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Abstract
Model, data, and parameter estimation are three fundamental elements in hydro-
logic process modeling and forecasting. Recent progresses in hydrologic model-
ing have been made toward more efficient and effective estimation of model
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parameters. In this chapter, classical and recently developed parameter
optimization methods and their applications in hydrological model calibration
are reviewed. Those methods include gradient-based optimization methods,
direct search methods, and recently developed stochastic global optimization
methods. A recently developed surrogate model approach, with the purpose
to reduce computational burden of model which runs through replacing
the hydrologic process model with a cheaper-to-run surrogate model, is
also discussed. Extending from a single objective function parameter optimi-
zation, multiobjective optimization methods and their core concept in deriving
trade-offs are also summarized. Examples are provided to demonstrate
the strengths and limitations of optimization algorithms summarized in
this chapter.

Keywords
Optimization · Hydrologic Model · Evolutionary Algorithm · Automatic
Parameter Estimation · Surrogate Model

1 Introduction

Hydrologic models are extensively used in academia, industry, and operating
agencies for flood forecasting, streamflow simulation, and water resources man-
agement. The successful use of hydrologic models to simulate natural processes
depends on many factors, including (1) the mathematical formulation of hydro-
logic model, i.e., the mathematical representation of natural rainfall-runoff pro-
cesses in a certain level of sophistication and its corresponding assumptions;
(2) sufficiency and accuracy of observation data at proper temporal and spatial
resolutions, such as in situ streamflow observations and precipitation measure-
ments from rain gauge, radar network, or remotely sensed information; (3) the
properly calibrated model parameters (i.e., the global optimal parameters in the
feasible domain), which significantly affect the accuracy and uncertainty of hydro-
logical prediction.

This chapter presents model parameter calibration methods in three parts. The
first part reviews recent development of the methods to estimate optimal parameters
of hydrologic models, especially those heuristic methods used in automatic param-
eter estimation. The second part focuses on the search mechanism and procedures
employed in different methods. And the third part provides examples to illustrate the
strengths and limitations of different methods. An overall review of this chapter is
summarized below.

This chapter starts with an introduction of hydrologic models and a general
mathematical formulation of parameter estimation from the maximum likelihood
perspective. Two classical parameter estimation methods are introduced, namely the
Steepest decent method and Newton method, known as the gradient-based local
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search methods. Those classical gradient-based methods are efficient, but require the
objective function to be differentiable, i.e., gradient of the objective function exists
for the entire parameter space. Differing from the gradient-based methods, another
type of parameter estimation methods is called direct search methods, which does
not require information or the existence of gradient of the objective function.
A Simplex Downhill method is presented in detail as one of the efficient and robust
direct search methods. Both the methods introduced as gradient-based methods and
the Simplex Downhill method belong to the same category of local search method,
because the search always starts at certain location in the parameter space, evolves
toward a gradient decreasing direction in the objective function space, and finally
stops when method identifies the gradient of objective function equals or approxi-
mately equals zero. As the complexity of hydrologic model and number of param-
eters to calibrate increase, the response surface of an objective function sometime
become multimodal, i.e., there are multiple local optimums instead of a single local
optimum for concave or convex problems. The roughness and multimodality place
great challenges for those local search methods, and global optimization methods
turn out to be powerful in addressing those issues. In the global optimization
subsection, a number of nature phenomenon inspired optimization algorithms are
summarized in detail, including the genetic algorithms (GAs), the simulated
annealing method (SA), the particle swarm optimization (PSO), the ant colony
optimization (ACO), and the shuffled complex evolution UA global optimization
scheme (SCE-UA). Though the global optimization methods are effective in finding
the global optimal parameter set, they generally require up to tens of thousands of
model runs to find the global optimal solution. Given the severe computational
constraint on solving such an optimization problem and the further increases of
model complexity in operation (e.g., the models require a large amount of CPU time
to run), many efforts are made by researchers to reduce the computational burden
and replace the expensive simulation model with a cheaper-to-run surrogate model.
Some fields also refer to the surrogate modeling as function approximation, meta-
modeling, response surface method, or model emulation. Once the surrogate model
is constructed, a global optimization algorithm can be used to identify the optimal
parameter set. These kinds of algorithms are called surrogate modeling-based
optimization methods. Last, we summarize several fundamental differences between
single and multiple objective optimization due to the fact that many real-world
problems are intrinsically multiobjective optimization problems. Examples of
using some introduced methods in real-world study are provided at the end of this
chapter, through which authors want to deliver the message that the practical use and
selection parameter estimation method should be originated from the ultimate goal
of application. There will be no single parameter estimation method that is superior
than another considering all aspects of performances, i.e., evaluation metrics. One
algorithm is inevitably better than another in a certain way, and vice versa. Detailed
introduction of each type of method, discussion of the pros and cons, and examples
are included in the rest of chapter.
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2 Hydrologic Model Parameter Calibration

The rainfall-runoff conversion is a highly nonlinear process, which can be simulated
by a hydrologic model (Chiu and Huang 1970; Kulandaiswamy and Subramanian
1967; Pilgrim 1976; Singh 1964). There exists a plethora of rainfall-runoff models of
various complexities, from simple black-box models which are derived from statis-
tical relationships between rainfall and runoff observations, to conceptual models
based on the physical principles or empirical relationships among hydrological
variables, and to the physically-based distributed models which are based on phys-
ical laws of mass, energy, and momentum conservation. Many of those models are
shown to be effective in forecasting certain important features of the hydrograph,
such as the rising limb, the peaking time and the peak flow rate, and/or the flow
volume (Kitanidis and Bras 1980; Sorooshian 1983). All of those models contain
model parameters which appear in model equations as constants or exponents and
are generally nonobservable at the scale of applications. The ability of the rainfall-
runoff models to capture the real-world hydrological processes is dependent on how
those parameters are specified (Duan et al. 2006). In practice, model parameters are
often tuned to improve the fitting between model simulations and observations. This
process is also known as model calibration. Because of the highly nonlinear nature of
the hydrological processes, calibration of rainfall-runoff models is faced with enor-
mous challenges that require sophisticated mathematical tools, significant amounts
of calibration data, and some degree of model knowledge (Duan et al. 1992).

A rainfall-runoff model can be represented as a mathematical function of numer-
ous variables, including the forcing inputs (e.g., precipitation and temperature),
the outputs (e.g., streamflow discharge, evapotranspiration), the transfer functions
(i.e., the nonlinear equations governing the relationships among variables), the
model states (e.g., river stage, soil moisture storage, snow cover, and snow water
equivalent), and the model parameters. The transfer functions (g) consist of either a
set of physically based or conceptual hydrologic functions or a list of experimental
functions:

yt ¼ g x0, xt,I ,θð Þ þ ϵt (1)

where xt represents the model state variables; x0 is the initial model states; I is the
input variables; θ is the model parameter vector; ytis the model outputs and the last
term; and ϵt is the model estimation error. Model calibration can be formulated as an
inverse problem as illustrated in Fig. 1.

As in any inverse problems, a proper objective function must be specified in order
to evaluate the goodness-of-fit between the model simulations and the actual obser-
vations. The error term ϵt= yt� g(x0, xt, I, θ) is a function of the parameter vector θ.
θ can be treated as a random variable. The objective function can therefore be
represented by a likelihood function expressed as below:

L θjdatað Þ ¼ f y1,y2, . . . ,ynjθð Þ (2)
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where L(θ| data) is the likelihood of θ given the data, which is equal to the joint
probability density of all observations yt, t = 1, . . ., n, given θ, f(y1, y2, . . ., yn| θ).
If one assumes statistical independence among yt, then Eq. (2) can be written as:

L θjdatað Þ ¼
YN
t¼1

f ytjθð Þ (3)

In practice, it is more convenient to compute the log likelihood function ln. L(θ| data).
For a likelihood function with i.i.d. Gaussian errors, it leads to the equation below:

ln:L
�
θjdatað Þ ¼ ln: 2πσ2ϵ

� ��N=2 � exp � 1

2σ2ϵ

XN

t¼1
ϵ2t

� �� �� 	

¼ �N=2:ln 2πσ2ϵ
� �þ � 1

2σ2ϵ

XN

t¼1
ϵ2t

� �� � (4)

The maximum likelihood estimate of θ, θ� can be obtained by solving the following
optimization problem:

θ� ¼ Maximizew:r:t θln:L θð j data� ffi Minimizew:r:t θ
XN
t¼1

ϵ2t

 !
(5)

There are two types of approaches to solving Eq. (5). One approach is known as the
deterministic approach which assumes that there exists a unique set of extrema of the
objective function (i.e., the maximum or the minimum value of the objective
function). Another approach is the stochastic approach or the Bayesian approach
which assumes that the optimal solution to Eq. (5) is not a unique set of parameters,

real world

θθ
prior
info

measured
output

t

optimization

model(θ)

measured
input

calculated
output

Fig. 1 Strategy for model calibration
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but a posterior distribution of θ inferred based on all observations. In this chapter,
we focus on estimation of optimal parameters using deterministic approaches. The
next chapter discusses the approaches for estimating parameter distributions using
stochastic approaches.

3 Overview of Optimal Parameter Estimation Approaches

There are different deterministic approaches to identify the optimal parameter
estimates. There is a broad class of local search methods which are presented in
classical nonlinear programming textbooks. Those approaches can only guarantee to
find a local optimum in the presence of multiple local optima. Local search methods
can be further divided into gradient methods which require the calculation of the first
and/or the second derivatives of the objective function, and direct methods which do
not need the derivative information of the objective function. Obviously, gradient
methods require the objective function to be continuous and smooth, which can be a
problem for hydrological models as many of them contain threshold parameters
(Duan et al. 1992).

Another category of approaches is designed to overcome the limitations of the
local search methods. Among the methods in this category, some stochastic and
global search mechanisms are often used. Some popular search algorithms include
genetic algorithm (GA), the shuffled complex evolution methods developed at the
University of Arizona (SCE-UA), particle swarming (PS), ant colony optimization
(ACO), and simulated annealing (SA), among others. Many of those algorithms are
also called evolutionary algorithms, or EAs because the search strategies follow the
evolutionary principles. Another group of global search methods follows the global
strategies such as branch and bound methods, cutting plane methods, interval
methods, filling function methods, among others. The global search methods usually
require smooth and continuous objective functions and are rarely effective in solving
high-dimensional hydrological model calibration. Those methods are not reviewed
in this chapter. For those interested in those methods, readers may refer to Pintér
(1996) and Duan et al. (2006).

More recently, there is a new category of approaches that aim to deal with large
complex system models, known as the surrogate modeling-based optimization
methods. Those methods are designed to use only a limited number of objective
function evaluations to identify the approximate optimal solutions. The idea behind
this category of methods is to construct a response surface using a small number of
parameter sample sets to approximate the objective function surface. Once this
response surface is found to be a reasonable approximation of the objective function,
then the search would be conducted on this response surface, which is known as the
surrogate model. The solution of this surrogate model would approximate the
solution of the dynamic model.

Below, we provide the review of some of the most popular methods that have
been used in practice, starting with several local search methods, then global search
methods, and finally the surrogate modeling-based optimization methods. We also
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include a section discussing deterministic multiobjective optimization search algo-
rithms. At the end of this chapter, we provide some examples of the different search
algorithms.

3.1 Local Search Methods

3.1.1 Gradient-Based Methods
Parameter estimation methods are used to find the minimum of unimodal functions
for which the search is in the direction to improve function value continuously until
reaching the local minimum (Singh 1995). If the derivatives of the objective function
are used, the local search methods are classified as gradient search methods.

Steepest Descent
Steepest descent method is a gradient-based search method for unconstraint optimi-
zation. The search iteration can be written as follows:

θkþ1 ¼ θk � ηkgk (6)

where ηk is the step size or learning rate; gk is gradient direction of the likelihood
function.

Newton Method
Newton method is also a second-order gradient-based method by taking the curva-
ture of the space into consideration. The interactive form of the search algorithm is
as follows:

θkþ1 ¼ θk � ηkH
�1
k gk (7)

This method requires the estimation of H (Hessian matrix), which is a positive
defined second-order derivative.

3.1.2 Direct Search Methods
Direct search methods are very popular because of their simplicity and do not require
information about the gradient of the objective function.

Downhill Simplex
A direct search method is widely used for the objective function which is not
directly differentiable. Downhill Simplex Method (Nelder and Mead 1965) is one
popular direct search algorithm. The method uses the concept of a simplex of
n dimensional parameters to set n + 1 test points to form a simplex. The objective
function is evaluated at each test point and all of the simplex points are ordered
(sorted) according to the function values from low to high values; meanwhile, the
centroid of the simplex is estimated. A new test point is evaluated based on the
reflection, expansion, and contraction of the centroid toward the worst point and
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the worst point is replaced if the new test point is better than the worst point. At the
same time, a new simplex is formed and the same process is repeated to move the
simplex forward. On the other hand, if this new test point is not able to have better
fitness value than the previous value, the simplex is then shrunk toward its best
point. This strategy allows the simplex to continue to evolve till the convergence
criteria are reached.

The key simplex evolving steps are shown in Fig. 2 and listed below:

• For an n-dimension parameter space, the test points θ1, . . ., θn + 1 are sorted based
on their function values, i.e., g(θ1) � g(θ2). . .g(θn + 1), and the location of the
centroid of the simplex is calculated and represented with θ0.

• Test of reflection, expansion, contraction points:

Reflection : θr¼θ0 þ α θ0 � θnþ1ð Þ
Expansion : θe¼θ0 þ β θr � θ0ð Þ

Contraction : θc¼θ0 þ γ θnþ1 � θ0ð Þ
α, β, γ > 0; in general, α, β, γ are set to 1.0, 2.0, and 0.5, respectively.

• Shrink the simplex if the function values of above test points {θr, θe, θc} are not
better than the function value of the worst point g(θn + 1):
Shrink: θi=θ1 + δ(θi � θ1) for all i = 2..n + 1&δ = 0.5.

Gradient-based and downhill simplex methods are local search methods, which
are capable of finding the local minimum, but have no guarantee to find the global
optimal parameter solution. Duan et al. (1992) conducted an analysis of the proper-
ties of the response surface associated with a rainfall-runoff model and found that the
surface (1) contains more than one main region of attraction, (2) has many local

Fig. 2 Reflection, expansion, contraction, and shrinking stage of Simplex search
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optima within each region of attraction, (3) is rough with discontinuous derivatives,
(4) is flat near the optimum with significantly different parameter sensitivities, and
(5) includes long and curved ridges. Figure 3 shows many local optima within each
region of attraction for a conceptual catchment model of three parameters (Duan
et al. 1992). The response surface with above characteristics makes it very difficult to
find the global minimum solution.

Finding global optimal solution for a complex optimization problem is of great
importance to many real-world applications. Because of a large number of local
minimum, it is a challenge for the local search algorithms to find the global optimal
solution. Duan et al. (1992) developed a new optimization scheme, which combines
the strength of the simplex method with the concept of information sharing from the
evolution-based algorithms, and termed it as the shuffled complex evolution global
optimization scheme – University of Arizona (SCE-UA). The concept of the
SCE-UA algorithm is similar to those used in evolutional algorithms. For the past
two to three decades, SCE-UA has been widely used in the parameter estimation of
hydrologic models. In the next chapter, we will specifically introduce the mecha-
nisms and concept of the SCE-UA algorithm along with other commonly used
global search methods.
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Fig. 3 Three parameters subspace of a simple conceptual catchment model (SIXPAR, Duan et al.
1992), showing locations of multiple local optima
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3.2 Global Search Methods

3.2.1 Genetic Algorithms
The genetic algorithms (GAs) belong to one of the most popular evolutionary
algorithms that mimic the processes of natural selection (Golberg 1989; Holland
1975). The natural selection is defined as the processes that organisms correspond-
ingly survive and produce offspring with the tendency to adapt their environment.
There are different types of natural selection processes, including chromosome
heredity, mutation, crossover, and selection. The following Fig. 4 illustrates a
conceptual GA algorithm, in which a population consists of a group of individuals
(dashed-box 1). Each individual is denoted as a chromosome, which has a set of
properties as genes. The chromosomes are able to mutate, carryover, and crossover
with other chromosomes to produce a new generation of offspring. The production
of next offspring generation is repeated following the natural selection criteria. After
producing a number of new generations, the entire population will gradually carry
the “good” genes from the chromosomes that have better fitness with respects to their
environment, and eliminate the “bad” genes which are not suitable for surviving. In
other words, the natural selection processes tend to generate offspring with better
suitability to survive under the pressures from their living environment.

According to Simpson et al. (1994), the optimization of a particular problem
using GA is achieved through the following concepts. First, the initial population is
created by randomly selecting a number of individuals in the searching space, and
each individual is called a chromosome. Second, the objective function value for
each feasible solution, or individual, is defined as the fitness of chromosome to its
environment. The individual (chromosome) with better objective function value
(or fitness) is assumed to possess better genes (parameters), and therefore, has a
higher chance to be selected to produce next generation. Last, when producing
offspring from the selected parent individuals (chromosomes), the percentages of
genes in each parent chromosome to crossover, carryover, and mutate are defined as
algorithm parameters, i.e., crossover rate, elite rate, and mutation rate, respectively.

A generalized procedure of implementing GA is summarized as follows:

1. Define objective function:
Assign objective function (see Eq. (5)): f(θ1, θ2, . . ., θn), where n is the number
of dimension.

2. Initialization:
Randomly sample k individuals in the parameter space to form the population

P = {p1, p2, . . ., pk}. Each pi, iϵ1, 2, . . .n is defined as an individual chromo-
some as shown in the dashed-box 1 of Fig. 4.

3. Selection:
Evaluate the fitness, i.e., objective function values for all individuals in popula-
tion, and recursively select two individuals as parents for producing offspring.
In the example shown in Fig. 4, chromosome 1 and 2 are selected as parents. Elite
members, i.e., the individuals with high fitness values, are also selected and
directly copied to next generation without any changes.
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4. Crossover:
The production of offspring is firstly conducted by crossover operation on the
selected parental individuals. There are many types of crossover operations as
shown in the dashed-box 2 of Fig. 4: (a) Single-point crossover, in which a gene
location m (m ϵ 2, 3. . .n � 1) is defined and the genes of offspring before this
location are from the first parent and the rest genes come from the second parent.
(b) Two-point crossover, in which another gene location l (l ϵ 2, 3. . .n � 1,
and l > m) in the offspring is further defined and the genes after location l are
copied from the first parent again instead of using the genes from the second
parent. (3) Arithmetic crossover, in which the offspring genes are obtained from
both parents with a average of the values of genes.

5. Mutation:
As shown in the dashed-box 3 of Fig. 4, after crossover operation, a portion of
offspring genes is able to mutate from g(i) to g0(i), where i ϵ 1, 2. . ., n, i.e., for
real-value encoded GA, the mutation is conducted by adding a small random
number to the values of offspring genes who are selected to mutate during an
iteration. This mutation strategy prevents the population from trapping in local
minima, and premature converging. The new genes g0(i) are copied back to each
offspring and replace the original genes g(i).

6. Next Generation:
The new population for generation (t + 1) consists of the offspring from the
crossover and mutation operations, as well as the elite members directly copied
from previous generation (t).

7. Termination:
Repeat steps (3)–(6) until stopping criteria are met, i.e., total number of function
evaluation reaches user-defined maximum, total number of generation reaches
user-defined maximum, or the average relative changes in the objective function
values over a number of generation is less than the function tolerance, etc.

The applications of GA in hydrological model calibration are extensive. Some
early attempts to using GA in the field of automatic calibration of hydrological
model parameters include the works by Wang (1991), Franchini (1996), Franchini
and Galeati (1997), Wang (1997), Balascio et al. (1998), Savic et al. (1999), and
Whigham and Crapper (1999). The usefulness of GA has also been demonstrated in
many different hydrological models, such as the HYMOD model, SWAT model, the
Xinanjiang Model, etc., as demonstrated by numerous studies (Babovic and Keijzer
2002; Liong et al. 2002; Srivastava et al. 2002; Cheng et al. 2006; Francés et al.
2007; Lin and Wang 2007; Zhang et al. 2009b; Wu et al. 2012). Some recent
comparisons of GA against other stochastic optimization schemes are available
from Wang et al. (2010) and Arsenault et al. (2013) for interested readers.

3.2.2 Simulated Annealing
The simulated annealing (SA) algorithm was originally introduced by Kirkpatrick
(1984) as a robust global optimizer for addressing the issue of trapping in local
minimums of classical gradient descent method. The concept of SAwas inspired by
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the process of annealing in metal work, in which a metal material was repeatedly
heated and cooled down to improve the stiffness of metals. The heating process
allows the metal molecules to vibrate in their neighborhood, and partially breaks
the molecular bonds. The cooling process re-forms the molecular structure, and
re-combines a stronger molecular bond, so that the whole physical system reaches an
entropy maximum state. This metal work annealing concept can be creatively used
for finding global optimums on multimodality response surfaces (Eglese 1990), and
many real-world problems, i.e., the travel salesman (Černý 1985).

In SA implementation, it follows two conditions: (1) when the temperature is
high, the status of the system is free to move to other energy states through
random work and (2) when the temperature is lower, the system states are
becoming restricted and therefore, the solutions can only move toward regions
where energy states are lower. In each iteration, a nearby region near the current
solution is tested. If the objective function of the new test point is better than the
old one, the new point is used to replace the old point. Otherwise, a probability
being a function of the annealing temperature is assigned to the new test point to
decide whether this test point is acceptable. When the annealing temperature
continues to move lower, the acceptable probability for a worse solution becomes
lower. To accept worse solutions can be referred as a “hill-climbing” procedure,
whereas this search strategy allows the algorithm to have the capability of
escaping from local minimums. As the annealing temperature decreases, the
chance of accepting worse solution will decrease. It is expected that only better
solution is acceptable when annealing temperature reaches minimum. The
annealing temperature can be controlled by a cooling scheme specifying how it
should be progressively reduced over iteration. Theoretical study has proved that
the algorithm can converge toward the optimal solution in a asymptotic manner
(Granville et al. 1994).

The SA algorithm in general follows six steps as shown below:

1. Define objective/energy function:
Assign objective function or an energy function (see Eq. (5)): f(θ).

2. Initialization:
Assign initial parameters (θt = 0), terminal temperature (TE), cooling rate (/), for
t = 0.

Find the solution ( f(θt = 0) of the initial parameters θt = 0.
3. Selection of a new point (iteration):

Set t = t + 1; generate a new parameters θt near θt � 1.
4. Selection/rejection of the selected point:

Use Metropolis acceptance rule to accept or reject θt:
i.e., estimate ΔE = f(θt) � f(θt � 1);
For a minimization problem, θt is accepted to replace θt � 1 if ΔE<0.
Otherwise, θt can be accepted to replace θt � 1 with a probability of p= e�ΔE/T.

5. Adjustment of anneal temperature:
One way to adjust the anneal temperature is to reduce the temperature over time,
such as T=/ � T and / � [0, 1].
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6. Terminate:
If T>TE, repeat steps (3)–(5).

Otherwise, terminate the process. The final solution is assigned to θt.
In addition, once other user-defined stopping criteria are met, i.e., the maximum
of number of function evaluation is reached, or as the stagnation time of annealing
temperature becomes zero, etc., the process is terminated.

With the extensive uses of SA in various fields, particularly, in the field of
automatic calibration of hydrological model parameters, many studies have shown
the usefulness of SAwith different case studies. Bates (1994) pioneered in the use of
SA for calibrating an SFB conceptual rainfall-runoff model. Sumner et al. (1997)
applied a modified SFB model and SA optimization scheme for a large-scale case
study in Australia. Thyer et al. (1999) and Madsen et al. (2002) compared SA
strategy with many other population-based optimization schemes with regard to its
performances in calibrating conceptual rainfall-runoff models. Bárdossy and Das
(2006) applied the SA to a semidistributed HBV model and shown a good capability
of SA in tuning model parameters. A number of other stochastic optimization
algorithms, such as the Shuffled Complex Evolution Metropolis algorithm –
University of Arizona (SCEM-UA) (Vrugt et al. 2003a), were also developed
based on the combination uses of annealing concept of SA, and the Metropolis-
Hasting algorithm (Hastings 1970).

3.2.3 Particle Swarm Optimization
Similar to the GAs, the particle swarm optimization (PSO) is another extensively used,
population-based global optimizer, which simulates the social-individual behaviors of
bird flocking and fish schooling (Kennedy 2011; Kennedy et al. 2001). The particle
swarm optimization belongs to one type of swarm intelligence, in which the particles
that mimic the behaviors of social animals are swarming in a manner of strategic
movements, instead of randomly moving in the searching domain. Different from the
adopted natural selection criteria in GA, i.e., mutation or crossover, in PSO the
offspring production is based on the fitness of particles and their movement velocities
toward the locations of current best, as well as the historical best location so far. This is
a simplified social behavior of bird foraging. According to Eberhart and Kennedy
(1995) and Shi (2001), there are three assumptions when interpreting the birds
foraging behavior into PSO algorithms. First, all birds (particles) are assumed to be
blind with regards to (i.e., do not know) the location of best food source (global
optimum). Therefore, one of the effective foraging strategies for all birds (particles) is
to fly toward the bird which is nearest to the food (the particle that has the best fitness).
Secondly, each bird (particle) is assumed to be intelligent enough to remember the
distance of the historical locations to food source (i.e., the fitness values during all
movements during the entire search). Last, each bird (particle) is able to collectively
adjust its next movement direction and position (i.e., the next moving direction and
distance). Therefore, in PSO the population is updated by recursively approaching two
best positions: (1) the best location that gives the best fitness value within current
population, and (2) the historical best location that gives the best fitness value through
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the entire evolution that the algorithm has achieved so far. In summary, the information
sharing mechanism sorely relies on the best individual instead of chromosomes
exchanges and mutations. In PSO, the movement of population is always toward the
best two members, while in GA, the individuals move as a group approaching the
global optimum (Panduro et al. 2009). One similarity between PSO and GA is that
the population is randomly sampled from the feasible solution space (Arsenault et al.
2014).

A generalized procedure of implementing PSO is summarized as follows:

1. Define objective function:
Assign objective function (see Eq. (5)): f(θ1, θ2, . . ., θn), where n is the number
of dimension.

2. Initialization:
Randomly sample k individuals (particles) in the parameter space to form the
population P = {p1, p2, . . ., pk}, and define each particle’s neighborhood as N i

� P.
3. Evaluation:

Evaluate the fitness, i.e., objective function values for all particles.
4. Swarming:

Swarm each particle ( pi) in its neighborhood (N i), and store the neighborhood
best location li, called local best location, for each particle. The local best
location also includes the particle’s current location before swarming. Then,
evaluate the historical best location each particle reached so far, and store as gi,
called global best location. Note that global best for each particle is not worse
than the local best, i.e., f lið Þ � f gið Þ,8pi �N i.

5. Update velocity
The movement velocity for particle ( pi) at step t is defined as:

vtþ1
i ¼ wvti þ c1U

t
1 gti � xti
� �þ c2U

t
2 lti � xti
� �

(8)

where w is an user-defined algorithm parameter called inertia weight; c1 and c2
are also user-defined algorithm parameters called acceleration coefficients; Ut

1

and Ut
2 are n by n diagonal matrixes with diagonal components randomly drawn

from a uniform distribution in the interval of [0, 1).
6. Update particle location

The next movement location for each particle ( pi) is denoted as xtþ1
i , and it is

updated based on previous location (xti ) and the movement velocity vtþ1
i that is

obtained from step (5). The equation for updating particle location is expressed
as:

xtþ1
i ¼ xti þ vtþ1

i (9)

7. Termination:
Repeat steps (3)–(6) until stopping criteria are met, i.e., total number of function
evaluation reaches user-defined maximum, total number of generation reaches
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user-defined maximum, or the average relative changes in the objective function
value over a number of generation is less than the function tolerance, etc.

The use of PSO in the field of automatic calibration of hydrologic model
parameter is extensive. Gill et al. (2006) tested both single-objective PSO and
multiobjective PSO in calibrating the sacramental soil moisture accounting
model, which has 13 parameters. Chau (2008) applied PSO to train a data-driven
rainfall-runoff model. Zhang et al. (2009c) compared both GA and PSO with
regard to their performances of calibrating Soil and Water Assessment Tool
(SWAT) model. Zhang and Chiew (2009) applied PSO scheme in both the
Xinanjiang and SIMHYD hydrological models. Further investigation of parame-
ter sensitivity of the Xinanjiang model using PSO is also conducted by Kuok and
Chan (2012) and Lü et al. (2013). Kamali et al. (2013) applied both single- and
multiple objective PSO algorithms to the HEC-HMS model. A recent comparison
of many stochastic optimization schemes in calibrating hydrological models
is made available by Arsenault et al. (2014). In addition, PSO is a very useful
tool in various fields, such as water stage forecasting (Chau 2007), power system
design (Abido 2002), ground water management (Zambrano-Bigiarini and
Rojas 2013), etc.

3.2.4 Ant Colony Optimization
The ant colony optimization (ACO) belongs to another type of swarm intelligence,
which was first introduced by Dorigo (1992) in his Ph.D. dissertation, and further
developed by Marco Dorigo and his colleagues (Dorigo et al. 2006; Dorigo and
Blum 2005; Dorigo and Stützle 2009). The concept of ACO followed the social
foraging behavior of social insects, in particular, the strategy that ants find food
sources and the development of optimal paths from food sources to their nest.
According to Marco Dorigo’s description and the biology study by Deneubourg
et al. (1983), ants initially are able to explore the area near their nest in a random
manner. When ants are randomly moving on the ground, a chemical pheromone trail
is left by each individual ant, which is detectable by other ants. An individual ant
tends to follow the path, in probability, has the strongest pheromone concentrations
that marked by other ants. Once a food source is located by an individual ant, this ant
will evaluate the quantity and quality of the food source, and carry a small portion of
food back to its nest. On the way back to the nest, the pheromone left by this ant will
correspondingly change based on the quantity and quality of food source, so that
other ants can be guided to this discovered food source. By using the pheromone
trails, ants are able to indirectly exchange information of the location, quantity, and
quality of food source. This communication strategy via pheromone trails is proven
to be effective allowing ants to find the shortest paths between the food sources and
nest (Deneubourg et al. 1990).

In ACO, an instantiated decision variable X i ¼ v j
i (i.e., a variable Xi with a value

v j
i assigned from its parameter domain θi) is termed a solution component and
denoted by cij, where i and j are the locations connecting a searching domain. τij is
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the pheromone value or intensity associated with each solution component cij, and it
is continuously updated based on time and the behavior of all ants. All possible
solution components and feasible solutions consist a complete set ofN sk

� �
, where sk

is a partial feasible solution that constructed from an empty set s by adding the 1st,
2nd . . . and kth solution component from the complete feasible solution set N .
A generalized procedure for ACO is as follows:
1. Define the objective function:

Assign objective function for the optimization problem (see Eq. (5)): f(θ).
2. Initialization:

Assign the number of ants (M ) in ASO, locations of the ants in searching space,
and randomly assign pheromone values τij for each solution components cij that
connect location i and j.

3. Define the pheromone model:
A commonly used pheromone model for ant system (Dorigo et al. 1996) is

p cijsð Þ ¼
τij

 �α

∙ η cð Þij
h iβ

P
cilϵN skð Þ τil½ �α∙ η cð Þil


 �β (10)

where α and β are algorithm parameters that control the significance of phero-
mone value τij, and the visibility of pheromone trials η(c)ij; the visibility η(c)ij is
defined as the inverse Euclidean distance between location i and j.

4. Movements of ants
When individual ant (m) is in the position i and so far constructed the partial
solution sk, the probability of moving from position i to position j is given by the
pheromone model in step (3). Each ant will move to its next position until all the
M ants finish their movements.

5. Update pheromone values:
The pheromone values τij are updated for all theM ants according to the following
equation:

τij,t ¼ 1� ρð Þ∙τij,t�1 þ
XM
m¼1

Δτmij,t�1 (11)

where ρ is an evaporation rate of pheromone, which uniformly decreases all the
pheromone values in order to prevent the algorithm from a rapid convergence
toward suboptimal;Δτmij,t�1 is the quantity of pheromone left on a path connecting

position i and j by mth ant during the previous movement.
6. Termination:

Repeat steps (3)–(5) until stopping criterion are met, i.e., the number of function
evaluation reaches user-defined maximum, the number of total number of ants
movement cycle reaches user-defined maximum, or the fitness (objective function
values) for all M ants are limited within function tolerance (i.e., convergence
is reached).
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The original ACO was initially invented for solving optimization problems with
discrete decision variable domain, and for finding optimal combinations of compo-
nents, such as the travel-sale-man problem. Socha and Dorigo (2008) further devel-
oped the original ACO to solve optimization problems with a continuous domain.
According to the literature, there are many successful applications of the original
ACO and its developed versions to solve different problems in various fields, such as
soil hydraulic parameters calibration (Abbaspour et al. 2001), water quality (Bowden
et al. 2002), optimal open channel design (Nourani et al. 2009), hydrological model
calibration (Olarte and Obregon 2004), water distribution system design and plan-
ning (Maier et al. 2003; Wang and Guo 2010; Zecchin et al. 2003), and optimal
reservoir operation (Kumar and Reddy 2006; Madadgar and Afshar 2009; Zecchin
et al. 2012). Two most recent reviews of ACO and its applications can be found in
Afshar et al. (2015) and Ostfeld (2011) for interested readers.

3.2.5 Shuffled Complex Evolution-UA (SCE-UA)
The SCE-UA algorithm is a global search algorithm, which combines a number of
different strategies, including the Downhill Simplex, the Controlled Random Search,
the Competitive Evolution, and the Complex Shuffling scheme (Duan et al. 1992,
1994). Extensive testing of the SCE-UA algorithm by numerous researchers has
proven its effectiveness and efficiency in reliably finding the global solution, when a
unique solution exists. The SCE-UA algorithm includes the following steps:

1. Initialization:
Generate parameter samples θi from the feasible parameter space. Calculate the
objective function value of each sample f(θi). Set initial sample size s = pm,
where p is the number of complexes and m is the number of points in each
complex.

2. Rank samples:
Sort the s samples based on f(θi) from small to large values, i.e., f(θi)� f(θi + 1).

3. Partitioning into complexes:
The s samples are partitioned into p complexes, such that the complex k includes
samples of {θk, θp + k, .., θ(m � 1) � p + k} and function value of samples: {f(θk), f
(θp + k), .., f(θ(m � 1) � p + k)}; k = 1..m complexes.

4. Evolution of complexes:
Based on a trapezoidal probability distribution, in which higher probability is
assigned to lower function values, select a subcomplex of q samples from each
complex. Use downhill simplex algorithm to evolve the samples in each
subcomplex.

5. Complex shuffling:
Include all samples from the subcomplex in the sample pool.

6. Termination:
Repeat steps (2)–(5) until the stopping criteria are reached.

SCE-UA has been extensively used in hydrologic modeling and has shown to be
robust and efficient for hydrologic model calibration. Gan and Biftu (1996) applied
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SCE-UA to multiple operational Conceptual Rainfall-Runoff (CRR) models and
proved the effectiveness of SCE-UA scheme in calibrating different CRR models.
Eckhardt and Arnold (2001) used SCE-UA algorithm to calibrate the parameters of
the SWAT model over the Dietzhölze catchment in central Germany and reached
high accuracy. Skahill and Doherty (2006) demonstrated the strengths of SCE-UA
and other automatic parameter calibration scheme on an operational hydrological
model for the Wildcat Creek watershed located in Kitsap County, Washington. Yang
et al. (2008) demonstrated the effectiveness and efficiency of SCE-UA over other
automatic parameter calibration schemes using the SWAT model over the Chaohe
Basin in China. Ludwig et al. (2009) compared a fully distributed, a semidistributed,
and a lumped hydrological model using SCE-UA as automatic calibration scheme
over the Ammer basin in the Southern Bavaria, Germany. Khakbaz et al. (2012)
employed SCE-UA for calibrating the SAC-SMA models over the Illinois River
Basin at Siloam Springs, Arkansas, and produced satisfactory streamflow simula-
tion. Liu et al. (2017) applied SCE-UA to calibrate an operational hydrological
model used by Tibet Government for simulating the streamflows for the Upper
Yellow and Upper Yangtze River basins of China. There are numerous other
successful applications of SCE-UA algorithm in the field of hydrological model
parameter calibration. Authors are only able to provide limited references. The
original publication of SCE-UA ranked as the top three most cited articles in
Water Resources Research (data collected in Sep 2016). However, when the dimen-
sion of a given problem increases extensively, the global convergence of SCE-UA
algorithm might not be guaranteed. The population could collapse to a subspace of
the full span of the parameter space, which impedes SCE-UA algorithm to exploit
the parameter space (Chu et al. 2010). Chu et al. (2010, 2011) further improved the
SCE-UA algorithm with a principal component analysis for a remedy of this issue.
The enhanced version of SCE-UA is termed as the Shuffle Complex Evolution
global optimization with Principal Component Analysis – University of California,
Irvine (SP-UCI). In SP-UCI, principal component analysis (PCA) is used to detect
the occurrence of population degeneration. The PC coordinate system is determined
by the data samples. By adding new particles along the PC with zero (or relatively
small) variance, the search is ensured to maintain the diversity of the entire popu-
lation, especially along the collapsed dimension. The SP-UCI algorithm is also
proven to be effective and efficient for many high dimensional real-world applica-
tions (Chu et al. 2014; Yang et al. 2015, 2017a).

3.3 Surrogate Modeling-Based Methods

The global optimization methods generally require up to tens of thousands of
model runs to find the global optimal solution. This may place significant com-
putational burden on solving such an optimization problem, if the underlying
model requires a large amount of CPU time to run. One approach to reduce the
computational burden is to approximate and replace the expensive simulation
model with a cheaper-to-run surrogate model. Some fields also refer to the
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surrogate modeling as function approximation, meta-modeling, response surface
method, or model emulation (Blanning 1975; O’Hagan 2006). Once the surrogate
model is constructed, a global optimization algorithm can be used to identify the
optimal parameter set. These kinds of algorithms are called surrogate modeling
based optimization methods (Simpson et al. 2001; Jin et al 2001; Queipo et al.
2005; Razavi et al. 2012).

A surrogate model can be understood as a “model of model.” It is a statistical
model of the response surface of a simulation model. A surrogate model describes
the relationship between inputs (i.e., model’s adjustable parameters) and outputs
(i.e., the performance measure of the simulation model). Training an accurate
surrogate model needs adequate input–output data, which are obtained by running
the simulation model with different sets of parameters selected in the feasible
parameter space. Previous studies use the “one-shot” approach (i.e., using a set of
samples at once) to obtain input-output data to construct the surrogate model. This
method directly establishes a surrogate model on the utilized data. Then it runs
global optimization algorithm on the surrogate model. A high number of model runs
may be required to ensure that the surrogate model represents the response surface of
the original simulation model well. One way to economically construct a surrogate
model for optimization is to use adaptive sampling. Adaptive sampling means that a
certain number of points are sampled in the initial stage, and then a number of
additional points, which can most effectively increase the accuracy of the surrogate
model, are adaptively sampled and added to the initial sampling. For the purpose of
finding an optimum, it is not necessary to map out the whole surface in a surrogate
model exploration. An adaptive sampling strategy can quickly move the experiment
to a region containing the optimum of the input variables. Only within this region is a
thorough exploration of the surrogate model warranted to find the optimum (Wu and
Hamada 2009). Below is the procedure of adaptive surrogate modeling based
optimization algorithm:

1. Generate an initial experimental design spread over the entire input space and do
the costly function evaluations at the points.

2. Use function evaluations to fit a statistical surrogate model for the objective
function.

3. Use the surrogate model to predict the objective function values at unsampled
points in the variable domain to decide at which point to do the next expensive
function evaluation.

4. Do the expensive function evaluation at the point selected in Step 3. Then, use the
new data point to update the surrogate model.

5. Iterate through steps (3)–(4) until the stopping criterion has been met. Take the
final optimal value on the newly updated surrogate model as the global optimi-
zation result.

There are three main components of adaptive surrogate modeling-based optimi-
zation algorithms, named initial sampling, constructing the surrogate model, and
adaptive sampling. Below we described these three steps more specifically.
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1. Initial sampling

The initial sampling is the sampling plan in the design variable space, also called
experimental design. It is a body of techniques that enable an investigator to conduct
better experiments, analyze data efficiently, and make the connections between the
conclusions from the analysis and the original objectives of the investigation
(Wu and Hamada 2009). Generally, at this stage, the location of the points is only
required to satisfy some space-filling criteria. Because of the absence of prior
knowledge of the problem under consideration, uniformity of the design points
throughout the domain is favorable. The optimum size of initial sample points is
an open question. Some people think it should be ten times the number of dimen-
sions (Jones et al. 1998). Others think it should keep the initial sample size to a
minimum (for example: two times the number of dimensions) (Sóbester et al. 2005;
Regis and Shoemaker 2007). However, the initial sample size is highly correlated
with the initial sample methods. For Latin Hypercube method, too small sample size
leads to a slow convergence for the optimization problem. For a more uniform
low-discrepancy quasi-Monte Carlo method, a small sample size makes the better
results (Wang et al. 2014).

2. Constructing the surrogate model

Generally, surrogate model construction methods are statistical regression
methods that estimate response surface of a simulation model. A variety of approx-
imation techniques have been developed and applied as the surrogates of an original
simulation model: polynomial regression (Fen et al. 2009), regression tree method
(Breiman et al. 1984; Yang et al. 2016), Random Forest method (Breiman 2001;
Yang et al. 2017b), Multivariate Adaptive Regression Splines (Friedman 1991),
Support Vector Machines (Zhang et al. 2009a), Artificial Neural Networks
(Behzadian et al. 2009), and Gaussian Process (Rasmussen and Williams 2006;
Snelson 2007). At the highest level, response surfaces can be differentiated based
on whether they are noninterpolating (i.e., it minimizes the sum of squared errors
from some predetermined functional form) or interpolating (i.e., it passes through all
points). It has been suggested that noninterpolating surfaces, such as fitted quadratic
surfaces, are unreliable for surrogate-based optimization because the surface may not
sufficiently capture the shape of the function (Jones 2001). On the other hand,
interpolating methods can get more and more accurate as new points are added,
eventually converging to the true function.

3. Adaptive sampling

Adaptive sampling methods (also called sequential design methods) are iterative
algorithms that use data acquired from previous iterations to guide future sample
selections. The points we selected are also called infill samples (Sóbester et al. 2005).
All of the aforementioned approaches select a sample point by optimizing an
auxiliary function (minimize the bumpiness measure, maximize the expected
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improvement, minimize the response surface), which is in general itself a global
optimization problem. Adaptive sampling methods allow significant reduction in the
number of simulations of the original simulation model because they only search the
area that may contain the optimum of the input variables.

3.4 Deterministic Multiobjective Search Methods

The multiobjective optimization scheme can be referred as an application of
single-objective optimization for handling multiple objectives (Deb 2001). A
classical approach of solving a multiobjective optimization problem is to create a
new composite function by giving individual weight to each single-objective
function and adding them together. Then, the new weighted objective function is
optimized using classical gradient-based methods or direct search schemes. This
is a very straightforward approach. However, the fundamental differences
between multiobjective optimization and single-objective optimization are
ignored when using the transformation of multiple single-objective functions
into a weighted composite function.

One of the fundamental differences between multiobjective optimization and
single-objective is the existence of trade-offs among different competitive objective
functions. In other words, for any multiobjective optimization problem, any gain
with respect to the fitness of one objective function requires a sacrifice of the fitness
in another objective function. This is due to the nature of constraints associated with
any given multiobjective optimization problem. For example, conceptually a shop-
per can only get either item A or item B from a supermarket, because the total costs
of both items A and B is beyond his/her fixed total budget. Under another circum-
stance, there are five different brands of the identical item (A, A0, A00, A000, and A0000)
available with different qualities and costs (subject to the fact that a higher quality
item is associated with a higher cost). The item quality that the shopper gets from
item A and his/her remaining budget become two competitive objective functions.
These two shopper’s situations will be further explained with illustration in the
following sections and Fig. 5. Many real-word problems are essentially balancing
different objective functions and benefit gains. For instance, in California, USA, the
water in the Northern California is diverted by the California State Water Project to
multiple water demand sectors in the Central and Southern parts of California,
including ecosystem, industry, resident, agriculture, etc. The amounts of water
allocation to different sectors are conflicting objectives with the constraint of total
available surface water. In another reservoir operation example, assuming water can
be released through either spill gates or hydropower turbines, the turbine flows and
spills become two competing objectives. This is because that once the water is
spilled, it is not able to be retrieved for hydropower generation. The constraints
include the risks of dam seepage, flooding of downstream areas, and other facility
engineering requirements.

Given an optimization problem with two or more competitive objective functions,
the trade-offs among those objective functions essentially mean any gain in the
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fitness of one of the objective functions will call for the loss of fitness in at least one
other objective functions of the optimization problem. Based on Eqs. (2) and (5), the
mathematical expression of a multiobjective minimization problem with k objective
functions is as follows:

L1 θ1jdatað Þ ¼ f 1 y1,y2, . . . ,ynj θ1ð Þ
L2 θ2jdatað Þ ¼ f 2 y1,y2, . . . ,ynj θ2ð Þ

⋮
Lk θk jdatað Þ ¼ f k y1,y2, . . . ,ynj θkð Þ

8>><
>>: (12)

θ�1 ¼ Maximizew:r:t θ1 ln:L1 θ1ð j data� ffi Minimizew:r:t θ1
XN
t¼1

ϵ2t

 !

θ�2 ¼ Maximizew:r:t θ2 ln:L2 θ2ð j data� ffi Minimizew:r:t θ2
XN
t¼1

ϵ2t

 !

⋮

θ�k ¼ Maximizew:r:t θk ln:Lk θkð j data� ffi Minimizew:r:t θk
XN
t¼1

ϵ2t

 !

8>>>>>>>>>>><
>>>>>>>>>>>:

(13)

where θ(θ1, θ2, . . ., θk) are subject to constraints Ω(Ω1, Ω2, . . ., Ωk), respectively.
Another difference between multi- and single-objective optimization is the notion

of global optimality. In single-objective optimization, there is only one global opti-
mum, while in the multiobjective context there exists multiple solutions that form a
global optimal solution set, called Global Pareto Optima or Global Pareto Front. For
example, in a two-objective minimization problem shown in Fig. 5, the x- and y-axis
represent the first and second objective function, respectively. The origin represents

Fig. 5 An example for a two-objective minimization problem
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the minimization for all objectives without any constraint. However, due to imposed
constraints, this point, called Utopia Point, as well as the the light blue area in Fig. 5
are not feasible in reality. In the example of Fig. 5, the dashed line indicates the global
optimal solutions of the conceptual two objective minimization problem, in which
multiple global optimal solutions form a solution set, and this set of solutions is termed
Global Pareto Optima or Global Pareto Front. For problems with higher number of
dimensions, theGlobal Pareto Optima orGlobal Pareto Front can be a 3-D surface or
a high-dimensional subspace. The actual shape and location of Global Pareto Front
are dependent on the dimensionality, the conflicting characteristics of selected objec-
tive functions, and the parameter bounds.

In multiobjective optimization, the fitness of candidate solutions is defined based
on the concepts of Pareto Optimality and Pareto Front, instead of simply using
objective function values as solution fitness. For any multiobjective minimization
problem, according to Deb (2001), a solution x is said to dominate the other solution
x0, if (1) solution x is noworse than x0 in all objectives, i.e., 8jϵ(1, 2, . . ., k) : fj(x)� fj(x

0)
and (2) solution x is strictly better than x0 for at least one objective, i.e., ∃jϵ(1, 2, . . .,
k) : fj(x) < fj(x

0). Among the eight solutions shown in Fig. 5, for instance, solution B
dominates solution C, while solution B0 does not dominate solution C. Similarly, both
solutions A0 and A000 dominate solution B and solution C. If there is no single solution
dominating any others among a set of solutions, then this set of solutions forms a
Pareto Front and is defined as a nondominated solution set. In Fig. 5, three different
Pareto Fronts are defined with different colors, namely, the solution set (A, A0, A00,
A000, A0000), (B, B0), and (C). In each of the nondominated solution set, each individual
solution is treated as equally important when comparing to others, i.e., solutions that
belong to the same Pareto Front have equal fitness values even the associated
objective function values can be different. Back to our shopper’s examples, our
shopper prefers item A than B because the fitness of item A is better than that of
item B. Note that item A is associated with consistently smaller objective function
values as compared to that with item B, i.e., item A is located on a Pareto Front that is
closer to the Global Pareto Optima than item B. Furthermore, all five items A, A0,
A00, A000, and A0000 are referred to the nondominated solutions, and are located on the
same Pareto Front as shown in Fig. 5. The quality of our shopper gets from a single
selection from items A, A0, A00, A000, and A0000, and his/her remaining budget are the
two objective functions to be optimized.

Theoretically, any single-objective optimization algorithm can be extended to
solving multiobjective optimization if the fitness of population and updating rules
are properly defined. For example, the GAs for multiobjective optimization (Deb
2001; Deb et al. 2000, 2002), the multiobjective PSO (Coello et al. 2004; Coello and
Lechuga 2002), the multiobjective ACO (Alaya et al. 2007; Angus and Woodward
2009; Doerner et al. 2004; Gao et al. 2013), the multiobjective SA (Bandyopadhyay
et al. 2008; Czyzżak and Jaszkiewicz 1998; Serafini 1994; Suman 2004;
Suppapitnarm et al. 2000), and different versions of SCE-UA algorithm for multi-
objective optimization (Yang et al. 2015; Yapo et al. 1998) are all well developed and
successful transformations from single-objective optimization algorithm to multi-
objective searching schemes.
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All kinds of multiobjective optimization schemes are very useful in real-world
applications, by which the trade-offs among completing objectives can be analyzed
and investigated. One of the commonly used multiobjective optimization algorithms
is called the multiobjective complex evolution – University of Arizona (MOCOM-
UA) global optimization method (Yapo et al. 1998). The MOCOM-UA method is
one of the successors of the SCE-UA algorithm with a general purpose for solving
global multiobjective optimization problems. The uses of MOCOM and other
multiobjective optimization algorithms in the field of automatic hydrological
model parameter calibration, and trade-off analysis are also extensive. Numbers of
different variations of multiobjective algorithms and hydrological models have been
tested, such as the studies conducted by Gupta et al. (1998), (2003), Madsen (2000,
2003), Tang et al. (2005), Bekele and Nicklow (2007), Hejazi et al. (2008), Moussa
and Chahinian (2009), Shafii and Smedt (2009), Zhu et al. (2017), Zhang et al.
(2010), Kollat et al. (2012), Sun et al. (2014), Reed et al. (2013), Asadzadeh et al.
(2014), Yapo et al. (1998), and Vrugt et al. (2003b).

4 Examples of Hydrological Applications

Different optimization algorithms have their own strengths and limitations. In
practical uses, it is suggested that users choose the most proper algorithm that
meets the calibration requirements. However, the selection of algorithm could be
tedious for some cases. In this section, we briefly introduce the practical uses of three
different optimization algorithms and demonstrate the strengths of (1) the SCE-UA
(Duan et al. 1992) algorithm for its global convergence; (2) a surrogate modeling
scheme (ASMO) (Wang et al. 2014) and its improvements of computational effi-
ciency; and (3) a multiobjective optimization scheme, termed MOSPD (Yang et al.
2015, 2017c), for its effectiveness of producing Pareto Optimality.

The case study is carried on a real-world application, the Sacramento Soil Moisture
AccountingModel (SAC-SMA) model. The SAC-SMAmodel is a conceptual rainfall-
runoff model that represents the soil column with upper and lower zones of multiple
storages (Burnash 1995). It has been used extensively in both research and operational
applications for river forecasting by the National Weather Service River Forecast
Centers across the United States. According to literature, the SAC-SMA model is
also one of the benchmark models in testing the performances of different automatic
parameter calibration methods (Duan et al. 1992, 1994; Yapo et al. 1998; Chu et al.
2014). Figure 6 shows the structure of the SAC-SMA model. There are 16 parameters
in the SAC-SMAmodel. We consider only 13 of them as adjustable parameters, whose
feasible ranges and descriptions are listed in Table 1. Three parameters RSERV, RIVA,
and SIDE are fixed at prespecified values according to Brazil (1988).

The study area is the South Branch Potomac River basin near Springfield, West
Virginia, USA. It is one of the 12 experimental watersheds of the Model Parameter
Estimation Experiment (MOPEX) (Duan et al. 2006). The total drainage area of the
basin (U.S. Geological Survey Station No. 01608500) is about 3810 km2. Historical
precipitation, potential evapotranspiration, and streamflow observations from
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January 1, 1960 to December 31, 1979 were obtained from the MOPEX database for
this study. The annual average precipitation over this period is 1021 mm, annual
average potential evapotranspiration is 762 mm, and annual average streamflow
discharge is 39.5 m3/s. The hydrological simulations are run with a 6-h time step for
each combination of model tunable parameters. Additional physical characteristics
of the study area were presented by Duan et al. (2006). The purpose of a model
calibration (i.e., parameter optimization) is to find the optimal parameter set for the
SAC-SMA model such that the simulated streamflow would have the best overall
match with the observed streamflow through minimizing the objective function
value. In this study, we used the root mean square error (RMSE) as the objective
function, which is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

Qs,t � Qo,t

� �2s

where t is the number of time steps, Qs,t is the simulated flow for time step t, and Qo,t

is the observed flow for time step t. In the model simulation process, we used a
period of 3 months to remove any impact of uncertain initial conditions, i.e., in
computing RMSE, the streamflow values for the first 3 months of 1960 were
intentionally removed from consideration in order to warm up the model.

A comparison of calibration performance of SCE-UA algorithm against the
multistart downhill simplex (MSDS) algorithms (Duan et al. 1994) is shown in
Figs. 7 and 8 for 4 of the 13 parameters in SAC-SMA model.

Fig. 6 A schematic of the SAC-SMA model (Source: Gan et al. 2014)
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As shown in Fig. 7, for 100 independent model runs, the parameters tuned by the
MSDS algorithm all fail to converge to a single value at the end of evolution, which
indicate the optimal solutions derived by the MSDS algorithm are local optima. On
the contrary, all parameters with the SCE-UA algorithm are able to converge to
consistent values (Fig. 8), suggesting the detection of global optimum for only ten
independent model runs.

The SCE-UA algorithm is famous for its global convergence when the number of
evaluation is not limited. However, it generally requires up to tens of thousands of
model runs to find the global optimal solution. This may place severe computational
constraint on solving such an optimization problem, if the underlying model requires
a large amount of CPU time to run. For this situation, the surrogate modeling-based
optimization algorithm (e.g., ASMO) is a good choice. Figure 9 shows the compar-
ison between SCE-UA and ASMO applied to the 13 parameters SAC-SMA model.
In this study, we set the number of complexes = 4 for SCE-UA and set maximum
model evaluations = 200 for ASMO. From Fig. 9, we note that, for SCE-UA, after
2606 model evaluations, the optimization search converges to its optimal solution
with an objective function value of 0.92722. For ASMO, the optimized objective
function value is 0.92895424449 after 200 model runs. From this case, we conclude
that ASMO has an obvious advantage in convergence speed over SCE-UA, with the
former needing about 200 total sample points and the latter needing close to 1900

Table 1 The 13 parameters of the SAC-SMA model and their feasible ranges

No. Parameter Description Range

1 UZTWM Upper zone tension water maximum storage (mm) [10, 300]

2 UZFWM Upper zone free water maximum storage (mm) [5, 150]

3 UZK Upper zone free water lateral drainage rate (day�1) [0.1,
0.75]

4 PCTIM Impervious fraction of the watershed area (decimal fraction) [0, 0.1]

5 ADIMP Additional impervious area (decimal fraction) [0, 0.2]

6 ZPERC Maximum percolation rate (dimensionless) [5, 350]

7 REXP Exponent of the percolation equation (dimensionless) [1, 5]

8 LZTWM Lower zone tension water maximum storage (mm) [10, 500]

9 LZFSM Lower zone supplemental free water maximum storage (mm) [5, 400]

10 LZFPM Lower zone primary free water maximum storage (mm) [10,
1000]

11 LZSK Lower zone supplemental free water lateral drainage rate
(day�1)

[0.01,
0.35]

12 LZPK Lower zone primary free water lateral drainage rate (day�1) [0.001,
0.05]

13 PFREE Fraction of water percolating from upper zone directly to lower
zone free water (decimal fraction)

[0.0, 0.9]

14 RIVA Riverside vegetation area (decimal fraction) 0.3

15 SIDE Ration of deep recharge to channel base flow (dimensionless) 0

16 RSERV Fraction of lower zone free water not transferrable to lower
zone tension water (decimal fraction)

0
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sample points to reach similar objective function value. The SCE-UA method
possesses an edge over the surrogate-based optimization in converging to the
“true” optimal parameter set if there is no limit on the number of sample points.
In other words, the SCE-UA algorithm is capable of finding the exact “true”
parameter values, while the ASMO can provide approximate optimization results
with relatively small costs. There are also different types of ASMO algorithm
available, for instance, the Multiobjective ASMO (Gong et al. 2016), and
distribution-based parameter estimation with surrogate model ASMO-PODE
(Gong and Duan 2017) for interested readers.

The parameter calibration in a multiobjective context is different from that in the
single-objective framework as demonstrated in the previous examples of SCE-UA
and AMSO algorithm. In the multiobjective optimization framework, the ultimate
goal is to produce nondominated solutions that match Global Pareto Optima or
Global Pareto Front in the objective function space. The less differences between
the nondominated solutions and the solutions located on the Global Pareto Optima
or Global Pareto Front, the better fitness the nondominated solutions have.
In reality, to define many objective functions, which are completely competing
to each other, is a tedious task for a given problem, and the Global Pareto Front
for most of the cases cannot be explicitly formulated or even does not exist.
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Therefore, many human-built, benchmark, conceptual test functions are used in both
literature and real-world application to evaluate the performance of multiobjective
optimization algorithms. In the following sections, we demonstrate the strength of a
Multiobjective Shuffle Complex Evolution with Principal Component Analysis and
Crowing Distance (MOSPD) (Yang et al. 2015) on two conceptual, benchmark,
composite test functions with knownGlobal Pareto Front. The two test functions are
KUR function (Kursawe 1991) and ZDT1 function (Zitzler et al. 2000; Zitzler and
Thiele 1999), which are both commonly used test functions in the literture. The
detailed objective functions, dimentionality, parameter bounds, and characteristics
are listed in Table 2. The total number of individuals in population is set to 124 for all
simulation. The simulation results (red dots), along with the known Global Pareto
Front (black line), are shown in Fig. 10a, b. The population in the objective function
space during the entire evolution is shown in Fig. 10c, d with different color legends
represents the locations of population during the evolution.

In the multiobjective context, a higher number of parameters will not only
increase the dimensionality for any single-objective function, but also result in a
more complex shape of Global Pareto Front in the objective functions’ space. As
shown in Fig. 10a, b, the final nondominated solutions derived by MOSPD generally
match well with the known Global Pareto Front for both KUR and ZDT1 functions.
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Different from the previous examples with single-objective function, the population
evolution during the entire search (Fig. 10c, d) is gradually toward the Global Pareto
Front, instead of optimizing any single-objective function value in a consistently
decreasing pattern. According to Deb (2001), the evaluation criteria of non-
dominated solutions for any algorithm have to take two aspects into consideration:
(1) the closeness of nondominated solutions toward theGlobal Pareto Front, i.e., the
convergence of solutions; and (2) the spread of nondominated solutions along the
Global Pareto Front, i.e., the diversity of solutions that represents the coverage of
the nondominated solutions on extreme values of objective functions. In the dem-
onstrated examples (Fig. 10a, b), the produced nondominated solutions have satis-
factory performances with regard to both convergence and diversity on the KUR and
ZDT1 functions. More examples of different heuristic multiobjective optimization

Fig. 9 Comparison of optimization results of SCE-UA and ASMO

Table 2 Details on test functions, including name, number of parameters (N), range, objective
functions, optimal solutions, and shapes

Name N
Variable
range Objective functions

Optimal
solutions Shape

KUR 3 [�5,5] f 1 xð Þ ¼Pn�1
i¼1 �10exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ x2iþ1

q� �� �
x1 � [0, 1] Convex,

disconnectedxi = 0,

i = 2,. . .,nf 2 xð Þ ¼Pn
i¼1 xij j0:8 þ 5 sin x3i

� �� �
ZDT1 30 [0,1] f1(x) = x1 x1 � [0, 1] Convex

f 2 xð Þ ¼ g xð Þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þp
 �

xi = 0,

g xð Þ ¼ 1þ 9
Pn

i¼2 xi
� �

= n� 1ð Þ� i = 2,. . .,n
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algorithms on a large-scale tests are provided in Zitzler et al. (2000), Zitzler and
Thiele (1999), Yang et al. (2015), Gong et al. (2016), and Gong and Duan (2017) for
intersted readers.

5 Summary and Conclusion

As a summary of this chapter, many types of deterministic optimization algorithms
have been developed over the past decades, which have been useful for different
types of optimization problems in general. With a limited amount of content of this
chapter, authors only review few of the most popular methods in the field of
hydrological model calibration, and there exists many other effective algorithms,
which may fit better to various real-world optimization problems. It is also a fact that
the development of optimization algorithm in the research community is rapid, and
the number of new optimization algorithms has been increasing as time goes.
However, it is worth mentioning that even the development of optimization algo-
rithm has been prosperous over the years; all algorithms obey the No-Free-Lunch
algorithm (Wolpert and Macready 1997). In other words, different algorithms have
their own strengths and limitations regarding the efficiency, effectiveness, suitability,
etc. to a particular problem. To reduce the computational burden of calibrating a
complex model, one of the approaches is to approximate and replace the expensive
simulation model with a cheaper-to-run surrogate model. On the other hand, if
the computational resource is not a concern by users, many recently developed
paralleled computing techniques and hybrid optimization approaches are also prom-
ising. Some challenges and future directions with respects to the development and
applications of evolutionary algorithms can be found in a recent review paper by
Maier et al. (2014).
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