
João M. Lourenço
Eitan Farchi (Eds.)

 123

LN
CS

 8
06

3

International Conference, MUSEPAT 2013
St. Petersburg, Russia, August 2013
Proceedings

Multicore Software Engineering,
Performance, and Tools

Lecture Notes in Computer Science 8063
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

João M. Lourenço Eitan Farchi (Eds.)

Multicore Software Engineering,
Performance, and Tools

International Conference, MUSEPAT 2013
St. Petersburg, Russia, August 19-20, 2013
Proceedings

13

Volume Editors

João M. Lourenço
Universidade Nova de Lisboa, Departamento de Informática FCT-UNL
2829-516 Caparica, Portugal
E-mail: joao.lourenco@fct.unl.pt

Eitan Farchi
Haifa University, IBM Haifa Research Laboratory
3190501 Haifa, Israel
E-mail: farchi@il.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39954-1 e-ISBN 978-3-642-39955-8
DOI 10.1007/978-3-642-39955-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943830

CR Subject Classification (1998): D.3.3-4, D.2.11, D.1.3, C.1.4, D.2.2, C.3-4
D.2, D.1.5, D.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our pleasure to welcome you to the proceedings of the International Con-
ference on Multicore Software Engineering, Performance, and Tools (MUSEPAT
2013)!

MUSEPAT merges and brings together the communities of the International
Workshops on Multicore Software Engineering (IWMSE) and on Parallel and
Distributed Systems: Testing, Analysis and Debugging (PADTAD). MUSEPAT
strives to provide a venue where researchers from academia and industry inter-
ested in the challenges of multicore systems can present their latest scientific
contributions and participate in open discussions. MUSEPAT 2013 continued
this tradition and included two keynote addresses, one from the industry and
the other from academia, three technical sessions, and a brainstorming session.

This year’s keynote speakers were Dr. Zakhar A. Matveev, from Intel, Russia,
and Prof. Nuno Preguiça, from Universidade Nova de Lisboa, Portugal. The call
for papers attracted 25 submissions by 76 authors from all over the world. All
papers were rigorously peer reviewed by at least three members of the Program
Committee. Nine high-quality papers were accepted to the conference and orga-
nized into three main sessions: Performance Analysis and Algorithms, Program-
ming Models and Optimization, and Testing and Debugging. The brainstorming
session is an open time for small group discussions and informal presentations
that allow conference participants to discuss and share new ideas and challenges
in software engineering for multicore systems.

We would like to thank our keynote speakers and all authors for sharing
their research contributions with us and with the larger research community.
We would also like to thank the members of the Program Committee and exter-
nal reviewers for their help in evaluating and selecting high-quality papers, as
well as Springer for their support with publishing the proceedings in the LNCS
series. We are thankful to the MUSEPAT Steering Committee members for their
guidance and support during the planning and organization of this conference.
Special thanks also go to Bertrand Meyer, General Chair of the 9th joint meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2013), and
the rest of the ESEC/FSE Organizing Committee for hosting MUESPAT as a
co-located conference. Our final thanks go to our corporate sponsors, Intel and
IBM Research, who generously support MUSEPAT 2013.

VI Preface

On behalf of the MSUEPAT 2013 Program Committee, we hope that you
find this year’s proceedings interesting and insightful.

August 2013
João M. Lourenço

Eitan Farchi

Organization

Organizing Committee

Conference Chair

João M. Lourenço

Program Chair

Eitan Farchi

Program Committee

Jeremy Bradbury University of Ontario, Institute of Technology,
Canada

Eitan Farchi IBM Haifa Research Laboratory, Israel
Klaus Havelund NASA’s Jet Propulsion Laboratory, USA
Michael Hind IBM Thomas J. Watson Research Center, USA
Akash Lal Microsoft Research, India
João Lourenço Universidade Nova de Lisboa, Portugal
Shiva Nejati University of Luxembourg, Luxembourg
John Owens University of California-Davis, USA
Victor Pankratius MIT, USA
Paul Petersen Intel, USA
Michael Philippsen University of Erlangen-Nuremberg, Germany
Christian Prehofer LMU München, Germany
Scott D. Stoller Stony Brook University, USA
Tomas Vojnar Brno University of Technology, Czech Republic
Shmuel Ur University of Bristol, UK

Steering Committee

Jeremy Bradbury University of Ontario, Institute of Technology,
Canada

Eitan Farchi IBM Haifa Research Laboratory, Israel
João Lourenço Universidade Nova de Lisboa, Portugal
Victor Pankratius MIT, USA
Michael Philippsen University of Erlangen-Nuremberg, Germany
Christian Prehofer LMU München, Germany
Shmuel Ur University of Bristol, UK

VIII Organization

External Reviewers

Vitor Duarte Universidade Nova de Lisboa, Portugal
Jan Fiedor Brno University of Technology, Czech Republic
Vendula Hruba Brno University of Technology, Czech Republic
Bohuslav Krena Brno University of Technology, Czech Republic
João Leitão Universidade Nova de Lisboa, Portugal
Zdenek Letko Brno University of Technology, Czech Republic
Pedro Medeiros Universidade Nova de Lisboa, Portugal
Yu Qi Mesh Capital LLC, USA
Shmuel Ur University of Bristol, UK
Tiago M. Vale Universidade Nova de Lisboa, Portugal

Table of Contents

Performance Analysis and Algorithms

Self-timed Scheduling and Execution of Nonlinear Pipelines with
Parallel Stages . 1

Lars Lucas, Tobias Schuele, and Wolfgang Schwitzer

MVA-Based Probabilistic Model of Shared Memory with a Round
Robin Arbiter for Predicting Performance with Heterogeneous
Workload . 13

Ryo Kawahara, Kouichi Ono, and Takeo Nakada

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search
Algorithm . 25

Nuno Cardoso and Rui Abreu

Programming Models and Optimization

Handling Parallelism in a Concurrency Model . 37
Mischael Schill, Sebastian Nanz, and Bertrand Meyer

On the Relevance of Total-Order Broadcast Implementations in
Replicated Software Transactional Memories . 49

Tiago M. Vale, Ricardo J. Dias, and João M. Lourenço

How to Cancel a Task . 61
Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer

Testing and Debugging

Automatically Repairing Concurrency Bugs with ARC 73
David Kelk, Kevin Jalbert, and Jeremy S. Bradbury

A Modular Approach to Model-Based Testing of Concurrent
Programs . 85

Richard Carver and Yu Lei

A Dynamic Approach to Isolating Erroneous Event Patterns in
Concurrent Program Executions . 97

Jing Xu, Yu Lei, Richard Carver, and David Kung

Author Index . 111

Self-timed Scheduling and Execution of Nonlinear
Pipelines with Parallel Stages

Lars Lucas1, Tobias Schuele2, and Wolfgang Schwitzer1

1 Technische Universität München, Fakultät für Informatik
Boltzmannstr. 3, 85748 Garching, Germany
{lucas,schwitze}@in.tum.de
2 Siemens AG, Corporate Technology

Otto-Hahn-Ring 6, 81739 München, Germany
tobias.schuele@siemens.com

Abstract. Applications that process continuous streams of data, e.g., sensor sig-
nals, video images, network packets, etc. are well-suited for pipelined execution
on multicore processors. In many cases, however, the applications are subject to
real-time constraints, especially in embedded systems. Besides maximizing the
throughput, it is therefore important to minimize deviations in the timing. To
solve this problem, we propose a method for self-timed scheduling and parallel
execution of stream-based applications in soft real-time environments. Our ex-
perimental results show significantly lower latencies compared to state-of-the-art
approaches, while achieving high throughput.

1 Introduction

Multicore processors, which are prevalent in laptops, desktop computers, and servers,
increasingly find their way into embedded systems [1]. For instance, many smartphones
already contain processors with two or more cores. Unlike personal computers, how-
ever, embedded systems are often subject to real-time constraints. Typical examples are
vehicle controllers, medical devices, and machines for industrial automation. In such
systems, predictability of the timing plays an important role to ensure correct interac-
tion with the environment. In general, one distinguishes between soft and hard real-time
systems. For the former it must be guaranteed that the given deadlines are met in all
cases. Hard real-time systems are typically found in safety-critical areas like aviation,
where high demands are put on reliability. In soft real-time systems, a deadline may be
missed without causing harm. However, to maintain the quality of service, a major goal
in the design of such systems is to reduce deviations from the desired timing.

Consider, for example, a sorting machine that discards broken objects (Fig. 1). The
machine consists of a conveyor belt, which transports the objects to be sorted at a fixed
speed, a camera, which produces a video stream of the objects on the conveyor belt,
and a pusher, which pushes broken objects into a box. The camera and the pusher are
connected to a computer, which analyzes the incoming video stream and triggers the
pusher when a broken object is detected or the considered object could not be classified
within the given time span. In order to run the conveyor belt at a high speed, the image
processing application must have a high throughput. Additionally, the latency should be

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 L. Lucas, T. Schuele, and W. Schwitzer

as low as possible to keep the conveyor belt as short as possible. Increasing the distance
between the camera and the pusher relaxes the timing constraints, but increases the costs
and requires additional space. As usual in soft real-time systems, the deadline may be
missed without causing harm. Nevertheless, this should only happen in rare cases to
reduce the number of intact objects that are thrown away.

� � � � � � � 	

 � � � � 	

�
 � � 	

Fig. 1. Example for a soft real-time system (sorting machine)

In the past decades, a plethora of techniques for scheduling tasks on parallel systems
have been developed, ranging from completely static to fully dynamic approaches [2].
Static scheduling algorithms are used to compute schedules before an application is
executed [3,4,5]. Since the points of time at which the tasks are executed are known
a priori, static scheduling allows a maximum degree of predictability. However, static
scheduling algorithms require precise information on the worst-case execution times
of the tasks, which are hard to obtain for modern multicore processors with shared
caches. In fully dynamic approaches, all scheduling decisions are performed at run-
time. A prominent representative of this class is work stealing, where idle processor
cores steal tasks from other (busy) cores to balance the load [6]. A major advantage of
dynamic scheduling is the ability to deal with varying execution times that may arise
when shared resources such as the main memory are accessed. The downside is limited
predictability, since there is usually little a priori information on the timing.

Self-timed scheduling approaches combine the advantages of both worlds. This is
achieved by statically assigning the tasks to the processor cores using (not necessarily
safe) estimates of the tasks’ worst-case execution times. The result is a list for each
processor core specifying the sequential ordering of the tasks. As in static scheduling,
the lists are processed in an infinite loop, but the points of time at which the tasks are
executed are determined dynamically. To this end, the runtime systems keeps track of
the available data and ensures that a task is not executed until all input data is available,
i.e., synchronization is performed during run-time. This makes self-timed scheduling
robust with respect to changes in the execution times of the tasks.

To utilize the power of multicore processors, computations have to be split into tasks
that can be executed in parallel. For that purpose, applications that process continuous
streams of data, such as the sorting machine described previously, may be executed in
a pipelined fashion [7,8]. This is one of the reasons why stream processing, which has
a long history in computer science [9], has gained resurgent interest in recent years

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 3

(see, e.g., [10,11,12]). In its basic form, however, the throughput of a pipeline is limited
by the slowest stage. To solve this problem, multiple invocations of a stage may be
executed in parallel [13]. Hence, a new item, subsequently also called token, may enter
a parallel stage before the previous one has left it, provided that the invocations do not
interfere. For stages with side effects it is usually required that at most one invocation
is active at a time. Such stages are said to be serial.

Chain-like (linear) pipelines increase the throughput, but do not decrease the latency,
the time required to process an element from a stream. A reduction of the latency can
be achieved using nonlinear pipelines, which may exhibit an arbitrary structure. In ad-
dition to temporal parallelism, such pipelines exploit spatial parallelism by processing
independent substreams in parallel. In digital signal processing, for example, streams
are frequently fed into multiple filter chains that may operate simultaneously.

In this paper, we present a method for self-timed scheduling of nonlinear pipelines
with parallel stages. Our approach is well-suited for stream processing applications in
soft real-time systems, especially when latency is a crucial concern. It allows develop-
ers of embedded systems to leverage from multicore processors without the need for
complex dynamic schedulers, which often exhibit unpredictable runtime behavior.

An efficient algorithm for scheduling pipelines on multiprocessor systems was pre-
sented in [14]. In contrast to our approach, however, it cannot deal with nonlinear
pipelines. The scheduling algorithm described in [15] solves this problem, but is op-
timized for throughput and does not aim to minimize the latency. The work of Banerjee
et al. [16] has the same objective, but also supports heterogeneous systems. All three
approaches assume a fixed assignment of pipeline stages to processors (cores), which
may significantly hurt cache locality, since data flowing between successive pipeline
stages must be physically transferred between the corresponding cores. Our approach
avoids this problem in that successive stages are preferably scheduled on the same core.

The remainder of this paper is organized as follows: In the next section, we describe
the foundations of our work and introduce the notion of extended task graphs used to
model stream processing applications. In Sect. 3, we present our scheduling algorithm,
which is based on the modified critical path method [17]. After that, we sketch the im-
plementation (Sect. 4) and discuss experimental results (Sect. 5). Finally, we conclude
with a summary and directions for future work in Sect. 6.

2 Foundations

An extended task graph (ETG) consists of a set of nodes that represent the computations
of an application and a set of edges that represent the data flow. ETGs are essentially
ordinary task graphs [4] except that each node has an additional attribute that specifies
whether it is serial or parallel.

Definition 1. An extended task graph is a directed acyclic graph G = (V,E, r, p, c),
where

– V is the set of nodes,
– E ⊂ V × V is the set of edges,
– r : V → N

+ is a function that associates with each node its computations costs,

4 L. Lucas, T. Schuele, and W. Schwitzer

– p : V → {0, 1} is a function that returns 1 if the node is parallel, and
– c : E → N

+ is a function that associates with each edge (v, w) ∈ E the communi-
cation costs between nodes v and w.

A node without predecessors is a source and a node without successors is a sink (for
simplicity, we restrict ourselves to ETGs with a single source and a single sink). We
write v � w iff there is a path from v to w with v, w ∈ V (v � v holds for all v ∈ V).
Additionally, we need the following definitions (see [4]):

– The length of a path p = [vi, vi+1, . . . , vj] is the sum of the computation and
communication costs, i.e., len(p) =

∑
i≤k≤j r(vk) +

∑
i≤k<j c(vk, vk+1).

– The bottom level bl(v) of a node v is the length of the longest path from v to the
sink vsink , i.e., bl(v) = max{len(p) | p = [v, . . . , vsink]}.1

– A critical path cp is a longest path, i.e., len(cp) = bl(vsource).
– The as-late-as-possible (ALAP) time of a node v is defined as alap(v) = len(cp)−
bl(v).

Intuitively, the ALAP time is the latest point of time a node must be scheduled without
unnecessarily increasing the span of the resulting schedule. Figure 2 shows a sample
ETG consisting of five nodes, where multiple instances of nodes C and D may be
executed in parallel. The length of the critical path [A,C,D,E] is 14. The bottom levels
and ALAP times are given next to each node.

A

B C

D

E

2

2 4

3

2

1 1

1 1

1

bl(A) = 14, alap(A) = 0

bl(B) = 9, alap(B) = 5 bl(C) = 11, alap(C) = 3

bl(D) = 6, alap(D) = 8

bl(E) = 2, alap(E) = 12

Fig. 2. Sample ETG consisting of five nodes (nodes C and D are parallel)

In order to exploit pipeline parallelism, we unfold ETGs. For that purpose, we create
a fixed number of copies of an ETG, where each copy represents a run through the
pipeline. Recall, however, that serial stages must be executed one after the other. This
can be accomplished by introducing additional edges in the unfolded ETG such that
the copies of a serial stage depend on each other. More formally, we denote by Gi =
(Vi, Ei, wi, pi, ci) the ETG obtained from an ETG G = (V,E, r, p, c) by labeling every

1 An algorithm for computing bottom levels can be found in [4].

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 5

node v ∈ V with index i such that G and Gi are isomorphic. The union of two ETGs
Gi and Gj , written Gi ∪Gj , is defined elementwise.

Definition 2. Let (V,E,w, p, c) =
⋃n

i=1 Gi be the ETG consisting of n copies of an
ETG G. Then, G′ = (V,E ∪ E′, r, p, c′) is the ETG obtained by unfolding G n times,
where E′ ⊂ V × V and c′ : E ∪ E′ → N are defined as follows:

E′ = {(vi, vi+1) | ¬p(vi) ∧ 1 ≤ i < n}

c′(e) =

{
0 if e ∈ E′

c(e) otherwise

The above definition ensures that for every serial node there is an edge between suc-
cessive runs. This way, parallel execution of different instantiations of a serial node is
avoided. Since these additional edges are used for synchronization only and not for ex-
changing data, we set their communication costs to zero. Figure 3 shows the ETG of
Fig. 2 unfolded three times (the computation and communications costs of the original
ETG are omitted for the sake of clarity).

A1 A2 A3

B1 C1 B2 C2 B3 C3

D1 D2 D3

E1 E2 E3

0

0

0

0

0

0

Fig. 3. ETG of Fig. 2 unfolded three times

3 Scheduling Algorithm

Having unfolded an ETG, we can, at least in principle, employ any static scheduling al-
gorithm to obtain a schedule. It is not even necessary to distinguish between serial and
parallel stages, as this information is implicitly encoded in the synchronization edges.
Since we consider self-timed scheduling, the temporal assignment of tasks to proces-
sors can be ignored. In fact, we are only interested in the processor allocation, i.e., the
sequence of tasks executed by a processor. As mentioned in the introduction, synchro-
nization is performed on-the-fly to cope with varying runtimes. Note, however, that the
resulting schedules only comprise finitely many runs. In order to execute nonterminat-
ing applications, the schedules are repeated in an infinite loop. This is referred to as
blocked scheduling, where the number of unfoldings is called the blocking factor [1].

6 L. Lucas, T. Schuele, and W. Schwitzer

Most scheduling algorithms aim to minimize the span of the resulting scheduling.
Regarding nonterminating systems this means that the average throughput is maxi-
mized. While this is reasonable in high performance computing, it is usually not the
primary goal in embedded systems that are subject to real-time constraints. Our schedul-
ing algorithm solves this problem in that it not only maximizes the throughput, but also
minimizes the latency. It is based on the modified critical path (MCP) algorithm devel-
oped by Wu and Gajski [17], which is widely used in practice and performs very well
compared to other scheduling algorithms [18]. The basic idea of the MCP algorithm is
to schedule nodes with the least ALAP times first, where ties are broken dependent on
the ALAP times of the nodes’ descendants. The algorithm comprises two steps2: In the
first step, a list is created for each node containing the ALAP times of the node itself
and all its descendants in ascending order. In the second step, the nodes are scheduled
one after the other according to the lexicographical order of the obtained lists.

Given a set of m processors, we represent a schedule by two functions, the processor
allocation function P : V → {1 . . .m} and the start time function S : V → N. These
two functions specify for each node on which processor and at what time it shall be
executed. As usual in static scheduling, we neglect communication costs if two adjacent
nodes are scheduled on the same processor. Thus, the communication costs cp(u, v)
when scheduling node v on processor p are zero if P (u) = p and c(u, v) otherwise.
The earliest point of time v can be executed is then defined as follows:

earliestp(v) = max{S(u) + r(u) + cp(u, v) | (u, v) ∈ E}
However, executing v at a given point of time t is only possible if it does not overlap
with any other node scheduled on processor p:

feasiblep(v, t) = ∀w ∈ V. (P (w) = p) → (t+ r(v) ≤ S(w)) ∨ (S(w) + r(w) ≤ t)

Consequently, the start time of v is the earliest feasible time:

startp(v) = min{t ∈ N | t ≥ earliestp(v) ∧ feasiblep(v, t)}
Figure 4 shows our algorithm.3 In contrast to MCP, it takes into account the unfoldings
of the original ETG, which is the key to minimizing the latency. For that purpose, the
subgraphs V1 ∪ V2 ∪ · · · ∪ Vn are processed in ascending order (lines 3–11). This way,
it is guaranteed that no nodes are scheduled before all nodes of the previous unfolding
have been scheduled. For each node v inside a subgraph, the algorithm creates a list
lv (lines 5–8) containing v and its successors sorted by their ALAP times. Once the
nodes of a subgraph have been processed, these lists are sorted lexicographically and
appended to the global list L (line 10). Finally, the nodes are scheduled in a greedy
fashion (lines 12–23) w.r.t. their start times (lines 16–21).

Figure 5 depicts two schedules for the ETG of Fig. 3, one computed with the clas-
sical MCP algorithm and the other one with our algorithm (LMCP). In both cases, we
assumed a system with three processors. It should be emphasized that nodes belonging

2 See MCP Revisited by M.-Y. Wu (http://www.ece.unm.edu/~wu/mcp/mcp.pdf).
3 An expression [x | p(x)] denotes a list of elements each satisfying the predicate p. The second,

optional parameter of the function sort is a binary predicate specifying the sorting order.

http://www.ece.unm.edu/~wu/mcp/mcp.pdf

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 7

1 function LMCP(V1 ∪ V2 ∪ · · · ∪ Vn, E, r, p, c)
2 L := [];
3 // process subgraphs in ascending order (n = number of unfoldings)
4 for i := 1 to n do
5 for each v ∈ Vi do
6 // sort node and its descendants according to their ALAP times
7 lv := sort([w | v � w], (a, b) → alap(a) < alap(b));
8 end for
9 // sort lists lexicographically and append them to L

10 L := append(L, sort([lv | v ∈ Vi]));
11 end for
12 (P, S) := (∅, ∅);
13 while L �= [] do
14 v := head(head(L));
15 (P (v), S(v)) := (0,∞);
16 // determine processor with least start time (m = number of processors)
17 for p := 1 to m do
18 if startp(v) < S(v) then
19 (P (v), S(v)) := (p, startp(v));
20 end if
21 end for
22 L := tail(L);
23 end while
24 return (P, S);
25 end function

Fig. 4. Levelized modified critical path algorithm (LMCP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
t

P1 A1 A2 A3 B2 D1 D2 E2 E3

P2 C1 C3 E1

P3 B1 C2 B3 D3

(a) Modified critical path algorithm (MCP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
t

P1 A1 C1 D1 E1 B3 D3 E3

P2 B1 B2 A3 C3

P3 A2 C2 D2 E2

(b) Levelized modified critical path algorithm (LMCP)

Fig. 5. Schedules for the unfolded ETG of Fig. 3 using three processors

8 L. Lucas, T. Schuele, and W. Schwitzer

to different unfoldings such as A1 and A2 might be executed on different processors,
since they represent different tasks. Moreover, note that execution of B1, C1, and C2

might overlap, since B and C are independent of each other and C is a parallel node.
The maximum latency for the schedule in Fig. 5 (a) is 14 time units, whereas processing
an element according to Fig. 5 (b) requires at most 12 time units.

4 Implementation

We have implemented our approach on top of a framework called FluenC [19,20],
which allows developers to easily model parallel stream processing applications in C++.
Typical fields of application are digital signal and image processing. As a major ad-
vantage, FluenC is based on a deterministic model of computation (dataflow process
networks [21]), which simplifies testing and debugging. Determinism is particularly
important in safety-critical systems, where high demands are put on correctness and
reliability. For efficiency reasons, most of the classes and functions are implemented
using templates. This also facilitates type safety: connecting the output of a pipeline
stage to an input of a different type results in a compile-time error. Moreover, FluenC is
completely lock-free, and hence does not suffer from costly synchronization operations.
Figure 6 sketches the implementation of our running example.

...
// Serial node with input of type S and output of type T
class B: public network_t::serial<in<S>, out<T>> {
public:

void operator()(const S& input, T& output) const {
// computations

}
} myB;
...
// Connect output of B with first input of D (port 0)
myB >> myD.port<0>();

Fig. 6. Excerpt from the implementation of the ETG shown in Fig. 2

In order to determine the runtimes of the nodes, we execute the resulting graph sev-
eral times on the target processor and use the measured information for scheduling. In
a second step, we create a list for each processor (core) containing the nodes to be ex-
ecuted. These lists are then repeatedly processed in parallel (a barrier at the end of the
schedules synchronizes successive runs). Data dependencies are resolved dynamically,
i.e., a node is not executed until all input data is available. For that purpose, each node
has an associated table in which the incoming data is stored depending on the number
of the unfolding.4 If a processor (core) is ready, but some data is still missing, it waits
until the next table entry is complete.

4 Simply speaking, the columns represent the inputs and the rows the unfoldings.

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 9

5 Experimental Results

To evaluate our approach, we parallelized three applications, a sorting network (SORT),
a fast Fourier transform (FFT) for digital signal processing, and an image recognition
application (IMGR) developed at Siemens for industrial automation. The latter is used
to identify moving objects in a stream of video images (cf. Sect. 1). The image process-
ing steps range from simple local filters to complex operations, e.g. the computation
of connected components and image compression. All applications exhibit a nonlinear
structure and contain parallel stages.

We executed the benchmarks using self-timed as well as dynamic scheduling in order
to assess the performance characteristics of both approaches. For dynamic scheduling
we employed the scheduler of Intel’s Threading Building Blocks5, a state-of-the-art
C++ library for parallel programming. The scheduler is based on the work stealing
paradigm [6], which has proven to be very efficient in practice. To obtain comparable
results, we used the same platform in both scenarios and only exchanged the underly-
ing scheduler. All experiments were performed on a system with two quad-core Xeon
E5440 processors with 2.83 GHz and 6 GB RAM running Linux.

For each benchmark, we varied the number of processor cores from one to eight
and the number of unfoldings from one to ten. Moreover, we executed each benchmark
5000 times, resulting in a total number of approx. 2.4 million measured latency values.
Table 1 shows the results, where Lseq denotes the latency (in milliseconds) and Tseq

the throughput (elements per second) for sequential execution. For the parallel imple-
mentations, m specifies the number of processor cores and n the number of unfoldings.
Besides the minimum, average, and maximum latency, we also list the standard devia-
tion Ldev, which serves as a measure for the degree of timing predictability.

Table 1. Experimental results

Bench. Lseq Tseq Scheduling Objective m n Lmin Lavg Lmax Ldev T

SORT 44 23
self-timed

min. Lmax 2 1 33 39 67 2.8 25

sat. T 6 9
47 94 180 17.0 38

dynamic
57 222 421 49.6 40

max. T 5 10 43 231 619 58.2 43

FFT 11 93
self-timed

min. Lmax 6 1 6 6 10 0.2 167

sat. T 8 4
10 11 26 0.6 343

dynamic
10 15 28 1.1 271

max. T 6 8 8 26 52 7.6 306

IMGR 84 12
self-timed

min. Lmax 2 5 53 54 55 0.2 22

sat. T 8 4
74 78 95 1.3 45

dynamic
91 105 152 6.8 38

max. T 7 10 104 192 340 34.3 52

5 http://threadingbuildingblocks.org/

http://threadingbuildingblocks.org/

10 L. Lucas, T. Schuele, and W. Schwitzer

We considered three different objectives in Table 1 regarding latency and throughput
in order to summarize the results. For self-timed scheduling, we determined a combi-
nation of m and n such that the maximum latency Lmax is minimal. Additionally, we
determined when the throughput saturates, i.e., higher values for m or n do not yield
significantly higher values T . To provide a direct comparison, we also list the results for
dynamic scheduling with the same values for m and n. Finally, we determined a com-
bination of m and n such that the throughput using dynamic scheduling is maximal.

SORT. Using self-timed scheduling, the average latency Lavg of 39 ms is slightly less
than in the sequential case (89%) and the throughput of 25 is slightly higher (109%).
However, it should be noted that the maximum latency is 67 ms (only 44 ms in the
sequential case). Nevertheless, the standard deviation Ldev of 2.8 ms is comparatively
low. The remaining results of SORT indicate that this benchmark does not respond
well to pipelined execution, no matter which scheduling variant is employed. Even with
throughput optimized dynamic scheduling, the maximum throughput is only 43 (187%)
on five cores, which is relatively low compared to the other benchmarks.

FFT. If latency reduction is the primary objective, self-timed scheduling yields good
results: Lavg is with 6 ms significantly lower than in the sequential case (55%), while
still a high throughput of 167 compared to 93 (180%) is achieved. The standard devia-
tion of 0.2 ms is remarkably low. An interesting result is the saturated throughput of 343
elements per seconds using self-timed scheduling compared to the maximum through-
put achievable with dynamic scheduling of 306 elements per second. This is presumably
due to the fact that the data chunks to be processed are rather small, which results in
a high scheduling overhead. To sum up, self-timed scheduling pays off in significantly
reduced, highly predictable latencies combined with increased throughput.

IMGR. The IMGR benchmark responds well to self-timed scheduling with respect
to latency minimization: All latency values are clearly below the sequential case (55 ms
in the worst case instead of 84 ms). This is merely 1 ms more than Lavg and 2 ms more
than Lmin. Together with the very low standard deviation 0.2 ms, these results indicate
that self-timed scheduling offers highly predictable latencies for this benchmark and
almost twice the throughput (183%) using two processor cores. The saturated through-
put is with 45 elements per second slightly below what is achievable using dynamic
scheduling (52 elements per second), whereas Lmax = 95 ms is only a fraction of the
340 ms required to achieve such a throughput. Again, the standard deviation is very low
(Ldev = 1.3 ms). Figure 7 (a) gives a more detailed picture of the latency distribution
for both scheduling variants (m = 8 and n = 4). The measured values for self-timed
scheduling span a range of 21 ms (from 74 to 95 ms), where the majority of the runs
completed within 75 and 85 ms, which is a time window of only 10 ms. The latencies
in dynamic scheduling are distributed over a much wider range of 61 ms (from 91 to
152 ms). Figure 7 (b) illustrates the relationship between throughput and average la-
tency for IMGR (all combinations of m and n). As indicated by the Pareto frontier, the
throughput can be increased from approx. 18 to 45 elements per second at the cost of
20 ms longer processing times (Lavg increases from 53 to 73 ms). The main reason for
this is that our algorithm tries to fill holes in the schedules in order to reduce idle times.
Consequently, increasing processor utilization may lead to fragmented schedules which
in turn result in increased latencies.

Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages 11

0

500

1000

1500

2000

2500

3000

3500
Fr

eq
ue

nc
y

Latency [ms]

self-timed

dynamic

(a)

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

La
te

nc
y

[m
s]

Throughput [1/s]

min

max

(b)

Fig. 7. Latency distribution for IMGR (eight cores, four unfoldings) and Pareto frontier (through-
put vs. average latency) using self-timed scheduling

6 Summary and Conclusion

Besides high performance, multicore processors offer several advantages for embedded
systems, in particular reduced power consumption and heat dissipation. However, the
migration of sequential software to multicore processors poses serious challenges to the
developers. From an industrial perspective, one of the major challenges is the protection
of investment, i.e., the reuse of legacy code. Our experience has shown that stream-
based applications can be parallelized relatively easy by means of pipelining, whereas
the exploitation of data parallelism often requires significant refactoring.

Another challenge concerns the implementation of real-time systems. Most frame-
works for parallel programming are optimized for throughput and disregard latency. In
fact, the employed schedulers are usually not fair so that some tasks may even starve. To
solve this problem, we proposed a polynomial-time algorithm for self-timed scheduling
of nonlinear pipelines with parallel stages. It is based on the modified critical path al-
gorithm, but takes into account the latency. For the largest of our benchmarks, an image
recognition application from industrial automation, we achieved a significant reduction
of the latency with only a slight drop of throughput.

It should be emphasized that our approach is not intended for hard real-time sys-
tems. Guaranteeing safe upper bounds on the execution times of parallel applications
requires special hardware support and is an active area of research [22]. Another issue is
the determination of an optimal number of unfoldings. Auto-tuning [23] can help to ex-
plore the design space and to find a configuration that fits the application’s requirements
regarding latency and throughput.

References

1. Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors: Scheduling and Synchronization,
2nd edn. CRC Press (2009)

2. Lee, E., Ha, S.: Scheduling strategies for multiprocessor DSP. In: Global Telecommunica-
tions Conference, Dallas, TX, USA. IEEE (1989)

3. Davis, R., Burns, A.: A survey of hard real-time scheduling algorithms and schedulability
analysis techniques for multiprocessor systems. Technical Report YCS-2009-443, University
of York, Department of Computer Science (2009)

12 L. Lucas, T. Schuele, and W. Schwitzer

4. Sinnen, O.: Task Scheduling for Parallel Systems. Wiley (2007)
5. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Computing Surveys 31, 406–471 (1999)
6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.

In: Annual Symposium on Foundations of Computer Science (FOCS), Santa Fe, NM, USA,
pp. 356–368. IEEE (1994)

7. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison Wesley
(2005)

8. Ortega-Arjona, J.: Patterns for Parallel Software Design. Wiley (2010)
9. Stephens, R.: A survey of stream processing. Acta Informatica 34(7), 491–541 (1997)

10. Aldinucci, M., Torquati, M., Meneghin, M.: FastFlow: Efficient parallel streaming applica-
tions on multi-core. Technical Report TR-09-12, Università di Pisa, Dipartimento di Infor-
matica, Italy (September 2009)

11. Otto, F., Pankratius, V., Tichy, W.F.: XJava: Exploiting parallelism with object-oriented
stream programming. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS,
vol. 5704, pp. 875–886. Springer, Heidelberg (2009)

12. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming appli-
cations. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer,
Heidelberg (2002)

13. MacDonald, S., Szafron, D., Schaeffer, J.: Rethinking the pipeline as object-oriented states
with transformations. In: High-Level Parallel Programming Models and Supportive Environ-
ments (HIPS), Santa Fe, NM, USA, pp. 12–21. IEEE Computer Society (2004)

14. Bokhari, S.: Partitioning problems in parallel, pipelined, and distributed computing. IEEE
Transactions on Computers 37(1), 48–57 (1988)

15. Hoang, P., Rabaey, J.: Scheduling of DSP programs onto multiprocessors for maximum
throughput. IEEE Transactions on Signal Processing 31(6), 2225–2235 (1993)

16. Banerjee, S., Hamada, T., Chau, P., Fellman, R.: Macro pipelining based scheduling on high
performance heterogeneous multiprocessor systems. IEEE Transactions on Signal Process-
ing 43(6), 1468–1484 (1995)

17. Wu, M.Y., Gajski, D.: Hypertool: A programming aid for message-passing systems. IEEE
Transactions on Parallel and Distributed Systems 1, 330–343 (1990)

18. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algo-
rithms. Journal of Parallel and Distributed Computing 59(3), 381–422 (1999)

19. Schuele, T.: A coordination language for programming embedded multi-core systems. In:
International Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT), Hiroshima, Japan. IEEE (2009)

20. Schuele, T.: Efficient parallel execution of streaming applications on multi-core processors.
In: International Conference on Parallel, Distributed and Network-Based Processing (PDP),
Ayia Napa, Cyprus. IEEE (2011)

21. Lee, E., Parks, T.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801
(1995)

22. Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z., Cassé, H., Rochange, C.,
Quinones, E., Uhrig, S., Gerdes, M., Guliashvili, I., Houston, M., Kluge, F., Metzlaff, S.,
Mische, J., Paolieri, M., Wolf, J.: MERASA: Multi-core execution of hard real-time applica-
tions supporting analysability. IEEE Micro 30(5), 66–75 (2010)

23. Karcher, T., Schaefer, C., Pankratius, V.: Auto-tuning support for manycore applications:
perspectives for operating systems and compilers. ACM SIGOPS Operating Systems Review
Archive 43(2), 96–97 (2009)

MVA-Based Probabilistic Model of Shared
Memory with a Round Robin Arbiter

for Predicting Performance with Heterogeneous
Workload

Ryo Kawahara, Kouichi Ono, and Takeo Nakada

IBM Research - Tokyo,
TY-S71, NBF Toyosu Canal Front, 5-6-52,

Toyosu, Koto Ward, Tokyo, 135-8511, Japan
ryokawa@jp.ibm.com

Abstract. Memory access contention can be a cause of performance
problems and should be assessed at early stages of development. We
devised a probabilistic model of shared memory for performance estima-
tion. The calculation time is polynomial in the number of processors. The
model is applicable for the region of high and heterogeneous bandwidth
utilization. A round-robin arbiter is modeled using Mean Value Analysis
(MVA) based approximations and incorporating non-linear dependence
to the bandwidth utilization. To evaluate our model, estimated execution
time is compared with the measured execution time of benchmark pro-
grams with memory access contention. We find a maximum error of 4.2%
for the round-robin arbitration when we compensate for the burstiness
of accesses.

Keywords: embedded system, shared memory, contention, simulation,
analytic model, probabilistic model, UML, architecture design.

1 Introduction

Since embedded systems are increasingly large and complex, it is difficult to
choose appropriate system architectures that satisfy the performance require-
ments. An embedded system usually has a heterogeneous architecture, which has
many implementation choices, spanning hardware and software. To compete in
today’s markets, rapid development calls for assessing the system performance
at early stages in the development process. A lightweight evaluation method
is needed to prune large design spaces. Multi-processors or application-specific
integrated circuits (ASICs) can be used to exploit parallelism to improve per-
formance, but memory access contention can cause performance problems. Thus
the effects of memory access contention must be considered when estimating the
performance in the system architecture design phase.

There are various approaches to performance evaluation with various trade-
offs between the evaluation speed, the accuracy, and the abstraction level of

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 R. Kawahara, K. Ono, and T. Nakada

each model [1]. For example, the Queuing Network (QN) model is a widely used
abstract model to evaluate resource contentions. However, this model cannot
handle some behaviors intrinsic to software, such as synchronization. An ESL
(Electronic System Level) simulation such as SystemC [2] can also be used to
evaluate the memory access contention by describing all of the access timing,
but the development of such fine-grained models is expensive.

One promising approach is a hierarchical modeling [3]. The behavior at the
software or application level is described by appropriate models, such as task
graphs, to calculate workloads for resources, while the resource contention at
the lower level is calculated using other models (such as QN model). A similar
approach [4] can be used with a Unified Modeling Language (UML) model,
which is easier for software designers. In addition, the parameters necessary
for calculating the workloads are obtained from abstracted execution traces [5]
measured on an existing reference system. This means that the parameters can
be obtained at low cost, since it is often the case that the system to be developed
is based on the reference system.

In the hierarchical modeling approach, the designer needs to provide a model
for estimating the degree of resource contention for each shared resource such
as CPUs or main memory. This paper proposes a model of shared memory for
the same purpose. Since the model is used as an engine to calculate the degree
of resource contention in various situations with a software model, the resource
model should be versatile and lightweight. In Section 2, various methods are
reviewed from this perspective. The method is described in detail in Section 3.
We give experimental results in Section 4 and Section 5 concludes the study.

2 Related Work

Analytic methods can be used to implement lightweight performance evaluation
because such methods do not rely on the detailed memory access timing infor-
mation. Some approaches use probabilistic models, while others use regression
models. Early research focused on the memory access contention in high perfor-
mance computing (HPC) or server systems. Typical results described equivalent
workloads on different processors with multiple memory modules. However, here
are some key characteristics of modern embedded systems: (i) multicore pro-
cessors with shared main memory, and (ii) a heterogeneous architecture with
special purpose hardware or asymmetric parallel processing (AMP). This im-
plies a method for the performance evaluation of the memory access contention
should take into account these features: (i) applicability to the region of high
bandwidth utilization, and (ii) different bandwidth utilization demands by dif-
ferent processors. Here we review some studies of the memory access contention.

Hoogendoorn [6] and Mudge [7] studied memory access contention using prob-
abilistic models for an equal-priority arbiter. They included the effects of re-
submission of rejected accesses in their analysis to increase the accuracy. An
application to hierarchical modeling was demonstrated by Kawahara et al. [8].
In their method, the model counts all of the access patterns generated by N

MVA-Based Probabilistic Model of Shared Memory 15

(a) Example of UML model (State chart) for perfor-
mance simulation. State with 〈〈Step〉〉 contain work-
load parameters.

(b) Definition of processor in-
dexes and order of choice in a
round-robin arbiter.

Fig. 1.

processors, which requires O(2N) calculations. Thus, their results are effective
only for cases where all of the processors have the same access probability.

Smilauer [9] proposed a method based on Mean Value Analysis (MVA) for
which the complexity of the calculations is polynomial in N . However, the results
do not agree well with the simulations as the access probability increases. Sorin
et al. also applied MVA to a queuing model of shared memory system with
cache memories and bursty accesses [10] with good accuracy. However, their
model requires at least 18 parameters for each processor and another parameter
that characterizing the burstiness. Collecting these parameters from detailed
simulations is time-consuming. In addition, these methods only handle equal-
priority arbiters.

Another approach to model the contention involves statistics. Bobrek [11] et
al. proposed a method that exploits a non-linear regression model of the resource
contentions. This kind of method can be applied to various kinds of devices such
as a transactional memory [12] and also has an advantage in its simulation speed.
However, such methods have again high learning costs at modeling time.

Here are contributions of our work: (i) We propose a probabilistic method
in which only two workload parameters are required for each processor, (ii)
The contention for shared memory with a round-robin arbiter can be calculated
in a polynomial order of N , (iii) The method is applicable to regions of high
bandwidth utilization (total utilization ∼ 0.8). These features make it possible
to model the heterogeneous workloads in embedded systems.

3 Method

3.1 Hierarchical Modeling

Our probabilistic model is for a coarse-grained event-driven simulation. Exe-
cutable UMLs are included in this category (Fig. 1(a)). Thus the combination
of the coarse-grained event driven simulation and our model for memory access
contention forms a hierarchical model. We use the word “coarse-grained” to in-
dicate that the system behavior is described with units that correspond to large

16 R. Kawahara, K. Ono, and T. Nakada

blocks of code such as functions or tasks, and does not include instruction-level
or code-level descriptions [8][5].

We call the basic unit a “step”. Each step i has a workload parameter (Ti, Ui),
where Ti is the step processing time and Ui is the bandwidth utilization requested
when there is no memory access contention. The bandwidth utilization is defined
as the ratio of the memory access throughput to its maximum determined by
the hardware capacity. Assuming that a memory controller accepts either a read
or a write access in one time, then the utilization can be calculated from the
relation

Ui =
MR,i/Ti

WR
+

MW,i/Ti

WW
, (1)

where WR and WW are the maximum throughputs of read and write memory
accesses respectively, and MR,i and MW,i are the numbers of read memory ac-
cesses and of write memory accesses respectively. The numerators correspond to
the actual throughputs. Note that MR,i, MW,i and Ti are usually measured from
an existing system (the reference system) without contention.

The step processing time on the target system T ′
i is determined by adjusting

Ti taking into account the resource contention. The total execution time is the
sum of the T ′

i s along the critical execution path. This paper focuses on describing
a concrete calculation procedure for the step processing time T ′

i .

3.2 Overview of Probabilistic Model

In this method, we evaluate the memory access contention from the perfor-
mance parameters without incorporating the information about the memory
access timing. We use three approximations that are similar to those often made
in theoretical analyses [7] of the memory accesses.

The first approximation is that the memory accesses occur uniformly and
randomly over time, unless contention arises. This is not true in general, since
the memory access pattern from a processor is normally bursty [13]. This point
is discussed in Section 3.6.

The second approximation is that, within a simulation step, the memory ac-
cess timings between different processors are independent of each other. Again,
this is a rough approximation, because there may be periodic accesses or syn-
chronizations. However, this approximation is necessary to reduce the order of
complexity of the calculations, as explained in Sections 3.3 and 3.4.

The third approximation is that the memory access time L, which is the time
for a memory controller to process a transaction without any contention, is long
(e.g., L ∼ 20 cycles). This is usually a good approximation because of the long
DRAM (dynamic random access memory) latency compared to the cycle time.

The starting point of our probabilistic model is the following formula, which
is similar to Amdahl’s law [14]. For processor i,

T ′
i = Ti((1 − Ui) + aiUi), (U ′

i = UiTi/T
′
i), (2)

where ai = L′/L is the average memory access delay ratio and L′ and L are
the average memory access times with and without contention, respectively.

MVA-Based Probabilistic Model of Shared Memory 17

From the definition of the bandwidth utilization demand Ui in Eq. (1), this
quantity corresponds to the proportion of time in which a memory controller is
processing memory accesses from processor i. The formula for the bandwidth
with contention U ′

i comes from the fact that the total number of memory access
transactions should be the same with or without the contention (UiTi = U ′

iT
′
i).

We call a simultaneous memory access a “collision” in this paper. In the early
studies [6][7], ai was estimated by counting all of the collision patterns. Let cj
be the state of processor j and c = (c1, · · · , cN). In the simple example of the
access time L being one cycle, then cj = 1 or 0, which correspond to the states
of “accessing” or “not accessing”, respectively. Then

ai =

{0,1}∑
c1

· · ·
{0,1}∑
cN︸ ︷︷ ︸

except for ci

Ai(c)P (c|ci = 1), (3)

where Ai(c) is the ratio of the access time with the collision pattern c to the
access time without contention, and P (c|ci = 1) is the conditional probability
of the collision pattern being c when processor i is accessing memory. The delay
ratio Ai(c) may include the length of a queue of memory access transactions,
which depends on the arbitration scheme. We explicitly calculate ai in the case
of the round-robin arbiter with some approximations to reduce the amount of
computations.

3.3 Effects of Collision with Accesses Waiting for Arbitration

Next we evaluate the probability for the states of the other processors P (c|ci =
1). Since the access patterns from different processors are assumed to be inde-
pendent, P (c|ci = 1) can be factorized.

P (c|ci) =
N∏
j �=i

pj(cj). (4)

For the simple case of the access time L = 1 cycle, we can estimate the probability
of processor j being in a state cj as pj(cj = 1) = Uj and pj(cj = 0) = 1 − Uj

because of the approximations in Section 3.2. However, since the accesses not
chosen by the arbiter will be resubmitted, there should be an increase in the
probability.

To compensate for this effect, we use an idea from Hoogendoorn [6]. The
probability for processor i is estimated as

pj(cj) =

{
1− U∗

j , (cj = 0),
U∗
j , (cj = 1),

where U∗ = {(T ′ − T) + TU}/T ′. (5)

The modified utilization U∗ includes both the original accesses TU and the
increase in demand (T ′−T) as a result of re-submission. Note that this expression
already includes the results of the calculation T ′, which requires an iterative

18 R. Kawahara, K. Ono, and T. Nakada

method. First we substitute U∗
j := Uj into Eq. (5) as an initial value, calculate

Eqns. (3), (2) and U∗ in (5), and then update pj with Eq. (5). These calculations
are iterated until the values converge.

3.4 Reduction of Complexity

The sum over c in Eq. (3) requires O(2N−1) calculations, which means it will
be impossible to count all of the possible collision patterns when the number
of processors N is large. The extension to the case of memory accesses taking
multiple cycles is straightforward, but requires further calculations (e.g., cj =
1, 2, · · · , L correspond to the 1, 2, · · · , L-th cycle from the start of a transaction).
To reduce the complexity of the calculations, we use an approximation in which
we replace quantities such as the queue length in Ai(c) with mean values of the
quantities, as in the MVA approach by Smilauer. Since it is difficult to calculate
the average rigorously, we use phenomenological approximations for each arbiter
case. Then, the averaging over c can be done analytically without doing O(2N)
calculations.

3.5 Round-Robin Arbitration

The round-robin arbiter has states that correspond to the choice of a processor.
This choice depends on the collision patterns of the previous cycles. Our approach
is to introduce a non-linear Ui-dependence in ai. Assume that each processor has
an integer index i = 1, 2, · · · , N and the round-robin arbitration is done in this
order (Fig. 1(b)). Let r be the index of a processor currently chosen by the
arbiter. The average delay ratio is estimated as

ai =
N∑
r �=i

⎡
⎣U∗

r βi +

S(r+1,i−1)∑
k

U∗
k

⎤
⎦PRR(r|i) + 1, (6)

where PRR(r|i) is the conditional probability that the arbiter chooses processor
r when processor i is accessing, S(r + 1, i − 1) is the set of processor indexes
between r + 1 and i− 1, and βi is the ratio of the overlap between the accesses
from processor r and processor i. Terms PRR(r|i) and βi are explained in the
following paragraphs. Intuitively speaking, the terms in [· · ·] correspond to a
queue length in queuing theory, but in this model, the length depends on the
selection of a processor by the arbiter. Here we use U∗ because the average is
evaluated according to the probability in Eq. (5).

The overlap βi ∈ [0, 1] is a function of Ui. The value of βi = 1 corresponds to
the case where the accesses from processors i and r are perfectly simultaneous.
Here is how we model the overlap. Let lqueue be the queue length of memory
accesses and f st

i be the probability that the interval between the memory accesses
from processor i is larger than lqueue (See Appendix A for the explicit forms of
of lqueue and f st

i). The behavior of the overlap differs between two cases: (i)
If the interval is larger than lqueue, then the access from processor i will not
collide with the queue but may collide with a new access from processor r.

MVA-Based Probabilistic Model of Shared Memory 19

Since the timings between these accesses are independent, the average point
when the access arrives will be the center (i.e., βi → 1/2) of the current access
from processor r. (ii) If the interval is smaller than lqueue, then an access from
processor i will collide with an access in the queue. In this case the overlap
becomes larger1 (i.e., βi → 1) because other accesses must be processed after
the previous access from processor i. We combine these two extremes.

βi(Ui) = f st
i (Ui)× (1/2) + (1− f st

i (Ui))× 1. (7)

The probability of the round-robin arbiter PRR is estimated in a similar manner.
It actually depends on the state of the arbiter and the collision pattern of the
previous cycle. Thus we need further approximations to estimate the probability.
Our estimate is

PRR(r|i) = f st
i (Ui)× (Ur/C) + (1− f st

i (Ui))× δr,o(i+1),

(
C =

N∑
r

Ur

)
. (8)

(i) In the limit of high utilization (when Ui → 1), we know that the arbiter
selected processor i in a previous cycle. Then the arbiter tends to select the
processor next to i in the next cycle, which can be written as PRR(r|i) → δr,o(i+1)

where δi,j is Kronecker’s delta and o(a) = ((a − 1) mod N) + 1 is a function to
normalize an index to a range [1, N]. (ii) In contrast, in the opposite limit of
Ui → 0, we know nothing about the arbiter state. We can therefore estimate the
probability by its steady state2 PRR(r|i) → Ur/C.

3.6 Bursty Memory Access

As discussed in Section 3.2, memory accesses may be bursty. In a bursty access
pattern, there are regions of high utilization and low utilization mixed over a
duration. We model this behavior by first assuming that the distribution of
the high and the low utilization regions is random. Thus the average collision
probability is the same as for random and uniform memory access. Second, we
assume that a memory access colliding with other access belongs to the high
utilization region. From these assumptions, we set Ui → 1 for the overlapping
βi and the round-robin probability PRR appear in Eqs. (7) and (8). We set

βi(Ui → 1), and PRR(r|i, Ui → 1), (9)

while we retain Ui as in Eq. (2).

4 Evaluation

4.1 Comparison with Cycle-Accurate Simulation

Our analytic model was compared with the results of a cycle accurate simula-
tion. The simulator we used is a commercial product (the Cadence INCISIVE
1 This is because the interval distribution is exponential (see Appendix A) for random

access patterns. The overlap is always larger than 1/2 and the above limit is true
when Ui → 1.

2 This corresponds to the steady state of a Markov model whose state corresponds to
a choice of a processor.

20 R. Kawahara, K. Ono, and T. Nakada

(a) N = 3, 5 cases. Ui = U
for all i.

(b) N = 3 case. U1 = U ,
U2 = 0.337, U3 = 0.192

Fig. 2. Bandwidth utilization assigned to bus masters U ′ vs utilization demand U . The
results of cycle-accurate simulation (CA sim.) and estimates using our probabilistic
model (Est.) are shown.

simulator). We used a model that has multiple bus masters, bus slaves and a
shared bus with the round robin arbitration. The burst length was set to 8 cycles.
During the access, the bus is occupied. A bus master needs 8 + 12 = 20 cycles
to complete a transaction, which implies that the highest utilization generated
by the bus master is (1/20)/(1/8) = 8/20 = 0.4. In this section, we regard a bus
master as a processor and the bus is a shared resource that causes contention.

Figure 2(a) shows the cases of N = 3 and N = 5 processors. All of the bus
masters generate transactions with the same probabilities. Figure 2(b) shows the
case of N = 3 with a different utilization demand assigned to each bus master:
U2 = 0.337 and U3 = 0.192, while 0 < U1 < 0.4. In both cases, the estimates by
the probabilistic model agree well with the results of cycle-accurate simulations.

4.2 Comparison with Benchmark Programs

We show our experimental results in this section. The experimental system con-
sists of a microprocessor (MPU), a DMA controller, and a shared memory. We
used the Consumer program set from the MiBench benchmark suite [15] as the
workload for the microprocessor, and periodic memory access patterns were gen-
erated by the DMA controller. The system was implemented on a Xilinx ML510
FPGA board [16]. Our intention for this combination of workloads was to repro-
duce the memory accesses in a system of software and ASICs working together.

The Consumer set in MiBench is designed to represent consumer products
such as video games and digital cameras. It consists of eight programs: jpeg,
lame, mad, tiff2bw, tiff2rgba, tiffdither, tiffmedian, and typeset. This
set was chosen because these the programs are regarded as memory-intensive.

First we obtained the workload parameters T and U of the benchmark pro-
grams in a single processor environment. Since each program in the benchmark
suite has a single function, we regard one program as a simulation step and
used averaged utilization for each step. The system constants and the obtained
parameters are summarized in Tables 1(a) and 1(b), respectively.

MVA-Based Probabilistic Model of Shared Memory 21

Table 1. System constants. Burst length (BL, 32-bit words), read and write throughput
(R TP and W TP, in 106 bursts/s) are shown.

(a) System constants.

BL R TP W TP
MPU 8 19.68 16.67
DMA 16 13.33 11.77

(b) Parameters

pg T (s) MR(×106) MW(×106) U
jp 0.412 0.8226 0.3258 0.153
la 62.337 16.2544 5.0265 0.0181
ma 1.117 1.7621 0.9480 0.137
tb 1.921 5.5888 3.1883 0.260
tr 4.061 12.9010 8.5785 0.305
td 3.061 2.9707 2.1318 0.0967
tm 5.204 12.8343 6.5853 0.210
ty 4.169 12.0594 7.3973 0.267

(a) UDMA = 0.36 case. (b) UDMA = 0.54 case.

Fig. 3. Errors of the model estimates in execution times from the benchmark exper-
iment. Results of the probabilistic model for the random accesses and for the bursty
accesses are shown.

When measuring the execution time, we used the time command. A constant
time t = 0.161(s) (the time to execute the time command itself without invoking
any benchmark) was subtracted from the measured time to reduce the effects
of the execution overhead caused by the time command. The execution times
in the tables are averages over 10 samples. The maximum standard deviation
ΔT = ±0.019 (s).

To measure the number of memory accesses from the microprocessor, we used
a L1 cache-miss counter in an in-circuit cache emulator since any memory ac-
cesses to the shared memory are cache misses. The L2 caches were not used. The
throughput constants were obtained from the specifications of the memory con-
troller of the FPGA board. The utilization of the periodic accesses by the DMA
controller was UDMA = 0.180, 0.359, and 0.539. This was adjusted by controlling
the number of memory accesses within a period.

22 R. Kawahara, K. Ono, and T. Nakada

(a) Execution time of bench-
mark typeset.

(b) Simulation time of 100
runs as a function of the
number of processors.

Fig. 4. Estimations by the proposed probabilistic model (RR(random) prob.) and
with the extended model for bursty access (bursty) are compared to the experimental
results (exp.) in (a).

In Figs 3, the results are summarized and compared with the simulation results
of the probabilistic models for the random and bursty accesses. We can see that
the bursty access model agrees better with the experimental results in all of the
regions of UDMA, and the maximum error is reduced to 4.2%, which is recorded
in the case of tiff2rgba (tr). Figure 4(a) shows an example of the execution
times of the benchmark program.

4.3 Simulation Time

In Fig. 4(b), the simulation time is plotted against the number of processors N .
All of the processors have the same U , and for each plot, the simulation time is
the sum of 100 runs for different Us. We used a computer with an Intel Xeon
X5690 (3.46 GHz) processor. The simulation time gradually approaches O(N3).

5 Conclusion

We devised probabilistic model of shared memory with a round-robin arbiter
applicable to performance estimation of embedded systems. The calculation time
of the model is less than one second for N = 100 processors and increases as up to
O(N3). The model is applicable to a shared memory of which access time is much
longer than one cycle and to regions of relatively high bandwidth utilization.
These features are desirable for the performance estimation of embedded systems
in an early stage of development with low modeling cost and fast simulation
speed.

The estimated execution time with our model is compared with the measured
execution time of benchmark programs from MiBench suite with memory access

MVA-Based Probabilistic Model of Shared Memory 23

contention. Although we used the rough approximations described above, we
find a maximum error of 4.2%, if we consider the burstiness of the accesses. This
is acceptable accuracy if we use this model in a first-order estimation of system
performance at an early stage of development [1].

Our future work will include extensions to other types of arbitration and the
application of our method to real embedded systems.

Logos and Trademarks

IBM is a registered trademark of International Business Machines Corporation
in United States, other countries, or both.

Intel, and Intel Xeon are trademarks or registered trademarks of Intel Corpo-
ration or its subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks
of others.

References

1. Gries, M.: Methods for evaluating and covering the design space during early design
development. Integration, the VLSI Journal 38(2), 131–183 (2004)

2. Open SystemC Initiative (OSCI): SystemC specification (2007)
3. Jonkers, H., van Gemund, A., Reijns, G.: A probabilistic approach to parallel

system performance modelling. In: Proceedings of the Twenty-Eighth Hawaii In-
ternational Conference on System Sciences, vol. 2, pp. 412–421 (1995)

4. Cortellessa, V., Pierini, P., Rossi, D.: Integrating software models and plat-
form models for performance analysis. IEEE Transactions on Software Engineer-
ing 33(6), 385–401 (2007)

5. Ono, K., Toyota, M., Kawahara, R., Sakamoto, Y., Nakada, T., Fukuoka, N.: A
model-based method for evaluating embedded system performance by abstraction
of execution traces. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.)
ECMFA 2010. LNCS, vol. 6138, pp. 233–244. Springer, Heidelberg (2010)

6. Hoogendoorn, C.H.: A general model for memory interference in multiprocessors.
IEEE Transactions on Computers C-26(10), 998–1005 (1977)

7. Mudge, T.N., Hayes, J.P., Buzzard, G.D., Winsor, D.C.: Analysis of multiple-
bus interconnection networks. Journal of Parallel and Distributed Computing 3,
328–343 (1986)

8. Kawahara, R., Nakamura, K., Ono, K., Nakada, T., Sakamoto, Y.: Coarse-grained
simulation method for performance evaluation a of shared memory system. In:
Proceedings of the 16th Asia and South Pacific Design Automation Conference
(ASP-DAC 2011), pp. 413–418 (2011)

9. Smilauer, B.: General model for memory interference in multiprocessors and mean
value analysis. IEEE Transactions on Computers C-34, 744–751 (1985)

10. Sorin, D., Lemon, J., Eager, D., Vernon, M.: Analytic evaluation of shared-memory
architectures. IEEE Transactions on Parallel and Distributed Systems 14(2),
166–180 (2003)

11. Bobrek, A., Paul, J.M., Thomas, D.E.: Stochastic contention level simulation for
single-chip heterogeneous multiprocessors. IEEE Transactions on Computers 59,
1402–1418 (2010)

24 R. Kawahara, K. Ono, and T. Nakada

12. Poe, J., Cho, C.B., Li, T.: Using analytical models to efficiently explore hardware
transactional memory and multi-core co-design. In: 20th International Symposium
on Computer Architecture and High Performance Computing, SBAC-PAD 2008,
pp. 159–166 (2008)

13. Darema-Rogers, F., Pfister, G.F., So, K.: Memory access patterns of parallel sci-
entific programs. In: Proceedings of the 1987 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 1987, pp. 46–58.
ACM, New York (1987)

14. Hennessy, J.L., Patterson, D.A.: A Quantitative Approach. In: Computer Archi-
tecture, 4th edn., pp. 1–62. Elsevier, Morgan Kaufmann Publishers (2007)

15. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:
Mibench: A free, commercially representative embedded benchmark suite. In: 2001
IEEE International Workshop on Proceedings of the Workload Characterization
WWC-4, pp. 3–14. IEEE Computer Society, Washington, DC (2001)

16. Xilinx Inc.: Xilinx ML510 Documentation (2011)

A Appendix: Derivation of Probability f st
i

Since the access timings are assumed to be random, the distribution of the access
interval x has the exponential distribution λ exp(−λx). Thus the probability f st

i

becomes its integral, f st
i =

∫∞
lqueue

λi exp(−xλi)dx, where

λi =
Ui

L((1− Ui) + Ui/L)
(10)

is the rate that processor i generates an access at a cycle which is not in the state
of accessing. For lqueue, we approximate it with the one in the simple queuing
model instead of the one calculated in Eq. (6) to reduce the computational cost.

lqueue,i = L
∑
j �=i

U∗
j . (11)

Taking the limit as L → ∞ as assumed in Section 3.2, f st
i quickly converges to

f st
i = exp(−(Ui/(1− Ui))

∑
j �=i

U∗
j). (12)

MHS2: A Map-Reduce Heuristic-Driven Minimal
Hitting Set Search Algorithm

Nuno Cardoso and Rui Abreu

Department of Informatics Engineering
Faculty of Engineering, University of Porto

Porto, Portugal
nunopcardoso@gmail.com, rui@computer.org

Abstract. Computing minimal hitting sets (also known as set covers)
for a collection of sets is an important problem in many domains (e.g.,
model/reasoning-based fault diagnosis). Being an NP-Hard problem, ex-
haustive algorithms are usually prohibitive for real-world, often large,
problems. In practice, the usage of heuristic based approaches trade-off
completeness for time efficiency. An example of such heuristic approaches
is Staccato, which was proposed in the context of reasoning-based fault
localization. In this paper, we propose an efficient distributed algorithm,

dubbed MHS2, that renders the sequential search algorithm Staccato
suitable to distributed, Map-Reduce environments. The results show that

MHS2 scales to larger systems (when compared to Staccato), while en-
tailing either marginal or small runtime overhead.

Keywords: Minimal Hitting Set, Map-Reduce, Distributed Computing.

1 Introduction

Computing minimal hitting sets for a collection of constraints is an impor-
tant problem in many domains (e.g., DNA analysis [11], crew scheduling [10],
model/reasoning-based fault diagnosis [1,9]). The computation of minimal hit-
ting sets can be polynomially reduced to the set cover optimization problem [6],
which is known to be NP-hard. Being an NP-hard problem, the usage of exhaus-
tive search algorithms (e.g., [9,12]), is prohibitive for most real-world problems.
However, in most situations, near optimal solutions are often acceptable and
approximation algorithms are used to solve this problem in a reasonable amount
of time. In the particular case of model/reasoning-based fault diagnosis (MBD),
which is the context of our work, the strict minimality constraint is normally
relaxed1 and heuristics are used to drive the search in order to increase the like-
lihood of finding the best minimal candidate for a particular problem instance
[1,3,5,8,13].

1 We use the term minimal in a more liberal way due to mentioned relaxation. A
candidate d is said to be minimal if no other calculated candidate is contained in d.

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 N. Cardoso and R. Abreu

Given the paradigm shift from single core high frequency CPUs to more cost
effective multi-core low frequency CPUs and the ever increasing number of plat-
forms for parallel and distributed computing (e.g., [4]), it becomes a necessity
to engineer algorithms that use such resources in order to increase the search
scope of minimal hitting set (MHS) algorithms. In this paper, we propose a Map-

Reduce [4] approach, dubbed MHS22, aimed at computing minimal hitting sets
in a parallel or even distributed fashion in order to broaden the search scope of
current approaches.

This paper makes the following contributions:

– We describe the problem in the context of MBD and present a sequential
algorithm to solve it.

– We introduce an optimization to the sequential algorithm, which is able to
prevent a large number of redundant calculations.

– We propose MHS2, a novel Map-Reduce algorithm for dividing the MHS
problem across multiple CPUs.

– We provide an empirical evaluation of our approach, show that MHS2 effi-
ciently scales with the number of processing units.

The remainder of this paper is organized as follows. In Sections 2 and 3 we de-
scribe the problem as well as the sequential algorithm. In Section 4 we present our
approach. Section 5 discusses the results obtained from synthetic experiments.
Finally, in Section 6 we will draw some conclusions about the paper.

2 Minimal Hitting Set Problem

A set d is a minimal hitting set of a collection of non-empty sets S if and only if

∀si ∈ S : (si ∩ d �= ∅) ∧ (� ∃d′ ⊂ d : si ∩ d′ �= ∅) (1)

i.e., for each si ∈ S there is at least an element that is both member of d and si,
and no proper subset of d is a hitting set. There may be several minimal hitting
sets dk for S, which constitutes a collection of minimal hitting sets D.

Mapping this abstract description to MBD, a failed system transaction is rep-
resented by a set si ∈ S containing the components involved in such transaction
whereas D is the collection of diagnosis candidates. In the remainder of this
paper, we capture a set of system observations in the so called hit spectra data
structure [7].

Definition 1 (Hit Spectra). Let N denote the total number of observed trans-
actions and M denote the cardinality of the set of all components in the system,
COMPS. We define the hit spectra data structure as being the pair (A, e), where
A is a N ×M activity matrix of the system and e the error vector, defined as

Aij =

{
1, if component j ∈ si

0, otherwise
ei =

{
1, if transaction i failed

0, otherwise
(2)

2 MHS2 is an acronym for Map-reduce Heuristic-driven Search for Minimal Hitting
Sets.

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting 27

Each row Ai∗ in the hit spectra indicates which components of COMPS are
members of set si ∈ S, whereas each column A∗j indicates in which sets si ∈ S
component j ∈ COMPS is a member. For the particular scenario of fault local-
ization, the goal is to find minimal hitting sets for the failing transactions. Failing
transactions convey information on the possible causes of a system malfunction
whereas successful transactions help the heuristic focus the search towards high
potentials. The sub-collection of failing transactions, also known as conflict sets,
is formally defined as S′ = {si | ei = 1}.

As an example, consider the hit spectra in Figure 1a for which all 2M possible
candidates (i.e., the power set PCOMPS) are presented in Figure 1b. For this
particular example, S′ would be the collection {{1, 3}, {2, 3}} and two minimal
hitting sets exist: {3} and {1, 2}. Even though the sets {1, 3}, {2, 3} and {1, 2, 3}
are also hitting sets, they are not minimal as they can be subsumed by either
{3} or {1, 2}.

1 2 3 e

s1 1 0 1 1
s2 0 1 1 1
s3 1 0 1 0

(a) Hit spectra example

{1, 2, 3}

{1, 2}

{1, 3}

{2, 3}

{1}

{2}

{3}

{}

(b) Hasse diagram of P{1,2,3}

Fig. 1. Running example

3 Staccato

A näıve, brute-force approach to compute the collection D of minimal hitting
sets for S would be to iterate through the power set P (e.g., Figure 1b) of the
set of all components in the system checking (1) whether it is a hitting set, and
(2) (if it is a hitting set) whether it is minimal, i.e., not subsumed by any other
set of lower cardinality (cardinality of a set d, |d|, is the number of elements in the
set). Since many of the potential candidates turn out not to be minimal hitting
sets, Staccato, the sequential algorithm which serves as foundation for our
distributed algorithm, uses the Ochiai heuristic [2] in order to focus the search
towards high-potentials, yielding significant efficiency gains. The efficiency gains
are achieved by, at each stage, inspecting the component j ∈ COMPS that,
heuristically, is more likely to lead to minimal candidates. As a consequence, a
large number of candidates need not to be considered as they are guaranteed to
be subsumable by already discovered candidates.

In Algorithm 1 (discarding, for now, the highlighted lines) a simplified version
of Staccato that captures its fundamental mechanics is presented3. The algo-
rithm can perform two different tasks (lines 3–5 and 7–12), depending on whether

3 It is important to note that the cut-off conditions were removed for the sake of sim-
plicity and any direct implementation will not be suitable to large problems. Both
the details regarding search heuristics and cut-off parameters are outside the scope
of this paper. Refer to [1] for more information.

28 N. Cardoso and R. Abreu

Algorithm 1. Staccato / MHS2 map task

Inputs:
Matrix (A, e)
Partial minimal hitting set collection D′ (default: ∅)
Candidate d′ (default: ∅)

Parameters:
Ranking heuristic H
Branch level L
Load division function Skip

Output:
Minimal hitting set collection D
Partial minimal hitting set collection D′

k

1 S′ ← {Ai∗|ei = 1} # Collection of conflict sets
2 if Empty(S′) then # Minimality verification task
3 if Minimal(D′, d′) then
4 D′ ← Purge Subsumed(D′, d′)
5 D′ ← D′ ∪ {d′}
6 else # Candidate compositions task
7 R ← Rank(H, A, e) # Heuristic ranking
8 for j ∈ R do
9 if ¬(Size(d′) + 1 = L ∧ Skip()) then # Load Division

10 (A′, e′) ← Strip(A, e, j)
11 D′ ← Staccato(A′, e′, D′, d′ + {j})
12 A ← Strip Component(A, j) # Optimization

13 return D′

or not the candidate d′ is a hitting set (d′ is a hitting set if S′ = ∅, entailing
∀si ∈ S : si ∩ d′ �= ∅). In the first case, where d′ is a hitting set (lines 3–5), the
algorithm checks if d′ is minimal (line 3) with regard to the already discovered
minimal hitting set collection D′. If d′ is minimal, all hitting sets in D′ subsum-
able by d′ are purged (line 4) and d′ is added to D′ (line 5). In the second case,
where d′ is not a hitting set (lines 7–12), the algorithm composes candidates in
the form of d′ + {j}. The order in which the components j ∈ R ⊂ COMPS are
selected is determined by some arbitrary heuristic H (line 7). This heuristic is re-
sponsible for both driving the algorithm towards high potential candidates and
reducing the amount of candidates that need to be checked. Such tasks are appli-
cation dependent and, in the particular case of MBD, the Ochiai heuristic [1,2]
was shown to exhibit good accuracy levels. Whenever a component j is selected,
a temporary (A′, e′) is created where all transactions si such that j ∈ si as well
as column j are omitted (function Strip, line 10). Finally, the algorithm makes a
recursive call in order to explore (A′, e′) with candidate d′ + {j} (line 11).

To illustrate how Staccato works, recall the example in Figure 1a. In the
outer call to the algorithm as S′ �= ∅ (i.e., candidate d′ is not a hitting set),
candidates in the form of ∅+ {j} are composed. Consider, for instance, that the
result of the heuristic over (A, e) entails the ranking (3, 2, 1). After composing

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting 29

1 2 3 e

s1 1 0 1 1
s2 0 1 1 1
s3 1 0 1 0

(a) After Strip(A, e, 3)

1 2 3 e

s1 1 0 1 1
s2 0 1 1 1
s3 1 0 1 0

(b) After Strip(A, e, 2)

1 2 3 e

s1 1 0 1 1
s2 0 1 1 1
s3 1 0 1 0

(c) After Strip(A, e, 1)

Fig. 2. Evolution of (A, e)

the candidate {3} and making the recursive call, the algorithm adds it to D′ as
S′ = ∅ (Figure 2a) and D′ = ∅, yielding D′ = {{3}}. After composing candidate
{2}, a temporary (A′, e′) is created (Figure 2b). Following the same logic, the
hitting sets {2, 1} and {2, 3} can be found but only {2, 1} is minimal as {2, 3}
can be subsumed by {3}4. Finally the same procedure is repeated for component
1 (Figure 2c), however no new minimal hitting set is found. The result for this
example would be the collection D = {{1, 2}, {3}}.

4 MHS2

In this section we propose MHS2, our distributed MHS search algorithm. The
proposed approach can be viewed as a Map-Reduce task [4]. The map task,
presented in Algorithm 1 (now also including highlighted lines), consists of an
adapted version of the sequential algorithm just outlined.

In contrast to the original algorithm, we added an optimization that prevents
the calculation of the same candidates in different orders (line 12), as it would be
the case of candidates {1, 2} and {2, 1} in the example of the previous section.
Additionally, it generalizes over the optimization proposed in [1], which would
be able to ignore the calculation of {2, 3} but not the redundant reevaluation
of {1, 2}. The fundamental idea behind this optimization is that after analyzing
all candidates that can be generated from a particular candidate d′ (i.e., the
recursive call), it is guaranteed that no more minimal candidates subsumable by
d′ will be found5. A consequence of this optimization is that, as the number of
components in (A, e) is different for all components j ∈ R, the time that the
recursive call takes to complete may vary substantially.

To parallelize the algorithm, we added a parameter L that sets the split-level,
i.e., the number of calls in the stack minus 1 or |d′|, at which the computation
is divided among the processes. When a process of the distributed algorithm
reaches the target level L, it uses a load division function (Skip) in order to
decide which elements of the ranking to skip or to analyze. The value of L
implicitly controls the granularity of decision of the load division function at the

4 Actually, Staccato would not compose candidate {2, 3} due to an optimization
that is a special case of the one proposed in this paper (see Section 4).

5 Visually, using a Hasse diagram (Figure 1b), this optimization can be represented
by removing all unexplored edges touching nodes subsumable by d′. As every link
represents an evaluation that would be made without any optimizations (several links
to same node means that the set is evaluated multiple times), it becomes obvious
the potential of such optimization.

30 N. Cardoso and R. Abreu

Algorithm 2. MHS2 reduce task

Inputs:
Partial minimal hitting set collections D′

1, ..., D
′
K

Output:
Minimal hitting set collection D

1 D ← ∅
2 D′ ← Sort(

⋃K
k=1 D

′
k) # Hitting sets sorted by cardinality

3 for d ∈ D′ do
4 if Minimal(D, d) then
5 D ← D ∪ {d}
6 return D

cost of performing more redundant calculations. Implicitly, by setting a value
L > 0, all processes redundantly calculate all candidates such that |d′| <= L.

With regard to the load division function Skip, we propose two different
approaches. The first, referred to as stride, consists in assigning elements of the
ranking R to processes in a cyclical fashion. Formally, a process pk∈[1..np] is
assigned to an element Rl ∈ R if (l mod np) = (k − 1). The second approach,
referred to as random, uses a pseudo-random generator in order to divide the
computation. This random generator is then fed into an uniform distribution
generator that assures that, over time, all pk get assigned a similar number of
elements in the ranking R although in random order (specially for large values of
L). This method is aimed at obtaining a more even distribution of the problem
across processes than stride. A particularity of this approach is that the seed of
the pseudo random generator must be shared across process in order to assure
that no further communication is needed.

Finally, the reduce task, responsible for merging all partial minimal hitting
set collections D′

k∈[1..np] originating from the map task (Algorithm 1), is pre-
sented in Algorithm 2. The reducer works by merging all hitting sets in a list
ordered by cardinality. The ordered list is then iterated, adding all minimal hit-
ting sets to D. As the hitting sets are inserted in an increasing cardinality order,
it is not necessary to look for subsumable hitting sets (Purge Subsumed in
Algorithm 1) in D.

5 Results

In order to assess the performance of our algorithm we implemented it in C++
using OpenMPI as the parallelization framework. All the benchmarks were con-
ducted in a single computer with 2× Intel Xeon CPU X5570 @ 2.93GHz (4 cores
each). Additionally, we generated several (A, e) by means of a Bernoulli distri-
bution, parameterized by r (i.e., the probability that a component is involved
in a row of A equals r) for which solutions have been computed with different
parameters. In order to ease the comparison of results, all transactions in all

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting 31

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

2

4

6

8

2

4

6

1.0

1.2

1.4

1.6

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 3 4 5 6 7 8
Processes

S
pe

ed
up

Setup ● random stride

●

● ● ● ● ●
● ●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
● ●

70
80
90

100
110

70

80

90

100

25

50

75

100

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 3 4 5 6 7 8
Processes

E
ffi

ci
en

cy
 (

%
)

Setup ● random stride

Fig. 3. Small scenarios speedup (left) and efficiency (right)

generated cases fail6 (i.e., S′ = A). For each set of parameters, we generated 50
inputs for each r ∈ {0.25, 0.5, 0.75}, and the results represent the average of the
observed metrics. Both due to space constraints and the fact that the diagnosis
efficiency of the algorithm has already been studied in [1], we only analyze the
performance gains obtained from the parallelization.

5.1 Benchmark 1

In the first benchmark, we aimed at observing the behavior of MHS2 for small
scenarios (N = 40,M = 40, L = 2) where all minimal candidates can be cal-
culated. In Figure 3, we observe both the speedup (defined as Sup(np) = T1

Tnp
,

where Tnp is the time needed to solve the problem for np processes) and the

efficiency (defined as Ef(np) = Sup(np)
np) for both the stride and random load

distribution functions.
The analysis of Figure 3 shows different speedup/efficiency patterns for r

values. Despite, random consistently outperforms stride. Additionally, for r =
0.75 and in contrast to r ∈ {0.25, 0.5}, the speedup/efficiency is low (note the
differences in y-axis scales). The observed speedup/efficiency patterns can be
explained by analyzing Figure 4 where the total runtime is divided amongst
the composing tasks (calculation, communication, and the merging of results).
Additionally the maximum times for calculation and communication are shown
to compare them with the respective mean values. First, it is important to note
that the maximum runtime for different values of r varies substantially: ≈ 200

6 To illustrate the potential problems of having successful transactions in the test
cases, consider the extreme case of a set of test cases with no failures versus a set
of test cases with no nominal transactions. For the first scenario, all test cases only
have one minimal hitting set (the empty set) whereas, for the second scenario, a
potentially large number of minimal hitting sets may exist. As it is demonstrated in
this section, the number of minimal hitting sets has a large impact in the algorithm’s
run-time.

32 N. Cardoso and R. Abreu

random stride

0
50

100
150
200

0

2

4

0.00

0.05

0.10

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 4 8 1 2 4 8
Processes

R
un

 T
im

e
(S

ec
on

ds
)

Task Max Calc. Mean Calc. Max Comm. Mean Comm. Merge

Fig. 4. Small scenarios time distribution

seconds for r = 0.25 vs. > 0.2 seconds for r = 0.75. This difference in runtimes
exists due to the fact that for higher values of r, both the size and amount of
minimal candidates tends to be smaller and, due to the optimization proposed
in this paper, the number of candidates analyzed is also smaller. On the one
hand, when the runtime is smaller, the parallelization overheads represent a
higher relative impact in the performance (in extreme cases, the runtime can
even increase with the number of processes). On the other hand, when both the
cardinality and the amount of minimal hitting sets increase (small values of r)
the parallelization overhead becomes almost insignificant. In such cases a larger
efficiency difference between stride and random is observed due to a better load
division by the random mechanism.

In Figure 4 this is visible when comparing the time bars for the maximum and
mean calculation and communication times (actually, as the communication time
includes waiting periods, it is dependent on the calculation time). For the random
case, the maximum and mean calculation times are almost equal thus reducing
waiting times. In contrast, in the stride case, the maximum and mean calculation
times are uneven and, as a consequence, the communication overhead becomes
higher: average ≈ 7 seconds for random vs. ≈ 28 seconds for stride. In scenarios
where a large number of hitting sets exist and due to the fact of the function
Purge Subsumed having a complexity greater than O(n), the efficiency of the
random load division can be greater than 100%. While good results are also
observable for r = 0.5, the improvement is less significant.

Finally, in Figure 5 the runtime distribution of the tests is plotted. The figure
shows that for the same generation parameters (r,M,N and L) the runtime
exhibits a considerable variance (note that the x-axis has a logarithmic scale).
It is important to note that, while the value of r has an important effect on
the performance, the real key for efficiency is the problem complexity (i.e., the
time needed to solve the problem). For complex enough (but still calculable)
problems, the efficiency of the algorithm would increase asymptotically to 100%

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting 33

R = 0.25 R = 0.5 R = 0.75

N
P

 1
N

P
 2

N
P

 4
N

P
 8

2−4 2−2 20 22 24 26 28 2−4 2−2 20 22 24 26 28 2−4 2−2 20 22 24 26 28

Run Time (Log., Seconds)

Setup random stride

Fig. 5. Small scenarios runtime

(or even past 100%) as the polynomial parallelization overhead would eventually
be overwhelmed by the exponential complexity of the problem.

5.2 Benchmark 2

The second benchmark is aimed at observing the behavior of MHS2 for realis-
tic scenarios (N = 100,M = 10000, L = 2) where it is impractical to calculate
all minimal candidates. In all the following scenarios a time based cut-off was

implemented and we define the metric CSup(np) = |D1|
|Dnp| , where |Dnp| is the

number of candidates generated using np processes for the same time, hence-
forward referred to as MHS speedup. While higher values of this metric do not
necessarily mean higher diagnosis capabilities7, in most cases they are positively
correlated due to the usage of the heuristic ranking function (see [1]).

Figures 6 and 7 show the results of computing candidates for big problems for
runtimes rt ∈ {1, 2, 4, 8, 16} and np ∈ [1..8] (entailing a total runtime of rt×np).
It is clear that, for big problems, there is no significant difference in terms of the
amount of generated candidates between random and stride. Figure 6 shows that
for r ∈ {0.25, 0.5} the MHS speedup scales well with the number of processes,
however as the time increases, it becomes harder to find new minimal candidates
(Figure 7). Regarding r = 0.75 we see that the MHS speedup pattern is not as
smooth as for the former cases. Additionally it is important to note that, in
contrast to the cases r ∈ {0.25, 0.5}, for r = 0.75, the number of candidates
generated by np = 8 is smaller than for all other cases (Figure 7). This is due
to the fact that for higher values of r both the cardinality and the number of
minimal candidates becomes smaller, enabling the algorithm to explore a larger
percentage of the search tree. As a consequence, and due to the limitations
of an heuristic search, it happens that some of the candidates found first are

7 As an example consider a set of failures for which the true explanation would be
d = {1} and two diagnostic collections D1 = {{1}} and D2 = {{1, 2}, {1, 3}}. While
|D2| > |D1|, D1 has better diagnostic capabilities than D2 as d ∈ D1 ∧ d �∈ D2.

34 N. Cardoso and R. Abreu

Random Stride

2
4
6

2
4
6

0.7
0.8
0.9
1.0

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Processes

M
H

S
 S

pe
ed

up
Run Time (seconds) 1 2 4 8 16

Fig. 6. Big scenarios MHS speedup

Random Stride

0e+00

1e+05

2e+05

3e+05

0e+00
1e+05
2e+05
3e+05

20000

40000

60000

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 4 8 16 1 2 4 8 16
Run Time (seconds)

C

an
di

da
te

s

Processes 1 2 3 4 5 6 7 8

Fig. 7. Big scenarios number of candidates

subsumable by candidates found later, reducing the candidate collection size
over time.

5.3 Benchmark 3

The final benchmark is aimed at observing the influence of parameter L in the
number of generated candidates. In this benchmark we calculated candidates for
both big and small problems using np = 8 and rt = 10 and L ∈ [1..10]. The
analysis of Figure 8 reveals the great impact L has on the number of generated
candidates. In the conducted experiments no MHS speedup lesser than 1 was
observed, meaning that it should be a sensible choice to set L to be greater than
1. Optimal selection of values for L yielded an eightfold performance improve-
ment for all the big scenarios. In the small scenarios, this improvement is still
observable but with lesser magnitude. For the small scenarios with r = 0.75,
L play no apparent role as the MHS speedup is always 1. This is due to the
fact that all minimal candidates were always calculable within the defined time

MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting 35

Big Small

2
4
6
8

2
4
6
8

2
4
6
8

R
 = 0.25

R
 = 0.5

R
 = 0.75

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Branch Level

M
H

S
 S

pe
ed

up
Setup random stride

Fig. 8. Level parameter impact

frame. A closer inspection of the data revealed an isolated threefold speedup
peak at L = 2.

Another interesting pattern is the correlation between the Bernoulli distri-
bution parameter r and the number of near-optimal values for L. This can be
explained by using the argument relating r and the candidate size. The average
candidate sizes (in optimal conditions) for r ∈ {0.25, 0.5, 0.75} were {8, 6, 3} for
the small scenarios and {6, 4, 3} for the large scenarios. If we observe, for each
plot, the last value of L for which the performance is near optimal we see that it
matches the average candidate size minus 1. Even though several levels may be
near optimal, it is better to use the smaller still near optimal value for L (L = 2
for all the conducted experiments) as it implies less redundant calculation with
an acceptable level of granularity for load division.

As a final note, although all benchmarks were conducted within a single host,
implying low communication latencies, we expect that the algorithm is able to
efficiently perform in distributed environments. In the conducted experiments,
the communication sizes (using a non-compressed binary stream) were bounded
by a 3.77 megabytes maximum.

6 Conclusions

In this paper, we proposed a distributed algorithm to compute minimal hitting

sets for a collection of constraints, dubbed MHS2. This algorithm is not only
more efficient in single CPU scenarios than the existent sequential algorithm
(Staccato) but also is able to efficiently use the processing power of multiple
CPUs to calculate minimal diagnosis candidates.

The results showed that, specially for large problems, the algorithm is able to
scale with negligible overhead. The usage of parallel processing power enables the
exploration of a larger number of potential candidates, increasing the likelihood
of actually finding the “best” hitting set for a particular instance of the problem.

Future work would include the analysis of the algorithm’s performance with
a larger set of computation resources as also the analysis of its performance

36 N. Cardoso and R. Abreu

under a wider set of conditions. Additionally, it would be intersting to study the
performance in massively parallel computing Hadoop-based infrastructures.

Acknowledgements. We would like to thank Ĺıgia Massena, André Silva and
José Carlos de Campos for the useful discussions during the development of
our work. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS 1116848, and by the scholarship number
SFRH/BD/79368/2011 from Fundação para a Ciência e Tecnologia (FCT).

References

1. Abreu, R., van Gemund, A.J.C.: A low-cost approximate minimal hitting set algo-
rithm and its application to model-based diagnosis. In: Symposium on Abstraction,
Reformulation, and Approximation, SARA 2009 (2009)

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based
fault localization. In: Testing: Academic and Industrial Conference Practice and
Research Techniques, TAICPART 2007 (2007)

3. de Kleer, J., Williams, B.C.: Readings in model-based diagnosis (1992)
4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: Symposium on Opearting Systems Design & Implementation, OSDI 2004 (2004)
5. Feldman, A., Provan, G., Van Gemund, A.: Computing minimal diagnoses by

greedy stochastic search. In: AAAI Conference on Artificial intelligence, AAAI
2008 (2008)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness (1990)

7. Harrold, M.J., Rothermel, G., Wu, R., Yi, L.: An empirical investigation of program
spectra. In: Program Analysis for Software Tools and Engineering, PASTE 1998
(1998)

8. Pill, I., Quaritsch, T.: Optimizations for the boolean approach to computing min-
imal hitting sets. In: European Conference on Artificial Intelligence, ECAI 2012
(2012)

9. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1)
(1987)

10. Rubin, J.: A Technique for the Solution of Massive Set Covering Problems, with
Application to Airline Crew Scheduling (1973)

11. Ruchkys, D.P., Song, S.W.: A parallel approximation hitting set algorithm for gene
expression analysis. In: Symposium on Computer Architecture and High Perfor-
mance Computing (2002)

12. Wotawa, F.: A variant of Reiter’s hitting-set algorithm. Information Processing
Letters 79(1) (2001)

13. Zhao, X., Ouyang, D.: Improved algorithms for deriving all minimal conflict sets
in model-based diagnosis. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007.
LNCS, vol. 4681, pp. 157–166. Springer, Heidelberg (2007)

Handling Parallelism in a Concurrency Model

Mischael Schill, Sebastian Nanz, and Bertrand Meyer

ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Programming models for concurrency are optimized for deal-
ing with nondeterminism, for example to handle asynchronously arriving
events. To shield the developer from data race errors effectively, such
models may prevent shared access to data altogether. However, this re-
striction also makes them unsuitable for applications that require data
parallelism. We present a library-based approach for permitting parallel
access to arrays while preserving the safety guarantees of the original
model. When applied to SCOOP, an object-oriented concurrency model,
the approach exhibits a negligible performance overhead compared to or-
dinary threaded implementations of two parallel benchmark programs.

1 Introduction

Writing a multithreaded program can have a variety of very different motiva-
tions [12]. Oftentimes, multithreading is a functional requirement: it enables
applications to remain responsive to input, for example when using a graphical
user interface. Furthermore, it is also an effective program structuring technique
that makes it possible to handle nondeterministic events in a modular way;
developers take advantage of this fact when designing reactive and event-based
systems. In all these cases, multithreading is said to provide concurrency. In con-
trast to this, the multicore revolution has accentuated the use of multithreading
for improving performance when executing programs on a multicore machine. In
this case, multithreading is said to provide parallelism.

Programming models for multithreaded programming generally support either
concurrency or parallelism. For example, the Actor model [1] or Simple Concur-
rent Object-Oriented Programming (SCOOP) [10,11] are typical concurrency
models: they are optimized for coordination and event handling, and provide
safety guarantees such as absence of data races. Models supporting parallelism
on the other hand, for example OpenMP [7] or Chapel [5], put the emphasis on
providing programming abstractions for efficient shared memory computations,
typically without addressing safety concerns.

While a separation of concerns such as this can be very helpful, it is evident
that the two worlds of concurrency and parallelism overlap to a large degree. For
example, applications designed for concurrency may have computational parts
the developer would like to speed up with parallelism. On the other hand, even
simple data-parallel programs may suffer from concurrency issues such as data
races, atomicity violations, or deadlocks. Hence, models aimed at parallelism

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 37–48, 2013.
© Springer-Verlag Berlin Heidelberg 2013

38 M. Schill, S. Nanz, and B. Meyer

could benefit from inheriting some of the safety guarantees commonly ensured
by concurrency models.

This paper presents a library-based approach for parallel processing of shared-
memory arrays within the framework of a concurrency model. To achieve this,
the data structure is extended with features to obtain slices, i.e. contiguous data
sections of the original data structure. These data parts can be safely used by
parallel threads, and the race-freedom guarantee for the original data structure
can be preserved.

The approach is applied to SCOOP [10,11], a concurrency model implemented
on top of the object-oriented language Eiffel [8]. A performance evaluation using
two benchmark programs (parallel Quicksort and matrix multiplication) shows
that the approach is as fast as using threads, and naturally outperforms the
original no-sharing approach. While SCOOP lends itself well to our approach,
the basic idea can be helpful for providing similar extensions to Actor-based
models.

The remainder of the paper is structured as follows. Section 2 describes the
problem and the rationale of our approach. Section 3 presents the slicing tech-
nique. Section 4 provides the results of the performance evaluation. Section 5
describes related work and Section 6 concludes with thoughts on future work.

2 Performance Issues of Race-Free Models

To help conquer the complexity of nondeterministic multithreading, program-
ming models for concurrency may provide safety guarantees that exclude com-
mon errors by construction. In Erlang [2] for example, a language famous for
implementing the Actor model [1], there is no shared state among actors; hence
the model is free from data races.

In a similar manner, the object-oriented concurrency model SCOOP [10,11]
does not allow sharing of memory between its computational entities, called pro-
cessors (an abstraction of threads, processes, physical cores etc). More specif-
ically, every object in SCOOP belongs to exactly one processor and only this
processor has access to the state of the object. A processor can however be in-
structed to execute a call on behalf of another processor, by adding the call to
the processor’s request queue. Also this regime offers protection from data races.

Unfortunately, the strict avoidance of shared memory has severe performance
disadvantages when trying to parallelize various commonplace computational
problems. As an example, Listing 1 shows an in-place Quicksort algorithm writ-
ten in SCOOP. Every time the array is split, a new worker is created to sort
its part of the array. The workers s1 and s2 and the array data are denoted as
separate, i.e. they reference an object that may belong to another processor.
By creating a separate object, a new processor is spawned. Calls to a separate
object are only valid if the processor owning the separate object is controlled by
the current processor, which is guaranteed if the separate object appears in the
argument list, hence the separate_sort, get, and swap features. Each proces-
sor can only be controlled by one other processor at a time, thereby ensuring
freedom from data races.

Handling Parallelism in a Concurrency Model 39

data : separate ARRAY [T]
lower , upper : INTEGER

make (d : separate ARRAY [T] ; n : INTEGER)
do

i f n > 0 then
lower := d . lower
upper := d . lower + n − 1

else
upper := d . upper
lower := d . upper + n + 1

end
data := d

end

sort
loca l i , j : INTEGER; s1 , s2 : separate SORTER [T]
do

i f upper > lower then
pivot := get (data , upper)
from i := lower ; j := lower until i = upper loop

i f get (data , i) < pivot then
swap (data , i , j)
j := j + 1

end
i := i + 1

end
swap (data , upper , j)
create s1 . make (data , j − lower)
create s2 . make (data , j − upper)
separate_sort (s1 , s2)

end
end

get (d : separate ARRAY [T] ; index : INTEGER) : T
do Result := data [index] end

swap (data : separate ARRAY [T] ; i , j : INTEGER)
loca l tmp : T do tmp := d [i] ; d [i] := d [j] ; d [j] := tmp end

separate_sort (s1 , s2 : separate SORTER [T])
do s1 . sort ; s2 . sort end

Listing 1. SORTER: In-place Quicksort in SCOOP

The execution of this example exhibits parallel slowdown: a sequential version
outperforms the algorithms for most workloads. This has two main reasons:

1. Every call to the data array involves adding the call to the request queue,
removing the call from the request queue, and sending back the result; this
creates a large communication overhead.

2. Only one of the workers at a time can execute the get and swap features on
the array because they require control of the processor handling the array;
this serialization prohibits the algorithm from scaling up.

The same issues occur in a broad range of data-parallel algorithms using arrays.
Efficient implementations of such algorithms are impossible in race-protective
concurrency models such as SCOOP, which is unacceptable. Any viable solution

40 M. Schill, S. Nanz, and B. Meyer

to the problem has to get rid of the communication overhead and the serializa-
tion. There are two general approaches to this problem:

1. Weaken the concurrency model to allow shared memory without race pro-
tection, or interface with a shared memory language. The programmers are
responsible to take appropriate synchronization measures themselves.

2. Enable shared memory computations, but hide it in an API that preserves
the race-freedom guarantees of the concurrency model.

The first approach shifts the burden to come up with solutions for parallelism
to the programmer. Unfortunately, it also forfeits the purpose of race-protection
mechanisms in the first place. Still, it is the most prominent approach taken. This
paper presents a solution based on the second approach, in particular offering
both race protection and shared memory performance.

3 Array Slicing

To allow the implementation of efficient parallel algorithms on arrays, the fol-
lowing two types of array manipulation have to be supported:

– Parallel disjoint access: Each thread has read and write access to disjoint
parts of an array.

– Parallel read: Multiple threads have read-only access to the same array.

The array slicing technique presented in this section enables such array manipu-
lations by defining two data structures, slices and views, representing parts of an
array that can be accessed in parallel while maintaining race-freedom guarantees.

Slice. Part of an array that supports read and write access of single threads.
View. Proxy that provides read-only access to a slice while preventing modifi-

cations to it.

In the following we give a specification of the operations on slices and views.

3.1 Slices

Slices enable parallel usage patterns of arrays is where each thread works on a
disjoint part of the array. The main operations on slices are defined as follows:

Slicing. Creating a slice of an array transfers some of the data of the array into
the slice. If shared memory is used, the transfer can be done efficiently using
aliasing of the memory and adjusting the bounds of the original array.

Merging. The reverse operation of slicing. Merging two slices requires them to
be adjacent to form an undivided range of indexes. The content of the two
adjacent slices is transferred to the new slice, using aliasing if the two are
also adjacent in shared memory.

Handling Parallelism in a Concurrency Model 41

Table 1. API for slices

Creation procedures (constructors)
make(n: INTEGER) Create a new slice with a capacity of n
slice_head(slice: SLICE; n: INTEGER) Slice off the first n entries of slice
slice_tail(slice: SLICE; n: INTEGER) Slice off the last n entries of slice
merge(a, b: SLICE) Create a new slice by merging a and b

Queries
item(index: INTEGER): T Retrieve the item at index
indexes: SET[INTEGER] Indexes of this slice
lower: INTEGER Lowest index of the index set
upper: INTEGER Highest index of the index set
count: INTEGER Number of indexes: upper − lower + 1
is_modifiable: BOOLEAN Whether the array is currently modifi-

able, i.e. readers = 0
readers: INTEGER The number of views on the slice

Commands
put(value: T; index: INTEGER): T Store value at index

Commands only accessible to slice views
freeze Notifies the slice that a view on it is

created by incrementing readers

melt Notifies the slice that a view on it is
released by decrementing readers

Internal state
area: POINTER Direct unprotected memory access
base: INTEGER The offset into memory

Based on this central idea, an API for slices can be defined as in Table 1. Note
that we use the letter T to refer to the type of the array elements. After creating
a new slice using make, the slice can be used like a regular array using item

and put with the indexes ranging from lower to upper, although modifying
it is only allowed if is_modifiable is true, which is exactly if readers is zero.
Internally, the attribute area is a direct pointer into memory which can be
accessed like a 0-based array. The base represents the base of the slice, which is
usually 1 for Eiffel programs, but may differ when a merge results in a copy. The
operations freeze and melt increment and decrement the readers attribute
which influences is_modifiable and are used by views (see section 3.2).

Slicing. Like any other object, a reference to the slice can be passed to other
processors. A processor having a reference to a slice can decide to create a new
slice by slicing from the lower end (slice_head) or upper end (slice_tail).
By doing this, the original slice transfers data to the new slice by altering the
bounds and referencing the same memory if possible. Freedom of race conditions
is ensured through the exclusive access to the disjoint parts.

Listing 2 shows an implementation of the slice_head creation procedure,
taking advantage of shared memory. It copies the lower bound, the base and
the memory reference of the slice a_original. It also sets the upper bound

42 M. Schill, S. Nanz, and B. Meyer

slice_head (n : INTEGER; a_original : separate SLICE [T])
require −− Precond i t ion

within_bounds : n > 0 and n <= a_original . count
a_original . is_modifiable

do
lower := a_original . lower
upper := a_original . lower + n − 1
base := a_original . base
area := a_original . area
a_original . lower := a_original . lower + n

ensure −− Postcond i t ion
a_original . count = old a_original . count − n
a_original . lower = old a_original . lower + n
a_original . upper = old a_original . upper
lower = old a_original . lower
upper = a_original . lower − 1
count = n
−− ” f o r a l l i in indexes : item (i) = old a o r i g i n a l . item (i) ”

end

Listing 2. Slicing

according to the size n of the new slice and increases the lower bound of the
original by n.

We use Eiffel for our implementation. Eiffel provides preconditions and post-
conditions, which we use to make sure only modifiable arrays are altered.

Merging. If a processor has two adjacent slices (the lower index of the one equals
the upper index of the other plus one), calling merge creates a new combined
slice. This transfers all the data from the old slices to the new one, making the
old ones empty. If the two slices are located next to each other in memory, the
transfer simply adjusts the bounds; otherwise, it copies the data into a new slice.

The implementation of merging (see Listing 3) sets the bounds according to
the arguments. It then checks whether the two parts are actually next to each
other in memory by checking whether the area and the base are the same. In
this case, it copies the base and the memory reference. Otherwise, it allocates
new memory and copies all the data of the two arguments. In the end, it empties
the two arguments, setting their count to 0 by making lower= 1 and upper = 0.

Strategies for Slicing. The most common choice for disjoint index subsets are
sets with contiguous indexes. Those subsets can be identified by their lower and
upper index and resemble a normal array. A rarer case is to create the disjoint
subsets according to another principle. This warrants a different implementation,
which is possible by using inheritance. However, current cache architectures limit
the usefulness of slices with a size smaller than a cache line.

3.2 Views

Views enable read-only access on arrays. The main operations on views are
defined as follows:

Handling Parallelism in a Concurrency Model 43

merge (a_one , a_another : separate SLICE [T])
require

a_one . is_modifiable
a_another . is_modifiable
one . is_adjacent (a_another)

do
lower := a_one . lower . min (a_another . lower)
upper := a_another . upper . max (a_one . upper)
i f a_one . area = a_another . area and a_one . base = a_another .

base then
area := a_one . area
base := a_one . base

else
base := lower
−− ”Copy data from the a one and a another to area ”

end
a_another . empty ; a_one . empty

ensure
lower = old a_one . lower . min (a_another . lower)
upper = old a_one . upper . max (a_another . upper)
a_one . count = 0 and a_another . count = 0
−− ” f o r a l l i in o ld a one . indexes : item (i) = old a one . item (i

) ”
−− ” f o r a l l i in o ld a another . indexes : item (i) = old

a another . item (i) ”
end

Listing 3. Merging

Table 2. API for slice views

Creation procedures (constructors)
make(slice: SLICE) Create a new view on slice

Queries
original: SLICE[T] Slice this view references
indexes: SET[INTEGER] Indexes of this view
item(index: INTEGER): T Retrieve the item at index
lower: INTEGER Lowest index of the index set
upper: INTEGER Highest index of the index set

Commands
free Disconnects the view from the slice

Internal state
area: POINTER Direct unprotected memory access
base: INTEGER Offset into memory

Viewing. Creating a view from a slice copies the bounds and the memory ref-
erence into the view. The original slice is no longer modifiable.

Releasing. The reverse operation of viewing. If no other views on the same
slice exist, it is modifiable again. Also, the view is no longer usable.

The API for views is shown in Table 2. A processor is able to read the slice in
parallel by creating a view using the make creation procedure. The original slice is
then available as the original query. This also prevents all further modifications
of the array unless the view is released with the free procedure. All the other
features of views behave exactly like their counterparts in the slices.

44 M. Schill, S. Nanz, and B. Meyer

make (a_original : separate SLICE [T])
do

a_original . freeze
original := a_original
lower := a_original . lower
upper := a_original . upper
base := a_original . base
area := a_original . area

ensure
lower = a_original . lower
upper = a_original . upper
not a_original . is_modifiable
−− ” f o r a l l i in indexes : item (i) = a o r i g i n a l . item (i) ”

end

Listing 4. Viewing

Viewing. Creating a view basically copies the bounds and the memory reference
into the view. By increasing the view counter (readers) using the freeze op-
eration of the slice a_original, the original slice is no longer modifiable (see
Listing 4). By calling free on a view, the view loses its reference to the memory
of the slice and the original slice is notified through melt that there is one less
reader.

Releasing. The free procedure redirects the area to 0 and sets lower to 1
and upper to 0. Therefore no access is possible at any index. In addition, the
number of readers of the original decremented by a call to melt. This causes the
original to be modifiable again if the number of readers falls to zero. Because of
its simplicity, the code is omitted.

4 Performance Evaluation

To assess the performance of our approach, we apply it to two benchmark prob-
lems: to determine how well our approach works in a divide-and-conquer sce-
nario, we choose a parallel in-place Quicksort algorithm; to determine the raw
performance, we use parallel matrix multiplication. In both cases, the extension
of SCOOP with the slicing technique is compared with implementations in Eiffel
using only threads and without synchronization except a join at the end.

For the performance tests we use a server with four 8-core Intel Xeon E7-4830
processors and 256 GB of RAM. We ran every program 20 times and report the
mean value of the running times in Table 3. The source code of the benchmarks
is available online1 as well as the support for slicing in SCOOP2. In the following
we discuss both benchmarks and their results in detail.

1 https://bitbucket.org/mischaelschill/array-benchmarks
2 https://bitbucket.org/mischaelschill/scoop-library

https://bitbucket.org/mischaelschill/array-benchmarks
https://bitbucket.org/mischaelschill/scoop-library

Handling Parallelism in a Concurrency Model 45

Table 3. Mean running times (in seconds)

Number of cores

1 2 4 8 16 32

Quicksort
Slicing 157.4 147.1 81.9 66.4 59.9 59.2

Threads 158.6 145.1 82.8 68.0 61.5 59.8

Matrix multiplication
Slicing 184.8 95.0 51.2 24.0 14.1 7.3

Threads 178.0 91.7 46.6 23.6 12.6 7.3

4.1 Quicksort

Listing 5 shows the constructor of the Quicksort example implemented using
slices instead of regular arrays (compare Section 2). The main difference is the
usage of slice_head and slice_tail instead of storing the bounds in variables.
The implementation of sort can stay the same, although there is no need for
storing the bounds and extra features for swapping and retrieving since data is
no longer separate.

data : SLICE [T]

make (a_data : SLICE [T] ; n : INTEGER)
do

i f n > 0 then
create data . slice_head (a_data , n)

else
create data . slice_tail (a_data , −n)

end
end

Listing 5. Quicksort algorithm using slices

For the performance measurement, the Quicksort benchmark sorts an array of
size 108, which is first filled using a random number generator with a fixed seed.
The benchmarked code is similar to listing 5, but also adds a limit on the number
of processors used. As evident from Figure 1, the performance characteristics of
the slicing technique and threading is almost identical.

4.2 Matrix Multiplication

Listing 6 shows a class facilitating parallel multiplication of matrices, using a two
dimensional version of slices and views (SLICE2 and SLICE_VIEW2, implemented
in a very similar fashion to the one-dimensional version discussed in Section 3.1).
The worker is created using make which slices off the first n rows into product.
The multiply command actually fills the slice with the result of the multipli-
cation of the left and right matrices. Afterwards, the views are decoupled using
free. Dividing the work between multiple workers and merging the result is left
to the client of the worker.

46 M. Schill, S. Nanz, and B. Meyer

12 4 8 16 32
50

100

150

Number of cores

T
im

e
(s
ec
o
n
d
s)

Slicing

Threads

Fig. 1. Quicksort: scalability

left , right : SLICE_VIEW2 [T]
product : SLICE2 [T]

make (l , r , p : separate SLICE2 [T] ; n : INTEGER)
do

create left . make (l) ; create right . make (r)
create product . slice_top (n , p)

end

multiply
loca l k , i , j : INTEGER
do

from i := product . first_row until i > product . last_row loop
from j := product . first_column until j > product .

last_column loop
from k := left . first_column until k > left . last_column

loop
product [i , j] := product [i , j] + left [i , k] ∗

right [k , j]
k := k + 1

end
j := j + 1

end
i := i + 1

end
left . free ; right . free

end

Listing 6. Matrix multiplication worker using slices and views

For the performance measurement, the matrix multiplication test multiplies
a 2000 to 800 matrix with an 800 to 2000 matrix. Figure 2 shows again similar
performance characteristics between slicing and threads.

5 Related Work

We are not aware of any programming model supporting slicing while avoid-
ing race conditions. However, similar means to create an alias to a subset of

Handling Parallelism in a Concurrency Model 47

12 4 8 16 32

0

50

100

150

200

Number of cores

T
im

e
(s
ec
o
n
d
s)

Slicing

Threads

Fig. 2. Matrix multiplication: scalability

an array’s content are common in most programming languages or their stan-
dard library. For example, the standard library of Eiffel as provided by Eiffel
Software [8] can create subarrays. Perl [13] has language integrated support for
slicing arrays. Slices and slicing are a central feature of the Go programming lan-
guage [9]. However, these slicing solutions were not created with the intention of
guaranteeing safe access: the portion of memory aliased by the new array/slice
remains accessible through the original array, which can lead to race conditions
if two threads access them at the same time.

Enabling many processors to access different parts of a single array is a corner-
stone of data parallel programming models. OpenMP [7] is the de-facto standard
for shared-memory multiprocessing. Its API offers various data parallel directives
for handling the access to arrays, e.g. in conjunction with parallel-for loops.
Threading Building Blocks [14] is a C++ library which offers a wide variety of
algorithmic skeletons for parallel programming patterns with array manipula-
tions. Chapel [5] is a parallel programming language for high-performance com-
putation offering concise abstractions for parallel programming patterns. Data
Parallel Haskell [4] implements the model of nested data parallelism (inspired
by NESL [3]), extending parallel access also to user-defined data structures. In
difference to our work, these approaches focus on efficient computation but not
on safety guarantees for concurrent access, which is our starting point.

The concept of views is an application of readers-writers locks first introduced
by Courtois, Heymans and Parnas [6], tailored to the concept of slices.

6 Conclusion

While programming models for concurrency and parallelism have different goals,
they can benefit from each other: concurrency models provide safety mechanisms
that can be advantageous for parallelism as well; parallelism models provide per-
formance optimizations that can also be profitable in concurrent programming.
In this paper, we have taken a step in this direction by extending a concurrency

48 M. Schill, S. Nanz, and B. Meyer

model, SCOOP, with a technique for efficient parallel access of arrays, without
compromising the original data-race freedom guarantees of the model. An im-
portant insight from this work is that safety and performance do not necessarily
have to be trade-offs: results on two typical benchmark problems show that our
approach has the same performance characteristics as ordinary threading.

In future work, it would be interesting to explore the relation between models
for concurrency and parallelism further, with the final goal of defining a safe
parallel programming approach. In particular, programming patterns such as
parallel-for, parallel-reduce, or parallel-scan could be expressed in a safe manner.
In order to ascertain how this API is used by programmers, empirical studies
are needed.

Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389,
the Hasler Foundation, and ETH (ETHIIRA).

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press (1986)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent programming
in Erlang, 2nd edn. Prentice-Hall (1996)

3. Blelloch, G.E.: NESL: A nested data-parallel language. Tech. Rep. CMU-CS-95-
170, Carnegie Mellon University (1995)

4. Chakravarty, M.M.T., Leshchinskiy, R., Jones, P.S., Keller, G., Marlow, S.: Data
parallel Haskell: a status report. In: Proceedings of the 2007 Workshop on Declar-
ative Aspects of Multicore Programming, pp. 10–18. ACM (2007)

5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the
Chapel language. International Journal of High Performance Computing Appli-
cations 21(3), 291–312 (2007)

6. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with readers and
writers. Communications of the ACM 14(10), 667–668 (1971)

7. Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory
programming. IEEE Computer Science & Engineering 5(1), 46–55 (1998)

8. Eiffel Software (2013), http://www.eiffel.com/
9. Go programming language (2013), http://golang.org/

10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
11. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. Ph.D. thesis, ETH Zurich (2007)
12. Okur, S., Dig, D.: How do developers use parallel libraries? In: Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012, pp. 54:1–54:11. ACM (2012)

13. Perl programming language (2013), http://www.perl.org/
14. Reinders, J.: Intel threading building blocks – outfitting C++ for multi-core pro-

cessor parallelism. O’Reilly (2007)

http://www.eiffel.com/
http://golang.org/
http://www.perl.org/

On the Relevance of Total-Order Broadcast
Implementations in Replicated Software

Transactional Memories

Tiago M. Vale, Ricardo J. Dias, and João M. Lourenço

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{t.vale,ricardo.dias}@campus.fct.unl.pt,
joao.lourenco@fct.unl.pt

Abstract. Transactional Memory (TM), an attractive solution to sup-
port concurrent accesses to main-memory storage, is already being de-
ployed by some of the major CPU and compiler manufacturers. To address
scalability and dependability challenges, researchers are now combining
replication, TM and certification-based protocols. To maintain consistency
and ensure common transaction serialisation order, these protocols rely in
a total-order broadcast primitive, usually provided by some Group Com-
munication System (GCS). The total-order broadcast service can be im-
plemented by different algorithms, which hold different properties. In this
paper we present a detailed analysis of the impact of some algorithms im-
plementing total-order broadcast in different TM workloads, opening up
future work to improve performance of replicated TMs.

1 Introduction

The interest in research on paradigms for parallel programming increased as
multi-core computers hit mainstream. Software Transactional Memory (STM) [1]
as earned interest from both the academic and industrial research communities.
STM relieves the programmer from the subtleties of the traditional lock-based
concurrency control by adapting the familiar concept of transaction inherited
from the database world. Enterprise-class STM-based applications have already
been deployed in production systems1. These real-world applications usually hold
requirements such as scalability and reliability which are commonly tackled using
replication. Distributed STM has been similarly motivated as an alternative
to (distributed) lock-based concurrency control in distributed systems, where
the problems associated with locks are exacerbated.

Given the similarities between STM and database transactions, research on
STM replication have borrowed inspiration from the literature in replicated
databases. A handful of replication protocols [2,3,4,5], commonly referred to as
certification-based, have been proposed and evaluated in the context of replicated
1 https://fenix-ashes.ist.utl.pt

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

https://fenix-ashes.ist.utl.pt

50 T.M. Vale, R.J. Dias, and J.M. Lourenço

STM systems. Replica consistency is ensured at commit time using a total-order
broadcast to guarantee a common transaction serialisation order. Unfortunately,
the relative overhead introduced by the certification of distributed memory trans-
actions is much higher than the overhead introduced by the certification of dis-
tributed database transactions. On the one hand, memory transactions operate
over main memory which is a very fast storage media, and on the other hand,
some key features of databases require additional processing time, such as SQL
parsing, plan optimisation, and secondary storage accesses.

Total-order broadcast can be implemented using different algorithms, which
exhibit different properties such as latency, fairness and throughput. In this
paper, and to the best of our knowledge, we present the first study of the im-
pact that the different algorithms implementing total-order broadcast have on
replicated STMs. In the remainder of this paper, we discuss certification-based
protocols and their key ingredient, the total-order broadcast, in §2; followed by
a discussion of its impact in replicated STM environments in §3. We proceed
with a description of our implementation and discuss the experimental results
in §4 and §5, respectively. We close the paper with a discussion of the related
work in §6, and some concluding remarks in §7.

2 Software Transactional Memory Replication

While the transaction concept bridges the world of databases and STM, memory
transactions’ execution time is significantly smaller than database transactions.
Memory transactions only access data in main memory, thus not incurring in
the expensive secondary storage accesses characterising the latter. Furthermore,
SQL parsing and plan optimisation are also absent in STM. On the other hand
this increases the relative cost of remote coordination. Nonetheless, literature
on replicated and distributed databases represents a natural source of inspira-
tion when developing protocols for replicated STM. In fact, current research on
replicated STM have embraced protocols commonly referred to as certification-
based. These protocols rely on total-order broadcast, usually provided by some
group communication system, to impose a global transaction serialisation order.

2.1 Total-Order Broadcast

Informally, a total-order broadcast ensures that messages sent to a set of re-
cipients are delivered in the same order by all recipients. Total-order broadcast
guarantees the following properties [6]: (1) Validity: if a correct replica TO-
broadcasts a message m, then it eventually TO-delivers m; (2) (Non-)uniform
Agreement : if a (correct) replica TO-delivers a message m, then all correct repli-
cas eventually TO-deliver m; (3) Uniform Integrity: for any message m, every
replica TO-delivers m at most once, and only if m was previously TO-broadcast
by sender(m); and (4) (Non-)uniform Total Order : if (correct) replicas r1 and r2
both TO-deliver messages m and m′, then r1 TO-delivers m before m′, if and
only if r2 TO-delivers m before m′. A broadcast that satisfies all these properties

On the Relevance of Total-Order Broadcast Implementations 51

except (4), i.e., that provides no ordering guarantee, is instead called a reliable
broadcast.

Notation. A total-order broadcast consists of two primitives, to-broadcast(m)
and to-deliver(m). We say a replica r TO-broadcasts a message m when r executes
to-broadcast(m), and r TO-delivers m when r executes to-deliver(m). We denote
R-broadcast and R-deliver analogously for reliable broadcast. The sender of a
broadcasted message m is denoted by sender(m).

There are several algorithms to implement total-order broadcast [6]. In sequen-
cer-based algorithms one replica is elected as the sequencer and is responsible
for ordering messages. For example, any replica r wanting to TO-broadcast a
message m, starts by unicasting m to the sequencer, which in turn broadcasts
m on behalf of r. A different approach is followed by privilege-based algorithms.
These algorithms rely on the idea that senders can broadcast messages only when
they are granted the privilege to do so. The privilege to broadcast (and order)
messages is granted to only one process at a time, but this privilege circulates
from process to process.

2.2 Certification-Based Protocols

Current research in STM replication has borrowed protocols from the database
literature usually classified as certification-based. In certification-based proto-
cols, unlike classical eager replication, transactions are optimistically executed
on a single replica without any remote coordination. Updates are buffered and
applied at all replicas if a transaction is found to be valid and successfully com-
mits. Replicas coordinate at commit time by way of a distributed protocol that
validates (certifies) transactions and establishes a global transaction serialisa-
tion order. Thus, the outcome of a transaction’s validation is the same at every
replica, and the updates of valid transactions are applied at every replica in the
same order. While update transactions require replica coordination at commit
time, as described, read-only transactions can validate and commit locally at the
host replica.

To impose a global transaction serialisation order, certification-based proto-
cols rely on total-order broadcast to disseminate transactions at commit time.
This contrasts with classical eager replication protocols based on distributed
locking that potentially incur in deadlocks and suffer from communication over-
heads during the transaction execution phase. Depending on which transactional
data is TO-broadcasted, certification protocols can be classified in two schemes:
Non-Voting [7] and Voting [8]. In the Non-Voting scheme, when a transaction t
executing at some replica enters the commit phase, both its write set W and
read set R are TO-broadcasted. This means that each replica is able to inde-
pendently validate and abort or commit t, as they are in possession of all the
necessary information, i.e., both W and R. Note that given the total ordering of
the deliveries, all replicas will process all transactions in the same order, so the
result of any transaction’s validation will be the same on all replicas.

52 T.M. Vale, R.J. Dias, and J.M. Lourenço

By disseminating both W and R the Non-Voting scheme requires a single
communication round to commit a transaction. However, the read set is typi-
cally much larger than the write set, thus the second scheme, Voting, explores
the trade-off of exchanging potentially much smaller messages (since R, typi-
cally much larger than W , is not disseminated) at the expense of requiring two
communication rounds (an additional R-broadcast) instead of just one.

3 On the Relevance of Total-Order Broadcast
Implementations

Consider the typical work flow of a transaction-processing thread Th under a
certification-based protocol. Th executes transaction t. If t is read-only it is
locally validated and committed (or aborted, thus re-executed) by Th. Other-
wise Th TO-broadcasts t and waits. Upon the respective TO-delivery, Th vali-
dates and commits or aborts t, re-executing if aborted. We refer to the time Th
waits, i.e., the time between the TO-broadcast and the respective TO-delivery,
as latency.

Intuitively, different implementations of total-order broadcast will have a dif-
ferent impact on latency, and thus on the performance of typical replicated
STM deployments, where each replica executes roughly the same percentage of
update transactions. In the sequencer-based algorithm (see §2.1) it is expected
that (1) latency in replica s, assigned as sequencer, is lower than in the remain-
ing replicas; and (2) transaction ordering is biased towards transactions from s,
because unlike other replicas, s can skip an initial unicast. With privilege-based
implementations, latency is expected to be similar in all replicas, as they are
only allowed to broadcast during their slot. Thus, a sequencer-based total-order
broadcast implementation is likely to allow a replicated STM to achieve higher
performance than a privilege-based implementation at the expense of an un-
equal contribution of each replica to the global throughput of the system. The
sequencer will likely execute much more transactions, and faster, than the other
replicas. This contrasts with the privilege-based solution in which each replica
is expected to contribute evenly.

4 Implementation

To implement and evaluate the relevance of different total-order broadcast imple-
mentations in replicated STMs, we have extended an existing Java STM frame-
work [9] to support replication in a transparent way for the programmer. In this
paper we will only cover the architecture and API for implementing replicated
STM algorithms, whose understanding is necessary for our study. The STM layer
implements an STM algorithm and exposes an API to the application with the
following primitives:

On the Relevance of Total-Order Broadcast Implementations 53

1. stm_commit(t):
2. if t is not read-only and stm_validate(t)
3. certify(t)
4. else
5. if not stm_validate(t)
6. stm_abort(t)

7. certify(t):
8. to-broadcast(t)
9. wait until to-deliver(t)

10. if stm_validate(t)
11. stm_apply(t)
12. else
13. stm_abort(t)

Fig. 1. Non-Voting Certification implementation on our framework

stm_begin(t) Begin transaction t.
stm_commit(t) Request commit of transaction t.
stm_abort(t) Aborts transaction t.
stm_read(t,m) Transaction t reads value of memory location m.
stm_write(t,m, v) Transaction t writes value v to memory location m.

Application code defines transactions by tagging methods with an @Atomic an-
notation. These methods are bytecode-instrumented to inject calls to the un-
derlying STM layer using the described API where appropriate. To support
the distributed certification of transactions, the STM layer interacts with the
certification-based protocol layer through the following API:

stm_validate(t) Transaction t is validated against the local STM state.
stm_apply(t) Transaction t’s updates are applied to the local STM state.
certify(t) Issues the distributed certification of transaction t.

The certify primitive allows the STM layer to trigger the distributed certification
of an update transaction when stm_commit is issued by the application. When
certifying a transaction t, stm_validate and stm_apply concede the certification-
based protocol the ability to validate t in the local replica and apply its updates,
respectively. On the bottom of the architectural stack we have a group communi-
cation system that provides the total-order broadcast primitives, to-broadcast(t)
and to-deliver(t). These are used by the certification-based protocol layer to
broadcast transactions for certification while ensuring a common order across
all replicas. Figure 1 illustrates an implementation of the Non-Voting Certifica-
tion under our framework.

5 Experimental Results

All the experiments were performed in a cluster of 8 nodes interconnected via
gigabit ethernet, each one equipped with a Quad-Core AMD Opteron 2376
at 2.3 Ghz, 4×512KB cache L2, and 8 GB of RAM. The installed Java Platform
was OpenJDK 6. The local STM layer of our infrastructure used the TL2 algo-
rithm [10]. The certification-based protocol was the Non-Voting scheme. With
regard to the underlying group communication system providing the total-order
broadcast primitives needed by the certification-based protocol, three different
implementations were considered: JGroups, Appia [11] and Spread. Switching be-
tween each group communication system (GCS) is done by parametrisation when
executing the target program, hence no code rewriting whatsoever is needed.

54 T.M. Vale, R.J. Dias, and J.M. Lourenço

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

ns
ac

tio
ns

 x
 1

03 /s
ec

on
d

Replicas

(a) JGroups.

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

ns
ac

tio
ns

 x
 1

03 /s
ec

on
d

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0

 4

 8

 12

 16

 20

2 4 6 8

T
ra

ns
ac

tio
ns

 x
 1

03 /s
ec

on
d

Replicas

(c) Spread.

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 4 6 8

La
te

nc
y

(m
s)

Replicas (2 threads)
JGroups (seq)

JGroups
Appia (seq)

Appia
Spread

(d) Latency.

Fig. 2. Throughput and total-order broadcast latency in Red-Black Tree, configured
with initial size 32078, range 131072 and 10% updates

JGroups is a well-known toolkit used in several projects and was configured ac-
cording to the SEQUENCER protocol configuration from the freely available repos-
itory2, providing non-uniform total order using a sequencer algorithm. Appia is a
group communication system that has been used in contributions to STM repli-
cation, and was configured with SequencerUniformLayer to provide uniform
total-order broadcast using a sequencer-based algorithm. Spread uses a privilege-
based algorithm and we used the vanilla configuration and message type was set
to AGREED, which guarantees non-uniform total order.

5.1 Red-Black Tree

We start by considering a common micro-benchmark from the literature, the
Red-Black Tree. This benchmark is composed of three types of transactional
operations: (1) insertions, which add an element to the tree (if not already
present); (2) deletions, which remove an element from the tree (if present); and
(3) searches, which search the tree for a specified element. Insertions and dele-
tions are said to be update transactions. The tree was populated with 32768
2 https://github.com/belaban/JGroups.

https://github.com/belaban/JGroups

On the Relevance of Total-Order Broadcast Implementations 55

 25

 50

 75

2 4 6 8

T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
Others Sequencer

7%
21%

32%
42%

92%
78%

67%
57%

(a) JGroups.

 25

 50

 75

2 4 6 8

T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
Others Sequencer

50%
67% 74% 76%

49%
32% 25% 23%

(b) Appia.

 25

 50

 75

2 4 6 8T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
R1
R2

R3
R4

R5
R6

R7
R8

50%

24%
16% 12%

49%

25%

16%
12%

24%

16%

12%

25%

16%

12%

16%

12%

16%

12%

12%

12%

(c) Spread.

Fig. 3. Throughput breakdown in Red-Black Tree, with 2 threads and configured with
initial size 32078, range 131072 and 10% updates

pseudo-randomly generated values, ranging from 0 to 131072. Each thread exe-
cuted 10% of update transactions. Hence, the workload is characterised by very
small and fast transactions, with very low contention.

Fig. 2 shows the throughput of our system (in transactions× 103 per second,
higher is better) on the micro-benchmark, varying the number of replicas and
the number of threads per replica. Unsurprisingly, JGroups (Fig. 2a) achieves
the best performance of the three for every combination, due to both the fixed
sequencer implementation and the uniformity relaxation. Appia (Fig. 2b) quickly
peaks at around half the throughput of JGroups, which seems to be hitting a
bottleneck, perhaps due to the requirements of the uniform property. Finally, in
Fig. 2c, we have the throughput of the system using Spread. The linear scala-
bility displayed is consistent with the idea that the algorithm implemented by
Spread achieves fairness. Since every node is provided with equal opportunities
to broadcast and order messages, the system scales either with more threads
per node, or when nodes increase, not incurring in the bottleneck of a fixed se-
quencer. In Fig. 2d we have the average total-order broadcast latency for each
group communication system. As discussed in §3, the sequencer replica in both
JGroups and Appia – JGroups (seq) and Appia (seq), respectively – suffers from
lower latencies than the rest of the replicas. With Spread and its privilege pro-
tocol the latency is the same for all replicas.

Intuitively, one expects that the higher performance of JGroups is achieved
at the cost of unfairness. The sequencer incurs in substantially lower latency, so
that replica alone should be dominating the system’s throughput. Spread should
exhibit the exact opposite behaviour, i.e., each replica contributes evenly to the
total throughput. Since the privilege protocol gives exclusive broadcast rights
to each replica at a time, hence the same latency for all replicas. In Fig. 3 we
breakdown each replica’s contribution to the overall system throughput, where
the x-axis represents the number of replicas and the y-axis the percentage of
transactions each replica executed. Each colour represents the portion of trans-
actions executed by a specific replica. The results corroborate our intuitions.
In JGroups (Fig. 3a) the sequencer totally dominates the system’s throughput,
while in Spread (Fig. 3c) each replica contributes evenly. Appia (Fig. 3b) lies
in the middle due to the additional overhead imposed by the uniform property,
which is consistent with the measured latencies.

56 T.M. Vale, R.J. Dias, and J.M. Lourenço

 0
 35
 70

 105
 140
 175
 210
 245
 280
 315
 350

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

(a) JGroups.

 0
 35
 70

 105
 140
 175
 210
 245
 280
 315
 350

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0
 35
 70

 105
 140
 175
 210
 245
 280
 315
 350

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

(c) Spread.

Fig. 4. Execution time in Intruder, with the intruder configuration from [12]

 25

 50

 75

2 4 6 8

T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
Others Sequencer

0% 0% 0% 0%

99% 99% 99% 99%

(a) JGroups.

 25

 50

 75

2 4 6 8

T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
Others Sequencer

36%

64% 65%
76%

63%

35% 34%
23%

(b) Appia.

 25

 50

 75

2 4 6 8T
ra

ns
ac

tio
ns

 (
%

 fr
om

 to
ta

l)

Replicas
R1
R2

R3
R4

R5
R6

R7
R8

49%

24%
16% 12%

50%

25%

16%
12%

25%

16%

13%

24%

16%

12%

16%

12%

16%

12%

12%

12%

(c) Spread.

Fig. 5. Transaction breakdown in Intruder, with 2 threads and the intruder configu-
ration from [12]

5.2 Intruder

In the Intruder benchmark each thread repeatedly executes 3 phases. The first
phase basically involves a simple FIFO queue from which threads pop a packet. In
the second phase threads add the packet to a dictionary (implemented by a self-
balancing tree) that contains lists of packets that belong to the same flow. If all
the packets of a flow have been delivered, they are reassembled and added to the
completed packets FIFO queue. The final phase consists of taking a reassembled
packet from the FIFO queue and checking if it has been compromised.

The benchmark was parameterized according to the intruder configuration
in [12]. There were 2048 flows with 4 packets each, and 10 of the flows had
been attacked. Transactions under this configuration are small and fast, and the
workload is highly contented, due to both of the FIFO queues and the rebalancing
of the tree in the reassembly phase. Thus, this workload distinguishes itself from
Red-Black Tree’s in the contention level.

Fig. 4 shows the execution time (y-axis) when varying the number of replicas
(x-axis). The system behaves differently depending on the GCS used. When us-
ing JGroups (Fig. 4a) the performance is independent of the number of replicas.
The sequencer does all the work and the other replicas have their transactions
constantly aborted until the benchmark finishes, as can be seen in the transaction
breakdown for JGroups in Fig. 5a. With Appia, Fig. 4b, the system degrades
performance as more replicas are added. Since the sequencer does not totally
dominate in Appia (Fig. 5b) as in JGroups, this is the expected behaviour due

On the Relevance of Total-Order Broadcast Implementations 57

 150

 200

 250

 300

 350

 400

 2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

)
Replicas (4 threads)

JGroups Appia Spread

Fig. 6. Execution time in Genome, with the genome configuration from [12]

to the contended workload leading to a high abort ratio. With Spread the execu-
tion times are much higher (Fig. 4c) due to the privilege-based implementation.
Nevertheless, the system performs better when more threads are added.

5.3 Genome

The Genome benchmark consists of several steps which are executed sequentially,
but inside each step several threads execute concurrently. But since the steps are
sequential, threads wait for each other when advancing from one step to the next.
The last step is completely sequential (it is executed by a single thread), and
there is one step which is a mix of concurrent and sequential parts.

The benchmark was parameterized according to genome configuration in [12].
This workload is radically different from both Red-Black Tree’s and Intruder’s.
Overall, transactions are of moderate length (with regard to the number of oper-
ations) and there is little contention. Unlike the previous benchmarks, in Genome
data is partitioned among threads. Threads execute a sequence of steps in syn-
chrony, i.e., threads must wait for each other when advancing from step a to step
b. With this workload, it is expected that the different total-order broadcast im-
plementations do not have a meaningful impact as replicas can only progress in
group. In fact, the system exhibits similar execution times independently of the
GCS employed, as seen in Fig. 6.

5.4 Vacation

The Vacation benchmark is implemented as a set of trees that keep track of cus-
tomers and their reservations for various travel items. During the execution of
the workload, several client threads perform a number of sessions that interact
with the travel system’s database. In particular, there are three distinct types
of sessions: reservations, cancellations, and updates. Each of these client ses-
sions is enclosed in a coarse-grain transaction to ensure validity of the database.
Consequently, transactions are of moderate size.

The benchmark was parameterized according to the vacation-low configura-
tion in [12], where contention is low. The database had 16384 records of each
reservation item, and clients performed 4096 sessions. Of these sessions, 98% re-
served or cancelled items and the remainder created or destroyed items. Sessions

58 T.M. Vale, R.J. Dias, and J.M. Lourenço

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

(a) JGroups.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

1 thread 2 threads 4 threads

(b) Appia.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Replicas

(c) Spread.

 0

 10

 20

 30

 40

 50

 60

2 4 6 8

La
te

nc
y

(m
s)

Replicas (2 threads)
JGroups (seq)

JGroups
Appia (seq)

Appia
Spread

(d) Latency.

Fig. 7. Execution time and total-order broadcast latency in Vacation, with the
vacation-low configuration from [12]

operated on up to 2 items and were performed on 90% of the total records. This
workload is similar to Genome’s considering that each thread has its own work
to perform. Thus, the complete bias of JGroups towards the sequencer should
not yield great performance comparing to Spread, since the sequencer can not
“steal” the work from the remaining replicas. But unlike Genome, the whole
thread execution path is concurrent.

Fig. 7 shows the execution time and latency when executing Vacation with
the differents GCS. The most interesting aspect with this experiment is that Ap-
pia (Fig. 7b) performs better than both JGroups (Fig. 7a) and Spread (Fig. 7c)
right from the start with 2 replicas. Analysing the latencies (Fig. 7d) we can ob-
serve that the average latency of Appia replicas is lower than Spread replicas, as
expected. With JGroups the sequencer has the usual low latency, but the other
replicas exhibit higher latency than any Appia replica. Thus, with Appia replicas
can progress concurrently while with JGroups the sequencer finishes first and
only afterwards the other replicas progress. Spread exhibits its usual behaviour.

On the Relevance of Total-Order Broadcast Implementations 59

6 Related Work

In this paper we have studied the impact of different total-order broadcast imple-
mentations on the regular Non-Voting Certification scheme. The following works
are also related to the use of certification-based protocols in STM replication and
share the common goal of reducing the coordination overhead, but none stud-
ies the impact of the GCS in the system’s workload and throughput. Couceiro
et al. in [2] propose the use of bloom filters to reduce the size of the messages
TO-broadcasted, as the efficiency of the total-order broadcast is known to be
strongly affected by the size of the exchanged messages [13]. The authors encode
the read set in a bloom filter whose size is computed to ensure that aborts due
to the bloom filter’s false positives are less than a user-unable threshold. The
work in [5] supports the coexistence of the Voting and Non-Voting schemes si-
multaneously, by relying on machine-learning techniques to determine, on a per
transaction basis, the optimal certification strategy to be adopted.

In certification-based protocols transactions are validated at commit time and
may be re-executed an unbounded number of times due to conflicts, leading to
an undesirably high abort rate. The work in [3] tackles these issues using the
concept of lease, informally, a token which gives its holder the privileges to
manage a given subset of the whole data set. When certifying a transaction,
replicas must first acquire the corresponding leases if not already in possession.
Once in possession of the leases, replicas can certify transactions using reliable
broadcast instead which is cheaper than total-order broadcast. If a transaction
is aborted, the host replica re-executes it without relinquishing the leases.

In [4] the authors exploit the optimistic atomic broadcast primitive in order to
reduce the message deliver latency [14]. As soon as a transaction t is optimisti-
cally delivered, t is speculatively certified instead of waiting for its final delivery
as in conventional certification protocols. This allows an overlap between compu-
tation and communication by certifying transactions while the optimistic atomic
broadcast computes the final order.

7 Concluding Remarks

STM replication based on certification protocols rely on total-order broadcast.
This paper presents, to the best of our knowledge, the first study of the im-
pact that different total-order broadcast implementations can have on several
benchmarks used in the literature, each with different workload characteristics.
We have found that the same system exhibits different behaviour with regard to
performance, fairness and latency, depending on the combination of total-order
broadcast implementation and workload characteristics.

These observations open up further work. One can exploit the low latency of
the sequencer to schedule update transactions exclusively to the sequencer and
read-only transactions (which do not require any remote coordination) to the re-
maining replicas, which only apply the updates in the background. Additionally,
since the remote coordination overhead is very high relative to transaction execu-
tion time, and read-only transactions execute exclusively locally, we can execute

60 T.M. Vale, R.J. Dias, and J.M. Lourenço

read-only transactions while waiting for the delivery of update transactions. This
technique is specially appealing for non-sequencer-based implementations, such
as Spread’s, because latency is higher.

References

1. Shavit, N., Touitou, D.: Software Transactional Memory. In: Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 204–213 (1995)

2. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable Dis-
tributed Software Transactional Memory. In: IEEE Pacific Rim International Sym-
posium on Dependable Computing (PRDC), pp. 307–313 (2009)

3. Carvalho, N., Romano, P., Rodrigues, L.: Asynchronous Lease-Based Replication
of Software Transactional Memory. In: Gupta, I., Mascolo, C. (eds.) Middleware
2010. LNCS, vol. 6452, pp. 376–396. Springer, Heidelberg (2010)

4. Carvalho, N., Romano, P., Rodrigues, L.: SCert: Speculative certification in repli-
cated software transactional memories. In: International Systems and Storage Con-
ference (SYSTOR) (2011)

5. Couceiro, M., Romano, P., Rodrigues, L.: PolyCert: Polymorphic Self-Optimizing
Replication for In-Memory Transactional Grids. In: Kon, F., Kermarrec, A.-M.
(eds.) Middleware 2011. LNCS, vol. 7049, pp. 309–328. Springer, Heidelberg (2011)

6. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms.
ACM Computing Surveys 36(4), 372–421 (2004)

7. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in
replicated databases. In: European Conference on Parallel and Distributed Com-
puting (Euro-Par), pp. 496–503 (1997)

8. Kemme, B., Alonso, G.: A suite of database replication protocols based on group
communication primitives. In: International Conference on Distributed Computing
Systems (ICDCS), pp. 156–163 (1998)

9. Dias, R.J., Vale, T.M., Lourenço, J.M.: Efficient Support for In-Place Metadata
in Transactional Memory. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 589–600. Springer, Heidelberg (2012)

10. Dice, D., Shalev, O., Shavit, N.N.: Transactional Locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

11. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel support-
ing multiple coordinated channels. In: Poster on the International Conference on
Distributed Computing Systems (ICDCS), pp. 707–710 (2001)

12. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transac-
tional Applications for Multi-Processing. In: IEEE International Symposium on
Workload Characterization (IISWC), pp. 35–46 (2008)

13. Kaashoek, M.F., Tanenbaum, A.S.: An Evaluation of the Amoeba Group Commu-
nication System. In: International Conference on Distributed Computing Systems
(ICDCS), pp. 436–447 (1996)

14. Pedone, F., Schiper, A.: Optimistic atomic broadcast: a pragmatic viewpoint. The-
oretical Computer Science 291(1), 79–101 (2003)

How to Cancel a Task

Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer

ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Task parallelism is ubiquitous in modern applications for
event-based, distributed, or reactive systems. In this type of program-
ming, the ability to cancel a running task arises as a critical feature.
Although there are a variety of cancellation techniques, a comprehen-
sive account of their characteristics is missing. This paper provides a
classification of task cancellation patterns, as well as a detailed analy-
sis of their advantages and disadvantages. One promising approach is
cooperative cancellation, where threads must be continuously prepared
for external cancellation requests. Based on this pattern, we propose an
extension of SCOOP, an object-oriented concurrency model.

1 Introduction

Task parallelism has become part of the standard inventory of professional devel-
opers, and programming frameworks for this domain are sprouting to help them
express their intentions in a safe and concise manner. At the same time, learn-
ing to proficiently use such frameworks is far from easy. They offer a confusing
variety of abstractions and constructs, often to provide similar but subtly differ-
ent functionality. Frequently, the only source of information are code examples
where the relevance of the constructs cannot be sufficiently discussed. Too little
research is spent on consolidating the various approaches by explaining common-
alities and differences, which would help developers learn to use new frameworks
more quickly and aid designers in developing their frameworks further.

This paper strives to address these deficiencies, focusing on one central prob-
lem in task parallelism: task cancellation techniques. Cancellable tasks are mainly
used for interrupting long-running or outdated tasks, but the pattern can also
be used as a building block for more high-level patterns, such as MapReduce.
The paper provides an overview of existing cancellation approaches, extracting
techniques from different programming languages and concurrency libraries, clas-
sifying them, and discussing their strong and their weak points. This knowledge
is then applied to provide a novel task cancellation technique for SCOOP [8,10],
an object-oriented concurrency model. The technique is based on the idea of
cooperative cancellation where both the canceling and the canceled task must
cooperate in order to succeed.

The remainder of the paper is structured as follows. Section 2 provides a
taxonomy and discussion of task cancellation techniques. Section 3 describes a
cooperative cancellation technique for SCOOP. Section 4 provides an overview
of related work and Section 5 concludes with an outlook on future work.

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 61–72, 2013.
© Springer-Verlag Berlin Heidelberg 2013

62 A. Kolesnichenko, S. Nanz, and B. Meyer

Fig. 1. A taxonomy of task cancellation techniques

2 Classification of Task Cancellation Techniques

A task denotes the abstraction of an execution, such as a CPU thread, a thread
pool, or a remote machine. Designing a programming model for task parallelism
has to deal with the cancellation of tasks, a highly reusable pattern which can
be applied to stand-alone applications, client-server systems, and distributed
clusters alike. Without proper support for task cancellation, the developer has
to write the synchronization code by hand, a task prone to subtle errors.

Various approaches to canceling a running task have been implemented in
programming languages and libraries and described in theory. However, so far
there is little evaluation and comparison of the proposed techniques. To provide a
foundation for discussing them, we have examined a number of popular languages
(Java, Python, C# TPL, Pthreads, etc.) and provide a taxonomy in Figure 1.

Client-based cancellation describes techniques where the control over the
cancellation process lies entirely with the client (the canceling task):
– Forceful cancellation The client forces the supplier (the canceled task)

to stop without the possibility to resist:
• Abortive cancellation The supplier is terminated immediately.
• Interruptive cancellation The supplier is allowed to reach a safe point
before being terminated.

– Passive cancellation The client stops waiting for the result of a supplier,
allowing it to continue on its own.

Supplier-based cancellation describes techniques where the control over the
cancellation process lies entirely with the supplier:
– Failing The supplier encounters an unrecoverable error and needs to

inform its clients.
Client/supplier combination describes techniques where client and supplier

must act together in order to succeed with the cancellation:
– Cooperative cancellation The client asks the supplier to terminate, which

decides itself how and when it should terminate.
– Hostile cancellation The supplier may resist a cancellation request of the

client, and interrupt the client instead.

How to Cancel a Task 63

In the following, we discuss each of the approaches and provide examples of
languages where they are employed.

2.1 Client-Based Cancellation

Abortive Cancellation. Immediate termination does not give the canceled thread
a chance to respond. As an example, consider the Java code in Listing 1, where
t.stop() aborts the thread.

Thread t = new Thread () { @override void run () { . . . } }
t . start () ;
. . .
t . stop () ; // aborts the running thread

Listing 1. Aborting a thread-based task in Java

The advantage of the approach is clearly its simplicity. However, the approach
is unsafe because aborting a running thread can leave a program in an inconsis-
tent state. Consider the money transfer example in Listing 2.

void transfer (Account from , Account to , int amount) {
synchronized{

from . withdraw (amount) ; // i f stopped here , money i s l o s t
to . deposit (amount) ;

}
}

Listing 2. Unsafe cancellation using abortion

In this example, a synchronized block is used to guarantee that no thread
interferes with the transfer. However, if a running thread is aborted during
execution and is forced to unlock all of the monitors that it has locked, the
transferred money may be lost and the remaining execution started in an incon-
sistent state. The Pthreads library [12] with set_cancellalation mode set to
PTHREAD_CANCEL_ASYNCHRONOUS is a further example of abortive cancellation.

Interruptive Cancellation. Using this technique, a running task is aware of po-
tential interruption and usually cannot ignore it. However, a task cannot be
canceled in every execution state, but only at so-called safe points : places where
certain program invariants hold such that the execution may be interrupted
safely. Usually a programmer must specify these places by hand, either by call-
ing a library function, or handling a specific type of exception [5]. A special
case of this technique allows interrupting a task at only one point in its lifetime:
when the task has not been started yet. While it may seem not very useful,
in some languages (Scala [13], Python [3]) this is the only built-in cancellation
mechanism.

Consider the example in the Pthreads library1 in Listing 3.

1 Pthreads supports two cancellation modes: Deferred (as in the example) and Asyn-
chronous. The latter one is an example of aborting tasks, with no safety guarantees.

64 A. Kolesnichenko, S. Nanz, and B. Meyer

// s e t t i n g the c an c e l l a t i o n mode to i n t e r r u p t i o n
pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED , NULL) ;
. . .
void∗ CancellablePthread (void∗ argument){

. . .
pthread_testcancel () ; // the execut ion can be s a f e l y cance l ed here

}

Listing 3. Cancellation points in Pthreads

At a safe point for cancellation, the call pthread_testcancel() checks on po-
tential cancellation requests. Additionally, some of the blocking system calls are
also considered to be cancellation points in Pthreads [12]. Java’s thread inter-
ruptions2 and thread.Abort() in C# (unlike the method’s name is suggesting)
are another examples of interruptive cancellation [6,1].

Its potential safety guarantees are a benefit of this approach: if the approach
is applied correctly, a program can be considered to be in a consistent state after
a cancellation. Writing correct interruption-aware code is however difficult [11,1]
as a programmer has to remember subtle rules (e.g. in Pthreads some I/O calls
are interruptible, others are not) and maintain a program’s invariants by hand.

Passive Cancellation. This technique is different from the forceful methods in
that a canceling task does not need to become active: it simply stops waiting for
a task result, while the running task is still being executed.

As an example, consider downloading a file over a network, illustrated in
Listing 4 with C#’s Task Parallel Library (TPL). The call to a StartDownload()
is asynchronous and returns only a handle to a future (an object, representing
a computation that is still being computed [2]), represented by the Task class.
After some time the downloader’s result might not be needed anymore, i.e. the
execution is abandoned (in the if branch).

void PassiveCancellation (string url){
Downloader downloader = new Downloader (url) ;
Task<byte []> bytesFuture = downloader . StartDownload () ;
. . .
i f (noNeedToDownload) {

// the download i s not needed anymore
return ; // data i s s t i l l be ing downloaded . . .

}
else {

// the download i s s t i l l needed
var result = bytesFuture . Result ; // f e t c h i n g the r e s u l t

}
}

Listing 4. Passive cancellation in the Task Parallel Library (TPL) of C#

Obviously, this approach is not uniformly applicable; for example, we might
still want to cancel a state-changing procedure. And it is important to know

2 User-defined code may ignore interruption [11], but only between calls to library
methods (which will not ignore it).

How to Cancel a Task 65

in advance that the task will eventually be completed, i.e. listening to a TCP-
socket cannot be canceled in this way. Another disadvantage is that the running
task continues to consume machine resources. However, in a distributed setting
this approach can find its application: consider a framework for a distributed
computing, such as MapReduce. Often for the last piece of work several tasks
are spawned [4] but only a single result will be used. In this case, there is no
need to write sophisticated cancellation code, and it is valid to “forget” about
the remaining executing tasks.

2.2 Supplier-Based Cancellation

This class of techniques deals with the special case that cancellation is not re-
quested by a client but that a failure happens in supplier, i.e. it cannot fulfill
it’s obligations to clients; the supplier therefore needs to terminate. To indicate
a failure, exceptions are typically used in object-oriented programming envi-
ronments. Hence, this case boils down to the problem of exception handling in
concurrent environments [9], which is not the focus of this paper.

2.3 Client/Supplier Combination

Cooperative Cancellation. A gentle way to stop a task is to cooperate and ask
it to do so. The rationale for this approach is simple: a task is the abstraction
of an execution, and hence should contain the information about how and when
it should be stopped.

In other words, a task must be ready to be canceled at any time by external
request. C#’s Task Parallel Library (TPL) follows this pattern, where a single
point of cooperation is denoted by two classes: CancellationTokenSource, a
generator of CancellationToken, which itself is a concrete request to cease the
execution. An example is given in Listing 5.

void Client () {
var cts = new CancellationTokenSource () ; // c r e a t e the token

source
// pass the token to the c anc e l ab l e operat ion

Task . Run (() => Supplier (cts . Token)) ;
. . .

cts . Cancel () ; // r eque s t c an c e l l a t i o n
}
void Supplier (CancellationToken token) {

for (int i = 0; i < 100000 ; i++) {
// some work

i f (token . IsCancellationRequested) {
break ; // p o t e n t i a l l y perform cleanup , te rminate

}
}

}

Listing 5. Cooperative cancellation in TPL

This technique provides a solid general structure for writing a cancellable
tasks (see Listing 6), with a guarantee that no invariants will be violated. Unlike

66 A. Kolesnichenko, S. Nanz, and B. Meyer

Table 1. Dueling rules

retain yield

demand the client is interrupted the supplier is interrupted
insist the client waits the supplier is interrupted

in interruptive cancellation, the programmer does not need to remember subtle
rules of a concrete library or language. Cooperative cancellation also does not
require any runtime support. Unfortunately, one cannot use the true power of
this technique unless libraries support this pattern too (as far as we know, to
date only limited support is introduced in C#). As another disadvantage, the
latency between a cancellation request and actual cancellation is increased.

void function run (CancelRequest cancel)
while (not is_done){

i f cancel is requested
exit

loop_once
}

//need to be s p e c i f i e d f o r c onc r e t e task .
void function loop_once ;
boolean function is_done ;

Listing 6. General structure of a cancellable task in cooperative cancellation

Hostile Cancellation. While in the previous paragraph client and supplier are
cooperating in order to succeed, in hostile techniques involve a struggle between
the canceling and the canceled task. We describe these techniques on the example
of duels, a mechanism was theoretically described in [8] but not yet implemented.
We are using the terminology from [8] in the rest of this chapter.

The key insight in this approach is that a canceling task (a “challenger”, in
the original) might not be strong enough to request an actual cancellation. If the
canceling task is worthy enough, its request is fulfilled (the task is “killed”); if
not, it gets an exception itself (therefore the approach is named a duel). In other
words, dueling is a two-way interruption, where the result depends on which of
the tasks is stronger.

To specify its preferences, a supplier can be in one of the two modes: either
retain or yield. The former means that the task refuses to be canceled, and the
latter specifies that it is OK to be interrupted. On the side of the client, there
are also two options available: demand and insist. The first is more impatient,
the second more gentle. The complete set of rules is shown in Table 1.

The dueling mechanism is useful in environments where executions are pri-
oritized. For example, one can imagine a robotics system that needs to han-
dle simultaneously a variety of different tasks: route planning, controlling the
motors, etc. These tasks can arise non-deterministically and compete for pro-
cessing units, attempting to cancel other activities. However, it is completely
unacceptable that low priority task succeeds in canceling a more important one

How to Cancel a Task 67

producer : separate PRODUCER
consumer : separate CONSUMER
buffer : separate BUFFER [INTEGER]

consume (a_buffer : separate BUFFER [INTEGER])
−− consume an item from the bu f f e r
require

not (a_buffer . count = 0)
loca l

consumed_item : INTEGER
do

consumed_item := a_buffer . item
end

Listing 7. Producer-consumer example in SCOOP

(for example, the data collection routine should not be able to cancel a task
that adjusts the speed of the motors). In this case, a proper setup of dueling
rules could both permit a cancellation request from high priority challengers and
provide security from cancellation for important computational tasks.

3 Cooperative Cancellation in SCOOP

This section provides an introduction to SCOOP, an object-oriented concurrency
model for contract-equipped languages, and evaluates the patterns of Section 2
for use within this model. Furthermore, the section shows how the cooperative
cancellation pattern can be applied to a SCOOP, implemented in Eiffel. For the
rest of the paper, we are using Eiffel notation and terminology [8].

3.1 Overview of SCOOP

The goal of SCOOP [8,10] is to provide a simple and safe way to write concurrent
code while retaining sequential object-oriented programming principles in as far
as possible. Each object in SCOOP is associated with a processor (typically
implemented as a thread), called its handler. Features of objects that reside on
different processors can be executed in parallel. The keyword separate is used
to mark objects residing on different processors, relative to the current object.

The producer-consumer problem serves as an illustration of these ideas. The
main entities producer, consumer, and buffer are shown in Listing 7. The
keyword separate specifies that the referenced objects may be handled by a
processor different from the current one. A creation instruction on a separate
entity such as producer will create an object on another processor; by default
the instruction also creates that processor.

A consumer accesses an unbounded buffer in a feature call a_buffer.item.
To ensure exclusive access, the consumer must lock the buffer before accessing
it. Such locking requirements of a feature must be expressed in the formal argu-
ment list: any target of separate type within the feature must occur as a formal
argument; the arguments’ handlers are locked for the duration of the feature

68 A. Kolesnichenko, S. Nanz, and B. Meyer

execution, thus preventing data races. Such targets are called controlled. For in-
stance, in consume, a_buffer is a formal argument; the consumer has exclusive
access to the buffer while executing consume.

Condition synchronization relies on preconditions (after the require keyword)
to express wait conditions. Any precondition makes the execution of the feature
wait until the condition is true. For example, the precondition of consume delays
the execution until the buffer is not empty.

3.2 Choosing a Cancellation Mechanism for SCOOP

The main goal of SCOOP is to provide an easy-to-use model for expressing
concurrency, with a focus on the correctness of the resulting programs. Any
cancellation mechanism proposed for SCOOP must be designed in this spirit.

Clearly, abortive cancellation is an error-prone pattern, and it does not go
well with SCOOP’s focus on design-by-contract mechanisms. Interruptive can-
cellation has no strict correctness guarantees and can be complicated to use,
which does not correspond to SCOOP’s simplicity principle. In other concur-
rency models, where stricter techniques are not favored, interrupting may be a
viable option. As mentioned, passive cancellation does not need to be explicitly
implemented. As it is highly depended on particular usage scenarios, and has no
guarantees that it will succeed (the termination of a passively canceled thread
is not ensured), it also partly contradicts SCOOP design principles.

A concurrent object-oriented language needs to have well-defined rules about
exception handling. The SCOOP implementation is discussed in [9].

As a simple and safe approach, cooperative cancellation is a natural candidate
to be implemented in SCOOP. It can be implemented as a library approach, thus
even eliminating the need to modify the compiler. Dueling could be considered
as an alternative to cooperative cancellation. However, while duels are only a
good fit for specific scenarios, and less suitable in others, we prefer cooperative
cancellation as a general-purpose approach.

3.3 SCOOP with Cooperative Cancellation

It is instructive to try to directly implement the approach introduced in Listing 6
in SCOOP. One can start with an abstract3 class CANCELLABLE_EXECUTOR and
introduce a CANCEL_REQUEST as a shared object that propagates a cancellation
request; the descendants need to define the termination criteria in is_done and
a single loop iteration loop_once.

An example of using this implementation of cooperative cancellation is shown
in Listing 8. Unfortunately, this attempt does not work because in SCOOP
a cross-processor call of run would force the executing processor to block on
executing the loop for the entire execution. Thus all subsequent cancellation
requests would be queued in the processor’s request queue, effectively making
CANCELLABLE_EXECUTOR useless. This happens because CANCELLABLE_EXECUTOR
is both responsible for listening to cancellation requests and the execution itself.

3 deferred in Eiffel notation.

How to Cancel a Task 69

executor : separate CONCRETE_CANCELLABLE_EXECUTOR
cancel : separate CANCEL_REQUEST −−shared between two p roc e s so r s
. . .
−− l aunch ing an execut ion
executor . run (cancel) −− execut ion s ta r t ed on d i f f e r e n t p roc e s so r

cancel . request −− c anc e l i n g an execut ion

Listing 8. Usage of CANCELLABLE_EXECUTOR

This problem can be solved by decoupling the listening and the execution
logic; the design is provided in Figure 2. The CANCELLABLE_EXECUTOR is now
responsible only for listening for cancellation requests; the actual execution is
handled by a different processor. To represent a concrete execution, a concretiza-
tion of the deferred class EXECUTION_UNIT is needed. The CANCEL_REQUESTmay
not be actually separate, but keeping it this way provides additional flexibil-
ity for the case when cancellation request is coming from a client residing on
processor separate from CANCELLABLE_EXECUTOR.

Fig. 2. SCOOP cancellation design

In this design, EXECUTION_UNIT is a deferred class, only responsible for per-
forming a single-loop iteration and termination criteria4. A task’s life cycle is
expressed in CANCELLABLE_EXECUTOR (see Listing 9), with the following methods:

– make (omitted) creates an empty cancellation request. At this point execution
cannot be canceled from the outside.

– set_new_token(a_token: separate CANCELLATION_REQUEST) sets a new can-
cellation request, enabling a cancellation.

– run(a_unit: separate EXECUTION_UNIT) accepts the execution unit (where
execution details are encapsulated) and starts the cancellation-aware execu-
tion, according to Listing 6.

4 This functionality could also be implemented with Eiffel agents (function objects),
but we present an abstract class to avoid providing execution details.

70 A. Kolesnichenko, S. Nanz, and B. Meyer

class CANCELLABLE_EXECUTOR
feature

set_new_token (a_token : separate CANCELLATION_REQUEST)
do token := a_token end

run (a_unit : separate EXECUTION_UNIT)
do

from until
is_done (a_unit) or cancel_requested

loop
i f check_cancel_requested (token) then

cancel_requested := TRUE
else

loop_once (a_unit)
end

end
cancel_requested := FALSE

end
end

feature{NONE}
cancel_requested : BOOLEAN
token : separate CANCELLATION_REQUEST

Listing 9. Cancellable executor

As soon as a cancellation is requested, the loop body can be executed at
most once more. After one cancellation request, the instance of CANCEL_REQUEST
becomes useless, therefore we provide set_new_token to refresh a request as
many times as needed.

3.4 Example of Usage

As an example of using cooperative cancellation in SCOOP, we present a down-
loader application that requests a URL, starts a background download process
and provides progress reports. While still in progress, downloading can be can-
celed by the user. The complete source code is available for download;5 in the
following description, we focus on key aspects of this application.

The DOWNLOADER_UNIT, responsible for downloading a single portion of bytes
from specified URL, is shown in Listing 10 (some code is omitted for brevity).
Note that a separate STRING is required in the constructor to obtain control
over it, as DOWNLOADER_UNIT resides on a different processor than its clients.
The implementation is straightforward otherwise. Launching an asynchronous
download task is done in a pattern similar to Listing 8, applying the design
in Section 3.3. One should create one CANCEL_REQUEST per launch: the cancel
requests are designed to be used only once.

4 Related Work

To the best of our knowledge, this work is the first to attempt a comprehensive
classification and evaluation of task cancellation techniques. The work closest

5 http://se.inf.ethz.ch/people/kolesnichenko/src/downloader_sample.7z

http://se.inf.ethz.ch/people/kolesnichenko/src/downloader_sample.7z

How to Cancel a Task 71

class DOWNLOADER_UNIT inherit EXECUTION_UNIT
feature

make (a_url : separate STRING)
do

−− use URL ' a u r l ' and i n i t http downloader (omitted)
create parts . make −− c r e a t e a s to rage bu f f e r

end

is_done : BOOLEAN −− done when a l l byte s are t r a n s f e r r ed
do

Result := http_downloder . bytes_transferred = http_downloder .
count

end

action
do

http_downloder . read
i f attached http_downloder . last_packet as last_p then

parts . put_front (last_p)
end

end

feature {NONE}
http_downloder : HTTP_PROTOCOL
parts : LINKED_LIST [STRING] −− bu f f e r f o r content

end

Listing 10. Example: Downloader unit

to ours is [11], Chapter 7, where some cancellation techniques are discussed for
Java. In particular, cooperative cancellation with a shared variable or future is
presented, along with rules to write a correct interrupt-aware code.

Further related work is also found in descriptions of individual techniques as
part of language and library designs. The degree of support of task cancellation
varies in such approaches. C# natively supports interruptive cancellation, and
since release of TPL also cooperative techniques were introduced [7].

Things get even more complicated when cancellation involves several tasks
that need to agree on shutting down and terminate in a safe order. One approach
taking this into account is applied to OpenMP [14]. The authors introduce an
abortive cancellation of already launched OpenMP tasks (which boils down to
the cancellation mechanisms of Pthreads), with unrestricted possibility to cancel
unstarted tasks. Their techique works on task groups, involving a child-parent
relationship allowing to cancel the whole group, starting from the root.

Python supports interruptive cancellation of non-started tasks via executors [3]
and abortive cancellation of already started ones. Similiarly, Scala supports the
Cancellable interface which allows canceling only non-started tasks [13].

Java supports interruptive cancellations natively [11]. Pthreads library sup-
ports both abortion and interruption, depending on the setup [12].

5 Conclusion

The role of parallel programming in modern applications is notable and contin-
uously increasing; research into programming models for this setting is therefore

72 A. Kolesnichenko, S. Nanz, and B. Meyer

critical. Indeed, many new models and frameworks for concurrent and parallel
programming have been proposed in the past decade. To provide guidance in
this vast field, it is important to consolidate the knowledge about commonly
used patterns, and to provide a coherent frame for discussion and evaluation.
In this paper we selected one important task parallelism pattern, task cancella-
tion, provided a taxonomy of techniques, scrutinized their usage, and proposed
a novel cancellation technique for SCOOP on this basis.

In future work, cooperative cancellation in SCOOP could be further extended
to support task chaining (canceling an intermediate task causes all other tasks
to be canceled) and precondition-aware tasks (these could effectively be deferred
in the executing process). Another extension of this work is to provide a formal
model, describing the control flow in different cancellation techniques.

Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389,
the Hasler Foundation, and ETH (ETHIIRA).

References

1. Albahari, J., Albahari, B.: C# 3.0 in a Nutshell: A Desktop Quick Reference.
O’Reilly Media, Incorporated (2007)

2. Baker Jr, H.C., Hewitt, C.: The incremental garbage collection of processes. In:
Artificial Intelligence and Programming Languages, pp. 55–59. ACM (1977)

3. Concurrent futures in Python (2013),
http://docs.python.org/dev/library/concurrent.futures.html

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

5. Destroying Threads in C# (2013),
http://msdn.microsoft.com/en-us/library/cyayh29d.aspx

6. Hyde, P.: Java thread programming. Sams Pub. (1999)
7. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:

OOPSLA 2009, pp. 227–242. ACM (2009)
8. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
9. Morandi, B., Nanz, S., Meyer, B.: Who is accountable for asynchronous exceptions?

In: APSEC 2012, pp. 462–471. IEEE Computer Society (2012)
10. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. Ph.D. thesis, ETH Zurich (2007)
11. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-

rency in Practice. Addison-Wesley (2005)
12. POSIX threads specification (2013),

http://man7.org/linux/man-pages/man7/pthreads.7.html

13. Scala Scheduler (2013),
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html

14. Tahan, O., Brorsson, M., Shawky, M.: Introducing task cancellation to openMP.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 73–87. Springer, Heidelberg (2012)

http://docs.python.org/dev/library/concurrent.futures.html
http://msdn.microsoft.com/en-us/library/cyayh29d.aspx
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html

Automatically Repairing Concurrency Bugs

with ARC

David Kelk, Kevin Jalbert, and Jeremy S. Bradbury

Software Quality Research Laboratory
University of Ontario Institute of Technology

Oshawa, Ontario, Canada
{david.kelk,kevin.jalbert,jeremy.bradbury}@uoit.ca

Abstract. In this paper we introduce ARC – a fully automated sys-
tem for repairing deadlocks and data races in concurrent Java programs.
ARC consists of two phases: (1) a bug repair phase and (2) an optimiza-
tion phase. In the first phase, ARC uses a genetic algorithm without
crossover to mutate an incorrect program, searching for a variant of the
original program that fixes the deadlocks and data races. As this first
phase may introduce unneeded synchronization that can negatively af-
fect performance, a second phase attempts to optimize the concurrent
source code by removing any excess synchronization without sacrific-
ing program correctness. We describe both phases of our approach and
report on our results.

Keywords: bug repair, concurrency, concurrency testing, evolutionary
algorithm, SBSE.

1 Introduction

As computers and even mobile devices now ship with more than one core per
chip, programs must parallelize to take advantage of improvements in processing
power [23]. On a multicore system concurrency provides a potentially significant
benefit with respect to performance, however, writing concurrent source code
can be difficult and error-prone, especially when one considers the set of possible
thread interleavings of a concurrent program. Further exacerbating the issue of
writing correct concurrent source code is the fact that concurrency bugs can be
difficult to find because they may occur in only a small set of possible thread
interleavings [21]. Even when a concurrency bug has been detected, its repair is
often non-trivial because many concurrency bugs are the result of the interaction
of different code fragments executing in different threads within a program.

The use of search-based software engineering (SBSE) [12] techniques to auto-
matically repair bugs in sequential programs is a well researched idea [17,24]. To
address the challenges of detecting and fixing concurrent programs we propose
ARC (Automatic Repair of Concurrency bugs) – an automatic technique to
repair deadlocks and data races in concurrent Java programs. ARC requires no

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 D. Kelk, K. Jalbert, and J.S. Bradbury

formal specifications or annotations. Only the Java source code and a test suite
capable of demonstrating known deadlocks and data races are necessary. ARC
consists of two phases: (1) a bug repair phase and (2) an optimization phase. At
its core, ARC works by using a genetic algorithm without crossover (GA¬C) to
evolve variants of an incorrect concurrent Java program into a variant that fixes
all known bugs.

A common problem for automatic bug repair techniques is the size of the
search space of possible bug fixes. Applying these techniques to concurrent pro-
grams introduces thread interleavings which increase the difficulty of searching
the space. To counteract this challenge, ARC incorporates techniques to con-
strain the search space and make it tractable. First, we limit the algorithm to
only fixing deadlocks and data races in concurrent Java programs (instead of all
types of concurrency bugs). Second, ARC only targets modifications to concur-
rency mechanisms as potential bug fixes. For example, Synchronize statements
maybe added, removed, and manipulated. The possible bug fixes are comprised
of the combined application of 12 mutation operators to evolve the program1.
Third, the Chord tool [22] is used to perform a static analysis of a concurrent
program to target specific shared classes, methods and variables where bug fixes
can be applied (i.e., localization of bug fixes within the source code). This shared
list is further refined by the ConTest testing tool [7]. Fourth, the evaluation of
potential bug fixes are evaluated using ConTest which injects noise (i.e., random
delays) that assist in exploring the interleaving space during testing.

Next in Section 2 we cover background material related to concurrency bugs
and genetic algorithms. The motivation for ARC along with an example prob-
lem are presented in Section 3. In Section 4 we describes how ARC evolves fixes
for data races and deadlocks (Phase 1). Improving nonfunctional properties of
the program, such as its execution time (Phase 2), is described in Section 5.
We evaluate ARC in Section 6 on a set of programs from the IBM concurrency
benchmark [8, 9, 13]. In Section 7 we discuss related works in the field of auto-
matic program repair and explain how ARC is novel when compared to previous
approaches. Finally, we conclude and present future work in Section 8.

2 Background

2.1 Concurrency Bugs

Data races and deadlocks are two of the most common concurrency bugs. A
data race can be defined as: “. . . two or more concurrent threads access a shared
variable and when at least one access is a write, and the threads use no explicit
mechanism to prevent the access from being simultaneous.” [20]. A deadlock can
be defined as: “. . . a situation where two or more processes are unable to proceed
because each is waiting for one of the others to do something in a deadlock cycle
. . . For example, a deadlock can occur when one thread in a program holds a lock
that another thread desires and vice-versa” [20].

1 A number of the mutation operators used to repair bugs in ARC are converse to the
mutation operators in the ConMAn mutation testing tool [4].

Automatically Repairing Concurrency Bugs with ARC 75

Buggy Program:

wri te (int var1){
. . . // Expensive loop
data = var1 ;
. . . // Database query

}

int public read () {
return data ;

}

Fixed Program:

synchronize wri te (int var1){
. . . // Expensive loop
data = var1 ;
. . . // Database query

}

int synchronize read () {
return data ;

}

Fig. 1. A developer first synchronizes the read function, yet the bug still exists. Syn-
chronizing the write method as well fixes the bug.

1st Optimization on Fix:

public wri te (int var1){
. . . // Expensive loop
synchronized (this){

data = var1 ;
. . . // Database query

}
}

int synchronize read () {
return data ;

}

2nd Optimization on Fix:

public wri te (int var1){
. . . // Expensive loop
synchronized (this){

data = var1 ;
}
. . . // Database query

}

int synchronize read () {
return data ;

}

Fig. 2. A developer shrinks the critical region to exclude the expensive loop (Opti-
mization 1). Next, a developer shrink the critical region again to exclude the database
query (Optimization 2).

2.2 Genetic Algorithms

Genetic algorithms [11] (GAs) are a heuristic search technique modelled on nat-
ural evolution. They are population based and uses mutation, crossover and a
fitness function to evolve solutions to problems. Proposed solutions are encoded
in individuals of the population. Each individual is evaluated by a fitness func-
tion, an equation that determines how close the individual is to the solving the
problem. The more fit a individual’s solution is, the greater the chance it will
pass it’s genetic material (i.e., itself) into the next generation. Crossover mixes
the individuals to produce new ones while mutation injects fresh information in
to the population so it does not become stagnant.

ARC uses a genetic algorithm without crossover (GA¬C) and selection. A
population of proposed solutions is generated in the first generation and mutated
each generation. Two ending conditions exist. First, a fix is found for the data
races and deadlocks or a fixed number of generations pass with no solution found.

76 D. Kelk, K. Jalbert, and J.S. Bradbury

3 Motivating Example

To illustrate the challenges of concurrency bug repair we consider an example of
a data race and how ARC might fix it. In the left part of Figure 1 the read and
write method access a shared variable. A very simple data race exists because
there is no atomic access to the data variable during the concurrent reading or
writing. A possible repair involves synchronizing both accesses as shown in the
right part of Figure 1. Note that synchronizing one method alone does not fix
this bug. Section 4 describes this in more detail.

The solution in the right part of Figure 1 is far from ideal. The solution found
by ARC forces other threads to wait unnecessarily while the write method works
in the loop and database sections. An optimization is to shrink the critical re-
gion guarded by the synchronize statements to only guard access to the shared
variable as shown in Figure 2. Section 5 describes how ARC attempts to op-
timize fixes found in the first phase of operation by removing and shrinking
synchronization blocks.

4 Phase 1: Fixing Deadlocks and Data Races

ARC requires two inputs: An incorrect concurrent Java program and JUnit tests
exercizing the errors. The test suite is the oracle that determines if bugs still
exists in the program. One limitation of ARC (and of other related automatic bug
fixing techniques mentioned in Section 7) is that it can only fix bugs detectable
by the test suite. Given an incorrect program ARC performs a static analysis
to identify the variables, classes and methods involved in concurrency. It then
invokes the GA¬C to find fixes for the data races and deadlocks. Each generation
is broken down into a number of steps, shown in Figure 3 and described here.

Update Population. First, the members of the population must be created. If
ARC has just started, the original incorrect program is replicated and copied into
each member of the GA¬C in the first generation. For succeeding generations N
the program for the same member from generation N - 1 is used.

Generate Mutants (Update Representation). After the population is up-
dated, ARC generates all mutants for all members using the operators in Table 1.
These operators are implemented in TXL [6] using pattern matching and replace-
ment rules. An examplemutant created by theEXSBoperator is shown inFigure 4.

Apply a Mutation to an Individual. Once all mutants are generated for each
individual, ARC selects a type of mutation (e.g. EXSB) and then an instance of it
(e.g. 4th mutant generated) from those available. The selected mutation is copied
into the source for the member. It is possible that the mutant is not valid. For
example, a new synchronization block could have been added that synchronizes
on a variable that is out of scope. ARC attempts to compile the project. If
an error is detected, the mutation is rolled back and another is selected. This
continues until a successful compilation or ARC runs out of mutants. In this
latter case, ARC raises and exception and ends.

Automatically Repairing Concurrency Bugs with ARC 77

Fig. 3. Detailed view of the GA¬C used in Phase 1, the repair phase

Table 1. Set of mutation operators used by ARC

Operator Description Acronym

Add a synchronized block around a statement ASAT

Add the synchronized keyword to the method header ASIM

Add a synchronized block around a method ASM

Change the order of two synchronized blocks order CSO

Expand synchronized region after EXSA

Expand synchronized region before EXSB

Remove synchronized statement around a synchronized statement RSAS

Remove synchronization around a variable RSAV

Remove synchronized keyword in method header RSIM

Remove synchronization block around method RSM

Shrink synchronization block after SHSA

Shrink synchronization block before SHSB

Program P :

obj . wr i te (var1) ;
synchronized(l o c k){

myHash . remove (var1) ;
}

Program P ′:

synchronized(l o c k){
obj . wr i te (var1) ;
myHash . remove (var1) ;

}

Fig. 4. An example of the EXSB (expand synchronization before) mutation operator

Evaluate Individuals. A mutation may be beneficial, destructive or benign.
We must evaluate it to determine it’s effect on the program. A key problem

78 D. Kelk, K. Jalbert, and J.S. Bradbury

in evaluating mutants is the unpredictability of thread interleavings. If a con-
currency bug appears in only a few possible interleavings, how can we gain
confidence that a proposed fix actually works?

ARC uses IBM’s ConTest tool [7] to instrument the software under repair by
injecting noise into the selection of interleavings. This causes threads to randomly
delay at different times during execution, increasing the chance that different
interleavings are explored. By running the instrumented version of the program
multiple times we gain more confidence that a larger set of the interleavings are
explored. Choosing the number of times ConTest run to test each proposed fix
is the most crucial parameter in ARC. Confidence in any proposed fix must be
carefully balanced against the time required to find the fix.

The number of successful ConTest executions are used to determine fitness:

functional fitness(P) = (s× sw) + (t× tw)

where: s = # of successful executions, sw = success weighting,
t = # of timeout executions, tw = timeout weighting

When determining fitness we consider both a successful execution and a timeout
as positive factors. Timeout executions are positive because given more time they
may become successful executions. Timeouts are weighted less than a successful
execution since the success of a timeout execution is not guaranteed.

If ARC finds an individual that achieves 100% successful executions, we need
to ensure it is truly a fix. It is possible that a proposed solution could still
contain a bug that escaped detection because the interleaving exhibiting it were
not selected by ConTest. To increase our confidence that a fix is correct we
take the base number of ConTest runs (say 10) and multiply it by an additional
safety factor (say 20). We run the proposed fix through ConTest (10×20 = 200)
more times to give us additional confidence the fix holds. If a data race or
deadlock is found during these additional runs, the fix is rejected and the search
continues. This continues until a correct program is found or the GA¬C runs
out of generations.

Replace Weakest Individuals.We believe the competent programmer hypoth-
esis [1] applies when fixing concurrency errors. That is, that programmers strive
to create correct programs. Programs with bugs in them are nearly correct so
the distance in the search space from an incorrect program to a correct program
is small(er) and tractable. Even with a smaller search space, evolutionary algo-
rithms may evolve candidate solutions that stray down paths leading to little or
no improvement. To encourage individuals to explore more fruitful areas of the
state space we include the option to restart or replace the lower w percentage
(say 10%) of individuals if they under-perform for too long. Two replacement
strategies are used. First, the under-performing member is replaced with a ran-
dom individual from the upper x percent of the population. Second, the member
is replaced by the original incorrect program.

Recalculate Operator Weighting. ARC leverages historical information on
how successful different mutation operators have been and about the relative
dominance of data races and deadlocks. We give additional weight to operators

Automatically Repairing Concurrency Bugs with ARC 79

that have raised the fitness of the population or reduced the frequency2 of data
races or deadlocks. The weighting is designed to ensure the chance of selecting
an operator is always greater than zero regardless of their performance. Sepa-
rate weightings are used for data races and deadlocks. A sliding window of n
generations is used to adapt the operator weighting to recent history.

5 Phase 2: Optimizing Fixes from Phase 1

ARC may introduce unnecessary synchronization during the fixing process. If
a fix is found, an optional second phase begins that attempts to improve the
running time of ARC by shrinking and removing unnecessary synchronization
blocks. The same strategy is used from part one. A new fitness function and a
subset of the TXL operators (RSAS, SHSA, etc. from Table 1) are used.

non− functional fitness(P) = worst score
[sigt×unc(t)]+[sigc×unc(c)]

where: unc(x) = (xmax−xmin)
xavg

sigt =

{
t/c if t > c
c/t if c > t

sigs =

{
c/t if t > c
t/c if c > t

The fitness function depends on the real time, t, required for an execution and
the number of voluntary context switches made, c. Voluntary context switches
is the number of times a thread voluntarily gives up control of the CPU. By
minimizing unnecessary synchronization both of these values should decrease.
At the beginning of phase 2 we run the correct, unoptimized program (without
ConTest) a number of times to acquire the unoptimized running time and num-
ber of context switches. These values are used in the fitness function to evaluate
relative improvements.

Removing and reducing synchronization runs the risk of introducing new er-
rors into the program. Before every non-functional evaluation we need to ensure
that no bugs are present. We re-run the first phase’s correctness check (eg, 10
ConTest runs, then 200 more). If any deadlocks or data races are encountered
the proposed optimization is rejected and this individual is reset to the previ-
ous generation. After ARC validates the proposed optimization additional runs
are conducted without using ConTest to obtain the running time and voluntary
context fixes.

Unlike phase 1 there is no early stopping criteria as there is no correct running
time. Lower is always better. Phase 2 always uses its full allotment of generations.
For this reason, running phase 2 is user-configurable. Optimization of this phase
is future work.

2 For example, if EXSB reduces the occurrence of deadlocks from 80 of 100 ConTest
runs to (say) 60 of 100 runs, it will be selected more frequently in future generations
to combat deadlocks.

80 D. Kelk, K. Jalbert, and J.S. Bradbury

Table 2. The set of IBM benchmark programs used to evaluate ARC

Program SLOC Classes Bug Type Can Fix?

account 165 3 Data Race Yes

accounts 75 2 Data Race Yes

bubblesort2 104 2 Data Race Yes

deadlock 109 2 Deadlock Yes

lottery 157 2 Data Race Yes

pingpong 143 4 Data Race Yes

airline 93 1 Data Race No

buffer 319 5 Data Race No

6 Evaluation

In order to evaluate ARC’s ability to repair concurrency bugs we selected 8
programs from the IBM Concurrency Benchmark [8,9,13]. We chose six programs
containing bugs ARC can fix and two ARC cannot fix as a sanity check.

ARC is designed to be flexible and contains a number of configurable param-
eters. Table 3 describes the configuration used in our evaluation. The parameter
values are influenced by community standards (e.g., evolution population, evolu-
tion generations) and through experience gained using ARC (e.g., ConTest runs,
validation multiplier). Of importance, the GA¬C population size and generation
size are both 30. Every member at every generation is evaluated by being run
through ConTest 10 times. Any potential fix is evaluated 150 more times. Test-
ing was conducted on a Linux PC with a 2.33 GHz processor, 4 gigabytes of
RAM running Linux Mint 13.

6.1 Experimental Results

Each program in Table 2 was run through ARC 5 times using the parameters
described in Table 3. Results are summarized in Table 4. ARC was able to fix
the 6 fixable programs and was not able to fix the 2 non-fixable. For the 6
repairable programs the time taken to find a fix ranged from about 2 minutes to
100 minutes. The most time consuming aspect of ARC is the numerous ConTest
executions. Second is the waiting necessary to determine the difference between a
successful execution and a timeout caused by a deadlock. The Timeout Multiplier
in Table 3 allows ARC to wait up to 20 times the instrumented execution time
for the program to complete.

Almost all fixes are found in the first or second generation. The static analysis
by Chord and the dynamic analysis by ConTest significantly shrink the state
space. For example, the account program contains 3 classes, approx. 9 methods
and 6 variables. After the analysis, this is reduced to 2 classes, 3 methods and
3 variables. A population of 30 may exceed the number of mutations available,
leading to the search space probably being exhaustively covered. If the correct
program is 1 or 2 mutation steps from the incorrect one, it should be found

Automatically Repairing Concurrency Bugs with ARC 81

Table 3. The set of parameters that ARC uses along with their descriptions and values

Parameter Description Value

Project Test MB The amount of memory allocated 2000

ConTest Runs Test suite executions per gen. per member 10

Validation Mult. Multiplier on ConTest runs when validating poten-
tially correct programs

15

Timeout Mult. Time multiplier for ConTest before timeout 20

Evolution Gen Maximum number of generations of the GA¬C 30

Evolution Population Population size for the GA¬C 30

Replace Lowest % Lowest n% of population replaced in GA¬C 10

Replace With Best % Replace under-perfomers with best individuals n% of
the time

75

Replace min turns Minimum time under-performing 3

Replace Interval Every n generations, under-performers are replaced 5

Ranking Window Size of sliding window for operator weighting 5

Success Weight Fitness score for successful executions 100

Timeout Weight Fitness score for timeout executions 50

Improv. Window Number of generations to consider for convergence 10

Avg. Fit. Delta Minimum average fitness improvement required 0.01

Best Fit. Delta Minimum best fitness improvement required 1

Table 4. Summary of the results of running the programs through ARC 5 times

Average Generations Average Time Taken
Program to Find Fix (HH:MM:SS)

account 5.0 00:08:08

accounts 1.0 00:44:00

bubblesort2 2.2 01:40:20

deadlock 1.0 00:02:12

lottery 2.4 00:38:00

pingpong 1.0 00:12:32

quickly. ARC works as a proof of concept and must be further evaluated – more
runs and on larger programs.

Threats to Validity. The main threat to validity for our experimental eval-
uation of ARC is external validity – our ability to generalize results. All of
the programs used in our experiment are small and are not representative of
large-scale concurrent software. In the future, we plan to address this threat by
conducting further experiments with larger concurrent software systems.

7 Related Work

We will now discuss two areas of related research: the use of SBSE to repair
sequential bugs and the existing work on healing and fixing concurrency bugs.

82 D. Kelk, K. Jalbert, and J.S. Bradbury

Sequential Bug Repair. Several approaches to sequential program repair have
been proposed in the literature. For example, Arcuri and Yao as well as Wilk-
erson and Tauritz use co-evolutionary competition between programs with bugs
(or between test cases) [2, 3, 25]. Both of these approaches require formal speci-
fications and use genetic programming to evolve fixes.

Alternatively GenProg is another approach to sequential program repair but
requires no formal specifications [24]. Instead, GenProg uses test cases to demon-
strate a bug and describe the desired functionality that must be preserved. To
address the limitations of the previous approach GenProg introduces two inno-
vative features that allow the repair of real bugs in real programs: (1) It assumes
the bug is written correctly in another part of the program and (2) It deter-
mines the error path on which the bug occurs and target only those statements
for repair.

Concurrency Bug Repair. For concurrent programs, there are several exam-
ples of related work. One example is the use of ConTest to heal data races [16,18].
Healing a program is not the same as repairing a program – “The healing tech-
niques based on influencing the scheduling do not guarantee that a detected prob-
lem will really be completely removed, but they can decrease the probability of its
manifestation” [18].

AFix [14] is a framework for fixing single-variable atomicity violations in C++
programs. This approach combines dynamic bug analysis, patch creation and
merging and dynamic testing. One limitation of AFix is that it only considers
bug ides that involve manipulating mutex locks. We can not compare AFix with
ARC because AFix work only on C++ programs which ARC works only on
Java programs. Our analysis of the bugs capable of being fixed by AFix and
ARC indicates that ARC can be applied to a wider variety of bugs and bug
combinations (i.e., programs with different kinds of concurrency bugs present)
and ARC offers a wider variety of possible bug fixes. Others have evaluated
AFix and reported that, “Our evaluation of AFix on large real systems also
shows that the AFix sometimes incurs the degraded performance and, worse,
frequent deadlocks” [19].

Finally, Axis [19] is another concurrency bug repair tool that uses a branch
discrete control theory called supervision based on place invariants to fix any
number of correlated atomicity violations with minimal harm to concurrency.
The Axis approach does not appear to be able to fix deadlocks.

8 Conclusions and Future Work

In this paper we have introduced ARC, a framework to automatically repair
deadlocks and data races in concurrent Java programs. The goal of ARC is
not only to ensure that a concurrency bug is repair but also to maximize the
performance of the program once the bug has been fixed. To achieve this goal
ARC consists of two phases:

Automatically Repairing Concurrency Bugs with ARC 83

1. Phase 1: a bug repair phase that employs a genetic algorithm without
crossover to mutate an incorrect program, searching for a variant of the
original program that fixes the deadlocks and data races.

2. Phase 2: an optimization phase attempts to optimize the concurrent source
code by removing any excess synchronization without sacrificing program
correctness. Excess and unneeded synchronization may be introduced in
Phase 1 and can negatively affect performance.

To evaluate ARC, we conducted experiments using a set of 8 programs from the
IBM concurrency benchmark. ARC was able to fix the data races and deadlocks
in all 6 of the fixable programs. Although ARC was successful with the set
of programs from the IBM concurrency benchmark we still need to evaluate
ARC’s scalability on larger open source projects. To assist with scalability we
plan to leverage some of the different heuristics for seeding noise and different
optimizations supported by ConTest [15]. These optimizations will hopefully
reduce the testing time required to evaluate variants of the original program
that are produced during both of ARC’s phases.

Finally, we plan to further investigate the mutation operators used to repair
concurrency bugs in ARC. Through experimentation we plan to optimize the
existing set of mutation operators to maximize their capabilities while removing
unnecessary operators. We also plan to experiment with new mutation operators
that will increase the set of possible bug fixes. Potential additions to our current
set of mutation operators include splitting or merging synchronization blocks
and adding synchronize blocks with locks not used elsewhere in the program.
Furthermore, we would like to expand ARC’s operators to deal with new anti-
patterns [5, 10] and give ARC the ability to fix additional types of bugs.

Acknowledgment. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References

1. Acree, A.T., Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Mutation
analysis. Tech. rep., GIT-ICS-79/08, Georgia Institute of Technology (1979)

2. Arcuri, A.: On the automation of fixing software bugs. In: Proc. of Int. Conf. on
Soft. Eng. (ICSE 2008), pp. 1003–1006 (2008)

3. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: Proc. of IEEE Congress on Evolutionary Computation (CEC 2008),
pp. 162–168 (2008)

4. Bradbury, J., Cordy, J., Dingel, J.: Mutation Operators for Concurrent Java (J2SE
5.0). In: Proc. of the Work. on Mutation Analysis (Mutation 2006), pp. 83–92
(2006)

5. Bradbury, J., Jalbert, K.: Defining a Catalog of Programming Anti-Patterns for
Concurrent Java. In: Proc. of the Int. Work. on Software Patterns and Quality
(SPAQu 2009), pp. 6–11 (2009)

6. Cordy, J., Halpern, C., Promislow, E.: TXL: A rapid prototyping system for pro-
gramming language dialects. In: Proc. of the Int. Conf. on Computer Languages,
pp. 280–285 (1988)

84 D. Kelk, K. Jalbert, and J.S. Bradbury

7. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41(1), 111–125 (2002)

8. Eytani, Y., Tzoref, R., Ur, S.: Experience with a concurrency bugs benchmark. In:
Proc. of Software Testing Benchmark Work (TESTBENCH 2008) (2008)

9. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs. In:
Proc. of Work. on Parallel and Distributed Sys.: Testing, Analysis, and Debugging
(PADTAD 2004) (2004)

10. Fiedor, J., Křena, B., Letko, Z., Vojnar, T.: A uniform classification of common
concurrency errors. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.)
EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 519–526. Springer, Heidelberg
(2012)

11. Galletly, J.: An overview of genetic algorithms. Kybernetes 21(6), 26–30 (1992)
12. Harman, M.: Why the Virtual Nature of Software Makes it Ideal for Search

Based Optimization. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS,
vol. 6013, pp. 1–12. Springer, Heidelberg (2010)

13. Havelund, K., Stoller, S., Ur, S.: Benchmark and framework for encouraging re-
search on multi-threaded testing tools. In: Proc. of Work. on Parallel and Dis-
tributed Sys.: Testing, Analysis, and Debugging (PADTAD 2003), pp. 22–26 (2003)

14. Jin, G., et al.: Automated atomicity-violation fixing. In: Proc. of ACM SIGPLAN
Conf. on Prog. Lang. Design and Implementation (PLDI 2011), pp. 389–400 (2011)

15. Krena, B., Letko, Z., Vojnar, T., Ur, S.: A platform for search-based testing of
concurrent software. In: Proc. of Work. on Parallel and Distributed Sys.: Testing,
Analysis, and Debugging (PADTAD 2010), pp. 48–58 (2010)

16. Krena, B., Letko, Z., Tzoref, R., Ur, S., Vojnar, T.: Healing Data Races On-The-
Fly. In: Proc. of Work. on Parallel and Distributed Sys.: Testing, Analysis, and
Debugging (PADTAD 2007), pp. 54–64 (2007)

17. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: Proc. of Int.
Conf. on Soft. Eng. (ICSE 2012), pp. 3–13 (2012)

18. Letko, Z., Vojnar, T., Krena, B.: AtomRace: Data Race and Atomicity Violation
Detector and Healer. In: Proc. of Work. on Parallel and Distributed Sys.: Testing,
Analysis, and Debugging (PADTAD 2008) (2008)

19. Liu, P., Zhang, C.: Axis: automatically fixing atomicity violations through solving
control constraints. In: Proc. of Int. Conf. on Soft. Eng. (ICSE 2012), pp. 299–309
(2012)

20. Long, B., Strooper, P., Wildman, L.: A method for verifying concurrent Java com-
ponents based on an analysis of concurrency failures. Concurrency and Computa-
tion: Practice & Experience 19(3), 281–294 (2007)

21. Musuvathi, M., Qadeer, S., Ball, T.: CHESS: A Systematic Testing Tool for Con-
current Software. Tech. rep., Microsoft Research (2007)

22. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Proc. of ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL 2007), pp. 327–338 (January 2007)

23. Sutter, H., Larus, J.: Software and the concurrency revolution. Queue 3(7), 54–62
(2005)

24. Weimer, W., et al.: Automatically finding patches using genetic programming. In:
Proc. of Int. Conf. on Soft. Eng. (ICSE 2009), pp. 364–374 (2009)

25. Wilkerson, J., Tauritz, D.: Coevolutionary automated software correction. In: Proc.
of Genetic and Evolutionary Computation Conf. (GECCO 2010), pp. 1391–1392
(2010)

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 85–96, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Modular Approach to Model-Based Testing
of Concurrent Programs

Richard Carver1 and Yu Lei2

1 Dept. of Computer Science, George Mason Univ., Fairfax, VA, 22030
rcarver@cs.gmu.edu

2 Dept. of Computer Science and Eng., Univ. of Texas at Arlington, Arlington, TX, 76019
ylei@cse.uta.edu

Abstract. This paper presents a modular approach to testing concurrent pro-
grams that are modeled using labeled transition systems. Correctness is defined
in terms of an implementation relation that is expected to hold between a model
of the system and its implementation. The novelty of our approach is that the
correctness of a concurrent software system is determined by testing the indi-
vidual threads separately, without testing the system as a whole. We define a
modular implementation relation on individual threads and show that modular
relations can be tested separately in order to verify a (non-modular) implemen-
tation relation for the complete system. Empirical results indicate that our ap-
proach can significantly reduce the number of test sequences that are generated
and executed during model-based testing.

Keywords: Concurrent Programming, Model-Based Testing.

1 Introduction

A concurrent program contains two or more threads that communicate and synchron-
ize with each other to perform some task. One general approach to testing a concur-
rent program is to execute the program with carefully selected test sequences. Model-
based testing uses abstract models for test selection. That is, an abstract model is used
to specify the intended program behavior, and test-sequences selected from the model
are used to test a concrete implementation.

Abstract models for concurrent programs are often expressed as, or can be trans-
lated into, a labeled transition system (LTS). An LTS models program behavior as a
type of state machine. Each state in an LTS is an abstraction of a state in the program.
Transitions are labeled with the program events performed during state transitions.
Our objective is to use model-based testing to determine whether a desired implemen-
tation relation exists between an abstract LTS model M and a concrete implementa-
tion CP. An example of such a relation is that the sequences of events allowed by M
are also allowed by CP. When the implementation relation holds, we say that M is
implemented by CP.

In this paper, we present a modular approach to model-based testing for concurrent
programs that use message passing for communication and synchronization.

86 R. Carver and Y. Lei

We assume the existence of an abstract model M containing two or more LTSs, and a
concrete implementation CP with two or more concurrent threads. We define a new
type of implementation relation, called a modular implementation relation, between a
single implementation thread of implementation CP and the corresponding LTS(s) in
model M. Modular implementation relations are verified by generating modular test
sequences from M and testing each implementation thread in CP separately. If all the
modular relations hold, then a non-modular relation between M and CP is guaranteed
to be satisfied.

Our test generation technique makes one important assumption, which is that the
sole source of non-deterministic behavior in the model and the implementation is the
order in which LTSs/threads synchronize and communicate. Other sources of
non-deterministic behavior, such as uninitialized variables, are assumed to be absent.

The remainder of this paper is organized as follows. In Section 2, we show how the
intended behavior of a concurrent program is modeled during modular testing.
Section 3 defines a modular implementation relation and describes how modular test-
ing can be used to verify this relation. Section 4 presents a technique for generating
modular test sequences. Section 5 reports the results of an empirical study on modular
testing. Related work is described in Section 6, including a comparison between two
other modular testing techniques and our technique. Section 7 provides concluding
remarks and our plans for future work.

2 LTS Models

The modular testing technique presented in this paper is for concurrent programs that
use message passing for communication and synchronization. The intended execution
behavior of a message-passing program is modeled using an extended LTS model
called an annotated LTS [1], which is described below.

2.1 Labeled Transition Systems

LTS models contain nodes representing the state of a program and labeled edges
representing transitions from state to state. LTSs can be composed in parallel and they
can be synchronized by performing matching send and receive events, where e
represents a synchronous receive event that matches synchronous send event e’. Syn-
chronizations involving matching events are considered to be hidden from external
observers and are represented as special τ (pronounced “tau”) events. We assume
that LTSs are composed using the laws in CCS (Calculus of Communicating
Systems) [2] and an interleaving concurrency model.

Formally, an LTS is a 4-tuple <Q,E,R,q0>, where Q is a non-empty finite set of
states, E is a set of transition labels, R ⊆ Q×E×Q is the transition relation, and q0 is a
state in Q denoting the initial state. For message-passing programs, the labels in E
encode send and receive events. An LTS may contain one or more termination states,
which are states without outgoing transitions. The τ events in an LTS are called inter-
nal events. All other events are called external events. A transition labeled with an
internal (external) event is referred to as an internal (external) transition.

 A Modular Approach to Model-Based Testing of Concurrent Programs 87

2.2 Adding Annotations

The send and receive events in an LTS model are encoded by simple transition labels.
Formats that have been developed for representing test sequences for implementations
encode send and receive events with more complex event descriptors, such as the ID
of the sending or receiving thread, the operation performed, and the destination or
source port of the operation [3], [4], [5]. (A port p is a communication channel
through which messages are sent using p.send() and received using p.receive(). Only
one thread can receive messages from a given port.) Event descriptors are not in-
cluded in LTS models, but they are needed to transform abstract sequences of the
model into concrete sequences of the implementation, and generate modular test
sequences.

Koppol et al. [1] extended the LTS model and the algebraic laws used in CCS to
allow implementation event descriptors to be encoded in an LTS. Their extended LTS
model is called an annotated labeled transition system (ALTS). We use the ALTS
model in this paper.

A formal definition of the ALTS model is given in [1]. Informally, an ALTS is an
LTS in which each transition is annotated with information about the associated syn-
chronization event in the implementation. A transition annotation has the form
(Li,Lj,port,op,label), where Li is the sender and Lj the receiver for an operation op
performed on port and labeled label. For synchronous message passing, op is either
synch_send or synch_receive, or a synchronization between a synch_send and a
synch_receive, denoted as a synchronous-synchronization. For asynchronous message
passing, op is either asynch_send or asynch_receive. We use Eannotated to denote the
set of transition annotations in an ALTS. A technique for generating the annotations
in an ALTS is described in [6].

ALTs are composed using the laws in CCS, with extra rules about forming annota-
tions for synchronizations. For example, consider a composition of ALTS B1 and
ALTS B2, denoted by (B1 | B2) \ {msg_in}. A synchronization between B1 and B2 on
receive event msg_in (B1,B2,in,synch_receive,msg_in) and send event
msg_in’(B1,B2,in,synch_send,msg_in) results in a τ event with annotation
(B1,B2,in,synchronous-synchronization,msg_in). The annotation for the τ event de-
notes that B1 was the sender and B2 the receiver for a synchronous synchronization
labeled msg_in that occurred on port in. The annotation for the τ event carries the
annotation information from the events that were synchronized to create it.

3 Modular Testing

Modular test generation begins with an abstract model M comprised of a set of
ALTSs {L1, L2, …, Lm}, and a concrete implementation CP of M with concurrent
threads {P1, P2, …, Pn}. To simplify our presentation, we assume that the number n of
threads equals the number m of ALTSs and that thread Pi is mapped to ALTS Li. We
also assume the alphabets of labels for Pi and Li are intended to be the same.

88 R. Carver and Y. Lei

3.1 Implementation Relation M ≤F CP

The correctness of an implementation CP can be defined in terms of an implementa-
tion relation that is required to hold between CP and the ALTS model
M = <Q,E,R,q0> of CP. The set of all possible sequences that can be written using
the labels in set Eannotated of model M is denoted by Eannotated*.

Definition 1: A sequence s in Eannotated* is feasible for model M if s is a sequence
of events along some path through M, starting at the start state of M; otherwise, s
is infeasible for M.
Definition 2: A sequence s in Eannotated* is feasible for implementation CP if an
execution of CP can exercise sequence s.

A non-modular implementation relation that is often used for test generation is
denoted by M ≤F CP.

Definition 3: M ≤F CP ≡def for any sequence s in Eannotated*: s is feasible for M  s
is feasible for CP.

Relation M ≤F CP requires each feasible sequence s of model M to be feasible for
implementation CP. However, CP may have feasible sequences that are not feasible
for M. This relation indicates perhaps that M is incomplete and thus is extended by
CP, i.e., CP adds behavior that is not in M, but all the behaviors of M are still allowed
by CP [7].

3.2 A Modular Implementation Relation for ≤F

The implementation relation in Definition 3 is for the full model M and its implemen-
tation CP. In this section, we define an implementation relation for an individual
thread Pi in CP and the ALTS Li = <Qi,Ei,Ri,qi> in M to which Pi is mapped.

Definition 4: A local sequence with respect to ALTS Li is a sequence sLi ∈ Eanno-

tated* such that all of the send and receive events in sLi have Li as the sender or
receiver, respectively.

A sequence that is local with respect to ALTS Li may or may not be allowed by Li.

Definition 5: Let sLi be a sequence that is local with respect to Li. Local sequence
sLi is feasible for Li if sLi is a sequence of events along some path through Li,
starting at the start state of Li; otherwise, sLi is infeasible for Li.

A feasible local sequence of Li may not actually be allowed to occur when the con-
straints imposed on Li by Li’s environment in M are considered. For example, Li may
allow two messages to be received in either order; while Li’s environment may
require the first message to be received before the second message can be sent.

Definition 6: For feasible sequence s of M, the projection of s onto Li is the (feas-
ible) local sequence sLi that is obtained by removing from s all of the send events
for which Li is not the sender and all of the receive events for which Li is not the
receiver.

 A Modular Approach to Model-Based Testing of Concurrent Programs 89

• If e is an asynch_send (asynch_receive) event in s that is executed by Li, then
e is an asynch_send (asynch_receive) event in sLi.

• If e is a synchronous-synchronization event in s, then e is a synch_send
(synch_receive) event in sLi if Li executed the synch_send (synch_receive)
event synchronized at e.

Definition 7: A feasible local sequence sLi of Li is constrained with respect to
model M if sLi is the projection onto Li of some feasible sequence of M. The set of
constrained sequences of Li with respect to model M is denoted Constrained-
Sequences(Li,M), or just Constrained-Sequences(Li) when M is understood.

Definition 7 shows that Constrained-Sequences(Li) is not determined by analyzing Li
and ignoring the other ALTSs in M. To the contrary, a sequence in Constrained-
Sequences(Li) must be a projection of some feasible sequence of M. Thus, Con-
strained-Sequences(Li) captures the constraints imposed on Li by the other ALTSs.

When a feasible sequence s of M is projected to obtain a constrained local se-
quence sLi of Li, the annotations on the events in s are retained by the events in sLi.
These annotations specify the interactions that occur between Li and its environment
when the events in sLi are exercised. If Li exercises a receive (send) event then the
environment exercises a matching send (receive) event. An environment that interacts
as specified by the annotations in sLi is referred to as a conforming environment of sLi.

Definition 8: A feasible local sequence sLi in Constrained-Sequences(Li,M) is
feasible for implementation thread Pi if Pi can exercise sequence sLi when Pi is
executed with a conforming environment of sLi.

A procedure for checking the feasibility of a constrained local test sequence for an
implementation thread is given in Section 3.3.

Theorem 1: Let s be a feasible sequence of M and sLi be the projection of s onto
ALTS Li, 1 ≤ i ≤ n. Then constrained local sequence sLi is feasible for thread Pi, 1
≤ i ≤ n, iff sequence s is feasible for CP.

Proof: The proof is omitted for the sake of brevity, but can be found in [8].

Based on Theorem 1, we can test each thread separately with the constrained local
sequences of its corresponding ALTS instead of testing all the threads together with
all of the feasible sequences of M. Building on this, we define a modular implementa-
tion relation for an ALTS Li and the thread Pi to which it is mapped. This relation
mirrors the relation in Definition 3:

Definition 9: Li ≤F Pi ≡def for any sequence sLi in Constrained-Sequences(Li): sLi is
feasible for Pi.

Modular implementation relation Li ≤F Pi is used in the following theorem, which is
the basis for modular testing:

Theorem 2: Li ≤F Pi, 1 ≤ i ≤ n, iff M ≤F CP.

Proof: The if-part is obvious – Theorem 1 says that if a feasible sequence s of M
is feasible for CP, then the constrained local sequences obtained by projecting s
onto Li, 1≤i≤n, are feasible for the individual threads of CP. It follows directly

90 R. Carver and Y. Lei

from this that if all the feasible sequences of M are feasible for CP, then all of the
constrained local sequences of Li, 1≤i≤n, are also feasible for the individual
threads of CP.

For the only-if part, assume relation Li ≤F Pi, 1≤i≤n, holds but relation M ≤F
CP does not. Then there is an event e that is one of the (possibly many) events
that can be the first event in some feasible sequence s of M that is not feasible for
CP. (An event e is one of the first infeasible events in s if no event in s that hap-
pened before [9] e is infeasible. The possible first events are executed concurrent-
ly.) Assume that e is executed by ALTS Lj and let sLj be the projection of s onto
Lj. Sequence sLj is a local sequence of Lj that is not feasible for Pi due to e, but we
are assuming Lj ≤F Pj, which is a contradiction.

According to Theorem 2, the implementation relations between the individual threads
in CP and the ALTSs in M can be verified separately in order to verify the implemen-
tation relation between M and CP. Testing each pair (Li, Pi) separately is more effi-
cient in cases where the local sequences of an ALTS Li are repeated many times,
perhaps even an exponential number of times, in the feasible sequences of M.

3.3 A Modular Testing Procedure for M ≤F CP

Modular testing is performed using the following procedure:

Procedure Test≤F: For each mapped pair (Li, Pi), 1 ≤ i ≤ n:

(a) Generate Constrained-Sequences(Li) (see Section 4.2).
(b) For each local test sequence sLi in Constrained-Sequences(Li):

(b1) Test Pi with sequence sLi and assign a test verdict, which is either
pass or fail. The assignment of verdicts is discussed below.

(b2) If Pi fails with sLi, a failure has been detected in CP and testing halts.

Note that the key step in the above procedure is deriving Constrained-Sequences(Li)
in step (a), which is described in Section 4. In step (b1), thread Pi is executed with a
test driver. The driver behaves as a conforming environment by supplying the send
and receive events that match the events executed by Pi in local sequence sLi. That is,
whenever sequence sLi calls for Pi to execute a send (receive) event on port p, a
receive (send) event on port p is executed by the driver. The implementation informa-
tion that is needed for mapping the abstract events in sLi to concrete events of Pi is
provided by the transition annotations in Li, as described in Section 2. Note that the
execution of thread Pi interacting with a test driver will be deterministic.

The test verdict in (b1) is assigned as follows:

if (Pi executes an event that is not in the alphabet Ei of Li
or local sequence sLi is infeasible for Pi)

then the test fails else the test passes.

If procedure Test≤F is performed and all the tests in Constrained-Sequences(Li) are
passed for each pair (Li, Pi), 1 ≤ i ≤ n, then Li ≤F Pi , and by Theorem 1, M ≤F CP.

 A Modular Approach to Model-Based Testing of Concurrent Programs 91

4 Modular Test Generation Using Thread Interaction Models

In this section, we show how to build an ALTS model called a thread interaction
model (TIM). The thread interaction model for Li, denoted TIMLi, models Li’s inte-
ractions with the other ALTSs in M. Constrained-Sequences(Li) is generated by
traversing TIMLi.

4.1 Using Reachability Analysis to Generate Thread Interaction Models

For each ALTS Li in model M, we use equivalence-based reductions to build a thread
interaction model TIMLi that models Li’s interactions with the other ALTSs in M. The
steps for building TIMLi are as follows:

Step 1: Based on ALTS Li, classify the transitions in M as observable or hidden.

For asynchronous message passing, the observable transitions are the send and re-
ceive transitions executed by Li. For synchronous message passing, the observable
transitions are the transitions that involve a synchronization in which Li is the sender
or the receiver. Other transitions are considered to be hidden. Thus, the observable
transitions in M all involve interactions with Li.

Step 2: Minimize M modulo observational equivalence [2], [10] creating ALTS
model MLi, which captures Li’s behavior in M.

Step 3: Minimize MLi modulo weak-trace equivalence [10] creating ALTS TIMLi.

When a minimization is performed in Step 2 or 3, the minimization is based on the
annotations in the ALTSs. Recall that all the τ events will have the same label “τ” but
different annotations. This allows τ events to be treated as different (observable)
events during minimization. Thus, the annotation information about the events and the
ALTSs that synchronize with Li is retained in TIMLi. This ensures that TIMLi models
all of Li’s interactions with other threads, and that TIMLi contains the implementation
information (in the form of annotations) that is necessary for generating concrete test
sequences for implementation thread Pi.

The reduced thread interaction model TIMLi produced in Step 3 represents the feas-
ible sequences of interactions between Li and the rest of the system. By definition of
weak-trace equivalence, TIMLi contains no hidden transitions and no redundant se-
quences of observable transitions. Algorithms for Step 2 run in time O(n3), where n is
the number of states in the model. Algorithms for Step 3 have worst case running
times that are exponential in the number of states, but the model minimized in Step 3
is a model of a single thread, which is typically much smaller than a global model.
Thus, Step 2 should dominate the execution time.

4.2 Generating Test Sequences from Thread Interaction Models

Test sequences are derived by traversing TIMLi and generating all the feasible se-
quences. For a cyclic model such as TIMLi = a.TIMLi, an exhaustive test suite would
have infinitely many test sequences, each test sequence a, a.a, a.a.a, …, having a
finite but arbitrarily long number of events. One approach for dealing with a cyclic

92 R. Carver and Y. Lei

model M is to select a finite subset of M’s test sequences, and ensure that cycles are
iterated a finite number of times. Another approach is to redesign M as a model M’
that is incomplete but that has an acyclic state space, and generate an exhaustive test
suite from M’. The feasible sequences of acyclic model M’ form a subset of the feasi-
ble sequences of the cyclic model M. In both approaches, a finite set of (finite-length)
test sequences is generated; however, the sequences may fail to detect some errors.

If the TIMLi generated by the process in Section 4.1 is acyclic, then it can be tra-
versed using a simple depth-first search (DFS) algorithm. Whenever a termination
state of TIMLi is reached, the DFS backs up, and one or more test sequences are col-
lected from the search stack. The collected test sequences include one complete se-
quence of TIMLi, i.e., a sequence beginning at the start state of TIMLi and ending in a
termination state, and all of the non-null proper prefixes of this complete sequence. If
TIMLi is cyclic, then some test selection method must be used when TIMLi is traversed
to select a subset of the feasible test sequences of TIMLi. Test selection may be based
on, e.g., guidance from the person doing the testing [11-13], or coverage criteria [14].

Modular sequences are generated for ALTS Li in M using the following procedure:

Procedure Generate_Sequences(Li):
For each ALTS Li in model M:

(G1) Apply Steps 1 through 3 in Section 4.1 to create thread interaction
model TIMLi

(G2) Traverse TIMLi as described above to generate test sequences for Li.

Whether procedure Generate_Sequences(Li) generates Constrained-Sequences(Li)
depends on whether TIMLi is acyclic.

Theorem 3: If TIMLi is acyclic, then procedure Generate_Sequences(Li) generates
Constrained-Sequences(Li) for each ALTS Li, 1 ≤ i ≤ n, in model M.

Proof: In procedure Generate_Sequences(Li), minimization modulo weak-trace
equivalence in step (G1) is based on the annotations of the external transitions in-
stead of the transition labels. This prevents any (non-redundant) sequences of Li’s
transitions from being lost during the minimization. By definition of weak-trace
equivalence, the traces of TIMLi generated by the DFS procedure in step (G2) are
precisely Constrained-Sequences(Li).

We point out that an obvious optimization of the DFS search procedure is to avoid the
generation of any sequence that is a prefix of a sequence that has already been generat-
ed. For example, if test sequence a.b.c is generated, it is not necessary to generate prefix
sequences a.b and a. The reason being that if sequence a.b.c is feasible for the imple-
mentation thread, then sequences a.b and a must also be feasible. This optimization is
easily performed during DFS by generating only complete sequences at backup points.

If TIMLi is cyclic, then procedure Generate_Sequences(Li) must use some test se-
lection method to select a subset of the feasible sequences of TIMLi. Thus, Gener-
ate_Sequences(Li) will not generate Constrained-Sequences(Li) or even all of the
complete sequences of Li. In this case, modular testing cannot be used to verify rela-
tion M ≤F CP; however, the generated sequences will be sound, i.e., only incorrect
implementations will fail the tests [15].

 A Modular Approach to Model-Based Testing of Concurrent Programs 93

5 Empirical Study

We conducted an empirical study in which modular test sequences were generated
from thread interaction models. Abstract models and Java implementations were built
for: DP: a deadlock-free solution to the dining philosophers problem with philoso-
phers sharing forks and each philosopher eating once [16]; DME-3: a solution to the
distributed mutual exclusion problem with three processes and three threads per
process [17]; and TDME: a token-based solution to the distributed mutual exclusion
problem [18] with 3 user processes and 1 controller process. All the models and
implementations were acyclic. The DP and DME models were written in Lotos [19].

Our objective here was to study the effectiveness of modular tests for detecting vi-
olations of the implementation relations and to compare the number of test sequences
generated by modular testing to the number of sequences generated by other ap-
proaches. The results show a range of results for reducing test set sizes, from a large
reduction to no reduction. In this study, we leveraged several LTS reduction tools,
and inherited their limitations, but we did not evaluate their scalability. That has been
done by others [10], in many cases on real life, industrial systems.

Table 1 summarizes the results of test sequence generation.

Table 1. Results of modular test generation

 Global states/trans TO-seqs. PO-
seqs.

Max TIM

states/trans

Mod-
seqs.

TDME 192 / 348 67,894 30 68 / 90 33

DP-3 76 / 126 238 6 8 / 8 9

DP-4 322 / 712 94,526 14 8 / 8 12

DP-5 1364 / 3770 108,549,484 30 8 / 8 15

DP-6 5778 / 19164 217,113,360,382 62 8 / 8 18

DME-3 367,733/1,403,821 > 3.5 trillion 4032 71 / 117 315

Global ALTSs were generated using standard interleaving semantics and then
minimized modulo strong equivalence in order to remove redundant sequences. The
resulting global ALTSs contained no internal events. The sizes of the global models
are shown in column 1 of Table 1.

Each Lotos specification model was compiled into its individual ALTS compo-
nents. The longest time for this step occurred while translating the Lotos DME-3
model into its 9 component ALTSs, which took a total of 7 minutes and 40 seconds
on a 1.3GHx processor with 32 GB of RAM.

Non-modular test sequences were generated using two different methods. The first
method reports the number of unique, totally-ordered, non-modular sequences gener-
ated from the ALTS models (column 2 of Table 1). For model DME-3, this procedure
was unable to finish. Thus, we report our partial results as lower bounds on the
number of sequences.

The second method reports the number of non-modular, partially-ordered se-
quences generated by the reachability testing algorithm in [5] (column 3 of Table 1).

94 R. Carver and Y. Lei

The number of partially-ordered sequences was usually considerably smaller than the
number of totally-ordered sequences. The partially-ordered sequences can be used to
verify relation M ≤F CP.

Thread interaction models were generated by following the step-by-step procedure
in Section 4.1 using the CADP toolset [20-21] and the ALTS reduction tool in [1].
Generating modular tests from the thread interaction models using the optimized DFS
procedure described in Section 4.2 and executing the tests against the implementa-
tions took only a few seconds.

Table 1 shows that the number of modular test sequences (column 5) was always
significantly less than the number of totally-ordered sequences generated from the
global models; and was significantly less than the number of partially-ordered se-
quences generated from three out of six of the global models. The number of states
and transitions in the largest thread interaction model (TIM) is reported in column
4.The time for generating thread interaction models took 24 to 30 seconds.

The number of modular test sequences generated for model DP-P with P philoso-
phers and P forks is always 3P. By way of comparison, a complete DP model has
2P – 2 partially-ordered sequences and considerably more totally-ordered sequences.

For the TDME model, most of the interactions are between the user processes and
the controller process, the result being that the number of modular sequences of the
controller process is the same as the number of unique, partially-ordered, non-
modular sequences in the model. Since each of the three user processes has a single
modular test sequence, the total number of modular tests sequences is 3 more than the
number of partially-ordered, non-modular sequences.

For the DME-3 model, a total of 315 modular test sequences were generated for
the nine implementation units. The global DME-3 model has 4,032 partially-ordered
non-modular sequences and over 3.5 trillion totally-ordered, non-modular sequences.
We measured the adequacy of the modular test-sequences generated for DME-3 by
using mutation testing. Each mutant for DME-3 introduced a single change that was
intended to simulate a programming error. Mutants were automatically generated by
the Java-based mutation tool μJava [22]. Some of the mutants created were function-
ally equivalent to the original program. These mutants were identified and deleted,
which left 190 mutants. We then applied modular testing to the nine threads in
DME-3. A mutant was considered to be killed if a modular test sequence failed when
it was executed against the thread that contained the mutant. Each of the 190 DME
mutants was killed by the modular tests.

Finally, we discuss the threats to the validity of our case study. The main threat to
external validity is the degree to which the subject programs are representative of true
practice. The subject programs are small in terms of lines of code, but they represent
complex, classical synchronization patterns and they illustrate well that the reduction
in test sequences achieved by modular testing will vary from none at all to a signifi-
cant amount. We plan to conduct experiments on more programs as an effort to re-
duce this threat. The main threat to internal validity is the possibility that errors were
made in counting the test sequences. The partially-ordered sequences were counted
using the reachability testing tool in [5]. The totally-ordered sequences were counted
using a depth-first search algorithm, whose implementation was carefully tested.

 A Modular Approach to Model-Based Testing of Concurrent Programs 95

6 Related Work

In this section, we briefly review existing work on modular, model-based testing of
concurrent systems. We first note that there has been work in the area of composition-
al model checking. The basic idea is to verify the behavior of each module in isolation
and infer global correctness properties of the whole system from the results of verify-
ing individual modules. This typically requires the user to manually provide an as-
sumption about the interaction between the module being checked and the rest of the
system. Our modular testing technique automatically builds a thread interaction model
using equivalence-based reductions of the whole system. Also, our test generation
technique does not perform any model-checking. Model checking is complementary
to our work — the abstract model can be verified using model checking before the
model is used to generate modular tests for testing the implementation.

Several compositional conformance testing techniques have been developed [23],
[24]. These techniques require each individual thread model to be input enabled,
which means that each state must specify a response for every possible modeled in-
put. One problem with this approach is that some inputs may be impossible in certain
states, and it is not clear what response should be specified for an impossible input.
Also, identifying impossible inputs manually is difficult when the possible inputs
depend on complex interactions among multiple components. Another problem
occurs when some inputs are available, i.e., messages have been sent, and their avail-
ability is not an error, but receiving and responding to these inputs is not allowed in a
certain state. It is not clear how to specify in an input enabled model that certain
available inputs are not allowed to be received or responded to. Our modular testing
technique does not require LTS models to be input enabled, nor does it require
implementation threads to have all inputs enabled in all states.

7 Conclusion

In this paper, we presented a modular approach to testing concurrent systems that are
modeled as annotated labeled transition systems. This approach can be used to show
that the non-modular sequences allowed by the complete model M are allowed by the
complete implementation CP, and this can be done by testing the individual imple-
mentation threads separately, without testing the implementation as a whole. We plan
to continue our work by developing a modular testing technique that can be used to
check whether M and CP allow the same sequences.

References

1. Koppol, P.V., Carver, R.H., Tai, K.C.: Incremental Integration Testing of concurrent Pro-
grams. IEEE Transactions on Software Engineering 28(6) (2002)

2. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
3. Tai, K.C.: On testing concurrent programs. In: Proc. COMPSAC, vol. 85, pp. 310–317

(1985)

96 R. Carver and Y. Lei

4. Tai, K.C., Carver, R.H.: Testing of distributed programs. In: Zoyama, A. (ed.) Handbook
of Parallel and Dist. Computing, ch. 33, pp. 955–978. McGraw Hill (1996)

5. Lei, Y., Carver, R.H.: Reachability testing of concurrent programs. IEEE Transactions on
Software Engineering 32(6), 382–403 (2006)

6. Chen, J., Carver, R.: Selecting and Mapping Test Sequences from Formal Specifications of
Concurrent Programs. In: Proc. of the High-Assurance Systems Eng., pp. 112–119 (1996)

7. Brinksma, E.: A Theory for the Derivation of Tests. In: Aggarwal, S., Sabnani, K. (eds.)
Protocol Specification, Testing and Verification, VIII, pp. 63–74 (1988)

8. Carver, R., Lei, Y.: A Modular Approach to Model-Based Testing of Concurrent Pro-
grams. Technical report GMU-CS-TR-2013-5, Dept. of Computer Science, George Mason
University (2013)

9. Lamport, L.: Time, Clocks, and the Ordering of Events in a Dist. System. Comm. ACM,
558–565 (1978)

10. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench: A Semantics Tool
for the Verification of Concurrent Systems. ACM Tran. Programming Languages and Sys-
tems 15(1), 36–72 (1993)

11. Information Technology, Open Systems Interconnection, Conformance Testing Methodol-
ogy and Framework. International Standard IS-9646. ISO, Geneve (1991)

12. Feijs, L.M.G., Goga, N., Mauw, S., Tretmans, J.: Test Selection, Trace Distance and Heu-
ristics. In: Proc. IFIP 14th Int. Conference on Testing Communicating Systems - TestCom,
pp. 267–282 (2002)

13. Tretmans, J., Brinksma, E.: TorX: Automated Model-Based Testing. In: Proc. First Euro-
pean Conference on Model-Driven Software Engineering, pp. 31–43 (2003)

14. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge Univ. Press (2008)
15. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten, J.C.M., Mauw,

S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg (1999)
16. Carver, R., Tai, K.C.: Modern Multithreading: Wiley (2006),

http://www.cs.gmu.edu/~rcarver/ModernMultithreading/
17. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer net-

works. Communications of the ACM 24(1), 9–17 (1981)
18. Turner, K.J.: Using Formal Description Techniques: An Introduction to Estelle, Lotos, and

SDL. John Wiley & Sons, Inc., New York (1993)
19. Suzuki, I., Kasami, T.: A distributed mutual exclusion algorithm. ACM Transactions on

Computer Systems 3(4), 344–349 (1985)
20. Fernandez, J., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu, M.: CADP:

A Protocol Validation and Verification Toolbox. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg (1996)

21. Lang, F.: Compositional Verification using SVL Scripts. In: Katoen, J.-P., Stevens, P.
(eds.) TACAS 2002. LNCS, vol. 2280, pp. 465–469. Springer, Heidelberg (2002)

22. Ma, Y.-S., Offutt, J., Kwon, Y.-R.: μJava: An Automated Class Mutation System. Journal
of Soft. Testing, Verif. and Reliability 15(2), 97–133 (2005),
http://ise.gmu.edu/~ofut/mujava/

23. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with IOCO. In: Petren-
ko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg
(2004)

24. Gotzhein, R., Khendek, F.: Compositional Testing of Communication Systems. In: Uyar,
M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 227–244.
Springer, Heidelberg (2006)

J.M. Lourenço and E. Farchi (Eds.): MUSEPAT 2013, LNCS 8063, pp. 97–109, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Dynamic Approach to Isolating Erroneous Event
Patterns in Concurrent Program Executions

Jing Xu1, Yu Lei1, Richard Carver2, and David Kung1

1 Dept. of Computer Science and Engineering, University of Texas at Arlington, USA
2 Dept. of Computer Science, George Mason University, USA

Abstract. Concurrency bugs are hard to find due to the nondeterministic
behavior of concurrent programs. In this paper, we present an algorithm for
isolating erroneous event patterns in concurrent program executions. Failed
executions are characterized as a sequence of switch points, which capture the
interleaving of read and write events on shared variables. The algorithm inputs
the sequence of a failed execution, and outputs erroneous event patterns. We
implemented our algorithm and conducted an experimental evaluation on
several Java benchmark programs. The results of our evaluation show that our
approach can effectively and efficiently identify erroneous event patterns in
failed executions.

Keywords: Concurrency, Fault Localization, Debugging.

1 Introduction

As concurrent programs become widespread, it is important to have effective and
efficient techniques and tools for testing and debugging concurrent programs. A
survey from Microsoft [17] reveals that nearly two-thirds of Microsoft programmers
have to deal with concurrency issues and over half of the programmers detect, debug,
and fix concurrency faults on at least a monthly basis. Furthermore, over 60% of these
faults take several days to fix. Failures caused by concurrency faults can have
potentially devastating consequences. For example, in 2003, a blackout in the
northeastern U.S. left tens of millions of people without electricity, due to a race
condition in the power plant monitoring software [18].

Much work has been reported on detecting two types of concurrency fault. One is
atomicity violation (also referred to as serializability violation), which occurs when a
code block that is expected to be executed atomically is executed non-atomically. The
other is order violation, which occurs when code blocks are executed in an incorrect
order. Recent work uses dynamic pattern analysis [2, 3, 6, 22] to recognize patterns of
events that may be associated with these faults. Some pattern analysis techniques try
to extract a set of benign patterns from passed executions and then identify violations
of these benign patterns in failed executions [3, 6, 22]. However, some patterns may
appear in both passed and failed executions [2]. These patterns will be classified as
benign, which prevents them from being identified in failed executions.

98 J. Xu et al.

We propose a dynamic approach to identifying the erroneous patterns in a failed
execution. Our approach is independent from the underlying synchronization
mechanisms such as shared variables, semaphores, and monitors. The main idea of
our approach is described as follows. We record the trace of a failed execution as a
sequence of events. A systematic search strategy is used to find the erroneous switch
point that causes the execution to fail. The novelty of our approach is the use of a
notion called least concurrency mode to determine the correctness of a switch point.
In the least concurrency mode, each thread executes until it cannot proceed further,
i.e., it either blocks or finishes. The motivation is to minimize the number of times a
thread being interrupted by another thread and thus reduce the chance of failure due to
concurrency. To determine the correctness of a switch point s, we perform a number
of test executions in which we first replay all the events up to and including s, which
allows s to be reproduced, and then let the program proceed in the least concurrency
mode. If one of these executions passes, s is likely to be a benign switch point.
Otherwise, s is likely to be an erroneous switch point. After identifying the erroneous
switch point, our technique tries to find erroneous event patterns related to this
erroneous switch point, which can help users localize the faults.

This fault localization technique has been implemented in a tool called Huatuo,
which was used to perform an empirical study on 13 benchmark Java programs. The
results of the study show that our technique can effectively and efficiently localize the
faults in 12 of the 13 programs.

2 Preliminaries

Let s be a totally-ordered sequence of read and write events in a failed execution of
concurrent program CP with switch points P1, P2, … Pn, n≥1. Switch point Pi in s is
erroneous if CP enters an incorrect internal state, called an error state, after Pi is
executed, but before Pi+1 is executed, and this error state is propagated to cause CP to
output an incorrect result (a failure) [21].

After a switch point CP may enter an error state, which however may not
propagate to the result. This case is possible because CP may recover from an error
state, or the result is “coincidentally correct” and CP does not fail.

An atomicity violation occurs when a sequence of read and write events is
executed in a way that cannot be serialized and this sequence violates the
programmer’s intention of atomicity. Figure 1 shows the five possible patterns of
unserializable interleavings.

If two threads each access a shared variable, and at least one of the two accesses is
a write access, then these two accesses comprise a conflicting interleaving pattern. An
order violation occurs when a conflicting interleaving pattern is executed and this
pattern violates the programmer’s intended ordering.

An event pattern is erroneous if the appearance of this pattern causes the execution
to enter an error state. Patterns that are not erroneous are benign.

 A Dynamic Approach to Isolating Erroneous Event Patterns 99

 Interleaving Description

1 T1:R R
T2: W

Two reads by T1 were expected to have
the same value.

2 T1:W R
T2: W

The read by T1 was expected to read the
value written byT1.

3 T1:W W
T2 R

A temporary result written by T1 was not
expected to be read by T2.

4 T1:R W
T2 W

The value written by T2 was unexpectedly
overwritten by T1.

5 T1:W W
T2: W

The value written by T2 was unexpectedly
overwritten by T1

Fig. 1. Unserializable Interleaving Patterns [5]

3 A Motivating Example

As a motivating example, we consider a Java class Account in Figure 2. This class is
from the ConTest benchmark programs [19]. Class Account has two fields amount and
name, and three methods deposit, withdraw and transfer. Method deposit adds a given
amount of money, method withdraw withdraws a given amount of money and method
transfer transfers a given amount of money from one account to another.

public class Account {

double amount;
String name;
public Account(String nm, double amnt) {

amount = amnt;
name = nm;

}
synchronized void deposit(double money){

amount += money;
}
synchronized void withdraw(double money){

amount -= money;
}
synchronized void transfer(Account ac, double mn){

amount -= mn;
ac.amount += mn;

}
 }

Fig. 2. An example (faulty) program

Figure 3 shows a failed execution in which two accounts, account1 and account2,
are accessed concurrently by two threads. Thread 1 (or thread 2) initializes account1

100 J. Xu et al.

Thread 1 Thread 2
Account(100)
1 account1.amount = 100
deposit(300)
2 temp = account1.amount + 300
3 account1.amount = temp
withdraw(100)
4 temp = account1.amount - 100
5 account1.amount = temp switch point P1
 Account(100)
6 account2.amount = 100
 deposit(300)
7 temp = account2.amount + 300
8 account2.amount = temp
 withdraw(100)
9 temp = account2.amount - 100
10 switch point P2 account2.amount = temp
transfer(99)
11 temp = account1.amount - 99
12 account1.amount = temp
13 temp = account2.amount + 99 switch point P3
 transfer(99)
14 temp = account2.amount - 99
15 account2.amount = temp
16 temp = account1.amount + 99
17 switch point P4 account1.amount = temp
18 account2.amount = temp

Fig. 3. A failed execution with class Account

(or account2) with 100, deposits 300, withdraws 100 and then transfers 99 to the other
account. However, the final balance of account2 is 399, instead of 300. This is
because method transfer directly accesses ac.amount, where ac is an Account object
passed to method transfer as an argument. In our example scenario, when Thread 1
calls method transfer, it only acquires the lock for account1. So the lock for account2
can still be acquired by Thread 2, which can access and modify account2 concurrently
with thread 1.

Below we illustrate how our approach is used to identify the erroneous patterns in
the example execution shown in Figure 3. Our technique has two phases. In the first
phase, we identify the erroneous switch point. In the second phase, we identify the
erroneous event patterns.

Switch points are checked in the reverse order of their occurrence in the failed
execution. Thus, the first switch point checked is P4. Step 1 of the controlled
execution for P4 replays the execution up to and including the execution of statement
18 in Thread 1 (We will explain how to obtain the replay portion of a failed execution

 A Dynamic Approach to Isolating Erroneous Event Patterns 101

in the Section IV.). This ensures that switch point P4 appears in the new execution. In
step 2 of the execution, a “least concurrency” policy is enforced. Since there are no
more statements to execute, the least concurrency part of the controlled execution
does not exercise any events. The resulting execution fails, allowing us to conclude
that switch point P4 or one of the switch points that precede P4 is erroneous.

Next we generate a controlled execution to check switch point P3 of the failed
execution. Step 1 of the controlled execution replays the events up to and including
the execution of statement 17 in Thread 2. This ensures that switch point P3 appears in
the new execution. Step 2 of the controlled execution enforces the “least concurrency”
policy, which executes Thread 1 until it ends. The new execution fails, which allows
us to conclude that switch point P3 or one of the switch points that precede P3 is
erroneous.

Next we generate a controlled execution to check switch point P2. Step 1 of the
controlled execution replays the events up to and including the execution of statement
13 in Thread 1. This ensures that targeted switch point P2 appears in the new
execution. Step 2 of the controlled execution enforces the “least concurrency” policy,
which can force Thread 1 to execute until it ends and then Thread 2 to execute until it
ends. This controlled execution passes. We also can force Thread 2 to execute first in
the least concurrency mode and the generated execution is failed. Since we find one
passed execution for switch point P2, switch point P2 is benign, and we conclude that
switch point P3, which is the switch point immediately after benign switch point P2, is
the erroneous switch point.

Next, we try to detect erroneous event patterns related to erroneous switch point P3.
Our technique checks whether there are any unserializable interleaving patterns or
conflicting interleaving patterns that are introduced by P3. In Figure 3, statement 13 in
Thread 1, statement 15 in Thread 2 and statement 18 in Thread 1 comprise an
unserializable interleaving pattern of shared variable account2.amount introduced by
switch point P3. This implies that the value written by statement 15 in Thread 2 is
unexpectedly overwritten by the write operation of statement 18 in Thread 1, i.e., the
write operation of statement 15 in Thread 2 should not interrupt the execution of
statements 13 and 18 in Thread 1. This pattern is output to the programmer to guide
debugging.

Delta debugging [1] fails to point out P3 is the erroneous switch point. Assume the
alternative passed execution is generated with switch points 5,11,13,16, while those
for the failed execution in Figure 3 are 5,10,13,17. Since both executions have a
switch point P3 at event 13 and delta debugging only detects the erroneous switch
point from the difference between the schedules of two executions, delta debugging
would point out that P2 in the failed execution is the cause of failure, which however
does not make the execution enter erroneous state. The fundamental reason is that
delta debugging only identifies the switch point that differs between the passed and
failed execution and that if reconciled, would flip the result of the executions. Such a
switch point does not necessarily create an erroneous state.

102 J. Xu et al.

4 Our Algorithm

In this section, we describe our algorithm for fault localization in detail. Figure 4
shows algorithm LocalizeErroneousPatterns. This algorithm takes as input a program
P and a totally-ordered sequence F of read and write events exercised by a failed
execution of P. The output is a set of erroneous event patterns that trigger the failure.
LocalizeErroneousPatterns has two major phases: (1) identifying the erroneous
switch point; and (2) identifying the erroneous event patterns.

LocalizeErroneousPatterns begins by identifying the switch points in sequence
F. A prefix of F is generated for each of the identified switchPointi (lines 2-4). For
switchPointi, the prefix contains all the events up to and including the event that
immediately precedes switchPointi+1. The prefix for switchPointi is used to replay the
portion of F that contains switchPointi.

In phase 1, LocalizeErroneousPatterns checks switch points in the reverse order as
they appear in sequence F (line 5-13). This process stops when it finds that
switchPointi is benign (line 8) and records switchPointi+1 as the erroneous switch
point (line 9).

Algorithm LocalizeErroneousPatterns:
Input: program P, a totally ordered sequence F from a failed execution of P.
Output: a set erroneousPatterns of erroneous event patterns

1. Let switchPoints be a sequence of switch points in their order in F;
2. for (switchPointi in switchPoints){
3. create the prefix for switchPointi
4. }
5. for (int i = number of switch points; i >= 1; i --) {
6. for (int j = 0; j < number of shared variables; j ++) {
7. let P replay prefixFilei first and then execute in the least concurrency mode
8. if(the generated execution passes){
9. record switchPointi+1 as the erroneous switch point
10. break the outer for loop;
11. }
12. } // end inner for
13.} // end outer for
14. if(all the switch points are erroneous){
15. record switchPoint1 as the erroneous switch point
16. }
17. erroneousPatterns = {patterns collected with the erroneous switch point }
18. return erroneousPatterns

Fig. 4. Algorithm LocalizeErroneousPatterns

 A Dynamic Approach to Isolating Erroneous Event Patterns 103

A controlled execution is used to replay the prefix generated for a targeted switch
point and then force the execution to proceed in the least concurrency mode (line 7).
The reason why the least concurrency mode is used after replaying the prefix is as
follows. Atomicity violation and order violation are both due to interleavings of
concurrent shared variable accesses. Assume that switch point Pi is targeted, and that
switch point Pi+1 is the erroneous switch point. When the prefix for Pi is replayed, and
the least concurrency mode is used to complete the execution, interleavings of shared
variable accesses are minimized. This means that additional switch points, including
erroneous switch point Pi+1, can be avoided after Pi is replayed, allowing the execution
to pass. If the prevention of Pi+1 from being executed allows the execution to pass,
switch point Pi+1 is identified as the erroneous switch point.

Multiple controlled executions are used to determine whether a targeted switch
point is benign or not. The following heuristic is used to identify benign switch
points: if at least one controlled execution passes for a targeted switch point (it means
the execution with the targeted switch point can pass), then we conclude that this
switch point is benign and that the other failed controlled executions for this switch
point are due to the event patterns introduced during the least concurrency mode.
Likewise, if all the controlled executions for a targeted switch point fail, then this
switch point is identified to be the erroneous switch point. With this heuristic, we
ignore the possibility that the target switch point is benign and all the failures are due
to the least concurrency part. From the empirical study results in section 5, our
algorithm works effectively under this heuristic. Based on this heuristic,
LocalizeErroneousPatterns performs controlled executions until an execution passes,
or a maximum number of executions, which equals the number of shared variables,
have been performed (line 6). This limit is set to the number of shared variables
because of the strategy we use to generate controlled executions, which is described
as follows.

For each shared variable s, the last thread L that accessed s in the replay mode is
allowed to execute first in the least concurrency mode and continue execution until it
blocks or terminates. In this way, no accesses from other threads can interrupt the
access of s by L and we can avoid any potential erroneous event patterns for s that
may occur at the boundary between the replay part and the least concurrency part in
the controlled execution. The threads that execute after L are randomly selected. The
number of controlled executions required by this strategy is equal to the number of
shared variables. Note that this strategy does not allow us to determine with certainty
whether a targeted switch point is erroneous. However, the empirical study in Section
5 suggests that this strategy can be effective for many programs.

As we mentioned above, switch points are targeted in the reverse order of their
appearance in F. If switch points were instead checked in the order as they appeared
in F, we could not conclude that the first switch point Pi that makes all the controlled
executions fail is the erroneous switch point in F. This is because some switch point Pj
after Pi may allow the execution to recover, making a later switch point Pk the cause
of the failure. When switch points are checked in the reverse order, we can conclude
that the switch point Pi+1 that follows the first benign switch point Pi is the switch
point that caused the original execution to fail. This is because after Pi+1 is introduced

104 J. Xu et al.

into the executions all the controlled executions fail, which indicates that Pi+1 is the
switch point that causes the failure.

We point out that binary search cannot be used to find the erroneous switch point.
During our detection, the executions generated for each switch point can be all failed
or contain at least one passed execution, because the execution can recover from some
erroneous states. Since binary search can only be applied when the elements are
sorted, our search process cannot use binary search. For example, if we test all the
switch points in a failed execution, we may get the following result: P P F F F P F F
F. (P represents the switch point is benign and F represents the switch point is
erroneous) It indicates that the error introduced by switch point 3 can be recovered by
switch point 6. Applying binary search, we will identify switch point 3 as the
erroneous switch point. But this error cannot be seen from the output.

After an erroneous switch point is identified, phase 2 of
LocalizeErroneousPatterns identifies the erroneous event patterns related to the
erroneous switch point. Let switch point Pi be the erroneous switch point. Assume that
thread A executes between switch point Pi-1 and Pi, and thread B executes between
switch point Pi and Pi+1. To identify unserializable interleaving patterns, which are
associated with atomicity violations, for each shared variable we select one event
from each of the following three blocks of events: (1) the events executed by Thread
A between switch point Pi-1 and Pi; (2) the events executed by Thread B between
switch point Pi and Pi+1; and (3) the events executed by Thread A between switch point
Pj and Pj+1, where Pj is the first switch point at which control switched back to Thread
A after switch point Pi. The reason why the algorithm can detect unserializable
interleaving patterns from these three blocks of events is because all the unserializable
interleaving patterns share the following property. Referring to the five unserializable
interleaving patterns in Figure 1, for each pattern, after the first two events are
exercised, the execution enters an erroneous state. For example, for the pattern
(T1:R)-(T2:W)-(T1:R), the two reads by T1 expect to read the same value, but after
the execution of (T1:R)-(T2:W), the second read by T1 cannot read the same value as
the first read. Thus, if a failed execution has an unserializable interleaving pattern, the
erroneous switch point found by our algorithm is the switch point between the first
and the second event in the pattern, and the third event will be executed by the same
thread as the first event.

After the three blocks of events are identified, for each shared variable, the
algorithm selects one event from each of the three blocks, which is the same scheme
used by Falcon [5]. Preference is given to the selection of write events, since
unserializable interleaving patterns require at lease one write event [5]. The algorithm
then checks whether the selected events comprise an unserializable interleaving
pattern. All the patterns for all the shared variables are output to the user to guide
debugging. If we cannot find any unserializable interleaving patterns, we search for
conflicting interleaving patterns, which are associated with order violations, with a
similar process, but conflicting interleaving pattern only contains two events.

 A Dynamic Approach to Isolating Erroneous Event Patterns 105

5 Empirical Study

Our fault localization algorithm has been implemented in a tool called Huatuo. As a
proof-of-concept, we used Huatuo to conduct several empirical studies of our fault
localization technique on a suite of faulty multithreaded Java programs. Our objective
was to investigate the following two questions:

1. What is the most effective and efficient technique for controlling thread
executions during the least concurrency mode?

2. How effective and efficient is algorithm LocalizeErroneousPatterns at finding
the faults?

Since tools are not available for the techniques most closely related to ours, such as
replay analysis [23], Falcon [5], and delta debugging [1], we are not able to compare
experimental results from our technique with results from the other techniques. In
section 6, we will compare our approach to these techniques.

We selected 13 programs for our empirical study, all of which are faulty
concurrency programs that are used in [5]. Compared to the empirical study in [5], we
removed the following programs: (1) Hedc, which has a bug hidden in the library
code and we cannot instrument the library code; (2) Philo and Tsp, both of which
never failed even though we executed them for four hours; and (3) TreeSet, which has
the same bug with HashSet in the super class collection [9]. Note that for program
BufWriter, the main() function calls Thread.sleep() to give its child threads time to
finish. Our tool cannot deal with operation sleep(), so we modified BufWriter to use
join() instead of sleep(). In order to conduct the empirical study, we rewrite these
programs using the Modern Multithreading library. The failed executions were traced
and recorded using the Modern Multithreading library. We manually inserted some
assertions in the programs to determine whether a test execution fails or succeeds.

5.1 Study 1: Selecting the First Thread to Run in the Least Concurrency
Mode

The goal of this empirical study was to answer Question (1). To answer Question (1),
we implemented two techniques for controlling thread executions during the least
concurrency mode. Technique 1 used the strategy described in Section 4 for
controlling thread executions. This strategy makes a careful selection of the first
thread to execute during controlled executions. Technique 2 was to perform five test
executions for each switch point, with the first thread to execute randomly selected.

Table 1 shows the result of this study. The first column identifies the subject
programs. The second column shows the size of each program in terms of lines of
code (LOC). The third column shows the number of shared variables in each program.
The shared variables were identified manually based on documentation and source
code. The fourth column shows the number of threads for each program. The fifth
column shows the total number of executions when technique 1 was used to search
for the erroneous switch point. The sixth column shows whether technique 1 can

106 J. Xu et al.

successfully identify the erroneous event patterns. Columns 7 and 8 show the results
for technique 2 in the same format.

Table 1 shows that both techniques can successfully find the erroneous switch
points and the erroneous event patterns, except for program RayTracer. This is
because RayTracer contains a large number of threads and at some switch points the
controlled execution can pass only if a specific thread is executed first in the least
concurrency mode. Thus, the probability that the first thread chosen by technique 2
results in a passed execution is low. As we mentioned above, five controlled
executions were performed at each switch point using technique 2. However, this was
not enough for technique 2 to generate a passed execution. Technique 1 generated a
passed execution for RayTracer, and overall, technique 1 only required half of the
number of executions required by technique 2 for generating a passed execution for
the subject programs.

Table 1. Comparison between two strategies for controlled executions

Program LOC # of
shared

variables

of
threads

Technique 1 Technique 2

Total # of

executions

success Total # of

executions
success

Account 177 2 3 8 Yes 17 Yes
AirlineTickets 142 2 7 14 No 40 No
BubbleSort2 184 3 3 13 Yes 21 Yes
BufWriter 183 3 3 9 Yes 17 Yes
Lottery 154 2 3 11 Yes 23 Yes

MergeSort 375 3 4 10 Yes 16 Yes
Shop 226 11 3 10 Yes 22 Yes
Arraylist 5898 3 3 8 Yes 20 Yes
HashSet 7103 10 3 7 Yes 11 Yes
StringBuffer 1380 33 3 13 Yes 21 Yes
Vector 760 5 3 10 Yes 16 Yes

Cache4j 3976 2 2 3 Yes 6 Yes
RayTracer 2047 2 17 14 Yes 41 No

5.2 Study 2: Effectiveness and Efficiency

The results in Table 1 show that our technique correctly identified the erroneous event
patterns for all the programs except program AirlineTickets. Program AirlineTickets
fails even when the program executes serially and all of the passed executions need an
extra common switch point that is missing in the failed executions. So all the
controlled executions are failed, which make our algorithm to conclude that the first
event after the first switch point is erroneous. But the real fault is that it needs a
context switch at a specific point. Also, our algorithm identified a single erroneous
event pattern for all the programs except for program Bubblesort2, for which two

 A Dynamic Approach to Isolating Erroneous Event Patterns 107

patterns were identified, which means one or both of the patterns can help the user
localize the faults. In general, the algorithm does not make assumptions about what
synchronization mechanisms are used in the concurrent program and can localize the
faults for 12 out of 13 programs except the one that cannot pass when it is executed
serially.

The instrumentation for the replay and the least concurrency mode slows down the
executions. We performed 6 executions on the original version and the instrument
version of program RayTracer which was the largest program in our benchmark. The
slowdown factors are 22.4, 20, 21.5, 25.2, 26.4, and 25.25. On average, our
instrumented executions took 23.5x longer than non-instrumented executions. This is
faster than the results in [3, 11, 24], which reported average slowdowns from 25x [3]
to more than 200x [24]. Although the slowdown of Falcon [2] is 9.9x, which is faster
than our tool, our systematic search technique needs fewer executions than the
techniques based on training [2, 3].

6 Related Work

In [23], the authors tried to distinguish benign races from erroneous ones after they
detect all the data races. They execute a program twice for a given data race — once
for each of the two possible orders of conflicting memory operations. However, when
testing the alternative order, there is no guarantee the alternative execution is feasible.
As mentioned in section 4.2.1 in [23], the alternative execution is possible to follow a
totally different data and control flow, making it impossible to execute the alternative
order of conflicting memory operations. The authors classify this as a replay failure,
and in their experiments, 29 benign data races were potentially harmful races. Using
the least concurrency mode of execution, our technique can determine whether or not
a data race is benign by only replaying the orders of conflicting memory operations
that appear in the failed execution, without having to test the alternative orders.

The AVIO method [3] uses heuristics to automatically extract access interleaving
invariants and detect violations of these invariants at run time. Defuse [22] uses
training to learn definition-use invariants and considers violations of these invariants
to be erroneous. Since both AVIO and Defuse are invariant-based approaches, they
can only report erroneous patterns that only appear in failed executions. Our
technique can identify erroneous patterns in the failed execution, even when these
patterns also appear in passed executions. The reason why AVIO and Defuse may
miss some patterns is because it is assumed that any execution that contains an
erroneous pattern will fail. However, this is not always true. A pattern that triggered
the failure in a failed execution can also appear in passed executions [5].

Falcon [5] monitors memory-access sequences among threads, detects data-access
patterns associated with a program’s pass/fail results, and ranks data-access patterns
with regards to how suspicious they are. The main drawback of this technique is that
highly suspicious patterns may not be the patterns that caused a failure; rather, they
may be patterns that are resulted from the erroneous patterns. Our technique
systematically tests the switch points in the failed execution one by one, and can
pinpoint the actual erroneous pattern that triggers the failure.

108 J. Xu et al.

By systematically narrowing down the difference between a failed thread schedule
and a passed thread schedule, the Delta Debugging approach [1] can pinpoint the
thread switch that differs between the two schedules and that if reconciled, would flip
the result of the two schedules. As shown in section 3, such a thread switch may not
actually produce an erroneous state. Our technique can find the switch point and the
event pattern that actually produces an erroneous state which we believe is of more
help for debugging.

7 Conclusion

In this paper, we presented an algorithm for identifying erroneous event patterns in
concurrent executions. Failed executions are characterized as a sequence of events,
which capture the interleaving of read and write events on shared variables. The
algorithm inputs the sequence of switch points of a failed execution, and then uses
controlled executions to distinguish erroneous switch points from benign switch
points. The output of the algorithm is the erroneous event patterns. The event pattern
can guide the user in locating the actual fault that triggered the failure. The algorithm
is implemented in a tool called Huatuo. The results of our empirical study show that
Huatuo can effectively and efficiently identify erroneous event patterns.

There are a number of venues to continue our work. First, we plan to conduct more
experiments to evaluate the effectiveness of our approach. In particular, we want to
conduct experiments on more complex real-life programs. Second, our approach
currently deals with switch points, and a concurrent execution may consist of a large
number of switch points. We will explore the idea of grouping switch points. Doing
so will help reduce the number of switch points that have to be checked by our
approach. Finally, we want to further develop our prototype tool and release it as an
open-source tool.

References

1. Choi, J., Zeller, A.: Isolating Failure-Inducing Thread Schedules. In: Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 210–220 (July 2002)

2. Park, S., Vuduc, R., Harrold, M.: A Unified Approach for Localizing non-deadlock
Concurrency Bugs. In: 2012 IEEE Fifth International Conference on Proceedings of the
Software Testing, Verification and Validation (ICST), pp. 51–60 (April 2012)

3. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting Atomicity Violations via Access
Interleaving Invariants. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 37–48
(December 2006)

4. Park, S., Lu, S., Zhou, Y.: CTrigger: Exposing Atomicity Violation Bugs from Their
Hiding Places. In: Proceedings of ISSTA 2002 Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 25–36 (March 2009)

5. Park, S., Vuduc, R., Harrold, M.: Falcon: Fault Localization in Concurrent Programs. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
pp. 245–254 (2010)

 A Dynamic Approach to Isolating Erroneous Event Patterns 109

6. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-serializability
violations. In: ACM/IEEE 30th International Conference on Proceedings of the ICSE
2008, pp. 231–240 (May 2008)

7. Lai, Z., Cheung, S., Chan, W.: Detecting atomic-set serializability violations in
multithreaded programs through active randomized testing. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pp. 235–244 (2010)

8. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in an
object-oriented language. In: Proceedings of the Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 334–345
(2006)

9. Sen, K.: Race Directed Random Testing of Concurrent Programs. In: Proceedings of PLDI
2008, pp. 11–21 (2008)

10. Carver, R.H., Lei, Y.: A Class Library for Implementing, Testing, and Debugging
Concurrent Programs. Int. Journal on Software Tools for Tech. Transfer 12(1), 69–88
(2010)

11. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multithreaded
programs. In: POPL, pp. 256–267 (2003)

12. Wang, L., Stoller, S.D.: Static analysis for programs with non-blocking synchronization.
In: PPoPP (2005)

13. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data
race detector for multithreaded programs. Trans. Comput. Syst. 15(4), 391–411 (1997)

14. Ronsse, M., Bosschere, K.D.: RecPlay: a fully integrated practical record/replay system.
Trans. Comput. Syst. 17(2), 133–152 (1999)

15. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455 (June 2007)

16. Flanagan, C., Freund, S.N.: Type-based race detection for java. In: PLDI, pp. 219–232
(June 2000)

17. Godefroid, P., Nagappan, N.: Concurrency at Microsoft: An exploratory survey. In:
Workshop on Exploiting Concurrency Efficiently and Correctly (2008)

18. Poulsen, K.: Tracking the blackout bug. SecurityFocus (February 2004),
http://www.securityfocus.com/news/8412

19. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a benchmark for
testing tools for multi-threaded programs. Concurr. Comput.: Pract. Exper. 19(3), 267–279
(2007)

20. Artho, C., Havelundand, K., Biere, A.: A high-level data race. Journal on Software
Testing, Verification & Reliability (2003)

21. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press,
Cambridge (2008)

22. Shi, Y., Park, S., Yin, Z., Lu, S.: Do I use the wrong definition DeFuse definition-use
invariants for detecting concurrency and sequential bugs. In: Proceedings of the OOPSLA,
pp. 160–174 (2010)

23. Narayanasamy, S., Wang, Z., Tigani, J.: Automatically classifying benign and harmful
data races using replay analysis. In: Proceedings of the PLDI 2007 Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 22–31 (2007)

24. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors in
concurrent programs. In: Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2006) (2006)

Author Index

Abreu, Rui 25

Bradbury, Jeremy S. 73

Cardoso, Nuno 25
Carver, Richard 85, 97

Dias, Ricardo J. 49

Jalbert, Kevin 73

Kawahara, Ryo 13
Kelk, David 73
Kolesnichenko, Alexey 61
Kung, David 97

Lei, Yu 85, 97
Lourenço, João M. 49
Lucas, Lars 1

Meyer, Bertrand 37, 61

Nakada, Takeo 13
Nanz, Sebastian 37, 61

Ono, Kouichi 13

Schill, Mischael 37
Schuele, Tobias 1
Schwitzer, Wolfgang 1

Vale, Tiago M. 49

Xu, Jing 97

	Preface
	Organization
	Table of Contents
	Performance Analysis and Algorithms

	Self-timed Scheduling and Execution of Nonlinear Pipelines with Parallel Stages
	1 Introduction
	2 Foundations
	3 Scheduling Algorithm
	4 Implementation
	5 Experimental Results
	6 Summary and Conclusion
	References

	MVA-Based Probabilistic Model of Shared Memory with a Round Robin Arbiter for Predicting Performance with Heterogeneous Workload
	1 Introduction
	2 Related Work
	3 Method
	3.1 Hierarchical Modeling
	3.2 Overview of Probabilistic Model
	3.3 Effects of Collision with Accesses Waiting for Arbitration
	3.4 Reduction of Complexity
	3.5 Round-Robin Arbitration
	3.6 Bursty Memory Access

	4 Evaluation
	4.1 Comparison with Cycle-Accurate Simulation
	4.2 Comparison with Benchmark Programs
	4.3 Simulation Time

	5 Conclusion
	References

	MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search Algorithm
	1 Introduction
	2 Minimal Hitting Set Problem
	3 Staccato
	4 MHS2
	5 Results
	5.1 Benchmark 1
	5.2 Benchmark 2
	5.3 Benchmark 3

	6 Conclusions
	References

	Programming Models and Optimization

	Handling Parallelism in a Concurrency Model
	1 Introduction
	2 Performance Issues of Race-Free Models
	3 Array Slicing
	3.1 Slices
	3.2 Views

	4 Performance Evaluation
	4.1 Quicksort
	4.2 Matrix Multiplication

	5 Related Work
	6 Conclusion
	References

	On the Relevance of Total-Order Broadcast Implementations in Replicated Software Transactional Memories
	1 Introduction
	2 Software Transactional Memory Replication
	2.1 Total-Order Broadcast
	2.2 Certification-Based Protocols

	3 On the Relevance of Total-Order Broadcast Implementations
	4 Implementation
	5 Experimental Results
	5.1 Red-Black Tree
	5.2 Intruder
	5.3 Genome
	5.4 Vacation

	6 Related Work
	7 Concluding Remarks
	References

	How to Cancel a Task
	1 Introduction
	2 Classification of Task Cancellation Techniques
	2.1 Client-Based Cancellation
	2.2 Supplier-Based Cancellation
	2.3 Client/Supplier Combination

	3 Cooperative Cancellation in SCOOP
	3.1 Overview of SCOOP
	3.2 Choosing a Cancellation Mechanism for SCOOP
	3.3 SCOOP with Cooperative Cancellation
	3.4 Example of Usage

	4 Related Work
	5 Conclusion
	References

	Testing and Debugging

	Automatically Repairing Concurrency Bugs with ARC
	1 Introduction
	2 Background
	2.1 Concurrency Bugs
	2.2 Genetic Algorithms

	3 Motivating Example
	4 Phase 1: Fixing Deadlocks and Data Races
	5 Phase 2: Optimizing Fixes from Phase 1
	6 Evaluation
	6.1 Experimental Results

	7 Related Work
	8 Conclusions and Future Work
	References

	A Modular Approach to Model-Based Testing of Concurrent Programs
	1 Introduction
	2 LTS Models
	2.1 Labeled Transition Systems
	2.2 Adding Annotations

	3 Modular Testing
	3.1 Implementation Relation M ≤F CP
	3.2 A Modular Implementation Relation for ≤F
	3.3 A Modular Testing Procedure for M ≤F CP

	4 Modular Test Generation Using Thread Interaction Models
	4.1 Using Reachability Analysis to Generate Thread Interaction Models
	4.2 Generating Test Sequences from Thread Interaction Models

	5 Empirical Study
	6 Related Work
	7 Conclusion
	References

	A Dynamic Approach to Isolating Erroneous Event Patterns in Concurrent Program Executions
	1 Introduction
	2 Preliminaries
	3 A Motivating Example
	4 Our Algorithm
	5 Empirical Study
	5.1 Study 1: Selecting the First Thread to Run in the Least ConcurrencyMode
	5.2 Study 2: Effectiveness and Efficiency

	6 Related Work
	7 Conclusion
	References

	Author Index

