

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 120–134, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Slot Selection Algorithms in Distributed Computing
with Non-dedicated and Heterogeneous Resources

Victor Toporkov1, Anna Toporkova2, Alexey Tselishchev3, and Dmitry Yemelyanov1

1 National Research University “MPEI”,
ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia
{ToporkovVV,YemelyanovDM}@mpei.ru

2 National Research University Higher School of Economics,
Moscow State Institute of Electronics and Mathematics,

Bolshoy Trekhsvyatitelsky per., 1-3/12, Moscow, 109028, Russia
atoporkova@hse.ru

3 European Organization for Nuclear Research (CERN),
Geneva, 23, 1211, Switzerland

Alexey.Tselishchev@cern.ch

Abstract. In this work, we introduce slot selection and co-allocation algorithms
for parallel jobs in distributed computing with non-dedicated and heterogeneous
resources (clusters, CPU nodes equipped with multicore processors, networks
etc.). A single slot is a time span that can be assigned to a task, which is a part
of a job. The job launch requires a co-allocation of a specified number of slots
starting synchronously. The challenge is that slots associated with different re-
sources of distributed computational environments may have arbitrary start and
finish points that do not match. Some existing algorithms assign a job to the
first set of slots matching the resource request without any optimization (the
first fit type), while other algorithms are based on an exhaustive search. In this
paper, algorithms for effective slot selection of linear complexity on an availa-
ble slots number are studied and compared with known approaches. The novel-
ty of the proposed approach consists of allocating alternative sets of slots. It
provides possibilities to optimize job scheduling.

Keywords: Distributed computing, economic scheduling, resource manage-
ment, slot, job, task, batch.

1 Introduction

Economic mechanisms are used to solve problems like resource management and
scheduling of jobs in a transparent and efficient way in distributed environments such
as cloud computing and utility Grid [1, 2]. A resource broker model is decentralized,
well-scalable and application-specific [2-4]. It has two parties: node owners and bro-
kers representing users. The simultaneous satisfaction of various application optimi-
zation criteria submitted by independent users is not possible due to several reasons
[2] and also can deteriorate such quality of service rates as total execution time of a

 Slot Selection Algorithms in Distributed Computing 121

sequence of jobs or overall resource utilization. Another model is related to virtual
organizations (VO) [5-7] and metascheduling with central schedulers or a Meta-
Broker [2] providing job-flow level scheduling and optimization. VOs naturally re-
strict the scalability, but uniform rules for allocation and consumption of resources
make it possible to improve the efficiency of resource usage and to find a tradeoff
between contradictory interests of different participants. In [6], we have proposed a
hierarchical model of resource management system which is functioning within a VO.
Resource management is implemented using a structure consisting of a metascheduler
and subordinate job schedulers that interact with batch job processing systems. The
significant difference between the approach proposed in [6] and well-known schedul-
ing solutions for distributed environments such as Grids [1-5, 8, 9], e.g., gLite Work-
load Management System [8], where Condor is used as a scheduling module, is the
fact that the scheduling strategy is formed on a basis of efficiency criteria. They allow
reflecting economic principles of resource allocation by using relevant cost functions
and solving a load balancing problem for heterogeneous resources. At the same time,
the inner structure of the job is taken into account when the resulting schedule is
formed. The metascheduler [5-7] implements the economic policy of a VO based on
local resource schedules. The schedules are defined as sets of slots coming from re-
source managers or schedulers in the resource domains. During each scheduling cycle
the sets of available slots are updated based on the information from local resource
managers. Thus, during every cycle of the job batch scheduling [6] two problems
have to be solved: 1) selecting an alternative set of slots (alternatives) that meet the
requirements (resource, time, and cost); 2) choosing a slot combination that would be
the efficient or optimal in terms of the whole job batch execution in the current cycle
of scheduling. To implement this scheduling scheme, first of all, one needs to propose
the algorithm for finding sets of alternative executions. An optimization technique for
the second phase of this scheduling scheme was proposed in [6, 7].

The scheduling problem in Grid is NP-hard due to its combinatorial nature and
many heuristic-based solutions have been proposed. In [4] heuristic algorithms for
slot selection, based on user-defined utility functions, are introduced. NWIRE system
[4] performs a slot window allocation based on the user defined efficiency criterion
under the maximum total execution cost constraint. However, the optimization occurs
only on the stage of the best found offer selection. First fit slot selection algorithms
(backtrack [10] and NorduGrid [11] approaches) assign any job to the first set of slots
matching the resource request conditions, while other algorithms use an exhaustive
search [2, 12, 13] and some of them are based on a linear integer programming (IP)
[2, 12] or mixed-integer programming (MIP) model [13]. Moab scheduler [14] im-
plements the backfilling algorithm and during a slot window search does not take into
account any additive constraints such as the minimum required storage volume or the
maximum allowed total allocation cost. Moreover, backfilling does not support envi-
ronments with non-dedicated resources and its execution time grows substantially
with the increase of the slot numbers. Assuming that every CPU node has at least one
local job scheduled, the backfilling algorithm has quadratic complexity in terms of the
slot number. In our previous works [15-17], two algorithms for slot selection AMP
and ALP that feature linear complexity ()mO , where m is the number of available

122 V. Toporkov et al.

time-slots, were proposed. Both algorithms perform the search of the first fitting win-
dow without any optimization. AMP (Algorithm based on Maximal job Price), per-
forming slot selection based on the maximum slot window cost, proved the advantage
over ALP (Algorithm based on Local Price of slots) when applied to the above men-
tioned scheduling scheme. However, in order to accommodate an end user’s job ex-
ecution requirements, there is a need for a more precise slot selection algorithm to
exploit during the first stage of the proposed scheduling scheme and to consider vari-
ous user demands along with the VO resource management policy.

In this paper, we propose algorithms for effective slot selection based on user de-
fined criteria that feature linear complexity on the number of the available slots during
the job batch scheduling cycle. The novelty of the proposed approaches consists of
allocating a number of alternative sets of slots (alternatives). The proposed algorithms
can be used for both homogeneous and heterogeneous resources. The paper is orga-
nized as follows. Section 2 introduces a general scheme for searching alternative slot
sets that are effective by the specified criteria. Then four implementations are pro-
posed and considered. Section 3 contains simulation results for comparison of pro-
posed and known algorithms. Section 4 summarizes the paper and describes further
research topics.

2 General Scheme and Slot Selection Algorithms

In this section we consider a general scheme of an Algorithm searching for Extreme
Performance (AEP) and its implementation examples.

2.1 AEP Scheme

The launch of any job requires a co-allocation of a specified number of slots, as well
as in the classic backfilling variation [14]. The target is to scan a list of m available
slots and to select a window W of n parallel slots with a length of the required re-
source reservation time. The job resource requirements are arranged into a resource
request containing a resource reservation time, characteristics of computational nodes
(clock speed, RAM volume, disk space, operating system etc.) and the limitation on
the selected window maximum cost. The total window cost is calculated as a sum of
an individual usage cost of the selected slots. According to the resource request, it is
required to find a window with the following description: n concurrent time-slots
providing the resource performance rate and the maximal resource price per time unit
F should be reserved for a time span st . The length of each slot in the window is

determined by the performance rate of the node on which it is allocated. Thus, in the
case of heterogeneous resources, as a result one has a window with a “rough right
edge” (Fig. 1). The window search is performed on the list of all available slots sorted
by their start time in ascending order (this condition is necessary to examine every
slot in the list and for operation of search algorithms of linear complexity [15-17]).
In addition, one can define a criterion crW on which the best matching window

 Slot Selection Algorithms in Distributed Computing 123

alternative is chosen: This can be a criterion for a minimum cost, a minimum execu-
tion runtime or, for example, a minimum energy consumption. The algorithm parses a
ranged list of all available slots subsequently for all the batch jobs. Higher priority
jobs are processed first [6].

Fig. 1. Window with a “rough right edge”

Consider as an example the problem of selecting a window of size n with a total
cost no more than S from the list of nm > slots (in the case, when nm = the selec-

tion is trivial). The maximal job budget is counted as nFtS s= . The current extended

window consists of m slots ms,...,s,s 21 . The cost of using each of the slots according

to their required time length is: mc,...,c,c 21 . Each slot has a numeric characteristic iz

in accordance to crW . The total value of these characteristics should be minimized
in the resulting window.

Then the problem could be formulated as follows:
min2211 →+++ mmza...zaza , Sca...caca mm ≤+++ 2211 ,

na...aa m =+++ 21 , { } m,...,r,ar 1 1 ,0 =∈ .

Additional restrictions can be added, for example, considering the specified value of
deadline. Finding the coefficients ma,...,a,a 21 each of which takes integer values 0

or 1 (and the total number of “1” values is equal to n), determine the window with
the specified criteria crW extreme value. By combining the optimization criteria,
VO administrators and users can form alternatives search strategies for every job in
the batch [6, 7]. Users may be interested in their jobs total execution cost minimizing
or, for example, in the earliest possible jobs finish time, and are able to affect the set
of alternatives found by specifying the job distribution criteria. VO administrators in
their turn are interested in finding extreme alternatives characteristics values (e.g.,
total cost, total execution time) to form more flexible and, possibly, more effective
combination of alternatives representing a batch execution schedule. The time length
of an allocated window W is defined by the execution time of the task that is using
the slowest CPU node. The algorithm proposed is processing a list of all slots availa-
ble during the scheduling interval ordered by a non-decreasing start time (see Fig. 1).
This condition is required for a single sequential slot list scan and algorithm linear
complexity on the number m of slots.

124 V. Toporkov et al.

The AEP scheme for an effective window search by the specified criteria can be
represented as follows:

/* Job – Batch job for which the search is performed ;
** windowSlots – a set (list) of slots representing the
window;*/
slotList = orderSystemSlotsByStartTime();
for(i=0; i< slotList.size; i++){
 nextSlot = slotList[i];
 if(!properHardwareAndSoftware(nextSlot))
 continue; // The slot does not meet the requirements
 windowSlotList.add(nextSlot);
 windowStart = nextSlot.startTime;
 for(j=0; j<windowSlots.size; j++){
 wSlot = windowSlots[j];
 minLength = wSlot.Resource.getTime(Job);
 if((wSlot.EndTime – windowStart) < minLength)
 windowSlots.remove(wSlot);
 }
 if(windowSlots.size >= Job.m){
 curWindow = getBestWindow(windowSlots);
 crW = getCriterion(curWindow);
 if(crW > maxCriterion){
 maxCriterion = crW;
 bestWindow = curWindow;
 }
 }
}

Finally, a variable bestWindow will contain an effective window by the given crite-
rion crW.

2.2 AEP Implementation Examples

The need to choose alternative sets of slots for every batch job increases the complex-
ity of the whole scheduling scheme [6]. With a large number of the available slots the
algorithm execution time may become inadequate. Though it is possible to mention
some typical optimization problems, based on the AEP scheme that can be solved
with a relatively decreased complexity. These include problems of total job cost, run-
time minimizing, the window formation with the minimal start/finish time.

Consider the procedure for minimizing a window start time. The difference with the
general AEP scheme is that the first suitable window will have the earliest possible
start time. Indeed, if at some step i of the algorithm (after the i-th slot is added) the
suitable window can be formed, then the windows, formed at the further steps will be
guaranteed to have the start time that is not earlier (according to the ordered list of
available slots, only slots with non-decreasing start time will be taken into considera-
tion). This procedure can be reduced to finding a set of the first n parallel slots the

 Slot Selection Algorithms in Distributed Computing 125

total cost of which does not exceed the budget limit S . This description coincides the
AMP scheme considered in previous works [15-17]. Thus AEP is naturally an exten-
sion of AMP, and AMP is the particular case of the whole AEP scheme performing
only the start time optimization. Further we will use AMP abbreviation as a reference
to the window start time minimization procedure. It is easy to provide the implementa-
tion of the algorithm of finding a window with the minimum total execution cost. For
this purpose in the AEP search scheme n slots with the minimum sum cost should be
chosen. If at each step of the algorithm a window with the minimum sum cost is se-
lected, at the end the window with the best value of the criterion crW will be guaran-
teed to have overall minimum total allocation cost at the given scheduling interval.

The problem to find a window with the minimum runtime is more complicated.
Given the nature of determining a window runtime, which is equal to the length of the
longest slot (allocated on the node with the least performance level), the following
algorithm may be proposed:

orderSlotsByCost(windowSlots);
resultWindow = getSubList(0,n, windowSlots);
extendWindow = getSubList(n+1,m, windowSlots);
while(extendWindow.size > 0){
 longSlot = getLongestSlot(resultWindow);
 shortSlot = getCheapestSlot(extendWindow);
 extendWindow.remove(shortSlot);
 if((shortSlot.size < longSlot.size)&&
 (resultWindow.cost + shortSlot.cost < S)){
 resultWindow.remove(longSlot);
 resultWindow.add(shortSlot);
 }
}

As a result, the suitable window of the minimum time length will be formed in a vari-
able resultWindow. The algorithm described consists of the consecutive at-
tempts to substitute the longest slot in the forming window (the resultWindow
variable) with another shorter one that will not be too expensive. In case when it is
impossible to substitute the slots without violating the constraint on the maximum
window allocation cost, the current resultWindow configuration is declared to
have the minimum runtime. Implementing this algorithm of window selection at each
step of the AEP scheme allows finding a suitable window with the minimum possible
runtime at the given scheduling interval. An algorithm for finding a window with the
earliest finish time has a similar structure and can be described using the runtime
minimizing procedure presented above. Indeed, the expanded window has a start time
tStart equal to the start time of the last added suitable slot. The minimum finish
time for a window on this set of slots is (tStart + minRuntime), where mi-
nRuntime is the minimum window length. The value of minRuntime can be
calculated similar to the runtime minimizing procedure described above. Thus, by
selecting a window with the earliest completion time at each step of the algorithm, the
required window will be allocated at the end of the slot list.

126 V. Toporkov et al.

It is worth mentioning that all proposed AEP implementations have a linear com-
plexity ()mO : algorithms “move” through the list of the m available slots in the

direction of non-decreasing start time without turning back or reviewing previous
steps.

3 Experimental Studies of Slot Selection Algorithms

The goal of the experiment is to examine AEP implementations: to analyze alterna-
tives search results with different efficiency criteria, to compare the results with AMP
and to estimate the possibility of using in real systems considering the algorithm ex-
ecutions time.

3.1 Algorithms and Simulation Environment

For the proposed AEP efficiency analysis the following implementations were added
to the simulation model [6, 7]: 1) AMP – the algorithm for searching alternatives with
the earliest start time. This scheme was introduced in works [15-17] and briefly de-
scribed in section 2.2; 2) MinFinish – the algorithm for searching alternatives with the
earliest finish time. It likewise involves finding a single alternative with the earliest
finish time for each batch job (the procedure is described in section 2.2); 3) MinCost –
the algorithm for searching a single alternative with the minimum total allocation cost
on the scheduling interval; 4) MinRunTime – this algorithm performs a search for a
single alternative with the minimum execution runtime (the window’s runtime is de-
fined as a length of the longest composing slot); 5) MinProcTime – this algorithm
performs a search for a single alternative with the minimum total node execution time
(defined as a sum of the composing slots’ time lengths). It is worth mentioning that
this implementation is simplified and does not guarantee an optimal result and only
partially matches the AEP scheme, because a random window is selected; 6) Common
Stats, AMP (further referred to as CSA) – the scheme for searching multiple alterna-
tives using AMP. Similar to the general searching scheme [15-17], a set of suitable
alternatives, disjointed by the slots, is allocated for each job. To compare the search
results with the algorithms 1-5, presented above, only alternatives with the extreme
value of the given criterion will be selected, so the optimization will take place at the
selection process. The criteria include the minimum start time, the minimum finish
time, the minimum total execution cost, the minimum runtime and the minimum pro-
cessor time used.

Since the purpose of the considered algorithms is to allocate suitable alternatives, it
makes sense to make the simulation apart from the whole general scheduling scheme,
described in [6]. In this case, the search will be performed for a single predefined job.
Thus during every single experiment a generation of a new distributed computing
environment will take place while the algorithms described will perform the alterna-
tives search for a single base job with the resource request defined in advance. A si-
mulation framework [6, 7] was configured in a special way in order to study and to
analyze the algorithms presented. The core of the system includes several components
that allow generating the initial state of the distributed environment on the given

 Slot Selection Algorithms in Distributed Computing 127

scheduling interval, a batch with user jobs and implements the developed alternative
search algorithms.

In each experiment a generation of the distributed environment that consists of 100
CPU nodes was performed. The relatively high number of the generated nodes has
been chosen to allow CSA to find more slot alternatives. Therefore more effective
alternatives could be selected for the searching results comparison based on the given
criteria. The performance rate for each node was generated as a random integer varia-
ble in the interval [2; 10] with a uniform distribution. The resource usage cost was
formed proportionally to their performance with an element of normally distributed
deviation in order to simulate a free market pricing model [1-4]. The level of the re-
source initial load with the local and high priority jobs at the scheduling interval [0;
600] was generated by the hyper-geometric distribution in the range from 10% to 50%
for each CPU node. Based on the generated environment the algorithms performed
the search for a single initial job that required an allocation of 5 parallel slots for 150
units of time. The maximum total execution cost according to user requirements was
set to 1500. This value generally will not allow using the most expensive (and usually
the most efficient) CPU nodes.

3.2 Experimental Results

The results of the 5000 simulated scheduling cycles are presented in Fig. 2-6.
An average number of the alternatives found with CSA for a single job during

the one scheduling cycle was 57. This value can be explained as the balance between
the initial resource availability level and the user job resource requirements. Thus, the
selection of the most effective windows by the given criteria was carried out among
57 suitable alternatives on the average. With the help of other algorithms only the
single effective by the criterion alternative was found. Consider the average start time
for the alternatives found (and selected) by the aforementioned algorithms (Fig. 2 (a)).
AMP, MinFinish and CSA were able to provide the earliest job start time at the begin-
ning of the scheduling interval (t = 0). The result was expected for AMP and CSA
(which is essentially based on the multiple runs of the AMP procedure) since 100
available resource nodes provide a high probability that there will be at least 5 parallel
slots starting at the beginning of the interval and can form a suitable window. The fact
that the MinFinish algorithm was able to provide the same start time can be explained
by the local tasks minimum length value, that is equal to 10. Indeed, the window start
time at the moment t = 10 cannot provide the earliest finish time even with use of the
most productive resources (for example the same resources allocated for the window
with the minimal runtime). Average starting times of the alternatives found by Mi-
nRunTime, MinProcTime and MinCost are 53, 514.9 and 193 respectively.

The average runtime of the alternatives found (selected) is presented in Fig. 2 (b).
The minimum execution runtime 33 was obviously provided by the MinRunTime
algorithm. Though, schemes MinFinish, MinProcTime and CSA provide quite compa-
rable values: 34.4, 37.7 and 38 time units respectively that only 4.2%, 14.2% and
15.1% longer. High result for the MinFinish algorithm can be explained by the “need”
to complete the job as soon as possible with the minimum (and usually initial)
start time. Algorithms MinFinish and MinRunTime are based on the same criterion
selection procedure described in the section 2.2. However due to non-guaranteed

128 V. Toporkov et al.

availability of the most productive resources at the beginning of the scheduling inter-
val, MinRunTime has the advantage. Relatively long runtime was provided by AMP
and MinCost algorithms. For AMP this is explained by the selection of the first fitting
(and not always effective by the given criterion) alternative, while MinCost tries to
use relatively cheap and (usually) less productive CPU nodes.

(a) (b)

Fig. 2. Average start time (a) and runtime (b)

The minimum average finish time (Fig. 3 (a)) was provided by the MinFinish algo-
rithm – 34.4. CSA has the closest resulting finish time of 52.6 that is 52.9% later. The
relative closeness of these values comes from the fact that other related algorithms did
not intend to minimize a finish time value and were selecting windows without taking
it into account. At the same time CSA is picking the most effective alternative among
57 (on the average) allocated at the scheduling cycle: the optimization was carried out
at the selection phase. The late average finish time 307.7 is provided by the MinCost
scheme. This value can be explained not only with a relatively late average start time
(see Fig. 2 (a)), but also with a longer (compared to other approaches) execution run-
time (see Fig. 2 (b)) due to the use of less productive resource nodes. The finish time
obtained by the simplified MinProcTime algorithm was relatively high due to the fact
that a random window was selected (without any optimization) at each step of the
algorithm, though the search was performed on the whole list of available slots. With
such a random selection the most effective window by the processor time criterion
was near the end of the scheduling interval.

The average used processor time (the sum time length of the used slots) for the al-
gorithms considered is presented in Fig. 3 (b). The minimum value provided by Mi-
nRunTime is 158 time units. MinFinish, CSA and MinProcTime were able to provide
comparable results: 161.9, 168.6 and 171.6 respectively. It is worth mentioning that
although the simplified MinProcTime scheme does not provide the best value, it is
only 2% less effective compared to the common CSA scheme, while its working time
is orders of magnitude less (Tables 1, 2). The most processor time consuming alterna-
tives were obtained by AMP and MinCost algorithms. Similarly to the execution run-
time value, this can be explained by using a random first fitting window (in case of
AMP) or by using less expensive, and hence less productive, resource nodes (in case
of the MinCost algorithm), as nodes with a low performance level require more time
to execute the job.

 Slot Selection Algorithms in Distributed Computing 129

(a) (b)

Fig. 3. Average finish time (a) and CPU usage time (b)

Finally, let us consider the total job execution cost (Fig. 4).

Fig. 4. Average job execution cost

The MinCost algorithm has a big advantage over other algorithms presented: it was
able to provide the total cost of 1027.3 (note that the total cost limit was set by the
user at 1500). Alternatives found with other considered algorithms have approximate-
ly the same execution cost. Thus, the cheapest alternatives found by CSA have the
average total execution cost equal to 1352, that is 31.6% more expensive compared to
the result of the MinCost scheme, while alternatives found by MinRunTime (the most
expensive ones) are 42.5% more expensive.

The important factor is a complexity and an actual working time of the algorithms
under consideration, especially with the assumption of the algorithm’s repeated use
during the first stage of the scheduling scheme [6]. In the description of the AEP gen-
eral scheme it was mentioned that the algorithm has a linear complexity on the num-
ber of the available slots. However in has a quadratic complexity with a respect to the
number of CPU nodes. Table 1 shows the actual algorithm execution time in millise-
conds measured depending on the number of CPU nodes.

130 V. Toporkov et al.

The simulation was performed on a regular PC workstation with Intel Core i3 (2
cores @ 2.93 GHz), 3GB RAM on JRE 1.6, and 1000 separate experiments were
simulated for each value of the processor nodes numbers {50, 100, 200, 300, 400}.
The simulation parameters and assumptions were the same as described in section 3.1,
apart from the number of used CPU nodes. A row “CSA: Alternatives Num”
represents an average number of alternatives found by CSA during the single experi-
ment simulation (note that CSA is based on multiple runs of AMP algorithm). A row
“CSA per Alt” represents an average working time for the CSA algorithm in recalcula-
tion for one alternative. The CSA scheme has the longest working time that on the
average almost reaches 3 seconds when 400 nodes are available.

Table 1. Actual algorithms execution time in ms

CPU nodes number: 50 100 200 300 400

CSA:Alternatives Num 25.9 57 128.4 187.3 252

CSA per Alt 0.33 0.99 3.16 6.79 11.83

CSA 8.5 56.5 405.2 1271 2980.9

AMP 0.3 0.5 1.1 1.6 2.2

MinRunTime 3.2 12 45.5 97.2 169.2

MinFinishTime 3.2 12 45.1 96.9 169

MinProcTime 1.5 5.2 19.4 42.1 74.1

MinCost 1.7 6.3 23.6 52.3 91.5

Besides this time has a near cubic increasing trend with a respect to the nodes

number. This trend can be explained by the addition of two following factors: 1) a
linear increase of the alternatives number found by CSA at each experiment (which
makes sense: the linear increase of the available nodes number leads to the
proportional increase in the available node processor time; this makes it possible to
find (proportionally) more alternatives); 2) a near quadratic complexity of the AMP
algorithm with a respect to the nodes number, which is used to find single alternatives
in CSA. Even more complication is added by the need of “cutting” a suitable windows
from the list of the available slots [17]. Other considered algorithms will be able to
perform a much faster search. The average working time of MinRunTime,
MinProcTime and MinCost proves their (at most) quadratic complexity on the number
of CPU nodes, and the executions times are suitable for practical use. The AMP’s
execution time shows even near linear complexity because with a relatively large
number of free available resources it was usually able to find a window at the
beginning of the scheduling interval (see Fig. 1, a) without the full slot list scan.

Fig. 5 clearly presents the average working duration of the algorithms depending
on the number of available CPU nodes (the values were taken from Table 1). (The
CSA curve is not represented as its working time is incomparably longer than AEP-
like algorithms.)

 Slot Selection Algorithms in Distributed Computing 131

Fig. 5. Average working time duration depending on the available CPU nodes number

Table 2 contains the algorithms working time in milliseconds measured depending
on the scheduling interval length.

Table 2. Algorithms working time (in ms) measured depending on the scheduling interval
length

Scheduling interval length:
Number of slots:

600
472.6

1200
779.4

1800
1092

2400
1405.1

3000
1718.8

3600
2030.6

CSA:Alternatives Num 57 125.4 196.2 269.8 339.7 412.5
CSA per Alt 0.95 1.91 2.88 3.88 4.87 5.88
CSA 54.2 239.8 565.7 1045.7 1650.5 2424.4
AMP 0.5 0.82 1.1 1.44 1.79 2.14
MinRunTime 11.7 26 40.9 55.5 69.4 84.6
MinFinishTime 11.6 25.7 40.6 55.3 69 84.1
MinProcTime 5 11.1 17.4 23.5 29.5 35.8
MinCost 6.1 13.4 20.9 28.5 35.7 43.5

Overall 1000 single experiments were conducted for each value of the interval

length {600, 1200, 1800, 2400, 3000, 3600} and for each considered algorithm an
average working time was obtained. The experiment simulation parameters and
assumptions were the same as described earlier in this section, apart from the
scheduling interval length. A number of CPU nodes was set to 100. Similarly to
the previous experiment, CSA had the longest working time (about 2.5 seconds with
the scheduling interval length equal to 3600 model time units), which is mainly
caused by the relatively large number of the formed execution alternatives (on the
average more than 400 alternatives on the 3600 interval length). When analyzing
the presented values it is easy to see that all proposed algorithms have a linear com-
plexity with the respect to the length of the scheduling interval and, hence, to
the number of the available slots (Fig. 6), and their executions times are suitable for
on-line scheduling.

132 V. Toporkov et al.

Fig. 6. Average working time duration depending on the scheduling interval length

3.3 Brief Analysis and Related Work

In this work, we propose algorithms for efficient slot selection based on user and ad-
ministrators defined criteria that feature the linear complexity on the number of all
available time-slots during the scheduling interval. Besides, in our approach the job
start time and the finish time for slot search algorithms may be considered as criteria
specified by users in accordance with the job total allocation cost. It makes an oppor-
tunity to perform more flexible scheduling solutions.

The co-allocation algorithm presented in [12] uses the 0-1 IP model with the goal
of creating reservation plans satisfying user resource requirements. The number

of variables in the proposed algorithm becomes 3N depending on the number of
computer sites N . Thus this approach may be inadequate for an on-line service in
practical use. The proposed algorithms have the quadratic complexity with a respect
to the number of CPU nodes, and not to the number of computer sites as in [12]. A
linear IP-driven algorithm is proposed in [2]. It combines the capabilities of IP and
genetic algorithm and allows obtaining the best metaschedule that minimises the
combined cost of all independent users in a coordinated manner. In [13], the authors
propose a MIP model which determines the best scheduling for all the jobs in
the queue in environments composed of multiple clusters that act collaboratively.
The proposed in [2, 12, 13] scheduling techniques are effective compared with other
scheduling techniques under given criteria: the minimum processing cost, the overall
makespan, resources utilization etc. However, complexity of the scheduling process is
extremely increased by the resources heterogeneity and the co-allocation process,
which distributes the tasks of parallel jobs across resource domain boundaries. The
degree of complexity may be an obstacle for on-line use in large-scale distributed
environments.

As a result it may be stated that each full AEP-based scheme was able to obtain the
best result in accordance with the given criterion. This allows to use the proposed
algorithms within the whole scheduling scheme [6] at the first stage of the batch job
alternatives search. Moreover, each full AEP-based scheme was able to obtain the
best result in accordance with the given criterion. Besides, a single run of the AEP-
like algorithm had an advantage of 10%-50% over suitable alternatives found with

 Slot Selection Algorithms in Distributed Computing 133

AMP with a respect to the specified criterion. A directed alternative search at the first
stage of the proposed scheduling approach [6, 7] can affect the final distribution and
may be favorable for the end users. According to the experimental results, on one
hand, the best scheme with top results in start time, finish time, runtime and CPU
usage minimization was MinFinish. Though in order to obtain such results the
algorithm spent almost all user specified budget (1464 of 1500). On the other hand,
the MinCost scheme was designed precisely to minimize execution expenses and
provides 43% advantage over MinFinish (1027 of 1500), but the drawback is a more
than modest results by other criteria considered. The MinProcTime scheme stands
apart and represents a class of simplified AEP implementations with a noticeably
reduced working time. And though the scheme, compared to other considered
algorithms, did not provide any remarkable results, it was on the average only 2% less
effective than the CSA scheme by the dedicated CPU usage criterion. At the same
time its reduced complexity and actual working time allow to use it in a large wide
scale distributed environments when other optimization search algorithms prove to be
too slow.

4 Conclusions and Future Work

In this work, we address the problem of slot selection and co-allocation for parallel
jobs in distributed computing with non-dedicated resources. Each of the AEP algo-
rithms possesses a linear complexity on a total available slots number and a quadratic
complexity on a CPU nodes number. The advantage of AEP-based algorithms over
the general CSA scheme was shown for each of the considered criteria: start time,
finish time, runtime, CPU usage time and total cost.

In our further work, we will refine resource co-allocation algorithms in order to
integrate them with scalable co-scheduling strategies [6, 7].

Acknowledgments. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Leading Scientific
Schools (SS-316.2012.9), the Russian Foundation for Basic Research (grant no. 12-
07-00042), and by the Federal Target Program “Research and scientific-pedagogical
cadres of innovative Russia” (state contract no. 16.740.11.0516).

References

1. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud Ser-
vices with Data Access Awareness. J. Parallel and Distributed Computing 72(4), 591–602
(2012)

2. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm
for Meta-scheduling on Utility Grids. J. Parallel, Emergent and Distributed Systems 26,
493–517 (2011)

134 V. Toporkov et al.

3. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and
Scheduling in Grid Computing. J. Concurrency and Computation: Practice and Expe-
rience 5(14), 1507–1542 (2002)

4. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

5. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-
source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the Art and Future Trends, pp. 271–293. Kluwer Acad. Publishers
(2003)

6. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite Scheduling
Strategies in Distributed Computing with Non-dedicated Resources. Procedia Computer
Science 9, 176–185 (2012)

7. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Dependable Strategies
for Job-flows Dispatching and Scheduling in Virtual Organizations of Distributed Compu-
ting Environments. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Complex Systems and Dependability. AISC, vol. 170, pp. 289–304.
Springer, Heidelberg (2012)

8. Cecchi, M., Capannini, F., Dorigo, A., et al.: The gLite Workload Management System. J.
Phys.: Conf. Ser. 219 (6), 062039 (2010)

9. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow Scheduling Algorithms for Grid Com-
puting. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed
Computing Environments. SCI, vol. 146, pp. 173–214. Springer, Heidelberg (2008)

10. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance Reserva-
tions. In: 17th IEEE Int. Symposium on HPDC, pp. 65–74. IEEE CS Press, New York
(2008)

11. Elmroth, E., Tordsson, J.: A Standards-based Grid Resource Brokering Service Supporting
Advance Reservations, Coallocation and Cross-Grid Interoperability. J. Concurrency and
Computation: Practice and Experience 25(18), 2298–2335 (2009)

12. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based Co-
allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-
guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS,
vol. 6253, pp. 16–34. Springer, Heidelberg (2010)

13. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-
clusters. In: Caragiannis, I., et al. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp.
196–206. Springer, Heidelberg (2013)

14. Moab Adaptive Computing Suite, http://www.adaptivecomputing.com
15. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection Al-

gorithms for Economic Scheduling in Distributed Systems. Procedia Computer Science 4,
2267–2276 (2011)

16. Toporkov, V., Yemelyanov, D., Toporkova, A., Bobchenkov, A.: Resource Co-allocation
Algorithms for Job Batch Scheduling in Dependable Distributed Computing. In: Zamojski,
W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Dependable Comput-
er Systems. AICS, vol. 97, pp. 243–256. Springer, Heidelberg (2011)

17. Toporkov, V., Bobchenkov, A., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Se-
lection and Co-allocation for Economic Scheduling in Distributed Computing. In: Malysh-
kin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 368–383. Springer, Heidelberg (2011)

	Slot Selection Algorithms in Distributed Computingwith Non-dedicated and Heterogeneous Resources
	1 Introduction
	2 General Scheme and Slot Selection Algorithms
	2.1 AEP Scheme
	2.2 AEP Implementation Examples

	3 Experimental Studies of Slot Selection Algorithms
	3.1 Algorithms and Simulation Environment
	3.2 Experimental Results
	3.3 Brief Analysis and Related Work

	4 Conclusions and Future Work
	References

