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Abstract. The problem of optimal parameters selection for the regression con-
struction method using Support Vector Machine is stated. Cross validation error 
function is taken as the criterion. Arising bound constrained nonlinear optimiza-
tion problem is solved using parallel global search algorithm by R. Strongin 
with a number of modifications. Efficiency of the proposed approach is demon-
strated using model problems. A possibility of the algorithm usage on large-
scale cluster systems is evaluated. Linear speed-up of combined parallel global 
search algorithm is demonstrated. 
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1 Introduction 

The problem of reconstructing a functional dependency of a given value on measure-
ment results (regression reconstruction problem) is often met in applied studies.  
In practice the nature of the given dependence is usually unknown, therefore  
the unknown function is chosen from a certain pre-determined class which depends 
on the selected model. Parameters of this function are calculated based on the availa-
ble experimental data. Among such models [1] we could note polynomial regression, 
multivariate adaptive regression splines (MARS), radial basis function, decision trees 
and their ensembles, various boosting algorithms, neural network, etc. An experimen-
tal comparison of a number of models and algorithms is given, for instance, in [8].  

One of the widely used solution methods for the regression reconstruction problem 
is the Support Vector Machine (SVM) algorithm [14]. The possibility of efficient 
nonlinear dependencies modeling and independence of generalization capability from 
the feature space dimension could be marked out among this algorithm’s advantages. 
Though, in some cases practical application of the algorithm is limited due to the fact 
that accuracy of the method strongly depends on its parameters selection [3]. Most 
frequently used approaches to optimal parameter selection are eventually reduced to 
global optimization problem solution. Thus, for instance, [3] offers to use a genetic 
algorithm and particle swarm optimization, [9] uses chaos optimization algorithm 
[10], [11] describes application of a modification of the Efficient Global Optimization 
(EGO) algorithm [12], [13] uses Pattern Search approach, etc.  
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As is known, complexity of a global optimization problem solution is significantly 
influenced by its dimension. For example, for the class of multi-extremal functions 
satisfying Lipschitz condition the so called curse of dimensionality takes place which 
represents exponential growth of computing time as a function of dimensionality. 
Thus, if p calculations of function value are required to reach ε accuracy of solution in 

a one-dimensional problem, Npα  trials are required to reach the same accuracy in an 

N-dimensional problem, where α depends on the objective function and on the opti-
mization algorithm in use. Virtually the only way of solving problems of the men-
tioned class in a reasonable time is the development of parallel algorithms and their 
implementation on high performance computing systems.  

This paper introduces a novel method of SVM regression parameters selection 
based on optimization of the cross validation error function using parallel global 
search algorithm. This algorithm is based on the informational statistical approach [5] 
and as experimentally proven in [5], [7] outperforms many known methods of similar 
purpose. The paper is organized as follows: an SVM regression parameters optimiza-
tion problem is stated in the second section; section three describes the basic parallel 
global search algorithm [5] and its modifications which increase parallel computing 
efficiency; in section four successfulness of the described approach is demonstrated 
based on model problems, the possibility of the approach usage on large-scale cluster 
systems is discussed.  

2 Optimization of SVM Regression Algorithm Parameters  

This paper considers the regression reconstruction problem in the following state-

ment. Let a training set ( ){ }NiyxD ii ,...,1,, ==  be given, where d
i Rx ∈ is the fea-

ture vector, Ryi ∈ – the response. It is required to find a function )(xf  from some 

specific class K  which minimizes the value of empirical risk (prediction error on the 
training set). For the SVM-regression construction algorithm the function )(xf  can 

be written in general form as 

 bxwxf T += )()( φ , 

where )(xφ  is a nonlinear (in general case) mapping md RR → , mRw∈  – a vector 

of linear function coefficients in the new feature space mR . As a loss function a 
piecewise linear function of ε -sensitivity is used  

 ))(,0max())(,( εε −−= xfyxfyL , 

where ε  – a predetermined threshold (if the predicted value differs from the actual 
value less than given threshold the error is considered equal zero). The function of 
empirical risk is written as:  
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Considered problem of empirical risk minimization is reduced to a quadratic optimi-
zation problem  
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where C is a regularization parameter which represents the trade-off between  
the model complexity and the empirical error in the minimized function. Using the 
Lagrange multiplier method the problem (1) can be reduced to a dual form: 
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where *, ii αα
 
– Lagrange multipliers, ),( ji xxK

 
– kernel function representing inner 

product in the new feature space mR . Some of the most often used kernels are radial 
basis functions:  

( ) 




 −−= 22

2exp, σjiji xxxxK . 

As shown in [3] generalization capability of SVM-regression algorithm significantly 
depends on the choice of parameters C , ε  and σ . In paper [2] a method based on 
cross-validation error minimization is offered. The idea of the method is to split the 
training set randomly into S subsets { }SsGs ,...,1, = , train the model on )1( −S  sub-
sets and use the remaining subset to calculate the test error. The error averaged over 
all training subsets is used as an estimate of algorithm’s generalization capability  
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where sθ
 
is the solution of the problem (2) achieved using the set sGD \  as a train-

ing set. In case the number of objects in the training set is not too large LOO (leave-
one-out) error can be used  
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where iθ
 
is the solution of the problem (2) achieved using the set { }),(\ ii yxD  as a 

training set. Due to the fact that a solution of a quadratic programming problem (2) 
for each parameter set ( )σε ,,C  exists and is unique we can consider the leave-one-

out error for a given training set as  a function of ε,C  and σ : 
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Thus the problem of optimal parameter selection for the SVM-regression construction 
algorithm has been reduced to a problem of function ( )σε ,,CF  minimization. In a 

general case the function is multi-extremal so global optimization algorithms should 
be applied to find its optimum. 

Let us note that the usage of cross-validation method for finding optimal parameter 
values is traditional in machine learning [15]. Nevertheless, with a large number of 
determined parameters it can lead to overfitting [16]. In our case only 3 parameters 
are used which allows us to hope that overfitting won’t happen.  

3 Parallel Global Search Algorithm 

We will find the optimal value of the parameters C , ε and σ in the hypercube 
[ ] [ ] [ ]maxminmaxminmaxmin ;;; σσεε ××= CCD . Let us define ( )σεϕ ,,)( CFy = , where 

),,( σεCy = .   

Without loss of generality we can consider an unconstrained global optimization 
problem having the form 
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where the objective function )(yϕ  satisfies the Lipschitz condition  

 2121 )()( yyKyy −≤−ϕϕ , Dyy ∈21,  

with constant K which in a general case in unknown. This statement covers a wide 
class of problems as any hyper interval S 

 { }NibyaRyS iii
N ≤≤≤≤∈= 1 ,:  

can be reduced to a hyper cube D using a linear coordinate transformation.  
In the discussed approach [5] solution of multidimensional problems is reduced to 

solution of equivalent one-dimensional problems (dimension reduction). Thus, the 
usage of a continuous single-valued mapping such as Peano curve  

 { } { }10 :)(1 ,22: 11 ≤≤=≤≤≤≤−∈ −− xxyNiyRy i
N  

allows to reduce the minimization problem in domain D  to a minimization problem 
on the segment [0,1]. 

 { }]1,0[:))((min))(()( *** ∈=== xxyxyy ϕϕϕϕ . 

Numerical methods which allow efficient construction of such mappings with  
any given accuracy are considered in details in [5]. According to those methods  
this dimension reduction scheme maps a multidimensional problem with Lipschitz 
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minimized function to one-dimensional problem in which the function satisfies the 
uniform Hölder condition 

N
xxGxyxy

/1

2121 ))(())(( −≤−ϕϕ , [ ]1,0, 21 ∈xx  

where N  is the dimension of the original multidimensional problem and Holder  
coefficient G  is connected with Lipschitz constant K  of the original problem by the 

relation NKG 4≤ . 

To solve the arising one-dimensional problem it is suggested to use an efficient in-
formation-statistical global search algorithm [5]. But when solving the reduced prob-
lem with a single scanning part of proximity information for the points in multidimen-
sional space is lost. It is explained by the fact that the point ]1,0[∈x  has only left and 

right neighbors while the corresponding point NRxy ∈)(  has neighbors along 2N 

directions. Part of points’ proximity information can be preserved by using a set of 
mappings  

 { })(),...,()( 1 xyxyxY L
L =  (4) 

Instead of using a single Peano curve )(xy . Each Peano curve )(xyi from )(xYL  

can be achieved as a result of some transformation of the original curve (shift along 
the main diagonal of the hypercube [4] or rotation about the origin of the coordinates 
[7]). The set of Peano curves constructed in this fashion allows to achieve close in-
verse images x′ , x ′′  for any close images y′ , y ′′  differing along only one coordi-

nate for some mapping )(xyi .  

Usage of the mappings set (4) leads to forming a corresponding set of one-
dimensional problems  

 { }]1,0[:))((min ∈xxylϕ , Ll ≤≤1 . (5) 

Each problem from this set can be solved independently on a separate processor using 

the scanning Lsys ≤≤1 , . The result of the minimized function ))(( xyϕ  value cal-

culation at point kx  received by a particular processor for its solved problem is inter-
preted as the results of calculations for all remaining problems (in corresponding 

points kLk xx ,...,1 ) and is sent to other processors. Within such approach a trial at 

point ]1,0[∈kx  conducted in problem l consists of the following steps: 

1. Determine the image )( klk xyy =  with scanning )(xyl ; 

2. Inform the rest of the processors of the trial start at point ky  (blocking of 

point  ky ); 

3. Calculate the value )( kyϕ . The pair { }))((),( klkkl xyzxy ϕ=  is the result of the 

trial at point kx ; 
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4. Determine inverse images Llxkl ≤≤∈ 1 ],1,0[  of the point ky . 

5. Interpret the trial at point Dyk ∈  as trials at L points kLk xx ,...,1  with same re-

sults kkLLk zxyxy === ))((...)(( 11 ϕϕ  , i.e. inform the rest of the processors of the 

trial results at point ky  having sent them pairs ),( kk zy . 

Such informational unity allows to solve the original problem (3) by parallel solving 
of L  problems of form (5) on a set of segments [0,1]. Each processor has an own copy 
of the software which implements calculation of problem’s functions and the decision 
rule of the algorithm. To organize the communication a queue is created on each pro-
cessor where processors store information about the performed iterations as pairs: the 
point of an iteration and minimized function value at that point. Computing scheme of 
the algorithm is given below. 
 

Algorithm. Starting iteration is performed at an arbitrary point )1,0(1 ∈x  (starting 

points are different for all processors). The choice of the point 1+qx , q≥1, for any 
subsequent trial on the processor l is defined by the following rules.  

Rule 1. For the queue assigned to a given processor remove stored for the proces-
sor results including the set qY  of iteration points in domain  and function values 

computed for those points. Determine the set qX  of inverse images for the points of 

set qY  with scanning )(xyl . Capacity of sets qY  and qX  is the value qs  such that 

qsq ≥  as these sets contain the points computed on this processor and received from 

other processors. 
Rule 2. Enumerate the points of iterations set qXx ∪}{ 1  using subscripts in order 

of increasing coordinate values 

 1......0 110 =<<<<<= +kki xxxxx , (6) 

where 1+= qsk , and match them with values ))(( i
l

i xyz ϕ=  calculated in these 

points and integer values )( ixν  − the index of a point. The index of a non-blocked 

point ix  (i.e. the point for which results of the trial have been already received) is 

taken to be equal to 1 while the index of a blocked point ix  (i.e. the point for which 

the trial has been started by another processor) is taken to be equal to 0, the value iz  

is undefined in this case. The points 0x ,  1+kx  are additionally introduced (they do 

not participate in the trial), indices of these points are taken to be equal to 0 and the 
values 0z ,  1+kz  are taken as undefined. 

Rule 3. Calculate the current lower bound  
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for relative differences of function ϕ . If the value μ  turns out undefined (due to unsa-
tisfiability of indices equality conditions from (7)), or if 0=μ  take 1=μ . 

Rule 4. For each interval ),( 1 ii xx − , 11 +≤≤ ki  calculate the characteristic )(iR , 

where 
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The value 1>r  is a parameter of the algorithm. 
Rule 5. Determine the interval ),( 1 tt xx −  which has the maximum characteristic 

 }11:)(max{)( +≤≤= kiiRtR  (8) 

Rule 6. Conduct the next trial at the middle point of the interval ),( 1 tt xx −  if indices 

of its end points are not equal, i.e. 
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Store the results of the trial in the queue assigned to the given processor. Increment q  
by 1 and move to the next iteration.  

Described rules can be augmented with a stopping condition which stops trials if 
ε≤Δ t  where t  is from (8) and 0>ε  has the order of the desired per-coordinate 

accuracy in problem (3)  
The following convergence condition is satisfied for this algorithm (as a special 

case of more general theorem about convergence of a parallel global search algorithm 
using a set of scannings from [5]). 
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Convergence Conditions. Let 
*y  be the point of absolute minimum of a Lipschitz 

with a constant K function )(yϕ , Dy∈ , and }{ ky  is a sequence of trials generated 

by a parallel global search algorithm during this function minimization. Then  

1. If y′ , y ′′  are two limit points of the sequence }{ ky , then )()( yy ′′=′ ϕϕ . 

2. If y′  is a limit point of the sequence }{ ky , then )()( kyy ϕϕ ≤′ . 

3. If at some 0>k  the following condition is satisfied for the value μ from (7)  

 NKr 8>μ , 

where 1>r  is a parameter of the algorithm, then *y  is the limit point of the se-

quence }{ ky , and *lim yyk

k
=

∞→
 if *y  is the only point of absolute minimum. 

More general variants of parallel global search algorithms (for solution of condi-
tional and multicriteria problems) and corresponding convergence theory are pre-
sented in [5-7]. 
 
Perspectives of Usage in Parallel Computing. The analysis shows that the described 
basic algorithm has limitations on the number of used computing devices while using 
shift scannings [4] (shift along the main diagonal of the hyper cube) as well as while 
using rotated scannings [7] (rotation about the origin of the coordinates). 

In the first case the set of scannings comes out as a result of a shift along the main 
diagonal of the hyper cube D and the step of this shift decreases by 2 times at the 
construction of each next mapping. The scanning itself is constructed with the accura-
cy δ=2−m along the coordinate; m here is a parameter of the scanning construction. 
Construction of a very accurate scanning will require significant resources and the 
value δ will eventually be limited by the machine error. To solve the problem with 
accuracy from 10–3 to 10–4 it is sufficient to choose m in the range from 10 to 15 (if 
necessary, further refinement of the found solution can be performed using one of the 
known local methods).  

As follows from the above the number of scanning shifts during construction of 
mappings set (4) will be limited by the accuracy of the original scanning construction. 
If the shift is made by the value smaller than δ=2−m the next scanning will match the 
previous one. This way the limitation L≤m is put on the number of used scannings L 
and, as a consequence, on the number of problems solved in parallel.  

In the second case the number of processors is limited by the number of possible 
rotations of an scanning about the origin of the coordinates. In total there can be up to 
2N of such rotations (where N is the dimension of the solved problem). But to apply 
them all would be redundant, rotations in each of coordinate planes are sufficient and 
these make up N(N−1)+1 mappings. This relation gives potential for parallelism at 
large N and limits parallelization possibilities of in problems of smaller dimensions.  

A promising in terms of parallelization computing scheme can be based on  
the approach described in [17]. The essence of the approach consists in conducting 
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simultaneous p trials on intervals which have p greatest characteristics rather than 
conducting a single trial on interval having the maximum characteristic (8). This  
approach can be applied together with the described above mappings method: conduct 
p trials in parallel for each problems from the set (5) solution of which is also  
performed in parallel [18]. 

Mentioned combined algorithm can be used on modern cluster systems with multi-
core processors. An own sub-problem (5) is assigned to each node and the number of 
simultaneous trials for one problem corresponds to the number of cores on the node. 

4 Computational Experiment 

4.1 Optimization of a Function of Two Variables: Comparison with the 
Exhaustive Search 

In this section we will demonstrate the efficiency of the basic algorithm for  
SMV-regression parameters optimization on a two-dimensional problem example.  
We will also compare the algorithm with the exhaustive search. Consider the  
following problem [2]. Let the function )6cos()2sin(4.05.0)( xxxy ππ+=  be given. 

21,...,1),1(05.0 =−⋅= iixi , )05.0,0()( Nxyy ii += , where )05.0,0(N  – a Gaussian 

distribution with the mean equal to 0 and standard deviation equal to 0.05. Figure 1 
presents the plot of the cross-validation error LOOMSE  dependency on ε  and σ  

with fixed value of parameter C = 1. As seen from the plot the function describing 
this dependency has several local minima in the search domain. 

 

Fig. 1. Dependency of cross-validation error on SVM-regression parameters 
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The algorithm was run with the following parameters: the accuracy of the search 
01.0=ρ , reliability parameter 5.2=r , the accuracy of the scanning construction 

along each coordinate was 2.5⋅10−4, the number of scannings 2=L . The total num-
ber of iterations performed by the parallel version of the algorithm before reaching 
stopping criteria was 1550 (to reach the same accuracy with the exhaustive search 
10000 iterations would be required), found optimum value was 0.006728. The expe-
riment showed significant advantage of the algorithm over the exhaustive search. 
With increasing dimension of the problem the gap in the number of performed itera-
tions and thus the gap in solution time will only be growing. 

4.2 Optimization of a Function of Two Variables: Efficiency of the Algorithm 
and Its Modifications When Using Parallel Computing 

In this section we consider a possibility of using different modifications of parallel 
global search algorithm when optimizing parameters of SVN-regression. We will use 
the following described above implementations of the algorithm: 

1. Basic parallel global search algorithm with shift scannings. 
2. Parallel global search algorithm with rotated scannings. 
3. Combined parallel global search algorithm. 

Taking into account considerations on usage perspectives of implementations 1-3 in 
parallel computing let us ascertain the applicability of the most promising implemen-
tation 3, also let us compare the problem solution times using same number of scan-
nings L in all implementations. In addition accounting for the fact that the number of 
scannings in the second implementation is limited by the value N(N – 1) + 1 where N 
is the problem dimension we will take L = 3. Having this setting implementations 1 
and 2 will allow to use 3 cores each and implementation 3 will allow to use 3p cores 
(3 rotated scannings and p cores for each of the scannings).  

Consider the following problem: let a real function of n real variables be given 

having the form: 
=

=
n

i
iiiiin xxwxxxy

1
21 )cos()sin(),...,,( πβπα , where parameters 

)1,0(~ Uniformwi , )8,2(~ Uniformiα , )8,2(~ Uniformiβ , ni ,...,1= , 

),( baUniform  – a uniform distribution on segment ];[ ba . Consider the case 3=n , 

)3.0,0(),,( 321 Nxxxyy kji
ijk += , where )1(1.01 −⋅= ixi , 11,...,1=i , )1(1.02 −⋅= jx j , 

11,...,1=j , )1(1.03 −⋅= kxk , 11,...,1=k . This way the training set ),,,( 321
kji

ijk xxxy

contains 1331113 = objects.  
Consider an optimization problem of the cross-validation error LOOMSE  of ε  and 

σ  with fixed value of parameter C = 5. 
The cluster of the University of Nizhni Novgorod was used to conduct experi-

ments. A node of the cluster contains 2x Intel Xeon 5150 (total 8 cores), 24GB RAM, 
Microsoft Windows HPC Server 2008.  

Let us study the results of the experiments. In all runs the following parameters 
were used: search accuracy 010.ρ = , reliability parameter 2=r . Let us note that 
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solving the given problem with the specified accuracy using full search over a uni-
form grid would require 104 iterations which is significantly more than the number of 
iterations spent on optimum search using the considered global search algorithm. All 
its implementations 1-3 have reached the required accuracy after 400 iterations, ob-
tained values of the optimum were 0.090543, 0.090564 and 0.09054. Working times 
of the algorithms are given in the table below. 

Table 1. Running time of the algorithms (optimization of a function of two variables) 

Implementation Scannings Cores on scanning Time (hours) 
1 3 1 2,4 
2 3 1 2,4 
3 3 2 1,2 
3 3 4 0,6 

 
Implementation 3 showed 2x performance advantage compared to the other im-

plementations having used 2 times more cores. Taking into account that implementa-
tions 1 and 2 are substantially limited in ability of parallel usage of computing devic-
es, implementation 3 (having same computing time per core) allows usage of bigger 
number of cluster nodes which leads to computing time decrease. 

4.3 Optimization of a Function of Three Variables: Efficiency of the 
Algorithm and Its Modifications When Using Parallel Computing 

This section presents scalability of implementation 3 measured on the cluster of the 
University of Nizhni Novgorod. We solved the optimization problem on three para-
meters stated in the previous section, the value of parameter C is no longer fixed. 
Accuracy of the optimum search (along the coordinate) in this series of experiments 
was 020.ρ = . It was sufficient to make 1000 iterations to achieve the desired search 

accuracy. Taking into account that the number of scannings is limited by N(N – 1) + 
1, where N=3 (the problem dimension), we ran the algorithms to test scalability in the 
following configurations: using L=3 scannings on three nodes and using L=6 scan-
nings on six cluster nodes (implementation 2 of the algorithm), using L=6 scannings 
on six cluster nodes and 2 or 4 cores for each of the scannings (implementation 3 of 
the algorithm). All algorithms found the optimal value 0.09054 of the objective func-
tion, working time of the algorithms is given in the table below. 

Table 2. Running time of the algorithms (optimization of a function of three variables) 

Implementation Scannings Cores on scanning Time (hours) 
2 3 1 5.5 
2 6 1 2.8 
3 6 2 1.4 
3 6 4 0.8 
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The results demonstrate a linear speedup in the number of used nodes and cores.  
More cluster nodes could be used in case of a larger number of SVM parameters 
(which depends on used kernel). 

5 Conclusions 

This paper considers the problem of optimal parameter selection for the regression 
construction method using support vector machines. Cross-validation error function 
was chosen as the optimized criteria in the given problem. Arising problem belongs to 
the class of bound constrained nonlinear optimization, objective function is often 
multi-extremal which stipulates the necessity of global optimization methods applica-
tion. 

For the solution of the problem the paper suggests to use global search methods 
presented in studies of R. Strongin, V. Gergel, V. Grishagin, Ya. Sergeev, et al., with 
a number of modifications (rotated scannings, combined scheme of parallel compu-
ting). The questions of parallel computing usage are considered within this approach. 
The combined scheme was proved to be the most suitable for cluster systems with 
large number of multicore processors due to the possibility of all computing resources 
utilization. Computational experiments were conducted to support the stated proposi-
tions. Three schemes of parallel implementation of the global search algorithm are 
analyzed. Scalability of the first two schemes is limited by the number of scannings 
used by the algorithm. The combined scheme of the parallel global search algorithm 
demonstrates linear speedup in SVM-regression parameters optimization, lets use 
multicore processors effectively and therefore scales much better.   
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