. 19 Phase 3: relations between work products and metamodel elements

Fig. 20 Phase 3: resources and products used

Step 1 Analysis of system description documents These documents contains in plain
text the requirements of the system, and if the system is composed of several
organizations, there will be one system description document for each organization.
The norms that arise from a document only affect the entities inside the organization
that this document describes. The following steps are executed:

1.1 Analysis of the resources For each resource of the system, such as a
database or an application, it is analyzed who has access to the resource, who
cannot access it, and who is responsible for its maintenance. Therefore, permission,
prohibition, and obligation norms are associated with these resources. For example,
the analysis of the Conference database highlights the norm that only the chair of

358 E. Garcia et al.

the conference can modify the details of the conference (NModifyDetails, FORBIDDEN, !Chair,

Modify(ConferenceDB),-,-,-,-).
1.2 Analysis of the events: For each event that the organization must handle, an

obligation norm to detect this event is created. If the organization should react to
this event by executing a task, another obligation norm is specified. The activation
condition of this norm is the event itself.

1.3 Analysis of the offers/demands: External stakeholders can interact with the
organization, offering and demanding services or resources. If the system is obliged
to offer any specific service, an obligation norm is created. If there are specific
entities that are allowed to offer, demand, or use a service, a related permission
norm is created. On the other hand, if there are specific entities that are not allowed
to offer, demand, or use it, a related prohibition norm is created.

1.4 Analysis of domain restrictions The last attribute of the system description
document analyzes if there are normative documents attached to the organization
or if there are specific domain restrictions that must be taken into account. In both
cases, the restrictions are specified in plain text, so the system analyst should analyze
and formalize these restrictions using a formal syntax. For example, in the CMS
case study, the domain expert has claimed that “Each conference should describe its
internal normative”. This restriction is formalized as (confNormative, OBLIGED, Conference,

Define(Normative),-,-,-,-). This norm will be attached to every conference; therefore,
the task of defining the internal normative should be added to a role inside the
conference. In this case, this task has been added to the chair responsibilities.
Step 2 Analysis of the objectives description document We can differentiate two
types of objectives: the objectives attached to restrictions and the objectives attached
to specific actions. First, for each objective that pursues the stability of any variable
of the system in a threshold, a forbidden norm should be created to ensure that the
threshold is not exceeded. A variable of a system is anything that the system is
interested in measuring; for example, the temperature of a room or the quantity of
money that a seller earns. Second, for each objective that is attached to an action, an
obligation norm is created in order to ensure that there is an entity inside the system
that pursues this objective. The activation and expiration conditions of the created
norms are determined by the activation and expiration conditions of the related
objective.
Social Contracts Guideline

This guideline specifies a process to identify and formalize social contracts inside
a specific organization regarding the information detailed in the role description
document, the roles’ internal view diagrams, and the structure of the organization.
Social contracts are used to formalize two kinds of social relationships: (1) play
role contract template, which specifies the relationship between an agent playing
a role and its host organization; and (2) social relationship contract template,
which specifies the relationship between two agents playing specific roles. Social
order thus emerges from the negotiation of contracts over the rights and duties of
participants.

One play role contract template should be defined for each role of the organ-
ization in order to establish the rights and duties that any agent playing this role

ROMAS Methodology 359

should fulfill. Therefore, in the CMS case study, seven play role contract templates
should be formalized: one for role user of the main organization and six for each
role described inside the Conference organization (author, reviewer, PC member,
Chair, Vice-chair, Publisher). That means that the rights and duties of an agent that
tries to play a role inside a conference can be different, depending on how each
conference negotiates these contracts. For example, one conference can establish
that a PC member cannot submit a paper to this conference while other conferences
do not add any restriction like that. Since every agent that intends to play a specific
role inside the system must sign a play role contract, every agent will be aware of
its rights and duties inside the organization in advance.

One social relationship contract template should be defined for each pair of
roles that must interchange services and products as part of the social structure
of the organization. Contracts of this kind should be negotiated and signed by the
related entities and not by the organization as a whole. However, if the terms of
the contract are not negotiated by the entities and the relationship between these
agents is determined by their organization, it is not necessary to create a social
relationship contract. Instead, the rights and duties of each role over the other are
included in their respective play role contracts. In the CMS case study, there is an
authority relationship between the chair role and the vice-chair role. The terms of
this relationship are specified by each conference. Therefore, the rights and duties
from one entity to the other are formalized in their respective play role contracts,
and no social relationship contract is created.

Below, each step of the guideline that should be applied to each role of the system
is described.
– Adding identified norms: Every restriction or norm identified during the applica-

tion of the Organizational norms guideline that affects the role should be added
to the contract. The norms that are attached to several roles but that include
this specific role should be added. This can increase the size of the contract,
so it is the responsibility of the domain expert to specify which norms should be
communicated. For example, in the case of CMS case study, not all governmental
norms related to the storage of personal data are included in the contracts; only a
norm that specifies that any agent inside the system should follow this regulation
is specified in the contracts.

– Analysis of the organizational objectives: In previous phases of the ROMAS
methodology, the requirements of the system are analyzed by means of the
analysis and decomposition of the objectives of the system. Each objective is
associated with an action that must be performed in order to achieve it, and these
actions are associated with specific roles that become responsible for executing
them. Therefore, for each objective related to a role, an obligation norm must
be created that ensures the execution of this action. If the action related to the
objective is a task, the role is obliged to execute this task. If it is related to a
service, the role is obliged to offer and register this service. The activation and
expiration of the norm match the activation and expiration of the objective.

– Analysis of offers/demands: The description of each role should specify which
resources and services this role must offer and which ones it can use. For each

360 E. Garcia et al.

resource and service that this role is able to use, a permission norm is added. For
each resource or service that this role cannot have access to, a prohibition norm is
created. Also, for each resource and service that this role is supposed to provide,
an obligation norm is added. In this sense, an agent would not be able to play a
role unless it were able to provide all the services and resources that are specified
in the play role contract.

– Analysis of the events: For each event that the role must handle, a norm that forces
any agent that plays this role to detect this event is created. If the role should react
to that event by executing a task, an obligation norm is created whose activation
condition is that event and indicates that the role should execute this action.

– Analysis of the relationships: As is discussed earlier, the norms derived from the
social relationships between roles should be included in the play role contract
template when they cannot be negotiated by the entities playing these roles,
that is, they are rigidly specified by the organization. In other cases, a social
relationship contract should be created and these norms included in it. The norms
that are derived from the social relationship should be activated only when the
social relationship is active and their deontic attribute depends on the type of
relationship between the parties. If two roles are incompatible, a prohibition
norm is added specifying this fact. In the same way, if any agent playing one
role is required to play another, an obligation norm is included in the contract.
Usually, a social collaboration appears when several roles should interact to
achieve a global goal of the organization. In such cases, a set of obligation
norms specifies which actions and services are the responsibility of each entity.
If the collaboration relationship indicates information, it means that one role is
obliged to inform another when some conditions occur. An authority/submission
relationship requires the specification of: (1) which services should provide the
submitted party, (2) which actions the authority can force the other agent to do,
and (3) which actions the submitted party cannot perform without the consent of
the authority.

– Analysis of personal objectives: A personal objective of a role is a goal that is
not directly related to the main goals of the system, but that all the agents that
play this role will pursue. The system as an entity can establish some restrictions
on the performance of personal objectives. An example of a personal objective
in the CMS case study is that although the agents that play the role author pursue
the objective of Submitting as many papers as possible, each conference can
establish limits on the quantity of papers that an author can submit to the same
conference.

Normative Context Validation Guideline
The validation of the normative context is understood as the verification that

there are no norms in conflict, that is, that the normative context is coherent. As
is presented in [3], conflicts in norms can arise for four different reasons: (1) the
obligation and prohibition to perform the same action; (2) the permission and
prohibition to perform the same action; (3) obligations of contradictory actions;
(4) permissions and obligations of contradictory actions. Therefore, after the
specification of the organizational norms and the social contract templates that

ROMAS Methodology 361

define the structure of the organization, it is necessary to verify that the normative
context as a whole is coherent.

Each organization can define its own normative context independently of the
other organizations that constitute the system. The first step is analyzing the
normative context of the most simple organizations, that is, the organizations that
are not composed of other organizations. After that, we will analyze the coherence
between this simple organization and the organization in which it is. This process
will continue until analyzing the coherence of the main organization of the system.

In order to analyze the coherence of a specific organization, it is necessary to
verify that: (1) There is no state of the system in which two or more organizational
norms in conflict are active. (2) There is no norm that avoids the satisfaction of an
organizational objective, that is, there is no norm that is active in the same states
as the objective is pursued and whose restriction precludes the satisfaction of this
objective. (3) There is no social contract that specifies clauses that are in conflict
with the organizational norms. (4) There is no pair of social contracts whose clauses
are in conflict between them and, therefore, the execution of one contract would
preclude the satisfactory execution of the other one. (5) There is no social contract
in which a role participates whose clauses preclude the satisfaction of the roles
objective.

The validation task can be performed manually or by means of automatic
techniques such as model checking. In [4], we present a plug-in integrated in
our case tool that allows a simple verification of the coherence between the
organizational norms and the contracts by means of the SPIN model checker [5].
Contract Template View Diagram

One contract template diagram is created for each identified social contract. The
recommended steps to specify a contract template are
– Identify signants: If it is a play role contract template, the signants are the entity

that tries to pursue this role and the organization as a whole. If there is a specific
role in charge of controlling the access to the organization, the entity playing
this role will sign the contract on behalf of the organization. If it is a social
relationship contract template, the signants are the entities playing the roles that
have the relationship.

– Attach clauses: The norms that have been identified by means of the social
contract guideline are included in the contract. If the norm to be included in the
contract must be in any contract of this type, this norm is defined as a hard clause.
On the contrary, if the norm to be included in the contract is a recommendation,
this norm is defined as a soft clause.

– Define receipts: In order to monitor the correct execution of the contract, it is
recommended to define specific artifacts that entities participating in the contract
should provide in order to prove the fact that they have executed their required
actions.

– Define authorities: Optionally, the designer can define who is responsible for
verifying the coherence of the final contract (notary), for controlling the correct
execution of the contract (regulation authority), and for acting in case of dispute
between the signant parties (Judge).

362 E. Garcia et al.

Fig. 21 Phase 3: Case study—reviewer play role contract template

– Identify protocols: Optionally, the designer can define specific negotiation, exe-
cution, and conflict resolution protocols. At this phase, only a general description
of these protocols is provided. They will be completely specified in the next phase
of the methodology.

Figure 21 shows the play role contract template that any entity that wants to play the
role reviewer should sign. It is signed by the role that wants to play the role reviewer
and by the conference in which the entity wants to participate. There are six clauses
attached to this contract template that specify that an entity playing this role is not
allowed to modify the details about a conference unless it is also the chair of this
conference (NModifyDetails norm), neither to access the submission information
about a paper in which he is also author (Incompatibility norm). This entity would
have permission to access the reviews database (WriteReviews norm) and to use the
service Get Info Submission (ReadSubmission norm). This entity would be obliged
to detect when the conference details have changed (DetectChanges norm) and to
provide the service Execute review (ProvideReview norm).

2.4 PHASE 4: Activity Description

During this phase, each identified task, service, and protocol is described by means
of instances of the activity model view.

ROMAS Methodology 363

Fig. 22 Phase 4: activity tasks

Table 12 Phase 4: activity tasks

ID.task Task Description Roles involved

4.1 Describe ontology System domain concepts are analyzed.
These concepts will be used to define the
inputs, outputs and attributes of tasks,
protocols and services.

System analyst and domain expert

4.2 Describe services Define service profile attributes for each
service. One activity view diagram is
created for specifying each service
implementation. If there are services that
should be published to other members of
the system or to external stakeholders, the
organizational view diagram of the system
should be refined by adding a
BulletinBoard. This abstraction is an
artifact where authorized entities can
publish and search services.

System analyst

4.3 Describe tasks and protocols Create one instance of the activity view
diagram for each task and protocol to
specify them. In addition to the protocols
associated to objectives and roles, the
contracts of the system should be
completed by adding specific negotiation,
execution and conflict resolution
protocols.

System analyst

2.4.1 Process Roles
The domain expert should provide the domain ontology and should give support to
the system analyst in the definition of the protocols, tasks, and services.

2.4.2 Activity Details
The flow of tasks inside this activity is reported in Fig. 22, and the tasks are detailed
in Table 12. Figure 23 describes the relation between these work products and the
metamodel elements in terms of which elements are defined (D), refined (F), quoted
(Q), related (R), or relationship-quoted (RQ).

2.4.3 Work Products
Figure 24 shows graphically the products used and produced by each task. One
activity view diagram is created for each task, protocol, or service identified in
the previous phases of the methodology. Phase 2 shows the tasks, services, and
protocols that each role should implement, and phase 3 identifies the negotiation,
execution, and conflict resolution protocols for the contract templates.

An example is presented in Fig. 25. It shows the description of the reviewer play
role negotiation protocol. First, the chair sends to the user that tries to play the role
reviewer the details about the conference (deadlines, topics of interest, . . .). The
user analyzes this information, and if necessary, proposes a change in the review

364 E. Garcia et al.

Fig. 23 Phase 4: relations between work products and metamodel elements

deadlines. This change can be accepted or rejected by the chair. If the chair rejects
the change, he can finish the interaction or modify his proposal and send it again
to the user. Once they have agreed on the conference details, the chair sends the
user the specification of the contract, that is, the rights and duties that the user will
acquire if he becomes a reviewer. This contract cannot be negotiated, so the user can
reject it and finish the interaction or accept it and begin playing the role reviewer
within this conference.

2.5 PHASE 5: Agents Description

During this phase, each identified agent is described by means of an instance of the
internal view metamodel.

2.5.1 Process Roles
The tasks of this phase are executed by the collaboration between the system analyst
and the domain expert. The domain expert should provide the information related
to agent development requirements. The system analyst should formalize these
requirements using the ROMAS diagrams.

ROMAS Methodology 365

Fig. 24 Phase 4: resources and products used

Fig. 25 Phase 4: Case study—reviewer play role negotiation protocol

366 E. Garcia et al.

Fig. 26 Phase 5: activity tasks

Table 13 Phase 5: activity tasks

ID.task Task Description Roles involved

4.3 Describe agent Following the guideline agent description
document, the development requirements
of each agent are analyzed.

System analyst and domain expert

4.1 Analyze objectives Following the guideline objectives
description document detailed in Phase 1,
the agent’s objectives are analyzed and
decomposed in operational objectives.

System analyst and domain expert

4.2 Associate with system
roles

Identify which roles the agent must play in
order to achieve its objectives. This
analysis is performed by matching the
agent objectives with the roles
functionality. Therefore, the objective
description document of the agent is
compared with the analysis of the roles
presented in the roles description
documents.

System analyst

4.4 Validate coherence Validar que puede cumplir sus objetivos y
que puede cumplir las tareas de los
contratos y que las normas del sistema no
van contra ninguna de sus normas
personales

System analyst

2.5.2 Activity Details
The flow of tasks inside this activity is reported in Fig. 26, and the tasks are detailed
in Table 13. Figure 27 describes the relation between these work products and the
metamodel elements in terms of which elements are defined (D), refined (F), quoted
(Q), related (R), or relationship-quoted (RQ).

2.5.3 Work Products
Figure 28 shows graphically the products used and produced by each task. First, an
agent description document is created for each agent. Table 14 shows the related
guideline and an example from the CMS case study. After that, each identified ob-
jective is analyzed following the guideline objective description document described
in Phase 1. The analysis of the objectives in our running example shows that the
main objective of the Ph.D. student agent, Improve CV, is decomposed into: Submit
thesis draft, Increase number of publications, and Collaborate in conferences. The
first objective is not related to any objective of the system, so it cannot be achieved
inside the conference management system. The second objective, Increase number
of publications, could be achieved if the agent joined conferences as an author. The
authors’ play role contract templates establish that any agent that wants to join a
conference as an author should submit an abstract of the paper. Since Bob has
unpublished papers that he could submit to a conference, he can play the role author.

ROMAS Methodology 367

Fig. 27 Phase 5: relations between work products and metamodel elements

Fig. 28 Phase 5: resources and products used

The third objective, Collaborate in conferences, could be achieved by being the PC
member of a conference. However, after the validation step, it is shown that Bob
cannot play the role PC member because any agent that wants to play this role must
be a doctor, and the agent is a Ph.D. student. One internal view diagram is created
for each to specify the features of each agent. As an example, Fig. 29 shows the
internal view diagram of the Ph.D. student agent.

368 E. Garcia et al.

Table 14 Phase 5: agent description document

Property Description Example

Identifier General name of the agent. It is
recommended to select a short name or
an abbreviation.

Ph.D. student

Description Informal description of the agent. There
is no length limitation on this text.

It is a Ph.D. student who wants to
participate in the system in order to
improve its CV.

Objectives Informal description of the agent’s
purposes of the agent.

- Improve its CV

Resources: Available for the
agent

A list of the resources (products,
services and applications) that the agent
has or provides.

- Unpublished papers

Resources: Required by the
agent

A list of the resources (products,
services and applications) that the agent
requires to develop its functionality.
This text should specify which type of
access the role needs (reading,
executing, writing, partial or full access)

Events A list of the events that this agent
handles.

Other memberships A text explaining if this agent is
interacting with other active systems or
organizations.

This agent plays the role Ph.D. student
inside its college.

Restrictions A list of the restrictions that are inherent
to the agent.

This agent must follow the regulation of
its college and that he is responsible of
the maintenance of the research group
database.

Fig. 29 Phase 5: Case
study—Ph.D. student agent
description

3 Work Product Dependencies

Figure 30 describes the dependencies among the different work products. For
instance, the analysis of the system description document is necessary to define the
objective description document and the use case diagrams.

ROMAS Methodology 369

Fig. 30 Work product dependencies

Acknowledgements This work is partially supported by the TIN2008-04446, TIN2009-
13839-C03-01, PROMETEO 2008/051 projects, CONSOLIDER INGENIO 2010 under grant
CSD2007-00022 and FPU grant AP2007-01276 awarded to Emilia Garcia.

References

1. Argente, E., Botti, V., Julian, V.: GORMAS: an organizational-oriented methodological
guideline for open MAS. In: Agent-Oriented Software Engineering, pp. 85–96. Springer, Berlin
(2009)

2. Cossentino, M.: Design process documentation template. Technical Report, FIPA (2010)
3. Fenech, S., Pace, G.J., Schneider, G.: Automatic conflict detection on contracts. In: Proceedings

of the 6th International Colloquium on Theoretical Aspects of Computing (ICTAC ’09), pp.
200–214 (2009)

4. Garcia, E., Giret, A., Botti, V.: A model-driven CASE tool for developing and verifying
regulated open MAS. Sci. Comput. Program. (2011). doi:10.1016/j.scico.2011.10.009

5. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual. Addison-Wesley
Professional, Reading (2003)

6. Tolvanen, J.-P., Marttiin, P., Smolander, K.: An integrated model for information systems
modeling. In: Proceedings of the 26th Annual Hawaii International Conference on Systems
Science, pp. 470–476. IEEE Computer Society Press, USA (1993)

INGENIAS with the Unified Development
Process

Alma Gómez-Rodríguez, Rubén Fuentes-Fernández,
Juan C. González-Moreno, and Francisco J. Rodríguez-Martínez

Abstract
This chapter introduces the definition of a process for the INGENIAS meth-
odology. It is an adaptation of the unified development process (UDP). The
process adopts the organization in phases of the UDP and proposes activities
and work products equivalent to the ones of UDP and suitable to develop
multi-agent-systems (MAS). As INGENIAS follows a model-driven approach,
these activities are largely focused on obtaining a specification of the MAS,
conforming to the INGENIAS metamodel. The case study of the conference
management system illustrates the application of this process to get a description
of the environment and users of the system and the workflows where it will act.

1 Introduction

The INGENIAS methodology [14] covers the full development cycle of multiagent
systems (MAS). It includes support for requirements elicitation (basic), analysis,
design, coding, and testing. It is intended for general use, that is, with no restric-
tions on application domains. The methodology is supported by the INGENIAS
development kit (IDK), which contains a graphical editor for MAS specifications.
Besides, the INGENIAS agent framework (IAF) [6] integrated in the IDK is a set of
libraries that facilitate the implementation of INGENIAS agents and is built on top
of the Java Agent DEvelopment Framework (JADE) [1].

A. Gómez-Rodríguez (�) • J.C. González-Moreno • F.J. Rodríguez-Martínez
Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain
e-mail: alma@uvigo.es; jcgmoreno@uvigo.es; franjrm@uvigo.es

R. Fuentes-Fernández
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
e-mail: ruben@fdi.ucm.es

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__12,
© Springer-Verlag Berlin Heidelberg 2014

371

mailto:alma@uvigo.es
mailto:jcgmoreno@uvigo.es
mailto:franjrm@uvigo.es
mailto:ruben@fdi.ucm.es

372 A. Gómez-Rodríguez et al.

Two alternative development processes have been proposed for the INGENIAS
methodology: a heavy one based on the unified development process (UDP) [2] and
an agile one adapting Scrum [17]. Brief descriptions of both of them can be found
in the papers [14] for the UDP and [4] for Scrum. This chapter discusses with detail
the first process, and chapter INGENIAS-Scrum addresses the second one.

The UDP [2], and its extended version the rational unified process (RUP) [16],
distribute the tasks of analysis and design in four consecutive phases: inception,
elaboration, construction, and transition. Each phase may have several iterations,
where iteration means a complete development cycle. An iteration performs
several workflows (i.e., disciplines), e.g., requirements, analysis and design, and
implementation. Performing the sequence of iterations of all the phases leads to the
final system.

The development process of the INGENIAS methodology following the UDP
[2] is often represented by its authors in a tabular form (see Table 1). The table
shows that INGENIAS considers only three phases: inception, elaboration, and
construction, with two different types of workflow, analysis and design. When
compared with the UDP, INGENIAS pays less attention to the transition phase and
the traditional manual coding and testing of the system. It also splits in two the
original UDP workflow of analysis and design, as it considers different activities
for them. These differences are largely due to the model-driven approach that
INGENIAS adopts [14].

The model-driven approach adopted in INGENIAS [14] is adapted from model-
driven development (MDD) [3] and promotes focusing the development on the
specification of systems and semi-automatically generating from them the other
artifacts, such as documentation, code, tests, and configuration scripts. INGENIAS
supports this kind of development with tools like the IDK [7] and the IAF [6],
which automatically generate running code from the system specifications. This
approach is based on the definition of a metamodel [5] that describes the elements
that constitute an MAS from several viewpoints (i.e., models). These viewpoints
are
• The definition, control, and management of each agent’s mental state
• The agent interactions
• The MAS organization
• The environment
• The tasks and goals assigned to each agent

The process guides the specification of these viewpoints to a suitable degree ac-
cording to the development goals. These goals can vary from eliciting requirements
using the INGENIAS modeling language to the generation of a running MAS.
Interested readers can find detailed references about the methodology from these
authors in the following:
• Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: The INGENIAS method-

ology and tools. In: Henderson-Sellers, B., Giorgini, P. (eds) Agent-Oriented
Methodologies, Chapter IX, pp. 36–276. Idea Group Publishing (2005).

• Gómez-Sanz, J.: Modelado de sistemas multi-agente (in Spanish). Ph.D. thesis,
Facultad de Informática, Universidad Complutense de Madrid (2002).

INGENIAS with the Unified Development Process 373

Table 1 Main goals in the lifecycle for the INGENIAS methodology

Workflows

Phases

Inception Elaboration Construction

Analysis To generate use cases and
identify actions of these
use cases with the
corresponding interaction
model.
To outline the system
architecture with the
organization model.
To generate the
environment model that
reflects requirement
elicitation.

To refine use cases.
To generate the agent
model that details the
elements of the system
architecture.
To continue with the
organization model,
identifying workflows and
tasks.
To obtain the tasks and
goals model that
highlights control
constraints (main goals
and goal decomposition).
To refine the environment
model introducing new
elements.

To study the remaining
use cases.

Design To generate a prototype
using tools for rapid
application development
such as ZEUS [9].

To focus the organization
model on workflows.
To refine the tasks and
goals model, reflecting
the dependencies and
needs identified in
workflows and the
relationships with system
goals.
To show how tasks are
executed using the
interaction model.
To generate an agent
model that shows the
required mental state
patterns.

To generate new diagrams
or refining existing ones in
the agent model.
To study social
relationships in order to
refine the organization.

• Grupo de Investigación en Agentes Software: Ingeniería y Aplicaciones.
INGENIAS Section. http://grasia.fdi.ucm.es/main/?q=es/node/61 (2010).

• Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with
INGENIAS. Lecture Notes in Computer Science, vol. 2691. Springer (2003).

1.1 Global Process Overview

The process of the INGENIAS methodology is designed following principles
present in the UDP [2]. The UDP takes the system architecture as the guideline
for development, and INGENIAS focuses the MAS definition and construction on

http://grasia.fdi.ucm.es/main/?q=es/node/61

374 A. Gómez-Rodríguez et al.

Fig. 1 Phases of the lifecycle for the INGENIAS methodology

its organization model. INGENIAS also organizes the development using three of
the four UDP phases shown in Fig. 1. Each of these phases includes two workflows,
analysis and design, focused respectively on the early definition of the system and on
a closer descripition to the target platform. Being a MDD methodology [3], models
are the key element in these definitions. The software engineering process proposes
activities where these models are their inputs and products. Next sections discuss all
these elements in detail.

1.2 Metamodel

INGENIAS is based on the concept of metamodel [14]. A metamodel defines the
primitives and syntactic properties of a model. The INGENIAS metamodel is organ-
ized into five metamodels that correspond to the five different views of the system.
Figure 2 shows the relationships between these metamodels. Each metamodel, in
turn, specifies several kinds of diagram that can be used to describe its perspective of
the system. Thus, the specification of a system in INGENIAS includes five models
(one for each perspective), which in turn can each include different diagrams. The
original work [5] explains in depth each of these metamodels.

Each of the considered metamodels supports several levels of abstraction, from
the very abstract one that can be used in requirements elicitation to the low-level one
required for coding. This is due to two main reasons. First, these metamodels are
intended to be a precise definition of the specification language and its particular
syntax and semantics. Second, they introduce all the modeling elements of the
INGENIAS methodology required by MDD tools (in particular by the IDK [7])
to guide code generation, both of MAS and support tools.

An example of these metamodels is the agent metamodel shown in Fig. 3 (taken
from [5] and translated to English). This metamodel shows several entities and their
relationships. An agent is identified as an autonomous entity, with particular goals
and a unique identity. Three more elements define the behavior of an agent: the
roles it must play, the tasks it can perform, and its mental state. The relationships
among them show how an agent can pursue its goals and how it achieves those
goals executing particular tasks. It is important to note that this metamodel has
some entities in common with other metamodels, such as agents and roles.

INGENIAS with the Unified Development Process 375

Fig. 2 Metamodel of the INGENIAS methodology

Fig. 3 Agent Metamodel of the INGENIAS methodology

1.3 Definition of MAS Metamodel Elements

Table 2 summarizes the main elements of the complete INGENIAS metamodel. For
further details, the original documentation of the methodology must be considered:
[5] for the metamodels and [13, 14] for their relationships with the MDD approach.
Most of this information is also available at the INGENIAS website [8].

376 A. Gómez-Rodríguez et al.

Table 2 Definition of MAS metamodel elements

Concept Definition Cross refs.

Agent It is an autonomous entity with identity and goals that performs
activities to achieve those goals.

Autonomous
Entity

Application An application is a wrapper to computational entities that are not
agents. These entities are systems that have an interface and a
concrete behavior.

Autonomous
Entity

It is the root concept that represents an entity with identity that
pursues goals.

Goal

Goal According to the BDI (belief–desire–intention) model for agents
[15], a goal is a desired state that an agent wants to reach. In the
planning stage, a goal is represented by a world state. Here a goal
is an entity by itself, though it can be related to a representation of
the world state using satisfactory relationships with tasks. These
relationships contain references to descriptions of mental states of
agents, so they refer to the image of the world that agents have.

Agent

Interaction An interaction represents an exchange between two or more
agents or roles. There can be only one initiator and at least one
collaborator. An interaction also details the goals pursued. These
goals should be related to the goals of the participants.

Agent, Role
and Goal

Mental
State

A mental state represents the information an agent has in a certain
moment. It is an aggregate of mental entities.

Agent

Organization It is a set of agents, roles, and resources that get together to
achieve one or several goals. Inside an organization, there are no
other organizations, just groups. You can think of an organization
as a company that is internally organized into departments, which
may be restructured without affecting the external image of the
company.

Agent

Resource A resource is an element available in the environment for use but
lacking a defined interface. INGENIAS adopts the notion of
resource in TÆMS [10], though it makes no distinction between
consumable and nonconsumable resources.

Role A role is a self-contained grouping of functionalities. When an
agent plays a role, it is able to execute all the tasks associated to
the role and participate in the same interactions.

Agent

Task Tasks encapsulate actions or nondistributable algorithms. They
can use applications and resources. Tasks generate changes in the
mental state of the agent that executes them. These changes can
include (a) modifying, creating, or destroying mental entities and
(b) changing the perceived world by acting over applications,
which in turn act over the world producing the events that agents
perceive. Tasks can be assigned to roles, but at the end, they
belong to agents that provide their actual implementation.

Agent and
Role

Workflow A workflow is an abstraction of a process that has been
automatized using activities and identifying responsibility
relationships.

INGENIAS with the Unified Development Process 377

Fig. 4 Activities and workflows of the inception phase

2 Phases of the Process

2.1 Process Documentation: Phase

INGENIAS considers that the development starts from a document describing the
problem. This can be considered as the initial input of the process. From this
document, the inception phase introduces several activities, which Fig. 4 shows. As
stated previously, each of the INGENIAS phases may have several iterations, so the
figure just describes a single iteration.

Regarding the analysis workflow, the activities to make at this level are
• Create use case model
• Obtain environment model
• Create the organization model to initiate the architecture

Regarding Design phase only the construction of a rapid prototype must be
addressed. Figures 5 and 6 show the details of these activities, the tasks associated to
them, and the related work products. The Figure also identifies the roles responsible
for each task and the kind of responsibility they assume.

2.1.1 Process Roles
The INGENIAS methodology makes no explicit reference to the roles implied in
the development. Nevertheless, and considering the activities to be done and their
level of abstraction, two roles are described as implied in the process: the system
analyst and the designer.

The system analyst is responsible or performs most of the activities in this phase.
In particular, the analyst’s responsibilities are
• Identify use cases and construct and refine use case diagrams. From the initial

description of the problem to be solved, the analyst must obtain the use cases
that will guide the creation of the interaction model.

• Define the environment model, showing the interaction of the system with its
environment. This implies: to identify applications, i.e., all the software and
hardware that interact with the system and are not designed as agents; to associate
operations to particular applications; and to define the agent perception on
applications.

• Obtain the architectural view of the system using the organization model. This
means generating a structural definition of the system by identifying groups in
the organization, their members, and goals.
The other role present in this phase, the designer, is responsible for generating

the prototypes to validate the system analyst’s specifications. This development is

378 A. Gómez-Rodríguez et al.

Fig. 5 Detailed tasks of inception activities (part A)

done using rapid application development tools such as ZEUS [9] or the IDK with
the IAF [6].

2.1.2 Activity Details
This section details the activities previously outlined for the inception phase through
their tasks.

Create the Use Case Model. The generation and refining of use cases has been
identified as a unique task. Its goal is to identify the intended functionality of the
system. Knowing this functionality allows identifying interactions and establishing
their initiators, collaborators, and nature. The nature of the interaction influences
the type of control applied to the involved agents and can be planning, cooperation,
contract-net, or competition.

Obtain the Environment Model. The environment model shows the elements that
constitute the environment of the system and, in consequence, that agents have to
perceive. This model defines elements of three main types: agents, resources, and
applications. The tasks that must be accomplished to obtain the environment model
of the system to develop are outlined in Fig. 7 and further explained in Table 3.

INGENIAS with the Unified Development Process 379

Fig. 6 Detailed tasks of inception activities (part B)

Fig. 7 Obtain the environment model in the inception phase of INGENIAS

Create the Organization Model. One of the key activities in the inception phase
is to start the definition of the system architecture. This is done by specifying
the organization model, which reflects mainly the system structure and workflows.
Figure 8 shows the main tasks related with this activity. These tasks try to obtain an
organizational view of the system, attending to its structural, functional, and social
aspects. Table 4 provides the detailed definition of these tasks.

Generate Prototype. The construction of a prototype is a unique task. As said
previously, the prototype is generated using a rapid application development tool.

2.1.3 Work Products
The inception phase produces as a result four basic work products: a use case model,
an environment model, an organization model, and a prototype of the system to
be built. Figure 9 shows the relationships among these models and the metamodel
elements. For instance, the organization model defines the organization and agent

380 A. Gómez-Rodríguez et al.

Table 3 Tasks of activity Obtain the Environment Model of the inception phase of INGENIAS

Activity Task Description Involved roles

Obtain the
Environment
Model

Identify
applications

All the software and hardware that
interact with the system and that are not
designed as an agent are considered
environment applications.

System Analyst

Associate
operations to
applications

Operations are associated to environment
applications defined by requirements.
These operations have a signature,
preconditions, and postconditions. The
identification of operations is a
conventional engineering task.

System Analyst

Define agent
perception

This task defines agent perception on
environment applications. At this
moment of the process, it is enough to
link agents and environment applications.

System Analyst

Fig. 8 Create the Organization Model in the inception phase of INGENIAS

metamodel elements and uses the roles and goals previously defined in the use case
model. In this particular case, the organization concept also includes the groups
within the organization (see the organization definition in Table 2).

Work Product Kinds
Table 5 introduces all the work products of the inception phase with their description
and kind.

Use Case Model
The use case model gathers the use case diagrams, describing the functionalities
that must be provided by the system. These diagrams follow the standard unified
modeling language (UML) [12] with some INGENIAS extensions.

Figure 21 shows the initial use case diagram for the case study of the conference
management system (CMS).

INGENIAS with the Unified Development Process 381

Table 4 Tasks of activity Create the Organization Model of the inception phase of INGENIAS

Activity Task Description Involved roles

Create the
Organization
Model

Identify
groups

Identify the groups in the system as
participants in each particular workflow.

System Analyst

Generate
group
members

The members of a group can be agents,
roles, resources, and applications. These
are assigned to groups, creating the
corresponding relationships. If needed,
the groups can be decomposed in order to
reduce their complexity.

System Analyst

Identify goals The organization has a set of goals that
must justify the collaboration between
agents. The goals identified in this task
(or their decomposing goals) will be
assigned later to individual agents or
roles in the tasks and goals model.

System Analyst

Fig. 9 Structure of the work products of the inception phase in INGENIAS

Environment Model
The environment model shows the applications outside the system, which condition
the perception of the agents. In order to simplify such an environment, the model
distinguishes several observable entities: the resources the system will consume, the
applications it will use, and the agents that will interact with the previous elements.

Figure 22 shows a diagram of the environment model in the case study.

382 A. Gómez-Rodríguez et al.

Table 5 Work product kinds of the inception phase of INGENIAS

Name Description Work Product Kind

Use Case Model A description of the functionalities that must be
provided by the system, as well as the actors
implied. It may include free text descriptions.

Composite

Environment
Model

The model provides a description of the
applications outside the system and determines
the perception of agents.

Composite

Organization
Model

The model describes the organization, introducing
the groups the system is formed of, and the
pursued goals.

Structural

Organization Model
The organization model defines the structure where agents, resources, tasks, and
goals relate. This structure includes among other elements: organizations, groups,
and workflows.

In Fig. 23, an example of this kind of work product is shown. The diagram shows
the groups in the CMS, the roles belonging to them, and the goals these roles pursue.

2.2 Process Documentation: Elaboration Phase

The second phase of the methodology is Elaboration. It constitutes the central part
of the process, as it includes the most time-consuming activities. As in the previous
phase of inception, the elaboration phase comprehends several activities related to
the analysis workflow and others that can be identified with the traditional concept
of design.

Figure 10 shows the activities of this phase. They are as follows:
• Refine the use case model
• Refine the organization model
• Create the agent model
• Create the tasks and goals model
• Refine the environment model
• Show task execution using the interaction model

Figures 11 and 12 show the activities of the elaboration phase. For the sake
of simplicity, only the most significant relationships are shown. The diagram also
includes the tasks that make up each activity, as well as the work products they use
and/or produce. A more detailed description of all these elements will be introduced
in the next sections.

2.2.1 Process Roles
As stated before, INGENIAS makes no explicit reference in its definition to the roles
implied in the development. Nevertheless, and attending to the different focuses that

INGENIAS with the Unified Development Process 383

Fig. 10 Activities and workflows of the elaboration phase

Fig. 11 Detailed tasks of elaboration activities (part A)

the activities suggest, we have identified three different participant roles within this
phase: the system analyst, the agent analyst, and the designer.

The system analyst has identified the use cases in the previous phase, so that,
in this phase also it is the role responsible for refining that model. In addition, this
analyst continues refining the organization and environment models.

Another role implied in this phase is the agent analyst. This is a specialist analyst
that provides a detailed definition of the system in terms of its agents. Therefore, the
responsibilities of this analyst include the activities to create the agent and the tasks
and goals models.

384 A. Gómez-Rodríguez et al.

Fig. 12 Detailed tasks of elaboration activities (part B)

The third role is the designer. In this phase, the only responsibility of this role is
to describe tasks execution using the interaction model.

2.2.2 Activity Details
This section details the activities previously outlined for the elaboration phase
through their tasks. These details are provided through their decomposition in tasks.

Refine the Use Case Model. This activity identifies several components and
features of the already identified use cases. It establishes their participants and their
roles in the interaction, their nature (i.e., type according to agent literature), and the
goals these interactions pursue. Figure 13 introduces a detailed view of the activity,
including its tasks, work products, and involved roles. The details of these tasks
appear in Table 6.

Refine the Organization Model. The initial organization model is improved
during this activity with two dimensions of decomposition. A structural definition of

INGENIAS with the Unified Development Process 385

Fig. 13 Refine the Use Case Model in the elaboration phase of INGENIAS

Table 6 Tasks of activity Refine the Use Case Model of the elaboration phase of INGENIAS

Activity Task Description Involved roles

Refine the Use
Case Model

Identify
interaction
participants

Use cases can involve several participants
that must be identified. In addition, the
role played by each participant in the
interaction must also be established,
distinguishing between initiators and
collaborators.

System Analyst

Define the
nature of
interactions

The methodology distinguishes several
kinds of interaction: planning,
cooperation, negotiation and competition.
These are extracted from research in the
agent’s field. These kinds of interaction
have an influence on the type of
processing of the mental state for each
agent. For instance, a planning interaction
probably requires planning capabilities
from the involved agents.

System Analyst

Identify the
goals pursued

The participants in a use case interact in
order to achieve a goal or a set of goals.
This task identifies these goals.

System Analyst

the system is provided through the identification of its groups and their members. A
functional definition is established through the identification of workflows and their
relationships. Table 7 details these tasks.

Create the Agent Model. The agent model tries to provide a view of the system
that takes into account the individual agents that compose it. In order to obtain such
model, this activity identifies agents and their features, e.g., social and negotiation
skills or learning capabilities. Then it links the roles identified in previous activities
with the agents that will play them. Having a clear initial picture of the kind of re-
sponsibilities of each agent, this activity also identifies requirements for their mental
state manager and mental processor. Table 8 provides more details on these tasks.

386 A. Gómez-Rodríguez et al.

Table 7 Tasks of activity Refine the Organization Model of the construction phase of INGENIAS

Activity Task Description Involved roles

Refine the
Organization
Model

Identify the
groups in the
organization

This task identifies the groups that form a
part of the organization and generates
their members. When groups are too
complex, this task can decompose them
into several groups.

System Analyst

Identify
workflows

This step identifies workflows to give a
functional definition of the system. After
their identification, workflow
decomposition can be applied to reduce
complexity.

System Analyst

Table 8 Tasks of activity Create the Agent Model of the elaboration phase of INGENIAS

Activity Task Description Involved roles

Create the
Agent
Model

Identify agents INGENIAS identifies as agents those
entities of the system that are modeled
following the Rationality Principle [11].
This task also establishes what are the
qualities each agent should exhibit, e.g.,
intelligence degree, learning skills, or
social reasoning.

Agent Analyst

Associate roles
to agents

The roles previously identified must be
associated to the agents that will play
them. This assignment helps to
understand how the goals of a particular
role are accomplished.

Agent Analyst

Identify
requirements of
agent mental
states

This task introduces a higher level of
detail in agent definitions. It considers the
requirements on the mental entities an
agent will need to manipulate in order to
establish its mental state manager and
mental processor.

Agent Analyst

Create the Tasks and Goals Model. This activity decomposes the goals and
tasks identified in previous diagrams. It includes several interleaved tasks. Analysts
need to further decompose goals and tasks in hierarchies and, at the same time,
identify which goals and tasks are linked by the different INGENIAS relationships,
such as satisfaction or creation. Goals are initially identified with requirements.
As their decomposition becomes more detailed, desires of agents also appear as
goals (see the BDI model in [15] regarding the definition of desires). According
to the INGENIAS methodology, each agent task should have at the end of the
specification a goal associated, as only when that goal is not satisfied the task is
candidate for execution. The reciprocal for goals is not always true, as a goal can be
satisfied because the related task generates evidences of its satisfaction or because
the goals of its decomposition have been satisfied. Table 9 shows the tasks that must
be accomplished to obtain the tasks and goals model in this activity.

INGENIAS with the Unified Development Process 387

Table 9 Tasks of activity Create the Tasks and Goals Model of the elaboration phase of
INGENIAS

Activity Task Description Involved roles

Create the
Tasks and
Goals Model

Identify tasks
and goals

The goals can be identified with
requirements, but also with the desires
associated to agents as the goal
decomposition proceeds. As for goals, two
approaches are possible: to relate the tasks
with the functions required in the system or
to obtain them from association to
objectives.

Agent Analyst

Associate tasks
and goals

The association between tasks and goals
determines how a goal is satisfied. It must
be noted that it is not mandatory that each
and every goal is associated with a task. A
goal can be satisfied through the execution
of a task or the satisfaction of its subgoals.
The associations between tasks and goals do
not only indicate satisfaction, as other
relationships are possible. Examples of
them are create, destroy, and affects.

Agent Analyst

Decompose
goals

If there are complex goals, they can be
decomposed in hierarchies of goals using a
decomposition relationship without specific
meaning.

Agent Analyst

Decompose
tasks

If there are complex tasks, they can be
decomposed. There is only one
decomposition relationship without specific
meaning for this. Complex decomposition
relationships between tasks can be
represented using their inputs and outputs
and conditions involving them. This
decomposition task is closely related to the
previous one for goals. Generally, the
creation of new tasks should produce as a
result the creation of new goals.

Agent Analyst

Establish
dependencies
between goals

The achievement of a goal can depend on
the achievement of other goal or goals. In
this case, the goal is decomposed into other
goals. When these dependencies are evident,
they can be directly introduced in the
diagrams. INGENIAS includes AND, OR
and nonspecified decompositions for goals.

Agent Analyst

Refine the Environment Model. The initial version of the environment model is
revised and refined within this activity. The tasks in this activity identify and define
applications in the environment and resources available to the system. Applications
and resources represent entities that are related or part of the system but are not
agents. Applications provide some functionalities accessible as methods and trigger

388 A. Gómez-Rodríguez et al.

Table 10 Tasks of activity Refine the Environment Model of the elaboration phase of INGENIAS

Activity Task Description Involved roles

Refine the
Environment
Model

Identify
applications in the
environment

Attending to the methodology definitions,
all the software and hardware that
interact with the system and cannot be
designed as an agent will be considered
an application or a resource. Environment
applications have a functional interface
described in terms of methods and events.

Agent Analyst

Associate
operations to
applications

The applications identified in the
previous task must be associated with the
definition of the operations they provide.
The different operations are characterized
by their signatures, preconditions, and
postconditions. Applications can also
trigger events that agents perceive. This
perception must also be explicitly
represented.

System Analyst

Identify resources The environment also contains resources.
These are elements available in limited
numbers and can be consumable or not
consumable.

System Analyst

Associate
applications and
resources
to agents and
groups

The agents and groups of the system are
associated to the applications and
resources they interact with. In fact,
resources are associated with the role or
agent that is responsible for their
management and environment
application with the roles or agents that
can access them.

Agent Analyst

events to inform agents. Resources represent entities available in limited numbers.
These elements are linked to groups and agents to represent access constraints. The
details of these tasks are provided in Table 10.

Show Task Execution Using the Interaction Model. This activity is related
mainly with the design workflow, because it brings models closer to implementation
issues. It adds to the functional decomposition details, depending on the target
platform. For instance, a platform like JADE [1], with a strong focus on interac-
tions, requires more details on communications between agents than a basic Java
implementation. Regarding interactions, this activity also provides their GRASIA-
specification diagrams. These diagrams include information on participants, related
goals and tasks, and interaction units (i.e., pieces of information) exchanged
between participants. Table 11 shows the details of these tasks.

2.2.3 Work Products
The elaboration phase produces as its final result the models that define the whole
system, which are used as a previous step to automated code generation. These

INGENIAS with the Unified Development Process 389

Table 11 Tasks of activity Show task execution using the interaction model of the construction
phase of INGENIAS

Activity Task Description Involved roles

Show task
execution using
the
Interaction
Model

Refine
functional
description

The functional description has to be
extended with information required to
guide the transition toward the target
platform.

Designer

Generate
GRASIA
specification

The GRASIA specification diagram
describes for an interaction its interaction
units, their sorting, the association
between transmitter and receiver, the
involved tasks, and the goals participants
pursue with the interaction.

Designer

Fig. 14 Structure of the work products of the elaboration phase of INGENIAS

models are the organization model, the agent model, the tasks and goals model,
the environment model, and the interaction model, which includes the GRASIA
specification diagrams. Figure 14 shows the relationships among these models and
the related metamodel elements. For instance, the agent model defines the agent and
mental state concepts and uses, mainly, autonomous entity, role, and goal concepts.

390 A. Gómez-Rodríguez et al.

Table 12 Work product kinds of the elaboration phase of INGENIAS

Name Description Work Product Kind

Use Case Model See Sect. 2.1.3
Environment Model See Sect. 2.1.3
Organization Model See Sect. 2.1.3
Agent Model It describes the responsibilities and behavior

of each particular agent.
Composite
(Structured C
Behavioral)

Tasks and Goals
Model

This model introduces the inputs and
outputs of tasks and the goals their
execution satisfies.

Behavioral

Interaction Model This model shows how agents exchange
messages and share knowledge.

Composite
(Structured C
Behavioral)

Work Product Kinds
Table 12 introduces all the work products of the elaboration phase with their
description and kind.

Agent Model
The agent model describes the agent responsibilities, that is, the tasks to be
accomplished and the goals to be achieved. The agent actual behavior will be
determined by its mental state (i.e., known information), the management of this
state, and the decision mechanism.

Tasks and Goals Model
This model introduces the behavioral part of the system definition. Agent behavior
will be oriented to achieve its goals by accomplishing several tasks.

There are several examples of this kind of diagram in the case study. Each
diagram represents a different way in which the model can be used. For instance,
Fig. 25 shows a decomposition of goals, while Fig. 26 shows the consequences of
task execution.

Interaction Model
This model defines the interactions between agents or between agents and human
beings. At a high level, only information about participants and their role in
the communication is required. When needed, additional details can be included,
such as interaction protocols, information exchanged, and tasks to process that
information. In this last case, structured GRASIA specifications can be used.

Figure 27 shows an example of the GRASIA specification diagram for an
interaction. It illustrates the e-mail communications in the CMS case study between
members of the organizing committee (OC) and the candidates for the program
committee (PC).

INGENIAS with the Unified Development Process 391

Fig. 15 Activities and workflows of the construction phase

2.3 Process Documentation: Construction Phase

The construction phase introduces activities intended to refine the work products of
the previous phases in order to generate the final code. Figure 15 shows a general
description of it.

The analysis workflow accomplishes the following activities in this phase:
• Refine existing models to cover use cases
• Validate code

For the design workflow, the following activities must be considered:
• Refine organizational models with social relationships, which includes refining

the organization, agent and environment models
• Generate a component model
• Generate a deployment model
• Specify code templates to apply
• Validate code

Although the previous list does not include explicitly model validation, this is
an activity that actually appears in all the INGENIAS phases. In the construction
phase, the models previously created by a role are changed by other, so suitable
validation activities must be performed to cross-check the different artifacts,
including diagrams, code, and documentation.

Figures 16 and 17 show an overview of these activities, their tasks, and the related
work products. It also includes the roles responsible for the different aspects of the
phase.

2.3.1 Process Roles
As for the other phases, the INGENIAS methodology makes no explicit reference
to the roles implied in the construction phase. Considering the activities involved in
it, this process identifies two roles in this phase: the designer and the programmer.

The designer is responsible for most of the activities in this phase, as INGENIAS
adopts an MDD approach. The designer’s responsibilities include refining existing
models to identify complex algorithmic behaviors. The deployment model describes
the nodes where the code is deployed. The designer also generates tests to validate
the code using an MDD approach.

The programmer translates the specifications of the designer to actual code. The
code structure is described with the component model. Getting the code can include
programming or getting external code to describe complex behaviors, programming
new code templates to implement transformations, and programming new scripts
when required for deployment.

392 A. Gómez-Rodríguez et al.

Fig. 16 Detailed tasks of construction activities (part A)

2.3.2 Activity Details
This section details the activities previously outlined for the Construction phase
through their tasks.

Refine Existing Models to Cover Use Cases. The refinement of models to cover
use cases includes two main tasks in the construction phase. First, the identification
of those components whose detailed behavior cannot be specified with the modeling
language. This behavior will be later specified using programming code. Second,
including the model-specific information used by MDD tools for code generation.
These tasks are explained in Table 13.

Refine Organizational Models with Social Relationships. The generation of
code implies a review of the relationships between components identified in
previous phases. These relationships influence, among others, visibility and access
to code.

Generate a Component Model. The component model focuses on the lowest-level
issues of a system. This activity specifies the organization of the code, for instance,

INGENIAS with the Unified Development Process 393

Fig. 17 Detailed tasks of construction activities (part B). Tasks in the lower row use as input the
work products in the upper row (showed in part A), though this is omitted in the diagram

in packages and components, it identifies components with elements whose code
cannot be automatically generated, and links manually generated code to those
elements in the specifications that needed it. This activity includes several tasks
that are shown in Fig. 18 and further explained in Table 14.

Generate a Deployment Model. The specification of a system includes the
features of the computational devices where it runs. It also indicates the nodes
where the different components will be deployed and the characteristics of this
deployment. Table 15 describes the tasks of this activity.

Specify Code Templates to Apply. The INGENIAS MDD relies on code templates
to generate code for the target platforms from specifications. These templates are
coded for the first project in a given target platform, and reused, checked, and refined
in later developments for the same target platform. Table 16 describes the related
tasks.

Validate Code. The code, whether automatically generated or manually developed,
must be checked against the models and for the absence of bugs. In an MDD
approach, this implies the generation of the running and test code. The component
and deployment models include information on the test code through the testing
package and test elements, respectively. Tests specify the code to be run for a given

394 A. Gómez-Rodríguez et al.

Table 13 Tasks of activity Refine existing models to cover use cases of the construction phase of
INGENIAS

Activity Task Description Involved roles

Refine
existing
models to
cover use
cases

Identify
components with
algorithmic
behavior

All the tasks and applications whose behavior
cannot be expressed using the modeling
language are included. For these, a specification
of the algorithm must be provided. INGENIAS
does not consider any specific language for this
purpose but recommends some level of
formalism, for instance, with pseudocode, logics
or some programming language.

Designer

Refine existing
models with
information
required for code
generation with
respect to tools

The tools used for code generation have specific
requirements regarding this task. For instance,
the IDK [7] requires a specification of the
management of mental entities by agents. This
task adds this information to available models.

Designer

Refine existing
models according
to the requirements
of target platforms

Part of the information of models can depend on
the target platform. For instance, there must be a
specification of the target programming
language to be used. Note that these
requirements are not only about new
information, but also the level of detail of the
information already available. For instance, a
target platform with a focus on agent
interactions would probably require a higher
level of detail in the interaction model than
other platforms.

Designer

Fig. 18 Generate a component model in the construction phase of INGENIAS

test, and testing packages the configuration of the system (e.g., agents, nodes, and
initial parameters) and the tests to run. The development of these elements is similar
to that of the rest of the components and packages in the already mentioned models.

2.3.3 Work Products
The construction phase produces as a result five basic work products: a component
model, a deployment model, code templates, external and generated code, and
platform-oriented versions of models from previous phases. The relationships
among the models and the metamodel elements are shown in Fig. 19.

INGENIAS with the Unified Development Process 395

Table 14 Tasks of activity Generate a Component Model of the construction phase of INGENIAS

Activity Task Description Involved roles

Generate a
Component
Model

Identify
external code
sources for
components

The algorithm specifications can be
solved linking them to externally
available implementations. This is done
in the component model using
INGENIASComponents. The MDD tools
insert this external code in the generated
code following the applied code
templates for the target platform.

Programmer

Provide
specific code
for
components

Some algorithms are manually coded and
inserted in the specifications as linked to
particular elements, e.g., to a Task or
Application method. This code is added
in the INGENIASCodeComponents of the
component model. The MDD tools use
this code in a similar way to the external
code in task Identify external code
sources for components.

Programmer

Table 15 Tasks of activity Generate a Deployment Model of the construction phase of
INGENIAS

Activity Task Description Involved roles

Generate a
Deployment
Model

Define
deployment
nodes

Identify the features of the computational
resources for the deployment. This
information appears in deployment
diagrams as the description of
TestingPackage, SimulationPackage, or
Deployment Package elements. INGENIAS
only supports the textual description of
further information on these resources.

Designer

Specify
deployment

The deployment includes the description in
Deployment diagrams of deployment units
that specify the type, number, and
initialization of components.

Designer

Develop
deployment
scripts

The deployment of the system may need
the setup of a given execution environment
in the target nodes. For this purpose,
specific configuration scripts can be
developed. These appear in deployment
diagrams as INGENIASComponents or
Applications.

Programmer

The component model defines the Component metamodel element to group
code components and describes its code with INGENIASCodeComponents. These
elements can appear linked to application, goal, task, and test elements to indicate
the organization of their code. The deployment model defines different types of
deployment units, packages, INGENIASComponents, and applications. The model
does not include any relationship between these elements. Deployment units mainly

396 A. Gómez-Rodríguez et al.

Table 16 Tasks of activity Specify Code Templates to apply of the construction phase of
INGENIAS

Activity Task Description Involved roles

Specify
Code
Templates
to apply

Identify
available
templates for
design
elements

Code templates define the transformations
for code generation. These templates are
codes for a given target platform annotated
with tags that correspond to modeling
primitives. The code generation process
injects information from the specifications
in the templates following the tags. The
instantiated templates are the actual code.
These templates can be largely reused
among projects with the same target
platform. This task examines and identifies
available templates for reuse in the current
project.

Programmer

Generate new
templates for
design
elements

When there are no available templates for a
given transformation, new ones must be
coded. The programmer starts from the
specification of the designer and completes
the mapping from modeling structures to
constructions of the target platform. Then,
the programmer manually codes a complete
implementation of the new mapping. When
it works, the programmer replaces those
identifiers in the code that correspond to
elements from the specifications with the
corresponding tags from the template
markup language. The result of this
replacement is the template.

Programmer

specify types of agents to create during the system startup. Packages also include
code and parameters for the initialization. The other elements are introduced to
support linking components and packages to nodes (e.g., for compiled files or
scripts) or limit the visibility of some of their components (e.g., methods of
applications).

Work Product Kinds
Table 17 introduces all the work products of the construction phase with their
description and kind.

Code Template
A code template is a fragment of code with marks that corresponds to modeling
elements. They are used for code generation. Their actual language depends on the
target platform.

The case study does not include examples of templates. Nevertheless, the
interested reader can find them in the IDK distribution [7], for instance, for JADE
[1].

INGENIAS with the Unified Development Process 397

Fig. 19 Structure of the
work products of the
construction phase in
INGENIAS

Table 17 Work product kinds of the construction phase of INGENIAS

Name Description Work Product Kind

Use Case Model See Sect. 2.1.3
Environment Model See Sect. 2.1.3
Organization Model See Sect. 2.1.3
Agent Model See Sect. 2.2.3
Tasks and Goals Model See Sect. 2.2.3
Interaction Model See Sect. 2.2.3
Code Template Fragment of marked code for a target

platform. It corresponds to a given
modeling structure that can appear in
specifications.

Behavioral

Component Model This model introduces organization of the
code, whether automatically generated or
manually developed, that implements the
system specifications.

Structural

Deployment Model This model introduces the computational
devices related to the system and their
features. It also maps the code components
and the nodes where they run.

Structural

Component Model
The component model includes different primitives to organize the system code. It
also supports the linking of modeling elements to the actual code used to implement
parts of them.

A model introduces special icons to reflect each of the previous observable
entities, which can be identified in Fig. 22. Figure 28a shows a component diagram
in the case study. It indicates dependencies between the code of tasks and a code
component.

Deployment Model
The deployment model describes the computational devices where the system runs
and what components run in each. Examples of these diagrams can be found in the
IDK distribution [7] and the INGENIAS website [8].

398 A. Gómez-Rodríguez et al.

Fig. 20 Dependencies among INGENIAS work products

3 Work Product Dependencies

Figure 20 shows an overview of the INGENIAS work products, as well as their
dependencies. As shown in the figure, the agent model depends on the organization
and environment models, and the interaction model has dependencies with the agent
and tasks and goals models among others.

4 Case Study: Conference Management System

The development of an INGENIAS project following the adaptation of the UDP [2]
and RUP [16] proposed in this chapter is organized around three phases: inception,
elaboration, and construction. As INGENIAS follows an MDD approach [3], their
activities mainly focus on the development and refinement of models. Only in
construction, engineers deal with artifacts such as code templates, source files, and
scripts, but in a limited way. Usually, all these phases include work in all the process
disciplines, e.g., requirements, analysis, design, and implementation, although with
different devoted effort to each. The presentation of this case study on a conference
management system (CMS) follows this phase organization, and for each phase the
previous list of disciplines.

INGENIAS with the Unified Development Process 399

Fig. 21 Use cases for the CMS

Inception includes the activities for requirements elicitation that are the starting
point of this development. This process is case-driven, so it starts with the Create
the Use Case Model activity. The development of this model identifies the main
groups of functionality as perceived by the user. Figure 21 shows the related use
cases according to the description of the problem.

The use cases provide the initial information to work on the other models. Due to
space reasons, this case study only considers the system interacting with external
entities. The development process follows the Obtain the Environment Model
activity, which includes several tasks. Identify applications identifies environment

400 A. Gómez-Rodríguez et al.

Fig. 22 Initial environment diagram of the CMS

applications that interact with the system but are not agents. Figure 22 shows the
result of this task. There is a mail manager to send notifications; a database to store
information such as submissions, author profiles, and the program committee, some
keyword utilities to manipulate lists of keyword and decide on their similarity; and
a submission manager to upload and download files.

Two additional tasks are used to refine the environment model, Associate
operations to applications and Define agent perception. The first one adds to the
model (not shown in the figure) the methods of the applications. For instance,
the mail manager has methods to send notifications to authors such as “paper
successfully uploaded” or “submission review.” The second task indicates the kind
of information that agents perceive from the applications. Here, only the mail
manager can generate some events, for instance, when it receives a mail for the
organization. The other applications are just invoked via methods.

The third activity in inception is Create the Organization Model, whose main
work product is an instance of the organization model. In this case, we apply this
activity to capture information about the organization of the conference. The activity
includes three tasks. Identify groups looks for groups of agent or role that share
features such as common goals or access to resources. Generate group members
establishes the agents, roles, resources, and applications that belong to each group.
Finally, Identify goals determines the group goals that justify the collaboration
between its members.

There are several groups in the CMS case study (see Fig. 23). The OC (organizing
committee) includes the chairs, the PC (program committee) for the reviewers,
and the contributors with the authors. The OC has as the main goal Run a
successful conference, the PC Identified quality papers and Evaluated papers, and
Contributors Submitted quality papers and Got papers admitted. There are also
differences in the access to applications. While all the groups have access to the
submission manager, only the OC can use the mail manager. The database and
keyword utilities will be used by internal components of the system.

The elaboration phase starts with a Refine the Use Case Model activity, which
includes several tasks. Identify interaction participants considers the use cases
where several actors participate. These use cases are candidates to be specified
by means of interaction diagrams. In this case, the use case diagram (see Fig. 21)
only includes the Notify authors use case with several participants. The Chair
is its initiator and the Author the collaborator. In fact, all the interactions in the
CMS happen through applications such as the mail manager and the database (see
Fig. 22). Therefore, there is no direct communication between participants. The
other two tasks of the activity Refine the Use Case Model, i.e., Define the nature of

INGENIAS with the Unified Development Process 401

«EResourceBelongsTo»

Mail Manager Submission Manager

OC

Chair

Run a successful conference Identified quality papers Evaluated papers Submitted quality papers Got papers admitted

Reviewer Author

PC Contributors

«OHasMember»

«GTPursues» «GTPursues» «GTPursues» «GTPursues»«GTPursues»

«OHasMember» «OHasMember»

«EResourceBelongsTo»

«EResourceBelongsTo»
«EResourceBelongsTo»

Fig. 23 Organization diagram with the main user groups of the CMS and their access to
applications

interaction and Identify the goals pursued, identify for the use case of the example
that the interaction is of kind cooperation and its goal is Provided review results.

The next activity of elaboration is Refine the Organization Model, with two tasks:
Identify the groups in the organization and Identify workflows. The first task does
not introduce new elements in the organization model in this case (see Fig. 23).
The second task identifies several workflows that Fig. 24 shows in an organization
diagram. These workflows are decomposed into two main groups, those related
to the Set up conference workflow and those with Perform evaluation. The first
one includes the workflows to organize the different committees, i.e., Organize OC
and Organize PC, and the workflow Get submissions with the activities intended to
promote paper submissions, such as mailing the call for papers, setting up a website,
or directly contacting well-known researchers in the area. The second one considers
the workflows that organize the review process, with the Assign reviews and Process
reviews workflows.

The next activity is Create the Agent Model. Its first tasks are Identify agents
and Associate roles to agents. We skip these tasks because this case study focuses
on eliciting information about the general behavior of the CMS, and not on how
specific tasks are done. Only when addressing this last issue, agents are mandatory.
Therefore, roles are enough to model the current information as mentioned before in
this section. The other task, Identify requirements of agent mental states, is related to
the identification of suitable processor and managers for the mental state of agents.
In this case, we adopt the standard INGENIAS model implemented in the IAF [6].

The workflows and goals previously identified are the basis to start the functional
decomposition in tasks. This is achieved in the Create the Tasks and Goals Model
activity. As for other components of the process, there is no clear ordering of the

402 A. Gómez-Rodríguez et al.

«ODecomposesWF»

Set up conference

Organize OC Organize PC Get submissions
Assign reviews Process reviews

Perform evalution

«ODecomposesWF»

«ODecomposesWF»

«ODecomposesWF»

«ODecomposesWF»

Fig. 24 Main workflows of the CMS

Fig. 25 Initial decomposition of the Run a successful conference goal

tasks of this activity. For instance, a task decomposition leads to new goals that in
turn require new tasks. Here, we perform together the tasks Identify tasks and goals
and Decompose goals for the high-level goal Run a successful conference. The result
appears in Fig. 25. Note that the decomposition is aligned with the workflows in
Fig. 24.

Goals can be achieved through the execution of INGENIAS tasks or thanks
to external events. Here, goals are the result of the execution of tasks by roles.
The identification of these INGENIAS tasks and their assignment to roles are

INGENIAS with the Unified Development Process 403

«GTDecomposesAND»

Generated OC member list Compose OC member list

Mail OC member requestNotified OC member

Checked OC

Mailed CFP

Built website

Notified CFP

Invited OC members

Check OC list

Obtain distribution listsGot distribution lists

Mail CFP

Set up website

«GTDecomposesAND»

«GTDecomposesAND»

«GTDecomposesAND»

«Satisfaction»

«Satisfaction»

«Satisfaction»

«Satisfaction»

«Satisfaction»

«Satisfaction»

«GTCreates»

Fig. 26 Initial assignment of tasks related to the Run a successful conference goal

made in the Associate tasks and goals and Decompose tasks tasks. The result for
the goals in Fig. 25 appears in Fig. 26. As mentioned before, the process tasks to
identify and specify this information are interleaved. The new diagram introduces
additional decompositions for goals Invited OC members and Mailed CFP. For
most assignments of tasks to goals in the diagram, the link is a GTSatisifes (i.e.,
Satisfaction) relationship. However, the Check OC list task is also able to create
(i.e., GTCreates relationship) the Generate OC member list goal when the number
of members in the OC is insufficient for the conference. The treatment of PC-related
goals is similar to that for OC-related goals.

The next activity is Refine the Environment Model. Its activities identify
resources, applications, their methods, and assign them to agents, groups, and roles.
In this case study, these tasks do not introduce further information with respect to
Fig. 22.

The last activity of the elaboration phase is Show tasks execution using the Inter-
action Model, with two tasks: Refine functional description and Generate GRASIA
specification. Regarding the first task, we do not introduce further refinements at
this step. For the second task, we consider the specification of the interaction to
invite OC members, which fulfills the Notified OC members goal and the Mail OC
member request task starts (see Fig. 26). Figure 27 shows the resulting interaction
diagram. The diagram introduces several new elements: the Candidate PC member
role, tasks to process the request and answer to the invitation, and several interaction
units that represent the flow of information between roles.

The last phase considered in this INGENIAS process is construction. In this case
study, we skip its first two activities Refine existing models to cover use cases and
Refine organizational models with social relationships, as we do not introduce new
information for them and similar tasks have been already applied in previous steps.

404 A. Gómez-Rodríguez et al.

«Ullnitiates»

Process answer to OC member request

Mail OC member request

Chair

PC invitation

Affirmative answer to PC invitation

Negative answer to PC invitation

Answer OC member request

Process OC member request

Candidate PC member
«Ullnitiates»

«Ullnitiates»

«UlColaborates»

«UlColaborates»

«UlColaborates»

Fig. 27 Interaction to invite OC members

«CDUsesCode» «WFUses» «WFUses»«CDUsesCode»

Mail component

Mail CFP Mail OC member request Mail OC member request

Mail manager

Language: Java+

Mail CFP

a b

Component diagram for mailing Tasks and Goals diagram to
link the application for mailing
tasks

Fig. 28 Diagrams for the mailing tasks, their code, and external applications. a Component
diagram for mailing. b Tasks and Goals diagram to link the application for mailing tasks

The third activity of Construction is Generate a Component Model. As this case
study focuses on requirements elicitation, most of CMS tasks only have a textual
description. Nevertheless, code can be considered to access the external applications
of Fig. 22. Two diagrams are introduced for this specification: a component diagram
(see Fig. 28a) and a new tasks and goals diagram (see Fig. 28b). The first one
indicates the INGENIASCodeComponent that contains the code that the mailing
tasks use to manage the mail manager external application. The second one links
the mailing tasks to the application that they use to send and receive mails.

The remaining activities of the construction are Generate a Deployment Model,
Specify Code Templates to apply, and Validate code. These activities are beyond
the scope of this case study, which is focused on requirements. It deserves to be
mentioned that the facilities included in the IDK [7], and in particular the IAF [6],
would allow generating testing code for these specifications. This prototype could
be used for a preliminary validation with users.

INGENIAS with the Unified Development Process 405

References

1. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent development
environment. In: Fifth International Conference on Autonomous Agents (AGENTS 2001),
pp.16–217. ACM, New York (2001)

2. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Software Development Process. Addison-
Wesley, Reading (1999)

3. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap.
In: 2007 Future of Software Engineering (FOSE 2007), pp. 37–54. IEEE Computer Society,
Washington, DC (2007)

4. García-Magariño, I., Gómez-Rodríguez, A., Gómez-Sanz, J., González-Moreno, J.C.:
INGENIAS-SCRUM development process for multi-agent development. Adv. Soft Comput.
50, 108–117 (2009)

5. Gómez-Sanz, J.: Modelado de sistemas multi-agente. Ph.D. thesis, Facultad de Informática,
Universidad Complutense de Madrid, Madrid (2002)

6. Gómez-Sanz, J.: INGENIAS Agent Framework. Development Guide V. 1.0. Tech. Rep.,
Universidad Complutense de Madrid, Madrid (2008)

7. Gómez-Sanz, J.J., Pavón, J., Fuentes-Fernández, R., García-Magariño, I., Rodríguez-
Fernández, C.: INGENIAS Development Kit, V. 2.8. Tech. Rep., Universidad Complutense
de Madrid, Madrid (2008)

8. Grupo de Investigación en Agentes Software: Ingeniería y Aplicaciones. INGENIAS Section.
http://grasia.fdi.ucm.es/main/?q=es/node/61 (2010)

9. Intelligent System Lab at British Telecom: Zeus Agent Toolkit, V. 2.0. Tech. Rep., Intelligent
System Lab, British Telecom (2006)

10. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M., Raja, A., Vincent, R., Xuan, P., Zhang, X.Q.: Evolution of the
GPGP/TÆMS Domain-Independent Coordination Framework. Auton. Agents Multi-Agent
Syst. 9(1), 87–143 (2004)

11. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)
12. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.3. Tech.

Rep., OMG (2010)
13. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. Lect. Notes

Comput. Sci. 2691, 394–403 (2003)
14. Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: The INGENIAS methodology and tools.

In: Henderson-Sellers, B., Giorgini, P. (eds) Agent-Oriented Methodologies, Chapter IX,
pp. 236–276. Idea Group Publishing, Hershey (2005)

15. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: First International
Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319. AAAI, Menlo Park (1995)

16. Rational Software: Rational Unified Process: White Paper (1998)
17. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Englewood

Cliffs (2001)

http://grasia.fdi.ucm.es/main/?q=es/node/61

The SODA Methodology: Meta-model
and Process Documentation

Ambra Molesini and Andrea Omicini

Abstract
The SODA methodology deals with MAS analysis and design, and focuses on
critical issues such as agent coordination and MAS-environment interaction.
After its first formulation, in order to further meet the needs of complex MAS
engineering, SODA was extended to embody both the layering principle and the
Agents & Artifacts (A&A) meta-model. As a result, both the SODA meta-model
and the SODA process were re-defined, also to include two new phases—
Requirement Analysis and Architectural Design. This chapter is then devoted
to the documentation of the complete SODA process according to the FIPA
standard.

1 Introduction

SODA (Societies in Open and Distributed Agent spaces) [13] is an agent-oriented
methodology for the analysis and design of agent-based systems, which adopts the
Agents & Artifacts (A&A) meta-model [10], and introduces a layering principle as
an effective tool for scaling with system complexity, applied throughout the analysis
and design process [2, 3, 9]. Since its first version [9], SODA is not concerned with
intra-agent issues: designing a multi-agent system (MAS) with SODA amounts at
defining agents in terms of their required observable behaviour as well as their role
in the MAS. Then, whichever methodology one may choose to define the structure

A. Molesini (�)
DISI, Alma Mater Studiorum – Università di Bologna, Viale Risorgimento 2, 40136 Bologna,
Italy
e-mail: ambra.molesini@unibo.it

A. Omicini
DISI, Alma Mater Studiorum – Università di Bologna, Via Sacchi 3, 47521 Cesena, Italy
e-mail: andrea.omicini@unibo.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__13,
© Springer-Verlag Berlin Heidelberg 2014

407

mailto:ambra.molesini@unibo.it
mailto:andrea.omicini@unibo.it

408 A. Molesini and A. Omicini

Transition
Tables

Requirements
Analysis Analysis

References
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Analysis

Architectural
Design

Detailed
Design

Mapping
Tables

Entities Tables

Interaction Tables

Topological Tables

 Agent/Society Design Tables

Environment Design Tables

Constraints Tables Interaction Design Tables

Topological Design Tables

Design

Fig. 1 An overview of the SODA process

and inner functionality of individual agents, it could be used in conjunction with
SODA. Instead, SODA focus on inter-agent issues, like the engineering of agent
societies and MAS environment.

When designing a new system in SODA, three things are to be understood: which
activities have to be performed, which functions are available and required, and how
activities and functions relate to each other. Accordingly, SODA abstractions are
logically divided into three categories: (1) the abstractions for modelling/designing
the system’s active part (task, role, agent, etc.); (2) those for the reactive part
(function, resource, artifact, etc.); and (3) those for interaction and organisational
rules (relation, dependency, interaction, rule, etc.).

The SODA process is organised in two phases, each structured in two sub-
phases: the Analysis phase, including the Requirements Analysis and the Analysis
steps, and the Design phase, including the Architectural Design and the Detailed
Design steps. Each sub-phase models the system through a subset of the SODA
abstractions: in particular, each subset always includes at least one abstraction for
each of the above categories—that is, at least one abstraction for the system’s active
part, one for the reactive part, one for interaction and organisational rules.

Figure 1 overviews the methodology by describing each step in terms of a set of
relational tables. In the remainder of this chapter, the SODA process is described
first as a whole process then through its four steps, following the FIPA standard [1].

Useful references about the SODA methodology and process are the
following:
• A. Omicini. SODA: Societies and Infrastructures in the Analysis and Design of

Agent-based Systems [9].
• A. Molesini, A. Omicini, A. Ricci, E. Denti. Zooming Multi-Agent Systems [3].
• A. Molesini, A. Omicini, E. Denti, A. Ricci. SODA: A Roadmap to Artefacts [2].
• A. Molesini, E. Denti, A. Omicini. Agent-based Conference Management:

A Case Study in SODA [6].
• A. Molesini, E. Nardini, E. Denti, A. Omicini. Advancing Object-Oriented

Standards Toward Agent-Oriented Methodologies: SPEM 2.0 on SODA [4].
• A. Molesini, E. Nardini, E. Denti, A. Omicini. Situated Process Engineering for

Integrating Processes from Methodologies to Infrastructures [5].

The SODA Methodology: Meta-model and Process Documentation 409

Requirements
Analysis

Analysis Architectural
Design

Detailed Design

Layering

Layering

Fig. 2 Phases of the SODA process

• A. Molesini, A. Omicini. Documenting SODA: An Evaluation of the Process
Documentation Template [7].

1.1 Process Life Cycle

SODA includes two phases, each structured in two sub-phases: the Analysis phase,
which includes the Requirements Analysis and the Analysis steps, and the Design
phase, which includes the Architectural Design and the Detailed Design steps.
SODA phases and steps are arranged according to an iterative process model (see
Fig. 2):

Requirements Analysis covers all the phases related to actor identification,
requirements elicitation and analysis, and analysis of the existing environment.

Analysis investigates all the aspects related to the problem domain trying to
understand the tasks satisfying the requirements, their connected functions, the
environment topology and all the dependencies among these entities.

Architectural Design defines a set of admissible architectures for the final system.
Detailed Design determines the best system architecture and designs the environ-

ment and the system interactions.

Each step in SODA produces several sets of relational tables, each describing a
specific MAS Meta-model Element (MMMElement) and its relationships with other
MMMElements. The details of each step will be discussed in the following section.

1.2 Meta-model

The meta-model adopted by SODA is represented in Fig. 3, where SODA abstract
entities are depicted along with their mutual relations, and distributed according to
the four SODA steps: Requirements Analysis, Analysis, Architectural Design and
Detailed Design.

410 A. Molesini and A. Omicini

Actor Requirement

*1

Relation LegacySystem ExternalEnvironment

* 1

Task

1..*

1

Dependency

**

participates

**

participates

* *

participates

Function

* *
participates

Topology

*

*

participates

*

*

participates

1..*

1

1..*

1

0..*

1

0..*

1

0..*

1

Role

Action

1..*

1

performs

Interaction

Resource

Operation

1..*

1
provides

1..*

1

1

1..*

1..*

1

1

1..*

Space *

*

participates

1..*

1..*

participates
*

1

0..*

connection

1..*

1

1..*

1

Workspace

1..*

1..*

Agent

1

1..*

Artifact

1..*

1

perceives 1..*

1

is allocated

Composition

Society Aggregate

Individual Artifact

Social Artifact

Environmental Artifact

1..*

1

participates

Rule

0..*

1..*

constrains

connection

** participates
* *

participates

1..* 1..*
constrains

1..*1..*

constrains

1..*

1..*
constrains

1

1..*

1

1..*

1

1..*

Use1..*1..* 1..*1..*

Manifest
1..*

1..*1..*

1..*

SpeakTo 1..* 1..*

participates

1..*

1..*

LinkedTo

1..*

1..*

1..*

1..*

participates

Requirements
Analysis

Analysis

Architectural
Design

Detailed
Design

Fig. 3 The SODA meta-model

1.2.1 Requirements Analysis
Several abstract entities are introduced for requirement modelling: in particular,
Requirement and Actor are used for modelling the customers’ requirements and
the requirement sources, respectively, while the notion of External Environment is
used as a container of the Legacy Systems that represent the legacy resources of the
environment. The relationships between requirements and legacy systems are then
modelled in terms of Relation entities.

1.2.2 Analysis
The Analysis step expresses the abstract requirement representation in terms of
more concrete entities such as Tasks and Functions. Tasks are activities requiring
one or more competences, while functions are reactive activities aimed at supporting
tasks. The relations highlighted in the previous step are now the starting point
for the definition of Dependencies—interactions, constraints, etc.—among the

The SODA Methodology: Meta-model and Process Documentation 411

abstract entities. The structure of the environment is also modelled in terms of
Topologies, that is, topological constraints over the environment. Topologies are
often derived from functions, but can also constrain/affect task achievement.

1.2.3 Architectural Design
The main goal of this stage is to assign responsibilities to achieve tasks to Roles, and
responsibilities to provide functions to Resources. To this end, roles should be able
to perform Actions, and resources should be able to execute Operations providing
one or more functions. The dependencies identified in the previous phase become
here Interactions and Rules. Interactions represent the acts of the interaction among
roles, among resources and between roles and resources; rules, instead, enable and
bound the entities’ behaviour. Finally, the topology constraints lead to the definition
of Spaces, that is, conceptual places structuring the environment.

1.2.4 Detailed Design
The active and passive parts are expressed in the Detailed Design in terms of
individual entities (Agents and Artifacts) as well as of composite entities, such
Societies and Aggregates. Agents are intended here as autonomous entities able to
play several roles, whereas the resources identified in the previous step are now
mapped onto suitable artifacts.

Artifacts have “types” according to the following taxonomy [11]:
• An individual artifact handles the interaction of a single agent within a MAS

and essentially works as a mediator between the agent and the MAS itself. Since
they can be used to shape admissible interactions of individual agents in MAS,
individual artifacts play an essential role in engineering both organisational and
security concerns in MAS.

• An environmental artifact brings an external resource within a MAS by me-
diating agent actions and perceptions over resources. As such, environmental
artifacts play an essential role in enabling, disciplining and governing the
interaction between agents and MAS environment.

• A social artifact rules social interactions within a MAS by mediating interactions
between individual, environmental and possibly other social artifacts. Social
artifacts in SODA play the role of the coordination artifacts that embody the
rules around which societies of agents can be built.

Interactions between agents and artifacts in SODA take the form of Use (agent to
artifact), Manifest (artifact to agent), SpeakTo (agent to agent) and LinkedTo (artifact
to artifact).

In SODA, a group of individual entities can be abstracted away as a single
composite entity. In particular, a group of interacting agents and artifacts can be
seen as a SODA Society when its overall behaviour is essentially an autonomous,
proactive one; it can be seen as a SODA Aggregate, instead, when its overall
behaviour is essentially a functional, reactive one. Finally, SODA Workspaces take
the form of an open set of artifacts and agents: artifacts can be dynamically added
to or removed from workspaces, and agents can dynamically enter (join) or exit
workspaces (Table 1).

412 A. Molesini and A. Omicini

Table 1 The SODA entities definitions

Concepts Definition Step

Actor System’s stakeholder Requirements
Analysis

Requirement Service that the stakeholder requires from a system and
the constraints under which it operates and is developed

Requirements
Analysis

Legacy
System

Legacy resources Requirements
Analysis

External
Environment

Legacy environment in which the new system will execute Requirements
Analysis

Relation A tie among the entities of the Requirements Analysis Requirements
Analysis

Task An activity aimed at the satisfaction of a specific
requirement

Analysis

Function Function or service aimed at supporting task
accomplishment

Analysis

Topology Topological constraints over the environment. Often
derived from legacy systems and requirements, however
also functions and tasks could induct some topological
constraints

Analysis

Dependency Any kind of dependency relationships among abstract
entities, as a conceptual premise to any sort of
interaction

Analysis

Role An entity responsible to accomplish some tasks Architectural
Design

Action An activity that changes the environment in order to meet
roles design objectives

Architectural
Design

Resource Entity that provides functions Architectural
Design

Operation A resource access point in order to achieve a function Architectural
Design

Space Conceptual places structuring the environment Architectural
Design

Rule Any prescription over roles, resources, interactions, and
spaces

Architectural
Design

Interaction Any interaction among roles and resources Architectural
Design

Agent Pro-active components of the systems, encapsulating the
autonomous execution of some kind of activities inside
an environment

Detailed
Design

Artifact Passive components of the systems such as resources and
media that are intentionally constructed, shared,
manipulated and used by agents to support their
activities, either cooperatively or competitively

Detailed
Design

Individual
Artifact

Mediator between an individual agent and the MAS Detailed
Design

(continued)

The SODA Methodology: Meta-model and Process Documentation 413

Table 1 (continued)

Concepts Definition Step

Social Artifact Mediator of social interactions within a MAS Detailed Design
Environmental
Artifact

Mediator of the interaction between MAS and the external
environment

Detailed Design

Composition A collection of agents and artifacts working together as an
ensemble

Detailed Design

Society A composition whose overall behaviour is essentially an
autonomous, proactive one

Detailed Design

Aggregate A composition whose overall behaviour is essentially a
functional, reactive one

Detailed Design

Workspace Conceptual containers of agents and artifacts, providing a
notion of locality for MAS

Detailed Design

Use The act of interaction between agent and artifact: agent uses
artifact

Detailed Design

Manifest The act of interaction between artifact and agent: artifact
manifests itself to agent

Detailed Design

SpeakTo The act of interaction among agents: agent speaks to another
agent

Detailed Design

LinkedTo The act of interaction among artifact: artifact is linked to
another artifact

Detailed Design

1.3 Guidelines and Techniques

SODA exploits a technique called Layering that can be applied to the overall process
before the Detailed Design step. In SODA, during the Analysis phase and the
Architectural Design step, the system is described in principle by all the layers
defined, and could then be modelled by a number of different—although related—
design views. This of course does not hold for the Detailed Design step since the
developer should be provided with a single system representation among all the
potentially admissible ones based on the Architectural Design layers.

Accordingly, the next section presents the SODA Layering technique.

1.3.1 Layering
Complexity is inherent in real-life systems. While modelling complex systems
and understanding their behaviour and dynamics is the most relevant concern in
many areas, such as economics, biology or social sciences, also the complexity of
construction becomes an interesting challenge in artificial systems like software
ones. An integral part of a system development methodology must therefore be
devoted to controlling and managing complexity.

To this end, SODA introduces Layering, a conceptual tool to deal with the
complexity of system representation. Using Layering, a system in SODA can
be represented as composed by different layers of abstraction, with a layering
operation to conceptually move between them.

Layering can be represented as a capability pattern [8]—that is, a reusable
portion of the process, as shown in Fig. 4, where the layering process is detailed. In
particular, the layering process has two activities: (1) the selection of a specific layer

414 A. Molesini and A. Omicini

In-zoom Out-zoom

Projection

Select Layer

increases detail increases abstraction

new layer?

no

yes

Fig. 4 The layering process

for refining/completing the abstractions models in the methodology process (Select
Layer activity), and (2) the creation of a new layer in the system by in-zooming—
that is, increasing the system detail—or out-zooming—that is, increasing the system
abstraction—activities. In the last case, the layering process ends with the projection
activity where the abstractions are projected “as they are” from one layer to another
so as to maintain the consistency in each layer.

In general, when working with SODA, the reference layer, called core layer, is
labelled with C , and is by definition complete—that is, it contains all the entities
required to fully describe a given abstract layer. Any other layer—labelled with
either C C i , for more detailed layers, where i is the number of in-zoom steps
from the C layer, or C � i , for more abstract layers, where i is the number of
out-zoom steps from the C layer—contains just the entities (in/out-) zoomed from
another layer, along with the entities projected “as they are” from other layers. So,
in general, the other (non-core) layers are not required to be complete—though of
course they might be so, as in the case of layer C C1 in Fig. 5. The projected entities
are identified by means the prefix “C” if they are projected from a more abstract
layer to a more detailed layer (see entity E2 in Fig. 5), with “�” otherwise—see
entity E1 in Fig. 5.

Figure 6 depicts a more detailed view of the Layering capability pattern showing
the flow of activities, the process roles involved and the input and work products of
each activity.

1.3.2 Process Roles
One role is involved in the Layering pattern: the Layering Expert. Layering Expert
is responsible for

The SODA Methodology: Meta-model and Process Documentation 415

E9

Core
Layer

C-1

C+1

C+2E8E6 E7

E4 E5

E1

-E1 E0

E3E2

+E2

+E2

E10 E11

r1

+r1r2 r5

-r1

+r2 +r1r3 r4

Fig. 5 An example of layering

Zooming table

Layering Expert

<<input>>

<<input>>

<<input>>

<<output>
>

<<predecessor>>

<<input>>

Zooming table

Layering Expert

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Layering Expert

<<input>>

<<input>>

Out-zoom

<<output>>

<<
pre

de
ce

ss
or>

>

Zooming table

Layering Expert

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Projection

<<input>>

<<input>>

Zooming table

<<output>>

Zooming table

<<output>>

Zooming table

<<input>>

In-zoomIn-zoom

SODA Tales

c

SODA Tales

c

(L) SODA Tales

c
<<output>>

<<performs,
primary>>

(L+1) SODA Tales

c

 SODA Tales

c

 SODA Tales

c

(L-1) SODA Tales

c

<<performs,
primary>> Out-zoom

Projection

<<output>>

SODA Tales

c

Select Layer Select Layer

Fig. 6 The layering flow of activities, roles and work products

• Selecting the specific abstraction layer
• Either in-zooming or out-zooming the system by creating the specific Zooming

table or modifying an existing Zooming table
• Projecting the necessary entities in the new created layer
• Partially filling all the newly created SODA tables

416 A. Molesini and A. Omicini

Zooming table

Layering Expert
In-zoom

Zooming table

<<mandatory, input>>

<<mandatory, output>> <<mandatory, output>>

<<mandatory, input>>

SODA Tales

c

 (L+1) SODA Tales

c

Fig. 7 The task in the in-zoom activity

1.3.3 Activity Details
In-Zoom Activity
The flow of tasks inside in-zoom activity is reported in Fig. 7; the tasks are detailed
in the following table.

Activity Task Task description Role involved

In-zoom In-zoom Allowing the creation of a new,
more detailed layer modifying the
zooming table, and introducing the
work products for the new layer

Layering Expert
(perform)

Out-Zoom Activity
The flow of tasks inside out-zoom activity is reported in Fig. 8; the tasks are detailed
in the following table.

Activity Task Task description Role involved

Out-zoom Out-zoom Allowing the creation of a new,
more abstract layer modifying the
Zooming table, and introducing the
work products for the new layer

Layering Expert
(perform)

The SODA Methodology: Meta-model and Process Documentation 417

Zooming table

Layering Expert

Zooming table

Out-zoom

SODA Tales

c

(L-1) SODA Tales

c

<<mandatory, input>><<mandatory, input>>

<<mandatory, output>>
<<mandatory, output>>

Fig. 8 The task in the out-zoom activity

Select Layer Activity
The flow of tasks inside Select Layer activity is reported in Fig. 9; the tasks are
detailed in the following table.

Activity Task Task description Role involved

Select
Layer

Select Layer Allowing the selection of a specific
layer in order to either redefine or
complete it

Layering Expert
(perform)

Projection Activity
The flow of tasks Projection activity this activity is reported in Fig. 10; the tasks are
detailed in the following table.

Activity Task Task description Role involved

Projection Projection Allowing the projection of a
non-zoomed entity from a layer to
another in order to preserve the
layer consistency

Layering Expert
(perform)

418 A. Molesini and A. Omicini

Zooming table

Select Layer

Layering Expert

SODA Tales

c

 (L) SODA Tales

c

<<mandatory, input>><<mandatory, input>>

<<mandatory, output>>

Fig. 9 The task in the select layer activity

Layering Expert

Zooming table

<<mandatory, input>> <<mandatory, input>>

<<mandatory,output>>

SODA Tales

c

SODA Tales

c

Projection

Fig. 10 The task in the projection activity

1.3.4 Work Products
Layering generates one work product: the Zooming table. Its relationships with the
MMMElements are described in Fig. 11.

This diagram represents the Layering in terms of the Work Product and its
relationships with the SODA meta-model (Sect. 1.2) elements. Each MMMElement
is represented using an UML class icon (yellow) and, in the documents, such

The SODA Methodology: Meta-model and Process Documentation 419

Zooming table

Actor LegacySystemRequirement Relation

F F F FR R R RD D D D

Task TopologyFunction Depenency

FD FD DFDF

R
R R R

Resource

Interaction

R

R

R

Action

R
FD

Operation

R

Rule

R

Role

Space

FD

FD

R

FD

FD

FD

FD

Fig. 11 The layering work products

elements can be Defined, reFined, Quoted, Related or Relationship Quoted as
defined in [12] and briefly reported in the following:
• Defined (D label)—this means that the element is introduced for the first time in

the design in this artifact (the MMMElement is instantiated in this artifact)
• reFined (F label)—this means that the MMMElement is refined in the work

product (for instance by means of attribute definition)
• Related (R label)—this means that an already defined element is related to

another, or, from a different point of view, that one of the MAS meta-model
relationships is instantiated in the document

• Quoted (Q label)—this means that the element was already defined, and it is
reported in this artifact only to complete its structure, but no work has to be done
on it

• Relationship Quoted (RQ label)—this means that the relationship is reported in
the work product, but it was defined in another part of the process

Kinds of Work Products
Layering is represented by means of a Zooming table (.C /Zt)—see Fig. 12. The
Zooming table formalises the in-zoom of a layer into the more detailed layer; of
course, the same table can be used to represent the dual out-zoom process. One
column of the table contains the name of the abstraction at layer C , while the

420 A. Molesini and A. Omicini

Layer L Layer L+1
out-zoomed entity in-zoomed entities

Fig. 12 .L/Zt

Layer C Layer C + 1
E1 E4, E5, r2, +E2, +r1
E3 E10, E11, r5

Fig. 13 .C /Zt

Layer C −1 Layer C
-E1, -r1, E0 E2, E3

Fig. 14 .C � 1/Zt

LayerC+1 LayerC+2
E4 E6, E7, r3, +r2
E5 E8, E9, +E2, r4, +r1

Fig. 15 .C C 1/Zt

other column reports the name of the corresponding zoomed abstractions at the
subsequent layer C C 1 (in-zooming) or C � 1 (out-zooming).

In general when in-zooming an entity from layer C to layer C C 1, we obtain a
new group of entities, but also a set of relationships among these new entities that
allow the entities’ coordination as shown in Fig. 5.

Examples of Work Products
Figures 13, 14, and 15 report the Zooming tables modelling the example proposed
in Fig. 5. In particular, Fig. 13 shows the relationships between layer C —the core
layer—and layer C C 1, where entity E1 is in-zoomed into E4 and E5, and E3
is in-zoomed into E10 and E11. The E2 entity and r1 relationship are projected
from C to C C 1: this is reported in the in-zoom table of E1, since the relation
between E1 and E2 in layer C has to be maintained also in layer C C 1 in order
to maintain consistency. In addition, two new relationships are necessary after the
in-zoom operation: r2 comes from the in-zooming of E1 in order to coordinate the
E4 and E5; in a similar way r5 comes from the in-zooming of E3. Figure 14 reports
the relation between layer C � 1 and layer C . Here there is an out-zoom operation,
E2 and E3 are collapsed in E0, while E1 and r1 are projected for consistency reason.
Finally, Fig. 15 depicts the relation between layer C C 1 and layer C C 2 where E4
is in-zoomed in E6, E7 and r3; E5 is in-zoomed in E8, E9 and r4; and E2, r1 and r2
are projected.

2 Phases of the SODA Process

2.1 The Requirements Analysis

The goals of Requirements Analysis are (1) characterising both the customers’
requirements and the legacy systems with which the system should interact, as
well as (2) highlighting the relationships among requirements and legacy systems.
Requirements can be categorised in [14]:

The SODA Methodology: Meta-model and Process Documentation 421

Relations
Description

Actors
Description

Requirements
Description

<<input>>

<<performs,

primary>>

Requirement
Analyst

LegacySystems
Description

<<
pr

ed
ec

es
so

r>
>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<output>>

<<output>>

<<performs, primary>>

Environment
Analyst

Requirement
Analyst

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Domain
Expert

<<perform
s, assist>>

Domain
Expert

<<perform
s, assist>>

Requirement
table

Actor-Requirement
table

<<perform
s, assist>>

<<output>>

Actor table
<<input>>

<<performs, assist>>

Domain
Expert

<<input>>

<<
pr

ed
ec

es
so

r>
>

Environment
Analyst

<<perform
s, assist>>

<<output>>

<<input>>

<<
in

pu
t>

>

<<input>>

<<predecessor>>

Zooming table

<<predecessor>>

<<predecessor>><<output>>
<<input

>>

<<input>>

<<predecessor>>

<<predecessor>>

<<predecessor>>

<<predecessor>>

Zooming table

Zooming table

Relations Tables

c

Domain Tables

c

Requirements
specification

a

Requirements
specification

a

Domain Tables

c

<<input>>

Relation
Layering

<<output>>

Relations
Modelling

Requirements
specification

a

Requirement
Layering

Requirements
Modelling

Layering

Environment
Modelling

<<predecessor>>

Environment
layering

Requirements
specification

aZooming table

<<output>>

<<output>>

<<output>>

<<input>>

Fig. 16 The requirements analysis flow of activities, roles and work products

• Functional Requirements—statements about which functionalities the system
should provide, how the system should react to particular inputs and how the
system should behave in particular situations.

• Non-Functional Requirements—constraints on the services and functions offered
by the system such as timing constraints, constraints on the development process,
standards, security, privacy, etc. Non-functional requirements could be more
critical than functional requirements. If these are not met, the system is useless.

• Domain Requirement—requirements that come from the application domain of
the system, and that reflect features of that domain. Domain requirements could
be new functional requirements, constraints on existing requirements or define
specific computations. If domain requirements are not satisfied, the system may
be unworkable.

In this step, we take into account several abstract entities to model the system’s
requirements: actors, requirements, external environment, legacy systems and re-
lations. The Requirements Analysis involves three different process roles, and
eight work products, as described in Fig. 16. Figure 17 presents the Requirements
Analysis process composed by three main activities—Requirements Modelling,
Environment Modelling, and Relations Modelling—and several different layering
activities—see Sect. 1.3.1.

422 A. Molesini and A. Omicini

Requirements Modelling Environment Modelling

Relations Modelling

Requirements Layering Environment Layering

Relations Layering

Layering

another layer? another laye?

another layer?

yes

start

no

yes

no

yes

Are the models well specified?

yes
no

new iteration

Fig. 17 The requirements analysis process

2.1.1 Process Roles
Three roles are involved in the Requirements Analysis: the Requirement Analyst,
the Environment Analyst and the Domain Analyst.

Requirement Analyst
The Requirement Analyst is responsible for
• The identification of the main actors and system stakeholders
• The identification of the system functional and non-functional requirements
• The analysis of the system’s requirements

The SODA Methodology: Meta-model and Process Documentation 423

• The identification of the any kinds of relationship among requirements, and
between requirements and legacy systems

Environment Analyst
The Environment Analyst is responsible for
• The identification of the legacy systems already present in the environment
• The analysis of the legacy systems
In addition, the Environment Analyst should help the Requirement Analyst in
identification of the any kinds of relationship between requirements and legacy
systems.

Domain Expert
The Domain Expert supports the Requirement Analyst and the Environment Analyst
during the description of the application domain.

2.1.2 Activity Details
For the details about the different Layering activities please refer to Sect. 1.3.1.

Requirements Modelling Activity
The Requirements Modelling activity is composed of the following tasks:

Activity Task Task description Role involved

Requirements
Modelling

Actors
Description

Identification of the actors and
their description

Requirement Analyst
(perform)
Domain Expert (assist)

Requirements
Modelling

Requirements
Description

Identification of the requirements
and their description

Requirement Analyst
(perform)
Domain Expert (assist)

The flow of tasks inside the Requirements Modelling activity is reported in
Fig. 18.

Environment Modelling Activity
The Environment Modelling activity is composed of the following tasks:

Activity Task Task description Role involved

Environment
Modelling

Legacy Systems
Description

Identification of the legacy systems
and their description

Environment Analyst
(perform)
Domain Expert (assist)

The flow of tasks inside the Environment Modelling activity is reported in
Fig. 19.

424 A. Molesini and A. Omicini

Requirements
Analyst

Actors
Description

Requirements
Description

Zooming table

Actor table Requirement
table

Actor-
Requirement table

Domain Expert

<<mandatory, input>>

Requirements
specification

a

<<optional, input>>

<<mandatory, output>><<mandatory, output>> <<mandatory, output>>

Fig. 18 The flow of tasks in the requirements modelling activity

Environment
Analyst

LegacySystems
Description

Zooming table

Domain Expert

Domain Tables

c

<<mandatory, input>>

Requirements
specification

a

<<mandatory, output>>

<<optional, input>>

Fig. 19 The flow of tasks in the environment modelling activity

The SODA Methodology: Meta-model and Process Documentation 425

Relations
Description

Zooming table

LegacySystem
table

Requirements
Analyst

Requirement
table

Domain Expert

Environment
Analyst

Relations Tables

c

<<mandatory, input>>

Requirements
specification

a

<<mandatory, input>>
<<mandatory, input>>

<<optional, input>>

<<mandatory, output>>

Fig. 20 The flow of tasks in the relations modelling activity

Relations Modelling Activity
The Relations Modelling activity is composed by the following tasks:

Activity Task Task Description Role Involved

Relations
Modelling

Relations
Description

Identification of the relations and
their description

Environment Analyst
(perform)
Domain Expert (assist)
Environment Analyst
(assist)

The flow of tasks inside the Relations Modelling activity is reported in Fig. 20.

2.1.3 Work Products
The Requirements Analysis step consists of three sets of tables: Requirements
Tables, Domain Tables and Relations Tables. Figure 21 reports the relationships
among the work products of this step and the MMMElements of the Require-
ments Analysis. In Fig. 21, the relationships among the Zooming table and the
MMMElements of the Requirements Analysis are also reported—see Sect. 1.3.1 for
details.

426 A. Molesini and A. Omicini

R

QR

Q

D

Actor

Actor

Requirement

D

LegacySystem

R

Actor table

Requirement
table

Actor-Requirement
table

D

Requirement

R

LegacySystem
table

ExternalEnvironment-
LegacySystem table

D

External
Environment

Relation table

Requirement-
Relation table

LegacySystem-
Relation table

D

Relation

Q

Requirement

R

LegacySystem

Q R

Zooming table

Actor
LegacySystem

Requirement Relation

F F F FR R R R
R R

D D D D

Domain Tables

c

Relations Tables

c
Requirements

Tables

c

Fig. 21 The requirement analysis work products

Kinds of Work Products
Table 2 describes all the work products of the Requirements Analysis. In particular,
the first entry (Requirements Specification) represents the input of the all SODA
process, the second set is the outcome of the Requirement Modelling activity, the
third set is the outcome of the Environment Modelling activity and the last set is the
outcome of the Relation Modelling activity.

Requirements Tables
Figure 22 provides an example of the Requirements Tables for the conference
management case study [6].

Domain Tables
In the conference management system case study, there is only one Legacy System,
called “WebServer”, which represents the container for the web application of
the conference: the reason to include it in the description is that the conference
management system will obviously interact with it, and such an interaction should
be captured and constrained. Figure 23 presents Legacy System table where the
WebServer system is described.

In our system, there is just one relation, called “Web”, which involves all the
abstract entities since all requirements need to access the web server to retrieve or
store information.

Relations Tables
An example of the Relations Tables in illustrated in Fig. 24.

The SODA Methodology: Meta-model and Process Documentation 427

Table 2 Requirements Analysis work products kinds

Name Description Work product kind

Requirements
Specification

A description of the problem to be solved Free Text

Requirements
Tables

A composition of others tables that
defines the abstract entities tied to the
concept of “requirement”

Composite (structured)

Actor table (.L/Act) Description of each single actor Structured
Requirement table
(.L/Ret)

Description of each single requirement Structured

Actor-Requirement table
(.L/ARt)

Specification of the collection of the
requirements associated to each actor

Structured

Domain Tables A composition of others tables that
defines the abstract entities tied to the
concept of “external environment”

Composite (structured)

Legacy System table
(.L/LSt)

Description of each single legacy system Structured

External Environment –
Legacy System table
(.L/EELSt)

Specification of the legacy systems
associated to the external environment

Structured

Relations Tables A composition of others tables that links
the abstract entities with each other

Composite (structured)

Relation table
(.L/Relt)

Description of all the relationships
among abstract entities

Structured

Requirement-
Relation table
(.L/RRt)

Specification of the relations where each
requirement is involved

Structured

Legacy System –
Relation table
(.L/LSRt)

Specification of the relations where each
legacy system is involved

Structured

Requirement Description

ManageStartUp creating call for papers and defining the rules of the organisation
ManageSubmission managing users registration, papers submission and keywords insertion
ManagePartitioning partitioning papers basing on the conference structure
ManageReviewers managing reviewers registrations and insertion of the keywords repres-

enting their expertise area
ManageAssignment managing the assignment process according to the organisation rules
ManageReview managing the review process and sending reviews to authors

Fig. 22 Requirement table .C/Ret

Legacy System Description

WebServer the container for the web application of the conference

Fig. 23 Legacy System table .C/LSt

428 A. Molesini and A. Omicini

Relation Description

Web access to the web in order to retrieve or storage some information

Fig. 24 Relation table .C/Relt

Layer C Layer C + 1
ManagePartitioning UpdateStartUp, ManageSubCommittee, ManageClassification, Parti-

tionPapers, UpSubCooRel, SubCommPartRel, ClassPartRel, Vice-
Chair

Fig. 25 Zooming table (.C/Zt): paper partitioning in-zoom

Requirement Description

UpdateStartUp it could be necessary to update the structure and the rules of the organ-
isation in order to manage a large number of paper submitted

ManageSubCommittee if necessary, sub-committes will be created and the Vice-Chairs elected
ManageClassification classification of the papers according to keywords suggested by authors
PartitionPapers partitioning of papers in order to match authors keywords and reviewers

keywords, and according to the organisation’s rules

Fig. 26 Requirement table .C C 1/Ret

Requirements Tables at Layer C C 1

In Figs. 25 and 26, we report some examples of the SODA tables modelling the
conference management systems at layer C C 1.

2.2 The Analysis

In the Analysis step, SODA takes into account four abstract entities to analyse
the system: tasks, functions, dependencies and topologies. Figure 27 presents the
Analysis process, while Fig. 28 presents the flow of activities, the roles involved
and the work products.

2.2.1 Process Roles
One role is involved in the Analysis step: the System Analyst.

System Analyst
The System Analyst is responsible for
• Mapping the MMMElements of the Requirements Analysis to the MMMEle-

ments of the Analysis
• Identifying new tasks coming from system analysis and description of the all

tasks (new tasks and tasks coming from the mapping)
• Identifying new functions coming from system analysis and description of the all

functions (new tasks and tasks coming from the mapping)

The SODA Methodology: Meta-model and Process Documentation 429

Moving from requirements

Task Analysis Function analysis Topology Analysis

Dependency Analysis

Task Layering
Function Layering

Topology Layering

Dependency Layering

Layering

Layering

other layer?

another layer?
another layer?

another layer?

another layer?

new iteration

no

yes

yes

 no

yes

no

yes

yes

no

no

Are the models well specified?

yes

Fig. 27 The analysis process

• Identifying new dependencies coming from system analysis and description of
the all dependencies (new dependencies and dependencies coming from the
mapping)

• Identifying new topologies coming from system analysis and description of the
all topologies (new topologies and topologies coming from the mapping)

2.2.2 Activity Details
For the details about the different Layering activities, please refer to Sect. 1.3.1.

430 A. Molesini and A. Omicini

Zooming table

System Analyst

<<performs,

prim
ary>>

<<input>>

<<input>>

<<input>>

<<input>>

<<predecessor>>

<<predecessor>>

Map
Requirements-

Analysis <<predecessor>>

Task Description

<<output>>

Zooming table

<<output>>

<<
inp

ut
>>

Function
Description

<<output>>

Zooming table

<<
in

pu
t>

>

System Analyst

<<performs,

prim
ary>>

<<predecessor>>

<<predecessor>>

Topology
Description

Zooming table

<<output>>

<<predecess
or>>

<<
pr

ed
ec

es
so

r>
>

<<predecessor>>

Zooming table

<<output
>>

<<predecessor>>

<<predecessor>>

Dependency
Description

<<input>>

<<input>>

System Analyst<<performs,

primary>>

<<output>>

<<predecessor>>

<<predecessor>>

<<output>>

<<perf
orms,

primary>>

System Analyst

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

References Tables

c

References Tables

c

<<
in

pu
t>

>

References Tables

c

<<input>>

Task Layering

Task Analysis

<<predecessor>>

<<predecessor>>

References Tables

c

Moving from
requirements

Layering

<<output>>

Topology
Layering Topology

Analysis

<<predecessor>>

<<input>>

Topologies Tables

c
References Tables

c

<<input>>

Function
Analysis

<<input>>

<<predecessor>>

Layering

Responsibilities
Tables

c

Responsibilities
Tables

c

<<output>>

<<
pr

ed
ec

es
so

r>
>

<<
pr

ed
ec

es
so

r>
>

Topologies Tables

c

<<
inp

ut
>>

<<
inp

ut
>>

Dependencies
Tables

c

Function
Layering

Dependency
Analysis

Dependency
Layering

Domain Tables

c
Relations Tables

c

Requirements
Tables

c

Fig. 28 The analysis flow of activities, roles and work products

Moving from Requirements Activity
The Moving from Requirements activity is composed of the following tasks:

Activity Task Task description Role involved

Moving from
Requirements

Map
Requirements-
Analysis

Mapping of the MMMElements
defined in Requirements Analysis
to the Analysis MMMElements

System Analyst
(perform)

The flow of tasks inside the Moving from Requirements activity is reported in
Fig. 29.

Task Analysis Activity
The Task Analysis activity is composed of the following tasks:

Activity Task Task description Role involved

Task
Analysis

Task
Description

Identification of the tasks and their
description

System Analyst
(perform)

The SODA Methodology: Meta-model and Process Documentation 431

Map
Requirements-

Analysis

System Analyst

Zooming table

References Tables

c

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, output>>

Requirements
Tables

c

Relations Tables

c

Domain Tables

c

<<optional, input>>
<<mandatory, input>>

Fig. 29 The flow of tasks in the moving from requirements activity

Task Description
System Analyst

Zooming table

Reference
Requirement-

Task table

Task table

<<mandatory, input>>

<<optional, input>><<mandatory, input>>

Fig. 30 The flow of tasks in the task analysis activity

The flow of tasks inside the Task Analysis activity is reported in Fig. 30.

Function Analysis Activity
The flow of tasks inside this activity is reported in Fig. 31; the tasks are detailed in
the following table.

432 A. Molesini and A. Omicini

Function
Description

System Analyst

Zooming table

Function table

Reference
Requirement-
Function table

<<mandatory, input>>

<<mandatory, output>>

<<optional, input>>

Fig. 31 The flow of tasks in the function analysis activity

Activity Task Task description Role involved

Function
Analysis

Function
Description

Identification of the functions and
their description

System Analyst
(perform)

Dependency Analysis Activity
The flow of tasks inside this activity is reported in Fig. 32, and the tasks are detailed
in the following table.

Activity Task Task description Role involved

Dependency
Analysis

Dependency
Description

Identification of the system
dependencies and their
description. Identification of
relations with tasks, functions and
topology

System Analyst
(perform)

Topology Analysis Activity
The flow of tasks inside this activity is reported in Fig. 33; the tasks are detailed in
the following table.

Activity Task Task description Role involved

Topology
Analysis

Topology
Description

Identification of the topological
constraints and their description.
Identification of relations with
tasks and functions

System Analyst
(perform)

The SODA Methodology: Meta-model and Process Documentation 433

Dependency
Description

System Analyst

Zooming table

Reference
Requirement-

Dependency table
Reference Relation-
Dependency table

Task table Function TableTopology table

<<mandatory, input>>

Dependencies
Tables

c

<<mandatory, output>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>

<<optional, input>>

Fig. 32 The flow of tasks in the dependency analysis activity

Topology
Description

System Analyst

Zooming table

Reference
Requirement-
Topology table

Reference
LegacySystem-
Topology table

Topologies Tables

c

<<mandatory, input>>

<<mandatory, output>>

<<optional, input>>

<<mandatory, input>>

Fig. 33 The flow of tasks in the topology analysis activity

434 A. Molesini and A. Omicini

Reference
Requirement-
Function table

Reference
Requirement-

Dependency table
Q

D

Dependency

Requirement

C

References
Tables

Reference
Requirement-

Task table
Q

Task

Requirement

D

Q

D

Function

Requirement

Q

D

Topology

Requirement

Q

D

Function

LegacySystem

Q

D

Topology

LegacySystem

Q

D

Dependency

Relation

Reference
Requirement-
Topology table

Reference
LegacySystem-
Function table

Reference
LegacySystem-
Topology table

Reference Relation-
Dependency table

C

Responsibilities
Tables

C

Dependencies
Table

C

Topologies Tables

RF

Task

Function

Task table

RF

Function Table

Dependency

Q

Task

R

Function

Q R

RF

Dependency
table

Topology

Q R

Topology-
Dependency table

Function-
Dependency table

Task-Dependency
table

Topology

Q

Task

R

Function

Q R

RF

Topology table

Task-Topology
table

Function-
Topology table

Zooming table

Task TopologyFunction Dependency

F F F
R R R RD D D FD

R

R

R

R

R

R

R

D

Fig. 34 The analysis work products

2.2.3 Work Products
The Analysis step exploits four sets of tables: Reference Tables, Responsibilities
Tables, Dependencies Tables and Topologies Tables. Figure 34 reports the relation-
ships among the work products of this step and the MMMElements of the Analysis.
In Fig. 34 are also reported the relationships among the Zooming table and the
MMMElements of the Analysis—see Sect. 1.3.1 for details.

Kinds of Work Products
Table 3 describes all the work products of the Analysis. In particular, the first set of
work products is the outcome of the Moving from Requirements activity, the second
set is the outcome of the Task Analysis and Function Analysis activities, the third is

The SODA Methodology: Meta-model and Process Documentation 435

Table 3 Requirements Analysis work products kinds

Name Description Work product kind

References Tables A composition of others tables that allow
to move from Requirements Analysis to
Analysis

Composite
(structured)

Reference
Requirement-Task
table (.L/RRTt)

Specification of the mapping between
each requirement and the generated tasks

Structured

Reference
Requirement-Function
table (.L/RRFt)

Specification of the mapping between
each requirement and the generated
functions

Structured

Reference
Requirement-Topology
table (.L/RRTot)

Specification of the mapping between
each requirement and the generated
topologies

Structured

Reference
Requirement-Dependency
table (.L/RReqDt)

Specification of the mapping between
each requirement and the generated
dependencies

Structured

Reference
Legacy System-Function
table (.L/RLSFt)

Specification of the mapping between
each Legacy System and the
corresponding functions

Structured

Reference
Legacy System-Topology
table (.L/RLSTt)

Specification of the mapping between
Legacy Systems and topologies

Structured

Reference
Relation-Dependency
table (.L/RRelDt)

Specification of the mapping between
relations and dependencies

Structured

Responsibilities Tables A composition of others tables that
defines the abstract entities tied to the
concept of “responsibilities centre”

Composite
(structured)

Task table (.L/Tt) Description of the all tasks Structured
Function table (.L/Ft) Description of the all functions Structured
Topologies Tables A composition of others tables that

express the topological constraints over
the environment

Composite
(structured)

Topology table
(.L/Topt)

Description of the topological constraints Structured

Task-Topology
table (.L/TTopt)

Specification of the list of the topological
constraints where each task is involved

Structured

Function-Topology
table (.L/FTopt)

Specification of the list of the topological
constraints where each function is
involved

Structured

Dependencies Tables A composition of others tables that relates
functions and tasks with each other

Composite
(structured)

Dependency table
(.L/Dt)

Description of the all dependencies
among abstract entities

Structured

Task-Dependency
table (.L/TDt)

Specification of the set of dependencies
where each task is involved

Structured

Function-Dependency
table (.L/FDt)

Specification of the list of dependencies
where each function is involved

Structured

Topology-Dependency
table (.L/TopDt)

Specification of the list of dependencies
where each topology is involved

Structured

436 A. Molesini and A. Omicini

Requirement Task

ManageStartUp start up
ManageSubmission paper submission

user registration
ManageReviewers reviewer registration
ManagePartitioning paper partitioning
ManageAssignment assignment papers
ManageReview review process

Fig. 35 Reference Requirement-Task table .C/RRTt

Task Description

start up insertion of the setup information
submission the paper has to be submitted and the keywords have to be indicated
user registration user inserts his data
reviewer registration reviewer inserts his data and the keywords representing his expertise areas
paper partitioning partitioning of the set of papers according to the conference rules
assignment papers assignment papers to reviewers
review process creation and submission of the reviews

Fig. 36 Task table .C/Tt

Topology Description

place it is the locus where functions are allocated

Fig. 37 Topology table .C/Topt

the outcome of the Topology Analysis activity and the last set is the outcome of the
Dependency Analysis activity.

References Tables
Figure 35 represents an example of the References Tables for the conference
management case study.

Responsibilities Tables
Figure 36 represents an example of the Responsibilities Tables for the conference
management case study. Figure 37 represents an example of the Topologies Tables
for the conference management case study.

Dependencies Tables
Figure 38 represents an example of the Dependencies Tables for the conference
management case study.

Responsibilities Tables at Layer C C 1

Figures 39 and 40 report some examples of the SODA tables modelling the
conference management systems at layer C C 1.

The SODA Methodology: Meta-model and Process Documentation 437

Dependency Description

RegSubDep paper submission to be done after author registration
RegAssDep the paper assignment has to be done after reviewers registration
PartAssDep the paper assignment has to be done after the conclusion of the paper par-

titioning process
AssRevDep the paper revision has to be started only after the conclusion of the paper

assignment process
WebAccessDep access to website for retrieving or storing information
StartUpInfDep access of all the information bout start up process
UserInfDep access to all the users’ information
ReviewerInfDep access to all the reviewers’ information
PaperInfDep access to all the paper information
PartInfDep access to all the information about partitioning process
SubInfDep access to all the information about submission process
AssInfDep access to all the information about assignment process; a reviewer cannot

be the author of the papers assigned to him
ReviewInfDep access to all the information about review process

Fig. 38 Dependency table .C/Dt

Layer C Layer C +1
paper partitioning modifying startup, create sub-committees, Vice-Chair elections,

paper classification, partition papers, NewOrganisationDep, Elec-
tionDep

Fig. 39 Zooming table .C/Zt

Task Description

modifying startup update the structure and the rules of the organisation
create sub-committees creation of sub-committees
Vice-Chair elections for each sub-committee elect the Vice-Chair
papers classification classification of papers according to the keywords
partition papers partitioning papers according to their classification

Fig. 40 Task table .C C 1/Tt

2.3 The Architectural Design

In this step, we take into account several abstract entities in order to design
the system’s general architecture: role, resource, action, operation, interaction,
environment and place. Figure 41 presents the Architectural Design process, while
Fig. 42 presents the flow of activities, the involved roles and the work products.

2.3.1 Process Roles
One role is involved in the Architectural Design: the Architectural Designer.

Architectural Designer
The Architectural Designer is responsible for
• Mapping the MMMElements of the Analysis to the MMMElements of the

Architectural Design

438 A. Molesini and A. Omicini

Transition

Role Design Resource Design

Space design

Interaction Design

Constraint Design

Role Layering
Resource Layering

Space Layering

Interaction Layering

Constraint Layering

Layering

Layering

other layer?

another layer? another layer?

another layer?

another layer?

need another layer?

yes
yes

yes

yes

yes

new iteration

no

yesno

no
no

no

no

are all the models well specified?

yes

Fig. 41 The architectural design process

• Assigning tasks to roles
• Assigning functions to resources
• Identifying new actions coming from system design and describing all the actions

(new actions and actions coming from the mapping)
• Identifying operations coming from system design and describing all the opera-

tions (new operations and operations coming from the mapping)
• Identifying new interactions coming from system design and describing all the

interactions (new interactions and interactions coming from the mapping)

The SODA Methodology: Meta-model and Process Documentation 439

Zooming table

Architectural
Designer

<<performs,

prim
ary>>

<<input>>

<<input>>

<<input>>

<<input>>

<<predecessor>>

<<predecessor>>

Map Analysis-
ArchDes <<output>>

<<predecessor>>

<<predecesso
r>>

<<
pr

ed
ec

es
s

or
>>

Action Design

Zooming table

<<
ou

tp
ut

>>

<<input>>

<<predecessor>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>
>

<<predecessor>>

Operation Design

<<output>>

Zooming table

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<predecessor>>

<<predecessor>>

Space Design

Zooming table

<<input>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>
>

Zooming table

<<predecessor>>

<<predecessor>>

Constraint Design

<<input>>

<<perform
s, prim

ary>>
<<output

>>

Architectural
Designer

Architectural
Designer

Architectural
Designer

Interaction Design

<<predecesso
r>>

<<predecessor>>

<<predecessor>>

Zooming table <<input>>

<<input>>

Architectural
Designer

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<
ou

tp
ut

>>

<<predecessor>>

<<
pr

ed
ec

es
s

or
>>

<<input>>

<<
in

pu
t>

>

<<perform
s,

prim
ary>>

<<input>>

<<input>>

Responsibilities
Tables

c

Dependencies
Tables

c

Topologies Tables

c

Transition

Layering Space Design

Space
Layering

<<output>>

Layering

Transition Tables

c

Transition Tables

c

<<input>>

Transition Tables

c

<<
in

pu
t>

>

Transition Tables

c

<<
in

pu
t>

>

<<input>>

Transition Tables

c

Transition Tables

c
<<input>>

Resource
Design

Entities Tables

c

Entities Tables

c

Role Design

Role
Layering

Resource
Layering

<<output>>

<<
ou

tp
ut

>>

Interaction
Layering

<<output>>
<<predecesso

r>>

Interactions Tables

c
Constraints

Tables

c

Entities Tables

c

Interaction
Design

Constraint
Design

Constraint
Layering

<<output>> Topological Tables

c<<output>>

<<output>>

Fig. 42 The architectural design flow of activities, roles, and work products

• Identifying new rules coming from system design and describing all the rules
(new rules and rules coming from the mapping)

• Identifying new spaces coming from system design and describing all the spaces
(new spaces and spaces coming from the mapping)

2.3.2 Activity Details
For the details about the different Layering activities, please refer to Sect. 1.3.1.

Transition Activity
The Transition activity is composed of the following tasks:

Activity Task Task description Role involved

Transition Map
Analysis-
ArchDes

Mapping of the MMMElements
defined in Analysis to the
Architectural Design
MMMElements so as to generate
the initial version of the
Architectural Design models

Architectural Designer
(perform)

The flow of tasks inside the Transition activity is reported in Fig. 43.

440 A. Molesini and A. Omicini

Map Analysis-
ArchDes

Architectural
Designer

Zooming table

<<mandatory, output>>

Transition Tables

c

Responsibilities
Tables

c

<<mandatory, input>>

Dependencies
Tables

c

Topologies Tables

c

<<mandatory, input>>

<<optional, input>>
<<mandatory, input>>

Fig. 43 The flow of tasks in the transition activity

Role Design Activity
The Role Design activity is composed by the following tasks:

Activity Task Task Description Role Involved

Role
Design

Action
Design

Assignment of tasks to roles and
identification of the actions
necessary in order to achieve each
specific task

Architectural Designer
(perform)

The flow of tasks inside the Role Design activity is reported in Fig. 44.

Resource Design activity
The Resource Design activity is composed by the following tasks:

Activity Task Task Description Role Involved

Operation
Design

Resource
Design

Assignment of functions to
resources and identification of the
operations necessary for providing
each specific function

Architectural Designer
(perform)

The SODA Methodology: Meta-model and Process Documentation 441

Action Design

Architectural
Designer

Zooming table

Transition Task-
Action tableTransition Role-

Task table

Action tableRole-Action
table

<<mandatory, output>> <<mandatory, output>>

<<mandatory, input>>

<<mandatory, input>>

<<optional, input>>

Fig. 44 The flow of tasks in the role design activity

The flow of tasks inside the Resource Design activity is reported in Fig. 45.

Constraint Design Activity
The Constraint Design activity is composed by the following tasks:

Activity Task Task Description Role Involved

Constraint
Design

Constraint
Design

Identification of the rules that
enable and bound the entities’
behaviour starting from the
dependencies analysed in the
previous step

Architectural Designer
(perform)

The flow of tasks inside the Constraint Design activity is reported in Fig. 46.

Interaction Design Activity
The Interaction Design activity is composed by the following tasks:

442 A. Molesini and A. Omicini

Operation
Design

Architectural
Designer

Zooming table
Transition

Resource-Function
table

Transition
Function-

Operation table

Operation tableResource-
Operation table

Fig. 45 The flow of tasks in the resource design activity

Activity Task Task Description Role Involved

Interaction
Design

Interaction
Design

Identification of the interactions
hat represent the acts of the
interaction among roles, among
resources and between roles and
resources starting from the
dependencies analysed in the
previous step

Architectural Designer
(perform)

The flow of tasks inside the Interaction Design activity is reported in Fig. 47.

Space Design Activity
The Space Design activity is composed by the following tasks:

Activity Task Task Description Role Involved

Space
Design

Space
Design

Identification of the spaces starting
from the topology constraints
analysed in the previous step

Architectural Designer
(perform)

The flow of tasks inside the Space Design activity is reported in Fig. 48.

The SODA Methodology: Meta-model and Process Documentation 443

Constraint
Design

Architectural
Designer

Zooming tableSpace tableTransition
Dependency-Rule

table

Interaction table

Role-Action
table

Resource-
Operation table

<<mandatory, input>>

Constraints
Tables

c
<<mandatory,output>>

<<mandatory, input>>

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>

<<optional, input>>

Fig. 46 The flow of tasks in the constraint design activity

2.3.3 Work Products
The Architectural Design step consists of five sets of tables: Transition Tables,
Entities Tables, Interactions Tables, Constraints Tables and Topological Tables.
Figure 49 reports the relationships among the work products of this step and the
MMMElements of the Architectural Design step. In Fig. 49 are also reported the
relationships among the Zooming table and the MMMElements of the Architectural
Design—see Sect. 1.3.1 for details.

Kinds of Work Products
Table 4 describes all the work products of the Architectural Design. In particular, the
first set of work products is the outcome of the Transition activity, the second is the
outcome of the Role Design and Resource Design activities, the third is the outcome
of the Interaction Design activity, the fourth is the outcome of the Constraint Design
activity and the last is the outcome of the Space Design activity.

Transition Tables
Figure 50 presents an example of the Transition Tables for the conference manage-
ment case study.

Entities Tables
Figure 51 presents an example of the Entities Tables for the conference management
case study.

444 A. Molesini and A. Omicini

Interaction
Design

Architectural
Designer

Zooming tableAction table
Operation tableTransition

Dependency-
Interaction table

Role-Action
table Resource-

Operation table

<<mandatory, input>>

Interactions
Tables

c

<<mandatory, output>>

<<mandatory, input>>

<<mandatory, input>>

<<mandatory, input>>
<<optional, input>>

<<mandatory, input>>

Fig. 47 The flow of tasks in the interaction design activity

Space Design
Architectural

Designer

Zooming tableTransition Topology-
Space tableRole-Action

table
Resource-

Operation table

<<mandatory, input>>

Topological Tables

c
<<mandatory, output>>

<<optional, input>>
<<mandatory, input>>

<<mandatory, input>>

Fig. 48 The flow of tasks in the space design activity

The SODA Methodology: Meta-model and Process Documentation 445

Transition Task-
Action table

Transition
Resource-Function

table
Q

D

Resource

Function

Transition Role-
Task table

Q

Role

Task

D

Q

D

Action

Task

Q

D

Operation

Function

Q

D

Interaction

Dependency

Q

D

Rule

Dependency

Q

D

Space

Topology

Transition
Function-

Operation table

Transition
Dependency-

Interaction table

Transition
Dependency-

Rule table

Transition Topology-
Space table

RF

Role Action Rule

Q

Role

R

Function

Q R

RF

Rule table

Topology

Q R

Role-Rule table

Q

Resource

R

Role

Q R

RF

Space table

Resource-Space
table

Role-Space
table

Zooming table

Role SpaceResource Interaction

F F F FR R R RD D D D
R

R

R

R

R

R

R

D

Action

R FD

Operation

FR

Rule

FR

Action tableRole-Action table

RF

R

RF

Operation Resource

Resource-
Operation tableOperation table

RF

R

Space-Connection
table

Space

D D

Space

RQ

Interaction

Role

Q R

Resource

Q R
Resource-Interaction

table

Role-Interaction
table

Interaction table

RF

Topology

Q R

Interaction-Rule
table

Resource-Rule
table

Space-Rule table

Transition Tables

c

Entities Tables

c Constraints
Tables

c

Topological Tables

c

Interactions Tables

c

Fig. 49 The architectural design work products

Interactions Tables
Figure 52 presents an example of the Interactions Tables for the conference
management case study.

Constraints Tables
Figure 53 presents an example of the Constraints Tables for the conference
management case study.

Topological Tables
Figure 54 presents an example of the Topological Tables for the conference
management case study.

2.4 The Detailed Design

The goal of Detailed Design is to choose the most adequate representation level
for each architectural entity, thus leading to depict one (detailed) design from the
many potential alternatives outlined in the Architectural Design step. Figure 55

446 A. Molesini and A. Omicini

Table 4 Architectural Design work products kinds

Name Description Work product kind

Transition Tables A composition of others tables that links
the Analysis step with the Architectural
Design step

Composite
(structured)

Transition Role-Task
table (.L/TRT t)

Specification of the mapping between
each role and the tasks assigned to it

Structured

Transition Task-Action
table (.L/TTAt)

Specification of the mapping between
each task and the generated actions

Structured

Transition Resource-Function
table (.L/TRFt)

Specification of the mapping between
each functions and the functions assigned
to it

Structured

Transition Function-Operation
table (.L/TFOt)

Specification of the mapping between
each functions and the generated
operations

Structured

Transition
Dependency-Interaction
table (.L/TDI t)

Specification of the mapping between
each dependency and the generated
interactions

Structured

Transition Dependency-Rule
table (.L/TDRut)

Specification of the mapping between
each dependency and the generated rules

Structured

Transition Topology-Space
table (.L/TTopSt)

Specification of the mapping between
each topology and the generated spaces

Structured

Entities Tables A composition of others tables that
describes both the active entities (able to
perform some actions in the system) and
the passive entities which provide services

Composite
(structured)

Action table (.L/At) Description of the actions executable by
some roles

Structured

Operation
table (.L/Ot)

Description of the operations provided by
resources

Structured

Role-Action
table (.L/RAt)

Specification of the actions that each role
can do

Structured

Resource-Operation
table (.L/ROt)

Specification of the operations that each
resource can provide

Structured

Interactions Tables A composition of others tables that
describe the interaction between roles
and resources

Composite
(structured)

Interaction
table (.L/It)

Description of the single interactions Structured

Action-Interaction
table (.L/AcI t)

Specification of the interactions where
each action is involved

Structured

Operation-Interaction
table (.L/OpI t)

Specification of the interactions where
each operation is involved

Structured

Constraints Tables A composition of others tables that
describes the constraints over the entities
behaviours

Composite
(structured)

Rule table (.L/Rut) Description of the rules Structured
Rule-Interaction
table (.L/IRut)

Specification of the constraints over the
interactions

Structured

(continued)

The SODA Methodology: Meta-model and Process Documentation 447

Table 4 (continued)

Name Description Work product kind

Resource-Rule table
(.L/ReI t)

Specification of the rules where each
resource is involved

Structured

Role-Rule table
(.L/RoRut)

Specification of the rules where each role
is involved

Structured

Space-Rule table
(.L/SRut)

Specification of the rules where each
space is involved

Structured

Topological Tables A composition of others tables that
describes the logical structure of the
environment

Composite
(structured)

Space table (.L/St) Description of the spaces Structured
Space-Connection
table (.L/SCt)

Specification of the connections among
the spaces of a given layer (the
hierarchical relations between spaces are
expressed via the Zooming Table)

Structured

Resource-Space
table (.L/ReSt)

Specification of the all spaces where
resources is involved

Structured

Role-Space
table (.L/RoSt)

Specification of the all spaces where role
is involved

Structured

Role Task

Conference Secretary start up
Chair paper partitioning, assignment papers
Author submission, user registration
Reviewer reviewer registration, review process
PC-member reviewer registration, review process

Fig. 50 Transition role-task table .C/TRTt

Action Description

login user authentication
send paper user compiles form and sends his paper
publish deadline user generates/modifies deadline
partition user splits papers according to keywords
assignment user assigns papers
read paper user reads papers
download paper user downloads paper from the web
write review user writes the review

Fig. 51 Action table .C/At

presents the Detailed Design process, while Fig. 56 presents the flow of activities,
the involved roles and the work products.

2.4.1 Process Roles
One role is involved in the Detailed Design: the Detailed Designer.

448 A. Molesini and A. Omicini

Interaction Description

UserInfInteraction accessing user information
ReviewerInfInteraction accessing reviewer information
PaperInfInteraction accessing paper information
PartInfInteraction accessing partitioning information
SubInfInteraction accessing submission information
AssInfInteraction accessing assignment information
ReviewInfInteraction accessing review information
WebAccessInteraction accessing website

Fig. 52 Interaction table .C/It

Rule Description

RegSubRule the submission has to be done after the author registration
RegAssRule the assignment has to be done after reviewer registration
PartAssRule the assignment has to be done after partitioning
AssRevRule write review after the assignment
UserInfRule user can access & modify only his own information
ReviewerInfRule reviewer can access & modify only his own information
AuthorInfRule author can access & modify only public information of owned paper(s)
MatchRule papers can be partitioned according to their keywords
SubInfRule send paper only before deadline submission
AutRevRule PC-Member/Reviewer cannot review his own papers
ReviewRule PC-Member/Reviewer cannot access private information about owned

papers
WebAccessRule access to the system must be authorised

Fig. 53 Rule table .C/Rut

Space Description

S-place the space where resources have to be allocated

Fig. 54 Space table .C/St

Detailed Designer
The Detailed Designer is responsible for
• Mapping the MMMElements of the Architectural Design to the MMMElements

of the Detailed Design
• Identifying the most suitable system architecture among all the possibilities

provided in the Architectural Design step
• Assigning roles to agents
• Assigning actions to individual artifacts
• Assigning roles to societies
• Assigning resources to environmental artifacts
• Assigning resources to aggregate
• Assigning operations to environmental artifacts
• Assigning rules to artifacts
• Designing artifacts usage interfaces

The SODA Methodology: Meta-model and Process Documentation 449

Carving

Mapping

Agent Design Environment Design

Workspace Design

Interaction Detailed Design

no
yes

is the system well specified?

Fig. 55 The detailed design process

• Assigning interactions to uses and designing the specific protocols
• Assigning interactions to manifests and designing the specific protocols
• Assigning interactions to speakTo and designing the specific protocols
• Assigning interactions to linkedTo and designing the specific protocols
• Assigning spaces to workspaces and designing them

2.4.2 Activity Details
Carving Activity
The Carving activity is composed of the following tasks:

450 A. Molesini and A. Omicini

Zooming table

Detailed Designer
<<

pe
rfo

rm
s,

pri
mary

>>

<<input>>

<<input>><<input>>

<<input>>
Carving

<<output>>

<<
pr

ed
ec

es
so

r>
>

Agent/Society
Design

<<output
>>

<<predecessor>>

Environment Design

<<output>>

<<performs, primary>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Workspace Design

Detailed Designer

Interaction Detailed
Design

<<predecessor>>

<<predecessor>>

<<output>>

Topological
Design Tables

<<performs, primary>>

<<input>>

<<input>>

Map ArchDes-
DetDes

<<input>>

<<input>>

<<input>>

<<input>> <<input>>
<<input>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Detailed Designer

Detailed Designer

<<input>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>

>

<<predecessor>>

Mapping Tables

c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Carving
Diagram

a

Workspace Design
Tables

c

Interaction
Detailed Design

Tables

c

Agent/Society
Design Tables

c

Agent/Society
Design Tables

c

Carving

Mapping

Environment
Design Tables

c

Environment
Design Tables

c

<< input>>

<<input>>

<<input>>

<<output>>

Mapping Tables

c

<< input>>

Interaction
Detailed Design

Mapping Tables

c <<input>>

Mapping Tables

c
<<input>>

Mapping Tables

c

<<output>>

Workspace Design

Environment Design

Agent Design

Interactions
Tables

c

Interactions
Tables

c

Entities Tables

c

Entities Tables

c

Constraints
Tables

c
Constraints

Tables

c

Topological
Tables

c

Topological
Tables

Fig. 56 The detailed design flow of activities, roles, and work products

Activity Task Task description Role involved

Carving Carving For each entity the appropriate
layer of representation is chosen

Detailed Designer
(perform)

The flow of tasks inside the Carving activity is reported in Fig. 57.

Mapping Activity
The Mapping activity is composed of the following tasks:

Activity Task Task description Role involved

Mapping Map ArchDes-
DetDes

Mapping of the MMMElements
defined in Architectural Design to
Detailed Design MMMElements so
as to generate the initial version of
the Detailed Design models

Detailed Designer
(perform)

The flow of tasks inside the Mapping activity is reported in Fig. 58.

The SODA Methodology: Meta-model and Process Documentation 451

Carving
Detailed
Designer

Zooming table

<<mandatory , output>>

<<mandatory , input>>

Carving
Diagram

a

Interactions Tables

c
Entities Tables

c

Constraints Tables

c

Topological Tables

c
<<mandatory , input>>

<<mandatory , input>>

<<mandatory , input>>

<<mandatory , input>>

Fig. 57 The flow of tasks in the carving activity

Map ArchDes-
DetDes

Detailed
Designer

Mapping Tables

c

<<mandatory, output>>

<<mandatory, input>>

Interactions Tables

c
Entities Tables

c

<<mandatory, input>>

Constraints Tables

c

<<mandatory, input>>

<<mandatory, input>>

Topological Tables

c
Carving
Diagram

a

<<mandatory, input>>

Fig. 58 The flow of tasks in the mapping activity

452 A. Molesini and A. Omicini

Agent/Society
Design

Detailed
Designer

c

Agent/Society
Design Tables

Mapping Artifact-
Action table

Mapping Society-Role
table

Mapping Agent-Role
table

Fig. 59 The flow of tasks in the agent design activity

Agent Design activity
The Agent Design activity is composed of the following tasks:

Activity Task Task description Role involved

Agent
Design

Agent/
Society Design

Design of Agents and Societies Detailed Designer
(perform)

The flow of tasks inside the Agent Design activity is reported in Fig. 59.

Environment Design Activity
The Environment Design activity is composed of the following tasks:

Activity Task Task description Role involved

Environment
Design

Environment
Design

Design of Artifacts and Aggregates Detailed Designer
(perform)

The flow of tasks inside the Environment Design activity is reported in Fig. 60.

The SODA Methodology: Meta-model and Process Documentation 453

Environment
Design

Detailed
Designer

Mapping
Aggregate-

Resource table
Mapping Artifact-
Operation table

Mapping Artifact-
Resource table

<<mandatory, input>>

Environment
Design Tables

c

<<mandatory, input>> <<mandatory , input>>

<<mandatory, output>>

Fig. 60 The flow of tasks in the environment design activity

Interaction Detailed Design Activity
The Interaction Detailed Design activity is composed of the following tasks:

Activity Task Task description Role involved

Interaction
Detailed
Design

Interaction
Detailed
Design

Design of the interaction protocols
for Uses, Manifests, SpeakTo and
LinkedTo identified in the carving

Detailed Designer
(perform)

The flow of tasks inside the Interaction Detailed Design activity is reported in
Fig. 61.

Workspace Design Activity
The Workspace Design activity is composed by the following tasks:

Activity Task Task description Role involved

Workspace
Design

Workspace
Design

Design of workspaces starting
from spaces identified in the
carving

Detailed Designer
(perform)

The flow of tasks inside the Workspace Design activity is reported in Fig. 62.

454 A. Molesini and A. Omicini

Interaction
Detailed Design

Detailed
Designer

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, input>>
<<mandatory, input>>

<<mandatory, output>>

Interaction
Detailed Design

Tables

c

Workspace Design
Tables

c

Mapping Tables

c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Fig. 61 The flow of task in the interaction detailed design activity

Workspace
Design

Detailed
Designer

Workspace Design
Tables

c

Mapping Tables

c

<<mandatory, input>>

<<mandatory,output>>

Fig. 62 The flow of task in the workspace design activity

2.4.3 Work Products
The Detailed Design step exploits several sets of tables: namely, Mapping Tables,
Agent/Society Design Tables, Environment Design Tables, Interaction Detailed
Design Tables and Workspace Design Tables. Figure 63 reports the relationships
among the work products and the MMMElements of the Detailed Design step.

The SODA Methodology: Meta-model and Process Documentation 455

Mapping
Aggregate-

Resource table

Mapping Artifact-
Operation tableQ

D

Artifact

Operation

Mapping
Artifact-Action

table
Q

Artifact

Action

D

Q

Aggregate

Resorce

Q

D

Artifact

Rule

Q

D

Workspace

Space

Q

D

Manifest

Interaction

Q

D

LinkedTo

Interaction

Mapping Rule-
Artifact table

Mapping Space-
Workspace table

Mapping
Interaction-

Manifest table

Mapping Interaction-
LinkedTo table

Use

Q

Agent

R

Agent

Q R

RF

Use-Protocol
table

Agent-Use table

Q

Artifact

R

Agent

Q R

RF

Workspace
table

Workspace-
Artifact table

Agent-Workspace
table

R

R

R

R

R

R

R

Workspace-
Connection table

Workspace

Workspace

RQ

Artifact

Aggregate

R

Aggregate
R

Aggregate-Agent
table

Aggregate-Artifact
table

Artifact-
UsageInterface table

RF Agent-SpeakTo
table

SpeakTo

RF

SpeakTo-Protocol
table

Artifact

Q R

Artifact-Manifest
table

ManifestManifest-Protocol
table

RF

Artifact

Q R

Artifact-LinkedTo
table

LinkedToLinkedTo-
Protocol table

RF

Agent-Artifact
table

Q

Agent

R

Artifact

RF

Society-Agent
table

Society

RFR

Society-Artifact
table

Society

R

Artifact

RF

RF

RF

Agent

Q

R
D

Interaction

Q

Mapping Interaction-
SpeakTo table

SpeakTo

R
D

Interaction

Q

Mapping Interaction-
Use table

Use

RF

D

R
D

Role

Q

Mapping Society-Role
table

Society

R

D

Role

Q

Mapping Agent-Role
table

Agent

Q

Artifact

D

Mapping Artifact-
Resource table

Resource

Q

Artifact

R

Artifact-Use table

Agent

Q R

Agent-Manifest
table

Q

Mapping Tables

c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Carving
Diagram

aWorkspace Design
Tables

c

Interaction
Detailed Design

Tables

c

Fig. 63 The detailed design work products

Kinds of Work Products
Table 5 describes all the work products of the Detailed Design. In particular, the first
entry is the outcome of the Carving Activity, the second set of work products is the
outcome of the Mapping activity, the third set is the outcome of the Agent Design
activity, the fourth set is the outcome of the Environment Design activity, the fifth
set is the outcome of the Interaction Detailed Design activity and the last set is the
outcome of the Workspace Design activity.

Carving Diagram
An example of the Carving Diagram for the conference management system is
reported in Fig. 64.

Mapping Tables
Figures 65, 66, and 67 present some examples of the Mapping Tables for the
conference management case study.

Agent/Society Design Tables
Figure 68 presents an example of the Agent/Society Design Tables for the confer-
ence management case study.

456 A. Molesini and A. Omicini

Table 5 Detailed Design work products kinds

Name Description Work product kind

Carving Diagram Diagram that shows the chosen system
architecture

Structured

Mapping Tables A composition of others tables that links
the Architectural Design step with the
Detailed Design step

Composite
(structured)

Mapping Agent-Role
table (MARt)

Specification of the mapping between
roles and agents

Structured

Mapping Society-Role
table (MSRt)

Specification of the mapping between role
and society

Structured

Mapping Artifact-Action
table (MAAct)

Specification of the mapping between
actions and individual artifacts

Structured

Mapping
Artifact-Resource
table (MArRt)

Specification of the mapping between
resources and artifacts

Structured

Mapping
Aggregate-Resource
table (MAggRt)

Specification of the mapping between
resources and aggregate

Structured

Mapping
Artifact-Operation
table (MArOpt)

Specification of the mapping between
operations and environmental artifacts

Structured

Mapping
Artifact-Rule
table (MArRut)

Specification of the mapping between
rules and the artifacts that implement and
enforce them

Structured

Mapping
Artifact-Operation
table (MSWt)

Specification of the mapping between
spaces and workspaces

Structured

Mapping
Interaction-Use
table (MIUt)

Specification of the mapping between
interactions and uses

Structured

Mapping
Interaction-Manifest
table (MIMt)

Specification of the mapping between
interactions and manifests

Structured

Mapping
Interaction-SpeakTo
table (MISpt)

Specification of the mapping between
interactions and speakTos

Structured

Mapping
Interaction-LinkedTo
table (MILt)

Specification of the mapping between
interactions and linkedTos

Structured

Agent/Society
Design Tables

A composition of others tables that
depicts agents, individual artifacts, and
the societies derived from the carving
operation

Composite
(structured)

Agent-Artifact
table (AAt)

Specification of the individual artifacts
related to each agent

Structured

Society-Agent
table (SAt)

Specification of the list of agents
belonging to a specific society

Structured

(continued)

The SODA Methodology: Meta-model and Process Documentation 457

Table 5 (continued)

Name Description Work product kind

Society-Artifact
table (SArt)

Specification of the list of artifacts
belonging to a specific society

Structured

Environment
Design Tables

A composition of others tables that
depicts artifacts, aggregates, agents
derived from the carving operation

Composite
(structured)

Artifact-
UsageInterface
table (AUIt)

Specification of the operations provided
by each artifact

Structured

Aggregate-Artifact
table (AggArtt)

Specification of the list of artifacts
belonging to a specific aggregate

Structured

Aggregate-Agent
table (AggAget)

Specification of the list of agents
belonging to a specific aggregate

Structured

Interaction Detailed
Design Tables

A composition of others tables that
concerns the design of interactions
among entities

Composite
(structured)

Use-Protocol
table (UPt)

Description of the protocols for each
“use”

Structured

Agent-Use
table (AgeUt)

Specification of the “use” where each
agent is involved

Structured

Artifact-Use
table (ArtUt)

Specification of the “use” where each
artifact is involved

Structured

SpeakTo-Protocol
table (SPt)

Description of the protocols for each
“speakTo”

Structured

Agent-SpeakTo
table (AgeSpt)

Specification of the “speakTo” where
each agent is involved

Structured

Manifest-Protocol
table (MPt)

Description of the protocols for each
“manifest”

Structured

Agent-Manifest
table (AgeMt)

Specification of the “manifest” where
each agent is involved

Structured

Artifact-Manifest
table (ArtMt)

Specification of the “manifest” where
each artifact is involved

Structured

LinkedTo-Protocol
table (LPt)

Description of the protocols for each
“linkedTo”

Structured

Artifact-LinkedTo
table (ArtLt)

Specification of the “linkedTo” where
each artifact is involved

Structured

Workspace
Design Tables

A composition of others tables that
describes the structure of the environment

Composite
(structured)

Workspace
table (.L/Wt)

Description of the workspaces Structured

Workspace-
Connection
table (.L/WCt)

Specification of the connections among
the workspaces

Structured

Workspace-Artifact
table (.L/WArtt)

Specification of the allocation of artifacts
in the workspaces

Structured

Workspace-Agent
table (.L/WAt)

Specification of the list of the workspaces
that each agent can perceive

Structured

458 A. Molesini and A. Omicini

Carving Opera�on onto

modifying
defining Vice classifying spli�ng

papers

analysing
papers

keywords
papersChair

informa�on

“par��on” ac�on par��on

C
C+1

Fig. 64 Carving operation in the conference management system

Agent Role

Conference Secretary Agent Conference Secretary
Chair Agent Chair
Author Agent Author
Reviewer Agent Reviewer
PC-Member Agent PC-member

Fig. 65 Mapping agent-role table MARt

Artifact Resource

Paper Artifact Paper DB
People Artifact People DB
Process Artifact Process DB
Web Artifact WebService

Fig. 66 Mapping artifact-resource table MArRt

Artifact Rule

User Artifact UserInfRule, ReviewerInfRule
Paper Artifact AuthorInfRule , MatchRule,
Process Artifact RegSubRule, RegAssRule, PartAssRule, AssRevRule, SubInfRule
Review Artifact AutRevRule, ReviewRule
Web Artifact WebAccessRule

Fig. 67 Mapping artifact-rule table MArRut

Agent Artifact

Conference Secretary Agent Conference Secretary
Chair Agent Chair Artifact
Author Agent Author Artifact
Reviewer Agent Reviewer Artifact
PC-Member Agent PC-Member Artifact

Fig. 68 Agent-artifact table AAt

The SODA Methodology: Meta-model and Process Documentation 459

Artifact Usage Interface

Chair Artifact read start up information, modify start up information, get info, lo-
gin, partition, assignment

Author Artifact login, registration, submit paper
Reviewer Artifact login, registration, read paper, write review, download paper
PC-Member Artifact login, read paper, write review, download paper
User Artifact store user, get user, modify user
Paper Artifact store paper, get paper, store classification, store partitioning, get

partitioning, get assignment, store assignment, store review, check
authors, check reviewer, check user, get review

Process Artifact start conference process, get process, store process, next stage,
deadline extension, update rule, read rule

Web Artifact login
Review Artifact check access to review information

Fig. 69 Artifact-usageInterface table AUIt

Use Protocol

ReadUserInfo get user (id)
information

ReadReviewInfo check user
ack
get review (paperID)
review

PaperInf- Interaction check user
ack
get paper (paperID)
paper

PartInf- Interaction check user
ack
get partitioning
partitioning info

SubInf- Interaction get info
info

AssInf- Interaction check user
ack
get assignment
assignment info

ReviewInf- Interaction check access to review information
ack
get review (paperID)
review

WebAccess- Interaction login

Fig. 70 Use-protocol table UPt

Environment Design Tables
Figure 69 presents an example of the Environment Design Tables for the conference
management case study.

Interaction Detailed Design Tables
Figure 70 presents an example of the Interaction Detailed Design Tables for the
conference management case study.

460 A. Molesini and A. Omicini

Workspace Artifact

Wplace Chair Artifact, Author Artifact, Reviewer Artifact, PC-Member Ar-
tifact, People Artifact, Process Artifact, Web Artifact, Review Arti-
fact, Paper Artifact

Fig. 71 Workspace-artifact table WAt

Zooming table
Zooming table

Zooming table

Interaction
Detailed Design

Tables

c

Workspace Design
Tables

c

Carving
Diagram

a

Mapping
Tables

c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Interactions Tables

c

Constraints Tables

c

Entities Tables

c

Transitions
Tables

c

Topological Tables

c

Dependencies
Tables

c

Responsibilities
Tables

c

Topologies Tables

c
References Tables

c

Domain Tables

c

Relations Tables

c

Requirements
Tables

c

Fig. 72 The work products dependencies

Workspace Design Tables
Figure 71 presents an example of the Workspace Design Tables for the conference
management case study.

3 Work Products Dependencies

Figure 72 describes the dependencies among the different SODA composite work
products.

Acknowledgements This work was supported by the EU-FP7-FET Proactive project SAPERE—
Self-aware Pervasive Service Ecosystems under contract no. 256873.

References

1. DPDF Working Group: FIPA design process documentation template. http://fipa.org/specs/
fipa00097/ (2011)

2. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: a roadmap to artefacts. In: Dikenelli, O.,
Gleizes, M.P., Ricci, A. (eds.) Engineering Societies in the Agents World VI. Lecture Notes in
Artificial Intelligence, vol. 3963, pp. 49–62. Springer, Berlin (2006). doi:10.1007/11759683_4.
6th International Workshop (ESAW 2005), Kuşadası, Aydın, 26–28 Oct 2005. Revised,
Selected & Invited Papers

3. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems. In: Müller, J.P.,
Zambonelli, F. (eds.) Agent-Oriented Software Engineering VI. Lecture Notes in Computer

http://fipa.org/specs/fipa00097/
http://fipa.org/specs/fipa00097/

The SODA Methodology: Meta-model and Process Documentation 461

Science, vol. 3950, pp. 81–93. Springer, Berlin (2006). doi:10.1007/11752660_7. 6th
International Workshop (AOSE 2005), Utrecht, 25–26 Jul 2005. Revised and Invited Papers

4. Molesini, A., Nardini, E., Denti, E., Omicini, A.: Advancing object-oriented standards toward
agent-oriented methodologies: SPEM 2.0 on SODA. In: Baldoni, M., Cossentino, M.,
De Paoli, F., Seidita, V. (eds.) 9th Workshop “From Objects to Agents” (WOA 2008) –
Evolution of Agent Development: Methodologies, Tools, Platforms and Languages, pp. 108–
114. Seneca Edizioni, Palermo (2008). http://www.pa.icar.cnr.it/woa08/materiali/Proceedings.
pdf

5. Molesini, A., Nardini, E., Denti, E., Omicini, A.: Situated process engineering for integrating
processes from methodologies to infrastructures. In: Shin, S.Y., Ossowski, S., Menezes, R.,
Viroli, M. (eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. II,
pp. 699–706. ACM, Honolulu (2009). doi:10.1145/1529282.1529429

6. Molesini, A., Denti, E., Omicini, A.: Agent-based conference management: a
case study in SODA. Int. J. Agent Oriented Softw. Eng. 4(1), 1–31 (2010).
doi:10.1504/IJAOSE.2010.029808

7. Molesini, A., Omicini, A.: Documenting SODA: an evaluation of the process documentation
template. In: Omicini, A., Viroli, M. (eds.) WOA 2010 – Dagli oggetti agli agenti. Modelli
e tecnologie per sistemi complessi: context-dependent, knowledge-intensive, nature-inspired e
self-*, CEUR Workshop Proceedings, vol. 621, pp. 95–101. Sun SITE Central Europe, RWTH
Aachen University, Rimini (2010). http://CEUR-WS.org/Vol-621/paper14.pdf

8. Object Management Group: Software & systems process engineering meta-model specification
2.0. http://www.omg.org/spec/SPEM/2.0/PDF (2008)

9. Omicini, A.: SODA: societies and infrastructures in the analysis and design of agent-based sys-
tems. In: Ciancarini, P., Wooldridge, M.J. (eds.) Agent-Oriented Software Engineering. Lecture
Notes in Computer Science, vol. 1957, pp. 185–193. Springer, Berlin (2001). doi:10.1007/3-
540-44564-1_12. 1st International Workshop (AOSE 2000), Limerick, 10 June 2000. Revised
Papers

10. Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Notes Theor. Comput.
Sci. 175(2), 97–117 (2007). doi:10.1016/j.entcs.2007.03.006. 5th International Workshop
on Foundations of Coordination Languages and Software Architectures (FOCLASA’06),
CONCUR’06, Bonn, 31 Aug 2006. Post-proceedings

11. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: toward a theory of artefacts for MAS. Electron.
Notes Theor. Comput. Sci. 150(3), 21–36 (2006). doi:10.1016/j.entcs.2006.03.003. 1st
International Workshop “Coordination and Organization” (CoOrg 2005), COORDINATION
2005, Namur, 22 April 2005. Proceedings

12. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifications to
represent agent oriented methodologies. In: Luck, M., Gómez-Sanz, J.J. (eds.) Agent-Oriented
Software Engineering IX. Lecture Notes in Computer Science, vol. 5386, pp. 46–59. Springer,
Berlin (2009). doi:10.1007/978-3-642-01338-6. 9th International Workshop (AOSE 2008),
Estoril, 12–13 May 2008, Revised Selected Papers

13. SODA: Home page. http://soda.apice.unibo.it (2009)
14. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2007)

http://www.pa.icar.cnr.it/woa08/materiali/Proceedings.pdf
http://www.pa.icar.cnr.it/woa08/materiali/Proceedings.pdf
http://CEUR-WS.org/Vol-621/paper14.pdf
http://www.omg.org/spec/SPEM/2.0/PDF
http://soda.apice.unibo.it

The Tropos Software Engineering
Methodology

Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen,
and Alberto Siena

Abstract
The agent-oriented software engineering methodology Tropos offers a structured
development process for the development of socio-technical systems. Such
systems explicitly recognise the interplay between social actors (humans and
organisations) and technical systems (software). Tropos adopts the state-of-the-
art i* requirements modelling language throughout the development cycle, giving
special attention to the early phases of domain and requirements analysis. The
system is modelled in terms of the goals of the involved actors and their social
interdependencies, allowing for a seamless transition from the requirements to
the design and potentially to an agent-oriented implementation. Tropos prescribes
a limited set of domain-independent models, activities and artefacts, which can
be complement with domain- and application-specific ones.

1 Introduction

Tropos is a comprehensive, agent-oriented methodology for developing socio-
technical systems. Such systems explicitly recognise the existence of and interplay
between technical systems (software) and social actors (humans and organisations).

M. Morandini (�) • C.D. Nguyen
Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy
e-mail: morandini@fbk.eu; cunduy@fbk.eu

F. Dalpiaz
Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON,
Canada M5S 2E4
e-mail: dalpiaz@cs.toronto.edu

A. Siena
DISI, Università di Trento, via Sommarive 5, 38123 Trento, Italy
e-mail: siena@disi.unitn.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__14,
© Springer-Verlag Berlin Heidelberg 2014

463

mailto:morandini@fbk.eu
mailto:cunduy@fbk.eu
mailto:dalpiaz@cs.toronto.edu
mailto:siena@disi.unitn.it

464 M. Morandini et al.

Tropos adopts a requirement-driven approach to software development, recognising
a pivotal role to the modelling of domain stakeholders (social actors) and to the
analysis of their goals and interdependencies, before designing a technical system-
to-be that supports the social actors. System design results in the specification of
a multi-agent system. The methodology was first introduced in [4] and has been
extended in different ways in the last decade. For instance, its modelling language
has been adapted to support the analysis of crucial issues in distributed systems,
such as trust, security and risks [1, 10].

Tropos encompasses all the software development phases, from Early Require-
ments to Implementation and Testing. Tropos introduces an Early Requirements
Analysis phase in software development in which the analysts consider the stake-
holders, their strategic goals and the organisational aspects of the system as it is,
before the software system under design comes into play.

Throughout the design phases, the aim of Tropos is to understand and analyse the
goals of the stakeholders and to operationalise them, obtaining the requirements for
the software system to be built. Tropos was proposed to ease traceability issues
in the software development life cycle by relying upon consistent concepts and
artefacts throughout the development phases. As a result, problems that arise during
software construction can be traced back to their original requirements, and an
advanced analysis can be conducted to check whether a specific implementation
satisfies a stakeholder’s goals. Besides this, Tropos also provides guidelines for
implementation and testing. Designed artefacts are used to generate agent-oriented
prototypes and for the derivation of test cases, whose execution result can tell the
fulfilment of stakeholders’ goals (see [18]).

Several support tools for Tropos are available: TAOM4e covers the entire devel-
opment cycle [13,21], t2x supports generating agent-oriented implementations [14],
the T-Tool [8] provides model checking for Tropos specifications, the GR-Tool
supports formal reasoning on goal models [9] and multi-agent planning enables the
selection among alternative networks of delegations [5].

The Tropos methodology was applied to various research and industrial case
studies. Research contributions, including several Ph.D. theses from various univer-
sities and research centers including, among others, FBK Trento and the Universities
of Trento, Toronto, Louvain, Haifa and Recife, consolidated and extended the
Tropos methodology in several directions, covering topics such as security, norms,
risks, agent testing, adaptive systems, socio-technical systems, traceability, services,
formal analysis and model interchange. Furthermore, various empirical studies
conducted on Tropos, its extensions and concurrent methodologies, demonstrated
its applicability in different domains [6, 11, 16].

This chapter provides guidance on how to use Tropos to develop a multi-agent
system (MAS), performing analysis and design activities, generating code and
performing testing on it, with the support of a set of tools. Moreover, it enables
comparison with other tool-supported AOSE methodologies through a description
of the main steps of these activities and of excerpts of the resulting artefacts, with
reference to a common case study, namely, the Conference Management System
(CMS) case study. Following the IEEE FIPA standard XC00097A for agent-oriented

The Tropos Software Engineering Methodology 465

Fig. 1 The phases of the Tropos software engineering process

software engineering, first the methodology life cycle and meta-model are presen-
ted. Then, each phase of the methodology is presented by describing participating
roles, included activities and resulting work products. Finally, the dependencies
between the work products are outlined.

2 The Tropos Process Life Cycle

The software development process in Tropos consists of five subsequent phases,
shown in Fig. 1:
• Early Requirements Analysis is concerned with understanding and modelling the

existing organisational setting where the system-to-be will be introduced (the so-
called “as-is” setting). The organisation is represented in terms of goal-oriented
actors that socially depend one on another to fulfil their respective goals.

• Late Requirements Analysis starts from the output of the Early Requirements
phase and introduces the system-to-be in the organisational setting.

• Architectural Design defines the system-to-be’s overall architecture in terms of
interacting subsystems (agents). These agents are those to be implemented.

• Detailed Design further refines the system specification. It defines the function-
alities to be implemented in each agent as well as the interaction protocols.

• Implementation and Testing are concerned with the actual development of the
system agents and verifying whether they operate and interact as specified,
respectively.
Even though not expressly shown in the figure, backwards iterations are possible

and often needed, since the analysis carried out in a phase can provide feedback
for the refinement of a previous phase. For example, while modelling the system-
to-be in the late requirements phase, additional actors in the organisational setting
may be identified. Their analysis is carried out through another iteration of the early
requirements phase.

The Tropos software engineering process is model-based. Diagrammatic require-
ments and design models are used and refined throughout the process. These models
are created using a variant of the conceptual modelling language i* [24]. Modelling
activities are central to the first four phases in the software development process,
from early requirements analysis to detailed design. The basic concepts of the
goal-oriented modelling language (see Sect. 3) are those of actor, goal, plan and
social dependency. Goal modelling is complemented by UML activity and sequence
diagrams, in the Detailed Design.

466 M. Morandini et al.

Goal modelling can be performed using i* modelling tools such as TAOM4e [13],
which implements the Tropos metamodel presented in Sect. 3, provides explicit
support for the different modelling phases and is able to derive skeletons of a BDI-
based agent implementation from goal models.

3 The Tropos Metamodel and Language

The following table describes the key concepts in the Tropos language and their
graphical notation. The definition of the concepts is summarised from [4, 20].

Actor It models an entity that has strategic goals
and intentionality within the system or the
organisational setting. It represents a
physical, social or software agent as well
as a role or position.

Actor

Goal It represents actors’ strategic interests. We
distinguish hard goals (often simply
called goals) from softgoals. The latter
have no clear-cut definition and/or criteria
for deciding whether they are satisfied or
not, and are typically used to describe
preferences and quality-of-service
demands.

Goal

Softgoal

Plan It represents, at an abstract level, a way of
doing something. The execution of plan
can be a means for satisfying a goal or for
satisficing (i.e. sufficiently satisfying) a
softgoal.

Plan

Resource It represents a physical or an
informational entity. Resource

Dependency It is specified between two actors to
indicate that one actor depends, for some
reason, on the other in order to attain
some goal, execute some plan, or deliver a
resource.

Capability It represents both the ability of an actor to
perform some action and the opportunity
of doing this. These concepts are
represented by a plan, together with the
link to the goal which is the means to
execute the plan, and eventual positive or
negative contribution links to softgoals,
which describe the opportunity of
executing this plan in favour of alternative
ones.

The Tropos Software Engineering Methodology 467

Actor Dependency

Goal

Plan

Resource

SoftGoalHardGoal

depender

dependee

1

0..n

0..n

wants 0..n

wantedBy
1

dependum

dependum

dependum

1

1

1

0..1 0..1 0..1
1

executedBy

execute 0..n

why

why

why

0..1

0..1

0..1

0..n
1

{XOR}

0..n

0..n

{XOR}

RoleAgentPosition

playoccupy
1..n

cover

0..n
0..n

0..n
0..n

Fig. 2 The UML class diagram specifying the strategic part of the Tropos metamodel

The Tropos metamodel has been specified in [23]. Here we recall the concepts
and relationships of the language defined in the metamodel.

Concerning the concepts related to the Tropos actor diagram (as shown in Fig. 2),
a “position” can cover 1 : : : n roles, whereas an “agent” can play 0 : : : n “roles” and
can occupy 0 : : : n “positions”. An “actor” can have 0 : : : n “goals”, which can be
both hard and softgoals and are wanted by 1 actor.

An actor dependency is a quaternary relationship relating two actors, the
depender and the dependee, by a dependum, which can be a goal, a plan or a
resource and describes the nature of the relationships between the two actors. The
why relationship between the dependum and another concept (goal, plan or resource)
in the scope of the depender actor allows to specify the reason for the dependency.

Figure 3 shows the concepts of the Tropos goal diagram. The distinctive
concept of goal is represented by the class Goal. Goals can be analysed, from
the point of view of an actor, by Boolean decomposition, Contribution analysis
and Means-end analysis. Decomposition is a ternary relationship which defines
a generic boolean decomposition of a root goal into subgoals, which can be an
AND- or an OR-decomposition specified via the attribute Type in the class Boolean
Decomposition specialisation of the class Decomposition. Contribution analysis is
a ternary relationship between an actor, whose point of view is represented, and two
goals. Contribution analysis strives to identify goals that can contribute positively
or negatively towards the fulfilment of other goals (see association relationship
labelled contribute in Fig. 3). A contribution can be annotated with a qualitative
metric, as proposed in [7], denoted by C; CC; �; ��. In particular, if the goal g1

contributes positively to the goal g2, with metric CC then if g1 is satisfied, so is g2.
Analogously, if the plan p contributes positively to the goal g, with metric CC, this
says that p fulfils g. A C label for a goal or plan contribution represents a partial,
positive contribution to the goal being analysed. With labels ��, and � we have
the dual situation representing a sufficient or partial negative contribution towards
the fulfilment of a goal. The Means-end relationship is also a ternary relationship

468 M. Morandini et al.

Actor Decomposition

Goal

Plan

Resource

Boolean Decomposition
+Type: String

Contribution
+Metric: String

Means-End Analysis

0..n

1

1

1

pointOfView

pointOfView

pointOfView
1

1

1

contributeTo

contributeTo

contributeTo

contributedBy
1

0..n

0..n

0..n

0..n 0..n

1

0..n

end

means
0..n 1 1

end1

0..n means 0..n

1

1

root

root

0..n 0..n0..n 0..n
{XOR}

{XOR}

Fig. 3 The UML class diagram specifying the concepts related to the goal diagram in the Tropos
metamodel

defined among an Actor, whose point of view is represented in the means-end
analysis, a goal (the end), and a Plan, Resource or Goal, representing the means
which will be able to satisfy that goal, i.e. the operationalisation of the goal.

Plan analysis in Tropos is specified in Fig. 3. Means-end analysis and AND/OR
decomposition, defined above for goals, can also be applied to plans. In particular,
AND/OR decomposition allows for modelling the detailed plan structure.

4 Early Requirements Phase

The Early Requirements (ER) phase (Figs. 4 and 5) concerns the understanding of
the organisational context within which the system-to-be will eventually function.
During early requirements analysis, the requirements engineer identifies the domain
stakeholders and acquires through them domain knowledge about the organisational
setting. The organisational setting is further detailed by eliciting and elaborating the
needs, preferences and responsibilities of the stakeholders. This domain knowledge
is captured in ER models describing social actors, who have goals and depend
on each other for goals to be fulfilled, plans to be performed and resources to be
furnished.

4.1 Process Roles

Two roles are involved in this phase: Requirements Analysts and Domain Stake-
holders.

The Tropos Software Engineering Methodology 469

LR Actor Modelling LR Goal Modelling

Requirements
Analyst

LR Plan Modelling

LR Goal
Diagrams

<<input>> <<output>> <<output>><<input>>

<<predecessor>><<predecessor>>

<<output>><<input>><<input>>

ER Actor
Model

ER Goal
Model

LR Actor
Diagrams

LR Capability
Table

Fig. 4 The structure of the Early Requirements phase described in terms of activities, involved
roles and work products

Domain Knowledge
Acquisition

ER Actor Modelling ER Goal Modelling

Fig. 5 Flows of activities in the Early Requirements phase

4.1.1 Requirements Analyst
Requirements Analysts gather knowledge about the domain and transform them into
models of early requirements. They are in charge of
• Analysing domain documents
• Setting up interviews and focus groups with Domain Stakeholders
• Preparing scenarios
• Gathering information elicited during interviews and focus groups
• Producing ER Actor models
• Producing ER Goal models

4.1.2 Domain Stakeholder
Domain stakeholders own the knowledge about the domain. They are in charge of
• Providing domain knowledge to Requirements Analysts
• Participating to interviews and focus groups
• Informally validating the requirements models

470 M. Morandini et al.

4.2 Activity Details

4.2.1 Domain Knowledge Acquisition
Domain Knowledge acquisition consists in gathering knowledge from domain
stakeholders, by analysing documents, acquiring information by setting up stake-
holder interviews or focus groups, modelling stakeholder knowledge and producing
scenarios. The output of this activity consists of a domain documentation that will
be the basis for the next two activities in this phase.

In the CMS scenario, in this phase the domain is investigated to capture its fun-
damental organisational settings, such as domain actors and their responsibilities.
A guide to start building the early requirements model is given by the following
analysis questions: Who are the stakeholders in the domain? What are their goals
and how are they related to each other? What are there strategic dependencies
between actors for goal achievement? The answers to these questions contain
information about stakeholders such as the program committee, the program chair,
the paper submission and peer reviewing mechanism, and so on. They allow, for
example, to insert the publisher as a major stakeholder in the domain, and to demote
the vice chair as not relevant with respect to the CMS mechanisms.

4.2.2 ER Actor Modelling
During early requirements actor modelling, the stakeholders, their desires, needs
and preferences are modelled in Tropos in terms of actors, goals and actor
dependencies. The stakeholders’ goals are then identified and, for every goal, the
analyst decides on the basis of the domain documentation, if the goal is achievable
by the actor itself or if the actor has to delegate it to another actor, revealing a
dependency relationship between the two actors. This activity produces as output an
ER actor model.

The CMS domain is modelled in terms of its main stakeholders (actors), as shown
in Fig. 6: the papers’ authors, modelled as actor Author; the conference’s program
committee and its chair—the PC PC Chair actors respectively—papers reviewers,
modelled as the actor Reviewer and the proceedings publisher, actor Publisher.
Dependency relationships between actors are identified, such as in the case of
the dependency between Author and PC for the achievement of the goal Publish
proceedings. An analogous analysis can be carried out for the domain softgoals and
resources, according to the Tropos modelling process.

4.2.3 ER Goal Modelling
The early requirements goal modelling activity is intended to model the goals of
each given actor, producing a goal model that represent the actor’s rationale. This
activity includes a modelling algorithm comprised by three steps:
• Refine. Goals are refined from a higher abstraction level (typically, the top-level

strategic goals coming form the actor model) into more fine-grained goals. The
refinement can include an AND (i.e. decomposition) and OR (i.e. alternative)
relations among the refining goals.

The Tropos Software Engineering Methodology 471

Author

PC

PC Chair

Publisher Reviewer

Publish
proceedings

Peer review

Publication

Check
availability

Manage
conference

Submission

Assigned
paper

Review

fix deadline

Fig. 6 The early requirements actor diagram for the Conference Management System domain

• Delegate. Goals that are desired by an actor but are able to be satisfied by another
actor are delegated from the former to the latter.

• Contribute. Contribution relations are established between goals whenever the
achievement of a certain goal helps in the achievement of another goal or
softgoal.

Additional stakeholder needs and preferences can be modelled in this activity by
means of adding new goals and softgoals, and dependency links representing social
relationships. Early requirements analysis consists of several refinements of the
models identified so far, and, for example, further dependencies can be added
through a means-ends analysis of each goal.

In Fig. 7, an early requirements goal diagram is shown. This diagram represents
a (partial) view on the model. Only two actors of the model, PC and PC Chair, are
represented with two goal dependencies, Manage conference and Fix deadlines. The
goal Manage conference is analysed from the point of view of its responsible actor,
the PC Chair, through an AND- decomposition into several goals: Get papers, Select
papers, Print proceedings, Nominate PC and Decide deadlines. Moreover, softgoals
can be specified inside the actor goal diagram, with their contribution relationships
to/from other goals (see, e.g., the softgoal Conference quality and the positive
contribution relationship from the softgoal Better quality papers).

4.3 Work Products

Table 1 shows the work products for the Early Requirements phase. The relation-
ships of these work products with the Tropos meta-model elements are described
in Fig. 8. Since these relationships are valid for all goal modes (including goal and
actor diagrams and the capability table) throughout the Tropos process, the figure
does not attribute the work products to a specific phase.

472 M. Morandini et al.

PC Chair

PC

Select
papers

Print
proceedings

Nominate
PC

Get
papers

Decide
deadline

Manage
conference

AND

Parity

Better
quality papers

Conference
quality

Timeliness

Correctness

Print
proceedings

Organize
conference eventPeer review

Fix
deadline

Check reviewer
availability

Dispatch
reviews

Collect
review forms

Organize
conference

AND

Manage
submissions

AND

Manage
reviews

AND

Submission
Assigned

paper

Manage
conference

Fix
deadline

++

+
+

+

+

+

+

Fig. 7 Early requirements of CMS: goal diagram

Table 1 Work products for the Early Requirements phase

Name Description Work product kind

Domain Documentation It contains the knowledge about the domain
as gathered by requirements analysts.

Composite

ER Actor Diagram It represents the actors identified in the
domain and the strategic dependencies
among them.

Structural

ER Goal Diagram For each identified actor, it represents the
gathered hard and softgoals that form the
rationale of that actor, decomposed into
sub-goals and operationalised through
plans.

Structural

4.3.1 Work Products Examples
The ER Actor Diagram is illustrated by Fig. 6, which shows the actors in the Early
Requirements phase as long as their social dependencies. Figure 7 illustrates an ER
Goal Diagram for the system-to-be actor.

5 Late Requirements Phase

The Late Requirements phase is concerned with the definition of functional and
non-functional requirements of the system-to-be. This is accomplished by treating
the system as another actor (or a small number of actors representing system
components) who are dependers or dependees in dependencies that relate them to
external actors. The shift from early to late requirements occurs when the system
actor is introduced and it participates in delegations from/to other actors. Here,
modelling activities consist of introducing the system-to-be as a new actor with

The Tropos Software Engineering Methodology 473

Actor
Diagram

Goal Diagram

Capability Table

Goal Model

Goal

Actor

Resource

Plan

Role

Agent

Position

SoftGoal

D
D

R

F F

F

F

F
D

D

D
Q

R

R

Q

Q

HardGoal

Fig. 8 General structure of a Goal Model, composed of actor- and goal diagrams and the
capability table, in relation to the meta-model elements, as used in the Early and Late Requirements
analysis phases and in the architectural and Detailed Design phases (D define, R relate, F refine, Q
query)

LR Actor Modelling LR Goal Modelling

Requirements
Analyst

LR Plan Modelling

LR Goal
Diagrams

<<input>> <<output>> <<output>><<input>>

<<predecessor>><<predecessor>>

<<output>><<input>><<input>>

ER Actor
Model

ER Goal
Model

LR Actor
Diagrams

LRCapability
Table

Fig. 9 The structure of the late requirements phase described in terms of activities, involved roles
and work products

specific dependencies from/to stakeholder actors. These dependencies lead to the
identification of system goals, which will be further analysed in terms of sub-
goals, of plans providing means for their achievement, of positive and negative
contributions to stakeholders’ preferences (typically modelled as softgoals).

474 M. Morandini et al.

LR Actor Modelling LR Goal Modelling LR Plan Modelling

Fig. 10 The flow of activities in the Late Requirements phase

5.1 Process Roles

The Late Requirements phase is accomplished by Requirements Analysts.

5.1.1 Requirements Analyst
During this phase (Figs. 9 and 10), Requirements Analysts are in charge of
• Introducing the system-to-be as a new actor
• Delegating stakeholder goals to the system to be through dependency links
• Refining the top goals assigned to the system to be to leaf-level goals
• Identifying the capabilities of the system-to-be and model them as plans

5.2 Activity Details

5.2.1 LR Actor Modelling
During late requirements actor modelling, the system-to-be is introduced into the
models as a new actor. Stakeholder needs and preferences are assigned to the
system-to-be actor by establishing goal dependency links from stakeholder actors to
the system actor. Top-level goals received by stakeholders form the functionalities
which the system is responsible for.

A partial view of the LR actor model for the CMS domain is shown in Fig. 11
where the CMS actor is represented.

5.2.2 LR Goal Modelling
During late requirements goal modelling, the top-level goals of the system-to-be are
refined into more fine-grained goals, resulting in system-specific goal models. This
activity includes the same goal modelling algorithm used in ER goal modelling. The
system’s goals are AND or OR decomposed into more fine-grained goals. These
goals are analysed from the system actor perspective.

In Fig. 12, the relative goal diagram is shown for the CMS domain. The goals
Coordinate conference and Manage proceedings are decomposed in new sub-goals.
Moreover, operative plans are specified and associated to the system goals as means
to achieve them (means-ends relationships), such as in the case of the goal Manage
decision.

The Tropos Software Engineering Methodology 475

Author

PC Publisher

Reviewer

Publish
proceedings

Publication

Check
availability

CMS
System

Support paper
submission

Coordinate
conference

Deal with
review

Get
proceedings

Get paper

Timeliness

Fig. 11 Late requirements: actor diagram

CMS
System

Manage
decisions

Manage
submissions

Papers assigned
to reviewers

Support paper
submission

Deal with
review

Get
proceedings

Coordinate
conference

AND

Manage
reviews

AND

Manage
proceedings

AND

Accept

Reject

Format
proceedings

Timeliness

Send
reminders

Receive
reviews

Reviews
be collected+

Get final
papers

Fig. 12 Late requirements: goal diagram

5.2.3 LR Plan Modelling
During plan modelling, the goals of each actor are operationalised into concrete
plans. If an actor owns the capability to fulfil a leaf-level goal by performing a
specific activity, this is modelled in the goal model by a plan bound through a means-
end relationship to the goal. Otherwise, the goal may require to be delegated to some
other actor. The activity produces as output a modified version of the goal model
and a capability table, which consists in a view on the goal model, highlighting
the capabilities identified for each actor. In Fig. 12, the two plans Accept and Reject
operationalise the goal Manage decision.

476 M. Morandini et al.

Table 2 Work products for the Late Requirements phase

Name Description Work product kind

LR Actor Diagram It represents the system-to-be as a new
actor of the model, and the functionalities
assigned to it as functional dependencies
from domain actor to the system actor.

Structural

LR Goal Diagram It represents the operationalisation of the
system-to-be strategic top goals in terms
of tactical goals, including alternative
ways to achieve them.

Structural

LR Capability Model It represents the operationalisation of the
system-to-be functional goals in terms of
plans and contribution to softgoals.

Structured

Table 3 Example of an LR
Capability Table

Goal Capabilities

Format proceedings Accept; reject
Reviews be collected Send reminders, receive reviews
.

5.3 Work Products

Table 2 shows the work products for the Late Requirements phase. For the content
of these work products, refer to the general Fig. 8.

5.3.1 Work Products Examples
The LR Actor Diagram is illustrated in Fig. 11, showing the actors involved in this
phase as long as their social dependencies. Figure 12 illustrates an LR Goal Diagram
for the system-to-be actor, while Table 3 displays an LR Capability Table.

6 The Architectural Design Phase

The Architectural Design (AD) phases drives the definition of the actual system
architecture. It comprises both the overall multi-agent system structure and the
detailed design for each single agent of the system. The phase is outlined in
Fig. 13 (activity flow) and Fig. 14 (structural view), while details are provided in
the following sub-sections.

The produced artefact consists of the system’s overall structure, which is repres-
ented in terms of its sub-systems (AD Goal Diagrams), their inter-dependencies (AD
Actor Diagram) and their capabilities (AD Capability Table). Adopting the multi-
agent system paradigm, sub-systems are autonomous agents that communicate
through message passing.

The Tropos Software Engineering Methodology 477

Identify agents Apply delegation
styles Goal modeling Capability modeling

Further refinement
needed

Fig. 13 Flow of activities in the Tropos Architectural Design phase

Identify agents Apply delegation
styles

System architect Agent designer

Goal modeling Capability modeling

LR Actor
Diagram

LR Goal
Diagram

AD Actor
Diagram

AD Goal
Diagrams

AD Capability
Table

<<input>> <<input>> <<output>> <<output>> <<output>>

<<predecessor>>

<<input>><<input>>

<<predecessor>><<predecessor>>

Fig. 14 The structure of the Architectural Design phase described in terms of activities, involved
roles and work products

6.1 Process Roles

Two roles are involved: the System Architect and the Agent Designer.

6.1.1 System Architect
It is responsible for refining the system actor (LR Goal Diagram) by introducing
system agents, which are delegated responsibility for the fulfilment of the system’s
goals. While delegating responsibilities, the architect may apply organisational
patterns [12] so as to structure the relationships between and responsibilities of
agents.

6.1.2 Agent Designer
Given the AD Actor Diagram created by the System Architect, it is responsible
for detailing the identified agents by applying goal modelling (as in the early
and Late Requirements phases). Additionally, the agent designer is responsible for
performing capability modelling, which defines how each agent will fulfil the goals
it is responsible for.

478 M. Morandini et al.

CMS
System

PC

Conference
Manager

Author

Publisher

Reviewer

Proceedings
Manager

Paper
Manager

Review
Manager

Collect
reviews

Coordinate
conference

Support paper
submission

Get paper

Manage
submissions

Deal with
proceedings

Get papers
to review

Collect CR
papers

Get
proceedings

Deal with
reviews

Fig. 15 Architectural design: CMS decomposition into agents

6.2 Activity Details

We detail each of the activities of the phase, showing the main involved artefacts, as
well as examples from the CMS case study.

6.2.1 Identify Agents
The aim of this step is to split the complexity of the system, which is described in
terms of high-level goals, into smaller components, easier to design, to implement
and to manage. These components are autonomous agents.

6.2.2 Apply Delegation Styles
The identified agents take up responsibilities (through delegations) from the system
actor. In other words, the goals of the system actor (LR Goal Diagram) are delegated
to specific agents. During this activity, when applicable, organisational patterns [12]
(e.g., structure-in-five or joint-venture) can be applied to decide how to relate the
agents. Figure 15 displays the resulting architectural design diagram for the CMS
actor. Analysing this actor’s goal model (see Fig. 12), the engineer should be able to
extract a proper decomposition into agents.

In our example, we introduce four new agents. The Conference Manager
manages the top-level goal Coordinate conference, delegated to the system by
the program committee actor PC. The Paper Manager gets goal Support paper
submission delegated from the domain actor Author. Further, some internal agents
depend on it to manage submissions. To do this, the agent depends on authors to
get papers. Similarly, the Review Manager and Proceedings Manager get goals
delegated from the Reviewer and the Publisher, respectively.

The Tropos Software Engineering Methodology 479

CMS
System

Get
proceedings

AND

Deal with
proceedings

Deliver
proceedings

Format
proceedings

Print
proceedings

AND

Check
style

Recompile

Print to
pdfPrint to ps

Send to
publisher

PortabilityPrinter
fidelty

+ ++

++ -

Run sanity
check

Publisher

Proceedings
Manager

Get
proceedings

Collect CR
papers

AND

Collect CRs
in DB

Prepare
support

Store CRs
in DB

Prepare
USB stick

Flexibility

Paper
Manager

Collect CR
papers

Prepare
CD

Cost

Retrieve
CRs

Control
format

Store in
DB

AND +-+ -

Fig. 16 Architectural design: simplified goal model of two agents of CMS

6.2.3 Goal Modelling
Once the sub-actors have been modelled and have been assigned responsibilities
through goal and task delegation, each of them is analysed by building a goal
model. For more details about this activity, look at the goal modelling activity in
the Early and Late Requirements phases. Figure 16 shows an excerpt of the goal
models for two agents, namely Paper Manager and Proceedings Manager. We
focus on the analysis of the goal Get proceedings delegated from the Publisher
agent, and the resulting dependency between the two agents. The delegated goal is
AND-decomposed into sub-goals, which are either operationalised through a plan or
further decomposed. To be achieved, one of the sub-goals, Deal with proceedings,
causes the Proceedings Manager to depend on the Paper Manager for the goal
collect finals.

Notice that there may exist alternative operationalisations of the system agents.
For example, in Fig. 16, the Proceedings Manager can print proceedings either
via postscript (ps) or pdf. These alternatives differ in terms of their contribution to
softgoals. While the postscript option is better in terms of contribution to softgoal
printer fidelity, the pdf option is better for what concerns portability. The decision
about which option to select is delegated either to the Detailed Design phase or,
envisioning an adaptive system, to runtime.

6.2.4 Capability Modelling
This activity details whether and how a specific agent is capable of achieving a
goal by executing a specific plan. As suggested in [20], modelling capabilities
include assessing both ability and opportunity. Ability means that the agent can
carry out a plan without interacting with (delegating to) other agents. A greater
opportunity means that the plan contributes better than others to the stakeholders’

480 M. Morandini et al.

Table 4 Work products for the Architectural Design phase

Name Description Work product kind

AD Actor Diagram It shows the dependencies from the system
actor to the agents as well as the
dependencies between the agents.

Structural

AD Goal Diagrams They represent the goal diagram for each of
the identified and analysed agents.

Structural

Capability Table It lists all agent capabilities along with their
contributions to softgoals

Structured

Table 5 Example of an AD Capability Table

Goal Ability Contribution

Prepare support Prepare USB stick Flexibility (C); Cost (�)
Prepare support Prepare CD Flexibility (�); Cost (C)

preferences and QoS needs (i.e. to modelled softgoals). Plans can also be detailed by
decomposing them in AND and OR to more concrete sub-plans. See, for instance,
the AND decomposition of the plan store finals in DB into the sub-plans retrieve
finals, control format, store in DB, in Fig. 16.

6.3 Work Products

Table 4 lists the work product types for the Architectural Design phase. The
relationships of these work products, representing a Tropos goal model, with the
meta-model elements, are described in Fig. 8.

6.3.1 Work Products Examples
The AD Actor Diagram is illustrated in Fig. 16, which shows the delegations
between the system actor and other agents. Figure 15 compactly shows two AD
goal diagrams for agents “Paper Manager” and “Proceedings Manager”. Table 5
illustrates an AD Capability Table.

7 Detailed Design

The Detailed Design (DD) phase is concerned with the specification of the
capabilities of the software agents in the system and of the interactions taking
place, focusing on dynamic and input–output aspects, leading to a detailed definition
of how each agent needs to behave in order to execute a plan or satisfy a goal.
This includes the detailed specification of the single functionalities composing the
plans associated to each agent’s goals, the definition of interaction protocols and
of the dynamics of the interactions occurring between agents and with systems and
humans in the environment.

The Tropos Software Engineering Methodology 481

Fig. 17 Flow of activities in the Tropos detailed design phase. Iterations are not shown in the
diagram, but possible starting at each activity

Fig. 18 The structure of the detailed design phase described in terms of activities, involved roles
and work products. Please note that the internal use of work products in output of an activity as
inputs of the subsequent activities is not shown explicitly, to keep the diagram concise

In this phase, also a decision on the implementation paradigm has to be made,
either for going to a traditional object-oriented, or to an agent-based, goal-driven
implementation. The activities in the phase are outlined in Fig. 17 while, Fig. 18
shows the internal structure of the phase.

7.1 Process Roles

Two roles are involved, the Agent Designer and the Software Architect.

7.1.1 Agent Designer
The Agent Designer, involved also in the AD phase, is responsible for detailing the
goal models obtained from the previous step, decomposing the plans into AND/OR
hierarchies, till arriving to the concrete functionalities that compose each plan.

482 M. Morandini et al.

7.1.2 Software Architect
It is responsible for the detailed design of the system as a whole and of the single
functionalities that have to be implemented. He has to take a decision for the
programming paradigm to follow and the implementation platform to use, and to
detail the models according to its decisions.

7.2 Activity Details

7.2.1 Detailed Capability Modelling
The agent designer details the capabilities identified in the AD phase through plan
modelling by AND/OR decomposition to sub-plans, until reaching a fine-grained
level defining the single activities that need to be available in the system.

7.2.2 Activity Modelling
At this step, the software architect needs to take a first decision on the alternative
capabilities and sub-plans which should be further specified and finally imple-
mented, depending on the desired adaptability of the system and the affordable
implementation effort. This selection should be made considering positive and
negative contributions to softgoals, which represent preferences and quality-of-
service demands, or by employing a requirements prioritisation technique. If the
aim is to create an adaptive system, a higher number of alternatives should be
detailed and eventually implemented. To model the execution workflow for the
activities that a capability is composed of, UML activity diagrams are adopted.
UML activity diagrams can be directly derived from Tropos plan decompositions
by model transformation, and further elaborated by detailing the dynamic aspects of
a capability (see an example in Fig. 19), including sequential and parallel workflows
and alternative choices.

7.2.3 Interaction Modelling
The software architect analyses the interactions that take place, between agents in
the system which need to be detailed for each activity and between the agents in the
system and actors in its environment (including software agents and human actors).
UML sequence diagrams (Fig. 19) are used for specifying interaction protocols and
details for each agent interaction and for single activities (i.e. leaf-level plans).

7.2.4 Platform-Dependent Design
At this stage, a decision on the implementation paradigm has to be made either for
going to a traditional object-oriented or to an agent-based, goal-driven implementa-
tion. Following the central idea of Tropos to keep the notions of actor/agent and goal
throughout all phases to avoid conceptual gaps, an agent-oriented implementation is
recommended. Agents are autonomous entities with independent threads of control
that can interact with each other to reach their goals. Various frameworks are avail-
able, supporting these implementation concepts. An object-oriented implementation

The Tropos Software Engineering Methodology 483

Fig. 19 Activity and interaction modelling: goal diagram with a plan decomposition for a part of
the CMS Paper Manager Agent, detailed in UML activity and sequence diagrams

could be of benefit for performance-critical systems and for a better integration with
existing software. In the following, we briefly touch on an object-oriented design,
while the specific implementation phase proposed for Tropos relies on an agent-
oriented design.

Object-Oriented Design At this point, a traditional OO approach can be followed
for the detailed design by using UML component and class diagrams for the
description of the agents in the system and their relationships.

BDI Agents Design Aiming at an agent-oriented implementation, after having
modelled the single activities and interactions to be carried out by an agent (i.e.
the capability level), in this activity the behavioural aspects, called the knowledge
level [20], are detailed. This is achieved by mapping the high-level goal model of
an agent, including dependencies and contribution relationships, into a generic BDI
(belief–desire–intention) agent structure, according to a mapping such as the one
defined in [19]. This structure can be enriched defining goal types (maintenance,
achievement), goal satisfaction and goal failure criteria [15]. Selecting the proposed
agent development platform Jadex, the mapping to an Agent Definition File
specification is tool-supported [14].

7.3 Work Products

The Detailed Design phase generates four work products, which in part depend on
the chosen implementation architecture, out of the ones listed in Table 6.

484 M. Morandini et al.

Table 6 Work products created during the Detailed Design phase

Name Description Work product kind

DD Goal Diagram It details the AD goal diagram of each
agent, with the plans decomposed to
sub-plans which represent the single
functionalities that should be available.

Structural

UML Activity Diagram It details a plan to the single activities it is
composed of, and captures their temporal
order.

Behavioural

UML Sequence Diagram It explicitly shows the interactions
between two software or human entities,
possibly basing on interaction protocols,
and defines the effects of an interaction.

Behavioural

UML Component and Class
Diagrams

They illustrate the whole system by the
use of UML diagrams, suitable if the
target language is object-oriented.

Structural

BDI Agent Structure It has a structure basing on the concepts
of goal, plan and belief [3]. Adopting
Jadex [22] as implementation platform,
this structure is represented in an Agent
Definition File.

Composite

7.3.1 Work Products Examples
Figure 19 illustrates the main work products of the Detailed Design phase. Left:
an excerpt of a DD goal diagram with plan decomposition; middle: UML activity
diagram for plan Store CRs in DB; right: UML sequence diagram detailing the
interactions that need to take place in one of the leaf-level plans. Portions of a BDI
agent structure are shown, implemented as Jadex Agent Definition File, on the right
side of Fig. 22.

8 Implementation and Testing

The last phase in the Tropos development process includes coding and testing
activities, leading to the deployment of the final software.

Tropos does not impose the use of a specific implementation platform. However,
it recommends the adoption of an agent-oriented language with the notions of agent,
goal and plan. In this way, conceptual gaps are reduced and the traceability of
artefacts and decisions through the phases is simplified. Specifically, we describe
an implementation on the Jadex [22] agent platform. Nevertheless, the activities
described are general and apply in principle also to a development with other
agent languages, such as Jack, Jason or 2APL. Also, non-BDI agent languages
such as JADE can be used for the full implementation, mapping goals to the
artefacts available in the language. The activities in this phase, outlined in Fig. 20,
are typically executed in an iterative way and, to some degree, in parallel, to take

The Tropos Software Engineering Methodology 485

Fig. 20 Flow of activities for the implementation and testing phase

Fig. 21 SPEM model showing the structure of the implementation and testing phase with in input
and output work products. The phase takes in input the AD actor diagram and the outputs of the
DD phase

account of the revisions needed to reach to a final software product. Figure 21 shows
the in- and output work products and the involved actors.

8.1 Process Roles

Two roles are involved: the Agent Programmer and the Agent Tester.

8.1.1 Agent Programmer
The Agent Programmer is responsible for carrying out the implementation of the
agent system, starting from goal models and UML diagrams. Typically, he also
carries out the deployment of the software system.

8.1.2 Agent Tester
On the basis of goal models and sequence diagrams, the agent tester derives test
cases, which are then executed on the software agents.

486 M. Morandini et al.

collect finals

collect finals
in DB

deliver finals
to PM

send by mail

send reminders

store finals in DB

deliver on CD

direct delivery

Paper
Manger

P

P

P

P

PP

G

G

G

G

Fig. 22 Left: Simplified goal diagram for PaperManager modelled using the TAOM4e tool.
Right: Part of the Jadex XML code generated with the t2x tool. Bottom: Example Jadex run-time
agent instance with activated goals and plans, visualised with the Introspector tool provided by the
Jadex platform

8.2 Activity Details

We detail each of the activities of the phase and explain the artefacts involved.

8.2.1 BDI Agent Code Derivation
The goal and UML models created in the DD phase and the AD actor diagram
are the basis for the implementation of software agents. Selecting Jadex as a target
platform and using the t2x tool, Jadex code can be generated basing on the BDI
agent structures previously defined. The t2x tool analyses a GM exploring goal
decomposition trees. The goal hierarchy is mapped to Jadex goals along with Java
files containing the decomposition logic, while plans are implemented in Java files
and connected to the relative goals by a triggering mechanism. The generated code
implements the agent’s reasoning mechanisms needed to select correct plans at
run-time to achieve desired goals defined in the agent’s AD goal model. It has to
be customised adding the temporal and operational aspects defined in the detailed
design UML models, and implementing the interaction protocols. FIPA standard
agent interaction protocols such as Request and Contract Net are predefined. As
an example, Fig. 22 shows part of the generated Jadex code in XML format of the
agent Paper Manager from the CMS example. This fragment of code corresponds

The Tropos Software Engineering Methodology 487

to the Tropos goal model on the top-left side of the figure, and its reasoning trace at
runtime is presented on the bottom-left corner of the figure.

8.2.2 Behaviours Implementation
With the DD activity and sequence diagrams in input, in this phase the behaviours of
the agents are implemented. The behaviours realise the plans defined in a goal model
to operationalise the goals. Behaviours can be implemented with OO concepts (e.g.
in JAVA) or using specific concepts present in languages such as JADE [2].

8.2.3 Test Case Derivation
A systematic way of deriving test cases from goal-oriented specifications and
techniques to automate test case generation and their execution has been introduced
in [18]. Such approach considers different testing levels, from unit testing to
acceptance testing, and different aspects of testing a multi-agent system that adopts
Tropos design. Test cases are derived from the agent specifications (specifically, the
AD actor diagram) with the aim to test and validate the interactions between agents
(represented as dependencies in Tropos) and the achievement of goals, adopting
domain-specific metrics. Test cases derivation is supported by a semi-automatic tool
[17], providing a GUI-based editor to detail test scenarios and inputs.

In the case of the CMS, the eCAT testing tool [17] takes the architectural diagram
in Fig. 15 as an input and generates a set of test suites for each agent.

8.2.4 Agent Testing
The agent testing activity consists of an automated testing of the agents in a virtual
environment, observing the interactions with the environment and with the peer
agents, while varying environment and inputs for each test case. This activity can be
automated and parallelised by applying the testing framework proposed in [18].

8.3 Deployment

The BDI agent code, including the implemented behaviours, can be executed on the
Jadex platform. Interactions and the goal achievement process can be visualised
via tools provided by the platform. Regarding the present case study, code was
generated for the two system agents ProceedingsManager and PaperManager.
As an example, Fig. 22 shows an excerpt Jadex code in XML format for the agent
Paper Manager. This fragment of code corresponds to the Tropos goal model on
the top-left side of the figure, and it reasoning trace at runtime is presented on the
bottom-left corner of the figure.

8.4 Work Products

Focusing on an agent-oriented implementation, the implementation and testing
phase generates four main work products, listed in Table 7.

488 M. Morandini et al.

Table 7 Work products created during the Implementation and Testing phase

Name Description Work product kind

BDI agent code It represents the executable agent code that
exhibits the behaviour defined in the
previous phases.

Composite

Agent test cases They define a list of inputs and
corresponding outputs (data, interactions,
exhibited behaviours), to test the
correctness of the single agent
implementations and of the whole system.
Defined in XML format, they can be used
as input for automated testing agents.

Behavioural

Deployed agent system It represents the running agent system. Composite

Fig. 23 An example of a test
case for the Paper Manager,
specified using the eCAT
editor

8.4.1 Work Products Examples
The BDI agent code depends on the selected implementation platform. In Jadex, it
corresponds to an Agent Definition File, such as on the right side of Fig. 22, for each
agent, in combination with Java code. The behaviour of the deployed agents can be
visualised at runtime on the agent platform, such as in the lower left part of Fig. 22.
Figure 23 depicts an example of a test case that checks the goal send reminders of
the Paper Manager. The test case is specified using the eCAT editor; following the
test scenario of the test case, the Agent Tester waits for a message from the agent
under test (Paper Manager), checks for the content of the message and sends back
a notification.

9 Work Product Dependencies

The work product dependency diagram in Fig. 24 describes the dependencies among
the different work products created in the five development phases. Focusing on an
agent-oriented implementation, an eventual object-oriented implementation is not
considered.

The Tropos Software Engineering Methodology 489

Fig. 24 Work product dependency diagram for the Tropos methodology

Acknowledgements The authors thank Angelo Susi (Fondazione Bruno Kessler) Anna Perini
(Fondazione Bruno Kessler), and Paolo Giorgini (University of Trento) for their support.

References

1. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engineer-
ing. Requir. Eng. 16(2), 101–116 (2011)

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA compliant agent framework. In:
Practical Applications of Intelligent Agents and Multi-agents, pp. 97–108, April 1999

3. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI agent
systems. In: Programming Multi-agent Systems, pp. 44–65 (2004)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: an agent-oriented
software development methodology. Auton. Agent Multi Agent Syst. 8(3), 203–236 (2004)

5. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing cooperative IS: exploring and evaluating
alternatives. In: OTM Conferences (1), pp. 533–550 (2006)

6. Bryl, V., Dalpiaz, F., Ferrario, R., Mattioli, A., Villafiorita, A.: Evaluating procedural
alternatives: a case study in e-voting. Electron. Gov. 6(2), 213–231 (2009)

7. Chung, L.K., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer, Dordrecht (2000)

8. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early requirements
specifications in Tropos. In: IEEE International Symposium on Requirements Engineering,
pp. 174–181. IEEE Computer Society, Toronto (Aug 2001)

9. Giorgini, P., Mylopoulous, J., Sebastiani, R.: Goal-oriented requirements analysis and
reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171 (2005)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proceedings of the 13th IEEE International
Requirements Engineering Conference (RE’05) (2005)

11. Hadar, I., Kuflik, T., Perini, A., Reinhartz-Berger, I., Ricca, F., Susi, A.: An empirical study of
requirements model understanding: Use Case vs. tropos models. In: Symposium on Applied
Computing, pp. 2324–2329 (2010)

12. Kolp, M., Giorgini, P., Mylopoulos, J.: A goal-based organizational perspective on multi-
agents architectures. In: Proceedings of the Eighth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2001) (2001)

13. Morandini, M., Nguyen, D.C., Perini, A., Siena, A., Susi, A.: Tool-supported development
with tropos: the conference management system case study. In Luck, M., Padgham, L. (eds.)

490 M. Morandini et al.

Agent Oriented Software Engineering VIII. Lecture Notes in Computer Science, vol. 4951,
pp. 182–196. Springer, Berlin (2008). 8th International Workshop, AOSE 2007, Honolulu,
May 2007

14. Morandini, M., Penserini, L., Perini, A.: Automated mapping from goal models to self-adaptive
systems. In: 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2008), Tool Demo, pp. 485–486 (Sept 2008)

15. Morandini, M., Penserini, L., Perini, A.: Operational semantics of goal models in adaptive
agents. In: 8th International Conference on Autonomous Agents and Multi-agent Systems
(AAMAS’09). IFAAMAS, Richland (May 2009)

16. Morandini, M., Perini, A., Marchetto, A.: Empirical evaluation of tropos4as modelling. In:
iStar, pp. 14–19 (2011)

17. Nguyen, C.D., Perini, A., Tonella, P.: eCAT: a tool for automating test cases generation
and execution in testing multi-agent systems. In: Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems: Demo Papers, pp. 1669–1670.
International Foundation for Autonomous Agents and Multiagent Systems, Richland (2008)

18. Nguyen, C.D., Perini, A., Tonella, P.: Goal-oriented testing for MASs. Int. J. Agent Oriented
Softw. Eng. 4(1), 79–109 (2010)

19. Penserini, L., Perini, A., Susi, A., Morandini, M., Mylopoulos, J.: A design framework for
generating BDI-agents from goal models. In: 6th International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS’07), Honolulu, pp. 610–612 (2007)

20. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
extending tropos. ACM Trans. Auton. Adapt. Syst. 2(4), 16:01–16:27 (2007)

21. Perini, A., Susi, A.: Agent-oriented visual modeling and model validation for engineering
distributed systems. Comput. Syst. Sci. Eng. 20(4), 319–329 (2005)

22. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Dix, J., Bordini,
R., Dastani, M., El Fallah Seghrouchni, A. (eds.) Multi-agent Programming, vol. 9, pp. 149–
174. Springer Science+Business Media Inc., New York (2005). Book chapter

23. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its use. Informatica
(Slovenia) 29(4), 401–408 (2005)

24. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis, Department
of Computer Science, University of Toronto (1995)

The OpenUp Process

Massimo Cossentino, Vincent Hilaire, and Valeria Seidita

Abstract
The Open Unified Process (OpenUp) is an iterative design process that
structures the project lifecycle into four phases: Inception, Elaboration,
Construction, and Transition. It is part of the Eclipse Process Framework and
embraces a pragmatic, agile philosophy that focuses on the collaborative nature
of software development. It is a tools-agnostic, low-ceremony process that can
be extended to address a broad variety of project types. The project lifecycle
provides stakeholders and team members with visibility and decision points
throughout the project and makes them able to manage their work through
micro-increments.

1 Introduction

OpenUp is a lean Unified Process that applies iterative and incremental approaches
within a structured lifecycle. OpenUp embraces a pragmatic, agile philosophy that
focuses on the collaborative nature of software development. It is a tools-agnostic,

M. Cossentino (�)
Istituto di Reti e Calcolo ad Alte Prestazioni – Consiglio Nazionale delle Ricerche, Viale delle
Scienze, 90128 Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

V. Hilaire
IRTES-SET, UTBM, UPR EA 7274, 90010 Belfort Cedex, France
e-mail: vincent.hilaire@utbm.fr

V. Seidita
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Viale delle Scienze,
90128 Palermo, Italy
e-mail: valeria.seidita@unipa.it

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6__15,
© 2010–2013 The Eclipse Foundation and its Contributors – published by permission
under Eclipse Public License (EPL) <http://www.eclipse.org/legal/epl-v10.html>

491

mailto:cossentino@pa.icar.cnr.it
mailto:vincent.hilaire@utbm.fr
mailto:valeria.seidita@unipa.it
http://www.eclipse.org/legal/epl-v10.html

492 M. Cossentino et al.

low-ceremony process that can be extended to address a broad variety of project
types.

Personal efforts on an OpenUp project are organized in micro-increments. These
represent short units of work that produce a steady, measurable pace of project
progress (typically measured in hours or a few days).

The process applies intensive collaboration as the system is incrementally
developed by a committed, self-organized team. These micro-increments provide an
extremely short feedback loop that drives adaptive decisions within each iteration.

OpenUp divides the project into iterations: planned, time-boxed intervals typic-
ally measured in weeks. Iterations focus the team on delivering incremental value
to stakeholders in a predictable manner. The iteration plan defines what should be
delivered within the iteration. The result is a demo-able or shippable build. OpenUp
teams self-organize around how to accomplish iteration objectives and commit to
delivering the results. They do that by defining and “pulling” fine-grained tasks
from a work items list. OpenUp applies an iteration lifecycle that structures how
micro-increments are applied to deliver stable, cohesive builds of the system that
incrementally progresses toward the iteration objectives.

OpenUp structures the project lifecycle into four phases: Inception, Elaboration,
Construction, and Transition. The project lifecycle provides stakeholders and team
members with visibility and decision points throughout the project. This enables
effective oversight, and allows you to make “go or no-go” decisions at appropriate
times. A project plan defines the lifecycle, and the end result is a released
application.

It is worth to note that the OpenUp description largely uses the concept of
work product slot. This is, indeed, one of the peculiarities of this process approach.
The definition of work product slot may be found in [2]: “Work product slots
are indirections for the inputs of tasks of a Practice that allow practices to be
documented independent of any other practice, i.e. independent of the work products
produced by other practices. Practice task refer to work product slots as inputs,
rather than refer directly to specific work products.” It is a little bit different from
the concept of Work Product for which a specific SPEM 2.0 icon exists; we decided
to use the same icon for the two concepts maintaining the name within brackets in
the case of Work Product Slot as the OpenUp documentation does.

The description of the OpenUp process reported in this chapter is taken from
the OpenUp website [1]. The documentation approach adopted in that website
is quite different from the IEEE FIPA SC00097B standard adopted in this book
but it has been possible to retrieve most of the necessary information. In order
not introduce any personal interpretation of OpenUp, the authors of this chapter
preferred not to report the information that may not be explicitly found in the
website. This brought to the omission of a few details but it is coherent with the
spirit of this book where the proposed chapters have been written by people who are
the primary authors of the described process or they are at least deeply involved in
it. In this case, this situation was not verified and therefore a specific care has been
needed (Fig. 1).

The OpenUp Process 493

Fig. 1 An overview of the OpenUp process

1.1 The OpenUp Process Lifecycle

OpenUp is an iterative process with iterations distributed throughout four phases:
Inception, Elaboration, Construction, and Transition.

Each phase may have as many iterations as needed (depending on the degree of
novelty of the business domain, the technology being used, architectural complexity,
and project size, to name a few factors).

To offer a quick start for teams to plan their iterations, OpenUp provides work
breakdown structure (WBS) templates for each iteration, and a WBS template for
an end-to-end process.

Iterations may have variable lengths, depending on project characteristics. One-
month iterations are typically recommended because this timeframe provides:
• A reasonable amount of time for projects to deliver meaningful increments in

functionality.
• Early and frequent customer feedback.
• Timely management of risks and issues during the course of the project.

In the following sections, all the aspects of OpenUp are described by using
SPEM 2.0 [6] and the extensions proposed by Seidita et al. in [7]. Figure 2 shows
the SPEM 2.0 icons the reader can find in the following figures (Fig. 3).

1.2 The OpenUp Process System Metamodel

The OpenUp website (see [1]) does not provide an explicit representation of
the underlying system metamodel. For this reason, it has been preferred to limit

494 M. Cossentino et al.

Keys

Structural
WPKind

Behavioral
WPKind

Structured
WPKind

Free
WPKind

a

Composite
WPKind

c
Task UseRole UseActivity

Fig. 2 The SPEM 2.0 Icons

Inception
Phase

Elaboration
Phase

Construction
Phase

Transition
Phase

Fig. 3 The OpenUp phases

Test Script

Test Case Test VerificationTest Result

Glossary Term

Architectural
Justification

Architectural
Constraints

Architectural
Assumption

Architectural
Dedependency

Architectural
View

Architecture
Architectural

Issue
Architectural

Decision

Code

Analysis Class

Design Pattern

Key Abstraction

SubsystemData File

Executable
Version

Architectural
Mechanism

File

Other File FolderBuild Script

Architectural
Goal

Source Code
File

Source Code

Architectural
Framework

Fig. 4 The OpenUp System Metamodel—the first portion

the information reported in this section to what could be extracted from the
website without any margin for misinterpretation. The elements of the metamodel
have been deduced from the analysis of available work product descriptions.
The following pictures (Figs. 4, 5, 6, and 7) only reports system metamodel
elements whose relationships with others may be unambiguously deduced from
work product descriptions; for readability reasons we split the whole figure in four
ones.

The OpenUp Process 495

c
Guideline

Work Product

Process

c
Procedure

W ow

Report

Role

Architecture

Stakeholder

User
Environment

End User

Need

Feature

Product Position
Statement

Product

Other Product
Requirement

Problem

Requirement

System-Wide
Requirement

Release

Requirement
Realization

Participant Component

Deployment

Location

Scenario

Node

Issue

Work Item
Work Item
Assigment

Use Case Actor

Work Item
Assignment

Fig. 5 The OpenUp System Metamodel—the second portion

1.2.1 Definition of the System Metamodel Elements
In the following table, the “Domain” column prescribed by the FIPA SC00097B
specification has not been reported because there is no precise information on the
OpenUp website about the allocation of concepts to domains like problem, solution
and so on.

Table 1 only reports the elements for which a definition may be found in the
OpenUp website. The other elements identified in the work product descriptions
are reported below the table as a simple list.

List of system metamodel elements without definition: Analysis Class, Architec-
ture, Architectural Issues, Architectural Mechanism, Build scripts, Communication
Procedure, Component, Contingency Measure, Data files, Deployment, Design
Pattern, End User, Implementation Element, Issue, Node, Other files, Product,
Release, Requirement (abstract), Requirement Realization, Rollback, Source code
files, Test Result, Workaround.

2 Phases of the OpenUp Process

2.1 The Inception Phase

The Inception phase is composed by the Inception iteration as described in Fig. 8.
The process flow within the iteration is detailed in Fig. 9.

496 M. Cossentino et al.

Authorizing
Agent

Rollback
Procedure

Rollback Rollback
Performer

Contingency
Measure

Workaround

Backout Plan

Responsible

Communication
Procedure

Communique

Training
Material

Support
Documentation

User
Documentation

Infrastructure

Product
Documentation

Risk

Integrated
Compiled Code

Release Control

Evaluation
Result

Tool

Implementation
Element

Developer Test

Fig. 6 The OpenUp System Metamodel—the third portion

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Inception phase involves 8 different
process roles, 24 work products as described in Figs. 10, 11, 12, and 13. The phase
is composed of four activities as described in Fig. 10, each of them composed of one
or more activities and tasks as described in Figs. 11, 12, 13, 14, and 15.

Details of activities shown in Fig. 10 are reported in Figs. 11, 12, 13, 14, and 15.

2.1.1 Process Roles
Eight roles are involved in the Inception phase, which are described in the following
subsections.

Analyst
She/he is responsible for:
1. Detailing system-wide requirements
2. Detailing use-case scenario

The OpenUp Process 497

Architecture

Requirement

Project Practice

Lesson Learned

Reliability

Usability

Architecturally
cant

Requirement

Performance

Supportability

User Interface

Interface to Ext
System Business Rule

System
Constraint

System
Compliance

System
Documentation

Issue

Iteration Issue

Iteration

Iteration
Milestone

Iteration Plan

Iteration
Objectives

Project Plan

Project MeasureProject
Organization

Deployment
Strategy

Work Item
Assigment

Fig. 7 The OpenUp System Metamodel—the fourth portion

3. Developing technical vision
4. Identifying and outlining requirements

She/he assists in:
1. Assessing results
2. Creating test cases
3. Envisioning the architecture
4. Managing iteration
5. Planning iteration
6. Planning project

Architect
She/he responsible for:
1. Envisioning the architecture.

She/he assists in:
1. Detailing system-wide requirements
2. Detailing use-case scenario
3. Developing technical vision
4. Identifying and outlining requirements
5. Managing iteration
6. Planning iteration
7. Plan project

498 M. Cossentino et al.

Table 1 Definition of the system metamodel elements

Concept Definition

Actor To fully understand the system’s purpose, you must know who the system is for,
that is: Who will use the system? The answer to this question is: the Actors. An
Actor is a role that a person or external system plays when interacting with the
system. Instances of an Actor can be an individual or an external system; however,
each Actor provides a unique and important perspective on the system that is
shared by every instance of the Actor.

Communique While there is no prescribed format for the release communications artifact, each
communique should indicate the preferred delivery mechanisms (e.g., beeper
notification, telephone calls, a posting to an internal release website, live or pre-
recorded presentations by senior management, etc.) and generally answer the
following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release

to production has taken place?
• What specifically (features, functions, components) has been placed into

production?
• Why is this release valuable to stakeholders and what business purpose does

it serve?
• Where is the product available (on which platforms, geographical locations,

business units, etc.)?
• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date

is in the future)?
Design Element The elements that will make up the implemented system. They contribute to define

the abstractions of particular portions of the implementation. Design elements
may be used to describe multiple static and dynamic views of the system for
examination.

Developer Test It covers all of the steps to validate a specific aspect of an implementation element.
A developer test specifies test entries, execution conditions, and expected results.
These details are identified to evaluate a particular aspect of a scenario

Envisioned Core Requirement Define the quality ranges for performance, robustness, fault tolerance, usability,
and similar characteristics that are not captured in the Feature Set.

Evaluation Results Results of the iteration assessment that may be useful for improving the next one
Executable Version The working version of the system or part of the system is the result of putting

the implementation through a build process (typically an automated build script)
that creates an executable version, or one that runs. This executable version will
typically have a number of supporting files that are also considered part of this
artifact.

Feature The view of the stakeholders of the technical solution to be developed is specified
in terms of her/his key needs and features. It also includes envisioned core
requirements.

File Files compose the executable version of the system.
Folder Folders contain File
Glossary Term Terms that are being used on the project so that everyone has a common

understanding of them
Integrated Compiled Code A release consists of integrated, compiled code that runs cleanly, independently,

and in its entirety.

Term Definition

Infrastructure In reference to a release sprint, infrastructure refers to all the hardware, software,
and network facilities necessary to support a deployed release. Infrastructure
normally is defined as anything that supports the flow and processing of inform-
ation in an organization. The infrastructure needed to support a release package
normally includes:
• Software, including: Operating systems and applications for servers and

clients, Desktop applications, Middleware, Protocols
• Hardware
• Networks, including: Routers, Aggregators, Repeaters, Other transmission

media devices that control movement of data and signals
• Facilities

(continued)

The OpenUp Process 499

Table 1 (continued)

Term Definition

Iteration An iteration is a set period of time within a project in which you produce a
stable, executable version of the product, together with any other supporting
documentation, install scripts, or similar, necessary to use this release. Also
referred to as a cycle or a timebox.

Iteration Issue An iteration is a set period of time within a project in which you produce a
stable, executable version of the product, together with any other supporting
documentation, install scripts, or similar, necessary to use this release. Also
referred to as a cycle or a timebox.

Iteration Objectives A few objectives should be written for the iteration, these will help guide the
performers throughout the iteration. Also, assess at the end if those objectives
have been achieved.

Iteration Plan It helps the team to monitor the progress of the iteration, and keeps the results of
the iteration assessment that may be useful for improving the next one. It include
Milestones of the Iteration, task assignment and issues to be solved during the
iteration.

Milestone Milestones of an iteration show start and end dates, intermediate milestones,
synchronization points with other teams, demos, and so on.

Need Capabilities needed by stakeholder
Process The process that a project is to follow in order to produce the project’s desired

results.
Product Documentation It provides a detailed enough understanding of how the product operates and how

it meets stated business goals and needs.
Project Plan It describes how the project is organized, and identifies what practices will be

followed. Additionally, it defines the parameters for tracking project progress, and
specifies the high-level objectives of the iterations and their milestones.

Release Control It identifies the requirements to which a release package must conform to be
considered “deployable”.

Responsible Who will execute the communications when a successful release has been
declared (normally the Deployment Engineer), as well as the timing and depend-
encies of the communiques.

Risk A risk is whatever may stand in the way to success, and is currently unknown
or uncertain. Usually, a risk is qualified by the probability of occurrence and the
impact in the project, if it occurs.

Stakeholder Stakeholders express their needs and requested features.
Support Documentation Support documentation typically includes:

• User manuals with work instructions, process descriptions, and procedures
• Communications, training, and knowledge transfer deliverables
• Support and operations manuals
• Service information, including Help Desk scripts

System-Wide Requirement System-wide requirements are requirements that define necessary system qual-
ity attributes such as performance, usability and reliability, as well as global
functional requirements that are not captured in behavioral requirements artifacts
such as use cases. System-wide requirements are categorized according to the
FURPSC model (Functional, Usability, Reliability, Performance, Supportability
C constraints). Constraints include design, implementation, interfaces, physical
constraints, and business rules. System-wide requirements and use cases, together,
define the requirements of the system. These requirements support the features
listed in the vision statement. Each requirement should support at least one feature,
and each feature should be supported by at least one requirement.

Task Assignment The task assignments for an iteration are a subset of all tasks on the Artifact: Work
Items List

Test Case A test case specifies the conditions that must be validated to enable an assessment
of aspects of the system under test. A test case is more formal than a test idea;
typically, a test case takes the form of a specification. It includes the specification
of test inputs, conditions, and expected results for a system

Test Script Test scripts implement a subset of required tests in an efficient and effective
manner.

(continued)

500 M. Cossentino et al.

Table 1 (continued)

Term Definition

Test Verification It reports that a set of tests was run
Tool The tools needed for supporting the software development effort.
Training Material Training materials that can be used to train end users and production support

personnel might consist of: Presentation slides, Handouts, Job aids, Tutorials, On-
line demos, Video vignettes, Lab exercises, Quizzes, Workshop materials, etc.

Use Case Use cases are used for the following purposes:
• To reach a common understanding of system behavior
• To design elements that support the required behavior
• To identify test cases
• To plan and assess work
• To write user documentation

User Documentation User documentation might include all or parts of user manuals (electronic or
paper-based), tutorials, frequently asked questions (FAQs), on-line Help Files,
installation instructions, work instructions, operational procedures, etc.

Vision Constraint Together with the Stakeholder Requests give an overview of the reasoning,
background, and context for detailed requirements.

Work Item Requests for additional capabilities or enhancement for that application. Work
items can be very large in scope, especially when capturing requests for enhance-
ments. To allow the application to be developed in micro-increments, work items
are analysed and broken down into smaller work items so that they can be assigned
to an iteration.

Lifecycle Objectives
Milestone

Inception
Iteration [1..n]

Fig. 8 The Inception iteration inside the Inception phase

Initiate Project

Plan and Manage
Iteration

Agree on Technical
Approach

Identify and Refine
Requirements

Fig. 9 The Inception phase flow of activities

Developer
She/he assists in
1. Assessing results
2. Creating test cases
3. Detailing use-case scenarios

The OpenUp Process 501

Agree on Technical
ApproachInitiate

Project

Identify and
Refine

Requirements

StakeholderDeveloper TesterAnalyst Architect

Test Case Glossary System-Wide
Requirements

Use Case
ModelUse Case Work Items

List

Developer Architect Analyst Stakeholder Project Manager

Architecture
Notebook

Project PlanGlossaryVision

Analyst ArchitectProject
Manager Stakeholder Developer Tester

Plan and
Manage
Iteration

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

Work Items
List

Iteration
Plan

ToolsProject Defined
Process

Deployment
PlanRisk List

Tools
Specialist

<<Predecessor>>

<<Predecessor>>

Fig. 10 The Inception phase described in terms of activities, output work products and involved
stakeholders

Initiate
ProjectDevelop

Technical Vision
Plan Project

Vision

Glossary

<<input, optional>>

<<output>>

<<output>>

[Project
Work]

<<input>>

[Technical
Specification]

<<input>>

Project
Plan

<<output>>

Analyst Architect Project Manager Stakeholder

<<performs,
primary>>

<<performs, assist>>

<<performs,
primary>>

<<performs,
assist>>

Developer Tester

<<performs, assist>>

Fig. 11 The Initiate Project activity described in terms of tasks, roles and work products

4. Envisioning the architecture
5. Identifying and outlining requirements
6. Managing iteration
7. Outlining deployment plan

502 M. Cossentino et al.

<<input>>

Risk List

Plan and Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst Architect

Project
Manager

Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs, primary>> <<performs, assist>>

Iteration
Plan

a

Work Items
List

a

Iteration
Plan

a

Work Items
List

a

Work Items
List

a

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work Items
List

aRisk List

Iteration
Plan

a

Iteration
Plan

a

[Project Definition
and Scope]

a

Iteration
Plan

a

Work Items
List

a
<<output>>

<<input>>

Iteration
Plan

a

Work Items
List

a

[Project
Definition and

Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

Tools

a

Project Defined
Process

c

<<output>>

Tools

a
Project
Defined
Process

c

Fig. 12 The Plan and Manage Iteration activity described in terms of activities, tasks, roles and
work products (activity Prepare Environment is detailed in Fig. 13)

8. Planning iteration
9. Planning project

Process Engineer
She/he is responsible for
1. Deploying the process
2. Tailoring the process

Project Manager
She/he is responsible for
1. Assessing results
2. Managing iteration
3. Planning iteration
4. Planning project

The OpenUp Process 503

<<output>>

<<performs,
primary>>

<<performs,
primary>>

Prepare
Environment

Setup Tools

Tool Specialist

<<performs,
primary>>

Tools

<<input>>

<<output>>
Tailor the
Process

Project Manager

<<performs,
primary>>

 Project Defined
Process

<<input>>

Project Defined
Process

Tools

Verify Tool
Configuration

and Installation

Tool Specialist

<<input>>
<<output>>

Tools

Deploy the
Process

Project Manager

 Project Defined
Process

<<input>>

Project Defined
Process

<<output>>

Tools

Fig. 13 The Prepare Environment activity of the Plan and Manage Iteration activity described in
terms of tasks, roles, and work products

She/he assists in
1. Developing technical vision
2. Envisioning the architecture

Stakeholder
She/he assists in
1. Assessing results
2. Creating test cases
3. Detailing system-wide requirements
4. Detailing use-case scenarios
5. Developing technical vision
6. Envisioning the architecture
7. Identifying and outlining requirements
8. Managing iteration
9. Planning iteration

10. Planning project

Tester
She/he is responsible for
1. Creating test cases

504 M. Cossentino et al.

Architect

<<performs, primary>>

<<output
>>

<<output>>

<<performs,
primary>>

<<performs, assist>>

<<performs, assist>>

Identify and
Refine

Requirements

<<output>>

<<input,
optional>>

Identify and
Outline

Requirements

Detail System-
Wide

Requirements

Create Test
Cases

<<input>>

<<input>>

<<input, optional>>

Detail
Use-Case
Scenarios

Test Case

c

[Technical
Specification]

a

Glossary
System-Wide
Requirements

a

Use Case
Model

Use
Case Work

Items List

a

Analyst

Architect

Stakeholder

Developer

Tester

GlossaryUse Case
Model Use Case

<<input, optional>>
Glossary

System-Wide
Requirements

a
<<output>>

<<input>>

Test Case

c
<<output>>

<<performs, primary>>

StakeholderDeveloperTester Analyst

<<performs,
primary>>

StakeholderDeveloper TesterAnalyst

<<performs, assist>>

Architect

Analyst

Stakeholder

Developer

Tester

<<performs,
assist>>

Fig. 14 The Identify and Refine Requirements activity described in terms of activities, tasks,
roles, and work products

<<performs, assist>>

<<output>>

<<input>>

Envision the
Architecture

[Technical
Specification]

Analyst

Architect

Stakeholder

Developer

Project Manager

<<input,
optional>>

Architecture
Notebook

Architecture
Notebook

Agree on Technical
Approach

<<performs, primary>>

Fig. 15 The Agree on Technical Approach activity described in terms of activities, tasks, roles,
and work products

She/he assists in
1. Assessing results
2. Detailing system-wide requirements
3. Detailing use-case scenarios

The OpenUp Process 505

Develop
Technical Vision Plan Project

<<input, optional>>

<<output>>

<<output>> <<input>> <<input>>

<<output>>

Analyst

Architect

Project Manager

Stakeholder

Developer

Tester

[Technical
Specification]

[Project
Work]

Glossary

Project
Plan

Vision

Fig. 16 The flow of tasks of the Initiate Project activity

Table 2 Initiate project—the task description

Activity Task Task description Roles involved

Initiate Project Initiate Project The solution is proposed for a
problem that everybody agrees on.
Stakeholders collaborate with the
development team to express and
document their problems, needs,
and potential features for the system
to be, so the project team can better
understand what has to be done.

Analyst (perform), Architect
(assist), Project Manager (as-
sist), Stakeholder (assist).

Initiate Project Plan Project Get stakeholder buy-in for starting
the project and team commitment to
move forward with it. This plan can
be updated as the project progresses
based on feedback and changes in
the environment.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

4. Identifying and outlining requirements
5. Managing iteration
6. Planning iteration
7. Planning project

Tool Specialist
She/he is responsible for
1. Setting up tools
2. Verifying tool configuration and installation

2.1.2 Activity Details
The Inception phase includes four activities, which are described in the following
subsections.

Initiate Project
The flow of tasks inside this activity is reported in Fig. 16, and the tasks are detailed
in Table 2.

506 M. Cossentino et al.

<<input, optional>>

<<output>>

<<output>>

Plan Iteration Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work
Items
List

a

Iteration
Plan

a

Work
Items List

a
Iteration

Plan

a

<<output>>

Work
Items List

a

[Project Definition
and Scope]

a

<<input>>

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical Test
Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

ToolsProject Defined
Process

c

Risk List
Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Iteration
Plan

a

Work
Items
List

a

<<output>>

<<output>>

<<input>>

Prepare
Environment

Iteration
Plan

a

Fig. 17 The flow of tasks of the Plan and Manage Iteration activity

Table 3 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Manage
Iteration

Plan Iteration The purpose of this task is to
identify the next increment of sys-
tem capability, and create a fine-
grained plan for achieving that cap-
ability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Manage
Iteration

Manage Itera-
tion

Help the team meet the iteration
objectives and keep the project
on track. Manage stakeholders’ ex-
pectations as technical and practical
discoveries are made during the
project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Manage
Iteration

Assess Results Demonstrate the value of the solu-
tion increment that was built during
the iteration and apply the lessons
learned to modify the project or
improve the process.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist),Tester
(assist).

Plan and Manage Iteration
The flow of tasks inside this activity is reported in Fig. 17, and the tasks are detailed
in Table 3.

Prepare Environment
The flow of tasks inside this activity is reported in Fig. 18, and the tasks are detailed
in Table 4.

Identify and Refine Requirements
The flow of tasks inside this activity is reported in Fig. 19, and the tasks are detailed
in Table 5.

The OpenUp Process 507

<<input>>

Tailor the
Process

Verify Tool
Configuration

and Installation

Deploy the
Process

Project Engineer

<<output>>

Tools

<<input>>

<<output>>

<<input>>

<<output>>

Set Up Tools

Tool Specialist

<<input>>

Tools

Tools

<<output>>

Project Defined
Process

c

Project Defined
Process

c

Project Defined
Process

c

Fig. 18 The flow of tasks of the Prepare Environment activity

Table 4 Prepare environment—the task description

Activity Task Task description Roles involved

Prepare Envir-
onment

Tailor the Process The purpose of this task is to ensure that
the project team has a defined process
that meets their needs. The purpose of
this task is to
• Install the tools
• Customize the tools
• Make the tools available to the end

users

Process Engineer (per-
form)

Prepare Envir-
onment

Set Up Tools The purpose of this task is to
• Install the tools
• Customize the tools
• Make the tools available to the end

users

Tool Specialist (perform)

Prepare Envir-
onment

Verify Tool Config-
uration and Installa-
tion

The purpose of this task is to verify that
the tools can be used to develop the
system

Tool Specialist (perform)

Prepare Envir-
onment

Deploy the Process The purpose of this task is to
• Ensure that the project members are

properly introduced to the process
• Harvest any feedback on the process

and refine the process, as necessary

Process Engineer (per-
form)

Agree on Technical Approach
The flow of tasks inside this activity is reported in Fig. 20, and the tasks are detailed
in Table 6.

2.1.3 Work Products
The Inception phase generates fourteen work products. Their relationships with the
system meta-model elements are described in Fig. 21.

This diagram represents the Iteration phase in terms of output Work Products.
Each of these reports one or more elements from the OpenUp system metamodel;
each system metamodel element is represented using an UML class icon (yellow
filled) and, in the documents, such elements can be Defined, reFined, Quoted,
Related or Relationship Quoted.

508 M. Cossentino et al.

<<output>>

<<input,
optional>>

Identify and
Outline

Requirements
Detail System-

Wide
Requirements

Create Test
Cases

<<input>>

<<input>>

<<input,
optional>>

Detail Use-Case
Scenarios

Test Case

c

[Technical
Specification]

a

Glossary
System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Analyst

Architect

Stakeholder

Developer

Tester

Glossary Use Case
ModelUse Case

<<output>>

<<input, optional>>

Glossary System-Wide
Requirements

a

<<output>>

<<output>>

<<input>>

<<output>>

Test Case

Fig. 19 The flow of tasks of the Identify and Refine Requirements activity

Table 5 Identify and refine requirements—the task description

Activity Task Task description Roles involved

Identify and Re-
fine Requirements

Identify and Outline
Requirements

This task describes how to identify and
outline the requirements for the system
so that the scope of work can be determ-
ined.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Detail Use-Case
Scenarios

This task describes how to detail use-
case scenarios for the system.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Detail System-Wide
Requirements

This task details one or more require-
ment(s) that do(es) not apply to a specific
use case.

Analyst (perform), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Identify and Re-
fine Requirements

Create Test Cases Develop the test cases and test data for
the requirements to be tested.

Tester (perform), Analyst
(assist), Developer (assist),
Stakeholder (assist).

<<output>>

<<input>>

Envision the
Architecture

[Technical
Specification]

Analyst

Architect Stakeholder

Developer

Project Manager

<<input,
optional>>

Architecture
Notebook

Architecture
Notebook

Fig. 20 The flow of tasks of the Agree on Technical Approach activity

The OpenUp Process 509

Table 6 Agree on technical approach—the task description

Activity Task Task description Roles involved

Agree on Tech-
nical Approach

Envision the Archi-
tecture

This task is where the ‘vision” for the ar-
chitecture is developed through analysis
of the architecturally significant require-
ments and identification of architectural
constraints, decisions and objectives.

Architect (perform), Analyst
(assist), Developer (assist),
Stakeholder (assist), Project
Manager (assist).

R
R

Design
Pattern

D

R

Inception
Model

Project
Plan

a

Work
Items List

a
Iteration

Plan

a

Tools

Project Defined
Process

c

Risk List
Glossary

System-Wide
Requirement

a

Use Case
Model

Use Case

Test Case

Actor

D

Actor

Q

Business
Rules

D

Glossary
Term

D

Project-
Specific

Guidelines

DProject-Specific
Procedure

D

Report

D

Role

D R
R

R

R

Work Item

D

Work
Product

D

R

Test Case

D

Interfaces to
External Systems

D

Performances

D

Reliability

D

Supportability

D

System Constraint

D

System
Compliance

D

Documentation

D

Usability
Requirement

D

User Interface

D

Development
Strategy

D
Actor

Q

Development
Strategy

D

Actor

Q R

Lesson
Learnt

D

Project
Measure

D
Project

Organization

D

Project
Practice

D

Project
Plan

D

Process

Q

R

R

Risk List

D
Evaluation

Results

D

Evaluation
Criterion

Q
R

Iteration

D

Iteration
Plan

DR

Iteration

D

Iteration Plan

D
R

Iteration
Issue

D
R

Iteration
Milestone

D
R

Iteration
Milestone

Q

R

Tool

D

Use Case

D

Use Case

Q

Vision

a
Architecture
Notebook

a

Architectural
Assumption

D
Architectural
Constraints

D Architectural
Decision

D
Architectural
Dependency

DArchitectural
Framework

D

Architectural
Goal

D
Architectural

Issues

D

Architectural
Justification

D

Architectural
Mechanism

D

Architectural
Views

D

Architectural
Significant Req.

D

Architecture

D

Feature

D

System-Wide
Requirements

Q

Stakeholder
D

Deployment

Q

R
R

Need

D
R

Other Product
Requirement

D

Problem

D

Product

D
R

R R

Product
Documentation

Q

Product Position
Statement

D

Envisioned
Core Req.

D R

User
Environment

D
R

System-Wide
Requirement

D

R

RR

Code

Q

Analysis
Class

D

Process

D

Fig. 21 The Inception phase documents structure

510 M. Cossentino et al.

Work Product Kinds
Table 7 describes the work products of the Inception phase according to their kinds.

Work products are detailed in the following sections. No specific examples of
notation use are reported since standard UML [3, 4] is supposed to be adopted.

Architecture Notebook
The purpose of this artifact is to capture and make architectural decisions and
to explain those decisions to developers. This artifact describes the Software
Architecture. It provides a place for maintaining the list of architectural issues, along
with the associated architectural decisions, designs, patterns, code documented (or
pointed to), and so forth—all at appropriate levels to make it easy to understand
what architectural decisions have been made and what remain to be made. It is
helpful for architects to use this artifact to collaborate with other team members in
developing the architecture and to help team members understanding the motivation
behind architectural decisions so that those decisions can be robustly implemented.
For example, the architect may put constraints on how data is packaged and
communicated between different parts of the system. This may appear to be a
burden, but the justification in the Architecture Notebook can explain that there
is a significant performance bottleneck when communicating with a legacy system.
The rest of the system must adapt to this bottleneck by following a specific data
packaging scheme. This artifact should also inform the team members how the
system is partitioned or organized so that the team can adapt to the needs of the
system. It also gives a first glimpse of the system and its technical motivations to
whoever must maintain and change the architecture later. At a minimum, this artifact
should do these three things:
• List guidelines, decisions, and constraints to be followed
• Justify those guidelines, decisions, and constraints
• Describe the Architectural Mechanisms and where they should be applied

Team members who were not involved in those architectural decisions need
to understand the reasoning behind the context of the architecture so that they
can address the needs of the system. A small project should not spend a lot of
time documenting the architecture, but all critical elements of the system must be
communicated to current and future team members. This is all useful content:
• Goals and philosophy of the architecture
• Architectural assumptions and dependencies
• References to architecturally significant requirements
• References to architecturally significant design elements
• Critical system interfaces
• Packaging instructions for subsystems and components
• Layers and critical subsystems
• Key abstractions
• Key scenarios that describe critical behavior of the system

The OpenUp Process 511

Table 7 Inception phase—work product kinds

Name Description Work product kind

Architecture Notebook This artifact describes the rationale, assumptions, explana-
tion, and implications of the decisions that were made in
forming the architecture.

Free Text

Build An operational version of a system or part of a system that
demonstrates a subset of the capabilities to be provided in
the final product.

Composite

Design This artifact describes the realization of required system
functionality and serves as an abstraction of the source code.

Composite

Developer Test The Developer Test validates a specific aspect of an imple-
mentation element.

Structured

Glossary This artifact defines important terms used by the project.
The collection of terms clarifies the vocabulary used on the
project.

Structured

Implementation Software code files, data files, and supporting files (such as
online help files) that represent the raw parts of a system that
can be built.

Composite

Iteration Plan A fine-grained plan describing the objectives, work assign-
ments, and evaluation criteria for the iteration.

Free Text

Project Defined Process This work product describes the process that a project is to
follow in order to produce the project’s desired results.

Composite

Project Definition and Scope This slot serves as an abstraction of high-level artifacts
that define the project and its scope. Typical examples of
such artifacts could be a project definition, and a high-level
project schedule identifying major milestones and major
deliverables. Fulfilling Work Products:
• Project Plan

Free Text

Project Plan This artifact gathers all of the information required to man-
age the project on a strategic level. Its main part consists of
a coarse-grained plan, identifying project iterations and their
goals.

Project Work This slot serves as an abstraction for any type of work being
done on the project. It could be represented as a work items
list, an operational schedule, a work breakdown structure,
and so on. Fulfilling Work Products:
• Iteration Plan
• Work Items List

Free Text

Risks List This artifact is a sorted list of known and open risks to the
project, sorted in order of importance and associated with
specific mitigation or contingency actions.

Structured

System-Wide Requirements This artifact captures the quality attributes and constraints
that have system-wide scope. It also captures system-wide
functional requirements.

Free Text

Technical Architecture This slot serves as an abstraction of high-level artifacts that
represent the documentation of the architecture. Fulfilling
Work Products:
• Architecture Notebook

Composite

Technical Specification This slot serves as an abstraction of high-level artifacts
that describe requirements, constraints, and goals for the
solution. Fulfilling Work Products:
• Glossary
• System-Wide Requirements
• Use Case
• Use-Case Model
• Vision

Composite

Technical Test Result This slot serves as an abstraction of high-level artifacts that
define the results of testing the hardware and software for
the system being developed. Fulfilling Work Products:
• Test Log

Free Text

(continued)

512 M. Cossentino et al.

Table 7 (continued)

Name Description Work product kind

Test Case This artifact is the specification of a set of test inputs,
execution conditions, and expected results that you identify
to evaluate a particular aspect of a scenario.

Structured

Test Log This artifact collects the raw output that is captured during a
unique run of one or more tests for a single test cycle run.

Free Text

Test Script This artifact contains the step-by-step instructions that com-
pose a test, enabling its run. Text scripts can take the form
of either documented textual instructions that are manu-
ally followed, or computer-readable instructions that enable
automated testing.

Structured

Tools These work products are the tools needed to support the
software development effort.

Free Text

Use Case This artifact captures the system behavior to yield an observ-
able result of value to those who interact with the system.

Structured Behavioral

Use-Case Model This artifact presents an overview of the intended beha-
vior of the system. It is the basis for agreement between
stakeholders and the project team in regards to the intended
functionality of the system. It also guides various tasks in the
software development lifecycle.

Composite (Structured C
Behavioral)

Vision This artifact provides a high-level basis for more detailed
technical requirements. It captures the technical solution
by describing the high-level stakeholder requests and con-
straints that give an overview of the reasoning, background,
and context for detailed requirements. The vision serves as
input for communicating the fundamental “what and why”
for the project and provides a strategy against which all
future decisions can be validated. The vision should rally
team members behind an idea and give them the context for
decision-making in the requirements area. The vision must
be visible to everyone on the team.

Free Text

Work Items List This artifact contains a list of all of the scheduled work to be
done within the project, as well as proposed work that may
affect the product in this or future projects. Each work item
may contain references to information relevant to carry out
the work described within the work item.

Free Text

Build
The purpose of this work product is to deliver incremental value to the user and
customer, and provide a testable artifact for verification. This working version of
the system, or part of the system, is the result of putting the implementation through
a build process (typically an automated build script) that creates an executable
version. This version will typically have a number of supporting files that are also
considered part of this artifact. This work product is almost always a product made
up of numerous parts required to make the executable system. Therefore, a Build
is more than just executable files; it also includes such things as configuration files,
help files, and data repositories that will be put together, resulting in the product that
the users will run.

Deployment Plan
The purpose of this work product is to capture, in one document, the unique
information that will be consumed by deployment engineers before and during
the deployment to production of a particular release package. The deployment

The OpenUp Process 513

plan should contain the unique instructions for deploying a particular version
of a product. By “unique instructions” we mean those things that are not part
of a deployment engineer’s normal procedures. Rather, they often are specific
procedures and timing constraints that a deployment engineer should be aware of
as they are rolling out a particular release. While a draft version of the deployment
plan is typically developed by a development team, the deployment engineer is
responsible for its contents and existence. A deployment plan normally consists of
the following sections:
• The scope of the release and a general overview of the capabilities to be deployed
• The timing and dependencies for deploying components to various nodes
• The risks or issues associated with the release based on a risk assessment
• The customer organization, stakeholders, and end user community that will be

impacted by the release
• The person or persons who have the authority to approve the release as “ready

for production”
• The development team members responsible for delivering the release package

to the Deployment Manager, along with contact information
• The approach for transitioning the release package to the Deployment Engineer,

including appropriate communications protocols and escalation procedures
• The success criteria for this deployment; in other words, how will the Deploy-

ment Engineer know that the release is successful so it can report success

Design
The purpose of this work product is to describe the elements of the system so
they can be examined and understood in ways not possible by reading the source
code. This work product describes the elements that will make up the implemented
system. It communicates abstractions of particular portions of the implementation.
While architecture focuses on interfaces, patterns, and key decisions, the design
fleshes out the technical details in readiness for implementation, or as part of
implementation. This work product can describe multiple static and dynamic views
of the system for examination. Although various views may focus on divergent,
seemingly independent issues of how the system will be put together and work,
they should fit together without contradiction. It is important that the author of this
work product is able to analyse key decisions about the structure and behavior of
the system and communicate them to other collaborators. It is also important that
these decisions can be communicated at various levels of abstraction and granularity.
Some aspects of the design can be represented by source code, possibly with some
extra annotations. But more abstract representations of the design will be at a
higher-level than source code. The more abstract representation could use various
representation options. UML could be used either strictly or informally, it is the
preferred notation based on its rich semantics and broad usage in the industry. Other
techniques could be used to communicate the design. Or the design could use a mix
of techniques as applicable.

This process does not govern whether to record these representations on a white
board or to use a formal tool. But any representation, whether characterized as

514 M. Cossentino et al.

formal or informal, should unambiguously communicate the technical decisions
embodied by the design.

Developer Test
This artifact is used to evaluate whether an implementation element performs as
specified. This artifact covers all of the steps to validate a specific aspect of an
implementation element. For example, a test could ensure that the parameters of a
method properly accept the uppermost and lowermost required values. A developer
test specifies test entries, execution conditions, and expected results. These details
are identified to evaluate a particular aspect of a scenario. When you collect
developer tests for a specific implementation element, you can validate that the
element performs as specified. The tests should be self-documenting so that it is
clear upon completion of the test whether the implementation element has run
correctly. Although there is no predefined template for this work product, and testing
tools affect how the work product is handled, you should address the following
issues:
• Setup
• Inputs
• Script
• Expected Results
• Evaluation Criteria
• Clean-Up

Suggestions and options for representing this work product: Suggestion: Auto-
mated code unit The most appropriate technique for running these tests is to use
code that tests the implementation element scenarios and that you can run regularly
as you update the system during development. When code is the sole form of the
tests, ensure that the code is self-documenting. The code should document the
specifications of the conditions you are testing and the setup or clean-up that is
required for the test to run properly.

Option: Manual instructions: In some cases, you can use manual instructions. For
example, when testing a user interface, a developer might follow a script, explaining
the implementation element. In this case, it is still valuable to create a test harness
that goes straight to the user interface. That way, the developer can follow the script
without having to follow a complicated set of instructions to find a particular screen
or page.

Option: Embedded code: You can use certain technologies (such as JavaTM 5 Test
Annotation) to embed tests in the implementation. In these cases, there will be a
logical work product, but it will be assimilated into the code that you are testing.
When you use this option, ensure that the code is self-documenting.

Glossary
These are the purposes of this artifact:
• To record the terms that are being used on the project so that everyone has a

common understanding of them

The OpenUp Process 515

• To achieve consistency by promoting the use of common terminology across the
project

• To make explicit different stakeholders’ use of the same terms to mean different
things or different terms to mean the same thing

• To provide important terms to the Analysis and Design team
This artifact helps you avoid miscommunication by providing two essential

resources:
• A central location to look for terms and abbreviations that are new to develop-

ment team members
• Definitions of terms that are used in specific ways within the domain
Definitions for the glossary terms come from several sources, such as requirements
documents, specifications, and discussions with stakeholders and domain experts.

Implementation
The purpose of this artifact is to represent the physical parts that compose the system
to be built and to organize the parts in a way that is understandable and manageable.
This artifact is the collection of one or more of these elements:
• Source code files
• Data files
• Build scripts
• Other files that are transformed into the executable system

Implementation files are represented as files in the local file system. File folders
(directories) are represented as packages, which group the files into logical units.

Iteration Plan
The main objectives of the iteration plan are to provide the team with the
following:
• One central place for information regarding iteration objectives
• A detailed plan with task assignments
• Evaluation results
This artifact also helps the team to monitor the progress of the iteration and keeps
the results of the iteration assessment that may be useful for improving the next
one. This artifact captures the key milestones of an iteration, showing start and end
dates, intermediate milestones, synchronization points with other teams, demos, and
so on. This artifact is also used to capture issues that need to be solved during the
iteration. A few objectives should be written for the iteration, these will help guide
the performers throughout the iteration. Also, assess at the end if those objectives
have been achieved. The task assignments for an iteration are a subset of all tasks
on the Artifact: Work Items List. Therefore, the iteration plan ideally references
those work items. The evaluation criteria and iteration assessment information are
captured in this artifact, so that it is possible to communicate results and actions from
assessments. Work items assigned to an iteration do not necessarily have the same
priority. When selecting work items from the Work Items List, the iteration plan
may end up having work items with different priorities (for example, you assign
the remaining high priority work items, plus a few mid-priority ones from the Work

516 M. Cossentino et al.

Items List). Once work items have been assigned to the iteration, the team ensures
that they can complete all work, regardless of original work item priorities. Deciding
what to develop first on an iteration will vary across projects and iterations. The
level of detail or formality of the plan must be adapted to what you need in order to
meet these objectives successfully. The plan could, for example, be captured on the
following places:
• A whiteboard listing the objectives, task assignments, and evaluation criteria
• A one-page document listing the objectives and evaluation criteria of the

iteration, as well as referencing the Work Items List for assignments for that
iteration

• A more complex document, supported by a Gantt or Pert chart in a project
planning tool

Project Defined Process
The purpose of the project process is to provide guidance and support for the
members of the project. “Information at your finger tips” is a metaphor that aligns
well with the purpose of this work product. A project process typically describes or
references the following items:
• What organizational processes and policies must be adhered to
• What standard process, if any, is being adopted by the project
• Any tailoring of the standard process, or deviations from policy mandates
• Rationale for tailoring and deviations
• Approvals for deviations
• Which work products are reviewed at which milestones, and their level of

completion
• Guidelines and information that the project wants to use in addition to the

information contained in the main process
• What reviews will be performed, and their level of formality
• What approvals are required, by whom, and when

Processes can be captured informally in documents, formally captured in a
Method Composer configuration, or specified by configuring tools. Typically a pro-
ject will use a combination of these: start with a Method Composer configuration,
create a document to describe variations from this configuration and configure tools
to support the process being followed.

Project Plan
The purpose of this artifact is to provide a central document where any project
team member can find the information on how the project will be conducted. This
artifact describes how the project is organized, and identifies what practices will be
followed. Additionally, it defines the parameters for tracking project progress, and
specifies the high-level objectives of the iterations and their milestones. The project
plan allows stakeholders and other team members to understand the big picture and,
roughly, when to expect a certain level of functionality be available. Update the plan
as often as necessary, usually at the end of each iteration, in order to reflect changing
priorities and needs, as well as record the lessons learned from the project. Create

The OpenUp Process 517

and update the project plan in planning sessions that involve the whole team and
appropriate project stakeholders in order to make sure that everybody agrees with it.

Risk List
The purpose of this work product is to capture the perceived risks to the success of
the project. This list identifies, in decreasing order of priority, all the risks associated
to a project. It serves as a focal point for project activities, and is the basis around
which iterations are organized.

System-Wide Requirements
This artifact is used for the following purposes:
• To describe the quality attributes of the system, and the constraints that the design

options must satisfy to deliver the business goals, objectives, or capabilities
• To capture functional requirements that are not expressed as use cases
• To negotiate between, and select from, competing design options
• To assess the sizing, cost, and viability of the proposed system
• To understand the service-level requirements for operational management of the

solution
This artifact captures the quality attributes and constraints that have system-

wide scope. It also captures system-wide functional requirements. This list should
capture the critical and serious risks. If you find this list extending beyond 20 items,
carefully consider whether they are really serious risks. Tracking more than 20 risks
is an onerous task. A representation option for the risk list is to capture it as a section
in the coarse-grained plan for the project. This means the coarse-grained plan has to
be constantly revisited as you update risks. The fine-grained plans will contain only
the tasks that you will be doing to mitigate risks in the short term.

Test Case
The purpose of this work product is
• To provide a way to capture test inputs, conditions, and expected results for a

system
• To systematically identify aspects of the software to test
• To specify whether an expected result has been reached, based on the verification

of a system requirement, set of requirements, or scenario
A test case specifies the conditions that must be validated to enable an assessment of
aspects of the system under test. A test case is more formal than a test idea; typically,
a test case takes the form of a specification. In less formal environments, you can
create test cases by identifying a unique ID, name, associated test data, and expected
results. Test cases can be derived from many sources, and typically include a subset
of the requirements (such as use cases, performance characteristics and reliability
concerns) and other types of quality attributes.

Test Log
The purpose of this work product is
• To provide verification that a set of tests was run

518 M. Cossentino et al.

• To provide information that relates to the success of those tests
This artifact provides a detailed, typically time-based record that both verifies

that a set of tests were run and provides information that relates to the success of
those tests. The focus is typically on providing an accurate audit trail, which enables
you to undertake a post-run diagnosis of failures. This raw data is subsequently
analyzed to determine the results of an aspect of the test effort. Because this is a
collection of raw data for subsequent analysis, it can be represented in a number of
ways:
• For manual tests, log the actual results on a copy of the manual Test Script
• For automated tests, direct the output to log files that you can trace back to the

automated Test Script
• Track raw results data in a test management tool

Test Script
Test scripts implement a subset of required tests in an efficient and effective manner.

Tools
These work products are the tools needed to support the software development
effort.

Use Case
Use cases are used for the following purposes:
• To reach a common understanding of system behavior
• To design elements that support the required behavior
• To identify test cases
• To plan and assess work
• To write user documentation

A use case typically includes the following information:
• Name: The name of the use case.
• Brief Description: A brief description of the role and purpose of the use case.
• Flow of Events: A textual description of what the system does in regard to a use-

case scenario (not how specific problems are solved by the system). Write the
description so that the customer can understand it. The flows can include a basic
flow, alternative flows, and subflows.

• Key scenarios: A textual description of the most important or frequently dis-
cussed scenarios.

• Special Requirements: A textual description that collects all of the requirements
of the use case that are not considered in the use-case model, but that must
be taken care of during design or implementation (e.g., non-functional require-
ments).

• Preconditions: A textual description that defines a constraint on the system when
the use case starts.

• Post-conditions: A textual description that defines a constraint on the system
when the use case ends.

The OpenUp Process 519

• Extension points: A list of locations within the flow of events of the use case at
which additional behavior can be inserted by using the extend-relationship.
You can document the use case as a use-case specification document or you

can incorporate the use case in a use-case model. You can also use a requirements
management tool to capture use cases and parts of use cases.

Use-Case Model
This artifact presents an overview of the intended behavior of the system. It is the
basis for agreement between stakeholders and the project team in regards to the
intended functionality of the system. It also guides various tasks in the software
development lifecycle. Representation options include reports and diagrams from
UML modeling tools, graphical representations created by using drawing tools, and
drawings on whiteboards. Most of the information in the use-case model is captured
in the use-case specifications.

Vision
This artifact provides a high-level basis for more detailed technical requirements.
It captures the technical solution by describing the high-level stakeholder requests
and constraints that give an overview of the reasoning, background, and context
for detailed requirements. The vision serves as input for communicating the
fundamental “what and why” for the project and provides a strategy against which
all future decisions can be validated. The vision should rally team members behind
an idea and give them the context for decision-making in the requirements area.
The vision must be visible to everyone on the team. It is good practice to keep this
artifact brief, so you can release it to stakeholders as soon as possible, and to make
the artifact easy for stakeholders to read and understand. You can accomplish this
by including only the most important features and avoiding details of requirements.
Projects that focus on product development might extend the marketing section and
include a more detailed product position statement that is based on their needs and
research. Typically, the vision is represented in a document. If key stakeholder needs
are captured in a requirements management tool, this part of the document can be
generated by using reporting capabilities. If the vision serves a set of projects or
an entire program, the overall vision might be divided into several vision work
products. In this case, the vision of the program brings the visions together by
providing program-specific content and referencing the subordinate visions.

Work Items List
The purpose of this artifact is to collect all requests for work that will potentially
be taken on within the project, so that work can be prioritized, effort estimated, and
progress tracked. This artifact provides a focal point for the entire team:
• It provides one list containing all requests for additional capabilities or en-

hancement for that application. Note that some of these requests may never be
implemented, or be implemented in later projects.

• It provides one list of all the work to be prioritized, estimated, and assigned
within the project. The risk list is prioritized separately.

520 M. Cossentino et al.

• It provides one place to go to for the development team to understand what micro-
increments need to be delivered, get references to material required to carry out
the work, and report progress made.

These are the typical work items that go on this list:
• Use cases (and references to use-case specifications)
• System-wide requirements
• Changes and enhancement requests
• Defects
• Development tasks

Work items can be very large in scope, especially when capturing requests
for enhancements, such as “Support Financial Planning” for a personal finance
application. To allow the application to be developed in micro-increments, work
items are analyzed and broken down into smaller work items so that they can be
assigned to an iteration, such as a use-case scenario for “Calculate Net Worth”.
Further breakdown may be required to identify suitable tasks to be assigned to
developers, such as “Develop UI for Calculate Net Worth”. This means that work
items often have parent/child relationships, where the lowest level is a specification
and tracking device for micro-increments. This artifact should consist of the
following information for each work item:
• Name and Description
• Priority
• Size Estimate
• State
• References
Assigned work items should also contain the following:
• Target Iteration or Completion Date
• Assignee
• Estimated Effort Remaining
• Hours Worked

Work Items should contain estimates. The recommended representation for the
work items list is to capture it as a separate artifact, represented by a spreadsheet
or database table. See Example: Work Items List. Alternatively, the work items list
may be captured in tools such as project management, requirements management,
or change request. In fact, the work items list may be spread over several tools,
as you may choose to keep different types of work items in different repositories to
take advantage of features in those tools. For example, you could use a requirements
composition or management tool to track information about requirements, and use
another tool to capture defects. Work items may start in one representation (such as
in a spreadsheet) and move to more sophisticated tools over time, as the number of
work items and the metrics you wish to gather grows more sophisticated. As part of
the Iteration Plan, the plan typically references work items that are assigned to that
iteration. If the team is capturing the iteration plan on a whiteboard, for example,
the team may choose to reference high-level work items in the Work Items List that
are assigned to the iteration, and maintain low-level child work items used to track
day-to-day work only in an iteration plan.

The OpenUp Process 521

Lifecycle Architecture
Milestone

Elaboration
Iteration [1..n]

Fig. 22 The elaboration iteration inside the elaboration phase

Develop the
Architecture

Test
Solution

Identify and Refine
Requirements

Plan and Manage
Iteration

Ongoing
Tasks

Develop
Solution

Increment

Fig. 23 The Elaboration phase flow of activities

2.2 The Elaboration Phase

The Elaboration starts when the first Milestone, Lifecycle Objectives Milestone,
from Inception phase, is available. The Elaboration phase is composed by the
Elaboration iteration as described in Fig. 22. The process flow within the iteration is
detailed in Fig. 23.

The number and the length of each Elaboration iteration is dependent on, but
not limited to, factors such as green-field development compared to maintenance
cycle, unprecedented system compared to well-known technology and architecture,
and so on. Typically, on the first iteration, it is better to design, implement, and
test a small number of critical scenarios to identify what type of architecture and
architectural mechanisms you need, so you can mitigate the most crucial risks. You
also detail high-risk requirements that have to be addressed early in the project.
You test enough to validate that the architectural risks are mitigated. During the
subsequent iterations, you fix whatever was not right from the previous iteration.
You design, implement, and test the remaining architecturally significant scenarios,
ensuring that you check all major areas of the system (architectural coverage), so
that potential risks are identified as early as possible [5].

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Elaboration phase involves 10 different
process roles, 29 work products and six activities (i.e., Plan and Manage Iteration,
Identify and Refine Requirements, Develop the Architecture, Develop Solution
Increment, Test Solution, Ongoing Tasks), as described in Fig. 24, each activity is

522 M. Cossentino et al.

Develop the
Architecture

Test
Solution

Identify and
Refine

Requirements

Plan and
Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterDeployment
Engineer

Work Items
List

a
Iteration

Plan

a

Tools

a

Project Defined
Process

c

Deployment
Plan

c

Risk List

Stakeholder

Developer TesterAnalyst
Architect

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Test Case

c

Glossary
System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Developer Architect Analyst Stakeholder Tester Project
Manager

Architecture
Notebook

a
Developer

Test Design

c

Implementation

c

Test Log

a

Build

c

Any Role

Work
Items List

a

Develop Solution
Increment

Developer Architect Analyst Stakeholder Tester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Fig. 24 The elaboration phase described in terms of activities, output work products and involved
stakeholders

composed of one or more tasks/activities as described in Figs. 25, 26, 27, 28, and
29.

The description of the Prepare Environment activity in terms of tasks, roles, and
work products is reported in Fig. 13. The description of the Identify and Refine
Requirements activity in terms of tasks, roles, and work products is reported in
Fig. 14.

The OpenUp Process 523

Plan and
Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<output>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs, primary>>
<<performs, assist>>

Outline
Deployment

Plan

DeveloperDeployment
Engineer

<<performs,
primary>> <<performs,

assist>>

Deployment
Plan

c
<<output>>

Iteration
Plan

a
Work Items

List

a

Iteration
Plan

a

Work Items
List

a

Work Items
List

a

Risk List

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work
Items
List

a
Risk List

Iteration
Plan

a

Iteration
Plan

a

[Project
Definition and

Scope]

a

Iteration
Plan

a

Work Items
List

a<<output>>

<<input>>

Iteration
Plan

a

Work
Items
List

a

[Project
Definition

and Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

<<input>>
Tools

a

Project Defined
Process

c

<<output>>

Tools

a

Project Defined
Process

c

Fig. 25 The Plan and Manage Iteration activity described in terms of tasks, roles, and work
products

2.2.1 Process Roles
Ten roles are involved in the Elaboration phase, which are described in the following
subsections.

Analyst
She/he is responsible for the following tasks:
1. Detail System-Wide Requirements
2. Detail Use-Case Scenarios
3. Identify and Outline Requirements

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Implement Tests

524 M. Cossentino et al.

Develop the
ArchitectureRefine the

Architecture

[Technical
Implementation]

a

Architect Project
Manager

<<input,
optional>>

Developer

<<performs,
assist>>

Develop Solution
Increment

Architecture
Notebook

a
<<input>>

<<performs, primary>>

[Technical
Design]

c

<<input, optional>>

[Technical
Specification]

c

<<input>>

<<input>>

[Technical
Architecture]

a
<<input>>

<<input>>

Developer
Test

Test Script

<<input>>

Design

c
<<output>>

<<output>>

Implementation

c
<<output>>

Test Log

a
<<output>>

Build

c
<<output>>

<<input>>

<<input>>

<<input>>

<<output>>

Fig. 26 The Develop the Architecture activity described in terms of tasks, roles, and work
products

5. Manage Iteration
6. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he is responsible for the following task:
1. Refine the Architecture

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Manage Iteration
7. Plan Iteration

Deployment Engineer
She/he is responsible for the following task:
1. Outline deployment plan

The OpenUp Process 525

<<input>>

<<performs, assist>>Developer

<<input,
optional>>

<<performs, assist>>

[Technical
Implementation]

a

Develop Solution
Increment

Technical
Design

c

[Technical
Specification]

c

Design the
Solution Implement

Developer Tests
Implement
Solution

Run Developer
Tests

Integrate and
Create Build

DeveloperArchitect Analyst StakeholderTester

<<performs,
primary>>

<<input>>

[Technical
Architecture]

a

<<input>>

<<input>>

<<input,
optional>>

<<input>>

<<input,
optional>>

Developer
Test

<<input>>

<<input>>

<<input>>

Test
Script

Design

c
<<output>>

Implementation

c

<<output>>

Test Log

a

<<output>>

Build

c

<<output>>

<<performs,
primary>>

<<performs,
primary>>

<<performs,
primary>>

Developer

Developer
Test

<<performs,
assist>>

<<output>>

[Technical
Implementation]

a

[Technical
Design]

c

Technical
Design

c

[Technical
Specification]

c
[Technical

Implementation]

a

Developer

Stakeholder Tester

Tester

<<input>>

[Technical
Implementati

on]

a

Developer

Fig. 27 The Develop Solution Increment activity described in terms of tasks, roles, and work
products

Test Solution
Implement Tests

Technical
Implementation

a

TesterAnalyst

<<input,
optional>>

Developer

<<performs, assist>>

<<performs, primary>>
<<input>>

Run Tests

Stakeholder

Test Case

Test Script

<<input,optional>>

<<output>>

<<performs,
primary>>

<<input>>
<<input>>

Test Log

a
<<output>>

Fig. 28 The Test Solution activity described in terms of tasks, roles, and work products

Developer
She/he is responsible for the following tasks:
1. Design the Solution
2. Implement Developer Tests

526 M. Cossentino et al.

Ongoing Tasks

Request
Change

Any Role

<<performs,
primary>>

<<output>>
Work
Items
List

a

Fig. 29 The Ongoing Tasks
activity described in terms of
tasks, roles, and work
products

3. Implement Solution
4. Integrate and Create Build
5. Run Developer Tests

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Tests
7. Manage Iteration
8. Outline Deployment Plan
9. Plan Iteration

10. Refine the Architecture

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the process
2. Taylor the process

Project Manager
She/he is responsible for the following task:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

She/he assists in the following task:
1. Refine the Architecture

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Detail System-Wide Requirements
5. Detail Use-Case Scenarios
6. Identify and Outline Requirements
7. Implement Solution

The OpenUp Process 527

8. Implement Tests
9. Manage Iteration

10. Plan Iteration

Tester
She/he is responsible for the following tasks:
1. Create Test Cases
2. Implement Tests
3. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Developer Tests
7. Implement Solution
8. Manage Iteration
9. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

2.2.2 Activity Details
The Elaboration phase includes six activities, which are described in the following
subsections.

Plan and Manage Iteration
The goal of this activity is initiating the iteration, allowing team members to sign
up for development tasks, monitoring and communicating project status to external
stakeholders, and finally, identify and handling exceptions and problems. The flow
of tasks inside this activity is reported in Fig. 30, and the tasks are detailed in Table 8.

Prepare Environment
See section “Prepare Environment” above.

Identify and Refine Requirements
See section “Identify and Refine Requirements” above.

Develop the Architecture
The goal of this activity is to develop the architecturally significant requirements
prioritized for this iteration. The flow of tasks inside this activity is reported in
Fig. 31, and the tasks are detailed in Table 9.

528 M. Cossentino et al.

[Technical
Architecture]

c

<<input, optional>> <<output>>

<<output>>

Plan Iteration Prepare
Environment

Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work
Items
List

a

Iteration
Plan

a

Work
Items List

a
Iteration

Plan

a

<<output>>

Work
Items List

a
Iteration

Plan

a

[Project
Definition

and Scope]

a

<<input>>

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical
Test Results]

a

<<input,
optional>>

<<input>>

Tools
Project
Defined
Process

c

Tools
Project
Defined
Process

c

Risk List

Risk List

Risk List

Outline
Deployment

Plan

Deployment
Engineer

Deployment
Plan

c

<<output>>

[Technical
Specification]

c

Iteration
Plan

a

Work
Items
List

a

<<output>>

<<output>>

Fig. 30 The flow of tasks of the Plan and Manage Iteration activity

Table 8 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Man-
age Iteration

Plan Iteration The purpose of this task is to identify the
next increment of system capability, and
create a fine-grained plan for achieving
that capability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Man-
age Iteration

Manage Iteration Help the team meet the iteration ob-
jectives and keep the project on track.
Manage stakeholders’ expectations as
technical and practical discoveries are
made during the project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist). (perform), Domain
Expert (assist)

Plan and Man-
age Iteration

Outline Deployment
Plan

If a deployment plan for the project
already exists, update it to reflect the
nature of this release. If this document
does not exist, develop a deployment
plan to indicate how this release will be
rolled out to the production environment.

Deployment Engineer (per-
form), Developer (assist).

Plan and Man-
age Iteration

Assess Results Demonstrate the value of the solution
increment that was built during the it-
eration and apply the lessons learned to
modify the project or improve the pro-
cess.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Develop Solution Increment
The goal of this activity is to design, implement, test, and integrate the solution for a
requirement within a given context. The flow of tasks inside this activity is reported
in Fig. 32, and the tasks are detailed in Table 10.

The OpenUp Process 529

<<performs,
assist>>

Refine the
Architecture

[Technical
Implementation]

a

Architect Project
Manager

<<input,optional>>

Developer

Develop Solution
Increment

Architecture
Notebook

a
<<input>>

<<performs, primary>>

[Technical
Design]

c

<<input, optional>>

[Technical
Specification]

c

<<input>>

<<input>>

[Technical
Architecture]

a
<<input>>

<<input>>

Developer Test

Test Script

<<input>>

Design

c
<<output>>

<<output>>

Implementation

c
<<output>>

Test Log

a

<<output>>

Build

c

<<output>>

<<input>>

<<input>>

<<input>>

<<output>>

Fig. 31 The flow of tasks of the Develop the Architecture activity

Table 9 Develop the architecture—the task description

Activity Task Task description Roles involved

Develop the
Architecture

Develop Solution
Increment

• For developers: To create a solution
for the work item for which they are
responsible

• For project managers: To have a
goal-based way of tracking project
status

Developer (Primary),
architect
(additional),
Analyst (additional),
Stakeholder
(additional), Tester
(additional)

Develop the
Architecture

Refine the Archi-
tecture

To make and document the architectural
decisions necessary to support develop-
ment.

Architect (Primary),
Developer
(additional), Project
Manager (additional)

Test Solution
The goal of this activity is to test and evaluate the developed requirements from a
system perspective. The flow of tasks inside this activity is reported in Fig. 33, and
the tasks are detailed in Table 11.

Ongoing Tasks
The goal of this activity is to perform ongoing tasks that are not necessarily part of
the project schedule. The flow of tasks inside this activity is reported in Fig. 34, and
the tasks are detailed in Table 12.

2.2.3 Work Products
The Elaboration phase generates thirteen work products. Their relationships with
the system metamodel elements are described in Fig. 35.

530 M. Cossentino et al.

Design

c
<<output>> Design the

Solution

Implement
Developer Tests

Run
Developer

Tests

Implement
Solution

Integrate and
Create Build

[Technical
Architecture]

a

<<input>>

[Technical
Specification]

c

[Technical
Implementation]

a

<<input>>

[Technical
Design]

c
<<input, optional>>

Developer
Test

<<output>>

[Technical
Implementatio

n]

a

[Technical
Design]

c
[Technical

Specification]

c

<<input, optional>>

<<input>> <<input>>Developer
Test

<<input,
optional>>

Implementation

c
<<output>>

Technical
Implementation

a <<input>>

Developer
Test

<<input>>

Test Log

a
<<output>>

Test Script

<<input>>

Build

c
<<output>>

[more work to do]

[typical change]

[trivial change]

[code needs
refactoring]

[code is well designed]
[test pass]

Architect

Analyst

Developer

Stakeholder

Tester

Fig. 32 The flow of tasks of the Develop Solution Increment activity

Work Product Kinds
Table 13 describes the work products of the Elaboration phase according to their
kinds.

Architecture Notebook
See section “Architecture Notebook” above.

Build
See section “Build” above.

Deployment Plan
The purpose of this work product is to capture, in one document, the unique
information that will be consumed by deployment engineers before and during
the deployment to production of a particular release package. The deployment
plan should contain the unique instructions for deploying a particular version
of a product. By “unique instructions” we mean those things that are not part

The OpenUp Process 531

Table 10 Develop solution increment—the task description

Activity Task Task description Roles involved

Develop Solu-
tion Increment

Design the Solution Identify the elements and devise the
interactions, behavior, relations, and
data necessary to realize some func-
tionality. Render the design visually
to aid in solving the problem and
communicating the solution.

Developer (Primary), Architect
(additional), Analyst (additional),
Stakeholder (additional), Tester
(additional)

Develop Solu-
tion Increment

Implement
Developer Test

Implement one or more tests that
enable the validation of the in-
dividual implementation elements
through execution.

Developer (Primary), Tester (addi-
tional)

Develop Solu-
tion Increment

Implement Solution The purpose of this task is to produce
an implementation for part of the
solution (such as a class or compon-
ent), or to fix one or more defects.
The result is typically new or modi-
fied source code, which is referred to
the implementation.

Developer (Primary), Stakeholder
(additional), Tester (additional)

Develop Solu-
tion Increment

Run Developer Tests Run tests against the individual im-
plementation elements to verify that
their internal structures work as spe-
cified.

Developer (Primary)

Develop Solu-
tion Increment

Integrate and Create
Build

This task describes how to integrate
all changes made by developers into
the code base and perform the min-
imal testing to validate the build.

Developer (Primary)

Implement Tests

Technical
Implementation

a

Tester

Analyst

<<input,optional>>

Developer

<<input>>

Run Tests

Stakeholder

Test Case

Test Script

<<input,optional>>

<<output>>

<<input>>

<<input>>

Test Log

a<<output>>

Fig. 33 The flow of tasks of the Test Solution activity

of a deployment engineer’s normal procedures. Rather, they often are specific
procedures and timing constraints that a deployment engineer should be aware of
as they are rolling out a particular release. While a draft version of the deployment
plan is typically developed by a development team, the deployment engineer is
responsible for its contents and existence. A deployment plan normally consists of
the following sections:
• The scope of the release and a general overview of the capabilities to be deployed
• The timing and dependencies for deploying components to various nodes
• The risks or issues associated with the release based on a risk assessment

532 M. Cossentino et al.

Table 11 Test solution—the task description

Activity Task Task description Roles involved

Test Solution Implement Tests To implement step-by-step Test
Scripts that demonstrate the solu-
tion satisfies the requirements.

Tester (Primary), Analyst (Ad-
ditional), Developer (Additional),
Stakeholder (Additional)

Test Solution Run Tests Run the appropriate tests scripts,
analyze results, articulate issues
and communicate test results to the
team.

Tester (Primary)

Request
Change

<<output>>

Work
Items List

a

Any Role

Fig. 34 The flow of tasks of the Ongoing Tasks activity

Table 12 Ongoing tasks—the task description

Activity Task Task description Roles involved

Ongoing Tasks Request Change Capture and record change requests. Any Role (perform)
Roles
Identification

Design Scenarios Each scenario in designed in form of
sequence diagram thus depicting the de-
tails of agents interactions

System Analyst (perform),
Domain Expert (assist)

• The customer organization, stakeholders, and end user community that will be
impacted by the release

• The person or persons who have the authority to approve the release as “ready
for production”

• The development team members responsible for delivering the release package
to the Deployment Manager, along with contact information

• The approach for transitioning the release package to the Deployment Engineer,
including appropriate communications protocols and escalation procedures

• The success criteria for this deployment; in other words, how will the Deploy-
ment Engineer know that the release is successful so it can report success

Design
See section “Design” above.

Developer Test
See section “Developer Test” above.

The OpenUp Process 533

Project Defined
Process

Elaboration
Model

Work Items
List

Work Item

D

Design
Pattern

D

Design

Participant

D

Requirement
Realization

D

Scenario

D

SubSystem

D

R
R

R

R

Component

Q

Architecture

Q

R
R

Other Files

D

Implementation

Build Script

D

Data Files

D

Folder

D Source Code
Files

D
GlossaryGlossary Term

D,Q

R

Deployment
Plan

Component

D

Deployment

D

End User

D

Feature

Q

Node

D

Release

D

R

R
R

R

Test Case

Test Case

D,Q

Build

Executable
Versione

D

File

D R

Tools

Tool

D,Q

Developer Test

Implementation
Test

D

Developer
Test

D R

Test Script
Test Script

D

Test Case

Q

Use Case

Q
R

Architecture
Notebook

Architectural
Assumption

Q,D

Architectural
Constraint

Q,D

Architectural
Decision

Q,D

Architectural
Dependency

Q,D

Architectural
Framework

Q,D

Architectural
Goal

Q,D

Architectural
Issues

Q,D

Architectural
Justification

Q,D

Architectural
Mechanism

Q,D

Architectural
Views

Q,D

Architectural
Significant Req.

Q,D

Architecture

Q,D

Analysis
Class

Q,D R

R

Code

Q
R

R

Test Log

Test Result

D

Test
Verification

D

Test Case

Q

R

Project-Specific
Guidelines

D,Q
Project-Specific

Procedure

D,Q

Report

D,Q

Role

D,QR

R, QR

R, QR

R, QR

Work Product

D,Q

R, QR

Process

D,Q

System-Wide
Requirement

Business Rules

D,Q

Interfaces to
External
Systems

D,Q

Performances

D,Q

Reliability

D,Q

Supportability

D,Q

System
Constraint

D

System
Compliance

D,Q
Documentation

D,Q

Usability
Requirement

D,Q

User Interface

D,Q

System-Wide
Requirement

D,Q

Risk ListRisk List

D,Q

Use Case
Model

Actor

Q

Use Case

Q

Use Case

Actor

D,Q

Use Case

D,Q

Evaluation
Criterion

Q

R,QR

R,QR
Iteration

Plan

Development
Strategy

D,Q

Actor

Q

R,QR

Evaluation
Results

D,Q
R,QR

Iteration

D,Q

Iteration Plan

D,Q

Iteration
Issue

D,Q

Iteration
Milestone

Q

Fig. 35 The Elaboration phase documents structure

534 M. Cossentino et al.

Table 13 Elaboration phase—work product kinds

Name Description Work product kind

Architecture Notebook See sections “Architecture Notebook” and “Work Product
Kinds”.

Build See sections “Build” and “Work Product Kinds”.
Deployment Plan A deployment plan is used to document all the information

needed by deployment engineers to deploy a release success-
fully.

Composite

Design See sections “Design” and “Work Product Kinds”.
Developer Test See sections “Developer Test” and “Work Product Kinds”.
Glossary See sections “Glossary” and “Work Product Kinds”.
Implementation See sections “Implementation” and “Work Product Kinds”.
Iteration Plan See sections “Iteration Plan” and “Work Product Kinds”.
Project Defined Process See sections “Project Defined Process” and “Work Product

Kinds”.
Project Plan See sections “Project Plan” and “Work Product Kinds”.
Risk List See sections “Risk List” and “Work Product Kinds”.
System-Wide Requirement See sections “System-Wide Requirements” and “Work

Product Kinds”.
Technical Architecture See section “Work Product Kinds”.
Technical Design This slot serves as an abstraction of high-level artifacts that

describe the realization of required system functionality, and
serves as an abstraction of the solution. Fulfilling Work
Products:
• Design

Technical Implementation This slot serves as an abstraction of high-level artifacts that
describe the realization of required system functionality, and
serves as an abstraction of the solution. Fulfilling Work
Products:
• Build
• Implementation

Technical Specification See section “Work Product Kinds”
Technical Test Results See section “Work Product Kinds”.
Test Case See sections “Test Case” and “Work Product Kinds”.
Test Log See sections “Test Log” and “Work Product Kinds”.
Test Script See sections “Test Script” and “Work Product Kinds”.
Tools See sections “Tools” and “Work Product Kinds”.
Use Case See sections “Use Case” and “Work Product Kinds”.
Use-Case Model See sections “Use Case Model” and “Work Product Kinds”.
Vision See sections “Vision” and “Work Product Kinds”.
Work Items List See sections “Work Items List” and “Work Product Kinds”.

Glossary
See section “Glossary” above.

Implementation
See section “Implementation” above.

Iteration Plan
See section “Iteration Plan” above.

Project Defined Process
See section “Project Defined Process” above.

The OpenUp Process 535

Release
The purpose of this work product is to
• Bring, at the team level, closure to a sprint/iteration or series of sprint/iterations

by delivering working, tested software that can be potentially used by the end
user community for whom the system was (or is being) developed.

• Deliver, at the program level, an integrated, value-added product increment to
customers that was developed in parallel by multiple, coordinated, and syn-
chronized development team members A release consists of integrated, compiled
code that runs cleanly, independently, and in its entirety. This is an important
rule because in order to be released or even “potentially shippable,” a release
increment must be able to stand on its own, otherwise it is not shippable. Releases
can be created at either the program or team level.
There are three potential uses for a release:

• It is not used outside of the program: It has been produced to minimize risks
linked to technology and a program’s capability to integrate components and to
produce a Build. This situation usually happens at the beginning of a new product
lifecycle.

• It is used by beta customers and the program manager: It allows end users to test it
in a Beta test environment, which provides immediate feedback and reduces risks
associated with user interface ergonomics. customer feedback will influence the
program backlog for later consideration.

• It is deployed or shipped and used by end users: This result provides immediate
value to the end users.

In many organizations, a program release typically is timeboxed to 2–3 months of
development effort and 2–4 weeks of hardening which results in a scheduled release
approximately every 90 days. Releases for individual development teams usually
occur more often than those for programs, but there are no hard and fast rules
regarding how often releases should be scheduled. The only requirement is that
working software should be delivered “frequently” by both development teams and
programs. Although the example timeframe described above is arbitrary, empirical
evidence suggests it is about right for most companies and fits nicely into quarterly
planning cycles. Each release has a set of release objectives and a projected delivery
date; it also has a planned number of sprint/iterations.

Release Communications
The purpose of this work product is to inform all the various stakeholders that
a release to production has taken place and the implemented features are now
generally available. Sometimes, depending on the product user base, separate
communiques might need to be prepared for each stakeholder group. In that case,
this artifact should specify the different groups to which communications are
directed, the method of communication (e.g., email, text or pager message, bulletin,
newsletter, phone message, etc.). All communiques should be prepared in advance
so that it is a matter of disseminating information when the release to production
has been determined to be successful. Also included in this artifact is a listing of

536 M. Cossentino et al.

the responsible parties who will execute the communications when a successful
release has been declared (normally the Deployment Engineer), as well as the timing
and dependencies of the communiques. While there is no prescribed format for the
release communications artifact, each communique should indicate the preferred
delivery mechanisms (e.g., beeper notification, telephone calls, a posting to an
internal release website, live or pre-recorded presentations by senior management,
etc.) and generally answer the following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release to

production has taken place?
• What specifically (features, functions, components) has been placed into produc-

tion?
• Why is this release valuable to stakeholders and what business purpose does it

serve?
• Where is the product available (on which platforms, geographical locations,

business units, etc.)?
• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date is

in the future)?

Risk List
See section “Risk List” above.

System Wide Requirements
See section “System-Wide Requirements” above.

Test Case
See section “Test Case” above.

Test Log
See section “Test Log” above.

Test Script
See section “Test Script” above.

Tools
See section “Tools” above.

Use Case
See section “Use Case” above.

Use-Case Model
See section “Use Case Model” above.

Vision
See section “Vision” above.

The OpenUp Process 537

Initial Operational
Capability Milestone

Construction
Iteration [1..n]

Fig. 36 The construction iteration inside the construction phase

Develop
Product

Documentation
and Training

Test
Solution

Identify and
Refine

Requirements

Plan and
Manage
Iteration

Ongoing
Tasks

Develop
Solution

Increment

Fig. 37 The construction phase flow of activities

Work Items List
See section “Work Items List” above.

2.3 The Construction Phase

The Construction phase is composed by the Construction iteration as described in
Fig. 36. The process flow within the iteration is detailed in Fig. 37.

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Construction phase involves eight differ-
ent process roles, five work products (four UML models and four text documents)
and four guidance documents (one for each UML model) as described in Fig. 38.
The phase is composed of six activities (i.e., Plan and Manage Iteration, Identify and
Refine Requirements, Develop Solution Increment, Test Solution, Ongoing Tasks,
Develop Product Documentation and Training), each of them composed of one or
more tasks. Details of new activities are reported below (Figs. 39 and 40).

The description of the Identify and Refine Requirements activity in terms of
tasks, roles, and work products is reported in Fig. 14.

The description of the Develop Solution Increment activity in terms of tasks,
roles, and work products is reported in Fig. 27.

The description of the Test Solution activity in terms of tasks, roles, and work
products is reported in Fig. 28. The description of the Ongoing Tasks activity in
terms of tasks, roles, and work products is reported in Fig. 29.

538 M. Cossentino et al.

Develop Solution
Increment

Test
Solution

Identify and
Refine

Requirements

Develop Product
Documentation and

Training

Plan and Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterDeployment
Engineer

Work Items
List

a

Iteration
Plan

a

ToolsProject Defined
Process

c

Deployment
Plan

c

Risk ListUser
Documentation

a
Product

DocumentationSupport
Documentation

a
Training
Materials

c

Developer Product
Owner

Technical
Writer

Course
Developer

StakeholderDeveloper TesterAnalyst Architect

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Test Case

c

Glossary System-Wide
Requirements

a

Use Case
ModelUse Case Work Items

List

a

Developer Architect Analyst Stakeholder Tester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Any Role

Work
Items
List

a

Fig. 38 The Construction phase described in terms of activities, output work products and
involved stakeholders

2.3.1 Process Roles
Ten roles are involved in the Construction phase, which are described in the
following subsections.

Analyst
She/he is responsible for the following tasks:
1. Detail System-Wide Requirements
2. Detail Use-Case Scenarios
3. Identify and Outline Requirements

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases

The OpenUp Process 539

<<output>>

<<input>>

<<input>>

Plan and
Manage
Iteration

Plan
Iteration

Prepare
Environment

Manage
Iteration

Assess
Results

Analyst Architect

Project
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

<<input>>

<<input,
optional>>

<<output>>

Analyst ArchitectProject
Manager Stakeholder Developer Tester

<<performs,
primary>>

<<performs, assist>>

Analyst ArchitectProject
Manager

Stakeholder Developer Tester

<<performs, primary>>
<<performs, assist>>

Outline
Deployment

Plan

DeveloperDeployment
Engineer

<<performs,
primary>>

<<performs,
assist>>

Deployment
Plan

c<<output>>

Iteration
Plan

a
Work
Items
List

a

Iteration
Plan

a

Work
Items
List

a

Work Items
List

a

Risk List

Risk List

Risk List

[Technical
Architecture]

c

[Technical
Specification]

c

Work Items
List

aRisk List

Iteration
Plan

a

Iteration
Plan

a

[Project
Definition and

Scope]

a

Iteration
Plan

a

Work
Items
List

a
<<output>>

<<input>>

Iteration
Plan

a

Work
Items
List

a

[Project
Definition and

Scope]

a

[Technical
Specification]

c

[Technical
Text Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

<<output>>

ToolsProject Defined
Process

c

Fig. 39 The Plan and Manage Iteration activity described in terms of tasks, roles, and work
products

3. Design the Solution
4. Implement Tests
5. Manage Iteration
6. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he is responsible for the following task:
1. Refine the Architecture

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution

540 M. Cossentino et al.

Develop Product
Documentation

and Training

Develop User
Documentation

Develop Product
Documentation

Develop Training
Materials

Technical
Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer Product
Owner

Technical
Writer

<<performs,
primary>> <<performs, assist>>

<<output>>

Course
Developer

<<performs, primary>>

Develop
Support

Documentation

Technical
Writer
<<performs,
primary>>

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

User
Documentation

a
<<input,

optional>>

Product
Documentation

Support
Documentation

a<<input,
optional>>

Product
Documentation

User
Documentation

a

Product
Documentation

Training
Materials

c

Fig. 40 The Develop Product Documentation and Training activity described in terms of tasks,
roles, and work products

3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Manage Iteration
7. Plan Iteration

Course Developer
She/he is responsible for the following tasks:
1. Develop Training Materials

Deployment Engineer
She/he is responsible for the following task:
1. Plan deployment

Developer
She/he is responsible for the following tasks:

The OpenUp Process 541

1. Design the Solution
2. Implement Developer Tests
3. Implement Solution
4. Integrate and Create Build
5. Run Developer Tests

She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Develop Product Documentation
6. Identify and Outline Requirements
7. Implement Tests
8. Manage Iteration
9. Outline Deployment Plan

10. Plan Iteration

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the process
2. Taylor the process

Product Owner
She/he assists in the following task:
1. Develop Product Documentation

Project Manager
She/he is responsible for the following task:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Create Test Cases
3. Design the Solution
4. Detail System-Wide Requirements
5. Detail Use-Case Scenarios
6. Identify and Outline Requirements
7. Implement Solution
8. Implement Tests
9. Manage Iteration

10. Plan Iteration

542 M. Cossentino et al.

Technical Writer
She/he is responsible for the following task:
1. Develop Product Documentation
2. Develop Support Documentation
3. Develop User Documentation

Tester
She/he is responsible for the following tasks:
1. Create Test Cases
2. Implement Tests
3. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Detail System-Wide Requirements
4. Detail Use-Case Scenarios
5. Identify and Outline Requirements
6. Implement Developer Tests
7. Implement Solution
8. Manage Iteration
9. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

2.3.2 Activity Details
The Construction phase includes six activities, which are described in the following
subsections.

Plan and Manage Iteration
This activity is performed throughout the project lifecycle. The goal of this activity
is to identify risks and issues early enough that they can be mitigated, to establish
the goals for the iteration, and to support the development team in reaching these
goals. The project manager and the team launch the iteration. The prioritization
of work for a given iteration takes place. The project manager, stakeholders, and
team members agree on what is supposed to be developed during that iteration.
Team members sign up for the work items they will develop in that iteration. Each
team member breaks down the work items into development tasks and estimates the
effort. This provides a more accurate estimate of the amount of time that will be
spent, and of what can be realistically achieved, in a given iteration. As the iteration
runs, the team meets regularly to report status of work completed, the work to
do next, and issues blocking the progress. In some projects, this status checking
occurs in daily meetings, which allows for a more precise understanding of how

The OpenUp Process 543

<<output>> <<output>>

<<input>>

<<input>>

<<input, optional>>
<<output>>

Plan Iteration Prepare
Environment

Manage
Iteration

Assess
Results

Analyst

Architect

Project
Manager

Stakeholder

Developer

Tester

<<input>>

Work Items
List

a

Iteration
Plan

a

Work
Items List

a

Iteration
Plan

a

<<output>>

Work
Items List

a
Iteration

Plan

a

[Project
Definition and

Scope]

a

<<input>>

<<input>>

<<input,
optional>>

<<input, optional>>

[Technical
Test Results]

a

<<input,
optional>>

ToolsProject Defined
Process

c

ToolsProject Defined
Process

c

Risk
List

Risk List

Risk List

Plan
Deployment

Deployment
Engineer

Deployment
Plan

c

<<output>>

[Technical
Architecture]

c
[Technical

Specification]

c

Iteration
Plan

a

Work Items
List

a
<<output>>

Fig. 41 The flow of tasks of the Plan and Manage Iteration activity

Table 14 Plan and manage iteration—the task description

Activity Task Task description Roles involved

Plan and Man-
age Iteration

Plan Iteration The purpose of this task is to identify the
next increment of system capability, and
create a fine-grained plan for achieving
that capability within a single iteration.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

Plan and Man-
age Iteration

Manage Iteration Help the team meet the iteration ob-
jectives and keep the project on track.
Manage stakeholders’ expectations as
technical and practical discoveries are
made during the project.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist). (perform), Domain
Expert (assist)

Plan and Man-
age Iteration

Plan Deployment If a deployment plan for the project
already exists, update it to reflect the
nature of this release. If this document
does not exist, develop a deployment
plan to indicate how this release will be
rolled out to the production environment.

Deployment Engineer (per-
form), Developer (assist).

Plan and Man-
age Iteration

Assess Results Demonstrate the value of the solution
increment that was built during the it-
eration and apply the lessons learned to
modify the project or improve the pro-
cess.

Project Manager (perform),
Analyst (assist), Architect
(assist), Developer (assist),
Stakeholder (assist), Tester
(assist).

the work in an iteration is progressing. As necessary, the team makes corrections to
achieve what was planned. The overall idea is that risks and issues are identified and
managed throughout the iteration, and everyone knows the project status in a timely
manner. During iteration assessments, the key success criterion is the demonstration
that planned functionality has been implemented. Lessons learned are captured in
order to modify the project or improve the process. If the iteration end coincides
with the phase end, make sure the objectives for that phase have been met. The
flow of tasks inside this activity is reported in Fig. 41, and the tasks are detailed
in Table 14.

544 M. Cossentino et al.

Develop User
Documentation

Develop Product
Documentation

Develop Training
Materials

<<input,
optional>>

<<output>>

Developer

Product
Owner

Technical
Writer

<<output>>

Course
Developer

Develop Support
Documentation

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

Training
Materials

c

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

<<input,
optional>>

Fig. 42 The flow of tasks of the Develop Product Documentation and Training activity

Prepare Environment
See section “Prepare Environment” above.

Identify and Refine Requirements
See section “Identify and Refine Requirements” above.

Develop Solution Increment
See section “Develop Solution Increment” above.

Test Solution
See section “Test Solution” above.

Ongoing Tasks
See section “Ongoing Tasks” above.

Develop Product Documentation and Training
The goal of this activity is to prepare product documentation and training materials.
The flow of tasks inside this activity is reported in Fig. 42, and the tasks are detailed
in Table 15.

2.3.3 Work Products
The Construction phase generates four work products. Their relationships with the
system meta-model elements are described in Fig. 43.

WorkProduct Kinds
Table 16 describes the work products of the Construction phase according to their
kinds.

The OpenUp Process 545

Table 15 Develop product documentation and training—the task description

Activity Task Task Description Roles Involved

Develop Product
Documentation
and Training

Develop
Product Docu-
mentation

The purpose of this task is to document
enough information about the features
that were developed in a particular re-
lease to be useful to customers through-
out the life of the product.

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Develop Product
Documentation
and Training

Develop User
Documenta-
tion

The purpose of this task is to provide
useful information to end users of the
product being released into production.t.

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Develop Product
Documentation
and Training

Develop
Support Docu-
mentation

The purpose of this task is to ensure
that the personnel who are tasked with
supporting the system have enough in-
formation about the product to perform
their jobs effectively after the product
has been placed into production.

Technical Writer (perform)

Develop Product
Documentation
and Training

Develop train-
ing Materials

The purpose of this task is to enable
adoption of the product and to encourage
its proper use.

Course Developer (perform)

Product Documentation
Product documentation is created for the benefit of the marketing arm of an
organization, the program manager, and those people who must assess the business
value of a particular system. This is an often overlooked aspect of development team
implementation. The team should consider that the customers of a particular release
usually are not technical themselves, but do require a detailed enough understanding
of how their product operates and how it meets stated business goals and needs

User Documentation
User documentation might include all or parts of user manuals (electronic or paper-
based), tutorials, frequently asked questions (FAQs), on-line Help Files, installation
instructions, work instructions, operational procedures, etc.

Support Documentation
Support documentation usually is developed for the three common tiers of a support
organization. Tier 1 typically is the Help Desk where users call when they have a
problem with a particular system. Tier 1 support personnel normally answer basic
questions and, if necessary, log a ticket and escalate it to the appropriate Level 2
support desk.

Tier 2 support personnel may deal with more complex questions or issues
regarding an application and might need to do some research on the characteristics
of the system to provide an answer. If that person cannot resolve the issue, the ticket
is escalated to Tier 3 support personnel who have a deeper understanding of the
application’s code and the technology support the system’s architecture.

To properly convey the necessary information to each support tier, the applica-
tion’s code base should be well commented and logically organized. This approach
will facilitate the development of the support documentation. Support documenta-
tion typically includes

546 M. Cossentino et al.

Work Items
List

a

Tools

Deployment
Plan

c

User
Documentation

a

Product
Documentation

Support
Documentation

a
Training
Materials

c

Test
Script

Test Log

a

Developer
Test

Design

c

Implementation

c

Build

c

Construction
Model

Support
Documentation

D

Training
Material

Q

Comunique

Q

User
Documentation

Q

R

R

R

Product
Documentation

D

User
Documentation

D

Support
Documentation

Q Training
Material

D

R

Risk List

Risk
List

D,Q

Component

D,Q

Deployment

D,QEnd
User

D,Q
Feature

Q

Node

D,Q
Release

D,Q

R,RQ

R,RQ
R,
RQ

R,Q

Project
Defined
Process

c
Process

Project-
Specific

Guidelines

D,Q
Project-
Specific

Procedure

D,Q
Report

D,Q

Role

D,QR

R, QR

R, QR

R, QR
Work

Product

D,Q

R, QR D,Q

Build Script

D,Q

Data
Files

D,Q

Folder

D,Q

Other
Files

-

Source
Code Files

D,Q

Work Item

D,Q

Test Script

D,Q
Test Case

Q

R,Q

Use Case

QR,Q

Executable
Version

D,Q

File

D,Q
R,Q

Test Result

D,Q

Test
Verification

D,Q

Test Case

Q

R

R,Q

Tool

D,Q

Iteration
Plan

a

Development
Strategy

D,Q

Actor

Q

R,QR
Evaluation

Results

D,Q

Evaluation
Criterion

Q
R,QR

Iteration

D,Q

Iteration Plan

D,QR,QR

Iteration
Issue

D,Q

R,QR

Iteration
Milestone

Q

Implementation
Test

D,Q

Developer
Test

D,Q R,Q

Participant

D,Q

Requirement
Realization

D,Q

Scenario

D,Q

SubSystem

D,Q
R,Q

R,Q

R,Q

R,Q

Component

Q

Architecture

Q

R,QR,Q

Fig. 43 The Construction phase documents structure

• User manuals with work instructions, process descriptions, and procedures
• Communications, training, and knowledge transfer deliverables
• Support and operations manuals
• Service information, including Help Desk scripts

Training Materials
Training materials that can be used to train end users and production support
personnel might consist of
• Presentation slides
• Handouts
• Job aids
• Tutorials

The OpenUp Process 547

Table 16 Construction phase—work product kinds

Name Description Work product kind

Architecture Notebook See sections “Architecture Notebook” and “Work Product
Kinds”.

Build See sections “Build” and “Work Product Kinds”.
Deployment Plan See sections “Deployment Plan” and “WorkProduct Kinds”. Composite
Design See sections “Design” and “Work Product Kinds”.
Developer Test See sections “Developer Test” and “Work Product Kinds”.
Glossary See sections “Glossary” and “Work Product Kinds”.
Implementation See sections “Implementation” and “Work Product Kinds”.
Iteration Plan See sections “Iteration Plan” and “Work Product Kinds”.
Product Documentation Information about a specific product that has been captured

in an organized format.
Structured

Project Defined Process See sections “Project Defined Process” and “Work Product
Kinds”.

Project Plan See sections “Project Plan” and “Work Product Kinds”.
Risk List See sections “Risk List” and “Work Product Kinds”.
Support Documentation Documents used by members of a production support team

that provide information about how to service and support a
specific product.

Free Text

System-Wide Requirement See sections “System-Wide Requirements” and “Work
Product Kinds”.

Test Case See sections “Test Case” and “Work Product Kinds”.
Test Log See sections “Test Log” and “Work Product Kinds”.
Test Script See sections “Test Script” and “Work Product Kinds”.
Tools See sections “Tools” and “Work Product Kinds”.
Training Materials This work product represents all the materials needed to train

end users and production support personnel on the features
and inner workings of a product for a particular release.

Composite.

Use Case See sections “Use Case” and “Work Product Kinds”.
Use-Case Model See sections “Use Case Model” and “Work Product Kinds”.
User Documentation Documents that can be utilized by the end users of a

particular system or product. This type of documentation
typically is written in a way that enables system users to
easily find information they need to use the product.

Free Text.

Vision See sections “Vision” and “Work Product Kinds”.
Work Items List See sections “Work Items List” and “Work Product Kinds”.

• On-line demos
• Video vignettes
• Lab exercises
• Quizzes
• Workshop materials, etc.

2.4 The Transition Phase

The Transition phase is composed by the Inception iteration as described in Fig. 44.
The process flow within the iteration is detailed in Fig. 45.

548 M. Cossentino et al.

Product Release
Milestone

Transition
Iteration [1..n]

Fig. 44 The Transition iteration inside the Transition phase

Finalize Product
Documentation

and Training

Test
Solution

Prepare for
Release

Plan and
Manage
Iteration

Ongoing
Tasks

Develop Solution
Increment

Deploy Release
to Production

Provide Product
Training

Fig. 45 The Transition phase flow of activities

The workflow inside each activity will be detailed in the following subsections
(after the description of process roles). The Transition phase involves thirteen
different process roles, seventeen work products as described in Fig. 46.

The phase is composed of eight activities each of them composed of one or
more tasks as described in the following. Activities are Plan and Manage Iteration,
Develop Solution Increment, Test Solution, Finalize Product Documentation and
Training, Prepare for Release, Package the Release, Ongoing Tasks, Provide Product
Training. The description of the Plan and Manage Iteration activity, Develop
Solution Increment activity and Test Solution activity in terms of tasks, roles, and
work products can be found respectively in Figs. 12, 27, and 28.

Details of new activities are reported in Figs. 47, 48, 49, and 50.

2.4.1 Process Roles
Analyst
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution

The OpenUp Process 549

Deploy Release
to Production

Test
Solution

Plan and
Manage
Iteration

Ongoing
Tasks

Analyst ArchitectProject
Manager

Stakeholder Developer TesterTool
Specialist

Work Items
List

a

Iteration
Plan

a

ToolsProject Defined
Process

c

Risk
List

TesterAnalystDeveloper Stakeholder

Test ScriptTest Log

a

Developer Deployment
Engineer

Product
Owner

Any Role Work
Items List

a

Develop Solution
Increment

Developer Architect Analyst StakeholderTester

Developer
Test Design

c

Implementation

c

Test Log

a

Build

c

Finalize Product
Documentation

and Training

User
Documentation

a

Product
Documentation

Support
Documentation

a

Training
Materials

c

Developer Product
Owner

Technical
Writer

Course
Developer

Prepare for
Release

Infrastructure

a
Backout

Plan

a

DeveloperDeployment
Engineer

Release
Communications

a

Provide Product
Training

Trainer

Release

c
<<Predecessor>> <<Predecessor>>

<<Predecessor>>
<<Predecessor>>

<<Predecessor>> <<Predecessor>>

<<Predecessor>><<Predecessor>>

Fig. 46 The Transition phase described in terms of activities, output work products and involved

3. Implement Tests
4. Manage Iteration
5. Plan Iteration

Any Role
She/he is responsible for the following tasks:
1. Request Change

Architect
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Manage Iteration
4. Plan Iteration

550 M. Cossentino et al.

<<performs, assist>>

Finalize Product
Documentation

and Training

Develop User
Documentation

Develop Product
Documentation

Develop
Training
Materials

Technical Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer Product
OwnerTechnical Writer

<<performs,
primary>>

<<output>>

Course
Developer

<<performs, primary>>

Develop Support
Documentation

Technical Writer

<<performs,
primary>>

<<output>>

User
Documentation

a

Product
Documentation

<<output>>

Support
Documentation

a

User
Documentation

a

<<input,
optional>>

Product
Documentation

Support
Documentation

a<<input,
optional>>

Product
Documentation

User
Documentation

a

Product
Documentation

Training Materials

c

Fig. 47 The Finalize Product Documentation and Training activity described in terms of tasks,
roles, and work products

Course Developer
She/he is responsible for the following tasks:
1. Develop Training Materials

Deployment Engineer
She/he is responsible for the following tasks:
1. Deliver Release Communications
2. Develop Release Communications
3. Execute Backout Plan (if necessary)
4. Execute Deployment Plan
5. Install and Validate Infrastructure
6. Verify Successful Deployment
7. Develop Backout Plan

She/he assists in the following tasks:
1. Package the Release

Developer
She/he is responsible for the following tasks:
1. Design the Solution
2. Develop Backout Plan

The OpenUp Process 551

Prepare for
Release

Develop
Backout

Plan

Review and
Conform to

Release
Controls

Develop Release
Communications

Technical
Writer

<<performs,
primary>>

<<input,
optional>>

<<output>>

Developer

<<performs,
primary>>

<<input>>

<<performs,
primary>>

Install and
Validate

Infrastructure

Deployment
Engineer

<<performs,
primary>>

<<output>>

Release
Controls

<<output>>

<<input,
optional>>

Infrastructure

a
<<input,

optional>>

Developer

<<performs,
primary>>

Deployment
Plan

c

Release
Controls

<<input>>

Deployment
Plan

c

Backout Plan
Deployment

Engineer

Deployment
Plan

c

Release
Controls

Release
Communications

a
<<input>>

Fig. 48 The Prepare for Release activity described in terms of tasks, roles, and work products

<<input,
optional>>

Provide Product
Training

Deliver End User
Training

Deliver Support
Training

Trainer

<<performs,
primary>>

<<performs, primary>>

Trainer

User
Documentation

Product
Documentation

Training Materials

<<input>>

<<input>>

<<input,
optional>>

User
Documentation

Product
Documentation

Training Materials

<<input>>

<<input>>

Fig. 49 The Provide Product Training activity described in terms of tasks, roles, and work
products

3. Implement Developer Tests
4. Implement Solution
5. Install and Validate Infrastructure
6. Integrate and Create Build
7. Package the Release
8. Review and Conform to Release Controls
9. Run Developer Tests

552 M. Cossentino et al.

<<performs,
assist>>

<<input>>
<<output>>

Deploy Release
to Production

Verify
Successful
Deployment

Package the
Release

Execute
Backout Plan

Deployment
Engineer

<<performs,
primary>>

<<input,
optional>>

Developer

<<performs,
primary>>

<<input>>

<<performs,
primary>>

Execute
Deployment

Plan

Deployment
Engineer

<<performs,
primary>>

Release
Controls

Infrastructur
e

a

<<input,
optional>>

Developer

<<performs,
assist>>

Deployment
Plan

c
Release
Controls

<<input>>

Deployment
Plan

c

Deployment
Engineer

<<input>>

Release

c

Deployment
Engineer

<<performs,
assist>>

Deployment
Plan

c
Release

c

Developer
Product
Owner

<<performs,
assist>>

Release

c <<input>>

Developer

<<performs,
assist>>

Backout
Plan

Release

c <<input>>

Deliver Release
Communications

<<performs,
primary>>

Deployment
Engineer

Release
Communications

a
<<input>>

Developer

<<performs,
assist>>

Release

c <<input,
optional>>

Fig. 50 The Deploy Release to Production activity described in terms of tasks, roles, and work
products

She/he assists in the following tasks:
1. Assess Results
2. Deliver Release Communications
3. Develop Product Documentation
4. Execute Backout Plan (if necessary)
5. Execute Deployment Plan
6. Implement Tests
7. Manage Iteration
8. Outline Deployment Plan
9. Plan Iteration

10. Verify Successful Deployment

Process Engineer
She/he is responsible for the following tasks:
1. Deploy the Process
2. Tailor the Process

Product Owner
She/he assists in the following tasks:
1. Develop Product Documentation
2. Verify Successful Deployment

The OpenUp Process 553

Project Manager
She/he is responsible for the following tasks:
1. Assess Results
2. Manage Iteration
3. Plan Iteration

Stakeholder
She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Implement Solution
4. Implement Tests
5. Manage Iteration
6. Plan Iteration

Technical Writer
She/he is responsible for the following tasks:
1. Develop Product Documentation
2. Develop Support Documentation
3. Develop User Documentation

Tester
She/he is responsible for the following tasks:
1. Implement Tests
2. Run Tests

She/he assists in the following tasks:
1. Assess Results
2. Design the Solution
3. Implement Developer Tests
4. Implement Solution
5. Manage Iteration
6. Plan Iteration

Tool Specialist
She/he is responsible for the following tasks:
1. Set Up Tools
2. Verify Tool Configuration and Installation

Trainer
She/he is responsible for the following tasks:
1. Deliver End User Training
2. Deliver Support Training

2.4.2 Activity Details
The Transition phase includes eight activities, which are described in the following
subsections.

554 M. Cossentino et al.

<<input, optional>>

Developer

Product
Owner

Technical
Writer

Course
Developer

Develop Product
Documentation

<<output>>

Product
Documentation

Develop User
Documentation

<<input,
optional>>

<<output>>

User
Documentation

a

Product
Documentation

Develop Support
Documentation

<<output>>

Support
Documentation

a

<<input,
optional>>

Product
Documentation

User
Documentation

a

Develop Training
Materials

<<output>>

Support
Documentation

a

User
Documentation

a

Product
Documentation

Training
Materials

c

Fig. 51 The flow of tasks of the Finalize Product Documentation and Training activity

Plan and Manage Iteration
See section “Plan and Manage Iteration” above.

Develop Solution Increment
See section “Develop Solution Increment” above.

Test Solution
See section “Test Solution” above.

Finalize Product Documentation
This activity prepares product documentation and training materials. The flow of
tasks inside this activity is reported in Fig. 51, and the tasks are detailed in Table 17.

Prepare for Release
This activity prepares product documentation and training materials. The flow of
tasks inside this activity is reported in Fig. 52, and the tasks are detailed in Table 18.

Provide Product Training
This activity provides product training. The flow of tasks inside this activity is
reported in Fig. 53, and the tasks are detailed in Table 19.

Ongoing Tasks
See section “Ongoing Tasks” above.

Deploy Release to Production
This activity results in the release of a set of integrated components into the
production environment. The flow of tasks inside this activity is reported in Fig. 54,
and the tasks are detailed in Table 20.

The OpenUp Process 555

Table 17 Finalize product documentation and training—the task description

Activity Task Task description Roles involved

Finalize
Product
Documentation

Develop
Product
Documentation

Development team members sometimes take doc-
umentation for granted, or do not give it enough
consideration. However, after a product is delivered,
customers who pay for the system and for support
often do not have enough information to effectively
manage the product. If a technical writer is made
available to a development team, that role often
takes the burden off the team for developing the
formal product documentation and for ensuring that
it is in the correct format and business language. If
a technical writer is not available, the development
team and product owner must make every effort to
create enough documentation to ensure that the fea-
tures that have been developed for each release are
understood and can be communicated effectively by
the paying customer to their stakeholders. Deliv-
ering a professionally developed product requires
that a development team provide the customer
with accurate, detailed, and comprehensive product
documentation. This task includes the following
steps:
1. Identify features of current release
2. Document each feature
3. Review product documentation with stakehold-

ers
4. Update product documentation as necessary
5. Deliver product documentation

Technical Writer (perform),
Developer (assist), Product
Owner (assist).

Finalize
Product
Documentation

Develop User
Documentation

User documentation might include all or parts of
user manuals (electronic or paper-based), tutorials,
frequently asked questions (FAQs), on-line Help
Files, installation instructions, operational proced-
ures, etc. User documentation often is used as the
basis for training materials - if the documentation
is of poor quality, the training materials might not
be any better. Without good user documentation,
a system might be well developed by a devel-
opment team but might not meet the End User’s
expectations because they will not be able operate
the application effectively. This task includes the
following steps:
1. Determine user documentation contents
2. Leverage product documentation
3. Leverage other materials
4. Write user documentation content
5. Perform quality review
6. Deliver user documentation

Technical Writer (perform)

Finalize
Product
Documentation

Develop
Support
Documentation

Support documentation often is the most over-
looked aspect of a documentation effort. Anyone
who has had the opportunity to provide end user
support for a particular application can appreciate
how important effective, well-written support doc-
umentation can be. This documentation very often
is technical in nature and differs significantly from
user or product documentation, which normally is
written for the lay person. The development team
should do its best to make sure that personnel who
perform an IT support role have the right amount
and the relevant type of information necessary to
support the application, whether they provide Tier
1, Tier 2, or Tier 3 support. Support documentation
often is developed based on these three different
support categories. How effectively the code base

Technical Writer (perform)

(continued)

556 M. Cossentino et al.

Table 17 (continued)

Activity Task Task description Roles involved

is commented and the ease with which those com-
ments are found and understood contributes to the
quality and quantity of support documentation. This
task includes the following steps:
1. Determine support documentation contents
2. Leverage available materials
3. Write support documentation
4. Perform quality review
5. Deliver support documentation

Finalize
Product
Documentation

Develop
Training
Materials

Having the correct amount and type of materials
available to adequately train end users and support-
ers of an application is necessary to promote usab-
ility and to achieve the desired business value. If a
course developer is available, they can assume most
of the burden of creating the training materials,
lab exercises, and workshops for delivery of those
courses to either end users or support personnel.
If a course developer is not available, development
team members should take the time to properly
develop a suite of training materials for the feature
set developed during a release. Although different
parts of training materials should be created during
feature development sprint/iterations, the bulk of
the work (and the integration of the materials)
usually is reserved for the release sprint/iteration
that occurs immediately before a scheduled release.
This task includes the following steps:
1. Determine scope of training materials
2. Develop user training materials
3. Develop support training materials
4. Perform quality review
5. Perform dry run
6. Deliver training materials

Course Developer
(perform)

Develop Backout
Plan

Review and
Conform to

Release Controls

Develop Release
Communications

<<input,
optional>>

<<output>>

<<input>>

Install and Validate
Infrastructure

<<output>>

Release
Controls

<<output>>

<<input,
optional>>

Infrastructure

a

<<input,
optional>>

Deployment Plan

c

Release
Controls

<<input>>

Deployment Plan

c

Backout Plan

Deployment Plan

c

Release
Controls

Release
Communications

a

<<input>>Developer

Deployment
Engineer

Technical Writer

Fig. 52 The flow of tasks of the Prepare for Release activity

2.4.3 Work Products
The Transition phase generates nine work products. Their relationships with the
system meta-model elements are described in Fig. 55.

The OpenUp Process 557

Table 18 Prepare for release—the task description

Activity Task Task description Roles involved

Prepare for Release Review and Con-
form to Release
Controls

Release controls describe the minimum number of
requirements that a software package must adhere
to before being released into production. This is
especially important if a development team is new
or emerging, because they might not be aware of the
great responsibilities a deployment manager has. In
fact, a deployment manager is responsible to senior
management for ensuring that nothing is placed
into production that does not conform to the rigid
controls designed to protect the IT organization’s
ability to successfully deliver IT services to internal
and external customers. Release controls typically
consist of
• Release or deployment plan
• Backout plan
• Release component definitions
• Release package integrity verification
• References to configuration items (CIs)
• Customer approval
• Ready for transfer to operations and support

staff
This task includes the following steps:
1. Locate release controls
2. Review release controls
3. Ensure the team release conforms to the controls

Technical Writer
(perform),
Developer
(perform)

Prepare for Release Install and Valid-
ate Infrastructure

A release package cannot be deployed to production
if the environmental infrastructure within which the
release will be run is not sufficiently built or tested.
Whether the release is deployed as a “push” (where
the application is deployed from a central point
and proactively delivered to target locations) or a
“pull” (where the application is made available at
central point and pulled by a user at a time of their
choosing), the infrastructure needed to support the
application must be considered and implemented.
Some key aspects of installing and/or validating the
desired infrastructure:
• Identify the requirements and components of

the environment configuration
• Determine the lead times required to establish

the infrastructure environments
• Procure and install the infrastructure compon-

ents that are not yet available
• Test the newly installed infrastructure compon-

ents
• Test the integration of newly installed compon-

ents with the rest of the environmental configur-
ation

• Validate other aspects of the infrastructure in-
cluding
– Security components and their integration
– Database connectivity and security
– License management, as appropriate
– Configuration management, in terms of con-

figuration items (CIs)
This task includes the following steps:
1. Identify infrastructure needs
2. Procure components
3. Schedule components for installation
4. Install and test components
5. Validate other component aspects

Deployment
Engineer,
Developer
(perform)

(continued)

558 M. Cossentino et al.

Table 18 (continued)

Activity Task Task description Roles involved

Prepare for Release Develop
Backout Plan

A rollback might be needed for a variety of reasons,
including corruption of the production code base,
inoperable components, an unplanned undesirable
effect of the release on other production systems,
an unhappy customer, etc. The Development team
should provide the production support organization
with a specific plan and decision criteria made
available to them to avoid or minimize service inter-
ruptions. This task includes the following steps:
1. Determine if backout plan exists
2. Develop the backout plan (if applicable)
3. Update the backout plan (if applicable)

Developer
(perform),
Deployment
Engineer (assist)

Prepare for Release Develop Release
Communications

When a release is pushed to production, all the
stakeholders of that product should be notified that
the event has happened and what the release means
to each of the stakeholders. Often, the output of this
task does not need to be created from scratch; for
products that plan multiple releases, just updating
the communique details for each release might be
enough. However, if any of the stakeholder groups
change, or there is a significant difference in the
product distribution, more significant content might
need to be developed. A development team can
develop high quality software, but if messaging
to the stakeholders is conducted poorly or not at
all, the end user experience might be degraded.
By simply answering the questions “who, what,
when, where, why, and how” in a format appropriate
for each stakeholder group, a product release can
become a more satisfying experience for all those
involved. This task includes the following steps:
1. Identify stakeholders for this release
2. Draft communique for each stakeholder group
3. Provide communiques to deployment manager

Deployment En-
gineer (perform)

<<input>><<input,
optional>>

Deliver End User
Training

Deliver Support
Training

User
DocumentationProduct

Documentation
Training
Materials

<<input,
optional>>

User
Documentation

Product
Documentation

Training
Materials

<<input>>

Trainer

Fig. 53 The flow of tasks of the Provide Product Training activity

WorkProduct Kinds
Table 21 describes the work products of the Construction phase according to their
kinds.

The OpenUp Process 559

Table 19 Provide product training—the task description

Activity Task Task description Roles involved

Provide Product
Training

Deliver end user
Training

Often, a trainer will deliver training to end users;
rarely will the development team deliver training
because they are busy developing additional fea-
tures for this or other systems. If a trainer is not
available, the product owner might have to train
the end users. End user training usually consists
of presentation slides, job aids, hands-on labs and
exercises, or workshops that integrate these meth-
ods into an environment that the end users can
understand and relate to. This task includes the
following steps:
1. Validate user training logistics
2. Prepare for user training delivery
3. Deliver user training and gather feedback
4. Provide feedback to the program level

Technical Writer
(perform)

Provide Product
Training

Deliver Support
Training

Because a release ultimately will have to be sup-
ported by Help Desk or other technical personnel,
a set of training materials designed to convey key
concepts to those individuals must be developed
and delivered by the development team or by a
technically oriented trainer. Delivery of this train-
ing might include presentation slides, job aids, lab
exercises, or workshops designed to provide real-
world scenarios to accelerate learning and retention.
In addition, the training materials might be different
for each level (tier) of support. This task includes
the following steps:
1. Validate support training logistics
2. Prepare for support training delivery
3. deliver support training and gather feedback
4. Provide feedback to the program

Trainer
(perform)

Backout Plan
The purpose of this work product is for the development team to provide, in one
document, all the information needed by the production support organization to
determine if a rollback is needed, who will authorize it, how it will be performed,
etc. While someone on the development team normally authors a draft version of the
Backout Plan, the Deployment Engineer is ultimately responsible for its contents
and existence. A backout plan typically answers the following questions:
• Under what circumstances will a rollback be required? Or conversely, under what

circumstances will the deployment be considered a success?
• What is the time period within which a rollback can take place?
• Which authorizing agent will make the decision to revert?
• Who will perform the rollback and how soon after the decision has been made

will the rollback be performed?
• What procedures (manual and automated) will be followed to execute the

rollback?
• What other contingency measures or available workarounds should be con-

sidered?

560 M. Cossentino et al.

<<input,
optional>>

<<input>>

<<input>>

<<output>>

Verify Successful
Deployment

Package the
Release

Execute
Backout Plan

<<input,
optional>>

Execute
Deployment Plan

Release
Controls Infrastructure

a

<<input,
optional>>

Deployment
Plan

c

Release
Controls

<<input>>

Deployment
Plan

c

Release

c

Deployment
Plan

c

Release

c

Release

c

<<input>>

Backout
Plan

Release

c

Deliver Release
Communications

Release
Communications

a

<<input>>

Release

c

Developer

Deployment
Engineer

Product
Owner

Backout
Necessary?

Yes

No

Fig. 54 The flow of tasks of the Deploy Release to Production activity

• What is the expected time required to perform a reversion?
• What are the communication procedures required in the event of a backout?
• Has the Backout Plan been successfully tested?

Infrastructure
Infrastructure normally is defined as anything that supports the flow and processing
of information in an organization. The infrastructure needed to support a release
package normally includes
• Software, including

– Operating systems and applications for servers and clients
– Desktop applications
– Middleware
– Protocols

• Hardware
• Networks, including

– Routers
– Aggregators
– Repeaters
– Other transmission media devices that control movement of data and

signals
• Facilities

The OpenUp Process 561

Table 20 Deploy release to production—the task description

Activity Task Task description Roles involved

Deploy Release
to Production

Package the Re-
lease

The key activities normally used to package a re-
lease:
• Assemble the components and integrate them

through a normal (i.e., continuous integration)
or release build script

• Install the release package in one or more test
environments and verify its integrity

• Tag the elements of the release package in the
code base to create a baseline

• Package appropriate documentation to accom-
pany the release:
– Deployment plan
– Build plan, procedures, and scripts
– Backout plan
– Relevant licensing information
– Relevant infrastructure information
– Release communiques

This task includes the following steps:
1. Assemble components
2. Test the release
3. Tag source code repository
4. Package release documentation
5. Deliver release package

Developer
(perform),
Deployment
Engineer (assist)

Deploy Release
to Production

Execute Deploy-
ment Plan

This task is straightforward: follow the procedures
in the Deployment Plan for the rollout of a specific
product release. If the deployment plan does not
exist or it is poorly constructed, this task might be
much more difficult.
The main point here is that to achieve a high probab-
ility of success, the development team should have
previously developed a detailed plan that organ-
izes and articulates all the unique instructions for
deploying that particular release. Because an exper-
ienced deployment engineer normally executes this
task, they might be able to overcome any missing
deployment procedures or content. However, that is
not an excuse for a development team to not develop
the plan’s contents. This task includes the following
steps:
1. Review deployment plan
2. Release code

Deployment
Engineer
(perform),
Developer
(assist)

Deploy Release
to Production

Verify Success-
ful Deployment

Using the success criteria documented either in
the deployment plan or in the backout plan, the
deployment engineer, in collaboration with the de-
velopment team, will determine whether the rollout
can be declared a success or not. If the deployment
is successful, the previously prepared release com-
muniques should be delivered. If the deployment
is unsuccessful, then the backout plan should be
invoked. This task includes the following steps:
1. Test production release
2. Run manual tests
3. Determine if release should be reversed

Deployment
Engineer
(perform),
Developer,
Product Owner
(assist)

Deploy Release
to Production

Execute Backout
Plan (if neces-
sary)

Assuming a backout plan is available for this re-
lease, the deployment engineer (or development
team) will follow the instructions for reversing the
installation of the product into production, if there is
a problem. While the plan might have been written
with good intentions, sometimes key procedures are

Deployment
Engineer
(perform),
Developer
(assist)

(continued)

562 M. Cossentino et al.

Table 20 (continued)

Activity Task Task description Roles involved

missing or have not been thought out. The team
backing out the release should be aware that blindly
following the backout plan might not be the best
approach. It is best to consider the unique circum-
stances within which the deployment has failed
and rely on common sense and experience when
executing the backout plan. This task includes the
following steps:
1. Identify release problem(s)
2. Backout the release
3. Determine if the backout was successful
4. Communicate the backout

Deploy Release
to Production

Deliver Release
Communications

This task represents the distribution of commu-
niques that were prepared beforehand as part of
the release communications artifact. Although the
development team is responsible for preparing the
communications, the responsibility for sending the
communiques normally is assigned to the deploy-
ment engineer, if that is the organizational protocol.
This task includes the following steps:
1. Validate the communiques
2. Send release communications
3. Validate communications were received

Deployment
Engineer
(perform),
Developer
(assist)

Release Communications
This artifact should specify the different groups to which communications are
directed, the method of communication (e.g., email, text or pager message, bulletin,
newsletter, phone message, etc.). All communiques should be prepared in advance
so that it is a matter of disseminating information when the release to production
has been determined to be successful.

Also included in this artifact is a listing of the responsible parties who will
execute the communications when a successful release has been declared (normally
the Deployment Engineer), as well as the timing and dependencies of the commu-
niques.

While there is no prescribed format for the release communications artifact,
each communique should indicate the preferred delivery mechanisms (e.g., beeper
notification, telephone calls, a posting to an internal release website, live or pre-
recorded presentations by senior management, etc.) and generally answer the
following questions:
• Who are the parties (stakeholders) that are interested in knowing that a release to

production has taken place?
• What specifically (features, functions, components) has been placed into produc-

tion?

The OpenUp Process 563

R,QR

R,QR,Q

Transition
Model

Infrastructure

a
Backout

Plan

a

Release
Communications

a Tools

c

Release

c

Work
Items
List

a
Test

Script
Test
Log

a

c

Implementation

c

c

Build

c

c

Project Defined
Process

c

Project-Specific
Guidelines

D,Q

Project-Specific
Procedure

D,Q

Report

D,Q

Role

D,QR

R,
QR

R, QR

R, QR

Work
Product

D,Q

R, QR

Process

D,Q

Build Script

D,Q

Data
Files

D,Q

Folder

D,Q

Other
Files

D,QSource
Code Files

D,Q

Work Item

D,Q

Test Script

D,Q

Test Case

Q
R,Q

Use Case

Q
Executable
Versione

D,Q

File

D,Q
R,QTest

Result

D,Q

Test
Verification

D,Q

Test
Case

Q
R

c

Design

c

Participant

D,Q

Requirement
Realization

D,Q

Scenario

D,Q SubSystem

D,Q

R,Q

R,Q

R,Q R,Q

Component

Q
R,Q

R,Q

Developer
Test

Iteration
Plan

a

Development
Strategy

D,Q

Actor

Q Evaluation
Results

D,Q

Evaluation
Criterion

Q

Iteration

D,Q

Iteration
Plan

D,QR,QR

Iteration
Issue

D,Q
R,QR

Iteration
Milestone

Q

Implementation
Test

D,Q

Developer
Test

D,Q
R,Q

R,QR

User
Documentation

a
Product

Documentation
Support

Documentation

a c

Training
Materials

c

Support
Documentation

D

Training
Material

Q

Comunique

Q

User
Documentation

Q

R

R
R Product

Documentation

D

User
Documentation

D

Support
Documentation

Q

Training
Material

D

R

Risk List

Risk List

D,Q

Architecture

Q

Infrastructure

D

Communique

D

Integrated Compiled
Code

D Authorized
Agent

D

Backout
Plan

D
Rollback

D

Communication
Procedure

D

Contingency
Measure

D

Rollback
Performer

D

Rollback
Procedure

D

Workaround

D

R

R R
R

R

R

R

Tool

D,Q

Fig. 55 The Transition phase documents structure

• Why is this release valuable to stakeholders and what business purpose does it
serve?

• Where is the product available (on which platforms, geographical locations,
business units, etc.)?

• How can the stakeholders access the system and under what circumstances?
• When was the product released (or when will it be released if the release date is

in the future)?

Release Controls
Some common release controls are:
• A release or deployment plan must be documented and reviewed with the

Deployment Manager (or the release organization). This plan must address how
risks, issues, or code deviations are to be handled during the key timeframe
leading up to the actual release.

• The components of each release package must be defined, integrated, and
compatible with one another.

• The integrity of each release package must be verified and maintained.
• References to the configuration items (CIs) that the release package represents,

if applicable.

564 M. Cossentino et al.

Table 21 Transition phase—work product kinds

Name Description Work product kind

Backout Plan A backout plan defines the criteria and procedures to be
followed if a release into production needs to be rolled back.

Structured

Deployment Plan See sections “Deployment Plan” and “WorkProduct Kinds.” Composite
Infrastructure In reference to a release sprint, infrastructure refers to all

the hardware, software, and network facilities necessary to
support a deployed release. The purpose of this work product
is to provide the underlying capabilities within which an
application can be run as designed.

Free Text

Product Documentation See sections “Product Documentation” and “WorkProduct
Kinds.”

Release Communications When a release is pushed to production, all the stakeholders
of that product should be notified that the event has happened
and what the release means to each of the stakeholders.
Often, the output of this task does not need to be created
from scratch; for products that plan multiple releases, just
updating the communique details for each release might be
enough. However, if any of the stakeholder groups change,
or there is a significant difference in the product distribution,
more significant content might need to be developed. In any
case, communicating effectively to the end user community
is important. A development team can develop high quality
software, but if messaging to the stakeholders is conducted
poorly or not at all, the end user experience might be
degraded. By simply answering the questions “who, what,
when, where, why, and how” in a format appropriate for
each stakeholder group, a product release can become a more
satisfying experience for all those involved.

Free Text

Release Controls The purpose of this work product is to identify all the
requirements to which a release package must conform to
be considered “deployable.”

Structured

Support Documentation See sections “Support Documentation” and “WorkProduct
Kinds.”

Training Materials See sections “Training Materials” and “WorkProduct
Kinds.”

User Documentation See sections “User Documentation” and “WorkProduct
Kinds.”

• The customer for which the application is being developed must approve the
release, indicating that the user community (or a specific subset) is ready to
receive and use the requisite capabilities of the release.

• Each release package must be capable of being backed out of production without
negatively impacting the remaining production environment.

• The contents of each release package must be transferred to operations
and support staff with sufficient documentation and knowledge transfer so
that those organizations can effectively support the released capabilities in
production.

3 Work Product Dependencies

Figure 56 describes the dependencies among the different work products and work
product slots (see Sect. 1). The list of work products fulfilling the different work
product slots is reported in Table 22.

The OpenUp Process 565

Project Plan

Work Items
List

Iteration
Plan

ToolsProject Defined
Process

Risk List

Glossary

System-Wide
Requirements

Use Case
Model

Use Case

Test Case

Support
Documentation

[Project
Work]

Technical
Specification

[Technical
Architecture]

[Technical
Specification]

[Project
Definition

and Scope]
[Technical

Test Result]

Architecture
Notebook

[Technical Design]

[Technical
Implementation]

Test Script

Test Log

Build

Design

Developer Test

Implementation

User
Documentation

Product
Documentation

Training
Materials

Infrastructure

Deployment Plan

Release
Controls

Backout Plan

Release
Communications

Release

Fig. 56 The Work Product Dependency diagram

Table 22 OpenUp work product slots and the fulfilling work products

Work product slot Fulfilling work product

[Project Definition and Scope] Project Plan
[Project Work] Iteration Plan, Work Items List
[Technical Architecture] Architecture Notebook
[Technical Design] Design
[Technical Implementation] Build, Implementation
[Technical Specification] Glossary, System-Wide Requirements,

Use Case, Use-Case Model, Vision
[Technical Test Results] Test Log

References

1. Eclipse Foundation: The OpenUP Website. Online at: http://epf.eclipse.org/wikis/openup/.
Accessed on 15 Jan 2013

2. Eclipse Foundation: Work Product Slot. Online at: http://epf.eclipse.org/wikis/mam/core.mdev.
common.base/guidances/concepts/work_product_slot_D5B44CE7.html. Accessed on 15 Jan
2013

http://epf.eclipse.org/wikis/openup/
http://epf.eclipse.org/wikis/mam/core.mdev.common.base/guidances/concepts/w ork_product_slot_D5B44CE7.html
http://epf.eclipse.org/wikis/mam/core.mdev.common.base/guidances/concepts/w ork_product_slot_D5B44CE7.html

566 M. Cossentino et al.

3. Object Management Group (OMG): Unified Modeling Language (UML), V2.4.1, Infrastructure
Specification. Doc. number: formal/2011-08-05 (2011)

4. Object Management Group (OMG): Unified Modeling Language (UML), V2.4.1,
Superstructure Specification. Doc. number: formal/2011-08-06 (2011)

5. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy: A Practitioner’s Guide to the
RUP. Addison-Wesley Professional, Boston (2003)

6. Software Process Engineering Metamodel. Version 2.0. Final Adopted Specification
ptc/07 03-03. Object Management Group (OMG) (March 2007)

7. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifications to
represent agent oriented methodologies. In: AOSE, pp. 46–59 (2008)

Index

A
Action model, 276, 282
Action modeler, 275
Actor(s), 260, 463, 466
Adaptive multi-agent system (AMAS), 20
ADELFE, 3, 20
Agency domain, 11
Agent(s), 45, 258, 293, 298, 302–303, 334,

364–368
Agent class model, 261, 278
Agent class modeler, 275
Agent interaction protocol (AIP), 293
Agent-oriented methodology, 115
Agent-Oriented Software Engineering (AOSE),

2
Agile, 491
AOSE. See Agent-Oriented Software

Engineering (AOSE)
Architecture design, 274–276
Artifact(s), 181, 333, 407
ASPECS, 3, 65
aT3 process editor (APE), 254

B
BDI, 466
Business model, 33

C
Capability(ies), 258, 466
Capability model, 281
Communication, 293, 308
Communication acts, 52–53
Construction, 492, 493
Construction phase, 391
Contract template, 333, 334, 336, 361–362
Cooperative agent, 26
Cooperative behaviour, 24, 28, 54–55
Coordination, 407

D
Design phase, 261
Design process, 10
Design process documentation template

(DPDT), 8–10, 13, 15
Distilled state chart, 119
Domain model, 260, 261, 266, 269–271
Domain modeler, 264
Dynamical dimension, 179

E
Early requirements analysis, 464
Elaboration, 382, 492, 493
ELDAMeth, 3, 115
ELDATool, 133
Entity, 26, 53
Environment, 143, 181, 407

conditions, 186
dimension, 181

Event-driven lightweight distilled state charts
agent, 115

F
FIPA, 8

design process documentation and
fragmentation, 9

protocol, 314
standard specification, 2

Functional dimension, 177
Functional objectives, 178

G
Gaia, 3
GMoDS model. See Goal Model for Dynamic

Systems (GMoDS) model
Goal, 466
Goal model(s), 261, 265–269, 466

M. Cossentino et al. (eds.), Handbook on Agent-Oriented Design Processes,
DOI 10.1007/978-3-642-39975-6,
© Springer-Verlag Berlin Heidelberg 2014

567

568 Index

Goal modeler, 264
Goal Model for Dynamic Systems (GMoDS)

model, 261, 265, 266, 267
GORMAS, 3

H
Hierarchical complex systems, 66
Holons, 66

I
IEEE-FIPA design process documentation

and fragmentation (FIPA-DPDF), 2
IEEE FIPA SC00097B specification, 11
IEEE-FIPA standard design process

documentation template, 9
Implement agent, 60
Implementation agent, 295, 320–322
Implementation task, 295, 320–322
Inception, 492, 493
Inception phase, 377
INGENIAS, 3, 219–250
INGENIAS agent framework (IAF), 220,

371
INGENIAS-Agile, 3
INGENIAS development kit (IDK), 220, 371
INGENIAS methodology, 371
Interaction, 408
Inter-agent issues, 408
Iterations, 493
Iterative approach, 491

J
JADE, 288
JANUS, 69

L
Layering, 407
LivenessProperty, 145
Low-level design, 274, 276

M
MAS meta-model, 118
Metamodel, 22–29, 291–296, 374
Metamodeling, 11
Method base, 8
Method construction guidelines, 254
Method engineering, 8
Method fragment, 8
Micro-increments, 492

Mission analysis, 175
Model driven development (MDD), 220, 372
Model driven engineering (MDE), 11
Multi-agent system, 116

N
Nominal behaviour, 24, 28, 53–54
Non-cooperative situations, 27
Norm(s), 182, 334, 336
Normative context, 331, 355–362

O
O-MaSE, 3
O-MaSE metamodel, 258, 277
Ontology, 293, 307–308, 311–312
Open multiagent systems, 331
OpenUp, 3
Organization(s), 141, 333, 347–355
Organizational abstractions, 141
Organizational agents (OAs), 260
Organizational design, 175
Organizational dimensions, 204
Organizational mission, 186
Organizational model, 261, 271
Organizational norms, 356–358
Organizational patterns, 156
Organizational rules, 141
Organizational structure, 141
Organizational unit (OU), 176, 334
Organizational Unit Technology, 192
Organization-Centered Multi-agent Systems

(OCMAS), 173
Organization dynamics design, 175
Organization model, 265, 266
Organization modeler, 264
Organization Model for Adaptive

Computational Systems (OMACS),
258

Organization Technology, 191–192

P
PASSI. See Process for Agent Societies

Specification and Implementation
(PASSI)

Plan, 466
Plan model, 261, 276, 282
Plan modeler, 275
Policies, 260
Policy model, 261, 276, 279–281
Policy modeler, 275
Preparation phase, 222, 225

Index 569

Problem analysis, 264–265
Problem domain, 11
Process documentation template, 10
Process for Agent Societies Specification

and Implementation (PASSI), 4,
287–329

Products, 177
Protocol(s), 143, 260, 309, 314
Protocol model(s), 261, 276, 278–279
Protocol modeler, 275

R
Regulated open multiagent systems, 331
Requirement(s), 31–32, 297, 300–302
Requirement analysis, 261, 263–274
Requirement engineer, 264
Requirement gathering, 264
Reward system, 215
Role(s), 176, 258, 293, 299, 303–304,

309–310, 313, 334, 349
Role model, 261, 266, 271–274
Role modeler, 264
ROMAS, 4
RUP, 29

S
SafetyProperty, 145
Scrum, 220, 221
Self-organizing multi-agent systems, 20
Service(s), 145, 178, 334, 339, 341, 355, 362,

363
Service analysis, 175
Simulation, 116
Situational method engineering (SME), 8
Social contracts, 356, 358–360
Social relationships, 177, 333
SODA, 4
Software process engineering metamodel 2.0

(SPEM 2.0), 9, 12, 289
Solution analysis, 265–266
Solution domain, 11
SpeADL, 58, 59

SPEM 2.0. See Software process engineering
metamodel 2.0 (SPEM 2.0)

Sprint phases, 222, 232
Stakeholders, 178
Structural dimension, 176
Sub-organizations, 145
System as it is, 464
System description specification, 266
System-to-be, 464

T
Tables, 409
Task, 293, 299, 304–305
Topology, 145
Transition, 492, 493
Tropos, 4, 463

U
UML, 290, 300–304, 314, 328
UML2, 29
Unified development process (UDP), 372
Unified process, 491
Use cases, 38, 296

V
Virtual organization, 174
Virtual organization model (VOM), 175

W
Work flow and technological interdependence,

192
Work product(s)

content diagram, 13–14
dependencies, 16
kind, 12

Workspaces, 181

Z
Zoom, 414

	Foreword
	Contents
	Introduction
	References

	The IEEE-FIPA Standard on the Design Process Documentation Template
	1 Introduction
	2 Documentation Template Basic Notions
	2.1 The Multi-agent System Metamodel
	2.2 The SPEM 2.0 Extensions

	3 The Design Process Documentation Template Structure
	3.1 The Introduction Section
	3.2 The Phases of the Process Section
	3.3 The Work Products Dependencies Section

	References

	ADELFE 2.0
	1 Introduction
	1.1 The ADELFE Process Life Cycle
	1.2 The ADELFE MAS Metamodel
	1.2.1 Definition of MAS Metamodel Elements
	1.2.2 Definition of MAS Metamodel Elements

	1.3 Guidelines and Techniques

	2 Phases of the ADELFE Process
	2.1 Preliminary Requirements Phase (WD1)
	2.1.1 Process Roles
	2.1.2 Activities Details
	2.1.3 Work Products

	2.2 Final Requirements Phase (WD2)
	2.2.1 Process Roles
	2.2.2 Activities Details
	2.2.3 Work Products

	2.3 Analysis Phase (WD3)
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 Design Phase (WD4)
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	2.5 Implementation Phase (WD5)
	2.5.1 Process Roles
	2.5.2 Activities Details
	2.5.3 Work Products

	3 Work Product Dependencies

	The ASPECS Process
	1 Introduction
	1.1 Global Process Overview (Life Cycle)
	1.2 Metamodel
	1.2.1 Problem Domain
	1.2.2 Agency Domain
	1.2.3 Solution Domain

	2 Phases of the Process
	2.1 System Requirement Analysis
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Agent Society Design
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Implementation and Deployment
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	3 Work-Product Dependencies
	References

	ELDAMeth Design Process
	1 Introduction
	1.1 The ELDAMeth Process Lifecycle
	1.2 The ELDA MAS Meta-Model

	2 Phases of the ELDAMeth Process
	2.1 The Modeling Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Simulation Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Implementation Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	3 Work Products Dependencies
	References

	The Gaia Methodology Process
	1 Introduction
	1.1 Process Life Cycle
	1.2 Meta-model

	2 Phases of the Gaia Process
	2.1 Analysis
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Architectural Design
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Detailed Design
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	3 Work Products Dependencies
	References

	GORMAS: A Methodological Guidelinefor Organizational-Oriented Open MAS
	1 Introduction
	1.1 The GORMAS Process Life Cycle
	1.1.1 The GORMAS MAS Metamodel

	2 Phases of the GORMAS Methodology
	2.1 Mission Analysis Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Service Analysis Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Organizational Design Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 Organization Dynamics Design Phase
	2.4.1 Process Role
	2.4.2 Activity Details
	2.4.3 Work Products

	3 Work Product Dependencies
	References

	INGENIAS-Scrum
	1 Introduction
	1.1 The INGENIAS-Scrum Process Life Cycle
	1.2 Metamodel
	1.3 Guidelines and Techniques
	1.3.1 Scrum and MDD
	1.3.2 IDK Considerations
	1.3.3 IAF Considerations

	2 Phases of the INGENIAS-Scrum Process
	2.1 Process Documentation: Preparation Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Process Documentation: The Sprint Phases
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Work Product Dependencies

	3 Case Study: Conference Management System
	3.1 Preparation Phase
	3.2 Sprint Phase

	References

	The O-MASE Methodology
	1 Introduction
	1.1 The O-MaSE Life Cycle
	1.2 The O-MaSE Metamodel

	2 Phases
	2.1 Requirement Analysis
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Design
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Implementation

	3 Work Product Dependencies
	References

	PASSI: Process for Agent Societies Specification and Implementation
	1 Introduction
	1.1 The PASSI Process Life Cycle
	1.2 The PASSI System Metamodel
	1.2.1 Definition of the System Metamodel Elements (Table 1)

	2 Phases of the PASSI Process
	2.1 The System Requirements Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Agent Society Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Agent Implementation Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 The Code Phase
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	2.5 The Deployment Phase
	2.5.1 Process Roles
	2.5.2 Activity Details
	2.5.3 Work Products

	3 Work Product Dependencies
	References

	ROMAS Methodology
	1 Introduction
	1.1 The ROMAS Process Lifecycle
	1.2 ROMAS Metamodel
	1.2.1 ROMAS Metamodel Notation

	2 Phases of the ROMAS Process
	2.1 PHASE 1: System Description
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 PHASE 2: Organization Description
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 PHASE 3: Normative Context Description
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 PHASE 4: Activity Description
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	2.5 PHASE 5: Agents Description
	2.5.1 Process Roles
	2.5.2 Activity Details
	2.5.3 Work Products

	3 Work Product Dependencies
	References

	INGENIAS with the Unified Development Process
	1 Introduction
	1.1 Global Process Overview
	1.2 Metamodel
	1.3 Definition of MAS Metamodel Elements

	2 Phases of the Process
	2.1 Process Documentation: Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 Process Documentation: Elaboration Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 Process Documentation: Construction Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	3 Work Product Dependencies
	4 Case Study: Conference Management System
	References

	The SODA Methodology: Meta-model and Process Documentation
	1 Introduction
	1.1 Process Life Cycle
	1.2 Meta-model
	1.2.1 Requirements Analysis
	1.2.2 Analysis
	1.2.3 Architectural Design
	1.2.4 Detailed Design

	1.3 Guidelines and Techniques
	1.3.1 Layering
	1.3.2 Process Roles
	1.3.3 Activity Details
	1.3.4 Work Products

	2 Phases of the SODA Process
	2.1 The Requirements Analysis
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Analysis
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Architectural Design
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 The Detailed Design
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	3 Work Products Dependencies
	References

	The Tropos Software Engineering Methodology
	1 Introduction
	2 The Tropos Process Life Cycle
	3 The Tropos Metamodel and Language
	4 Early Requirements Phase
	4.1 Process Roles
	4.1.1 Requirements Analyst
	4.1.2 Domain Stakeholder

	4.2 Activity Details
	4.2.1 Domain Knowledge Acquisition
	4.2.2 ER Actor Modelling
	4.2.3 ER Goal Modelling

	4.3 Work Products
	4.3.1 Work Products Examples

	5 Late Requirements Phase
	5.1 Process Roles
	5.1.1 Requirements Analyst

	5.2 Activity Details
	5.2.1 LR Actor Modelling
	5.2.2 LR Goal Modelling
	5.2.3 LR Plan Modelling

	5.3 Work Products
	5.3.1 Work Products Examples

	6 The Architectural Design Phase
	6.1 Process Roles
	6.1.1 System Architect
	6.1.2 Agent Designer

	6.2 Activity Details
	6.2.1 Identify Agents
	6.2.2 Apply Delegation Styles
	6.2.3 Goal Modelling
	6.2.4 Capability Modelling

	6.3 Work Products
	6.3.1 Work Products Examples

	7 Detailed Design
	7.1 Process Roles
	7.1.1 Agent Designer
	7.1.2 Software Architect

	7.2 Activity Details
	7.2.1 Detailed Capability Modelling
	7.2.2 Activity Modelling
	7.2.3 Interaction Modelling
	7.2.4 Platform-Dependent Design

	7.3 Work Products
	7.3.1 Work Products Examples

	8 Implementation and Testing
	8.1 Process Roles
	8.1.1 Agent Programmer
	8.1.2 Agent Tester

	8.2 Activity Details
	8.2.1 BDI Agent Code Derivation
	8.2.2 Behaviours Implementation
	8.2.3 Test Case Derivation
	8.2.4 Agent Testing

	8.3 Deployment
	8.4 Work Products
	8.4.1 Work Products Examples

	9 Work Product Dependencies
	References

	The OpenUp Process
	1 Introduction
	1.1 The OpenUp Process Lifecycle
	1.2 The OpenUp Process System Metamodel
	1.2.1 Definition of the System Metamodel Elements

	2 Phases of the OpenUp Process
	2.1 The Inception Phase
	2.1.1 Process Roles
	2.1.2 Activity Details
	2.1.3 Work Products

	2.2 The Elaboration Phase
	2.2.1 Process Roles
	2.2.2 Activity Details
	2.2.3 Work Products

	2.3 The Construction Phase
	2.3.1 Process Roles
	2.3.2 Activity Details
	2.3.3 Work Products

	2.4 The Transition Phase
	2.4.1 Process Roles
	2.4.2 Activity Details
	2.4.3 Work Products

	3 Work Product Dependencies
	References

	Index

