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Preface

The PaCT-2013 (Parallel Computing Technologies) conference was a four-day
event held in St. Petersburg. This was the 12th international conference in the
PaCT series. The conferences are held in Russia every odd year. The first con-
ference, PaCT-91, was held in Novosibirsk (Academgorodok), September 7 –
11, 1991. The next PaCT conferences were held in Obninsk (near Moscow),
August 30 - September 4, 1993; in St. Petersburg, September 12–15, 1995; in
Yaroslavl, September, 9–12 1997; in Pushkin (near St. Petersburg), September,
6–10, 1999; in Academgorodok (Novosibirsk), September 3–7, 2001; in Nizhni
Novgorod, September, 15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in
Pereslavl-Zalessky, September 3–7, 2007; in Novosibirsk, August 31-September
4, 2009; in Kazan, September 19–23. Since 1995, all the PaCT proceedings have
been published by Springer in the LNCS series. PaCT-2013 was jointly organized
by the Institute of Computational Mathematics and Mathematical Geophysics
of Russian Academy of Sciences and the Saint Petersburg State Polytechnical
University (SPbSPU). The aim of PaCT-2013 was to give an overview of new
developments, applications, and trends in parallel computing technologies. We
sincerely hope that the conference helped our community to deepen its under-
standing of parallel computing technologies by providing a forum for an exchange
of views between scientists and specialists from all over the world. The conference
attracted 88 participants from around the world. Authors from 18 countries sub-
mitted 83 papers. Of these, 41 were selected for the conference as regular papers;
there were also two invited speakers. All the papers were reviewed by at least
three international referees. Many thanks to our sponsors: Russian Academy of
Sciences, Russian Fund for Basic Research, Closed Joint Stock Company Intel
A/O.

October 2013 Victor Malyshkin
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Bi-objective Optimization for Scheduling in

Parallel Computing Systems

Anthony A. Maciejewski

Department of Electrical and Computer Engineering
Colorado State University

Fort Collins, Colorado, USA
aam@ColoState.edu

www.engr.colostate.edu/~aam

Abstract. Most challenging engineering problems consider domains
where there exist multiple objectives. Often the different objectives will
conflict with each other and these conflicts make it difficult to deter-
mine performance trade-offs between one objective and another. Pareto
optimality is a useful tool to analyze these trade-offs between the two
objectives. To demonstrate this, we explore how Pareto optimality can
be used to analyze the trade-offs between makespan and energy con-
sumption in scheduling problems for heterogeneous parallel computing
systems. We have adapted a multi-objective genetic algorithm from the
literature for use within the scheduling domain to find Pareto opti-
mal solutions. These solutions reinforce that consuming more energy
results in a lower makespan, while consuming less energy results in
a higher makespan. More interestingly, by examining specific solution
points within the Pareto optimal set, we are able to perform a deeper
analysis about the scheduling decisions of the system. These insights
in balancing makespan and energy allow system administrators to effi-
ciently operate their parallel systems based on the needs of their envi-
ronment. The bi-objective optimization approach presented can be used
with a variety of performance metrics including operating cost, reliabil-
ity, throughput, energy consumption, and makespan. More information
about this research can be found at http://www.engr.colostate.edu/˜aam.1

1 This research was supported by the National Science Foundation under grant number
CNS-0905399.
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H.J. Siegel

Department of Electrical and Computer Engineering
and Department of Computer Science

Colorado State University
Fort Collins, Colorado, USA

HJ@ColoState.edu

www.engr.colostate.edu/~hj

Abstract. What does it mean for a system to be robust? How can ro-
bustness be described? How does one determine if a claim of robustness
is true? How can one decide which of two systems is more robust? We
explore these general questions in the context of heterogeneous parallel
and distributed computing systems. A critical research problem is how
to allocate heterogeneous resources to tasks to optimize a given perfor-
mance measure. It is important for system performance to be robust
against uncertainty. To accomplish this, we present a stochastic model
for deriving the robustness of a resource allocation. The robustness of a
resource allocation is quantified as the probability that a user-specified
level of system performance can be met. We show how to use historical
data to build a probabilistic model to evaluate the robustness of re-
source assignments and how to design resource management techniques
that produce robust allocations. The robustness analysis approach pre-
sented can be applied to a variety of computing and communication
system environments, including parallel, distributed, cluster, grid, Inter-
net, cloud, embedded, multicore, content distribution networks, wireless
networks, and sensor networks. Furthermore, the robustness model is
generally applicable to design problems throughout various scientific and
engineering fields. More information about this research can be found at
www.engr.colostate.edu/˜hj.1

1 This research was supported by the National Science Foundation under grant number
CNS-0905399 and the Colorado State University George T. Abell Endowment.
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Strassen’s Communication-Avoiding Parallel  
Matrix Multiplication Algorithm  
for All-Port 2D Torus Networks  

Cesur Baransel  

Saltus Yazılım Ltd., Hacettepe University Technopolis, Ankara, Turkey 
cesur@ada.net.tr 

Abstract. A parallel implementation of Strassen’s matrix multiplication algo-
rithm is proposed for massively parallel supercomputers with 2D all-port torus 
interconnection networks. The proposed algorithm employs conflict-free 
routing patterns and operates on completely-connected subnetworks in order to 
reduce the latency cost L of the algorithm down to 7( , ) 6 logL n P P= on all-

port 2D torus architectures having P nodes, which compares favorably to the la-
tency cost 7( , ) 36 logL n P P= of the recently proposed CAPS algorithm. 

Keywords: Communication-Avoiding, 2.5D Matrix Multiplication Algorithm, 
Fast Matrix Multiplication, Strassen’s Matrix Multiplication, Parallel 
Processing, Torus Interconnection Networks, 2D Torus.  

1 Introduction 

In sequential matrix multiplication of two square matrices of order n n× , computing a 
single element of the product matrix requires n multiplications followed by ( 1)n −  

additions. Thus, 3 2(2 )n n− scalar operations in total should be performed to complete 

the multiplication. In 1969, Strassen proposed a new formulation of matrix multiplica-
tion which reduces the number of scalar operations from 3 2(2 )n n− down to 

( )2log 7 27 6n n−  where n is a power of two [12]. Strassen’s formulation makes it possi-

ble to multiply two 2×2 matrices with 7 multiplications instead of 8 and can be recur-
sively applied to the multiplication of submatrices until 2×2 submatrices are reached. 
When submatrices are distributed among the processors, intermediate results need to 
be communicated across the network. In recent studies, it has been argued that given 
the status of the current technology, communication costs are and will continue to be 
the limiting factor in the design of efficient parallel algorithms and so-called “Com-
munication-Avoiding Algorithms” are proposed as a solution [4]. The basic idea be-
hind the communication-avoiding algorithms is to minimize communications between 
processors by replicating data beyond the required minimum and also reformulating 



2 C. Baransel 

the communication patterns specified within the algorithm. In an earlier publication, 
we have proposed an implementation of Strassen’s algorithm specifically designed for 
wormhole-routed, 2D, all-port, torus interconnection networks [3]. In this paper, we 
present a novel communication-avoiding matrix multiplication algorithm for the same 
architecture based on a variant of Strassen’s formulation. Unlike some recent propos-
als on the same subject, we address the topological aspects of the algorithm in detail 
and provide specific conflict-free routing patterns which are instrumental in decreas-
ing the overall number of messages. 

This paper is structured as follows. A short review of the previous work is pro-
vided in the next section. Section 3 gives the details of the proposed algorithm and 
Section 4 contains the performance analysis. The paper ends with conclusions. 

2 Problem Statement and Previous Work 

Cannon’s parallel matrix multiplication algorithm can effectively parallelize the task 

of performing the involved 3 2(2 )n n− scalar operations over p p p= ×  processors 

with the following computational and communication costs [5]: 

 
2 3

    2 ( )Cannon

n n
T p

p p
α β γ= + +  (1) 

where α is the latency expressed in seconds, β is the inverse of the bandwidth ex-
pressed in words-per-second and γ is the time required to perform a scalar operation 
expressed in seconds. The above formula includes the cost of the initial and final 

alignments each of which can be completed in at most 2p  steps on 2D torus net-

work. Omitting alignment phase, the overall cost becomes: 

 
2 3

    ( )Cannon

n n
T p

p p
α β γ= + +  (2) 

When communication overlaps computation, the above formula can be interpreted in 
two ways. If the network is sufficiently fast, processors can find the next operands 
already delivered when they complete the local scalar operations. In that case, the 

lower bound of the algorithm can be stated as ( )3n pΩ . On the other hand, if proces-

sors are faster, they have to wait for the delivery of the next operands after completing 
the local scalar operations, and the communication cost determines the lower bound 
of the algorithm. Therefore, we can write: 

 
2 3

    max ( ) ,Cannon

n n
T p

p p
α β γ

    
= +         

 (3) 
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It is known that, γ β α<< <<  for the current multiprocessor interconnection net-

works1 and especially the network latency is not likely to improve significantly in the 
near future [2]. Thus, in view of the widening gap between network latency and pro-
cessor speeds, it is getting increasingly more important to reduce the number of mes-
sages and the message lengths involved in an application.  

Recently, some communication avoiding matrix multiplication algorithms have 
been proposed in the literature [2], [4], [8] and [11]. Of particular interest here is the 
CAPS (Communication-Avoiding Parallel Strassen) Algorithm which reportedly per-
forms asymptotically better than any previous classical or Strassen-based parallel 
algorithm [2], [8]. In these works, authors give an algorithm which is communication-
optimal according to the lower bounds on communication costs derived in [1], [6] and 
[11]. However, they also indicate that “on some architectures it may be more impor-
tant to consider the topology of the network and redesign the algorithm to minimize 
contention” which they have not done. In the next section, we will address these is-
sues and present a solution which operates over conflict-free communication paths 
and minimizes message counts at the expense of some extra memory usage. 

3 The Proposed Algorithm 

In this section, we give the details of the proposed algorithm in three different set-
tings. In the first case, 7 processors are mapped to a 3×3 torus and we show that Stras-
sen’s algorithm can be completed in 2 communication steps provided that no further 
recursions are involved. In the second case, 49 processors are mapped to a 7×7 torus 
where we perform one recursion and the total number of communication steps is 6. In 
the third case, 4 groups of 7 processors are mapped to a 6×6 torus and the total num-
ber of communication steps is 7 or 15 depending on the amount of memory used. In 
the last case, we also perform one recursion but divide it into two sequential steps. 
These three cases can be used in different combinations to fit the Strassen’s algorithm 
into a given machine rather than requiring a machine with 7k×7k processors for ex-
ecuting (k−1) recursive calls to the algorithm.  

3.1 The Basic 2×2 Multiplication Algorithm 

The proposed implementation of Strassen’s matrix multiplication algorithm for mul-
tiplying two 2×2 matrices uses a 7-processors tile mapped to a 3×3 torus. We call it 
the base case of Strassen. Figure 1 shows how summation and multiplication tasks are 
assigned to the processors.  

                                                           
1  For a machine with an effective floating-point rate of 10 Gflop/s per processor, network la-

tency of 10 μs, and network bandwidth of 4 GB/s, these parameters can be calculated 

as 1010 sγ −= , 510 sα −= and 92.10 /s wordβ −= where a word consists of 4 bytes. 
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Fig. 1. Strassen’s matrix multiplication steps for 2×2 matrices. Underlined elements are already 
in place. 

The initial locations of the elements of the matrices to be multiplied, namely A11, 
A12, A21, A22, B11, B12, B21 and B22, are shown in Figure 1 (red nodes in color 
figure). Figure 1 also presents the details of the formulation of the Strassen’s method 
as proposed by Kolen and Bruce [7]. This variant is proved to be more suitable for our 
approach since it removes the imbalance regarding the usage of data held in proces-
sors (as all are now involved in exactly five different sums) and also distributes their 
indirect involvements in the products of sums more evenly across the processors. Our 
reasons for choosing this variant are explained in detail in our previous work [3]. 
Remember that in an all-port torus interconnection network, a node can send and 
receive messages at four ports in parallel. Figure 1 is supposed to convey the follow-
ing information visually regarding the algorithm: 

1. Assuming the initial alignment in the figure, only one communication step is ne-
cessary prior to the calculation of 10 sums and 7 products.  

2. Products are calculated in place, without moving sums around. In other words, no 
communication is required prior to calculating products once the calculations of 
the sums are finished.  

3. For calculating the elements of the products matrix C, one additional communica-
tion step is required (Figure 2).  

4. The execution of the Strassen’s algorithm without any further recursions is com-
pleted in two communications and two calculation steps.  

5. Nodes store at most four matrix elements, instead of the minimum two. This is the 
extent of the extra memory usage involved. 

6. Communication and computation steps cannot be overlapped. 
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p5=s4× s8 

s4= A12− A22 
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p6=s5× s9 

s5= A11− A21 

s9= B11+ B12 

A22, B22  

p4=B22× s3 
s3= A21− A22 

A21, B12  

p1=A21× s6 
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Fig. 2. Calculating the elements of the products matrix C from 7 products. Underlined elements 
are already in place. 

The latency (L) and bandwidth (B) cost of the base case can be computed as fol-
lows. Assuming N n n= ×  input matrices, one processor stores N/4 elements of each 
input matrix. The elements of product matrices are also composed of N/4 elements. 
There are 2 communication steps in total. At the first step, some messages can be 
2 4N× elements long. In the second step, transmitted messages are always composed 

of N/4 elements. Thus for a node, we can write: 

 ( ) 2 , ( ) 3 0.75
4

N
L N B N Nα β β = = = 

 
 (4) 

3.2 Performing Recursion 

Figure 3 shows how the first level of recursion is applied where 49 processors 
mapped onto 7×7 torus. Recursion starts in the central blue tile and the input matrices 
for the seven products are transmitted to the centers of the seven tiles which are indi-
cated as c1 to c7 in the figure. Then, with another transmission step the initial align-
ment is achieved within each tile. Thus, going into a recursion level requires two 
transmission steps. Since results will follow the same path in reverse direction, anoth-
er two transmission steps are necessary to return from the recursion. In other words, 
each recursion requires 6 communication and 2 computation steps and none of these 
steps can overlap each other. 

The latency (L) and bandwidth (B) costs of single recursion can be computed as 
follows. Assuming N n n= ×  input matrices at the beginning of the recursion, each of 
the 7 product submatrices will be composed N/4 elements. Once the recursion is ex-
ecuted, one element from each of the two input matrices will be transmitted to center 
nodes in a single communication step. Since one element contains the N/4 elements of 
the original matrix, the latency and bandwidth costs of this step are: 

 ( ) , ( ) 2
4

N
L N B Nα β= =  (5) 

Center nodes perform the initial alignment in a single communication step by trans-
mitting messages which contain 2 16N× elements each. The latency and bandwidth 

costs of this step are: 

C11= p2+p7 

p2  C12= p1−p2−p3+p6

 

p5  C21= p4−p3−p5+p7

p6

C22= p1−p4
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 ( ) , ( ) 2
16

N
L N B Nα β= =  (6) 

The products are computed as in the base case and resulting matrices are formed. The 
latency and bandwidth costs of this step are: 

 ( ) 2 , ( ) 3
16

N
L N B Nα β= =  (7) 

The return from the recursion requires two more communication steps in the reverse 
direction. However in the reverse direction, messages are only N/16 and N/4 elements 
long. Combining, we have: 

 ( ) 6 , ( ) 18 1.125
16

N
L N B N Nα β β = = = 

 
 (8) 

In general, the tiles of processors do not overlap and individual matrix multiplications 
are executed in parallel on 7k  processors after k levels of recursion. To tile a 2D torus 
with 7-processor tiles recursively, we basically replace each node in the basic building 
block with a copy of itself. Note that, while a 7×7 tile fit into the corresponding 2D 
torus perfectly, for configuration allowing an even number of recursions at maximum 
(such as a 21×21 processor network which permits up to two recursions to be per-
formed) 2/9 of the processors will be left unutilized. The details of the tiling mechanism 
and how to handle arbitrary matrix sizes are discussed extensively in [3].  

 

 

Fig. 3. First recursion applied to 49 processors mapped onto 7×7 torus 
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  c7   

    p7 p6 c1  

  p2    p3/c3 p1  

 c2 p5    p4        

          c4    

     c5      
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3.3 Matrix Multiplication on a 6×6 Torus 

Since Strassen’s algorithm breaks down a matrix into 4 submatrices and creates 7 
submatrices from each to compute 7 products, it naturally maps into 4 blocks of 7 
processors as seen in Figure 4. 

 

 
Fig. 4. Strassen’s Algorithm on 6×6 torus 

 

Fig. 5. Strassen’s Algorithm on 6×6 torus in two consecutive phases. Underlined elements are 
already in place. 
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In this case, the algorithm is completed in two consecutive phases. The steps for 
the first phase of the algorithm, and associated latency and bandwidth costs are pro-
vided in Table 1.  

Table 1. Steps of the first phase 

Step Process Latency, Bandwidth Costs 

1 {A21, B11, B12, B22} are formed in the central 
nodes (Figure 4). ( ) , ( )

16

N
L N B Nα β= =  

2 {A21, B11, B12, B22} are exchanged among 
the central nodes in a single communication step 
(Figure 5). This exchange provides the data for 
the computation of three products p1, p4 and p6. 

( ) , ( ) 4
4

N
L N B Nα β = =  

 
 

3 Center nodes perform the initial alignment in a 
single communication step by transmitting mes-
sages which contain 2 /16N× elements each. 

( ) , ( ) 2
16

N
L N B Nα β = =  

 
 

4 Compute each of the three products in a differ-
ent block of 7 processors in 2 communication 
steps (as explained in Section 3.1.). 

( ) 2 , ( ) 3
16

N
L N B Nα β = =  

 
 

5 Combine product submatrices in the central 
nodes and move these three products to the 
nodes where they will be combined to produce 
the product matrix C.  

( ) 2 , ( ) 5
16

N
L N B Nα β = =  

 
 

 
The overall latency and bandwidth costs of the first phase are: 

 ( ) 7 ,   ( ) 15 0.94
16

N
L N B N Nα β β = = ≈ 

 
 (9) 

In the second phase, {A11, A12, A22, B21} are formed and the same process is re-
peated to compute the products p2, p3, p5 and p7. Following the second phase, one 
additional communication step is necessary to align the elements of the product ma-
trix C with the elements of the input matrices A and B. The latency and bandwidth 
costs of the whole process are: 

 ( ) 15 ,   ( ) 31 1.94
16

N
L N B N Nα β β = = ≈ 

 
 (10) 

Alternatively, central nodes in each block create A11, A12, A21, A22, B11, B12, B21 
and B22 by gathering data from their immediate neighbors in a single communication 
step so that the above procedure can be executed only once provided that enough 
memory is available.  

Note that the above algorithm can be also expressed in terms of so-called BFS 
(breadth-first-step) and DFS (depth-first-step) steps of CAPS. A BFS divides the 7 
subproblems among the processors, so that 1/7 of the processors work on each  
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subproblem independently and in parallel. DFS uses all processors on each subprob-
lem solving each one in sequence. Here, we defined two sequential subproblems for 
calculating 7 products, and let 4 groups of 7 processors work on each subproblem 
simultaneously and in parallel.  

4 Performance Analysis 

For dense matrix multiplication, algorithms that minimize both bandwidth and latency 
costs have already provided in literature. When processors have just enough memory 

to store only one copy of the input/output matrices across a p p× processor array, 

Cannon’s parallel algorithm2 is optimal in the sense that it simultaneously achieves 

perfect load balancing 3( ( ))n pΘ , minimizes the bandwidth cost 2( ( ))n pΘ  and 

minimizes latency ( ( ))pΘ . If processors are allowed to have additional memory so 

that local memory size becomes 2 2 33n p  (in effect making 1 3p copies of input ma-

trices available across the processor array), so-called 3D algorithms exist that can 
effectively balance the load 3( ( ))n pΘ , minimize the bandwidth cost 2 2 3( ( ))n pΘ , 

and minimize the latency cost ( (log ))pΘ . In [11] authors presented a communica-

tion-optimal parallel 2.5D matrix multiplication algorithm for configurations having 
enough memory for storing c copies of the input and output matrices. This algorithm 
sends 1 2c times fewer words and 3 2c times fewer messages compared to the 2D (Can-
non's) algorithm. The authors label any algorithm which stores c copies of the input 

matrices across the processor array as “2.5D” where { }1 31, 2,c p ∈   . 

The above bounds are not applicable to Strassen-like fast multiplication algo-
rithms. In classical matrix multiplication algorithm a fixed message length is em-
ployed throughout the algorithm. In Strassen’s algorithm, the submatrices get smaller 
at each recursion step and at a certain point the submatrix gets so small that it takes 
longer to transmit it than to compute the product submatrix directly. At this so-called 
cutoff point recursion terminates. Consequently, mapping the Strassen’s algorithm to 
processors is more complicated compared to classical algorithms. Recently, a com-
munication-optimal parallel algorithm called CAPS is introduced for Strassen’s ma-
trix multiplication [2[, [8].  

CAPS uses two different schemes for traversing the recursion tree of Strassen’s se-
quential algorithm. If sufficient memory is available, the UM (Unlimited Memory) 
scheme divides the 7 subproblems amongst the processors so that each subproblem is 
computed by 1/7 of the processors independently and in parallel. The LM (Limited 
Memory) scheme is used to reduce the problem size so that UM scheme can be uti-
lized on each subproblem without exceeding the available memory. UM scheme  

                                                           
2  Also note that additional memory for two matrix members is necessary for overlapping com-

munication with computation, which increases the total memory requirement at a node up to 
25( )n p  for Cannon’s 2D algorithm. 
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offers lower communication costs than LM scheme by computing the 7 products in 
parallel on disjoint sets of 7 processors. Since, the redistribution of data is performed 
by all-to-all communication among the sets of 7 processors, the latency cost LUM is 
given as 7( , ) 36 logUML n P P=  which amounts to 72L α=  for 49 processors. In Sec-

tion 3.2, we showed how to perform the same task in 6 steps with the latency cost of 
6L α=  only. The difference stems from the following factors: 

1. CAPS model assumes that processors can send/receive just one message to/from 
one processor at a time whereas a node can send and receive messages at four ports 
in parallel in an all-port torus interconnection network. This has two important im-
plications. First, four times more messages can be communicated within a single 
communication step. Second, complete-exchange operation can be performed 
without resorting to all-to-all broadcasts since all-port torus network usually allows 
a completely connected subnetwork among 4 processors at a time. Since 7 proces-
sors need to exchange information in Strassen’s algorithm, a complete exchange 
operation between them can be completed in only two steps, as demonstrated in 
Section 3.2. 

2. CAPS uses recursive Morton ordering following by a block-cyclic layout in each 
submatrix to store the input matrices which allows it to store a 28×28 matrix into a 
7×7 processor array, each processor having one 4×4 block [2, 8, 9]. We use quad-
tree partitioning to store the input data into a subset of processors (see Section 3.2 
and section 3.3). Although CAPS starts with allocating memory for 14 sums at the 
very beginning of the algorithm, our approach still requires more memory.   

3. CAPS uses Strassen-Winogard formulation which requires 7 linear combinations 
of each submatrix of A and B prior to the computation of 7 products. However, due 
to dependencies T5=A12+T3, and S6=S3−B21, the computation of sums takes two 
computation steps. In our preferred formulation, we can compute 10 sums simulta-
neously in a single computation step. 

Given a 2 2k k×  square matrix, it is possible to call Strassen’s algorithm k times3 and 
at the last call all input matrices will be reduced to scalars. However, it is known that 
executing all recursions levels of Strassen’s algorithm until operands become scalars 
does not yield the best performance. The level that the recursive calls to Strassen’s 
algorithm should be terminated due to communication overhead is called the cutoff 
point.  

Let us reconsider the cases presented in Section 3.2 and Section 3.3. For the first 

case, assume that we have 2 2n n×  input matrices initially distributed to 2 2k k× grid of 

processors where k n<  and each processor has a 2 2n k n k− −×  matrix block. Also as-

sume that this 2 2k k× grid is a subset of 7k  processors of a 2 27 7k k× torus. Then, we 

can perform k recursions in a row and after the kth recursion, submatrix multiplica-

tions will be running in parallel on all 7k  processors. Given a cutoff point at the  

                                                           
3  The first call constitutes the base case and the rest are recursions. 



 Strassen’s Communication-Avoiding Parallel Matrix Multiplication Algorithm 11 

matrix size of 2 2ω ω× , we have two cases to consider. If ( )n k ω− > , we invoke 

( )l n k ω= − − of Strassen’s recursions and then revert to local computation of subma-

trices. If ( )n k ω− ≤ ,  we only execute the base case of the Strassen’s algorithm (i.e, 

first level of Strassen’s algorithm without any recursion) and 7 processors execute 

local matrix multiplications of ( ) ( )2 22 2n k n k− −×  matrices only once.  

In the second case, the 2 2k k× grid is a subset of a smaller torus having less than 7k  
processors. Then we check how many subsequent recursions can be supported by the 
torus. Suppose that the torus has composed of 7 jP m= × nodes 
where  and 1 7j k m< < < . The so-called hybrid-step approach in CAPS suggests that 

after taking j BFS steps, the remaining steps should be computed locally in groups of 
m. However, in section 3.2 where 136 5 7P = > × , we found out running m groups of 

j recursions yielded better performance. The result is due to the efficiency of the data 
exchange via a completely connected subnetwork among 4m = nodes.  

Machine parameters are instrumental for determining the cutoff point for Stras-
sen’s recursions. For example, given a 7k  processor array and related machine para-

meters 1010 sγ −= , 510 sα −= and 92.10 s wordβ −= , the square matrix size ω ω× at 

the cutoff point can be determined by solving the following inequality: 

3

3 26 1.125  which is satisfied for 98.
2

ωω γ α ω β γ ω ≥ + + ≥ 
 

 

The above inequality is satisfied when the local classical matrix multiplication  
takes longer time compared to making a recursive call to Strassen’s algorithm. It is  
also possible to use the cost of the local serial Strassen algorithm instead of the serial 
classical matrix multiplication’s cost. 

5 Conclusions and Future Work 

In this paper, we proposed a parallel algorithm for Strassen’s matrix multiplication 
formulation on 2D, all-port processor arrays. The main conclusion of this paper is to 
show that it is possible gain significant reduction in the latency cost of the Strassen’s 
algorithm by explicitly controlling the communication paths on all-port 2D torus via 
ad-hoc routing patterns. This result is especially important for the practical implemen-
tations of the algorithm that are supposed to run on machines where the gap between 
network latency and processor speeds continues to widen.  

There are other aspects of the matrix multiplication problem which offers further 
opportunities for reducing the number of multiplications involved. For example, it is 
discussed in [10] how to find a proper grouping for a sample matrix product of four 
matrices A, B, C and D which requires 2680 multiplications when it is grouped as 
A(B(CD)) and requires 15800 multiplications when it is grouped as ((AB)C)D.  
Currently, we are working on a similar problem for finding better performing  
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communication patterns on all-port 2D torus networks when the transposes, powers or 
inverses of input matrices appear more than once in a given matrix multiplication 
expression. Results will appear in a near-future paper. 
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Abstract. The paper presents a formalism and a tool for modelling and
analysis of distributed real-time systems of mobile agents. For that we use
a time extension of our Resource Driven Automata Nets (TRDA-nets)
formalism. A TRDA-net is a two-level system. The upper level represents
distributed environment locations with a net of active resources. On the
lower level agents are modeled by extended finite state machines, asyn-
chronously consuming/producing shared resources through input/output
system ports (arcs of the system net). We demonstrate modelling facili-
ties of the formalism and show that specific layers of TRDA-nets can be
translated into Timed Automata, as well as into Time Petri nets, thus
TRDA-nets integrate merits of both formalisms.

Keywords: Distributed systems modeling, Petri nets, real-time
systems, timed automata, verification.

1 Introduction

Modelling and verification of distributed software and hardware system is a
great challenge, intensively studied by many researchers. The up-to-date need for
modelling distributed systems with dynamic structure, different kinds of agents
interaction, mobility of agents and adaptability leads to different extensions of
such popular basic formalisms as finite automata and Petri nets. Extending
finite automata for modeling concurrent systems is based mainly on commu-
nicating automata [1,17,14]. Among a large variety of Petri net extensions we
mention ’net-within-net’ approach [7,10,12,13,15,20], where tokens may be Petri
nets themselves and thus have their own structure and activity. This approach
proved to be good for modelling hierarchy, mobility and adaptivity.

Another important perspective is connected with time, when reliability and
safety properties depend, to a large extent, on the timing aspects. Among the
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most popular time dependent models are timed automata (TA) [2] and Time
Petri nets (TPN) [16].

This paper presents a formalism of Timed Resource Driven Automata nets
(TRDA-nets) for modelling time dependent distributed systems with asynchro-
nous interaction of mobile agents. This formalism inherits primality from finite
automata, distributed spatiality from Petri nets, resource dependency and dy-
namic structure from nets of active resources [3,4], and hierarchy/modularity of
’nets-within-nets’ approach from nested Petri nets [13,15,11]. Meanwhile TRDA-
nets have a relatively simple and natural syntax, and can be effectively translated
into widely-excepted formats.

Nets of active resources (AR-nets) were introduced in [3] as a formalism for
modeling distributed systems from resource perspective, when active components
and resources are not distinguished. AR-nets formalism is in some sense dual to
ordinary Petri nets: in AR-nets sets of Petri net transitions and places are united
into a single set of nodes, but each set of arcs is partitioned into two separate sets
of input arcs and output arcs. Each node may contain tokens. A token in a node
may fire, consuming some tokens through input arcs and producing some other
tokens through output arcs. So the same token may be considered as a passive
resource (produced or consumed by an agent), or as an active agent (producing
or consuming resources) at the same time.

In [5] AR-nets were extended to Resource Driven Automata Nets (RDA-nets)
following the ’nets-within-nets’ approach. Thus a RDA-net is a two-level model,
where a system level of the RDA-net is defined by a flat AR-net, and agents
are represented as finite state machines (automata), being placed into system
nodes as a tokens. Agents interact through shared system resources, while agents
themselves are shared system resources.

From the modeling perspective the system net in a RDA-net is a “map” of
input and output ports (arcs), that connects different system nodes. The agent
may use ports to interact with system resources (produce/consume), residing in
adjacent nodes. So an agent may natively produce/consume/copy/move other
agents through these ports (or even use itself as a resource).

In this paper we construct a native and transparent extension of RDA-nets
to time dependent formalism using the time interval approach [16]. In timed
RDA-nets (TRDA-nets) each agent (automata) transition is equipped with two
time intervals: a waiting duration and a firing duration. Note, that TRDA-nets
allow modeling both synchronous and asynchronous agent interaction, locality
of resources in the Petri net style, agent mobility in the style of nested Petri
nets, and agents producing/consuming other agents in the style of nets of ac-
tive resources. So, in contrast to other known timed formalisms the number of
simultaneously waiting/working agents is unlimited.

We demonstrate modelling facilities of the formalism and prove that TRDA-
nets can be embedded (up to time-bisimulation equivalence) into Timed Au-
tomata, as well as into Time Petri nets, thus TRDA-nets integrate merits of
both formalisms. We present also a prototype emulator for TRDA modeling,
verification and performance analysis.
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The paper is organized as follows. In Section 2 we recall the definitions of
RDA-nets. In Section 3 timed RDA-nets are introduced. In Section 4 we com-
pare TRDA-nets with Timed automata and Time Petri nets. We also present a
software prototype for TRDA-net simulation-based performance analysis. Sec-
tion 5 contains some conclusions.

2 Preliminaries

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum and the union of two multisetsm andm′ are defined
as usual: ∀s ∈ S : (m+m′)(s) = m(s)+m′(s), (m∪m′)(s) = max(m(s),m′(s)).

ByM(S) we denote the set of all multisets over S.
Let Ω be a finite set of types, Const be a finite set of typed individual objects.

We call these objects constants. The type of a constant c ∈ Const is denoted
by Type(c). For a ∈ Ω by Const(a) we denote the set of all constants of type a.
Define Var to be a set of variables typed with Ω-types.

Let then Π be a finite set of typed (by elements of Ω) ports (port names).
The type of a port π ∈ Π is denoted by Type(π).

Informally, Resource Driven Automata Net (RDA-net) [5] is a finite oriented
graph (a “system net”) with two types of arcs (input and output), whose nodes
are populated by finite communities of tokens (“agents”, “resources” or simply
“objects”). Each object is a finite automaton, whose transitions may consume
other objects through input arcs and produce other objects through output arcs.
So, the system level of an RDA-net is a net of active resources (AR-net) [3].

Definition 1. A system net is a tuple SN = (V, I, O, π), where V is a finite set
of resource nodes (vertices); I : V ×V → Nat is a consumption relation ( input
arcs); O : V ×V → Nat is a production relation ( output arcs); π : (I ∪O)→ Π
is a function, labeling arcs by port names.

Graphically nodes are represented by circles, a consumption relation by dotted
arrows and a production relation by solid arrows (Fig. 1).

Definition 2. A marking M of the system net SN is a function M : V →
M(Const), that maps a multiset of objects to each node of the net.

A marked system net is a pair (SN,M0) where SN = (V, I, O, π) is a system
net and M0 is it’s initial marking.

We define a language L of resource transformation expressions as follows. Let
π ∈ Π . An input term is a term of the form π?e, where e is a variable or a
constant of type Type(π). Similarly, an output term is a term of the form π!e
with the same conditions on π and e. Now, a resource transformation expression
is a term of the form α1;α2; . . . ;αk, where αj (j = 1, . . . , k) is either an input
or an output term (types of subexpressions α1, α2, . . . , αk may differ).
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Definition 3. A resource driven automaton (RDA) is a tuple A = (SA, TA, lA),
where SA is a finite set of states, TA ⊆ SA × SA is a transition relation, and
lA : TA → L is a transition labeling.

Thus a RDA is just a finite state machine with labeled transitions and no dis-
tinguished initial state. Further resource driven automata will play the role of
tokens in system nets. In a special case, when a RDA contains exactly one state
with no transitions, such a token is just a usual colored token without its own
states and behavior. We call such tokens elementary resources.

Definition 4. Let Ω={a1, . . . , ak} be a finite set of types, and A=(A1, . . . , Ak)
be a finite set of RDAs, where

1. for a type ai ∈ Ω the set Const(ai) is defined as the set of all states of RDA
Ai; Const =def

⋃
a∈Ω Const(a);

2. each Ai is a RDA over the set of types Ω, the set Var of variables typed with
Ω-types, and the set of constants Const.

An RDA-net RN = (Ω,SN, (A1, . . . , Ak)) consists of a finite set of RDAs
(A1, . . . , Ak) with types from Ω as described above, and a system net SN over a
set Ω of types, set Const of constants, and some set Π of Ω-typed ports.

A marking (a state) in a RDA-net is a marking in underlying system net.

By abuse of notation we will not differ automaton A and its name/type a. We
will write (a|s) for the constant denoting the state s of an automaton A of type
a. Contextually we call a constant an agent, a resource, or just an object.

We define an interleaving semantics for RDA-nets. A run in a RDA-net is a
sequence of agent transition firings. Thus only agents may change a state.

Informally speaking, firing a transition t in an agent a requires resources listed
in input subterms of the resource transformation expression, labeling t. Input
subterm p?e describes a resource e, which should be obtained via a port p in the
system net. A source node for this port arrow in a system net is a node, where
this resource should be taken from. Similarly, if possible a firing of an automaton
transition consumes required resources and produces new resources in line with
output subexpressions of the transition label.

Definition 5. A binding of the variables is a function bind : V ar → Const
such that for all ϕ ∈ V ar we have Type(bind(ϕ)) = Type(ϕ).

Let M be a marking in a RDA-net RN = (Ω,SN, (A1, . . . , Ak)), a|s – a RDA
in a state s residing in a node v of RN in M . Let b be a variable binding. A
transition t = (s, s′) with a label la(t) is enabled in M iff there is a one-to-
one correspondence between input subterms in la(t) and objects in M s.t. for a
subterm p?e there is an object e[b] in some node v′ of RN in M with an input
arrow (v′, v) ∈ I labeled by p in RN (here e[b] denotes e if e is a constant and
b(e) if e is a variable).

The correspondence described above defines a ’submarking’ M̌ mapping a
node v of RN to the multiset of objects residing in v and singled out by input
subterms of la(t). It includes all objects, consumed by firing of t with binding b.
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Note, that for given t and b the marking M̌ is defined nondeterministically. By
in(t[b]) we will denote the set of all such markings.

Similarly we define a set out(t[b]) of markings mapping a node v to objects
produced by transition t with a binding b in line with output subterms of la(t).

Definition 6. Let (A|s) be an agent, residing in a node v ∈ V in a system
marking M , and t ∈ TA be a transition with t = (s, s′).

The transition t is enabled with a variable binding b iff there exists a marking
M̌ ∈ in(t[b]) s.t. for each u ∈ V : M̌(u) ⊆M(u).

An enabled binded transition may (nondeterministically) fire to a new marking
M ′ s.t. for each node u ∈ V :M ′(u) = M(u)−M̌(u)+M̂(u), where M̌ ∈ in(t[b])
and M̂ ∈ out(t[b]).

Let us consider a well-known Dining philosophers problem. This classical prob-
lem, being quite simple, comprises all basic elements of distributed systems.

Thinking Eating

RFork

LFork

getl?f

putl!f

getl?f

putl!f

getr?f

getr?f

putr!f

putr!f

eat?•

Philosopher (object automaton phi) 

ph1

f f

dish

ph2

ph3

ph4

f f

chair1

chair2

chair3

chair4

getl 

putl

getr
putr 

getl
putl 

putr

getr

getl
putl 

putl 

getl 

getr

putr 

putr
getreat 

eat eat 

eat 

Dinner table (system net) 

Fig. 1. Dining philosophers – Resource Driven Automata Nets representation

Philosophers (in our case, there are four of them) are sitting at a dinner table
with a common dish of spaghetti in the middle. Between each of two philosophers
there is a fork on the table. Spaghetti can be eaten only with two forks, so there
is a potential conflict between neighbours. Each philosopher can be in one of
four states: he is either Thinking (having no forks), Eating (having two forks),
having a fork only in his right or left hand (RFork or LFork). In the state Eating
the philosopher can also perform an action “eat” (take spaghetti).

Fig. 1 presents modeling Dining philosophers problem with RDA-nets. The
left part of the picture shows the “spatial” distribution of places (chairs, forks
and spaghetti) on a specific “map”. The right part represents a behavior of a
philosopher automaton. On the system level we specify types of relations between
nodes by arc properties: a dashed arc denotes the consumption of a resource, a
solid arc denotes the production. For example, dashed arcs “getl” (“get left”)
describe a possibility to take something from the left. Transition expressions
define, what system resources should be produced or consumed by an agent.
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For example, putr?f means that a fork should be put to the right, eat?• means
that a simple token (a spaghetti) should be consumed through the port “eat”.

A formalism of Resource Driven Automata Nets allows us to visually express
concurrency in terms of autonomous (asynchronous) behavior, spatial distribu-
tion of objects (agents/resources) and sharing access to common resources. In
[5] it was shown that RDA-nets are expressively equivalent to Petri nets, and
hence crucial behavioral properties are decidable for them. At the same time this
formalism allows natural and compact modeling of multi-agent systems with
complex interactions. Moreover, it was shown [6] that RDA-nets can express
sophisticated spatial dynamics up to cellular systems.

3 Timed RDA-Nets

Here we use a concept of timing constraints, introduced in [16] for Time Petri
Nets (TPN). However, in our formalism not a single one but two different time
intervals are associated with each transition. The first one is a waiting duration
interval. An implicit clock can be associated with each enabled transition, and
gives the elapsed time since it was last enabled. An enabled transition can fire if
its clock value belongs to the waiting interval of the transition. The second one
is a firing duration interval. Once again, an implicit clock is associated with each
transition in the moment of its activating (we call this a moment of starting). A
started transition already have consumed its input resources, but it must stop
to produce its output resources and change the internal state of a corresponding
object. The event of stopping occures nondeterministically, but its time must
belong to the firing duration interval.

Let R≥0 denote non-negative real numbers. By Interv we denote a set of time
intervals: Interv =def

{
[x; y] | x ∈ R≥0, y ∈ (R≥0 ∪ {∞}) s.t. x ≤ y

}
.

Definition 7. A timed resource driven automaton (TRDA) is a tuple A =
(SA, TA, lA,WA, FA), where (SA, TA, lA) is an RDA, WA : TA → Interv is a
transition labelling by waiting duration intervals, FA : TA → Interv is a transi-
tion labelling by firing duration intervals.

At any moment there is exactly one element of a TRDA (state or transition),
marked by a time value (elapsed waiting time for a state or elapsed firing time
for a trasition). All other elements of the automaton are idle and hence not time-
marked. The timed run consists of alternating waiting and firing intervals. So
there are two types of continuous timed states — (static) waiting and (progress)
firing, and two types of discrete events — starting and stopping of transitions.
This applies both to a single object automaton and to a net as a whole.

Definition 8. Let A be a timed resource driven automaton. A set of waiting
constants of type A (timed waiting states) is defined as:

WConst(A) =def
{
(s, ν) | s ∈ SA, ν ∈ R≥0 s.t. (∃t ∈ TA : s

t→ s′ ∧ ν ∈WA(t))
}
;

Firing constants of type A (timed variable-binded firing states) are defined as:

FConst(A) =def
{
(t[b], ν) | t ∈ TA, b is a binding, ν ∈ R≥0 s.t. ν ∈ FA(t)

}
.
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Definition 9. Let Ω = {A1, . . . , Ak} be a finite set of types. The sets of waiting
and firing constants WConst and FConst are defined as

WConst =def

⋃
A∈Ω

WConst(A) and FConst =def

⋃
A∈Ω

FConst(A).

The set of all constants (all timed automata states) is defined as

Const =def WConst ∪ FConst.

The formal definition of TRDA-net differs from the definition of RDA-net only
by using timed constants instead of untimed:

Definition 10. A TRDA-net RN = (Ω,SN, (A1, . . . , Ak)) consists of a finite
set of TRDAs (A1, . . . , Ak) with types from Ω and a system net SN over a set
Ω of types, set Const of constants, and some set Π of Ω-typed ports.

A marking (a state) in a TRDA-net is a marking in its underlying system net
by constants from Const.

Definitions of variable binding bind and binded marking sets in(t[b]) and
out(t[b]) are exactly the same as for RDA-nets (but note that the corresponding
sets of bindings and markings become continuous).

Definition 11. (starting) Let
(
A|(s, ν)) be a waiting agent, residing in a node

v ∈ V in a system marking M, t ∈ TA be a transition with t = (s, s′), and
ν ∈ R≥0 be a time value.

The transition t is enabled with a variable binding b iff ν ∈ WA(t) and there
exists a marking M̌ ∈ in(t[b]) s.t. for each u ∈ V : M̌(u) ⊆M(u).

An enabled binded transition may (nondeterministically) fire to a new marking

M ′ (denoted M
start(t[b])−→ M ′), such that for each node u ∈ V with u �= v we have

M ′(u) = M(u)− M̌(u), and for the node v we have:

1. M̌(v)(s, ν) = 0 ⇒ M ′(v) =M(v)− M̌(v)− (s, ν) + (t[b], 0);
2. M(v)(s, ν) = M̌(v)(s, ν) = 1 ⇒ M ′(v) = M(v)− M̌(v);
3. M(v)(s, ν) > M̌(v)(s, ν) > 0 ⇒ nondeterministically (1) or (2) is chosen.

In situation (1) the agent starts, in situation (2) the agent removes itself.

Definition 12. (stopping) Let
(
A|(t[b], ν)) be a firing agent, residing in a node

v ∈ V in a system marking M, t ∈ TA be a transition with t = (s, s′), b be a
variables binding, and ν ∈ R≥0 be a time value.

The binded transition t[b] is ready to stop iff ν ∈ FA(t).
A ready to stop binded transition may (nondeterministically) stop, changing

M to a new marking M ′ (denoted M
stop(t[b])−→ M ′), such that for each node

u ∈ V with u �= v we have M ′(u) = M(u) + M̂(u), and for the node v we have
M ′(v) =M(v) + M̂(v)− (t[b], ν) + (s′, 0).

Definition 13. (time elapsing) Let M be a system marking. A time interval

μ ∈ R≥0 may pass, changing M to some marking M ′ (denoted M
μ→M ′), if for

each system node u ∈ V and type A ∈ Ω we have:
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– For each waiting constant (s, ν) ∈WConst(A), s.t. M(u)(s, ν) > 0, we have
(s, ν+μ) ∈WConst(A), and, moreover, there exists no enabled transition t[b]
with t = (s, s′) for some s′ ∈ SA, such that ν ∈ WA(t) and ν + μ �∈ WA(t).
In this case let M ′(u)(s, ν) = 0 and M ′(u)(s, ν + μ) = M(u)(s, ν).

– For each firing constant (t[b], ν) ∈ FConst(A), s.t. M(u)(t[b], ν) > 0, we
have (t[b], ν + μ) ∈ FConst(A). In this case let M ′(u)(t[b], ν) = 0 and
M ′(u)(t[b], ν + μ) = M(u)(t[b], ν).

Note that if the marking of the system net contains some waiting automaton(
A|(s, ν)), such that at least one of its enabled transitions can not wait any more
(i.e. W (t) = [x, ν]), then no time elapsing can happen. Before any continuous
step there have to occure some discrete event — either a transition t starting,
or a transition starting in some other automaton, consuming

(
A|(s, ν)). In other

words, we implement a most widely used strong time semantics (STS), also
known as “urgency policy”.

Also note that similar observation is true for transitions: each firing must be
ended (either stopped by itself or interrupted by some other automaton). Hence,
in TRDA-nets the strong time semantics applies to both static and progress
projections of a model.

And the final remark is on objects, simultaneously consumed and produced
through a binded variables. Assume that a transition t is labelled by a resource
expression (in?x; out!x), containing some variable x of some type A. This variable
can be binded to any constant of type A, even to a waiting or firing automaton.
But while the transition t is firing, this automaton is “removed” from the model,
and hence its internal time is not elapsing. In other words, transition “freezes”
all the related resources in the process of firing.

We illustrate our formalism by a well-known concurrency use case — Cleaners
Problem. The problem is usually stated as follows: there are three mutually
connected rooms, each room has a table and a wastepaper basket. In the room
there is also a “paper generator” — some worker, that can produce both good
papers and garbage. The organization also has three cleaners. A cleaner can
put a paper on a table and a garbage to the basket. Moreover, he can move to
another room (we assume that he visits all rooms iteratively in a strict order).

The model is represented on Fig. 2. The “map” of the first room is given in
details, the two other room have the same structure. We use four types of tokens:
simple resources paper and trash, and two active agents — Generator and
Cleaner. Generator has a single state and three transitions — paper (produce
paper), garbage (produce garbage) and wait (do nothing). Cleaner has similar
one-state structure, but the set of transitions is different — clean (take garbage
and put it to the basket), store (take paper and put it on the table) and go

(move to the next room).
The graphical structure of the system level of the model is quite convenient

and allows to observe both (logical) parallelism and (spatial) movement. The
resources (papers) are incorporated seamlessly, since visually they are tokens
— just like more complex active agents (people). Continuous part of the model
is concentrated on the object level — timing constraints are imposed on the
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Fig. 2. “Cleaners” (first room fragment)

transitions. For example, we know that Cleaner needs at least 10 and at most
15 time units to move from one room to another.

Theorem 1. TRDA-nets are expressively equivalent to Turing machines. More-
over, the following four special cases of TRDA-nets are Turing-powerful:

For any TRDA A = (SA, TA, lA,WA, FA) and transition t ∈ TA we have

– WA(t) = [x;x] and FA(t) = [y; y] for some x, y (constant waiting and firing);
– WA(t) = [x;x] and FA(t) = [y;∞) for some x, y (constant waiting and

unlimited firing);
– WA(t) = [0; 0] and FA(t) = [x;x] for some x (no waiting and const. firing).

The proof is based on the constructing of an equivalent TRDA for any given
Minsky machine. We omit it due to lack of space.

4 Modelling and Verification with TRDA-Nets

In this subsection we consider two classical dense time formalisms — Timed
Automata and Time Petri Nets, and by comparison estimate the TRDA-nets
modelling and verification pros and cons.

Timed Automata. Timed automata (TA) were introduced by Alur and Dill [1,2]
and have by now been recognized as one of the classical formalisms for modelling
sequential real-time systems with dense time. A timed automaton is a finite-state
machine extended with a finite number of synchronous clocks. Transitions in the
automaton are conditioned on the clock values and taking a transition can reset
the values of selected clocks.

A TRDA can be effectively translated into time-bisimulation-equivalent TA
(Algorithm 1 in the Appendix). This translation allows to use a wide range of
elaborated tools for TRDA verification on the object level (such as UPPAAL,
KRONOS, IF, CMC and others).

Time Petri Nets. In Time Petri Nets (TPN), introduced by Merlin [16], each
transition has an associated time interval which gives the earliest and latest
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firing time of the transition since it became enabled. The transition can fire
as soon as the clock value reaches the earliest firing time and it must fire no
later than the latest firing time, unless the transition got disabled by some other
transition.

Unlike TA for sequential systems, TPN is not the only undisputed formalism
for distributed systems. However, the model of TPN has been around for several
decades and it has proven to be useful for modelling of a wide range of distributed
real-time systems including workflow processes, scheduling problems and others.
There are available a few verification tools like TINA and ROMEO (mostly
useful for bounded TPN, since unbounded TPN have full Turing power).

Both TRDA and TRDA-net can be effectively translated into time-bisimula-
tion-equivalent TPN (Algorithms 2 and 3 in the Appendix). Thus we can use an
effective combination of TRDA modeling and TPN verification/model checking.

It can be easily seen that TRDA-nets have features of both TA and TPN.
Like in TA, the elementary agent is a sequential system — an automaton. This
allows simple modelling of dense time transition diagrams. Like in TPN, we
can compose subsystems in a distributed resource-constrained net. This allows
simple modelling of parallelism and synchronization.

As we have shown, TRDA-nets may be a convenient modeling formalism for
distributed dense time systems. In this section we present a prototype TRDA-
based software tool, that allows some specific model checking and visualization.

Fig. 3. “Smokers” — TRDA+ emulator
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Consider a specific use case — Cigarette Smokers problems. This is a well-
known concurrency problem in computer science, originally described in [18].

There is a table near which three smokers are seated. One smoker has a
number of tobacco resource in his pocket, the second one — smoking paper, the
third one — matches. And there is a banker, who put two different components
of cigarette on the table, when there is nothing on the table. The smoker who
has the third complementary resource — starts smoking.

An example of modelling and model-checking is given on Fig. 3. Here we
used a number of features of our tool to check some properties of dense-time
behaviour of the considered system. The following behavioral properties can
be automatically analyzed (modulo finite execution traces): liveness, liveness of
system net transitions, k-boundedness, reachability, deadlock freedom.

The following statistical analysis is also possible: average/total waiting, aver-
age/total firing times, number of visits. The tool works with a specific TRDA-
representation language, allowing to load a model into model-checker.

5 Conclusion

In this paper we have presented a new formalism of TRDA-nets and a tool
for modeling time dependent distributed systems of agents, communicating via
resource consuming/production. Being Turing powerful, TRDA-nets inherit fea-
tures and merits of both Timed Automata and Time Petri Nets. Rich modelling
facilities of TRDA-nets were illustrated by some classical case studies.

In the further work we plan to study some important semantical (bounded,
live) and syntactical (free-choice) subclasses of TRDA-nets. Considering RDA-
nets with Timed automata as net tokens is another interesting challenge, as well
as connecting TRDA-nets with other dense time formalisms, such as Timed Petri
nets [19] and Timed-Arc Petri nets [8].

References

1. Alur, R., Dill, D.: Automata for modelling real-time systems. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Bashkin, V.A.: Nets of active resources for distributed systems modeling. Joint
Bulletin of NCC&IIS, Comp. Science 28, 43–54 (2008)

4. Bashkin, V.A.: Formalization of semantics of systems with unreliable agents by
means of nets of active resources. Progr. and Comp. Soft. 36(4), 187–196 (2010)

5. Bashkin, V.A., Lomazova, I.A.: Resource Driven Automata Nets. Fund. Inf. 109(3),
223–236 (2011)

6. Bashkin, V.A., Lomazova, I.A.: Cellular Resource Driven Automata Nets. Fund.
Inf. 120(3-4), 245–259 (2012)

7. Bednarczyk, M.A., Bernardinello, L., Paw�lowski, W., Pomello, L.: Modelling mobil-
ity with Petri Hypernets. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT
2004. LNCS, vol. 3423, pp. 28–44. Springer, Heidelberg (2005)



24 V.A. Bashkin, I.A. Lomazova, and Y.A. Novikova

8. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In:
Proc. of the IFIP WG 6.1 Tenth International Symposium on Protocol Specifica-
tion, Testing and Verification, pp. 1–14 (1990)

9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

10. Chang, L., He, X., Lian, J., Shatz, S.: Applying a Nested Petri Net Modeling
Paradigm to Coordination of Sensor Networks with Mobile Agents. In: Proc. of
Workshop on Petri Nets and Distributed Systems 2008, Xian, pp. 132–145 (2008)

11. Dworzanski, L.W., Lomazova, I.A.: On Compositionality of Boundedness and Live-
ness for Nested Petri Nets. Fund. Inf. 120(3-4), 243–257 (2012)
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Appendix

Algorithm 1. (Translation of a TRDA to a Timed Automaton) Here we show
that an internal timed transition diagram of a TRDA (without resource expres-
sions) can be reperesented as a Timed Automaton [1,2]. It is sufficient to present
a transformation of a single transition.

Consider a transition s
W [a;b];F [c;d]−→ s′. In the resulting TA it will be modelled

by three locations (ls, l
′
s and lt) and two transitions (ls

tstart−→ lt and lt
tstop−→ l′s).

Additionally we introduce two clocks — waits for the state s and firet for the
transition t. Transition tstart is labelled by guard expression waits ≥ a∧waits ≤
b and reset expression firet := 0. Transition tstop is labelled by guard expression
firet ≥ c ∧ firet ≤ d and reset expression waits′ := 0.

This is a syntactical transformation, and the resulting TA has exactly the
same structure and timed behaviour as the TRDA (modulo resources).

Algorithm 2. (Translation of a TRDA to a Time Petri Net) Here we show that
a TRDA (with resource expressions) can be reperesented as a TPN.
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First consider a transition diagram of TRDA. It is replaced by an automaton
Petri net (where each transition of a Petri net has one input and one output
place) of the same graph topology, but with “doubled” transitions — each tran-
sition t of TRDA is replaced in TPN by a sequence of two transitions — tstart
and tstop. Assuming W (t) = [a; b] and F (t) = [c; d], we set the firing interval of
tstart to [a; b], and the firing interval of tstop to [c; d].

At this stage the resulting TPN behaves exactly like an internal timed tran-
sition diagram of a given TRDA (without resource expressions). Now consider
all resource expressions. Let Ω = {A1, . . . , Ak} be the set of all types (the set of
all possible “colours” of resource tokens). We add to the net so-called “resource
places” — one for every type — denoted by pA1 , . . . , pAk

.
And the final step: if the original TRDA transition t is labeled by a resource

expression π?a of type Ai, then we add an arc from place pAi to transition tstart,
if it is labelled by a resource expression π!a of type Ai, then we add an arc from
tstop to pAi . Like the previous algorithm, this is just a syntactical transformation.

Algorithm 3. (Approximation of a TRDA-net by a Time Petri Net) Here we
show that a whole TRDA-net (with resource expressions) can be reperesented
as a Time Petri Net. However, the modeling is not exact (in the sence of dense
time simulations) — and it cannot be exact since in TRDA-net the number
of simultaneously firing transitions is unbounded (we can produce any number
of TRDA tokens). In TPN the number of transitions is fixed, hence we can
model TRDA-net by a TPN only in a weaker sense — considering some kind of
approximation of TRDA dense time state space.

The complete transformation uses the method, introduced in the previous
algorithm. However, now we construct a set of TPN — one net for each pair
(TRDA type, system node), and a set of resource places — one place for each pair
(TRDA type, system node). The resource-consuming and resource-producing
arcs are introduced just like in the previous algorithm.
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Abstract. In this paper we present the analysis of parallelization prop-
erties of several typical preconditioners for the Conjugate Gradient meth-
ods. For implicit preconditioners, geometric and algebraic parallelization
approaches are discussed. Additionally, different optimization techniques
are suggested. Some implementation details are given for each method.
Finally, parallel performance results are presented and discussed.

1 Introduction

Conjugate Gradient methods are widely used for solving large linear systems
arising in discretizations of partial differential equations in many areas (fluid
dynamics, semiconductor devices, quantum problems). They can be applied to
ill-conditioned linear systems, both symmetric (plain CG) and non-symmetric
(BiCGStab, GMRES etc.). In order to accelerate convergence, these methods
require preconditioning. Now, with the proliferation of multicore and manycore
processors, efficient parallelization of preconditioners becomes very important.

There are two main classes of preconditioners: explicit, that apply only a
matrix-vector multiplication, and implicit, that require solution of auxiliary
linear systems based on the incomplete decomposition of the original matrix.
Explicit preconditioners act locally by means of a stencil of limited size and
propagate information through the domain with low speed, while implicit pre-
conditioners operate globally and propagate information instantly. Due to this
implicit preconditioners work much faster and have better than linear depen-
dence of convergence on the geometric size of the problem.

Parallel properties of preconditioners strongly depend on how information
is propagated in the algorithm. For this reason implicit preconditioners can’t
be easily parallelized, and many efforts are needed for finding geometric and
algebraic approached of parallelization. There exists a separate class of implicit
methods, Multigrid, which possesses very good convergence and parallelization
properties. However, Multigrid is extremely difficult for implementation, and in
some cases it can’t be applied at all. Due to this classical (explicit and implicit)
preconditioners are still widely used in many numerical applications.

Thereby, in this paper we will analyze parallelization properties and perfor-
mance of several preconditioners for different discretizations and geometries, and
their implementation details on modern multicore processors.
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2 Conjugate Gradient and Preconditioners

The original non-preconditioned Conjugate Gradient method [1] of the solution
of a linear system Ax = b is very simple for implementation and can be easily
parallelized. However, because of the explicit nature, it has low convergence rate.
Because of this, the CG method is usually applied to the preconditioned linear
system (M−1A)x = M−1b whereM is a symmetric positive-definite matrix that
is ”close” to the main matrix A (which is also symmetric and positive-definite).

Preconditioning works well if the condition number of the matrix M−1A is
much less than that of the original matrix A. The simplest way to reduce this
condition number and accelerate the convergence is to apply an ”explicit” pre-
conditioner (B = M−1) than doesn’t require the inversion of M .

A good example of this sort is the polynomial Jacobi preconditioner that is
based on a truncated series of the approximation 1/(1− a) = 1 + a+ a2 + . . .

B =M−1 =

n∑
k=0

(Hk)P−1 where P = diag(A), H = P−1(P −A) = I − P−1A

For n = 0, this expression represents the diagonal preconditioner B = P−1

(not considered as a true preconditioner because of its simplicity). For n = 1, it
looks as B = (I +(I −P−1A))P−1 and improves acceleration rate by two times
(with some increase of computational cost). This corresponds to the expansion
of the computational stencil of one iteration of the algorithm. Therefore, it can
be easily applied and parallelized. Variants for n = 2 or n = 3 are more complex
and not enough efficient, for this reason they are not considered here.

Neither sort of the simple explicit preconditioner can improve the convergence
radically. For this reason, it is desirable to use implicit preconditioners. The most
popular implicit preconditioner is Incomplete LU (ILU) decomposition [2]. To
be efficient, this decomposition must satisfy the following conditions:

– Preconditioner matrix M must be chosen ”close” to the main matrix A in
such a way that (for typical values of vector x) the approximation error is
sufficiently small: ||Mx−Ax|| = ε ||x|| � ||x||, or ε� 1.

– Matrix M must be suitable for decomposition into factors (e.g. M = LU)
and these factors must be invertible with low computational cost, i.e. must
allow economical solution of auxiliary linear systems Ly = z and Ux = y.

– Solution of these linear systems must be subject to efficient parallelization.

Straightforward implementation of ILU preconditioner doesn’t approximate the
main matrix A with the required accuracy, i.e. ε = O(1) [3]. As the result, its
convergence properties are not good: O(N) iterations are required as for ex-
plicit preconditioners (N is the dimension of a problem in one spatial direction),
though the total number of iterations may become less. More accurate Modified
ILU (MILU) preconditioner approximates the main matrix A with the accu-

racy ε = O(h) (here h is the grid distance) resulting in O(N
1
2 ) iterations [4,3].

However, Modified ILU can’t be accurately applied in some situations (e.g. for
solving systems of equations and for the domain decomposition approach [2]).
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On the other hand, both ILU and MILU can’t be massively parallelized be-
cause of recursive nature of forward and backward sweeps (Ly = z, Ux = y).
One idea is to use red-black grid numbering in order to parallelize sweeps. How-
ever, in this case ILU decomposition looses its implicit properties and demon-
strated O(N) behaviour. Other sorts of complicated explicit preconditioners (like
approximate inverse) also propagate information slowly because of the limited
stencil size and also belong to the O(N) class.

For these reasons, simple explicit preconditioners remain attractive in some
cases because of good parallelization properties. They will be considered in the
next section, followed by the analysis of two sorts of implicit preconditioners:
Modified ILU for Cartesian discretization in a regular domain, and plain ILU
for general sparse matrices.

3 Optimization and Parallelization of Explicit
Preconditioners

For the analysis of simple explicit preconditioners, solution of linear systems
arising in the discretization of the Navier-Stokes equation is considered. For the
components of velocity (u, v, w) these are non-symmetric linear systems to be
solved by the BiCGStab, for pressure (p) the plain Conjugate Gradient method
can be used. Sparse matrices of these linear systems are stored in the Compressed
Row Storage (CRS) format. The test problem uses the Cartesian discretization
within a spherical domain, number of grid points is about 320000. The algorithm
is parallelized for shared-memory computer systems using OpenMP [5]. This
method can be extended to the hybrid OpenMP/MPI environment.

The Polynomial Jacobi preconditioner of the 1-st order is used both in
BiCGStab and CG solvers. If the original matrix is diagonally scaled: diag(A)=I,
the preconditioner will look as B = 2 I −A. For the stable work, this precondi-
tioner should be slightly underrelaxed by the following way: B = I + γ (I −A).
In the current implementation γ = 0.985.

The main computational kernel of both Conjugate gradient and precondition-
ing algorithms is the multiplication of a sparse matrix by a vector. Parallelization
of this kernel in OpenMP is straightforward: the matrix is split into parts with
equal number of rows, and each processor core independently computes the cor-
responding part of the resulting vector.

Parallel performance of such kind of computations is limited by the ability of
the memory subsystem to read (write) data with the high speed. Therefore, data
access rate requirements of the algorithm should be reduced. The Polynomial Ja-
cobi preconditioner can be improved in this respect by using the single precision
format (real*4) for storing a copy of the main matrix A for the preconditioning
operator. Convergence properties of this preconditioner remain unchanged.

For the symmetric matrix, the CRS format is not convenient because it is not
necessary to store its upper part. It is more economical and efficient to store
only the strictly lower part LA of the matrix A. If A is diagonally scaled, its
representation will look as A = LA + I + LT

A.
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Multiplication of the symmetrically stored sparse matrix by a vector is more
complex in comparison with the original storage scheme. The lower (LA) and
the upper (LT

A) parts of the matrix are multiplied by a vector in different ways:

– for the lower part, scalar product of the densely packed row by the sparsely
distributed elements of a vector is calculated, and the corresponding element
of the resulted vector is modified;

– for the upper part, elements of the packed column are multiplied by the
corresponding scalar value of a vector, and the sparsely distributed elements
of the resulting vector are modified.

Parallelization of the symmetric sparse matrix multiplication algorithm is not
straightforward. Unlike the original algorithm, the new one will not work cor-
rectly if we simply split all arrays by equal parts. As illustrated on Fig. 1 (left),
parallel execution of the algorithm in different threads leads to the modification
of the same elements of the resulting vector: thread 0 can modify elements in
the data area of the immediately preceding thread 1 and corrupt its results.

In order to avoid this problem, the multicolored (or red-black) partitioning of
data arrays can be applied. If we first split all arrays by equal parts in accordance
with the number of threads, and then additionally split each part by two subparts
of different color (marked as 0 and 1 on Fig. 1, left), we will be able to perform
computations simultaneously in all subparts of the same color. After finishing
processing for the particular color, we will do the same for another color. This
approach is conceptually similar to the multicolored grid partitioning for some
iterative methods (such as Gauss-Seidel and SOR).

The above variant of the multicolored partitioning has the obvious limitation:
the maximal half-width of the matrix must be less than the size of the subpart
otherwise a particular thread would modify the resulting vector of the preceding
thread of the same color. In fact, this is a limitation on the number of threads
for a given matrix. For the current example, this limitation is equal to 28, that
is more than the number of processor cores in most available multiprocessor
servers (usually 12 to 16). With increasing the problem size, this limit also will be
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Fig. 1. Parallelization for the symmetric storage scheme (left). Parallelization results:
dashed line – one processor, solid line – two processors (right)
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increased. For long domains, it is recommended that grid nodes are enumerated
in the direction of the short dimensions. In this case, the matrix bandwidth will
be lower, and the thread limit will increase. Also, reducing the matrix width is
useful from the performance point of view. However, if massive parallelization
becomes necessary, it will be possible to develop more complex multicoloring
approach similar to the multicolored grid partitioning.

Parallelization efficiency results for the above problem are shown on Fig. 1
(right). These results were obtained on the system with two 6-core Intel Xeon
X5650 processors. Each processor has its own integrated 3-channel memory con-
troller, therefore the peak memory access rate of the system is doubled. Paral-
lelization tests were performed with 1 to 6 threads on one processor, and with 2
to 12 threads on two processors.

The one-processor results on Fig. 1 (right) demonstrate that the memory sub-
system of a processor is almost saturated with 4 threads (additional performance
increase with 6 threads is only about 6%). Similar saturation can be seen on the
two-processor results. On the other hand, the two-processor results demonstrate
almost linear performance increase in comparison to the single-processor runs
with the same number of threads per processor (by about 1.95 times).

Thus, this test program is strongly memory-bound. The principal factor that
limits parallel performance of such jobs is the memory throughput rate, while the
CPU frequency is less important. The new generation Intel Xeon servers based on
Sandy Bridge EP processors with 4 memory channels have much higher memory
speed (51.2 GB/s vs 32 GB/s). As a result, parallel performance of similar jobs
is proportionally increased. In the near future, after the switch from DDR3 to
DDR4, processors with even faster memory subsystems will appear.

The above results demonstrate that explicit preconditioners have high paral-
lelization potential and good scalability. The main factor that limits performance
of explicit preconditioners is the peak memory access rate. For multiprocessor
and multinode (cluster) computer systems, this limitation is scaled with the
number of processors, thus increasing the total performance potential.

4 Implicit Preconditioners for Regular Domains

In this section we consider parallelization of the efficient Modified ILU (MILU)
preconditioner for solving Poisson equation in rectangular parallelepipedic do-
mains. As mentioned above, forward and backward sweeps of incomplete decom-
position algorithms are recursive in their nature and can’t be straightforwardly
parallelized. Therefore, it is necessary to find such geometric properties of the
algorithm that parallelization would become possible and efficient.

The original idea is taken from the twisted factorization of a tridiagonal linear
system, when Gauss elimination is performed from both sides (for a subdiagonal
and a superdiagonal, respectively). This idea can be naturally generalized to 2
and 3 dimensions. This method is called ”nested twisted” [6,3]. An example of
the nested twisted factorization is shown on Fig. 2 for two-dimensional case.

The nested twisted factorization method can be used for direct parallelization
of the solution for up to 8 threads (in a Cartesian domain). The computational
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Fig. 2. Nested twisted factorization L · LT → M suitable for parallelization

scheme of this method is as following. A rectangular parallelepipedic domain is
split into 8 octants by separator planes (Fig. 3). In each octant, Gauss elimination
is performed from the corner in the direction inwards (in all 3 dimensions),
independently in different threads (Fig. 3, left).

After finishing eliminations in the internal points of octants, they are per-
formed in quadrants of separator planes by the same way (Fig. 3, center). Then,
intersection lines of separator planes are processed, and finally a solution at the
central point is computed. The following backsubstitution is performed in the
reverse order, from the central point in the direction outwards.

Parallelization for 16 threads needs another approach. For recursive algo-
rithms, the staircase (or pipeline) method can be employed [7,3]. This method is
illustrated on Fig. 3 (right). Each subdomain is split into 2 parts in the direction
of j (see the bottom-left octant divided between threads 0 and 1). Computations
in a plane (i,j) for a particular k can’t be performed by thread 1 until they are
finished by thread 0. However they can be fulfilled in a pipelined fashion: thread
1 computes a layer for some k at the same time when thread 0 computes the
next layer for k+1. This method needs the synchronization between threads in
a pair: before starting computations for some k, thread 1 must wait for thread
0 to finish computations in the same layer. At the backsubstitution stage of the
algorithm, computations are performed in the reverse order.

Implementation of this method leads to some algorithmic overhead because
at the beginning (for the first k) thread 1 is idle waiting for the results from
thread 0, and at the end (for the last k) thread 0 is idle after finishing its work.
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Fig. 3. Parallelization of the nested twisted factorization: illustration of the method
(left); separator planes (center). Parallelization for 16 threads, staircase method (right)
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The above method of parallelization can be used for more than two threads.
In this case the algorithmic scheme will have more stairs and more points of
synchronizations. However, because of performance overheads, the reasonable
number of stairs can’t be large. Therefore, parallelization potential of the above
method can be estimated to be at most 32 or 64.

For computational domains of different shape, this potential depends on the
number of corners. For example, a cylindrical domain has only 4 independent
corners, and its parallelization potential will be at most 16 or 32. As a conse-
quence, massive and efficient parallelization of MILU-class preconditioners for
irregular domains and general sparse matrices is not possible at all.

The above parallelization method is ”direct” with respect to the algebraic
properties of the preconditioner matrix in such sense that the order of its approx-
imation error remains the same as for the original (sequential) decomposition.
For this reason, Modified ILU decomposition retains its convergence properties.
This is not true, however, for the class of domain decomposition methods [2],
when preconditioning accuracy is lost and convergence is sacrificed.

Parallelization efficiency results for the above method can be found in [3].
They are very similar to those in the previous section: the method demonstrates
good efficiency if the memory subsystem is scaled with the number of threads,
otherwise saturation is observed. Thus, this method is strongly memory-bound,
and its performance depends firstly on the achievable memory throughput rate.

5 Implicit Preconditioners for Unstructured Grids

In this section we analyze parallelization approaches for Incomplete LU decom-
position of general non-symmetric sparse matrices. These matrices are produced
from the discretization of coupled systems of equations in irregular domains for
the solution of stiff problems arising in different multiphysics applications (CFD,
semiconductor transport, kinetic and quantum problems) [8,9].

Numerical solution of such ill-conditioned problems needs efficient CG-class
solvers with ILU preconditioning. Here, parallelization of the preconditioned non-
symmetric IDR solver will be considered [9]. The same ideas can be applied to any
other CG-class solver for non-symmetric matrices (CGS, BiCGStab, GMRES).

Most computations in this solver are performed in two kernels – multiplication
of the non-symmetric sparse matrix by a vector (y = Ax), and solution of the
decomposed linear system (Ly = z, Ux = y).

Parallelization of the first kernel is simple: if matrix A is stored in the CRS for-
mat, each thread can independently compute a part of the resulting vector. This
is similar to the procedure described in the previous sections. This procedure
has no strict limitations on the number of parallel threads.

On the other hand, procedure of Gauss elimination for a general sparse matrix
can’t be easily parallelized because such matrix does not possess any geometric
parallelization properties. Thus it is necessary to look for algebraic approaches.
The first idea is to use twisted factorization. An example of this factorization
for a general banded sparse matrix is shown on Fig. 4.
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Fig. 4. Twisted factorization of the sparse matrix (left, center); illustration of the
parallel Gauss elimination (right)

It can be seen that matrix factors have mutually symmetric portraits. These
factors will be traditionally named as L and U . It is convenient to represent
the decomposition as M = (L + D)D−1(D + U + R). Here R is the reverse
diagonal that separates two part of each factor. The role of this reverse diagonal
is seen on Fig. 4 (right) where the preconditioning matrixM is represented as the
product of these factors. We can distinguish three areas on the matrix portrait:
the central part (a square area with adjacent subareas on the left and on the
right), the first part located above, and the last part located below.

Elimination of non-zero elements in the first and in the last parts is straightfor-
ward (as in the standard twisted-Gauss process) because these parts are formed
by the simple multiplication of corresponding parts of factors L and U . Elimina-
tion of non-zero elements in the central part is much more complicated, because
it is formed by the multiplication of complex central parts of L and U . Process-
ing of the central part can’t be parallelized and is performed serially. Parallel
Gauss elimination is shown schematically on Fig. 4 (right).

This approach allows to parallelize the second kernel of the algorithm by 2
threads. It can be combined, for example, with 4-thread parallelization of the first
kernel (multiplication of the main matrix by a vector) in order to achieve rea-
sonable overall parallel efficiency on a multicore processor. This algorithm is also
memory-bound (as those in the previous sections), and therefore its performance
strongly depends on the throughput limitations of the memory subsystem.

Another parallelization approach for Gauss elimination is similar to the stair-
case (pipelined) method [7,3]. The idea of the approach is to split each matrix
half-band (L and U) into pairs of adjacent trapezoidal blocks that have no mu-
tual data dependences and therefore can be processed in parallel. As a result,
parallelization of Gauss elimination for 4 threads will be implemented.

This new block-pipelined parallelization method is illustrated on Fig. 5. An
example of the splitting of a matrix half-band is shown on Fig. 5 (center): the
sub-diagonal part of L is split into adjacent pairs of blocks marked ”0” and ”1”
(all other half-bands of matrices L and U are split into blocks similarly).

Let’s consider the highlighted pair of blocks ”0” (layer k+1) and ”1” (layer k).
It is seen that block ”0” can be processed before finishing processing of block
”1”, provided the maximal column index of elements in ”0” is less that the index
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Fig. 5. Original twisted factorization method (left). Block-pipelined method: splitting
of matrix L (center); combination of twisted and block-pipelined methods (right)

of the last (diagonal) element in the first row in ”1”. Due to this, each sweep
of the Gauss procedure can be executed in two parallel threads – one for blocks
”0”, another for blocks ”1”, with the synchronization at the and of each step.

In order to implement the above scheme, it was necessary to construct the
new storage scheme for all three parts of the matrix (first, last and central)
and to implement proper synchronization technique for lightweight processes.
Also, accurate splitting of matrices into blocks is needed in order to achieve
good load balance. As a result, parallel 4-thread Gauss elimination method for a
general non-symmetric sparse matrix can be developed. This combined method
is illustrated on Fig. 5 (right).

This method is also ”direct” with respect to the algebraic properties of the pre-
conditioner matrix (as one described in the previous section). This is important
for the solution of extremely ill-conditioned linear systems. It can be combined,
for example, with 8-thread parallelization of the matrix-vector multiplication
kernel in order to achieve good parallel efficiency on a two-processor system. In
this case, the system’s memory throughput rate will be doubled compared to a
single processor, appropriately increasing performance of the solver.

Another way to increase performance is to use the single precision format
(real*4) for the preconditioning matrix and, if possible, for the main matrix
also. In this case memory access rate requirements of the algorithm will be
reduced.

The considered block-pipelined method can be extended for more than two
threads (for each Gauss elimination sweep). However, in this case, more accurate
splitting of matrices is required that may be possible only for some sparsity
patterns. When applied, this splitting will increase the parallelization potential
of the kernel to 8 threads.

Parallelization efficiency results of the new method are presented in Table 1.
These results were obtained for a CFD problem which matrix has 302500 un-
knowns and 44 non-zero elements in a half-band’s row (average). Maximal half-
width of the matrix is 2600. Measurements were performed on the 4-core Intel
Core i7-920 processor with three DDR3-1333 memory channels.

These results demonstrate the reasonable parallelization efficiency of bothmeth-
ods – the twisted factorization alone, and its combination with the block-pipelined
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Table 1. Parallelization results for a CFD problem

method serial twisted twisted block
pipelined

threads 1 2 4 4
r
e
a
l
*
8

time 89.1 ms 55.6 ms 48.1 ms 41.0 ms

speedup 1.00 1.60 1.85 2.17

r
e
a
l
*
4

time 89.1 ms 51.3 ms 41.6 ms 32.0 ms

speedup 1.00 1.74 2.14 2.78

method. Another test matrix (MOSFET electronic device modeling, 77500 un-
knowns, 8 non-zero elements average,maximal half-width 4650) ismuchmore sparse
and less convenient for parallelization. Nevertheless, results measured for this ma-
trix are very close (within 1-2%) to those presented in the table (with the exception
of the real*4 regime that wasn’t tested).

From the table it can be seen that performance gain of using the real*4 data
format is 1.28. All these results illustrate the memory-bound property of the
methods. Computational speed of the test problem on the more advanced Intel
Sandy Bridge EP processor can be increased by about 1.5 times in accordance
with the increase of its memory access rate. Additional speed increase can be
achieved on a two-processor system with independent memory controllers.

More details on the above methods can be found in [9].

6 Conclusion

In this work we have analyzed parallelization properties and limitations of several
most typical preconditioners for the Conjugate Gradient methods. This analysis
confirmed that explicit preconditioners have good parallel potential and therefore
remain attractive for massive parallelization. On the other hand, very efficient
Modified ILU preconditioners can be moderately parallelized only for computa-
tional domains with regular geometry. In case of irregular geometry and general
non-symmetric sparse matrix, only the plain ILU method can be limitedly par-
allelized without loosing its convergence properties. For the future development,
the most promising and efficient approach is Multigrid. However, in many cases
it is very difficult to implement this method. For coupled systems of equations
and some other cases Multigrid can’t be implemented yet due to lack of theory.
For this reason, development of parallel ILU-class methods, as well as economical
explicit preconditioners remains important.
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Abstract. This paper presents a new approach for computing the tran-
sitive closure of a union of relations describing all the dependences in
both uniform and quasi-uniform perfectly-nested parameterized loops.
This approach is based on calculating the basis of a dependence distance
vectors set. The procedure has polynomial time complexity for most
steps of calculations. This allows us to effectively extract both fine- and
coarse-grained parallelism in loops using techniques based on applying
the transitive closure of dependence relations. The effectiveness and time
complexity of the approach are evaluated for loops provided by the NAS
Parallel Benchmark Suite.

Keywords: transitive closure, parameterized dependence, perfectly-
nested loop, parallelizing compiler.

1 Introduction

The transitive closure of a dependence relation R, R+, makes it possible to solve
reachability questions: can I reach y from x in the dependence graph represented
by R? [1]. Resolving many scientific problems in such areas as databases, real-
time process control, or parallel processing requires computing transitive closure.
The transitive closure of dependence relations is a basic operation in many algo-
rithms of optimizing compilers, for example, redundant synchronization removal
[1], testing the legality of iteration reordering transformations [1], computing
closed form expressions for induction variables [1], extracting both coarse- and
fine-grained parallelism in sequential programs [2,3].

The main purpose of this paper is to present a new approach for the calcula-
tion of the transitive closure of a union of relations describing all the dependences
in parameterized perfectly-nested static-control loops, where the loop bounds as
well as array subscripts are symbolic parameters. Most steps of the approach are
characterized by a polynomial time complexity. This approach is based on calcu-
lating the basis of a dependence distance vectors set. Having calculated transitive
closure, we can apply any technique for extracting fine- or coarse-grained par-
allelism available in loops, for example [2,3]. The presented approach is limited
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to perfectly nested loops only, but it may be applied in well-known techniques
for calculating the transitive closure of a union of dependence relations exposed
for arbitrarily nested loops. For example, the presented technique may be used
in the Floyd-Warshall algorithm [1] for calculating the transitive closure of re-
lations representing self-dependences that is required on each iteration in this
algorithm. This may lead to reducing the time complexity of the Floyd-Warshall
algorithm.

2 Related Work

The work of Kelly et al. [1] introduced many of the concepts and algorithms in
the computation of transitive closure. Since the transitive closure of a polyhedral
relation may no longer be a polyhedral relation [1], we can, in the general case,
only compute a polyhedral approximation of transitive closure.

Kelly et al. [1] consider a different set of applications which require an under-
approximation of transitive closure instead of an over-approximation. Whereas
Kelly et al. [1] compute an under-approximation of transitive closure, Ver-
doolaege [4] and Beletska et al. [5], compute an over-approximation. That is,
given a relation R, they compute a relation T such that transitive closure, R+,
satisfies the condition: R+ ⊆ T .

Beletska et al. [5] consider finite unions of translations, for which they compute
quasi-affine transitive closure approximations, as well as some other cases of finite
unions of bijective relations, which in general lead to non-affine results.

Verdoolaege [4] classifies the constraints of dependence relations to be para-
metric, non-parametric, and mixed. He suggests a way to calculate the transitive
closure of a relation depending on a recognized relation class. He integrates many
well-known techniques of calculating the transitive closure of a relation in one
framework.

In paper [6], Bielecki et al. aim at exact transitive closure calculation. In the
general case, this results in non-affine transitive closure.

In paper [7], Bielecki et al. apply the classical iterative least fixed point al-
gorithm to compute transitive closure. If this process does not produce exact
transitive closure after the fixed number of iterations, then the ”box-closure”
technique presented in paper [8] is applied. To decrease the number of iterations
of the least fixed point algorithm, the authors propose to replace each simple
relation with its transitive closure, provided it can be computed exactly using
techniques presented in papers [6,8].

Transitive closure is also used in the analysis of counter systems to accelerate
the computation of reachable sets. For example, the paper of Bardin et al. [9]
and the paper of Bozga et al. [10] present ways to calculate transitive closure for
this purpose.

Feautrier and Gonnord [11] and Ancourt et al. [12], focus on the computation
of invariants that leads to an over-approximation of transitive closure. However,
the analysis is usually performed on (non-parametric) polyhedra. Relations, for
which transitive closure is computed, do not involve parameters, existentially
quantified variables or unions.
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All mentioned above algorithms may require much time and memory for cal-
culating the transitive closure of a relation describing all the dependences in a
loop. Experiments carried out by the authors on the NAS Parallel Benchmark
Suite [13] demonstrate that such a relation may be represented as a union of hun-
dred and even thousands simpler dependence relations. For some loops, the time
of transitive closure calculation may exceeds several hundred hours. This makes
impossible to apply parallelization techniques based on the transitive closure of
dependence relations [2,3] for real-life code. This is why there exists a strong
need in developing algorithms for calculating transitive closure characterized by
reduced computational complexities in comparison with known techniques.

3 Background

In this section, we briefly introduce necessary preliminaries which are used
throughout this paper.

The following concepts of linear algebra are used in the approach presented
in this paper: vector, unit normal vector, vector space, field, linear combination,
linear independence. Details can be found in papers [14,15,16].

Definition 1 (Column Space of a Matrix). Let A be an m×n matrix. The
space spanned by the columns of A is called the column space of A, denoted C(A)
[15].

Definition 2 (Basis). A basis B of a vector space V over a field F (such as
R or Z) is a linearly independent subset of V that spans (or generates) V [15].
Every finite-dimensional vector space V has a basis [16].

Definition 3 (Presburger Arithmetic, Presburger Formula). We define
Presburger arithmetic to be the first-order theory over atomic formulas of the
form:

i=1∑
n

aixi ∼ c, (1)

where ai and c are integer constants, xi are variables ranging over integers, and
∼ is an operator from {=, �=, <,≤, >,≥ }. The semantics of these operators are
the usual ones. A formula f is either an atomic formula (1), or is constructed
from formulas f1 and f2 recursively as follows [17]:

f ::= ¬f1|f1 ∧ f2|f1 ∨ f2.

In this paper, we deal with the following definitions concerned program loops:
iteration vector, loop domain (index set), parameterized loops, perfectly-nested
loops, details can be found in papers [18,19].

Definition 4 (Dependence). Two statement instances S1(I) and S2(J),
where I and J are the iteration vectors, are dependent if both access the same
memory location and if at least one access is a write. Provided that S1(I) is
executed before S2(J), S1(I) and S2(J) are called the source and destination of
the dependence, respectively.
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Definition 5 (Uniform Dependence, Non-Uniform Dependence). If the
difference of iteration vectors it and is is constant for dependent statement in-
stances T (it) and S(is), we call the dependence uniform, otherwise the depen-
dence is non-uniform [18].

Definition 6 (Dependence Distance Set, Dependence Distance Vec-
tor). We define a dependence distance set DS,T as a set of differences between
all such vectors T and S that stand for a pair of dependent iterations. We call
each element of set DS,T a (dependence) distance vector and denote it as dS,T
[18].

Definition 7 (Dependence Relation). A dependence relation is a tuple re-
lation of the form {[input list]→ [output list] : constraints}, where input list
and output list are the lists of variables used to describe input and output tuples
and constraints is a Presburger formula describing the constraints imposed upon
input list and output list.

The general form of a dependence relation is as follows [1]:

R = {[si, . . . , sk]→ [ti, . . . , tk] :
∨n

i=1 ∃αi1, . . . , αimi s.t. Fi},
where Fi, i = 1, 2, . . . , n are represented by Presburger formulas, i.e., they
are conjunctions of affine equalities and inequalities on the input variables
s1, . . . , sk, the output variables t1, . . . , tk, the existentially quantified variables
αi1, . . . , αimi , and symbolic constants.

The dependence relation is a precise description of dependences that subsumes
all, even unbounded, dependence distances. Different operations on relations are
permitted, such as intersection (∩), union (∪), difference (-), domain of relation
(domain(R)), range of relation (range(R)), relation application (R(S)), positive
transitive closure R+, transitive closure R∗. These operations are described in
detail in [20].

Definition 8 (Positive Transitive Closure). Positive transitive closure for
a given relation R, R+, is defined as follows [1]:

R+ = {e→ e′ | e→ e′ ∈ R ∨ ∃e′′ s.t. e→ e′′ ∈ R ∧ e′′ → e′ ∈ R+}.
It describes which vertices e′ in a dependence graph (represented by relation R)
are connected with vertex e.

Definition 9 (Transitive Closure). Transitive closure, R∗, is defined as fol-
lows [1]:

R∗ = R+ ∪ I,

where I is the identity relation. It describes the same connections in a dependence
graph (represented by R) that R+ does plus connections of each vertex with itself.

Definition 10 (Uniform Loop, Quasi-Uniform Loop). We say that a pa-
rameterized loop is uniform if it induces dependences represented with the finite
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number of uniform dependence distance vectors [18]. A parameterized loop is
quasi-uniform if all its dependence distance vectors can be represented with a
linear combination of the finite number of linearly independent vectors with con-
stant coordinates.

Let us consider the parameterized dependence distance vector (N, 2). It can be
represented as the linear combination of the two linearly independent vectors
(0, 2) and (1, 0) as follows (0, 2) + a× (1, 0), where a ∈ Z.

To check whether output returned by an algorithm represents exact transitive
closure, we can use the well-known fact [1] that for an acyclic relation R (for
such a relation R∩ I = ∅, where I is the identity relation) the following is true:

• if R+ is exact transitive closure, then:

R+ = R ∪ (R ◦R+),

• if R+ is an over-approximation, then:

R+ ⊂ R ∪ (R ◦R+).

In the next section of the paper, we analyse the time complexity of the pro-
posed approach in a machine-independent way of assessing the performance of
algorithms. For this purpose, the RAM (Random Access Machine) model of
computation is used. Under the RAM model, we measure run-time by counting
up an upper bound, O, on the number of steps an algorithm takes on a given
problem instance. Details on the model and the time complexity analysis can be
found in paper [21].

4 Approach to Computing Transitive Closure

The goal of the algorithm presented below is to calculate the transitive closure
of a dependence relation describing all the dependences in the perfectly-nested
loop. In general, such a relation is represented with a union of simpler relations
[1].

4.1 Replacing the Parameterized Vector with a Linear Combination
of Constant Vectors

To find constant vectors whose linear combination represents the parameterized
vector, we can apply the following theorem.

Theorem 1. Let vp be a vector in Z
d and pi, i = 1, 2, . . . , q, are its parameter-

ized coordinates, where q is the number of parameterized coordinates. We may
replace vector vp with a linear combination of constant vector vc, vc ∈ Z

d, and
unit normal vectors ei, ei ∈ Z

d as follows:

vp = vc +Σipi × ei. (2)

If vc = 0 then vc can be rejected from (2).
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Proof. Without loss of generality, we may assume that the first n positions of
vp have constant coordinates and the last q positions have parameterized ones.
Then, we can write:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
pn+1

...
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where d−n = q, and further, the second vector can be written as the linear com-
bination of unit normal vectors ek and parameterized coefficients pn+1, . . . , pd in
the last d positions:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ . . .+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= pn+1 ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ . . .+ pd ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

Substituting (4) into (3), we obtain:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
pn+1

...
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ pn+1 × en+1 + . . .+ pd × ed, (5)

that proves Theorem 1.
It is obvious that if vc = 0, then vc can be rejected without affecting the

result. ��

Property 1. Replacing parameterized vectors with a linear combination of vec-
tors with constant coordinates can be done in a polynomial time.

Proof. To check each position in vector vp, vp ∈ Z
d, the algorithm requires d

operations. In the worst case, all d positions can be parameterized coordinates,
hence d unit normal vectors ek, ek ∈ Z

d must be created. This defines O (d2)
time complexity of replacing parameterized vectors. ��
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4.2 Algorithm for Computing Transitive Closure

The idea of the algorithm presented in this section is the following. Given a set D
ofm dependence distance vectors in the n-dimensional integer space derived from
a union of dependence relations R (it describes all the dependences in a loop),
we first replace all parameterized vectors with constant vectors using Theorem 1
presented in subsection 4.1. As a result, we get k, k ≥ m, dependence distance
vectors with constant coordinates. This allows us to get rid of parameterized
vectors and to form an integer matrix A, A ∈ Z

n×k, by inserting dependence
distance vectors with constant coordinates into columns of A. The columns of A
span the vector space V .

To decrease the complexity of further computations, redundant dependence
distance vectors are eliminated from matrix A by finding a subset of l, l ≤ k,
linearly independent columns of A. This subset of dependence distance vectors
forms the basis B, B ∈ Z

n×l, of A and generates the same vector space V as A
does [15]. Every element of vector space V can be expressed uniquely as a finite
linear combination of the basis dependence distance vectors belonging to B.

After B is completed, we can work out relation T representing the exact
transitive closure R or its over-approximation. For each vertex x in the data
dependence graph (where x is the source of a dependence, x ∈ domainR), we
can identify all vertices y (the destination(s) of a dependence(s), y ∈ rangeR)
that are connected with x by a path of length equal or more than 1, where y
is calculated as x plus a linear combination of the basis dependence distance
vectors B, i.e. y = x + B × z, z ∈ Z

l. The part B × z of the formula
represents all possible paths in the dependence graph, represented by rela-
tion R, connecting x and y. Moreover, we have to preserve the lexicographic
order for y and x, i.e. y−x � 0. Below, we present the algorithm in a formal way.

Algorithm. Calculating the exact transitive closure of a relation
describing all the dependences in the parameterized perfectly-nested
loop or its over-approximation.

Input : Dependence distance setDn×m = d1, d2, . . . , dm, wherem is the number
of n-dimensional dependence distance vectors.

Output : Exact transitive closure of the relation describing all the dependences
in the loop or its over-approximation.

Method:

1. Replace each parameterized dependence distance vector in Dn×m with a
linear combination of vectors with constant coordinates. For this purpose
apply Theorem 1 presented in subsection 4.1.

2. Using all constant dependence vectors, form matrix A, A ∈ Z
n×k, k ≥ m,

whose columns span C(A) [22].
3. Extract a finite subset of l, l ≤ k, linearly independent columns from matrix

A ∈ Z
n×k over field Z

n that can represent (generate) every vector in C(A).
Form matrix Bn×l, representing the basis of the dependence distance vec-
tors set, where linearly independent vectors are represented with columns
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of matrix Bn×l. For this purpose apply the Gaussian elimination algorithm
[15,16].

4. Calculate relation T representing the exact transitive closure of a depen-
dence relation, describing all the dependences in the input loop, or its over-
approximation, T , as follows:

T =

{
[x]→ [y] | ∃z s.t. y = x+Bn×l × z ∧ y − x � 0, z ∈ Z

l ∧
∧ y ∈ rangeR ∧ x ∈ domainR

}
, (6)

where:
• R is the dependence relation describing all the dependences in the input
loop,
• Bn×l×z represents a linear combination of the basis dependence distance
vectors di (the columns of Bn×l), 1 ≤ i ≤ l,
• y − x � 0 imposes the lexicographically forward constraints on tuples x
and y of T . ��

Let us demonstrate that for exact transitive closure R+ and relation T , formed
according to (6), the following condition is satisfied: R+ ⊆ T . To prove this, let
us note that relation T represents all possible paths between vertices x (standing
for dependence sources, x ∈ domainR) and vertices y (standing for dependence
destinations, y ∈ rangeR) in the dependence graph, represented with relation R.
Indeed, a linear combination of the basis dependence distance vectors Bn×l× z:

• reproduces all dependence distance vectors exposed for the loop,
• describes all existing (true) paths between any pair of x and y as a linear
combination of all dependence distance vectors exposed for the loop,
• can describe not existing (false) paths in the dependence graph represented
by relation R.

The last case occurs when on a path between x and y, being described by T ,
there exists a vertex w such that w ∈ rangeR ∧ w /∈ domainR. Such a case is
presented in Figure 1, where x2 ∈ rangeR ∧ x2 /∈ domainR. Relation T , built
according to (6), describes the false path between x1 and x4 depicted with the
dotted line.

Fig. 1. False path in a dependence graph represented by relation T

Summing up, we conclude that relation T describes all existing paths in the
dependence graph represented by relation R and can describe not existing paths,
i.e., R+ ⊆ T ; when relation T does not represent false paths, R+ = T .
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4.3 Time Complexity

The first tree steps of the proposed algorithm can be accomplished in polynomial
time.

1. As we have proved in subsection 4.1, the task of replacing parameterized
vectors with a linear combination of vectors with constant coordinates can
be done in O (d2) operations.

2. The task of forming a dependence matrix using all k constant dependence
vectors in Z

n requires O (kn) operations (memory accesses).
3. The task of identifying a set of linearly independent columns of matrix A,

A ∈ Z
n×k with constant coordinates to find the basis can be done in poly-

nomial time by the Gaussian elimination algorithm. According to [23], this
computation can be done in O (ldk) arithmetic operations.

To calculate relation T in step 4 of the algorithm, we use the Presburger arith-
metic. In general, calculations based on the Presburger arithmetic are not char-
acterized by polynomial time complexity [1].

4.4 Illustrating Example

Let us consider the following dependence distance set D:

D =

⎧⎨
⎩
⎛
⎝4

0
0

⎞
⎠
⎛
⎝0

0
1

⎞
⎠
⎛
⎝ 0

1
N1

⎞
⎠
⎛
⎝ 2
N2
N3

⎞
⎠
⎫⎬
⎭,

produced from the following dependence relations:

R1 = {[i, j, k]→ [i+ 4, j, k] : 1 ≤ i ≤ 995 ∧ 1 ≤ j ≤ 999 ∧ 1 ≤ k ≤ 999 },
R2 = {[i, j, k]→ [i, j, k + 1] : 1 ≤ i ≤ 999 ∧ 1 ≤ j ≤ 999 ∧ 1 ≤ k ≤ 998 },
R3 =

{
[i, j, k]→ [i, j + 1, N1] : 1 ≤ i ≤ 999 ∧ 1 ≤ j ≤ 998 ∧ 1 ≤ N1 ≤ 999∧

1 ≤ k ≤ 999

}
,

R4 =

{
[i, j, k]→ [i + 2, N2, N3] : 1 ≤ i ≤ 997 ∧ 1 ≤ j ≤ 999 ∧ 1 ≤ k ≤ 999∧

1 ≤ N2, N3 ≤ 999

}
.

The presented algorithm yields the following results.

1. Replace all parameterized dependence distance vectors. The first parameter-

ized vector

⎛
⎝ 0

1
N1

⎞
⎠ is replaced with the linear combination of the vector

⎛
⎝01
0

⎞
⎠ and the unit normal vector

⎛
⎝00
1

⎞
⎠ as follows:

⎛
⎝ 0

1
N1

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠+N1×

⎛
⎝0

0
1

⎞
⎠.
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The second parameterized vector

⎛
⎝ 2
N2
N3

⎞
⎠ is replaced with the linear com-

bination of the vector

⎛
⎝20
0

⎞
⎠ and the two unit normal vectors

⎛
⎝01
0

⎞
⎠,
⎛
⎝00
1

⎞
⎠ as

follows: ⎛
⎝ 2
N2
N3

⎞
⎠ =

⎛
⎝2

0
0

⎞
⎠+N2×

⎛
⎝0

1
0

⎞
⎠+N3×

⎛
⎝0

0
1

⎞
⎠.

The modified dependence distance set D contains the vectors with constant
coordinates only:

D =

⎧⎨
⎩
⎛
⎝4

0
0

⎞
⎠
⎛
⎝0

0
1

⎞
⎠
⎛
⎝0

1
0

⎞
⎠
⎛
⎝0

0
1

⎞
⎠
⎛
⎝2

0
0

⎞
⎠
⎛
⎝0

1
0

⎞
⎠
⎛
⎝0

0
1

⎞
⎠
⎫⎬
⎭.

2. Form a dependence matrix. The matrix A, where all the constant dependence
vectors from set D are placed in columns, is as follows:

A =

⎡
⎣4 0 0 0 2 0 0
0 0 1 0 0 1 0
0 1 0 1 0 0 1

⎤
⎦.

3. Find the basis of the dependence distance set. A set of linearly independent
columns of matrix A ∈ Z

n×k over field Z
n, that can generate every vector

in C(A), holds the following matrix B:

B =

⎡
⎣2 0 0
0 1 0
0 0 1

⎤
⎦.

4. Calculate the exact transitive closure of a dependence relation describing
all the dependences in an input loop or its over-approximation, T . Form
relation T as follows:

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[i, j, k]→ [i′, j′, k′] | ∃z s.t.
⎛
⎝ i′

j′

k′

⎞
⎠ =

⎛
⎝ i
j
k

⎞
⎠+

⎡
⎣2 0 0
0 1 0
0 0 1

⎤
⎦× z ∧

∧
⎛
⎝ i′

j′

k′

⎞
⎠−
⎛
⎝ i
j
k

⎞
⎠ � 0, z ∈ Z

3 ∧

∧
⎛
⎝ i′

j′

k′

⎞
⎠ ∈ rangeR ∧

⎛
⎝ i
j
k

⎞
⎠ ∈ domainR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
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{
[i, j, k]→ [i, j′, Out 3] : 1 ≤ j < j′ ≤ 999 ∧ 1 ≤ i ≤ 999∧

1 ≤ k ≤ 999 ∧ 1 ≤ Out 3 ≤ 999

}
∪

{
[i, j, k]→ [i, j, Out 3] : 1 ≤ k < Out 3 ≤ 999 ∧ 1 ≤ i ≤ 999∧

1 ≤ j ≤ 999

}
∪

⎧⎪⎪⎨
⎪⎪⎩

[i, j, k]→ [i′, j′, Out 3] : ∃(α : 2α = i+ i′ ∧ 1 ≤ i ≤ i′ − 2∧
1 ≤ j ≤ 999 ∧ 1 ≤ k ≤ 999∧
1 ≤ j′ ≤ 999 ∧ 1 ≤ Out 3 ≤ 999∧
i′ ≤ 999)

⎫⎪⎪⎬
⎪⎪⎭ .

Relation T represents exact transitive closure since T = R∪(R◦T ), i.e., R+ = T .

5 Experiments

The goals of experiments were to evaluate the effectiveness and time complexity
of the approach for loops provided by the well-known NAS Parallel Benchmark
(NPB) Suite from NASA [13] and compare the results with those demonstrated
with well-known techniques.

We have implemented the presented algorithm as an ANSI-C++ software
module using the well-known tools: Omega Project v2.1 (including the Petit
dependence analyser and OmegaCalculator) [20] and PolyLib v5.22.5 [24]. The
source code of the module was compiled using the gcc compiler v4.3.0.

In order to evaluate the effectiveness and time complexity of the presented
approach, we have examined loops provided by NPB, where we found 185 per-
fectly nested loops distributed in terms of dependence types as shown in Table 1.
Only quasi-uniform loops, exposing dependences, were qualified for experiments
conducted using an Intel Core2Duo T7300@2.00GHz machine with the Fedora
Linux v12 32-bit operating system. Uniform loops are very simple, the transitive
closure calculation takes a fraction of a second by means of each well-known ap-
proach chosen for our experiments. The results of the experiments are collected
in Table 2, where time is presented in seconds.

Table 1. The quantitative distribution of perfectly-nested loops in terms of dependence
types for the NAS Parallel Benchmark Suite

Petit’s dependence analysis results Number of loops

1) No dependences : 123
2) Uniform dependences, including: : 14

non loop-carried dependences : 9
loop-carried dependences : 5

3) Affine dependence distance vectors : 1
4) Parameterized dependence distance vectors : 47

The total number of perfectly nested loops : 185
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Table 2. The results of the experiments on the proposed approach to computing
transitive closure (ex : 1 – exact result, 0 – over-approximation; Δt: difference between
the transitive closure calculation time of a known correspondent technique and that of
the presented approach)

#
Source loop name

Num. of
relations

Proposed
approach

ISLa Omegab
Modified
naivec

Naive

iteratived

ex t [s] ex Δt [s] ex Δt [s] ex Δt [s] ex Δt [s]
1) BT error.f2p 5.t 31 1 0.031426 1 0.366620 1 1.254941 1 0.352105 1 0.045889
2) BT rhs.f2p 1.t 46 1 0.015420 1 0.206978 1 0.266552 1 0.088564 1 0.048748
3) BT rhs.f2p 5.t 128 1 0.032506 1 0.628170 1 0.373698 1 0.241037 1 0.133443
4) CG cg.f2p 4.t 10 1 0.001394 1 0.012836 1 0.028528 1 0.033002 1 0.007343
5) FT auxfnct.f2p 1.t 1 1 0.000498 1 0.002367 1 0.010710 1 0.011064 1 0.005242
6) LU HP jacld.f2p 1.t 2634 1 0.861241 1 3.238012 1 2.847586 1 2.850412 1 2.798487
7) LU HP jacu.f2p 1.t 2364 1 0.870714 1 3.230056 1 2.775247 1 2.883089 1 2.796973
8) LU HP l2norm.f2p 2.t 9 1 0.015420 1 0.071471 1 0.443246 1 0.063844 1 0.018039
9) LU HP pintgr.f2p 11.t 4 1 0.003613 1 0.016903 1 0.061860 1 0.052314 1 0.151791

10) LU HP pintgr.f2p 2.t 109 1 0.016306 1 0.237329 1 0.161726 1 0.104097 1 1.794602
11) LU HP pintgr.f2p 3.t 6 1 0.004913 1 0.015279 1 0.086131 1 0.025622 1 0.179312
12) LU HP pintgr.f2p 7.t 6 1 0.003813 1 0.014184 1 0.051845 1 0.030665 1 0.195149
13) LU jacld.f2p 1.t 2594 1 0.938966 1 6.642572 1 5.228918 1 5.326683 1 5.194970
14) LU jacu.f2p 1.t 2594 1 0.956669 1 6.579343 1 5.311930 1 5.348333 1 5.129321
15) LU l2norm.f2p 2.t 9 1 0.015844 1 0.072211 1 0.437792 1 0.071154 1 0.037985
16) LU pintgr.f2p 11.t 6 1 0.003646 1 0.014602 1 0.073625 1 0.038457 1 0.042410
17) LU pintgr.f2p 2.t 109 1 0.016809 1 0.259748 1 0.155823 1 0.154837 1 0.080306
18) LU pintgr.f2p 3.t 6 1 0.003761 1 0.040027 1 0.052203 1 0.027178 1 0.009476
19) LU pintgr.f2p 7.t 6 1 0.003545 1 0.014027 1 0.052915 1 0.024414 1 0.051227
20) SP error.f2p 5.t 31 1 0.030129 1 0.335163 1 1.124598 1 0.345867 1 0.058086
21) SP ninvr.f2p 1.t 103 1 0.027068 1 0.518872 1 0.360729 1 0.145716 1 0.175913
22) SP pinvr.f2p 1.t 103 1 0.062344 1 0.506981 1 0.311296 1 0.122795 1 2.350396
23) SP rhs.f2p 1.t 64 1 0.018997 1 0.280145 1 0.295704 1 0.152454 1 1.377576
24) SP rhs.f2p 5.t 127 1 0.037623 1 0.636079 1 0.404190 1 0.223900 1 2.894218
25) SP txinvr.f2p 1.t 271 1 0.060724 1 1.351747 1 0.622205 1 0.367453 1 6.027061
26) SP tzetar.f2p 1.t 288 1 0.065464 1 1.428076 1 0.624693 1 0.407390 1 6.309783
27) UA adapt.f2p 2.t 8 1 0.004565 1 0.127510 1 0.067452 1 0.074993 1 1.249933
28) UA diffuse.f2p 1.t 5 1 0.031599 1 0.120405 1 3.183128 1 0.082078 1 0.693391
29) UA diffuse.f2p 2.t 3 1 0.000841 1 0.004809 1 0.014886 1 0.015446 1 0.075129
30) UA diffuse.f2p 3.t 1 1 0.001557 1 0.017473 1 0.060696 1 0.065185 1 0.352796
31) UA diffuse.f2p 4.t 1 1 0.001319 1 0.019262 1 0.030905 1 0.029046 1 0.220720
32) UA diffuse.f2p 5.t 1 1 0.001318 1 0.048017 1 0.020359 1 0.073782 1 0.205120
33) UA precond.f2p 3.t 1 1 0.000810 1 0.008120 1 0.012220 1 0.029599 1 0.153511
34) UA precond.f2p 5.t 30 1 0.020345 1 0.104346 0 1.876196 1 0.236637 1 0.053637
35) UA setup.f2p 16.t 3 1 0.001117 1 0.012390 1 0.042547 1 0.021549 1 0.304168
36) UA transfer.f2p 1.t 1 1 0.001421 1 0.003180 1 0.007251 1 0.013840 1 0.088288
37) UA transfer.f2p 10.t 1 1 0.000563 1 0.016922 1 0.017675 1 0.010831 1 0.109149
38) UA transfer.f2p 13.t 1 1 0.000936 1 0.017786 1 0.061921 1 0.018809 1 0.093481
39) UA transfer.f2p 15.t 1 1 0.000910 1 0.008932 1 0.066882 1 0.021374 1 0.134113
40) UA transfer.f2p 18.t 1 1 0.001002 1 0.009408 1 0.060545 1 0.044006 1 0.092364
41) UA transfer.f2p 2.t 1 1 0.000567 1 0.004319 1 0.027085 1 0.009619 1 0.082240
42) UA transfer.f2p 3.t 1 1 0.000721 1 0.007627 1 0.015603 1 0.016645 1 0.052296
43) UA transfer.f2p 5.t 1 1 0.000924 1 0.008626 1 0.007632 1 0.021906 1 0.128496
44) UA transfer.f2p 6.t 1 1 0.000504 1 0.023024 1 0.008649 1 0.012247 1 0.057072
45) UA transfer.f2p 7.t 1 1 0.000800 1 0.008153 1 0.013367 1 0.015569 1 0.137118
46) UA transfer.f2p 8.t 1 1 0.000695 1 0.038489 1 0.008616 1 0.009248 1 0.054289
47) UA transfer.f2p 9.t 1 1 0.001001 1 0.058757 1 0.030424 1 0.015611 1 0.090497

a
Integer Set Library – a library for manipulating sets and relations of integer points bounded by
affine constraints (available at http://repo.or.cz/w/isl.git).

b
Omega Project – frameworks and algorithms for the analysis and transformation of scientific
programs (available at http://www.cs.umd.edu/projects/omega/).

c
Modified Naive Iterative Method – a method described in the paper [7] and implemented by its
authors in the function IterateClosure( ) as an extension to the Omega Project (available at
http://sfs.zut.edu.pl/files/omega–2.1.7.tgz).

d
Naive Iterative Method – the well-known technique implemented in the function compose n( )
within the Omega Project.
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Analysing the results presented in Table 2, we can conclude the approach
presented in the paper to calculating transitive closure appears to be the least
time-consuming in comparison with all known to the authors implemented ap-
proaches. For all loops, we obtained the shortest time of producing transitive
closure. The time of transitive closure calculation by means of the presented
approach is 3.2 to 275 times less than that yielded with known implementations.
In all cases, the approach provides exact transitive closure.

All these facts permit us to conclude that the presented approach can be
successfully applied for building parallelizing compilers permitting for automatic
parallelising real-life code.

6 Conclusions

In this paper, we have presented a new approach to calculate the transitive
closure of a union of relations representing dependences for both uniform- and
quasi-uniform perfectly-nested parameterized loops. It is characterized with a
considerably reduced time complexity in comparison with other known tech-
niques. The algorithm has polynomial time complexity for all steps of calcula-
tions except the last one where we use the Presburger arithmetic. Carried out
experiments on the NAS Parallel Benchmark Suite demonstrate that the pre-
sented technique is really fast and effective. This allows us to extract efficiently
both fine- and coarse-grained parallelism in perfectly-nested loops by means of
well-known techniques based on applying the transitive closure of dependence
relations [2,3].

We have applied the presented algorithm in the Floyd-Warshall algorithm
for calculating the transitive closure of relations representing self-dependences
that is required on each iteration in this algorithm. This has permitted us to
calculate the transitive closure of a union of dependence relations exposed for
arbitrarily nested loops. Currently, we are carrying out experiments to evaluate
the performance of such a modification of the Floyd-Warshall algorithm. The
results are really promising for the time being and we are going to presents
them in our next paper.
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Abstract. This paper presents a new form of consensus that allows
nodes to agree locally on the extent of crashed regions in networks of
arbitrary size. One key property of our algorithm is that it shows local
complexity, i.e. its cost is independent of the size of the complete system,
and only depends on the shape and extent of the crashed region to be
agreed upon. In this paper, we motivate the need for such an algorithm,
formally define this new consensus problem, propose a fault-tolerant
solution, and prove its correctness.

Keywords: distributed computing, fault-tolerance, failure detection,
consensus, scalability.

1 Introduction

Modern distributed computer systems are increasingly large and complex, often
involving tens of thousands of machines distributed across continents to deliver
key global services such as search, content delivery, or messaging to millions of
users. Constructing such systems requires distributed services that are scalable
to account for the global size of these systems, efficient to meet the increas-
ing expectations of users, and robust to overcome the unavoidable failures of
individual elements in such large-scale systems.

One strategy to provide these properties is to eschew any form of centralisation
or global knowledge of the system, and instead rely on decentralized topologies in
which each node only perceives one limited part of the system. Coordinating the
work of individual nodes in such decentralized topologies is however difficult,
leading to a number of works that aim to provide fundamental coordination
services such as consensus in systems whose size might be unknown, and in which
participants only have a partial knowledge of each other [2, 4, 8, 12, 13, 18].

In this article we look at one such fundamental service for the consistent
detection of crashed regions in networks of arbitrary size. Our premise is that
large-scale distributed systems can be benefit from a collective response to the
crash of connected regions of the network, so that there is a need for the nodes

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 51–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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around a crashed region to come to an agreement on the shape and extent of this
region, and possibly decide on some unified recovery action to be undertaken.
This problem of collective agreement can be cast as a new type of specialized
consensus, where nodes that border a crashed region (i.e. nodes on the cliff-edge)
want to agree on the extent of this crashed region (the precipice of our title).

This form of agreement in large-scale systems presents two interesting and
related challenges, which clearly set it apart from existing works in the area:
(i) The solution should be scalable, and should in particular work in networks
of arbitrary size, i.e. it should only involve nodes in the vicinity of a crashed
region, and never the complete system. (ii) Because of ongoing failures, nodes
might disagree on the extent of a crashed region, but as they do so they will also
disagree on who should even take part in the agreement, since both what is to
be agreed (the crashed region), and who should agree on it (the nodes bordering
the region) are irredeemably interdependent. We have termed this second facet
of this emergent agreement the self-constituency problem.

Contributions: In this article, we formally define this new consensus
problem, present a fault-tolerant solution that uses perfect failure detectors,
and prove its correctness. Our solution works in systems of arbitrary size, in a
scalable manner (the algorithm only involves nodes bordering a crashed region),
for any number of faults.

Paper organization: We first present the cliff-edge consensus problem in Sec-
tion 2, then move on to describe our solution (Section 3). We present our proof
of correctness (Section 3.3), and finish with some related work (section 4) and a
conclusion (Section 5).

2 The Problem

2.1 Overview

We consider systems in which individual nodes only have a partial knowledge of
the rest of the system. This partial knowledge (Node x knows Node y) defines
a form of spatial proximity between nodes, captured in our model by an undi-
rected graph. (We revisit these points more formally in Section 2.2 below.) In
case of correlated failures (for instance because the network’s topology mirrors
physical proximity as in some distributed hash table protocols [6], or because
neighbouring nodes rely on the same relay to communicate), whole regions of the
network might disappear, requiring surviving nodes to (i) identify and agree on
the extent of the crashed region, and (ii) decide on a common action to mitigate
the failure.

For instance, in the network of Fig. 1-a, the nodes in region F1 and F2 have
crashed. These crashes are being detected by the border nodes (i.e. the neigh-
bouring nodes) of each crashed region: paris, london, madrid and roma for
F1 and tokyo, vancouver, portland, sydney, and beijing for F2. (This detection
occurs with the help of an appropriate failure detector, which we discuss in more
detail in Section 2.2.)
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(a)

(b)

Fig. 1. Protocol instances and conflicting views

Our scalability requirement imposes that communications related to F1

(resp. F2) should be limited to nodes bordering F1 (resp. F2). For instance
vancouver should not have to communicate with madrid to decide on a
repair strategy for F2. This excludes traditional consensus approaches that would
involve the entire network in a protocol run.

Because of ongoing crashes, nodes bordering the same crashed region might
however possess divergent views regarding the extent of their region, and hence
have diverging perceptions of who should get involved in a protocol run. In
Fig. 1-b, for instance, paris fails after madrid has detected F1 as crashed, but
before an agreement on F1 has been reached. The crashed region F1 thus grows
into F3, and a new node berlin (paris’ still non-crashed neighbour) becomes
involved. berlin detects the entirety of F3 as crashed.
madrid and berlin now have different, albeit overlapping views. If madrid

is slow to detect paris’ crash, it might try to agree on F1 with london and
roma alone, while berlin will try to involve all nodes bordering F3 to decide
on F3. Each node’s effort could stall each other, or could lead to duplicated or
inconsistent decisions. Our protocol prevents this and insures that any decisions
pertaining to the same part of the network converge to a unified view, a problem
that we have termed the convergent detection of crashed regions.

2.2 System Model and Assumptions

We model our system as a finite undirected graph G = (Π,E) of asynchronous
message-passing nodes Π = {p1, .., pn}, where G represents the knowledge that
nodes have of each other in the system.
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A node is faulty if it crashes at some point, correct if it does not crash during
the execution of the algorithm. Any two nodes might exchange messages through
asynchronous, reliable, and ordered (fifo) channels. We also assume that each
node can query G on demand, either by directly contacting live nodes, or using
some underlying topology service for crashed nodes.

The border of a node p is the set of p’s neighbours. By extension, the border
of a set S ⊆ Π of nodes are the nodes that have a neighbour in S but do
not belong to S: border(S) = {q ∈ Π\S | ∃p ∈ S : (p, q) ∈ E}. A region is a
connected subgraph of G. A crashed region at a time t is a region in which all
nodes have crashed.

To specify the liveliness of our protocol, we need to define the three additional
notions of adjacency, faulty domain and faulty cluster, which capture the maxi-
mum extent of crashed regions during a run. More precisely, a faulty domain is
a region in which all nodes are faulty, but whose border nodes are correct. By
construction, two faulty domains can only be either equal or disjoint.

Fig. 2. A cluster of adjacent faulty domains

Two faulty domains F and H are adjacent (noted F ‖ H) if their borders
intersect (e.g. F1 ‖ F2 in Fig. 2). We say that two faulty domains F0 and Fn are in
the same faulty cluster, noted clustered(F0, Fn), if they are transitively adjacent1,
i.e. if there is a sequence of faulty domains Fi so that F1 ‖ F2 ... Fn−1 ‖ Fn. For
instance, we have clustered(F1, F4) in Fig. 2.

2.3 Convergent Detection of Crashed Regions: Specification

Operations. We use a mono-threaded event-based programming model to
specify the convergent detection of crashed regions, and present our solution. Our
service starts when a node detects one of its neighbours q as crashed (〈crash | q〉
event). It stops by raising a 〈decide |S, d〉 event, where S is the crashed region
decided by the local node, and d is the decision taken by this node with respect
to S (e.g. a repair plan, or some other form of coordinated action). We call S
the view of the deciding node.

1 More formally, clustered(., .) is the transitive closure of the adjacency relation, and
faulty clusters are the equivalence classes of this closure.
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Properties. The Convergent Detection of Crashed Regions is characterised by
the following properties:

CD1 (Integrity)
No node decides twice on the same region.

CD2 (View Accuracy)
If a node p decides (V, d), then p ∈ border(V ), and V is a crashed region.

CD3 (Locality)
Communication is limited to faulty-domains and their borders, i.e. a node
p only exchanges messages with a node q if there is a faulty domain S such
that {p, q} ⊆ S ∪ border(S).

CD4 (Border Termination)
If p decides (V, d), then all correct nodes in border(V ) eventually decide.

CD5 (Uniform Border Agreement)
If two nodes p and q decide, and p decides (V, d), and q ∈ border(V ), then
q decides (V, d).

CD6 (View Convergence)
If two correct nodes decide V and W , (V ∩W �= ∅)⇒ (V =W ).

CD7 (Progress)
In each faulty cluster, at least one correct node bordering a faulty domain in
the cluster eventually decides: if D is the set of all faulty domains, ∀V ∈ D :
∃W ∈ clustered(V, ·) : ∃p ∈ border(W ) : p decides.

These properties capture the requirement that the nodes bordering a crashed
region should agree on the extent of this crashed region, and decide on a com-
mon course of action. CD1 (Integrity), CD5 (Uniform Border Agreement), and
CD4 (Border Termination) are directly adapted from (uniform) consensus; CD2
(View Accuracy) is taken over from the strong accuracy of fault detectors; and
CD7 (Progress) is a weak form of termination.

The problem’s originality resides in the two remaining properties: CD6 (View
Convergence) and CD3 (Locality). CD6 (View Convergence) forbids conflicting
agreements on overlapping crashed regions (F1 and F3 in Fig. 1). CD3 (Locality)
provides scalability by limiting the system’s reaction to the vicinity of crashed
regions. In particular, CD3 (Locality) implies that nodes with no faulty neigh-
bours do not take part in the protocol. As a result, the protocol only depends on
the amount of failures in the system, but not on the system’s actual size. Locality
also excludes the use of a system-wide consensus to fulfil the other properties.

This Locality property creates however a pernicious inter-dependency between
the protocol’s participants (the ‘constituency’) and what they are agreeing to:
To start our protocol, a node needs to know with whom it should be agreeing
(its fellow border nodes), but this set of nodes depends on the final outcome of
the protocol (the crashed region agreed upon).

In the following, we present a solution to this problem and propose a proof of
its correctness.
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3 A Cliff-Edge Consensus Protocol

3.1 Preliminaries: Failure Detector, Multicast, Region Ranking

Our algorithm uses a perfect failure detector provided in the form of a
subscription-based service: a node p subscribes to the crashes of a subset of nodes
S by issuing the event 〈monitorCrash |S〉 to its local failure detector. Our fail-
ure detector is perfect and ensures: (i) Strong Accuracy: if a node p receives a
〈crash | q〉 event, then q has crashed, and p did subscribe to be notified of q’s crash;
and (ii) Strong Completeness : if a node q has crashed, and p has subscribed to be
notified of q’s crash, then p will eventually receive a 〈crash | q〉 event.

For the sake of conciseness, we use a basic multicast service, represented by
the events 〈multicast | R, [m]〉 and 〈mDeliver | p, [m]〉. This service simply
sends to each recipient a multicast message [m] over underlying point-to-point
channels, in a plain loop. This service provides no guarantees beyond those of
the underlying channels, and is essentially a shorthand to keep our code brief.

We also use a ranking relation between regions, noted �: R � S iff either (i) R
contains more nodes than S, or (ii) they contain the same number of nodes but
R’s border contains more nodes than S’s border, or (iii) R and S have the same
size, and so do their respective borders, but R is greater than S according to
some strict total order relation � on sets of nodes. The actual ordering relation
� on node sets does not matter. One possibility is to use a lexicographic order
on node IDs. By construction, � is a strict total order on regions. For a set C of
regions, maxRankedRegion(C) is the highest ranked region in C.

Finally, for a subset S of nodes, connectedComponents(S) returns the set of the
maximal regions of S, i.e., formally, the vertex sets of the connected components
of the subgraph G[S] induced by S in G. (Remember that a region is defined as
a connected subgraph of G, see Section 2.2.)

3.2 Algorithm

The pseudo code of our algorithm is given in Figure 1. 〈init〉 is executed by
all nodes when the protocol starts. Each node then remains idle until one of its
neighbours fails, as notified by a 〈crash | q〉 event.

The bulk of the protocol is primarily a superposition of flooding uniform
consensus instances [9, 14] between the border nodes of proposed views. This
superposition is complemented by an arbitrating mechanism to deal with
overlapping but conflicting views (line 26). Because of this arbitration, all con-
sensus instances must be tracked concurrently by our protocol, in the variables
opinions[·][·][·] and waiting[·][·], which are indexed by proposed views (in addition
to rounds, and, for opinions, participants).

A node starts a consensus instance when it detects that one of its neighbours
has crashed (line 17). The view it proposes has been incrementally built when
receiving 〈crash | .〉 events (line 5), and is the highest ranked crashed region
known to the node at this point. The view construction continues in the back-
ground as the consensus unfolds (lines 5-10), to be used if the attempt to reach
an agreement fails.
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The opinion vectors received from other nodes in a round are gathered at
line 18. Because a node might be involved simultaneously in multiple conflicting
consensus instances, messages related to conflicting views are also gathered and
processed. The resulting opinion vectors, indexed by round and proposed view
(line 24) are stored in opinions[·][·][·].

If a node becomes aware of a conflicting view with a lower rank (line 26),
it sends a special opreject vector to this view’s border nodes, and subsequently
ignores any message related to this view (lines 28-31).

Rounds are completed at line 32 when all non-crashed border nodes of view
have replied: if no more rounds are needed (line 34), and the node’s final vector
only contains accept values, a decision value is deterministically selected for the
proposed view (line 35), and the node decides2. Otherwise the whole process is
reset, and restarts at line 12 as soon as a new crashed node is detected.

3.3 Proof of Correctness

In the following, we use a subscript notation to distinguish between the same
protocol variable at different nodes: e.g. opinionsp for the variable opinions of p.

Theorem 1. Our protocol fulfils properties CD1 (Integrity), CD2 (View
Accuracy), and CD3 (Locality).

Proof. CD1 is fulfilled by construction. For CD2, connectedComponents() at
line 8 and the strong accuracy of the failure detector insure that proposed
views are crashed regions. Using recursion on 〈crash | .〉 events, a node p can
be shown to respect the two invariants (i) p ∈ border(locallyCrashedp) and (ii)
{p} ∪ locallyCrashedp is connected, thus yielding that p is on the border of
any view it proposes. CD3 follows from CD2, and the fact that two nodes only
exchange messages when both border a region detected as failed by one of them.

Our proof of the remaining four properties reuses elements of the proof of the
consensus algorithm presented in [9] for strong failure detectors (S), of which
the flooding uniform consensus is derived. The difficulty lies in that our protocol
uses multiple overlapping consensus instances, each indexed by the view it pro-
poses, with no prior agreement on either the set the consensus instances, their
participants, or their sequence. In addition, our arbitrating mechanism means
a node can first propose and then reject the same view, thus complicating the
uniform border agreement, as we shall see.

Lemma 1. At any execution point the vectors opinionsp[V ][r][·] of p are such
that ∀q ∈ border(V ) :
1) opinionsp[V ][r][q] = reject⇒ q rejected V earlier ∧
2) opinionsp[V ][r][q] = (accept, ·)⇒ q accepted V earlier

2 For clarity’s sake, the presented version is not optimized. A classical optimization
consists in terminating a consensus instance once a node sees that all nodes in its
border set know everything (i.e. no ⊥), i.e. after two rounds, in the best case.
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Algorithm 1. Convergent detection of crashed regions executed by node p

1: upon event 〈init〉
2: decided ← ⊥ ; proposed ← ⊥
3: locallyCrashed,maxView, candidateView, Vp, received, rejected ← ∅
4: trigger 〈monitorCrash | border(p)〉
5: upon event 〈crash | q〉 � View construction
6: locallyCrashed ← locallyCrashed ∪ {q}
7: trigger 〈monitorCrash | border(q)\locallyCrashed〉
8: C ← connectedComponents(locallyCrashed)
9: if maxView ≺ maxRankedRegion(C) then
10: maxView ← maxRankedRegion(C)
11: candidateView ← maxView

12: upon event proposed = ⊥∧ candidateView �= ∅ � New consensus instance
13: Vp ← candidateView ; candidateView ← ∅
14: proposed ← selectValueForView(Vp)
15: opaccept[pk] ← ⊥ for all pk ∈ border(Vp)\{p}
16: opaccept[p] ← (accept, proposed) ; r ← 1
17: trigger 〈multicast | border(Vp), [1, Vp, border(Vp), opaccept]〉 � proposing Vp

18: upon event 〈mDeliver | pi,[r, V,B, op]〉 ∧V �∈ rejected � Updating opinions
19: if V �∈ received then
20: received ← received ∪ {V } � Initialise data structures for V
21: opinions[V ][r][pk] ← ⊥ for all pk ∈ B ∧ 1 ≤ r < |B|
22: waiting[V ][r] ← B for all 1 ≤ r < |B|
23: for all pk such that (opinions[V ][r][pk] = ⊥ ∧ op[pk] �= ⊥) do
24: opinions[V ][r][pk] ← op[pk]

25: waiting[V ][r] ← waiting[V ][r]\ ({pi} ∪ {pk|op[pk] = reject})
26: upon event ∃L ∈ received : L ≺ Vp � Rejecting a lower ranked view
27: trigger 〈reject |L〉
28: upon event 〈reject |L〉
29: opreject[pk] ← ⊥ for all pk ∈ border(L)\{p}
30: opreject[p] ← reject; received ← received\{L}; rejected ← rejected ∪ {L}
31: trigger 〈multicast | border(L), [1, L, border(L), opreject]〉
32: upon event Vp ∈ received ∧ waiting[Vp][r]\locallyCrashed = ∅ ∧ decided = ⊥
33: if r ≥ |border(Vp)| − 1 then � Consensus instance completed
34: if ∀pi ∈ border(Vp) : opinions[Vp][r][pi] = (accept, vpi) then
35: decided ← deterministicPick({vpi}pi∈border(Vp)) � Decision
36: trigger 〈decide |Vp, decided〉
37: else proposed ← ⊥ � Consensus attempt failed, reset

38: else � New round
39: r ← r + 1
40: trigger 〈multicast | border(Vp), [r, Vp, border(Vp), opinions[Vp][r − 1]]〉
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Proof. First let us note that the only location where opinions[V][q][q] is explicitly
assigned an accept (resp. reject) value is when q accepts (resp. rejects) view V
at line 16 (resp. line 30). This accept (resp. reject) value then propagates to the
opinion vectors of other border nodes through the network (lines 17, 31 and 40),
and the assignment of line 24. A recursive data-flow argument on the values of
opinions[V][r][·] taken at these lines yields the lemma.

Lemma 2. A node proposes (resp. rejects) a given view V at most once. A node
never proposes a view it has previously rejected.

Proof. The uniqueness of rejection follows from the use of the rejected and
received variables. The use of the strict ranking relation ≺ (line 9) means the
series of values taken by the variable candidateView is strictly monotonic
according to ≺ (line 11), and that by construction this is also true of Vp (line 13),
thus completing the lemma.

Lemma 3. If two nodes p and q complete a consensus instance on the same
view Vp|q = V (line 34), they obtain the same opinion vector:

opinionsp[V ][N ][·] = opinionsq[V ][N ][·]
where N = |border(V )| − 1

Proof. We prove this lemma by contradiction. Let’s assume ∃k ∈ border(V ) :
opinionsp[V ][N ][k] �= opinionsq[V ][N ][k]. If one of the two values is ⊥, we can
use the well-known argument on cascading crashes, identifying N distinct nodes
in border(V ) that did not complete the consensus instance, contradicting the
fact that p and q completed it.

Let’s now assume both values are non-⊥. The first sub-case is when both
values are accept for k, with different decision values on p and q, i.e. opi-
nionsp[V ][N ][k] = (accept, vpk) and opinionsq[V ][N ][k] = (accept, vqk) with vpk �=
vqk. Using lemma 2, we conclude that line 16 is executed only once by k for V ,
and that vpk = vqk, yielding the contradiction.

Finally, let’s assume one value is accept, while another is reject, e.g. with-
out loss of generality, opinionsp[V ][N ][k] = (accept, ·) and opinionsq[V ][N ][k] =
reject. From lemma 1 we conclude that k has both proposed and rejected V . Let’s
call ekaccept and ekreject the corresponding execution points. Because of lemma 2,

ekaccept and e
k
reject are unique, and e

k
accept happened before ekreject. Because the best-

effort multicast is fifo, this means q received the message for ekaccept before that

of ekreject, and because line 24 only updates ⊥ values, that opinionsq[V ][N ][k] =
(accept, ·), yielding the contradiction.

Theorem 2. Our protocol fulfils properties CD5 (Uniform border agreement)
and CD4 (Border termination).

Proof. Let’s assume p and q decide, p decides (Vp, decidedp), and q ∈ border(Vp).
If p decides on Vp, then p completed the corresponding consensus instance with
only accept values, and since q ∈ border(Vp) we have opinionsp[Vp][N ][q] =
(accept, ·). By lemma 1, q proposed Vp.
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Let us now note that by construction a node cannot propose any new view once
it has decided on one (Remark N1). That is because of the guards decided = ⊥
at line 32 and proposed = ⊥ at line 12. The first guard means the lines 32-40 are
never executed again once a value has been decided at lines 35-36. In particular
the variable proposed is never reset at line 37 after a decision. This in turn means
a node cannot propose a new view at lines 12-17.

Similarly, the same guard proposed = ⊥ at line 12 means a node cannot
start a new consensus instance before completing the current one (Remark N2).
Remarks N1 and N2 thus mean q completed the consensus instance correspond-
ing to Vp before deciding. By lemma 3, q obtained the same vector opinionsq as
p on Vp, and hence decided (Vp, decidedp) by determinism of deterministicPick
(line 35), thus proving CD5.

CD4 follows the same reasoning, with the observation that if a node p com-
pletes a consensus instance on a view Vp, then all other nodes in border(Vp) either
took part in each round or crashed, implying that all correct nodes eventually
complete the instance with the same opinion vector as p (by way of lemma 3).

Theorem 3. Our protocol fulfils CD6 (View convergence).

Proof. Let’s consider two correct nodes p and q that decide on overlapping
crashed regions Vp and Vq: Vp ∩ Vq �= ∅. If one node is in the border of the
other’s region, e.g. p ∈ border(Vq), then Uniform Border Agreement (CD5) and
Integrity (CD1) give us Vp = Vq .

Let’s now assume p �∈ border(Vq)∧ q �∈ border(Vp), and use a proof by contra-
diction. Since Vp ∩Vq �= ∅, there is a node a ∈ Vp ∩Vq (Fig. 3). Vp being a region
bordered by p (CD2), there exists a path (n0 = p, n1, ..., nk = a) that links a to
p through Vp: {n1, ..., nk, a} ⊆ Vp. Since a ∈ Vq, we can consider the point when
this path “penetrates” for the first time into Vq, i.e. we can consider ni0 ∈ Vq
and ∀i < i0 : ni �∈ Vq. Since p is correct, ni0 �= p, i.e. i0 ≥ 1, and we can look
at ni0−1, the node in the path just before ni0 . Let’s call this node r (Fig. 3).
Because ni0 is the first node in the path to belong to Vq, we have r ∈ border(Vq),
and since p �∈ border(Vq), r = ni0−1 cannot be p (i0 > 1). Because, with the
exception of p, the path connecting p to a is embedded in Vp, this means that
r is in fact located in p’s crashed region. This reasoning thus yields us a node
(r) that is both on border(Vq) and in p’s crashed region: r ∈ Vp ∩ border(Vq).
Using an identical argument, we can find a node s such that s ∈ Vq ∩ border(Vp)
(Fig. 3).

To complete our proof, we now look at the happen-before relationships
between events related to r and s. Let’s first consider s. Since s ∈ border(Vp) and
p decided on Vp, s itself did propose Vp (lemma 1). Since r ∈ Vp, s did detect r
as crashed as some point. By a similar reasoning, we conclude that r proposed
Vq, and hence detected s as crashed as some point.

We thus end up with a set of 6 events that form a circular chain of happen-
before events: s detects r → s proposes → s crashes → r detects s → r proposes
→ r crashes → s detects r ... This provides our contradiction.
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Fig. 3. Convergence between overlapping views

Theorem 4. Our protocol fulfils properties CD7 (Progress).

Proof. Again we use a contradiction: consider a cluster of adjacent faulty
domains (Fig. 2), and assume none of its correct border nodes ever decide. Since
this situation lasts indefinitely, we can consider the case where all crashed regions
are maximal and all remaining nodes are correct.

Because the views proposed by a node are strictly monotonic according to ≺,
and because G is finite, a node cannot propose an infinite sequence of views. A
correct border node p that does not decide falls therefore into two cases: either
(C1) p is blocked waiting for the reply of another node q (line 38); or (C2) the
last view proposed by p failed (line 37), and p does not detect any new crashed
node (line 5).

Case C1 : If p is waiting for the reply of some other node q, q must be correct
(if it were not, q would eventually crash, thus unblocking p). Since there is a path
of crashed nodes from p to q (since p is waiting for q), q is on the border of the
same faulty domain as p, so q never decides (by assumption).

As for p, q falls in either case C1 or C2. Let’s first assume that the last
view V max

q proposed by q failed, and q does not detect any new crashed node
(C2). Since we have assumed that all faulty nodes have crashed, by strong
completeness of the failure detector, V max

q is a faulty domain, and because of the
use of maxRankedRegion (line 10) and the fact that ≺ subsumes set inclusion,
V max
q is higher ranked than any crashed region bordered by q.
Since p is waiting for q, Vp �= V max

q , and since q is on the border of both Vp
and V max

q , Vp is lower-ranked than V max
q : Vp ≺ V max

q . q has received a round-1
message proposing Vp (line 18), and should have rejected it (line 31), thus ending
p’s wait on q, which contradicts our assumption.

We therefore conclude that q cannot fall in caseC2, and instead is blocked in a
consensus round proposing a crashed region Vq (case C1). q received p’s proposal
message, and did consider it for rejection (line 26). Because p is waiting for q,
we know it did not receive any rejection message from q, and therefore, Vp � Vq.
Since p is waiting for q, q is not proposing the same view as p, yielding a strict
ordering between the two views Vp � Vq.

This construction can be repeated recursively, first for q, and then for the node
q is waiting on, etc, each time yielding an infinite number of pairwise distinct
crashed regions (via CD2) that are strictly ordered by the ranking relationship:
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Vp1 � Vp2 � ... � Vpi � ... This contradicts our assumption that each faulty
cluster contains a finite number of faulty domains, each containing a finite
number of nodes.

Case C2 : Let’s now assume the last view V max
p proposed by p failed, and

p does not detect any new crashed node. As with V max
q above, V max

p is a faulty
domain, and all its border nodes are correct. Because the failure detector is
strongly accurate, for p’s proposal to fail, one node q ∈ border(V max

p ) must have

rejected V max
p because it was proposing a higher-ranked view V higher

q . By assump-
tion, q never decides, it must either fall in case C1 or C2. If q is in case C1, we
can repeat the same argument as for p in Case C1, above. If q is in case C2,
q’s last view V max

q is higher or equal than any view q ever proposed, implying

V max
p ≺ V higher

q � V max
q .

By recursively applying this argument, we either come back to case C1 at
some point, or obtain an infinite sequence of strictly ordered faulty domains
V max
p1
≺ V max

p2
≺ V max

p3
≺ ..., which yields our contradiction.

4 Related Work

The algorithm we presented builds on our earlier work on the generic repair of
overlay networks [17], in which we first sketched some of the ideas presented in
this paper, albeit without any formal definition or proof.

Our algorithm can be viewed as a combination of an ad-hoc group formation
and ‘preference-based’ leader election [19], with the important difference that
the algorithm attempts to find a stable region of a network (crashed region) to
operate on.

Consensus [5, 9] and leader election [15, 19] are both well-studied fields,
although most approaches do not address the ad-hoc group formation prob-
lem; i.e. the inter-dependency that arises between those who are agreeing (the
border set) and that which they are agreeing to (the crashed region, and thus
constituency of the border set itself). Our work has however some similarities
with consensus with unknown participants, where the set of participants is fixed,
but unknown to the nodes involved [3, 7, 8, 13]. These works introduce the
notion of a participant detector (PD) and study the properties this detector
should fulfil to permit consensus under different assumptions.

These works are however quite different from what we are proposing, in that
in our case participants are not only unknown, but evolve as failures occur. Our
work also puts a strong focus on scalability with the locality property.

The service we propose is also related to group membership [10]. Deciding on
a view in our protocol can be seen as the equivalent of installing a view. The
link is particularly true with partitionable group membership (PGM) services
[1, 11, 16], which look at how successively installed views should evolve to ensure
that both reachability and unreachability between nodes are reflected in their
installed views.
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As in partitionable group membership, our service requires views held by
nodes to converge when these nodes enter a particular relationship. This
relationship depends on reachability in PGM, while ours arise when two nodes
propose views that overlap (CD6).

The key difference however is that, whereas PGM services are defined in terms
of eventual convergence of installed views, our specification is stricter in that
nodes can only decide once on a given region (CD1), and must therefore detect
when they have reached a convergent state, while insuring liveliness in the system
(CD7).

5 Conclusion

In this paper we have formally specified a service for the convergent detection of
crashed regions, where the nodes of an arbitrary large distributed system attempt
to reconcile their views of neighbouring crashed regions. We have described a
fault-tolerant solution to this problem, and proved its correctness. One key aspect
of our specification is that it only involves nodes bordering a crashed region
(locality), and requires nodes to explicit decide when they have converged on a
unified view.

Beyond the detection of correlated crashed regions, we think this form of
agreement can be seen as a particular case of a wider class of algorithms that
attempt to create local collective knowledge about some distributed condition in
a manner that is both deterministic and scalable. Scalability here means costs
only depend on the ‘extent’ of the knowledge to be constructed, independently
of the actual size of the system, a powerful property in very large systems.

Being crashed can also be seen as a particular case of stable property. It
could be interesting to see how this work could be extended to the detection
of connected regions of nodes that share a given stable predicate (say a partic-
ular stable state). A further challenge could be to investigate how the notion
of predicate-based regions and the properties of the corresponding agreement
protocols could be evolved to tackle unstable properties.
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Abstract. This paper presents a new hybrid solver based on Schur
complement method, in which computations are distributed between
multiple CPUs and GPUs. In this solver, the Schur complement is
computed either on CPUs (for small problem size) or on GPUs (for
large problem sizes). To solve the interface system, we propose a new
multi-GPU algorithm that implements conjugate gradient method with
explicit preconditioning. Experiments with wrap spring simulation on
hybrid multi-core multi-GPU cluster demonstrate efficiency of the
proposed method.

Keywords: hybrid solver, domain decomposition, Schur complement,
sparse matrices, hybrid CPU/GPU platforms, CUDA.

1 Introduction

Hybrid solvers for linear systems [1] combine the advantages of both direct
and iterative methods. In hybrid solvers, usually, a direct method is used for
factorization of matrix blocks, and then an iterative method is used to com-
pute the Schur complement. The most widely used parallel software tools for
hybrid methods are HIPS (Hierarchical Iterative Parallel Solver) [2], MaPHyS
(Massively Parallel Hybrid Solver) [3], PDSLin (Parallel Domain decomposition
Schur complement based Linear solver) [4] and ShyLU (Scalable hybrid LU) [5].
Each of these tools provides a variant of the Schur complement method, such as
multifrontal method, Krylov subspace methods with preconditioning (conjugate
gradient method, generalized minimum residual method). In some cases, the
Schur complement method is used for preconditioning. High performance algo-
rithms for these methods are implemented for distributed- and shared-memory
platforms, including multi-cores.

Computing potential of hybrid solvers can be revealed on hybrid CPU/GPU
platforms. Programming systems for general-purpose computing on GPU, such as
CUDA, OpenCL and OpenACC, accelerate linear algebra routines ten to hundred
times in comparison to CPU. Thousands of parallel GPU threads can efficiently
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perform a large number of simple arithmetic operations, such as multiplication
and addition of the elements of matrices and vectors. However, sequential oper-
ations and branching, which are typical for direct methods (matrix factorization
into triangular multipliers), are performed on GPU slower than on CPU cores.
Parallel computing on multiple GPUs involves the following programming tech-
niques: CUDA + OpenMP for multiple GPUs within a computing module, and
CUDA + MPI for multiple GPU-accelerated modules connected by network.

Efficient utilization of GPUs in the Schur complement method depends on
optimal distribution of computation between CPUs and GPUs and optimal
decomposition of matrices. In this paper, the Schur complement method is
designed as a hybrid numerical method for hybrid platforms. It is applied to
the linear systems of equations obtained from 3D elasticity problems. The parti-
tion of the finite-element mesh is used to form the matrix blocks of the system.

The paper is structured as follows. In Section 2, we briefly introduce the
Schur complement method. In Section 3, we analyze the matrix storage formats
for this method in terms of time and space complexity. In Section 4, we present a
new parallel hybrid solver based on the Schur complement method. Experiments
with a wrap simulation application demonstrate the efficiency of our solution on
multi-GPU platforms.

2 The Schur Complement Method

We consider the Schur complement method as a version of domain decomposition
method, also called substructuring method [6]. To ensure the independence of
the calculations in the individual subdomains and the subsequent interaction
between the subdomains, all nodes of the computational mesh that approximates
the domain are split into two subsets: interior and boundary nodes.

Let the domain Ω be split into nΩ non-overlapping subdomains

Ω = Ω1

⋃
Ω2

⋃
. . .
⋃
ΩnΩ , where Ωi

⋂
Ωj = ∅, ΓB =

nΩ⋃
i=1

∂Ωi \ ∂Ω. (1)

This partition into subdomains results from the partition of the dual graph of
the computational mesh G(V,E) =

⋃nΩ

i=1Gi(Vi, Ei), where:

– the set of the graph nodes V is a set of the finite elements of the mesh,
– the set of the graph edges E is a set of the adjacent finite elements,
– Vi ⊂ V is a set of the finite elements of a subdomain.

We assume all the subgraphs Gi(Vi, Ei) are connected, otherwise the system of
equations (2) for the subdomain Ωi can be split into disconnected systems of
equations.

The set of mesh nodes V̂ consists of interior nodes V̂Ii , which belong to the
interior of a subdomain associated with the subgraph Gi(Vi, Ei), and boundary
nodes V̂Bi , which belong to the subdomain boundary. The set of boundary nodes
includes interface nodes V̂Ci ⊂ V̂Bi that are shared by neigboring subdomains.
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For each subdomain Ωi, a system of equations is constructed in such a way
that the unknowns corresponding to the interior and boundary nodes are
separated: (

Ai
II Ai

IB

Ai
BI A

i
BB

)(
uiI
uiB

)
=

(
f i
I

f i
B

)
, (2)

where subscripts I, B stand for interior and boundary degrees of freedom.
The system for the interface nodes is defined as follows:

SBBũB = f̃B, (3)

where SBB =
∑nΩ

i

(
Ai

BB −Ai
BIA

i−1

II Ai
IB

)
is the boundary stiffness matrix (also

known as the Schur complement matrix), f̃B =
∑nΩ

i

(
f i
B −Ai

BIA
i−1

II f i
I

)
is the

right-hand vector.
In practice, an improved algorithm of the substructuring method is used.

Since the matrices corresponding to the subdomains are nonsingular and positive
definite, there exists a Cholesky decomposition AII = LIIL

T
II , where L is a

lower triangular matrix with positive diagonal elements. Cholesky factorization
significantly reduces the computational cost and memory requirements.

In Algorithm 1, we present a sequential algorithm of the Schur complement
method (the number of processors np = 1 and nΩ > np) and analyze its compu-
tational cost. While counting operations at each step (given in brackets), we take
into account the symmetry of matrices and consider addition and multiplication
as a single operation.

Algorithm 1. Sequential algorithm of the Schur complement method:

1. Calculate the Cholesky decomposition of the matrix AII for the subdomain
i (superscript i omitted)

AII = LIIL
T
II

(
n3
I/6
)

2. Compute

A
′
IB = A−1

II AIB

(
nB · n2

I

)
3. Form the Schur complement matrix

SBB = ABB −ABIA
′
IB

(
(nI · n2

B)/2
)

4. Form the right-hand vector

f̃B = fB −ABIA
−1
II fI (nI · nB)

5. Form and solve the system of equations

SBBũB = f̃B (k(M−1SBB) ≤ C(1 + log(H/h)))

6. Find the unknowns corresponding to the interior nodes

uI = A−1
II fI −A

′
IB ũB

(
n2
I

)
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Here nI = m · |V̂Ik |, nB = m · |V̂Bk
| are the numbers of the interior and boundary

degrees of freedom,m is the number of degrees of freedom in a node of the mesh,
h is the mesh size, H is the size of the subdomain, M is the preconditioner for
the Schur complement.

At step 5 of Algorithm 1, instead of the computational cost, which depends
on the linear solver used, we estimate the condition number of the matrix SBB.
SBB is considerably smaller than the initial matrix, but it is still too large for
the system SBBũB = f̃B to be solved by direct methods. Therefore, iterative
methods and efficient matrix storage schemes are required. Since the matrices
SBB, AII are positive definite and symmetric, the preconditioned conjugate
gradient (PCG) method can be used.

In this work, we present a hybrid implementation of the Schur complement
method, combining different matrix storage formats, PCG solvers, and hetero-
geneous computing devices.

3 Analysis of Matrix Storage Formats for the Schur
Complement Method

In this section, we analyze different matrix storage schemes for the Schur
complement method. The matrices SBB, AII are symmetric, so they can be
stored more compactly if only the relevant triangle is packed by columns in a
one-dimensional array (upper or lower triangular format). The following analy-
sis of the matrix storage schemes will take into account the symmetry. The full
format, when all matrix elements N(N +1)/2, including zeros, are stored, is the
most memory-consuming format. It is inappropriate for large problems.

In the matrix storage scheme DCSR implemented in the framework for
finite-element analysis FEStudio [7,8], a matrix is stored in a list of packed rows.
A packed row is represented by two arrays. The first array contains
non-zero elements of the matrix, the second array contains their column
indices in the row. The size of each array for the row i is equal to the number
of non-zero elements Nnzi and changes dynamically if necessary. The proposed
matrix format DCSR is a dynamic variant of a commonly used sparse-matrix
storage format CSR (Compressed Sparse Row) [9]. For a matrix A in the CSR
format, three one-dimensional arrays are allocated: the first array contains non-
zero values {aij | aij �= 0}, 1 � i, j � Nnz, the second array contains their
column indices {j | aij �= 0}, 1 � i, j � Nnz, and the third array contains the
indices of the elements ai1, 1 � i � N + 1, in the first two arrays. Here N is the
size of the matrix, Nnzi is the number of non-zero elements in i-th row of the
matrix, Nnz =

∑N
i=1Nnzi is the number of non-zero elements in the matrix.

In Table 1, we compare the DCSR, CSR and the banded matrix storage
formats in terms of the algorithmic complexity of search and insert, memory
requirements, access rate. For the banded format, the complexity of search is
O(2Nβ + 1) and the complexity of insertion is O((2Nβ + 1)N). For the DCSR
format O(Nnz∗) and O(Nnz∗) respectively. For the CSR format O(Nnz∗) and
O(Nnz) respectively. Here Nβ = maxNi=1{maxNj=1{j − i | aij �= 0}} is a so-called
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half-bandwidth, which depends on the enumeration of unknowns and equations,
Nnz∗ = maxNi=1{Nnzi}. For symmetric matrices, the values 2Nβ + 1 should
be replaced by Nβ + 1 in the complexity estimates, and Nnz and Nnzi will
correspond to the non-zero elements of the relevant triangle. The banded storage
scheme requires 8(2Nβ+1)N bytes of memory, the DCSR format

∑N
i=1(12Nnzi+

4) bytes, the CSR format 12Nnz+4(N +1) bytes. Here we assume that 8 bytes
are allocated for floating-point values, and 4 bytes for integer values.

Table 1. Comparison of matrix storage formats

Format Search Insert Memory Access rate

banded O(2Nβ + 1) O((2Nβ + 1)N) 8(2Nβ + 1)N O((2Nβ + 1)N)

DCSR O(Nnz∗) O(Nnz∗)
∑N

i=1(12Nnzi + 4) O(Nnz)
CSR O(Nnz∗) O(Nnz) 12Nnz + 4(N + 1) O(Nnz)

The low cost of the search and insert operations provided by the banded
format is spoiled by its poor parameters of required memory, 8(2Nβ+1)N bytes,
and access rate, O((2Nβ + 1)N), versus O(Nnz), the access rate of DCSR and
CSR.

The DCSR format is more convenient than the CSR format for the triangu-
lar factorization of the matrices AII . Indeed, when a new non-zero element is
inserted in a middle of a packed DCSR row, there is no need to shift the following
elements in the array, as it occurs in CSR. Therefore, insertion in DCSR has a
lower algorithmic complexity, O(Nnz∗), than in CSR, O(Nnz). In addition, the

memory requirement of the DCSR format,
∑N

i=1(12Nnzi +4) bytes, is minimal
among all formats. However, direct matrix copy in the DCSR format from host
to GPU memory is very expensive, because it requires a number of operations
implementing the row-by-row copying. In total, N memory allocations and copy-
ing of two arrays of the size Nnzi are required. Therefore, the CSR format is
more appropriate for GPU; it requires allocation and copying of only two arrays
of the size Nnz.

In [10], it was shown that the matrix storage format significantly affects
the execution time. For band matrices, the execution time to construct the
Schur complement is about 80% of the total time. Conversion of matrices
ABB, AIB , AII to the DCSR format reduces the execution time four times.
Therefore, the serial implementation of the Schur complement method will be
efficient in terms of memory requirements and algorithmic complexity when the
Cholesky decomposition of AII is performed and the compressed matrix storage
scheme is used.

In conclusion, multiple matrix formats are required for efficient implementa-
tion of hybrid solvers. This will incur extra cost related to conversion of matrices
from one format to another.
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4 The Efficiency of the Parallel Schur Complement
Method

The Schur complement method can be parallelized at several levels. First,
computations are distributed between the subdomains [8,10], then, within
individual subdomains. In addition, solving the Schur complement system
(interface system) can be performed in parallel. In this paper, we mainly consider
the second level of parallelization (within subdomains), and propose several algo-
rithms to form the Schur complement matrices and to solve the interface system
of equations with multiple graphical accelerators.

Let us consider Algorithm 1 in terms of parallelization. Steps 1–4 and 6 are
performed for each subdomain independently, therefore we can say that there is
a natural parallelism at the first level. The most computationally intensive steps
of the algorithm are the following:

– steps 1–3, where the Schur complement matrix is formed,
– step 4, where the right-hand vector is formed, and
– step 5, where the system of equations is solved.

Step 3, where the local matrices for subdomains Si
BB are formed, can be per-

formed in parallel. However, step 5, where the system of equations with the
global Schur complement matrix SBB is solved, cannot be carried out until all
parallel processes on subdomains complete construction of their local stiffness
matrices.

There are two main sources of unbalance. One is nonuniform distribution of
subdomains between computational nodes. This problem can be resolved easily
by partitioning the domain into the number of subdomains that is a multiple of
the number of computational nodes. Another source of unbalance is nonuniform
distribution of the mesh nodes and finite elements between subdomains, which
occurs, for example, due to mesh refinement [11]. To balance the load in this
case, additional conditions are imposed on mesh partitioning. Load balancing
of steps 1–4 depends on the number of interior |V̂Ii | and boundary |V̂Bi | nodes
in the subdomains Ωi, rather than on the total number of nodes |V̂i| in those
subdomains.

Meshes for 3D domains with a complex surface (springs, thin plates and shells)
contain a lot of elements with all nodes belonging to the boundary of the mesh.
Partitioning the dual graphs of these meshes and enforcing the condition |Vi| ≈
|Vj |, ∀i �= j result in the subdomains Ωi: |V̂Ii | = 0. For illustration, we consider
the problem of stress-strain analysis of a wrap spring. In a wrap spring, the
number of boundary nodes is greater than the number of interior nodes. This
case is extreme for computing the Schur complement. Since the size of the matrix
SBB is larger and its sparsity is lower, solving the system of equations (3) takes
longer than forming this system.

Let us consider a spring approximated by an unstructured tetrahedron mesh
(see Fig. 1a), where the number of tetrahedrons is |V | = 174264, the num-
ber of nodes |V̂ | = 40743. To partition this mesh into subdomains Ωi : |V̂Ii | > 0,
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the weighted dual graph G(V,E,W ) is built, with the weights W = {wk}. If at
least one node of a finite element does not belong to ∂Ω, then the weight of the
corresponding graph node will be wk = 3, otherwise we assign wk = 1.

The experiments with the number of the subdomains (nΩ = 16, 32, . . . , 1024)
show that the larger the number of the substructures, the larger the size of the
Schur complement matrix. If the number of subdomains is increased in 64 times,
then the size of the matrix SBB will be increased in 1.44 times (N = 66030
if nΩ = 16, and N = 95523 if nΩ = 1024). At the same time, the number of
nonzero elements of the Schur complement matrix decreases in 18 times (from
Nnz ≈ 2.7 · 108 in the case of 16 subdomains to Nnz ≈ 1.5 · 107 for 1024
subdomains). As a result the density of the matrix decreases from 6.11% to
0.16%. In average, every sixteenth element in a row of SBB is nonzero (4041 out
of 66030) for nΩ = 16 subdomains (see Fig. 1b), and approximately every six
hundredth (154 out of 95523) for 1024 subdomains (see Fig. 1c).

a) b) c)

Fig. 1.Mesh: a) initial; b) divided into 16 subdomains; c) divided into 1024 subdomains
by the two-level partition.

The size of the Schur complement matrix is less than the size of initial finite
element system (in our examples in 1.4–2.0 times). The density of the matrix
SBB is of one or two orders of magnitude higher than the density of the global
stiffness matrix (0.03%). For SBB of such density, graphical accelerators can
be efficiently used to solve the interface system. For massive bodies, solution
of the interface system is less expensive in comparison to construction of the
system (3).

4.1 Construction of the Schur Complement Matrix

The inversion of the matrix AII is one of the most expensive operations in the
construction of the Schur complement matrix. Usually, to inverse the matrix,
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inefficient direct methods are used, for example, LLT -factorization. In this work,
we propose an inversion algorithm that solves the system AIIX = E, where E
is the identity matrix nI × nI . This system can be solved efficiently on GPU,
using the preconditioned conjugate gradient method.

If we substitute AIB for E into the right-hand part, then the solution of
the system will be A

′
IB = A−1

II AIB . Matrix inverse and multiplication can be
replaced by solving nB systems independently, and hence, several GPU can be
used in parallel. To compute the Schur complement matrix, we use (3), where
ABB ∈ R

nB×nB , AII ∈ R
nI×nI ABI ∈ R

nB×nI , AIB ∈ R
nI×nB . Let ñi

B be
the number of columns for the matrix ABB being sent to i-th GPU, Ãi

BB ∈
R

nB×ñi
B be the matrix made by the columns of the matrix ABB with the numbers

from
∑i

j=0 ñ
j
B to

∑i+1
j=0 ñ

j
B, where i is the GPU identifier. Each GPU solves

ñi
B systems AIIa

k = akIB, where a
k
IB is the k-th column of the matrix AIB ,

k ∈
[∑i

j=0 ñ
j
B,
∑i+1

j=0 ñ
j
B

]
and A

′
IB = {a1, a2 . . . anB}.

To solve the systems of equations independently on several GPU on a single
computing module, we use OpenMP. Several threads are spawned and assigned
to GPUs. The number of threads is equal to the number of available GPUs.
Multi-GPU construction of the Schur complement is performed as follows.

Algorithm 2. A parallel algorithm for the forming of Schur complement for
each subdomain Ωi (superscript i is omitted)

1. Solve the system AIIA
′
IB = AIB on GPU;

{matrices are stored in the CSR format, the solution is stored in columns}
2. SBB = ABB −ABIA

′
IB;

{SBB and the result of ABIA
′
IB are stored as a set of rows, ABB is stored

in the CSR format}
3. Form f̃B = fB −ABIx; {x is the solution of AIIx = FI}
4. Form and solve: SBBũB = f̃B;
{SBB is formed in the DCSR format on the CPU, and then converted into
the CSR format on GPU}

5. Define uI = x−A′
IB ũB;

{here x and A
′
IB have been computed earlier and stored on the CPU}

After the system has been solved, the matrix (A
′
IB)

i ∈ R
nI×ni

B is stored on

each GPU. It consists of the columns of the matrix A
′
IB with numbers from∑i

j=0 ñ
j
B to

∑i+1
j=0 ñ

j
B. The rest of computations (product and subtraction of

the matrices, see (3)) can be performed without additional communications for
every matrix (A

′
IB)

i, independently on each GPU. Finally, the global Schur
complement matrix SBB is formed (step 4 in Algorithm 2) as a sum of local
matrices Si

BB for the i-th subdomain. The local Schur complement matrices
Si
BB are stored in the general uncompressed format. The global matrix SBB is

converted from the uncompressed format to the format appropriate for GPU,
such as CSR.

In Table 2, the results of experiments to form the Schur complement are
presented for different numbers of subdomains and GPUs (Algorithm 2).



Hybrid Multi-GPU Solver Based on Schur Complement Method 73

In the second column, the cost for a sequential algorithm on CPU is shown
(Algorithm 1). The speedup of parallel Algorithm 2 on mulitple GPUs relatively
to a single CPU can be defined as s(np)CPU = tCPU/t(np)GPU , where tCPU is
the time of the corresponding sequential algorithm on CPU, and t(np)GPU is
the time of the parallel algorithm on np GPUs. Similarly, we define the speedup
relatively to a single GPU: s(np)GPU = t(1)GPU/t(np)GPU .

Table 2. Time to form the Schur complement, sec.

nΩ CPU 1 GPU 2 GPU 4 GPU 6 GPU 8 GPU

16 1583.6 1912.6 1165.5 789.9 657.6 589.4
32 480.6 1173.9 661.8 401.7 314.0 266.5
64 145.1 678.8 378.2 224.8 174.7 149.0
128 — — 237.2 145.8 118.5 102.5
256 — — 194.0 121.0 97.7 86.0
512 — — 168.3 105.7 86.0 75.4
1024 18.7 233.4 144.0 92.2 77.5 68.0

The maximum speedup relatively to GPU s(8)GPU = 2.7 was observed for the
number of subdomains nΩ = 16, with the average number of elements 11000.
When the Schur complement matrix was formed on two GPU, the speedup
was s(2)GPU > 1.5, depending on the number of subdomains. Eight GPU gave
the least execution time, but for the problems with the small numbers of ele-
ments in a subdomain (< 2500), CPU was faster. In this case, due to solving a
large number of small systems of equations for each subdomain, communications
between GPU and CPU take longer than solution of the system. When multiple
GPUs are used, the cost per one GPU is reduced, but it does not cover the cost
of initialization and communications.

Subdomain computations are distributed between computing modules
accordingly to the partitioned mesh distributed between MPI processes [12].
Introduction of this parallelization level speeds up construction of the Schur
complement proportionally to the number of computing modules.

4.2 Solution of the Schur Complement System on GPU

The Schur complement matrix SBB ∈ R
N×N (below, it will be denoted as S) is

symmetric, positive-definite, sparse, and has the size and the condition number
smaller than those of the original matrix. Solution of the linear algebraic equa-
tions (3) and the systems of equations from the previous section can be found
by the preconditioned conjugate gradient method (PCG). The optimal choice
for GPU computing is the preconditioners M̄ based on the approximation of
the inverse matrix of the system [13]. In this case, the additional operations
to get the preconditioned system can be reduced to the matrix-vector product
zk+1 = M̄rk+1.
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We solve (3) by using the conjugate gradient method implemented with help
of CUDA as presented in

Algorithm 3. Preconditioned conjugate gradient method on GPU :

1. Initialization (1a-1g):
(a) S, M̄ ∈ R

N×N {M̄ is formed on GPU and is stored in the CSR format}
(b) u, r, p, q, z ∈ R

N {vectors are stored only in GPU memory}
(c) r0 ← f {cublasDcopy}
(d) u0 ← 0 {initialization on GPU}
(e) z0 ← M̄r0 {performed on GPU}
(f) p0 ← z0 {cublasDcopy}
(g) ρ0 ← (r0, z0) {here and below (·, ·) =∑

P

(·, ·)(P )}
2. Iterative process.

While ||ri||2/||b||2 > ε do (2a-2h):
(a) qi ← Spi {performed on GPU}
(b) αi ← (ri, zi)/(qi, pi) {cublasDdot}
(c) ui+1 ← ui + αipi {cublasDasxpy}
(d) ri+1 ← ri − αiqi {cublasDasxpy}
(e) zi+1 ← M̄ri+1 {performed on GPU}
(f) ρi+1 ← (ri+1, zi+1) {cublasDdot}
(g) βi+1 ← ρi+1/ρi
(h) pi+1 ← zi+1 + βi+1pi
{consecutive invocations of cublasDscal and cublasDasxpy}

All auxiliary arrays, including r, p, q, z, and the matrix of the system, precondi-
tioner, the right-hand vector, and the solution vector are stored in the memory of
GPU. After the conjugate gradient method is finished, array u, which stores the
approximation of the solution vector, is copied to the memory of CPU. We use
the CUBLAS library to implement the following operations: sum, inner prod-
uct, vectors copy, and scalar vector multiply. When performing the matrix-vector
product, the vector is stored in the texture memory, which is cached, providing
a faster access time. To calculate vector coordinates, from 2 to 32 threads are
used, depending on the sparsity of the matrix. Preconditioner M̄ is computed
on GPU or CPU in accordance with its type.

We compared our PCG solver with its counterpart implemented the CUSP
library (http://cusplibrary.github.io/), using a single GPU. Matrices and
right-hand-side vectors were obtained from the test problem for finite-element
elasticity simulation with basis functions of different types. Figure 2 shows the
patterns of the matrices. Performance comparison of PCG solvers is presented
in Table 3. Our solver outperforms CUSP for small problem sizes due to the
use of CUBLAS instead of Thrust. For large problem sizes, performance of both
solvers is similar.

http://cusplibrary.github.io/
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Fig. 2. Sparse matrices patterns

Table 3. Performance comparison of PCG (our implementation vs CUSP), sec.

N Nnz Our CUSP N Nnz Our CUSP

952 15856 0.009 0.043 1042 30170 0.353 1.742
2426 72770 0.484 2.156 2568 44164 0.017 0.075
4960 86344 0.027 0.106 4758 145286 0.761 3.115
9724 170872 0.048 0.160 10034 311162 1.402 4.763
100660 1798378 0.817 1.082 100886 3196070 31.57 40.20
496842 15827426 82.93 85.96

4.3 Solving the Interface System on Multi-GPU and Cluster-GPU

To solve the interface system (3) on Multi-GPU, a block algorithm of the conju-
gate gradient method was implemented, with computations distributed between
np GPUs with help of OpenMP. In this case, Algorithm 3 is implemented in a
parallel region, created by the directive omp parallel. The matrix S = {sij}
of (3) is partitioned into blocks. The results of the our PCG inner products in
separate threads of OpenMP are stored in shared variables and summarized by
the directive atomic, followed by a barrier synchronization.

To divide the matrix S, we represent it as a graph GS(V,E), where V = {i}
is a set of vertices, which correspond to the row indices (the number of vertices
is equal to the dimension of S); E = {(i, j)} is a set of edges, whose ends
correspond to the row and column indices of nonzero elements of S. A graph
GS is divided into np parts by the multilevel algorithm [14]. After that, every
vertex of the graph is assigned to the GPU identifier k ∈ [1, np]. According to
their GPU identifiers, the vertices are divided into the internal and boundary
vertices. The latter are associated with at least one vertex that has a different
GPU identifier.

After partitioning, each block Sk contains several matrices:
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– S
[ik,ik]
k is the matrix associated with the internal vertices;

– S
[ik,bk]
k , S

[bk,ik]
k are the matrices associated with the internal and boundary

vertices;

– S
[bk,bm]
k is the matrix associated with the boundary vertices of the k-th and

m-th blocks.

Here k �= m and k,m ∈ [1, np], and np is the number of blocks.
Matrix S can be rewritten as follows

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S
[i1,i1]
1 S

[i1,b1]
1 · · · 0 0 · · · 0 0

S
[b1,i1]
1 S

[b1,b1]
1 · · · 0 S

[b1,bk]
1 · · · 0 S

[b1,bnp ]

1
...

...
. . .

...
...

...
...

...

0 0 · · · S[ik,ik]
k S

[ik,bk]
k · · · 0 0

0 S
[bk,b1]
k · · · S[bk,ik]

k S
[bk,bk]
k · · · 0 S

[bk,bnp ]

k
...

...
...

...
...

. . .
...

...

0 0 · · · 0 0 · · · S[inp ,inp ]
np S

[inp ,bnp ]
np

0 S
[bnp ,b1]
np · · · 0 S

[bnp ,bk]
np · · · S[bnp ,inp ]

np S
[bnp ,bnp ]
np

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When the matrix S is multiplied by the vector p, two vectors are computed on
each GPU:

qbk = S
[bk,ik]
k pik +

m�np∑
m=1

S
[bk,bm]
k pbm qik = S

[ik,ik]
k pik + S

[ik,bk]
k pbk, (4)

where k is a GPU identificator, and pT =
(
pi1, p

b
1, . . . , p

i
k, p

b
k, . . . , p

i
np
, pbnp

)
. This

implementation of the matrix-vector product reduces communications between
the blocks at each iteration of the conjugate gradient method. Indeed, to perform
the following steps, the exchange of vectors qbk is required, whose size is much
smaller than that of the vector q.

The results in Table 4 show that the GPU algorithm of the conjugate gradient
method significantly speeds up solution of the interface system. For 16 subdo-
mains, the speedup was s(1)CPU = 72. For 1024 subdomains, s(1)CPU = 94.
Multiple GPUs provided the speedup s(8)CPU = 251 for nΩ = 64 and
s(8)GPU = 3.5 for nΩ = 16. The increase in the number of subdomains results
in reducing the number of nonzero elements in the Schur complement matrix.
Thus, the efficiency of using multiple GPUs to solve the system (3) is reduced.
For example, the speedup was s(8)GPU = 1.3 for 1024 subdomains.

In our experiments, the minimal total time to form and solve (3) was obtained
in the case nΩ = 1024 (see Tables 2 and 4). It took 1 hour and 48 minutes to
perform these steps on a CPU only. In the case of a single GPU, the cost of
construction and solution of this system was reduced in 22 times. The minimal
time computing t(8)GPU = 2 min was reached, when eight GPU were involved.
It took one and a half minute to form the system (3) on CPU and to solve it on
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Table 4. The time to solve (3) in a one computational module, sec.

nΩ CPU 1 GPU 2 GPU 4 GPU 6 GPU 8 GPU

16 > 28800 912 421 205 281 264
32 > 28800 983 630 430 317 274
64 18067 287 174 98 82 72
128 — — 127 78 66 60
256 — — 106 70 61 56
512 — — 85 63 56 53
1024 6502 69 76 59 54 52

GPU. We obtained the lowest total cost, when the system was formed on CPU
and then was solved on eight GPUs.

The system of equations (3) can also be solved on several computational
modules with GPU (Cluster-GPU). We made experiments with the following
configurations:

– eight MPI processes, performed in a single module (1× 8);

– four processes in two modules (2× 4);
– two processes in four modules (4× 2), and
– one process in eight modules (8 × 1).

For communications, we used MPI functions: Allgatherv to assemble the vector
q and Allreduce to sum scalars α, β, ρ. These functions were called by one of
the OpenMP threads, running inside each MPI process.

Experiments show the execution time of (3) significantly depends on distri-
bution of computations of matrix vector product between CPU and GPU. In
case of nΩ = 16 (see Table 5), the most computationally expensive part is

q̂bk =
m<np∑

m=1,m �=k

S
[bk,bm]
k pbm of (4), which is computed on CPU. This is caused by

the large sizes of blocks of S
[bk,bm]
k and by their uneven distribution between

parallel processes/threads. In such cases, it is possible to transfer this operation
to GPU. The results given in Table 5 show that distribution of computations
between different computing modules results in acceleration of 1.2–1.5 times,
most likely due to the competition for CPU cache memory.

More uniform partition ofGS subgraphs boundary vertices and smaller sizes of

S
[bk,bm]
k ,m �= k lead to more efficient computation of q̂bk for CPU for nΩ = 1024,

and therefore, to domination of vector operations in the execution time (see
Algorithm 3, 2b, 2f). In this case, invocations of cublasDdot at scalar values
take about 90% of execution time (variants 1× 8, 2× 4, 4× 2).

Acceleration of calculations with a larger number of subdomains results from
a more sparse systems of equations (Nnz reduced, N increased). Therefore,
the total number of arithmetic operations in the multiplication of matrix SBB

and vector p (3) is decreased. Distribution of matrix blocks between computing
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Table 5. The time to solve (3) in 1 to 8 computational modules, sec.

nΩ N NNz 1× 8 2× 4 4× 2 8× 1

16 66030 266826696 321 268 208 233
64 70620 90931750 78 72 71 95
128 75732 58592886 68 60 59 86
256 81753 38066007 66 57 66 87
512 88248 23955996 63 55 68 102
1024 95523 14749329 65 54 54 110

modules allows us to remove the restriction on the size of the interface system
(3), but requires further improvement of communication algorithms.

We do not provide comparison of this solver with CUSP, because CUSP does
not support multi-GPU computations. The presented results were obtained from
the hybrid cluster Uranus in the IMM UB RAS, which consists of dual processor
nodes Intel Xeon E5675 with eight GPUs NVIDIA Tesla M2090.

5 Conclusion

The hybrid implementation of the Schur complement method presented in
this paper allowed us to distribute computation between CPU and GPU in a
balanced way. The optimal choice of the algorithm to form the Schur complement
depends on the number and size of subdomains into which the mesh is divided.
If one subdomain contains relatively small number of mesh elements (< 5000)
or unknowns (< 1500 for internal and < 2500 for the boundary nodes), then it
is more efficient to use direct methods to find the inverse matrix, and therefore,
to use only CPU. For large problems, iterative algorithms executed on several
GPUs are the most efficient. The interface system of equations should be solved
on GPUs, which can accelerate this step in tens and hundreds of times.

Acknowledgments. This research is supported by RFBR (projects: 11-01-
00275-a, 12-07-31114-mol a) and the joint program N18 of the Presidium of
RAS and the Ural Branch of RAS (project 12-P-1-1005).
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J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 421–434. Springer, Heidelberg
(2011)

5. Rajamanickam, S., Boman, E.G., Heroux, M.A.: Shylu: A hybrid-hybrid solver for
multicore platforms. In: IEEE 26th International Parallel and Distributed Process-
ing Symposium, IPDPS, pp. 631–643 (2012)

6. Przemieniecki, J.: Theory of Matrix Structural Analysis. McGaw-Hill, New York
(1968)

7. Kopysov, S.P., Krasnoperov, I.V., Rychkov, V.N.: An object-oriented method for
domain decomposition. Numerical Methods and Programming 4, 176–193 (2003)

8. Kopysov, S.P., Krasnopyorov, I.V., Novikov, A.K., Rychkov, V.N.: Parallel Dis-
tributed Object-Oriented Framework for Domain Decomposition, pp. 605–614.
Springer (2006)

9. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
10. Kopysov, S.: Optimal domain decomposition for parallel sustructuring method. In:

Mesh Methods for Boundary-Value Problems and Applications. Proceedings of 5th
Russian Seminar, pp. 121–124. Kazan University, Kazan (2004)

11. Kopysov, S.P., Novikov, A.K.: Parallel adaptive mesh refinement with load balanc-
ing on heterogeneous cluster, pp. 425–432. Nova Science Publishers (2006)

12. Kopysov, S.P., Krasnoperov, I.V., Rychkov, V.N.: Implementation of an object-
oriented model of domain decomposition on the basis of parallel distributed corba-
components. Numerical Methods and Programming 4(1), 19–36 (2003)

13. Kopysov, S.P., Novikov, A.K., Sagdeeva, Y.A.: Solving of discontinuous galerkin
method systems on gpu. Bulletin of Udmurt University. Mathematics. Mechanics.
Computer Science (4), 121–131 (2011)

14. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. SIAM Review 41(2), 278–300 (1999)



Formal Verification of Programs

in the Pifagor Language

Mariya Kropacheva and Alexander Legalov�

Siberian Federal University, Institute of Space and Information Technology,
26 Kirenskogo Street, Krasnoyarsk, 660074, Russia

ksv@akadem.ru, legalov@mail.ru

Abstract. The article is devoted to the methods of proving parallel
programs correctness, that are based on the Hoare axiomatic system. In
this article such system is being developed for proving the correctness of
the programs in the functional data-flow parallel programming language
Pifagor. Recursion correctness is proved by induction. This method could
be used as a base of a toolkit to support program correctness proving,
since it could be made automate at many stages.

Keywords: Functional data-flow parallel programming, Pifagor
programming language, programs formal verification.

1 Introduction

Nowadays computers are widely used in safety critical systems so it is extremely
important to develop reliable software. Formal verification could be used to
increase software reliability. Formal verification is a proof of programs correct-
ness by finding the correspondence between the program and its specification,
which describes the aim of the development [1]. The main advantage of formal
verification is the capability to prove the absence of errors in the program, while
testing only allows to detect errors.

One method of formal verification was introduced by Hoare [2]. It utilises
an axiomatic approach based on Hoare logic. Hoare logic is an extension of a
formal system I with certain formulas called Hoare triples. A Hoare triple is an
annotated program, namely the source code and two formulas of the theory I,
which describe restrictions on input variables and correctness conditions of the
result of the program execution. These formulas are called precondition and
postcondition, respectively. The extended formal system is distinguished from I
by additional axioms and inference rules, which allow to deduce certain program
properties, particularly the program correctness. The program is correct if its
Hoare triple is identically true. So the main idea of this approach is to derive a
formula of formal system I from the Hoare triple and then prove the truth of
this formula within the formal system I.
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There are certain achievements in practical application of such an approach
for imperative programming languages [1], [3]. However formal verification com-
plexity for parallel imperative programs increases rapidly for systems with both
shared and distributed memory. In general, the main problem is the system
resource conflicts. An alternative to imperative programming is functional data-
flow paradigm for parallel programming in which a program is represented as a
directed data-flow graph.

One implementation of functional data-flow paradigm is the Pifagor (Parallel
Informational and Functional AlGORthmic) language [5]. In Pifagor there are
neither variables nor looping constructs, and function execution starts only on
data readiness. Hence, it excludes resource conflicts. Another distinguishing fea-
ture of this language is the ability to achieve the maximum parallelism of the
program, as parallelism is implemented at the level of operations. So after formal
verification the correct program could be transferred to the system with specific
architecture and limited resources, with the reduction of parallelism if needed.
It makes the complexity of formal verification of functional data-flow parallel
programs equal to the complexity for sequential programs. Currently Pifagor is
used in research of development principles of architecture-independent parallel
programs.

Nowadays there exist some works dedicated to functional data-flow programs
debugging [4] but formal verification problem is not developed. So the devel-
opment of the formal verification methods for functional data-flow programs is
topical.

2 The Description of the Formal System

The formal system for the functional data-flow parallel language Pifagor is
needed to perform formal verification of program correctness based on the
axiomatic approach. It is necessary to define language (an alphabet, formation
rules), axioms and inference rules.

The Hoare triples are the main objects of the formal system. Preconditions
and postconditions are formulas in first-order logic, which is expressive enough
for most assertions of the program.

The alphabet of first order logic, functional and predicate symbols,
corresponding to functions of the programming language, are used for construct-
ing expressions. Domain variables (input and output program variables) could
be of different types corresponding to the types of the programming language.
Functions, which together with variables form terms, and predicates, which form
formulas, are distinguished in first-order logic. It is not necessary to separate
predicates from formulas in this case. Predicates could be considered as a subset
of functions with the range of values from the set bool. Let us introduce certain
functional and predicate symbols: arithmetic operations (+,−, ∗, /), relational
symbols (=, �=, >,<,�,�), logical operators and quantifiers (∨,∧,¬,⇒,⇔, ∀, ∃),
“length of the list” function (len), “select list element” function (select), “is of
type” function (∈).
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The functions len, select, ∈ are equivalent to the corresponding built-in func-
tions of the Pifagor language. The type signatures of the functions mentioned
above correspond to those of the functions and predicates of first-order logic and
arithmetic. The set of elementary terms, elementary formulas and formulas are
defined inductively as in first-order logic.

Hence, having an alphabet and formation rules one can form preconditions
and postconditions for the Hoare triples. The following notation is used for the
Hoare triple:

ϕ(x) Prog(x)→ r ψ(r) ,

Prog(x) being a programwith input argument x, ϕ and ψ being the precondition
and the postcondition for Prog, respectively, r denoting the result of the program
execution. There are no variables in the Pifagor language, therefore introducing
r is necessary for stating the postcondition.

For example, consider a function with the following code:

Fun << funcdef arg {

arg:F >> return

}

Let P and Q be the precondition and postcondition for this program. Then the
Hoare triple has the following form:

P (arg) arg:F→ r Q(r) .

Since a program written in Pifagor is more demonstrable when represented as
a data-flow graph, it is useful to attach a precondition and a postcondition to
the edges of this graph. The example of the above triple in the form of data-flow
graph is shown in the figure 1.

Fig. 1. A Hoare triple for program arg:F

Axioms of the considered formal system are Hoare triples for build-in
functions. These triples are true by definition and are formed on the basis of
operational semantic rules of the Pifagor language [5], [6]. It should be pointed
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out that the number of different paths of the function execution equals the
number of axioms for this function so there may exist more that one axiom for
one build-in function.

The inference rules allow to bind axioms, based on the built-in functions, to
an arbitrary program. There are two alternative ways to prevent the ambiguity
of the inference:

1. Using the rules of forward tracing, when inference rules are applied form top
to bottom of the data-flow graph (from input values towards the result).

2. Using the rules of backward tracing, when inference rules are applied from
bottom to top of the data-flow graph (from the result towards input values).

Consider the first alternative. By applying the rules of forward tracing, it is
possible to transform any Hoare triple, when we start with a function applied
directly to input value, namely the function that is executed on the first step.
There could be more than one function in case of the Pifagor language. Then
any of such functions could be selected. In the general case the rule of forward
tracing has the following form:{

P1(x1) x1:F → r Q(r) , A1, A2

}
# P (x) x:F1:F → r Q(r) , (1)

A1 := ϕ(x) x:F1 → x1 ψ(x1) , A2 := P (x)⇒ ϕ(x),

P1(x1) := P (x) ∧ ϕ(x) ∧ ψ(x1).

The turnstile symbol # indicates that if the Hoare triple on the left is true,
then one on the right is also true. This means that by applying the axiom

ϕ(x) x:F
1
→ r1 ψ(r1) to the function F

1
, the Haore triple (on the right)

is transformed into a new triple (on the left) with a “shorter” program, the
precondition P (x) is replaced by P1(x), and input argument x is replaced by x1,
that is by the result of applying of the function F1 to x.

So, sequential application of inference rules leads to the “shortening” of the

program, which results in the Hoare triple with an “empty” program: P Q .

Introduction of the following inference rule enables us to transform this Hoare
triple into the first-order logic formula:

P ⇒ Q # P Q . (2)

Thus, using inference rules for any Hoare triple one can transform it into the
first-order logic formula, the truth of which could be proved within the first-order
logic. If the formula is true then the Hoare triple is also true, and therefore the
program is correct.

Let us make sure that Hoare formal system with the rule of forward tracing
is consistent, namely true triples allow to infer only true triples. Consider the

forward tracing rule. Let A1, A2 and A = P1(x1) x1:F→ r Q(r) be identically
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true. If P (x) is true then by A2, ϕ(x) is true. Further, by A1, ψ(F1(x)) is true,
and hence, P1(F1(x)) is true, and finally, by A, Q(F (F1(x))) = Q(r) is true. The
proof for the rule (2) is tautology.

3 The Analysis of Recursion Correctness

The main problem of the program verification concerns repeatedly executed
code, which in case of incorrect program could lead to infinite looping. In this
case data-flow graph is infinite. The Pifagor language has no looping constructs
and relies solely on recursion. The program is correct if, on the one hand, the
program terminates in a finite number of steps, and on the other hand, its output
result is correct.

If a program contains recursion, then the same code is called several times,
and different are only its arguments. Then necessary condition of a recursion
termination is the sequence of the arguments passed to the recursive function
being unduplicated.

It is obligatory for a correct recursive function to have a “branch point”,
where the further execution path is selected. In the base cases, the result of the
function is produced trivially (without recurring), and in the other (or, recursive)
cases, the program recurs (calls itself). The choice of the case on each iteration
is defined by a certain function on the input arguments. This function can be
thought of as a counterpart of an if-else construct in an imperative programming
language in the sense that the conditions of recurring or leaving the recurrent
function are mutually exclusive, i.e. ¬(recursive case = true) ⇔ (base case =
true).

Proving of the correctness of recursion may be done by induction (the proof
of program termination is similar). Define the notion of the bound function.
A bound function is a function, bounded above, that maps recursive function
arguments to the set of natural numbers N, and all arguments, for which the
base case is true, are mapped to 1.

Let us consider the proof scheme of a recursive function Rec correctness. It is
done inductively by the values of the bound function f . The basis: check whether
the program is correct for argument x = p0, so that f(p0) = 1. The inductive
step: assume that the program is correct for all arguments for which the bound
function value are less than N . A parameter pN corresponds to the number N
such that f(pN ) = N . Then it is sufficient to show that during the Rec(pN)
function execution, the function Rec is called recursively only with arguments
pi, i = 1, n, such that f(pi) < N (pi, i = 1, n must be permitted inputs of the
function Rec). IfRec(pi), i = 1, n return correct results, then Rec(pN) terminates
and it remains to show that Rec(pN ) returns the correct result. The algorithm
described above is a sufficient condition of the recursive function correctness.
If we can not prove the correctness of the function, then either the program is
incorrect or the bound function was not properly selected. In the latter case a
new bound function is needed.
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4 An Example of a Recursive Function Correctness Proof

Every program written in Pifagor is considered parallel due to its correspon-
dence to a data-flow graph, which is invariant to parallel or sequential program
execution. We demonstrate the capabilities of the data-flow graphs for program
verification on a typical example, often shown for sequential programs. Let us
prove the correctness of a recursive function fact, which calculates the factorial
of x.

Source code of the function fact

fact << funcdef x {

fl << ((x,1):[<=,>]):?;

act << (1, { (x, (x,1):-:fact ):* } );

return << act:fl:.;

}

We define the following triple for the program (by setting the precondition and
the postcondition):

(x ∈ int) ∧ (x � 0)∧
x∏

i=1

i � INT MAX
x:fact → r

((r =

x∏
i=1

i) ∧ (x > 0))∨
((r = 1) ∧ (x = 0))

, (3)

where INT MAX is the maximal integer of the int type. This Hoare triple provides
the following specification: if the argument x is of the integer type and greater
than zero, and the product of integers from 1 to x is not greater than the
maximum integer of the int type, then after execution the function fact returns
the product of integers from 1 to x in case x > 0, or 1 if x = 0.

The data-flow graph of the triple (3) is given in the figure 2. Edge identifiers
are in gray circles, all of them should be unique.

Let us analyse the function fact execution. If x = 0 or 1 then the function
returns 1, if x > 1 then the function fact is called recursively with the argument
x − 1. The conditions x � 1 and x > 1 are checked in the right branch of the
data-flow graph which has the node with function “?”. Simultaneously in the
left branch the list p of two elements is formed. The first element is a constant
“1” and the second is a “delaylist” which is marked with a dashed line in the
figure. This delay list has a subgraph with the recursive call of the function fact.
Execution of operators in the delay list starts only after the delay release even
if all the arguments are ready. The truth of x � 1 or x > 1 determines whether
the first or the second element of the list p is selected for further execution. In
the second case the delay of the delaylist is released by the function “.” and the
recursive call starts. If x � 1 then the constant “1” is selected form the list p
and operators in the delaylist are not executed at all.

To prove the program correctness we have to show the truth of the triple (3).
Let us transform the triple to first-order logic formulas using the rule of
forward tracing (1) based on the axioms for built-in functions. When execu-
tion of the function fact starts, the input argument x and the constant 1 form
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Fig. 2. The data-flow graph of the Hoare triple for function fact

the list (x,1). Then functions “<=” and “>” are applied to this list. These are
built-in functions with the same axioms that differ from each other only in the
sign of the operation. For instance, axioms of the function “<=” are the following:

(p1, p2 ∈ {int, float})∨
(p1, p2 ∈ char)∨
(p1, p2 ∈ bool)

(p1,p2):<= → r1
(r1 ∈ bool)∧
(r1 = p1 � p2)

, (4)

¬ ((p1, p2 ∈ {int, float})∨
(p1, p2 ∈ char)∨
(p1, p2 ∈ bool))

(p1,p2):<= → r1
(r1 ∈ error)∧
(r1 =BASEFUNCERROR)

. (5)

Before applying the rule of forward tracing it is needed to choose only axioms,
that satisfy condition A2 in (1). The condition holds only for axiom (4) and
never holds for axiom (5), so the axiom (5) is excluded as no execution could
reach this path.

As the result of applying the forward tracing rule based on the axiom (4) to
the triple (3) the following triple is obtained:

(x ∈ int)∧(x � 0)∧ (
x∏

i=1

i � INT MAX)∧
(b1 ∈ bool) ∧ (b1 = (x � 1))

f1 → r
((r =

x∏
i=1

i) ∧ (x > 0))∨
((r = 1) ∧ (x = 0))

, (6)
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where f1 corresponds to the code:

[( 1, { (x, (x,1):-:fact ):* } ):(b1,(x,1):>):?]:.

After consecutive application of the forward tracing rule based on the axioms
for built-in functions “>”, “?”, for the “datalist element selection function” and
the function “.”, we obtain the following triples:

(x ∈ int) ∧ (x � 0)∧ (

x∏
i=1

i � INT MAX)∧
((x � 1) = true)∧ ((x > 1) = false)∧(r = 1)

((r =

x∏
i=1

i) ∧ (x > 0))∨
((r = 1) ∧ (x = 0))

, (7)

(x ∈ int)∧(x � 0)∧ (
x∏

i=1

i � INT MAX)∧
((x � 1) = false)∧ ((x > 1) = true)

f2 → r
((r =

x∏
i=1

i) ∧ (x > 0))∨
((r = 1) ∧ (x = 0))

, (8)

where f2 corresponds to the code:

(x, (x,1):-:fact ):*

The triple (7) has an “empty” program so according to the rule (2) it could be
transformed into the following formula:(

(x ∈ int) ∧ (x � 0) ∧ (
x∏

i=1

i � INT MAX) ∧ (x � 1) = true ∧ (x > 1) = false∧

∧(r = 1)

)
⇒

(
((r =

x∏
i=1

i) ∧ (x > 0)) ∨ ((r = 1) ∧ (x = 0))

)
.

Obviously this formula is identically true, as (x � 0) and ((x � 1) = true)
implies x ∈ {0, 1} and r = 1.

Now let us consider the triple (8). The function “-” is applied directly to the
input argument x. By applying the forward tracing rule based on the axiom for
function “-” to the triple (8) the following triple is obtained:

(x ∈ int) ∧ (x � 0)∧
(

x∏
i=1

i � INT MAX)∧
((x � 1) = false)∧
((x > 1) = true)∧
(x1 ∈ int)∧ (x1 = x−1)

(x, x1:fact ):* → r
((r =

x∏
i=1

i) ∧ (x > 0))∨
((r = 1) ∧ (x = 0))

. (9)

Further the function fact is called recursively, so it is impossible to use the
rule of forward tracing directly as it is still not proved that the function fact is
correct.

Let the function argument “x” be called “the current argument” and “(x,1):-”
be called “the argument of the recursive call” (it is denoted by x1). The branch
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a1 of the data-flow graph has no recursive call, but the branch a2 has one. So
the conditions of recurring and leaving the recurrent function are b1 := (x � 1)
and b2 := (x > 1), respectively (all identifiers are shown in the figure 2).

It is easy to show that the argument of the recursive call is correct as the
condition A2 in (1) for the recursive call of the function fact holds.

Let us define the bound function for the function fact:

f(x) =

{
1, x = 0;
x, x > 0.

Let us prove the correctness of function fact inductively by the values of the
bound function f .

The Basis. If the argument x satisfies the triple (3) precondition (x ∈ int)∧
(x � 0) ∧

x∏
i=1

i � INT MAX and the condition of leaving the recurrent function

x � 1 then x = 0 or x = 1. In this case f(x) = f(0) = f(1) = 1. It is also obvious
that in this case the function fact finishes its execution without any recursive
call and the return value is equal to 1 and satisfies the triple (3) postcondition.
The formal check of this statement is equal to the formal proof of the Hoare
triple (7), that was done earlier in the paper.

The Inductive Step. Let us take the argument x that satisfies the triple (3)
precondition and the condition of recurring x > 0 for which the value of the
bound function equals N : f(x) = N . Assume that the function is correct for all
arguments for which the bound function values are less than N . Let us show
that the value of the bound function for the argument of the recursive call is
always less than N :

f(x1) = f(x− 1) = f(N − 1) = N − 1 < N .

Then, according to the inductive assumption, the function fact triple for the
argument of the recursive call is correct:

(x1 = x− 1)∧ (x1 ∈ int)∧
(x1 � 0)∧ (

x1∏
i=1

i � INT MAX )
x1:fact → x2

((x2 =

x1∏
i=1

i)∧(x1 > 0))∨
((x2 = 1) ∧ (x1 = 0))

. (10)

The above triple could be used as the theorem in the program fact correctness
proof with the help of the forward tracing rule, when the function fact is con-
sidered as nonrecursive. Then, by applying the forward tracing rule based on the
theorem (10), to the triple (9) the following triple is obtained:

(x ∈ int) ∧ (x � 0)∧
(

x∏
i=1

i � INT MAX)∧
((x � 1) = false)∧
((x > 1) = true)∧

(x2 ∈ int) ∧ (x2 =

(x−1)∏
i=1

i)

(x, x2 ):* → r
((r =

x∏
i=1

i)∧ (x > 0))∨
((r = 1) ∧ (x = 0))

. (11)



Formal Verification of Programs in the Pifagor Language 89

There is only multiplication “*” in the code part of the triple (11). Applying the
forward tracing rule based on the axiom for this function we obtain the triple
with the “empty” program:

(x ∈ int) ∧ (x > 1)∧ (
x∏

i=1

i � INT MAX)∧ (x2 ∈ int)∧

(x2 =
(x−1)∏
i=1

i)∧ (x ∗ x2 ∈ int) ∧ (r = x ∗ x2)

((r =
x∏

i=1

i)∧(x > 0))∨
((r = 1) ∧ (x = 0))

.

After using the rule (2) and simplification we obtain:

⎛
⎝(x, x2 ∈ int) ∧ (x > 1) ∧ (

x∏
i=1

i � INT MAX) ∧ (x2 =

(x−1)∏
i=1

i) ∧ (r = x ∗ x2)

⎞
⎠ →

→
(
((r =

x∏
i=1

i) ∧ (x > 0)) ∨ ((r = 1) ∧ (x = 0))

)
.

This formula is identically true, which means that the initial Hoare triple (3) is
also true and this, in turn, implies the correctness of the program fact.

5 Conclusions

This paper describes an alternative approach to verification of parallel programs
written in functional data-flow programming paradigm. A formal system, suffi-
cient for proving the correctness of a program written in the Pifagor language, is
considered. This method could be used as a base of a toolkit to support program
correctness proving, since this method could be made automatic at many stages.

References

1. Nepomnyashiy, V.A., Ryakin, O.M.: Applied Methods for Programs Verification.
Radio i svyaz, Moscow (1988)

2. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. CACM 10(12),
576–585 (1969)

3. Anureev, I.S., Maryasov, I.V., Nepomniaschy, V.A.: The Mixed Axiomatic Semantics
Method for C-program Verification. MAIS 17(3), 5–28 (2010)

4. Udalova, U.V., Legalov, A.I., Sirotinina, N.U.: Debug and Verification of Function-
Stream Parallel Programs. Journal of Siberian Federal University. Engineering and
Technologies 4(2), 213–224 (2011)

5. Legalov, A.I.: The Functional Programming Language for Creating Architecture-
Independent parallel Programs. Computational Technologies 10(1), 71–89 (2005)

6. Kropacheva, M.S.: Formalization of the Semantics for the Functional Data-Flow
Parallel Language Pifagor. In: 12th Russian Scientific-Practical Conference “The
Problems of Region Informatization”, pp. 144–148. Siberian Federal University,
Krasnoyarsk (2011)



Characterization and Understanding

Machine-Specific Interconnects

Vitali Morozov�, Jiayuan Meng, Venkatram Vishwanath,
Kalyan Kumaran, and Michael E. Papka

Argonne Leadership Computing Facility,
Argonne National Laboratory, Argonne, IL 60439, USA
{morozov,jmeng,venkat,kumaran,papka}@anl.gov

Abstract. The use of efficient communication patterns is becoming
increasingly important to utilize high concurrency and achieve high
throughput and low latency of modern high-performance supercomput-
ers. Efficacy is not only dictated by an application communication pattern,
but also driven by the interconnect properties, the node architecture, and
the quality of runtime communication libraries. Different systems require
different tradeoffs with respect to communication mechanisms, which can
impact the choice of application implementations. We use the in-house
MPI benchmark suite to study the communication behavior of the inter-
connects and guide the performance tuning of scientific applications. We
report the results of our investigation of four supercomputer systems
located at ALCF, and present lessons learned from our experience.

Keywords: interconnect, performance tuning, topology-aware, MPI.

1 Introduction

Current and future systems are becoming increasingly characterized by complex
hierarchy and inherent parallelism both within the node and between the nodes.
For a single node, we are witnessing diverse topologies to connect node compo-
nents. We experience the use of rings (Blue Gene/Q, Xeon Phi), meshes (AMD,
Tilera), or hierarchical topologies (Nvidia) with different latency and band-
width capabilities. At a system level, high radix interconnects, such us toruses
(Blue Gene, K Computer) and trees (Tianhe-1A) continue to dominate in the
high-end systems. A common trend is that interconnects within a node are get-
ting as complex and diverse as system interconnects. A critical challenge facing
applications, runtime systems, and programming models is to fully exploit their
hierarchies and specific features.

Our experience with scientific applications at the Argonne Leadership Com-
puting Facility (ALCF) shows that efficacy of communication is critical to overall
performance of an application. For example, a turbulence code DNS3D spends
40% of its execution time in communication; the computational fluid dynam-
ics (CFD) applications, such as Nektar [1], typically spend 20% of time in
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communication. To reduce the communication overhead, one can apply tech-
niques such as maximizing messaging rate, applying particular message orders,
aggregating small messages, overlapping communication with computation, etc.
However, different systems demonstrate different responses to these techniques.
The tradeoff involves several hardware and runtime factors, such as communica-
tion protocols, interconnect latency and bandwidth, node concurrency, threading
strategies, number of available links, topology of interconnect, as well as specific
interconnect and implementation features, such as availability of floating point
operations in routers, remote memory accesses, and overheads in MPI libraries.

The dynamic tradeoffs differ across applications or even application phases,
and it is often unclear how to choose the best optimization techniques.
Empirically tuning each possiblity can be time consuming, if at all feasible.
Furthermore, it remains unknown how much performance gains can be achieved
with further tuning. The intrinsic properties of the interconnect may even pre-
vent application from a particular optimization. For example, adaptive mesh
refinement (AMR) applications usually maintain a list of neighboring elements;
the efficient data exchange between these elements strongly depends on the num-
ber of outstanding requests that each node can effectively support. It is therefore
necessary to understand the low-level behavior of the system interconnect and
apply such knowledge to application implementations in a more educated way.
The vendors do not provide such information.

There is a rich set of existing MPI benchmarks available to test various aspects
of system interconnects. SPEC MPI 2007 [2] and NAS Parallel Benchmarks [8]
provide a set of mini applications from various scientific domains. Each of them
has differently exercised communication aspects of unstructured adaptive mesh,
parallel I/O, multi-zone applications, and computational grid patterns. The per-
formance of specific MPI primitives cannot be extracted out separately from the
results of the entire run to better understand the performance of the appli-
cation’s MPI scenario. The scalability of the suites is limited to thousands of
cores, which is not applicable to a large-scale leadership-class facilities. The mini
application benchmarks are complimentary to our effort wherein we are trying
to understand the behavior of the system at a finer level of detail with specific
communication scenario.

The Ohio State University MPI Benchmarks [5] consist of point-to-point
(p2p) communication benchmarks, primarily focused on latency and bandwidth
measurements between a pair of nodes. It has also incorporated support for
one-sided communications for CUDA devices. Similarly, both Intel MPI [3] and
SKaMPI [6] provide a set of micro-benchmarks with elementary MPI opera-
tions; they measure the latency of isolated communication operations, but do
not study the performance impact when communication operations are issued
in different order, rate, parallelism, and under different interconnect partitions
and topologies. Phloem MPI benchmark suite [4] provides a collection of ele-
mentary MPI tests, and we were intensively discussing with the Phloem devel-
opers the applicability of their suite to ALCF workloads. It was agreed that
Phloem does not focus on studying the effects of systems topologies, efficacy of



92 V. Morozov et al.

using multiple communicators and sub-communicators, impact of the operation
orders, and computation-communication interaction, among others.

The performance of tuned communication subsystems with the use of parallel
communication models was previously reported in [9–11]. They primarily focused
on giving recommendations to engineers on ways to improve the next-generation
interconnects, and the results cannot directly be used by application developers.

The ALCF is home to several leadership-class machines; it also accommo-
dates a representative set of production scientific applications. Based on our
experience at the ALCF, we have generalized a number of representative com-
munication schemes and developed an ALCF MPI benchmark suite [7] - a set
of micro benchmarks and mini apps to measure the interconnect hardware
response directly and gain deeper understanding on communication inter-
nals. Key features of our benchmark suite include studying the capabilities of
node messaging layer to saturate the interconnect, understanding the tradeoffs
between single link versus multiple links performances, measuring latency and
bandwidth of various operations subject to sub-communicators constrains,
studying nearest neighbor and halo exchange capabilities, tuning the efficacy
of overlapping computation with communication, and others. Some MPI bench-
marks can be adopted to the scenarios we exercise by elaborate placement of
MPI processes to a specific core by using mapping files. While appropriate at a
small number of processes and simple interconnect topologies, this will quickly
become intractable for large systems with hundreds of thousands of processes
and complex system topologies; and therefore, the intrinsic topology awareness
must be incorporated in the benchmark itself.

The rest of the paper is organized as follows. We introduce the systems used
for our evaluation in Section 2. Results of the experiments are presented and
discussed in Section 3. Conclusions, lessons learned, and discussion of future
plans are covered in Section 4.

2 Evaluation Environments

We characterize the interconnect properties of four ALCF systems: an IBM
Blue Gene/P (BG/P) supercomputer (Intrepid), IBM Blue Gene/Q (BG/Q)
supercomputer (Mira), and two heterogeneous CPU-GPU clusters, one with a
10Gb Ethernet (Eureka) and the other with an Infiniband-based (Magellan)
interconnects. We use IBM XL compiler with default communication libraries
on Blue Gene supercomputers, and GNU compiler with MPICH on clusters.

Intrepid is a 163,840-core BG/P supercomputer with a peak performance
of 557 TFlops, 80 TB memory, and 640 I/O nodes [12]. A node is a quad-core,
32-bit, 850 MHz IBM Power PC 450 with 2 GB of DDR2 memory, a coherent
cache hierarchy with L3 cache shared among cores, and can run up to 4 MPI
processes simultaneously. Inter- and intra-node communication is handled by a
messaging unit that connects to the L3 cache with a data bus and a control
bus. This unit is shared by all MPI processes on the same node. If a message
to be communicated resides in main memory, it needs to be first loaded into
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the L3 cache before going off-node. The system is built from individual racks;
each rack contains 1,024 compute nodes, for a total of 4,096 cores per rack. At
the ALCF, 64 nodes are grouped into a pset, the smallest partition, that can be
allocated to a user. Compute nodes are connected over three interconnects. The
3-D torus is used for p2p communications over 12 425-MB/s links which enable
bidirectional connections to six nearest neighbors. The tree-structured collective
network is used for collective and I/O communications. It supports integer and
double precision floating point reductions. The bandwidth per link is 850 MB/s,
and the hardware latency is 1.3 μs per tree traversal. The global barrier and
interrupt network is used for synchronization.

Mira is a 786,432-core BG/Q supercomputer with a peak performance of more
than 10 PFlops, 786 TB memory and 384 I/O nodes [11]. A new compute chip
design combines the 17 Power A2 cores, caches, a crossbar, and a messaging
unit. Each core is a 64-bit Power ISA with 4 hardware threads, 4-way SIMD
FPU vector unit, running at 1600 MHz. 16 cores are available to a user and can
run up to 64 MPI processes simultaneously. One core is used for handling OS
interrupts and other system services. A node contains one compute chip, 16 GB
of DDR3 memory, and 10 bidirectional communication links with a peak total
bandwidth of 40 GB/s. BG/Q uses a single 5-D torus interconnect to handle
p2p, collective, I/O, and synchronization operations. As its predecessor, BG/Q
is built from individual 1,024-node racks for a total of 16,384 cores per rack. At
the ALCF, the smallest partition is 128 nodes.

Eureka is a 100-node compute cluster, which is primarily used for data prepa-
ration, data analysis, and visualization. Each node has a dual-socket quad-core
Intel Xeon E5405 server with two NVIDIA Quadro FX5600 GPUs. The nodes
are connected using a 10-Gb-Ethernet Myrinet switch configured as a 5-stage
CLOS network.

Magellan is 100-node compute cluster, which is used for data analysis and
visualization of data obtained on Mira. Each node has a dual-socket eight-core
AMD Opteron 6128 processors with two Nvidia Fermi M2070 GPU cards. The
nodes are connected via a QDR Infiniband interconnect.

3 Experiments

Depending on communication operation characteristics, the MPI library may
implicitly handle it using different protocols and invoking different hardware
units. For example, the MPI library often uses one protocol for small messages
and a different protocol for large messages. On the other hand, the applications
can also be using different strategies with regard to which MPI function to
use, how to order messaging operations, which communicators to construct, etc.
Because a system often provides various hardware and software options in system
communication layer, the choice of the winning strategy is often not obvious for
application developers. By running the set of benchmarks, we have identified a
number of interesting facts and concluded several heuristics for programming
efficient communications.
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3.1 Messaging Rate

Themessaging rate benchmarkmeasures the capabilities of a single node intercon-
nect subsystem to drive all available links simultaneously at full speed. It reports
the number of messages, in millions, that can be communicated to and from a
node within a second (mmps). A typical user scenario, which exercises a messag-
ing rate communication pattern, is common for high-order spectral element CFD
codes, such as Nektar. In these codes, the domain partitioning dictates the usu-
ally complex irregular distribution of spectral elements over MPI processes. The
virtually adjacent processes, that share the vertices and faces of the same element,
may be located far away from each other. Each process may therefore handle tens
to hundreds of “neighbor” processes exchanging messages all at the same time.
The message sizes can range from hundreds of bytes to tens of kilobytes.

The rate is measured on a given reference node by aggregating the number
of messages sent by all MPI tasks on this node. To maximize the rate, each
task on a reference node is communicating with one task per available link on
all neighbor target nodes. Therefore, if one task is placed on a BG/P reference
node, it will communicate to six neighbor nodes – one per each torus direction.
Similarly, two tasks on a reference node will communicate to 12 tasks on the
same neighbor nodes. A BG/P node can handle up to four MPI tasks, one per
each core. On the BG/Q node, each node has nine nearest neighbors, because
the “E” direction of the torus has always size 2. Each core can handle one, two,
or four MPI tasks; however, the tasks start sharing the resources of the core.
Both Eureka and Magellan clusters are using a single bus to connect to an
interconnect, and therefore they only run 1 task on a reference node.

According to our measurements, a single MPI process is unable to saturate
the capabilities of Blue Gene communication subsystem. On Intrepid, the rate
linearly increasing from 0.63 for 1 task, to 1.25 for 2 tasks, to 2.41 for 4 tasks.
This is expected for a well-balanced system where all compute cores should be
able to simultaneously communicate without performance degradation from the
messaging subsystem. On Mira, 1 task demonstrated a rate of 0.90, 8 tasks –
6.45, 16 tasks – 11.27, and 32 tasks saturate the messaging unit with 15.87
mmps. The Power A2 core can issue two instructions per clock cycle only if two
processes are running on the core - one instruction is taken from each process.
Placing more processes per core has no advantages for the throughput and, in
fact, the processes start competing for the shared caches. Indeed, 64 tasks have
demonstrated a slight degradation 10.25 mmps from the best measured result.

The messaging rate on Blue Gene systems is very high compared to the one
obtained on Eureka, which yields only 0.08 mmps. Ethernet typically provides
relatively high communication latency, compared to both low-latency Infiniband
and proprietary interconnects. Indeed, Magellan’s messaging rate is much higher
and reaches 0.90 mmps, placing itself between BG/P and BG/Q.

We conclude that Blue Gene messaging units can efficiently host continuous
communication requests from all cores simultaneously. For an application where
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messaging rate is critical for performance, running at least one MPI task per
core will yield the optimal performance. Users should optimize the placement of
ranks to use more links at a time.

3.2 Point-to-Point Communication Latency

Point-to-point communication latency is obtained by using a ping-pong
benchmark, which measures the time for executing a pair of blocking MPI
send/receive of a message of specified length between two tasks, and then cal-
culates the one-way latency, dividing the round trip latency by two. Placement
of participating tasks provides three distinct variants of execution which require
separate consideration and analysis. For intranode, the communicating tasks
are sharing the same node, and the latency is determined by the properties
of node memory hierarchy and the capabilities of messaging software stack to
efficiently utilize them. Although rare in practice, an optimized stack may
detect that the two participating tasks reside on the same node, and take
advantage from direct memcpy routines. For nearest neighbor, the commu-
nicating tasks are placed into two adjacent nodes, and the latency is determined
by link latency, message size, and software overhead, such as the effectiveness
of message size-dependent protocols and message startup time. The benchmark
helps to determine the slowest path in the messaging layer. For farthest pair
of tasks, the tasks are placed to the nodes with the longest path in between, and
the latency, additionally to the factors above, depends on the properties of the
partition size and the routing protocol. An effective protocol may potentially
reduce collisions and involve more links to a transfer, and thus increase available
link bandwidth.

Figure 1 summarizes the results for intranode and nearest benchmarks. For
small messages, both Intrepid and Mira show little latency difference, reflecting
that the hardware overhead is only a small fraction of the total communication
time. This explains the controversy in various discussions for Blue Gene mapping
strategies, when most communicating tasks are placed to different nodes [13].
For large messages, the determining factor is eventually a ratio of memory band-
width versus single link bandwidth. In all cases, Mira has 1.5 to 5 times lower
latency due to hardware improvements. On regular clusters, the tasks on the
same node are communicating almost an order of magnitude faster than the
tasks on different nodes.

Figure 2 presents the results of the farthest p2p benchmark for Intrepid

and Mira. We use 32,768 nodes on both machines; however, the diameter of
the BG/Q partition is much smaller than that of the BG/P. We also include
the results of nearest benchmark for reference. On both supercomputers, the
nearest benchmark incurs similar latency to the farthest latency, reflecting that
the overhead of multiple routers is negligible. This indicates that it is more
worthwhile to locate the ranks in a way that utilizes more links at a time, than to
optimize the aggregate distance among communicating ranks. This observation
continues to be true on the BG/Q even for very large partitions up to the entire
machine.
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Fig. 1. Latency of intranode and nearest p2p communications

3.3 Aggregate Node Bandwidth

This benchmark measures the aggregate bandwidth for incoming and outgoing
communications between the tasks placed on a reference node and the corre-
sponding tasks located on all its nearest neighbors. The benchmark incorporates
the same topology awareness and messaging logic, as we discussed in Section 3.1,
except that this benchmark measures the capabilities of interconnect to drive all
available links simultaneously at full speed. By changing the message size, the
benchmark also helps to determine the largest data block that should be used
by applications before interconnect becomes a bottleneck. We present the results
for 512 KB messages.

From the row link bandwidth we have determined that the theoretical aggre-
gate peak bandwidths for Intrepid around 4.53 GB/s, for Mira – 36 GB/s, for
Eureka – 2.50 GB/s, and for Magellan – 3.20 GB/s. According to the measure-
ments, Intrepid’s aggregate node bandwidth is 4.28 GB/s on 1 MPI task and
4.38 GB/s with 2 and 4 MPI tasks, 97% of peak. Mira has shown 31.49 GB/s
with 1 MPI task, 35.59 GB/s for 2 to 16 MPI tasks, and 32.07 GB/s for 64 MPI
tasks, 99% in best and 87% in worst case. We have already learned from other
benchmarks that 1 task on a node cannot drive the messaging unit at full speed.
Magellan’s InfiniBand has delivered 2.70 GB/s, Eureka shows 2.44 GB/s.
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Fig. 2. Latency of farthest p2p communications

3.4 Bisection Bandwidth

Bisection bandwidth of a partition is often the limiting performance factor for
all-to-all-type communication patterns which occur in applications, such as
3D FFT, parallel dense linear algebra, or turbulent CFD. It is usually defined
as the minimum delivered bi-directional bandwidth over all possible bisections
of a partition. Depending on the topology of a partition, such a bisection can be
constructed without trial of all bisections. For torus topologies, the bisection is
defined as a cross cut over the longest dimension of the partition. For tree-like
topologies, the cross cut is generally made over the top-level parent of a tree.

Table 1. Bisection bandwidth, in TB/s

Mira Intrepid

Peak Measured %peak Peak Measured %peak

512 nodes 1.02 0.91 89 0.01 0.01 84
8 racks 4.10 3.64 89 0.44 0.38 88

32 racks 16.38 14.55 89 1.74 1.54 88
48 racks 24.58 21.83 89
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We measure the bisection bandwidth for partitions sized from 512 nodes to 48
racks. Table 1 shows results of bisection measurements for various partition sizes
on Intrepid and Mira. The theoretical peak bandwidth was calculated based on
the number of available links between the bisections and the row speed of each
link. Both BG/P and BG/Q are capable to deliver near 90% of available row
bandwidth for all the partitions – an overhead of about 10% is due to control
information, which is stored with each packet of the message. We conclude, that
bandwidth intensive applications with all-to-all-type will favor the properties
of the BG/Q interconnect, high effective bandwidth of sub partitions, as well as
high effective bandwidth, available to an application.

3.5 Collectives Latency

We study the latency of collectives by benchmarking the three most frequently
used operations, broadcast, reduction, and barrier, by using their cor-
respondent MPI functions. Due to large variability of benchmark cases and
parameters, we only discuss the results for those, which reflect, in our opinion,
the most distinct features of the ALCF supercomputing environment.

Comparing broadcast and reduction latencies on 1 rack of Intrepid versus
1 rack of Mira on World communicator (1 MPI task is used for all benchmarks),
we confirmed that the BG/Q interconnect delivers better performance than the
BG/P interconnect. On BG/Q, the latency for broadcast dropped down 47%,
from 4.58 μs to 3.12 μs, the latency for reduction dropped down 64%, from
5.53% μs to 3.38 μs. The difference becomes more pronounced for larger parti-
tions, and this is due to the very small diameter of the 5-D torus and much higher
single link raw bandwidth. Contrary, barrier is about two times slower, 2.24 μs
on BG/Q versus 1.19 μs on BG/P. The use of dedicated global barrier network
clearly helps to reduce synchronization time on BG/P; however, this fact may
hardly be accounted as a weak point of low-latency BG/Q interconnect.

The choice of a communicator may greatly affect the latency of collectives,
because the communication library usually uses different routing and opti-
mization strategies. We found that the BG/P communication library uses fast
collective network only if an entire World communicator is used; in other cases,
the library chooses to use a torus network. Performance degradation can be
very significant. For example, torus implementation of broadcast is about 25%
slower, 5.69 μs; reduction is about 7 times slower, 37.50 μs; and barrier

is 18 times slower, 21.8 μs. The BG/P interconnect is designed for fast com-
munication across entire partition and does not favor the communication over
sub-partitions. Unfortunately, most applications are unaware of such artificial
limitation and widely use the hierarchy of sub-communicators, such as often
occurring, for example, in multigrid solvers. The BG/Q interconnect does not
show such a limitation, at least for rectangular sub-communicators.

Next, we evaluate the impact of scaling the number of MPI ranks per node
on the latency of collective operations. Table 2 depicts the latency, in μs, on
1 rack of Intrepid and Mira for various numbers of MPI tasks per node. On
Mira, the latency gradually increases for larger number of tasks (collective on
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a node is performed in software and, therefore, the increase is noticeable), and
it jumps near 3 times for 64 tasks. The low-level communication library relies
on system “communication thread,” which progresses communication operation
in the background of the main thread. With 64 tasks per node, this system
thread is unavailable, and the progress must be made by the main MPI thread,
which leads to constant interrupts and therefore, performance degradation. We
conclude, that even though the “64 MPI tasks per node” mode is available to a
user; it should be used with caution, because it is exposed to increased resource
contention.

Table 2. Latency, μs, for multiple number of tasks in a node on 1 rack (1,024 nodes)

BG/Q BG/P

Number of tasks per node 1 4 16 64 1 2 4

barrier 2.25 3.56 3.73 9.21 1.19 2.29 3.06

broadcast 16 bytes 4.01 4.27 4.51 8.70 4.58 7.31 7.87

broadcast 8192 bytes 9.30 9.49 9.61 17.2 20.1 26.8 27.5

reduction 1 double 4.34 4.95 6.15 14.5 5.52 6.60 7.40

reduction 256 doubles 5.85 8.49 11.4 29.8 28.6 37.9 43.3

As shown in Table 3, BG/Q continues to demonstrate high scalability of
collective operations in a multi-rack configuration. Our previous findings are
entirely confirmed at scale. The latency of a collective does not depend on the
size of the partition. Placement of MPI tasks on a node has a bigger impact
on the latency, and running 64 MPI tasks per node can be practical for some
use cases. Performance of a collective on a rectangular sub-communicator is as
optimized as that on an entire partition.

3.6 Halo Exchange Latency

The 3-D halo exchange communication pattern is arguably the most commonly
used data exchange in scientific applications. Each MPI task requires data pro-
duced on the ranks with neighboring coordinates (i.e., halo), and therefore has
to exchange halo data with its neighbors. We use the halo exchange benchmark
with four different halo exchange implementation strategies, discussed in [7] in
detail. In the following, we summarize the key features of the implementation.

Halo exchange benchmark investigates several communication strategies
denoted: Sendrecv, Isend-recv, Isend-Irecv, and AllAtOnce. In the Sendrecv
strategy, each task communicates along dimensions in order; within each dimen-
sion, the tasks issue two blocking MPI Sendrecv calls to communicate to the
peers in forward and in backward directions. In the Isend-recv strategy, a task
first issues a non-blocking Isend request, then synchronously receives the data
from its peer, not waiting for the send to complete. A barrier ensures that com-
munication in one direction finishes for all ranks before moving on to the next
direction. This strategy typically leads to a flood of unexpected messages, which
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Table 3. Latency, in microseconds, of multi-rack BG/Q collectives for various ranks
per node (RPN)

World communicator Half-World sub-communicator
RPN 8 racks 32 racks 48 racks 8 racks 32 racks 48 racks

barrier

1 3.92 4.84 5.03 3.84 4.41 4.64
16 5.42 6.93 7.54 5.33 5.96 6.19
64 11.02 11.88 14.46 10.74 11.73 11.79

broadcast 16 bytes
1 4.88 5.84 6.05 4.78 5.44 5.64
16 6.26 7.25 7.48 6.20 6.84 7.06
64 10.74 11.52 11.90 10.68 11.28 11.57

broadcast 8192 bytes
1 9.85 10.80 11.02 9.73 10.39 10.59
16 11.41 12.48 12.68 11.20 11.98 12.13
64 18.66 19.83 19.98 18.56 19.21 19.61

reduction 1 double

1 5.32 5.32 6.55 5.21 6.04 6.13
16 7.95 8.96 9.15 7.85 8.53 8.79
64 16.62 17.71 17.83 16.74 17.38 17.56

reduction 256 doubles

1 6.69 7.69 7.92 6.58 7.27 7.50
16 10.84 11.85 12.06 10.84 11.57 11.75
64 21.84 22.94 22.99 21.75 22.59 22.51

can degrade performance; however, this is a valid strategy observed in produc-
tion ALCF workloads. The Isend-Irecv strategy relaxes synchronization for
receives – a task posts non-blocking send and receive, completes them with
waitall, and then starts next direction. Finally, the AllAtOnce strategy posts
six non-blocking sends and receives for all dimensions simultaneously, after
which waitall ensures that all outstanding requests are complete. All bench-
marks are using the communicator returned by cart create call with default
task placement.

Performance of halo exchange pattern is sensitive to load imbalance. When
tasks are running unevenly, some nodes start sending messages to the peers
before matching receive is posted. The low-level communication library may
either buffer the message on the sending side, causing extra overhead and
increasing the chance of conflicts in messaging unit, or buffer the message on
the receiving side, putting the result into the queue of unexpected messages. To
study the system response, the benchmark puts a “sleep time” (delay) before
halo exchanges to mimic the imbalance. The reported time is “true” communi-
cation time, where “sleep time” is excluded.

Both Intrepid and Mira exhibit similar response to different strategies; there-
fore, we only present the Mira results on Figure 3a. For messages close to 64-256
doubles (512 to 2,048 bytes), the effects of communication pattern are becoming
more visible. Expectedly, the less synchronous AllAtOnce strategy is the fastest,
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and Isend-recv is the slowest. Figure 3b shows the results for imbalanced halo
exchange overhead, which is the total amount of halo exchange time minus the
specified amount of delay (a 100 ms in our case). A small imbalance in tasks
helps the processes hide the communication progress over the compute part,
and we observed that all communication strategies, except Isend-recv, bene-
fit from such imbalance. Isend-recv performs the worst because the blocking
receive inhibits a task from processing other messages, therefore messages sent
by the previous non-blocking send are likely to reach the receiver before the cor-
responding receive is posted, resulting in extra overhead to manage unexpected
messages.

We further compare the halo exchange latency by varying the number of MPI
tasks per node. As Figure 4a shows, the BG/Q messaging unit is not entirely
saturated. However, 64 MPI ranks per node incurs significantly more overhead
than fewer ranks per node, which is primarily due to the inability of using a
dedicated communication thread. Small messages are not able to saturate the
available bandwidth; therefore, the latencies are comparable. For 1,024 doubles
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and larger, the messaging unit is saturated showing performance degradation
when more tasks are placed on a node. When delay is added to mimic compu-
tation before halo exchanges, the MPI ranks on the same node are less likely
to communicate at the same time, therefore the above degradation becomes
negligible, as shown in Figure 4b.

According to the benchmark study, our general recommendations for pro-
gramming halo exchange applications on Blue Gene systems are very generic
and entirely expected: a) do not synchronize processes without a reason; and b)
do not predefine any order of communications. The Blue Gene interconnect is
generally very fast and predefined ordering of send and receive requests does not
bring benefits, but oppositely, degrades communication performance.

3.7 Overlapping Computation with Communication

We have discussed in a previous subchapter that the AllAtOnce strategy is the
most efficient way to perform halo exchange. Some halo-exchange-based appli-
cations attempt to hide communication overhead by computing on local data in
the background of communication. The overlap benchmark mimics this behav-
ior. Each task posts six non-blocking sends and receives, sleeps for a specified
delay time to imitate the processing in the background of communication, and
finally posts waitall to complete the operation. One MPI task per core is used
in all measurements.

The overlap efficacy is defined as the communication latency without delay
divided by the halo exchange latency without overlapping. It is determined by
both hardware and software capabilities. In some cases, CPU is involved in
communication progress and compete for compute cycles. In such circumstances,
the performance of the overlap strategy may get worse than the performance of
independent halo exchange and correspondent computation phase.

Figure 5a demonstrates the overlap latency on Intrepid. Overlapping com-
putation with communication can reduce communication overhead by about
40% on BG/P and 65% on BG/Q. However, as Figure 5b shows, the interrupt
mode must be used to receive messages instead of default polling mechanism.
Polling messages consumes CPU cycles, contends for resources with the compu-
tation, and may even lengthen the communication time. As also follows from
Figure 5a, adding a little computation may slightly reduce the combined com-
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munication and computation time. We have identified that this happens when a
slight imbalance in tasks puts less contention on the messaging unit by spreading
its use more evenly over time.

4 Conclusion and Future Work

We have presented the results of our in-house ALCF MPI Benchmarks Suite to
investigate the interconnect capabilities of four ALCF supercomputers. The main
effort was put into studying the interaction of various factors that can impact the
performance of the communication subsystem, such as the placement of processes
in a node, the use of topology-awareness, the influence of load imbalance to
latencies of elementary operations, as well as the use of low-level interconnect
capabilities for typical halo exchange operations with and without computational
overlap. Our findings for the IBM Blue Gene interconnect are:

– A node can effectively adopt multiple number of MPI processes and handle
communication requests without conflicts in the messaging layer. Efficacy of
processing small messages can be improved by increasing the concurrency of
outstanding requests. Efficacy of processing large messages is limited by the
off-node capabilities and aggregate bandwidth of the available links.

– Partitioning is one of the features of the Blue Gene interconnect. The peak
aggregate and bisection bandwidth, as well as the best latencies for collectives
are achievable if full partition with wrapped-up links is used. The use of
smaller sub-partitions may or may not degrade performance. On BG/Q, the
latency of collective operations on rectangular sub-communicators does not
increase and is almost independent on the size of the partition.

– High concurrency is an important feature of the Blue Gene interconnect. Ef-
ficient halo exchange strategy should avoid synchronization of any kind and
post all communication requests at once. Furthermore, a little load imbalance
can help to reduce communication latency due to less likelihood of contention.
Subject to certain restrictions, the overlapping communication with compu-
tation provides even more opportunities for interconnect utilization.

The lessons learned are helping us to port scientific applications from other
platforms to an ALCF BG/Q supercomputer and improve the efficiency of their
communication strategies. We have shown that the regular clusters demonstrate
distinct communication behavior, and developers should adapt their applications
in different ways to achieve high efficacy.

We believe that the ALCF MPI Benchmark Suite can guide system architects
and application developers to design better hardware and to improve their
applications. The benchmark was recently made open-source and released to
the general public. As part of the next procurement cycle, our future directions
are to continue working with supercomputer vendors and application developers
in adopting the needs of pre-exascale era. We are looking at the ways to adopt
legacy applications to an expected unprecedented node-level concurrency, the
advent of millions of MPI processes in a single job, as well as interactions
of emerging programming models with existing MPI-OpenMP runtimes. We will
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also be expanding the benchmark with other communication patterns as we find
them in ALCF applications.
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Abstract. Multi-field packet classification is a network kernel function where 
packets are classified based on a set of predefined rules. Many algorithms and 
hardware architectures have been proposed to accelerate packet classification. 
Among them, decomposition-based classification approaches are of major in-
terest to the research community because of the parallel search in each packet 
header field. This paper presents four decomposition-based approaches on mul-
ti-core processors. We search in parallel for all the fields using linear search or 
range-tree search; we store the partial results in a linked list or a bit vector. The 
partial results are merged to produce the final packet header match. We evaluate 
the performance with respect to latency and throughput varying the rule set size 
(1K ~ 64K) and the number of threads per core (1 ~ 12). Experimental results 
show that our approaches can achieve 128 ns processing latency per packet and 
11.5 Gbps overall throughput on state-of-the-art 16-core platforms. 

1 Introduction 

Internet routers perform packet classification on incoming packets for various net-
work services such as network security and Quality of Service (QoS) routing. All the 
incoming packets need to be examined against predefined rules in the router; packets 
are filtered out for security reasons or forwarded to specific ports during this process. 
Moreover, the emerging Software Defined Networking (SDN) requires OpenFlow 
table lookup [1], [2], which is similar as the classic multi-field packet classification 
mechanism. All these requirements make packet classification a kernel function for 
Internet. 

Many hardware and software-based approaches have been proposed to enhance the 
performance of packet classification. One of the most popular methods for packet 
classification is to use Ternary Content Addressable Memories (TCAMs) [3]. TCAMs 
are not scalable and require a lot of power [4]. Recent work has explored the use of 
Field-Programmable Gate Arrays (FPGAs) [5]. These designs can achieve very high 
throughput for moderate-size rule set, but they also suffer long processing latency 
when external memory has to be used for large rule sets. 

Use of software accelerators and virtual machines for classification is a new trend 
[6]. However, both the growing size of the rule set and the increasing bandwidth of 
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the Internet make memory access a critical bottleneck for high-performance packet 
classification. State-of-the-art multi-core optimized microarchitectures [7], [8] deliver 
a number of new and innovative features that can improve memory access perfor-
mance. The increasing gap between processor speed and memory speed was bridged 
by caches and instruction level parallelism (ILP) techniques [9]. For cache hits, laten-
cies scale with reductions in cycle time. A cache hit typically introduces a latency of 
two or three clock cycles, even when the processor frequency increases. The cache 
misses are overlapped with other misses as well as useful computation using ILP. 
These features make multi-core processors an attractive platform for low-latency 
network applications. Efficient parallel algorithms are also needed on multi-core pro-
cessors to improve the performance of network applications. 

In this paper, we focus on improving the performance of packet classification with 
respect to throughput and latency on multi-core processors. Specifically, we use de-
composition-based approaches on state-of-the-art multi-core processors and conduct a 
thorough comparison for various implementations. The rest of the paper is organized 
as follows. Section 2 formally describes the background and related work, and Sec-
tion 3 covers the details of the four decomposition-based algorithms. Section 4 sum-
marizes performance results, and Section 5 concludes the paper. 

2 Background 

2.1 Multi-field Packet Classification 

Multi-field packet classification problem [10] requires five fields to be examined 
against the rules: 32-bit source IP address (SIP), 32-bit destination IP address (DIP), 
16-bit source port number (SP), 16-bit destination port number (DP), and 8-bit  
transport layer protocol (PROT). In SIP and DIP fields, longest prefix match is per-
formed on the packet header. In SP and DP fields, the matching condition of a rule is 
a range match. The PROT field only requires exact value to be matched. We denote 
this problem as the classic packet classification problem in this paper. A new version 
of packet classification is the OpenFlow packet classification [2] where a larger num-
ber of fields are to be examined. In this paper we focus on the classic packet classifi-
cation, although our solution techniques can also be extended to the OpenFlow packet 
classification. 

Each packet classification engine maintains a rule set. In this rule set, each rule has 
a rule ID, the matching criteria for each field, an associated action (ACT), and/or 
priority (PRI). For an incoming packet, a match is reported if all the five fields match 
a particular rule in the rule set. Once the matching rule is found for the incoming 
packet, the action associated with that rule is performed on the packet. We show an 
example rule set consisting of 8 rules in Table 1; the typical rule set size (denoted as 
N) ranges from 50 to 1K [10]. 

A packet can match multiple rules. If only the highest priority one needs to be re-
ported, it is called best-match packet classification [11]; if all the matching rules need 
to be reported, it is a multi-match packet classification. Our implementation is able to 
output both results.  
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Table 1. Example rule set 

ID SA DA SP DP PROT PRI ACT 

1 175.77.88.1
55/32 

119.106.158
.230/32 

0 - 65535 6888 - 6888 0x06 1 Act 0 

2 175.77.88.6/
32 

36.174.239.
222/32 

0 - 65535 1704 - 1704 0x06 2 Act 1 

3 175.77.88.4/
32 

36.174.239.
222/32 

0 - 65535 1708 - 1708 0x06 3 Act 0 

4 95.105.143.
51/32 

39.240.26.2
29/32 

0 - 65535 1521 - 1521 0x06 4 Act 2 

5 95.105.143.
51/32 

204.13.218.
182/32 

0 - 65535 0 - 65535 0x01 5 Act 3 

6 152.175.65.
32/28 

248.116.141
.0/28 

24032 - 
24032 

123 - 123 0x11 5 Act 5 

7 17.21.12.0/2
3 

224.0.0.0/5 0 - 65535 0 - 65535 0x00 6 Act 4 

8 233.117.49.
48/28 

233.117.49.
32/28 

750 - 750 123 - 123 0x11 7 Act 3 

2.2 Related Work 

Most of packet classification algorithms on general purpose processors fall into two 
categories: decision-tree based and decomposition based algorithms. 

The most well-known decision-tree based algorithms are HiCuts [12] and Hyper-
Cuts [13] algorithms. The idea of decision-tree based algorithms is that each rule 
defines a sub-region in the multi-dimensional space and a packet header is viewed as 
a point in that space. The sub-region which the packet header belongs to is located by 
cutting the space into smaller sub-regions recursively. However, searching in a large 
tree is hard to parallelize and it requires too many memory accesses. Therefore it is 
still challenging to achieve high performance using efficient search tree structure on 
state-of-the-art multi-core processors. 

Decomposition based algorithms usually contain two steps. The first step is to 
search each field individually against the rule set. The second step is to merge the 
partial results from all the fields. The key challenge of these algorithms is to paral-
lelize individual search processes and handle merge process efficiently. For example, 
one of the decomposition based approaches is the Bit Vector (BV) approach [17]. The 
BV approach is a specific technique in which the lookup on each field returns an N-bit 
vector. Each bit in the bit vector corresponds to a rule. A bit is set to “1” only if the 
input matches the corresponding rule in this field. A bit-wise logical AND operation 
gathers the matches from all fields in parallel. 

The BV-based approaches can achieve 100 Gbps throughput on FPGA [19], but 
the rule set size they support is typically small (less than 10K rules). Also, for port 
number fields (SP and DP), since BV-based approaches usually require rules to be 
represented in ternary strings, they suffers from range expansion when converting 
ranges into prefixes [20]. 

Some recent work has proposed to use multi-core processors for packet classifica-
tion. For example, the implementation using HyperSplit [14], a decision-tree based 
algorithm, achieves a throughput of more than 6Gbps on the Octeon 3860 multi-core 
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platform. However, the decomposition based approaches on state-of-the-art multi-
core processors have not been well studied and evaluated. 

3 Algorithms 

We denote the rules in the classification rule set as original rules. Given a 5-field rule 
set, we present the procedure of our decomposition-based approaches in 3 phases: 

• Preprocess: The prefixes in IP address fields or exact values in PROT field are 
translated into ranges first; then all the rules are projected onto each field to 
produce a set of non-overlapping subranges in each field. We denote the rule 
specified by a subrange as a unique rule. Rules having the same value in a spe-
cific field are mapped into the same unique rule in this field. For example, the 
8 rules in Table 1 can be projected into 5 unique rules in the SP field: [0, 749], 
[750, 750], [751, 24031], [24032, 24032], and [24033, 65535]. We either con-
struct linked-lists using the unique rules for classification, or build a range-tree 
using the unique rules. We show an example for preprocessing 4 rules in a spe-
cific field in Figure 1. 

• Search: The incoming packet header is also split into 5 fields, where each of 
the header field is searched individually and independently. We employ linear 
search or range-tree search for each individual field, and we record the partial 
matching results of each field by a rule ID set or a Bit Vector (BV). 

• Merge: The partial results from different fields are merged into the final result. 
For partial results represented by a rule ID set, merge operation is performed 
using linear merge; for partial results represented by a BV, merge operation is 
performed using a bitwise logical AND. 

Depending on the types of search phase and the representation of partial results, we 
have various implementations. Section 3.1 and 3.2 introduce the algorithms for linear 
search and range-tree search, respectively, while Section 3.3 and 3.4 cover the set 
representation and BV representation of partial results. Section 3.5 summarizes all the 
implementation. 

3.1 Linear Search 

A linear search can be performed in each field against unique rules. We denote the 
match of each unique rule as a unique match. We consider linear search due to the 
following reasons: 

• Linear search can be used as a baseline to compare various decomposition-
based implementations on multi-core processors. 

• The number of unique rules in each field is usually less than the total number 
of the original rules [15]. 

• For multi-match packet classification problem (see Section 2), it requires O(N) 
memory to store a rule set consisting of N rules, while it also requires O(N) 
time to obtain all the matching results in the worst case. Linear search is still an 
attractive algorithm from this viewpoint. 

• Linear search results in regular memory access patterns; this in turn can lead to 
good cache performance. 



 Multi-core Implementation of 

 

Fig. 1. Preprocessing the 

To optimize the search, we 
structure which specifies a 
we show an example of con
As shown in Figure 1, all 
overlap between different o
is examined using the uniq
subrange boundaries , ,
using either a rule ID set (S

3.2 Range-Tree Search

The key idea of range-tree 
cient tree-search; the range-

To construct a range-tre
packet header fields into ran
non-overlapping subranges
(range-tree) is constructed u

For example, in Figure 1
compared with the root no
generality, we use inclusiv
range. Hence there can be o
ue is less than , or (2) the
the input value is then co
second case, the input valu
This algorithm is applied 
representing a subrange. Th
merge phase. 

This preprocess explicit
can be located in a subrang
Figure 1, each subrange ma

Decomposition-Based Packet Classification Algorithms 

rule set to (1) linked-lists or (2) a balanced binary range-tree 

construct linked-lists for linear search. Linked-list is a d
unique rule and its associated original rules. In Figure

nstructing linked-lists from original rules in a specific fi
the 4 rules are preprocessed into 5 linked-lists due to 

original rules; during the search phase, the incoming pac
que rules (comparing the input value sequentially with , … , ); the partial results are then stored for merge ph
ection 3.3), or a BV (Section 3.4). 

h 

search is to construct a balanced range tree [16] for e
-tree search can be applied to all the fields in parallel. 
ee, we first translate prefixes or exact values in differ
nges. Overlapping ranges are then flattened into a serie
s as shown in Figure 1. A balanced binary search t
using the boundaries of those subranges.  
1, the value in a specific field of the input packet heade
ode (boundary ) of the range tree first. Without loss
ve lower bound and exclusive upper bound for each s
only two outcomes from the comparison: (1) the input v
e input value is greater than or equal to . In the first ca
mpared with the left child  of the root node; in 

ue is compared with the right child  of the root no
iteratively until the input value is located in a leaf n
hen the partial results can be extracted for future use in 

tly gives a group of non-overlapping subranges; the in
e through the binary search process. However, as shown

ay still correspond to one or more valid matches. 

109 

 

data 
e 1, 
eld. 
the 

cket 
the 

hase 

effi-

rent 
s of 
tree 

er is 
s of 
sub-
val-
ase, 
the 

ode. 
node 

the 

nput 
n in 



110 S. Zhou, Y.R. Qu, and V.K. Prasanna 

 

3.3 Set Representation 

After the search in each individual field is performed, we can represent each partial 
result using a set. As shown in Figure 2, for the input located in the subrange c, a set 
consisting of 3 rule IDs {1, 2, 4} is used to record the partial matching result in a 
field. We denote such a set as a rule ID set. We maintain the rule IDs in a rule ID set 
in sorted order. Thus, for the partial result represented using a rule ID set, all the rule 
IDs are arranged in ascending (or descending) order. 

As shown in Algorithm 1, the merging of those partial results is realized by linear 
merge efficiently: we iteratively eliminate the smallest rule ID value of all 5 fields 
unless the smallest value appears in all the 5 fields. A common rule ID detected dur-
ing this merge process indicates a match. The correctness of Algorithm 1 can be easi-
ly proved; this algorithm is similar as the merge operation for two sorted lists in 
merge sort, except 5 rule ID sets need to be merged.  

We show an example of merging 5 rule ID sets in Figure 2. Initially we have 5 rule 
ID sets as the partial results from 5 fields. In the first iteration, since the rule IDs are 
stored in each rule ID set in ascending order, the first rule IDs in 5 rule ID sets (smal-
lest rule IDs, namely, Rule 1 in SIP field, Rule 2 in DIP field, Rule 1 in SP field, Rule 
3 in DP field, and Rule 3 in PROT field) are compared; since they are not the same, 
we delete the minimum ones from the rule ID sets: Rule 1 is deleted from the SIP rule 
ID set, and Rule 1 is deleted from the SP rule ID set. We iteratively apply this algo-
rithm to delete minimum rule IDs in each iteration, unless all the minimum rule IDs 
of 5 fields are the same; a common rule ID appearing in all 5 fields (such as Rule 3 in 
Figure 2) indicates a match between the packet header and the corresponding rule. We 
record the common rule IDs as the final result. 

 
Algorithm 1: (Set ) MERGE (Set , Set ,..., Set ) 
if any of the input sets is null then 
return (null) 
else 
 for non-null input Set  do in parallel 
     first element of  
   end for 
   while (  is not the last element of ) do 
if not all ’s are equal then 
    delete the minimum  from  
  MERGE (Set , Set ,..., Set ) 
else 
  push  into set  
    delete  from  for all  
  MERGE (Set , Set ,..., Set ) 
      end if 
   end while 
   return (Set ) 
end if 
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4 Performance Evaluation and Summary of Results 

4.1 Experimental Setup 

Since our approaches are not platform-dependent, we conducted the experiments on a 
2× AMD Opteron 6278 processor and a 2× Intel Xeon E5-2470 processor. The AMD 
processor has 16 cores, each running at 2.4GHz. Each core is integrated with a 16KB 
L1 data cache, 64KB L1 instruction cache and a 2MB L2 cache. A 60MB L3 cache is 
shared among all 16 cores. The processor has access to 128GB DDR3 main memory 
through an integrated memory controller running at 2GHz. The Intel processor has 16 
cores, each running at 2.3GHz. Each core has a 32KB L1 data cache, 32KB L1 in-
struction cache and a 256KB L2 cache. All 16 cores share a 20MB L3 cache. 

We implemented all the 4 approaches using Pthreads on openSUSE 12.2. We  
analyzed the impact of data movement in our approaches. We also used perf, a per-
formance analysis tool in Linux, to monitor the hardware and software events such as 
the number of executed instructions, the number of cache misses and the number of 
context switches. 

We generated synthetic rule sets using the same methodology as in [18]. We varied 
the rule set size from 1K to 64K to study the scalability of our approaches. We used 
processing latency and overall throughput as the main performance metrics. We de-
fine overall throughput as the aggregated throughput in Gbps of all parallel packet 
classifiers. We define the processing latency as the average processing time elapsed 
during packet classification for a single packet. We also examined the relation be-
tween the number of threads per core and context switch frequency to study their 
impact on the overall performance. 

4.2 Data Movement 

To optimize our implementation, we first conduct two groups of RBV experiments 
with 1K rule set: (Design 1) 5 cores process 5 packets in parallel, each processing a 
single packet independently; (Design 2) all the 5 cores process a single packet, each 
processing one packet header field. In Design 1, partial results from the five fields of 
a packet stay in the same core and the search phase requires 5 range trees to be used 
 

 
Fig. 3. Data movement (Design 1: 5 cores, 5 packets; Design 2: 5 cores, 1 packet) 
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in the same core. In Design 2, all the threads in a single core perform search operation 
in the same packet header field; the merge phase requires access to partial results 
from different cores. Our results in Figure 3 show that Design 1 has in average 10% 
more throughput than Design 2. In Design 2, a large amount of data move between 
cores, making it less efficient than Design 1. We also have similar observations in LS, 
RS, and LBV approaches. Therefore, we use Design 1 (a packet only stays in one 
core) for all of the 4 approaches, where partial results are accessed locally. 

4.3 Throughput and Latency 

Figure 4 and Figure 5 show the throughput and latency performance with respect  
to various sizes of the rule set for all the four approaches. For each approach, the 
 

 

(a) Throughput on the AMD processor 

 
(b) Throughput on the Intel processor 

Fig. 4. Throughput with respect to the number of rules (N) 
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(a) Latency on the AMD processor 

 

(b) Latency on the Intel processor 

Fig. 5. Latency with respect to the number of rules (N) 

experiments are conducted on both the AMD and the Intel platforms. We have the 
following observations: 

• The performance degrades as the number of rules increases. This is because 
when the rule set becomes larger, the number of unique rules also increases; 
this leads to an increase of both the search time and the merge time. 

• Range-tree based approaches suffer less performance degradation when the 
number of rules increases. Note the time complexity for range-tree search is 
O(logN1), while the time complexity for linear search is O(N1). For a balanced 
binary range-tree, when the rule set size doubles, one more tree level has to be 
searched, while linear search requires double the amount of search time. We 
show the breakdown of the overall execution time in terms of search and merge 
times in Section 4.4. 
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• Using set representation in merge phase (LS and RS) is not as efficient as using 
BV representation (LBV and RBV). Merging multiple rule ID sets requires 
O(N2 log(N)) time, while it takes O(N2) time to merge bit vectors using bitwise 
AND operations. 

4.4 Search Latency and Merge Latency 

We show the latency of the search and merge phases in Figure 6. We have the follow-
ing observations: 

• Search time contributes more to the total classification latency than the merge 
time, since search operations are more complex compared with the merge op-
erations. 

• As shown in Figure 5 and Figure 6, we achieve similar performance on the 
AMD and the Intel multi-core platforms. The performance of all the implemen-
tations on Intel machine is slightly worse than the performance on the AMD 
machine. Note that the Intel machine has a lower clock rate. 

 

 

(a) Latency on the AMD processor 

 
(b) Latency on the Intel processor 

Fig. 6. Breakdown of the latency per packet on (a) the AMD multi-core processor and (b) the 
Intel multi-core processors (1K rule set, 5 threads per core) 
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4.5 Cache Performance 

To explore further why the performance deteriorates as the rule size grows, we 
measure the cache performance. We show the number of cache misses per 1K packets 
under various scenarios on the AMD processor in Figure 7. As can be seen: 

• Linear search based approaches result in more cache misses than the range-tree 
search based approaches because the linear search requires all the unique rules 
to be compared against the packet header.  

• Approaches based on set representation have more cache misses than the BV 
based approaches. Set representation requires log(N) bits for each rule ID, 
while the BV representation only requires 1 bit to indicate the match result for 
each rule. Hence BV representation of the matched rules can be fit in the cache 
of a multi-core processor more easily. 

• The overall performance is consistent with the cache hits on the multi-core 
processors. RBV introduces the least amount of cache misses and achieves the 
highest overall throughput with minimum processing latency. 

 

Fig. 7. Number of L2 cache misses per 1K packets on the AMD processor 

4.6 Number of Threads per Core (T) 

The number of threads per core also has an impact on the performance for all four 
approaches. Our results, as shown in Figure 8a, indicate the performance of RS and 
RBV goes up as the number of threads per core (T) increases from 1 to 6. Once T 
exceeds 6 the throughput begins to degrade. For LS and LBV, the performance keeps 
increasing until T reaches 10. Reasons for performance degradation include saturated 
resource consumption of each core and the extra amount of overhead brought by the 
context switch mechanism. Figure 8b illustrates the relation between context switch 
frequency and the number of threads per core. When T increases, context switches 
happen more frequently, and switching from one thread to another requires a large 
amount of time to save and restore states. 



 Multi-core Implementation of 

 

(a) T

(b) Co

Fig. 8. P

We also evaluate T > 13 
dramatically for all four a
linear search deteriorates fo
proaches deteriorates for T
mance of range-tree based a

• The different threads
root to the leaf nodes
of threads in the sam
ent threads; this lead

• For linear search, si
memory access patte

Decomposition-Based Packet Classification Algorithms 
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efficiently shared among different threads. However, as can be seen from Fig-
ure 8b, the frequent context switches still adversely affect the overall through-
put performance. This in turn results in performance degradation at a larger 
value of T. 

5 Conclusion and Future Work 

We implemented and compared four decomposition-based packet classification algo-
rithms on state-of-the-art multi-core processors. We explored the impact of the rule 
set size (N), the number of threads per core (T), and the communication between cores 
on performance with respect to latency and throughput.  

We also examined the cache performance and conducted experiments on different 
platforms. Our experimental results show that range search is much faster than linear 
search and is less influenced by the size of rule set. We also find that BV representa-
tion based approaches are more efficient than set representation based approaches.   

In the future, we plan to apply our approaches on OpenFlow packet classification 
where more packet fields are required to be examined. We will also implement deci-
sion-tree based and hashed based packet classification algorithms on multi-core plat-
forms. 
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Abstract. In this work, we introduce slot selection and co-allocation algorithms 
for parallel jobs in distributed computing with non-dedicated and heterogeneous 
resources (clusters, CPU nodes equipped with multicore processors, networks 
etc.). A single slot is a time span that can be assigned to a task, which is a part 
of a job. The job launch requires a co-allocation of a specified number of slots 
starting synchronously. The challenge is that slots associated with different re-
sources of distributed computational environments may have arbitrary start and 
finish points that do not match. Some existing algorithms assign a job to the 
first set of slots matching the resource request without any optimization (the 
first fit type), while other algorithms are based on an exhaustive search. In this 
paper, algorithms for effective slot selection of linear complexity on an availa-
ble slots number are studied and compared with known approaches. The novel-
ty of the proposed approach consists of allocating alternative sets of slots. It 
provides possibilities to optimize job scheduling. 

Keywords: Distributed computing, economic scheduling, resource manage-
ment, slot, job, task, batch. 

1 Introduction 

Economic mechanisms are used to solve problems like resource management and 
scheduling of jobs in a transparent and efficient way in distributed environments such 
as cloud computing and utility Grid [1, 2]. A resource broker model is decentralized, 
well-scalable and application-specific [2-4]. It has two parties: node owners and bro-
kers representing users. The simultaneous satisfaction of various application optimi-
zation criteria submitted by independent users is not possible due to several reasons 
[2] and also can deteriorate such quality of service rates as total execution time of a 
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sequence of jobs or overall resource utilization. Another model is related to virtual 
organizations (VO) [5-7] and metascheduling with central schedulers or a Meta-
Broker [2] providing job-flow level scheduling and optimization. VOs naturally re-
strict the scalability, but uniform rules for allocation and consumption of resources 
make it possible to improve the efficiency of resource usage and to find a tradeoff 
between contradictory interests of different participants. In [6], we have proposed a 
hierarchical model of resource management system which is functioning within a VO. 
Resource management is implemented using a structure consisting of a metascheduler 
and subordinate job schedulers that interact with batch job processing systems. The 
significant difference between the approach proposed in [6] and well-known schedul-
ing solutions for distributed environments such as Grids [1-5, 8, 9], e.g., gLite Work-
load Management System [8], where Condor is used as a scheduling module, is the 
fact that the scheduling strategy is formed on a basis of efficiency criteria. They allow 
reflecting economic principles of resource allocation by using relevant cost functions 
and solving a load balancing problem for heterogeneous resources. At the same time, 
the inner structure of the job is taken into account when the resulting schedule is 
formed. The metascheduler [5-7] implements the economic policy of a VO based on 
local resource schedules. The schedules are defined as sets of slots coming from re-
source managers or schedulers in the resource domains. During each scheduling cycle 
the sets of available slots are updated based on the information from local resource 
managers. Thus, during every cycle of the job batch scheduling [6] two problems 
have to be solved: 1) selecting an alternative set of slots (alternatives) that meet the 
requirements (resource, time, and cost); 2) choosing a slot combination that would be 
the efficient or optimal in terms of the whole job batch execution in the current cycle 
of scheduling. To implement this scheduling scheme, first of all, one needs to propose 
the algorithm for finding sets of alternative executions. An optimization technique for 
the second phase of this scheduling scheme was proposed in [6, 7]. 

The scheduling problem in Grid is NP-hard due to its combinatorial nature and 
many heuristic-based solutions have been proposed. In [4] heuristic algorithms for 
slot selection, based on user-defined utility functions, are introduced. NWIRE system 
[4] performs a slot window allocation based on the user defined efficiency criterion 
under the maximum total execution cost constraint. However, the optimization occurs 
only on the stage of the best found offer selection. First fit slot selection algorithms 
(backtrack [10] and NorduGrid [11] approaches)  assign any job to the first set of slots 
matching the resource request conditions, while other algorithms use an exhaustive 
search [2, 12, 13] and some of them are based on a linear  integer programming (IP) 
[2, 12] or mixed-integer programming (MIP) model [13]. Moab scheduler [14] im-
plements the backfilling algorithm and during a slot window search does not take into 
account any additive constraints such as the minimum required storage volume or the 
maximum allowed total allocation cost. Moreover, backfilling does not support envi-
ronments with non-dedicated resources and its execution time grows substantially 
with the increase of the slot numbers. Assuming that every CPU node has at least one 
local job scheduled, the backfilling algorithm has quadratic complexity in terms of the 
slot number. In our previous works [15-17], two algorithms for slot selection AMP 
and ALP that feature linear complexity ( )mO , where m  is the number of available 
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time-slots, were proposed. Both algorithms perform the search of the first fitting win-
dow without any optimization. AMP (Algorithm based on Maximal job Price), per-
forming slot selection based on the maximum slot window cost, proved the advantage 
over ALP (Algorithm based on Local Price of slots) when applied to the above men-
tioned scheduling scheme. However, in order to accommodate an end user’s job ex-
ecution requirements, there is a need for a more precise slot selection algorithm to 
exploit during the first stage of the proposed scheduling scheme and to consider vari-
ous user demands along with the VO resource management policy.  

In this paper, we propose algorithms for effective slot selection based on user de-
fined criteria that feature linear complexity on the number of the available slots during 
the job batch scheduling cycle. The novelty of the proposed approaches consists of 
allocating a number of alternative sets of slots (alternatives). The proposed algorithms 
can be used for both homogeneous and heterogeneous resources. The paper is orga-
nized as follows. Section 2 introduces a general scheme for searching alternative slot 
sets that are effective by the specified criteria. Then four implementations are pro-
posed and considered. Section 3 contains simulation results for comparison of pro-
posed and known algorithms. Section 4 summarizes the paper and describes further 
research topics. 

2 General Scheme and Slot Selection Algorithms 

In this section we consider a general scheme of an Algorithm searching for Extreme 
Performance (AEP) and its implementation examples.  

2.1 AEP Scheme  

The launch of any job requires a co-allocation of a specified number of slots, as well 
as in the classic backfilling variation [14]. The target is to scan a list of m  available 
slots and to select a window W  of n  parallel slots with a length of the required re-
source reservation time. The job resource requirements are arranged into a resource 
request containing a resource reservation time, characteristics of computational nodes 
(clock speed, RAM volume, disk space, operating system etc.) and the limitation on 
the selected window maximum cost. The total window cost is calculated as a sum of 
an individual usage cost of the selected slots. According to the resource request, it is 
required to find a window with the following description: n  concurrent time-slots 
providing the resource performance rate and the maximal resource price per time unit 
F should be reserved for a time span st . The length of each slot in the window is 

determined by the performance rate of the node on which it is allocated. Thus, in the 
case of heterogeneous resources, as a result one has a window with a “rough right 
edge” (Fig. 1). The window search is performed on the list of all available slots sorted 
by their start time in ascending order (this condition is necessary to examine every 
slot in the list and for operation of search algorithms of linear complexity [15-17]).  
In addition, one can define a criterion crW on which the best matching window  
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alternative is chosen: This can be a criterion for a minimum cost, a minimum execu-
tion runtime or, for example, a minimum energy consumption. The algorithm parses a 
ranged list of all available slots subsequently for all the batch jobs. Higher priority 
jobs are processed first [6].  
 

 

Fig. 1. Window with a “rough right edge” 

Consider as an example the problem of selecting a window of size n  with a total 
cost no more than S  from the list of nm >  slots (in the case, when nm =  the selec-

tion is trivial). The maximal job budget is counted as nFtS s= . The current extended 

window consists of m  slots ms,...,s,s 21 . The cost of using each of the slots according 

to their required time length is: mc,...,c,c 21 . Each slot has a numeric characteristic iz  

in accordance to crW . The total value of these characteristics should be minimized 
in the resulting window.  

Then the problem could be formulated as follows:  
min2211 →+++ mmza...zaza , Sca...caca mm ≤+++ 2211 , 

na...aa m =+++ 21 , { } m,...,r,ar 1  1 ,0 =∈ . 

Additional restrictions can be added, for example, considering the specified value of 
deadline. Finding the coefficients ma,...,a,a 21  each of which takes integer values 0 

or 1 (and the total number of “1” values is equal to n ), determine the window with 
the specified criteria crW  extreme value. By combining the optimization criteria, 
VO administrators and users can form alternatives search strategies for every job in 
the batch [6, 7]. Users may be interested in their jobs total execution cost minimizing 
or, for example, in the earliest possible jobs finish time, and are able to affect the set 
of alternatives found by specifying the job distribution criteria. VO administrators in 
their turn are interested in finding extreme alternatives characteristics values (e.g., 
total cost, total execution time) to form more flexible and, possibly, more effective 
combination of alternatives representing a batch execution schedule. The time length 
of an allocated window W is defined by the execution time of the task that is using 
the slowest CPU node. The algorithm proposed is processing a list of all slots availa-
ble during the scheduling interval ordered by a non-decreasing start time (see Fig. 1). 
This condition is required for a single sequential slot list scan and algorithm linear 
complexity on the number m  of slots.  
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The AEP scheme for an effective window search by the specified criteria can be 
represented as follows: 

/* Job – Batch job for which the search is performed ; 
** windowSlots – a set (list) of slots representing the 
window;*/ 
slotList = orderSystemSlotsByStartTime(); 
for(i=0; i< slotList.size; i++){ 
  nextSlot = slotList[i]; 
 if(!properHardwareAndSoftware(nextSlot)) 
 continue; // The slot does not meet the requirements 
 windowSlotList.add(nextSlot);   
 windowStart = nextSlot.startTime; 
 for(j=0; j<windowSlots.size; j++){ 
  wSlot = windowSlots[j]; 
  minLength = wSlot.Resource.getTime(Job); 
  if((wSlot.EndTime – windowStart) < minLength) 
   windowSlots.remove(wSlot);    
 } 
 if(windowSlots.size >= Job.m){ 
   curWindow = getBestWindow(windowSlots); 
   crW = getCriterion(curWindow); 
   if(crW > maxCriterion){ 
    maxCriterion = crW; 
     bestWindow = curWindow; 
   }  
 }    
} 

Finally, a variable bestWindow will contain an effective window by the given crite-
rion crW.  

2.2 AEP Implementation Examples 

The need to choose alternative sets of slots for every batch job increases the complex-
ity of the whole scheduling scheme [6]. With a large number of the available slots the 
algorithm execution time may become inadequate. Though it is possible to mention 
some typical optimization problems, based on the AEP scheme that can be solved 
with a relatively decreased complexity. These include problems of total job cost, run-
time minimizing, the window formation with the minimal start/finish time.  

Consider the procedure for minimizing a window start time. The difference with the 
general AEP scheme is that the first suitable window will have the earliest possible 
start time. Indeed, if at some step i of the algorithm (after the i-th slot is added) the 
suitable window can be formed, then the windows, formed at the further steps will be 
guaranteed to have the start time that is not earlier (according to the ordered list of 
available slots, only slots with non-decreasing start time will be taken into considera-
tion). This procedure can be reduced to finding a set of the first n  parallel slots the 
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total cost of which does not exceed the budget limit S . This description coincides the 
AMP scheme considered in previous works [15-17]. Thus AEP is naturally an exten-
sion of AMP, and AMP is the particular case of the whole AEP scheme performing 
only the start time optimization. Further we will use AMP abbreviation as a reference 
to the window start time minimization procedure. It is easy to provide the implementa-
tion of the algorithm of finding a window with the minimum total execution cost. For 
this purpose in the AEP search scheme n  slots with the minimum sum cost should be 
chosen. If at each step of the algorithm a window with the minimum sum cost is se-
lected, at the end the window with the best value of the criterion crW  will be guaran-
teed to have overall minimum total allocation cost at the given scheduling interval. 

The problem to find a window with the minimum runtime is more complicated. 
Given the nature of determining a window runtime, which is equal to the length of the 
longest slot (allocated on the node with the least performance level), the following 
algorithm may be proposed: 

orderSlotsByCost(windowSlots); 
resultWindow = getSubList(0,n, windowSlots); 
extendWindow = getSubList(n+1,m, windowSlots); 
while(extendWindow.size > 0){ 
 longSlot = getLongestSlot(resultWindow); 
 shortSlot = getCheapestSlot(extendWindow); 
 extendWindow.remove(shortSlot); 
 if((shortSlot.size < longSlot.size)&& 
   (resultWindow.cost + shortSlot.cost < S)){ 
     resultWindow.remove(longSlot); 
     resultWindow.add(shortSlot);  
 }  
} 

As a result, the suitable window of the minimum time length will be formed in a vari-
able resultWindow. The algorithm described consists of the consecutive at-
tempts to substitute the longest slot in the forming window (the resultWindow 
variable) with another shorter one that will not be too expensive. In case when it is 
impossible to substitute the slots without violating the constraint on the maximum 
window allocation cost, the current resultWindow configuration is declared to 
have the minimum runtime. Implementing this algorithm of window selection at each 
step of the AEP scheme allows finding a suitable window with the minimum possible 
runtime at the given scheduling interval. An algorithm for finding a window with the 
earliest finish time has a similar structure and can be described using the runtime 
minimizing procedure presented above. Indeed, the expanded window has a start time 
tStart equal to the start time of the last added suitable slot. The minimum finish 
time for a window on this set of slots is (tStart + minRuntime), where mi-
nRuntime is the minimum window length. The value of minRuntime can be 
calculated similar to the runtime minimizing procedure described above. Thus, by 
selecting a window with the earliest completion time at each step of the algorithm, the 
required window will be allocated at the end of the slot list. 
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It is worth mentioning that all proposed AEP implementations have a linear com-
plexity ( )mO : algorithms “move” through the list of the m  available slots in the 

direction of non-decreasing start time without turning back or reviewing previous 
steps. 

3 Experimental Studies of Slot Selection Algorithms 

The goal of the experiment is to examine AEP implementations: to analyze alterna-
tives search results with different efficiency criteria, to compare the results with AMP 
and to estimate the possibility of using in real systems considering the algorithm ex-
ecutions time. 

3.1 Algorithms and Simulation Environment 

For the proposed AEP efficiency analysis the following implementations were added 
to the simulation model [6, 7]: 1) AMP – the algorithm for searching alternatives with 
the earliest start time. This scheme was introduced in works [15-17] and briefly de-
scribed in section 2.2; 2) MinFinish – the algorithm for searching alternatives with the 
earliest finish time. It likewise involves finding a single alternative with the earliest 
finish time for each batch job (the procedure is described in section 2.2); 3) MinCost – 
the algorithm for searching a single alternative with the minimum total allocation cost 
on the scheduling interval; 4) MinRunTime – this algorithm performs a search for a 
single alternative with the minimum execution runtime (the window’s runtime is de-
fined as a length of the longest composing slot); 5) MinProcTime – this algorithm 
performs a search for a single alternative with the minimum total node execution time 
(defined as a sum of the composing slots’ time lengths). It is worth mentioning that 
this implementation is simplified and does not guarantee an optimal result and only 
partially matches the AEP scheme, because a random window is selected; 6) Common 
Stats, AMP (further referred to as CSA) – the scheme for searching multiple alterna-
tives using AMP. Similar to the general searching scheme [15-17], a set of suitable 
alternatives, disjointed by the slots, is allocated for each job. To compare the search 
results with the algorithms 1-5, presented above, only alternatives with the extreme 
value of the given criterion will be selected, so the optimization will take place at the 
selection process. The criteria include the minimum start time, the minimum finish 
time, the minimum total execution cost, the minimum runtime and the minimum pro-
cessor time used. 

Since the purpose of the considered algorithms is to allocate suitable alternatives, it 
makes sense to make the simulation apart from the whole general scheduling scheme, 
described in [6]. In this case, the search will be performed for a single predefined job. 
Thus during every single experiment a generation of a new distributed computing 
environment will take place while the algorithms described will perform the alterna-
tives search for a single base job with the resource request defined in advance. A si-
mulation framework [6, 7] was configured in a special way in order to study and to 
analyze the algorithms presented. The core of the system includes several components 
that allow generating the initial state of the distributed environment on the given 
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scheduling interval, a batch with user jobs and implements the developed alternative 
search algorithms.  

In each experiment a generation of the distributed environment that consists of 100 
CPU nodes was performed. The relatively high number of the generated nodes has 
been chosen to allow CSA to find more slot alternatives. Therefore more effective 
alternatives could be selected for the searching results comparison based on the given 
criteria. The performance rate for each node was generated as a random integer varia-
ble in the interval [2; 10] with a uniform distribution. The resource usage cost was 
formed proportionally to their performance with an element of normally distributed 
deviation in order to simulate a free market pricing model [1-4]. The level of the re-
source initial load with the local and high priority jobs at the scheduling interval [0; 
600] was generated by the hyper-geometric distribution in the range from 10% to 50% 
for each CPU node. Based on the generated environment the algorithms performed 
the search for a single initial job that required an allocation of 5 parallel slots for 150 
units of time. The maximum total execution cost according to user requirements was 
set to 1500. This value generally will not allow using the most expensive (and usually 
the most efficient) CPU nodes.  

3.2 Experimental Results 

The results of the 5000 simulated scheduling cycles are presented in Fig. 2-6.  
An average number of the alternatives found with CSA for a single job during  

the one scheduling cycle was 57. This value can be explained as the balance between 
the initial resource availability level and the user job resource requirements. Thus, the 
selection of the most effective windows by the given criteria was carried out among 
57 suitable alternatives on the average. With the help of other algorithms only the 
single effective by the criterion alternative was found. Consider the average start time 
for the alternatives found (and selected) by the aforementioned algorithms (Fig. 2 (a)). 
AMP, MinFinish and CSA were able to provide the earliest job start time at the begin-
ning of the scheduling interval (t = 0). The result was expected for AMP and CSA 
(which is essentially based on the multiple runs of the AMP procedure) since 100 
available resource nodes provide a high probability that there will be at least 5 parallel 
slots starting at the beginning of the interval and can form a suitable window. The fact 
that the MinFinish algorithm was able to provide the same start time can be explained 
by the local tasks minimum length value, that is equal to 10. Indeed, the window start 
time at the moment t = 10 cannot provide the earliest finish time even with use of the 
most productive resources (for example the same resources allocated for the window 
with the minimal runtime). Average starting times of the alternatives found by Mi-
nRunTime, MinProcTime and MinCost are 53, 514.9 and 193 respectively. 

The average runtime of the alternatives found (selected) is presented in Fig. 2 (b). 
The minimum execution runtime 33 was obviously provided by the MinRunTime 
algorithm. Though, schemes MinFinish, MinProcTime and CSA provide quite compa-
rable values: 34.4, 37.7 and 38 time units respectively that only 4.2%, 14.2% and 
15.1% longer. High result for the MinFinish algorithm can be explained by the “need” 
to complete the job as soon as possible with the minimum (and usually initial)  
start time. Algorithms MinFinish and MinRunTime are based on the same criterion 
selection procedure described in the section 2.2. However due to non-guaranteed 
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availability of the most productive resources at the beginning of the scheduling inter-
val, MinRunTime has the advantage. Relatively long runtime was provided by AMP 
and MinCost algorithms. For AMP this is explained by the selection of the first fitting 
(and not always effective by the given criterion) alternative, while MinCost tries to 
use relatively cheap and (usually) less productive CPU nodes. 

 

      

(a)     (b) 

Fig. 2. Average start time (a) and runtime (b) 

The minimum average finish time (Fig. 3 (a)) was provided by the MinFinish algo-
rithm – 34.4. CSA has the closest resulting finish time of 52.6 that is 52.9% later. The 
relative closeness of these values comes from the fact that other related algorithms did 
not intend to minimize a finish time value and were selecting windows without taking 
it into account. At the same time CSA is picking the most effective alternative among 
57 (on the average) allocated at the scheduling cycle: the optimization was carried out 
at the selection phase. The late average finish time 307.7 is provided by the MinCost 
scheme. This value can be explained not only with a relatively late average start time 
(see Fig. 2 (a)), but also with a longer (compared to other approaches) execution run-
time (see Fig. 2 (b)) due to the use of less productive resource nodes. The finish time 
obtained by the simplified MinProcTime algorithm was relatively high due to the fact 
that a random window was selected (without any optimization) at each step of the 
algorithm, though the search was performed on the whole list of available slots. With 
such a random selection the most effective window by the processor time criterion 
was near the end of the scheduling interval. 

The average used processor time (the sum time length of the used slots) for the al-
gorithms considered is presented in Fig. 3 (b). The minimum value provided by Mi-
nRunTime is 158 time units. MinFinish, CSA and MinProcTime were able to provide 
comparable results: 161.9, 168.6 and 171.6 respectively. It is worth mentioning that 
although the simplified MinProcTime scheme does not provide the best value, it is 
only 2% less effective compared to the common CSA scheme, while its working time 
is orders of magnitude less (Tables 1, 2). The most processor time consuming alterna-
tives were obtained by AMP and MinCost algorithms. Similarly to the execution run-
time value, this can be explained by using a random first fitting window (in case of 
AMP) or by using less expensive, and hence less productive, resource nodes (in case 
of the MinCost algorithm), as nodes with a low performance level require more time 
to execute the job. 
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(a)     (b) 

Fig. 3. Average finish time (a) and CPU usage time (b) 

Finally, let us consider the total job execution cost (Fig. 4).  
 

 

Fig. 4. Average job execution cost 

The MinCost algorithm has a big advantage over other algorithms presented: it was 
able to provide the total cost of 1027.3 (note that the total cost limit was set by the 
user at 1500). Alternatives found with other considered algorithms have approximate-
ly the same execution cost. Thus, the cheapest alternatives found by CSA have the 
average total execution cost equal to 1352, that is 31.6% more expensive compared to 
the result of the MinCost scheme, while alternatives found by MinRunTime (the most 
expensive ones) are 42.5% more expensive.  

The important factor is a complexity and an actual working time of the algorithms 
under consideration, especially with the assumption of the algorithm’s repeated use 
during the first stage of the scheduling scheme [6]. In the description of the AEP gen-
eral scheme it was mentioned that the algorithm has a linear complexity on the num-
ber of the available slots. However in has a quadratic complexity with a respect to the 
number of CPU nodes. Table 1 shows the actual algorithm execution time in millise-
conds measured depending on the number of CPU nodes.  
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The simulation was performed on a regular PC workstation with Intel Core i3 (2 
cores @ 2.93 GHz), 3GB RAM on JRE 1.6, and 1000 separate experiments were 
simulated for each value of the processor nodes numbers {50, 100, 200, 300, 400}. 
The simulation parameters and assumptions were the same as described in section 3.1, 
apart from the number of used CPU nodes. A row “CSA: Alternatives Num” 
represents an average number of alternatives found by CSA during the single experi-
ment simulation (note that CSA is based on multiple runs of AMP algorithm). A row 
“CSA per Alt” represents an average working time for the CSA algorithm in recalcula-
tion for one alternative. The CSA scheme has the longest working time that on the 
average almost reaches 3 seconds when 400 nodes are available.  

Table 1. Actual algorithms execution time in ms 

CPU nodes number: 50 100 200 300 400 

CSA:Alternatives Num 25.9 57 128.4 187.3 252 

CSA per Alt 0.33 0.99 3.16 6.79 11.83 

CSA 8.5 56.5 405.2 1271 2980.9 

AMP 0.3 0.5 1.1 1.6 2.2 

MinRunTime 3.2 12 45.5 97.2 169.2 

MinFinishTime 3.2 12 45.1 96.9 169 

MinProcTime 1.5 5.2 19.4 42.1 74.1 

MinCost 1.7 6.3 23.6 52.3 91.5 

 
Besides this time has a near cubic increasing trend with a respect to the nodes 

number. This trend can be explained by the addition of two following factors: 1) a 
linear increase of the alternatives number found by CSA at each experiment (which 
makes sense: the linear increase of the available nodes number leads to the 
proportional increase in the available node processor time; this makes it possible to 
find (proportionally) more alternatives); 2) a near quadratic complexity of the AMP 
algorithm with a respect to the nodes number, which is used to find single alternatives 
in CSA. Even more complication is added by the need of “cutting” a suitable windows 
from the list of the available slots [17]. Other considered algorithms will be able to 
perform a much faster search. The average working time of MinRunTime, 
MinProcTime and MinCost proves their (at most) quadratic complexity on the number 
of CPU nodes, and the executions times are suitable for practical use. The AMP’s 
execution time shows even near linear complexity because with a relatively large 
number of free available resources it was usually able to find a window at the 
beginning of the scheduling interval (see Fig. 1, a) without the full slot list scan.  

Fig. 5 clearly presents the average working duration of the algorithms depending 
on the number of available CPU nodes (the values were taken from Table 1). (The 
CSA curve is not represented as its working time is incomparably longer than AEP-
like algorithms.) 
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Fig. 5. Average working time duration depending on the available CPU nodes number 

Table 2 contains the algorithms working time in milliseconds measured depending 
on the scheduling interval length.  

Table 2. Algorithms working time (in ms) measured depending on the scheduling interval 
length 

Scheduling interval length: 
Number of slots: 

600 
472.6 

1200 
779.4 

1800 
1092 

2400 
1405.1 

3000 
1718.8 

3600 
2030.6 

CSA:Alternatives Num 57 125.4 196.2 269.8 339.7 412.5 
CSA per Alt 0.95 1.91 2.88 3.88 4.87 5.88 
CSA 54.2 239.8 565.7 1045.7 1650.5 2424.4 
AMP 0.5 0.82 1.1 1.44 1.79 2.14 
MinRunTime 11.7 26 40.9 55.5 69.4 84.6 
MinFinishTime 11.6 25.7 40.6 55.3 69 84.1 
MinProcTime 5 11.1 17.4 23.5 29.5 35.8 
MinCost 6.1 13.4 20.9 28.5 35.7 43.5 

 
Overall 1000 single experiments were conducted for each value of the interval 

length {600, 1200, 1800, 2400, 3000, 3600} and for each considered algorithm an 
average working time was obtained. The experiment simulation parameters and 
assumptions were the same as described earlier in this section, apart from the 
scheduling interval length. A number of CPU nodes was set to 100. Similarly to  
the previous experiment, CSA had the longest working time (about 2.5 seconds with 
the scheduling interval length equal to 3600 model time units), which is mainly 
caused by the relatively large number of the formed execution alternatives (on the 
average more than 400 alternatives on the 3600 interval length). When analyzing  
the presented values it is easy to see that all proposed algorithms have a linear com-
plexity with the respect to the length of the scheduling interval and, hence, to  
the number of the available slots (Fig. 6), and their executions times are suitable for 
on-line scheduling.  
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Fig. 6. Average working time duration depending on the scheduling interval length 

3.3 Brief Analysis and Related Work 

In this work, we propose algorithms for efficient slot selection based on user and ad-
ministrators defined criteria that feature the linear complexity on the number of all 
available time-slots during the scheduling interval. Besides, in our approach the job 
start time and the finish time for slot search algorithms may be considered as criteria 
specified by users in accordance with the job total allocation cost. It makes an oppor-
tunity to perform more flexible scheduling solutions. 

The co-allocation algorithm presented in [12] uses the 0-1 IP model with the goal 
of creating reservation plans satisfying user resource requirements. The number  

of variables in the proposed algorithm becomes 3N  depending on the number of 
computer sites N . Thus this approach may be inadequate for an on-line service in 
practical use. The proposed algorithms have the quadratic complexity with a respect 
to the number of CPU nodes, and not to the number of computer sites as in [12]. A 
linear IP-driven algorithm is proposed in [2]. It combines the capabilities of IP and 
genetic algorithm and allows obtaining the best metaschedule that minimises the 
combined cost of all independent users in a coordinated manner. In [13], the authors 
propose a MIP model which determines the best scheduling for all the jobs in  
the queue in environments composed of multiple clusters that act collaboratively.  
The proposed in [2, 12, 13] scheduling techniques are effective compared with other 
scheduling techniques under given criteria: the minimum processing cost, the overall 
makespan, resources utilization etc. However, complexity of the scheduling process is 
extremely increased by the resources heterogeneity and the co-allocation process, 
which distributes the tasks of parallel jobs across resource domain boundaries. The 
degree of complexity may be an obstacle for on-line use in large-scale distributed 
environments.  

As a result it may be stated that each full AEP-based scheme was able to obtain the 
best result in accordance with the given criterion. This allows to use the proposed 
algorithms within the whole scheduling scheme [6] at the first stage of the batch job 
alternatives search. Moreover, each full AEP-based scheme was able to obtain the 
best result in accordance with the given criterion. Besides, a single run of the AEP-
like algorithm had an advantage of 10%-50% over suitable alternatives found with 
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AMP with a respect to the specified criterion. A directed alternative search at the first 
stage of the proposed scheduling approach [6, 7] can affect the final distribution and 
may be favorable for the end users. According to the experimental results, on one 
hand, the best scheme with top results in start time, finish time, runtime and CPU 
usage minimization was MinFinish. Though in order to obtain such results the 
algorithm spent almost all user specified budget (1464 of 1500). On the other hand, 
the MinCost scheme was designed precisely to minimize execution expenses and 
provides 43% advantage over MinFinish (1027 of 1500), but the drawback is a more 
than modest results by other criteria considered. The MinProcTime scheme stands 
apart and represents a class of simplified AEP implementations with a noticeably 
reduced working time. And though the scheme, compared to other considered 
algorithms, did not provide any remarkable results, it was on the average only 2% less 
effective than the CSA scheme by the dedicated CPU usage criterion. At the same 
time its reduced complexity and actual working time allow to use it in a large wide 
scale distributed environments when other optimization search algorithms prove to be 
too slow.  

4 Conclusions and Future Work 

In this work, we address the problem of slot selection and co-allocation for parallel 
jobs in distributed computing with non-dedicated resources. Each of the AEP algo-
rithms possesses a linear complexity on a total available slots number and a quadratic 
complexity on a CPU nodes number. The advantage of AEP-based algorithms over 
the general CSA scheme was shown for each of the considered criteria: start time, 
finish time, runtime, CPU usage time and total cost.  

In our further work, we will refine resource co-allocation algorithms in order to 
integrate them with scalable co-scheduling strategies [6, 7].  
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Abstract. In this paper selection of electronic component base as one of issues 
of development of personal hybrid computing system is reviewed. Test results 
of performance of experimental prototype of personal hybrid computing system 
based on 3 NVidia Tesla C2050 graphic processors have been explained. Row 
of experiments for evaluating system performance has been carried out with dif-
ferent RAM clock frequency (1066 and 1333MHz) and memory volume (from 
2 up to 24 GB with 2GB step), also the dependence of performance from band-
width of PCI-Express x8 and PCI-Express x16 slots has been studied. 

Results of this research laid down in a basis of development process of expe-
rimental prototype of the personal hybrid computing system. 

Keywords: Parallel computing, personal hybrid computing systems, graphics 
processors, CUDA technology. 

1 Introduction 

In this paper results of the researches accomplished within the confines of the scientific 
project "Develop the personal hybrid computing system based on GPU-processors" 
which is entering into state-financed program "Develop technology of creation of super-
computer hybrid cluster with application of GPU-processors" of the Ministry of Educa-
tion and Science of Republic of Kazakhstan have been presented. The purpose of 
project is to carry out developmental works to create personal hybrid computing system. 

When designing of personal hybrid computing system main complexity is the cal-
culations of circuit of optimum ratio of a powerful CPU and a few graphic processors, 
cooling system, optimal power scheme. This paper presents the results of selection of 
system's electronic component base. 
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Within the confines of project the experimental prototype of personal hybrid  
computing system is created. For this purpose at a preliminary stage the experimental 
prototype of personal hybrid computing system has been created and on its basis  
researches of dependence of actual performance from specifications of separate  
components of system hardware were accomplished.  

Obtained results were allowed to evaluate impact level of separate components on 
performance of personal hybrid computing system and to make sure of regularity of 
chosen direction of creation of personal hybrid computing system, also results laid 
down in a basis of creation process of a experimental prototype of personal hybrid 
computing system. 

Results of this research will allow to solve a task of optimal characteristics  
selection of hardware for achievement of the best price/productivity ratio of created 
system. 

2 Personal Hybrid Computing System 

Experimental prototype of personal hybrid computing system based on graphic cards 
with use of CUDA-technology [1] has been developed. Experimental prototype of 
personal hybrid computing system has peak performance for about 3 TFlops single 
accuracy and 1.5 TFlops double accuracy and allows to replace a small cluster by 
itself. 

Power consumption of personal hybrid computing system is about 1200W.  
Performance ratio on Watt of power consumption is 552.5 MFlops/Watt. 

Performance of personal hybrid computing system per cost of possession is also 
extremely high. Cost of experimental prototype of PHCS is $13.4 thousand. 
Price/performance ratio is about $20 for 1 GFlops/sec on Linpack test. 

3 Testing. Analysis Results 

While evaluating of performance of clusters and supercomputers 2 variants are used: 
peak performance - theoretical limit of performance of these processors and actual 
performance, which is reached by cluster or computer while solving practical tasks. 
For testing of hybrid computing systems based on graphic processors Cuda Accele-
rated Linpack [2] are used. 

Performance testing of experimental prototype of personal hybrid computing sys-
tems based on 3 graphic processors has been carried out with different RAM clock 
frequency (1066 and 1333MHz) and memory volume (from 2 up to 24 GB with 2GB 
step), also the dependence of performance from bandwidth of PCI-Express has been 
studied. 

At the time of testing of performance of experimental prototype of personal hybrid 
computing system the configuration consisted of: processor Intel Core i7-960, mo-
therboard - Asus Rampage III, video card GeForce GTX9800+, GPU NVidia Tesla 
C2050, RAM 1066/1333 MHz. Software: OS Linux Ubuntu 11.04 (2.6.38), CUDA 
version 4 .2, math library Intel MKL 10, MPI library release - OpenMPI 1.4. 
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With a clock frequency of RAM 1066 MHz and with memory volume in 2 GB up 
to 24 GB system performance grows up to 2.5 times. Values of system performance 
in dependence of RAM and memory volume presented in Table 1. 

Table 1. Testing results of experimental prototype of personal hybrid computing system based 
on 3 graphic processors Nvidia Tesla C2050 at various RAM volume and clock frequency 1066 
MHz, 1333 MHz 

Test 
number 

RAM volume, 
GB 

Matrix size, 
N 

Performance with 
RAM clock  

frequency - 1066 
MHz, GFlops 

Performance with 
RAM clock  

frequency - 1333 
MHz, GFlops 

1 2 14273 227,8 259.0 
2 4 20822 327,2 350.4 
4 8 29447 450,3 479.0 
8 16 41645 539,1 605.5 
12 24 52224 622,6 663.4 

 

Fig. 1. Dependence of performance of experimental prototype of personal hybrid computing 
system with 3 GPU-processors from RAM clock frequency 

Analyzing changes of actual performance of experimental prototype with various 
clock frequencies of memory, average value of performance increases for 9.03% or 
42.99 GFlops while increasing clock frequency for 25 % from 1066 up to 1366 MHz 
have been received (Fig. 1). 

Modern CPUs supports only40 PCI-Express lines that limits quantity of connected 
PCI-Express devices. In our case two connection options via x8 and x16 buses are 
reviewed. 

Analyzing changes of actual performance of experimental prototype with different 
PCI-Express bus rate, average value of performance increase for 3,11% or 14,46 
GFlops has been received (Table 2). 
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It's possible to make a conclusion: PCI-Express bus rate hasn't sizable impact on 
performance of personal hybrid computing system. 

Table 2. Testing results of performance dependence of experimental prototype of personal 
hybrid computing system from PCI-Express bus bandwidth 

Test 
number 

RAM vo-
lume, GB 

Matrix 
size, N 

Performance with PCI 
Express x16, GFlops 

Performance with PCI 
Express x8, GFlops 

1 2 14273 253,0 262,2 
2 4 20822 358,4 333,6 
4 8 29447 443,7 425,2 
8 16 41645 515,4 506,6 

12 24 52224 555,8 536,0 

4 Conclusion 

Conducted analysis of evaluating results of performance of experimental prototype  
of personal hybrid computing system has demonstrated that actual performance has 
direct dependence from system's RAM volume. Given results of scientific experi-
ments show that with increase of RAM volume performance of system increases non-
linearly. In turn increase of graphic processors amount demands increase of RAM 
volume for effective loading of graphic processors and for obtaining the best system 
performance. 

Also it was defined that increase of RAM frequency at bigger amount of graphic 
processors allows to receive a bigger gain of actual performance in Linpack test - 
4,7% for 1-2 graphic processors and 9% for 3 graphic processors. 

Tests of experimental prototype of personal hybrid computing system allow to de-
termine actual system performance in Linpack test, which was 663 GFlops - 44.2% of 
peak performance. This value isn't a limit as actual performance can reach up to 70% 
of peak performance at best specifications of main components of system, higher 
result can be reached. 

During preparation of materials of this paper new results were received. For per-
sonal hybrid computing system in FullTower form-factor based on 2 CPUs Intel Xeon 
E5-2690 2.9 GHz and 4 GPUs NVidia Tesla C2075 it was succeeded to reach 61,7% 
of performance in the Linpack test. 
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Abstract. This paper describes a constructive approach of distributed
parallel computing using by hybrid union of MAPREDUCE and MPI
technologies for solving oil extracting problems. We extend a common
architecture of MAPREDUCE model by organizing decomposition of
computational domain at different stages of MAPREDUCE process. We
describes Model Driven Architecture (MDA) models for developing for-
mal views of high-performance computing technologies using MAPRE-
DUCE. We made computing experiments and show on specific HPC
infrastructure. All implementations of programs is realize on Java plat-
form. This approach will possible one of the ways to do cloud computing
on high performance heterogeneous systems.

Keywords: MAPREDUCE, MPI, mpiJava, distributed parallel com-
puting on heterogeneous systems.

1 Introduction

The basic principles of organizing parallel and distributed computing are known
for a long time [1,2]. The majority of modern researches is focused on research-
ing new methods of developing the effective parallel computing for large-scale
problems [3, 4]. Mostly actual problems are in parallel computing on highly
heterogeneous (hybrid) systems, developing parallel program designing systems
- frame solution (”skeleton”), parallel program’s code verification and reliabil-
ity of developed systems [5-7]. One of the popular problems now is find answer
of next question ”Can we effectively integrate cloud (virtual) technology with
parallel computing technology?”. It is more actual in organization of reliable
distributed (on heterogeneous computing resources) high-performance process-
ing of large volumes of heterogeneous data[8]. Due to the high level of practical
relevance, a lot of works [9-11] are devoted to combining the advantages of par-
allel, distributed and cloud computing technologies. In our work we describe
constructive approach for hybrid combining of MAPREDUCE [12] and MPI [13]
technology for realize distributed parallel computing on heterogeneous systems
to solve one problem of oil production. General description of MAPREDUCE
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technology is presented in many papers [14, 15]. The main problem in this field
is to provide an effective load balancing on existing resources and high reliability
of the distributed data processing systems. MAPREDUCE technology is a clear
separate roles of computing nodes to ”mapper” and ”reducer”. The disadvan-
tage is the impossibility of providing communications between nodes during the
calculation process, such that each node carries out its own task and only at the
end of map-reduce operations to combine calculated data. Due to complexity
of the computational domain structures (anisotropic and inhomogeneous porous
medium) we choose the problem of computing oil-field’s pressure for 3D case
of high-performance data processing and visualization. We develop our parallel
computing on mpiJava [16], such that MAPREDUCE technology is also imple-
mented using Java and easily integrated with virtual platforms on Java Virtual
Machine (JVM). Lastest is provided a cross-platform application for our case.
This article consist on follow sections: mathematical model of pressure fields
distributions in 3D anisotropic porous media and creating parallel computing
algorithm (in MPI), build its discrete models (on Model Driven Architecture -
MDA), realize experimental computing and discussion of results.

2 Mathematical Model

Oil Production problem. Suppose 3D model problem of the fluid flows in porous
elastic anisotropic medium in a cube Ω = [0, T ]×K{0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤
z ≤ 1} [17]:
∂P

∂t
=

∂

∂x
(φ(x, y, z)

∂P

∂x
)+

∂

∂y
(φ(x, y, z)

∂P

∂y
)+

∂

∂z
(φ(x, y, z)

∂P

∂z
)+f(x, y, z), (1)

The initial condition:

P (0, x, y, z) = ϕ(x, y, z). (2)

Boundary conditions:
∂P

∂n

∣∣∣∣
Γ

= 0, (3)

where Γ is sides ofΩ cube. There, P (x, y, z, t) – reservoir pressure at point (x,y,z)
and time t; φ(x, y, z) – formation pressure conductivity factor; f(x, y, z) – density
of the sources, wells impact; ϕ(x, y, z) – initial means of deposit pressure.

We use an explicit iterative method - Jacobi method [18] to solve the problem
(1) – (3). Parallel computing algorithm for solving the problem (1) – (3) is based
on the known approach of three-dimensional decomposition of computation do-
mains (3D cube view of oil-fields) with inter-exchanging of boundary values, as
shown in Figure 1. In first step, basic domain divided to layers, after each layer
divide into cubes and organize calculation with closed to computational nodes.
At next, we provides communication and inter-exchanging of boundary values
in each ”micro-cube”.
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Fig. 1. Three-dimensional decomposition of domain and interchange of boundary
values

3 MAPREDUCE/MPI Platform

In order to organize distributed parallel computing, we choose one of the
commonly used platforms MAPREDUCE - HADOOP [19]. In general, high-
performance processing is usually used for commercial purposes - a distributed
file system Google (GFS) with support of the MapReduce implementation, as
well as the open-source implementation of GFS - HDFS (Hadoop distributed file
system) [20]. Hadoop cluster is a collection of different characteristics of comput-
ing nodes - computers connected by a network for co-processing of large volumes
of data distributed across the cluster. The main idea underlying the HDFS is to
divide a particular user’s data blocks and replication of data blocks to local disks
of nodes in the cluster. The general principle of system uses a master / slave
(main / sub) architecture where the primary node maintains information about
the file namespace (metadata, directory structure, the correspondence between
the specified files and data blocks, the location of data blocks and permissions),
and slave nodes directly control data blocks, i.e. processing (computing) of the
data. MapReduce applications operate with the list of key-value pairs as input
and consist of two main methods of Map and Reduce. The Map method treats
each pair of ”key-value” in the input list separately and generates outputs of one
or more pairs of ”key-value” as a result [12]:

map(key, value)⇒ [(key, value)]. (4)

The Reduce method aggregates the output of Map method. It gets the key and
the list of values assigned to this key as input, performs user-defined operations
on them and outputs one or more key-value pairs:

reduce(key, [value])⇒ [(key, value)]. (5)

This process is illustrated in Figures 2 and 3 in the case for (1) - (3), where
computational domain is decomposed into 8 blocks is distributed (MapReduce
level) and parallel (Map Level 2) computing on MPI. Exactly between stages 3
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Fig. 2. The sequence of MapReduce calculations of oil extraction problem

and 4 on Map level 2 MPI computations is accomplished, which is integrated
with MPI computations in each map node. On the stage of doing reduce tasks we
used common process - inter-exchanging of boundary values into divided (as a
result of decomposition) computational domain. According to the classification
of [21], our case is the implementation of a parallel algorithm on MapReduce
model corresponds to the common third classes - ”algorithms where the content
of one iteration is represented as an execution of a single MapReduce model”.
Thus, if the input initial data of (1) - (3) are as ”macro-cube” with (N ∗N ∗N)
dimension, then after the first stage of decomposition get ”micro-cubs” (Map
level 1) of dimension (N/2 ∗ N/2 ∗ N/2). Further, use MPI technology with
the second stage of decomposition - ”micro-cube” (Map level 2) of dimension
(N/4 ∗N/4 ∗N/4). Then we will have:

• Map:

• Compute Proc 3D MPI values of “micro-cube” in select nodes and assign
it as a new object.
• Input: (cluster id, object old 1). (6)
• Output: (cluster id, object new 1).

• Reduce:

• Combine results of calculation, exchange borders values and assign it as
a new object.
• Input: (cluster id, (list of all objects new 1 from nodes)). (7)
• Output: (cluster id, object new 2).
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Here Proc 3D MPI - implements calculation of 3D problem on data ”micro-
cube” in the selected compute node; object old 1 -input data ”micro-cube” is the
union of three-dimensional matrices Pold ijk, φold ijk, fijk; object new 1 – output
of calculated data ”micro-cube” – Pnew ijk; object new 2— output of calculated
data ”micro-cube” with exchange of boundary data - the union adjacent pairs
of three-dimensional matrices on the axes with the dimension, such as on Z axis
- (N/4 ∗N/4 ∗N/2).

Fig. 3. Computational domain decomposition at different stages and levels of MapRe-
duce jobs
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4 Discrete Models of Distributed Parallel Computations
on MDA

Software development based on model - Model Driven Architecture (MDA) is a
paradigm in which a code writing stage: partially or fully automated [22]. Dis-
crete model development on MDA approach based on creation an appropriate
extension of UML 2.0 language [23] for a specific area of formal modeling - for
example, distributed parallel computing problem of oil production. Moreover, a
formal description of interfaces on MDA allows to generating parallel programs
- making framework (”skeletons”) [24]. Main tools of MDA are the platform
independent model (PIM) and a model that takes into account the specific fea-
tures of the platform (Platform Specific Model - PSM) [22]. Below we propose
an MDA model - Sequence of load balancing between nodes in given architec-
ture, shown in Figure 4. All designed diagrams after using ATL [23] and our
framework generate partially numerical parallel code in java classes for mapper
(reducer) nodes.

Fig. 4. Sequence of load balancing between nodes in given architecture

5 Computational Experiment

We perform numerical experiments in next infrastructure: hierarchically ar-
ranged Hadoop platform. This architecture includes 8 PCs with IntelCorei7 pro-
cessors and 4 GB RAM, 1 server with 8 cores, HPC ”URSA” cluster - 128 cores.
Topology of this Hadoop system as follows:

1. Main node of cluster (master node).
2. 8, 64, 125 computing nodes (slave nodes).
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Fig. 5. Result of 3D decomposition based parallel program

a) b)

c)

Fig. 6. Time (a), speedup (b) and efficiency (c) for MapReduce algorithm on nodes
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The master node of cluster can communicate over the network with other nodes
in Hadoop cluster and also remotely control operational systems of slave nodes
we installed SSH on every node. Next step in a cluster setting up process we have
generated the RSA keys pair on master node of cluster. These keys are needed
to establish a secure channel through which cluster nodes could communicate.
The private key is stored on master node and public key should be distributed
among other remaining cluster nodes. For key generation we used SSH protocol
commands. Next is run problem (1) - (3) finding the values of pressure field
distributions in 3D anisotropic porous medium with various regimes of oil pro-
duction with parallel computing algorithm in N = 128∗128∗128. Figure 5 shows
solutions obtained in the Iso surface, which demonstrate the overall convergence
of parallel algorithm. To evaluate the effectiveness of distributed parallel com-
puting algorithm for solving 3D problems is tested for 8, 64 and 125 nodes of
Hadoop cluster (including ”URSA” nodes) in the following cases (points count):
1) N = 64 ∗ 64 ∗ 64, 2) N = 128 ∗ 128 ∗ 128, 3) N = 256 ∗ 256 ∗ 256.
Discussion. Results of computation time, speedup and efficiency are shown in
Figure 6. As you can see on figures, the proposed system realize distributed
parallel computing algorithm quicker than sequence program in one node. Ad-
ditionally for our case we observe if number of points is increased then influence
and calculation time of data communications between nodes is also increased.
In case when speedup is down, this requires adding new computational nodes
or needed using more effective load balancing algorithms. We see MapReduce
is not fully provide to realize the good features of MPI. The important features
of MapReduce technology is its ability to handle faults transparently [21]. But
during verification is very hard to check a collective operation on all nodes. Using
MPI with MapReduce algorithms demonstrate basic limitations in the process-
ing of intermediate data of communications. In our experiments we get outputs -
preferred using nonblocking collective operations, which can provided a speedup
of up to 15 percent over than the blocking operations. This support to design
other modern programming and parallelization technologies or ideas in future.

6 Related Work

Closest to our research paper is of S. Srirama et al. [21], where he studies the
creation of scientific cloud computing (SciCloud) addressed to problem of or-
ganization of iterative algorithms for MapReduce model. In particular, in his
paper the classification of such algorithms with its adapting into MapReduce
model is presented and some examples of problems implementation (methods
of conjugate gradient, clustering, etc.) with performance analysis on Hadoop by
comparison with Twister are shown. This paper noted that Twister is best suited
to specific kinds of iterative algorithms on MapReduce, but MapReduce model
implementation on Hadoop have better fault tolerance features than Twister [25].
Other applications of adapting of MapReduce model to parallel computation are
presented in [26-27]. But, in general, the problem of efficient organization of it-
erative calculations on MapReduce model remains, particularly, the problems
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of algorithms scalability and their adaptation for wide classes of scientific prob-
lems are still open. Also there is no clear approach that guarantees reliability of
such complex systems. Our proposed constructive approach of hybrid combining
technologies allow to organize distributed parallel computing on heterogeneous
systems solutions for 3D modeling of chosen oil production problem, which is
much more complicated than discussed problems in [25-27].

7 Summary

As the results of research we consider constructive approach for distributed par-
allel computing using MAPREDUCE and MPI:

– designed architecture of MapReduce model – compute problem (1)-(3);
– showed the structure of Map (6) Reduce (7) methods implementation and

realization of computational domain decomposition at different stages and
levels of MapReduce models;

– described of MDA models - high-performance data processing on MapReduce
compute nodes;

– made computational experiment conducted on chosen specific infrastructure.

Also, partially, results of this research is used in designing web distributed in-
formation system for analysis and development of oil and gas fields. This system
supports visualization of 3D hydrodynamic calculation of oil deposits processes
and allow to work in framework which use distributed parallel computing on
MAPREDUCE/MPI. In general, one the results of this paper is design the ar-
chitecture that implemented on benefits of MAPREDUCE technology using Java
and organizing parallel computing on mpiJava. This approach is one of the ways
to organize cloud computing on high performance heterogeneous systems.
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Abstract. In this paper, we present PowerVisor – a new toolset for visualizing 
the energy consumption and heat dissipation processes in multicore and 
multithreaded processors. PowerVisor uses the data on energy consumption and 
heat dissipation in processor’s units generated by the execution-driven 
processor simulator. It graphically depicts the energy consumption and heat 
dissipation dynamics for the applications that use the processor resources such 
as caches, cores and interconnects. We present the implementation of 
PowerVisor and describe how it can be used in research and computer 
architecture eduication.  

1 Introduction 

Microprocessor development efforts and related research in the area of computer 
architecture have always relied on the use of accurate functional and timing 
performance simulators.  The high complexity of such projects makes it a challenging 
task of building accurate forecasts of processor performance using analytical models, 
which makes simulation the only practical alternative. The use of simulation models 
reduces cost and development time of new hardware solutions by studying and testing 
them on software models first, before implementing in silicon. 

Modern computer architectures require that processor designers carefully address 
problems associated with the power consumption and heat dissipation within the 
processor. The increase in clock speed, high transistor integration densities, higher 
number of transistors on a chip, and the transition to multiple cores all lead to an 
increase in power consumption and heat dissipation within a microprocessor chip. 
This requires the development of new methods and engineering solutions to address 
the heat dissipation in multi- and many-core designs, which in turn necessitates the 
development and use of software tools to model and monitor the processes of energy 
consumption and heat dissipation[1-4]. 
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2 Modern Processors: Architecture and Simulation 

Power and energy have become first-order design constraints for modern 
microprocessor systems. There are many factors in today’s processor architecture 
design that drive the need for more energy-aware solutions. Some of these solutions 
include the following: 
 

• Dynamic adaptation of processor resources to match the demands of 
executing applications and improve power/performance efficiency. 

• Improving technology to reduce energy consumption, deployment of the new 
materials to reduce the leakage current, lowering the CPU core voltage; 

• Integration of the on-chip temperature sensors and thermal protection 
system, which triggers adequate system response after encountering 
temperature emergencies; 

• The emergence of dynamic voltage/frequency scaling techniques, including 
techniques at the granularity of smaller clock domains; 

• The emergence of energy-saving modes to put the processor into a "sleep" 
mode at low loads [5,6]. 
 

A large number of cycle-accurate processor simulators exist in the public domain, 
they model both the processor performance, and also its power and energy 
consumption. However, all those tools lack the visualization engine to understand the 
dynamics of the power dissipation in the course of program execution. To fill this 
void, we developed the PowerVisor toolset on top of M-Sim simulator [7]. M-Sim 
(publicly available at http://www.cs.binghamton.edu/~msim) is an extension of a 
widely-used Simplescalar simulator (http://www.simplescalar.com) that supports 
simultaneous multithreading within each processor core and also supports the 
simulation of multicore architectures. Currently, it supports the execution of Alpha 
EV6 run SPEC 2006 benchmarks to completion. During every simulation cycle, a 
significant amount of execution statistics is computed.  In the next section, we explain 
how PowerVisor was implemented on top of M-Sim. 

3 PowerVisor Implementation 

In our implementation of a PowerVisor addition to M-Sim, we use offline approach to 
the interaction with the external processor simulation modules. In this approach, the 
relevant simulation results and statistics are first generated and saved into a trace file. 
Then, the trace file is read by the visualize engine, which depicts the results 
dynamically in a graphical form. Here, the visualizer is essentially decoupled from the 
main simulation engine and can be supplied as an independent module. All that is 
needed is a clear interface to the trace file.  

The limitation of this approach is that the amount of information to be visualized is 
limited by the size of the trace file. However, the offline approach requires minimal 
synchronization between the components, and is therefore easier to implement. The 
use of the offline approach provides more opportunities for the data analysis of each 
simulation cycle. Specifically, since all necessary information is stored in a file, 
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visualizer’s state can be scrolled both forward and backward. It makes possible to 
observe the level of power consumption and heat dissipation at any time. The main 
problem with this approach is the need to store the trace file of a large volume. 

The current version of PowerVisor was designed using the offline approach. In this 
design, the entire visualization system is separated into two larger parts: power 
statistics collection module and standalone visualizer. The general architecture of 
PowerVisor implemented using offline approach is shown in Figure 1. 

 

 
Fig. 1. Interaction of PowerVisor and M-Sim using the trace file 

Power module is an integral part of the M-Sim simulator, particularly responsible 
for the simulation of energy consumption in the processor units. 

All events in the simulator, like load / store memory operations, data transfers via 
system bus or interconnection network, cache accesses, or basic computational 
operations are associated with the correspondent constant energy values derived from 
the parameterized power models. 

The Power statistics collection module is built into the M-Sim simulator. It tracks 
the events in the simulator, stores simulation data in a special trace file, and relays 
collected energy data to PowerVisor. In contrast to the basic data acquisition module 
in M-Sim simulator, the modified Power statistics collection module provides 
information about events in a cycle-accurate fashion. 

The Power trace file contains information (in the text form) about power 
consumption in various processor blocks. To limit the size of trace file, the maximum 
number of cycles is defined for data collection on simulation events. Also an option is 
provided of simulation data selection for inclusion into Power trace file (e.g., energy 
consumption data for the cache unit only, or the system bus only, or the entire 
processor core, etc.). 

The Conversion algorithm module transforms the simulation trace with energy 
consumption data into the simulation trace with heat dissipation data in correspondent 
processor units, taking into account the thermal processes occurring in the processor 
during the simulation run-time. A heat dissipation data are written to the pre-defined 
entries in a trace file assigned to individual units of a processor. 

Heat trace file contains information (in text form) on heat dissipation in various 
processor blocks. 
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After completion of SPEC benchmark run on M-Sim simulator, the trace files are 
processed and visualized offline by PowerVisor. Figure 2 shows an example of a 
shared processor snapshot, as depicted by PowerVisor. Here, different colors 
represent different levels of energy consumption.  

 

Fig. 2. Energy consumption visualization in PowerVisor tool  

While the implementation of the power statistics collection module depends 
significantly on a particular simulator, PowerVisor itself is not tied up to a specific 
simulator; it uses a fairly simple and portable format for storing the data associated 
with cache access events. Trace files are stored using XLS format which is 
particularly useful for visual representation and for finding the necessary data. This 
approach allows for easy integration of PowerVisor tool with processor simulators 
other than M-Sim. 

4 Example Study with PowerVisor 

As an example of PowerVisor use in a processor architecture study, we present 
diagrams of power consumption in a single-core processor obtained from benchmark 
combination run on M-Sim processor simulator. In this particular case (fig. 3), a 
series of 3D surfaces (charts) represents changes of power consumption pattern in a 
processor over time while running SPEC 2006 benchmark combination of GCC and 
BZIP applications on a cycle-accurate M-Sim processor simulator. 
 

Cycle 5000 Cycle 20000 Cycle 50000  

Fig. 3. Energy consumption for GCC and BZIP benchmarks on a single core processor 
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From these examples one can easily observe the level of non-uniform heating in 
different parts of the processor, indicating the non-uniform use of those parts during 
application runs. It can be demonstrated that different combinations of benchmarks 
(or loads) lead to different patterns of power consumption and heat distribution 
among the various blocks of the processor, which can provide some clues to processor 
designers for better layout designs of the CPUs. These data can also be used in efforts 
on improvement of power and cooling units of new processors. On the other 
(software) side of the problem, the visual data of power consumption and heat 
dissipation can be useful for the code optimization efforts to provide a more balanced 
use of various resources in processors. 

5 Concluding Remarks 

PowerVisor is an example of data visualizer for study computer architectures. In 
particular, students and researchers can use PowerVisor (or similar tools) to better 
understand energy consumption and heat dissipation processes and patterns in the 
processor blocks or blocks around the processor in the computer system to make 
changes to the heat dynamics, or to improve the system power consumption. 
Naturally, PowerVisor can and should be used for educating students in computer 
architecture classes to better illustrate the content of the course work especially 
related to power systems and heat dissipation in processors. In fact, in our future plans 
the development of a web interface to PowerVisor visualization tools is considered to 
allow remote PowerVisor call directly from your web browser. Our immediate future 
work involves increasing PowerVisor capacity in modeling and visualization 
including its integration with Cache Visor toolset [8]. 
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Abstract. The problem of optimal parameters selection for the regression con-
struction method using Support Vector Machine is stated. Cross validation error 
function is taken as the criterion. Arising bound constrained nonlinear optimiza-
tion problem is solved using parallel global search algorithm by R. Strongin 
with a number of modifications. Efficiency of the proposed approach is demon-
strated using model problems. A possibility of the algorithm usage on large-
scale cluster systems is evaluated. Linear speed-up of combined parallel global 
search algorithm is demonstrated. 

Keywords: Machine learning, global optimization, support vector machine, 
global search algorithm. 

1 Introduction 

The problem of reconstructing a functional dependency of a given value on measure-
ment results (regression reconstruction problem) is often met in applied studies.  
In practice the nature of the given dependence is usually unknown, therefore  
the unknown function is chosen from a certain pre-determined class which depends 
on the selected model. Parameters of this function are calculated based on the availa-
ble experimental data. Among such models [1] we could note polynomial regression, 
multivariate adaptive regression splines (MARS), radial basis function, decision trees 
and their ensembles, various boosting algorithms, neural network, etc. An experimen-
tal comparison of a number of models and algorithms is given, for instance, in [8].  

One of the widely used solution methods for the regression reconstruction problem 
is the Support Vector Machine (SVM) algorithm [14]. The possibility of efficient 
nonlinear dependencies modeling and independence of generalization capability from 
the feature space dimension could be marked out among this algorithm’s advantages. 
Though, in some cases practical application of the algorithm is limited due to the fact 
that accuracy of the method strongly depends on its parameters selection [3]. Most 
frequently used approaches to optimal parameter selection are eventually reduced to 
global optimization problem solution. Thus, for instance, [3] offers to use a genetic 
algorithm and particle swarm optimization, [9] uses chaos optimization algorithm 
[10], [11] describes application of a modification of the Efficient Global Optimization 
(EGO) algorithm [12], [13] uses Pattern Search approach, etc.  
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As is known, complexity of a global optimization problem solution is significantly 
influenced by its dimension. For example, for the class of multi-extremal functions 
satisfying Lipschitz condition the so called curse of dimensionality takes place which 
represents exponential growth of computing time as a function of dimensionality. 
Thus, if p calculations of function value are required to reach ε accuracy of solution in 

a one-dimensional problem, Npα  trials are required to reach the same accuracy in an 

N-dimensional problem, where α depends on the objective function and on the opti-
mization algorithm in use. Virtually the only way of solving problems of the men-
tioned class in a reasonable time is the development of parallel algorithms and their 
implementation on high performance computing systems.  

This paper introduces a novel method of SVM regression parameters selection 
based on optimization of the cross validation error function using parallel global 
search algorithm. This algorithm is based on the informational statistical approach [5] 
and as experimentally proven in [5], [7] outperforms many known methods of similar 
purpose. The paper is organized as follows: an SVM regression parameters optimiza-
tion problem is stated in the second section; section three describes the basic parallel 
global search algorithm [5] and its modifications which increase parallel computing 
efficiency; in section four successfulness of the described approach is demonstrated 
based on model problems, the possibility of the approach usage on large-scale cluster 
systems is discussed.  

2 Optimization of SVM Regression Algorithm Parameters  

This paper considers the regression reconstruction problem in the following state-

ment. Let a training set ( ){ }NiyxD ii ,...,1,, ==  be given, where d
i Rx ∈ is the fea-

ture vector, Ryi ∈ – the response. It is required to find a function )(xf  from some 

specific class K  which minimizes the value of empirical risk (prediction error on the 
training set). For the SVM-regression construction algorithm the function )(xf  can 

be written in general form as 

 bxwxf T += )()( φ , 

where )(xφ  is a nonlinear (in general case) mapping md RR → , mRw∈  – a vector 

of linear function coefficients in the new feature space mR . As a loss function a 
piecewise linear function of ε -sensitivity is used  

 ))(,0max())(,( εε −−= xfyxfyL , 

where ε  – a predetermined threshold (if the predicted value differs from the actual 
value less than given threshold the error is considered equal zero). The function of 
empirical risk is written as:  
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Considered problem of empirical risk minimization is reduced to a quadratic optimi-
zation problem  
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where C is a regularization parameter which represents the trade-off between  
the model complexity and the empirical error in the minimized function. Using the 
Lagrange multiplier method the problem (1) can be reduced to a dual form: 
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where *, ii αα
 
– Lagrange multipliers, ),( ji xxK

 
– kernel function representing inner 

product in the new feature space mR . Some of the most often used kernels are radial 
basis functions:  

( ) 




 −−= 22

2exp, σjiji xxxxK . 

As shown in [3] generalization capability of SVM-regression algorithm significantly 
depends on the choice of parameters C , ε  and σ . In paper [2] a method based on 
cross-validation error minimization is offered. The idea of the method is to split the 
training set randomly into S subsets { }SsGs ,...,1, = , train the model on )1( −S  sub-
sets and use the remaining subset to calculate the test error. The error averaged over 
all training subsets is used as an estimate of algorithm’s generalization capability  

( )
= ∈
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1 θ , 

where sθ  
is the solution of the problem (2) achieved using the set sGD \  as a train-

ing set. In case the number of objects in the training set is not too large LOO (leave-
one-out) error can be used  

( )
=

−=
N

i
iiiLOO xfy

N
MSE

1

2)|(
1 θ , 

where iθ  
is the solution of the problem (2) achieved using the set { }),(\ ii yxD  as a 

training set. Due to the fact that a solution of a quadratic programming problem (2) 
for each parameter set ( )σε ,,C  exists and is unique we can consider the leave-one-

out error for a given training set as  a function of ε,C  and σ : 
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Thus the problem of optimal parameter selection for the SVM-regression construction 
algorithm has been reduced to a problem of function ( )σε ,,CF  minimization. In a 

general case the function is multi-extremal so global optimization algorithms should 
be applied to find its optimum. 

Let us note that the usage of cross-validation method for finding optimal parameter 
values is traditional in machine learning [15]. Nevertheless, with a large number of 
determined parameters it can lead to overfitting [16]. In our case only 3 parameters 
are used which allows us to hope that overfitting won’t happen.  

3 Parallel Global Search Algorithm 

We will find the optimal value of the parameters C , ε and σ in the hypercube 
[ ] [ ] [ ]maxminmaxminmaxmin ;;; σσεε ××= CCD . Let us define ( )σεϕ ,,)( CFy = , where 

),,( σεCy = .   

Without loss of generality we can consider an unconstrained global optimization 
problem having the form 

 
{ }

{ }NiyRyD

Dyyy

i
N ≤≤≤≤−∈=

∈==
−− 1 ,22:

:)(min)(
11

** ϕϕϕ
, (3) 

where the objective function )(yϕ  satisfies the Lipschitz condition  

 2121 )()( yyKyy −≤−ϕϕ , Dyy ∈21,  

with constant K which in a general case in unknown. This statement covers a wide 
class of problems as any hyper interval S 

 { }NibyaRyS iii
N ≤≤≤≤∈= 1 ,:  

can be reduced to a hyper cube D using a linear coordinate transformation.  
In the discussed approach [5] solution of multidimensional problems is reduced to 

solution of equivalent one-dimensional problems (dimension reduction). Thus, the 
usage of a continuous single-valued mapping such as Peano curve  

 { } { }10 :)(1 ,22: 11 ≤≤=≤≤≤≤−∈ −− xxyNiyRy i
N  

allows to reduce the minimization problem in domain D  to a minimization problem 
on the segment [0,1]. 

 { }]1,0[:))((min))(()( *** ∈=== xxyxyy ϕϕϕϕ . 

Numerical methods which allow efficient construction of such mappings with  
any given accuracy are considered in details in [5]. According to those methods  
this dimension reduction scheme maps a multidimensional problem with Lipschitz 
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minimized function to one-dimensional problem in which the function satisfies the 
uniform Hölder condition 

N
xxGxyxy

/1

2121 ))(())(( −≤−ϕϕ , [ ]1,0, 21 ∈xx  

where N  is the dimension of the original multidimensional problem and Holder  
coefficient G  is connected with Lipschitz constant K  of the original problem by the 

relation NKG 4≤ . 

To solve the arising one-dimensional problem it is suggested to use an efficient in-
formation-statistical global search algorithm [5]. But when solving the reduced prob-
lem with a single scanning part of proximity information for the points in multidimen-
sional space is lost. It is explained by the fact that the point ]1,0[∈x  has only left and 

right neighbors while the corresponding point NRxy ∈)(  has neighbors along 2N 

directions. Part of points’ proximity information can be preserved by using a set of 
mappings  

 { })(),...,()( 1 xyxyxY L
L =  (4) 

Instead of using a single Peano curve )(xy . Each Peano curve )(xyi from )(xYL  

can be achieved as a result of some transformation of the original curve (shift along 
the main diagonal of the hypercube [4] or rotation about the origin of the coordinates 
[7]). The set of Peano curves constructed in this fashion allows to achieve close in-
verse images x′ , x ′′  for any close images y′ , y ′′  differing along only one coordi-

nate for some mapping )(xyi .  

Usage of the mappings set (4) leads to forming a corresponding set of one-
dimensional problems  

 { }]1,0[:))((min ∈xxylϕ , Ll ≤≤1 . (5) 

Each problem from this set can be solved independently on a separate processor using 

the scanning Lsys ≤≤1 , . The result of the minimized function ))(( xyϕ  value cal-

culation at point kx  received by a particular processor for its solved problem is inter-
preted as the results of calculations for all remaining problems (in corresponding 

points kLk xx ,...,1 ) and is sent to other processors. Within such approach a trial at 

point ]1,0[∈kx  conducted in problem l consists of the following steps: 

1. Determine the image )( klk xyy =  with scanning )(xyl ; 

2. Inform the rest of the processors of the trial start at point ky  (blocking of 

point  ky ); 

3. Calculate the value )( kyϕ . The pair { }))((),( klkkl xyzxy ϕ=  is the result of the 

trial at point kx ; 
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4. Determine inverse images Llxkl ≤≤∈ 1 ],1,0[  of the point ky . 

5. Interpret the trial at point Dyk ∈  as trials at L points kLk xx ,...,1  with same re-

sults kkLLk zxyxy === ))((...)(( 11 ϕϕ  , i.e. inform the rest of the processors of the 

trial results at point ky  having sent them pairs ),( kk zy . 

Such informational unity allows to solve the original problem (3) by parallel solving 
of L  problems of form (5) on a set of segments [0,1]. Each processor has an own copy 
of the software which implements calculation of problem’s functions and the decision 
rule of the algorithm. To organize the communication a queue is created on each pro-
cessor where processors store information about the performed iterations as pairs: the 
point of an iteration and minimized function value at that point. Computing scheme of 
the algorithm is given below. 
 

Algorithm. Starting iteration is performed at an arbitrary point )1,0(1 ∈x  (starting 

points are different for all processors). The choice of the point 1+qx , q≥1, for any 
subsequent trial on the processor l is defined by the following rules.  

Rule 1. For the queue assigned to a given processor remove stored for the proces-
sor results including the set qY  of iteration points in domain  and function values 

computed for those points. Determine the set qX  of inverse images for the points of 

set qY  with scanning )(xyl . Capacity of sets qY  and qX  is the value qs  such that 

qsq ≥  as these sets contain the points computed on this processor and received from 

other processors. 
Rule 2. Enumerate the points of iterations set qXx ∪}{ 1  using subscripts in order 

of increasing coordinate values 

 1......0 110 =<<<<<= +kki xxxxx , (6) 

where 1+= qsk , and match them with values ))(( i
l

i xyz ϕ=  calculated in these 

points and integer values )( ixν  − the index of a point. The index of a non-blocked 

point ix  (i.e. the point for which results of the trial have been already received) is 

taken to be equal to 1 while the index of a blocked point ix  (i.e. the point for which 

the trial has been started by another processor) is taken to be equal to 0, the value iz  

is undefined in this case. The points 0x ,  1+kx  are additionally introduced (they do 

not participate in the trial), indices of these points are taken to be equal to 0 and the 
values 0z ,  1+kz  are taken as undefined. 

Rule 3. Calculate the current lower bound  
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for relative differences of function ϕ . If the value μ  turns out undefined (due to unsa-
tisfiability of indices equality conditions from (7)), or if 0=μ  take 1=μ . 

Rule 4. For each interval ),( 1 ii xx − , 11 +≤≤ ki  calculate the characteristic )(iR , 

where 
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The value 1>r  is a parameter of the algorithm. 
Rule 5. Determine the interval ),( 1 tt xx −  which has the maximum characteristic 

 }11:)(max{)( +≤≤= kiiRtR  (8) 

Rule 6. Conduct the next trial at the middle point of the interval ),( 1 tt xx −  if indices 

of its end points are not equal, i.e. 
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Store the results of the trial in the queue assigned to the given processor. Increment q  
by 1 and move to the next iteration.  

Described rules can be augmented with a stopping condition which stops trials if 
ε≤Δ t  where t  is from (8) and 0>ε  has the order of the desired per-coordinate 

accuracy in problem (3)  
The following convergence condition is satisfied for this algorithm (as a special 

case of more general theorem about convergence of a parallel global search algorithm 
using a set of scannings from [5]). 
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Convergence Conditions. Let 
*y  be the point of absolute minimum of a Lipschitz 

with a constant K function )(yϕ , Dy∈ , and }{ ky  is a sequence of trials generated 

by a parallel global search algorithm during this function minimization. Then  

1. If y′ , y ′′  are two limit points of the sequence }{ ky , then )()( yy ′′=′ ϕϕ . 

2. If y′  is a limit point of the sequence }{ ky , then )()( kyy ϕϕ ≤′ . 

3. If at some 0>k  the following condition is satisfied for the value μ from (7)  

 NKr 8>μ , 

where 1>r  is a parameter of the algorithm, then *y  is the limit point of the se-

quence }{ ky , and *lim yyk

k
=

∞→
 if *y  is the only point of absolute minimum. 

More general variants of parallel global search algorithms (for solution of condi-
tional and multicriteria problems) and corresponding convergence theory are pre-
sented in [5-7]. 
 
Perspectives of Usage in Parallel Computing. The analysis shows that the described 
basic algorithm has limitations on the number of used computing devices while using 
shift scannings [4] (shift along the main diagonal of the hyper cube) as well as while 
using rotated scannings [7] (rotation about the origin of the coordinates). 

In the first case the set of scannings comes out as a result of a shift along the main 
diagonal of the hyper cube D and the step of this shift decreases by 2 times at the 
construction of each next mapping. The scanning itself is constructed with the accura-
cy δ=2−m along the coordinate; m here is a parameter of the scanning construction. 
Construction of a very accurate scanning will require significant resources and the 
value δ will eventually be limited by the machine error. To solve the problem with 
accuracy from 10–3 to 10–4 it is sufficient to choose m in the range from 10 to 15 (if 
necessary, further refinement of the found solution can be performed using one of the 
known local methods).  

As follows from the above the number of scanning shifts during construction of 
mappings set (4) will be limited by the accuracy of the original scanning construction. 
If the shift is made by the value smaller than δ=2−m the next scanning will match the 
previous one. This way the limitation L≤m is put on the number of used scannings L 
and, as a consequence, on the number of problems solved in parallel.  

In the second case the number of processors is limited by the number of possible 
rotations of an scanning about the origin of the coordinates. In total there can be up to 
2N of such rotations (where N is the dimension of the solved problem). But to apply 
them all would be redundant, rotations in each of coordinate planes are sufficient and 
these make up N(N−1)+1 mappings. This relation gives potential for parallelism at 
large N and limits parallelization possibilities of in problems of smaller dimensions.  

A promising in terms of parallelization computing scheme can be based on  
the approach described in [17]. The essence of the approach consists in conducting 
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simultaneous p trials on intervals which have p greatest characteristics rather than 
conducting a single trial on interval having the maximum characteristic (8). This  
approach can be applied together with the described above mappings method: conduct 
p trials in parallel for each problems from the set (5) solution of which is also  
performed in parallel [18]. 

Mentioned combined algorithm can be used on modern cluster systems with multi-
core processors. An own sub-problem (5) is assigned to each node and the number of 
simultaneous trials for one problem corresponds to the number of cores on the node. 

4 Computational Experiment 

4.1 Optimization of a Function of Two Variables: Comparison with the 
Exhaustive Search 

In this section we will demonstrate the efficiency of the basic algorithm for  
SMV-regression parameters optimization on a two-dimensional problem example.  
We will also compare the algorithm with the exhaustive search. Consider the  
following problem [2]. Let the function )6cos()2sin(4.05.0)( xxxy ππ+=  be given. 

21,...,1),1(05.0 =−⋅= iixi , )05.0,0()( Nxyy ii += , where )05.0,0(N  – a Gaussian 

distribution with the mean equal to 0 and standard deviation equal to 0.05. Figure 1 
presents the plot of the cross-validation error LOOMSE  dependency on ε  and σ  

with fixed value of parameter C = 1. As seen from the plot the function describing 
this dependency has several local minima in the search domain. 

 

Fig. 1. Dependency of cross-validation error on SVM-regression parameters 
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The algorithm was run with the following parameters: the accuracy of the search 
01.0=ρ , reliability parameter 5.2=r , the accuracy of the scanning construction 

along each coordinate was 2.5⋅10−4, the number of scannings 2=L . The total num-
ber of iterations performed by the parallel version of the algorithm before reaching 
stopping criteria was 1550 (to reach the same accuracy with the exhaustive search 
10000 iterations would be required), found optimum value was 0.006728. The expe-
riment showed significant advantage of the algorithm over the exhaustive search. 
With increasing dimension of the problem the gap in the number of performed itera-
tions and thus the gap in solution time will only be growing. 

4.2 Optimization of a Function of Two Variables: Efficiency of the Algorithm 
and Its Modifications When Using Parallel Computing 

In this section we consider a possibility of using different modifications of parallel 
global search algorithm when optimizing parameters of SVN-regression. We will use 
the following described above implementations of the algorithm: 

1. Basic parallel global search algorithm with shift scannings. 
2. Parallel global search algorithm with rotated scannings. 
3. Combined parallel global search algorithm. 

Taking into account considerations on usage perspectives of implementations 1-3 in 
parallel computing let us ascertain the applicability of the most promising implemen-
tation 3, also let us compare the problem solution times using same number of scan-
nings L in all implementations. In addition accounting for the fact that the number of 
scannings in the second implementation is limited by the value N(N – 1) + 1 where N 
is the problem dimension we will take L = 3. Having this setting implementations 1 
and 2 will allow to use 3 cores each and implementation 3 will allow to use 3p cores 
(3 rotated scannings and p cores for each of the scannings).  

Consider the following problem: let a real function of n real variables be given 

having the form: 
=

=
n

i
iiiiin xxwxxxy

1
21 )cos()sin(),...,,( πβπα , where parameters 

)1,0(~ Uniformwi , )8,2(~ Uniformiα , )8,2(~ Uniformiβ , ni ,...,1= , 

),( baUniform  – a uniform distribution on segment ];[ ba . Consider the case 3=n , 

)3.0,0(),,( 321 Nxxxyy kji
ijk += , where )1(1.01 −⋅= ixi , 11,...,1=i , )1(1.02 −⋅= jx j , 

11,...,1=j , )1(1.03 −⋅= kxk , 11,...,1=k . This way the training set ),,,( 321
kji

ijk xxxy

contains 1331113 = objects.  
Consider an optimization problem of the cross-validation error LOOMSE  of ε  and 

σ  with fixed value of parameter C = 5. 
The cluster of the University of Nizhni Novgorod was used to conduct experi-

ments. A node of the cluster contains 2x Intel Xeon 5150 (total 8 cores), 24GB RAM, 
Microsoft Windows HPC Server 2008.  

Let us study the results of the experiments. In all runs the following parameters 
were used: search accuracy 010.ρ = , reliability parameter 2=r . Let us note that 
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solving the given problem with the specified accuracy using full search over a uni-
form grid would require 104 iterations which is significantly more than the number of 
iterations spent on optimum search using the considered global search algorithm. All 
its implementations 1-3 have reached the required accuracy after 400 iterations, ob-
tained values of the optimum were 0.090543, 0.090564 and 0.09054. Working times 
of the algorithms are given in the table below. 

Table 1. Running time of the algorithms (optimization of a function of two variables) 

Implementation Scannings Cores on scanning Time (hours) 
1 3 1 2,4 
2 3 1 2,4 
3 3 2 1,2 
3 3 4 0,6 

 
Implementation 3 showed 2x performance advantage compared to the other im-

plementations having used 2 times more cores. Taking into account that implementa-
tions 1 and 2 are substantially limited in ability of parallel usage of computing devic-
es, implementation 3 (having same computing time per core) allows usage of bigger 
number of cluster nodes which leads to computing time decrease. 

4.3 Optimization of a Function of Three Variables: Efficiency of the 
Algorithm and Its Modifications When Using Parallel Computing 

This section presents scalability of implementation 3 measured on the cluster of the 
University of Nizhni Novgorod. We solved the optimization problem on three para-
meters stated in the previous section, the value of parameter C is no longer fixed. 
Accuracy of the optimum search (along the coordinate) in this series of experiments 
was 020.ρ = . It was sufficient to make 1000 iterations to achieve the desired search 

accuracy. Taking into account that the number of scannings is limited by N(N – 1) + 
1, where N=3 (the problem dimension), we ran the algorithms to test scalability in the 
following configurations: using L=3 scannings on three nodes and using L=6 scan-
nings on six cluster nodes (implementation 2 of the algorithm), using L=6 scannings 
on six cluster nodes and 2 or 4 cores for each of the scannings (implementation 3 of 
the algorithm). All algorithms found the optimal value 0.09054 of the objective func-
tion, working time of the algorithms is given in the table below. 

Table 2. Running time of the algorithms (optimization of a function of three variables) 

Implementation Scannings Cores on scanning Time (hours) 
2 3 1 5.5 
2 6 1 2.8 
3 6 2 1.4 
3 6 4 0.8 

 



 SVM Regression Parameters Optimization Using Parallel Global Search Algorithm 165 

 

The results demonstrate a linear speedup in the number of used nodes and cores.  
More cluster nodes could be used in case of a larger number of SVM parameters 
(which depends on used kernel). 

5 Conclusions 

This paper considers the problem of optimal parameter selection for the regression 
construction method using support vector machines. Cross-validation error function 
was chosen as the optimized criteria in the given problem. Arising problem belongs to 
the class of bound constrained nonlinear optimization, objective function is often 
multi-extremal which stipulates the necessity of global optimization methods applica-
tion. 

For the solution of the problem the paper suggests to use global search methods 
presented in studies of R. Strongin, V. Gergel, V. Grishagin, Ya. Sergeev, et al., with 
a number of modifications (rotated scannings, combined scheme of parallel compu-
ting). The questions of parallel computing usage are considered within this approach. 
The combined scheme was proved to be the most suitable for cluster systems with 
large number of multicore processors due to the possibility of all computing resources 
utilization. Computational experiments were conducted to support the stated proposi-
tions. Three schemes of parallel implementation of the global search algorithm are 
analyzed. Scalability of the first two schemes is limited by the number of scannings 
used by the algorithm. The combined scheme of the parallel global search algorithm 
demonstrates linear speedup in SVM-regression parameters optimization, lets use 
multicore processors effectively and therefore scales much better.   
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{basile,degano,giangi}@di.unipi.it

Abstract. Internet is offering a variety of services, that are assembled to
accomplish requests made by clients. While serving a request, security of
the communications and of the data exchanged among services is crucial.
Furthermore, communications occur along specific channels, and it is
equally important to guarantee that the interactions between a client
and a server never get blocked because either cannot access a selected
channel. We address here both these problems, from a formal point of
view. A static analysis is presented, guaranteeing that a composition of
a client and of possibly nested services respects both security policies for
access control, and compliance between clients and servers.

1 Introduction

The opportunities of exploiting distributed services are becoming an impera-
tive for all organizations and, at the same time, new programming techniques
are transforming the ways distributed software architectures are designed and
implemented. Distributed applications nowadays are constructed by assembling
together computational facilities and resources offered by (possibly) untrusted
providers. For example in Service-Oriented Computing, the basic building blocks
are independent software components called services, equipped with suitable
interfaces describing (roughly) the offered computational facilities. Moreover,
standard communication protocols (e.g. SOAP over HTTP) take care of the in-
teraction between the parties. Another illustrative example of this approach for
effective distributed services exploitation is the so-called Cloud computing.

Software architectures that truly support distributed services require several
operational tools to be in place and effective. In these computing environments,
managing security issues is rather complex, since security controls are needed
to control access to services and resources, as well as to create suitable services
on demand. For example, identity management and authorization are vital to
create and deploy services on-the-fly. Moreover, when services are made available
through third parties, understanding and fulfilling the behavioural obligations
of services is crucial to determine whether the interactive behaviour is consistent
with the requirements. It is of course important to ensure that clients and ser-
vices interact correctly, which in turn implies verifying the correctness of their
behavioural obligations. Service Contracts are the standard mechanisms to de-
scribe the external observable behaviour of a service, as well as the responsibility
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for security. Service contracts can be used for guaranteeing that all the services
are capable of successfully terminating their tasks (progress property) without
rising security exceptions.

The management of service contracts is typically tackled by service providers
through the notion of Service-Level Agreement (SLA), which have to be ac-
cepted by the client before using the service. SLAs are documents that specify
the level(s) of service being sold in plain language terms. Recently, so called
contract-oriented design has been introduced as a suitable methodology where
the interaction between clients and services is specified and regulated by for-
mal entities, named contracts. The formal management of contracts permits
to unambiguously represent the obligations and also supports their automatic
analysis and verification. In the literature several proposals have addressed and
investigated contracts, exploiting a variety of techniques [9,11,10,13,12,8,1]. The
amalgamation of security issues within contract based design has been recently
tackled by [6], that develops a calculus where behavioural contracts may be
violated by dishonest participants after they have been agreed upon.

In this paper we develop a formal theory of contracts that supports verification
of service compliance. Services are compliant when their interactive behaviour
eventually progresses, i.e. all the service invocations are guaranteed to be even-
tually served. Moreover, our theory of contracts supports verification of security
policies enforcing access control over resources.

Our starting point is the language-based methodology supporting static anal-
ysis of security policies developed in [5,4]. The main ingredients of this approach
are: local policies, call-by-contract invocation, type and effect systems, model
checking and secure orchestration. Then, security policies, expressed as safety
policies, are model checked. A plan orchestrates the execution of a service-based
application, by associating the sequence of run-time service requests with a cor-
responding sequence of selected services. A main result shows how to construct
a plan that guarantees that no executions will abort because of some action at-
tempting to violate security. In [14] the methodology has been extended to deal
with quantitative aspects of service contracts, typically the rates at which the
different activities are performed.

Here we extend this approach to deal with service compliance. Our first
contribution is to extend the abstraction of service behaviour, called history
expressions, with suitable communication facilities to model the interactive be-
haviour of services, including service sessions in a multiparty fashion. In partic-
ular, we extend history expressions to include channel communications and in-
ternal/external choice for combining the notions of security access and progress
of interactions. Our second contribution is sharpening the verification phase.
Roughly, we reduce the problem of checking service compliance to that of check-
ing a safety property, expressing that all the involved parties are able to suc-
cessfully terminate their interactions without getting stuck. Reducing service
compliance to a safety property makes it model-checkable. Finally, we extract
from a history expression all the viable plans, i.e. those orchestrations that suc-
cessfully drive secure and compliant executions. Adopting a valid plan guarantees
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q1start q2 q3

q4 q5q6

αsgn(x),x �∈bl

αsgn(x),x∈bl

αp(y),y≤p

αp(y),y>p

*

αta(z),z≥t

αta(z),z<t

*

*

Fig. 1. The automaton for the policy ϕ(bl,p,t)

that the involved services never go wrong at run-time, in that they are capable
of successfully accomplishing their tasks (progress property) without raising any
security exceptions. Therefore, no run-time monitor is needed, to control the
execution of the network of services.

The paper is organised as follows. The next section intuitively presents our
formalism, the problems and our goal through an example. Sect. 3 formalizes the
main aspects of our proposal, defines the syntax and the semantics of history
expressions; it recalls the methodology of [5,4] and shows it applicable to our
case for verifying the security aspects of services. The definition of compliance,
its reduction to a safety property and the technicalities needed to model-check
it are in Sect. 4. In Sect. 5, we discuss our results and future work.

2 Motivating Example

To illustrate our approach and help intuition, we propose an example of a sim-
ple service for booking hotels. A broker is responsible for collecting the clients’
requests and for sending the informations to the hotel companies. When a client
opens a session with the broker, he puts some constraints on the quality of ser-
vice. This are represented by the policy ϕ(bl,p,t). Roughly, policies are regular
properties over the execution histories, which are specified through the so-called
usage automata [3], a sort of parametric finite state automata. Our policy ϕ is
in Figure 1. Its parameters are a black list of hotels bl, a threshold on the price
p and on the Trip Advisor’s rating t. When selected, an hotel signs the contract,
i.e. emits a signal αsgn(x), also called event. Then, it publishes its price and rating
with the events αp(y), αta(z). If the hotel is in the black list the policy is violated
and the final state q6 is reached. Note that the forbidden traces belong then to
the language accepted by the automaton, as prescribed by the “default-allow”
approach. A violation of the policy also occurs if the hotel has a price higher
then p and the Trip Advisor’s rating is lower then t. As we will see, our approach
is history dependent, so all the actions performed so far will be actually inferred.

We specify through a process calculus two clients C1, C2, and a repository R
including a broker B1 and four hotels S1, S2, S3, S4, in Fig. 2. The two clients
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C1 = open1,ϕ({s1},45,100)Req(CoBo.Pay +NoAv)close1,ϕ({s1},45,100)

C2 = open2,ϕ({s1,s3},40,70)Req(CoBo.Pay +NoAv)close2,ϕ({s1,s3},40,70)

Br = Req.open3,∅IdC.(Bok + UnA)close3,∅(CoBo.Pay ⊕NoAv)

S1 = αsgn(1).αp(45).αta(80).IdC(Bok ⊕ UnA)

S2 = αsgn(2).αp(70).αta(100).IdC(Bok ⊕ UnA ⊕Del)

S3 = αsgn(3).αp(90).αta(100).IdC(Bok ⊕ UnA)

S4 = αsgn(4).αp(50).αta(90).IdC(Bok ⊕ UnA)

Fig. 2. Two clients, a broker and four hotels

differ only in the way they instantiate their policies. The client opens a session
and sends his request to the broker, who must respect the policy ϕ. Sending
the request is modelled by the action Req, while receiving the request is done
through Req, the complementary action (for the sake of simplicity we omit the
data needed for booking the hotel). The client is then willing to receive the
confirmation of the booking and to settle the bill (CoBo.Pay). The client is also
ready to receive a negative message of no rooms are available (NoAv). When
either message is received, the session with the broker is closed. As said, the
broker receives the request Req and then opens a session with one of the hotels.
The broker sends the Id of the client and all the data with IdC, and then waits
either the booking or the negative message with (Bok+UnA). Then the session
with the hotel is closed, and the response message is forwarded to the client.
The hotel services perform the events of signing and publishing the price and
rating; and then interact with the broker. Note that all services, except for S2,
have the internal choice Bok ⊕UnA and decide on their own which message to
send. Note that the internal choice is different from the external choice in, e.g.
Bok+UnA, that is instead driven by the message received. Since Br is ready to
receive each sent message, we say that the mentioned services are compliant with
Br. Instead, service S2 is not compliant with Br since it can send a message Del
(meaning that there will be available rooms later in the week) that the broker is
not able to handle, and the interaction gets stuck. As far as security is concerned,
it turns out that the services S1 and S4 violate the policy of C1, since S1 is black
listed and S4 respects neither thresholds; while the services S1, S3 do not satisfy
the policy of C2 since they are black listed.

Figure 3 displays a fragment of a computation. It is a sequence of config-

urations χ and of transitions χ
γ→ χ′, where γ records either an event or a

communication made of two complementary actions (disregard for a while the
indexes π,R of the arrows). A configuration is made of tuples η, � : S, put in
parallel (through ‖), where η is a sequence of events, � is the location of the
service/client S. In our example, the starting configuration has the two clients,
one on location �c1, the other on �c2. Both performed no actions, so their exe-
cution history is empty (ε). The first step opens a session between C1 and Br
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ε, �c1 : C1‖ε, �c2 : C2

open1,ϕ1→ π,R

�ϕ1 , [�c1 : Req.(CoBo. . . .)close1,ϕ1 , �br : Br]‖ε, �c2 : C2
τ→π,R

�ϕ1 , [�c1 : (CoBo. . . .)close1,ϕ1 , �br : open3,∅IdC . . . ]‖ε, �c2 : C2

open3,∅→ π,R

P︷ ︸︸ ︷
�ϕ1 , [�c1 . . . , [�br : IdC . . . , �s3 : αsgn(3) . . .]] ‖ε, �c2 : C2

open2,ϕ2→ π,R

P‖
Q︷ ︸︸ ︷

�ϕ2 , [�c2 : Req . . . close2,ϕ2 , �br : Br]
αsgn(3)→ π,R

αp(90)→ π,R

αta(100)→ π,R

η︷ ︸︸ ︷
�ϕ1αsgn(3)αp(90)αta(100), [�c1 : . . . , [�br : IdC . . . , �s3 : Idc . . .]]‖Q τ→π,R

τ→π,R

η, [�c1 : . . . , [�br : close3,∅ . . . , �s3 : ε]]‖Q close3,∅→ π,R

η, [�c1 : (CoBo.Pay +NoAv)close1,ϕ1 , �br : (CoBo.Pay ⊕NoAv)]‖Q τ→π,R

η, [�c1 : close1,ϕ1 , �br : ε]‖Q close1,ϕ1→ π,R

η�ϕ1 , �c1 : ε‖�ϕ2 , [�c2 : Req. . . . , �br : Br]
τ→π,R . . .

Fig. 3. A fragment of a computation

and registers in the history that the whole session, in particular Br, is subject
to the policy ϕ, duly instantiated (call it ϕ1 = ϕ({s1},45,100)). The second step
shows that the request of the client has been accepted by the broker, via a com-
munication. Now a nested session is opened involving the broker and S3, in the
third step, and no policy is put over the called service S3.

Concurrently, C2 can ask for a reservation, as expressed by the fourth step 1,
that registers that the policy ϕ2 = ϕ({s1,s3},40,70) is active. Note that we assume
that the broker can replicate its code at will.

The two parallel sessions can evolve concurrently. For simplicity, we proceed
with service S3, that signs, shows the price and its rating (all displayed in the
same line). The broker is ready to send the client’s data to S3, and to receive back
an answer, say “no room is available” (S3 is now ε, because it has no further
activities to do). The session is then closed in the 10th step, and the broker
resumes its conversation with the client C1, and forwards the non-availability, in
step 11. The next steps close the session numbered 1 and the security framing
of ϕ1. The last transition continues the session involving the second client.

The index R of the arrows shows that the transitions depend on the services
contained in the repository R.

The index π is a vector of functions, called a plan, that indicates how the
requests are bound to services. The plan π1 for the first client maps the request

1 Our present framework deals with concurrency in an interleaving style, so the ac-
tivity of the clients, the broker, the hotels are interleaved; for a more realistic, truly
concurrent approach, see [15]).
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1, originated by open1 of the client, to �br, and the request 3 from open3 of the
broker, to �s3. We call π1 valid, because it drives a computation where both the
security constraints and compliance of clients/services are guaranteed.

Suppose now that the plan π2 for the second client maps request 2 to �br
and request 3 (from the second instance of the broker) to �s2. Since S2 does not
comply with Br, at run-time a communication involving the action Del cannot
be performed because the broker has no action Del. Our assumption that the
service can decide what to send on its own is violated. For this reason, we say
that this plan is not valid. Finally, consider a plan that maps request 3 to �s3,
that this time is compliant with the broker. However S3 is black-listed by C2,
and so a policy violation occurs; also this plan is not valid.

Our task in the next sections will be defining a static analysis that allows us
to construct valid plans, only. With such plans, neither violations of security,
nor missing communications can occur, so there is no need for any execution
monitor at run-time.

3 Programming Model

Here we define the syntax and the semantics of services and of networks of
services. Services are represented by λ-expressions, and a type and effect system
extracts their abstract behaviour, in the form of history expressions. Lack of
space prevents us from giving a detailed presentation of this model, and only
refer the reader to [5,4]. We further extend the basic model of history expressions
with standard I/O operations, because we want to explicitly represent through
communications also the interactions between clients and services. Moreover, we
explicitly deal with sessions, and our history expressions will therefore record
also the operations of opening and closing them. Our final extension permits to
have several sessions in parallel. In this work, we address neither the analogous
extensions to the λ-calculus, nor the definition of a type and effect system for it.

Some auxiliary notions are in order. We assume to have a set of security
relevant operations described by events α ∈ Ev, and a set of policies ϕ ∈ Pol, i.e.
a regular language over Ev. Opening and closing a session is modelled through
communication actions, labelled by a request identifier r ∈ Req and a policy
ϕ. These special activities will be logged in computations by framing actions
Frm = {�ϕ, �ϕ|ϕ ∈ Pol}. We also assume the presence of channels along which
clients and services communicate. So we have a set of communication actions
Comm = {a, a, τ, openr,ϕ, closer,ϕ}, where as usual a = a. Hereafter, let Act =
Ev∪Comm and let λ ∈ Comm∪Ev∪Frm. Finally, we assume services and clients
be hosted in locations � ∈ Loc.

Definition 1 (History Expression). A history expression is a term generated
by the following grammar:

H ::= ε | h | μh.H | (
∑
i∈I

ai.Hi) | (
⊕
i∈I

ai.Hi) | α | H ·H | openr,ϕ H, closer,ϕ | ϕ�H�
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Intuitively, ε is the history expression that cannot do anything, and thus we
stipulate ε ·H ≡ H ≡ H · ε.

Infinite behaviour is denoted by μh.H , restricted to be tail-recursive and
guarded by communication actions ā or a. Events α can occur, if they do not
violate any active policy. The expression H1 ·H2 is the sequential composition.

An expression can send/receive on a channel messages, indexed by a set I.
To stress that the non-deterministic choice of the output ai is up to the sender
only (internal choice), we use ⊕, while the external choice only involves inputs
ai and is denoted by Σ.

Framing ϕ�H� says that while H is running, the policy ϕ must be enforced
(sometimes we assume ϕ�H� ≡ �ϕ·H ·�ϕ). As anticipated, a policy is a (sort of)
finite state automaton that accepts those strings of access events that violate it,
in the default-accept paradigm. An example is “never write (αwrite) after read
(αread)”, and a trace that violates it is αreadαwrite. When entering a security
framing, all the history, i.e. the sequence of events previously fired, must respect
the policy: ours is a history-dependent approach. We remark that policies are
safety properties: nothing bad occurred so far.

A service is engaged in a session with another through openr,ϕHcloser,ϕ,
where r is a unique identifier and ϕ is the policy to be enforced while the re-
sponding service is active. Later on we will require that a client must be able to
synchronize with the server and correctly terminate the session, i.e. client and
service have to be compliant.

The following rules inductively define the semantics of a stand-alone history
expression.

Operational Semantics of History Expressions

⊕
i∈I ai.Hi

ai� Hi (I-Choice)
∑

i∈I ai.Hi
ai� Hi (E-Choice)

α
α� ε (Acc) openr,ϕ.H.closer,ϕ

openr,ϕ

� H.closer,ϕ (S-Open)

ϕ�H�
�ϕ
� H · �ϕ (P-Open)

H
λ� H ′

H ·H ′′ λ� H ′ ·H ′′
(Conc)

H{μh.H/h} λ� H ′

μh.H
λ� H ′

(Rec)

We now turn our attention to our specification of networks of services N . In
the following definition, we also introduce the notion of plan π.

Definition 2 (Network and Plan)

N ::= N‖N | S S ::= � : H | [S, S]
�π = [π1, . . . , πn], where πi, π

′
i ::= ∅ | r[�] | π ∪ π′
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Operational Semantics of Networks

H
openr,ϕ

� H ′ r[�j ] ∈ π {�j : Hj} ⊆ R |= η�ϕ

η, �i : H
openr,ϕ−→π,R η�ϕ, [�i : H

′, �j : Hj ]
(Open)

H
closer,ϕ

� H ′

η, [�i : H, �j : H ′′
j ]

closer,ϕ−→π,R ηη′, �i : H ′
η′ = Φ(H ′′

j )�ϕ (Close)

η, S
λ−→π,R η′, S′ |= η′

η, [S, S′′] λ−→π,R η′, [S′, S′′]
(Session)

ηi, Ni
λ−→πi,R η′

i, N
′
i |= η′

i (�π)i = πi

−−−→
(η,N)i = ηi, Ni

−−−→
(η,N)

λ−→�π,R

−−−−−−−−−−−−−−−−→
(η,N)[η′

i, N
′
i �→ ηi, Ni]

(Net)

H
γ
� H ′ |= ηγ

η, �i : H
γ−→π,R ηγ, �i : H

′ γ ∈ Ev ∪ Frm (Access)

Hi
a� H ′

i Hj

co(a)
� H ′

J

η, [�i : Hi, �j : Hj ]
τ−→π,R η, [�i : H

′
i, �j : H ′

j ]
a ∈ Comm (Synch)

where Φ(H1 ·H2) = Φ(H1) · Φ(H2) Φ(�ϕ) =�ϕ Φ(H) = ε otherwise

A network N is composed of the parallel composition of different clients H , each
hosted at a location � ∈ Loc, and of sessions S involving a client (or a service)
and a service. Services are published in a global trusted repository R = {�j :
Hj | j ∈ J}, and they are always available for joining sessions.

We assume that the operator ‖ is associative, but not commutative, so a

network can be written as a vector �N . Instead, we stipulate that [S, S′] ≡ [S′, S].
We can have nested sessions, modelling that a service involved in a session

can open a new session with another service. In this case the previous session
will be restored upon termination of the new one.

The semantic of networks is the transition system, inductively defined by the
rules in the table below. Its configurations have the form ‖i∈I ηi, Si abbreviated

by
−−→
η,N , where ηi is the history of Si. As a matter of fact, access events α and

policy framings �ϕ, �ϕ are logged into the history ηi. A session can evolve only if
its history respects all the active policies in ηi, denoted by |= ηi (see below).

We briefly comment on the rules of the operational semantic of networks. The
first rule is for opening a session: the service at �i fires an event openr,ϕ (in the
stand-alone semantics); the plan πi selects the service at �j ; and the client and
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the server get involved in a new session. However, this only occurs if the history
η, updated with �ϕ recording the policy imposed by the client, satisfies all the
policies that are active (see below for a precise definition).

Symmetrically, the rule Close ends a session. The client continues computing
on its own, while the serverH ′′

j is terminated. The history of the client is updated
with the closing frames of all the policies still active in H ′′

j that now make no
sense (computed through the auxiliary function Φ) and the closing frame of the
policy ϕ imposed over the session.

Rule Session governs the independent evolution of an element within a ses-
sion; and similarly, rule Net updates the network according to the evolution of
one of its components.

Rule Access fires an event γ, either an access event or a policy framing;
appends it to the current history η; and checks ηγ for validity.

The premises of rule Synch require a service to send/receive a message ā/a,
and its partner to receive/send it, written as the co-action a/ā. The resulting
communication is labelled with the (non observable) action τ . Note that a com-
munication can only take place if both services are inside the same session.

As usual, a computation starts from the initial configuration N0 = ‖j∈Jε,Hj ,

and it is a sequence N0
λ−→�π,R ‖i∈Iηi, Ni

λ′−→�π,R ‖i∈Iη
′
i, N

′
i . . . Some remarks

are now in order, on the way computations proceed, rather on the two ways its
participants may get stuck. The first is when all the access events a service H
may perform violate the security policies that are active. In this case, a resource
monitor, formalised by the validity relation |= η, aborts the execution of H .
Note however, that the computation proceeds if there is an event that H can
fire without violating any active policies: our semantics implements the so-called
angelic non-determinism.

The second way for deadlocking a component of a network is when two services
in a session want to communicate, but the output of one of them is not matched
by an input of the other, in other words, the two services are not compliant. Also
here our semantic is angelic, in that it does not respect the requirement saying
that the choice among various outputs is done regardless of the environment and
of its capability of accepting the sent message.

The main task of our paper is proposing an automated technique to construct
plans that drive executions with no deadlocks, namely valid plans. We present
a static analysis, that checks the text of clients and services and guarantees
that the networks, that they originate, only have computations that can always
proceed, i.e. that at run-time a component of a network neither violates any
security policies, nor does it get stuck because of missing communications. While
these problems have been already studied in isolation [5,4,12,13], the combined
solution we offer here is new.

We address the security issue along the lines of [5,4]. That machinery, briefly
summarised below, can easily be extended to our case. Checking compliance is
addressed in the next section.
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3.1 Statically Checking Validity

We first intuitively define when a history η ∈ (Ev ∪ Frm)∗ is valid, written |= η;
more detailed definitions are in [5,4]. A history η is balanced when either η is
empty or is an event, or η = �ϕη

′ �ϕ with η′ balanced, or η = η′η′′ with both η′

and η′′ balanced. Hereafter, we shall only deal with histories that are prefixes of a
balanced history, because such are those that show up when executing a network.
Now, let η be the history obtained by erasing all the framing events from it.
For example, if η0 = γα�ϕβ�ϕ then η0 = γαβ. A history η respects a policy ϕ,
in symbols η |= ϕ, if it is not recognized by the automaton ϕ; it is valid if it
respects all the polices that are opened, but not closed, i.e. the policies active in
η. Since our approach to security is history-dependent, we actually require that
all the prefixes of η respect the relevant policies. For example, consider again
the history η0 above, and let ϕ require that no α occurs after γ. Then, η0 is not
valid according to our intended meaning, because when firing β, the policy ϕ
is activated and the prefix γα does not obey ϕ — note instead that �ϕγ �ϕαβ
would be valid, as ϕ is no longer active after γ is fired.

The definition of validity follows, in which we use the auxiliary function AP
for computing the multi-set of the active policies in η (& is multi-set union).

Validity

AP(ε) = ∅ AP(αη) = AP(η)
AP(�ϕη) = AP(η) & {ϕ} AP(�ϕη) = AP(η) \ {ϕ}

A history η is valid (|= η) when ∀η0η1 s.t. η0η1 = η, ϕ ∈ AP(η0).η0 |= ϕ

Now the problem is verifying if all the histories generated by a given network
lead to a final configuration, with no security violations. This can be done by
separately checking if all its clientsH are valid, i.e. that all the histories generated
when it is executed are valid. Most likely, H will contain some requests, and
serving them will open and eventually close possibly nested sessions with other
services H ′, H ′′, . . . , made available by the repository R. The idea is to suitably
assemble the history expressions H,H ′, H ′′, . . . , and recording in a plan for H
which service to invoke for each request, so obtaining the pair Ĥ, π. Note that
Ĥ may be non-valid, even if the composing selected services are valid, each in
isolation. Indeed, the impact on the execution history of selecting a service Hr

for a request r is not confined to the execution of Hr, but it spans over the whole
execution, because security is history-dependent. The validity of the composed
service Ĥ depends thus on the global orchestration, i.e. on the plan π.

In order to ascertain the validity of Ĥ , we resort to model checking. The
history expressions Ĥ is naturally rendered as a BPA process, while finite state
automata check its validity against the policies to be enforced. Because of the
possible nesting of security framings, validity of history expressions is a non-
regular property, so standard model checking techniques cannot be directly
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applied. In [5,4], a semantic-preserving transformation is presented, that removes
the context-free aspects due to policy nesting: it suffices recording the opening of
policies, and removing those already opened and their corresponding closures, in
a stack-like fashion. In this way, (standard) model checking is efficiently feasible
through specially-tailored finite state automata [5,4].

4 Checking Service Compliance

Now, we introduce a technique to construct a plan providing the assurance that
also compliance between clients and services is guaranteed at run-time. Again,
we can consider a client (or server) at a time, and, for each of its requests, we
determine the compliant services.

First we manipulate the syntactic structure of a service in order to identify and
pick up all the requests, i.e. the subterms of the form openr,ϕH1closer,ϕ. Then,
to check compliance of the service request r against an available service �2 : H2,
we compute the projection of H1 and H2 on their communication actions. This
projection removes from H1 and H2 all the access events α and policy opening
and closing �ϕ, �ϕ, as well as all the inner service requests, i.e. the subterms
of the form openr′,ϕ′ . . . closer′,ϕ occurring inside H1 and H2. The inductive
definition of the projection on communication actions follows.

Projection on Communication Actions

(H ·H ′)! = H ! ·H ′! h! = h ϕ�H�! = H ! (μh.H)! = μh.(H)!

(
∑

i∈I ai.Hi)
! =
∑

i∈I ai.(H
!
i) (

⊕
i∈I ai.Hi)

! =
⊕

i∈I ai.(Hi)
!

(openr,ϕ.H.closer,ϕ)
! = ε! = α! = ε

Note that if H is a closed history expression then H ! is closed. Moreover the
projection function H ! yields a behavioural contract as defined in [12]; for this
reason we feel free to call contracts these kind of history expressions. More
precisely, the projection function produces a subset of those contracts, since in
our history expressions the internal choice is always guarded by output action
and the external choice is always guarded by input actions. Finally, we only have
guarded tail recursion.

Because of the last restriction, it turns out that the transition system of H ! is
finite state; in other words there only is a finite number of expressions that are
reachable from H ! through the transitions defined by the operational semantics
of history expressions in isolation.

We now recall the notion of observable ready sets [12]. Intuitively, these sets
represent the communication actions that a service is ready to execute, so char-
acterising the different behaviour of internal and of external choice. Roughly,
a single output action at a time is offered by an internal choice, while in the
external choice all the actions are available at the same time.
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Definition 3 (Observable Ready Sets). Let H be a history expression. The
observable ready set of H is the finite set S ⊆ Comm given by the relation H ⇓ S
inductively defined below.

ε ⇓ ∅ h ⇓ ∅ ⊕
i∈I ai.Hi ⇓ {ai}

∑
i∈I ai.Hi ⇓

⋃
i∈I{ai}

H ⇓ S
μh.H ⇓ S

H ⇓ S S �= ∅
H ·H ′ ⇓ S

H ⇓ ∅ H ′ ⇓ S
H ·H ′ ⇓ S

For example, (a1 ⊕ a2) ⇓ {a1} and (a1 ⊕ a2) ⇓ {a2}, while (a1 + a2) ⇓ {a1, a2}.
Also, let H = μh.(a1 ⊕ a2) · b · h, then H ⇓ {a1} and H ⇓ {a2}. Moreover
ε · (a+ b) · (d⊕ e) ⇓ {a, b}.

We now introduce the notion of service compliance. Given the service request
openr,ϕH1closer,ϕ and the service H2, we say that the two contracts H !

1 and

H !
2 are compliant if for every possible internal action of a party, the other is

able to perform the corresponding coaction. Note that the definition below does
not require both parties to terminate: the client can terminate whenever all its
operations have been completed. Hereafter, let S = {a|a ∈ S}.
Definition 4 (Compliance). Two history expressions Hc and Hs are compli-
ant, written Hc # Hs, if for all C, S ⊆ Comm, H1 = H !

c and H2 = H !
s are such

that

(1) H1 ⇓ C and H2 ⇓ S implies that C = ∅ or C ∩ S �= ∅, and

(2) H1
a� H ′

1 ∧H2

co(a)
� H ′

2 implies H ′
1 # H ′

2.

Note that the compliance relation is indeed defined in terms of the largest relation
over contracts enjoying properties (1) and (2) above.

We introduce a model-checking technique for verifying if two contracts are
compliant. The key idea is to reduce the problem of checking compliance to the
problem of checking a safety property over a suitable finite state automaton,
obtained by tailoring the notion of product automaton to contracts. Notice that
this transformation will allow us to apply all the techniques and tools developed
for checking safety properties.

The product automaton A = H !
1⊗H !

2 of two contracts H !
1 and H !

2 models the
behaviour of contracts composition. Final states represent stuck configurations:
these states are reached whenever the two contracts are not compliant.

Definition 5 (Product). Let H ′
1 and H ′

2 be history expressions. The product
automata H1 ⊗H2 of (H ′

1)
! = H1 and (H ′

2)
! = H2 is defined as follows.

H1 ⊗H2 = 〈S1 × S2, {τ}, δ, 〈H1, H2〉, F 〉 where

– S1 and S2 are the states of the transition systems of H1 and H2

– {τ} is the alphabet and 〈H1, H2〉 is the initial state
– the transition function δ is:

δ = {(〈H1, H2〉, τ, 〈H ′
1, H

′
2〉)|H1

a� H ′
1 ∧H2

co(a)
� H ′

2 ∧ 〈H1, H2〉 �∈ F}
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– the set of final states is F = {〈H1, H2〉|H1 �= ε ∧ ¬(i) ∨ ¬(ii)} where :

(i) ∃a.(H1
a� H ′

1 ∨H2
a� H ′

2)

(ii) (∀H1
a� H ′

1, ∃H2
a� H ′

2) ∧ (∀H2
a� H ′

2, ∃H1
a� H ′

1)

The correctness of the definition of the product automaton relies on the fact that
the projection function yields finite state contracts since recursive behaviour is
obtained only via tail recursion.

Note that condition (i) ensures that both services are not waiting on input
actions. Condition (ii), instead, ensures that for all the possible output actions
that a service is ready to fire, the other party is ready to perform the corre-
sponding input action. Intuitively, H1 and H2 are compliant if and only if the
language of the product automaton A is empty, no final states exist in which
the above conditions do not hold.

Lemma 1. Let Hc and Hs be closed history expressions with H1 = H !
c and

H2 = H !
s. For all C, S ⊆ Comm such that H1 ⇓ C, H2 ⇓ S we have that

C ∩ S �= ∅ if and only if conditions (i) and (ii) of Definition 5 hold.

Proof. (→) We know that either H1 or H2 performs an output action, so con-
dition (i) holds. W.l.o.g. assume that H1 performs an output. The proof in the
other case is symmetric. By definition of observable ready sets and C ∩ S �= ∅,
we have that H1 must be of the form H · H ′ with H either

⊕
i∈I ai.Hi or

μh.
⊕

i∈I ai.Hi, (recall that ε ·H ≡ H ≡ H · ε), with I �= ∅. Also H2 must be of
the form H ′

2 ·H ′′
2 with H ′

2 either
∑

j∈J aj .Hj or μh.
∑

j∈J aj .Hj with |J | �= ∅. For
H1 we have |I| different ready sets forming IC = {{ai}|H1 ⇓ {ai}}. Instead H2

has a single ready set of the form S = {aj |j ∈ J}. Now by hypothesis ∀C ∈ IC.
C ∩ S �= ∅, that implies (∀H1

a� H ′
1, ∃H2

a� H ′
2) ∧ (∀H2

a� H ′
2, ∃H1

a� H ′
1)

because H2 performs no output actions.
(←) By (i) we have that either C or S contain an output action. W.l.o.g.

assume that H1 performs an output. The proof in the other case is symmetric.
By definition of operational semantics of history expressions, H1 must be of the
form H · H ′ with H either

⊕
i∈I ai.Hi or μh.

⊕
i∈I ai.Hi with I �= ∅. Hence

by definition H1 has |I| different ready sets in IC = {{ai}|H1 ⇓ {ai}}. By
condition (ii), H2 must be able to execute any corresponding coaction. Therefore
by definition of operational semantic of history expressions, H2 must be of the
form H ′

2 ·H ′′
2 with H ′

2 either
∑

j∈J aj .Hj or μh.
∑

j∈J aj .Hj with |J | �= ∅. Hence
by definition H2 has a single ready set of the form S = {aj |j ∈ J}. Condition
(ii) ensures that ∀C ∈ IC it must be C ∩ S �= ∅. ��
We now state our main theorem that guarantees compliance of two
services whenever their languages have an empty intersection. Its proof is omit-
ted because of lack of space; the interested reader can find it on the web page
www.di.unipi.it/user/basile/papers/pact2013full.pdf.

Theorem 1 (Compliance)
Let H ′

1 and H ′
2 be closed history expressions and let (H ′

1)
! = H1 and (H ′

2)
! = H2.

Then H1 # H2 if and only if L(H1 ⊗H2) = ∅.
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An important consequence of our model-checking technique is that the property
of progress of a session (even for infinite executions) is not a liveness property,
but an invariant property [2]. An invariant property Pinv only inspects a state at
time, without looking at all the past history, i.e. Pinv = {s0s1s2 . . . |∀j ≥ 0.sj |=
Φ}, where s0s1s2 . . . is a history. Since conditions (i) and (ii) of Definition 5 do
not inspect the past states, it turns out that compliance is an invariant property:
a subset of the safety properties.

Theorem 2. Compliance is an invariant property.

Proof. Given two services (H ′
1)

! = H1 and (H ′
2)

! = H2 by Theorem 1 H1 # H2

iff L(H1⊗H2) = ∅, i.e. all states 〈H ′
1, H

′
2〉 reachable from 〈H1, H2〉 are such that

〈H ′
1, H

′
2〉 |= (H ′

1 = ε ∨ (i) ∧ (ii)) ((i) and (ii) conditions of Definition 5). ��
Since all invariant properties are safety properties, the following corollary holds.

Corollary 1. Compliance is a safety property.

5 Verifying Services Secure and Unfailing

We have all the means to statically verify whether a network of services will
evolve with neither security nor compliance violations. Given a repository R
and a vector of clients, pick up one of them, say H , at a time; generate a valid
plan πH for H ; for each request openr,ϕH1closer,ϕ occurring in the composed
service check if H1 # H2, where πH(r) = �2 and �2 ∈ R. If all these steps succeed,
switch off any run-time monitor, and live happily: nothing bad will happen.

This result relies on suitable extensions of the methodology proposed in [4],
and on a careful definition of service sessions, possibly nested, and of compliance.
Indeed, Theorem 2 shows that compliance is a safety property, so paving the way
to its verification via standard model-checking, with existing tools [7].

As a matter of fact, our work establishes a novel connection between the world
of service contracts and the world of security. We plan to extend our approach in
some directions. A first is for modelling more carefully the availability of services,
that now can replicate themselves unboundedly many times. We are confident
that more detailed rules for opening and closing sessions can be easily given.
A major line of research concerns extending our verification methodology to
include quantitative information in the security policies, along the lines of [14].
We would like also to modify the model checker and related tools of [7] so to
completely mechanise our proposal.
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Abstract. Optimisation of data-parallel scientific applications for mod-
ern HPC platforms is challenging in terms of efficient use of heteroge-
neous hardware and software. It requires partitioning the computations
in proportion to the speeds of computing devices. Implementation of data
partitioning algorithms based on computation performance models is not
trivial. It requires accurate and efficient benchmarking of devices, which
may share the same resources but execute different codes, appropriate
interpolation methods to predict performance, and mathematical meth-
ods to solve the data partitioning problem. In this paper, we present a
software framework that addresses these issues and automates the main
steps of data partitioning. We demonstrate how it can be used to optimise
data-parallel applications for modern heterogeneous HPC platforms.

Keywords: heterogeneous computing, data partitioning, computation
performance models, hybrid platforms.

1 Introduction

Many scientific applications implement data-parallel algorithms, originally de-
signed for homogeneous HPC platforms. The applications range from linear al-
gebra routines to computer simulations, such as computational fluid dynamics.
They are characterised by divisible computational workload, which is directly
proportional to the size of data and dependent on data locality. In order to
execute data-parallel scientific applications on a highly heterogeneous HPC
platforms efficiently, computational workload has to be distributed between
computing devices in proportion to their speeds. Our target architecture is a
dedicated highly heterogeneous HPC platform, which has a stable performance
in time, a complex hierarchy of heterogeneous computing devices, and a het-
erogeneous software stack. We consider this platform as a hierarchical hetero-
geneous distributed-memory system, and therefore, apply data partitioning, a
method of load balancing widely used for distributed-memory supercomputers.
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Data partitioning algorithms use performance models of computing devices and
computation kernels to distribute workload. In this work, we address the problem
of implementation of data partitioning algorithms in data-parallel applications
for dedicated heterogeneous platforms.

Data partitioning algorithms based on computation performance models re-
quire accurate and efficient performance measurement, implementation of in-
terpolation methods for realistic performance prediction, and formalisation and
solution of the data partitioning problem. For static data partitioning, the op-
timality of the load distribution is critical, while for dynamic data partitioning,
the cost-efficiency is equally important. In the first case, the use of exhaustive
benchmarks to build very detailed computation performance models in advance
is justified. In the second case, only short measurements can be performed, whose
inaccuracy has to be compensated by advanced interpolation methods. On mod-
ern multicore and hardware-accelerated platforms, special performance measure-
ment techniques and computation performance models are required to take into
account resource contention. Despite the active research in the area of data par-
titioning, there is no software available that would address these challenges. In
this paper, we present such a software framework.

Our software framework is designed to construct computation perfor-
mance models for any data-parallel application to a given accuracy and cost-
effectiveness. There are two types of models supported: constant and functional.
The models can be built either in advance to be used in static data partitioning,
or at runtime during dynamic load balancing. The framework provides a range of
general-purpose data partitioning algorithms based on computation performance
models. The choice of algorithms is determined by the user’s applications. In this
paper, we demonstrate how they can be used for optimal execution of the parallel
matrix multiplication and the Jacobi method. The framework supports a wide
range of dedicated heterogeneous platforms consisting of uniprocessors, multi-
cores and hardware accelerators. The framework is extensible; new measurement
techniques for new types of hardware can be added and other computation per-
formance models and data partitioning algorithms can be included.

The rest of this paper is organised as follows. In Section 2, we overview ex-
isting data partitioning software. In Section 3, we discuss the main challenges
in optimisation of data-parallel applications for heterogeneous platforms, and
formulate the features of a framework for data partitioning based on computa-
tion performance models. In Section 4, we present the new software framework
and describe the use cases, namely optimisation of heterogeneous parallel matrix
multiplication and dynamic load balancing of the Jacobi method.

2 Existing Data Partitioning Software

Matrices and meshes are the most common objects of parallel scientific ap-
plications. Since they can be represented as graphs, most data partitioning
software implement graph partitioning algorithms. Algorithms implemented in
ParMetis [9], SCOTCH [4], JOSTLE [16] reduce the number of edges between
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the target subdomains, and hence, minimise the total communication cost of the
application. They take into account heterogeneity of the platform by specifying

– weights of the target subdomains, which represent the relative speeds of
processors [9], or

– a weighted graph of the platform, which contains information about the
speeds of processors and the bandwidths of links [4,16].

Algorithms implemented in Zoltan [3], PaGrid [1] minimise the execution time
of the application using some cost function. The cost function depends on both
the graph and the parameters of the heterogeneous platform defined by:

– a description of the hierarchy of processors [3], or
– a weighted graph of the platform, with the speeds of processors and the

latencies/bandwidths of links [1].

To distribute computations between the processors, all these graph partitioning
libraries use simplistic computation performance models, where the speeds of
processors are given by constants (weights). Despite the fact that the result of
data partitioning is very sensitive to the weights, the libraries do not provide
any methods to find the values that balance the load for given data-parallel
application on heterogeneous platform. Application programmers are responsible
for building the computation performance models and distributing the load.

Traditionally, the constants characterising the performance of the processors
are found as their relative speeds demonstrated during the execution of a se-
rial benchmark code solving locally the core computational task of some given
size. This approach is not always accurate and may result in non-optimal par-
titioning on modern highly heterogeneous platforms as it was demonstrated in
[6]. Existing data partitioning software, which is based on this approach, do not
take into account memory hierarchy, hierarchy of computing devices, software
heterogeneity, optimisations and out-of-core techniques used in software.

For modern heterogeneous platforms, more realistic computation performance
models have been proposed along with more elaborate general-purpose model-
based data partitioning algorithms to find the optimal load distribution ratios,
which can be used as weights in graph partitioning. However, integration of these
algorithms into data-parallel applications is not trivial. In the following section,
we discuss the main challenges of software implementation of heterogeneous data-
parallel applications and define the features of a framework for data partitioning
based on computation performance models.

3 Optimisation of Data-Parallel Applications for
Heterogeneous Platforms

In this section, we analyse the main challenges application programmers face
while optimising data-parallel applications for modern heterogeneous HPC ar-
chitectures. Given a data-parallel scientific application, originally designed for
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distributed-memory platforms and implemented with help of MPI, how to exe-
cute it efficiently on a heterogeneous platform? The total volume of communi-
cations is minimised at the application level (for example, by multilevel graph
partitioning in mesh applications [9], or by arrangement of matrix blocks in
matrix applications [2]). In the computationally intensive part, the application
calls a library of routines, for which the hardware-optimised implementations
are available (for example, multi-threaded and GPU solvers). Therefore, in or-
der to execute this application efficiently on the heterogeneous platform, we do
not design new hybrid kernels that employ multiple computing devices simulta-
neously. Instead, we use existing high performance kernels for these devices and
distribute the application data unevenly between them, based on the a priori
information about their performance.

A general-purpose data partitioning algorithms based on computation perfor-
mancemodels proceeds as follows.As input, it requires performancemodels, which
can be constructed either in advance or at run-time. The models approximate the
speed of the application on each of the computing devices, and in their turn re-
quire empirical information about the real performance. This information can be
obtained fromthebenchmarks that assess theperformance of the applicationonthe
devices.Therefore, themain challenges the applicationprogrammer faces are accu-
rate and efficient performance measurement, construction of computation perfor-
mance models and implementation of model-based data partitioning algorithms.

Accurate and cost-effective methods of performance measurement are para-
mount for data partitioning to work in real-life heterogeneous environments.
The use of wrong estimates can fully destroy the resulting performance of the
application. Performance can be found by benchmarking a computation kernel,
a serial code performing much less computations but still representative for the
entire application [10]. For example, computationally intensive applications of-
ten perform the same core computation multiple times in a loop. The benchmark
made of one such core computation can be representative of the performance of
the whole application and can be used as a kernel. Timing the computation
kernel on heterogeneous devices may be non-trivial, and therefore, its au-
tomation would facilitate development of data-parallel applications, especially
on the platforms where special techniques are required for accurate performance
measurements, such as multicore and hardware-accelerated platforms.

For example, on multicore platforms, parallel processes interfere with each
other through shared memory so that the speed of individual cores cannot be
measured independently. In this case, the performance of cores in a group can be
measured, when all cores are executing the benchmarks in parallel [18]. Interac-
tions between CPUs and GPUs include data transfers between the host and GPU
memory over PCI Express, launching of GPU kernels, and some other opera-
tions. Performance measurement techniques for heterogeneous GPU-accelerated
systems were studied in [13]. It was concluded that the synchronous approach,
when the host CPU core observes the beginning and the end of an operation, is
valid for measurement of routines implemented in synchronous libraries, such as
CUBLAS. This technique covers all interactions between devices and does not
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require any special measurement mechanisms. The performance of out-of-core
routines can also be measured from the host CPU core. Incorporation of these
performance measurement techniques into the data-parallel application
add extra complexity; they have to be implemented as routine procedures.

The results of performancemeasurements are used in computation performance
models, which implement different interpolationmethods to predict the execution
timeand speed.Onthis prediction, heterogeneousdatapartitioning algorithmswill
be based.Anumber ofmodels and algorithmshave been proposed. Their choice de-
pends on the data-parallel application and the heterogeneous platform. The soft-
ware framework for data partitioning has to provide a collection of suchmodels and
algorithms. We briefly summarise the applicability of recent work related to data
partitioning on heterogeneous multicore and multi-GPU platforms.

When the problems fit the main memory of the processors/devices and the
processors/devices execute the same codes for these problems, the absolute
speeds do not vary. In this case, data partitioning algorithms based on con-
stant performance model (CPM) can be used. In [8], constants representing
the sustained performance of the application on CPU/GPU were used to par-
tition data. The constants were found a priori. In [17], a similar constant per-
formance model was proposed, but it was built adaptively, using the history of
performance measurements. CPM-based algorithms are cost efficient and do not
introduce much complexity into heterogeneous applications. The fundamental
assumption of these algorithms is that the absolute speed of processors/devices
does not depend on the size of a computational task. However, it becomes less
accurate when the partitioning of the problem results in some tasks fitting into
different levels of memory hierarchy (i), or when processors/devices switch be-
tween different codes to solve the same computational problem (ii).

For the cases (i) and (ii), more elaborate computation performance models
and data-partitioning algorithms have been proposed. In [12], the execution time
of CPU/GPU was approximated by linear functions of problem size, and an em-
pirical approach to estimate the application-specific linear performance mod-
els was presented. A more elaborate analytical predictive model was proposed
in [14]; it is also application-specific, however, not only the values of parameters,
but also their number and the predictive formulas are defined individually for
each application, based on thorough performance analysis of the main steps of
the application. In [14], it was admitted that linear models might not fit the
actual performance in the case of resource contention (iii), and therefore, they
were replaced by the analytical piecewise model. This model can achieve
high accuracy but there is no generic way to build it for an arbitrary application
and hardware. Nevertheless, analytical models and model-based data partition-
ing algorithms can be implemented once per class of applications and can be
included into a framework for data partitioning.

For an arbitrary data-parallel application to be executed for a wide range of
problem sizes on a platform with highly heterogeneous hardware/software and
resource contention, we proposed the functional performance model (FPM),
where the speed is represented by a function of problem size that is built
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empirically and integrates performance characteristics of both the architecture
and the application [10]. Under the functional performance model, the speed of
each processor is represented by a continuous function of the problem size. The
speed is defined as the number of computation units processed per second. Such
a performance model is application and hardware specific. In particular, this
means that the computation unit can be defined differently for different applica-
tions. The important requirement is that the computation unit does not have to
vary during the execution of the application. This model can be estimated in the
same way for any data-parallel application and applicable in situations (i)-(ii).
It approximates the execution time and speed using piecewise linear or Akima
spline interpolation [15]. Originally, the functional performance model was de-
signed for uniprocessor machines: it provided optimal data partitioning [7] and
efficient dynamic load balancing [6] on heterogeneous networks of uniprocessors.
Later, this approach was extended to multicore [18] and hybrid CPU/GPU [19]
platforms. Taking into account resource contention, situation (iii), we introduced
a speed of multiple cores, when multiple cores simultaneously execute the same
computation kernel, and a combined speed of a GPU and a dedicated host CPU,
when the GPU executes a computation kernel and the CPU provides memory
management. Integration of all these features into a data-parallel application is
challenging and requires appropriate software implementation.

Elaborate computation performance models provide more accurate prediction
but complicate data partitioning algorithms. In contrast to the traditional data
partitioning algorithms, which distribute computations in proportion to constant
speeds, the algorithms based on functionalmodels require solving a systemof equa-
tions whose solution yields the balance. If the speeds are defined by predictive for-
mulas, the solution of the load balancing problem can be found analytically [12],
[14]. Otherwise, if the speeds are interpolated from empirical data, like in [10], the
solution can be found geometrically [10] or numerically [15]. Implementation of
model-based data partitioning from scratch within a heterogeneous data-parallel
application is challenging due to complexity of data partitioning algorithms.
Therefore, routines implementing these algorithms forms a key functionality of a
framework facilitating development of applications for heterogeneous platforms.

In this paper, we present the software framework that addresses the above
challenges. On several examples, we illustrate how to adapt data-parallel MPI
applications to hybrid heterogeneous platforms, using this framework.

4 New Framework for Model-Based Data Partitioning

In this section, we give a high-level outline of the new framework for model-
based data partitioning FuPerMod, available through the open-source license
from http://hcl.ucd.ie/project/fupermod. The framework provides
the programming interface for:

– accurate and cost-effective performance measurement,
– construction of computation performance models implementing different

methods of interpolation of time and speed,

http://hcl.ucd.ie/project/fupermod
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– invocation of model-based data partitioning algorithms for static and dy-
namic load balancing.

This functionality can be incorporated into a data-parallel applications as fol-
lows. First, the application programmer has to provide the serial code for the
computation kernel of their application and define its computation unit by using
the API provided. This code will be used for computation performance mea-
surements, which can be carried out either within the application or separately,
in order to obtain the a priori performance information. Then, the programmer
chooses the appropriate computation performance model and data partitioning
algorithm, and incorporates them into the application. Upon execution of the
data-parallel application on the heterogeneous platform, the models of proces-
sors/devices will be constructed and the data partitioning algorithm will yield
the optimal distribution of workload for a given problem size. Finally, the pro-
grammer is responsible for distribution of the application data according to the
optimum distribution given in computation units.

4.1 Computation Performance Measurement

The programming interface for computation performance measurement consists
of a data structure encapsulating the computation kernel, fupermod kernel, the
benchmark function, fupermod benchmark, and a data structure storing the re-
sult of the measurement, fupermod point.

The serial code of the computation kernel has to be provided together with
the functions to allocate and deallocate the data for a problem size given in
computation units. In these functions, the application programmer defines the
computation unit and reproduces the memory requirements of the application.
To enable conversion of speed from units/sec to FLOPS, the programmer has
to specify the complexity of the computation unit. As a whole, fupermod kernel
has the following interface:

struct fupermod_kernel {
double (*complexity)(int d, void* params);
int (*initialize)(int d, void* params);
int (*execute)(pthread_mutex_t* mutex, void* params);
int (*finalize)(void* params);

};

– complexity is a pointer to the function that returns the complexity of com-
puting d units;

– initialize/finalize allocate and deallocate memory for the problem of d com-
putation units (create and destroy the execution context for the kernel);

– execute executes the computation kernel in a separate thread;
– params stores the execution context of the kernel;
– mutex protects some resources, when kernel is terminated during a long run.

Let us consider how to define the computation kernel for a typical data-parallel
application, such as matrix multiplication.
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In this application, square matrices A, B and C are partitioned over a 2D
arrangement of heterogeneous processors so that the area of each rectangle is
proportional to the speed of the processor that handles the rectangle. This speed
is given by the speed function of the processor for the assigned problem size. Fig-
ure 1(a) shows one iteration of matrix multiplication, with the blocking factor b
parameter, adjusting the granularity of communications and computations [5].
At each iteration of the main loop, pivot column of matrix A and pivot row
of matrix B are broadcasted horizontally and vertically, and then matrix C is
updated in parallel by the GEMM routine of the Basic Linear Algebra Subpro-
grams (BLAS). In this application, we use the matrix partitioning algorithm [2]
that arranges the submatrices to be as square as possible, minimising the total
volume of communications and balancing the computations on the heterogeneous
processors.

We assume that the total execution time of the application can be approxi-
mated by multiplying the execution time of a single run of the computational
kernel by the number of iterations of the application. Therefore, the speed of the
application can be estimated more efficiently by measuring just one run of the
kernel. For this application, the computation kernel on the processor i will be an
update of a b× b block of the submatrix Ci with the parts of pivot column A(b)

and pivot row B(b): Ci+ = A(b)×B(b) (Fig. 1(b)). This block update represents
one computation unit of the application. The processor i is to process mi × ni

such computation units, which is equal to the area of the submatrix if measured
in blocks. For nearly-square submatrices, which is the case in this application,
one parameter, area di, can be used as a problem size.

Therefore, in the initialize function, for the problem size di, we define mi =
)√di+;ni = )di/mi+. We allocate and initialise (mi × b)× (ni × b) elements for
each of the submatrices Ai, Bi and Ci. We allocate the working buffers A(b) and
B(b) of sizes (mi × b)× b and b× (ni × b) respectively. The execute function for
this kernel will be representative of the local work performed by one iteration
of the main loop of the application. To replicate the local overhead of the MPI
communication it does a memory copy from part of submatrices Ai and Bi

to working buffers A(b) and B(b) respectively. It then calls the GEMM routine
once with A(b), B(b) and Ci. Having the same memory access pattern as the

(a) (b)

Fig. 1. Heterogeneous parallel column-based matrix multiplication (a) and its compu-
tational kernel (b)
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whole application, the kernel will be executed at nearly the same speed as the
whole application. The complexity function returns the number of arithmetic
operations performed by the kernel: 2× (mi × b)× (ni × b)× b.

Performance measurement of this kernel on heterogeneous devices that share
resources and use different programming models is challenging. In our previous
work, we proposed the measurement techniques for a multicore node [18] or GPU-
accelerated node [19], which are now implemented in the FuPerMod framework.
They provide reproducible results within some accuracy and can be summarised
as follows. Automatic rearranging of the processes provided by operating system
may result in performance degradation, therefore, we bind processes to cores
to ensure a stable performance. Then, we synchronise the processes that share
resources (on a node or a socket), in order to minimise the idle computational
cycles, aiming at the highest floating point rate for the application. Synchronisa-
tion also ensures that the resources will be shared between the maximum number
of processes, generating the highest memory traffic. To ensure the reliability of
the measurement, experiments are repeated multiple times until the results are
statistically correct.

GPU depends on a host process, which handles data transfer between the host
and device and launches kernels on the device. A CPU core is usually dedicated to
deal with the GPU, and can undertake partial computations simultaneously with
the GPU. Therefore, we measure the combined performance of the dedicated core
and GPU, including the overhead incurred by data transfer between them. Due
to limited GPU memory, the execution time of GPU kernels can be measured
only within some range of problem sizes, unless out-of-core implementations,
which address this limitation, are available.

To measure the performance of a computation kernel on heterogeneous pro-
cessors/devices, FuPerMod provides a function fupermod benchmark, which has
the following interface:

int fupermod_benchmark(
fupermod_kernel* kernel, int d,
fupermod_precision precision,
MPI_Comm comm_sync,
fupermod_point* point

);

struct fupermod_point {
int d;
double t;
int reps;
double ci;

};

This function initialises the kernel for the problem size d and executes it mul-
tiple times accordingly to the precision argument, which defines the number of
repetitions and statistical parameters. The kernel can be executed in multiple
processes. MPI communicator comm sync is used to synchronise the processes
running on a multi-CPU/GPU node. The function returns a point, which con-
tains the results of the measurement: the problem size in computation units, d ;
the measured execution time, t ; the number of repetitions the measurement has
actually taken, reps ; and the confidence interval of the measurement, ci. Arrays
of these experimental points are then used to model the performance of CPU
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core(s), or the bundled performance of a GPU and its dedicated CPU core, or
the total performance of a multi-CPU/GPU node.

4.2 Computation Performance Models

The key abstraction of the programming interface for computation performance
modeling is fupermod model, which has the following interface:

struct fupermod_model {
int count;
fupermod_point* points;
double (*t)(fupermod_model* model, double x);
int (*update)(fupermod_model* model, fupermod_point point);

};

It encapsulates experimental points obtained from measurements, which are
given by the count and points data fields, and the approximation of the time func-
tion, t. update specifies how the approximation changes after adding a new ex-
perimental point. The speed in FLOPS is evaluated using the approximated time
and the complexity of the computation kernel: s(x) = complexity(x)/time(x),
where x is a problem size given in computation units. These approximations are
used in the model-based data partitioning algorithms to predict the computation
performance and distribute the workload proportionally.

Currently, FuPerMod implements the following performance models:

– CPM (requires only one experimental point);
– FPM based on the piecewise linear interpolation of the time function;
– FPM based on the Akima spline interpolation of the time function.

The first FPM is based on some assumptions on the shape of the speed func-
tion [10]. In addition to the piecewise linear interpolation, it coarsens the real
performance data in order to satisfy those assumptions, as shown in Fig. 2(a).
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Fig. 2. Speed functions of the matrix multiplication kernel based on the Netlib BLAS
GEMM: (a) piecewise linear interpolation, (b) Akima spline interpolation
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The FPM based on the Akima spline interpolation removes these restrictions
[15], and therefore, represents the speed of the processor with more accurate con-
tinuous functions (Fig. 2(b)). The fupermod model data structure can be used
to implement other computation performance models, for example, application-
specific analytical models, such as [14].

4.3 Static Data Partitioning

Computation performance models of processes are used as input for model-based
data partitioning algorithms. The FuPerMod framework currently provides the
following algorithms:

– basic algorithm based on CPMs;
– geometrical algorithm based on the piecewise-linear FPMs;
– numerical algorithm based on the Akima-spline FPMs.

The CPM-based algorithm divides the data in proportion to the constant speeds.
This is the fastest but least accurate data partitioning algorithm. It is appropri-
ate for the cases when it has been observed that the speeds do not vary much.
The geometrical algorithm implements iterative bisection of the speed functions
with lines passing through the origin of the coordinate system [10]. Convergence
of this algorithm is ensured by putting restrictions on the shape of the speed
functions, which is implemented in the piecewise-linear FPMs. The numerical
algorithm applies multidimensional solvers to numerical solution of the system
of non-linear equations that formalise the problem of optimal data partition-
ing [15]. It can be applied to smooth speed functions of any shape. As input,
the algorithm takes the Akima-spline FPMs, since this approximation provides
continuous derivative.

Data partitioning algorithms have the following interface:

typedef int (*fupermod_partition)(
int size, fupermod_model** models, fupermod_dist* dist);

where size is the number of the processes, models is an array of the models corre-
sponding to the processes, and dist is the distribution of data. The distribution
is an input/output argument and has the following structure:

struct fupermod_dist {
int D;
int size;
fupermod_part* parts;

};

struct fupermod_part {
int d;
double t;

};

where D is the total problem size to partition (in computation units); size is the
number of processes; parts is the array specifying the workload d that will be
assigned to the processes, and the predicted computing time t of the workload.
After execution of the data partitioning algorithm, the application programmer
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distributes the workload in accordance with the dist argument. A sample code
demonstrating how to use the programming interface for data partitioning will
be provided below, within a more practical example of dynamic load balancing.

The cost of experimentally building a full computation performance model,
i.e. a functional model for the full range of problem sizes, may be very high,
which limits the applicability of the above partitioning algorithms to situations
where the construction of the models and their use in the application can be
separated. For example, if we develop an application that will be executed on
the same platform multiple times, we can build the full models once and then use
these models multiple times during the repeated execution of the application. In
this case, the time of construction of the models can become very small compared
to the accumulated performance gains during the multiple executions of the op-
timized application. Building full functional performance models is not suitable
for an application that is run a small number of times on a platform. In this
case, computations should be optimally distributed between processors without
a priori information about execution characteristics of the application running
on the platform. In the following section, we describe the programming interface
for dynamic data partitioning and load balancing, which can be used to design
applications that automatically adapt at runtime to any set of heterogeneous
processors.

4.4 Dynamic Data Partitioning and Load Balancing

FuPerMod provides the efficient data partitioning algorithms that do not require
performance models as input. Instead, they approximate the speeds around the
relevant problem sizes, for which performance measurements are made during
the execution of the algorithms. These algorithms do not construct complete
performance models, but rather partially estimate them, sufficiently for optimal
distribution of computations. They balance the load not perfectly, with a given
accuracy. The low execution cost of these algorithms makes them suitable for
employment in self-adaptable applications. Currently, FuPerMod provides two
such algorithms, designed for dynamic data partitioning [11] and dynamic load
balancing [6].

The dynamic algorithms perform data partitioning iteratively, using the par-
tial estimates instead of the full computation performance models. At each iter-
ation, the solution of the data partitioning problem gives new relevant problem
sizes. The performance is measured for these problem sizes, and the partial es-
timates are refined. In the case of dynamic data partitioning, the measurements
are made by benchmarking the representative computation kernel of the applica-
tion. In the case of dynamic load balancing, the real execution of one iteration of
the application is timed. Figure 3 shows a few steps of dynamic data partitioning
for piecewise linear FPMs and geometrical data partitioning algorithm.

The programming interface for the dynamic algorithms consists of a data
structure fupermod dynamic, specifying the context of their execution, and two
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(a) (b)

Fig. 3. Construction of the partial FPMs based on piecewise linear interpolation, using
the geometrical data partitioning algorithm

functions fupermod partition iterate and fupermod balance iterate, implementing
one step of dynamic partitioning and load balancing respectively:

struct fupermod_dynamic {
fupermod_partition partition;
int size;
fupermod_model** models;
fupermod_dist* dist;

}
int fupermod_partition_iterate(fupermod_dynamic*, MPI_Comm comm,

fupermod_precision precision, fupermod_benchmark* benchmark,
double eps);

int fupermod_balance_iterate(fupermod_dynamic*, MPI_Comm comm,
struct timespec start);

The context includes the pointer to a data partitioning algorithm, partition,
current partial estimates, models, and near-optimal data partition, dist. Both
function invoke the data partitioning algorithm once, using the current estimates,
and store the result in dist. The dynamic data partitioning function performs
the benchmark, with the statistical parameters precision, while the dynamic load
balancing function uses the start time of the current iteration of the application
to time. Then both function update the partial estimates. The dynamic data
partitioning also requires the accuracy, eps, as a termination criterion.

In conclusion, we demonstrate how to use this API for optimisation of another
data-parallel application, which implements the Jacobi method. This application
distributes the matrix and vectors by rows between the processors and iteratively
solves the system of equations. In the source code below, the partial FPMs based
on piecewise linear interpolation are constructed at runtime during the iterations
of the Jacobi method. At each iteration, the load balancing function invokes the
geometrical data partitioning algorithm. The system of equations is redistributed
accordingly to the newly obtained data distribution. Figure 4 demonstrates that
after several iterations of the application, the load is balanced.
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MPI_Comm_size(comm, &size);
// FPMs based on piecewise linear interpolation
fupermod_model** models = malloc(sizeof(fupermod_model*) * size);
for (i = 0; i < size; i++)

models[i] = fupermod_model_piecewise_alloc();
// context for dynamic load balancing
fupermod_dynamic balancer = { fupermod_partition_geometric,

size, models, fupermod_dist_alloc(D, size) };
// current distribution, initially even
fupermod_dist* dist = fupermod_dist_alloc(D, size);
// Jacobi data: dist->parts[i].d rows of matrix and vectors
double *A, *b, *x; // allocation, initialisation
// main loop
double error = DBL_MAX;
while (error > eps) {

// redistribution of Jacobi data accordingly to balancer.dist
jacobi_redistribute(comm, dist, A, b, x, balancer.dist);
// store the current distribution
fupermod_dist_copy(dist, balancer.dist);
struct timeval start;
gettimeofday(&start, NULL);
// Jacobi iteration
jacobi_iterate(comm, dist, A, b, x, &error);
// load balancing with the (dist->parts[i].d, now-start) point
fupermod_balance_iterate(&balancer, comm, start);

}

In this paper, we presented a framework for general-purpose data partitioning
based on computation performance models. This framework provides a range
of algorithms and models for optimisation of different data-parallel scientific
applications on modern heterogeneous platforms.
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Abstract. In this paper we present DISBench, an open-source bench-
mark suite designed for memory performance evaluation of multicore
processors and multiprocessor systems on different sets of workload.
DISBench includes three memory access kernels: stream, stride and ran-
dom, which represent different types of memory intensive applications.
DISBench natively supports hardware performance counters for detailed
performance analysis. Evaluation results of the modern multicore
processors (Intel Sandy Bridge-EP and AMD Interlagos) are presented
and discussed.

Keywords: multiprocessor, multicore, bandwidth, benchmarking.

1 Introduction

For the last few years emergence of data intensive applications for HPC systems
has forced the development of new architectures suitable for its requirements as
well as testing and evaluation tools.

Most data intensive applications are characterized with a prevalence of
memory access instructions with low temporal and space locality, which is a
unsuitable way of operating for memory subsystem of current microprocessor
architectures optimized for cache-friendly access patterns.

Current microprocessors (Intel and AMD) have hierarchically organized
caches (L1, L2 and L3) and integrated memory controller which provides
exchange of 64 byte memory blocks (cache lines) with offchip memory.

There are few benchmarks which specified for memory subsystem
evaluation of multicore multiprocessor systems. Most of them are specialized for
sequential access patterns such as STREAM [1] or LMbench [4] with exception of
RandomAccess [3] which implements irregular random access pattern. Together
these benchmarks are a powerful tool for investigating capabilities of hardware
platforms. However performance analysis with these benchmark can be work-
some because of the lack of the means for performance inspection as well as
non-sufficient control over memory allocation in NUMA systems and thread
affinity.

We developed new open-source benchmark called DISBench specified for
memory performance evaluation on diverse access patterns. Currently in DIS-
Bench three synthetic patterns are implemented: stream, stride and random.
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Also extensive performance analysis is provided through support of hard-
ware performance counters. Currently different level cache miss and TLB miss
counters are supported which proved to simplify analysis of the results. We
performed memory subsystem performance analysis of the up-to-date multicore
microprocessors Intel Sandy Bridge-EP and AMD Interlagos.

This paper makes the following contributions:

– We developed new open-source benchmark DISBench for memory perfor-
mance analysis with support of hardware performance counters.

– We evaluated Intel Sandy Bridge-EP and AMD Interlagos platforms on DIS-
Bench and analysed obtained results. In the scope of this paper we limited
evaluation with only local memory.

The rest of the paper is organized as follows. Section 2 presents overview of
existing benchmarks oriented on memory performance evaluation. DISBench and
its kernels are described in Section 3. Section 4 presents configuration of hard-
ware platforms. Evaluation results and its analysis are presented in Section 5.
Section 6 concludes this paper and provides plans for the future work.

2 Related Work

Benchmarking [or microbenchmarking] is a well known and widely adopted
technique to understand characteristics of hardware architecture and analyze
performance of real life applications. Memory subsystem is a key part of system
architecture which is frequently becomes bottleneck for wide class of applica-
tions. There are multiple tools and methods to analyze performance of memory
subsystem of multicore multiprocessor compute nodes.

One of the best known and widely used memory targeted benchmarks is
STREAM [1], [2] which is used to measure bandwidth of memory subsystem
under serial access patters. STREAM is a multithreaded program developed on
OpenMP. There is no possibilities to control distribution of allocated memory
on NUMA nodes in STREAM except with external utilities such as numactl. In
most cases STREAM is used to measure performance of local memory in SMP
multiprocessors.

Another popular microbenchmark is RandomAccess from HPC Challenge
benchmark suite [3]. RandomAccess is used to measure performance of memory
subsystem under uniformly randomized accesses pattern with load-modify-store
(update) operation. In HPC Challenge serial (single threaded) and MPI parallel
implementation of RandomAccess are included.

Benchmark suite LMbench [4] includes microbenchmarks to measure band-
width and latencies of different system software routines. LMbench measures
memory bandwidth for read, write and copy operations as well as memory read
latency.

Another interesting benchmark is x86membench [5],[6] from BenchIT bench-
mark suite which is a set of low level primitives written on assembler code used
to measure bandwidth and latencies on different levels of memory hierarchy.
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3 DISBench

DISBench is an open-source benchmark written on C++ (all kernels are pure
C functions) with command line interface and extensive set of parameters.
DISBench is designed for memory performance evaluation of multicore multipro-
cessor systems (SMP and NUMA compute nodes) with advanced performance
analysis through incapsulating of hardware performance counters into kernel
codes.

Currently DISBench comprises of the three synthetic kernels: stream, stride
and random. All of them can use one of the three memory access operations:
load, store or load-modify-store. Each kernel supports multithreading execution
implemented by POSIX threads library.

DISBench supports control of core allocation for threads to run: each thread
can be bind to specific or automatically scheduled by OS. This allows to omit
negative effects of OS scheduling on performance results.

DISBench supports control over sharing of memory by threads: memory can
be shared or private. Additionally DISBench supports control over allocation
of memory on NUMA nodes by using numalib API which is bit more accu-
rate than numactl utility. In DISBench three modes of memory distribution are
implemented: OS driven, blocked and interleaved with specified block size
multiple of page size.

DISBench supports hardware performance counters through PAPI interface
[7], which enables easier performance analysis. Currently following performance
counters are supported: L1 miss counter, L2 miss counter, L3 miss counter and
TLB miss counter.

3.1 Stream Kernel

Stream kernel is used to estimate sustained bandwidth of the memory subsystem
under access pattern with stream of serial addresses. Stream kernel consists of a
simple loop which reads or writes to consecutive array elements (access pattern
is similar as in STREAM benchmark). Memory is divided between threads by
blocks of equal size, each thread works with its own contiguous part of memory.
Manual unrolled versions of stream kernel are also implemented with unroll
depth of 4, 8 and 16.

3.2 Stride Kernel

Stride kernel is used to estimate sustained performance of the memory subsys-
tem under access pattern with stream of addresses with constant stride. Stride
kernel allows to estimate characteristics of hardware prefetching mechanism,
analyse conflicts in memory controller, study TLB miss handling effects and so
on. Manual unrolled versions of stream kernel are also implemented with unroll
depth of 4, 8 and 16.
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Table 1. Configuration of test systems

Vendor Intel AMD

Processor Xeon E5-2660 Opteron 6234

Codename Sandy Bridge-EP Interlagos

Sockets 1 4

Cores 8 2x 6

Clock speed 2.2 Ghz 2.4 Ghz

L1 data cache 8x 32 KB (8-way) 12x 16 KB (4-way)

L2 cache 8x 256 KB (8-way) 12x 1MB

L3 cache 20 MB (20-way) 2x 8M

IMC channels 4 2x 2

DIMMs/channel 2x 8GB DDR3-1600 8x 8GB DDR3-1600

Compiler GCC 4.3.4 GCC 4.3.4

Operating system SUSE 11 (x86 64, PAE) SUSE 11 (x86 64, PAE)

3.3 Random Kernel

Random kernel is used to estimate sustained performance of the memory subsys-
tem under access pattern with stream of random addresses. Random addresses
are generated as in HPCC RandomAccess. There are two ways to run random
kernel: first is to generate indices on-the-fly and second is to use index vector
with pregenerated indices.

4 Test Platforms

Table 1 shows hardware configuration of the platforms used for performance
evaluation. We used modern multisocket compute nodes with up-to-date
microprocessors from Intel and AMD.

5 Evaluation Results

In this section we present the results of the series of measurements which were
performed on several multicore multiprocessor platforms. The main purpose of
the evaluation was to estimate effectiveness of memory subsystem under various
workloads and through obtained results to make assumptions about microarchi-
tecture of modern microprocessor (Intel Sandy Bridge-EP and AMD Interlagos)
system and compare it to each other.

In all cases discussed below we used only single processor of multiproces-
sor node and evaluated its local memory subsystem. Evaluation of memory
performance in multiprocessor mode is out of the scope of this paper and will
be done in future work.



DISBench: Benchmark for Memory Performance Evaluation 201

Fig. 1. Performance of stream kernel

5.1 Stream Kernel

Fig. 1 shows scalability of sustained bandwidth of Sandy Bridge-EP, AMD
Interlagos on stream kernel for read and write operations with the number of
used micropocessor cores. We used 16 GB of memory for the test and applied
manual loop unrolling (16 iterations).

As it can be seen from the Fig. 1 both Sandy Bridge-EP and Interlagos showed
similar behaviour. For the small number of cores write operations achieved better
sustained bandwidth than read operation and for the high number read oper-
ations overcome write operations. It can be explained by two reasons. First is
that the number of issued instruction for the write operations is greater than for
read operations because of dependencies in loop iterations when read operations
are used. That is the reason for higher bandwidth in the case of write operations
and small number of cores. Second is that store operation involves double trans-
fer of cache line between memory controller and offchip memory (reading data
from memory and writing it back to memory) while load operation involves only
single transfer of data that is the reason of higher bandwidth in the case of read
operations and high numbers of used cores.

5.2 Stride Kernel

Fig. 2 shows the results of stride kernel obtained on Sandy Bridge-EP and
Interlagos processors correspondingly. We used 16 GB of memory for the bench-
mark and did not apply loop unrolling. For Interlagos both 6-core nodes of the
socket have been used and memory was divided between them equally i.e. 8 GB
per node. Also we used start offset of 128 bytes for each core.

There are a whole set of architectural features such as hardware prefetch-
ing mechanism, channel and bank interleaving, TLB structure and page map
organization, data cache sizes which influence on the results obtained on this
kernel.
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(a) Sandy Bridge-EP, loads (b) Sandy Bridge-EP, stores

(c) Interlagos, loads (d) Interlagos, stores

Fig. 2. Sustained bandwidth for stride kernel on Intel Sandy Bridge-EP for loads (a)
and stores (b) and AMD Interlagos for loads (c) and stores (d)

As it can be seen from the Fig. 2 all plots have a similar shape which con-
sists of three phases: decrease, minimum and increase. For Sandy Bride-EP (see
Fig. 2 (a),(b)) decrease phase is on the interval from 8 to 4M, minimum – from
4M to 64M and increase – from 64M to 8G. For Interlagos (see Fig. 2 (c),(d))
decrease – from 8 to 64K, minimum – from 64K to 128M and increase – from
128M to 8G.

At the decrease phase we see gradual decreasing of sustained bandwidth with
increasing of stride length. These can be explained by two factors. First is cache
line usage and hardware prefetch efficiency. When stride is very small (8, 16 or
32 bytes) we access cache line [already moved to L1 cache] multiple times (8, 4
or 2 correspondingly) which improves performance. When we increase stride to
64 bytes and more each loaded cache line is used only once. Hardware prefetch
efficiency drops down with further increasing of stride length. Second factor is
a memory controller channel and memory bank conflicts which increases with
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(a) Sandy Bridge-EP, loads (b) Sandy Bridge-EP, stores

(c) Interlagos, loads (d) Interlagos, stores

Fig. 3. Sustained bandwidth and performance counters (L1, L2, L3 and TLB miss
rates) for stride kernel on Intel Sandy Bridge-EP for loads (a) and stores (b) and AMD
Interlagos for loads (c) and stores (d)

increase of stride till all accesses are directed to the single bank and all memory
subsystem works with a bandwidth of single bank (on the plots this corresponds
to the minimum phase).

At the increase phase we see steep increasing of sustained bandwidth which
occurs because of reduction of work set (the greater stride is the lesser memory
cells are accessed) and location of all the data in caches. However it worthwhile
to note that performance begins to rise only from 64M for Sandy Bridge-EP
(see Fig. 2 (a), (b)) and from 128M for Interlagos (see Fig. 2 (c), (d)) when
relation of 16G to 128M is 128 which means that only 128 cache line are being
accessed. We assume that the reason is the perpetual conflicts in set-associative
cache memories i.e. accesses to the limited number of sets because of some bits
in index offset preserves its values since stride number is a power of two number.

On the Fig. 3 results of stride kernel with information about L1, L2 and L3
cache and TLB relative miss rates Sandy Bridge-EP and Interlagos are presented.
We calculated relative miss rates as a ratio of total misses to total number of
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(a) Sandy Bridge-EP, loads (b) Sandy Bridge-EP, stores

(c) Interlagos, loads (d) Interlagos, stores

Fig. 4. Sustained bandwidth for random kernel on Intel Sandy Bridge-EP for loads (a)
and stores (b) and AMD Interlagos for loads (c) and stores (d)

memory accesses. In both cases single core has been used. We have not been
able to measure number L3 cache misses for Interlagos as it is currently not
supported by PAPI library.

Analysing the behaviour of performance counters we can prove and extend ex-
planation of memory subsystem effects presented above. For example, for Sandy
Bridge-EP (see Fig. 3 (a),(b)) L1 miss rate increases from 0 to 1.0 when stride
length has been increased to 64 bytes and greater. It means that each memory
access involves L1 miss and causes loading of a new cache line from the memory.

At the same time to L2 and L3 miss rates become 1.0 when stride length
has been increased to 128 bytes and greater. We assume that this effect caused
by adjacent cache line prefetch mechanism which in Sandy Bridge-EP loads
additional cache line only to L2 and L3 caches. The value of L3 miss rate drops
to 0.0 again when stride is increased to 128M and greater which means that
there is no more any misses to L3, as for L1 and L2 miss rates its values are set
to 0.0 after stride reaches 2G. Thus assumption about conflicts in caches stated
earlier is proved because 16G/2G=8 and L1 and L2 are 8-way associative.
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As for TLB miss rate it becomes equal to 1.0 when stride length increases to
2M which means that huge pages are allocated by Linux kernel memory manager
automatically. Furthermore when stride length is greater than 16M with every
TLB miss there is an additional miss to L1 when page map is accessed to load
page descriptor to TLB and L1 miss rate becomes 2.0. This is due to the fact
that each cache line holds 8 page descriptors which are 64-bit in PAE mode.
When stride is 16M or greater and huge pages are used each TLB miss generate
access to new cache line and L1 miss.

5.3 Random Kernel

Fig. 4 shows the results of random kernel obtained on Sandy Bridge-EP and
Interlagos processors. As in the previous cases we used 16 GB of memory for the

(a) Sandy Bridge-EP, loads (b) Sandy Bridge-EP, stores

(c) Interlagos, loads (d) Interlagos, stores

Fig. 5. Sustained bandwidth and performance counters (L1, L2, L3 and TLB miss
rates) for random kernel on Intel Sandy Bridge-EP for loads (a) and stores (b) and
AMD Interlagos for loads (c) and stores (d)



206 A. Frolov and M. Gilmendinov

benchmark. For Interlagos both nodes of the socket have been used. For index
generating we used on-the-fly HPCC Challenge random generator during the
execution.

For load operations (see Fig. 4 (a) and Fig. 4 (c)) in both cases there can be
seen relatively slow degradation of performance with increase of used memory
in the range from 8K to 16M when data is fully stored in cache memories. From
32M to 16G there sustained bandwidth drops and shows the performance of
memory controller and offchip memory bus. For Sandy Bridge-EP 450 MW/s
(3,6 GB/s) was obtained on eight cores, for Interlagos – 220 MW/s (0,9 GB/s)
on twelve cores.

For store operations (see Fig. 4 (b) and Fig. 4 (d)) on the range from 8K
to 16M performance increases for both Sandy Bridge-EP and Interlagos. This
is is related to L1 and L2 cache coherency support as store operations involves
invalidation of cache lines in each core and broadcasting of information about of
cache line modification to other cores. This greatly reduces performance espe-
cially for small memory sizes as every store operation introduces cache-coherence
overheads. From 32M to 16G there sustained bandwidth drops to 200 MW/s for
Sandy Bridge-EP on eight cores and to 140 MW/s for Interlagos on twelve cores.

On the Fig. 5 results of random kernel with information about L1, L2 and L3
cache and TLB relative miss rates Sandy Bridge-EP and Interlagos are presented.
As it can be seen from the figures L1 cache size is 32K per core for Sandy Bridge-
EP and 16K per core for Interlagos, L2 – 256K per core for Sandy Bridge-EP
and 1M per compute module (two Bulldozer cores) for Interlagos and L3 – 16M
for Sandy Bridge-EP (actual size of L3 is 20M which is not power of two and
can not be seen on the logarithmic scale).

It can be seen from the for Fig. 5 that TLB reach for Sandy Bridge-EP is
64M and when for Interlagos TLB reach is 2G, however this did not improved
overall results for Interlagos comparing to Sandy Bridge-EP.

6 Conclusion

In the paper we presented new open-source benchmark DISBench for memory
subsystem performance evaluation of multicore multiprocessor compute nodes.
DISBench can be used in the development of data-intensive applications for
enhanced performance analysis. DISBench includes three synthetic kernels:
stream, stride and random, as well as allows to choose one of the three memory
operations (load, store, load-modify-store). DISBench supports hardware perfor-
mance counters which provide opportunity for deeper inspection of results.

Evaluation of Intel Sandy Bridge-EP and AMD Interlagos with DISBench
was performed. Results showed moderate advancement of Sandy Bridge-EP on
Interlagos on each of the kernels. However Interlagos showed very large TLB
reach and effectiveness of hardware prefetching. Hardware performance counter
statistics enabled to simplify result analysis and to make some assumptions about
processors microarchitecture.
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In the future we plan to use DISBench extensively for multiprocessor
evaluation and extend its functionality and usability of DISBench as well as
to add new kernels and support of different architectures (such as Nvidia Tesla
or Intel MIC coprocessors).
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Abstract. We introduce fast and scalable algorithms that implement
bounded- and unbounded-size lock-free k-FIFO queues on parallel, shared
memory hardware. Logically, a k-FIFO queue can be understood as queue where
elements may be dequeued out-of-order up to k− 1, or as pool where the old-
est element is dequeued within at most k dequeue operations. The presented
algorithms enable up to k enqueue and k dequeue operations to be performed
in parallel. Unlike previous designs, however, the algorithms also implement
linearizable emptiness (and full) checks without impairing scalability. We show
experimentally that there exist optimal and robust k that result in best access
performance and scalability. We then demonstrate that our algorithms outper-
form and outscale all state-of-the-art concurrent pool and queue algorithms that
we considered in all micro- and most macrobenchmarks. Moreover, we demon-
strate a prototypical controller which identifies optimal k automatically at runtime
achieving better performance than with any statically configured k.

1 Introduction

We are interested in the design and implementation of fast concurrent pools and queues
whose access performance scales with the number of available processing units on
parallel, shared memory hardware. We introduce two algorithms that implement
bounded-size (BS) and unbounded-size (US), lock-free k-FIFO queues with lineariz-
able emptiness (and full) check. The BS algorithm maintains a bounded-size array of
elements that is dynamically partitioned into segments of size k called k-segments while
the US algorithm maintains an unbounded list of k-segments. Thus up to k enqueue and
k dequeue operations may be performed in parallel. The US algorithm simplifies for
k = 1 to an algorithm that implements a lock-free FIFO queue similar to the lock-free
Michael-Scott FIFO queue (MS) [1] but without a sentinel node. See Section 3 for more
details.

The idea of k-segments has first appeared in the so-called Segment Queue (SQ) [2].
The US algorithm uses k-segments but improves upon SQ in performance and
scalability through less overhead and reduced contention by performing removal of
elements from k-segment slots lazily. Dequeue operations only perform costly compare-
and-swap operations when used k-segments slots are actually found. The enhance-
ment is necessary to obtain positive scalability on the hardware and for the workloads
that we considered. Moreover, both k-FIFO queue algorithms implement a linearizable
emptiness check which SQ does not. In other words, upon dequeueing attempts SQ
may not always find and retrieve elements but instead return nothing even though
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the queue is not empty. A linearizable emptiness check may be required for imple-
menting application requirements such as termination. We discuss the relation to SQ in
detail in Section 4.

In Section 5, before presenting a detailed performance analysis of our algorithms
relative to a variety of concurrent pool and queue algorithms, we show experimentally
that there exist optimal and robust k that result in best performance and scalability.
Interestingly, performance generally increases with k but only up to a certain point
which is determined by a tradeoff between degree of parallelism and management over-
head. Our algorithms outperform and outscale all other algorithms that we considered
in almost all threading and contention scenarios. Finally, we discuss a prototypical
controller that adjusts k dynamically and automatically at runtime outperforming any
static and manual k configuration on the workload that we considered.

2 k-FIFO Queue Sequential Specification

A k-FIFO queue is a restricted out-of-order k-relaxation of a FIFO queue as defined in
the framework for quantitative relaxation of concurrent data structures [3]. We infor-
mally discuss the sequential specification of a k-FIFO queue.

Let Σ bet the set of queue methods with input and output values defined as

Σ= {enq(x),deq(x) | x ∈ D}∪{deq(null)}
where D is the set of elements that can be enqueued and dequeued from the queue and
deq(null) represents a dequeue returning empty. We refer to sequences in Σ∗ as queue
sequences.

The sequential specification of a FIFO queue is the set S ⊆ Σ∗ that contains all
valid FIFO queue sequences. Informally, valid FIFO queue sequences are sequences
where elements are enqueued in the same order as they are dequeued. Furthermore, a
deq(null) only happens if the queue is empty at the time of deq(null), i.e., every
element which gets enqueued before deq(null) also gets dequeued before deq(null).
For example, the queue sequence

enq(a)enq(b)deq(a)enq(c)deq(b)deq(c)

belongs to S whereas

enq(a)enq(b)deq(b)enq(c)deq(a)deq(c)

does not.
A restricted out-of-order k-relaxation of a FIFO queue is the set Sk ⊆ Σ∗ containing

all sequences with a distance of at most k to the sequential specification S of the queue.
Informally, the distance is the number of elements overtaking each other in the queue,
i.e., an element e may overtake at most k−1 elements and may be overtaken by at most
k−1 other elements before it is dequeued. A 1-FIFO queue thus corresponds to a regular
FIFO queue. The above example sequences are therefore within the specifications of a
1-FIFO and a 2-FIFO queue, respectively. We show in Section 3.2 that our k-FIFO
queue algorithms indeed implement k-FIFO queues.
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3 k-FIFO Queue Algorithms

We present the algorithms of the lock-free bounded-size (BS) and unbounded-size (US)
k-FIFO queues for k > 0. The pseudo code of the algorithms is depicted in Listing 1.1.
The occurrence of the ABA problem is made unlikely through version numbers (also
known as ABA counters). We refer to values enhanced with version numbers as atomic
values. We use compare-and-swap (CAS) operations to atomically swap in values at
given locations. The gray highlighted code is only used in the BS version. We present
the general idea of the algorithms followed by a detailed discussion of the BS algorithm.
We then discuss the US algorithm by outlining its differences to the BS algorithm and
finally show informally that both algorithms are linearizable with respect to the k-FIFO
specification.

FIFO queues are usually implemented using head and tail pointers, where elements
are dequeued at the head and enqueued at the tail pointer. When implementing a lin-
earizable FIFO queue, these head and tail pointers may become scalablity bottlenecks.
The principle idea of the BS and US k-FIFO queue algorithms is to reduce contention
on the head and tail pointers by maintaining an array (BS) or a list (US) of so-called
k-segments each consisting of k slots, instead of maintaining an array or list of plain
queue elements. A slot may either point to null indicating an empty slot or may
hold a so-called item, which is our implementation concept for enqueued elements. An
enqueue operation is served by the tail k-segment and a dequeue operation is served
by the head k-segment. Hence, up to k enqueue and k dequeue operations may be
performed in parallel.

The BS k-FIFO queue algorithm is based on an array of atomic values of a given
size. For simplicity we restrict size to be a multiple of k. The queue tail and queue
head pointers are also atomic values. Both initially point to the slot at index zero.

The enqueue method is depicted in Listing 1.1. Given an item representing an
element to be enqueued, the method returns true when the item is successfully
inserted and false when the queue is full. First the method tries to find an empty
slot in the tail k-segment which is located in between the indices [tail,tail+ k[
using the find empty slot method (line 5). The find empty slot method randomly
selects an index in between [tail,tail+k[ and then linearly searches for an empty slot
starting with the selected index wrapping around at index tail+ k−1. Afterwards the
enqueue method checks if the k-FIFO queue state has been consistently observed by
checking whether tail changed in the meantime (line 6) which would trigger a retry.
If an empty slot is found (line 7) the method tries to insert the item at the location of
the empty slot using a CAS operation (line 9). If the insertion is successful the method
verifies whether the insertion is also valid by calling the committed method (line 10),
as discussed below. The enqueue method retries in the following scenarios. If no empty
slot is found in the current tail k-segment the enqueue method tries to increment tail
by k using CAS (line 19) and then retries. If tail cannot be incremented without over-
taking head (line 13) and the k-segment to which head old points is empty (line 14)
the method tries to increment head by k using CAS (line 18). If this k-segment is not
empty and head old did not change in the meantime (line 15) the queue is full and
false is returned (line 16).
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The committed method (line 21) validates an insertion. It returns true when the
insertion is valid and false when it is not valid. An insertion is valid if the inserted
item already got dequeued at validation time by a concurrent operation (line 22, 30,
36) or the tail k-segment where the item was inserted is in between the current head
k-segment and the current tail k-segment but not equal to the current head k-segment
(line 27). If the tail k-segment where the item was inserted is not in between the current
head k-segment and the current tail k-segment (line 29) the method tries to undo the
insertion using CAS (line 30). If the tail k-segment where the item was inserted is equal
to the current head k-segment a race with concurrent dequeueing threads may occur
which may not have observed the insertion and may try to advance the head pointer in
the meantime. This would result in loss of the inserted item. To prevent that the method
tries to increment the version number in the head atomic value using CAS (line 34). If
this fails a concurrent dequeue operation may have changed head which would make
the insertion potentially invalid. Hence after that the method tries to undo the insertion
using CAS (line 36). The committed method returns false (line 38) if the insertion was
undone in any of these cases.

The dequeue method is depicted in Listing 1.1. It returns an item if the queue is
not empty, and returns null if the queue is empty. Similarly to the enqueue method
the dequeue method first tries to find an item in between the indices [head,head+ k[
using the find item method (line 43). The find item method randomly selects an
index in between [head,head+ k[ and then linearly searches for an item starting with
the selected index wrapping around at index head+ k− 1. Afterwards the dequeue
method checks if the queue state has been consistently observed by checking whether
head changed in the meantime (line 45) which would trigger a retry. If an item was
found (line 46) the method first checks whether head equals tail (line 47), checking
whether the queue only consists of a single k-segment. If this is the case the method
tries to increment tail by k to prevent starvation of items in the queue and to provide
a linearizable emptiness check. Afterwards the method tries to remove the item using
CAS (line 50) and returns it if the removal was successful (line 51). If the CAS fails due
to a concurrent dequeue, a retry is performed. If no item is found, head equals tail,
and tail did not change in the meantime null is returned indicating an empty queue
(line 53). This is enough to show that the queue has been empty at the linearization
point (see correctness part below). If tail did change in the meantime, the operation
tries to increment head by k (line 55) and retries, since no other operation could have
enqueued an item into this k-segment anymore.

Note that to hold n items the BS k-FIFO queue has to consist of at least - n
k .× k+ k

atomic values. The additional segment, introduced by dequeue (line 47, 48), is neces-
sary to avoid starvation of items which is possible if enqueue and dequeue operations
work on the same segment.

3.1 US k-FIFO Queue Algorithm

The US k-FIFO queue algorithm differs from the BS version in the implementation
of the committed, advance tail, and advance head methods. The gray highlighted
code in Listing 1.1 is not used in the US version since there is no full state. Hence the
enqueue method always returns true.
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Listing 1.1. Lock-free k-FIFO queue algorithms
1 enqueue(item):
2 whi le true:
3 tail_old = get_tail();
4 head_old = get_head();
5 item_old , index = find_empty_slot(tail_old , k);
6 i f tail_old == get_tail():
7 i f item_old.value == EMPTY:
8 item_new = atomic_value(item , item_old.version + 1);
9 i f CAS(&tail_old ->segment[index], item_old , item_new):

10 i f committed(tail_old , item_new , index):
11 re turn true;
12 e l s e :
13 i f tail_old.value + k == head_old.value:
14 i f segment_not_empty(head_old , k):
15 i f head_old == get_head():
16 re turn false;
17 e l s e :
18 advance_head(head_old , k);
19 advance_tail(tail_old , k);
20

21 bool committed(tail_old , item_new , index):
22 i f tail_old ->segment[index] != item_new:
23 re turn true;
24 head_current = get_head();
25 tail_current = get_tail();
26 item_empty = atomic_value(EMPTY, item_new.version + 1);
27 i f in_queue_after_head(tail_old , tail_current , head_current):
28 re turn true;
29 e l s e i f not_in_queue(tail_old , tail_current , head_current):
30 i f !CAS(&tail_old ->segment[index], item_new , item_empty):
31 re turn true;
32 e l s e : //in queue at head
33 head_new = atomic_value(head_current.value, head_current.version + 1);
34 i f CAS(&head , head_current , head_new):
35 re turn true;
36 i f !CAS(&tail_old ->segment[index], item_new , item_empty):
37 re turn true;
38 re turn false;
39

40 item dequeue():
41 whi le true:
42 head_old = get_head();
43 item_old , index = find_item(head_old , k);
44 tail_old = get_tail();
45 i f head_old == get_head():
46 i f item_old.value != EMPTY:
47 i f head_old.value == tail_old.value:
48 advance_tail(tail_old , k);
49 item_empty = atomic_value(EMPTY, item_old.version + 1);
50 i f CAS(&head_old[index], item_old , item_empty):
51 re turn item_old.value;
52 e l s e :
53 i f head_old.value == tail_old.value && tail_old.value == get_tail():
54 re turn null;
55 advance_head(head_old , k);

An enqueue operation is served by the tail k-segment. When this k-segment is full,
a new k-segment is added to the tail. A dequeue operation is served by the head
k-segment. When this k-segment is empty it is removed from the k-segment queue
except if it is the only k-segment in the queue.
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Any lock-free FIFO queue algorithm may be used to implement the queue of
k-segments. We developed a lock-free FIFO queue which performs better than the lock-
free Michael-Scott FIFO queue (MS) [1] when used as k-segment queue in the US
k-FIFO queue algorithm. Our implemented k-segment queue always contains at least
one usable k-segment, even if this k-segment is empty, enabling fast and direct access
to the head and tail k-segments [4].

The US algorithm simplifies for k = 1 to an algorithm that implements a lock-free
FIFO queue similar to the MS algorithm but without a sentinel node. In contrast to MS,
the empty US 1-FIFO queue contains an empty 1-segment in which the first enqueued
element is stored. Subsequent dequeue operations may lead to a queue with an empty
1-segment at the head but only because 1-segments are removed lazily (which may also
be done eagerly avoiding empty 1-segments altogether in a non-empty queue).

3.2 Correctness

Proposition 1. The k-FIFO queue algorithms are linearizable with respect to the
sequential specification of a k-FIFO queue.

Proof. Without loss of generality, we assume that each item enqueued in and dequeued
from the queue is unique. Furthermore we call a segment s′ reachable from a k-segment
s, if either s′ = s, or s′ is reachable from s→ next (US), or s is within the range
[head,tail] (BS). Similar, a k-segment s is removed from the queue if it is not reach-
able from head (US), or not within the range of k-segments [head,tail] anymore (BS).

An item is logically contained in the queue, if enqueue(i) has already committed
and there exists a reachable k-segment containing a segment whose value is i. Note
that only having a slot containing the item is not enough to guarantee that the item is
logically in the queue, because the slot could be in a k-segment that is not reachable
anymore (because it has been removed).

We identify linearization points [5] of the enqueue and dequeue methods depicted
in Listing 1.1 to show that the sequential history obtained from a concurrent history by
ordering methods according to their linearization points is in the sequential specifica-
tion of a k-FIFO queue. The linearization point of enqueue that inserts an item is the
successfully executed CAS inserting the item (line 9) if the following call to committed
validates it and therefore returns true. Additionally, the queue may also be full in the
BS version. The linearization point of the full check is the last read of an index in
find empty slot (line 5), if there is still an item left in the observed head k-segment
(line 14), and the head pointer did not change in the meantime (line 15). The lineariza-
tion point of the dequeue method that returns an item is the successfully executed CAS
with an EMPTY item (line 50). The linearization point of the emptiness check is the first
read of an index in find item (line 43) in the head k-segment, if the head pointer then
points to tail, and tail did not change in the meantime (line 53).

The correctness argument is based on the following facts.
1. An item is enqueued in the queue exactly once. This is a consequence of our

unique-items assumption and the control flow of the enqueue method that can only
modify one slot a time. If the committed method identifies an invalid insertion, it
removes the item using CAS and retries. Hence, at every point in time the item is at
most in one k-segment.
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2. If an enqueue operation returns full, then during its execution there must be a state
at which at least n items have been inserted successfully into the queue (BS only). Since
returning full is without any side effect, it suffices to prove the existence of a state which
corresponds to a logically full queue. Inserting n items in the queue results in - n

k .+ 1
used k-segments of which all but the head segment contain k items, i.e., they are full.
The current tail points to the last k-segment before head and has been found full. If
then the head segment also contains at least one item, it is not possible to advance tail.
Hence, the queue is full.

3. An item is dequeued at most once. If an item i is in the queue it can only be
removed once, because of 1. and a statement which replaces i with EMPTY. If i is in
some slot, but not logically in the queue, then enqueue removes it and retries the inser-
tion before committing again. We show that while i is in some slot, but not logically
in the queue, no dequeue can return i. Clearly, the call to committed has to return
false, implying that no other thread modifies the slot of i. Otherwise, either the first
if statement (line 22) or the following failed CAS attempts (lines 30 and 36) of replac-
ing i with EMPTY lead to returning true. When the control flow reaches the only point
for returning false in committed it is guaranteed that there is no slot containing i
anymore, making it impossible to dequeue the item.

4. If a dequeue operation returns empty, then during its execution, there must be a
state at which there a no items in the queue. Similar to 2. returning empty is without any
side effects, so it suffices to show that there exists a state which corresponds to a logical
empty state. The queue is empty at the time it observes the first slot in find item
as empty, if then all slots are observed as empty and if then the observed head old
points to tail old and the actual tail did not change in the meantime. This is enough
because it guarantees that no slot gets modified by enqueue or dequeue operations until
the slots’ state is checked.

5. An item j cannot be dequeued before an item i, if they are both in the queue and
i, j are in segments s, s′, respectively, with s′ reachable from s and s �= s′. The segment
s′ can become the head segment only after the segment s has been removed. Moreover,
unreachable segments can not contain items that are logically in the queue as vali-
dated in committed. These observations imply that with respect to linearization points
dequeue(i) precedes dequeue(j), which only happens if s′ is the head segment.

6. An item i can overtake at most k− 1 other elements. Assume the item i resides
in some segment s′ reachable from the current head segment s. Because of 5. i cannot
overtake any items until s′ becomes the head k-segment. In the case that s′ becomes the
head k-segment, the item i may be dequeued first, effectively overtaking at most k− 1
other items.

7. An item i is overtaken by at most k− 1 other items. Again, because of 5. an item
i can only be overtaken by elements residing in the same k-segment. As a result i can
only be overtaken by at most all k− 1 other items in the segment. ��
The following fairness property follows from Facts 1. and 5.:

Corollary 1. Dequeuing an element e from a k-FIFO queue may take at most n+ k
dequeue operations, where n is the number of elements in the queue when e was inserted
into the queue.

Proposition 2. The k-FIFO queue algorithms are lock-free.
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Similar to others (cf. [1]), one can show that both algorithms are lock-free by demon-
strating that whenever some operation retries another operation is making progress. The
somewhat lengthy argument can be found elsewhere [4] and is omitted due to space
limitations. Note that the US k-FIFO queue allocates memory dynamically through a
lock-free allocator.

4 Related Work

We relate our BS and US k-FIFO queue algorithms to existing concurrent data structure
algorithms, which we also implemented for and evaluated in a number of experiments
in Section 5.

The following queues implement regular unbounded-size FIFO queues: a standard
lock-based FIFO queue (LB), the lock-free Michael-Scott FIFO queue (MS) [1], and
the flat-combining FIFO queue (FC) [6] (FC). LB locks a mutex for each data structure
operation. With MS each thread uses at least two CAS operations to insert an element
into the queue and at least one CAS operation to remove an element from the queue.
FC is based on the idea that a single thread performs the queue operations of multiple
threads by locking the whole queue, collecting pending queue operations, and applying
them to the queue. The lock-free bounded-size FIFO queue (BS) [7] is based on an
array of fixed size where elements get inserted and removed circularly and enqueue
operations may fail when the queue is full, i.e. every array slot holds an element.

The Random Dequeue Queue (RD) [2] is based on MS where the dequeue operation
was modified in a way that, given a configurable integer r, a random number in [0,r−1]
determines which element is returned starting from the oldest element.

The Segment Queue (SQ) [2] is closely related to the US k-FIFO queue. SQ is based
on a list of segments of size s> 0 where s is a configurable integer. With SQ an enqueue
operation inserts an element at an arbitrary empty position of the youngest segment
using a CAS operation. This is similar to our proposed US k-FIFO queue. Analogously,
with SQ a dequeue operation logically removes an element at an arbitrary position of
the oldest segment using a CAS on a deleted flag. SQ considers all slots for deletion, i.e.
it eagerly tries to remove an item (even it already has been removed). T This is different
to the US k-FIFO queue where elements are removed lazily, i.e., a CAS operation is
only performed on a slot still holding an item.

Experiments reported elsewhere [2] show that in certain configurations (parameters r
and s, respectively), RD and SQ scale better than MS. However, the improved scalability
comes at the expense of peak performance, as the data also shows that the best overall
throughput is reached by MS with only few threads. Neither SQ nor RD reach that peak
performance with any number of threads.

In contrast to the US k-FIFO queue, SQ does not provide a linearizable emptiness
check. Consider the following example of using SQ: Starting with an empty queue,
thread A enqueues the first element into the queue at position s−1 of a new segment of
size s. After that thread A attempts to perform a dequeue operation by iterating over the
slots of the new segment just finding empty slots until slot s−1. Right before checking
the slot at position s− 1 thread A gets descheduled. Thread B now performs s− 1
enqueue operations and fills up the whole segment with elements. After that Thread B
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performs a dequeue operation and removes the element from the slot at position s− 1.
Now, thread A wakes up, checks the slot at position s− 1, encounters that also this slot
is empty, and returns null. However, at any point in time there was at least one element
in the queue. In other words, SQ reported empty although the queue was never empty.

The lock-free linearizable pool (BAG) [8] is based on thread-local lists of blocks
of elements. Each block is capable of storing up to a constant number of elements. A
thread performing an enqueue operation always inserts elements into the first block of
its thread-local list. Once the block is full, a new block is inserted at the head of the
list. A thread performing a dequeue operation always tries first to find an element in
the blocks of its thread-local list. If the thread-local list is empty, work stealing from
other threads’ lists is used to find an element. The work-stealing algorithm implements
a linearizable emptiness check by repeatedly scanning all threads’ lists for elements and
marking already scanned blocks which are unmarked when elements are inserted. The
implementation works only for a fixed number of threads.

The lock-free elimination-diffraction pool (ED) [9] uses FIFO queues to store
elements. Access to these queues is balanced using elimination arrays and a diffrac-
tion tree. While the diffraction tree acts as a distributed counter balancing access to
the queues, elimination arrays in each counting node increase disjoint-access paral-
lelism. Operations hitting the same index in an elimination array can either directly
exchange their data (enqueue meets dequeue), or avoid hitting the counter in the node
that contains the array (enqueue meets enqueue or dequeue meets dequeue). If based on
non-blocking FIFO queues, the presented algorithm lacks a linearizable emptiness
check. If based on blocking queues, there is no empty state at all. Parameters, i.e., elim-
ination waiting time, retries, array size, tree depth, number of queues, queue polling
time, need to be configured to adjust ED to different workloads.

The synchronous rendezvousing pool (RP) [10] implements a single elimination
array using a ring buffer. Both enqueue and dequeue operations are synchronous. A
dequeue operation marks a slot identified by its thread id and waits for an enqueue
operation to insert an element. An enqueue operation traverses the ring buffer to find
a waiting dequeue operation. As soon as it finds a dequeue operation they exchange
values and return. There exist adaptive and non-adaptive versions of the pool where the
ring buffer size is adapted to the workload.

5 Experiments

We evaluate the performance and scalability of the BS and US k-FIFO queue algo-
rithms. All experiments ran on an Intel-based server machine with four 10-core 2.0GHz
Intel Xeon processors (40 cores, 2 hyperthreads per core), 24MB shared L3-cache, and
128GB of memory running Linux 2.6.39. We implemented a framework to benchmark
and analyze different queue and pool implementations under configurable scenarios and
workloads. For microbenchmarking the framework emulates a multi-threaded producer-
consumer workload where each thread is either a producer or a consumer. The workload
can be configured for a different number of threads (n), number of enqueue or dequeue
operations each thread performs (o), the computational load performed between each
operation (c), the number of pre-filled items (i), and the queue implementation to use.
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The computational load c between two consecutive operations is created by iteratively
calculating π. A computation with c = 1000 takes a total of 2300ns on average. We fix
the operations per thread to o = 1000000 and the number of producers and consumers
to n

2 for all benchmarks. We evaluate the performance and scalability of the queues
under low (c = 10000), medium (c = 7000), high (c = 4000) and very high (c = 1000)
contention. In order to analyze the performance impact and applicability of our k-FIFO
queues on real applications we use three different macrobenchmarks: Mandelbrot set
calculation, graph traversal computing the spanning tree, and graph traversal computing
the transitive closure of a graph.

To avoid paging and caching issues we use our own lock-free allocator, which
touches memory pages upon program initialization and can be used to return cache-
and page-aligned memory. For the purpose of benchmarking we do not free allocated
memory. Freeing memory in lock-free algorithms is an orthogonal problem and can be
solved by using hazard pointers [11].

5.1 Understanding k

In order to provide a better understanding of the effect of k on performance and scal-
ability we first evaluate the performance of the BS version with increasing k. We omit
the measurements for the US version as the results are similar. Performance is measured
under very high (c = 1000) contention without (i = 0) and with (i = 5000) pre-filling
the queue. Other contention scenarios lead to similar results. We relate the performance
of our producer-consumer benchmark, measured in operations per millisecond, to the
number of retries per operation and the number of so-called failed reads. Retries are
an indicator of contention among CAS operations. They occur whenever an enqueue
(line 2) or a dequeue (line 39) operation has to take another iteration of the while loop.
Failed reads are attempts to find empty slots or items in find empty slot (line 5) and
find item (line 42), respectively. Both retries and failed reads produce overhead and
should thus be minimized in order to improve overall performance.

Figure 1 depicts this performance analysis with non-pre-filled results on the left and
pre-filled results on the right side. Intuitively, one would expect that a larger k results in
fewer retries because of reduced contention among the inserting (line 9) and removing
(line 48) CAS operations. Figure 1(b) shows that this is true for a setting where the queue
is pre-filled with items, i.e., a queue with an initially dense population in the k-segment
that is used for dequeueing. However, for a workload where the queue is initially
empty there exists a turning point from which the number of retries starts to grow with
increasing k. Figure 1(a) depicts this behavior which appears when the k-segment used
for dequeueing is only sparsely populated most of the time. In this case the dequeue-
ing operations are likely to contend on the same, rare items in the head k-segment.
Figure 1(c) and 1(d) illustrate the number of failed reads. As long as the number
of retries is decreasing, failed reads are slowly increasing with larger k since the
k-segments to search for items or empty slots get bigger. As soon as the number of
retries reaches the turning point in the pre-filled case failed reads are increasing
exponentially. Figure 1(e) and 1(f) then visualize the impact of an increasing k on
the performance and show that there exists an optimal k with respect to performance.
The optimal k is also robust in the sense that there exists only a single range of
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(a) BS number of retries per operation for very
high contention (c = 1000, i = 0)
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(b) BS number of retries per operation for very
high contention (c = 1000, i = 5000)
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(c) BS number of failed reads per operation for
very high contention (c = 1000, i = 0)
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(d) BS number of failed reads per operation for
very high contention (c = 1000, i = 5000)

      0

   2000

   4000

   6000

   8000

  10000

  12000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

op
er

at
io

ns
/m

s 
(m

or
e 

is
 b

et
te

r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(e) BS performance of very high contention
(c = 1000, i = 0)
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(c = 1000, i = 5000)

Fig. 1. Very high and low contention producer-consumer microbenchmarks with an increasing
number of k for different amounts of threads

close-to-optimal k. Furthermore, the population density of a k-segment that is used for
dequeueing has an impact on the range of k where good performance can be observed.
If k gets too large, i.e., the population in the dequeueing segment is sparse, the per-
formance significantly decreases. The depicted behavior of k suggests a controller that
optimizes k to dynamic workloads.
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(b) High contention (c = 4000, i = 0)
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(c) Medium contention (c = 7000, i = 0)
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(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

5.2 Performance and Scalability

We study the performance of LB, BS, MS, FC, RD, SQ, BS k-FIFO and US k-FIFO
queues, and ED, BAG, and RP pools. For the RD, SQ, BS k-FIFO, and US k-FIFO
queues we configure r = s = k = 64 (see Section 4), which we determined to be a fair
and representative configuration for a broad range of thread combinations and work-
loads. We use the non-adaptive version of the RP algorithm since the number of threads
is constant in each run.

Producer-Consumer. Figure 2(a) illustrates the results for the very high contention
workload where MS and RD perform best for up to 20 threads. With more than 20
threads scalability is negative for all data structures except RP, BS k-FIFO, and US
k-FIFO. The BS k-FIFO queue algorithm is the only algorithm that scales near-linearly.

Similarly, the results with our high contention scenario, depicted in Figure 2(b), show
that the scalability turnaround is at 30 threads and that both k-FIFO versions outperform
and outscale all other algorithms. As the contention gets less in Figures 2(c) and 2(d),
the turnaround gets shifted to a larger number of threads. The difference in performance
and scalability of all algorithms is less significant with more computational load. Note
that SQ returns up to 2000 times falsely null due to the non-linearizable emptiness
check.
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Fig. 3. Parallel Mandelbrot set calculation with an increasing number of threads (producer-
consumer ratio 1:4)

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that
Mandelbrot computations are fast for most of the blocks, i.e. the number of iterations
in the Mandelbrot calculations is small or zero, and thus the contention on the shared
data structure is high. Both k-FIFO algorithms show the best performance, followed by
the pools BAG and RP. The result of the high computational load Mandelbrot bench-
mark is depicted in Figure 3(b). High computational load means that the Mandelbrot
computations are computationally intensive for most of the blocks, resulting in less
contention on the shared data structure. The figure shows that the BS and US k-FIFO
queues provide the best performance and scalability.

Graph Algorithms. We ran two macrobenchmarks with parallel versions of transitive
closure and spanning tree graph algorithms [13] using random graphs consisting of
100000 vertices where 1000000 unique edges got randomly added to the vertices. Non-
connected subgraphs are then connected using single edges. The shared data structure
is prefilled with 160 randomly determined vertices. From then on each thread iterates
over the neighbors of a given vertex and tries to process them (transitive closure or
spanning tree operation). Depending on the algorithm, the check whether a neighboring
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Fig. 4. Performance and scalability of graph traversals on a random graph with 100000 vertices,
1000000 edges, and 160 starting vertices with an increasing number of threads

vertex has already been processed is raceful (transitive closure), or exact (spanning
tree). Already processed vertices are then ignored. After processing a vertex, it gets
added to the shared data structure. The thread then gets a new vertex from the shared
data structure. The graph algorithm terminates as soon as the global queue is empty.

The spanning tree and transitive closure macrobenchmark results are presented in
Figure 4. Each run was repeated 10 times. We present the average execution time of the
10 runs as our metric of performance, less execution time is better. The RP pool is not
used in this benchmark since it cannot handle a workload where producers are also con-
sumers. Both benchmarks show how the data structures behave under extremely high
contention. BAG results in best performance at 10 threads, and then scales negatively.
This peak performance is reached because producers are also consumers and thus each
thread can access its thread-local list. Note that this result for BAG can only be reached
in tailored workloads as the other benchmarks show. In general, all data structures have
problems scaling under this high contention. The best performance (except BAG) is
reached by the BS and US k-FIFO queues.

5.3 Dynamic k

We implemented a prototypical PID controller which aims at identifying optimal k
automatically at runtime for best performance. Each thread i stores performed enqueue
operations oi and performed retries in enqueue operations ri in thread-local counters.
The controller runs in an extra thread, reads the thread-local counters of all n threads
periodically (100ms), and resets them to 0 after reading. The goal of the controller is to

minimize the ratio
n
∑

i=1
ri/

n
∑

i=1
oi. The controller operates in the approximately linear part

of this ratio. With the US k-FIFO algorithm the controller determines the k-segment
size that enqueue operations use to create new segments which store their size for
dequeue operations to look up. For the BS k-FIFO algorithm the maximum k needs
to be bounded to provide a linearizable emptiness check.
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Fig. 5. Variable-load producer-consumer microbenchmarks with an increasing number of static k
versus a dynamically controlled k

We use a variable-load producer-consumer microbenchmark to evaluate the
performance of the controller. Each thread performs o = 4000000 operations and starts
with c = 1000. The workload changes for each thread whenever o/4 operations are
performed by changing c to 500, 2000, and 1500. We compare the BS and US k-FIFO
algorithms with dynamically controlled k to the unmodified baseline versions with stat-
ically configured k ranging from 1 to 120. Figure 5(b) shows the performance of the
dynamic US k-FIFO queue. Here the controller improves the performance by 60% over
the best statically configured configurations. The dynamic BS k-FIFO queue performs
about 30% faster than the best statically configured configuration, see Figure 5(a). As
explained in Section 5.1 and illustrated in Figure 1, best performance for different levels
of contention can be achieved through different configurations of k. The level of con-
tention is proportional to the rate of retries to which k is therefore adjusted dynamically.

6 Conclusions

We have introduced fast and scalable algorithms that implement bounded- and
unbounded-size, lock-free, linearizable k-FIFO queues with emptiness (and full) check.
We showed experimentally for both algorithms that there exist optimal and robust k that
result in best performance and scalability. Moreover, we demonstrated in experiments
that our algorithms outperform and outscale many state-of-the-art concurrent queue
and pool algorithms on different concurrent producer-consumer workloads. Finding the
right k for different workloads is key for best performance and scalability. We suggest
to either set k statically to around the number of available parallel processing units or
use a controller which automatically adjusts k at runtime as shown in our experiments.
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Development of Basic Approach and Software

Package for Effective Parallel Computing
of Continuum Mechanics Problems

on Hybrid Architecture Systems

Maksim Klimov

Moscow State University, Moscow, Russia

1 Parallel Programming Model

At present the requirements for calculation of continuum mechanics problems are
very high: besides the complex geometry and various physical models,
actual algorithms on large grids require high performance computing systems.
Anyway, due to limited performance of “silicon” core, modern supercomputers
represent set of cores and processors that work in parallel. Huge differences
between sequential and parallel models lead to appearance of several parallelism
stages: algorithmic, hardware and programming stages. It is necessary to reach
demanding performance on each stage for development of effective program. Cur-
rent parallel programming models provide several technologies; within the most
popular ones are: OpenMP and MPI. Quite recently parallel technologies were
replenished by General-purpose graphics processing units (GPGPU) technique.
Each parallel programming model has its own special features. To attain high
performance, parallel software should use several levels of parallelism within dif-
ferent models also taking into account its features. But it can be possible to
build a programming technique when solving continuum mechanics problems.

2 Two-Level Programming Model for Continuum
Mechanics Problems

In spite of all its variety, many computational mathematical models have
common details:

– implementation of conservation laws (impulse, mass, energy)
– spatial discretization (construction of structured or unstructured grid)
– governing equations can be written in divergent form:

∂Q̄

∂t
+ divF̄ = H̄

Usually vectors Q̄, F̄ and H̄ are called as vector of the conservative variables,
ux vector and the source term, respectively.

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 224–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Development of Basic Approach and Software Package 225

– the discrete model is completely defined by a grid function — the state vector

f̄ function. For example: f̄ = f̄(x̄, t) = (Q̄, ∂Q̄∂x̄ , . . . )
– the equations on the state function are commonly local, i.e. link the values

at neighboring in space and time grid points.

We can assign a special vector of state to every cell or node that contains
solution implicitly or explicitly and other calculated values; calculating algo-
rithm is an iterative modification of state vectors field. Actually, solver based
on these principles can be written in program code as a sequence of loops by
grid cells with execution of some functions demanding states of current cell and
its neighbors. Many actual methods fit into this approach, for example, explicit
or implicit finite element method and finite volume methods based on LU-SGS,
GMRES, Jacobi methods and many others. This article lies in development of
general approach in order to create effective two-level parallel program for solving
continuum mechanics problems in above assumptions.

2.1 Levels of Parallelism

On the first level of parallelism our problem is divided into subproblems that
are not completely independent and can exchange data between each other. The
grid is partitioned by subdomains (Fig. 1). Each subdomain is subtask in the
above terms. The graph partitioning problem is very actual NP-hard problem
and there are many exact and approximate methods to solve it, for instance,
KernighanLin algorithm [1] or balanced graph partitioning algorithm, described
in [2].

Fig. 1. Area decomposition Fig. 2. Example of coloring

The standard well-known trick for computing on several nodes is appending
a halo of ghost cells and transfering data from border cells to the ghost ones.

The second level of parallelism is based on multithread technology and some
elements are calculated quite simultaneously. In order to avoid collisions we try to
separate the cells by several “colors” so that the cells of one color are not adjacent
with the cells of another (Fig. 2). It is precisely the graph coloring problem. Then
the execution of calculating algorithm sequentially by colors permits us to escape
the race condition. The problem to find the chromatic number and associated
coloring is NP-hard problem and various exact algorithms have exponential-time
rate.
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Using the approximate methods, for example greedy coloring algorithm or
methods based on backtracking described in [4] and [3], we get the colored grid
as a result. To obtain natural black and white coloring as on a chessboard on
structured grid we need to define the order of cells at the beginning so that every
cell has adjacent predecessor cell except for the first cell chosen randomly.

2.2 Calculating Algorithm

Total calculating algorithm inside each subgrid is divided into iterative execution
of the following steps:

1. globally (one for every subgrid) choose “unprocessed” color.
2. process all the border cells of chosen color.
3. transfer processed border cells (updated components of state vector) to

adjacent subdomains.
4. process all inner cells of chosen color.
5. synchronize ghost cells state vectors (receive transferred data from adjacent

subdomains).
6. end if all colors are processed else return to item 1.

This algorithm uses the advantage of non-blocking internode data transmissions.
For instance, asynchronous sending and receiving can be used for MPI. If it is
impossible, the items 3 and 5 are combined.

2.3 Memory Distribution

Several specific features of GPGPU have great influence on computing efficiency
such as branching, a big number of local variables exceeding the available size
of fast registered memory, frequent access to global memory. Overuse of global
memory can become a dominating factor for efficiency decline. There are the
patterns for access to global memory when several accesses can be coalesced.

We arrange cells state vectors structure as linear array in memory so that
memory is sorted by components, each block of components is sorted by cell
color, each block of color is sorted by cell type (border, inner, ghost). This trick
guarantees that processed data will be placed into memory in immediate proxim-
ity, so it leads to better coalescing and more effective cache usage. Also, because
of such memory arrangement, we can transfer necessary data during internode
synchronization fast. The result memory distribution is shown in Fig. 3.

2.4 Programming Interface

On the one hand, the above approach is independent of the concrete solver
and can constitute a common program library. On the other hand, a solver
and a problem statement are combined into an interchangeable part of code.
Data access and management are controlled by common part through a program
interface containing a set of methods to obtain and store a state vector of an
arbitrary cell, its’ geometry and neighbors’ data. The basic solver function can
be represented as a function depending on a grid cell iterator.
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Fig. 3. Example of memory distibution

function SomeSolver ( iterator iCell ):

F := getCellStateVector ( iCell )

G := getCellGeometry ( iCell )

... some operations with F and G ...

foreach iNeighbor from getCellNeighbors( iCell ):

Fn := getCellStateVector ( iNeighbor )

Gn := getCellGeometry ( iNeighbor )

... some operation with F, Fn, G, Gn ...

end foreach

... some operations

setCellStateVector ( iCell, F )

end function

The interface solver execution function undertakes parallel sweeps by iterable
grid cells with correct data synchronization. Therefore calling the function
RunSolver ( SomeSolver ) leads to grid updating to the next iteration.

3 Results

As the result, program package was developed using C++, MPI and CUDA.
This package is based on the above propositions for two-dimensional case and
has the following distinctive features of implementation:

– independence from concrete mathematical and physical solver (kernel).
– clean and clear programing interface.
– support of calculations both on CPU and GPU, possibility of target archi-

tecture fast change.
– support of internode calculations for both architectures using MPI.
– the incapsulation of implementation part.

This package was tested on several different solvers and problems in order to ver-
ify the above approach and measure efficiency. LU-SGS solver for hydro and gas
dynamics using ideal gas model, LU-SGS solver for multicomponent medium and
the simple heat equation solver were developed and integrated to the package.
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The performance results for two parallel levels are demonstrated in Fig. 4, 5.
The benchmarking tests are executed for parallel levels separately with variation
of cell number in mesh.

Fig. 4. Efficiency Fig. 5. Acceleration of GPGPU

4 Conclusion

In this paper, the basic approach to construction of effective parallel program
for calculation of continuum mechanics problems was developed. The method is
based on several fundamental principles and, generally, does not depend on con-
crete mathematical and physical models. It uses two-level programming model,
so some efficiency aspects for parallel programming were described.

Finally, the program package was developed as implementation of the above
approach. These package and approach were verified on different physical models
and problems and demonstrated good performance results.
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Abstract. In a parallelizable task model, a task can be parallelized and the 
component subtasks can be executed concurrently on multiple processors. The 
problem of on-line scheduling a stream of independent parallelizable task on a 
set of parallel identical processors is considered. The processors service the 
subtasks independently. An analytical model approach based on continuous-
time Markov chain is proposed. We study finite capacity queuing model by  
obtaining numerical expression for the sojourn time. The goal is to choose a 
technique for evaluation of a resource allocation policy. 

Keywords: Task Scheduling, Parallel Identical Processors, Sojourn Time. 

1 Introduction 

This work was primarily motivated by applications in the area of multiprocessor 
computer systems running independent parallel programs. The problem of efficient 
malleable tasks stream scheduling on a set of parallel identical processors (PIP) has 
received significant attention [1].  In this paper we discuss non-preemptive, non-idling 
on-line task scheduling and allocation policies, when the actual processing time is 
usually disclosed upon task arrival. We aim at investigation of allocation policies that 
can be implemented to actual systems to improve the average system performance. 

2 Model Description and Problem Formulation 

In this section we present the parallel queuing system used in our study, and provide 
some technical preliminaries. With the purpose of task scheduling on PIP, we need to 
take a broader view of the scheduling function as a resource management. This re-
source management is basically a mechanisms and policies used to efficiently and 
effectively manage the use of resources by various consumers [2].  
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2.1 System Model 

Consider a parallel processing system comprised of m identical processors P = {P1 
,…Pm} and  equipped with an finite capacity queue. The tasks arrive at the system 
with the Poisson rate λ. The tasks in T are independent. Each task processing requires  
at least one of the processors in P and its component subtasks can be processed simul-
taneously by any number (≤ m) of processors in P. If r є {1,  .. m} is the number of 
processors assigned to task Tj , the processing time of Tj  is denoted as  tj(r). We as-
sume that the function tj(r) is decreasing. The processors independently and concur-
rently service the subtasks based on a first–come-first-serve (FCFS) discipline. All 
subtasks can be processed by any processor.  

2.2 Investigating Policies 

Tasks are treated as statistically identical and scheduled FCFS, since workload cha-
racteristics are assumed to be unknown to the scheduler. We assess greedy policies. 
Initially scheduler assigns the entire set of PIP to the task if it is the only task in queue 
waiting for service and entire system is free. If two or three tasks are waiting for the 
service, and the currently finishing task was allocated at the entire set of PIP, the first 
two tasks in FCFS queue are each allocated at the half of the PIP-set. When a task 
executed at half of the PIP-set is completed and there are tasks waiting for service, the 
first task in the queue is scheduled on the released partition of the PIP-set. If four 
tasks are waiting for the service, and the currently finishing task is allocated at the 
entire PIP-set, the first four tasks in FCFS queue are individually allocated at the 
quarter of the PIP-set. When a task that is executed by quarter of the PIP-set com-
pletes and there are tasks waiting for service, the first task in the queue is scheduled 
on the released partition of the set. 

3 Markov Analysis 

In this section, a technique to construct and compare allocation policies is presented. 
The policies are modeled using continuous-time Markov chains (CTMC) and perfor-
mance results are obtained by solving the global balance equations. 

3.1 The Workload Characteristics 

Differences in parallel applications are taken into consideration by means of work-
loads with different speedups or, equivalently, processing time function tj(r). The 
offered workload is changed (by varying the task arrival rate λ) over the range [0, 1]. 
It is assumed that inter-arrival and service intervals are exponentially distributed. 

3.2 Resource Allocation Decision Process  

To calculate and compare the resource allocation process we chose the technique of 
CTMC. Our primary objective is to calculate the probability distribution of random 
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variable X(t) over the space S, as the system settles into a regular pattern of behavior 
(the steady state probability distribution). For small Markov process we use the state 
transition diagram as the simplest way to represent the process. In this diagram we 
describe each state of the process as a node in a graph. The arcs in the graph show 
possible transitions between process states. The arcs are labeled by the transition rates 
between states. Since every transition is assumed to be governed by an exponential 
distribution, the rate of the transition is the distribution parameter (Fig.1.). 

 

Fig. 1. State transition diagram 

The tasks arrive at the system with the Poisson rate λ. States in the model are la-
beled as (i,j,k), where i denotes the number of tasks executed simultaneously on PIP-
set, j denotes the number of tasks waiting for execution, k denotes the type of execu-
tion. Type 1 means that only one task is executed on the entire system. Type 2 means 
two executed tasks on the PIP-set, and type 3 means four executed tasks on the sys-
tem. As an example, state (2, 2, 2) indicates two executed tasks on the PIP-set, and 
two tasks waiting for service. The state (0,0,0) indicates a completely idle system. The 
number of queued tasks is limited. 

The performance results may be derived from solving the global balance equations 
of Markovian models [3].  When the model is in steady state, we must assume that the 
total flux-out probability is equal to the total flux-into probability. We denote π(i,j,k)  
as the steady-state probability of the model being in the state (i,j,k )є S. For the state 
(0,0,0) we obtain : 

λ π(0,0,0) = μ1 π(1,0,1) + μ2 π(1,0,2)  + μ3 π(1,0,3), 

where the input parameters are  

λ -the task arrival rate, μ1 – the average execution rates on entire PIP-set,  

μ2 – the average execution rates on half of PIP-set,  
μ3 – the average execution rates on quarter of PIP-set. 

We can involve a weighted sum of steady-state probability to get the average num-
ber of tasks in a system and the average sojourn time (applying Little’s law): 
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Ns= Σ(i+j) π(i,j,k)  for all states  (i,j,k )є S. 

We also can estimate availability of the system by calculating of the probability that 
incoming task is rejected (Table 1). 

4 Performance Evaluation Results 

The performance figures obtained from the solution of the global balance equations  
of Markovian models are reported in this section. The average sojourn time (AST) 
under a proposed policy is assessed. In this system model we show the effect of  
 

 

Fig. 2. AST under proposed policy 

an offered workload changes (Fig.2) and assume that for 
case A: μ1 = 16μ,  μ2 = 8μ, μ3= 4μ, case B: μ1 = 16μ,  μ2 = 16μ/3, μ3= 16μ/6, 
where μ – the average execution rate on a single processor. 

Table 1. Task rejection probability 

Work 
load 
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Case A 0,0033 0,0088 0,0197 0,0379 0,0646 0,0995 
Case B 0,0123 0,0390 0,0878 0,1531 0,2236 0,2911 

 
 
We evaluate the maximal speedup obtained by an ideal PIP-set using examined re-

source allocation policy. This estimation is based on CTMC and the solution of the 
global balance equations. Next, we propose some technique to quantify the effect of 
speedup variation.    
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5 Conclusion 

There are many ways to measure the performance of a parallelizable tasks running on 
PIP-set. In this paper we have presented CTMC for performance evaluation of re-
source allocation policy. Currently we have received following results: 

(i) a technique to construct CTMC and compare allocation policies has been chosen, 
(ii) the effect of variations in offered workload and speedup is quantified. 

The main direction for further investigation is to apply the results in continuous-time 
Markov decision processes [4] to the proposed above technique. 
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Abstract. In the paper we propose an approach for organizing user
tasks on high performance computing systems of cluster type based on
dataflow control. This mechanism helps to represent clusters as data file
manipulation automata so every user task on remote supercomputers
may be described from the point of their input and output files and
meta data of these files. Also we present a particular description of a
user task file processing mechanism for the system review both from
metainformation point of view and dataflow point of view.

Keywords: cloud computing, distributed systems, Petri nets, high-
performance systems, dataflow, workflow.

1 Inroduction

During the last two decades supercomputers of cluster type have spreaded all
over the world. Users of such systems are mostly scientists and researchers that
use clusters for computational experiments modeling physical and chemical pro-
cesses. Usually each user has a very static set of task kinds, and task execution
for each kind differs only by some of parameters. Each user task is a compu-
tational process that requires input data, usually as files, and produces output
data, usually as files too. A lot of computational software packages use input files,
prepared in a special way by additional much less resource consuming tools. On
the other hand, output data files obtained in computational experiment also
require additional processing to generate diagrams, plots, pictures, movies and
other representations suitable for human consumption, for publications and con-
ferences. So computational experiments on clusters could be generally presented
with the following three steps. In the first step initial data preprocessing outputs
data files. This step is performed as a simple cluster task executed on one node.
In the second step these data files are crunched in clusters as a complex user task
producing output files or structured groups of files. Finally, in the third step,
output files are transformed into a consumable format. From such a schematic
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view on file processing follows that each file can be used with different kinds of
tasks as input to cluster task or as output from cluster task or play both roles.

Traditionally, tasks are chained into complex scientific processes by so-called
Scientific Workflow Management Systems (SWFMS) like Taverna, Kepler, Tri-
ana, Pegasus, Swift etc. Whereas scientific processes tend to be dataflow
oriented[1], SWFMS usually produce workflows to orchestrate cluster activities
in terms of Directed Acyclic Graphs (DAG) or script-like languages[2]. From our
point of view both approaches have common shortcomings. Workflow is contin-
uous process based on input files provided to the system before execution and
without the intrinsic possibility for users to influence on it during execution.
Dataflow, however, could be considered as descrete process consisting of steps,
each of them is executed by input data availabile with or without user interfer-
ence depending on the situation at hand. So dataflow process is more flexible
with regard to applicability to different patterns of data transformation.

There was quite a lot of successful projects about data flow modelling in terms
of Petri nets, and only a few SWFMS based on dataflow without generating
workflow[2]. This article presents our vision of a user friendly interface to clusters,
where clusters are considered as data file manipulating automata, that produce
and execute cluster tasks based on dataflow templates generated using Petri nets
and file metadata, both registered in a database. Also two examples with real
task file manipulating template descriptions are presented.

2 Overview of the WBS

The WBS (Web Batch System) is designed for the management of user tasks
on supercomputers and clusters. The main purpose of the WBS development
was providing convenient and friendly environment to create, edit, execute and
monitor single-user jobs. Jobs and their files creation is based on templates
provided by the WBS [3,4,5]. Templates for jobs and files have access rights
based on owner and user-groups. After a job has been created, it starts its life
cycle, which consists of such stages as creating, editing, pending (waiting
for execution), running and done. The implementation of the WBS has client-
server architecture with main components as follows. User access to the WBS
is provided by Web-server via internet browser and by special client program
for managing job templates and file templates via TCP/IP. All data the WBS
deals with is stored on an SQL-server, that also generates a job’s options and
simple data files. The interface unit between the SQL server and clusters is
provided by so-called moderator component, whose main function is to obtain
tasks from the SQL server and transfer them as files to appropriate cluster
control component named worker. The worker component reads the task
instructions file and prepares directories, copies files, executes programs as it
specified in the file. Each worker connects to the moderator by TCP/IP and
periodically executes a special task to deliver jobs and cluster state to the SQL
server.
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3 Dataflow Interface from User Point of View

TheWBS system is designed for processing user data files. It is assumed that user
files are placed in directories inside user-defined locations of cluster-accessable
file systems, which the WBS system periodically checks through. All locations to
be checked are registered in the database, along with name templates used by the
WBS to distinguish directories subjected to examination. The user constructs a
new dataflow process by creating a directory in a location registered in the WBS
and the next scan of directories will supply the database with information about
new directories. A dataflow process type can be sent to the system by placing a
dataflow.wbs file in the directory, or via WBS interface forms. Dataflow process
data is grouped in its directory and directories nested inside it.

Files inside a dataflow process directory should be assigned a type, so that the
process will know how to handle this file. Types can be appointed interactively
via WEB forms of the WBS system. In the initial stage file types can be specified
in the file dataflow.wbs, or types can be defined automatically by comparing file
names with template file names registered in the database. The next case of
file type assignment happens when files are created in the chain of dataflow file
transformations, with types defined in the dataflow process task template. The
last case of assignment is related to the WBS task execution, when files are
created from a database template required for the execution.

Besides the type, files have additional information about the state of their data
and metainformation required by the dataflow process. First registration of a file
in the WBS system assigns to it the state ”initial”. Then files are processed by the
executing cluster task. After the task completes file state and metainformation
can be changed in accordance with the dataflow process template. Task execution
can be initiated automatically when a task has all necessary information and files
for its execution and its “automated execution” flag defined in the database.
Most frequently such situations appear in data post-processing, after the main
computational phase of an experiment. When a task has all necessary files for
execution but not enough metainformation its execution can be initiated via
WBS interactive forms by filling all required metadata fields. This metadata
will be attached to the task files and can be used in next steps of the dataflow
process. Metainformation can also arise from the results of a task execution by
parsing output files with a simple syntax structure.

During the execution or after the execution the data files that are obtained
may be transformed to convenient visual representation: images, videos, texts,
tables and etc... Those files are uploaded to the database and then available
in the graphical user interface of the WBS system. For long-term computation
such files are attached to the executing task and can be used by the user to
determine whether computation should continue, have its parameters changed,
or be terminated immediately. Of course computational tasks should be pro-
grammed for periodic checks of refined parameters in advance. Thus the system
acquires interactive features: computational tasks provide information for anal-
ysis and the user can provide feedback to continuing experiments by changing
their parameter files.



Cluster as a Service: Dataflow Approach 237

4 Interface Implementation

Let us consider the main aspects of the dataflow implementation in the WBS:
description and representation of data and metadata in the system and dataflow
process in terms of files, parameters and task execution cycle in the system.
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Fig. 1. Metadata in the database ER-diagram

Fig. 1 shows a database entity relation scheme representing the distribution
of information about user data and metadata between tables. There is common
shared dataflow process types list in the table dataflow type. Each user from
the table user list has his own sublist of dataflow process types he can run
in the table user dataflow. In the table locations users may register cluster
file system directories where they can store further experiments data and direc-
tories for each experiments data too. Dataflow process types have a list of data
file types in the table datafile type. User data files in the table data file

have their types, locations and states from the table state. They are associated
with completed or still executing cluster task from the job table. Besides the
data inside the files, there can be also metadata attached to them in the table
data meta. Metadata is represented as a set of name-value pairs with names from
the table params. A data file can have metadata params, that are registered for
their file type in the table datatype params.

The database entity relation scheme in Fig. 2 represents interconnections
between the tables describing dataflow process templates. Three tables in the
scheme connect dataflow definition with the WBS task preparation and execu-
tion subsystem: jtemplate, params and ftemplate. And four tables from Fig. 1:
dataflow type, state, datafile type, dtype state link dataflow process tem-
plates with data files in hand. Dataflow templates are constructed as coloured
Petri nets, where places of each place in Petri net are represented by a tuple of a
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Fig. 2. Dataflow representation in database ER-diagram

data file type and a state. Petri net transitions are stored in the transition ta-
ble, which associates with jtemplate. Arcs outgoing from and ingoing to places
are represented by records in the tables from state and to state. Tokens of
Petri net are represented by data files with their metadata in tables data file

and data meta from Fig. 1. For a transition to be fired all its ingoing arcs from
the table from state must have a list of data files that matches by type with
the types of corresponding list in the table in filetype and must have an ap-
propriate state written in the from state table. Data files enabling a transition
must be of the same dataflow process instance, and parameters indicated in
the table sieve for the transition must have the same value for all data files
in ingoing arcs having file type mentioned in the table arc sieve. Because all
data files for job template are selected by transition, only simple parameters
can remain undefined. These parameters are searched for in the file metadata
and if all of them are found the cluster task can be executed. After the cluster
task is completed, files corresponding with the ftemplate table are updated in
database. They obtain the new state from the table to state and file metadata
is updated according to the table out meta, assigning values to meta params of
files specified in the table out filetype from a completed task.

So each time a transition of Petri net fires it executes a new task on the cluster.
This task gets its parameters either from file metadata or directly from the user
via interactive forms. A transition results an update of the old file metadata or
the registering of new files in the database. This step can be repeated until all
files in a dataflow process eventually reach their final state.

5 Examples

Atomic Scale Materials Modelling User Task. The example of user task in
this section concerns atomic scale materials modelling. The main computational
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Fig. 3. Schema for VASP concern dataflow

tool for this task is the program package VASP[6]. Users using this tool should,
before starting cluster computation, prepare the proper input files and, after
computation, need to treat the output files to get images, tables and plots for
modelling process.

The main input files are: incar, which contains the values of the necessary
computation parameters; kpoints, which contains the values for the integration
scheme description parameters; potcar, which contains the pseudopotentials
description in a special format; and poscar, which contains the description of
the computation geometry. The main VASP output files are: concar, which
contains the molecular dynamics actual coordinates; oszicar, which contains
a copy of stdout; and procar, with static calculations containing energy con-
cerned values. Every output file should be handled in its own way. For example,
JMOL[7] is used for concar and gnuplot [8] that generates jpeg-files with plots.
Within a described task there is a set of states and a set of transitions for
dataflow as presented in Fig. 3.

In Fig. 3 circles represent dataflow states and rectangles represent transitions,
each of them moving tokens from one state to another one if all criteria for
transition are satisfied. Transition satisfaction means that all input files are
ready and have appropriate metainformation. For instance, for one of the user
dataflow type that contains a task to get energy plots from VASP computation
results in jpeg-files. The transitions that correspond to that dataflow type are
solid rectangles shaded in Fig. 3.

Every dataflow process starts in the initial state. To fire the vasp comp

transition all necessary input files should be ready and have appropriate metain-
formation. After this transition the dataflow process moves to the vasp fin

state. Depending on the output files and their metainformation the next proper
transition is chosen and fired. For dataflow type in Fig. 3 if there are no any
errors the procar handle transition is fired. The result for this transition is a
file having gnuplot acceptable format. When successful, the dataflow process
fires the plot create transition to get output jpeg-files with plots and the
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dataflow process moves to the final state. This state indicates that the dataflow
process is finished.

Gas flow through porous media task. Let us consider the second example
for “2D gas flow through porous media” task. The main computation task is a
standard grid computation task. The dataflow process for this task is shown in
Fig. 4.
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FAIL_HANDLE
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Fig. 4. Schema for gas moving modeling concern dataflow

In this figure circles mean dataflow process states, rectangles are transitions.
The input files for the main computation task should consist of six files with ini-
tial data for such physical quantities as gas temperature, gas pressure, gas den-
sity, temperature of the solid phase, vertical and horizontal filtration velocities.
These input files can be generated by special program (corresponding with the
initdata comp transition in Fig. 4) or be gotten from a previous computation.
Each file has a metainformation, the most important of which are the following
parameters: the computation grid dimension, number of iterations recorded in
the file, the name of physical quantity whose values are written to the file (e.g. file
dan p.dat contains values for gas pressure). In Fig. 4 solid transitions represent
the user dataflow type that contains a task to get videos for every physical
quantity. Before starting the main computation task (corresponding with the
gasmove comp start transition in Fig. 4) WBS checks whether all input files
are ready and have appropriate metainformation. After the end of main pro-
gram computation (corresponding with gasmove comp fin) or after writing the
intermediate results (corresponding with intermediate results) the dataflow
process moves to the dat ready state. Then the plot create transition should
be fired. Successful outcomes produce output jpeg-files for every physical quan-
tity. These ones are organized in a structured group of files with the mask * *.jpg
where the first star stands for the number of iterations and the second star
stands for the name of corresponding physical quantity. After obtaining a prop-
erly ordered group of jpg-files, the movie create transition can be fired from
the jpg ready state with producing, on success, one output file with an *.avi
mask for every physical quantity (e.g. file dan t.avi contains a video of the gas
temperature changing for modeling process). After that the user dataflow type

under review transfers to the final state.
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6 Conclusion

This article proposes a new type of interface to multiprocessor computing sys-
tems, implemented in user tasks controlling systemWBS. By analogy with Cloud
Computing concepts this interface can be defined as “Cluster as a Service”. In
the base of the interface the user work process is represented as a data transfor-
mation chain (dataflow) that outputs pictures, diagrams, plots directly suitable
for user viewing. The graphical user interface offers to the user an annotated list
of files, allowing him to invoke the next link of the transformation chain while
the system watches the state of every piece of user data, allowing automatic
execution of links with fully prepared input parameters and data. Taking into
account the generality of the approach to user dataflow settings, the system can
be used in a wide range of cluster tasks minimizing the overall number of files
transfered to and from clusters and facilitating routine actions required for users
to obtain their final information.
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Abstract. In general, GPU accelerated GPGPU application results in much 
higher performance than CPU application. However, to be accelerated by GPU, 
users should have GPGPU-enabled computation resources like recent GPU or 
CPU in their local machine. In this paper, we proposed selective GPGPU off-
loading framework named SeloGPU. SeloGPU not only supports remote off-
loading for GPGPU application but also supports target node selection among 
multiple GPGPU-enabled computation resources. We also proposed four opti-
mization techniques to reduce additional overhead owing to remote execution. 
We implemented SeloGPU using OpenCL which is open standard heterogene-
ous language. The experimental result shows SeloGPU can choose best target 
node based on the history of execution information. The four optimization tech-
niques reduce ~87% of network transmission overhead. 

Keywords: GPGPU, SeloGPU, offloading, remote execution, OpenCL, 
CUDA. 

1 Introduction 

General Purpose GPU (GPGPU) is a technology that enables high performance com-
puting application to use GPU as a computation resource. Traditionally high perfor-
mance computing is conducted using multiple CPUs. However, this traditional way is 
changing owing to high performance GPU era. According to various GPU venders, 
the performance of GPGPU is much higher than CPU for parallelized application 
owing to GPU’s multiple cores. Many previous researches have shown that the per-
formance enhancement is more than 100 times. [1, 2] In order to execute a GPGPU 
application, we need such high performance GPU hardware in the local machine. 

Off-loading is a technique that enables an application or a part of code to run in a 
remote node. If we apply the off-loading technique to the GPGPU, we can execute 
high performance GPGPU application using remote side GPU. 

However, if there are many nodes that can conduct off-loaded remote processing, 
which node do we choose to off-load? If the off-loading target node has poor compu-
tation resource, then the off-loaded execution may result in slower execution than 
local execution. In this paper, we propose selective remote OpenCL framework that 
conducts GPGPU off-loading to achieve high performance execution of GPGPU  
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application. The proposed framework chooses best node to execute GPGPU applica-
tion based on history information and current network status. 

In section 2, background and related work are described. Section 3 describes the 
architecture of the proposed system. Section 4 explains various experimental results, 
and finally, section 5 provides some concluding remarks regarding this research. 

2 Background and Related Work 

2.1 Selective Off-Loading for GPGPU 

OpenCL [3] is open standard for parallel programming of heterogeneous systems. 
OpenCL supports CPU fallback feature so the GPGPU application can execute with-
out GPU. Figure 1 shows the result of matrix multiplication using CPU and GPU. 
 

 

Fig. 1. Matrix multiplication. Intel Xeon E5-2630 is used for CPU experiments. NVidia Ge-
Force 210 and Quadro 2000 are used as low and mid performance GPU, respectively. 

As a result, 12-core CPU overwhelms GPGPU for all matrix multiplication sizes 
and this is the need for selective off-loading for GPGPU application. That is, not all 
GPU result in faster execution than CPU. We can also think about the case that high 
network latency with low network bandwidth. In this case, execution in local node 
would be better even though the remote target has powerful computation resources. 

2.2 Related Work 

rCUDA [4] supports high speed network transfer using infiniband and their own op-
timization however details of optimization is not opened since it is not an open source 
project. It only targets CUDA. vCUDA [5] is remote GPGPU off-loading approach on 
top of VMM. However, it shows slow results due to the overhead of XML-RPC [6]. 
dOpenCL [7] proposed uniform programming approach for multi-node-multi-core 
based OpenCL applications. clOpenCL [8] also proposed distributed execution of 
OpenCL applications. These two approaches used a wrapper library to interpose the 
APIs accessing to the OpenCL library. The main differences of these two are the  
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connection method. dOpenCL used TCP based connection and clOpenCL used Open-
MX [9] based connection among between OpenCL nodes. These two approaches 
suggested the method for accessing distributed OpenCL accelerators. However, these 
two approaches assume that remote accessing will always give better performance 
than local accessing. Thus, to obtain best performance, users have to select best node 
and best accelerator for current GPGPU application. GridRPC [10] is a remote proce-
dure call (RPC) mechanism for grid computing. Although it supports grid computing 
based RPC, this is too general to support GPGPU-oriented optimization. MAUI [11] 
is an off-loading framework for a network. It off-loads mobile application to the serv-
er to overcome battery consumption. Thus their first priority of selective off-loading 
is energy consumption. It measured energy consumption per API using hardware and 
it determines whether they will conduct off-load or not. However it requires source 
code of user application and a special annotation is used to off-load.  

3 Architecture 

In this section we describe a selective GPGPU off-loading framework named SeloG-
PU. Figure 2 depicts the architecture of the SeloGPU. 

 

Fig. 2. Architecture of SeloGPU framework 
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Library. Thus the API access from the GPGPU application is caught to the Off-
loading Manager without any modification of the GPGPU application. 

The Off-loading manager consists of five components. The Session manager au-
tomatically establishes a session with OpenCL Targets since each OpenCL Target 
broadcasts its advertisement message to the network. When the connection is estab-
lished, it receives OpenCL Target IDs for computation resources (CPU, GPU) from 
the Target and calculates current network bandwidth. The Target Selector determines 
a Target that will run OpenCL application with the best performance. The Remote 
OpenCL Client is the actual off-loading engine. It marshals each OpenCL API to the 
selected OpenCL Target’s Remote OpenCL Server and receives result of each API. 
The Evaluator measures remote execution time and the output data size of OpenCL 
application for various OpenCL Targets and saves them to the Target Info Store. The 
Target Info Store is a simple key-value store. Table 1 depicts this key-value structure.  

Table 1. Structure of Target Info Store 

Key Value 
(GPGPU Application ID, OpenCL Target ID) (Execution time, Output data size) 

… … 
 
 
GPGPU Application ID is a tuple composed by hash value of kernel source code 

and the size of input data. The kernel source code and the input data size can be cap-
tured by the parameters of OpenCL APIs. 

The Target Selector chooses best target node for given GPGPU application using 
stored execution time information in the Target Info Store. When a GPGPU applica-
tion launches, each OpenCL APIs are passed the Off-loading Manager and the Target 
Selector chooses best node. Detailed procedure of target selection is as follows. 

1. Target Selector obtains currently connected OpenCL Target IDs and their network 
bandwidths from the Session Manager. If there is no connection to remote OpenCL 
Target, then it sets local node’s OpenCL Target as execution target and the Target 
Selector stops. (local execution) 

2. If there are one or more connections to the remote OpenCL Target then, the Target 
Selector holds OpenCL APIs called from the GPGPU application and just return 
pre-defined success value until clCreateProgramWithSource() calls. 

3. When clCreateProgramWithSource() calls, it copies the source code to temporary 
memory and returns pre-defined success value until clEnqueueWritebuffer() calls. 

4. When clEnqueueWriteBuffer() calls, it captures the size of input data. 
5. Now we can generate the GPGPU Application ID using hash value of the kernel 

source code in the temporary memory stored in step 3 and the size of input data. 
6. Then it calculates current estimated off-loading time for the GPGPU application 

with connected OpenCL Targets using below equation (1). Note that the output da-
ta size and execution time are stored in the Target Info Store. 



246 S. Park, J. Ma, and C. Park 

 Estimated off-loading time = Execution time + Network time (1) 

 Network time = (Input data size+ Output data size) / Network bandwidth (2) 

7. Finally, the Target Selector chooses OpenCL Target with the shortest estimated 
off-loading time. 

3.2 OpenCL Target 

The OpenCL Target runs as a daemon process in the OpenCL target nodes. Both local 
node and remote node run the OpenCL Target because a local node can also be a 
remote node for another node at the same time. The OpenCL Target has two compo-
nents. The Session Manager is responsible for connection to the Off-loading Manager 
in the local side. The Remote OpenCL Server unmarshals OpenCL APIs and executes 
them and sends back the result to the Remote OpenCL Client in the local side. 

4 Optimizations 

4.1 API Pre-execution 

Through profiling of the remote execution of the OpenCL APIs, we found that some 
APIs like clGetPlatformID() shows significant higher overhead than the others - about 
2.5 seconds. Therefore we can execute them in advance and keep the return value. 
This optimization results in reducing constant latency which is important for the low-
sized computation. 

4.2 API Coalescing  

The OpenCL APIs called during the initialization stage can be coalesced since the 
initialization process is always the same. When the bulk data transmission API is 
called, then the coalesced APIs and the arguments will be sent to the remote node. 
The bulk data transmission API can be kernel source preparation or input data copy 
for the kernel. So, OpenCL initialization can be done with a single transmission.  
 

 

Fig. 3. Overlapped data transmission 
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4.3 Overlapped Data Transmission 

When the OpenCL is initialized, it prepares kernel function and sends input data for 
the kernel. When the data are completely sent to the remote side, then the kernel func-
tion will be executed. In this procedure, we can apply overlapped data transmission 
since computation and transmission can be existed simultaneously. Figure 3-(a) de-
scribes current procedure of data transmission and 3-(b) describes overlapped data 
transmission. Some loop based GPGPU kernels use their previous output data as cur-
rent input data. In this case, data transfer from local to host is not needed since the 
data are already located in the remote side. 

4.4 Asynchronous Processing  

For APIs that do not need to wait for the return value and if there are no dependency 
of the API processing, we can convert it to asynchronous calls. APIs in the release 
stage such as clReleaseKernel(), clReleaseContext() and etc. are those. Therefore, we 
can process these APIs as asynchronous calls and when these APIs called, then the 
Remote OpenCL Client simply returns to the GPGPU application and sends this call 
to the Remote OpenCL Server at the same time. 

5 Evaluation 

We used 100Mbps NIC to connect among nodes. The local machine has Intel Atom 
D510, 1.67GHz CPU with 2GB RAM and NVidia GeForce 210 GPU. The remote 
machine has Intel Xeon E5-2630 2.3GHz with 48GB RAM and NVidia Quadro 2000 
GPU. Two machines run 64bit Ubuntu 12.04 desktop. 

 

     

Fig. 4. Off-loading result for Rodinia workload        Fig. 5. Result of API Pre-execution 
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5.1 Selective Off-Loading Result 

In order to see the selective off-loading result, we used Rodinia [12] benchmark with 
one GPU-enabled local machine and two remote machines. (CPU and GPU machines) 
B+ tree workload in the Rodinia cannot run in CPU owing to a keyword 
__synchthread in kernel function, which is not supported in C99. B+ tree has many 
internal commands that maintain database and process queries. LavaMD workload in 
the Rodinia calculates particle position within a large 3D space. Figure 4 shows the 
result of off-loading result. The Target Selector chooses remote CPU 12-core for the 
lavaMD and local GPU for the B+ tree. 

5.2 Optimization Result 

Figure 5 shows the result of API pre-execution for matrix multiplication. As depicted 
in Figure 5, we can save additional about 2.5 seconds by this technique. Especially, 
this technique fits well with small-sized workload since it reduces constant value. API 
coalescing, overlapped transmission and asynchronous processing for release API 
reduce network transmission latency. Table 2 shows the result of each technique. 

Table 2. Result of network optimization techniques 

 LavaMD B+Tree Matrix 256 
API coalescing 0.02% 0.18% 0.19% 

Overlapped transmission 1.79% 3.42% 2.04% 
Async. processing for release API 0.67% 0.3% 0.65% 

Figure 6 shows the result with all optimizations. The lavaMD shows about 80% re-
duced overhead than the original remote execution, and the b+tree shows about 16% 
reduced overhead than the original remote execution. Matrix multiplication result 
shows about 87% reduced overhead. These various results are originated from the 
API pre-execution. The API pre-execution reduces constant time (about 2.5 sec.) so it 
depends on the size of the workload. 

 

Fig. 6. Result of overall optimization. Matrix 256 means matrix multiplication of 256 x 256.  
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6 Conclusion 

In this paper, we proposed selective GPU off-loading architecture named SeloGPU. 
We described detailed architecture of SeloGPU. It consists of two parts: the Off-
loading Manager in local node and the OpenCL Target in remote node. Since the off-
loading manager interposes between GPGPU application and the OpenCL library, we 
can achieve off-loading without any modification of the application. Based on the 
stored execution information in the Target Info Store, SeloGPU can choose best node 
to execute current application. We also proposed four optimization techniques which 
achieve 16-87% reduced network transmission overhead. 
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Abstract. Domain decomposition of dissipative particle dynamics is
complicated by the use of random pairwise forces as a component of
a momentum-conserving thermostat. The conventional use of a pseu-
dorandom number generator for each processor core leads to the need
for an additional communication step to correctly assign random forces
to particles in boundary halos. To circumvent this communication, the
use of a three-seed pseudorandom number generator is proposed to al-
low multiple processor cores to evaluate the same forces. This kind of
pseudorandom number generator will be applied to the general-purpose
mesoscale modelling package DL MESO to improve its parallel scalabil-
ity for large processor core counts.

Keywords: Domain decomposition, dissipative particle dynamics, pseu-
dorandom number generator, DL MESO.

1 Introduction

Dissipative particle dynamics (DPD) is a particle-based technique for modelling
systems at the mesoscale[1], often used to study soft matter, complex fluids
and biomolecular systems. It is based upon a Galilean invariant thermostat pro-
vided by pairwise dissipative and random forces, which correctly reproduces
hydrodynamics[2] while allowing the use of larger time-steps than classical molec-
ular dynamics (MD). This allows the use of a smaller number of larger, softer
particles to represent a system dominated by fluid dynamics, making the tech-
nique capable of modelling systems approaching continuum length and time
scales.

Like classical MD, DPD calculations can be parallelized by domain decom-
position, which divides the particles among processor cores according to their
locations in the volume. This parallelization technique relies on autonomous cal-
culations of particle forces with some communication to deport particles leaving
the volume for each core and to create boundary halos for force calculations. An
additional complication in DPD is the use of pairwise random forces, which are
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frequently reliant on core-dependent pseudorandom number generators (PRNG)
and thus require additional communication of calculated forces to assign them
correctly to particles in boundary halos. This method is implemented in the DPD
code of DL MESO[3,4]; while the parallel scalability of this code is generally very
good, it suffers at higher core counts due to increased communication.

To eliminate communications for force assignments, an alternative PRNG can
be used that can easily and rapidly produce a random number using the numbers
for any given pair of particles and the time step as seeds[5]. Since this PRNG can
reproduce the same random number for the same seeds on any processor core,
this removes the need to communicate random forces between cores and allows
duplicate pairwise force calculations to be carried out on all cores. The objective
of this work is to improve the parallel scalability of the DPD code in DL MESO
by incorporating a PRNG with these properties and modifying pairwise force
calculations, with the intention of including this feature in future code releases.

2 Theoretical and Computational Background

2.1 Dissipative Particle Dynamics

A DPD system consists of a number of particles whose motion is determined by
integrating the forces acting on them due to interactions with each other. The
force acting on particle i is given by

Fi =
∑
j �=i

(
FC

ij + FD
ij + FR

ij

)
(1)

with FC
ij , F

D
ij and FR

ij as the conservative, dissipative and random forces be-
tween particles i and j. Additional forces can be included for interactions due
to bonds, electrostatics, surfaces etc. The conservative force is normally selected
to give a soft-core quadratic potential[6] but can take on alternative forms such
as hard-core potentials typically used for classical MD[7] and density-dependent
potentials[8].

The dissipative and random forces act as the system thermostat. The dissi-
pative force is expressed by

FD
ij = −γwD(rij)(r̂ij · vij)r̂ij (2)

and the random force by
FR

ij = σwR(rij)θij r̂ij (3)

where γ and σ are the amplitudes of the dissipative and random forces respec-
tively, rij = rj − ri is the vector between particles i and j, vij = vj − vi the
relative velocity between particles i and j, r̂ij =

rij
rij

, wD(rij) and wR(rij) are

weighting functions dependent on particle separation and θij = θji is a randomly
fluctuating variable with Gaussian statistics, i.e.

〈θij(t)〉 = 0
〈θij(t) · θkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′). (4)
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The thermostat is achieved by fixing relationships between the dissipative and
random weighting functions and force amplitudes to satisfy the Fokker-Planck
fluctuation-dissipation theorem[2]:

wD(rij) =
[
wR(rij)

]2
(5)

σ2 = 2kBTγ (6)

where kB is the Boltzmann constant and T is the desired system temperature.
The weighting function for random forces is normally selected to be wR(rij) =
1 − rij

rc
for rij < rc, the same functional form as normally selected for the

conservative force, while the dissipative force amplitude is related to the viscosity
of the fluid.

2.2 Domain Decomposition, Link-Cell Lists and Communication

The DPD code of DL MESO is parallelized using domain decomposition: the
volume of the simulation cell is divided equally among the number of processor
cores available, with each sub-volume holding a number of DPD particles. To
calculate forces correctly, the construction of a boundary halo with a size equal
to the maximum interaction cutoff (rc) is required to allow for calculations of
pairwise forces between particles in neighbouring process cores.

The search for pairs of particles within a cutoff distance can be carried out
efficiently by means of link-cell lists[9]: each sub-volume (including its boundary
halo) is split into an integer number of cuboidal cells with sides equal to or
greater than rc, the particles can be assigned to those cells and lists of particles
in each cell can be constructed. By working through the list of particles for a
particular cell and the lists of nearest neighbour cells, pairs of particles likely
to be within the cutoff can be found. Re-calculation of particle pairs is avoided
by only directly searching cells belonging to the sub-volume and restricting the
search of neighbouring cells to half of all possible directions: this is illustrated
by Figure 1(a). The search for nearest neighbours can be extended to include all
neighbouring boundary cells for cells at the edge of the sub-volume, as illustrated
in Figure 1(b), provided the forces between pairs in the additional cells can
be reproduced in neighbouring sub-volumes. Highly-scalable classical molecular
dynamics codes such as DL POLY 4[10,11] use this approach.

Domain decomposition is dependent on communication between neighbouring
processor cores. A deport step is required to move any particles leaving a sub-
volume into the appropriate processor core, while an export step is needed to
construct a boundary halo from particles within rc of the boundary between
sub-volumes. If the half-way search of link-cells is applied, an additional import
step is required to send forces for particles in the boundary halo back to the
processor cores they belong to for summation. No import step is required if a
full search of boundary cells is carried out, as all contributions to forces for all
particles in the sub-volume will have been determined.
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(a) Half-way search pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 56

57 58 59 60 61 62 63 64

55

(b) Full search pattern

Fig. 1. Illustration of searches for particle pairs in a link-cell algorithm for 2-D simula-
tion. The half-way search (a) uses the same pattern for each of the (white) cells within
the volume, while the full search (b) includes all possible boundary (cyan) cells.

2.3 Random Forces

The Gaussian random fluctuations θij can be calculated from Gaussian random
numbers with zero mean and unit variance, ξij , and the time-step for simulations,
Δt:

θij =
ξij√
Δt

. (7)

Many pseudorandom number generators produce uniformly distributed random
numbers uij (often between 0 and 1), so some form of transformation is often
required. For DPD simulations, it is possible to exploit the central limit theorem
and use uniform random numbers directly as an approximation for Gaussian
random numbers[6], i.e.

ξij ≈
√
12
(
uij − 1

2

)
, (8)

which gives statistically indistinguishable results to true Gaussian random
numbers.

For calculations of pseudorandom numbers in parallel computing environ-
ments, a commonly-used scheme is to have a PRNG for each processor core, i.e.
each core has a uniquely seeded, independent random number stream. This is
currently used in the DPD code of DL MESO, which uses the Mersenne Twister
(MT) PRNG[12] with seeds based upon the processor core number. This ap-
proach makes it virtually impossible to generate the same random number for
each particle pair at a given time-step on multiple processor cores, which thus
requires the half-way search of link-cells and the additional import communica-
tion step to send forces back to neighbouring cores. The effect of this additional
communication becomes more pronounced as the number of processor cores in-
creases, which has been observed to cause a plateauing and decline in parallel
speed-up for a system of fixed size[3].
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3 Main Ideas

To improve the parallel scalability of DL MESO’s DPD code, a reduction in
communication is proposed by eliminating the need for a force importing step,
which requires an alternative method of easily and quickly generating the same
random numbers independently on separate processor cores for each particle
pair at a given time-step. The PRNG Saru was selected for this work due to
its portability, ease of implementation, rapid seeding and availability of a three-
variable seed premixing algorithm.

3.1 Fast Seeding PRNG

Saru, a PRNG written by Steve Worley of Worley Laboratories, is designed to
be robust, fast in evaluating pseudorandom numbers and advancing its state,
and have a small state size[5]. It has been observed to be faster than the MT
PRNG in terms of both seeding and evaluation, and has passed all randomness
tests.

The state size of Saru is two 32-bit ‘words’ — state and wstate — which
are advanced by means of a linear congruential generator (LCG) and an Offset
Weyl Sequence (OWS):

state = 0x4beb5d59*state + 0x2600e1f7;

wstate = wstate + oWeylOffset + ((((signed int)wstate)>>31)&oWeylPeriod);

where oWeylOffset=0x8009d14b and WeylPeriod=0xda879add. These two com-
ponents are combined in such a way as to obscure any regular patterns, using
simple XORs, bit-shifting and a multiply:

unsigned int v = (state ^ (state>>26))+wstate;

return (v^(v>>20))*0x6957f5a7;

which produces values between 0 and 232−1: this can subsequently be converted
into a uniformly distributed random number between 0 and 1. The period of the
Saru PRNG is ∼ 263.77, which can be limiting for systems involving more than
a few billion samples but can be extended at the cost of additional storage space
and update speed. Saru is seeded in every single call and its resulting state
is not used in subsequent calls; in this sense, Saru can thus be described as
state-free and, unlike many PRNGs, no storage of its state is required to resume
calculations.

3.2 Three-Variable Seeding

The two 32-bit words used for Saru can be generated using one or more seeding
values. In the context of DPD simulations, a three-variable seed is of particular
interest since the particle indices and time-step can be used to generate the 32-
bit words and subsequently produce a unique pseudorandom number. Extensive
testing of hundreds of mixing functions with millions of constants produced the
following premixing algorithm[5]:



Efficient Domain Decomposition of Dissipative Particle Dynamics 255

seed3 ^= (seed1<<7)^(seed2>>6);

seed2 += (seed1>>4)^(seed3>>15);

seed1 ^= (seed2<<9)+(seed3<<8);

seed3 ^= 0xa5366b4d*((seed2>>11) ^ (seed1<<1));

seed2 += 0x72be1579*((seed1<<4) ^ (seed3>>16));

seed1 ^= 0x3f38a6ed*((seed3>>5) ^ (((signed int)seed2)>>22));

seed2 += seed1*seed3;

seed1 += seed3 ^ (seed2>>2);

seed2 ^= ((signed int)seed2)>>17;

with seed1 and seed2 as the smaller and larger particle global indices respec-
tively and seed3 as the time-step. The three seeds are then transformed into a
two integer state using bitwise XOR, multiplication, addition, bit-shifting and
type conversion:

state = 0x79dedea3*(seed1^(((signed int)seed1)>>14));

wstate = (state + seed2) ^ (((signed int)state)>>8);

state = state + (wstate*(wstate^0xdddf97f5));

wstate = 0xabcb96f7 + (wstate>>1);

The resulting values of state and wstate are then advanced and combined as
described above.

4 Results and Conclusions

Starting with the publicly released version of DL MESO version 2.5, the DPD
code has been modified twice. One version (Saru-I) implements the Saru PRNG
with three-variable seeding in place of the MT PRNG but retains the half-way
search pattern for pairwise force calculations and the force import communica-
tion step, while the other (Saru-II) implements Saru and the full search pattern,
thus allowing the force import step to be omitted.

The book-keeping required for bonded interactions in Saru-I is left unchanged
from the release version of DL MESO, which relies on calculating each bond once
and using the force import step for particles in boundary halos. Elimination of
the force import step meant it could not be used unmodified for Saru-II, so a
more sophisticated book-keeping scheme – the form used in DL POLY 4[10] –
was included to allow autonomous calculation of bond potentials and forces in
multiple processor cores for bonds that span multiple sub-volumes.

Simulations of a simple 3000-particle system with two separating species were
carried out in serial for all three codes to verify the statistical consistency of
the two PRNGs: respectively for the original, Saru-I and Saru-II versions of
DL MESO, average system temperatures of kBT = 1.0194 ± 0.1109, 1.0184 ±
0.1111, 1.0176± 0.1111 and pressures (in DPD units) of

pr3c
kBT = 25.502± 1.417,

25.609 ± 1.401, 25.586 ± 1.403 were achieved. Direct measurements of random
force calculations for the original and Saru-I codes suggest that Saru with the
three-seed premixing algorithm takes approximately 6% more time than MT to
produce a pseudorandom number, but the use of the full particle pair search
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pattern in Saru-II to eliminate a serial form of the force import step gives a
significant time-saving, reducing the runtime for this system by about 25%.

The parallel scalabilities of the versions of DL MESO with the Saru PRNG
were tested using simulations of vesicle formation from solutions of amphiphilic
molecules[3,13] on the UK’s national high performance computing service,
HECToR[14], which consists of 32-core Cray XE6 processors.

The largest strong and weak scaling tests from [3] (therein denoted as S-DPD-
III and W-DPD-III respectively) were initially used without bonded interactions
to determine the effect of changingPRNGs and force calculations/communication:
these are illustrated in Figure 2. Compared with the original version of the code,
Saru-I suffers from a drop in strong scalability but its weak scalability is almost
unchanged; the most likely explanation is the additional memory access required
to determine the global particle indices as seeds for Saru. Changing pair searching
and omitting the force import step more than compensates for this, however, as
Saru-II outperforms the original version of the code in both tests.
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(b) Weak scalability

Fig. 2. Scalability of original, Saru-I and Saru-II DL MESO codes on HECToR for
systems without bonded interactions. Strong scalability tested using a 11.4 million
particle system and weak scalability using 44686.5 particles per core.

The smallest and largest strong scaling tests from [3], now including bond
interactions in equal proportions of particle numbers, were carried out using
Saru-II for comparison with pre-existing results for the original code: these are
shown in Figure 3. While there is a modest improvement in scalability for the
small system using Saru-II, this version of the code does not scale as well as the
original version beyond 256 cores for the large system in spite of the previously
observed improvements due to the changes in PRNG, particle pair search and
communication. It is clear that the form of book-keeping for bond interactions
has a significant effect on scalability at higher core and bond counts, particularly
in terms of contiguity of this data for memory access.

The use of Saru with the three-seed premixing algorithm does significantly
improve the parallel scalability of DL MESO and its inclusion in future releases is
strongly justified. Further optimization of DL MESO would be required to fully
exploit the full linked-cell search scheme, particularly improvements to memory
contiguity of particle data and book-keeping of bonded interactions.



Efficient Domain Decomposition of Dissipative Particle Dynamics 257

0 500 1000 1500 2000
number of processor cores

0

10

20

30

40

50

60

70

sp
ee

d 
ga

in
 (

re
la

tiv
e 

to
 3

2 
co

re
s)

small: original code
small: Saru-II code
large: original code
large: Saru-II code

perf
ect

 sc
ali

ng

good scaling

Fig. 3. Strong scalability of original (dotted lines) and Saru-II (solid lines) versions of
DL MESO on HECToR for 715 thousand and 11.4 million particle systems (S-DPD-I
and S-DPD-III in [3]) including bonds between particles
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Abstract. Application development for modern high-performance sys-
tems with Graphics Processing Units (GPUs) currently relies on low-level
programming approaches like CUDA and OpenCL, which leads to com-
plex, lengthy and error-prone programs.

In this paper, we present SkelCL – a high-level programming ap-
proach for systems with multiple GPUs and its implementation as a
library on top of OpenCL. SkelCL provides three main enhancements
to the OpenCL standard: 1) computations are conveniently expressed
using parallel algorithmic patterns (skeletons); 2) memory management
is simplified using parallel container data types (vectors and matrices);
3) an automatic data (re)distribution mechanism allows for implicit data
movements between GPUs and ensures scalability when using multiple
GPUs. We demonstrate how SkelCL is used to implement parallel ap-
plications on one- and two-dimensional data. We report experimental
results to evaluate our approach in terms of programming effort and
performance.

1 Introduction

Modern high-performance computer systems become increasingly heterogeneous
as they comprise in addition to multi-core processors, also Graphics Processing
Units (GPUs), Cell processors, FPGA, and other accelerating devices, usually
called accelerators. The state-of-the-art application programming for systems
with GPUs is cumbersome and error-prone, because GPUs are programmed us-
ing explicit, low-level programming approaches like CUDA [11] or OpenCL [13].
These approaches require the programmer to explicitly manage GPU’s mem-
ory (including memory (de)allocations, and data transfers to/from the system’s
main memory), and explicitly specify parallelism in the computation. This leads
to lengthy, low-level, complicated and, thus, error-prone code. For multi-GPU
systems, programming with CUDA and OpenCL is even more complex, as both
approaches require an explicit implementation of data exchange between the
GPUs, as well as disjoint management of each GPU, including low-level pointer
arithmetics and offset calculations.

In this paper, we describe the SkelCL (Skeleton Computing Language) – our
high-level programming approach for parallel systems with multiple GPUs. The
SkelCL programming model is based on the OpenCL standard and enhances it
with three high-level mechanisms:

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 258–272, 2013.
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1) parallel container data types : collections of data (in particular, vectors and
matrices) that are managed automatically on all GPUs in the system;

2) data (re)distributions : an automatic mechanism for specifying in the appli-
cation program suitable data distributions and re-distributions among the
GPUs of the target system:

3) parallel skeletons : pre-implemented high-level patterns of parallel computa-
tion and communication which can be customized to express application-
specific parallelism, and combined to a large high-level code.

The structure of the paper is as follows. In Section 2 we formulate the require-
ments to a high-level programming approach for GPU systems, following from
the analysis of compute-intensive applications. Section 3 describes in detail our
SkelCL approach. In Section 4 we report experimental evaluation of our ap-
proach regarding both programming effort and performance. We compare to
related work and conclude in Section in Section 5.

2 Requirements to a High-Level Programming Model

To simplify programming for a system with multiple GPUs, the following high-
level abstraction are desirable:

Parallel container data types. Compute-intensive applications typically operate
on a (possibly big) set of data items. Managing memory hierarchy of multi-
GPU systems explicitly is complex and error-prone because low-level details, like
offset calculations, have to be programmed manually. A high-level programming
model should be able to make collections of data automatically accessible to all
GPUs in the target system and it should provide an easy-to-use interface for the
application developer.

Distribution and redistribution mechanisms. To achieve scalability of applica-
tions on systems comprising multiple GPUs, it is crucial to decide how the
application’s data are distributed across all available GPUs. Applications often
require different distributions for their computational steps. Distributing and
re-distributing data between GPUs in OpenCL is cumbersome because data
transfers have to be managed manually and performed via the CPU. Therefore,
it is important for a high-level programming model to allow both for describing
the data distribution and for changing the distribution at runtime, such that the
system takes care of the necessary data movements.

Recurring patterns of parallelism. While the concrete operations performed in
an application are (of course) application-specific, the general structure of par-
allelization often follows some common parallel patterns that are reused in dif-
ferent applications. For example, operations can be performed for every entry of
an input vector, which is a well-known pattern of data-parallel programming, or
two vectors are combined element-wise into an output vector, which is again a
common pattern of parallelism. It would be, therefore, desirable to express the
high-level structure of an application using pre-defined common patterns, rather
than describing the parallelism explicitly in much detail.
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3 SkelCL: Programming Model and Library

We develop our SkelCL [14] programming model as an extension of the stan-
dard OpenCL programming model [13], which is an emerging de-facto standard
for programming heterogenous systems with various accelerators. SkelCL adds to
OpenCL three features that we identified as desirable in Section 2. SkelCL inher-
its all properties of OpenCL, including its portability across different heteroge-
neous parallel systems. SkelCL is designed to be fully compatible with OpenCL:
arbitrary parts of a SkelCL code can be written or rewritten in OpenCL, without
influencing program’s correctness. While the main OpenCL program is executed
sequentially on the CPU – called the host – computations are offloaded to par-
allel processors – called devices. In this paper, we focus on systems comprising
multiple GPUs, therefore, we use the terms CPU and GPU, rather than more
general OpenCL terms host and device.

3.1 Parallel Container Data Types

SkelCL offers the application developer two container classes – vector and ma-
trix – which are transparently accessible by both, host and devices, i. e. the CPU
and the GPUs. The vector abstracts a one-dimensional contiguous memory area
while the matrix provides an interface to a two-dimensional memory area. When
a container is created on the CPU, memory is allocated on the GPUs automat-
ically; when a container on the CPU is deleted, the memory allocated on the
GPUs is freed automatically. In a SkelCL program, a vector object can be created
and filled with data as in the following example:

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The main advantage of the container data types in SkelCL as compared with
OpenCL is that the necessary data transfers between the CPU and GPUs are
performed implicitly. Before performing a computation on container types, the
SkelCL system ensures that all input containers’ data is available on all partic-
ipating GPUs. This may result in implicit (automatic) data transfers from the
CPU to GPU memory, which in OpenCL would require explicit programming.
Similarly, before any data is accessed on the CPU, the implementation of SkelCL
ensures that this data on the CPU is up-to-date by performing necessary data
transfers implicitly and automatically. Thus, the container classes shield the pro-
grammer from low-level operations like memory allocation (on GPU) and data
transfers between CPU and GPU.

3.2 Data Distribution on Multiple GPUs

In applications working on container data types (vectors, matrices, etc.) GPU’s
often access disjoint parts of input data, such that copying only a part of the
container to a GPU would be more efficient than copying the whole data to each
GPU. To simplify the specification of partitionings of containers in programs
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Fig. 1. Distributions of a vector in SkelCL
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Fig. 2. Distributions of a matrix in SkelCL

for multi-GPU systems, SkelCL implements the distribution mechanism that
describes how a container is distributed among the available GPUs. It allows
the programmer to abstract from managing memory ranges which are shared
or spread across multiple GPUs: the programmer can think of a distributed
container as of a self-contained entity.

Four kinds of distribution are currently available in SkelCL: single, copy, block,
and overlap (see Fig. 1 for distributing a vector on a system with two GPUs). If
distribution is set to single (Fig. 1a), than vector’s whole data is stored on a single
GPU (the first GPU if not specified otherwise). The copy distribution (Fig. 1b)
copies vector’s entire data to each available GPU. With the block distribution
(Fig. 1c), each GPU stores a contiguous, disjoint chunk of the vector. The overlap
distribution (Fig. 1d) stores on each GPU the chunk like in the block distribution,
together with one or several border elements of the neighboring chunk.

The same four distributions are provided also for the matrix data type (Fig-
ure 2). In particular the overlap distribution splits the matrix into one chunk for
each GPU; in addition, each chunk contains a number of continuous rows from
the neighboring chunks. A parameter – the overlap size – specifies the number of
rows at the borders of a chunk which are copied to the two neighboring GPUs.
Figure 2d illustrates the overlap distribution: GPU 0 receives the top chunk
ranging from the top row to the middle, while GPU 1 receives the second chunk
ranging from the middle row to the bottom. The marked parts are called overlap
region they are the same on both GPUs.

The application developer can set the distribution of containers (vectors and
matrices) explicitly, otherwise every skeleton selects a default distribution for its
input and output containers. Container’s distribution can be changed at run-
time: this implies data exchanges between multiple GPUs and the CPU, which
are performed by the SkelCL implementation implicitly. Implementing such data
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transfers in the standard OpenCL is a cumbersome task: data has to be down-
loaded to the CPU before it is uploaded to the GPUs, including the correspond-
ing length and offset calculations; this results in a lot of low-level code which
becomes completely hidden when using SkelCL.

3.3 Basic Patterns of Parallelism (Skeletons)

In original OpenCL, computations are expressed as kernels which are executed
in a parallel manner on a GPU: the application developer must explicitly specify
how many instances of a kernel are launched. In addition, kernels usually take
pointers to GPU memory as input and contain program code for reading/writing
single data items from/to it. These pointers have to be used carefully, because
no boundary checks are performed by OpenCL.

To shield the application developer from these low-level programming issues,
SkelCL extends OpenCL by introducing high-level programming patterns, called
algorithmic skeletons [15]. Formally, a skeleton is a higher-order function that ex-
ecutes one or more user-defined (so-called customizing) functions in a pre-defined
parallel manner, while hiding the details of parallelism and communication from
the user [15].

The current version of SkelCL provides six skeletons: map, zip, reduce, scan,
mapOverlap and allpairs. We define first the four basic skeletons. We do this
semi-formally, with c, cl and cr denoting vectors with elements ci, cli and cri
where 0 < i ≤ n:

– The map skeleton applies a unary customizing function f to each element of
an input vector c, i. e.

map f [c1, c2, . . . , cn] = [f(c1), f(c2), . . . , f(cn)]

In a SkelCL program, a map skeleton is created as an object for a unary
function f , e. g. negation, like this:

Map<float(float)> neg("float func(float x){ return -x;}");

This map object can then be called as a function with a vector as argument:

resultVector = neg( inputVector );

– The zip skeleton operates on two vectors cl and cr, applying a binary cus-
tomizing operator ⊕ pairwise:

zip (⊕) [cl1, cl2, . . . , cln] [cr1, cr2, . . . , crn] = [cl1⊕cr1, cl2⊕cr2, . . . , cln⊕crn]
In SkelCL, a zip skeleton object for adding two vectors is created like as:

Zip<float(float, float)> add("float func(float x,float y){return x+y;}");

and can then be called as a function with a pair of vectors as arguments:

resultVector = add( leftVector, rightVector );

– The reduce skeleton computes a scalar value from a vector using a binary
associative operator ⊕, i. e.
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red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn
For example, to sum up all elements of a vector, the reduce skeleton is created
with addition as customizing function, and called as follows:

Reduce<float(float)> sumUp("float func(float x,float y){ return x+y;}");

result = sumUp( inputVector );

– The scan skeleton (a. k. a. prefix-sum) yields an output vector with each
element obtained by applying a binary associative operator⊕ to the elements
of the input vector up to the current element’s index, i. e.

scan (⊕) [v1, v2, . . . , vn] = [v1, v1 ⊕ v2, . . . , v1 ⊕ v2 ⊕ · · · ⊕ vn]
The prefix sums customized with addition is specified and called in SkelCL
as follows:

Scan<float(float)> prefixSum("float func(float x,float y){return x+y;}");

result = prefixSum( inputVector );

In SkelCL, rather than writing low-level kernels, the application developer cus-
tomizes suitable skeletons by providing application-specific functions which are
often much simpler than kernels as they specify an operation on basic data items
rather than containers. Skeletons can be executed on both single- and multi-GPU
systems. In case of a multi-GPU system, the calculation specified by a skeleton
is performed automatically on all GPUs available in the system.

int main (int argc , char const* argv []) {

SkelCL:: init (); /* initialize SkelCL */

/* create skeletons */

SkelCL::Reduce <float > sum ("float sum (float x,float y)\

{return x+y;}");

SkelCL::Zip <float > mult("float mult(float x,float y)\

{return x*y;}");

/* create input vectors */

SkelCL::Vector <float > A(SIZE);

SkelCL::Vector <float > B(SIZE);

/* fill vectors with data */

fillVector (A.begin(), A.end());

fillVector (B.begin(), B.end());

/* execute skeleton */

SkelCL::Scalar <float > C = sum( mult( A, B ) );

/* fetch result */

float c = C.getValue ();

}

Listing 1.1. SkelCL program computing the dot product of two vectors. Arrays a ptr

and b ptr initialize the vectors.
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Listing 1.1 shows how a dot product of two vectors is implemented in SkelCL
using two of the basic skeletons. Here, the Zip skeleton is customized by multipli-
cation, and the Reduce skeleton is customized by usual addition. For comparison,
an OpenCL-based implementation of the dot product computation provided by
NVIDIA requires approximately 68 lines of code (kernel function: 9 lines, host
program: 59 lines) [2].

3.4 The MapOverlap Skeleton

Many numerical and image processing applications dealing with two-dimensional
data perform calculations for a particular data element (e. g., a pixel) taking
neighboring data elements into account. To facilitate the development of such
applications, we define in SkelCL a skeleton that can be used with both vector
and matrix data type; we explain the details for the matrix data type.

– The MapOverlap skeleton takes two parameters: a unary function f and an
integer value d. It applies f to each element of an input matrix min while
taking the neighboring elements within the range [−d,+d] in each dimension
into account, i. e.

mout[i, j] = f

⎛
⎜⎜⎜⎜⎜⎜⎝

min[i− d, j − d] . . . min[i− d, j] . . . min[i− d, j + d]
...

...
...

min[i, j − d] . . . min[i, j] . . . min[i, j + d]
...

...
...

min[i+ d, j − d] . . . min[i+ d, j] . . . min[i+ d, j + d]

⎞
⎟⎟⎟⎟⎟⎟⎠

In the actual source code, the application developer provides the function f
which receives a pointer to the element in the middle, min[i, j].

Listing 1.2 shows a simple example of computing the sum of all direct neigh-
boring values using the MapOverlap skeleton. To access the elements of the input
matrix min, function get is provided by SkelCL. All indices are specified relative
to the middle element min[i, j]; therefore, for accessing this element the function
call get(m in, 0, 0) is used. The application developer must ensure that only
elements in the range specified by the second argument d of the MapOverlap
skeleton, are accessed. In Listing 1.2, range is specified as d = 1, therefore, only
direct neighboring elements are accessed. To enforce this property, boundary

MapOverlap <float(float)> m("float func(float* m_in){

float sum = 0.0f;

for (int i = -1; i < 1; ++i)

for (int j = -1; j < 1; ++i)

sum += get(m_in , i, j); return sum;

}", 1, SCL_NEUTRAL , 0.0f);

Listing 1.2. MapOverlap skeleton computing the sum of all direct neightbors for every
element in a matrix
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__kernel void sum_up(__global float* m_in ,

__global float* m_out ,

int width , int height) {

int i_off = get_global_id (0);

int j_off = get_global_id (1);

float sum = 0.0f;

for (int i = i_off - 1; i < i_off + 1; ++i)

for (int j = j_off - 1; j < j_off + 1; ++j) {

// perform boundary checks

if ( i < 0 || i > width || j < 0 || j > height )

continue ;

sum += m_in[ j * width + i ]; }

m_out[ j_off * width + i_off ] = sum; }

Listing 1.3. An OpenCL kernel performing the same calculation as the MapOverlap
skeleton shown in Listing 1.2

checks are performed at runtime by the get function. In future work, we plan to
avoid boundary checks at runtime by statically proving that all memory accesses
are in bounds, as it is the case in the shown example.

Special handling is necessary when accessing elements out of the boundaries
of the matrix, e.g., when the item in the top-left corner of the matrix accesses
elements above and left of it. The MapOverlap skeleton can be configured to
handle such out-of-bound memory accesses in two possible ways: 1) a specified
neutral value is returned; 2) the nearest valid value inside the matrix is returned.
In Listing 1.2, the first option is chosen and 0.0 is provided as neutral value.

Listing 1.3 shows how the same simple calculation can be performed in stan-
dard OpenCL. While the amount of lines of code increases by a factor of 2, the
complexity of each single line also increases: 1) Besides a pointer to the output
memory, the width of the matrix has to be provided as parameter; 2) the correct
index has to be calculated for every memory access using an offset and the width
of the matrix, i. e. knowledge about how the two-dimensional matrix is stored
in one-dimensional memory is required. 3) In addition, manual boundary checks
have to be performed to avoid faulty memory accesses.

SkelCL avoids all these low-level details. Neither additional parameter, nor
index calculations or manual boundary checks are necessary.

3.5 The Allpairs Skeleton

All-pairs computations occur in a variety of applications, ranging from pairwise
Manhattan distance computations used in bioinformatics [12] to N-Body simula-
tions used in physics [3]. All these applications follow a common computational
scheme: for two sets of entities, the same computation is performed indepen-
dently for all pairs of entities from the first set combined with entities from the
second set. An entity is usually described by a d-dimensional vector.

We define the all-pairs computation scheme for two sets of n and m entities,
each entity represented by a d-dimensional vector. We represent the sets as an
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Fig. 3. The allpairs computation: Element c2,3 ( 3 ) is computed by combining the
second row of A ( 1 ) with the third row of B ( 2 ) using the binary operator ⊕

n × d matrix A and an m × d matrix B. The all-pairs computation yields an
output matrix C of size n×m as follows: Ci,j = Ai ⊕Bj , where Ai and Bj are
rows of A and B, correspondingly: Ai = [Ai,1, · · · , Ai,d], Bj = [Bj,1, · · · , Bj,d],
and ⊕ is a binary function applied to every pair of rows from A and B.

Figure 3 illustrates this definition: the element marked as 3 of matrix C is
computed by combining the second row of A marked as 1 with the third row
of B marked as 2 using the binary operator ⊕.

For formally defining the all-pairs skeleton, let d,m and n be positive numbers.
Let A be a n× d matrix, B be a m× d matrix and C be a n×m matrix with
their entries ai,j , bi,j and ci,j respectively. Let ⊕ be a binary function on vectors.
The algorithmic skeleton allpairs is defined as follows:

allpairs(⊕)

⎛
⎜⎝
⎡
⎢⎣
a1,1 · · · a1,d
...

...
an,1 · · · an,d

⎤
⎥⎦ ,
⎡
⎢⎣
b1,1 · · · b1,d
...

...
bm,1 · · · bm,d

⎤
⎥⎦
⎞
⎟⎠ def

=

⎡
⎢⎣
c1,1 · · · c1,m
...

...
cn,1 · · · cn,m

⎤
⎥⎦

with entries ci,j of the computed n×m matrix C defined as:

ci,j = [ai,1 · · · ai,d]⊕ [bj,1 · · · bj,d]
To illustrate the definition, we show how matrix multiplication can be expressed
using the allpairs skeleton.

Example 1: The matrix multiplication is a basic linear algebra operation, which
is a building block of many scientific applications. A n×d matrix A is multiplied
by a d×m matrix B, producing a n×m matrix C = A×B whose element Ci,j

is computed as the dot product of the ith row of A with jth column of B. The
dot product of two vectors a and b of length d is computed as:

dotProduct(a, b) =

d∑
k=1

ak · bk (1)
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The matrix multiplication can be expressed using the allpairs skeleton as:

A×B = allpairs(dotProduct)
(
A,BT

)
(2)

where BT is the transpose of matrix B.

4 Application Studies and Experiments

We consider two application case studies using the SkelCL library: 1) the calcu-
lation of a Mandelbrot fractal, and 2) the Sobel edge detection. Both SkelCL im-
plementations are compared to similar implementations in CUDA and OpenCL
regarding their programming effort and runtime performance.

For our runtime experiments we use a PC with a quad-core CPU (Intel Xeon
E5520, 2.26GHz) and 12GB of memory. The system is connected to a Tesla
S1070 computing system equipped with 4 Tesla GPUs. Its dedicated 16GB of
memory (4GB per GPU) is accessed with up to 408GB/s (102GB/s per GPU).
Each GPU comprises 240 streaming processor cores running at 1.44GHz.

4.1 Application Study: Mandelbrot Set

The Mandelbrot set calculation [10] is a time-consuming task which is often used
as a benchmark. Computing a Mandelbrot fractal is easily parallelizable, as all
pixels can be computed simultaneously. As the criteria for programming effort
we use the number of Lines of Code (LoC), the results are in Fig. 4.

We created three similar parallel implementations for computing a Mandelbrot
fractal using CUDA, OpenCL, and SkeCL.

CUDA and SkelCL require a single line of code for initialization in the host
code, whereas OpenCL requires a lengthy creation and initialization of different
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Fig. 4. Runtime and program size of the Mandelbrot application
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data structures which take about 20 LoC. The host CPU code differs significantly
between all implementations. In CUDA, the kernel is called like an ordinary func-
tion. A proprietary syntax is used to specify the size of work-groups executing
the kernel. In OpenCL, several API functions are called to load and build the
kernel, pass arguments to it and launch it using a specified work-group size. In
SkelCL, the kernel is passed to a newly created instance of the Map skeleton. A
Vector of complex numbers, each of which represents a pixel of the Mandelbrot
fractal, is passed to the Map skeleton upon execution. Specifying the work-group
size is mandatory in CUDA and OpenCL, whereas this is optional in SkelCL.

The OpenCL-based implementation has in total 118 lines of code (kernel:
28 lines, host program: 90 lines) and is thus more than twice as long as the CUDA
and SkelCL versions with 49 lines (28, 21) and 57 lines (26, 31), respectively (see
Figure 4).

We tested our implementations on a single GPU of our test system to compute
a Mandelbrot fractal of size 4096×3072 pixels. In CUDA and OpenCL, work-
groups of 16×16 are used; SkelCL uses its default work-group size of 256.

As compared to the runtime of the SkelCL-based implementation (26 sec), the
implementation based on OpenCL (25 sec) and CUDA (18 sec) are faster by 4%
or 31%, respectively. Since SkelCL is built on top of OpenCL, the performance
difference of SkelCL and OpenCL can be regarded as the overhead introduced by
SkelCL. Previous work [9] reported that CUDA was usually faster than OpenCL,
which explains the higher performance of the implementation based on CUDA.
The Mandelbrot application demonstrates that SkelCL introduces a tolerable
overhead of less than 5% as compared to OpenCL.

4.2 Application Study: Sobel Edge Detection

To evaluate the usability and performance of the MapOverlap skeleton on the
matrix data type, we implemented the Sobel edge detection that produces an
output image in which the detected edges in the input image are marked in white
and plain areas are shown in black.

for (i = 0; i < width; ++i)

for (j = 0; j < height; ++j)

h = -1*img[i-1][j-1] +1*img[i+1][j-1]

-2*img[i-1][j ] +2*img[i+1][j ]

-1*img[i-1][j+1] +1*img[i+1][j+1];

v = ...;

out_img[i][j] = sqrt (h*h + v*v);

Listing 1.4. Sequential implementation of the Sobel edge detection

Listing 1.4 shows the algorithm of the Sobel edge detection in pseudo-code,
with omitted boundary checks for brevity. In this sequential version, for comput-
ing an output value out img[i][j] the input value img[i][j] and the direct
neighboring elements are needed. Therefore, the MapOverlap skeleton is a per-
fect fit for implementing the Sobel edge detection.
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// skeleton customized with Sobel edge detection algorithm

MapOverlap <char(char)> m( "char func(const char* img) {

short h = -1*get(img ,-1,-1) +1*get(img ,+1,-1)

-2*get(img ,-1, 0) +2*get(img ,+1, 0)

-1*get(img ,-1,+1) +1*get(img ,+1,+1);

short v = ...;

return sqrt (h*h + v*v); }", 1, SCL_NEUTRAL , 0);

Matrix <char > out_img = m(img); // execution of the skeleton

Listing 1.5. SkelCL implementation of the Sobel edge detection

Listing 1.5 shows the SkelCL implementation using the MapOverlap skeleton
and the matrix data type. The implementation is straightforward and very simi-
lar to the sequential version in Listing 1.4. The only notable difference is that for
accessing elements the get function is used instead of the square bracket notation.

__kernel void sobel_kernel ( __global const uchar* img ,

__global uchar* out_img)

uint i = get_global_id (0); uint j = get_global_id (1);

uint w = get_global_size (0); uint h = get_global_size (1);

// perform boundary checks

if(i >= 1 && i < (w-1) && j >= 1 && j < (h-1)) {

char ul = img[((j-1)*w)+(i-1)];

char um = img[((j-1)*w)+(i+0)];

char ur = img[((j-1)*w)+(i+1)];

// ... 5 more

char lr = img[((j+1)*w)+(i+1)];

out_img[j * w + i] = computeSobel (ul , um, ur, ..., lr); } }

Listing 1.6. Additional boundary checks and index calculations for Sobel algorithm,
necessary in the standard OpenCL implementation

Listing 1.6 shows a part of the OpenCL implementation for Sobel edge de-
tection provided by AMD as an example for their software development kit [1].
The actual computation is performed inside the computeSobel function, which
is omitted in the listing, since it is quite similar to the sequential version in
Listing 1.4. The listing shows that extra low-level code is necessary to deal with
technical details, like boundary checks and index calculations, which are arguably
complex and error-prone.

We performed runtime experiments using one NVIDIA Tesla GPU with 480
processing elements and 4 GByte memory. Figure 5 shows the runtime of two
OpenCL versions (from AMD and NVIDIA SDK) vs. the SkelCL version with
the MapOverlap skeleton presented in Listing 1.5. Only the kernel runtimes are
shown, as the data transfer times are equal for all versions. Measurements were
taken using the OpenCL profiling API. We used the popular Lena image [18] with
a size of 512× 512 pixel and took the mean values of six runs. The AMD version
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is clearly slower then the two other implementations, because it does not use the
fast local memory which the NVIDIA implementation and the MapOverlap skele-
ton of SkelCL do. SkelCL totally hides the memory management details inside
its implementation from the application developer. The NVIDIA and SkelCL im-
plementations perform similar. In this particular example, SkelCL even slightly
outperforms the implementation by NVIDIA.

In addition to the performance advantage over the AMD and NVIDIA ver-
sions, the SkelCL program is also significantly simpler than the cumbersome
OpenCL implementation. The SkelCL program only comprises the few lines of
code shown in Listing 1.5. The AMD implementations requires 37 lines of code
for its kernel implementation and the NVIDIA implementation requires even 208
lines of code. Both versions require additional lines of code for the host program
which manages the execution of the OpenCL kernel. No index calculations or
boundary checks are necessary in the SkelCL version whereas they are crucial
for a correct implementation in OpenCL.

5 Conclusion and Related Work

This paper presents the SkelCL high-level programming model for multi-GPU
systems and its implementation as a library. The SkelCL programming model sig-
nificantly raises the level of abstraction: it combines parallel patterns to express
computations, parallel container data types for simplified memory management
and a data (re)distribution mechanism to improve scalability in systems with
multiple GPUs. The SkelCL library is available as open source software from
http://skelcl.uni-muenster.de.

There are a number of other projects aiming at high-level GPU programming.
SkePU [17] provides a vector class similar to our Vector class, but unlike

SkelCL it does not support different kinds of data distribution on multi-GPU
systems. SkelCL provides a more flexible memory management than SkePU, as
data transfers can be expressed by changing data distribution settings. Both
approaches differ significantly in the way how functions are passed to skeletons.

http://skelcl.uni-muenster.de
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While functions are defined as plain strings in SkelCL, SkePU uses a macro
language, which brings some serious drawbacks. For example, it is not possible
to call mathematical functions like sin or cos inside a function generated by
a SkelPU macro, because these functions are either named differently in all of
their three target programming models (CUDA, OpenCL, OpenMP) or might
even be missing entirely. The same holds for functions and keywords related to
performance tuning, e. g., the use of local memory. SkelCL does not suffer from
these drawbacks because it relies on OpenCL and thus can be executed on a
variety of GPUs and other accelerators.

CUDPP [4] provides data-parallel algorithm primitives similar to skeletons.
These primitives can be configured using only a predefined set of operations,
whereas skeletons in SkelCL are true higher-order functions which accept any
user-defined function. CUDPP does not simplify data management, because data
still has to be exchanged between CPU and GPU explicitly. There is also no
support for multi-GPU applications.

Thrust [16] provides two vector types similar to the vector type of the C++
Standard Template Library. While these types refer to vectors stored in CPU
or GPU memory, respectively, SkelCL’s vector data type provides a unified ab-
straction for CPU and GPU memory. Thrust also contains data-parallel im-
plementations of higher-order functions, similiar to SkelCL’s skeletons. SkelCL
adopts several of Thrust’s ideas, but it is not limited to CUDA-capable GPUs
and supports multiple GPUs.

Unlike SkelCL, OpenACC [6], PGI Acccelerator [5], and HMPP [8] are compiler-
based approaches to GPU programming, similar to the popular OpenMP [7]. The
programmer uses compiler directives to mark regions of code to be executed on
a GPU. A compiler generates executable code for the GPU, based on the used
directives. Although source code for low-level details like memory allocation or
data exchange is generated by the compiler, these operations still have to be
specified explicitly by the programmer using suitable compiler directives. We
consider these approaches low-level, as they do not perform data transfer auto-
matically to shield the programmer from low-level details and parallelism is still
expressed explicitly.

Acknowledgments. This work is partially supported by the OFERTIE (FP7)
and MONICA projects. We would like to thank NVIDIA for their generous
hardware donation.
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Abstract. A cellular automata model of population dynamics of eight organ-
isms in Lake Baikal is proposed and investigated. The model allows to take into 
account spatial organisms distribution, seasonal dependency of birth rates, poss-
ible habitat pollution and water streams. Computational experiment is pre-
sented. It demonstrates that population dynamics tends to stable oscillating 
process with period equal to 1 year. The model was verified within production-
to-biomass and frequency of occurrence ratios. 

Keywords: cellular automata, discrete model, population dynamics, Lake  
Baikal. 

1 Introduction 

Cellular Automata (CA) models are an approach for investigation of self-organization 
processes. It allows simulating complex nonlinear processes using comparatively 
simple rules. The research of CA-models for self-organization processes has been 
done by Wolfram [1], Chua [2]. 

More complex processes require usage of parallel composition of CA which was 
shown in [3] as an example of abstract prey-predator system. 

Here a CA-model is proposed, that allows to simulate spatial distribution of organ-
isms when some perturbation occur. This model takes into account eight organisms 
groups, time and spatial dependency of environment influence, seasonal dependency 
of birth rates, possible habitat pollution and water streams. 

2 Task Statement 

Comephorus is the most wide-spread fish in the Lake. Its food is macrohectopus and 
its own youngest. Following [4] three species are investigated: macrohectopus, come-
phorus dybovksi and comephorus baikalensis. Each species is divided onto age 
groups: 
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Macrohectopus: m1 - immature, m2 – puberal; 
Comephorus dybovksi: d1 - one-year-old, d2 - immature, d3 – puberal; 
Comephorus baikalensis: b1 - one-year-old, b2 - immature, b3 – puberal. 

Groups m1, b1, d1 are preys. Groups b2, b3, d2, d3 are predators. All predators eat all 
preys with different preferences rates. Younger individuals grow up to elder age 
groups. The oldest individuals propagate. 

3 Composite CA-Model 

Let us define a CA-model of the population dynamic of Lake Baikal organisms as 

ρ,,, FMΣ=Ν (1) 

Σ is a cell states set, M is a cell naming set, F is a global operator, ρ  is a functional 
mode. M is split into 8 pair wise disjoint subsets Mα

i, one per group of organisms. 
Each subset can be presented by a square mesh Q. 

32132121
bbbdddmm MMMMMMMMM ∪∪∪∪∪∪∪= (2) 

A cell is an element of M × Σ. Cells states 
are integers, representing model density of 
organisms in this cell. Cells m1,n1 ∈ Mα

i 
and m2,n2 ∈ Mβ

j are called twins if m1 and 
m2 correspond to the same cell of Q. 

S(m) =  (ϕ1(m), n1), …, (ϕk(m), nk)  is a 
local configuration, ni ∈ Σ, ϕi : M  M. 
Let us define local operator f as: 

{ } { })()(: mSmSf → (3) 

Application of f to a cell m, n is a replacement of S(m) by f(S(m)). Iteration or global 
operator application is the application of local operator to all cells. 

In the model two global operators are used: F1 is for motion and F2 is for  
prey-predator interactions. Two basic functional modes are known: synchronous and 
asynchronous [3]. The proposed CA-model uses more complex mode: F1 is applied 
asynchronously several times to each Mα

i independently, F2 is applied synchronously. 

3.1 Motion Operator 

F1 is a sequential superposition of diffusion operator Fd and streams operator Fs. 

sd FFF =1 (4) 

Let Fh be the integer diffusion operator given in [5]. Fh is applied to each set Mα
i
 sepa-

rately. Since speeds are different for different species, Fh is applied Kα
i times per one 

iteration to each set Mα
i. Ratios Kα

i depend on cruising speeds of individuals. 

 

Fig. 1. Subsets Mα
i 
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( ) i

i

K
hMd FF α

α
=  (5) 

Operator Fs is obtained according to a function stream: M  R2 which determines 
water stream speed and direction. Application of Fs is equal to moving of individuals 
from cell m, n in direction stream(m). 

3.2 Density Changing Operator 

The local density changing operator f2: 

{ } { })()(: 222 mSmSf → (6) 

where S2(m) is the twin cells. f2 is applied synchronously to all cells of M. The new 
cell state after applying f2 is: 

( ) tnnnnn iiiijiii Δ−−+= αααααααα θλρ'  (7) 

where j is the age group number, whose individuals produce the individuals of i-th 
age group; ραinj is the growth of quantity of i-th age group due to propagation (case 
i=1) or aging; λαini is the number of dead individuals; θαi ni is the number of grown up 
individuals; Δt is the physical time step which corresponds to one model iteration. 

To take into account seasonal birthrates, the values of ρd
1 and ρb

1 are multiplied by 
the periodic functions seasond(t) and seasonb(t) whose period equals to one year. The 
possible habitat pollution is taken into account. Let poll(m): M  R+ be a pollution 
map. Death rates λαi  given in [4] are updated to be as follows: 

( ) αα λλ ii mpoll )(1' +=
 (8) 

Pollution map used in experiment is pre-
sented in Fig 2. It is a density of two-
dimensional standard normal distribution 
with center in cell m0 in the south part of the 
Lake Baikal. 

 

 

4 Computational Experiment 

Initial state is uniform distribution of individuals over the all model area according to 
the stable state taken from [4]. Since pollution influence is not hardly investigated, 
poll(m0) is taken equal to 7, which means the 8 times growth of death rates in cell m0. 

States for southern area of Lake Baikal for impuberal macrohectopus (m1) and 
puberal comephorus baikalensis (b3) on 2000-th iteration are shown in Fig 3.  

Pollution influence does not spread out of the polluted area significantly. 

 

Fig. 2. Pollution map poll(m). Darker 
color means bigger pollution intensity. 
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impuberal macrohectopus (m1) puberal comephorus baikalensis (b3) 

Fig. 3. States for m1 and b3 on 2000-th iteration. Darker color means higher density. 

Population dynamics is shown in Fig. 4. In the polluted area the density of macro-
hectopus is significantly increased due to reduction of predatory groups. 

  

Fig. 4. Populations’ dynamics in pollution epicenter and in the north of Lake Baikal. Left im-
age presents comparison of dynamics of macrohectopus. Right image presents comparison of 
dynamics of comephorus dubovsky. 

5 Model Verification 

Verification was done for the non-polluted case. The following criteria were used: 

• Pα / Bα – production-to-biomass ratio for each species α ∈ {m, d, b}, 
• Nα / Nβ  – density-to-density ratio between different species α, β ∈ {m, d, b}, N 

being the average annual density of organisms. 
 
Model verification results are shown in Table 1. Modeling results differ from assess-
ments given in [4, 6, 7] in about 20%. 

Table 1. Model verification results 

 Pm / Bm (Pd + Pb) / (Bd + Bb) Nm / Nd Nm / Nb 

in [4, 6, 7] 3 - 8 1,24 6,05 21,52 

model 5,77 1,49 6,00 20,45 
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6 Conclusions 

CA-model of organism population dynamics is proposed. It allows to take into ac-
count spatial individuals distribution, seasonal dependency of birth rates, possible 
habitat pollution and water streams. 

Computational experiment is carried out. Population dynamics tends to stable os-
cillating process with period equals to 1 year. More intensive pollution means more 
significant changes in population dynamics and final stable oscillation process, but 
the pollution influence does not spread out of the polluted area. 

Model verification was done for the non-polluted case. Verification results within 
production-to-biomass and occurrence frequency criteria differ from assessments in 
[4, 6, 7] in about 20%. 
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Abstract. A 3D Cellular Automata (CA) model for simulating fluid
permeation through porous material with complex morphology is devel-
oped and investigated. The model is a composition of two interacting CA:
one, simulating fluid convection, induced either by gravitation force or
by external pressure, and another — simulating fluid surface leveling by
diffusion. Both CA process the same discrete space, their operation being
separated in time and space, which simplifies essentially parallel imple-
mentation. The CA model is tested on an example of water permeation
through soil. Results of its parallel implementation on a multiprocessor
with distributed memory are presented. A tomographic digitized repre-
sentation of a 3D soil sample was kindly given by Prof.Wim Cornelis.1

The simulation program was implemented on the cluster of Siberian Su-
percomputer Center of Siberian Branch of Russian Academy of Science.

1 Introduction

In connection with new technologies of production and implementation of porous
materials new claims are set to computer simulation of processes in them. Deal-
ing with porous media in the same manner that with bulk materials, does not
satisfy neither designers of new composites, nor researchers of soil fertility. In
order to understand how the porous material interacts with the permeating
fluid, it is necessary to make allowance for internal properties of the material,
among which morphology and interaction character between pore walls and in-
coming fluid are the most important. Unfortunately, conventional mathematics,
based on partial differential equations, cannot be helpful, because of impossi-
bility to describe pore borders by means of continuous functions [1,2]. This is
why, several attempts are made to develop discrete methods of fluid permeation
through porous media, because they “do not fear intricate boundary conditions”.
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Such methods are based on Lattice-Gas [3] and Lattice-Boltzmann [4] discrete
hydrodynamics, conventional cellular automata [5,6] being also considered.
Among them, the models based on Lattice-Gas principles are predestined to
simulate laminar flows. They are appropriate when the flow constantly goes
through a piece of porous material, as it happens in polymer membranes or in
carbon electrodes of hydrogen energetic cells [1]. But if transient processes are of
interest, such that fluid permeation to make the material damp, or, conversely,
evaporation to make it dry, then Lattice-Gas based models occur to be stiff, espe-
cially for parallel implementation [7]. Hence, more adaptable models are needed,
which are capable to simulate all kinds of particles moving and interacting with
solid pore walls.

The described version of a CA model simulates three forms of particle
movements: forced convection, diffusion (surface leveling) and phase transition
(evaporation). In fact, it is a discrete version of the convection-diffusion partial
differential equation [8], the latter being capable to work in linear channels only.
Being very simple, the proposed model is flexible enough: modification of CA
transition functions allows to add the hydrophilous soaking, drainage and other
processes.

The paper consists of Introduction, four sections, Conclusion, and list of ref-
erences. In the Introduction the motivation of the investigation is explained.
The second section presents formal definitions. In the third — the computation
algorithm is given. The results of simulation are shown in the fourth (sequential
version) and fifth (parallel version) sections and discussed in the Conclusion.

2 Formal Representation of a CA Model

CA is a set of identical computing units, that are represented as pairs (u,x),
called cells, where u ∈ A is a cell state from the alphabet A, x ∈ X is a name,
usually given by a vector x = (i, j, k) from a set of coordinates of a finite 3–
dimensional discrete space X . A set of names

T (x) = {x,x+ a1, . . . ,x+ an−1}, (1)

where aj is a shift vector, n = |T (x)|, is called a template. The cells named from
T (x) form a local configuration

S(x) = {(u0,x), (u1,x+ a1), . . . , (un−1,x+ an−1)}. (2)

The set of cells Ω = {(ui,xi)|u ∈ A,x ∈ X,xi �= xj} is referred to as a
cellular array, and a list of states of cells from Ω — as a CA global state
ΩA = (u1, u2, . . . , u|X|).

CA functioning is determined by operator Θ(X) that may be a composition
of several more simple operators:

Θ(X) = Φ(Θ1(X), . . . , Θn(X)), (3)
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which in their turn, are composed of substitutions

θ(x) : S(x)→ S′(x), (4)

where |S(x)| ≥ |S′(x)|. The first m′ = |S′(x)| cells in S(x) comprise the base of
θ(x), and the remaining (m−m′) cells play the role of a context.

A substitution θ(x) is applicable to a cell (u,x) ∈ Ω, if S(x) ⊆ Ω, a cell with
a variable state being applicable, if the range of u is in A. Application of θ(x)
implies replacing base cells states (uj,x+ aj) ∈ S′(x) by

u′j = fj(u1, . . . , un), n = |S(x)|, j = 0, . . . , |S′(x|, (5)

where fj(u1, . . . , un) – is a transition function. The context cells states remain
unchanged.

Application θ(x) to all x ∈ X comprises a global operator Θ(X), which exe-
cutes the transformation of Ω(t) into Ω(t+1), performing an iteration. In order
to avoid conflicting situations leading up to data loss, the global operator should
satisfy the following correctness condition [11]:

Tk(x) ∩ Tm(y) = ∅, ∀x,y ∈ X, ∀k,m ∈ {1, . . . , l}, l = |Θ(x)|. (6)

There are several modes of executing the global operator Θ(X), the main of
them are synchronous and asynchronous ones.

Synchronous mode implies the following sequence of actions: (1)for all (u,x) ∈
Ω(t) new states are computed by (5); (2) in all cells (u,x) ∈ Ω(t) the states u(x)
are replaced by u′(x). To satisfy correctness condition (6) in synchronous mode
the substitutions (4) of Θ(X) should have a single cell base, i.e.

|S′(x)| = 1 ∀θi ∈ Θ(x), (7)

Asynchronous mode implies the following way of local operator application. (1)
with probability p = 1/|X | a cell (u,x) ∈ Ω is chosen; (2) Θ(x) is applied to a
chosen cell and the base cells states (u,x) ∈ S(x) are immediately replaced by
the corresponding (u′,x) ∈ S′(x). By condition, it is agreed that |X | repetitions
of (1) and (2) comprise an iteration. Such an agreement is helpful, because it
is in accordance with the synchronous mode and with a definition of a step in
kinetic Monte-Carlo method [9].

Since in asynchronous CA local operator is applied sequentially, condition (6)
is always met. The problem of correct computation arises only if the algorithm
of asynchronous CA is executed in parallel on several processors [10,12].

Ordered asynchronous mode is also frequently used. It is a modification of the
asynchronous mode, when θ(x) is applied sequentially to the ordered cell set.

Besides these modes any other one is also admissible, if it fits the phenomenon
under simulation and satisfies (7). The mode of functioning is an essential pa-
rameter of a CA, i.e. if two CA differ only by functioning modes, then their
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evolutions may be quite different. Thus, the unambiguous definition of a CA is
a four tuple

ℵ = 〈A,X,Θ, ρ〉, (8)

where ρ is the mode of operation. These four notions define the algorithm of
CA functioning. But, they do not define the character of its behavior: one and
the same CA with different initial global states may generate quite different
evolutions. The bright example is the well known CA referred to as “Conway’s
Game of Life ”[13]. So, a CA model of a specific process is further given as a
five-tuple

A = 〈A,X,Θ(X), ρ, Ω(0)〉. (9)

3 The Algorithm of Simulation Water Permeation
through Soil

In the CA model under consideration the superposition of several CA is used [14],
which is represented as a composed CA (8), whose notions have the following
interpretation.

State alphabet A = {0, 1, 2, 3}, where 0 is interpreted as a void space, 1 —
as solid substance of pore walls, 2 — as a water particle, 3 — as soaked solid,
inherent to hydrophilous materials.

Discrete space X is a Cartesian lattice

X = {(i, j, k) : i = 0, . . . , I; j = 0, . . . , J ; k = 0, . . . ,K}. (10)

Operator Θ(X) is a global composition

Θ(X) = ΘC(X) ◦ΘD(X) ◦ΘH(X), (11)

where ΘC(X), ΘD(X), and ΘH(X) are operators of convection, diffusion, and
hydrophilicity, respectively. Global superposition implies application of each
global operator to the result of the preceding one.

Convection operator ΘC(X) is in its turn a global superposition

ΘC(X) = ΘG(X) ◦ΘE(X), (12)

where ΘG(X) and ΘE(X) are single substitution operators, each consisting of
θG(i, j, k) and θE(i, j, k), for gravitation and evaporation, respectively.

θG(i, j, k) : {(1, (i, j, k))(2, (i, j, k − 1))} pG−−→ {(2, (i, j, k)(1, (i, j, k − 1)} (13)

simulates the propagation of water particles along the gravitation direction k
down, letting void particles pass up. Such a movement is simulated by K sequen-
tial steps in ordered asynchronous mode, at each l-th step (l = 1, . . . ,K) (13)
being applied synchronously to all cells having as a third coordinate k = K − l.
Probability in (13) may be taken as pG = 1, since propagation rate under grav-
itation is assumed to be larger than that under evaporation.
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The substitution

θE(i, j, k) : {(2, (i, j, k))(1, (i, j, k − 1))} pE−−→ {(1, (i, j, k)(1, (i, j, k − 1)} (14)

simulates evaporation, which is a phase transition process, leading to a decrease
of total water amount. Probability pE in general case is the function of k, allowing
for the differentiation of evaporation intensity in the vicinity of the surface and in
deep layers in the soil. θE(i, j, k) is applied in ordered asynchronous mode along
the kth axis, (k = 0, . . . ,K−1), at each k step applying θE(i, j, k) synchronously
to all cells having (i, j) ∈ {I × J}.

Diffusion operatorΘD(X) simulates the process of density equalization, which
implies leveling the free surface of water, whatever it might be: in caverns, hori-
zontal pores and over the soil surface. In order to conform the rates of diffusion
and convection operators, the first should be applied n times in sequence, n
being large enough to provide water surface smoothing.

ΘD(X) = (Θd(X))n, (15)

where Θd(X) contains one probabilistic substitution θD(i, j, k) called naive dif-
fusion [15], based on a five-point local configuration

S(i, j, k) = {(u0, (i, j, k)), (u1, (i − 1, j, k)), (u2, (i, j + 1, k)), (u3, (i + 1, j, k)),
(u4, (i, j − 1, k))} = {(ul(i, j, k))l : l = 0, . . . , 4}.

(16)
θD(i, j, k) executes the exchange of states between the cell (2, (i, j, k)) and one
out of those its neighbors in k-th plane, whose state ul = 1, i.e.

θD(i, j, k) : {(2, (i, j, k))(1, (i, j, k)l)} pD−−→ {(1, (i, j, k))(2, (i, j, k)l},
ul, u0 ∈ {1, 2}, l = 1, 2, 3, 4.

(17)

θD(i, j, k) is applied sequentially to all kth planes, k = 0, . . . ,K. In each k-th
plane it is applied like a 2D asynchronous naive diffusion operator with prob-
ability pD = 1/m, where m is the number of cells in S(i, j, k) \ (u0, (i, j, k))
with void states. When pore walls are not smooth, and the neighborhood of
(u0, (i, j, k)) contains a pore wall cell, then pD < 1/m, which implies, that some
water particles may be adhered to the wall.

Hydrophilicity operator ΘH(X) is used if the soil has hydrophilous inclusions.
It simulates the process of soaking some pore wall cells during the permeation
and the reverse process of drainage from soaked cell during the process of water
evaporation. So, it is a superposition of two global operators:

ΘH(X) = ΘS(X) ◦ΘQ(X),

where ΘS(X) simulates soaking process, and ΘQ(X) — the drainage.
The soaking operator contains a single substitution

θS(i, j, k) : {(1, (i, j, k))(2, (i, j, k)l)} pS−→
{(1, (i, j, k))(3, (i, j, k)l}
(i, j, k)l ∈ T (i, j, k),

(18)
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Fig. 1. The schematic representation of the algorithm of porous material damping
process simulation: ω ↑ (k) stands for ordered asynchronous mode along k-axis up,
ω ↓ (k) stands for ordered asynchronous mode along k-axis down, α(i, j) stands for
asynchronous mode over (i, j) plane, σ(i, j) stands for synchronous mode over (i, j)
plane.

which is applied in synchronous ordered mode along kth axis and synchronously
in each k-th 2D plane. The drainage operator consists of a substitution

θQ(i, j, k) : {(3, (i, j, k))(2, (i, j, k)l)} pQ−−→ {(1, (i, j, k))(2, (i, j, k)l}
(i, j, k)l ∈ T (i, j, k), (19)

which converts a soaked cell again into solid

Fig. 2. A 3D cellular array struc-
ture of the porous sample

with the probability pQ. The probabilities
pS and pQ depend both on soil properties
and on CA parameters, and should be deter-
mined by simulation for each type of soil.
The above four notions (A,X,Θ, ρ) define
the composed CA, whose functioning is rep-
resented by the algorithm shown in (Fig.1).
To construct the CA model of a particular
task, the initial global cellular array should
be known as well, which may be obtained
from the data that describe the medium mor-
phology under simulation.
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4 Results of Sequential Version Implementation

In our case the initial cellular array Ω(0) is obtained by transforming the digi-
tized representation of a sample of soil of the size 10, 304×10, 304×21, 88892mm3.
It was packed into 1480 files, each having the size 700×700 bytes (Fig.2). So, the
linear dimension of a cell is h = 14.72 mkm, and the cardinality of the cellular
array |X | = 725.2 · 106. The transformation of given files into Ω(0) was done by
creation of a 3D Boolean array of size I × J × K, (I = J = 700,K = 1480),
whose cells (0, (i, j, k)) correspond to solid, and cells (1, (i, j, k)) correspond to
pores.

A sectional view of the soil morphology is shown in Fig.3. Obtaining digitized
representation of porous medium morphology is a separate problem. Usually,
there are no real sample, and the digitized representation is to be synthesized,
provided its characteristics are given. A few methods of pore morphology com-
puter representation construction are known (a good review may be found in
[16]). Particularly, there is a method based on totalistic CA evolution [1].

Fig. 3. The cross-section (j = 400) snap-
shot of the soil sample under investigation.
The rectangle at the left top side shows the
small fragment for sequential test.

Fig. 4. The cross-section (j = 50)
snapshot of a small fragment at t =
50000 with pE = pH = 0.Grey cells
correspond to water.
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Fig. 5. The upper parts of the cross-section of the small fragment of the sample at
t = 1000 with n = 5 and n = 20

The investigation of computational characteristics of the CA model was done
in two stages. At the first stage computational experiments were performed
on a small fragment of a sample using a sequential version of the algorithm
(Fig.1). At the second stage capabilities of the model were studied by a series
of experiments on the whole sample using 14 processors in parallel. Testing
the sequential algorithm was performed on the small fragment 200× 200× 500
(Fig.3). The program was implemented on Intel Core-i7 (2,66 GHz). Time of an
iteration is 0,4 sec. The test aimed to assess water penetration rate and to range
the CA model parameters values, which can be obtained only by experimental
simulation. Such parameters are the following.

1. Water penetration rate is decreases in time. The depth achieved by the
water during T=50000 iterations is approximately 100 cells (Fig.4. Later on
permeation rate becomes very slow.

2. Coefficient n in (15), that represents the ratio of diffusion and convection
intensities. Its value is obtained by running the program many times, each time
increasing the value of n, until the water free surface becomes quite smooth
(Fig.5). Coefficient n is the invariant of the a CA model of a concrete process
[17], for each new model it should be determined over again.

In Fig.5 two snapshots of the sample fragment cross-section with j = 50 are
shown. It is seen that with n = 5 the surface of the water has not enough time to
become smoothed, and n = 20 is suitable. The value of n affects the simulation
time essentially. That is why it should be taken as small as possible, but large
enough to satisfy the smoothing condition.

3. The domain of possible values of evaporating probability pE. Although
the rate of drainage may be assessed basing on physical considerations, the only
way of obtain pE for a certain CA model is computer simulation. The simulation
experiments (Fig.6) showed that even with pE = 0, 01 the process of damping
is strongly affected.
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Fig. 6. Dependence of water amount in the soil with different evaporation intensity

The main peculiarity of the proposed 3D CA model is that its convection
and diffusion components operate in separated dimensions: convection operates
in one-dimension space along k-th axis, diffusion and soaking-drainage — in
2D planes, orthogonal to it. Actually, a method ”divide and conquer” is used,
that simplifies essentially the programming, especially the parallel version. It is
hardly possible to assess how much this simplification decreases the accuracy
of simulation, because the object of investigation cannot be precisely defined:
porous materials morphology differs from sample to sample and depends from
many external factors, such as dampness, temperature etc..

5 Results of Parallel Version Implementation

The architecture of the proposed model predefines the domain decomposition
method for parallel processing. Convection being directed along k-th axis deter-
mines the direction of the computation domain dissection. The whole domain is
decomposed into m× n subdomains. Each subdomain contains I/m× J/n×K
cells, and is allocated to a process. Interprocess data exchange is performed after
each iteration in all k-th planes along i-th and j-th axes.

The well known problem of asynchronous CA parallelization necessitates to
transform asynchronous CA into a block-synchronous one [10]. The procedure
of such a transform is applied to all k-th planes Xk = {(i, j, k) : i = 0, . . . , I; j =
0, . . . , J ; }, Xk ⊂ X , as follows.

1. Xk is decomposed into |T | = 9 nonintersecting subsets Xk = Xk(0)∪ . . . Xk

in such a way, that according to correctness condition (6), intersection of
their cells neighborhoods is empty.

2. At each iteration operatorsΘD(X) and ΘH(X) are applied in nine successive
stages, at each stage to all (i, j) ∈ Xk(l), l = 0, . . . , 8.



3-D Cellular Automata Model of Fluid Permeation 287

3. Exchange between adjacent parts of Xk is performed after each stage.

The whole cellular array with the size 700×700×1480 was decomposed into 14
domains, each of the size 350× 100× 1480, which were allocated onto two 8-core
nodes Intel Xeon 5540, 2.53 GHz (Nehalem) of the cluster NKS-30 in Siberian
Supercomputer Center. Initial conditions are as follows: soil pores are empty,
and over the soil there is a certain amount of water. Boundary conditions along
i and j axes are periodic.

Fig. 7. Dependence of maximum permeation depth on time with pE = 0, pH = 0.

The program consists of three parts:

1. reading initial digitized sample representation from the file and dividing it
into 14 subdomains;

2. executing the algorithm, computing at each iteration the required character-
istics (depth of penetration, quantity of water in pores, rate of evaporation,
etc.);

3. writing the obtained results into files.

The simulation experiments were performed up to T=50000 iterations aimed to
investigate the evolution of permeation process under the following conditions.

• Pure permeation process without evaporation and soaking (pE = 0, pH=0),
aiming to determine maximal depth water particle may reach (Fig. 7). It is
seen, that the process is not monotonous due to stratified morphology of the
soil.
• Permeation process affected by evaporation (pE = 0.001, pH = 0), in this
case decrease of water amount in soil is also of interest, together with the
maximum depth (Fig.8).
• Permeation process in the soil with hydrophilous inclusions (pH = 0.001,
pE = 0), water amount in the soil and maximum depth of permeation (Fig.9).
• Permeation process affected both by evaporation (pE = 0.001) and hy-
drophilicity (pS = 0.001, pQ = 0) (Fig.10).

Table 1 summarize the results.
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Fig. 8. Dependence of amount of water particles (thousands of particles in pores) and
of maximum permeation depth on time (thousands of iterations), with evaporation
intensity pE = 0.001, and no hydrophilous inclusions pH = 0

.

Fig. 9. Dependence of amount of water particles (thousands of particles in pores) in
the soil and of maximum permeation depth ) on time (thousands of iterations) without
evaporation pE = 0, and with hydrophilous inclusions pH = 0.001.

Fig. 10. Dependence of amount of water particles (thousands of iterations)in the soil
and of maximum permeation depth on time with evaporation intensity pE = 0.001,
hydrophilicity pH = 0.001.
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Table 1. Maximum depth of water permeation in soil with different intensities of
evaporation and hydrophilicity at T=50000

pE = 0,pH = 0 pE = 0, 001,pH = 0 pE = 0,pH = 0.001 pE = 0.001,pH = 0.001

N*1000 13572 986 2340 734

max.depth 789 267 0 0

Analysis of the above results shows that:

1. rate of water permeation decreases essentially in the deep layers of soil:
2. evaporation of water strongly affects permeation process;
3. a small amount of hydrophilous inclusions may block up the permeation.

6 Conclusion

The proposed convection-diffusion CA model of fluid permeation through porous
material is remarkable by the fact that its convection and diffusion parts are sep-
arated both in time and in space. The last feature helps essentially parallel im-
plementation, because it reduces asynchronous computations to a 2D case. The
feature which makes the model advantageous relative to Lattice-Gas models is
the probabilistic character of propagation operators which allows to differentiate
water-solid interaction nature: sticking water particles to the pore wall, soaking
and evaporation. Simulation experiments performed with the soil sample show
the qualitative similarity of CA evolution to the expected behavior. To obtain
quantitative characteristics in real physical values the scaling coefficients are
needed. Unfortunately, they may be obtained only by studying the real material
properties and comparing them to simulation results.
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Abstract. This article describes method of recognition of complex images with 
different forms of representation. Image recognition system where image is 
described with impulse sequence with the help of cellular automata, used to 
recognize the image, has been created. The system can recognize images 
invariant to turning and scale variations.  

Keywords: cellular automata, image, pulse sequence, recognition. 

1 Introduction 

Image recognition is one of the main tasks in establishment of data processing 
systems. Whereas all known methods operate with certain classes of images which are 
defined by specified set of characteristics. Characteristics are selected intuitively due 
to thorough analysis of images belonging to set class.  

Systems built on the basis of artificial neural networks (ANN) are widely used [1-
3]. Though they require a long course of learning and comprehensive preliminary data 
processing.  

To increase accuracy and achieve real-time recognition of images cellular automata 
(CA) are used [4-7]. They enable efficient transformation of input image and its 
representation as description, which is used for its classification and recognition. 

This study continues studies, results thereof are published in works [4, 7]. The 
study is aimed to establish method and system of recognition of images of complex 
visual scenes with possible organization of new classes.  

2 Assignment of Characteristic Features of Images of Complex 
Objects on the Grounds of Multilayer Cellular Structure 

The essence of recognition of images of visual scenes refers to segmentation of 
images into separate objects. Relations are established between images of objects, and 
description of visual scene takes place. It is also important to describe processed 
image for easy storage and search of reference image. 
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To achieve quick interaction and efficient description of images CAs on in-line 
arrangement and perform their functions are used as principle modules. Image 
recognition system structure is given in fig.1. 

 

 
Fig. 1. Images recognition system 

The system comprises cellular automata of binarization image (IBCA), cellular 
automata of contour extraction (CECA), consequent selection of single objects of 
image (CESOICA), cellular automata processing single objects (CAPSO), cellular 
automata calculating distances between selected objects (CACD), as well as impulse 
combiner (IC), thresholding unit (TPU), memory unit (MU) and comparison unit (CU).  

Once image enters system input IBCA performs preliminary processing to remove 
noises and perform binarization. CECA selects contours of all objects of the scene in 
resulting image. Thereafter images are objects with the help of CESOICA (fig. 2). 
Fig. 2 shows examples of processes occurring in respective units with dotted lines. 
CACD calculates distances Li,j between selected objects, examples thereof is shown 
with dotted lines. Every object makes up a geometric structure, which is recognized 
by method described in studies [4,7]. These studies show structure of cellular 
automata and cell forming its, as well as consider process of establishing impulse 
consequence for one object. 

The method of establishing impulse sequence for one object is as follows [4,7]. 
Excitation signal is distributed on CA field and, having reached the closest end cell of 
 

 

Fig. 2. Image processing in every unit 
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select a point of reference at the first object of impulse generation, what enables 
defining angle of return with regard to shift. 

Thus, the whole visual scene can be presented by a set of objects, which is 
structurized in such a way to meet the condition 

11 +− ≥≥ iii AAA   

where iA  – i-th object in visual scene, which comprises a set of related cells 

{ }ji aA = . 

The object which is formed by the biggest number of cells is chosen the first. The 
second is the object containing less number of cells than the first one, but bigger, than 
the rest etc. Whereas closest distance between neighboring objects 1, +iiL  is defined. If 

several selected objects with equal number of cells are available, sequence of objects 

is defined by distance to the previous object. If 1,1,1 iiii LL −− < , the next object is iA  

and 'iA  becomes 1+iA . Rarely, when 
1,1,1 iiii LL

−− = , sequence of objects is defined by 

location of the object clockwise. 
Impulse sequence passes thresholding in TPU and comes to inputs CU and MU. 

CU ensures its comparison with sequence stored in MU. Impulse sequences can be 
represented with codes. 

3 Principle of Thresholding Pulse Sequence in the System 

At IC output impulse sequence is formed, which can be presented with triple  

iii LYI α,,= ,                                                (1) 

where iY – sequence of impulses describing i-th object; iL  – minimum distance 

between two neighboring objects defined by the number of cells; iα – angle of 

orientation of i–th object with regard to starting point. 
At first, class to which object of the scene is belonging is defined. This class is 

defined by basic model. It is followed by object identification by means of detailed 
processing of all the elements of model triple (1). At that thresholding is used for 
every object and limits of thresholding are set. It enables removing extra elements in 
the scene and selecting an object from resulting set of benchmarks. 

Objects which are referred to noises can be located in any area of visual scene. 
Application of thresholding enables removing those objects, whose number of cells is 
less than set threshold. If distance between selected objects does not exceed set 
threshold, such objects are united in one. Space between them referred to background 
is filled up. Thresholding of cellular objects is accompanied with thresholding of 
every separate object by algorithms described in studies [4,7].   

For unrecognized object it is assigned with identity code. Identity code shows 
establishment of the new class. This class is the first benchmark in established  
class. In future, while new objects related to established class arrive, the class is 
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strengthened. If image has been recognized, this class is strengthened and threshold 
limits are expanded. 

Such approach enables expanding classes in unlimited number. Whereas minimum 
basis for class establishment and identification of objects inside of the class is made up. 

Images with random noise levels, black-and-white and colored, have been used as 
complex images (fig. 5.). The system does not process inner contours of images, as 
well as objects containing less than 4 pixels, though it defines their availability. 
Images sized 500×500 pixels of bmp or jpg format have been used. These limits will 
be eliminated in further studies. 

 

Fig. 5. Examples of images that involved in the experiment 

4 Conclusion 

Results of the study have shown prospectivity of CA for efficient description of 
images. Organization of parallel processes in the course of processing of these objects 
results in high-speed response. Experimental studies by means of computer modeling 
of image recognition process provide 93% positive results at various angles of turn 
and changes of scale.  
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Abstract. The mechanical behavior of the heart is guided by the prop-
agation of an electrical wave, called action potential. Many diseases have
multiple effects on both electrical and mechanical cardiac physiology. To
support a better understanding of the multi-scale and multi-physics pro-
cesses involved in physiological and pathological cardiac conditions, a lot
of work has been done in developing computational tools to simulate the
electro-mechanical behavior of the heart. In this work, we implemented
an aplication to mimic the heart tissue behavior, based on cellular au-
tomaton, mass-spring system and parallel computing with CUDA. Our
application performed 3D simulations in a very short time. In order to
assess the simulation results, we compared them with another synthetic
model based on well-known partial differential equations(PDE). Prelim-
inary results suggest our application was able to reproduce the PDE
results with much less computational effort.

1 Introduction

Cardiac disorders are the major cause of death worldwide. Therefore the scientific
community has done a lot studies in order to find the causes of heart diseases.
The heart’s role is pumping blood to all organs, allowing the body to change CO2

by O2 with lungs. The mechanical contraction of the cardiac tissue that ejects
blood is preceded and triggered by a fast electrical wave, i.e. the propagation of
the so called action potential (AP). Abnormal changes in the electrical properties
of cardiac cells as well as in the structure of the heart tissue can lead to life-
threatening arrhythmias and fibrillation.

A widely-used technique to observe the heart behavior is in silico experiments.
They comprise in mathematical models that can reproduce the heart’s tissue
function through computational tools. Generally these models are described by
differential equations, representing the cell’s electrical and mechanical activity
by ordinary differential equations (ODEs), and the electrical wave propagation
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on the tissue and cardiac mechanics via partial differential equations (PDEs).
Cardiac cells are connected to each other by gap junctions creating a channel
between neighboring cells and allowing the flux of electrical current in the form
of ions. An electrically stimulated cell transmits an electrical signal to the neigh-
boring cells allowing the propagation of an electrical wave to the whole heart
which triggers contraction.

Although PDEs are able to perform realistic tissue simulations, they involve
the simulation of thousands of cells, which make its numerical solution quite
challenging. This is an issue for clinical softwares, that may demand accurate
results and real-time simulations. In this manner, some effort has been done in
speeding up the solving process of PDEs by parallel computing, as well different
techniques to emulate PDEs with less computational cost.

This work implements a cellular automata model to represent electrical exci-
tation of cells propagating according to simple rules in a regular, discrete and
finite network. It uses precomputed profiles of cell AP and force-development
that mimics those obtained by complex models based on ODEs. Although it
is less accurate than the models based on ODEs, it is much faster than PDE
based-simulators, making possible real time simulations of heart behavior. We
present a 3D cellular automata (CA) simulator of the electrical activity of the
heart coupled with a mass-spring system to simulate the cardiac mechanical be-
havior. Our mechanical model is governed by Hooke’s Law, plus a damping and
a volume preserving equation.

With our simulator we were able to evaluate interesting cases such as the influ-
ence of ischemic cells on the generationof spiralwaves and themechanical behavior
under this pathological condition. In order to simulate thousands of cells we have
parellelized our application with CUDA, so that the simulation runs on Graphic
Processing Units. Because of the embarrassingly parallel nature of the CA and the
mass-spring system, the simulator was able to allow real-time simulation for rela-
tively large setups, i.e. for cardiac tissues composed by large number of cells.

Some electro-mechanical heart models based on cellular automaton can be
found in the literature, in 2D and 3D [7,8]. The main contribution of this work
is adding a preserving volume restriction to the model. This is important to
get accurate simulations, since the cardiac tissue is mostly composed of water,
therefore it does not have big changes in its volume. Despite its incompressibility,
the tissue contraction can cause a big change in its thickness. This feature can
not be simulated by simple mass-spring systems with damping[9]. Futhermore,
this work is an evolution of our previous cellular automaton-based model of the
heart[6], that was able only to perform 2D simulations of compressible model.

2 Methodology

The implementation of this work is related with a cellular automaton to represent
the action potential propagation through the tissue, another cellular automaton
to model the force development coupled with the electrical activity and the
Newton’s Law to model a mass-spring system. Futhermore we have added a
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damping coefficient and volume preserving equation. And finally, in order to
allow simulations with a lot of elements, we proposed a parallel implementation
with CUDA.

2.1 Cellular Automata

A cellular automaton is the model of a spatially distributed process that can
be used to simulate various real-world processes. A 2-dimensional cellular au-
tomaton consist of a two-dimensional lattice of cells where all cells are updated
synchronously for each discrete time step. The cells are updated according to
some updating rules that will depend on the local neighborhood of a particular
cell.

The Cellular Automata (CA) can be used to simulate macroscopically the
excitation-propagation in the cardiac tissue. If the electrical potential of a cell
exceeds a threshold the cell gets excited and this can trigger the excitation of
the neighboring cells. Therefore, an electrical stimulus will propagate through
the CA grid as the time steps are computed.

The following sections will describe the CA approach for simulating the
anisotropic electrical propagation in the cardiac tissue and the force-development
in each cell. In this work, the CA states are related to the action potential (AP)
and force development in a cell. To make CAs more efficient they are usually
parametrized using simulated data from accurate models. This means that the
states related to the AP in the cell will be related to a specific portion of the
cardiac cell potential. Figure 1 presents the AP computed by ODEs, the AP di-
vided into five different states and an interpolation of the discrete values of AP
computed by CA. The interpolation granted smooth propagations of the action
potential with low computational costs.

In state S0 the cell is in its resting potential where it can be stimulated, in
S1 the cell was stimulated and can stimulate the neighbors. In S2 the cell is still
able to stimulate the neighbors. In S3 the cell is in its absolute-refractory state
where it cannot be stimulated and does not stimulate its neighbors. In S4 the
cell is in its relative refractory state where it can be stimulated by more than
one neighbor but it does not stimulate its neighbors. As described, the states of
a cell generate rules for when a cell can stimulate a neighbor and when it can be
stimulated. These rules are an important aspect which will allow the stimulus
to propagate. Another important point is how the cells change their states. The
AP has a predetermined period so that the states will be spontaneously changed
when an AP starts, according to the timing presented in Figure 1.

Some fatty build-ups in arteries can totally or partially block the blood ir-
rigation in parts of cardiac tissue causing it to die (not propagating stimulus,
dead cells) or to behave differently (ischemic cells). The ischemic cells of the
tissue present an AP with different properties than a healthy cell. Usually it has
a shorter duration of the AP with different potential values. Table 1 presents
the CA states, potential and times for both healthy and ischemic tissue. The
contraction of a cardiac cell is coupled with the electrical potential of the cell.
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Fig. 1. Action potential of a cardiac cell:The black line is the AP computed by ordinary
differential equations. The red line is the AP separated into five different states (S0,
S1, S2, S3, S4) for the cellular automata, and the green line is the interpolation of the
discrete values of the CA-computed AP.

When the cell is stimulated, there is an increase in the concentration of calcium
ions inside the cell, which trigger the cell contraction. The force development has
a delay after the cell is stimulated because of its dependence on the calcium ions.
The force development of a cell can be represented in states that change over
time like the electrical potential states. Figure 2 presents the force development
states and its relation with the electrical states. The force-development states
will only pass from state F0 (no contraction force) to state F1 when the electrical
state of the cell goes from state S1 to S2. After this change, force development
will be time dependent but will not depend on the electrical state of the cell.

Propagation Rules. The electrical propagation velocity in the cardiac tis-
sue is dictated by the fiber direction and tissue type, and it has three axis of
anisotropy. Each one has a different electro-mechanical behaviour. Figure 3 shows
a ventricular tissue segment, where the dark-gray lines are the three axes. The
first direction is the fiber axis, where the wave propagation velocity is faster.
The sheet direction is orthogonal to the fiber, and the third direction is called
sheet-normal, that is normal to the plane formed by the fiber and sheet axis.

Since the anisotropy must influence the AP propagation of the CA, we set up
a velocity of propagation to each direction. So we find the direction of the neigh-
bor element, in order to compare its direction with the fibers and then determine
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Table 1. Healthy and ischemic states of the cellular automata and the respective
duration and potentials

Healthy Cell Ischemic Cell
CA State Duration Potential Duration Potential

S0 in rest -90mV in rest -70mV
S1 50ms +20mV 50ms 0mV
S2 80ms 0mV 40ms -40mV
S3 80ms -25mV 25ms -60mV
S4 50ms -50mV 10ms -65mV

Fig. 2. Force development states in relation with the cell electrical states (Adapted
from [6])

the resultant velocity. Therefore, the traveling time of a stimulus from a cell to
another is found, and this depends on the directions of the propation.

The activation of a cell will depend on the time of the activation of its neigh-
bors. For each time step each cell checks if the neighboring cells are activated.
If an activated cell is found the time of the stimulus to travel from that cell is
computed and compared with the activation time of the same cell to check if
there was enough time to the stimulus to travel. For the activation to take place
the neighboring cells must also be in state S1 or S2, i.e. states that allow one
cell to stimulate another. After a cell is stimulated it will, independently of the
neighboring cells, dynamically change its state until it finally goes to the states
S4 and S0, when it may be stimulated again. With this set of rules the stimulus
is able to propagate through the CA simulating the electrical propagation of
APs on the cardiac tissue.

The CA is discretized in space and time. The 3D CA is composed by small
cubes with edges dx×dx×dx, where dx is the space discretization. The vertices
of the cube are the masses. CA states are updated at every discretized time, dt.
Based on this information and the velocities we can calculate the time that a
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Fig. 3. Fiber directions in cardiac tissue

stimulus takes to travel from one CA cell to another. For simplification, imagine
that the propagation has the same velocity v in all directions (isotropic tissue).
To find the time t for a stimulus travel from the center of one cell to another,
first we have to find the directions of the neighbor:

−−→
Dirc n =

−→
Xn −−→X c

‖−→Xn −−→X c‖
(1)

Where
−−→
Dirc n is the neighbor direction relative to the current element,

−→
Xn and−→

X c are the coordinates of the neighbor and current element.
We have the three vectors of the anisotropy axes, fiber, sheet and normal-

sheet:
−→
F ,
−→
S and

−−→
NS, as well are given three scalars representing the velocities

on each one of axis, respectivelly: velf , vels and velns. So, to calculate the
velocity of the wave propation between two elements, we use the dot product:

Vf = velf(
−−→
Dirc n · −→F ) (2)

Vs = vels(
−−→
Dirc n · −→S ) (3)

Vns = velns(
−−→
Dirc n · −−→NS) (4)

(5)

Once we have the vector
−→
V = [Vf Vs Vns] we find the final velocity by applying

a norm to
−→
V :

v = ‖−→V ‖ (6)

To find the distance between the elements, we also apply a norm:

d = ‖−→Xn −−→X c‖ (7)
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Finally, the traveling time from one element to another is found:

t =
d

v
(8)

Assuming a Moore neighborhood for 2D with radius 1, the immediate top, bot-
tom, left, right and all diagonals are considered neighbors. For the diagonals,
a different distance of dx

√
2 is assumed, as presented in Figure 4 A. For a 3D

CA, the definition of Moore neighborhood is analogous. In Figure 4 C, we have
a central element (in grey) and its 27 neighbors (in black).

Fig. 4. A) The distances in Moore neighborhood of a cell with radius 1. B) Intercon-
nected set of masses by springs. C) 3D Moore Neighborhood.

2.2 Mechanical Model

The modeling of cardiac tissue deformation can be simplified by the use of mass-
spring systems. In such systems, masses are connected with the neighboring
masses by springs and forces can be applied to the system deforming its spatial
distribution. The springs of the system will try to bring the system to its initial
configuration again. The cardiac tissue does not have a linear stress-strain rela-
tion. However the linear model of the Hooke’s law can be used as a simplification.
For each mass, the total force is the summation of the Hooke’s law between each
one of its connecting neighbors:

−→
F

i

s =
n∑

j=0

(−k−→Δj) (9)

where k is the spring constant that determines the stiffness of a spring, n is the

number of neighbors and
−→
Δj the displacement between mass i and its neighbor

j. But such systems will oscillate forever. In practice there will be forces in the
environment that will resist to the movement. Such forces are called damping

forces
−→
F d and are proportional to the velocity of the mass

−→
V

i
(t):

−→
F

i

d = −β−→V i
(t) (10)



3D Heart Modeling 303

where β is the damping coefficient. The interconnected set of masses (lattices)
are depicted in 4 B. We also included in the system the contraction force of the
cell
−→
F c, and another force in order to preserve the volume.

The preserving force is important for accurate simulations. Since the cardiac
tissue is mainly composed by water, it does not have significant changes in its
volume. To add this feature in the mass spring system, we applied a force to
each mass in order to keep the same volume during the simulation, although
the tissue contracts. This force depends on each cube surroundding the mass. It
emanates from the cube’s baricenter

−→
X b, and its module depends on the cube’s

volume variation. The resulting formula is given below:

−→
F

i

v =
∑

∀j∈Ωi

kv
(V j

t − V j
0 )

V j
0

−→
X i −−→X j

b

‖−→X i −−→X j

b‖
(11)

where V j
t is the volume of cube j sorrounding mass i with coordinates Xi. V

j
0

is the initial volume. The cubes on the neighborhood of mass i are represented
by Ωi. The total force on each mass is:

−→
F

i

total =
−→
F

i

s +
−→
F

i

d +
−→
F

i

c +
−→
F

i

v (12)

From Newton’s second law we have that F = ma and equating this with the
total force we have:

−→a i(t) =
F i
total

m
(13)

Finally it is necessary to integrate the system of equations for each cell in the
CA to simulate the mechanical deformation of the tissue. Using the Forward
Euler’s method we have

−→
V

i
(t+ dt) =

−→
V

i
(t) +−→a i(t)dt (14)

−→
P

i
(t+ dt) =

−→
P

i
(t) +

−→
V

i
(t)dt (15)

where
−→
V

i
(t) and

−→
P

i
(t) are the velocity and position of a mass at time t. In this

way, CA and mass-spring models are coupled by Fc, i.e by the force generated
by the cell during the dynamically change of its AP.

There are different approaches for modeling the electro-mechanical behavior of
the heart. In [2], a method based on CA is presented that can simulate electrical
propagation in 3D cardiac tissue with arbitrary local fiber orientations. In [3],
a CA is used to simulate cardiac electrical propagation and a model based on
the finite element method is used to simulate cardiac mechanics. In [4] the CA
approach is used for the electro-mechanical simulation of the cardiac tissue. A
comparison of models for cardiac tissue based on differential equations and on
CA is presented in [5].

2.3 Parallel Computing

Our CA coupled with mass-spring system is not computational expensive. A
mesh with a thousand elements can be simulated in a few minutes. However, our
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intentions for future work is to perform simulations for the whole heart, which
may demand millions of elements. Futhermore, we also need to estimate some
parameters using genetic algorithms (GA), in order to find accurate simulations.
For this GA, it is necessary to evaluate a few hundreds of the CA, with differ-
ent parameters. According to the comparison to real data, the parameters that
resulted in the best outcome are chosen for the next iteration, and the other pa-
rameters are adapted. This process is repeated until the best solution reachs an
acceptable error. Undoubtedly, this technique is computational expensive and
may take some hours to get finished. So, in order to speedup the simulation,
we proposed a parallel implementation using Graphic Processing Units (GPU)
with CUDA (Compute Unified Device Architecture). In this architecture, it is
necessary to copy the elements’ matrix that represents the CA from the CPU
(host) to the GPU (device). This is done in the beginning of the computation
as follows:

//copy data from CPU to GPU

copyHostToDevice();

//set up the number of threads to each block

dim3 threads(3, 3, 3);

dim3 grid_size; //set up the grid

grid_size.x = (width + threads.x)/ threads.x;

grid_size.y = (height + threads.y)/ threads.y;

grid_size.z = (depth + threads.z)/ threads.z;

while(t<finalTime){

time += dt; //increments simulations time

simulate<<<grid_size, threads>>>();

}

In this code, the CA matrix is divided into blocks containing 3×3×3 threads. The
distinct blocks form the matrix grid that is set up according to its dimensions,
height, width and depth. This pseudo code is run in the CPU. The functions
called with the triple angle bracket are invoked by the CPU but they actually
are run in the GPU.

3 Results

Different tests with the implementation were performed. The simulations used a
cubic tissue with 9×9×9 cells with a spatial discretization of 0.001m and a time
discretization of 1ms. Conduction velocity is assumed to be 0.5m/s, 0.17m/s and
0.17m/s along the fiber, sheet and normal sheet axis, respectively. A stimulated
cell is placed in the left-bottom of the tissue and the propagation will be studied.
The first test assumed horizontal fiber orientation for all cells of the tissue, and
all cells in the system are healthy. The tests’ results are presented in Figure 5.

The second test also assumed a horizontal fiber, but it was included ischemic
cells. At rest, healthy cells have −90mV , identified in the figures by the grey
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Fig. 5. Simulation of cube with 10mm edge, all cells are healthy and the stimulation
starts in left-bottom corner, and fiber is horizontal

color. Ischemic cells have −70mV and at their rest and they are colored with
a darker grey shade. This configuration is presented in Figure 6. Because of its
shorter AP duration the ischemic tissue is able to be stimulated again earlier
than the healthy tissue. This leads to the creation of a reentry circuit where the
tissue keeps stimulating itself forever via the propagation of spiral wave. This
causes arrhythmic contractions of the cardiac tissue.

The third and fourth tests compared the influence of the fiber’s direction in
the AP propagation. In the first row in Figure 7, the AP propagates through a
tissue with all tissue with in horizontal direction. In the second row, the fiber is

Fig. 6. Simulation with ischemic cells
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Fig. 7. Simulating with different fiber directions. First row with fibers at 0◦ and second
row at 45◦.

at 45◦. It can be observed that the stimulus propagates faster through the tissue
in the preferential direction of the fiber, and the mechanical contraction is also
fiber-prefered. Another test was performed to evaluate the fiber influence on the
AP propagation, where the same tissue was mapped with two different fibers. In
Figure 8, the upper half of the tissue has horizontal fibers and the bottom half
has a 45◦ inclined fiber. The stimuling cell is central, and the wave propagates
according to fiber direction on each cell.

Fig. 8. Same tissue with different fibers directions

In order to compare the CA results with differential equations (DE), we have
evaluated the wall thickness (WT) of the tissue during simulation and the exe-
cution time. Here, we calculate the WT as the average thickening of the tissue
wall in the transmural direction. Both simulations produced a maximum of 35%
WT. The implementation of DE solver is described in [10]. Briefly, it contains
an eletromechanical cell model that computes electrophysiology and active force
generation, coupled via calcium concentration, and the action potential propa-
gation through the tissue is modeled with the bidomain equations.

;Comparing the execution times, we perform a test with the same configura-
tion for both CA and DE. With a 10mm3 mesh, the CPU execution time for
DE is 13h30min(48600s). On the other hand, the CA execution in CPU took 38s
and the GPU version 7s, that respectivelly are 1200 and 6800 times faster than
the simulation based on DE.
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The volume preserving force (Fv) was able to decrease the volume variation.
In a compressible tissue, the volume could change until 40% of its initial value.
With the incompressible force, it changed at the most 10% of its initial volume.
Figure 9 presents how Fv acts for volume preserving. There are two tissues
configurations: compressible (part A) and incompressible (part B). Fv acts from
the baricenter of each component cube, and resultant force is best visible at the
mesh’s corners. After a contraction in a direction, the tissue “growns” in the
other directions in an attempt to keep the volume constant.

In order to our mass-spring system to reproduce a DE simulation is necessary
determine parameters, which is tiresome trial-and-error process, altough it was
possible to get similiar results. Nevertheless, it is still necessary to find a better
technique to estimate parameters.

Fig. 9. Comparison between compressible (A) and incompressible (B) tissues

Finally, we studied the impact of parallelizing the application. All tests were
performed in an Intel i7 machine with 8 GB of RAM, Nvidia GeForce GTX 480,
running Ubuntu/Linux 4.6.1 with gcc 4.6.1. We run both implementations (se-
quential CPU and parallel GPU) with different meshe sizes. We simulated 1s
of the tissue activity, all tests were run four times. We present the average exe-
cution time, in seconds and in all cases the standard deviation observed in the
execution times was less than 1%. The speedup was computed considering the
average execution time for each mesh size:

Speedup =
TCPU

TGPU
(16)

Table 2 presents the performance of the sequential and CUDA codes. It is pos-
sible to observe that the speedup is bigger with bigger meshes. This happens
because there is an overhead for managing threads and GPU calls. There is also
an implicit barrier at end of iteration, since it is necessary to synchronize the
Euler integration method where one iteration is dependent on the previous one.
When small meshes are run, the overhead is not negligible comparing with their
small execution time.
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Table 2. Performances

Mesh size 10mm3 30mm3 50mm3

GPU avg. time(s) 7 148 631
CPU avg. time(s) 38 1190 5697

Speedup 5.4 8.0 9.0

4 Conclusion

This work presented a 3D simulator of the electro-mechanical activity of cardiac
tissue via the coupling of CA and mass-spring models. Although models based
on PDEs are more accurate and detailed, they are very computationally expen-
sive. CA has shown to be an alternative for real-time simulation because of its
fast performance, that resulted in a 1200 to 6800-fold improvement on computa-
tional time. The pattern of propagation obtained with CA has shown to be very
similar to the patterns obtained with PDE-based models, including WT and vol-
ume, although a more detailed comparison is necessary. The tissue deformation
obtained with the mass-spring system has shown to be very responsive to the
force-development providing a qualitative demonstration of cardiac contraction.
The volume preserving force was able to avoid big changes in the tissue without
changing its WT, although manual determing parameters for reproducing PDE
simulations is a hard task. The parallel implementation speeds up the simula-
tions by 9 times, but it is still necessary to investigate improvements for the code
to decrease overheads for faster simulations.

As future work, some improvements can also be achieved in terms of de-
terming parameters of both CA and mass-spring systems, adjusting them to
data obtained in experiments or from more realistic heart models.
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Abstract. MakkSim is an agent–based pedestrian dynamics simulator
extending the CA floor field model considering the influence of groups.
This paper presents a systematic analysis and discussion of the differ-
ent options for the introduction of parallel computation approaches in
MakkSim. We briefly introduce the model, then we analyse the mar-
gins for improvement in the different phases of the simulation cycle. The
alternatives for the parallelisation of the simulation engine are finally
evaluated and discussed.

Keywords: Agent Systems, Crowd Simulation, Thread-Level Parallelism.

1 Introduction

Computer models for the simulation of crowds are growingly investigated in
the academic context and adopted by decision makers employing commercial
off-the-shelf simulators1. These models can be roughly classified into three cat-
egories that respectively consider pedestrians as particles subject to forces (see,
e.g., [4]), states of cells in which the environment is subdivided in Cellular Au-
tomata (CA) approaches (see, e.g.,[8]), or autonomous agents (see, e.g. [1,5])
acting and interacting in an environment. Recent developments in this area focus
on phenomenologies not previously considered by other pedestrians and crowd
models: in particular, MakkSim [9] includes groups as first class entities influenc-
ing pedestrian behaviour. Members of groups strive to stay close to each other
even in local high-density situations. The MakkSim model presents an adaptive
component allowing groups to preserve their cohesion but the perception model
of the agents is more sophisticated and it implies a higher computational cost.

CA are a parallel computing model and due to this intrinsic feature they are
suitable to be effectively implemented on parallel computers achieving also a
high level of performance, employing specialised hardware execution platforms
(e.g. [3]), or common multi core CPUs (see, e.g., [2]). This work, building on
this kind of experience in the parallelisation of simulation models, will present
a systematic analysis of the different options for the introduction of parallel
computation approaches in the MakkSim simulator. The paper briefly introduces
the model, then it analyses its current performance and margins for improvement

1 see http://www.evacmod.net/?q=node/5 for a list of available simulation platforms.
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in the different phases of the simulation cycle. The various alternatives for the
actual parallelisation of the simulation engine are then introduced and evaluated.

2 MakkSim Overview

The main elements of the MakkSim model are the simulated environment, the
population of agents representing pedestrians and their updating strategy.

Environment – MakkSim is discrete both in space and time. The environment
is represented as a grid of squared cells with side of 40 cm, respecting the average
space occupied by a pedestrian. We adopted a floor field approach [8] supporting
agents’ navigation in the environment. Three kinds of fields are defined: (i) the
path field indicates for every cell the distance from one destination area, driving
pedestrians towards it (static); (ii) the obstacles fields describes for every cell the
distance from neighbour obstacles or walls (static); (iii) the density field indicates
for each cell the local pedestrian density at the current time-step (dynamic).

Agents – The life-cycle of a MakkSim agent is divided into four steps: perception,
utility calculation, action choice and movement. The perception provides to the
agent all the information needed to evaluate the desirability of a cell. The choice
of each action is based on an utility value assigned to every possible movement
according to the following function:

U(c) =
κgG(c) + κobOb(c) + κsS(c) + κcC(c) + κiI(c) + κdD(c) + κovOv(c)

d

The first three components employ information derived by floor fields and they
consider (i) goal attraction, (ii) geometric and (iii) social repulsion. The fourth
and fifth components model the social attraction element of the pedestrian be-
haviour, by increasing the utility of positions closer to group members. We con-
sider two types of group: simple (iv), that indicates any small group characterised
by a strong and simply recognisable cohesion (e.g. family or friends); structured
(v), a larger group, that shows a slight cohesion but that is naturally split into
subgroups (e.g. tourists). Finally, two special factors consider two additional
phenomenologies: (vi) helps an agent to maintain the current direction, while
(vii) allows to move to a cell already occupied by one pedestrian in high density
conditions. An adaptive mechanism is also defined to tune the parameters of this
utility function, in order to preserve the cohesion of simple groups even in high
density situations. After the utility evaluation for all the cells in the neighbour-
hood, the choice of action is stochastic, with the probability to move in each
cell c as (N is the normalisation factor): P (c) = N · eU(c). On the basis of P (c),
agents chooses a cell according to their set of possible actions, defined as list of
the eight possible movements in the Moore neighbourhood.

Update Strategy – The duration of each time step is 1/3 of a second, gen-
erating a linear pedestrian speed of about 1.2 ms−1, consistent with the liter-
ature. Regarding the update mechanism, three different strategies are usually
applied [7]: ordered sequential, shuffled sequential and parallel update. The first
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two strategies employ a sequential update of agents, respectively managed ac-
cording to a static or dynamic (random) list of priorities, preventing conflicts.
On the contrary, the parallel update calculates the choice of movement of all
the pedestrians at the same time, managing conflicts and actuating choices in a
latter stage. In previous applications [9] we adopted the shuffled sequential strat-
egy, but we are investigating the possibility to adopt a parallel approach, since
it has shown a greater adequacy in considering actual conflicts among pedestri-
ans [6]. Moreover, this update strategy allows considering separately decisions
about movement, that take place at the same time, from the actual updating of
the pedestrians’ positions, that must consider and solve conflicts. The first phase
can be easily and conveniently parallelised, as we will show in the following.

Analysis of Simulation Cycle Computational Costs – To evaluate the
margins for improvement of the execution time by means of parallelisation, we
conducted a set of tests measuring the average time related to simulation turns.
The tests considered a relatively low level of global pedestrian density (about
1 ped/m2), with and without groups in the simulated pedestrian population, on
a large corridor scenario (10.0 × 4.0 m2). Results showed that the heaviest
activity in the turn (over 85% of the simulation turn) are related to the per-
ception and utility calculation phase, especially in the case with groups (due to
additional group behavioural mechanisms). Therefore, the strategy of parallelism
introduction should especially consider the perception and evaluation phases.

3 Parallel Computing in MakkSim

Parallel Sequential Simulations – The simplest option for improving exe-
cution time of a simulation campaign is associated to the parallel execution of
several overall sequential simulation processes each associated to an execution
core. This procedure has been useful in the phase of model calibration and val-
idation: the exploration of the parameter ranges, as well as of the pedestrian
densities of the scenario, requires the execution of a consistent number of simu-
lations in same scenarios. Obviously this approach does not bring any speedup
of a single simulation.

Regional Parallel Update – Even considering a sequential update strategy,
constraining the execution of agent updates in parallel due to dependencies
among actions, it might be possible to identify agents whose choices and ac-
tions do not actually influence each other. This can be done by analysing the
agents arrangement in the environment and identifying independent regions: the
notion of region is a (minimal) set of cells including agents whose choices can
influence each other’s actions. This means that the sets of agents situated in
independent regions could be actually updated in parallel. MakkSim could be
therefore parallelised by introducing a procedure that is able to dynamically
recognise independent regions.

The higher the number of regions identified during one turn of the simula-
tion, the higher level of parallelism will be achieved, increasing therefore the
speedup. However, computational costs of the regions recognition algorithm can
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be significant, especially when the density of pedestrians is high. To estimate this
cost we defined a potential approach: the problem of region identification can be
expressed as identifying all connected components in a graph, with the variation
that the edges are obtained using function that calculates the area of influence
of an agent. The strategy we propose comprises two phases: a preliminary step
in which the edges are calculated, saving information about reciprocal influence
of agents (which can be used also to optimise the perception phase) and a second
step where the obtained graph is visited with through the Breadth First Search
algorithm, whose time complexity is O(|V |+ |E|). Since the graph is not oriented
and the number of the edges could tend to |V 2| (in case of high local density
of pedestrians), the overall costs could be extremely significant. Moreover, the
overall speedup will be constrained by the procedure of density field updating,
that represents a bottleneck since the floor field is unique for the simulation and
its structural integrity is fundamental. For all these reasons, we consider this
option not promising.

Parallel Agents Update – By assuming a parallel agent activation strategy,
the activity flow of the simulation update phase would follow a three step proce-
dure: (i) update of choices and conflicts detection, that represents the call of the
chooseAction function for each agent of the simulation; this function, however,
now generates an intention of movement whose management will also allow for
the identification of conflicts; (ii) conflicts resolution, that is the resolution of
the detected conflicts between agent intentions, solved employing new rules in
the model; (iii) agents movement, that is the simple update of agent positions
exploiting the previous conflicts resolution, and field update, that is the recalcu-
lation of the density field regarding the new positions of the agents. The overall
computational costs are increased, because there is the conflict resolution phase
in addition. On the other hand, in the procedure we want to propose these costs
linearly increase with the number of agents and, moreover, it must be noted
that all of these activities can be now parallelised by using threads. In Alg. 1 the
pseudo-code of this update procedure is proposed: AgentChoices is a table of the
same size of the environment, where the current movement choices of agents are
saved. By using this structure we detect collisions simultaneously to the storage
of agents’ choices through the addChoice function. The costs associated to the
detection of conflicts are therefore linear with the number of agents. Conflicts
resolution phase also has linear costs (considering the number of conflicts), since
we adopt a method from the literature [6] that consists in executing a lottery
for each conflict of the current step: to preserve a consistent environmental con-
dition, some of the movement intentions can be canceled by the environment.
As a consequence, the last activity only has to finalise the remaining movement
intentions of all agents, that are now legitimate.

A proposal for the parallelisation of this update procedure is shown by the
pseudo-code in Algorithm 2 (only the most significant procedures are described,
for sake of space). The first function represents the main procedure and imple-
ments the parallelisation strategy by using three types of thread: the Updater,
whose objective is to perform the update of agent choices, as well as to store
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Algorithm 1. Parallel update and addChoice function

function parallelUpdate
AgentChoices ← newTable(Environment.rows, Environment.columns)
for α ∈ Agents do

Choice = updateChoice(α)
AgentChoices.addChoice(Choice)

end for
solveConflicts(AgentChoices)
for α ∈ Agents do

move(α)
end for

end function

function addChoice(Choice, Conflicts)
if Table[Choice.x][Choice.y].length() == 1 then

Conflicts.append((Choice.x, Choice.y))
end if
Table[Choice.x][Choice.y].append(Choice)

end function

Algorithm 2. threadsParallelUpdate() and Updater.run

function threadsParallelUpdate
Arbiter ← newArbiter(countCPUs())
AgentChoices ← newTable(Environment.rows, Environment.columns)
for i ∈ [1, countCPUs()] do

start(newUpdater(Agents, AgentChoices, Arbiter))
start(newConflictSolver(AgentChoices, Arbiter))
start(newAgentMover(Agents, Arbiter))

end for
end function

function Updater.run
while length(Agents) > 0 do

α ← tryToExtract(Agents)
if α �= ∅ then

Choice = updateChoice(α)
lock(AgentChoices)
AgentChoices.addChoice(Choice)
unlock(AgentChoices)

end if
end while
Arbiter.endJob(“Updater”)

end function

them in the respective data structure2; the ConflictSolver, which performs the
conflict resolution activity and updates the agents choices; the AgentMover, that

2 Method tryToExtract locks the Agent list and returns its first element, by removing
it from the set. If the list is empty it returns ∅, so the Updater has finished its work.
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updates agents’ positions and density field. Synchronisation between these pro-
cesses is made by the Arbiter monitor that ensures the completion of the steps of
the update procedure, and by using methods lock and unlock for synchronising
shared data resources (e.g. Agents or AgentsChoices).

We expect to achieve a significant speedup by implementing this approach:
in particular, while the final phases of actual movement and density field re-
computation present bottlenecks in the shared resources, the updateChoices pro-
cedure (which is the most time expensive step in MakkSim simulation cycle) only
presents a minimal race condition associated to the storage of conflicting move-
ment intentions.

4 Conclusions

In this paper we have systematically analysed the different options for the in-
troduction of parallel computation techniques to decrease the execution time of
simulations employing the MakkSim system. The the adoption of a conceptually
parallel agents’ activation strategy resulted the most promising one and we are
now working at changes in the MakkSim system allowing the experimentation
of the described parallel computing approach and the experimental evaluation
of the achieved speedup.
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Abstract. The objective was to find the behaviour of agents to solve
the all-to-all-communication task in the cyclic triangulate and square
grids in shortest time. The agents should be reliable, meaning that they
are successful on almost any initial configuration. In order to solve the
problem, the multi-agent system was modeled by Cellular Automata with
synchronous updating, and the behavior of the agents was modeled by an
embedded finite state machine (FSM). Agents can move or stay, and turn
to any direction. An agent is able to leave a trace by setting a color flag
on its site. Colors allow indirect communication similar to pheromones,
speed up the task and contribute to a better reliability. More reliable
agents could be found by using different initial control states for the
agent’s FSMs. A simple genetic procedure based on mutation was used
to evolve near optimal FSMs for the triangulate and square grid. Agents
in the triangulate grid can solve the task in around 2/3 of the time
compared to agents in the square grid. The communication time depends
also on the density of agents in the field, e.g. agents with density 4/(16
x 16) turned out to be the slowest.

Keywords: All-to-All communication, Cellular Automata, Multi-agent-
system, Evolving Finite State Machines, Square and Triangulate Grids,
Indirect Communication.

1 Introduction

Problem and Objectives. Several agents that are moving around in a Cellular
Automata grid are able to solve the all-to-all communication task. Initially each
one has got a mutually exclusive part of the whole information which can be dis-
tributed when the agents meet locally. The task is considered successful when all
agents have gathered the complete information. Information parts already gath-
ered by an agent can be handed over to another agent. The objectives here are:

– find reliable agents for the square grid (S-grid “S”) and the triangulate grid
(T-grid “T ”)

– compare the communication time in S and T for a varying density of agents.

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 316–329, 2013.
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The general goal of our project is to find systematically the local behavior of
moving agents in a multi-agent system modeled by Cellular Automata in order
to fulfil a given global task.

Previous and Related Work. All-to-all communication (A2A) is a very com-
mon task in distributed computing. A2A in multi-agent systems is related to
multi-agent problems like finding a consensus [1], synchronizing oscillators, flock-
ing theory or rendezvous in space [2], or in general to distributed algorithms with
robots [3]. The problem’s specification can depend on many fixed or dynamic
varying parameters like the number and location of nodes, the number and
location of processes, the number, users and properties of the communication
channels and so on.

In former investigations [4] we have tried to find the best algorithms for the
Creatures’ Exploration Problem, in which the creatures (agents) have the task
to visit all empty cells in shortest time. The problem herein is related to it with
respect to finding an optimal movement of the agents. But this task is different:
now the agents shall exchange all their individual information in shortest time.

We have already studied A2A [5–9] in the S-grid. In these investigations, en-
vironments were used with and without border (cyclic), with and without obsta-
cles, with and without colors, and with different local communication situations.
The main results were

– environments with border are easier (faster) to solve
– colors speed up the task by a factor of around 2
– time-shuffling (alternating two FSMs in time) speeds up the task
– for a field of size 33 x 33 and 16 agents, the best reached communication

time was

• 406 time steps, using actions turn right/left and move, time-shuffling two
FSMs with 6 states each, no coloring [8]
• 195 time steps, using actions turn right/left/straigth/back and move,
coloring, color-FSM and action-FSM with 8 states each [9]
• 320 time steps, using actions turn right/left/straigth and move, coloring,
6-state FSM [7].

– the evolved agents (FSMs) were not always reliable.

The former modeling and parameter setting differs in many details from the
one used here. Based on this experience we defined a new, more clear modeling
(especially with a von-Neumann communication) to be used for S and T grids.

Our research in general is also related to works like: evolving optimal rules for
cellular automata (CA) [10, 11], finding out the center of gravity by marching
pixels by evolutionary methods [12], modeling multi-agent systems in CA to
simulate pedestrian movement [13], or traffic flow [14].

Contribution and Organization. The main contribution is the finding of
reliable, near optimal agents controlled by a finite state machine solving the
A2A task in the square and triangulate grids, and showing that agents in the
triangulate grid are around 1.5 times faster than in the square grid.
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Topology and basic communication properties of the square and triangular
grids are given in Sect. 2. The modeling of the multi-agent system (MAS) is
presented in Sect. 3. The genetic procedure used to evolve the agents’ behavior
is described in Sect. 4. Sect. 5 provides the results of this investigation and Sect.
6 concludes.

2 Topology of the CA Networks: S-Grid and T-Grid

Consider the square blocks in Fig. 1 with N = 2n × 2n nodes where n will
denote the “size” of the networks. The nodes are labeled according to the XY–
orthogonal coordinate system. In the left block, a node (x, y) is connected with
its four neighbors (x±1, y), (x, y±1) (with addition modulo 2n) respectively in
the N–S, W–E directions, giving a 4–valent torus usually denoted as “square”
and labeled “S” or “S-grid” in the sequel. In the right block, two additional links
(x−1, y−1), (x+1, y+1) are provided in the diagonalNW–SE direction, giving
a 6–valent torus usually denoted as “triangulate” and labeled “T” or “T -grid”
in the sequel [15]. Because their associated graphs are regular their number of
links is, respectively, 2N for torus S and 3N for torus T . Both networks are
scalable in the sense that one network of size n can be built from four blocks
of size n − 1. To be precise, let us finally note that the dual cellular tilings S∗

and T ∗ as displayed in Fig. 2 and associated to S and T , are respectively the
{4, 4} square tiling and the {6, 3} (homeomorphic) honeycomb, where {p, q} is
the Schläfli symbol.

The basic routing schemes are driven by the Manhattan distance in S and
by the so-called “hexagonal” distance in T [16]. Global communications such as
“One-to-All” broadcasting or “All-to-All” gossiping are frequently used in par-
allel applications: respectively, one node diffuses a message to all nodes (broad-
casting) whereas all nodes diffuse their own message to all nodes (gossiping)
[17]. For a given topology, their exists at least one deterministic protocol for
each global communication. But in the context of multi-agent systems herein
the context is quite different, because on one hand the number of agents is not

Fig. 1. Tori “S” and “T” of size n = 2, of order N = 16, labeled in the XY coordinate
system; their number of links is 2N for S and 3N for T
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necessarily the number of nodes and on the other hand agents’ trajectory is not
deterministic.

Two important parameters for the routing task in the networks are the diam-
eter and the mean distance. The diameter defines the shortest distance between
the most distant pair of nodes and provides a lower bound for routing or other
global communications; such a pair is said to be antipodal. The mean distance
gives an average for the performance of the routing. Diameter Dn and mean
distance δ̄n are given by [18]

DS
n =
√
N ; DT

n =
2(
√
N − 1) + εn

3
(1)

δ̄Sn =

√
N

2
; δ̄Tn ≈

1

6

(
7
√
N

3
− 1√

N

)
(2)

where εn = 1 (resp. 0) depends on the odd (resp. even) parity of n and where
the upper symbol identifies the torus type; whence the ratios denoted by

DT/S
n ≈ 0.666 ; δ̄T/S

n ≈ 0.775 (3)

between diameters and mean distances. Fig. 2 highlights the distances from an
arbitrary cell, and thereby the diameters, in this family of CA networks of size 3.

Fig. 2. Distances and antipodals from a center cell in the cellular representation of S
and T for n = 3: DS

3 = 8, δ̄S3 = 4; DT
3 = 5, δ̄T3 ≈ 3.09

3 CA Modeling of the Multi-agent System

The whole system is modeled by cellular automata (CA). It consists of an envi-
ronment (M ×M S- or T-grid, where M = 2n herein) without borders (cyclic
wrap-around) and k uniform agents. We decided not to use borders because this
case is more difficult to solve because the agents cannot use the borders as an
orientation where they can meet. The state of CA cell is either empty or the
state of an agent (if an agent is situated on that site).
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Agent’s State. The state of an agent is:

state = {IDentifier, Direction, ControlState, CommunicationVector}.
The agents are distinguished by their identifier ID ∈ {0 . . .Nagents−1}. Thereby
the agent’s trajectories can be traced, and the ID can be used for resolving
conflicts and as an information to vary the initial control state. The moving
direction is Direction ∈ {0..3} for S and Direction ∈ {0..5} for T , respec-
tively. The ControlState is the state of an embedded finite state automaton,
controlling the actions.

Communication Method. In order to model the distribution of information,
a bit vector CommunicationVector of k length is stored in each agent. At the
beginning the bits are set mutually exclusive (bit(i)=1 for agent(i)). Agents
exchange their information when they meet in a certain communication situation.
We decided that an agent can read all the information from the other agents from
its nearest neighbours (4 in S and 6 in T ). This communication situation does
not depend on the agents moving direction, as in the communication situations
we used earlier. We think that this new definition is more simple and will yield
similar results. The exchange of information is modeled by simply OR-ing the
communication vectors of the involved agents. The task is successfully solved
when the k–vector becomes (11 . . . 1) for all agents.

Actions. An agent can perform the three basic actions move, turn, setcolor
independently of each other.

– The agent moves in the current direction if move=1 when it can move (free,
not blocked), otherwise it waits. The agent waits unconditionally if move=0.

– For the S-grid, the basic action turn ∈ {0, 1, 2, 3} defines the new direction:
direction← direction+ turn× 90◦.
This means that the agent can turn to any of the four directions.
For the T-grid, the basic action turn ∈ {0, 1, 3, 5} defines the new direction:
direction← direction+ turn× 60◦.
This means that the T-agent cannot turn to ±120◦. This decision was made
because the cardinality of turn should be the same, in order to have the
same complexity of abilities for the S- and T-agents.

– Apart from the agent’s movement and the information exchange, an agent
has indirect communication capabilities. Each cell of the environment con-
tains a color (status flag) which is either 0 or 1 and used as an input for the
decision making process. The color can be seen as a tracing information like
a “pheromone” left by other agents or even by the reading agent itself. The
agent is able to change the color of the cell on which the agent is currently
located:
color ← 0 if setcolor=0, and color ← 1 if setcolor=1.

Thus in total there are 16 possible actions that an agent can perform. The actions
can be written in abbreviated form, using turn ∈ {S,R,B, L} (Straight, Right,
Back, Left), move ∈ {m, .} (move, wait) and setcolor ∈ {0, 1}. Thus the action
set is:
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{Sm0, Sm1, S.0, S.1, Rm0, Rm1, R.0, R.1
Bm0, Bm1, B.0, B.1, Lm0, Lm1, L.0, L.1}.
Input Information. The information on which an agent can react on, is

– the color of the current cell the agent is situated on,
– the color of the cell ahead (also called the front cell),
– if there is an agent in front or not,
– if there are agents that want to move to the same front cell (conflict),
– the agent’s own control state.

Conflicts. An agent cannot move if it detects an agent in front or is a looser
of the conflict resolution protocol. A conflict occurs when two or more agents
want to move to the same front cell (cell in conflict). In order to detect a conflict
an extended neighborhood [5] is needed (Manhattan distance 2 in the moving
direction). Alternatively, especially when a fast hardware implementation is pur-
sued, the conflict detection can be performed by an arbitration logic [4] available
in each cell. The arbitration logic evaluates the move requests coming from the
agents and replies asynchronously by an acknowledge signal in the same clock
cycle. In order to resolve a conflict, a resolution strategy has to be defined. We
defined that the agent with the lowest ID has priority.

Control FSM. The decision upon which action will be performed depends on
the behavior of the agent. The behavior (algorithm) of an agent is defined by
a finite state machine (FSM) of type Mealy. A FSM contains a state register
and a transition/output table. Input of the table is the current input x and the
current state s, output is the next state s′ and current output y, e.g. Fig. 3.

Input x of the concrete FSM used here is the own control state s of the FSM,
the move condition x = canmove ∈ {0, 1}, the color of the own cell the agent is
situated on, and the color of the front cell. The inverse move condition is called
blocked. Thus altogether there are 8 different input values. The move condition
is computed by a separate function, that evaluates to true if (i) there is no
agent in front and (ii) in case of conflict the own ID is the lowest compared to
the others.

Output of the FSM is y = (move, turn, setcolor).
In order to keep the control automaton simple, we restrict the number of

states and actions to a certain limit (see Sect. 4). To solve the problem very
general either theoretical or practical with respect to all interesting parameters
is too difficult. Therefore we have specialized our investigation. The grid size was
set to 16 × 16. The number of agents was set to k = 16 for the genetic procedure
but then varied from k = 2 to the maximum (number of cells).

4 The Genetic Procedure

The ultimate goal is to find the optimal behavior on average for all possible
initial configurations in S and T . As we cannot test all possible configurations, we
restrict our investigation to a field size of 16 x 16, with a certain number of agents
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S-agent FSM /x = 0\ /x = 1\ /x = 2\ /x = 3\ /x = 4\ /x = 5\ /x = 6\ /x = 7\
blocked 0 1 0 1 0 1 0 1
color 0 0 1 1 0 0 1 1
frontcolor 0 0 0 0 1 1 1 1
state 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
|nextstate 2 3 1 1 0 3 3 2 1 3 0 2 0 0 2 1 1 2 2 0 2 3 2 0 2 2 3 0 3 1 0 2 |
|setcolor 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 |GENOM
|move 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 |S-agent
|turn 3 0 1 0 1 1 1 2 3 0 0 3 2 1 2 3 0 1 2 1 3 0 1 3 2 3 3 3 3 2 2 3 |
index i 0 1 2 3 4 5 6 7 8 91011 12131415 16171819 20212223 24252627 28293031

Fig. 3. A state table for an FSM controlled S-agent moving and communicating in the
S-grid. The turn actions for the S-agent mean: turn 0◦/90◦/180◦/ − 90◦ for (turn =
0,1,2,3) – This FSM represents also the best found algorithm for the S-agents

Nagents ∈ {2, 4, 8, 16, 32, 64, 256}. We will be satisfied if we can find near optimal
(fast) agents, that are also reliable, e.g. which are able to solve the problem for
each Nagents and for all initial configurations out of a set of Nfields = 1003.
Thus 1000 initial configurations were randomly generated (position, direction)
for each Nagents, plus 3, manually designed. The manually designed are difficult
to be solved by simple uniform agents, because it may easily happen that agents
never meet (when agents follow synchronously the same strategy). The first is a
queue of Nagents, all agents with direction →; the second is a queue of Nagents,
all agents with direction←; and in the third configuration the agents are placed
in the diagonal with maximum space between them, all agents with direction←.

As the search space for different behaviors is very large we are not able to
check all possible behaviors by enumeration. The number of state machines which
can be coded using a state table is K = (|s||y|)(|s||x|) where |s| is the number
of states, |x| is the number of different input values and |y| is the number of
different outputs. As the search space increases exponentially we used a genetic
procedure in order to find the best behavior within a reasonable computational
time limit. Nevertheless the number of states and inputs has to be kept low in
order to find a good solution in reasonable time.

The concatenation of the (nextstate, action)-pairs (s′, y) for all input combi-
nations with index i (state table in Fig. 3) defines the genome of one individual,
a possible solution.

One population of N individuals is updated in each generation (optimization
iteration). During each iteration N/2 offsprings are produced from the top N/2
individuals. The union of the current N individuals and the N/2 offsprings are
sorted according to their fitness, duplicates are deleted and the number of in-
dividuals is reduced to the limit of N in the pool. In order not to get stuck in
a local minimum and to allow a certain diversity in the gene pool, the first b
individuals from the second half of the gene pool are exchanged with the last
b individuals from the first half of the gene pool. We used N = 20 and b = 3,
therefore the individuals 7, 8, 9 are exchanged with the individuals 10, 11, 12,
where the individuals are numbered from 0 to N − 1.

We experimented with the classical crossover/mutation method. Then we
found that mutation only gave us similar good results. So we used here only
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mutation. It is subject to further research which heuristic is best to evolve state
machines. In previous work we used also crossover and parallel populations, but
at the moment we have no far-reaching comparisons between different heuristics
to evolve state machines.

An offspring is produced by modifying separately the nextstate action, the
setcolor action, the move action, and the turn action for each input combina-
tion (index in the FSM table):

nextstate← nextstate+1 mod Nstates with prob. p1, otherwise unchanged,
setcolor← setcolor+1 mod Nsetcolor with prob. p2, otherwise unchanged,
move← move+ 1 mod Nmove with prob. p3, otherwise unchanged,
turn← turn+ 1 mod Nturn with prob. p4, otherwise unchanged.

We tested different probabilities, and we achieved good results with p1 = p2 =
p3 = p4 = 18%.

The fitness of a multi-agent system is defined as the number of steps which
are necessary to distribute (all-to-all) the information, averaged over all initial
configurations (positions and directions of the agents) in a certain set. As we are
looking for reliable agents, the cardinality of the set has to be reasonably high
in order to be relatively sure that the agents are successful for any given initial
configuration. As the behavior of the whole system depends on the behavior of
the agents, we search for the agents’ state algorithms (FSMs) that can solve
the problem with a minimum number of steps for a large number of initial
configurations.

The fitness function F is evaluated by simulating the agent system. It reflects
two aspects:

1. The number of agentsNagents which have gathered the complete information.
If an agent has gathered the complete information it is informed. If all agents
are informed, we characterize the agent system, respectively the algorithm, as
successful. If the agents are successful on all given initial configurations then
we characterize the agent system, respectively the algorithm, as completely
successful.

2. The number of steps in the CA simulation to reach successfulness. We will
call this value communication time tcomm.

The used fitness function integrates these aspects by choosing a weight W such
that a dominance relation is formed:

Fi =W (Nagents − ai) + ti,comm W = 104

where ai is the number of informed agents, and ti,comm is the communication
time for an initial configuration i. The first term (Nagents−a) reflects the number
of agents that are not informed. It diminishes for a successful FSM and then the
relation Fi = ti,comm holds. Note that a lower fitness value is better. The fitness
Fi is computed for each simulated initial configuration i and then averaged over
all initial configurations Nfields in the given set as
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F =
∑

Fi/Nfields .

The communication time depends on the size of the field, the number of agents,
the algorithm (FSM), and the given field (initial configuration). For the investi-
gated field size of 16 x 16 the expected communication time is lower than 100.
During the genetic procedure a reasonable simulation time limit was used, e.g.
tmax = 200.

T-agent FSM /x = 0\ /x = 1\ /x = 2\ /x = 3\ /x = 4\ /x = 5\ /x = 6\ /x = 7\
blocked 0 1 0 1 0 1 0 1
color 0 0 1 1 0 0 1 1
frontcolor 0 0 0 0 1 1 1 1
state 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
|nextstate 1 2 1 2 1 0 3 0 2 1 0 3 1 2 1 3 1 2 0 2 0 1 3 0 2 2 1 1 2 2 1 1 |
|setcolor 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 |GENOM
|move 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 |T-agent
|turn 0 0 1 0 3 2 2 2 3 0 0 1 0 0 3 3 1 0 1 2 3 3 0 1 3 0 1 3 2 0 2 3 |

Fig. 4. Best evolved FSM for the T-agent. The turn actions for the T-agent mean:
turn 0◦/60◦/180◦/− 60◦ for (turn = 0,1 2,3).

The genetic procedure starts with N = 20 random FSMs. Usually there is no
FSM in the initial population that is successful. After some generations, some
successful FSMs are found. Then, after further generations, FSMs are expected
to be evolved that are completely successful.

The genetic procedure was applied in the following way. Four independent
optimization runs on 1003 initial configurations were performed, with field size
16 x 16 and Nagents = 8. Then the top 3 completely successful FSMs of each run
(altogether 12) were also tested for Nagents = 2, 4, 8, 16, 32, 256, each on 1000
random initial configurations plus 3 extra manually designed (agents queueing
in a line, agents on the diagonal). FSMs which were completely successful on
all these configurations (1003 + 5 x 1003) were extracted and ranked. Then the
best FSM was selected.

Former investigation showed that it is very difficult or impossible to find reli-
able agents which are successful on any given initial configuration, because agents
can follow similar routes which are “parallel” and therefore never intersect. In
general, a certain inhomogeneity (in space or in time) or even a randomness has
to be introduced to break the symmetry. Some of the approaches to make the
agents more reliable, are:

1. use coloring,
2. use random-like pattern of initial colors,
3. use different species (FSMs) of agents,
4. start the agents in different control states,
5. add obstacles.

We used the 4th option. Experiments showed that we could not find uniform
reliable agents when all FSMs started in control state 0 or 3. Recall that we use
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only 4 control states. But we were able to find reliable agents, when we started
some of the agents in state 0 and the others in state 1. We decided then to use
the initial state = 0/1 for agents with even/odd ID.

Table 1. Communication time for Nagents in the T-grid and S-grid in a 16 x 16 field,
averaged over 1003 initial configurations. The best found T-algorithm and best found
S-algorithm were used.

Fig. 5. Communication time for Nagents in the T-grid and S-grid in a 16 x 16 field.
The T-agents are significantly faster than the S-agents, around 33 %. For Nagents = 4
maxima appear.

5 Comparison of the Evolved S- and T-Agents

The best found reliable FSM for the S-agent is shown in Fig. 3, and the best found
T-agent is shown in Fig. 4. The communication time was evaluated by simulation
for all Nagents = 2, 4, 8, 16, 32, 256, and for each case 1003 initial configurations.
The agents were completely successful on all 5015 initial configurations using
the same algorithm, one for the S-grid, one for the T-grid. The agents start in
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SGRID FSM=1 FIELD=15 t=0 t=56 t=114

. . . . . . . . . . . . . . . . <1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .^0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .<0 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0> .v1

colors

. . . . . . . . . . . . . . . . . 1 . 1 . 1 . 1 . 1 . 1 . . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 .

. . . . . . . . . . . . . . . . . 1 . 1 . 1 . 1 . . . 1 . . . 1 . . . . . . . . . . 1 . . . 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . 1 . 1 . 1 . 1 . 1 1 . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . . . . . . . . . . 1 . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . . . . . . . . . . 1 . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . . . . . . . . . . 1 . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . . . 1 . 1 . 1 . 1 . 1 . . . . 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 1 1 . . . . . . . . . . . 1 . 1 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 1 1 1 1 . 1 . 1 . 1 . 1 . . . 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . 1 . 1 . .

visited

. . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 1 1 . 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 2 1 1 1 3

. . . . . . . . . . . 1 . . . . 1 1 1 1 1 1 1 1 1 2 2 5 6 3 2 2 2 3 2 3 2 3 2 3 2 3 3 7 7 4 3 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 . 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 . 2 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . 1 1 . . . . . . . . . . . 1 2 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1

. . . . . . . . . . . . . . . 1 . . . . . . . . . . . 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 3 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 6 3 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . . . 1 2 1 1 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . . . 1 2 1 1 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . 2 3 3 3 6

Fig. 6. Simulation of two agents in a 16 x 16 S-grid for a special initial configuration.
The behaviour is defined by the best found FSM. Colors are set and reset (depicted in
the middle): this information helps the agents to find each other faster. The agents build
streets on which they travel more frequently (visited cells, depicted on the bottom).
For this initial configuration, the S-agents need 114 time steps.

the initial control state ID mod 2; thereby the agents are very reliable. But we
could not prove that these state machines will be successful for any arbitrary
initial configuration.

Table 1 and Fig. 5 show the average communication time. It is interesting
to observe that maxima were found for Nagents = 4, e.g. 4 agents communicate
slower than 2 and 8 agents. Comparing T/S-agents, the ratio of communication
time lies between 0.71 and 0.6, meaning that the T-agents are significantly faster.
We expected a ratio of around 0.666, according to the diameter ratio DT/S in
(3). All cases come close to this expected ratio. Note that the communication

times in T and S are not related to the mean distance ratio δ̄
T/S
n .
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TGRID FSM=2 FIELD=15 t=0 t=13 t=44

. . . . . . . . . . . . . . . . . . . . . . . . . . ^0 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . ^0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . )1 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v0 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ^1 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

colors

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 1 1 . . 1 1 . . . 1 . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 1 . 1 1 1 . 1 . . 1 . . 1 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 1 1 . . . . 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . . 1 1 1 . . . . . . 1 1 1 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . 1 . 1 1 1 . 1 . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . 1 1 . . 1 1 . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . 1 . . . 1 . . . 1 1 . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . 1 1 . 1 1 . . 1 . 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . . 1 1 . 1 1 . . . 1 1 1 1 . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . 1 . . . 1 . . . 1 . . 1 1

visited

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . 1 1 . . 1 1 . . . 1 . . 2 . . . 1

. . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 1 . . 1 . 1 1 1 . 1 . . 1 . . 1 1 . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 1 1 . . . . 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . . 1 1 1 . . . . . . 1 1 1 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . 1 . . 1 . 1 1 1 . 1 . . 1 .

. . . . . . . . . . . . . . . 1 . . . . . . . . . . . 1 . . . 2 . . 1 . . . 1 1 . . 1 1 . . . 2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . 1 . . . 2 1 1 . . . 1
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. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . 1 1 . . 1 . . . 2 . . 1 1

Fig. 7. Simulation of two agents in a 16 x 16 T-grid for a special initial configuration.
The behaviour is defined by the best found FSM. Colors are set and reset (depicted
in the middle): this information helps the agents to find each other faster. The agents
build honeycomb-like networks on which they travel more frequently (visited cells,
depicted on the bottom). For this initial configuration, the T-agents need only 44 time
steps compared to 114 time steps for the S-agents.

In the special case Nagents = 256, the system is fully packed with agents that
cannot move, only communicate. Then the communication time is the diameter
(1) (the communication after the initial placement is not counted).

Two sample simulations show how the agents move and set colors in order to
communicate. In the S-grid of Fig. 6, the agents build orthogonal communication
streets (where the agents prefer to move) by the help of the colors.We can observe
a few streets at time 56 (horizontal or vertical) and more at the end (t = 114).

For the T-agents in Fig. 7, we observe that they can build honeycomb-like
networks! At time 13 we observe two honeycombs and at the end (t = 44) there
are several of them. It has to be mentioned that the T-agents are faster on
average, but for some initial configurations they can be slower.
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In a previous work [9], 195 time steps were reached for a 33 x 33 S-grid with
16 agents. For comparison, our best 12 agents, evolved for a 16 x 16 grid with
8 agents, were tested on 1003 randomly generated fields of size 33 x 33 with 16
agents. The best S-agent needed 229 time steps and the best T-agent needed 181
time steps, and the agents were reliable. Again the T-agent is faster than the
S-agent. However, our T-agents are not so fast as the ones evolved in [9]. The
reasons are: (1) we used only one FSM with 4 states, instead of using two FSMs
with 8 states each, (2) we did not specifically evolve our agents for the field
size of 33 x 33, and (3) our agents were specifically evolved for a high reliability
(agents start in different initial control states).

6 Conclusion

The multi-agent system needed for simulation and optimization was described
by Cellular Automata, and the agent’s behavior was modeled by a finite state
machine (FSM). For the triangulate and square grid, near optimal FSMs were
evolved by a genetic procedure. In order to make the agents more reliable (suc-
cessful on any initial configuration), half of the agents start in state 0, the other
half in state 1. Thereby the agents could solve the task successfully for a large
number (5015, each for the T- and S-grid) of initial configurations. T-agents can
solve the task in about 2/3 of the time the S-agents needed. For the 16 x 16 grid,
two and more than 4 agents can communicate faster than 4 agents. In further
work it could be studied how fast and reliable agents are when using more states,
more colors, obstacles, or borders.
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Abstract. Totalistic cellular automata (TCA) with weighted templates
simulating pattern formation process are investigated. The investigation
aims to create a method for porous media morphology synthesis accord-
ing to a given set of properties such as porosity, percolation, density, etc.
The proposed method is based on a parallel composition of TCA and
an asynchronous CA (CA of second layer), whose evolution allows to
obtain a set of patterns representing different porous media morpholo-
gies. Implementation of three-dimensional version of the CA-model is
performed by means of block-synchronous transformation. Plausibility
of the transformation is shown by comparison of simulation results. In
addition, estimates of TCA with second layer parallel implementation
efficiency is presented.

Keywords: totalistic cellular automata, parallel composition, block-
synchronous mode, parallel implementation, activator, inhibitor, pattern
formation, porous material.

1 Introduction

The majority of physical and biological systems are nonlinear complex systems.
In such systems the self-organization phenomena arise under nonequilibrium con-
ditions, exhibiting a self-ordering of system’s elements and emergence of various
spatio-temporal patterns. Analysis of stable spatial patterns and the detection
of general dynamic properties of non-equilibrium systems is the key to under-
standing self-organization phenomena. Studying the stable patterns arising in
self-organizing complex systems is important both from fundamental and prac-
tical points of view.

Investigation of stable patterns which arise in nonequilibrium dissipative sys-
tems was started by A.Turing [1], who founded the general theory of dissipative
structures. A great contribution to study of self-organization problems was made
by A.M.Zhabotinsky [2], B.P.Belousov, D.Young [3], V.K.Vanag [4] and others.
Conventional approaches to research of complex systems self-organization, in
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general, are based on solving of nonlinear partial differential equations, which
sometimes is a stiff problem. Meanwhile, discrete models, like cellular automata
(CA), also are used for complex systems study. S.Wolfram showed that the phe-
nomena of self-organization may arise in CA-models [5, 6]. In [3] D.Young pre-
sented the activator-inhibitor CA-model of spots formation on the animals’ skins,
based on the reaction-diffusion model of Turing [1]. The impact of the activa-
tor and inhibitor values and initial conditions on the totalistic CA evolution is
investigated by L.Chua in [7] in more detail. Totalistic CA (TCA) is a class of
CA, whose transition function is a threshold one of the sum of weighted values of
neighboring cells’ states. Application of pattern formation by TCA for obtaining
porous media morphology is proposed in [8].

Since CA are intended to describe the system dynamics at micro-level, CA-
simulation requires considerable computational capability and efficient parallel
algorithms are needed. Achieving high performance for parallel implementation
of asynchronous CA (ACA) is a difficult task. The solution of this problem is
offered in [9, 10], where ACA parallelization is performed by transformation
into the block-synchronous CA (BSCA). Nevertheless, in [11] it is shown that
there are CA-models, in which the transformation of ACA to BSCA leads to
significant changes of its evolution. Hence, for each task it is necessary to prove
the plausibility of ACA to BSCA transformation.

In this paper basic properties of TCA evolution and forming stable patterns
are analyzed. Based on these results a parallel composition of TCA and ACA for
obtaining patterns, representing a porous media, is presented. Parallel implemen-
tation of a three-dimensional version of TCA is made using block-synchronous
transformation. Analysis and verification of plausibility of ACA into BSCA
transformation is performed.

The paper contains of three sections. In the first section a formal definition
of TCA-model is given and CA-simulation results are presented. The second
section comprises a definition of TCA and ACA parallel composition and pat-
terns formed by its evolution in two- and three-dimensional case. The third
section is dedicated to parallel implementation of the TCA and ACA composi-
tion using block-synchronous transformation. In this section verification of block-
synchronous transformation applicability is performed and efficiency estimations
of BSCA parallel implementation are given.

2 Totalistic CA-Model of Stable Patterns Formation

2.1 The Formal Definition of Totalistic CA-Model

Totalistic cellular automata (TCA) model is defined by the following notions
[12, 9, 5]:

ℵTCA = 〈A,Xd, Θ, μ〉. (1)

Here, A = {0, 1} is a cells state alphabet, Xd is a set of names, which is finite
subset of d-dimensional discrete space, it is represented by a set of coordinates:
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Xd = {x}, x = (i, j) if d = 2, and x = (i, j, k) if d = 3, i = 1 . . .Mi, j =
1 . . .Mj, k = 1 . . .Mk. Θ is a local operator given below. Operating mode is
denoted as μ ∈ {σ, α, β}, where σ stands for synchronous mode, α - for asyn-
chronous and β - for block-synchronous mode, respectively.

A cell is a pair (u,x), where u ∈ A is a state of a cell, x ∈ Xd is a name of
a cell. On the set of names the template T (x), defining the nearest neighbors of
each cell x, is introduced. Hereinafter, the template is a square formed by K×K
cells for d = 2 and a cube of K ×K ×K cells for d = 3.

Tk(x) = {x,x+ a}, a = (a, b) if d = 2; a = (a, b, c) if d = 3

a, b, c = −)K/2+, . . . , 0, . . . , )K/2+ . (2)

A weight matrix WK of the same size K having positive and negative entries
is defined. The positive entries are called activators (p). They are responsible
for the growth of patterns. The negative entries are inhibitors (n), they impede
the pattern growth. The presence of activators and inhibitors in a system allows
supporting the process in an equilibrium state, and provides conditions for the
stable patterns formation.

Local operator Θ(x) calculates a new state value of a cell x depending on the
weighted sum of the neighboring cells defined by the template TK :

Θ(x) : (u,x)→ (u′,x) where u′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
∑

k=0,...,|TK |
wk · uk ≤ B

1, if
∑

k=0,...,|TK |
wk · uk > B

(3)

where wk are entries of the weight matrix WK , B ∈ R is the threshold value,
further in the computing experiment B = 0.

Application of the local operator Θ(x) to all cells x ∈ Xd is named as an
iteration. It transfers the cellular array from one global state to another Ω(t)→
Ω(t+1), where t is an iteration number. The sequenceΣ(Ω)=Ω(0), . . . , Ω(t), . . . ,
Ω(tfin) obtained as a result of iterative functioning of CA is named evolution,
Ω(t) is a global state of the cellular array on the t-th iteration [9].

Further, the evolution of TCA is studied for three modes of the local oper-
ator application to the cells of CA with synchronous, asynchronous and block-
synchronous operating modes. In the synchronous mode, a local operator is
applied to all cells of CA, all being updated simultaneously. The asynchronous
mode of CA prescribes the local operator to be applied to a randomly chosen
cells, changing its state immediately. The block-synchronous mode is used for
achieving high performance of ACA parallel implementation, this mode is trans-
formation of asynchronous one, whose algorithm is described in Sect. 3.

2.2 Stable Patterns Formed by TCA Evolution

In computing experiments it is found that the TCA evolves to the two types of
steady states:
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– first, global state of the cellular array does not change after a certain number
of iterations (t′), that is ∃ t′ : ∀t > t′ Ω(t) = Ω(t′),

– second, alternation of two global states occurs after a certain number of
iterations (t′), i.e. ∃ t′ : Ω(t′ + 2 · k) = Ω(t′) and Ω(t′ + 2 · k + 1) =
Ω(t′ + 1), k ∈ N.

The main parameters affecting the TCA evolution are the template of size K,
the initial state of the cellular array Ω(0) and the values of weight matrix entries
wi ∈WK .

The template size is taken equal to K = 7.
Initial states of cellular array Ω(0) are selected as follows:

– Ω1 is a global state containing one nucleation cell in the center of the cellular
array, other elements of the array being equal to zero. A nucleation cell is a
cell with the state u = 1. Simulation with such a Ω(0) is interesting because
the concept of the nucleation cell is widely used in different sciences. For
example, in physics the crystals are formed from nucleus of silicon carbide, in
chemistry nano-clusters are created from one nucleus and in biology colonies
of bacteria grow from several randomly allocated nucleation cells.

– Ω2 is a regular distribution of cells in state u = 1 with a given probability
PΩ2 ,

– Ω3 is a irregular distribution of nucleation cells with probabilities P k
Ω3
, k ∈ N

depending on the cells’ coordinates.

Two types of weight matrix are used in the experiments:

1. weight matrix containing two different values of entries n < 0 and p > 0:

d = 2 : wkl =

{
p, if |k| < )K/2+ & |l| < )K/2+
n, otherwise

d = 3 : wklm =

{
p, if |k| < )K/2+ & |l| < )K/2+ & |m| < )K/2+
n, otherwise

k, l,m = −)K/2+, . . . , 0, . . . , )K/2+.
(4)

2. weight matrix containing three different values of entries n < 0, n1 < 0 and
p > 0:

d = 2 : wkl =

⎧⎪⎨
⎪⎩
p, if |k| < ()K/2+ − 1) & |l| < ()K/2+ − 1)

n1, if |k| = ()K/2+ − 1) & |l| = ()K/2+ − 1)

n, otherwise

d = 3 : wklm =

⎧⎪⎨
⎪⎩
p, if |k| < )K/2+−1 & |l| < )K/2+−1 & |m| < )K/2+−1
n1, if |k| = )K/2+−1 & |l| = )K/2+−1 & |m| = )K/2+−1
n, otherwise

k, l,m = −)K/2+, . . . , 0, . . . , )K/2+.
(5)
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Variation of values of weight matrix entries wi enables to get many different
stable patterns. In spite of simple structure of matrix weight (4), TCA evolution
with such matrix and initial state Ω1 produces various fancy figures, geometric
figures, stripes and spots spreading to the whole cellular array (Fig. 1). In [13]
the theorem is formulated and proved that TCA evolution with weight matrix
(4) for a specified initial state and cellular array size is uniquely determined by
the ratio p/n. This theorem is true in three-dimensional case too.

a) b) c)

Fig. 1. Stable patterns are formed as a result of TCA evolution with |X2| = 500 ×
500, Ω(0) = Ω1 for a) μ = σ, n = −1, p = 0.89; b) μ = α, n = −1, p = 0.7, c)
μ = α, n = −1, p = 1.1

For graphical representation of global state of cellular array, cells with state
u = 1 are marked with black, cells with state u = 0 - with white. A qualitative
feature of TCA evolution is motif. The motif is an image formed by specific,
repeated elements. For example, in Fig. 1a the motif is a fancy figure reminiscent
of snowflake growing from the array center, and in Fig. 1b the motif is small black
stripes and points and elongated gray spots.

a) b) c)

Fig. 2. Motif is obtained by TCA evolution for |X2| = 200 × 200, μ = σ, n =
−0.5, n1 = −0.1, p = 2: a) Ω(0), b) Ω(94); and c) image of dry soil surface
(http://www.123rf.com/photo-6872051-closeup-shot-of-dry-eroded-soil-texture.html)

Using a larger number of different values of the weight matrix entries enables
to obtain more intricate motifs, similar to the observed in the nature. For exam-
ple, patterns formed by TCA evolution with weight matrix (5) resemble images
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a) b)

Fig. 3. Motifs are obtained by TCA evolution for |X3| = 50 × 50 × 50, μ = σ, n =
−0.5, n1 = −0.1 and a) p = 2, Ω(0) = Ω2 with PΩ2 = 0.005, b) p = 5, Ω(0) = Ω2

with PΩ2 = 0.01

of a soil slice in two-dimensional case (Fig. 2). As well, in three-dimensional case
TCA evolution generates different porous materials for different values of acti-
vators and inhibitors (Fig. 3). Such motifs can be used as models for research of
porous medium properties.

3 Totalistic CA Model with Second Layer

For the formation of a heterogeneous porous media a parallel composition of
two cellular automata: totalistic CA (ℵTCA) and CA of second layer (ℵ2L), is
used. Totalistic CA with a second layer allows to take into account environment
heterogeneity, being able to change dynamically the weight values depending
on environment’s parameters. It gives the opportunity to form stable patterns
similar to real motifs arising in nature.

CA of the second layer simulates the external environment which affects the
patterns formation dynamics. For that CA modeling the following process may
be used: heat exchange, reagents distribution over the surface, phase separation,
change in the chemical properties.

Totalistic CA and second layer CA form a parallel composition as follows [14]:

ℵS = Υ (ℵTCA,ℵ2L) (6)

Between cell names of two CA there exists one-to-one correspondence: XTCA =
γ(X2L).
ℵTCA = 〈A,Xd, Θ′, μ〉 is similar to (1) with the exception of local operator

Θ′(x), which calculates new state values like in (3), using weight coefficients
depending on cells states of ℵ2L:

Θ′(x) : (u,x)→ (u′,x) where u′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
∑

k=0,...,|T7|
f(vk) · uk ≤ B

1, if
∑

k=0,...,|T7|
f(vk) · uk > B

(7)

where vk is the state of the k-th cell in the template T7(x) ⊂ X2L.
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Two functions f(vk) are further used:

f1(vk) =

{
〈v〉, if wk > 0 (activator)

wk, if wk ≤ 0 (inhibitor)
where 〈v〉 =

∑
l=0,...,|T7| vl
|T7| (8)

and

f2(vk) =

⎧⎨
⎩
N(a)−N(b)

|T7| , if wk > 0 (activator)

wk, if wk ≤ 0 (inhibitor)

(9)

where N(a) and N(b) are numbers of cells x ∈ X2L with state ”a” and ”b”,
respectively, associated with the template T7(x).

CA model simulating fire propagation is chosen as the second layer:

ℵ2L = 〈A2L, X
d
2L, Θ2L, α〉. (10)

The state alphabet is A2L = {0, 1, 2}, where 0 denotes the clear ground, 1 is tree
and 2 denotes fire. The set of names of ℵ2L is isomorphic to the set of names
of ℵTCA: X

2
2L = X2 and X3

2L = X3. The operating mode is asynchronous.
The local operator Θ2L(x) calculates new state of cell x ∈ X2L depending on
the neighboring cells’ states associated with the template T2L(x) = {(x + a)},
a ∈ {(−1, 0), (0, 1)(1, 0)(0,−1)} in 2d-case, and a ∈ {(−1, 0, 0), (1, 0, 0, )(0,−1, 0)
(0, 1, 0), (0, 0,−1), (0, 0, 1)} in 3d-case, here a is a shift vector.

Θ2L(x) : (v,x)→ (v′,x)

where v′ =

⎧⎪⎨
⎪⎩

0, if v = 2

1, if v = 0 & rand < Pt

2, if v = 1 & (∃ (vk, xk) : vk = 2, xk ∈ X2L) & rand < Pf

(11)

where (vk, xk) is one of the neighboring cells in T2L(x), rand ∈ [0, 1] is a random
number from a real interval in set R, Pf and Pt are the probabilities of self-
ignition and growth of tree, respectively.

A variety of motifs similar to the patterns, emerging in different natural phe-
nomena, arises for different types of the function f(vk). For example, Fig. 4a
shows a motif similar to bacteria colony which is formed by ℵS with the weight
matrix (5), Ω(0) = Ω2, (PΩ2 = 0.001) and f(vk) calculated by (8). Also, Fig.
4c represents a motif similar to a porous material morphology, the motif being
obtained by ℵS with the same parameters as in previous case but for f(vk) cal-
culated by (9). There are motifs very much resembling porous materials in the
three-dimensional case too (Fig. 4e).

TCA with dynamically changing weight coefficients (ℵS) can be used for study
and synthesis of porous materials properties. Synthesis of a heterogeneous porous
medium with complex pores arrangement is a difficult task. The idea of using
CA for computer representation of porous material morphology and calculation
of its characteristics is presented in [8]. During the CA evolution after each
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a) b) c) d)

e)

Fig. 4. Motifs are formed during the asynchronous ℵS evolution and images of real
natural patterns: a) the state of ℵS with |X2| = 200 × 200, n = −0.5, n1 =
−0.1, p = 1.2, Ω(0) = Ω2, (PΩ2 = 0.001) and Pf = 0.0001, Pt = 0.01, b)
the photograph of bacteria colony, c) the state of ℵS with |X2| = 200 × 200, n =
−0.5, n1 = −0.1, p = 3 and Pf = 0.01, Pt = 0.7, d) porous material made
from recyclable materials ”Shahosintetik” (the photograph is taken from the site
http://www.potram.ru/index.php?page=113), e) the state of ℵS with |X3| = 100 ×
100× 100, n = −0.5, n1 = −0.1, p = 2 and Pf = 0.5, Pt = 0.00005

iteration the porous medium characteristics such as percolation degree, poros-
ity, channels tortuosity, the number of connected components, are calculated.
These characteristics are used for the analysis and selection of materials with
the specified morphology. Fig. 5 shows the global states of ℵS evolution in the
two-dimensional and three-dimensional cases. It is seen that porous medium mor-
phology is changing during the CA evolution: the medium porosity decreases and
the density increases. Observing the process during CA evolution one can choose
material with necessary properties.

Inhomogeneous porous materials study is an urgent problem in oil and gas
deposits research. It is most important, because the study of morphology and
characteristics of the deposits facilitates the detection of rock properties favor-
able for oil and gas accumulation, and moreover, full deposit development. As is
known, oil and gas reservoirs are sandstone and limestone rocks, characterized
by a high degree of porosity and percolation, the large number of cracks and
caverns. In addition, the structure and physical properties of oil and gas reser-
voirs change along horizontal and vertical directions. Sometimes, sandstone and
sand stratum change into mudstone without any regularity. TCA with second
layer are capable to construct the rocks with different porosity and percolation.
Moreover, TCA is able to create random arrangement of strata with various
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a)

b)

Fig. 5. The porous medium morphology changing during the CA evolution: a) motifs
formed by synchronous ℵS for |X2| = 200 × 200, n = −0.5, n1 = −0.1, p = 1.9;
b) motifs formed by synchronous ℵS for |X3| = 100 × 100 × 100, n = −0.5, n1 =
−0.1, p = 2

morphology. But TCA synthesis of real large-scale rocks’ morphology requires a
huge computational power. Therefore, it is necessary to develop efficient parallel
algorithms.

4 Parallel Implementation of Totalistic CA Model with
Second Layer

4.1 Transformation of Asynchronous Mode into Block-Synchronous
One

The difficulties of efficient ACA parallel implementation are connected with the
fact that, due to random cells choice and immediate state updating, data ex-
change must be performed after each boundary cell change. The problem solution
is proposed in [9, 10], where ACA parallelization is performed after its trans-
formation to the block-synchronous CA (BSCA), which is performed as follows
[9].

1. On the naming set X the block B is defined. To satisfy a correctness condi-
tion the block should include the template:

B(x) ⊆ T (x). (12)

In addition, the size of the cellular array |X | should be divisible by the block
size |B|.



Parallel Implementation of TCA Model of Stable Patterns Formation 339

2. On the naming set X the partition Π = {Π1, Π2, ..., Π|B|} is defined as
follows:

|Πk| = |X |/|B|,
|Πk|⋃
i=1

Bi = X, Bi
⋂

Bj = ∅,

Πk = {xik}, xik ∈ Bk, ∀ i, j ∈ {1, . . . , |Πk|}, i �= j.

(13)

3. An iteration is divided into |B| steps. On each step one of the subset Πk, k =
1, . . . , |B| is chosen randomly. And the local operator Θ(x) is applied syn-
chronously to all cells of chosen partition.

The choice order of cells belonging to the same partition Xk is unimportant,
because condition (12) ensures that applicationΘ(x) to cells from different blocks
B are independent.

Although, correctness of block-synchronous transformation and coincidence
of ACA and BSCA simulation results are shown in some papers [9, 15], the
equivalence of ACA and its block-synchronous transformation is not proved in
general case. Moreover, it is shown that there are CA-models, in which the
transformation of asynchronous mode to the block-synchronous leads to changes
of its evolution. Therefore, it is necessary to verify the plausibility of block-
synchronous transformation for pattern formation TCA.

4.2 Applicability of Block-Synchronous Transformation for
Totalistic CA Model with Second Layer

Verification of block-synchronous transformation applicability for ℵS parallel
implementation is performed by comparison of ACA and BCSA evolutions. The
most important application of TCA is porous materials synthesis, therefore, the
following porous medium characteristics are further used as comparison criteria.

1. Percolation in the horizontal directions (Per(0)), the numbers of connected
components, containing two cells with states equal to ”zero”, belonging to
opposite (the left and right) borders of the cellular array.

2. The numbers of connected components formed by cells with states ”one”
(L(1)) and ”zero” (L(0)).

3. Porosity, the ratio of the number of cells with state ”zero” to the cellular
array size: Por = N(0)/|X |.

These characteristics were computed for a number (n = 100) of computer exper-
iments for the same CA but different initial values of random number generator.
For the sample of obtained characteristics values the following statistics are cal-
culated: mathematical expectations (Mα,Mβ), dispersion (Dα, Dβ), confidence
intervals. Moreover, the root-mean-square difference between the characteristics
obtained for ACA and BSCA is computed by formula (14):

E =

√∑V
i=1(ξ

i
ACA − ξiBSCA)

2

V
(14)
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where ξiACA and ξiBSCA are values of characteristics obtained by i-th experiment,
V is the amount of sampling being equal to the number of experiments n. And
also, hypotheses about the uniformity of these statistics distribution (H0) was
checked for each characteristic by χ2-test of homogeneity [16]. For checking of
H0, grouping of characteristic’ values ξ

i
ACA and ξiBSCA is performed, the number

of groups is equal to 10. Then, the number of ξiACA and ξiBSCA belonging to each
group is computed and χ2-test is applied with a significance level of 0.001.

Experiments are performed for asynchronous and block-synchronous ℵS with
|X3| = 105 × 105 × 105 cells and B = T7. ℵTCA uses the following values of
weight coefficients n = −0.5, n1 = −0.1, p = 2 and initial state Ω(0) being
irregular distribution of cells with state ”one” (Ω3). Ω3 is formed as follows: the
cellular array is divided by three parts along the horizontal axis. In each part
cells with state ”one” are allocated with the probabilities P 1

Ω3
= 0.01, P 2

Ω3
= 0.1,

P 3
Ω3

= 0.3, respectively. Example of irregular distribution is presented in Fig.
5. Local operator of ℵTCA calculates new values of cells states using function
f2(uk) (9). CA of second layer ℵ2L evolves from Ω(0), having all cells with state
”one”, and with the following values of probabilities of self-ignition and growth
of tree: Pf = 0.5, Pt = 0.00005.

Table 1 presents statistics obtained for described above ℵS. For all character-
istics except Per(0) hypotheses about the uniformity of statistics distribution
is rejected. Also, difference between dispersions of these characteristics are size-
able. These results indicate that evolution of block-synchronous ℵS differs from
that of asynchronous ℵS .

Table 1. The statistics of characteristics obtained by evolution of ℵS with asyn-
chronous and block-synchronous mode for B = T7

Mα −Mβ

Mα

Dα −Dβ

Dα

E

Mα
H0

Per(0) 0.0004 0.9792 0.0231 +

L(0) 0.0484 35.7183 0.5424 -

L(1) 0.0278 18.1661 0.0945 -

Por 0.0011 2.3086 0.0051 -

For all that, computer experiments reveal that evolution of asynchronous CA
becomes more close to one of block-synchronous CA when block size |B| is
increased. Table 2 presents statistics obtained for the same ℵS as in Table 1
with the exception of |B|. When |B| = |B15| = 15 × 15 × 15 cells, values of
the mathematical expectations for characteristics obtained by ACA and BSCA,
except L(0), differ by less than 10−3. With further increase of block size |B| =
|B21| = 21 × 21 × 21 differences between the values of all statistics become
insignificant and H0 for all characteristics is accepted.
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Table 2. The statistics of characteristics obtained by evolutions of ℵS with asyn-
chronous and block-synchronous mode for B15 and B21

|B| 15× 15× 15 21× 21× 21

Mα −Mβ

Mα

Dα −Dβ

Dα

E

Mα
H0

Mα −Mβ

Mα

Dα −Dβ

Dα

E

Mα
H0

Per(0) 0.0042 0.1645 0.0181 + 0.0015 0.0260 0.0183 +

L(0) 0.0036 2.8083 0.2048 - 0.0026 0.9978 0.1529 +

L(1) 0.0002 0.9244 0.0335 + 0.0001 0.8363 0.0312 +

Por 0.0003 0.5120 0.0035 + 0.0002 0.1195 0.0032 +

As follows from above, asynchronous and block-synchronous modes of total-
istic CA ℵS lead to different evolutions when block size |B| = |TK |, but when
|B| is increased evolutions of ACA and BSCA coincide. Thus, transformation of
asynchronous mode to block-synchronous one for totalistic CA is plausible on
the assumption of selection of necessary block size.

4.3 Parallel Implementation of Block-Synchronous TCA with
Second Layer

Parallel implementation of block-synchronous TCA-model with second layer is
performed using the domain decomposition. The cellular arrays are divided into
n domains according to the number of available processors. Each processor com-
putes new states of its domain’s cells simultaneously with others processors.
Moreover, two threads are created on each processor for simultaneous calcula-
tion of new states of the cells of ℵTCA and ℵ2L. According to the algorithm of
block-synchronous transformation data exchange is performed after each stage.
Thus, parallel algorithm ℵS as follows:

1. ΩTCA and Ω2L are divided into n domains ΩTCA r and Ω2L r, r = 1, . . . , n
which are distributed between n processors;

2. on each stage k, k = 1, . . . , |B|:
(a) one of the subsets Πk is chosen randomly for all processors;
(b) each r-th processor (r = 1, . . . , n):

i. copies Ω2L r to Ω′
2L r;

ii. creates two parallel threads calculating states of cells y ∈ Ω2L r

according to (11) and x ∈ ΩTCA r according to (7) with vk ∈ Ω′
2L r,

simultaneously;
iii. exchanges with boundary cells’ values of both arrays ΩTCA r and

Ω2L r.

The computations for ℵS with parameters described in Sect. 4.2 have been per-
formed on cluster MV S − 100K of JSCC RAS, Moscow. Simulation on one
processor requires a lot of time, therefore, a weak scaling test is performed. A
weak scaling test fixes the amount of work (|Ωr | = 343×343×343) per processor
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and compares the execution time over number of processors. Table 3 shows the

weak scaling efficiency Q(n) =
T1
Tn

, where Tn is computation time on the n pro-

cessors. Since each processor has the same |Ωr|, in the ideal case the execution
time should remain constant and Q(n) = 1. In the experiments Q(n) decreases
to 0.78 for n = 16 and then almost does not change with increasing n.

Table 3. Parallel implementation characteristics of BSCA

n 1 16 64 128 256 512 1024

Q(n) 1 0.78 0.76 0.75 0.75 0.74 0.73

5 Conclusion

The parallel composition of totalistic CA and asynchronous CA (ℵS) intended
for forming of stable patterns similar to the porous materials is proposed and
investigated. It is shown that TCA with second layer for different model param-
eters: initial conditions and values of weighted coefficients, enables to synthesize
various porous media morphologies. In addition, the porous medium character-
istics such as percolation degree, porosity, the number of connected components
are calculated in the course of simulation. On the basis of their values analysis,
the desired porous medium morphology can be selected.

For synthesis of three-dimensional real porous materials parallel implemen-
tation of asynchronous ℵS is performed by means of block-synchronous trans-
formation. Comparative analysis of evolutions of ℵS asynchronous and block-
synchronous modes has proved the plausibility of block-synchronous transfor-
mation for pattern formation TCA with appropriate block size. The efficiency
of the parallel implementation of ℵS with |Ωr| = 343 × 343 × 343 cells on the
n = 1024 processors is greater than 0.7.
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1 Introduction

In the last decades, the use of mathematical modeling and computational meth-
ods have fostered our comprehension of the functioning of biological systems,
thanks to the advantages that these techniques present over conventional exper-
imental biology in terms of cost, ease to use and rapidity. Given a mathematical
model describing the physical or logical interactions between the components of
a biological system, computer algorithms can be exploited to test and analyze
the model, and to make predictions on the way the system behaves in normal or
perturbed conditions. In this context, simulation algorithms represent an essen-
tial tool to investigate the dynamics of biological systems: starting from distinct
parameterizations of the model, different emergent behaviors can be reached; the
intensive exploration of high-dimensional parameter spaces allows to understand
the system functioning across a wide spectrum of natural conditions, as well as
to derive statistically meaningful properties. These issues play a fundamental
role in standard computational investigations of biological systems [1, 2], which
usually rely on methods such as parameter sweep analysis [3], sensitivity analysis
[4], structure and parameter identifiability [5], parameter estimation [6–8] and
reverse engineering of model topologies [9–12].

To serve these purposes, the dynamics of biological systems can be reproduced
by means of deterministic or stochastic procedures, based either on numerical
integration (e.g. Euler’s or Runge-Kutta methods [13]) or on Markov processes
(e.g. Gillespie’s algorithm [14]), respectively. In the case of deterministic mod-
els, one assumes the availability of a system of ordinary differential equations
(ODEs) – corresponding to the biochemical reaction rate equations – which
overall describe how the concentration of each chemical species occurring in the
system varies in time. To date, one of the most efficient algorithms to integrate
a set of ODEs is LSODA, a solver able to automatically recognize stiff1 and
non-stiff systems, and to dynamically select between the most appropriate inte-
gration procedure: Adams’ method in the absence of stiffness, and the Backward
Differentiation Formulae otherwise [15].

In this work we present a simulator for biological systems which relies on an
efficient implementation of LSODA on Graphics Processing Units (GPUs), to the
aim of efficiently execute a large number of parallel deterministic simulations at
a considerable reduced computational cost with respect to Central Processing
Units (CPUs). The rationale behind the use of GPUs in the context of scientific
computing – where CPUs have traditionally been the standard workhorses – is
that, when several batches of simulations need to be executed, the necessary
computing power usually overtakes the capabilities of standard desktop com-
puters, therefore requiring high-performance computing solutions. Indeed, after
the introduction of general-purpose GPUs and CUDA (Nvidia’s GPU program-
ming language), the adoption of these graphics engines have largely increased,

1 A system of ODEs is said to be stiff if it is characterized by two well-separated
dynamical modes – determined by fast and by slow reactions – the fastest of which
is stable [14].
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especially in scientific applications related to Bioinformatics, Systems Biology
and Computational Biology (see an overview in [16–18]).

Despite the remarkable advantages in terms of computational speedup, com-
puting with GPUs requires the development and the implementation of ad hoc
algorithms, since GPU-based programming substantially differs from CPU-based
computing. As a consequence, scientific applications on GPUs might undergo the
risk of remaining a niche for few specialists. To avoid such limitations, several
packages and software tools have recently been released in the aforementioned
research fields (see, e.g., [18–20]), so that also users with no knowledge of GPUs
hardware and programming can have the chance to access the computing power
of graphics engines.

cupSODA, the simulator for mass-action kinetics models that we present in
this work, fulfills these requirements. It allows not only to easily execute effi-
cient simulations of deterministic models running a GPU-based version of the
LSODA algorithm, but also to circumvent the need of manually defining ODEs
to describe the biological system under investigation. More precisely, cupSODA
is able to automatically derive a system of ODEs – and then to perform their
numerical integration – starting from a set of biochemical reactions, which de-
scribe the molecular interactions between all the species in the system. This
way, by just providing mechanistic reaction-based models of biological systems,
together with a proper parameterization, any user – having or not either GPU
programming skills or mathematical modeling expertise – will be able to run
parallel simulations of mass-action kinetics systems at reduced costs.

In what follows, we introduce the formal representation of mass-action kinet-
ics, describe the implementation of cupSODA, and finally present the computa-
tional speedup obtained for the parallel simulations of three biological systems.
We conclude the paper with some considerations and hints for future research
directions.

2 Mass-Action Kinetics and Deterministic Simulation

The fundamental empirical law that governs biochemical reaction rates is called
the law of mass action: it states that, in a dilute solution, the rate of an elemen-
tary reaction (i.e., a reaction with a single mechanistic step) is proportional to
the product of the concentration of its reactants raised to the power of the cor-
responding stoichiometric coefficient. Given a set of biochemical reactions (each
one characterized by its own kinetic constant k), it is possible to determine the
corresponding set of rate equations – one for each chemical species involved in
the set of reactions – by considering all the modifications of each species defined
by means of all reactions. For instance, given the following set of biochemical
reactions

S1 + S2

k1
�
k2

S3

k3
→S4,
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and denoting by [Si] the concentration of species Si, the rate equation of species
S3 is

d[S3]

dt
=
d[S+

3 ]

dt
− d[S−

3 ]

dt
= k1[S1][S2]− (k2 + k3)[S3],

which is given by the sum of the rates of production and degradation of S3

(denoted by S+
3 and S−

3 , respectively), each one determined by multiplying the
concentrations (raised to the power of 1, in this case) of all the species involved
in these reactions together with the kinetic constants of such reactions.

So doing, by using the law of mass action, we can derive the expression for the
rate of change of all the chemical species occurring in the system. Therefore, any
biochemical system defined by means of a mechanistic reaction-based model can
be also formalized as a set of coupled (non-linear) first order ordinary differential
equations (ODEs). In general, the analytical solution of these systems of ODEs
is hard to find (apart from the most simple cases); however, it is possible to
determine their dynamics by exploiting numerical integration algorithms, such
as Euler’s or Runge-Kutta methods [13]. These methods require as input the set
of ODEs, along with the set of kinetic constants and the initial concentrations
of the chemical species.

One of the most efficient numerical integration algorithms – that can also be
used for stiff systems – is called LSODA [15]; however, when a large number of
simulations is needed to carry out the analysis of a biological system, LSODA
turns out to be very time consuming if these simulations are run in a sequential
manner on the CPU. Therefore, a novel implementation of LSODA that exploits
a parallel architecture as the GPU would be extremely advantageous.

3 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a parallel computing platform
and programming model introduced by Nvidia in 2006, to give the programmers
a way to exploit GPUs in general-purpose computational tasks (GPGPU com-
puting). The GPGPU computing is a low-cost and energy-wise alternative to
the traditional high-performance computing infrastructures, which gives access
to tera-scale computing on a common workstation. Because of the innovative
architecture and the intrinsic limitations of the GPUs, the challenge of GPGPU
computing is that the direct porting of an application may be unfeasible, or may
not fully exploit their computational power and massive parallelism [21].

CUDA’s architecture combines the Single Instruction Multiple Data (SIMD)
architecture with a flexible multi-threading by automatically taking care of any
conditional divergence between threads. Using CUDA’s naming conventions, the
programmer implements the kernel, that is, a C/C++ function2, which is loaded
from the host (the CPU) to the devices (one or more GPUs), and replicated
in many copies named threads. Threads can be organized in three-dimensional

2 Even though templates, overloading and basic classes can be exploited, CUDA’s
support for C++ is still partial.
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Fig. 1. Schematic description of CUDA’s architecture, in terms of threads and memory
hierarchy. Left side. Thread organization: a single kernel is launched from the host
(the CPU) and is executed in multiple threads on the device (the GPU). Threads
can be organized in three-dimensional structures named blocks which can be, in turn,
organized in three-dimensional grids. The dimensions of blocks and grids are explicitly
defined by the programmer. Right side. Memory hierarchy: threads can access data from
many different memories with different scopes. Registers and local memories are private
for each thread. Shared memory let threads belonging to the same block communicate,
and has low access latency. All threads can access the global memory, which suffers
high latencies, but it is cached since the introduction of the Fermi architecture. Texture
and constant memory can be read from any thread and are equipped with a cache as
well; in this work we exploit the constant memory. Figures are taken from Nvidia’s
CUDA programming guide [22].

structures named blocks which, in turn, are contained in three-dimensional grids
(see a schematic description in Figure 1, on the left). Whenever the host runs
a kernel, the GPU creates the corresponding grid and automatically schedules
each block on one free streaming multi-processor available on the GPU, a solution
that allows a transparent scaling of performances on different devices. Moreover,
if more than one GPU is present on the machine, the workload can be also
distributed by launching the kernel on each GPU.

Threads can access data from different kinds of memory. In the present work,
we exploit the global memory (accessible from all threads), the shared mem-
ory (accessible from threads belonging to the same block), the local memory
(registers and arrays, accessible from owner thread), and the constant memory
(cached and not modifiable). A schematic representation of CUDA’s memory
hierarchy is shown in Figure 1, on the right. The global memory is usually very
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large (thousands of MBs) but suffers of high access latencies, even though – con-
cerning the Fermi architecture – it is equipped of L1 cache that mitigates this
problem. Viceversa, the shared memory is faster but much smaller (i.e., 49152
bytes for each multi-processor, since the introduction of the Fermi architecture).
In order to obtain the best performances, the shared memory should be exploited
as much as possible but, being a very limited resource on each multi-processor,
it poses a limitation on the blocks’ size.

4 Implementation of cupSODA

The development of cupSODA was motivated by the need of systematic analyses
of biological systems consisting in the execution of large batches of simulations.
Since in standard analysis, based on an intensive search within the parameters
space, all simulations are mutually independent, we decided to implement on a
parallel architecture one of the most efficient numerical integration algorithms
for ODEs available to date. In particular, cupSODA relies on a C version of
LSODA [15], ported and adapted to the CUDA architecture in order to be run
on the GPU; CUDA’s massive parallelism is exploited to execute different and
independent simulations in each thread.

LSODA was designed to solve differential systems in the canonical form (i.e.,
defined as a set of equations of the form dX

dt = f(X, t), where here X represents
the concentration of a chemical species), whereby the developer is supposed to
specify the system of ODEs by implementing a custom function that is passed to
the algorithm. Moreover, in order to speed up the computation when dealing with
stiff systems, the Jacobian matrix associated to the system must be implemented
as a custom function as well.

cupSODA, on the other hand, is designed to the purpose of being a black-box
simulator, that can be easily used without any programming skills. In particular,
cupSODA is constituted by a tool that automatically converts the mechanistic
reaction-based model of a biological system into the corresponding set of ODEs,
according to the mass-action kinetics [23], and then it automatically encodes
the ODEs system and its relative Jacobian matrix as arrays. The two arrays
are loaded into the GPU, automatically parsed and implemented as custom
functions. In order to encode each term of each ODE into a linear data structure,
without any loss of information, the array contains the following data: the sign of
the term of the equation; the index of the kinetic constant associated to the term;
the number of the chemical species involved in the term and their corresponding
indeces (see an example in Figure 2).

The terms of all ODEs are linked together in these arrays. To efficiently parse
the arrays inside the GPU, we use two additional arrays storing the offsets of
each equation, so that the parsing algorithm consists in the function given in
Figure 3. A similar function is defined for the parsing of the Jacobian matrix.

The cupSODA simulator was designed to speed up the time-consuming com-
putational tasks typical of Systems Biology [1, 2], which rely on the repetition
of large numbers of simulations in perturbed conditions, generally realized by
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Fig. 2. Example of our encoding methodology, showing the internal representation of a
single term of an ODE, used for the parsing device-side. From the left to the right, the
values of the array have the following semantics: the sign of the term (red); the index
of the kinetic constant associated to the term (brown); the number of species involved
in this term (green) and the indexes of these species (blue and violet). All the terms
of all the ODEs are linked together in a single one-dimensional array.

varying the initial concentrations of chemical species or the value of the kinetic
constants. To fulfill these necessities, cupSODA is able to launch multiple threads
which run independent parallel simulations based on the same model, with each
thread exploiting its own parameterization and initial conditions. To this aim,
parameters and initial conditions are contained in coalesced arrays, a strategy
that allows a faster fetching of data from the global memory [24].

An additional feature of cupSODA is that it allows to easily compare the
outcome of simulations with any available experimental data. To be more precise,
let us assume that a set of laboratory measurements (e.g., the concentration
of some chemical species) has been obtained with a certain sampling, denoted
by t = {t0, . . . , tF }, and that the user wishes to determine the corresponding
simulated concentration of the same species at these time points. To this aim,
cupSODA invokes the LSODA kernel F − 1 times, at each time the kernel is run
over a time window of length Δt = ti − ti−1, i = 1, . . . , F , and the simulated
concentration values of output species are stored at the end of each Δt.

Being the data transfer between host and device very time consuming, all the
temporary results are allocated on the GPU, and the data are then read back
as soon as the simulation is completed. To obtain a further reduction of the
memory latencies, the current state and time of each simulation are stored into
the shared memory, while all the constants values (e.g., number of reactions and
chemical species in the model, length of ODEs and Jacobian arrays, etc.) and
LSODA settings are stored into the constant memory.

Since the amount of shared memory is limited on each streaming multipro-
cessor, cupSODA automatically calculates the number of threads per block and
blocks per grid. We allocate the states of the system and the current time as
double precision floating point values, so that the consumption of shared mem-
ory of each thread is M = 8× (N +1) bytes of shared memory during the ODE
integration, where N is the number of chemical species in the system. We auto-
matically determine the threads-per-block value as Tpb =

⌊
SM
M

⌋
, where SM is

the shared memory available on the GPU, so that the number of resulting blocks

is B =
⌊
Ttot

Tpb

⌋
, where Ttot is the number of total threads requested by the user.
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function decode_ODEs ( encoded_ODE, ODE_offset ):

dX = [0, ..., 0]

position = 0

for i = 0 to ODE_offset.length do:

ode_value = 0

while( position<ODE_offset[i] ) do:

term = encoded_ODE[position]

term *= k[encoded_ODE[position+1]]

species = encoded_ODE[position+2]

for s = 0 to species do:

term *= X[encoded_ODE[position+3+s]]

end for

position += (3+species)

ode_value += term

end while

dX[i] = ode_value

end for

return dX

end function

Fig. 3. Pseudocode of the parsing algorithm, exploited device-side by cupSODA for
the decoding of the ODEs. A similar code is used for the decoding of the Jacobian
matrix.

LSODA requires additional parameters for its functioning, the most relevant
being the absolute and relative error tolerance values (denoted by AET and
RET, respectively). These values can be either scalar values or specific vectors
for each ODE: cupSODA accepts all the combinations. Moreover, these values
can be specified for each individual thread, allowing the user to simulate the
same system with different tolerances and compare their outcomes.

5 Results

In this section we compare the performances of cupSODA against a reference
sequential simulator, the COmplex PAthways SImulator (COPASI [25]), in order
to show the suitability of our method when the execution of a large number of
simulations is necessary. To this purpose, we performed several tests, consisting
in running different batches of independent simulations of three biological models
characterized by an increasing complexity:

1. the Michaelis-Menten (MM) enzymatic kinetics, consisting in 3 reactions and
4 chemical species [26]. For this model, both cupSODA and COPASI were
set as follows: RET= 10−10, AET= 10−10;

2. a model of gene expression in prokaryotic organisms (PGN), consisting in 8
reactions and 5 chemical species [27]. For this model, both cupSODA and
COPASI were set as follows: RET=10−10, AET=10−10;
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3. the Ras/cAMP/PKA signaling pathway in the yeast S. cerevisiae, consisting
in 30 reactions and 28 chemical species [3, 28]. For this model, both cupSODA
and COPASI were set as follows: RET=10−10, AET=10−14.

For every test, the maximum number of internal steps allowed during each call
of LSODA was set to 10000. In addition, during each test we stored a dynamics
consisting of 100 time instants – uniformly sampled over the whole simulation
time – keeping track of the overall running time.

The GPU used for the tests is a Nvidia GeForce GTX 590, a video card with
Fermi architecture equipped with 2× 16 streaming multiprocessors for a total of
1024 cores and a theoretical limit of 2.48 Tflops. The performances of the GTX
590 were compared with a quad-core CPU Intel Core i7-2600 with a clock rate
of 3.4 GHz and capable of 83.6 Gflops. Because of their architectural differences
(e.g., the multiple cache levels of CPUs), GPUs and CPUs are difficult to be
compared. Moreover, the theoretical peak limits of GPUs can be achieved only
by implementing kernels that maximize parallelism and GPU occupancy: this
is achieved by completely exploiting the SIMD computational model, that is,
by avoiding conditional branches in the code, which cause the serialization of
the execution. In addition, the occupancy of the GPU is affected by the usage of
registers and shared memory, which are both limited resources on each streaming
multiprocessors. For these reasons, the theoretical computational power peak of
GPUs is often hard to be reached; nonetheless, we compare here the performances
of these two hardware devices since they are well representative of hardware
components typically found in personal computers.

The tests were performed on a system running the operating system Microsoft
Windows 7, CUDA version 4.2, COPASI 4.8 (build 35).

Figure 4 reports a direct comparison of the running times of LSODA imple-
mented in COPASI and cupSODA, obtained by performing an increasing number
of simulations for the three biological models. These results show that our par-
allelized implementation of LSODA largely outperforms the serial counterpart
implemented in COPASI. In particular, in the case of 105 parallel threads for
the MM model (Figure 4, top graphic), the computational cost on the GPU is
nearly two orders of magnitude smaller than the CPU: 3.358 seconds vs. 289.335
seconds, which corresponds to a 86× speedup.

In the case of the PGN model (Figure 4, middle graphic), the execution of 105

simulations takes 43.821 seconds on the CPU, while it takes just 0.391 seconds
on the GPU, resulting in a 112× speedup. Interestingly, the running time of 10
simulations of the PGN model is quite identical on the two architectures: 0.047
seconds on the GPU vs. 0.046 seconds on the GPU.

Finally, concerning the Ras/cAMP/PKA model (Figure 4, bottom graphic),
the execution of 105 simulations lasts 6133.3 seconds on the CPU, while it takes
268.58 seconds on the GPU, resulting in a 23× speedup. Here, the results clearly
indicate that cupSODA turns out to be convenient only when more than 10
parallel simulations are required, since the computational cost to perform a small
number of simulations is lower on the CPU.



cupSODA: A CUDA-Powered Simulator of Mass-Action Kinetics 353

 0.01

 0.1

 1

 10

 100

 1000

101 102 103 104 105

R
un

ni
ng

 ti
m

e 
[s

]

  CPU
  GPU

 0.01

 0.1

 1

 10

 100

 1000

101 102 103 104 105

R
un

ni
ng

 ti
m

e 
[s

]

  CPU
  GPU

 0.1

 1

 10

 100

 1000

 10000

101 102 103 104 105

R
un

ni
ng

 ti
m

e 
[s

]

# parallel simulations

  CPU
  GPU

Fig. 4. Comparison between the computational time of cupSODA (green histograms)
and COPASI (red histograms) for simulating the MM model (top graphic), the PGN
model (middle graphic), and the Ras/cAMP/PKA model (bottom graphic). The y-axis
are in logarithmic scale. The results clearly show that cupSODA largely outperforms
the serial implementation of LSODA available in COPASI, except in the case of the
execution of a few simulations for the Ras/cAMP/PKA model.
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As a last test, we investigated the impact of the different memories on cup-
SODA, by executing 105 simulations of the Ras/cAMP/PKA pathway exploiting
the shared memory and the global memory. The simulations took, respectively,
27.501 seconds and 54.93 seconds, showing the benefit deriving from the use of
low latency memories; in both cases, the result is far better than the 651.741
seconds of COPASI but, by exploiting the shared memory, cupSODA is twice as
fast as the naive porting of LSODA.

6 Conclusions and Future Work

The exploitation of computational methods for in silico analysis of biological
systems has heightened the need for novel and efficient algorithms, in order to
carry out fast simulations and to analyze the emergent behavior of these complex
systems.

GPUs represent a suitable technology for this kind of problems, thanks to
their high-performance parallel computing capabilities combined with very low
costs. Presently, the bottleneck of such a large potentiality resides in the pro-
gramming skills required to implement GPU-based algorithmic methods, and to
handle specific features of GPU computing, as the efficient usage of memory or
the communication bandwidth between GPU and CPU. As a matter of fact, to
fully exploit the underlying SIMD architecture and the memory hierarchy, the
algorithms must be heavily restructured or purposely designed. Moreover, a di-
rect porting from the CPU source-code to CUDA is most of the times unfeasible,
because of the different architectures and the limited programming capabilities
allowed by GPU kernels.

In this work we presented cupSODA, a GPU-powered simulator of biochemical
system based on mass-action kinetics. cupSODA was designed to offer a black-
box solution, capable of automatically translating the reaction-based model of a
biological system into a set of ODEs. cupSODA relies on a numerical integrator
for ODEs, called LSODA, which we implemented as a CUDA kernel starting from
a C implementation of LSODA, in order to exploit the massive parallel capabil-
ities of modern GPUs, thus achieving a relevant reduction of the computational
time usually required to execute a huge number of independent simulations. The
mutual independence of the simulations allows to fully exploit the underlying
SIMD architecture; moreover, cupSODA benefits from an additional speedup,
thanks to our choice of storing each system state into the low-latency shared
memory.

A previous GPU implementation of LSODA algorithm was proposed in the
cuda-sim library [19], a package for the Python language that provides GPU-
accelerated biochemical simulations. The aim and design of cuda-sim are very
different from cupSODA, as the latter does not require any code to be written
by the user to run the simulations. Moreover, cuda-sim relies on a just-in-time
technique, whereby the code for LSODA that will be executed on the GPU is
automatically created and compiled at run-time. This is indeed a flexible and
elegant solution, but adds a relatively long compilation time and requires the
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availability of a CUDA compiler, along with the CUDA toolkit, on the running
machine. During the development of cupSODA, instead, we opted for the encod-
ing of ODEs and the Jacobian matrix into linear arrays which are parsed device-
side, without the need for an intermediate recourse to the CUDA driver API
or any meta-programming techniques. Thanks to this design choice, cupSODA
allows the immediate simulation of any biological system modeled according the
mass-action kinetics, without the need for a complete re-compilation of the code.
This is particularly appealing when the topology of the model is not static but
needs to be continuously changed, for instance when it undergoes a reverse engi-
neering process [9–11]: in such a case, cupSODA only needs to update the GPU
representation of the ODEs and the Jacobian matrix, in order to be ready to
run a massive number of simulations of the new model.

The results of the tests reported in this work, performed on three biological
models of increasing complexity (Michaelis-Menten kinetics, gene expression in
prokaryotic organisms, and the Ras/cAMP/PKA signaling pathway in yeast),
show that cupSODA allows a relevant boost with respect to a reference CPU
implementation. For instance, in the case of 105 simulations of the PGN model,
we achieved a noticeable 112× speedup. Interestingly, the performances of cup-
SODA are identical to COPASI when 10 simulations of the PGN model are run,
and are even worse in the case of 10 simulations of the Ras/cAMP/PKA model.
These results indicate that, for biological systems consisting in many reactions
and many species, our GPU implementation becomes more profitable than the
CPU counterpart only if many parallel simulations are run, with a break-even
that depends on the complexity of the system under investigation. Indeed, when
performing demanding computational analysis such as, e.g., parameter sweep,
parameter estimation or sensitivity analysis, the outstanding advantage of novel
softwares as cupSODA clearly comes to light.

Our tests also showed that, in order to fully exploit the CUDA architecture,
the memory hierarchy must be exploited as much as possible: as a matter of fact,
by moving the state of the system from the global memory to the shared memory,
the running time of cupSODA was halved. As an extension of this solution, we
are currently working on a compact representations of the static data into the
constant memory, in order to further increase the speedup of cupSODA.

The cupSODA software is available from the authors upon request.
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6. Dräger, A., Kronfeld, M., Ziller, M.J., Supper, J., Planatscher, H., Magnus, J.B.,
Oldiges, M., Kohlbacher, O., Zell, A.: Modeling metabolic networks in C. glutam-
icum: a comparison of rate laws in combination with various parameter optimiza-
tion strategies. BMC Systems Biology 3(5) (2009)

7. Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., Vanneschi, L.: A comparison of
genetic algorithms and particle swarm optimization for parameter estimation in
stochastic biochemical systems. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.)
EvoBIO 2009. LNCS, vol. 5483, pp. 116–127. Springer, Heidelberg (2009)

8. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based
multi-swarm PSO method for parameter estimation in stochastic biological systems
exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S.
(eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012)

9. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: Reverse engineer-
ing of kinetic reaction networks by means of cartesian genetic programming and
particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC 2013) (In press, 2013)

10. Kentzoglanakis, K., Poole, M.: A swarm intelligence framework for reconstruct-
ing gene networks: Searching for biologically plausible architectures. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 9(2), 358–371 (2012)

11. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Automatic compu-
tational discovery of chemical reaction networks using genetic programming. In:
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Abstract. An approach based on an application of Nature inspired
algorithms to the problem of reconstructing human face images from
ones with only partial information is presented in the paper. The two-
dimensional cellular automata (CA) is used to represent images, while
genetic algorithm (GA) is used to discover CA rules which will be able
to reconstruct an original image from e.g. destroyed or modified images.
Conducted experiments show that found in the learning process CA rules
allow to reconstruct images with 70% damaged pixels. Moreover, the re-
sults indicate that the found rules are useful to reconstruct the other
images not presented during evolutionary learning process.

Keywords: cellular automata, image reconstruction, genetic algorithms.

1 Introduction

CA were initially developed by Ulam and von Neumann in the 1940s. They were
working on a framework to study and investigate features of dynamical systems.
Since that time there has been a lot of research done towards applications of
cellular automata in many fields.

CA have often been used to demonstrate the full spectrum of dynamical be-
haviour, e.g. hydrodynamics, thermodynamics, A-life, synchronization, simple
image processing and control problems. CA have also been found useful for sim-
ulating and studying phenomena such as ordering, turbulence, chaos, symmetry-
breaking, and have had wide application in modelling systems in areas such as
physics, computer networks, biology, and sociology. Because of the quite obvious
similarities between 2-dimensional cellular automata and images (pixels map-
ping to cells) uniform cellular automata have been used quite a lot in some areas
of image processing. In [9] the author presented an approach to noise filtering
and thinning of binary images and sequential floating forward search strategy
to find a rule. Hernandez and Herrmann [6] presented CA for elementary im-
age enhancement whose behaviour is determined by operators called Lyapunov
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functionals. Their results over real images compared with a common use image
processing software allow them to propose CA as the first level of enhancement.
Popovici et al. [8] applied CA implemented on a parallel machine to solve noise
removal and border detection in images. Finally CA were also extensively ap-
plied in medicine e.g. to generate image representation for biological sequences
[13].

The main bottleneck of CA is a difficulty of constructing CA rules producing a
desired behaviour. In some applications of CA one can design an appropriate rule
by hand, based on partial differential equations describing a given phenomenon.
However, it is not always possible. In the 90-ties of the last century Mitchell
and colleagues proposed to use genetic algorithms to discover CA rules able to
perform one-dimensional density classification task [7] and the synchronization
task [4]. The results produced by Mitchell et al. were interesting and started
development of a concept of automating rule generation using artificial evolution.
Breukelaar and Back applied GAs [3] to solve the density classification problem
as well as AND and XOR problem in two dimensional CAs. Swiecicka et al.
used [11] GAs to find CA rules able to solve multiprocessor scheduling problem.
Bandini et al. proposed [1] to use several Machine Learning techniques such as
GAs, Support Vector Machines and neural networks to find automatically CA
rules able to generate patterns, which are similar in some generic sense to those
generated by a given target rule.

In this paper we present results of experiments concerning evolution of CA
rules to perform image reconstruction task, which is related to image processing.
The rest of the paper is organized as follows. Section 2 describes CA. Section 3
explains pattern reconstruction task in the context of CAs. Section 4 presents
details of the GA designed to find CA rules. Experimental results are reported
in section 5. The last section contains conclusions.

2 Cellular Automata Overview

CA are discrete computational models, which compose of a regular grid of cells.
Each of these cells are in one of a finite number of possible states and are updated
in parallel according to a rule. The state of a cell is determined by the previous
states of a cell and its neighbourhood, which is a number of adjacent cells. Two
types of neighborhood are commonly used: the von Neumann neighborhood (the
four cells orthogonally surrounding the central cell) and the Moore one (the eight
cells around the central cell).

There are many possible kinds of CA. Traditionally, CA are implemented as
uniform CA, which means that all cells have the same state transition function.
There are also papers considering non-uniform CA with cells having different
state transition functions. The rule governing CA can take various forms e.g.
totalistic, probabilistic. Large space of possible rules was also inspiration to the
application of GAs to find a rule in drastically smaller time periods. One of the
advantages of CAs is that, although each cell can contain even only one simple
rule, the combination of a grid of cells with their local interaction leads to more
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sophisticated global behaviour. Although each cell has only a view of a part of
the system in the form of its neighbourhood, local information is propagated at
each iteration, which make impact on the overall CA system.

3 Image Reconstruction Problem

Image reconstruction problem defines a recovery operation of an original form
of an image from its distorted version. The malformation may be due to noise,
blurred shapes or damage of some number of pixels. The image enhancement is
a broad field and various methods are used to restore the true image.

In this paper we consider image reconstruction problem from different per-
spective. Suppose that one day, the police intercepted the offender in the act.
According to the standard procedure he was taken to the police station and
made him face images. Unfortunately, the suspected person managed to escape
during transport to the court. Announced the search with just a photo taken
earlier. Offender to avoid arrest changes its appearance with headgear and vari-
ous kinds of glasses. Figure 1 presents example of a suspected person’s face and
his various aspects of face.

Fig. 1. An instance of the image reconstruction: original image (a), the images pre-
senting the same face but with some modifications (b) - (d).

This article presents a new idea to solve the problem of image reconstruction.
This idea consists in the use of cellular automata, whose task is to reconstruct
the original picture of a human face based on the image with a certain number
of defective pixels. Due to the large number of potential rules controlling CA,
the task of searching good quality rules is realized by the GA.

4 Application of GA for Searching CA Rules

In this section we present how GA is used for searching rules for CA. Our as-
sumption is that a given image is defined on a two-dimensional CA and one pixel
corresponds to one cell of a CA. Common properties of images are the number
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of colors and the resolution. They are represented in CA in the form of possible
states of cells and the size of CA, accordingly. In our experiments we used images
with 300x400 pixels with eight colors. As a consequence our CA is 300x400 cells
size and each cell can contain one of nine values representing a color of a given
pixel. The number in the range between zero and seven reflects a color tone and
value of eight depicts, that a given pixel is damaged.

Greater resolution would allow to show more details in an image but it would
also lead to a greater size of CA, which has a negative impact on both the
time needed to image reconstruction and searching rules. In our experiments
we consider CA with Moore neighbourhood. The example of a cell with two
defective pixels is illustrated in the Fig. 2.

Fig. 2. An example of the Moore neighbourhood containing two cells representing
damaged pixels

Let us consider Moore neighbourhood. For nine possible states of a cell, there
exist 99 = 387420489 possible neighbourhood states. It means that the number
of possible rules equals to 9387420489. Searching the best rule is impossible in
practise because each possible rule should be examined in image reconstruction,
which is very time consuming. Less time demanding problem relates to von
Neumann neighbourhood, which consists of five cells. To overcome the problem
with finding a good rule in such a large search space we are going to employ GA,
which is known as a good tool widely used in many combinatorial problems.

4.1 Image Coding Scheme

While GA maintains a population of individuals - CA rules, their coding scheme
must be defined. An individual must depicts a state of a cell for each possible
neighbourhood. Let us analyze an example of a neighbourhood and a part of an
indvidual presented on figure 3.

CA rule is represented by the vector containing values in the range between 0
and 8 representing a color tone. Nine cells of Moore neighbourhood are usually
described by directions: North-West (NW), North (N), North-East (NE), West
(W), Central (C), East (E), South-West (SW), South(S), South-East(SE). Using
this convention a neighbourhood can be interpreted as a vector containing num-
bers representing a color of pixels in this neighbourhood. For the neighbourhood
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Fig. 3. An axample of the neighbourhood (on the left) and the part of the rule - the
individual of the GA (on the right)

presented in the figure 3 such a vector will contain values read from left to right
and from top to bottom e.g. 235082811. For each possible neighbourhood there
is also given a value which central cell of a neighbourhood will have in the next
time step of CA.

4.2 Fitness Function

Fitness of an individual is calculated according to Eg. 1

f = (nc − (nd + ni)
t)/n, (1)

where nc is the number of cells with the proper state, nd means the number of
cells corresponding to damaged pixels, ni depicts the number of cells with wrong
state but not damaged pixel, t is a coefficient and n is the number of all cells.
The objective of GA is to find such a rule that together with CA will allow to
obtain reconstucted image with maximum number of pixels with original color.

At each generation of the GA, individuals are evaluated and the obtained
fitness value corresponding to each one is used by the selection operator. It selects
individuals from the current population to the temporary one proportionally to
their fitness value and the obtained individuals take part in genetic modifications
through crossover and mutation operators.

4.3 Training Phase

The objective of the training phase is to find rules by the GA. The incomplete
image is an initial configuration of the CA. GA starts with a population of
randomly generated rules. In the next step all individuals are evaluated against
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an image with p% randomly damaged pixels. Next, a rule is applied to the CA
for T time steps and the obtained image is used to calculate fitness value of
the rule according to the Eg. 1. Once we have evaluated individuals GA starts
to improve them through the application of selection, crossover and mutation
operators. The pseudocode of the GA is presented as Algorithm 1.

Algorithm 1. GA for searching CA rules - learning mode

1: begin
2: present an original image and create the corresponding CA;
3: generate the initial population of CA rules of size P ;
4: generate an image with p% damaged pixels of the original image;
5: for each rule in the population do
6: run CA during T time steps;
7: compute the fitness function value;

8: end
9: for i := 1 to G (generations) do

10: randomly choose P rules from the current population, with replacement;
11: divide P chosen rules into disjoint pairs;
12: cross each pair by means of one point crossover;
13: mutate offsprings with the probability pm;
14: generate an image with p% damaged pixels of the original image;
15: for each rule in the population do
16: run CA during T time steps;
17: compute the fitness function value;

18: end

19: end
20: choose the best individual from the population as the result;

21: end

4.4 Testing Phase

After the best rule have been obtained from GA, in the next step it is exam-
ined how well CA is able to recover an original image from its distorted version.
Moreover, we want check if the obtained rule has generalization feature. It would
mean that a rule corresponding to one image is able to perform image recon-
struction for the other images of the same class. While we are concerned with
the images presenting people faces, the other images relate to different person.
Testing mode of the GA is performed according to Algorithm 2.

First, we have obtained three rules in the learning mode of the GA. They
were evolved to reconstruct images IMG1, IMG2 and IMG3. Next, three CA
are created that correspond to the same image IMG1 with p% damaged pixels.
The first CA is governed by the rule, which was assigned to the image IMG1,
the second CA is performed using the rule assigned for the image IMG2 and
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Algorithm 2. GA for searching CA rules - testing mode

1: begin
2: get the best three rules rule IMG1, rule IMG2 and rule IMG3 from the

GA that were evolved to images: IMG1, IMG2 and IMG3, respectively;
3: create three CAs: CA1, CA2 and CA3 that correspond to the same image

IMG1 with damaged pixels;
4: while image quality increases do
5: perform one step of CA1 using rule IMG1;
6: perform one step of CA2 using rule IMG2;
7: perform one step of CA3 using rule IMG3;

8: end
9: for each CA do

10: compute the quality function value;
11: end

12: end

the third CA is run with the rule assigned to reconstruct the image IMG3. For
each CA, change the state of the CA until quality of the image that is reflected
by the CA is not getting better. At the end of the testing mode, for each image
calculate how many pixels were restored correctly. This value, denoted as f1, is
computed according to Eq. 2

f1 = nc/n, (2)

where nc is the number of correctly recovered pixels and n depicts the number
of all pixels.

5 Experimental Results

5.1 Training

Three images denoted as T 0, T 2 and T 3 were used in the experiments. For each
image, we tested the performance of the GA for a case of 70% damaged pixels
within an image.The maximal number of steps during which CA has to converge
to a desired original image was set to 40. Experimental results show, that even
for 20 time steps CA converges. The parameters of the GA were the following:
population size = 50, crossover probability = 0.7 and mutation probability =
0.02. The searching process was conducted for 50 iterations of the GA. The Fig.
4 presents the performance of the GA.

We can see that for images T 2 and T 3 fitness value for randomly generated
rules was between 0.35 and 0.45. In the evolutionary process GA was able to find
better rules and in about 25 generation fitness value of the best rules equals to
0.6. The performance of the GA for image T 0 was better than the performance of
the GA for the two previous images. In the next 20 iterations of the GA, quality
of found rules increased to about 0.77 value. Getting stuck in local minimum
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Fig. 4. Performance of GA in searching rules

around 25 iterations may be due to the vast space of solutions. Figure 5 and 6
present how images are reconstructed in 1, 10 and 20 iterations of the GA and
in 1, 5 and 10 time steps of the CA.

Both figures show the process of reconstructing images of two different people.
Three rows of images correspond to the first, tenth and twentieth iteration of the
GA. Three columns of images depicts 1, 5 and 10 step of CA. In both figures it is
shown that the quality of rules found by GA increases in subsequent iterations.
In the 20th iteration of the GA and the first step of the CA the number of
defective pixels is very small and the quality of the images in the following steps
of CA increases.

5.2 Testing

The objective of the testing phase of the experimental study was to examine if
the obtained rule is able to reconstruct an image with damaged pixels. We were
also interested if the other rules obtained for different images but of the same
class are able to reconstruct an image. For this purpose three CAs were created
for the same image. These CAs were performed using three different rules and
at the end quality values were calculated according to Eq. 2. Figure 7 presents
an image with defective pixels, which was used as input for three CAs.

Figure 8 presents images obtained from three CAs using three rules obtained
from three various images. Images within the first row were obtained by an
application of the rule dedicated to restore such an image. The images within the
two next rows have been restored using rules dedicated for the other, different
images. The calculated quaility value for images within the first, second and
third row equals to 0.87, 0.82 and 0.85 respectively. It means that images have
been reconstructed with 87%, 82% and 85% correct pixels. These results show
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Fig. 5. Reconstruction of T0 image in the training phase

Fig. 6. Reconstruction of T2 image in the training phase
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Fig. 7. Input image for testing CA

Fig. 8. Result of image reconstruction performed by CA

that the rule rule IMG 1 assigned to the reconstructed image allows to restore
the image with high quality. Moreover, despite the fact that the other two rules
were assigned to the different images, their application allow to restore the image
with nearly the same quality of rule rule IMG 1. Such a result proves that there
exists a subset of rules that are enough to restore a number of images, if these
images are similar.

6 Conclusions

A new approach to the image reconstruction problem based on an application of
GA for searching rules for CA has been shown in the paper. Our experimental
results show that GA finds such good rules for CA, that even images with large
number of damaged pixels can be restored to near the original image, which
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allows to recognize a face presented on image. Moreover, we proved that a rule
found by GA possess generalization feature. It means, that it can be used to
reconstruct images of the same class that the image, for which the rule was
evolved by the GA.

The performance of the GA for searching rules and the CA for restoring
original image from very low quality image is very promising. We believe, that
this work could be initial research that would allow to take the new approach
into practise and take advantage of it by commercial software.
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Abstract. This paper studies pedestrian interaction where pedestrians permeate 
thought crowds in areas such as train stations and shopping centres. Pedestrian 
simulation model is created by use of Cellular Automata (CA) and various 
analyses are carried out by means of pedestrian jam. This study further attempts 
to provide a solution to crowd management. The results show that congestion 
can be eased by employing intervals between pedestrians. In order to obtain the 
best possible interval values, a utility function is introduced. The calculated 
interval with maximum utility provides the optimal solution to ease pedestrian 
congestion and jam. Furthermore, taking pedestrian interval as a control 
variable, this Model is applied to train arrival at terminal stations. The result of 
the simulation herein suggests a solution by implementing a delayed opening of 
train doors. 

Keywords: Cellular Automata, pedestrian, crowd management, jam absorption. 

1 Introduction 

Pedestrians passing through crowds are often seen in daily life. This study aims to 
provide insights for modelling and analyzing interactions between pedestrians and 
crowds by use of Cellular Automata (CA). CA is defined in a discretised time and 
space where the dynamics is described by microscopic local interaction rules, wherein 
the movement of particles in a discrete time step is expressed by the relationship 
between the current state of particles and its surrounding conditions. The movement 
of particles is a stochastic process whereby the probability of change of the particle 
position and/or the state is defined by the transition probability. Thus, the 
macroscopic dynamics is represented as a result of time evolution. Extensive study on 
pedestrian dynamics has been carried out in the last decade aiming for various social 
applications such as evacuation and crowd control. [1-3]. Further, a theoretical study 
on the interaction between pedestrians and crowds was conducted by the author [4] 
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and demonstrated that the dynamics can be expressed by one-dimensional 
Asymmetrical Simple Exclusion Process (ASEP) and resulting Burgers’ equation. 

The model proposed herein is applied to the terminal station where platforms and 
concourses exist, in which one end of the platform connects to the concourse. 
Platforms and concourses have different functions where the former is for accessing 
the train and the latter for multi-purposes including, platform and station access, 
waiting, ticketing, and shopping. A crowd is defined in this paper as people in the 
concourse moving with various speed and directions. On the other hand, pedestrians 
are defined as a stream of people moving towards the same direction with common 
purpose, i.e., stream of people getting off the train, moving toward the exit.  
Depending on the time of the day, density of the crowd in the concourse will create 
jam in the platform with pedestrians queuing to enter the concourse. The objective of 
this paper is to analyze the behaviour of this jamming phenomenon. 

2 Modelling 

The square lattice is divided into the pedestrian and crowd area as illustrated in Fig. 1. 
The divided lattices are adjacent to each other abling pedestrians to move from the 
pedestrian area into the crowd area, accessing the Exit. The pedestrian motion is uni-
directional, starting from a certain position within the pedestrian area then, penetrate 
into the crowd area. There is also a possibility of a growing queue in the pedestrian 
area at the boundary of the crowd area. 
 

 

Fig. 1. The lattice configuration for the model, where the pedestrians and crowds are black and 
grey, respectively 

In microscopic view, the dynamics of individuals are characterized by its direction 
and speed. Large variation on these characteristics results in fairly random 
macroscopic behaviour. Thus, the dynamics of the crowd is simplified to a random 
replacement. This implementation expresses the effect of the crowd as a white noise 
to the pedestrians. The degree of the effect is defined by the crowd density ρ, where 
higher density restricts more of the pedestrian’s mobility inside the crowd. The 
random replacement however gives the occupying probability equivalent to the 
density to every cell at every time step. Two types of models are implemented for the 
pedestrian dynamics. One is a simple ASEP where the pedestrians walk along a 
straight line without changing lanes and the transition rule is illustrated in Eq. 1.  
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The other rule is that the pedestrians overtake others as shown in Eq. 2 while in the 
ASEP, for a particular particle occupying the cell, if the cell in front of it is occupied 
by another, then the particle cannot move.  
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Eq. 1 and Eq. 2 shows the occurrence probability of the site i,j is occupied by a 
pedestrian at time t+1 in terms of the states of its surrounding cells at time t. The 
notations are as follows: nt

ij and mt
ij denotes the occurrence probability of a pedestrian 

and crowd, respectively at time t in site i,j. P denotes the transition probability of the 
pedestrians which can be used as the implementation of walking speed. The crowd 
density is denoted as ρ. At the lattice boundary, the queuing theory is applied. When 
the pedestrian arrives to the boundary and the crowd area is full where the pedestrians 
do not have space to enter, a queue is created. The queue is expressed as a simple 
mass balance of those pedestrians entering and exiting the queue. Therefore, the 
pedestrian path has three sections: 1, pedestrian area described by ASEP; 2, queue; 
and 3, crowd area described by Eq.1 or Eq.2. 

3 Simulation and Discussions 

The behaviour of the pedestrian is highly affected by the density of the crowd. Fig. 2 
schematically illustrates the simulation condition. The figure expresses the 
pedestrians approaching the crowd area with interval s, a queue at the boundary, and 
pedestrians entering the crowd and coming out from the Exit.  

Boundary

s

・・・・・

Exit

○ ○ ○☆

P=1

・・・・・・・

Crowd Area

QueuePedestrians

sss

Pedestrian Area

 

Fig. 2. The simulation condition. The pedestrian interval s. 
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(a) 
 

(b) 

(c) 
 

(d) 

Fig. 3. The image of simulation output after 100 steps for (a) s = 1, without overtake, (b) s = 6, 
without overtake, (c) s = 1, with overtake., (d) s = 4, with overtake 
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(i) 

Fig. 4. The queue length with respect to time for various pedestrian’s interval. (a) Crowd 
density = 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, (g) 0.7, (h) 0.8, (i) 0.9. Simulated for the 
model without overtake. The number on each graph shows pedestrian’s interval. 

In order to analyse the behaviour of the queue at the boundary, the simulations are 
carried out for various crowd densities and various pedestrian intervals. Fig.3 shows 
the image of simulation output for various conditions when the crowd density is taken 
as 0.5. In the figure, the crowd is illustrated as grey and pedestrians as black. Fig. 3(a) 
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and (b) are cases where pedestrian do not overtake others and pedestrian interval is 1 
and 6 respectively. Whereas, Fig. 3(c) and (d) are the case where pedestrians overtake 
others and pedestrian interval is 1 and 4 respectively.  Fig. 3(a) and (c) shows a 
growth of queue despite Fig. 3(b) and (d) do not. This feature suggests that the 
pedestrian’s interval is greatly affects queue length. 

Further, change of queue length with respect to time for various crowd densities is 
calculated. Fig.4 shows the result where the density of crowd varies from 0.1 to 0.9 
and pedestrian interval is varies from 1 to 29. The pedestrian model inside the crowd 
is illustrated by Eq. (1). In general, there is certain threshold in the pedestrian interval 
where the queue do not grow with time. For example, when the crowd density is 0.2, 
the queue grows with time when the pedestrian interval is 1 and 2, on the other hand, 
queue length remains 0 for the case with intervals are larger than 3. This phenomenon 
is caused by the mass balance of the queue that the balance of the arrival rate to the 
queue and the exit rate from the queue. The queue grows when the arrival rate is 
larger than the exit rate and the queue shrinks when the arrival rate is smaller. In this 
system, the pedestrian interval affects the arrival rate while the crowd density affects 
the exit rate. The profile shows that longer interval is necessary for higher crowd 
density to eliminate the queue. This characteristic remains the same when the 
overtaking model is applied. 
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Fig. 5. The queue length with respect to time for various pedestrian’s interval. All the 
conditions are the same as that for Fig. 4 except overtaking model c.f., Eq. (2) is applied. 
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Fig.5 shows the calculation result of those simulated under the same conditions as 
that for Fig. 4 except the overtaking pedestrian model as shown in Eq. (2) is applied. 
The difference is that the threshold of the pedestrian intervals for the queue 
elimination is smaller in general. This is because the pedestrians gain more mobility 
inside the crowd thus the exit rate of the queue can be larger, and therefore higher 
arrival rate into the queue is accepted. The difference of the threshold between two 
models becomes larger as crowd density increase, e.g., when crowd density is 0.7, for 
eliminating the queue, the interval threshold reduced to 7 in overtaking model 
whereas 11 in non-overtaking model. 

It is also seen from Fig.4 and Fig 5 that the queue grows linearly with time. The 
gradient of queue length with respect to time can be calculated by least square 
method. The gradient shows the growth rate of the queue, this means that when this 
value is larger, then the queue grows faster. Fig.6 illustrates the queue growth rate 
against pedestrian’s intervals. The figure shows in general that the queue growth rate 
decays with increasing intervals. From the point of view of crowd control, it is of 
great importance to understand this behaviour since pedestrian interval is the effective 
control variables under some conditions.  
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Fig. 6. The queue growth rate with respect to pedestrian intervals for various crowd densities of 
0.1 to 0.9. (a) Model without overtake c.f., Eq. (1). (b) Model with overtake c.f., Eq. (2). 

Further analyses are carried out in terms of the pedestrian flux and necessary time 
to handle certain number of pedestrians. Fig.7 illustrates the flux of pedestrians 
outgoing from the crowd plotted against pedestrian’s interval for various crowd 
densities of the range 0.1 to 0.9. Fig.7 (a) shows the result of pedestrian model 
without overtake and (b) shows the pedestrian model without overtake. In the figure, 
the circle plot shows the threshold of pedestrian intervals where the growth rate of 
queue become zero. It is seen that the profile of the flux consist of two parts: 1, the 
plateau region at smaller intervals, and 2, asymptotic region at higher intervals. The 
plateau region occurs for the interval range smaller than the threshold. In this 
situation, there are growing queues at the entrance to the crowd area in which 
pedestrians are waiting to enter the area. The pedestrian at the front of the queue 
enters the crowd area whenever one finds space to enter. When the pedestrian enters 
the crowd area and proceeds forward, such movement creates a space behind. At this 
moment another pedestrian is at the front of the queue waiting for his chance to enter. 
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This is the pedestrian balance at the boundary and affects the exit rate of the queue. 
On the other hand, the growth rate at the end of the queue depends on the pedestrian 
interval values. This means that the flux is rate-limited by the crowd density. As 
shown, while increasing the pedestrian interval, the queue disappears at certain 
threshold point. Thereafter the threshold, the flux is determined by the pedestrian 
intervals. Thus, when a pedestrian arrives at the entrance of the crowd area, one can 
enter without queuing, having the flux determined by this arrival rate. As the 
pedestrian interval become longer, the flux is dramatically reduced although the 
queue disappears. In this region the flux is rate-limited by the pedestrian intervals. 
This phenomenon can be seen more clearly when the required time for certain number 
of pedestrians to cross through the crowd is calculated. Fig. 8 illustrates the plots of 
required times to handle 1000 pedestrians against pedestrian interval for various 
crowd densities of the range of 0.1 to 0.9. Similarly to those profiles for fluxes, the 
required time also shows the plateau regions. This result shows that the total required 
time do not vary while there is a queue, thus, when intervals increases more time is 
required to handle the pedestrians.  
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Fig. 7. The flux of pedestrians exiting from the crowd. Where crowd densities are 0.1 to 0.9. (a) 
Model without overtake c.f., Eq. (1). (b) Model with overtake c.f., Eq. (2). The circles shows 
the threshold of pedestrian’s interval where the queue growth rate become nearly zero. 
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Fig. 8. The required time handling 1000 pedestrians for various crowd densities which the 
number is superimposed in the figure. (a) Model without overtake c.f., Eq. (1). (b) Model with 
overtake c.f., Eq. (2). 
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It is also important to note that the asymptotic profile seen in the Fig.7 and Fig. 8 
suggest that there is a maximum flow limit. As it is seen from the figure, the 
asymptotic profile is independent of the crowd density. Starting from various 
densities, the maximum achievable flux or handling time solely depends on the 
pedestrian interval. This result is an important point that the pedestrian interval can be 
a critical control variable for crowd management. Form the point of view of crowd 
management, here in this work, in order to find the most likelihood value of interval 
to achieve the maximum flux and least queue length, the utility function is introduced 
as shown Eq. (3). The utility function U is defined by the product of the outgoing flux 
and the value that queue growth rate is subtracted by unity.  
 

( )( )( )21 oqU −=        (3) 
 

Where q : the queue growth rate (c.f. Fig.6) 

 o : the outgoing flux. (c.f. Fig.7). 
 

Fig. 9 illustrates the plot of the utility function. As it is seen from the figure, in 
general, a single peak appears. The pedestrian interval at the maximum utility gives 
the solution for “high pedestrian flux” and “low queue growth rate”. The pedestrian 
intervals for maximum utility obtained by Eq.(3) for various crowd densities for two 
models are illustrated in Table 1. It is noted that the queue growth rate takes non-zero 
minimum value at maximum utility. This is because the longer interval has the effect 
of reducing the utility. In the event the crowd management policy do not allow any 
queues, then the value of pedestrian interval which is one unit larger than that for 
maximum utility should be taken to achieve the highest utility within the allowable 
condition. 
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(b) 

Fig. 9. Plot of the utility function shown in Eq. (3), where (a) Model without overtake c.f., Eq. 
(1). (b) Model with overtake c.f., Eq. (2). The circle on the plot shows the points where the 
utility become maximum. 

Table 1. The pedestrian interval for maximum utility 

Crowd density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Interval (No overtake model) 2 2 3 4 5 7 10 17 n/a 
Interval (Overtake model) 1 1 1 2 3 3 5 10 25 
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4 Application to the Crowd Control at the Station 

The CA model is applied to the terminal station situation aiming to find a solution to 
ease pedestrian jam and congestion on the platform. Fig. 10 illustrates the arrival 
situation at the terminal. Pedestrians de-train and walk to the concourse. Assuming to 
have 10 coaches with each holding 100 passengers, the simulation is carried out 
varying the crowd density of the concourse. Moreover, for the pedestrian simulation, 
the model with overtaking, c.f. Eq. (2) is applied since it is more realistic. 
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Fig. 10. The situation considered for the simulation 

 (a) 
 

 

(b) 

 

Fig. 11. The platform simulation without pedestrian control. (a) Initial State, (b) Transient state 
with pedestrian jam at the entrance to the concourse. Where the crowd density is 0.5. 

Fig. 11 illustrates the simulation result when crowd density is 0.5 and pedestrians 
are randomly allocated on the platform without any interval. This simulation 
condition assumes that passengers de-train all at once from each coach. Fig. 11(a) 
shows the initial condition and Fig. 11(b) show the transient behaviour when there is a 
pedestrian jam at the end of the platform. Here again, the pedestrians are queuing to 
enter the concourse to pass through to the other side since the crowd in the concourse 
is obstructing pedestrian flow. Contrary to this, Fig. 12 illustrates the result when 
some interval exists between groups of pedestrians. The number of pedestrians in 
each group is set at 100, equalling the capacity of each coach. Fig. 12 (a) is the initial 
condition and Fig. 12 (b) and (c) shows the transient conditions. Fig12 (b) shows that 
a group of the pedestrians are going into the concourse while the next group of 
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passengers are approaching. Fig. 12 (c) shows that the next group of passengers are 
arriving at the end of the platform. At this moment, the jam created by the previous 
group of passengers is solved. Therefore, there is no acculturation of queues. This is 
the basic idea of crowd management by separating the stream of pedestrians and 
making space between groups of passengers. If the door is opened one by one with 
some delay, i.e., interval of several seconds, then the condition of Fig. 12 is created. 
This condition will make the passengers to wait inside the train for longer periods 
after arrival, but is an effective way to control congestion in the station. 

 
(a) 

 

(b) 

 

(c) 

 

Fig. 12. The platform simulation with pedestrian control. (a) Initial State, (b) and (c) Transient 
state with pedestrian jam at the entrance to the concourse. Where the crowd density is 0.5.  
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(b) 

Fig. 13. (a) average queue length vs. time (b) total number of passengers exiting from the 
station. Where the total passenger is 1000 and crowd density is 0.6. 

 

Fig. 13 (a) shows the average queue length with respect to time. An oscillation is 
seen in the plot at higher interval values. The oscillation is caused by the decrease in 
queue length while the interval is as seen in Fig. 12 (b) and (c). During the intervals 
there is no pedestrian arriving to the end of the queue thus the queue length decreases 
until the next group of pedestrians arrive. The sharp drop on the queue length after the 
maxima on the plot means that only passengers in the queue remain on the platform. 
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Thus, the queue length linearly drops to zero since there is no more passengers 
arriving. Fig. 13 (b) shows the total number of passengers exiting from the station. It 
is seen that when the interval is large, the plot shape resembles a series of steps. The 
step is created because the interval is too large that there are moments when there is 
no queue at the boundary. 
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Fig. 14. (a) The queue growth rate with respect to pedestrian intervals. (b) The flux of 
pedestrians exiting from the crowd. (c) The required time handling 1000 pedestrians. (d) Plot of 
the utility function. For all figures, calculations are carried out for various crowd densities of 
0.1-0.9 where the number is superimposed in the figure. 

Fig. 14 (a), (b), (c) and (d) shows the queue growth rate with respect to pedestrian 
intervals, the flux of pedestrians exiting from the crowd, the required time handling 
1000 pedestrians, and plot of the utility function, respectively. Fig. 14 (a), (b), (c) 
exhibits the basic characteristics as seen in Fig. 6 (b), Fig. 7 (b) and Fig. 8 (b), 
respectively. The pedestrian interval for maximum utility is marked on the Fig. 14 (d) 
and is summarised in Table 2. It is seen that for low crowd density below 0.4, the 
utility is maximum when there is no interval. It is also seen from Fig. 14 (a) that when 
the crowd density is below0.4, the queue growth rate is substantially small. Further, 
when increasing the crowd density, a longer interval is required. To illustrate, 25 cells 
interval is required for maximum utility when the concourse crowd density is 0.6. The 
common values for each cell are 0.4m square and walking speed of pedestrian is 1.3 
m/s. Then a simple arithmetic gives 7.7 sec. Therefore, the interval to open each door 
should be eight seconds to manage pedestrian jam. This idea can be utilized for 
general situation in which pedestrians cross through crowds as in a shopping mall, 
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where the escalator or lift is at one end and the entrance is at another end of the mall. 
In reality, there are much more considerable conditions but this result indicates that 
the pedestrian jam can be controlled or eliminated by relatively small effort. 

Table 2. The pedestrian’s interval for maximum utility 

Crowd density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Optimal Interval 0 0 0 0 5 25 50 N/A N/A 

5 Conclusion 

The pedestrian crowd interaction model is introduced and various simulations are 
carried out for situation where a stream of pedestrians are entering into a crowd then 
permeate through to the other side. Depending on the crowd density, a jam occurs at 
the entrance of the crowd. The pedestrian jam can be controlled by implementing 
some time interval between the pedestrian entrance. This model is applied to the train 
terminal arrival scenario to shows that a jam on the platform can be eased by 
controlling the time interval for opening the door of each coach. The timing can be 
calculated by simulation for maximum utility. The results indicate that the terminal 
station congestion can be controlled by providing a short wait period in the train for 
passengers with minimum inconvenience for. 
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Abstract. Synchronization of large-scale networks is an important and
fundamental computing primitive in parallel and distributed systems.
The synchronization in cellular automata, known as firing squad syn-
chronization problem (FSSP), has been studied extensively for more than
fifty years, and a rich variety of synchronization algorithms has been
proposed for not only one-dimensional but two-dimensional arrays. In
the present paper, we propose a new recursive-halving based optimum-
time synchronization algorithm that can synchronize any rectangle two-
dimensional (2D) arrays of size m × n with a general at one corner in
m+ n+max(m,n)− 3 steps. The algorithm proposed is quite different
from previous designs and it can be easily generalized to 2D arrays with
a general at any position of the array. The algorithm is isotropic con-
cerning the side-lengths of 2D arrays and its correctness is transparent
and easily verified.

1 Introduction

Synchronization of large-scale networks is an important and fundamental com-
puting primitive in parallel and distributed systems. The synchronization in ultra
fine-grained parallel computational model of cellular automata has been known
as the firing squad synchronization problem (FSSP) since its development, in
which it was originally proposed by J. Myhill in the book edited by Moore
[1964] to synchronize all/some parts of self-reproducing cellular automata. We
study the FSSP that gives a finite-state protocol for synchronizing cellular au-
tomata. The problem has been studied extensively for more than fifty years,
and a rich variety of synchronization algorithms has been proposed for not only
one-dimensional but two-dimensional arrays.

In the present paper, we propose a new recursive-halving based optimum-time
synchronization algorithm that can synchronize any rectangle two-dimensional
(2D) arrays of size m×n with a general at one corner in m+n+max(m,n)− 3
steps. Specifically, we attempt to answer the following questions:

– Are there still any new FSSP algorithms for 2D arrays?
– Can we generalize the 2D FSSP algorithms to a generalized FSSP, where an

initial general is located at any position of the array?

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 381–393, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– What is an isotropic FSSP algorithm concerning side length of the given
array?

The algorithm proposed is interesting in the following view points.

– The algorithm is quite different from previous designs and it gives a new
insight into the 2D array synchronization mechanism.

– The 2D algorithm proposed is isotropic with respect to shape of a given
rectangle array, i.e. no need to control the FSSP algorithm for longer-than-
wide and wider-than-long input rectangles.

– The correctness of the algorithm is transparent and easily verified.
– The algorithm can be expanded to a generalized optimum-time FSSP solu-

tion, where an initial general is at an arbitrary position of a given array.

In Section 2 we give a description of the 2D FSSP and review some basic results
on 2D FSSP algorithms. Section 3 defines the recursive-halving marking on 1D
arrays. In Section 4 we present a new 2D FSSP algorithm. An implementation
in terms of 2D finite-state cellular automaton is also presented for the optimum-
time FSSP algorithm. It is shown that the algorithm can be generalized with
respect to the general’s position.
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Fig. 1. A 2D cellular automaton

2 FSSP on Two-Dimensional Arrays

Figure 1 shows a finite 2D cellular array consisting of m × n cells. Each cell is
an identical (except the border cells) finite-state automaton. The array operates
in lock-step mode in such a way that the next state of each cell (except border
cells) is determined by both its own present state and the present states of its
north, south, east and west neighbors. All cells (soldiers), except the north-west
corner cell (general), are initially in the quiescent state at time t = 0 with the
property that the next state of a quiescent cell with quiescent neighbors is the
quiescent state again. At time t = 0, the north-west corner cell C1,1 is in the
fire-when-ready state, which is the initiation signal for the array. The firing squad
synchronization problem is to determine a description (state set and next-state
function) for cells that ensures all cells enter the fire state at exactly the same
time and for the first time. The tricky part of the problem is that the same kind
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of soldier having a fixed number of states must be synchronized, regardless of
the size m × n of the array. The set of states and next state function must be
independent of m and n.

The problem was first solved by J. McCarthy and M. Minsky who presented
a 3n-step algorithm for 1D cellular array of length n. In 1962, the first optimum-
time, i.e. (2n−2)-step, synchronization algorithm was presented by Goto [1962],
with each cell having several thousands of states. On the other hand, sev-
eral synchronization algorithms on 2D arrays have been proposed by Beyer
[1969], Grasselli [1975], Shinahr [1974], Szwerinski [1982], Umeo, Hisaoka, and
Akiguchi [2005], and Umeo, Nishide, and Kubo [2012]. It has been shown in
Beyer [1969] and Shinahr [1974] independently that there exists no 2D cellu-
lar automaton that can synchronize any 2D array of size m × n in less than
m+ n+max(m,n)− 3 steps. In addition they first proposed an optimum-time
synchronization algorithm that can synchronize any 2D array of size m × n in
optimum m + n + max(m,n) − 3 steps. Shinahr [1974] gave a 28-state imple-
mentation. Umeo, Hisaoka and Akiguchi [2005] presented a new 12-state syn-
chronization algorithm operating in optimum-step, realizing a smallest solution
to the rectangle synchronization problem at present. As for the time optimality
of the 2D FSSP algorithms, the following theorems have been shown.

Theorem 1Beyer [1969], Shinahr [1974]. There exists no cellular automaton that can
synchronize any 2D array of size m×n in less than m+n+max(m,n)−3 steps,
where the general is located at one corner of the array.

Theorem 2Umeo et al. [2005]. There exists a 12-state cellular automaton that can
synchronize any 2D array of size m×n at exactly m+ n+max(m,n)− 3 steps,
where the general is located at one corner of the array.

3 Recursive-Halving Marking

In this section, we introduce a marking scheme for 1D arrays referred to as
recursive-halving marking. The marking schema prints a special mark on cells in
a given cellular space defined by the recursive-halving marking. It is based on
a 1D FSSP synchronization algorithm. The marking will be effectively used for
constructing FSSP algorithms for 2D arrays operating in optimum-time.

Let S be a 1D cellular space consisting of cells Ci, Ci+1, ..., Cj , denoted by
[i...j], where j > i. Let |S| denote the number of cells in S, that is |S| = j− i+1.
A center cell(s) Cx of S is defined by

x =

{
(i + j)/2 |S|: odd,
(i + j − 1)/2, (i+ j + 1)/2 |S|: even. (1)
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The recursive-halving marking for a given cellular space [1...n] is defined as
follows:

Recursive-Halving Marking, RHM

Algorithm RHM(S)
begin

S:= [1...n];
if |S| ≥ 2 then

if |S| is odd then
mark a center cell Cx in S
SL:= [1...x]; SR:= [x...n]
RHML(SL); RHMR(SR);

else
mark center cells Cx and Cx+1 in S
SL:= [1...x]; SR:= [x+ 1...n]
RHML(SL); RHMR(SR);

end

Left-Side Recursive-Halving Marking, RHML

Algorithm RHML(S)
begin

S:= [1...n];
while |S| > 2 do

if |S| is odd then
mark a center cell Cx in S
SL:= [1...x]; RHML(SL);

else
mark center cells Cx and Cx+1 in S
SL:= [1...x]; RHML(SL);

end

The marking for the right-side half space, Right-Side Recursive-Halving Mark-
ing, RHMR, can be defined in a similar way.

Figure 2 (left) shows a space-time diagram for the marking. At time t = 0,
the leftmost cell C1 generates an infinite set of signals w1, w2, ..., wk, .., each
propagating in the right direction at 1/(2k − 1) speed, where k = 1, 2, 3, ..., .
The 1/1-speed signal w1 arrives at Cn at time t = n − 1. Then, the rightmost
cell Cn also emits an infinite set of signals w1, w2, ..., wk, .., each propagating
in the left direction at 1/(2k − 1) speed, where k = 1, 2, 3, ..., . The readers can
find that each crossing of two signals, shown in Fig. 2 (left), enables the marking
at middle points defined by the recursive-halving. A finite state realization for
generating the infinite set of signals above is a well-known technique employed
in Balzer [1967], Gerken [1987], and Waksman [1966] for the implementations of
the optimum-time synchronization algorithms on 1D arrays.

We have developed a simple implementation of the recursive-halving marking
on a 13-state, 314-rule cellular automaton. In Fig. 2 (right) we present several
snapshots for the marking on 42 cells. We have:

Lemma 3. There exists a 1D 13-state, 314-rule cellular automaton that can
print the recursive-halving marking in any cellular space of length n in 2n − 2
steps.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G O B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G O K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G O K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G O O C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G E O Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G E O Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G E O O C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G E K O Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G E K O Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G E K O O C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 G E K C O Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 G E E C O Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

14 G E E C O O C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

15 G E E C K O Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

16 G E E Q K O Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

17 G E E Q K O O C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 G E E Q K C O Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 G E E Q C C O Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

20 G E E E C C O O C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

21 G E K E C C K O Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

22 G E K E C Q K O Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

23 G E K E Q Q K O O C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

24 G E K E Q Q K C O Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

25 G E K E Q Q C C O Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

26 G E K E Q C C C O O C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

27 G E K E E C C C K O Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q

28 G E K C E C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q

29 G E E C E C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q

30 G E E C E Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q

31 G E E C E Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q

32 G E E C E Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q

33 G E E C E Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q

34 G E E C E E C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q

35 G E E C K E C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q

36 G E E Q K E C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q

37 G E E Q K E Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q

38 G E E Q K E Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q

39 G E E Q K E Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q

40 G E E Q K E Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q
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46 G E K E C C E Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A K D E E G

47 G E K E C C E Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q A D K Q E E G

48 G E K E C C E E C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q A K D D Q E E G
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50 G E K E C Q K E C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q A K D D Q Q E K E G

51 G E K E Q Q K E Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q A D K Q D D Q E K E G
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66 G E E C E Q Q Q K E Q Q Q C C C B C Q Q W W Q Q D B D D Q Q D D Q E D D Q Q E K E G
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Fig. 2. Space-time diagram for
recursive-halving marking on 1D
array of length n (left) and some
snapshots for the marking on 42
cells (right)
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Fig. 3. Space-time diagram for synchroniz-
ing a cellular space with recursive-halving
marking

The recursive-halving marking proposed played an important role in the clas-
sical WBG-type (Waksman [1966], Balzer [1967], and Gerken [1987]) FSSP al-
gorithms. An optimum-time complexity 2n− 2 needed for synchronizing cellular
space of length n in those algorithms can be interpreted as follows:

Let S be a 1D cellular space of length n = 2n1 + 1, where n1 ≥ 1. The first
center mark in S is printed on cell Cn1+1 at time t1D−center = 3n1. Additional n1

steps are required for the markings thereafter, yielding a final synchronization
at time t1D−opt = 3n1 + n1 = 4n1 = 2n− 2. In the case n = 2n1, where n1 ≥ 1,
the first center mark is printed simultaneously on cells Cn1 and Cn1+1 at time
t1D−center = 3n1 − 1. Additional n1 − 1 steps are required for the marking and
synchronization thereafter, yielding the final synchronization at time t1D−opt =
3n1 − 1 + n1 − 1 = 4n1 − 2 = 2n− 2.

t1D−center =

{
3n1 |S| = 2n1 + 1,

3n1 − 1 |S| = 2n1.
(2)

Thus, additional t1D−sync steps are required for the synchronization for a cellular
space with the recursive-halving marks:

t1D−sync =

{
n1 |S| = 2n1 + 1,

n1 − 1 |S| = 2n1.
(3)

In this way, it can be easily seen that any cellular space of length n with the
recursive-halving marking and initially with a general on a single cell or two
generals on adjacent center cells at time t = 0 can be synchronized in t1D−sync =
-n/2. − 1 optimum-steps. Thus we have:

Lemma 4. Any 1D cellular space S of length n with the recursive-halving
marking initially with a general(s) on a center cell(s) in S can be synchronized
in t1D−sync = -n/2. − 1 optimum-steps.
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In Fig. 3, we illustrate a space-time diagram for synchronizing a cellular space
with the recursive-halving marking. Note that the general G is on the center
cell(s) at time t = 0.

4 An Optimum-Time 2D FSSP Algorithm

4.1 Overview of the Algorithm

We assume that an initial general G is on the north-west corner cell C11 of a
given rectangular array of size m × n. The algorithm consists of four phases:
decomposing the array into four subarrays, a marking phase for these subarrays,
finding a center point of the given array, and a final synchronization phase. An
overview of the 2D synchronization algorithm A is as follows:

Step 1. Decompose a given array into four subarrays. They consists of left
and right triangles and upper and lower trapezoids, each denoted by α0, α1 and
β0, β1, respectively, in the case m ≤ n. See Fig. 4 (i). The case m > n can be
treated in a similar way.

Step 2. Start the recursive-halving marking for cells on each column in α0 and
α1 and for each row in β0 and β1. See Fig. 4 (ii) and (iii).

Step 3. Find a center cell(s) of the given array and generate a new general(s)
on the center cell(s). See Fig. 4 (iv).

Step 4. Synchronize each column in α0 and α1 and each row in β0 and β1
using Lemma 4, initiated by the general generated in Step 3. See Fig. 4 (v). This
yields the final synchronization of the array.

4.2 Algorithm A
We assume that m = 2m1 + 1, n = 2n1 + 1, where m1, n1 ≥ 1. Other cases
such as case 1: m = 2m1 + 1, n = 2n1, case 2: m = 2m1, n = 2n1 + 1, and case
3: m = 2m1, n = 2n1 can be treated in a similar way and the algorithm given
below operates in optimum-steps. Operations in those four phases given above
are as follows:

– Decomposition: The array is decomposed into four subarrays by four sig-
nals sDi , 1 ≤ i ≤ 4, shown in Fig. 4(ii). These signals are generated by corner
cells C1,1, Cm,1, C1,n, and Cm,n at time t = 0,m− 1, n− 1 and m+ n− 2,
respectively. Each signal travels along the diagonal and prints a special mark
acting as a delimiter for the decomposition.

First, the general G on C1,1 generates three signals sH1 , sV1 , and sD1 at time
t = 0. Their operations are as follows:

• Signal sH1 : The sH1-signal travels along the 1st row at 1/1-speed and
reaches C1,n at time t = n− 1. Then, it splits into two signals, sV3 and
sD3 . The signal sV3 travels downwards along the nth column at 1/1 speed



An Isotropic Optimum-Time FSSP Algorithm 387

0 1

1

0

n

m

G
S  H1 G

G I I Q I Q Q Q I U Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q U I Q Q Q I Q I I G

I’ G I I Q I Q Q Q I U Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q U I Q Q Q I Q I I G I’

I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’

Q I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’ Q

I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’

U’ I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’ U’

Q U’ I’ Q U’ I’ G I U I U Q Q I Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q I Q Q U I U I G I’ U’ Q I’ U’ Q

Q Q Q I’ I’ U’ I’ G I U I U Q Q I Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q I Q Q U I U I G I’ U’ I’ I’ Q Q Q

Q Q Q Q U’ I’ U’ I’ G I U I Q Q I U Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q U I Q Q I U I G I’ U’ I’ U’ Q Q Q Q

I’ Q Q Q Q U’ I’ U’ I’ G I U I Q Q I U Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q U I Q Q I U I G I’ U’ I’ U’ Q Q Q Q I’

U’ I’ I’ Q Q Q Q I’ I’ I’ G I U I Q Q I Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q I Q Q I U I G I’ I’ I’ Q Q Q Q I’ I’ U’

Q Q U’ I’ I’ Q Q Q U’ I’ I’ G I U I Q Q I Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q I Q Q I U I G I’ I’ U’ Q Q Q I’ I’ U’ Q Q

Q Q Q Q U’ I’ I’ Q Q U’ I’ I’ G I I U Q I U Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q U I Q U I I G I’ I’ U’ Q Q I’ I’ U’ Q Q Q Q

Q Q Q Q Q Q U’ I’ I’ Q Q I’ I’ G I I U Q I U Q Q Q Q I Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q I Q Q Q Q U I Q U I I G I’ I’ Q Q I’ I’ U’ Q Q Q Q Q Q

Q Q Q Q Q Q Q Q U’ I’ I’ Q U’ I’ G I I U Q I Q Q Q Q I U Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q U I Q Q Q Q I Q U I I G I’ U’ Q I’ I’ U’ Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q U’ I’ I’ U’ I’ G I I U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U I I G I’ U’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ I’ I’ G I I Q I U Q Q Q I U Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q U I Q Q Q U I Q I I G I’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ I’ G I I Q I U Q Q Q I Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q I Q Q Q U I Q I I G I’ I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ G I I Q I Q Q Q I U Q Q Q Q Q Q Q M Q Q Q Q Q Q Q U I Q Q Q I Q I I G I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ G II II Q II Q Q Q II Q Q Q Q Q Q Q X Q Q Q Q Q Q Q II Q Q Q II Q II II G W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’

W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ G I I Q I Q Q Q I Q Q Q Q Q Q Q X Q Q Q Q Q Q Q I Q Q Q I Q I I G W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’ W’

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ G I I Q I Q Q Q I U Q Q Q Q Q Q Q M Q Q Q Q Q Q Q U I Q Q Q I Q I I G I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ I’ G I I Q I U Q Q Q I Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q I Q Q Q U I Q I I G I’ I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ I’ I’ G I I Q I U Q Q Q I U Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q U I Q Q Q U I Q I I G I’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q U’ I’ I’ U’ I’ G I I U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U I I G I’ U’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q U’ I’ I’ Q U’ I’ G I I U Q I Q Q Q Q I U Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q U I Q Q Q Q I Q U I I G I’ U’ Q I’ I’ U’ Q Q Q Q Q Q Q Q

Q Q Q Q Q Q U’ I’ I’ Q Q I’ I’ G I I U Q I U Q Q Q Q I Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q I Q Q Q Q U I Q U I I G I’ I’ Q Q I’ I’ U’ Q Q Q Q Q Q

Q Q Q Q U’ I’ I’ Q Q U’ I’ I’ G I I U Q I U Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q U I Q U I I G I’ I’ U’ Q Q I’ I’ U’ Q Q Q Q

Q Q U’ I’ I’ Q Q Q U’ I’ I’ G I U I Q Q I Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q I Q Q I U I G I’ I’ U’ Q Q Q I’ I’ U’ Q Q

U’ I’ I’ Q Q Q Q I’ I’ I’ G I U I Q Q I Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q I Q Q I U I G I’ I’ I’ Q Q Q Q I’ I’ U’

I’ Q Q Q Q U’ I’ U’ I’ G I U I Q Q I U Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q U I Q Q I U I G I’ U’ I’ U’ Q Q Q Q I’

Q Q Q Q U’ I’ U’ I’ G I U I Q Q I U Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q U I Q Q I U I G I’ U’ I’ U’ Q Q Q Q

Q Q Q I’ I’ U’ I’ G I U I U Q Q I Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q I Q Q U I U I G I’ U’ I’ I’ Q Q Q

Q U’ I’ Q U’ I’ G I U I U Q Q I Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q I Q Q U I U I G I’ U’ Q I’ U’ Q

U’ I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’ U’

I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’

Q I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’ Q

I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’

I’ G I I Q I Q Q Q I U Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q U I Q Q Q I Q I I G I’

G I I Q I Q Q Q I U Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q U I Q Q Q I Q I I G

G I I Q I Q Q Q I U Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q U I Q Q Q I Q I I G

I’ G I I Q I Q Q Q I U Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q U I Q Q Q I Q I I G I’

I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’

Q I’ I’ G I I Q I Q Q Q I Q Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q Q I Q Q Q I Q I I G I’ I’ Q

I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’

U’ I’ Q I’ I’ G I U I U Q Q I U Q Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q Q U I Q Q U I U I G I’ I’ Q I’ U’

Q U’ I’ Q U’ I’ G I U I U Q Q I Q Q Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q Q Q I Q Q U I U I G I’ U’ Q I’ U’ Q
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Q Q Q Q Q Q Q Q Q Q Q Q U’ I’ I’ I’ G I I Q I U Q Q Q I U Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q U I Q Q Q U I Q I I G I’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q U’ I’ I’ U’ I’ G I I U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U I I G I’ U’ I’ I’ U’ Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q U’ I’ I’ Q U’ I’ G I I U Q I Q Q Q Q I U Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q U I Q Q Q Q I Q U I I G I’ U’ Q I’ I’ U’ Q Q Q Q Q Q Q Q

Q Q Q Q Q Q U’ I’ I’ Q Q I’ I’ G I I U Q I U Q Q Q Q I Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q I Q Q Q Q U I Q U I I G I’ I’ Q Q I’ I’ U’ Q Q Q Q Q Q

Q Q Q Q U’ I’ I’ Q Q U’ I’ I’ G I I U Q I U Q Q Q Q I U Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q U I Q Q Q Q U I Q U I I G I’ I’ U’ Q Q I’ I’ U’ Q Q Q Q

Q Q U’ I’ I’ Q Q Q U’ I’ I’ G I U I Q Q I Q Q Q Q Q I Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q I Q Q Q Q Q I Q Q I U I G I’ I’ U’ Q Q Q I’ I’ U’ Q Q
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Fig. 4. Decomposition of a given rectangular array into four subarrays (i), signal prop-
agations for the decomposition, marking and final synchronization (ii-v)

and reaches Cm,n at time t = m + n − 2. It generates the signal sD4 .
The signal sD3 travels along the diagonal line at 1/1-speed and prints
the delimiter.

• Signal sV1 : The sV1 -signal travels along the 1st column at 1/1-speed
and reaches Cm,1 at time t = m − 1. Then, it splits into two signals,
sH2 and sD2 . The signal sH2 travels along the mth row at 1/1-speed and
reaches Cm,n at time t = m+n− 2. The signals sH2 and sV3 reach Cm,n

at time t = m+ n− 2 simultaneously and generate the signal sD4 . The
signals sD2 and sD4 travel along the diagonal at 1/1-speed and prints the
delimiter.
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• Signal sD1 : The sD1-signal travels along the diagonal at 1/2-speed. The
slow speed 1/2 is important for the recursive-halving marking in order
to find end delimiter in each column and row.

For any i such that 1 ≤ i ≤ 4, let di denote the delimiter marked by the
diagonal signal sDi . We denote each row in β0 delimited by d1 and d3 as rβ0i

for 1 ≤ i ≤ -m/2.. Each row in β1 delimited by d2 and d4 is denoted as rβ1i

for 1 ≤ i ≤ -m/2.. The index i is counted from outside in β0 and β1. The
ith column in α0 and α1 is also denoted by cα0i and cα1i for each i such that
1 ≤ i ≤ -m/2., respectively. The index counting is also made from outside.
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Fig. 5. Space-time diagram for the
column synchronization on the ith
columns cα0i, cα1i in α0 and α1,
respectively.
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Fig. 6. Space-time diagram for the row syn-
chronization on the ith rows rβ0i, rβ1i in β0

and β1, respectively.

– Recursive-Halving Marking: Once the diagonal signal sD1 prints the
delimiter d1 on a diagonal cell, it starts the recursive-halving marking opera-
tion for each column in α0 and for each row in β0. The cell with the delimiter
d1 is the starting point of the recursive-halving marking for each column and
row. The end point for the column and row recursive-halving marking is the
delimiter d2 and d3, respectively. See Fig. 4 (iii). The delimiter d2 and d3

act as not only an ending point for the marking but also a starting point for
the next marking. The delimiter d4 acts as an end point for the marking.

As for the column marking in α0 and α1, the cell Ci,i starts the marking
operation for the ith column in α0 of length m−2i+2 at time t = 4i−4. The
cell Ci,n−i starts the marking operation for the ith column in α1 of length
m − 2i + 2 at time t = n + 4i − 5. See Fig. 5. As for the row marking in
β0 and β1, the cell Ci,i starts the marking operation for the ith row in β0
of length n − 2i + 2 at time t = 4i − 4. The cell Cm−i,i starts the marking
operation for the ith row in β1 of length n− 2i+ 2 at time t = m+ 4i− 5.
See Fig. 6.
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t = 0
1 2 3 4 5 6 7

1 G Q Q Q Q Q Q
2 Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7

1 G B Q Q Q Q Q
2 B’ Q Q Q Q Q Q
3 Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7

1 G O B Q Q Q Q
2 O’ Q Q Q Q Q Q
3 B’ Q Q Q Q Q Q
4 Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7

1 G O K B Q Q Q
2 O’ Q- Q Q Q Q Q
3 K’ Q Q Q Q Q Q
4 B’ Q Q Q Q Q Q
5 Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7

1 G O K C B Q Q
2 O’ G Q Q Q Q Q
3 K’ Q Q Q Q Q Q
4 C’ Q Q Q Q Q Q
5 B’ Q Q Q Q Q Q
6 Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7

1 G O O C K B Q
2 O’ G B Q Q Q Q
3 O’ B’ Q Q Q Q Q
4 C’ Q Q Q Q Q Q
5 K’ Q Q Q Q Q Q
6 B’ Q Q Q Q Q Q
7 Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7

1 G E O Q K C G
2 E’ G O B Q Q Q
3 O’ O’ Q Q Q Q Q
4 Q B’ Q Q Q Q Q
5 K’ Q Q Q Q Q Q
6 C’ Q Q Q Q Q Q
7 B’ Q Q Q Q Q Q
8 Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7

1 G E O Q C B G
2 E’ G O K B Q B’
3 O’ O’ Q- Q Q Q Q
4 Q K’ Q Q Q Q Q
5 C’ B’ Q Q Q Q Q
6 C’ Q Q Q Q Q Q
7 K’ Q Q Q Q Q Q
8 B’ Q Q Q Q Q Q
9 Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7

1 G E O O B D G
2 E’ G O K C G O’
3 O’ O’ G Q Q Q B’
4 O’ K’ Q Q Q Q Q
5 C’ C’ Q Q Q Q Q
6 Q B’ Q Q Q Q Q
7 K’ Q Q Q Q Q Q
8 C’ Q Q Q Q Q Q
9 B’ Q Q Q Q Q Q

10 Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7

1 G E K M K E G
2 E’ G O O B G O’
3 K’ O’ G B Q B’ K’
4 O’ O’ B’ Q Q Q B’
5 Q C’ Q Q Q Q Q
6 Q K’ Q Q Q Q Q
7 C’ B’ Q Q Q Q Q
8 C’ Q Q Q Q Q Q
9 K’ Q Q Q Q Q Q

10 B’ Q Q Q Q Q Q
11 Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7

1 G E A M A E G
2 E’ G E M D G O’
3 K’ E’ G O G O’ K’
4 O’ O’ O’ Q Q B’ C’
5 Q Q B’ Q Q Q B’
6 C’ K’ Q Q Q Q Q
7 C’ C’ Q Q Q Q Q
8 Q B’ Q Q Q Q Q
9 K’ Q Q Q Q Q Q

10 C’ Q Q Q Q Q Q
11 B’ Q Q Q Q Q Q
12 Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G O’
3 K’ E’ G M G O’ O’
4 O’ O’ O’ Q- B’ K’ C’
5 O’ Q K’ Q Q B’ K’
6 C’ C’ B’ Q Q Q B’
7 Q C’ Q Q Q Q Q
8 Q K’ Q Q Q Q Q
9 C’ B’ Q Q Q Q Q

10 C’ Q Q Q Q Q Q
11 K’ Q Q Q Q Q Q
12 B’ Q Q Q Q Q Q
13 Q Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G O’ O’
4 C’ O’ O’ G O’ K’ Q
5 O’ O’ K’ Q B’ C’ K’
6 Q C’ C’ Q Q B’ C’
7 Q Q B’ Q Q Q B’
8 C’ K’ Q Q Q Q Q
9 C’ C’ Q Q Q Q Q

10 Q B’ Q Q Q Q Q
11 K’ Q Q Q Q Q Q
12 C’ Q Q Q Q Q Q
13 B’ Q Q Q Q Q Q
14 Q Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G O’ O’
4 C’ K’ O’ G O’ O’ Q
5 O’ O’ O’ BB’ K’ C’ C’
6 Q Q C’ Q B’ K’ C’
7 C’ Q K’ Q Q B’ K’
8 C’ C’ B’ Q Q Q B’
9 Q C’ Q Q Q Q Q

10 Q K’ Q Q Q Q Q
11 C’ B’ Q Q Q Q Q
12 C’ Q Q Q Q Q Q
13 K’ Q Q Q Q Q Q
14 B’ Q Q Q Q Q Q
15 Q Q Q Q Q Q Q

t = 14
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ O’
4 C’ K’ E’ G O’ O’ O’
5 O’ O’ O’ OO’ K’ Q C’
6 O’ Q Q BB’ C’ K’ Q
7 C’ C’ K’ Q B’ C’ K’
8 Q C’ C’ Q Q B’ C’
9 Q Q B’ Q Q Q B’

10 C’ K’ Q Q Q Q Q
11 C’ C’ Q Q Q Q Q
12 Q B’ Q Q Q Q Q
13 K’ Q Q Q Q Q Q
14 C’ Q Q Q Q Q Q
15 G Q Q Q Q Q Q

t = 15
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ K’
4 C’ K’ E’ G O’ O’ O’
5 K’ O’ O’ OO’ O’ Q Q
6 O’ O’ Q KK’ C’ C’ Q
7 Q C’ C’ BB’ K’ C’ C’
8 Q Q C’ Q B’ K’ C’
9 C’ Q K’ Q Q B’ K’

10 C’ C’ B’ Q Q Q B’
11 Q C’ Q Q Q Q Q
12 Q K’ Q Q Q Q Q
13 C’ B’ Q Q Q Q Q
14 B’ Q Q Q Q Q Q
15 G B Q Q Q Q Q

t = 16
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ K’
4 Q K’ E’ G E’ O’ O’
5 K’ C’ O’ OO’ O’ O’ Q
6 O’ O’ O’ KK’ Q C’ C’
7 Q Q C’ CC’ K’ Q C’
8 C’ Q Q BB’ C’ K’ Q
9 C’ C’ K’ Q B’ C’ K’

10 Q C’ C’ Q Q B’ C’
11 Q Q B’ Q Q Q B’
12 C’ K’ Q Q Q Q Q
13 B’ C’ Q Q Q Q Q
14 D’ G Q Q Q Q Q
15 G O B Q Q Q Q

t = 17
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ K’
4 Q E’ E’ G E’ K’ O’
5 K’ C’ K’ OO’ O’ O’ O’
6 O’ O’ O’ OO’ Q Q C’
7 O’ Q Q CC’ C’ Q Q
8 C’ C’ Q KK’ C’ C’ Q
9 Q C’ C’ BB’ K’ C’ C’

10 Q Q C’ Q B’ K’ C’
11 C’ Q K’ Q Q B’ K’
12 B’ C’ B’ Q Q Q B’
13 K’ B’ Q Q Q Q Q
14 E’ G B Q Q Q Q
15 G O K B Q Q Q

t = 18
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ K’
4 Q E’ E’ G E’ K’ C’
5 K’ C’ K’ EE’ O’ O’ O’
6 C’ O’ O’ OO’ O’ Q Q
7 O’ O’ Q Q C’ C’ Q
8 Q C’ C’ KK’ Q C’ C’
9 Q Q C’ CC’ K’ Q C’

10 C’ Q Q BB’ C’ K’ Q
11 B’ C’ K’ Q B’ C’ K’
12 D’ B’ C’ Q Q B’ C’
13 K’ D’ G Q Q Q B’
14 E’ G O B Q Q Q
15 G O K C B Q Q

t = 19
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ E’
4 Q E’ E’ G E’ K’ C’
5 C’ C’ K’ EE’ K’ O’ O’
6 C’ K’ O’ OO’ O’ O’ Q
7 O’ O’ O’ Q Q C’ C’
8 Q Q C’ CC’ Q Q C’
9 C’ Q Q CC’ C’ Q Q

10 B’ C’ Q KK’ C’ C’ Q
11 K’ B’ C’ BB’ K’ C’ C’
12 D’ K’ B’ Q B’ K’ C’
13 E’ E’ G B Q B’ K’
14 E’ G O K B Q B’
15 G O O C K B Q

t = 20
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 E’ E’ G M G E’ E’
4 E’ E’ E’ G E’ K’ C’
5 C’ Q K’ EE’ K’ C’ O’
6 C’ K’ C’ OO’ O’ O’ O’
7 O’ O’ O’ OO’ Q Q C’
8 O’ Q Q CC’ C’ Q Q
9 B’ C’ Q Q C’ C’ Q

10 D’ B’ C’ KK’ Q C’ C’
11 K’ D’ B’ CC’ K’ Q C’
12 Q K’ D’ G C’ K’ Q
13 E’ E’ G O G C’ K’
14 E’ G O K C G C’
15 G E O Q K C G

t = 21
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G E’ E’
4 E’ E’ E’ G E’ E’ C’
5 C’ Q E’ EE’ K’ C’ K’
6 C’ K’ C’ KK’ O’ O’ O’
7 K’ O’ O’ OO’ O’ Q Q
8 M’ O’ Q Q C’ C’ Q
9 K’ B’ C’ Q Q C’ C’

10 D’ K’ B’ CC’ Q Q C’
11 D’ D’ K’ BB’ C’ Q Q
12 Q E’ E’ G B’ C’ Q
13 E’ E’ G M G B’ C’
14 E’ G O O B G B’
15 G E O Q C B G

t = 22
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G E’ E’
4 E’ E’ E’ G E’ E’ Q
5 C’ Q E’ EE’ K’ C’ K’
6 Q K’ C’ KK’ C’ O’ O’
7 A’ C’ O’ OO’ O’ O’ Q
8 M’ M’ O’ Q Q C’ C’
9 A’ D’ B’ CC’ Q Q C’

10 Q K’ D’ BB’ C’ Q Q
11 D’ Q K’ DD’ B’ C’ Q
12 E’ E’ E’ G D’ B’ C’
13 E’ E’ G M G D’ B’
14 E’ G E M D G D’
15 G E O O B D G

t = 23
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G E’ E’
4 E’ E’ E’ G E’ E’ Q
5 Q Q E’ EE’ E’ C’ K’
6 A’ C’ C’ KK’ C’ K’ O’
7 C’ B’ K’ OO’ O’ O’ O’
8 M’ M’ M’ OO’ Q Q C’
9 D’ B’ K’ BB’ C’ Q Q

10 A’ D’ D’ KK’ B’ C’ Q
11 Q Q E’ EE’ K’ B’ C’
12 E’ E’ E’ G E’ K’ B’
13 K’ E’ G M G E’ K’
14 E’ G I M I G E’
15 G E K M K E G

t = 24
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G E’ E’
4 E’ E’ E’ G E’ E’ Q
5 A’ E’ E’ EE’ E’ Q K’
6 C’ B’ Q KK’ C’ K’ C’
7 Q C’ A’ CC’ O’ O’ O’
8 M’ M’ M’ XX O’ Q Q
9 Q D’ A’ DD’ B’ C’ Q

10 D’ B’ Q KK’ D’ B’ C’
11 A’ E’ E’ EE’ K’ D’ B’
12 E’ E’ E’ G E’ K’ D’
13 K’ E’ G M G E’ K’
14 E’ G I M I G E’
15 G E A M A E G

t = 25
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 K’ E’ G M G E’ E’
4 I’ K’ E’ G E’ E’ Q
5 U’ I’ E’ EE’ E’ Q C’
6 Q Q A’ EE’ C’ K’ C’
7 Q Q C’ BB’ K’ O’ O’
8 M’ M’ P X P O’ Q
9 Q Q D’ BB’ K’ B’ C’

10 Q Q A’ EE’ D’ K’ B’
11 U’ I’ E’ EE’ E’ D’ K’
12 I’ K’ E’ G E’ E’ D’
13 K’ E’ G M G E’ E’
14 E’ G I M I G E’
15 G I U M U I G

t = 26
1 2 3 4 5 6 7

1 G I U M U I G
2 E’ G I M I G E’
3 A’ E’ G M G E’ E’
4 I’ A’ E’ G E’ E’ E’
5 U’ I’ I’ EE’ E’ Q C’
6 Q Q U’ II Q K’ C’
7 Q Q Q Q A’ C’ O’
8 M’ P P X P P O’
9 Q Q Q Q A’ D’ B’

10 Q Q U’ II Q K’ D’
11 U’ I’ I’ EE’ E’ Q K’
12 I’ A’ E’ G E’ E’ Q
13 A’ E’ G M G E’ E’
14 E’ G I M I G E’
15 G I U M U I G

t = 27
1 2 3 4 5 6 7

1 G I U M U I G
2 I’ G I M I G E’
3 U’ I’ G M G E’ K’
4 I’ U’ I’ G E’ E’ E’
5 U’ I’ I’ II E’ Q C’
6 Q Q U’ II A’ C’ C’
7 Q Q Q Q C’ B’ K’
8 s’ P P X P P s’
9 Q Q Q Q D’ B’ K’

10 Q Q U’ II A’ D’ D’
11 U’ I’ I’ II E’ Q D’
12 I’ U’ I’ G E’ E’ Q
13 U’ I’ G M G E’ E’
14 I’ G I M I G E’
15 G I U M U I G

t = 28
1 2 3 4 5 6 7

1 G I U M U I G
2 I’ G I M I G E’
3 U’ I’ G M G E’ K’
4 I’ U’ I’ P E’ E’ E’
5 U’ I’ I’ II I’ E’ C’
6 Q Q U’ II U’ B’ Q
7 L2’ Q Q Q Q C’ L2’
8 s’ s’ P X P s’ s’
9 C2’ Q Q Q Q D’ C2’

10 Q Q U’ II U’ B’ Q
11 U’ I’ I’ II I’ E’ D’
12 I’ U’ I’ P E’ E’ E’
13 U’ I’ G M G E’ E’
14 I’ G I M I G E’
15 G I U M U I G

t = 29
1 2 3 4 5 6 7

1 G I U M U I G
2 I’ G I M I G E’
3 U’ I’ G P G E’ K’
4 I’ U’ I’ P I’ K’ E’
5 U’ I’ I’ II I’ I’ Q
6 L2’ Q U’ II U’ Q L2’
7 L2’ L2’ Q Q Q L2’ L2’
8 s’ s’ s’ X s’ s’ s’
9 C2’ C2’ Q Q Q C2’ C2’

10 C2’ Q U’ II U’ Q C2’
11 U’ I’ I’ II I’ I’ Q
12 I’ U’ I’ P I’ K’ E’
13 U’ I’ G P G E’ K’
14 I’ G I M I G E’
15 G I U M U I G

t = 30
1 2 3 4 5 6 7

1 G I U M U I G
2 I’ G I P I G E’
3 U’ I’ G P G E’ K’
4 I’ U’ I’ P I’ A’ E’
5 MM’ I’ I’ II I’ I’ MM’
6 Q2’ L2’ U’ II U’ L2’ Q2’
7 L2’ L2’ L2’ Q L2’ L2’ L2’
8 s’ s’ s’ s’ s’ s’ s’
9 C2’ C2’ C2’ Q C2’ C2’ C2’

10 R2’ C2’ U’ II U’ C2’ R2’
11 MM’ I’ I’ II I’ I’ MM’
12 I’ U’ I’ P I’ A’ E’
13 U’ I’ G P G E’ K’
14 I’ G I P I G E’
15 G I U M U I G

t = 31
1 2 3 4 5 6 7

1 G I U y U I G
2 I’ G I P I G E’
3 U’ I’ G P G I’ K’
4 s’ U’ I’ P I’ U’ s’
5 s’ s’ I’ II I’ s’ s’
6 Q2’ Q2’MM’ II MM’Q2’ Q2’
7 L2’ L2’ L2’ L2’ L2’ L2’ L2’
8 s’ s’ s’ s’ s’ s’ s’
9 C2’ C2’ C2’ C2’ C2’ C2’ C2’

10 R2’ R2’ MM’ II MM’ R2’ R2’
11 s’ s’ I’ II I’ s’ s’
12 s’ U’ I’ P I’ U’ s’
13 U’ I’ G P G I’ K’
14 I’ G I P I G E’
15 G I U y U I G

t = 32
1 2 3 4 5 6 7

1 G I MM y MM I G
2 I’ G I y I G E’
3 MM’ I’ G P G I’ MM’
4 s’ MM’ I’ P I’ MM’ s’
5 s’ s’ s’ II s’ s’ s’
6 C2’ C2’ s’ s’ s’ C2’ C2’
7 L2’ L2’ L2’ L2’ L2’ L2’ L2’
8 s’ s’ s’ s’ s’ s’ s’
9 C2’ C2’ C2’ C2’ C2’ C2’ C2’

10 L2’ L2’ s’ s’ s’ L2’ L2’
11 s’ s’ s’ II s’ s’ s’
12 s’ MM’ I’ P I’ MM’ s’
13 MM’ I’ G P G I’ MM’
14 I’ G I y I G E’
15 G I MM y MM I G

t = 33
1 2 3 4 5 6 7

1 G y y y y y G
2 s’ G y y y G s’
3 s’ s’ G y G s’ s’
4 s’ s’ s’ P s’ s’ s’
5 s’ s’ s’ s’ s’ s’ s’
6 s’ s’ s’ s’ s’ s’ s’
7 s’ s’ s’ s’ s’ s’ s’
8 s’ s’ s’ s’ s’ s’ s’
9 s’ s’ s’ s’ s’ s’ s’

10 s’ s’ s’ s’ s’ s’ s’
11 s’ s’ s’ s’ s’ s’ s’
12 s’ s’ s’ P s’ s’ s’
13 s’ s’ G y G s’ s’
14 s’ G y y y G s’
15 G y y y y y G

t = 34
1 2 3 4 5 6 7

1 F F F F F F F
2 F F F F F F F
3 F F F F F F F
4 F F F F F F F
5 F F F F F F F
6 F F F F F F F
7 F F F F F F F
8 F F F F F F F
9 F F F F F F F

10 F F F F F F F
11 F F F F F F F
12 F F F F F F F
13 F F F F F F F
14 F F F F F F F
15 F F F F F F F

Fig. 7. Snapshots of the synchronization algorithm A on a 15× 7 array

– Finding a Center Point of the Array: The center cell of the 1st column
of length m in α0 can be identified and marked at time t = 3m1. The center
marking in the column is propagated in the right direction at speed 1/1 on
the row where it is generated, additionally requiring n1 steps. The center cell
of the 1st row of length n in β0 can be identified and marked at time t = 3n1.
The center marking in the 1st row is propagated downward at speed 1/1 on
the column where it is generated, additionally requiringm1 steps. The center
cell of the array is identified and marked at time t2D−center = max(3m1 +
n1,m1+3n1) = m1+n1−1+max(2m1+1, 2n1+1) = m1+n1−1+max(m,n).

– Final Synchronization: The general generated at the center of the array
at time t = t2D−center acts as a general for the final synchronization. First, it
send out a signal ssync into four directions: leftward, rightward, upward, and
downward. See Fig. 4 (v). It propagates at 1/1 speed and arrives at center
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cells on the 1st column in α0 and α1 at time t = t2D−center + n1. It also
reaches at center cells on the 1st row in β0 and β1 at time t = t2D−center+m1,
respectively. Then, the signal reflects in the reverse direction and initiates
the final synchronization for each row and column by propagating at 1/1
speed. For any i such that 1 ≤ i ≤ -m/2., the ith column in α0 and α1 can be
synchronized at time t2D−sync = t2D−center+n1+i−1+-(m−2i+2)/2.−1 =
2m1 + 1 + 2n1 + 1 + max(m,n)− 3 = m+ n+max(m,n)− 3. In a similar
way, For any i such that 1 ≤ i ≤ -m/2., the ith row in β0 and β1 can be
synchronized at time t2D−sync = t2D−center+m1+i−1+-(n−2i+2)/2.−1 =
2m1 + 1 + 2n1 + 1 +max(m,n)− 3 = m+ n+max(m,n)− 3.
Thus all columns in α0 and α1 and all rows in β0 and β1 can be synchronized
simultaneously at time t = m+ n+max(m,n)− 3.

Figures 5 and 6 show the space-time diagram for the column synchronization on
the ith columns cα0i, cα1i in α0 and α1 and for the row synchronization on the
ith rows rβ0i, rβ1i in β0 and β1, respectively.

One can see that each marking operation has been finished before the arrival of
the first synchronization signal. The algorithm given above operates in optimum-
steps in a similar way for the rectangles such as the case 1:m = 2m1+1, n = 2n1,
case 2: m = 2m1, n = 2n1 + 1, and case 3: m = 2m1, n = 2n1.

Thus we have:

Theorem 5. The synchronization algorithm A can synchronize any m×n rect-
angular array in optimum m+ n+max(m,n)− 3 steps.

We have implemented the algorithm A on a 2D cellular automaton having 63
states and 25317 local rules, which has been verified for successful synchroniza-
tion on any arrays of size m × n such that 2 ≤ m,n ≤ 200. In Figures 7 and 8
we present some snapshots of the synchronization processes of the algorithm A
on 15× 7 and 7× 14 arrays, respectively.

4.3 Generalized Algorithm

Now we are going to consider an extension of the optimum-time FSSP algorithm
A to the generalized case where the general can be at any position of the array.
We assume that an initial general G is on the cell Cr,s of a given array of size
m× n, where 1 ≤ r ≤ m, 1 ≤ s ≤ n. As for the lower-bound of synchronization
steps in 2D generalized FSSP algorithms, Umeo, Nishide, and Kubo [2012] has
given it in the following theorem:

Theorem 6Umeo et. al [2012]. There exists no 2D cellular automaton that can
synchronize any 2D array of size m × n with an initial general on Cr,s in less
than m+n+max(m,n)−min(r,m− r+1)−min(s, n− s+1)− 1 steps, where
1 ≤ r ≤ m, 1 ≤ s ≤ n.

The generalized 2D FSSP algorithm expanded operates in a similar way as in
the case of the general on the north-west corner, and it consists of four operat-
ing phases: decomposing the array into four subarrays, a marking phase for these
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t = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G Q Q Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G B Q Q Q Q Q Q Q Q Q Q Q Q

2 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G O B Q Q Q Q Q Q Q Q Q Q Q

2 O’ Q Q Q Q Q Q Q Q Q Q Q Q Q

3 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G O K B Q Q Q Q Q Q Q Q Q Q

2 O’ Q- Q Q Q Q Q Q Q Q Q Q Q Q

3 K’ Q Q Q Q Q Q Q Q Q Q Q Q Q

4 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G O K C B Q Q Q Q Q Q Q Q Q

2 O’ G Q Q Q Q Q Q Q Q Q Q Q Q

3 K’ Q Q Q Q Q Q Q Q Q Q Q Q Q

4 C’ Q Q Q Q Q Q Q Q Q Q Q Q Q

5 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G O O C K B Q Q Q Q Q Q Q Q

2 O’ G B Q Q Q Q Q Q Q Q Q Q Q

3 O’ B’ Q Q Q Q Q Q Q Q Q Q Q Q

4 C’ Q Q Q Q Q Q Q Q Q Q Q Q Q

5 K’ Q Q Q Q Q Q Q Q Q Q Q Q Q

6 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E O Q K C B Q Q Q Q Q Q Q

2 E’ G O B Q Q Q Q Q Q Q Q Q Q

3 O’ O’ Q Q Q Q Q Q Q Q Q Q Q Q

4 Q B’ Q Q Q Q Q Q Q Q Q Q Q Q

5 K’ Q Q Q Q Q Q Q Q Q Q Q Q Q

6 C’ Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E O Q C C K B Q Q Q Q Q Q

2 E’ G O K B Q Q Q Q Q Q Q Q Q

3 O’ O’ Q- Q Q Q Q Q Q Q Q Q Q Q

4 Q K’ Q Q Q Q Q Q Q Q Q Q Q Q

5 C’ B’ Q Q Q Q Q Q Q Q Q Q Q Q

6 B’ Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G B Q Q Q Q Q Q Q Q Q Q Q Q

t = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E O O C Q K C B Q Q Q Q Q

2 E’ G O K C B Q Q Q Q Q Q Q Q

3 O’ O’ G Q Q Q Q Q Q Q Q Q Q Q

4 O’ K’ Q Q Q Q Q Q Q Q Q Q Q Q

5 B’ C’ Q Q Q Q Q Q Q Q Q Q Q Q

6 D’ G Q Q Q Q Q Q Q Q Q Q Q Q

7 G O B Q Q Q Q Q Q Q Q Q Q Q

t = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K O Q Q C C K B Q Q Q Q

2 E’ G O O C K B Q Q Q Q Q Q Q

3 K’ O’ G B Q Q Q Q Q Q Q Q Q Q

4 M’ O’ B’ Q Q Q Q Q Q Q Q Q Q Q

5 K’ B’ Q Q Q Q Q Q Q Q Q Q Q Q

6 E’ G B Q Q Q Q Q Q Q Q Q Q Q

7 G O K B Q Q Q Q Q Q Q Q Q Q

t = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K O Q C C Q K C B Q Q Q

2 E’ G E O Q K C B Q Q Q Q Q Q

3 A’ E’ G O B Q Q Q Q Q Q Q Q Q

4 M’ M’ O’ Q Q Q Q Q Q Q Q Q Q Q

5 A’ D’ G Q Q Q Q Q Q Q Q Q Q Q

6 E’ G O B Q Q Q Q Q Q Q Q Q Q

7 G O K C B Q Q Q Q Q Q Q Q Q

t = 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K O O C Q Q C C K B Q Q

2 I’ G E O Q C C K B Q Q Q Q Q

3 U’ I’ G O K B Q Q Q Q Q Q Q Q

4 M’ M’ M’ Q- Q Q Q Q Q Q Q Q Q Q

5 U’ I’ G B Q Q Q Q Q Q Q Q Q Q

6 I’ G O K B Q Q Q Q Q Q Q Q Q

7 G O O C K B Q Q Q Q Q Q Q Q

t = 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K C O Q Q C C Q K C B Q

2 I’ G E O O C Q K C B Q Q Q Q

3 U’ I’ G O K C B Q Q Q Q Q Q Q

4 M’ M’ M’ G Q Q Q Q Q Q Q Q Q Q

5 U’ I’ G O B Q Q Q Q Q Q Q Q Q

6 I’ G O K C B Q Q Q Q Q Q Q Q

7 G E O Q K C B Q Q Q Q Q Q Q

t = 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E C O Q C C Q Q C C K G

2 I’ G E K O Q Q C C K B Q Q Q

3 U’ I’ G O O C K B Q Q Q Q Q Q

4 M’ M’ M’ G BB’ Q Q Q Q Q Q Q Q Q

5 U’ I’ G O K B Q Q Q Q Q Q Q Q

6 I’ G O O C K B Q Q Q Q Q Q Q

7 G E O Q C C K B Q Q Q Q Q Q

t = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E C O O C Q Q C C Q A G

2 I’ G E K O Q C C Q K C B Q B’

3 U’ I’ G E O Q K C B Q Q Q Q Q

4 M’ M’ M’ G OO’ BB’ Q Q Q Q Q Q Q Q

5 U’ I’ G O K C B Q Q Q Q Q Q Q

6 I’ G E O Q K C B Q Q Q Q Q Q

7 G E O O C Q K C B Q Q Q Q Q

t = 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E C K O Q Q C C Q A D G

2 I’ G E K O O C Q Q C C K G O’

3 U’ I’ G E O Q C C K B Q Q Q B’

4 M’ M’ M’ G OO’ KK’ BB’ Q Q Q Q Q Q Q

5 U’ I’ G O O C K B Q Q Q Q Q Q

6 I’ G E O Q C C K B Q Q Q Q Q

7 G E K O Q Q C C K B Q Q Q Q

t = 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E Q K O Q C C Q A K E G

2 I’ G E K C O Q Q C C Q A G O’

3 U’ I’ G E O O C Q K C B Q B’ K’

4 M’ M’ M’ G OO’ KK’ CC’ BB’ Q Q Q Q Q B’

5 U’ I’ G E O Q K C B Q Q Q Q Q

6 I’ G E O O C Q K C B Q Q Q Q

7 G E K O Q C C Q K C B Q Q Q

t = 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E Q K O O C Q A D K E G

2 I’ G E E C O Q C C Q A D G O’

3 U’ I’ G E K O Q Q C C K G O’ K’

4 M’ M’ M’ G OO’ OO’ CC’ KK’ BB’ Q Q Q B’ C’

5 U’ I’ G E O Q C C K B Q Q Q B’

6 I’ G E K O Q Q C C K B Q Q Q

7 G E K O O C Q Q C C K B Q Q

t = 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E Q K C O Q A K D E E G

2 I’ G E E C O O C Q A K E G O’

3 U’ I’ G E K O Q C C Q A G O’ O’

4 M’ M’ M’ G EE’ OO’ Q KK’ CC’ BB’ Q B’ K’ C’

5 U’ I’ G E O O C Q K C B Q B’ K’

6 I’ G E K O Q C C Q K C B Q B’

7 G E K C O Q Q C C Q K C B Q

t = 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E Q C C O A D K Q E E G

2 I’ G E E C K O Q A D K E G E’

3 U’ I’ G E K O O C Q A D G O’ O’

4 M’ M’ M’ G EE’ OO’ Q CC’ CC’ KK’ G O’ K’ Q

5 U’ I’ G E K O Q Q C C K G C’ K’

6 I’ G E K O O C Q Q C C K G C’

7 G E E C O Q C C Q Q C C K G

t = 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E E E C C W W D D Q E E G

2 I’ G E E Q K O A K D E E G E’

3 U’ I’ G E K C O Q A K E G O’ O’

4 M’ M’ M’ G EE’ OO’ OO’ CC’ Q AA’ G M’ O’ Q

5 U’ I’ G E K O Q C C Q A G B’ C’

6 I’ G E K C O Q Q C C Q A G B’

7 G E E C O O C Q Q C C Q A G

t = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K E C B W W B D E E E G

2 I’ G E E Q K W W K Q E E G E’

3 U’ I’ G E E C O A D K E G E’ O’

4 M’ M’ M’ G EE’ KK’ OO’ Q AA’ DD’ G M’ M’ O’

5 U’ I’ G E K O O C Q A D G D’ B’

6 I’ G E E C O Q C C Q A D G D’

7 G E E C K O Q Q C C Q A D G

t = 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K E B C W W D B E K E G

2 I’ G E E Q A W W A Q E E G E’

3 U’ I’ G E E C W W D E E G I’ K’

4 M’ M’ M’ G EE’ KK’ OO’ AA’ KK’ EE’ G M’ M’ M’

5 U’ I’ G E K C O Q A K E G I’ K’

6 I’ G E E C O O C Q A K E G E’

7 G E E Q K O Q C C Q A K E G

t = 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E K I Q Q W W Q Q I K E G

2 I’ G E E A C W W D A E E G E’

3 U’ I’ G E E B W W B E E G I’ A’

4 M’ M’ M’ G EE’ KK’ XX XX KK’ EE’ G M’ M’ M’

5 U’ I’ G E E C O A D K E G I’ A’

6 I’ G E E C K O Q A D K E G E’

7 G E E Q K O O C Q A D K E G

t = 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G E A I Q Q W W Q Q I A E G

2 I’ G E I U Q W W Q U I E G I’

3 U’ I’ G E I Q P P Q I E G I’ U’

4 M’ M’ M’ G EE’ AA’ X X AA’ EE’ G M’ M’ M’

5 U’ I’ G E E C P P D E E G I’ U’

6 I’ G E E Q K O A K D E E G I’

7 G E E Q K C O Q A K D E E G

t = 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I U I Q Q W W Q Q I U I G

2 I’ G I I U Q P P Q U I I G I’

3 U’ I’ G I I Q P P Q I I G I’ U’

4 M’ M’ M’ G II UU X X UU II G M’ M’ M’

5 U’ I’ G E E B P P B E E G I’ U’

6 I’ G E E Q K P P K Q E E G I’

7 G E E Q C C O A D K Q E E G

t = 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I U I Q Q y y Q Q I U I G

2 I’ G I I U Q P P Q U I I G I’

3 U’ I’ G I I Q P P Q I I G I’ U’

4 M’ M’ M’ P II UU X X UU II P M’ M’ M’

5 U’ I’ G E I Q P P Q I E G I’ U’

6 I’ G E E Q A P P A Q E E G I’

7 G E E E C C y y D D Q E E G

t = 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I U I Q L2 y y C2 Q I U I G

2 I’ G I I U Q y y Q U I I G I’

3 U’ I’ G I I Q P P Q I I G I’ U’

4 M’ M’ P P II UU X X UU II P P M’ M’

5 U’ I’ G I I Q P P Q I I G I’ U’

6 I’ G E E A C y y D A E E G I’

7 G E K E C L2 y y C2 D E E E G

t = 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I U I L2 L2 y y C2 C2 I U I G

2 I’ G I I U L2 y y C2 U I I G I’

3 U’ I’ G I I Q y y Q I I G I’ U’

4 M’ P P P II UU X X UU II P P P M’

5 U’ I’ G I I Q y y Q I I G I’ U’

6 I’ G E I U L2 y y C2 U I E G I’

7 G E K E L2 L2 y y C2 C2 E K E G

t = 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I U y Q2 L2 y y C2 R2 y U I G

2 I’ G I I MM L2 y y C2 MM I I G I’

3 U’ I’ G I I L2 y y C2 I I G I’ U’

4 s’ P P P II UU y y UU II P P P s’

5 U’ I’ G I I L2 y y C2 I I G I’ U’

6 I’ G I I MM L2 y y C2 MM I I G I’

7 G E K y Q2 L2 y y C2 R2 y K E G

t = 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G I MM y C2 L2 y y C2 L2 y MM I G

2 I’ G I y y L2 y y C2 y y I G I’

3 MM’ I’ G I y L2 y y C2 y I G I’ MM’

4 s’ s’ P P II MM y y MM II P P s’ s’

5 MM’ I’ G I y L2 y y C2 y I G I’ MM’

6 I’ G I y y L2 y y C2 y y I G I’

7 G E MM y C2 L2 y y C2 L2 y MM E G

t = 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 G y y y y y y y y y y y y G

2 s’ G y y y y y y y y y y G s’

3 s’ s’ G y y y y y y y y G s’ s’

4 s’ s’ s’ P y y y y y y P s’ s’ s’

5 s’ s’ G y y y y y y y y G s’ s’

6 s’ G y y y y y y y y y y G s’

7 G y y y y y y y y y y y y G

t = 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F

3 F F F F F F F F F F F F F F

4 F F F F F F F F F F F F F F

5 F F F F F F F F F F F F F F

6 F F F F F F F F F F F F F F

7 F F F F F F F F F F F F F F

Fig. 8. Snapshots of the synchronization algorithm A on a 7× 14 array
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Fig. 9. Space-time diagram for
the column synchronization on
the ith columns in α0 and α1,
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Fig. 10. Space-time diagram for the row syn-
chronization on the ith rows in β0 and β1,
respectively

subarrays, finding a center cell(s) of the given array, and a final synchronization
phase. A decomposition the array is made in a similar way in the case where the
initial general is on C1,1. By starting the recursive-halving marking from on Cr,s,
we can shorten the synchronization steps bymin(r,m−r+1)+min(s, n−s+1)−2.
Due to the space available, we omit the details of the algorithm. Figures 9 and 10
show the space-time diagram for the column synchronization on the ith columns
in α0 and α1 and for the row synchronization on the ith rows in β0 and β1, respec-
tively. The generalized 2D optimum-time FSSP algorithm is stated as follows:

Theorem 7. There exists an optimum-time synchronization algorithm that can
synchronize any m × n rectangular array with a general at Cr,s in optimum
m + n + max(m,n) − min(r,m − r + 1) − min(s, n − s + 1) − 1 steps, where
1 ≤ r ≤ m, 1 ≤ s ≤ n.

5 Conclusions

We have proposed a new recursive-halving based optimum-time synchronization
algorithm that can synchronize any rectangle 2D arrays of size m × n with a
general at one corner in m + n + max(m,n) − 3 steps. The algorithm is quite
different from previous designs and it can be easily generalized to 2D arrays with
a general at any position of the array. The algorithm is isotropic concerning the
side-lengths of 2D arrays and its correctness is transparent and easily verified.
A smaller-state realization on a 2D cellular automaton would be possible.
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Abstract. The paper presents MathCloud platform which enables wide-scale 
sharing, publication and reuse of scientific applications as RESTful web servic-
es. A unified interface of computational web service based on REST architec-
tural style is proposed. Main components of MathCloud platform including  
service container, service catalogue, workflow management system, and securi-
ty mechanism are described. In contrast to other similar efforts based on WS-* 
specifications, the described platform provides a more lightweight solution with 
native support for modern Web applications. The platform has been successful-
ly used in several applications from various fields of computational science that 
confirm the viability of proposed approach and software platform. 

Keywords: computational web service, service-oriented scientific environment, 
software as a service, REST, service container, service catalogue, workflow. 

1 Introduction 

Modern scientific research is closely related to complex computations and analysis of 
massive datasets. Computational Science is a rapidly growing field that uses advanced 
computing and data analysis to solve complex scientific and engineering problems. In 
their research scientists actively use software applications that implement computa-
tional algorithms, numerical methods and models of complex systems. Typically, 
these applications require massive amounts of calculations and are often executed on 
supercomputers or distributed computing systems.  

The increasing complexity of problems being solved requires simultaneous use of 
several computational codes and computing resources. This leads to an increased 
complexity of applications and computing infrastructures. The multi- and interdiscip-
linary nature of modern science requires collaboration within distributed research 
projects including coordinated use of scientific expertise, software and resources of 
each partner. This brings a number of problems faced by a scientist in a day-to-day 
research. 

The reuse of existing computational software is one of key factors influencing re-
search productivity. However, the increased complexity of such software means that it 
often requires specific expertise in order to install, configure and run it that is beyond 
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the expertise of an ordinary researcher. This specific expertise also involves configu-
ration and use of high performance computing resources required to run the software. 
In some cases such expertise can be provided by IT support staff, but this brings addi-
tional operating expenses that can be prohibitive for small research teams. The prob-
lem amplifies in case of actively evolving software which means that it has to be  
upgraded or reinstalled on a regular basis. In addition to problem-specific parameters 
many applications require specification of additional runtime parameters such as 
number of parallel processes. Mastering these parameters also requires additional 
expertise that sometimes can only be provided by software authors. 

Modern supercomputing centers and grid infrastructures provide researchers with 
access to high performance computing resources. Such facilities also provide access 
to preinstalled popular computational packages which partially solves the aforemen-
tioned problem. Researchers can also use such facilities to run arbitrary computational 
code. But here lies another problem. In this case, in addition to master the software, 
the researcher also has to master the subtleties of working with the command line and 
the batch system of supercomputer or grid middleware. About 30 years ago such in-
terface was taken for granted, but in the eyes of a modern researcher it looks the same 
as a text web browser - awkward and archaic. Without radically changing their inter-
face, scientific computing facilities have grown, become more complex inside and 
harder to use. 

The third issue faced by a modern computational scientist is related to the need to 
combine multiple applications such as models or solvers in order to solve a complex 
problem. Typically, this issue represents a complex problem on its own which natu-
rally includes all the issues discussed previously. It also brings an important problem 
of interoperability between computational applications written by different authors. 
Some applications are designed without interoperability in mind which means that 
this issue has to be resolved by researcher itself. 

The described problems severely reduce the research productivity by not allowing 
scientists to focus on real problems to be solved. Therefore there is a huge demand for 
high-level interfaces and problem solving environments that hide the complexity of 
applications and infrastructure from a user. 

The most promising approach for taming complexity and enabling reuse of appli-
cations is the use of service-oriented architecture (SOA). SOA consists of a set of 
principles and methodologies for provision of applications in the form of remotely 
accessible, interoperable services. The use of SOA can enable wide-scale sharing, 
publication and reuse of scientific applications, as well as automation of scientific 
tasks and composition of applications into new services [1].  

The provision of applications as services is closely related to “Software as a Ser-
vice” (SaaS) software delivery model implemented nowadays by many web and cloud 
computing services. This model has several advantages in comparison to traditional 
software delivery such as ability to run software without installation using a web 
browser, centralized maintenance and accelerated feature delivery. The ubiquity of 
SaaS applications and the ability to access these applications via programmable APIs 
have spawned development of mashups that combine data, presentation and functio-
nality from multiple services, creating a composite service. 
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A key observation here is that, in essence, the aforementioned issues are not unique 
to scientific computing. However, it is still an open question how existing approaches, 
such as SOA, SaaS and Web 2.0, can be efficiently applied in the context of scientific 
computing environments.  

The paper presents MathCloud platform which enables wide-scale sharing,  
publication and reuse of scientific applications as RESTful web services. Section 2 
introduces a unified remote interface of computational web service based on REST 
architectural style. Section 3 describes main components of MathCloud platform in-
cluding service container, service catalogue, workflow management system, and secu-
rity mechanism. Section 4 presents applications and experimental evaluation of 
created platform. Section 5 discusses related work. 

2 Unified Interface of Computational Web Service 

Currently, the dominant technology for building service-oriented systems are Web 
services based on SOAP protocol, WSDL and numerous WS-* specifications (herei-
nafter referred to as “big Web services”). A common criticism of big Web services is 
their excessive complexity and incorrect use of core principles of the Web architec-
ture [2]. The advantages of big Web services mostly apply to complex application 
integration scenarios and business processes that occur in enterprise systems, while 
rarely present in Web 2.0 applications that favor ease-of-use and ad hoc integration 
[3]. 

The most promising alternative approach to implementation of web services is 
based on the REST (Representational State Transfer) architectural style [4]. Thanks to 
the uniform interface for accessing resources, the use of core Web standards and the 
presence of numerous proven implementations, REST provides a lightweight and 
robust framework for development of web services and related client applications. 
This is confirmed by a proliferation of the so-called RESTful web services [2], espe-
cially within Web 2.0 applications. 

Assuming that service-oriented scientific environments should also emphasize 
ease-of-use and ad hoc integration of services, we propose to implement computa-
tional services as RESTful web services with a unified interface [5]. This interface or 
REST API is based on the following abstract model of a computational service. A 
service processes incoming client's requests to solve specific problems. A client's 
request includes a parameterized description of the problem, which is represented as a 
set of input parameters. Having successfully processed the request, the service returns 
the result represented as a set of output parameters to the client. 

The proposed unified interface of computational web service is formed by a set of 
resources identified by URIs and accessible via standard HTTP methods (Table. 1). 
The interface takes into account features of computational services by supporting 
asynchronous request processing and passing large data parameters. Also, in accor-
dance with the service-oriented approach, the interface supports introspection, i.e., 
obtaining information about the service and its parameters.  
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Table 1. REST API of computational web service 

Resource GET POST DELETE 

Service Get service description Submit new request (create job)  

Job Get job status and results  Cancel job, delete job data 

File Get file data   

 
The service resource supports two HTTP methods. GET method returns the service 

description. POST method allows a client to submit a request to server. The request 
body contains values of input parameters. Some of these values may contain identifi-
ers of file resources. In response to the request, the service creates a new subordinate 
job resource and returns to the client identifier and current representation of the job 
resource. 

The job resource supports GET and DELETE methods. GET method returns job 
representation with information about current job status. If the job is completed suc-
cessfully, then the job representation also contains job results in the form of values of 
output parameters. Some of these values may contain identifiers of file resources. 

The DELETE method of job resource allows a client to cancel job execution or, if 
the job is already completed, delete job results. This method destroys the job resource 
and its subordinate file resources. 

The file resource represents a part of client request or job result provided as a re-
mote file. The file contents can be retrieved fully or partially via the GET method of 
HTTP or other data transfer protocol. 

Note that the described interface doesn’t prescribe specific templates for resource 
URIs which may vary between implementations. It is desirable to respect the de-
scribed hierarchical relationships between resources while constructing these URIs. 

The described interface supports job processing in both synchronous and asyn-
chronous modes. Indeed, if the job result can be immediately returned to the client, 
then it is transmitted inside the returned job resource representation along with the 
indication of DONE state. If, however, the processing of request takes time, it is 
stated in the returned job resource representation by specifying the appropriate job 
state (WAITING or RUNNING). In this case, the client uses the obtained job resource 
identifier for further checking of job state and obtaining its results. 

The proposed REST API is incomplete without considering resource representation 
formats and means of describing service parameters. The most widely used data re-
presentation formats for Web services are XML and JSON. Among these JSON has 
been chosen for the following reasons. First, JSON provides more compact and read-
able representation of data structures, while XML is focused on representation of 
arbitrary documents. Second, JSON supports native integration with JavaScript lan-
guage simplifying creation of modern Ajax based Web applications. 

A known disadvantage of JSON is the lack of standard tools for description and va-
lidation of JSON data structures comparable to XML Schema. However, there is an 
active ongoing work on such format called JSON Schema [6]. This format is used for 
description of input and output parameters of computational web services within the 
proposed REST API. 
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3 MathCloud Platform 

MathCloud platform [7] is a software toolkit for building, deployment, discovery and 
composition of computational web services using the proposed REST API. This sec-
tion presents main components of MathCloud platform. 

3.1 Service Container 

Service container codenamed Everest represents a core component of the platform. Its 
main purpose is to provide a high-level framework for development and deployment 
of computational web services. Everest simplifies service development by means of 
ready-to-use adapters for common types of applications. The container also imple-
ments a universal runtime environment for such services based on the proposed REST 
API. The architecture of Everest is presented in Fig. 1. 

 

Fig. 1. Architecture of service container 

The service container is based on Jersey library, a reference implementation of 
JAX-RS (Java API for RESTful Web Services) specification. The container uses 
built-in Jetty web server for interaction with service clients. Incoming HTTP requests 
are dispatched to Jersey and then to the container. Everest is processing client re-
quests in accordance with configuration information.  

The Service Manager component maintains a list of services deployed in the con-
tainer and their configuration. This information is read at startup from configuration 
files. The configuration of each service consists of two parts:  

• Public service description which is provided to service clients; 
• Internal service configuration which is used during request processing. 
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The Job Manager component manages the processing of incoming requests. The re-
quests are converted into asynchronous jobs and placed in a queue served by a confi-
gurable pool of handler threads. During job processing, handler thread invokes adap-
ter specified in the service configuration. 

The components that implement processing of service requests (jobs) are provided 
in the form of pluggable adapters. Each adapter implements a standard interface 
through which the container passes request parameters, monitors the job state and 
receives results.  

Currently the following universal adapters are implemented. 
The Command adapter converts service request to an execution of specified com-

mand in a separate process. The internal service configuration contains the command 
to execute and information about mappings between service parameters and command 
line arguments or external files. 

The Java adapter performs invocation of a specified Java class inside the current 
Java virtual machine, passing request parameters inside the call. The specified class 
must implement standard Java interface. The internal service configuration includes 
the name of the corresponding class. 

The Cluster adapter performs translation of service request into a batch job submit-
ted to computing cluster via TORQUE resource manager. The internal service confi-
guration contains the path to the batch job file and information about mappings be-
tween service parameters and job arguments or files. 

The Grid adapter performs translation of service request into a grid job submitted 
to the European Grid Infrastructure, which is based on gLite middleware. This adapter 
can be used both to convert existing grid application to service and to port existing 
service implementation to the grid. The internal service configuration contains the 
name of grid virtual organization, the path to the grid job description file and informa-
tion about mappings between service parameters and job arguments or files. 

Note that the all adapters, except Java, support converting of existing applications 
to services by writing only a service configuration file, i.e., without writing a code. 
This feature makes it possible for unskilled users to publish as services a wide range 
of existing applications. Besides that, the support for pluggable adapters allows one to 
attach arbitrary service implementations and computing resources. 

Each service deployed in Everest is published via the proposed REST API. In addi-
tion to this, container automatically generates a complementary web interface allow-
ing users to access the service via a web browser. 

3.2 Service Catalogue 

The main purpose of service catalogue is to support discovery, monitoring and anno-
tation of computational web services. It is implemented as a web application with 
interface and functionality similar to modern search engines.  

After the service is deployed in the service container it can be published in the ca-
talogue by providing a URI of the service and a few tags describing it. The catalogue 
retrieves service description via the unified REST API, performs indexing and stores 
description along with specified tags in a database. 
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The catalogue provides a search query interface with optional filters. It supports 
full text search in service descriptions and tags. Search results consist of short snip-
pets of each found service with highlighted query terms and a link to full service de-
scription. 

In order to provide current information on service availability the catalogue period-
ically pings published services. If a service is not available it is marked accordingly in 
search results. The catalogue also implements some experimental features similar to 
collaborative Web 2.0 sites, e.g., ability to tag services by users. 

3.3 Workflow Management System 

In order to simplify composition of services a workflow management system is im-
plemented [8]. The system supports description, storage, publication and execution of 
workflows composed of multiple services. Workflows are represented as directed 
acyclic graphs and described by means of a visual editor. The described workflow can 
be published as a new composite service and then executed by sending request to this 
service. The system has client-server architecture. The client part of the system is 
represented by workflow editor, while the server part is represented by the workflow 
management service. 

Fig. 2 shows the interface of the workflow editor. It is inspired by Yahoo! Pipes 
and implemented as a Web application in JavaScript language. This makes it possible 
to use the editor on any computer running a modern web browser. 

 

Fig. 2. Graphical workflow editor 
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The workflow is represented in the form of a directed acyclic graph whose vertices 
correspond to workflow blocks and edges define data flow between the blocks. Each 
block has a set of inputs and outputs displayed in the form of ports at the top and at 
the bottom of the block respectively. Each block implements a certain logic of 
processing of input data and generating of output data. Data transfer between blocks 
is realized by connecting the output of one block to the input of another block. Each 
input or output has associated data type. The compatibility of data types is checked 
during connecting the ports. 

The introduction of a service in a workflow is implemented by creating a new Ser-
vice block and specifying the service URI. It is assumed that the service implements 
the unified REST API. This allows the editor to dynamically retrieve service descrip-
tion and extract information about the number, types and names of input and output 
parameters of the service. This information is used to automatically generate the cor-
responding input and output ports of the block. 

The unified REST API provides a basis for service interoperability on the interface 
level. The user can connect any output of one service with any input of another ser-
vice if both ports have compatible data types. However, it is important to note that the 
system doesn’t check the compatibility of data formats and semantics of the corres-
ponding parameters. It is the task of the user to ensure this. 

An important feature of the editor is ability to run a workflow and display its state 
during the execution. Before the workflow can be run it is necessary to set the values 
of all input parameters of the workflow via the appropriate Input blocks. After the 
user clicks on the Run button, the editor makes a call with the specified input parame-
ters to the composite service representing the workflow. Then the editor performs a 
periodic check of the status of running job, which includes information about states  
of individual blocks of the workflow. This information is displayed to the user by 
painting each workflow block in the color corresponding to its current state. After 
successful completion of the workflow, the values of workflow output parameters are 
displayed in the Output blocks. Each workflow instance has a unique URI which can 
be used to open the current state of the instance in the editor at any time. This feature 
is especially useful for long-running workflows. 

The workflow management service (WMS) performs storage, deployment and ex-
ecution of workflows created with the described editor. In accordance with the ser-
vice-oriented approach the WMS deploys each saved workflow as a new service. The 
subsequent workflow execution is performed by sending request to the new composite 
service through the unified REST API. Such requests are processed by the workflow 
runtime embedded in WMS. The WMS is implemented as a RESTful web service. 
This provides a most convenient way to interact with the WMS from the workflow 
editor. 

3.4 Security 

All platform components use common security mechanism (Fig. 3) for protecting 
access to services. It supports authentication, authorization and a limited form of del-
egation based on common security technologies. 
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Authentication of services is implemented by means of SSL server certificates. Au-
thentication of clients is implemented via two mechanisms. The first one is standard 
X.509 client certificate. The second is Loginza service which supports authentication 
via popular identity providers (Google, Facebook, etc.) or any OpenID provider. The 
latter mechanism, which is available only for browser clients, is convenient for users 
who don’t have a certificate. 

 

Fig. 3. Security mechanism 

Authorization is supported by means of allow and deny lists which enable service 
administrator to specify users which should or should not have access to a service. A 
user can be specified using its certificate’s distinguished name or OpenId identifier. 

A well-known security challenge in service-oriented environments is providing a 
mechanism for a service to act on behalf of a user, i.e., invoke other services. A com-
mon use case is a workflow service which needs to access services involved in the 
workflow on behalf of a user invoked the service. For such cases a proxying mechan-
ism is implemented by means of a proxy list which enable service administrator to 
specify certificates of services that are trusted to invoke the service on behalf of users. 
In comparison to proxy certificate mechanism used in grids, this approach is more 
limited but provides a lightweight solution compatible with the proposed REST API. 

3.5 Clients 

The platform provides Java, Python and command-line clients for accessing services 
from external applications and implementing complex workflows. Since the access to 
services is implemented via REST API, one can use any standard HTTP library or 
client (e.g., curl) to interact with services. Also, thanks to using JSON format, servic-
es can be easily accessed from JavaScript applications via Ajax calls. This simplifies 
development of modern Web-based interfaces to services, in contrast to approaches 
based on big Web services and XML data format. 
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4 Applications 

MathCloud platform has been used in several applications from various fields of 
computational science. This section describes some of these applications and summa-
rizes general conclusions drawn from their development. 

One of the first applications of MathCloud platform concerns an “error-free” inver-
sion of ill-conditioned matrix [9], a well-known challenging task in computational 
science. The application uses symbolic computation techniques available in computer 
algebra systems (CAS) which require substantial computing time and memory. To 
address this issue a distributed algorithm of matrix inversion has been implemented 
via Maxima CAS system exposed as a computational web service. The algorithm was 
implemented as a workflow based on block decomposition of input matrix and Schur 
complement. The approach has been validated by inversion of Hilbert matrices up to 
500×500.  

The matrix inversion application provided an opportunity to evaluate performance 
of all platform components, in particular with respect to passing large amounts of data 
between services. In the case of extremely ill-conditioned matrices the symbolic re-
presentation of final and intermediate results reached up to hundreds of megabytes. 
Table 2 presents obtained performance results including serial execution time in Max-
ima, parallel execution time in MathCloud (using 4-block decomposition) and ob-
served speedup. Additional analysis revealed that the overhead introduced by the 
platform including data transfer is about 2-5% of total computing time. 

Table 2. Performance of Hilbert (NxN) matrix inversion application in MathCloud 

N Serial execution time in Maxima, 
minutes 

Parallel execution time in MathCloud, 
minutes 

Speedup 

250 8 5 1,60 

300 15 8 1,88 

350 27 13 2,08 

400 45 20 2,25 

450 72 30 2,40 

500 109 40 2,73 

 
Another MathCloud application has been developed for interpreting the data of X-

ray diffractometry of carbonaceous films by means of solving optimization problems 
within a broad class of carbon nanostructures [10]. The application is implemented as 
a workflow which combines parallel calculations of scattering curves for individual 
nanostructures (performed by a grid application) with subsequent solution of optimi-
zation problems (performed by three different solvers running on a cluster) to deter-
mine the most probable topological and size distribution of nanostructures. All these 
parts of computing scheme (and a number of additional steps, e.g., data preparation, 
post-optimal processing and plotting) have been implemented as computational web 
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services. The application helped to reveal the prevalence of low-aspect-ratio toroids in 
tested films [11]. 

A recent work [12-13] concerns a uniform approach to creation of computational 
web services related to optimization modeling. MathCloud platform is used within 
this work to integrate various optimization solvers intended for basic classes of ma-
thematical programming problems and translators of AMPL optimization modeling 
language. A number of created computational web services and workflows cover all 
basic phases of optimization modeling techniques: input of optimization problems’ 
data, interaction with solvers, processing of solutions found.  

A special service has been developed that implements dispatching of optimization 
tasks to a pool of solver services directly via AMPL translator's execution. These 
features enable running any optimization algorithm written as an AMPL script in 
distributed mode when all problems (and/or intermediate subproblems) are solved by 
remote optimization services. Independent problems are solved in parallel thus in-
creasing overall performance in accordance with the number of available services. 
The proposed approach has been validated by the example of Dantzig–Wolfe decom-
position algorithm for multi-commodity transportation problem. 

The experience gained from application development shows that MathCloud plat-
form can be efficiently applied for solving a wide class of problems. This class can be 
described as problems that allow decomposition into several coarse-grained suprob-
lems (dependent or independent) that can be solved by existing applications 
represented as services. It is important to note that while MathCloud can be used as a 
parallel computing platform in homogeneous environments such as a cluster, it is 
generally not as efficient in this setting as dedicated technologies such as MPI. The 
main benefits of MathCloud are revealed in heterogeneous distributed environments 
involving multiple resources and applications belonging to different users and organi-
zations. 

The exposing of computational applications as web services is rather straightfor-
ward with MathCloud. From our experience it usually takes from tens of minutes to a 
couple of hours to produce a new service including service deployment and debug-
ging. This is mainly due to the fact that the service interface is fixed and the service 
container provides a framework that implements all problem-independent parts of a 
service. That means that a user doesn’t need to develop a service from scratch as it 
happens when using general purpose service-oriented platforms. In many cases ser-
vice development reduces to writing a service configuration file. In other cases a de-
velopment of additional application wrapper is needed which is usually accomplished 
by writing a simple shell or Python script.  

The workflow development is somewhat harder, especially in the case of complex 
workflows. However, the workflow editor provides some means for dealing with this. 
First of all, it enables dividing complex workflow into several simpler sub-workflows 
by supporting publishing and composing of workflows as services. Second, it is poss-
ible to add custom workflow actions written in JavaScript or Python, for example to 
create complex string inputs for services from user data or to get additional timing. 
Finally, besides the graphical editor it is possible to download workflow in JSON 
format, edit it manually and upload back to WMS. These and other features provide 
rather good usability for practical use of MathCloud platform. 
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5 Related Work 

The use of service-oriented approach in the context of scientific computing was pro-
posed in [1]. Service-Oriented Science as introduced by Foster refers to scientific 
research enabled by distributed networks of interoperating services. 

The first attempts to provide a software platform for Service-Oriented Science 
were made in Globus Toolkit 3 and 4 based on the Open Grid Services Architecture 
(OGSA) [14]. OGSA describes a service-oriented grid computing environment based 
on big Web services. Globus Toolkit 3/4 provided service containers for deployment 
of stateful grid services that extended big Web services. These extensions were do-
cumented in the Web Services Resource Framework (WSRF) specification [15]. It 
largely failed due to inherent complexity and inefficiencies of both specification and 
its implementations. Globus Toolkit 4 had steep learning curve and provided no tools 
for rapid deployment of existing applications as services and connecting services to 
grid resources. 

There have been several efforts aiming at simplifying transformation of scientific 
applications into remotely accessible services. The Java CoG Kit [16] provided a way 
to expose legacy applications as Web services. It uses a serviceMap document to 
generate source code and WSDL descriptor for the Web service implementation. Ge-
neric Factory Service (GFac) [17] provides automatic service generation using an 
XML-based application description language. Instead of source code generation, it 
uses an XSUL Message Processor to intercept the SOAP calls and route it to a generic 
class that invokes the scientific application. SoapLab [18] is another toolkit that uses 
an application description language called ACD to provide automatic Web service 
wrappers.  

Grid Execution Management for Legacy Code Architecture (GEMLCA) [19] im-
plements a general architecture for deploying legacy applications as grid services. It 
implements an application repository and a set of WSRF-based grid services for dep-
loyment, execution and administration of applications. Instead of generation of differ-
ent WSDLs for every deployed application as in GFac and SoapLab, GEMLCA uses 
generic interface and client for application execution. The execution of applications is 
implemented by submission of grid jobs through back-end plugins supporting Globus 
Toolkit and gLite middleware. GEMLCA was integrated with the P-GRADE grid 
portal [20] in order to provide user-friendly Web interfaces for application deploy-
ment and execution. The workflow editor of the P-GRADE portal supports connec-
tion of GEMLCA services into workflows using a Web-based graphical environment. 

Opal [21] and Opal2 [22] toolkits provide a mechanism to deploy scientific appli-
cations as Web services with standard WSDL interface. This interface provides opera-
tions for job launch (which accepts command-line arguments and input files as its 
parameters), querying status, and retrieving outputs. In comparison to GEMLCA, 
Opal toolkit deploys a new Web service for each wrapped application. Opal also pro-
vides an optional XML-based specification for command-line arguments, which is 
used to generate automatic Web forms for service invocation. In addition to Base64 
encoded inputs, Opal2 supports transfer of input files from remote URLs and via 
MIME attachments which greatly improves the performance of input staging.  
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It supports several computational back-ends including GRAM, DRMAA, Torque, 
Condor and CSF meta-scheduler. 

The described toolkits have many similarities with the presented software platform, 
e.g., declarative application description, uniform service interface, asynchronous job 
processing. A key difference is related to the way services are implemented. While all 
mentioned toolkits use big Web services and XML data format, the MathCloud plat-
form exposes applications as RESTful web services using JSON format. The major 
advantages of this approach are decreased complexity, use of core Web standards, 
wide adoption and native support for modern Web applications as discussed in  
Section 2. 

The idea of using RESTful web services and Web 2.0 technologies as a lightweight 
alternative to big Web services for building service-oriented scientific environments 
was introduced in [23]. Given the level of adoption of Web 2.0 technologies relative 
to grid technologies, Fox et al. suggested the replacement of many grid components 
with their Web 2.0 equivalents. Nevertheless, to the authors’ knowledge, there are no 
other efforts to create a general purpose service-oriented toolkit for scientific applica-
tions based on RESTful web services.  

There are many examples of applying Web 2.0 technologies in scientific research 
in the form of Web-based scientific gateways and collaborative environments [20, 24-
25]. While such systems support convenient access to scientific applications via Web 
interfaces, they don’t expose applications as services thus limiting application reuse 
and composition. 

There are many scientific workflow systems, e.g. [26-28]. The system described in 
the paper stands out among these by providing a Web-based interface, automatic pub-
lication of workflows as composite services and native support for RESTful web  
services. 

6 Conclusion 

The paper presented MathCloud platform which enables wide-scale sharing, publica-
tion and reuse of scientific applications as RESTful web services based on the pro-
posed unified REST API. In contrast to other similar efforts based on Web Services 
specifications, it provides a more lightweight solution with native support for modern 
Web applications. MathCloud includes all core tools for building a service-oriented 
environment such as service container, service catalogue and workflow system. The 
platform has been successfully used in several applications from various fields of 
computational science that confirm the viability of proposed approach and software 
platform. 

The future work will be focused on building a hosted Platform-as-a-Service (PaaS) 
for development, sharing and integration of computational web services based on the 
described software platform. 
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Abstract. A considerable enhancement is proposed for the Differential
Evolution Entirely Parallel (DEEP) method developed recently. A new
selection rule was implemented in order to increase the robustness of
DEEP. To simplify the approach a population is not divided now into
branches, instead of it, several oldest individuals are substituted with the
same number of the best ones after the predefined number of iterations.
The individuals are selected on the basis of the number of generations,
in which they survived without any change. We demonstrate how the en-
hanced DEEP provides new solutions to problems with several objective
functions.

Keywords: differential evolution, optimization, biomedical applications.

1 Introduction

Models for biomedical applications usually are based on determination of un-
known constants of underlying biochemical reactions, as well as parameters and
coefficients. These unknowns are to be found as a solution to an inverse problem
of mathematical modeling, i.e. by fitting model equations to data.

Development of reliable and easy-to-use algorithms and programs for solution
of the inverse problem remains a challenging task due to diversity and high
computational complexity of biomedical applications, as well as the necessity to
treat large sets of heterogeneous data.

We propose a new modification of Parallel Differential Evolution approach, as
an enhancement for the Differential Evolution Entirely Parallel (DEEP) method
developed recently [1,2]. To increase the robustness of the procedure we imple-
mented a new selection rule for Differential Evolution, in which several different
objective functions are considered in order to accept or reject an offspring to

� Corresponding author.

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 409–416, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



410 K. Kozlov et al.

new generation. For computational complexity reduction the population is not
to be divided into branches, but instead several oldest individuals are substituted
with the same number of the best ones after predefined number of iterations.
The individuals are selected on the basis of the number of generations, in which
they survived without any change.

The DEEP method was successfully applied already to several problems, e.g.,
to the problem of the regulatory gene network reconstruction [3]. Here we demon-
strate how the new algorithm provides solutions to problems with several objec-
tive functions. The new software developed is available on the project site [4].

2 Methods and Algorithms

2.1 Parallel Differential Evolution

Differential evolution (DE) is an effective stochastic method for function mini-
mization that was proposed by Storn and Price [5]. It starts from a set of the
randomly generated parameter vectors qi, i = 1, ..., NP . The set and the vectors
are called as population and individuals, respectively. The population on each
iteration is referred to as generation. The size of population NP is fixed. The
first trial vector is calculated as follows:

v = qr1 + S(qr2 − qr3)

where q• is the member of the current generation g, S is a predefined scaling
constant and r1, r2, r3 are different random indices of the population members.

Being the evolutionary algorithm, DE can be effectively parallelized due to
the fact that each member of the population is evaluated individually.

2.2 Enhanced DEEP Method

Like in the original DEEP method [1,2] the “trigonometric mutation rule” [6] is
used to take into account a value of the objective function for each individual,
and an adaptive scheme for selection of internal parameters is used, based on
the control of the population diversity [7] where a new control parameter γ was
introduced.

According to the original DEEP method, the whole population is to be divided
into branches. The information exchange between branches allowed the best
member of the branch to substitute the oldest member of another branch after
each Π iterations. It turned out that in biological applications the value of Π is
considerably small, making branches an unnecessary complication.

In the Enhanced DEEP method the branches are eliminated, and several
oldest members of the population are substituted by the same number of in-
dividuals, that have the best values of objective function. In our approach the
age of an individual is defined by the number of iterations, in which the individ-
ual survived without changes. The number of seeding individuals (i.e. individuals
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Algorithm 1. SELECTION

proc select (individual) =
{
if (F < the value of the parent) then

Accept offspring
else

for all additional criteria P do
if (P < the value of the parent) then

Generate the random number U .
if (U < control parameter for this criterion) then

Accept offspring
end if

end if
end for

end if
}

that substitute old ones) Ψ and the number of iterations called seeding interval
Θ are the new parameters of the algorithm.

In order to increase the robustness of the procedure we have implemented a
new selection rule for DE (Algorithm 1). An offspring is to be accepted to a new
generation in accordance with several different objective functions. The offspring
replaces its parent if the value of the objective function for the offspring’s set
of parameters is less than that for the parental one. The additional objective
functions are checked in the opposite case. The offspring replaces its parent if
the value of any other objective function is better, and a randomly selected value
is less than the predefined parameter for this function.

Calculations are finished when the objective function variation is less than a
predefined value during the several consecutive steps.
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Fig. 1. The combined criterion (1) vs. the generation number for 10 runs. 200 function
evaluations were performed by the minimization procedure for each generation.
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3 Results

3.1 Implementation

New algorithm was implemented in C programming language as the software
package with interface that allows a user to formulate the objective function
using different computer languages widely used in biomedical applications, such
as Octave, R or KNIME. The control parameters of the algorithm are defined
in the datafile that uses an INI-format. The package provides simple command
line interface. The DEEP method can be embedded in any new software.
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Fig. 2. The criteria graphs in the close vicinity of the optimal values of the four pa-
rameters. The values of the parameters found by the algorithm are denoted as x, y, z
and q.

One of the parameters of the algorithm determines the number of parallel
threads used to calculate the objective function. We utilized the Thread Pool
API from GLIB project [8] and constructed the pool with the defined number
of worker threads. The calculation of objective function for each trial vector is
pushed to the asynchronous queue. The calculation starts as soon as there is
an available thread. The thread synchronization condition is determined by the
fact that objective function is to be calculated once for each individual in the
population and on each iteration.
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3.2 The Integer Valued Parameters

The DE operates on floating point parameters, while many of real problems
contain integer parameters, e.g., indices of some kind. The following procedure
was used to produce the integer vector of parameters from the floating point
vector constructed by the DEEP method:

– The values are sorted in ascending order.

– The index of the parameter in the floating point array becomes the value of
the parameter in the integer array.

Let us consider the following floating point array of the parameters:

a[0] = 0.3; a[1] = 0.5; a[2] = 0.1; a[3] = 0.8;

After sorting in the ascending order the array should be transformed to:

b[0] = a[2] = 0.1

b[1] = a[0] = 0.3

b[2] = a[1] = 0.5

b[3] = a[3] = 0.8

The indices of the sorted array define the current set of the integer valued pa-
rameters:

i[0] = 2; i[1] = 0; i[2] = 1; i[3] = 3;
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Fig. 3. The viral RNA suppression in the presence of the NS3 protease inhibitors in dif-
ferent concentrations. The dependence of the viral RNA suppression on the increasing
concentration of BILN-2061 and VX-950 inhibitors is shown for the third day post-
treatment. A solid line is used to show model output and points correspond to the
experimental data [11,10].
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3.3 The Case Study

We used the new algorithm and software package to determine parameters of the
mathematical model of a biological system using experimental data. In biology
current experimental methods are unable to measure all the parameters required
to describe system behaviour and therefore these parameters are usually to be
found by fitting model solutions to data. The model describes the subgenomic
Hepatitis C virus (HCV) replicon replication in Huh-7 cells in the presence of the
HCV NS3 protease inhibitor [9]. The hepatitis C virus (HCV) causes hazardous
liver diseases leading frequently to cirrhosis and hepatocellular carcinoma. No
effective anti-HCV therapy is available up to date.

Design of the effective anti-HCV medicine is a very challenging task due to
the ability of the hepatitis C virus to rapidly acquire drug resistance. The cells
containing HCV subgenomic replicon are widely used for experimental studies of
the HCV genome replication mechanisms and the in vitro testing of the tentative
medicine. These cells are used also to study how the virus acquires resistance to
the drugs. HCV NS3/4A protease is essential for viral replication and therefore it
has been one of the most attractive targets for development of specific antiviral
agents for HCV.

The combined criterion was defined as follows:

Fcombined = F1 + 0.1 · F2 + 0.1 · F3 (1)

where the weights were obtained experimentally. The dependence of the best
value of the combined criterion in population of individuals on the generation
number for 10 runs is plotted in Fig. 1. The objective function is to be evaluated
once for each member of the generation, the size of which was set to 200.
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Fig. 4. The predicted kinetics and the suppression rate of the viral RNA in comparison
with data not used for parameter estimation. The dependencies of the suppression rate
of the viral RNA on the increasing concentration of the SCH-503034 and ITMN-2061
inhibitors. Solid line is used for model output and points correspond to the experimental
data [13,12].

The experimental data include kinetic curves of the viral RNA suppression at
various inhibitor concentrations of the VX-950 and BILN-2061 inhibitors [11,10].
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We seek for the set of parameters that minimizes three criteria. Criterion 1 (F1) is
the sum of squared differences between the model output and data. Additional
criteria 2 (F2) and 3 (F3) penalize the deviation of the model from a desired
behaviour.

The plot of the criteria in the close vicinity of the optimal values of the four
parameters from the set is shown in Fig. 2. It is evident that while the criteria do
not take a minimum value at one and the same point, nevertheless the algorithm
produces reliable approximation of the optimum.

The comparison of model output and experimental dependencies of the viral
RNA suppression rate on inhibitor concentration is shown in Fig. 3. As it is
clearly seen, the model correctly reproduces experimental kinetics of the viral
RNA suppression.

The predictive power of the model was estimated using the experimental data
on dependencies of the viral RNA suppression rate on the increasing concen-
tration of the SCH-503034 [13] and ITMN-191 [12] inhibitors. These data were
not used for parameter estimation. As can be seen in Fig. 4 the model correctly
reproduces experimental observations and thus can be used for in silico studies.
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Abstract. This article introduces TCP TIPS - a TCP variant, which
implements a proactive congestion avoidance algorithm. TCP TIPS tries
to use the available bandwidth efficiently in both reliable and unreli-
able networks and simultaneously to decrease the data delivery delay by
minimizing queuing delays. Also, this protocol treats other protocols as
high priority protocols and yields the required bandwidth share to them,
when it is necessary. The article briefly describes algorithms used for
TCP TIPS. Some network simulation results with ns-2 are also present
in this article.

Keywords: TCP, transport protocols, network congestion, congestion
avoidance, network simulation.

1 Introduction

The transport level takes a key place in the hierarchy of network protocols. It
provides data exchange between transport service users (i. e. application level
protocols) with the required properties (reliable delivery, correct order, etc.).
The most widely used transport protocol with reliable data delivery is TCP.
This protocol implements the dataflow management algorithm, whose aims are
to guarantee a data delivery, a correct packets order and an efficient use of
the network capacity. To achieve the last goal TCP tries to set the maximum
transmission speed, which does not lead to the network congestion.

The traditional algorithm, used by TCP [1], implements a reactive congestion
avoidance method. It uses packet loss detection as an indication of the network
congestion. This approach is efficient in reliable networks with routers, whose
buffers are correctly sized. However, in the networks with unreliable environment
(i.e. wireless networks) or with oversized buffers in the routers TCP can be
inefficient or it can result in a significant growth of latency [2].

Proactive algorithms can be used to early detect the network congestion and
prevent the latency growth. These algorithms use time characteristics of the
dataflow to indicate the congestion. The most widely used characteristic is RTT.
TCP Vegas [3] is a classic example of proactive congestion avoidance algorithm
implementation.

However, the usage of RTT has several disadvantages. In particular, mecha-
nism of delayed acknowledgments can not be used with these algorithms.

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 417–423, 2013.
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Also, RTT-based algorithms can not distinguish the congestion in the network
path used for data delivery from the congestion in the network path used for
acknowledgments delivery. Incorrect detection of congestion will result in an
underutilization of the network capacity.

Another weakness of many proactive congestion avoidance algorithms and
available bandwidth estimation algorithms is related to the use of certain time
thresholds (such as BaseRTT). Incorrect choice of the threshold can significantly
affect the performance of these algorithms [4].

2 TCP TIPS Algorithms

The motivation for TCP TIPS, the protocol we introduce, is to design a TCP-
compatible transport protocol, which efficiently uses the available bandwidth (in
reliable and unreliable environments, as well as networks with frequently chang-
ing characteristics), has no latency growth issues and issues specific to protocols
which use delay-based congestion avoidance algorithms. The other goal is to cre-
ate a protocol, which treats its traffic as low priority, so that this protocol could
be used in common with protocols, that carry realtime data (VoIP, IPTV, and
so on). TCP TIPS should yield the required bandwidth share to these protocols’
flows and use this share again when it is available.

To achieve these goals TCP TIPS implements a proactive congestion avoid-
ance algorithm, based on the analysis of interpacket time intervals used by a
sender and observed by a receiver. This temporal characteristic of dataflow can
be used, provided that burst sends are replaced with TCP pacing. With this
approach TCP TIPS controls the data transmission speed by changing the val-
ues of intersegment intervals on the sender side. The receiver sends an observed
value of the time interval between two arrived consecutive segments to the sender
with acknowledgment. The sender compares this value with its own interval and
decides, how to change the transmission rate. This analysis can be used for con-
gestion avoidance, in particular, due to the fact that an intersegment interval
used by the sender is smaller then an intersegment interval observed by the
receiver, when the network is congested.

Algorithms, used in TCP TIPS, are described in [6–8]. Some of them are in-
fluenced by ARTCP [5]. Briefly, we can divide these algorithms into two items:
algorithm for the available bandwidth estimation and dataflow management al-
gorithm.

The first algorithm is based on the fact that a minimum value for the inter-
packet interval, observed by the receiver in the free network 1, is determined
by the network capacity. If the transmission rate is greater than the network
capacity, this capacity can be determined in a free network by the following
equation:

B =
8 ·N
P

, (1)

1 ”Free” means here, that there is no other activity in the network.
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where B – the network capacity, N – the payload size in bytes, P – the inter-
packet interval, observed by the receiver.

[6] and [7] show that the following equations are valid, when the total trans-
mission rate of the connections is greater than the network capacity:

I =
T · x
a

, (2)

P =
T · (a+ b)

a
, (3)

where I – the interpacket interval, used by the sender, a – the transmission rate,
used by the sender, T – the minimum possible interpacket interval (determined
by the network capacity), x – the network capacity, P – the interpacket interval,
observed by the receiver, b - the total transmission rate of the other connections.

The sender can change a transmission rate (say, set it to be a′ (with corre-
sponding interpacket interval I ′)), so that the congestion remains. Then it can
estimate, what share of the bandwidth it uses and what share is used by the
other flows. So, we can get the estimation for the available bandwidth, deter-
mined with the following equation:

B = a · I · (a
′ − a) + a′ · (P ′ − P )

a′ · P ′ − a · P , (4)

where B – the available bandwidth, P ′ – the interpacket interval, observed by
the receiver, when the sender used the transmission rate a′, P – the interpacket
interval, observed by the receiver, when the sender used the transmission rate a,
I – the interpacket interval, used by the sender to achieve the transmission rate
a. [7] shows how to get this equation.

The dataflow management algorithm, used in TCP TIPS, is described in [6,
8]. Its work consists of 4 states: slow start, multiplicative decrease, congestion
compensation, and speedup probe/cancel.

After a connection setup TCP TIPS enters a slow start state. It sets an
interpacket interval equal to RTT, computed during a connection setup. The
sender then changes interval value once per RTT, based on the comparison result
of the current interpacket interval used by the sender and the average interpacket
interval observed by the receiver since last interval change. TCP TIPS detects
the congestion, if the following inequality is true:

I < (1 − ε) · P, (5)

where I – the interpacket interval, used by the sender, P – the average interpacket
interval, observed by the receiver, when the sender used interval I, ε – a ”dead
zone” parameter.

If there is no congestion, the sender decreases interpacket interval value, divid-
ing it by SSGR > 1 (we use SSGR = 2 currently to get the same transmission
rate increase as the one that is present in NewReno’s ”slow start” state). Oth-
erwise, it uses the available bandwidth estimation algorithm to determine the
correct transmission rate. TCP TIPS does not use (4) directly. Instead, it uses
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the same algorithm to determine the quotient ak of the transmission rate to the
network capacity and the quotient bk of the total transmission rate of the other
connections to the network capacity:

ak =
α · P ′ − P
I · (α− 1)

, (6)

bk =
α · (P − P ′)
I · (α − 1)

, (7)

where α = I
I′ . [8] explains in detail, how to get these equations.

When ak and bk are determined, the estimated interpacket interval value
Ie is set, if it is possible to avoid congestion. This value corresponds to the
transmission rate equal to the available bandwidth.

Ie =
I · ak
1− bk . (8)

After that TCP TIPS enters a multiplicative decrease state. Here, the trans-
mission rate is set lower than Ie (to compensate the congestion) and the com-
pensation area is calculated. Then TCP TIPS enters a congestion compensation
state.

The interpacket interval value on congestion compensation is determined by
the following equation:

Ir =
Ie

MDF
(9)

where MDF - a multiplicative decrease factor, 0 < MDF < 1.
The compensation area here is determined by the following equation, ex-

plained in [8, 6]:

S = PRTT ·
(
P−1 − I−1

e +
∑(

SSGRn

I ′
− I−1

e

))
, (10)

where PRTT – an average RTT, when the congestion is present. First summand
is present only if Ie > P . Other summands are present, if SSGRn

I′ ≥ 1
Ie
.

TCP TIPS leaves the congestion compensation state after Δt = S
I−1
e −I−1

r

seconds, where S is determined by (10) or on the moment when new congestion
is detected with (5). After that, TCP TIPS enters speedup probe/cancel state.
This state is described in detail in [6, 8]. Its role is to check for the available
bandwidth increase and to compensate the congestion quickly, if this check fails.

Speedup probe and cancel are determined by (11) and (12), respectively.

In = min

{
I ′,

I

1 + β(I)

}
, (11)

In =
Io

1− β(Io) , (12)
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where In – the new interpacket interval value, I ′ – the current interpacket in-
terval value, I – the interpacket interval value, that corresponds to the observed
interpacket interval P , β(I) = C · I3/2 – a speedup function, Io – an inter-
packet interval value, that corresponds to the transmission rate, when there is
no congestion.

3 TCP TIPS Simulation Results

To explore how TCP TIPS behaves in different situations and to analyze its per-
formance and other characteristics, a TCP TIPS simulation model for ns-2 was
developed. The main characteristics, that we want to investigate with modeling
experiments, are goodput, latency and fairness. The performed experiments can
be divided into 5 groups. The first group contains scenarios, that study TCP
TIPS behavior in isolated reliable networks. In the second group, a reliable en-
vironment is replaced with an unreliable one, so random losses occur. The third
group is devoted to study of the TCP TIPS interaction with protocols that use a
fixed transmission rate. In the fourth group, data are passed in both directions.
And finally, the fifth group contains the experiments, where the network route
is changed dynamically, changing RTT or the bandwidth. In all experiments
we have a rather simple topology: every route between a sender and a receiver
consists of three links and two routers (with DropTail queuing discipline). Host-
router links are considered as low-delay highspeed links, but router-router links
almost always has a bigger delay and a less capacity.

The modelling in a reliable isolated network shows, that TCP TIPS operates
as expected. So, the TCP TIPS transition from a slow start state to multiplica-
tive decrease, congestion compensation and finally to speedup probe/cancel state
can be seen. TCP TIPS leaves a slow start soon after the congestion occurred.
Multiplicative decrease and congestion compensation results in the release of
accumulated on congestion time data from the router’s queue. The speedup
probe/cancel state keeps the transmission with the correct rate and minimum
latency.

In every experiment TCP TIPS got a big goodput (90,5-99,2%) and a low
latency (in most cases RTT was very close to the minimum possible RTT for the
route). Comparison of the results, obtained with TCP TIPS and several TCP
modifications (NewReno, Compound, Highspeed, Illinois, Vegas, Veno, YeAH,
CUBIC), shows that TCP TIPS has one of the biggest goodput in most scenarios
(up to 10% faster than NewReno in one-way data transmission in a reliable
network). In networks with an excessively large router’s buffer size TCP TIPS
has no latency growth (average RTT fluctuated in the range 254–274 ms, when
minimum possible RTT was set to 240 ms) and keeps high goodput (more than
98% in most cases). In networks with an excessive buffering TCP TIPS behaves
much better, than NewReno (20-90% bigger goodput), and has the results close
to Vegas and YeAH, but has better congestion compensation and lower latency.

In experiments, where several (2–10 connections) TCP TIPS flows coexist,
the total goodput fluctuates from 95.36% to 98.46% (up to 40% better than
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NewReno, and better than most considered TCP modifications) and fairness for
10 connections is 0.875–0.970 (only YeAH has better fairness results). TCP TIPS
also shows good latency results. The biggest average queue utilization was 350
packets (for 10 connections in 90 Mbit/s network), but the queue size was set
to 30000 packets. So, TCP TIPS is capable for efficient data transmission with
low latency and good fairness results.

The other experiments were made for unreliable networks. Here, we com-
pared goodput results for TCP TIPS, NewReno, Veno, and Westwood+. These
experiments displayed that for the loss probability more than 10−6 NewReno
showed the worst results. Veno concedes to TCP TIPS and Westwood+ for loss
probability 10−5 and more. Finally, TCP TIPS showed the best results for loss
probability more than 0.0001.

The experiments were made, where TCP TIPS coexisted with CBR dataflow.
In this case TCP TIPS immediately yields the required bandwidth share, when
CBR starts to transmit and takes this share back after CBR dataflow completion.
The network congestion, occurred at CBR flow startup, is quickly compensated
by TCP TIPS multiplicative decrease.

The other experiment was made to demonstrate that TCP TIPS has no RTT-
based protocols disadvantage: inability to distinguish its own congestion and the
congestion in the reverse direction (where acknowledgments go). To show this,
TCP TIPS and Vegas were tested under the same scenario. Here, they send
data in the free network, then on 100th second the CUBIC flow is started in
the reverse direction. Due to an excessive buffer size in the routers, this results
in a huge RTT growth. Vegas reacts on it as if it is its own congestion and
underutilizes the available bandwidth. However, TCP TIPS realizes that there
is no congestion in its direction and keeps sending data with a correct rate.

The final group of experiments was devoted to the dynamic change of the route.
Here, wemade two kinds of experiments: when different routes had different capac-
ity, and when different routes had different delay. These experiments showed that
TCP TIPS behaves much better (compared with NewReno or Vegas) on frequent
route changes. When the capacity changes, it starts using a new capacity rather
fast (correctly compensating the congestion, if there was a capacity decrease). On
routeswith an equal capacity, but different delays,TCPTIPS, unlikeVegas, has no
problem with detecting that the bandwidth has not changed (an average goodput
for TCP TIPS in these experiments was more than 97%).

Conclusion. The simulation results show that TCP TIPS exceeds a number
of TCP modifications in isolated networks, especially in unreliable environments
and on frequent network characteristics changes. TCP TIPS can quickly yield the
required bandwidth share to other protocols and take it back on their completion.
This was one of protocol design requirements, necessary for using this protocol
as low-priority, reliable data delivery service in the networks assigned for high
priority realtime data transmission. TCP TIPS does not increase latency and
does not obstruct these transmissions. However, TCP TIPS uses the bandwidth
efficiently, when it is available.
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Abstract. The problem of complex tasks related to set of points on a
plane with help of a generalized and optimized algorithm is considered.
The algorithm is easily parallelized. Theoretical analysis has been carried
out and practical results have been obtained.

Keywords: unified algorithmic platform, complex tasks, parallel-and-
recursive algorithm, computational geometry, weighted concatenable
queue.

1 Introduction

At the current moment there exists plethora of algorithms for solving basic tasks
of computational geometry. At the same time for solving a complex of tasks there
is an opportunity to build a generalized algorithm which uses a common solving
concep-tion for all tasks. Visual modeling often requires solving a complex of
tasks for the same set of in-put data. Typically the set of input data is pro-
cessed by each algorithm of the complex sequentially. But such solution can be
optimized, if every algorithm will use common data structure and intermediate
results of other algorithms. Many of sequential algorithms have reached their
theoretical performance limits. And many effective parallel algorithms for solv-
ing tasks of computational geometry have already been developed. In particular
many of them are described in details in the capacious work [1] containing many
references to other authors’ results. One can find a description of known methods
of constructing convex hull and Voronoi diagram in [2-7]. The task of building a
unified parallel algorithm is presented in works [8-10]. The goal of the suggested
research is building of a unified algorithmic platform for solving complex tasks
of computational geometry.

2 Formulation of the Problem and Solution Method

Problem. Let S be a set of N points in the space R2. A unified effective par-
allel algorithm for solving complex of tasks operating under the set S has to
be developed with lower complexity estimation Ω(NlogN) (for single proces-
sor computer). An implementation has to provide capability of including other
different algorithms for solving tasks of the computational geometry.
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2.1 Algorithmic Models

The Algorithmic Model of Existing Systems. If some set of tasks of com-
putational geometry has to be solved then typically a set of separate algorithms
is used. The generalized scheme of computations for such approach can be rep-
resented as shown on Fig. 1, a. In the worst case these tasks are executed se-
quentially. For each task one can distinguish the following stages:

1. Preliminary processing – preparing input data and internal data structures
which are necessary for work of an algorithm solving the task;

2. Execution of the algorithm – direct solving of target task;
3. Transforming output data for transferring them to the next algorithm if it

is necessary.

Such approach obviously creates additional inconveniences for use:transforming
data, extra memory usage, complexity in parallelization.

Fig. 1. a) The computational schemes for solving a complex of tasks: a) existing sys-
tems; b) the suggested system.

The Algorithmic Model of the Suggested Approach. Unlike the described
classical approach we decided to create system having single universal data struc-
ture unified for all tasks. Thus, we exempted of the separate data structures
and memory consuming. The necessity in preliminary processing procedures for
each algorithm in a complex disappears: only one procedure which prepares ini-
tial data structure is needed. This leads to execution time reducing. A system
should be built such way which enables parallelism on the whole system’s level
in addition to parallelism on the tasks level. For achieving established goals we
decided to use ”divide-and-conquer” strategy and concatenable queues as the
universal data structure [10]. Thus, we have the following computational scheme
presented on Fig. 1, b. Our scheme conventionally is divided into the following
stages: preliminary processing, recursive partitioning, merging subsets’ results.



426 V. Tereshchenko, I. Budjak, and A. Fisunenko

2.2 The Algorithmic Platform for Solving a Complex of Tasks

Preliminary Processing. As the input we have a set containing N different
points. Two sets of points are built: sorted by x and y coordinates. It is known
that complexity of sorting on single processor computer is Ω(NlogN). In our
case we can use parallel algorithms of sorting with complexity O(logN) [11].

Recursive Partitioning. The input of this stage is ordered sets of points and
as an output we have to obtain AVL-tree which satisfies the following conditions:

1) an order of points during traversal of the tree from left to right must be the
same as in the set of input points;
2)each node of the tree must be balanced by the heights of its two sub-trees;
difference of their heights must not exceed 1.

Such tree is built by the following algorithm:

1) build tree for one point, constructing one node and storing this point in it;
2) build tree for several points; divide this set of point into two sets which contain
the same number of elements (if total number is odd than left side contains one
point more). Build node in which the left child is a tree built for the left sub-set
and right child is built for the right sub-set. This stage can be parallelized by
executing recursive functions on separate processors.

The obtained tree is balanced due to partitioning it into two sub-sets containing
equal number of elements.

Merging Results. During merging results for sub-sets two instances of data
structures are merged into one. The chosen data structure provides merging in
time Ω(N). Thus total time of algorithm execution is Ω(NlogN) for a single
processor computer.

Interrelation of Algorithms. Let us consider a spectrum of tasks for a set of
points on the plane which can be solved with ”divide-and-conquer” strategy in
time Ω(NlogN) for a single processor computer. These are such tasks: convex
hull; Voronoi diagram; Delaunay triangulation; nearest pair; all nearest neigh-
bors. Interrelation between all intermediate results and input data of algorithms
are shown on Fig. 2.

The built implementation allows inserting other algorithms for sets of points
which can effectively work using ”divide-and-conquer” strategy. Taking into ac-
count that all algorithms have common parts of preliminary processing and re-
cursive descend it was decided to subdivide a mechanism of ”divide-and-conquer”
to a separate procedure containing balanced binary tree and implementing the
following scheme:

1. Check if the input set is not trivial;
2. If this is trivial case then execute algorithm for trivial case (e.g. convex hull

for 1 point is this point); else go to step 3;
3. Apply algorithm recursively for left and right subsets;
4. Merge results of left and right subsets;
5. Go to the next stage of recursive merge.
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Fig. 2. Interrelation of Basic Algorithms

3 Peculiarities of Parallel Implementation

For parallel implementation the standardized library MPI was used. In partic-
ular, it gives flexibility of use and enables cross-platform development. But we
note, that MPI is not the only way to implement our algorithm. In the general
case time spent on event passing can be estimated as the following:

t(S) = tconst+ k ∗ |S|, (1)

where S – set of transferred data (in our case this is solution for a task for some
subset of points) tconst- some constant delay caused by network transfer; k –
some coefficient which defines time for packing and unpacking.

As it was said above we can parallelize computations on input data parti-
tioning stage with help of recursive descent. For binary tree one can conclude
that number of processors should be 2n, where n – is certain number. While
moving down to recursion on its depth n, computations for 2n processors are
run. Each of processors computes tasks on a set with approximate power N

2n of
points, where N – is total number of input points. Sure, we can use any number
of processes which is not power of 2. Let total number of processors be 2n + p,
where 2n + p < 2(n+1). Under such conditions a part processes will solve task
for set of points with power N

2n , while another part of processes will solve task

for set of power N
2n+1 . Such redundancy will not result in performance increase

of algorithm.
Thus, execution time for 2n + p processes will be comparable with execution

time for 2n processes. Theoretically it is possible to obtain acceleration on 2n+p
processes. For this one should find such number q, which satisfies p = c ∗ 2q.
Parallel execution should be run down to depth of recursion -logN. − q. With
this subtasks are solved for sets of points having power N

2q . The total number of

such tasks is 2
logN�−q. Thus, 2
logN�−q sub-tasks are solved on 2n+p processes.
The total number of parallel executions is:
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-2
logN�−q/(2n+ p). = -2
logN�−q/(2n+ c ∗ 2q). = -2
logN�−q/(2q ∗ 2n−q + c ∗
2q). = -2
logN�−q/(2q(∗2n−q + c)). = -2
logN�−2q/(2n−q + c).
As far as 0 < c < 2n−1, then:

2
logN�−n−2q+min(1,q) ≤ -2
logN�−2q/(2n−q + c). < 2
logN�−n−q

This way we solve tasks of -logN. − q of recursion depth in time which is less
than 2
logN�−n−q ∗Ω(N2q ∗ log N

2q ). In the previous case when we use 2n processes

this time is equal to 2
logN�−n ∗Ω(N2q ∗ logN
2q ). As soon as q ≥ 0 we can achieve

increase of performance.

4 Conclusions

The conducted research has shown that building a unified algorithmic platform
for basic tasks of computational geometry gives possibility to simplify and to
speed up solving of complex of tasks for a same set of points. Taking into account
that the most of tasks of computational geometry are connected to processing of
point sets the suggested approach can serve as a common methodology for wide
spectrum of tasks for this discipline. Common merging stages can be unified for
other classes of tasks of computational geometry. The only change is specific
merge procedures which reflect essence of the concrete task. It was also shown
that on practice algorithm is well parallelized and has good performance marks
for a parallel environment.
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Abstract. To remove problematic, high frequency degrees of freedom
from a molecular model, modellers often use rigid body dynamics. The
method also has additional benefits, for example it allows molecular
charge distributions to be conveniently represented by multipolar mo-
ments. Rigid bodies are a well established feature within DL POLY
Classic (formerly known as DL POLY 2), which employs the replicated
data parallelisation methodology. This paper briefly describes the RB for-
malism and outlines the strategy for its implementation in DL POLY 4
(formerly known as DL POLY 3), which uses a very different form of
parallelism, namely domain decomposition.

Keywords: Domain decomposition, molecular dynamics, rigid body dy-
namics, MPI, DL POLY 4.

1 Introduction

A rigid body (RB) is a collection of point entities whose local geometry is time
invariant. One way to enforce this invariance in a simulation is to impose a
sufficient number of constraint bonds1 (CBs) between the atoms in the RB unit.
However, for a number of important molecular geometries, use of this method
may be either problematic or impossible. Examples in which it is impossible to
specify sufficient CBs are linear molecules with more than 2 atoms (e.g. CO2)
and planar molecules with more than three atoms (e.g. benzene). Even when it
is possible to define a structure using CBs, the approach suffers from a number
of serious, practical disadvantages:

1. The iterative CB solvers/algorithms: SHAKE [1] for leap-frog Verlet (LFV)
integration [2] (or RATTLE [3] for velocity Verlet (VV) integration); can be
slow to converge, particularly if a ring of constraints is involved, e.g. when
one defines water as a constrained triangle.

1 In DL POLY 4, CBs are implemented by applying a correction to the forces acting
on constraint bonded atoms. The corrected forces, which are determined by means
of an iterative procedure, are such that the resulting atom displacements preserve
the distances between these atoms within a specified tolerance.
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2. It is possible to inadvertently over-constrain a molecule, for example by
defining a methane tetrahedron to have 10 rather than 9 bond constraints.
In such cases the SHAKE/RATTLE procedure will become unstable.

3. Massless sites (e.g. charge sites) cannot be included in a simple constraint
approach, making modelling with potentials such as TIP4P water impossible.

4. The iterative nature of the CB solvers leads to retrospective, corrective con-
tributions to the stress and virial, which are out of step with the rest of the
system’s contributions. This leads to the calculation of inaccurate system
pressure.

5. CB solvers lead to positional data updates at each iteration, which requires
local interprocessor communications for all neighbouring domains that share
constraints. This limits the scalability of the approach when the problem size
is fixed.

The alternative to CB dynamics is RB dynamics, which is implemented using
the Eulerian equations of rotational motion. The method does not suffer from
the drawbacks associated with CBs however, in order to incorporate it into
DL POLY 3 [7,8,6], it was necessary to introduce a new set of data structures
as well as a framework for the exchange of this data within the DD scheme.

2 Theoretical Background and Computational Challenges

2.1 Rigid Body Dynamics

The dynamics of RB units which can be described in terms of the translational
motion of the centre of mass (COM) and rotation about the COM. To do this
we can define the appropriate variables describing the position, orientation and
inertia of a RB, and the RB equations of motion.

A RB unit, i, is an assembly of point sites, j = 1, ..., Nsites, with masses, mj ,
and instantaneous velocities, vj , and forces f

j
. From this simple description one

can define the following quantities:

Mi=

Nsites∑
j=1

mj (a) Ri=
1

Mi

Nsites∑
j=1

mjrj (b)

dj=rj −Ri (c) Iαβi =

Nsites∑
j=1

mj(d
2
jδαβ − dαj rβj ) (d)

V i=
1

Mi

Nsites∑
j=1

mjvj (e) F i=

Nsites∑
j=1

f
j

(f) ,

(1)

where Mi is the mass of the RB unit, Ri is the location of its centre of mass
(COM), dj is the displacement vector of the site j from the COM, I

i
is the

associated rotational inertia matrix, and V i and F are its COM velocity and



Domain Decomposition Implementation of Rigid Body Dynamics 431

net force. The angular momentum, J i, velocity, ωi and torque, τ i, are easily
written as:

J i=

Nsites∑
j=1

mj

(
dj ×

[
vj − V i

])
(a) ωi=I−1

i
· J i (b)

τ i=

Nsites∑
j=1

dj × f j (c) .

(2)

The RB’s translational motion is treated in a universal frame of reference,
whereas the rotational motion is calculated in the RB’s local reference frame
- the so called principal frame. This simplifies the equations of rotational motion
because, within the principal frame, the rotational inertia tensor, Î

i
, is diagonal,

its components (can be set to) satisfy Ixx ≥ Iyy ≥ Izz and are constant.
The orientation of the principal frame with respect to the universal frame can

be described via a four dimensional unit vector, the quaternion:

q
i
= [q0, q1, q2, q3]

T , (3)

and the rotational matrix R
i
to transform from the principal frame to the uni-

versal frame is the unitary matrix:

R
i
=

⎛
⎝q20 + q21 − q22 − q23 2 (q1 q2 − q0 q3) 2 (q1 q3 + q0 q2)

2 (q1 q2 + q0 q3) q20 − q21 + q22 − q23 2 (q2 q3 − q0 q1)
2 (q1 q3 − q0 q2) 2 (q2 q3 + q0 q1) q20 − q21 − q22 + q23

⎞
⎠ (4)

so that if d̂j is the position of an atom in the principal frame (with respect to
the COM), its position in the universal frame (also w.r.t. the COM) is given by:

dj = R
i
· d̂j . (5)

With all these variables defined, one can now consider the equations of motion
for the rigid body unit. The equations of translational motion of a RB are the
same as those describing the motion of a single atom, except that the force is the
total force acting on the RB, i.e. F i, and the mass is the total mass of the rigid
body unit, i.e. Mi. These equations can be integrated by the standard Verlet
(LFV or VV) algorithms. The rotational motion for a RB is, however, driven by
the motion of the torque:

τ i =
d

dt
J i =

d

dt

(
I
i
· ωi

)
. (6)

This can easily be shown to generate the Euler’s equations of rotation for the
torque, τ̂ , and angular velocity, ω̂, acting on the body transformed to the prin-
cipal frame. However, the integration of ω̂ is complicated by the fact that as the
rigid body rotates, so does the principal frame. Thus a simultaneous integration
of the quaternions describing the orientation of the rigid body is required. In
DL POLY 4 this is handled by two different methods - the Fincham Implicit
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Quaternion Algorithm (FIQA) [4] for LFV integration and the NOSQUISH al-
gorithm of Miller et al. [5] for VV integration. A third scheme, we call Euler
free rotation [9], is also partially employed when rotation is driven by a force
minimisation procedure. Recognising that

d

dt
dj = ωi × dj (7)

the torque motion equation (6) can be easily rewritten in terms of the angular
velocity update:

d

dt
ωi = I−1

i
·
(
τ i −

dI
i

dt
· ωi

)
, (8)

which opens the way for solving the equations of rotation explicitly in the labo-
ratory frame. Thus when amended force contributions are generated by a force
minimisation procedure, such as a conjugate gradient method, one can easily
compute the change in ωi as driven only by the new torque contributions (which
coming from the amended forces acting on the particular RB unit members).

2.2 Implementation within the Domain Decomposition Scheme

The implementation of RB structures and associated dynamics within the DD
scheme rests on two working principles. Firstly, in order that inter-domain com-
munications remain local, i.e. only take place between neighbouring cores, the
maximum distance between any two sites in a given RB must be less than the
largest cut-off distance used in the simulation. This is because the largest cut-off
distance determines the width of the halo region surrounding each domain. The
restriction thus ensures that if any RB is shared then those parts of it that are
not located on the local domain must lie within the domain’s halo. It also follows
that a given RB may occupy no more than eight domains at any one point in
time, see Figure 1.

Fig. 1. This sketch illustrates a hypothetical RB consisting of 8 atoms positioned at
the corners of a cube. The centre of the cube lies at the voxel of 8 neighbouring domain
so that each atom occupies a separate domain.
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Secondly, the dynamics of a given RB needs to be calculated on each do-
main containing at least one site belonging to that RB. All data required for
the dynamics therefore need to be distributed to each domain that the RB hap-
pens to encroach upon. The dynamics algorithms necessitate careful accounting
procedures for shared RB units to prevent multiple counting of RB associated
quantities, such as forces, kinetic energy, etc., and to avoid any unnecessary
message passing.

In principle, domain haloes include basic particle information only - particles
identities and positions, necessary for the evaluation of the forces of all domain
particles. However, for particles that are parts of shared RB units it is necessary
to extend the level of information haloed to include forces and in some cases
velocities. This emerges as a requirement for shared RB units in order to avoid
further communications for a number of calculations needed for the dynamics
of a RB unit such as COM position, velocity and net force, as well as torque,
angular velocity, etc.

In order to calculate the dynamics of a particular RB unit the following in-
formation about it is required:

1. The type of unique molecular entity it represents;
2. The list of its constituent sites;
3. The derived quantities: mass per type, COM position and COM velocity and

angular velocity;
4. The principal axes and rotational inertia in the principal frame per type;
5. The quaternion vector.

The actual implementation extends the above descriptors with helper arrays
such as inverse of mass, rotational inertia and arrays to indicate the RB unit
members’ status as in-domain (or in-halo), massless, fixed (frozen), etc.

Careful bookkeeping is required for maintaining the data integrity of the
model system over all domains at all times. During the dynamics RB units can
leave fully a domain or enter a new one. The domain crossing data protocol for
a RB is based on that for a particle – the particle is resurrected on the receiving
domain and annihilated on the sending domain – with two extra stages. The first
stage requires sending to the receiving domain all the unique identifiers of the
departing particle (type, index, mass, velocity, etc.) together with its associated
topological information (descriptors for chemical bonds, angles, dihedrals, etc.),
which will also include the whole set of descriptors associated with the RB unit
containing it, before deleting all its data on the sending domain. In the second
stage it is determined whether a particle entering a receiving domain belongs
to a new or already existing RB unit. In the former case a new set of RB unit
descriptors is created and populated with the received data whereas in the latter
case an exiting set of descriptors is updated to indicate that the particle is on the
domain rather than in the halo. Finally, in the third stage the sending domain
removes the descriptors of RB units that have completely left the domain, i.e.
with no member particle present. If this step is omitted the number of RB units
on a domain may grow to the total number of units in the model system, which
means the implementation is no longer memory distributed.



434 I. Todorov, L. Ellison, and W. Smith

3 Results and Conclusion

Comparative simulations to test the scalability and performance of the RB
against the CB implementation in DL POLY 4 were carried out. Two types of
performance tests were used - weak scaling and strong scaling. The weak scaling
was carried out on a model system containing 263,424 atoms of equilibrated wa-
ter (at 300 Kelvin and 1 atmosphere using CBs) in a cubic box with interactions
described by the single point charge E (SPC-E) force field. The strong scaling
was performed on a larger water system of 444,528 particles, equilibrated at the
same conditions, and with the same force field interactions. All runs involved
a 100 timesteps of evolution within the velocity Verlet couched microcanonical
ensemble (NVE) on processor counts ranging from 16 to 1024 cores on a Cray
XE6 platform [10]. All runs used a constant timestep length of 0.5 femto-second
and a constraint tolerance of 10−5 in relative units for the CBs solver [3]. For the
weak scaling tests the systems were enlarged by a factor of two every time the
core count was increased by a factor 2. Computation time was only measured
for the integration algorithms of the two, RB and CB, methodologies and thus
excluded start-up and close-down timings. It is worth noting that both integra-
tion methodologies, RB and CB, solved the same degrees of freedom per water
molecule. In the CB dynamics this is 3×3 (for the three atoms) −3 (for the three
distance constraints O-H1, O-H2, H1-H2) or 6 in total. In the RB dynamics this
is also 6, 3 for the center of mass translational motion and 3 for the unrestricted
rotational motion of the water molecule.

Fig. 2. Performance comparison between CB and RB dynamics as described in the
text; (left) weak scaling, (right) strong scaling

Figure 2 presents a performance comparison between RB and CB dynamics
methodologies for both scaling tests. It is clear from the weak scaling graph that
both RB and CB methodologies scale the same for the tested processor counts
range. However, the implicit dynamics solver (CB) is computationally more ex-
pensive than the explicit one (RB) by almost a constant amount, ≈ 0.4 sec., of
compute time per timestep. The nature of this expense and its consequences are
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clear from the strong scaling test where, as the core/domain count is increased,
DL POLY 4 performance is pushed from a compute bound mode to a communi-
cation bound mode. The CB methodology shows a rapid decay with core count
increase as a consequences of the extra local communication and synchronisa-
tion required at each iteration of the CB convergence cycle. In contrast, the RB
methodology shows excellent scalability over the tested range of cores. Above
512 cores its performance somewhat decays due to a limitations of a part of the
DD methodology. Namely, the parallel Verlet neighbour list (VNL) builder which
scales linearly with the system size, O(N), where N is the number of particles
per core/domain. However, VNL builder performance becomes compromised for
N ≤ 500 when the weight of construction pre-factors starts to dominate over
the rest of the algorithm. Further runs, performed to test total system energy
conservation (integration stability), showed that the RB integration kept correct
dynamics up to timestep lengths of ≈ 1.15 femto-second whereas the CB inte-
gration could only do that up to ≈ 1 femto-second for the selected constraint
tolerance.

The inclusion of RB dynamics within the DL POLY 4 DD framework as an
alternative to the CB one using the implementation described in this work in-
troduces a very small computational and communication overheads. These are,
however, negligeable with respect to the overheads arising from using CB iter-
ative solvers and do not penalise the scalability of the RB implementation per-
formance as much as they do for the CB even in communication bound regimes.
The RB dynamics methodology is computationally faster and superior to CB
methodology both in terms of compute time (time per timestep) and discretisa-
tion time (size of timestep), as well as being more scalable.
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Abstract. The Network-on-Chip (NoC) paradigm plays an essential
role in designing emerging multicore processors. Three Dimensional (3D)
NoC design expands the on-chip network vertically. To achieve high per-
formance in a 3D NoC, it is crucial to reduce the access latency of caches
and memories. In this paper, we propose an optimized design that pro-
vides high performance, low power consumption and manufacturing cost.
The proposed scheme shifts the fully connected mesh network to a par-
tially connected network, with the optimization of heterogeneous routers
and links. Full system evaluation shows that, compared to a previous
optimized heterogeneous design, OPTNOC can further reduce the exe-
cution time by 12.1% and energy delay product by 23.5%.

1 Introduction

In recent years, due to the constraint of chip clock frequency and power consump-
tion, microprocessor design is shifting to the concept of Chip Multiprocessor
(CMP). To accommodate the increasing number of cores, Network-on-Chip (NoC)
was proposed to support the communication among multiple cores [1]. Chip de-
sign is moving towards 3D because 2D design has large die size in multiproces-
sor implementations. 3D integration is a viable solution to increase chip density,
providing shorter on-chip wire lengths and faster communication. Through Sil-
icon Via (TSV) [2] has become a promising solution for connecting stacked die
layers. They are significantly shorter than wire-bondings, meaning reduced delay
and lower power consumption. The manufacturing cost of TSVs is expensive [2],
therefore 3D chips are not in volume production yet. Studies have shown the im-
portance of placement of TSVs in a 3D chip [3].

To reduce data access latency, previous works have focused on homogeneous
and heterogeneous methods [3] [4]. Mixing buffered and bufferless routers in a
NoC is investigated in [5]. In this paper, based on the analysis of application
traffic, we propose a novel heterogeneous 3D NoC architecture that improves
data access latency by employing synthetic optimization methods. We first in-
vestigate how to implement an optimized placement of inter-layer connections
and memory controllers. The second optimization focused on heterogeneous non-
mesh network, that routers and links are redesigned to improve performance and
reduce power consumption. We next explore how performance can be affected by
different application mapping and propose an algorithm that maps applications

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 436–441, 2013.
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with reduced data access delay and core-core communication delay. To validate
our design, we implement our schemes in a full system simulation environment
and test the their effectiveness using several applications.

2 Motivation

The performance of a multicore processor is determined by many aspects; for
many modern CMPs, improving cache/memory bandwidth and latency is in
the highest priority [6]. When a core issues a data request, it checks first if
the data is in its private L1 data cache. On an L1 miss, the cache controller
will check if another core has the data. If so, the data will be forwarded to
the requester. Otherwise, the request is forwarded to the corresponding bank of
the shared last level cache. In case the data is modified, according to the cache
coherence protocol, snoop messages will be sent to other sharers to invalidate
their copies. Finally, if the data is not found in the last level cache, data will
be fetched from the main memory. In a cache coherent multiprocessor, the on-
chip network transfers different types of messages, e.g. cache coherent messages
(control and data) and memory messages. Control messages are usually short
packets no more than 64 bits. Assuming 64-byte cache line, the length of data
messages can reach 576 bits or 72 bytes. Memory messages sent to the directory
controllers are usually the same size of data messages. Considering a 3D NoC
with multiple layers, we further classify the messages as inter-layer and intra-
layer messages. It is very important to analyse the composition and weight of the
on-chip messages. Therefore we examine traces from actual applications running
in a 3D NoC (configuration can be found in Section 4).
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Fig. 1. Composition of on-chip
messages

Results in Figure 1 show that, on aver-
age 90.4% of the messages are core-cache
communication, meaning these messages are
transmitted between layers. Core-core com-
munication occupy 3.9% of on-chip traffic,
while the rest 5.8% traffic are cache-cache
communication. Some applications, e.g. FFT
and Ocean, exhibited higher core-core com-
munication (around 6%). While Raytrace and
Water-Nsq show less than 2% core-core com-
munication. The results implied that core-
cache communication dominated the on-chip traffic, while core-core communi-
cation is negligible. Based on this insight, we propose an optimized 3D NoC
design.

3 The OPTNOC Design

OPTNOC is a low-cost 3D NoC design optimized for fast memory access. Based
on the aforementioned analysis of traffic trace, OPTNOC leverage several in-
sights to provide high performance memory access.
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3.1 Optimal Placement of Cache and Memory Controller
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Fig. 2. Optimal place-
ment of pillars and rout-
ing to pillar

Here we study an 8×8 3D NoC with two layers (de-
tails can be found in Section 4). Notice that, more
cache layers can be stacked in the 3D NoC. Figure 2
illustrated the implementation of pillars [3] [7]. As il-
lustrated, only a quarter of the nodes are connected
by vertical pillars (A pillar P is defined as a bunch
of TSVs, including TSVs for data, control and power
distribution). When a core issues a request, the near-
est pillar is selected to access the other layers. If there
are two adjacent pillars, the pillar in the X direction
will be chosen. Arrows in Figure 2 show the routing
for data flow. X-Y deterministic routing algorithm is
used as the message reaches the cache layer. Obvi-
ously, in Figure 2, all cores can reach the pillar within one hop. The problem
of optimal placement of memory controllers has been studied in [7]. It is shown
that an system performance will be affected by different placements of memory
controllers. Here we apply the optimal placement, which is the same as pillars.

3.2 Heterogeneous Architecture
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Fig. 3. Router and link of nodes.
The Router R consists of a Routing
Computation Unit (RCU), a Vir-
tual Channel Allocator (VCA), a
Switch Allocator (SA), a Crossbar
Switch (CS), several Virtual Chan-
nels (VC) and input buffers.

Heterogeneous NoC architectures have been
proposed in many papers, with different im-
plementation approaches [4] [8]. Here we apply
a unique method based on the aforementioned
observations, i.e. direct core to core commu-
nication in a 3D NoC is very rare. Routers
of most nodes are removed, those nodes are
connected to the router of the pillar node di-
rectly. Figure 3 illustrated nodes in the upper
right corner. Here, only one node in four has
a router, while other three nodes connect to
the router via direct links (solid line routers
and links). In this case, all Pillar Routers
connect four cores and the other layer(s).
Comparing with traditional homogeneous de-
sign, e.g. right side of Figure 3, the proposed
approach saves area, decreases delay of inter-
mediate routes and reduces power consump-
tion. For example, since node 54 has no router,
router delay is eliminated accordingly. Access-
ing the cache layer is faster in OPTNOC as well due to the removed routes.
However, a major problem of our proposed architecture is that, there is no di-
rect connection between several cores. For example, cores 54 and 62 are not
connected, a message from core 54 has to go through node 55 to the next layer,
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then route to node 61, afterwards the destination node. However, the direct
communication between cores are very rare.

Another optimization is introduced to mitigate the drawback of overall per-
formance. The flit width of modern NoCs is typically 128 bits, hence control
messages can be encoded to one flit, while data messages can be encoded to five
flits. Flit width determines link width, crossbar size and buffer size, therefore the
power consumption of routers and links, as well as the network performance are
affected. Heterogeneous designs of routers/links have been explored in several
papers [4] [8]. In OPTNOC, we implement only one type of 16 big router in the
pillar nodes. The links connecting big routers are widened as well (288 bits of flit
width). In this situation the data messages can be transferred in two flits, and
four control messages from cores can be combined. Assuming 3mm wire length,
total link area and power consumption of OPTNOC are 3.6% lower than the
homogeneous 128 bits design. We model routers under 32nm processing technol-
ogy, with 3.0GHz operating frequency and 1V voltage. Simulation result shows
that, even with additional logic, the total router area of OPTNOC is 16.48mm2,
45.2% less than homogeneous. Total power consumption of routers in OPTNOC
is lower as well. We note that the power consumption for transferring a control
message from core to cache is higher in OPTNOC comparing with conventional
architecture. However multiple concurrent messages can be combined to improve
channel utilization and reduce overall power consumption. In addition, transfer-
ring data messages consumes less power due to reduced fragmentation.

3.3 Application Mapping

In the OPTNOC design, since cores have heterogeneous connections, mapping
application to specific regions in the network can achieve better performance.
Here we propose a mapping algorithm that maps application processes/threads
close to the same pillar router if possible. The scheduling algorithm takes several
metrics into account: first, the Average Cache access Latency (ACL) is calcu-
lated; second, it tries to allocate cores that connected with same pillar router;
third, the communication between cores should be minimized. For ACL, since
the cache slices are shared by all cores, and data are mapped to cache slices
according to their addresses, we calculate the average hop counts for a core ac-
cessing the shared cache slices. Obviously, nodes in the corners of the NoC have
much higher ACL than nodes in the center. However, nodes directly connected
with a pillar usually have lower ACL, sometimes even lower than inner nodes. As
the task request more cores, other metrics are considered. In OPTNOC, a pillar
router connects four cores, therefore a task with four or less processes/threads
will be mapped to the cores connected by the same router. If a task requests
more than four cores, adjacent cores with lower ACL will be considered first.

4 Experimental Evaluation

4.1 Experiment Setup

We evaluate and compare OPTNOCwith homogeneous 3D NoC design and other
heterogeneous designs. Our simulation platform is based on a cycle-accurate
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NoC simulator (GEMS/Simics [9] [10]). We implement OPTNOC with two lay-
ers. The processor layer is an 8×8 mesh of 64 Sun UltraSPARCIII+ cores with
private L1 cache (split I + D, 16KB + 16KB, 4-way associative, 64-byte line,
3-cycle access delay). The cache layer consists of 16MB shared L2 caches, di-
vided into 64 banks/slices, each 512KB. Simulations are run on Solaris 9. Orion2
power simulator for interconnection on-chip networks is used to evaluate detailed
power characteristics of routers and links. Workloads used here are selected from
SPLASH-2, SPECjbb and TPC-H [11] [12] [13].

4.2 Performance Analysis

Here we provide a performance analysis of OPTNOC architecture with different
applications. In particular, we compare the performance of OPTNOC with a
homogeneous 3D NoC design [3] (Homo in figures), a heterogeneous design [4]
(Hetero-M in figures), and an optimized heterogeneous design [8] (Hetero-X in
figures, we compare the 96/192 design). To further verify the effectiveness of
our application mapping algorithm, we classify the OPTNOC into two groups:
one with proposed mapping algorithm (OPTNOC in figures), the other with
arbitrary mapping (OPTNOC-A in figures, here the mapping algorithm is from
Solaris 9). All these designs are modified with same running environment, e.g.
frequency and flit width, to provide comparable results. We measure performance
in terms of execution time and energy delay product.
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Fig. 4. Normalized execution time (a) and energy delay product (b) with OPTNOC
and other NoC designs

The results in Figure 4a show that, the OPTNOC outperforms other archi-
tectures in terms of execution time. For example, even without optimized appli-
cation mapping, the average execution time of applications of OPTNOC is still
27.1% and 8.2% lower than Homo and Hetero-X respectively. The proposed ap-
plication mapping algorithm further provides 4.2% performance improvement.
This is primarily due to the partially connected network, since the processing
capability of routers and links in the hot-spot areas are increased, and compo-
nents with low utilization are removed. Throughput of data messages is improved
significantly over wide routers and links as these messages can be transmitted
within two flits in OPTNOC. We note that applications with higher network in-
jection rate take more advantage from OPTNOC, while applications with higher
core-core communication benefit more from optimized application mapping.

In terms of energy delay product, the OPTNOC shows improved values than
other designs (Figure 4b). On average, the energy delay product of OPTNOC
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without mapping optimizations (OPTNOC-A) is 32.1% and 13% lower than
Homo and Hetero-X, respectively. As mentioned before, we calculate the over-
all access latency of data requests and responses. Here, reduced hop counts to
cache nodes and memory controllers in OPTNOC contribute to the performance
improvement. On the other hand, reduced number of routers and links in OPT-
NOC decreases overall power consumption from the on-chip network. We note
that proper application mapping provides 12% better energy delay product.
The reduced execution time translated into lower network latency and power
consumption. It is also noteworthy that OPTNOC provides both higher perfor-
mance and higher efficiency than the two designs proposed in [8], meaning that
our optimizations are effective.

5 Conclusion

We proposed OPTNOC, an optimized 3D NoC design in this paper. We an-
alyzed cache/memory access latencies in an on-chip network. Based on traffic
profile from eight applications, we discovered that direct core-core communi-
cation was relatively low in comparing with other traffic. Hence in this paper,
a novel 3D NoC design was introduced. The mesh network was redesigned to
fit the characteristic of application traffic. Full system experiments have shown
that, comparing with an earlier 3D NoC design, the average execution times and
energy delay product were reduced by 12.1% and 23.5% respectively.

References

1. Dally, W.J., et al.: Route packets, not wires: on-chip inteconnection networks. In:
Proceedings of the 38th DAC, pp. 684–689 (June 2001)

2. Velenis, D., et al.: Impact of 3d design choices on manufacturing cost. In: IEEE
3DIC 2009, pp. 1–5 (September 2009)

3. Xu, T., et al.: Optimal number and placement of through silicon vias in 3d network-
on-chip. In: Proceedings of the 14th DDECS, pp. 105–110 (April 2011)

4. Mishra, A.K., et al.: A case for heterogeneous on-chip interconnects for cmps. In:
Proceedings of the 38th ISCA, pp. 389–400 (2011)

5. Zhao, H., et al.: Exploring heterogeneous noc design space. In: Proceedings of the
2011 ICCAD, pp. 787–793 (2011)

6. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Cor-
poration (2013)

7. Xu, T.C., et al.: Optimal memory controller placement for chip multiprocessor. In:
Proceedings of the 8th CODES+ISSS, pp. 217–226 (October 2011)

8. Xu, T.C., et al.: A high-efficiency low-cost heterogeneous 3d network-on-chip de-
sign. In: Proceedings of the 5th NoCArc, pp. 37–42 (December 2012)

9. Magnusson, P., et al.: Simics: A full system simulation platform. Computer 35(2),
50–58 (2002)

10. Martin, M.M., et al.: Multifacet’s general execution-driven multiprocessor simula-
tor (gems) toolset. Computer Architecture News (September 2005)

11. Woo, S.C., et al.: The splash-2 programs: Characterization and methodological
considerations. In: Proceedings of the 22nd ISCA, pp. 24–36 (June 1995)

12. SPEC: Specjbb 2000, http://www.spec.org/jbb2000/
13. TPC: Tpc-h decision support benchmark, http://www.tpc.org/tpch/

http://www.spec.org/jbb2000/
http://www.tpc.org/tpch/


Author Index

Abdoldina, Farida 135
Afanasiev, Alexander 394
Afanasyev, Ivan 273
Afshar, Yaser 250
Akhmedov, Daulet 135
Akhmed-Zaki, Darkhan 139
Amorim, Ronan Mendonça 296

Bandini, Stefania 310, 369
Bandman, Olga 278
Baranov, Alexey 149
Baransel, Cesur 1
Barkalov, Konstantin 154
Bashkin, Vladimir A. 13
Basile, Davide 167
Bektemessov, Amanzhol 139
Belan, Nikolay 291
Belan, Stepan 291
Besozzi, Daniela 344
Bessonov, Oleg 26
Bielecki, W�lodzimierz 37
Bopeyev, Timur 135
Budjak, Igor 424

Campos, Ricardo Silva 296
Cazzaniga, Paolo 344
Clarke, David 182
Coulson, Geoff 51
Crociani, Luca 310

Danaev, Nargozy 139
da Silva Barra, Luis Paulo 296
Degano, Pierpaolo 167
de Oliveira, Bernardo Lino 296
Désérable, Dominique 316
dos Santos, Rodrigo Weber 296

Ellison, Laurence 429

Ferrari, Gian-Luigi 167
Fisunenko, Andrey 424
Frolov, Alexander 197

Gilmendinov, Mikhail 197
Gorlatch, Sergei 258

Hoffmann, Rolf 316

Ivanisenko, Nikita 409
Ivanisenko, Vladimir 409

Karataev, Aibek 135
Kharitonov, Dmitry 234
Khludova, Marina 229
Kireeva, Anastasiya 330
Kirsch, Christoph M. 208
Klimek, Tomasz 37
Klimov, Maksim 224
Kolchanov, Nikolay 409
Kopysov, Sergey 65
Kozlov, Konstantin 409
Kraska, Krzysztof 37
Kropacheva, Mariya 80
Kubo, Keisuke 381
Kumaran, Kalyan 90
Kuzmin, Igor 65

Lastovetsky, Alexey 182
Legalov, Alexander 80
Levin, Vladimir 234
Liljeberg, Pasi 436
Lippautz, Michael 208
Lobosco, Marcelo 296
Lomazova, Irina A. 13

Ma, Jeonghyeon 242
Matkerim, Bazargul 139
Mauri, Giancarlo 344
Meng, Jiayuan 90
Meyerov, Iosif 154
Morozov, Vitali 90
Muratov, Daulet 135

Nedozhogin, Nikita 65
Nishinari, Katuhiro 369
Nobile, Marco S. 344
Novikov, Alexander 65
Novikova, Yulia A. 13

Odyakova, Daria 234



444 Author Index

Panfilov, Peter 149
Papka, Michael E. 90
Park, Chanik 242
Park, Sejin 242
Payer, Hannes 208
Pescini, Dario 344
Plosila, Juha 436
Polovinkin, Alexey 154
Ponomarev, Dmitry 149
Porter, Barry 51
Povetkin, Rustam 135
Prasanna, Viktor K. 105

Qu, Yun R. 105

Raynal, Michel 51
Rocha, Bernardo Martins 296
Rychkov, Vladimir 182

Sagdeeva, Yulia 65
Samsonov, Alexander M. 409
Samsonova, Maria 409
Seaton, Michael 250
Seredynski, Franciszek 358
Shimura, Kenichiro 369
Sidorov, Sergey 154
Sivov, Anatoliy 417
Skaruz, Jaroslaw 358

Smith, William 429
Steuwer, Michel 258
Sukhoroslov, Oleg 394
Sundnes, Joakim 296
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