
Self-timed Scheduling and Execution of Nonlinear
Pipelines with Parallel Stages

Lars Lucas1, Tobias Schuele2, and Wolfgang Schwitzer1

1 Technische Universität München, Fakultät für Informatik
Boltzmannstr. 3, 85748 Garching, Germany
{lucas,schwitze}@in.tum.de
2 Siemens AG, Corporate Technology

Otto-Hahn-Ring 6, 81739 München, Germany
tobias.schuele@siemens.com

Abstract. Applications that process continuous streams of data, e.g., sensor sig-
nals, video images, network packets, etc. are well-suited for pipelined execution
on multicore processors. In many cases, however, the applications are subject to
real-time constraints, especially in embedded systems. Besides maximizing the
throughput, it is therefore important to minimize deviations in the timing. To
solve this problem, we propose a method for self-timed scheduling and parallel
execution of stream-based applications in soft real-time environments. Our ex-
perimental results show significantly lower latencies compared to state-of-the-art
approaches, while achieving high throughput.

1 Introduction

Multicore processors, which are prevalent in laptops, desktop computers, and servers,
increasingly find their way into embedded systems [1]. For instance, many smartphones
already contain processors with two or more cores. Unlike personal computers, how-
ever, embedded systems are often subject to real-time constraints. Typical examples are
vehicle controllers, medical devices, and machines for industrial automation. In such
systems, predictability of the timing plays an important role to ensure correct interac-
tion with the environment. In general, one distinguishes between soft and hard real-time
systems. For the former it must be guaranteed that the given deadlines are met in all
cases. Hard real-time systems are typically found in safety-critical areas like aviation,
where high demands are put on reliability. In soft real-time systems, a deadline may be
missed without causing harm. However, to maintain the quality of service, a major goal
in the design of such systems is to reduce deviations from the desired timing.

Consider, for example, a sorting machine that discards broken objects (Fig. 1). The
machine consists of a conveyor belt, which transports the objects to be sorted at a fixed
speed, a camera, which produces a video stream of the objects on the conveyor belt,
and a pusher, which pushes broken objects into a box. The camera and the pusher are
connected to a computer, which analyzes the incoming video stream and triggers the
pusher when a broken object is detected or the considered object could not be classified
within the given time span. In order to run the conveyor belt at a high speed, the image
processing application must have a high throughput. Additionally, the latency should be

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 L. Lucas, T. Schuele, and W. Schwitzer

as low as possible to keep the conveyor belt as short as possible. Increasing the distance
between the camera and the pusher relaxes the timing constraints, but increases the costs
and requires additional space. As usual in soft real-time systems, the deadline may be
missed without causing harm. Nevertheless, this should only happen in rare cases to
reduce the number of intact objects that are thrown away.

� � � � � � � 	

 � � � � 	

� � � 	

Fig. 1. Example for a soft real-time system (sorting machine)

In the past decades, a plethora of techniques for scheduling tasks on parallel systems
have been developed, ranging from completely static to fully dynamic approaches [2].
Static scheduling algorithms are used to compute schedules before an application is
executed [3,4,5]. Since the points of time at which the tasks are executed are known
a priori, static scheduling allows a maximum degree of predictability. However, static
scheduling algorithms require precise information on the worst-case execution times
of the tasks, which are hard to obtain for modern multicore processors with shared
caches. In fully dynamic approaches, all scheduling decisions are performed at run-
time. A prominent representative of this class is work stealing, where idle processor
cores steal tasks from other (busy) cores to balance the load [6]. A major advantage of
dynamic scheduling is the ability to deal with varying execution times that may arise
when shared resources such as the main memory are accessed. The downside is limited
predictability, since there is usually little a priori information on the timing.

Self-timed scheduling approaches combine the advantages of both worlds. This is
achieved by statically assigning the tasks to the processor cores using (not necessarily
safe) estimates of the tasks’ worst-case execution times. The result is a list for each
processor core specifying the sequential ordering of the tasks. As in static scheduling,
the lists are processed in an infinite loop, but the points of time at which the tasks are
executed are determined dynamically. To this end, the runtime systems keeps track of
the available data and ensures that a task is not executed until all input data is available,
i.e., synchronization is performed during run-time. This makes self-timed scheduling
robust with respect to changes in the execution times of the tasks.

To utilize the power of multicore processors, computations have to be split into tasks
that can be executed in parallel. For that purpose, applications that process continuous
streams of data, such as the sorting machine described previously, may be executed in
a pipelined fashion [7,8]. This is one of the reasons why stream processing, which has
a long history in computer science [9], has gained resurgent interest in recent years

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 3

(see, e.g., [10,11,12]). In its basic form, however, the throughput of a pipeline is limited
by the slowest stage. To solve this problem, multiple invocations of a stage may be
executed in parallel [13]. Hence, a new item, subsequently also called token, may enter
a parallel stage before the previous one has left it, provided that the invocations do not
interfere. For stages with side effects it is usually required that at most one invocation
is active at a time. Such stages are said to be serial.

Chain-like (linear) pipelines increase the throughput, but do not decrease the latency,
the time required to process an element from a stream. A reduction of the latency can
be achieved using nonlinear pipelines, which may exhibit an arbitrary structure. In ad-
dition to temporal parallelism, such pipelines exploit spatial parallelism by processing
independent substreams in parallel. In digital signal processing, for example, streams
are frequently fed into multiple filter chains that may operate simultaneously.

In this paper, we present a method for self-timed scheduling of nonlinear pipelines
with parallel stages. Our approach is well-suited for stream processing applications in
soft real-time systems, especially when latency is a crucial concern. It allows develop-
ers of embedded systems to leverage from multicore processors without the need for
complex dynamic schedulers, which often exhibit unpredictable runtime behavior.

An efficient algorithm for scheduling pipelines on multiprocessor systems was pre-
sented in [14]. In contrast to our approach, however, it cannot deal with nonlinear
pipelines. The scheduling algorithm described in [15] solves this problem, but is op-
timized for throughput and does not aim to minimize the latency. The work of Banerjee
et al. [16] has the same objective, but also supports heterogeneous systems. All three
approaches assume a fixed assignment of pipeline stages to processors (cores), which
may significantly hurt cache locality, since data flowing between successive pipeline
stages must be physically transferred between the corresponding cores. Our approach
avoids this problem in that successive stages are preferably scheduled on the same core.

The remainder of this paper is organized as follows: In the next section, we describe
the foundations of our work and introduce the notion of extended task graphs used to
model stream processing applications. In Sect. 3, we present our scheduling algorithm,
which is based on the modified critical path method [17]. After that, we sketch the im-
plementation (Sect. 4) and discuss experimental results (Sect. 5). Finally, we conclude
with a summary and directions for future work in Sect. 6.

2 Foundations

An extended task graph (ETG) consists of a set of nodes that represent the computations
of an application and a set of edges that represent the data flow. ETGs are essentially
ordinary task graphs [4] except that each node has an additional attribute that specifies
whether it is serial or parallel.

Definition 1. An extended task graph is a directed acyclic graph G = (V,E, r, p, c),
where

– V is the set of nodes,
– E ⊂ V × V is the set of edges,
– r : V → N

+ is a function that associates with each node its computations costs,

4 L. Lucas, T. Schuele, and W. Schwitzer

– p : V → {0, 1} is a function that returns 1 if the node is parallel, and
– c : E → N

+ is a function that associates with each edge (v, w) ∈ E the communi-
cation costs between nodes v and w.

A node without predecessors is a source and a node without successors is a sink (for
simplicity, we restrict ourselves to ETGs with a single source and a single sink). We
write v � w iff there is a path from v to w with v, w ∈ V (v � v holds for all v ∈ V).
Additionally, we need the following definitions (see [4]):

– The length of a path p = [vi, vi+1, . . . , vj] is the sum of the computation and
communication costs, i.e., len(p) =

∑
i≤k≤j r(vk) +

∑
i≤k<j c(vk, vk+1).

– The bottom level bl(v) of a node v is the length of the longest path from v to the
sink vsink , i.e., bl(v) = max{len(p) | p = [v, . . . , vsink]}.1

– A critical path cp is a longest path, i.e., len(cp) = bl(vsource).
– The as-late-as-possible (ALAP) time of a node v is defined as alap(v) = len(cp)−
bl(v).

Intuitively, the ALAP time is the latest point of time a node must be scheduled without
unnecessarily increasing the span of the resulting schedule. Figure 2 shows a sample
ETG consisting of five nodes, where multiple instances of nodes C and D may be
executed in parallel. The length of the critical path [A,C,D,E] is 14. The bottom levels
and ALAP times are given next to each node.

A

B C

D

E

2

2 4

3

2

1 1

1 1

1

bl(A) = 14, alap(A) = 0

bl(B) = 9, alap(B) = 5 bl(C) = 11, alap(C) = 3

bl(D) = 6, alap(D) = 8

bl(E) = 2, alap(E) = 12

Fig. 2. Sample ETG consisting of five nodes (nodes C and D are parallel)

In order to exploit pipeline parallelism, we unfold ETGs. For that purpose, we create
a fixed number of copies of an ETG, where each copy represents a run through the
pipeline. Recall, however, that serial stages must be executed one after the other. This
can be accomplished by introducing additional edges in the unfolded ETG such that
the copies of a serial stage depend on each other. More formally, we denote by Gi =
(Vi, Ei, wi, pi, ci) the ETG obtained from an ETG G = (V,E, r, p, c) by labeling every

1 An algorithm for computing bottom levels can be found in [4].

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 5

node v ∈ V with index i such that G and Gi are isomorphic. The union of two ETGs
Gi and Gj , written Gi ∪Gj , is defined elementwise.

Definition 2. Let (V,E,w, p, c) =
⋃n

i=1 Gi be the ETG consisting of n copies of an
ETG G. Then, G′ = (V,E ∪ E′, r, p, c′) is the ETG obtained by unfolding G n times,
where E′ ⊂ V × V and c′ : E ∪ E′ → N are defined as follows:

E′ = {(vi, vi+1) | ¬p(vi) ∧ 1 ≤ i < n}

c′(e) =

{
0 if e ∈ E′

c(e) otherwise

The above definition ensures that for every serial node there is an edge between suc-
cessive runs. This way, parallel execution of different instantiations of a serial node is
avoided. Since these additional edges are used for synchronization only and not for ex-
changing data, we set their communication costs to zero. Figure 3 shows the ETG of
Fig. 2 unfolded three times (the computation and communications costs of the original
ETG are omitted for the sake of clarity).

A1 A2 A3

B1 C1 B2 C2 B3 C3

D1 D2 D3

E1 E2 E3

0

0

0

0

0

0

Fig. 3. ETG of Fig. 2 unfolded three times

3 Scheduling Algorithm

Having unfolded an ETG, we can, at least in principle, employ any static scheduling al-
gorithm to obtain a schedule. It is not even necessary to distinguish between serial and
parallel stages, as this information is implicitly encoded in the synchronization edges.
Since we consider self-timed scheduling, the temporal assignment of tasks to proces-
sors can be ignored. In fact, we are only interested in the processor allocation, i.e., the
sequence of tasks executed by a processor. As mentioned in the introduction, synchro-
nization is performed on-the-fly to cope with varying runtimes. Note, however, that the
resulting schedules only comprise finitely many runs. In order to execute nonterminat-
ing applications, the schedules are repeated in an infinite loop. This is referred to as
blocked scheduling, where the number of unfoldings is called the blocking factor [1].

6 L. Lucas, T. Schuele, and W. Schwitzer

Most scheduling algorithms aim to minimize the span of the resulting scheduling.
Regarding nonterminating systems this means that the average throughput is maxi-
mized. While this is reasonable in high performance computing, it is usually not the
primary goal in embedded systems that are subject to real-time constraints. Our schedul-
ing algorithm solves this problem in that it not only maximizes the throughput, but also
minimizes the latency. It is based on the modified critical path (MCP) algorithm devel-
oped by Wu and Gajski [17], which is widely used in practice and performs very well
compared to other scheduling algorithms [18]. The basic idea of the MCP algorithm is
to schedule nodes with the least ALAP times first, where ties are broken dependent on
the ALAP times of the nodes’ descendants. The algorithm comprises two steps2: In the
first step, a list is created for each node containing the ALAP times of the node itself
and all its descendants in ascending order. In the second step, the nodes are scheduled
one after the other according to the lexicographical order of the obtained lists.

Given a set of m processors, we represent a schedule by two functions, the processor
allocation function P : V → {1 . . .m} and the start time function S : V → N. These
two functions specify for each node on which processor and at what time it shall be
executed. As usual in static scheduling, we neglect communication costs if two adjacent
nodes are scheduled on the same processor. Thus, the communication costs cp(u, v)
when scheduling node v on processor p are zero if P (u) = p and c(u, v) otherwise.
The earliest point of time v can be executed is then defined as follows:

earliestp(v) = max{S(u) + r(u) + cp(u, v) | (u, v) ∈ E}
However, executing v at a given point of time t is only possible if it does not overlap
with any other node scheduled on processor p:

feasiblep(v, t) = ∀w ∈ V. (P (w) = p) → (t+ r(v) ≤ S(w)) ∨ (S(w) + r(w) ≤ t)

Consequently, the start time of v is the earliest feasible time:

startp(v) = min{t ∈ N | t ≥ earliestp(v) ∧ feasiblep(v, t)}
Figure 4 shows our algorithm.3 In contrast to MCP, it takes into account the unfoldings
of the original ETG, which is the key to minimizing the latency. For that purpose, the
subgraphs V1 ∪ V2 ∪ · · · ∪ Vn are processed in ascending order (lines 3–11). This way,
it is guaranteed that no nodes are scheduled before all nodes of the previous unfolding
have been scheduled. For each node v inside a subgraph, the algorithm creates a list
lv (lines 5–8) containing v and its successors sorted by their ALAP times. Once the
nodes of a subgraph have been processed, these lists are sorted lexicographically and
appended to the global list L (line 10). Finally, the nodes are scheduled in a greedy
fashion (lines 12–23) w.r.t. their start times (lines 16–21).

Figure 5 depicts two schedules for the ETG of Fig. 3, one computed with the clas-
sical MCP algorithm and the other one with our algorithm (LMCP). In both cases, we
assumed a system with three processors. It should be emphasized that nodes belonging

2 See MCP Revisited by M.-Y. Wu (http://www.ece.unm.edu/~wu/mcp/mcp.pdf).
3 An expression [x | p(x)] denotes a list of elements each satisfying the predicate p. The second,

optional parameter of the function sort is a binary predicate specifying the sorting order.

http://www.ece.unm.edu/~wu/mcp/mcp.pdf

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 7

1 function LMCP(V1 ∪ V2 ∪ · · · ∪ Vn, E, r, p, c)
2 L := [];
3 // process subgraphs in ascending order (n = number of unfoldings)
4 for i := 1 to n do
5 for each v ∈ Vi do
6 // sort node and its descendants according to their ALAP times
7 lv := sort([w | v � w], (a, b) → alap(a) < alap(b));
8 end for
9 // sort lists lexicographically and append them to L

10 L := append(L, sort([lv | v ∈ Vi]));
11 end for
12 (P, S) := (∅, ∅);
13 while L �= [] do
14 v := head(head(L));
15 (P (v), S(v)) := (0,∞);
16 // determine processor with least start time (m = number of processors)
17 for p := 1 to m do
18 if startp(v) < S(v) then
19 (P (v), S(v)) := (p, startp(v));
20 end if
21 end for
22 L := tail(L);
23 end while
24 return (P, S);
25 end function

Fig. 4. Levelized modified critical path algorithm (LMCP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
t

P1 A1 A2 A3 B2 D1 D2 E2 E3

P2 C1 C3 E1

P3 B1 C2 B3 D3

(a) Modified critical path algorithm (MCP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
t

P1 A1 C1 D1 E1 B3 D3 E3

P2 B1 B2 A3 C3

P3 A2 C2 D2 E2

(b) Levelized modified critical path algorithm (LMCP)

Fig. 5. Schedules for the unfolded ETG of Fig. 3 using three processors

8 L. Lucas, T. Schuele, and W. Schwitzer

to different unfoldings such as A1 and A2 might be executed on different processors,
since they represent different tasks. Moreover, note that execution of B1, C1, and C2

might overlap, since B and C are independent of each other and C is a parallel node.
The maximum latency for the schedule in Fig. 5 (a) is 14 time units, whereas processing
an element according to Fig. 5 (b) requires at most 12 time units.

4 Implementation

We have implemented our approach on top of a framework called FluenC [19,20],
which allows developers to easily model parallel stream processing applications in C++.
Typical fields of application are digital signal and image processing. As a major ad-
vantage, FluenC is based on a deterministic model of computation (dataflow process
networks [21]), which simplifies testing and debugging. Determinism is particularly
important in safety-critical systems, where high demands are put on correctness and
reliability. For efficiency reasons, most of the classes and functions are implemented
using templates. This also facilitates type safety: connecting the output of a pipeline
stage to an input of a different type results in a compile-time error. Moreover, FluenC is
completely lock-free, and hence does not suffer from costly synchronization operations.
Figure 6 sketches the implementation of our running example.

...
// Serial node with input of type S and output of type T
class B: public network_t::serial<in<S>, out<T>> {
public:

void operator()(const S& input, T& output) const {
// computations

}
} myB;
...
// Connect output of B with first input of D (port 0)
myB >> myD.port<0>();

Fig. 6. Excerpt from the implementation of the ETG shown in Fig. 2

In order to determine the runtimes of the nodes, we execute the resulting graph sev-
eral times on the target processor and use the measured information for scheduling. In
a second step, we create a list for each processor (core) containing the nodes to be ex-
ecuted. These lists are then repeatedly processed in parallel (a barrier at the end of the
schedules synchronizes successive runs). Data dependencies are resolved dynamically,
i.e., a node is not executed until all input data is available. For that purpose, each node
has an associated table in which the incoming data is stored depending on the number
of the unfolding.4 If a processor (core) is ready, but some data is still missing, it waits
until the next table entry is complete.

4 Simply speaking, the columns represent the inputs and the rows the unfoldings.

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 9

5 Experimental Results

To evaluate our approach, we parallelized three applications, a sorting network (SORT),
a fast Fourier transform (FFT) for digital signal processing, and an image recognition
application (IMGR) developed at Siemens for industrial automation. The latter is used
to identify moving objects in a stream of video images (cf. Sect. 1). The image process-
ing steps range from simple local filters to complex operations, e.g. the computation
of connected components and image compression. All applications exhibit a nonlinear
structure and contain parallel stages.

We executed the benchmarks using self-timed as well as dynamic scheduling in order
to assess the performance characteristics of both approaches. For dynamic scheduling
we employed the scheduler of Intel’s Threading Building Blocks5, a state-of-the-art
C++ library for parallel programming. The scheduler is based on the work stealing
paradigm [6], which has proven to be very efficient in practice. To obtain comparable
results, we used the same platform in both scenarios and only exchanged the underly-
ing scheduler. All experiments were performed on a system with two quad-core Xeon
E5440 processors with 2.83 GHz and 6 GB RAM running Linux.

For each benchmark, we varied the number of processor cores from one to eight
and the number of unfoldings from one to ten. Moreover, we executed each benchmark
5000 times, resulting in a total number of approx. 2.4 million measured latency values.
Table 1 shows the results, where Lseq denotes the latency (in milliseconds) and Tseq

the throughput (elements per second) for sequential execution. For the parallel imple-
mentations, m specifies the number of processor cores and n the number of unfoldings.
Besides the minimum, average, and maximum latency, we also list the standard devia-
tion Ldev, which serves as a measure for the degree of timing predictability.

Table 1. Experimental results

Bench. Lseq Tseq Scheduling Objective m n Lmin Lavg Lmax Ldev T

SORT 44 23
self-timed

min. Lmax 2 1 33 39 67 2.8 25

sat. T 6 9
47 94 180 17.0 38

dynamic
57 222 421 49.6 40

max. T 5 10 43 231 619 58.2 43

FFT 11 93
self-timed

min. Lmax 6 1 6 6 10 0.2 167

sat. T 8 4
10 11 26 0.6 343

dynamic
10 15 28 1.1 271

max. T 6 8 8 26 52 7.6 306

IMGR 84 12
self-timed

min. Lmax 2 5 53 54 55 0.2 22

sat. T 8 4
74 78 95 1.3 45

dynamic
91 105 152 6.8 38

max. T 7 10 104 192 340 34.3 52

5 http://threadingbuildingblocks.org/

http://threadingbuildingblocks.org/

10 L. Lucas, T. Schuele, and W. Schwitzer

We considered three different objectives in Table 1 regarding latency and throughput
in order to summarize the results. For self-timed scheduling, we determined a combi-
nation of m and n such that the maximum latency Lmax is minimal. Additionally, we
determined when the throughput saturates, i.e., higher values for m or n do not yield
significantly higher values T . To provide a direct comparison, we also list the results for
dynamic scheduling with the same values for m and n. Finally, we determined a com-
bination of m and n such that the throughput using dynamic scheduling is maximal.

SORT. Using self-timed scheduling, the average latency Lavg of 39 ms is slightly less
than in the sequential case (89%) and the throughput of 25 is slightly higher (109%).
However, it should be noted that the maximum latency is 67 ms (only 44 ms in the
sequential case). Nevertheless, the standard deviation Ldev of 2.8 ms is comparatively
low. The remaining results of SORT indicate that this benchmark does not respond
well to pipelined execution, no matter which scheduling variant is employed. Even with
throughput optimized dynamic scheduling, the maximum throughput is only 43 (187%)
on five cores, which is relatively low compared to the other benchmarks.

FFT. If latency reduction is the primary objective, self-timed scheduling yields good
results: Lavg is with 6 ms significantly lower than in the sequential case (55%), while
still a high throughput of 167 compared to 93 (180%) is achieved. The standard devia-
tion of 0.2 ms is remarkably low. An interesting result is the saturated throughput of 343
elements per seconds using self-timed scheduling compared to the maximum through-
put achievable with dynamic scheduling of 306 elements per second. This is presumably
due to the fact that the data chunks to be processed are rather small, which results in
a high scheduling overhead. To sum up, self-timed scheduling pays off in significantly
reduced, highly predictable latencies combined with increased throughput.

IMGR. The IMGR benchmark responds well to self-timed scheduling with respect
to latency minimization: All latency values are clearly below the sequential case (55 ms
in the worst case instead of 84 ms). This is merely 1 ms more than Lavg and 2 ms more
than Lmin. Together with the very low standard deviation 0.2 ms, these results indicate
that self-timed scheduling offers highly predictable latencies for this benchmark and
almost twice the throughput (183%) using two processor cores. The saturated through-
put is with 45 elements per second slightly below what is achievable using dynamic
scheduling (52 elements per second), whereas Lmax = 95 ms is only a fraction of the
340 ms required to achieve such a throughput. Again, the standard deviation is very low
(Ldev = 1.3 ms). Figure 7 (a) gives a more detailed picture of the latency distribution
for both scheduling variants (m = 8 and n = 4). The measured values for self-timed
scheduling span a range of 21 ms (from 74 to 95 ms), where the majority of the runs
completed within 75 and 85 ms, which is a time window of only 10 ms. The latencies
in dynamic scheduling are distributed over a much wider range of 61 ms (from 91 to
152 ms). Figure 7 (b) illustrates the relationship between throughput and average la-
tency for IMGR (all combinations of m and n). As indicated by the Pareto frontier, the
throughput can be increased from approx. 18 to 45 elements per second at the cost of
20 ms longer processing times (Lavg increases from 53 to 73 ms). The main reason for
this is that our algorithm tries to fill holes in the schedules in order to reduce idle times.
Consequently, increasing processor utilization may lead to fragmented schedules which
in turn result in increased latencies.

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 11

0

500

1000

1500

2000

2500

3000

3500
Fr

eq
ue

nc
y

Latency [ms]

self-timed

dynamic

(a)

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

La
te

nc
y

[m
s]

Throughput [1/s]

min

max

(b)

Fig. 7. Latency distribution for IMGR (eight cores, four unfoldings) and Pareto frontier (through-
put vs. average latency) using self-timed scheduling

6 Summary and Conclusion

Besides high performance, multicore processors offer several advantages for embedded
systems, in particular reduced power consumption and heat dissipation. However, the
migration of sequential software to multicore processors poses serious challenges to the
developers. From an industrial perspective, one of the major challenges is the protection
of investment, i.e., the reuse of legacy code. Our experience has shown that stream-
based applications can be parallelized relatively easy by means of pipelining, whereas
the exploitation of data parallelism often requires significant refactoring.

Another challenge concerns the implementation of real-time systems. Most frame-
works for parallel programming are optimized for throughput and disregard latency. In
fact, the employed schedulers are usually not fair so that some tasks may even starve. To
solve this problem, we proposed a polynomial-time algorithm for self-timed scheduling
of nonlinear pipelines with parallel stages. It is based on the modified critical path al-
gorithm, but takes into account the latency. For the largest of our benchmarks, an image
recognition application from industrial automation, we achieved a significant reduction
of the latency with only a slight drop of throughput.

It should be emphasized that our approach is not intended for hard real-time sys-
tems. Guaranteeing safe upper bounds on the execution times of parallel applications
requires special hardware support and is an active area of research [22]. Another issue is
the determination of an optimal number of unfoldings. Auto-tuning [23] can help to ex-
plore the design space and to find a configuration that fits the application’s requirements
regarding latency and throughput.

References

1. Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors: Scheduling and Synchronization,
2nd edn. CRC Press (2009)

2. Lee, E., Ha, S.: Scheduling strategies for multiprocessor DSP. In: Global Telecommunica-
tions Conference, Dallas, TX, USA. IEEE (1989)

3. Davis, R., Burns, A.: A survey of hard real-time scheduling algorithms and schedulability
analysis techniques for multiprocessor systems. Technical Report YCS-2009-443, University
of York, Department of Computer Science (2009)

12 L. Lucas, T. Schuele, and W. Schwitzer

4. Sinnen, O.: Task Scheduling for Parallel Systems. Wiley (2007)
5. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Computing Surveys 31, 406–471 (1999)
6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.

In: Annual Symposium on Foundations of Computer Science (FOCS), Santa Fe, NM, USA,
pp. 356–368. IEEE (1994)

7. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison Wesley
(2005)

8. Ortega-Arjona, J.: Patterns for Parallel Software Design. Wiley (2010)
9. Stephens, R.: A survey of stream processing. Acta Informatica 34(7), 491–541 (1997)

10. Aldinucci, M., Torquati, M., Meneghin, M.: FastFlow: Efficient parallel streaming applica-
tions on multi-core. Technical Report TR-09-12, Università di Pisa, Dipartimento di Infor-
matica, Italy (September 2009)

11. Otto, F., Pankratius, V., Tichy, W.F.: XJava: Exploiting parallelism with object-oriented
stream programming. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS,
vol. 5704, pp. 875–886. Springer, Heidelberg (2009)

12. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming appli-
cations. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer,
Heidelberg (2002)

13. MacDonald, S., Szafron, D., Schaeffer, J.: Rethinking the pipeline as object-oriented states
with transformations. In: High-Level Parallel Programming Models and Supportive Environ-
ments (HIPS), Santa Fe, NM, USA, pp. 12–21. IEEE Computer Society (2004)

14. Bokhari, S.: Partitioning problems in parallel, pipelined, and distributed computing. IEEE
Transactions on Computers 37(1), 48–57 (1988)

15. Hoang, P., Rabaey, J.: Scheduling of DSP programs onto multiprocessors for maximum
throughput. IEEE Transactions on Signal Processing 31(6), 2225–2235 (1993)

16. Banerjee, S., Hamada, T., Chau, P., Fellman, R.: Macro pipelining based scheduling on high
performance heterogeneous multiprocessor systems. IEEE Transactions on Signal Process-
ing 43(6), 1468–1484 (1995)

17. Wu, M.Y., Gajski, D.: Hypertool: A programming aid for message-passing systems. IEEE
Transactions on Parallel and Distributed Systems 1, 330–343 (1990)

18. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algo-
rithms. Journal of Parallel and Distributed Computing 59(3), 381–422 (1999)

19. Schuele, T.: A coordination language for programming embedded multi-core systems. In:
International Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT), Hiroshima, Japan. IEEE (2009)

20. Schuele, T.: Efficient parallel execution of streaming applications on multi-core processors.
In: International Conference on Parallel, Distributed and Network-Based Processing (PDP),
Ayia Napa, Cyprus. IEEE (2011)

21. Lee, E., Parks, T.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801
(1995)

22. Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z., Cassé, H., Rochange, C.,
Quinones, E., Uhrig, S., Gerdes, M., Guliashvili, I., Houston, M., Kluge, F., Metzlaff, S.,
Mische, J., Paolieri, M., Wolf, J.: MERASA: Multi-core execution of hard real-time applica-
tions supporting analysability. IEEE Micro 30(5), 66–75 (2010)

23. Karcher, T., Schaefer, C., Pankratius, V.: Auto-tuning support for manycore applications:
perspectives for operating systems and compilers. ACM SIGOPS Operating Systems Review
Archive 43(2), 96–97 (2009)

	Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages
	1Introduction
	2Foundations
	3Scheduling Algorithm
	4Implementation
	5Experimental Results
	6Summary and Conclusion

