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Abstract

Ensemble forecasting has gained a great deal of popularity for addressing and
estimating uncertainty associated with both meteorologic and hydrologic fore-
casts over the past decade. While ensemble-based hydrologic forecasts have been
in routine operations for longer-term forecasts for many years, the notion of short-
and medium-term probabilistic forecasts in support of water and flood manage-
ment efforts is relatively new and is a developing science and service. Approaches
to effectively conveying and communicating hydrologic forecast uncertainty are
being actively developed and vetted with potential user communities. Important
experience and insight will be gained over the next few years as the community of
developers, forecasters, and end users work to leverage probabilistic forecasts in a
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risk-based decision environment. With proper focus and support, these efforts
have the potential to significantly improve flood, ecosystems, and water manage-
ment with benefits to multiple sectors of our society.
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Water resources - Hindcasting

1 Introduction

Hydrologic ensemble forecasting procedures have made great strides over the past
decade. Progress has been attributable to a growing acceptance that uncertainty is
something that can be leveraged to make more informed decisions (National
Research Council of the National Academies 2006) and substantial community
support as evidenced through the success of the Hydrological Ensemble Prediction
Experiment (HEPEX; www.hepex.org).

Among the most vexing challenges of the hydrologic ensemble prediction pro-
cess is the appropriate conveyance of uncertainty information to decision makers.
These decision makers represent many sectors (e.g., emergency services, power
generation, recreation, agriculture, navigation, municipal water supply, industry,
ecological management). Each has different and specialized needs and each has a
different risk tolerance. In addition, their statistical background varies from nearly
nothing (i.e., plays the lotto) to very sophisticated.

This chapter describes approaches and examples of how ensemble-based hydrologic
forecast information is conveyed to users by the US National Weather Service today.
Positive and negative attributes of approaches along with challenges are presented.

2 Conveying Probabilistic Streamflow Information

There are at least four fundamental approaches that can be used to provide uncer-
tainty information associated with forecast streamflow. The oldest approach is to
simply accommodate the expected “error” as a function of the user’s substantial
experience with forecasts over time and, in particular, events that were memorable.
This anecdotal uncertainty is what the hydrologic forecast and user community is
attempting to supplant with objective information generated through ensemble
techniques. More quantitative vehicles include:

» Generating a collection of ensemble-based products (text and graphics).

» Providing access to an interface that can create custom ensemble-based products
(text and graphics).

» Providing ensemble members (data) that can be analyzed by end users in their
own decision support architecture. Each approach has benefits and challenges and
experience which has shown that all three, together, may represent a more
reasonable approach.


http://www.hepex.org/

Best Practice in Communicating Uncertainties in Flood Management in the USA 1095

2.1 Static Product Generation

Ensemble forecasts can be analyzed to address a seemingly infinite number of
information requirements. This flexibility is beneficial, but it also creates challenges
for forecast producers. What are the “best” sets of static graphics and text products
that meet the greatest need for information? The fundamental questions associated
with product generation are:

»  What is the time period of interest (e.g., next 3 days, next 2 weeks, month of June)?

* What is the data aggregation period (e.g., hourly, daily, weekly, monthly, sea-
sonal, annual)?

* What aspect of flow is of interest (e.g., summation (volume), mean, peaks,
minimums, time to a threshold of interest)?

The more precisely the questions are addressed, the more useful the information
for a specific application. Sounds simple enough, but ultimately, choices must be
made if the number of routinely generated products is limited.

One of the most vexing issues encountered in generating ensemble-based
graphics involves the impact of time aggregation on probability. Customers of
hydrologic forecast information really want to see a “hydrograph” with associated
uncertainty or “error bars.” What they really get is a series of histograms, at the time-
step of analysis, placed side-by-side in sequential order. Interpretation of these sorts
of graphics can very easily lead toward the wrong conclusions. Look first at Fig. 1.
This graphic includes ten (10) 1-day histograms for flow and stage. It has the look of
a hydrograph, but the 1-day time-step defeats that interpretation tendency to some
degree. One interpretation of this graphic might be that “the river has a less than a ten
percent chance of exceeding 12 feet over the next 5 days.” Now compare this with
Fig. 2. This figure shows the distribution of peak flows within the coming 5-day
period. This graphic suggests that the “river has a probability of between 25% and
50% of exceeding 12 feet over the next 5 days.” The proper interpretation of Fig. 1 is
“the river has less than a ten percent chance of exceeding 12 feet on any of the next
5 individual days”; however, Fig. 2 indicates that collectively (all 5 days considered
together), the probability of exceeding 12 feet is much higher. This phenomenon
becomes more pronounced as the time-step of the analysis gets shorter. For example,
if the time-step is reduced to 1 h, Fig. 1. really begins to look like a hydrograph and
the likelihood of any extremes (peaks or minimums) is further reduced by appear-
ance because their likelihood associated with any specific hour is lower than it is for
any day or the entire period of consideration (e.g., 5 days). Best practices, therefore,
limit the generation of graphics that are easily misinterpreted.

It is important for the users of hydrologic ensemble forecasts to continually
remember that the generated products are simply an interpretation of the current
set of ensemble members. For that reason, it remains good practice to provide a trace
plot (spaghetti) among the set of routinely generated graphics. The 10-day trace plot
that serves as the basis for the information in Figs. 1 and 2 is shown in Fig. 3. Note
that while the analyzed probabilities shown in Figs. 1 and 2 may be well below the
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Fig. 1 Streamflow histogram, 1-day duration for Navarro River in California

region of concern for an emergency/resource manager, a limited number of traces
may be very problematic and therefore very much worth being aware of.

Operators of reservoirs are normally more interested in volumetric (often
multiday) forecasts of inflow rather than instantaneous or single day inflows. Under-
standing that the 1-day flows as shown in Fig. 1 cannot to be added together to form
a probabilistic multiday volume, graphics such as is shown in Fig. 4 can serve a
critical need of the reservoir management community. Again, without the provision
of an accumulated volume plot (Fig. 4), a reservoir operator might be led to
misinterpret a daily histogram (e.g., Fig. 1).

For some time, River Forecast Centers in the USA have generated 90-day
graphics that depict weekly probabilities of maximum stage (Fig. 5) and the maxi-
mum stage probability distribution over the entire 90-day period (Fig. 6). These sorts
of graphics are particularly valuable when preparing for spring snowmelt flooding as
often occurs in the upper Midwest of the USA. As with all longer-range products,
they make heavy reliance on the information content of the model states.
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Fig. 2 Streamflow histogram, 5-day duration for Navarro River in California

2.2 Interactive “User” Product Generation

Given the diversity of interests in streamflow projections and the multitude of
options for periods, durations, and flow attributes (maximum, minimum, mean,
summation, and time to a threshold of interest), providing customers with a tool
to analyze a set of ensembles using their specific criteria makes a lot of sense.
This sort of feature does come with risk as it assumes that the user is well
informed enough to make the required selections and properly interpret the
results. This represents a minority of the total number of forecast customers,
but to those who use it, it is a very important and powerful service. Figure 7
shows the interface supported by the California-Nevada River Forecast Center. A
substantial “help” section is provided to assist users in navigating the options and
interpreting the product generated. This sort of interface allows users to “narrow”
the scope of their information need and generate products that directly address
their requirements.
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Fig. 3 Ensemble streamflow traces for Navarro River in California

23 Provision of “Raw” and “Postprocessed” Ensembles

While forecasters and developers struggle with the “best” ways of describing the
uncertainty of hydrologic ensemble forecasts with complex and often difficult to
interpret graphics, the most effective practice may be to simply provide the data and
allow the customer to perform an analysis that is meaningful to them. For sophisti-
cated users with resources, this is clearly the most effective alternative. As an
example, a reservoir operator with a model that can simulate operations can easily
process each member of an ensemble set to evaluate the benefits/costs of a selected
release strategy. Alternatively, that same operator will have to use their imagination
to understand how a histogram of daily inflow probabilities will impact their
regulation strategy. The difference is profound. Substantial progress is being made
along this front. In California alone, the INFORMS project (Georgakakos
et al. 2007) as well as the Yuba-Feather Forecast Coodinated Operations (FCO)
project have engineered solutions to leverage the full potential of ensemble forecasts
in a decision support model. Figure 8 shows the conceptual process schematic for the
Yuba-Feather FCO ensemble-based decision support model.

Just as ensemble Numerical Weather Prediction (NWP) models exhibit biases and
inappropriate spread, so too will the hydrologic forecasts without some sort of
postprocessing methodology (Demargne et al. 2014). Sophisticated users, however,
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Fig. 4 10-day accumulated inflow volume for Lake Sonoma in California

have a choice in this process. They may choose to accept the “raw” ensembles
without the benefit of postprocessing and instead apply their own error correction
processes based on an adequately long history of performance. Such is the case for
the ensemble forecast services provided to the New York City Department of
Environmental Planning (NYCDEP) by the US National Weather Service. This
may be the most efficient way of objectively accounting for ensemble reliability
issues, but it also may result in additional workload for operational entities required
to issue both raw and postprocessed ensemble information.

24 Managing Expectations

It is clear that, given all of the assumptions that must be made to generate an
ensemble-based hydrologic forecast, there will be uncertainty in the estimates of
uncertainty. The “discrimination” in the system may not be able to reliably differ-
entiate between 85% and 90% probability of exceedance. Further, work is needed to
help users understand that some risk must be assumed if one expects to leverage
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uncertainty in the long run. If you need to be 99% sure before you will take action,
you will likely miss a lot of opportunities.

3 Applications to Water Resources Forecasting

Ensemble applications to water resources forecasting are not new but have gained
substantial growth and acceptance over the past decade. Early work appeared in the
1970s and the National Weather Service formalized a process within their
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Fig. 6 Weckly histogram of maximum stage for the Red River in Minnesota

forecasting system in the mid-1980s (Day 1985). Despite this, the predominate
approach for seasonal streamflow forecasting in the Western USA has remained
some form of regression modeling driven with data available on a monthly basis
(Garen 1992). More recently, forecasters have begun to integrate daily observations,
and the US National Weather Service is in the process of shifting toward full reliance
upon ensemble processes evaluated every day and year-round.

The attributes of relying on ensemble process for longer-range water resources
forecasting include:

— Integration with short-term hydrologic forecasting procedures

— Use and integration of near real-time observations (e.g., precipitation, air tem-
perature, streamflow)

— Integration of current weather and climate forecast information

— Ability to update on a daily basis

As this transition takes place, forecasters are experimenting with graphical
products that describe both the uncertainty as well as how the forecasts have changed
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Fig. 7 90-day Exceedance probability plot for the Red River in Minnesota

or “trended” over time. Figures 9, 10, 11, and 12 show potential candidate graphics
that describe expected volume over time. The “trend plots” in Figs. 10 and 11 do not
show uncertainty but do show how the 50% exceedance probability forecast over
seasonal volume has changed over time. Note the precipitous drop in expected water
supply volume that took place during the fall and early winter as California received
only a very small percentage of normal precipitation during this period. Assuming
that the ensemble forecasts leverage the skill in the weather and climate forecasts,
one can quickly see that the forecasts were not effective in detecting the coming
drought with much or any lead time. This may seem discouraging, but it does
highlight the need, value, and process for leveraging improved seasonal weather
predictions through a hydrologic ensemble forecasting framework.

In the water resources services domain, the streamflow forecast alone is not
adequate to provide customers with the complete picture of the water supply
situation. In many areas, reservoirs provide a buffer for interannual variation as
well as a means for shifting runoff from the time of occurrence to the time of need
(e.g., irrigated agriculture). Information that summarized and combines the expected
runoff with the existing reservoir storage is critical for assessment purposes. In
addition, water supply customers have historically expressed a need to see informa-
tion that supports the streamflow forecast itself, such as monthly and seasonal
precipitation and snowpack. Comparison of precipitation and snowpack when
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expressed as a percent of normal provide excellent context for understanding and
establishing confidence in a specific volumetric seasonal streamflow forecast.

4 Hindcasting and Validation

The key attribute of ensemble-based probabilistic hydrologic forecasts that makes
them useful is reliability. Reliability means that the ensemble members, as a package,
are (1) unbiased and (2) have appropriate spread. If the ensembles have not been
demonstrated to be adequately reliable, the user incurs a great deal of risk when
applying the information contained in the ensembles to their specific decision-
making process.

The process of “hindcasting” is well established (Demargne et al. 2014). In
essence, the complete hydrologic forecasting system is run in a retrospective process
to effectively create the set of forecasts that would have been generated over an
adequately long period of time. That period of time is normally constrained by the
availability of numerical weather prediction (NWP) models, used to force the
hydrologic model set, to the last 25 or 30 years (Hamill et al. 2013). The process
of generating the NWP hindcasts requires a great deal of computer resources and is
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Fig. 9 Monthly volume histogram for 1-year for the Feather River inflow to Lake Oroville in
California

therefore expensive. Once generated, the NWP hindcast serves as a rich dataset that
can be used to understand the behavioral climatology of the specific NWP. Everyone
accepts that NWPs are not perfect. They are biased to some extent and exhibit
uncertainty. The hindcasts allow for measurements of the bias (difference between
forecasts and observations) and uncertainty (correlation between forecasts and
observations). This hindcast analysis information allows for the proper interpretation
“today’s” NWP model run and the effective integration of the NWP forecast
information into the hydrologic ensemble forecast process. One approach for
doing that is well described by Demargne et al. (2014).
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Fig. 10 Seasonal (April-July) accumulated volume trend plot for the Feather River inflow to Lake
Oroville in California

It is important to note that the NWP hindcasts are specific to a model and the
parameterization at the time of hindcast generation. If changes are made to the NWP,
the hindcasts would simply no longer apply and would need to be rerun, reanalyzed,
and reintergrated into the hydrologic ensemble forecast process. Further, customers
of the hydrologic ensembles may need to make adjustments to their decision models
to accommodate any resulting shifts. For these reasons, it is critically important that
“frozen versions” of NWPs are operationally supported when the user community is
dependent upon representative hindcasting information. Further, it is important to
recognize that both the hydrologic forecast community and the user community need
time (months) to integrate new NWP hindcast information before a “frozen version”
is operationally discontinued.

While the hindcast process provides a way to understand the behavior of the
complete forecasting system and resulting information, it is not perfect. Fully
replicating the somewhat interactive hydrologic forecasting process in practice
today is not feasible. It is generally accepted that hydrologic forecasters add value
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Fig. 11 Water Year (October-September) accumulated volume trend plot for the Feather River
inflow to Lake Oroville in California

(reduce errors) through interaction with the hydrologic forecasting modeling system.
This might take the form of small adjustments to forcing data (precipitation or air
temperature) or adjustments to model states to better align model simulations with
observations of streamflow during the recent observed period. Even if you were able
to insert a forecaster into the hindcast process (very labor intensive), it would be
extremely difficult to replicate the full forecasting environment that influences human
decision-making. As such, the hydrologic ensemble hindcasts are an approximation of
what we should expect from the current forecast process, but they may exhibit slightly
more uncertainty as they do not benefit from forecaster experience and interaction.

4.1 Validation and Associated Services

With all their conditions and issues, hydrologic ensemble forecast hindcasts offer keen
insight into the value of current probabilistic hydrologic forecasts. They provide the
body of information that allows for the development of trust. Ensembles allow for a
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FEATHER RIVER - LAKE OROVILLE (ORDC1)

Latitude: 39.53°N Longitude: 121.52°W  Elevation: 922 Feet
Location: Butte County in California River Group: Lower Sacramento

Issuance Time: Feb 28 2014 at 10:25 AM PST
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Fig. 12 Probablistic water year (October-September) accumulated volume trend plot for the
Feather River inflow to Lake Oroville in California

nearly infinite number of questions to be addressed. In turn, the hindcast analysis allows
one to assess the reliability of the information used to address those very same questions.

Ensemble verification capability such as those described by Brown et al. (2010)
provide the flexibility and rigorous statistical testing needed. Substantial education
and training are needed to help consumers of this information to fully understand the
implications of the ensemble forecast verification metrics and how they affect their
specific decision-making process. Substantial work will be required to create vali-
dation information that is general enough to apply to most cases and specific enough
to build/demonstrate value and trust.

5 Conclusion

The pace of improvement in hydrologic forecasts is steady, but very slow. Rather
than waiting for the perfect forecast, a great deal of value and insight can be gained
by understanding and leveraging the uncertainty associated with today’s forecast.
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Resource managers are pressed harder every day to work “smarter.” Integrating risk
into every aspect of decision-making is warranted as long as the information being
used is reliable and understood. While hydrologic forecasters and water resource
managers have years of experience in using probabilistic seasonal streamflow
volume forecasts, the notion and technology of short- and medium-range probabi-
listic hydrologic forecasts is quite new. Developers, forecasters, and users are
challenged to create, provide, and integrate probabilistic information that will yield
understanding and improved outcomes for end users.
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