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Abstract
This chapter discusses different types of black-box hydrological models that are
based on input-output relationships rather than physical principles. They include
antecedent precipitation index (API) models, regression models, time series
models, artificial neural network (ANN) models, fuzzy logic models, and fre-
quency analysis models. The purpose of this chapter is neither to provide a
complete discussion of the theory of hydrological systems nor to offer a complete
coverage of the studies published in the literature. Rather, the chapter is focused
on presenting general theories and methods of different types of black-box
models, basic model forms, and related applications in hydrology and water
resources engineering.

Keywords
Black-box · Gray-box · White-box models · Flood forecasting · Hydrology

1 Introduction

Hydrological systems and their underlying processes are complicated. In real world,
these systems are approximated by hydrological models, and a model is considered
adequate if the difference between model prediction and measurement is small,
satisfying a predetermined criterion.

Since the pioneering development of the rational method in the middle of the
nineteenth century (Mulvaney 1850), development of hydrological models has gone
through several stages, input-output models (black box), lumped conceptual models
(grey box), and physically based distributed models (white box) (Fig. 1). As the
simplest models, black-box hydrological models are based on input-output relations
and do not describe the underlying hydrologic processes. In many cases, however,
black-box models are adequate and served as a first step for modelers to conceptualize
and simplify hydrologic systems. In fact, other types of hydrological models, i.e., gray-
box and white-box models, more or less also owe their origin to black-box models.

Compared to other types of models, black-box models require the least input
data. Precipitation and temperature are frequently used as input. Temperature is
significant for hydrological modeling, especially, in climate regimes with snow.
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Other hydrometeorological variables can also be possibly employed in black-box
models. Some models can even be run only with output data, such as runoff data.
Spatial characteristics of catchments are seldom considered but they are useful in
the estimation of model parameters and can aid model interpretation and analysis.

Further, running black-box models is more easily achieved in terms of com-
puter resources. Most black-box models do not demand high computational
capability. Hence, a personal laptop or computer is enough for most cases. Many
software or computer languages, such as Matlab or R, are friendly in programming
black-box models.

This chapter describes different types of black-box hydrological models that are
based on input-output relationships, including graphical antecedent precipitation
index (API) models, regression models, time series models, artificial neural network
(ANN) models, fuzzy logic models, and frequency analysis models. In the following
sections, the main types of black-box models are discussed with the focus placed on
the definition of a model, mathematical description and schematic representation of
the elements and structures of basic model forms, and examples of applications in
hydrology and water resources engineering. It should be noted that a complete
discussion of the theory of hydrological systems or a complete coverage of the
studies published in the literature is not a major concern of this chapter. For each type
of black-box hydrological models, the basic forms are presented and a general
discussion of their strengths and weaknesses is also provided.

2 Antecedent Precipitation Index (API) Models

The antecedent precipitation, i.e., the amount of precipitation that has occurred prior
to a single storm event, plays an important role in calculating the runoff response to
rainfall, especially in catchments where runoff generation is dominated by soil water
or groundwater storage, i.e., runoff generation follows the principle of the “variable
source area” theory (Hewlett and Hibbert 1967). The antecedent precipitation index
(API) is generally defined as the weighted summation of daily precipitation amounts
that is used as an index of soil moisture, and is expressed by the following equation
(Kohler and Linsley 1951):

Data-driven 
Input-output

Data

Prior 
knowledge Physical laws 

Physically-
Based 
equations

Black Gray White

Fig. 1 Black-box, gray-box,
and white-box models
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API ¼
X�i

t¼�1

Ptk
�t (1)

where Pt is the amount of precipitation on the tth day prior to the occurrence of
storm, and k is normally a constant.

The above exponential model is based on the assumption that the greater the time
lapse between a rainfall event and a given day, the less influence the rain has on the
soil moisture content of that day (Saxton et al. 1967). The value of i is usually taken
as 5, 7, or 14 days (Viessman and Lewis 1996; Ali et al. 2010).

2.1 Calculations of API

The decrease of API is usually assumed to follow a logarithmic decay. Thus, during
periods of no precipitation:

APIi ¼ k � APIi�1 (2)

For periods with precipitation:

APIi ¼ k � APIi�1 þ PtÞð (3)

This means that if any rain occurs, it should be added to the index (Fig. 2). In
areas of snowfall, precipitation is applied to the model on the days when it melts
rather than on the days when it falls. The value of k varies with basin physical
characteristics and the meteorological condition, and a range of 0.85-0.90 over most
of the eastern central parts of the United States was suggested (Viessman and Lewis
1996), which can be used as a reference for other regions.

To overcome the paradoxes that API often remains a subjectively determined and
arbitrarily implemented parameter in rainfall-runoff modeling, Heggen (2001) pro-
posed the use of a normalized antecedent precipitation index (NAPI) in place of API
(Equation (4)). NAPI is defined as the ratio of the API on the day to the product of
the average daily precipitation and the weighted sum of decay coefficients of the
respective days before the storm.

NAPI ¼
Pi
t¼�1

Ptk
�t

P
P�i

t¼�1

k�t

(4)

where P is the average rainfall for antecedent days, and the other terms have been
defined before. The soil moisture condition is assumed to be “dry” if NAPI < 0.33,
the wet condition is defined as NAPI > 3, and the intermediate range 0.33 ~3 is the
“fair” condition (Hong et al. 2007).
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2.2 Graphical API Models

During the 1950–1960s, scientists were seeking techniques which would (1) simplify
the relationships of rainfall and runoff, (2) require less time for the calculation and
forecasting especially when the computers were not yet available, and (3) not require
information of soil and surface characteristics, vegetation differences, and land use,
which were usually not available.

Because of the importance of antecedent soil moisture condition to runoff gener-
ation, many indices have been used to estimate the moisture condition, such as
(1) days since last rain, (2) discharge at the beginning of the storm, and (3) antecedent
precipitation. API, a rough representation of the initial soil-moisture condition,
generally provides better results among the three indices and can also be easily
determined. Based on API, Kohler and Linsley (1951) developed a relationship
between storm runoff and precipitation by a graphical method of coaxial relations
(Fig. 3). The graphical method consists of 3 three-variable relations, relating storm
runoff as the dependent variable to the antecedent precipitation (API), date (week
number), rainfall amount, and rainfall duration as independent variables.

2.3 Summary

Antecedent soil moisture condition is important for watershed modeling that ulti-
mately provides information on flood forecasting, water resources management,
hydroelectric power generation, and irrigation management. Because the observed

Fig. 2 API relation (modified from NWSRFS User Manual Documentation at http://www.nws.
noaa.gov/ohd/hrl/nwsrfs/users_manual/htm/xrfsdocpdf.php)
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soil moisture data at a larger scale are usually not available, antecedent precipita-
tion index, API, a rough representation of the initial soil-moisture condition, has
been widely used in different hydrological modeling studies since the 1950s and
the studies have generally shown that the use of API has potential to provide
satisfactory results.

One typical example of using API as an important part of hydrological modeling
is the model developed by the U.S. Soil Conservation Service (SCS) (1972) that
incorporates initial losses or abstractions into a coefficient as a function of what is
referred to as curve number, CN, which is a function of land use, soil type,
hydrologic condition of basin, and the antecedent moisture condition (AMC) that
generally is equvilant to the concept of antecedent precipitation index (API).

Other applications of API can be found in more complex rainfall-runoff models
for storm runoff simulation (Saxton et al. 1967; Sittner et al. 1969; Fedora and
Beschta 1989; Ali et al. 2010; Rajurkar et al. 2004; Dawson and Abrahart 2007), and
in other models for landslide studies (Glade et al. 2000; Ma et al. 2014), global

Fig. 3 Coaxial relation – antecedent precipitation index (modified from Sittner et al., 1969)
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runoff simulation (Hong et al. 2007), and the calculation of Forest Fire Danger Index
(FFDI) (Liu et al. 2003), etc.

3 Regression Models

Regression (the term was first used by Pearson 1908) analysis is commonly used to
describe quantitative relationships between a response variable and one or more
explanatory variables. In hydrology, regression model is a useful tool for detecting
relations between runoff and precipitation for the same watershed, between runoff
(or precipitation) in different watersheds, between crop growth and precipitation,
and so on.

An analytical problem to be solved by regression analysis involves
(Riggs 1985): (1) selection of factors which are expected to influence the depen-
dent variable; (2) describing these factors quantitatively; (3) selection of the
regression model; (4) computing the regression equation, the standard error of
estimate, and the significance of the regression coefficients; and (5) evaluation of
results.

3.1 Simple Linear Regression

Regression analysis is a statistical tool that utilizes the relation between two or more
quantitative variables so that one variable (dependent variable) can be predicted from
others (independent variables).

The simplest statistical model for simple linear regression

Yi ¼ aþ bXi þ ei i ¼ 1, . . . , n (5)

Ŷ i ¼ aþ bXi (6)

where:

ei is the error term or residual of the regression line, e1, . . ., en are unobservable
random variables, and are usually assumed as independent and normally
distributed with mean zero and an unknown constant standard deviation, σ;

Xi and Yi are the observed independent and dependent variables, respectively;

Ŷ i are the values estimated from the regression line;
a and b are regression coefficients, where b is called the slope of the line and

a is the y-intercept. The slope measures the amount Y increases/decreases
when X increases/decreases by one unit. The y-intercept is the value of
Y when X = 0.
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3.1.1 Parameter Estimation
The goal is to find the equation of the straight line

Ŷ i ¼ aþ bXi

which would provide a “best” fit for the data points. That is to say, simple linear
regression fits a straight line through the set of n points in such a way that makes the
sum of squared residuals of the model as small as possible. In statistics, simple linear
regression is the least squares estimator of a linear regression model. In other words,
a (the y-intercept) and b (the slope) are solved by the following minimization
problem:

min
a, b

Xn
i¼1

ê2i ¼
Xn
i¼1

Yi � a� bXið Þ2 (7)

It can be shown that the values of a and b that minimize the objective function (7)
are

b ¼
Pn
i¼1

XiYi � nX Y

Pn
i¼1

X2
i � nX

¼

1

n� 1

Xn
i¼1

Xi � X
� �

Yi � Y
� �

1

n� 1

Xn
i¼1

Xi � X
� �2 ¼ cov X,Yð Þ

var Xð Þ (8)

a ¼ Y � bX (9)

3.1.2 Model Evaluation
Coefficient of determination: After fitting a line to the data-points, we want to know
how much of the variability in the dependent variable (Y) is explained by the regres-
sion. For this, the coefficient of determination (R2) is often used and is expressed as:

R2 ¼ Explained variance

Total variance

The variability in the dependent variable Y is quantified as a sum of squares:

•
P

Yi � Y
� �2

= total sum of squares corrected for the mean = total variance

•
P

Ŷ i � Y
� �2

= the squared deviations of the predicted values from the mean
value, explained variance by the regression line

•
P

Yi � Ŷ i

� �2
= the sum of squares of deviation from the regres-

sion = unexplained variance
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The most general definition of the coefficient of determination is (Haan, 2002),

R2 ¼
P

Ŷ i � Y
� �2

P
Yi � Y
� �2 (10)

R2 ranges from 0 to 1, and it is normally expressed as a percentage.
Standard error of estimate (S): A measure of the variability of the regression line,

i.e., the dispersion around the regression line is S. It tells howmuch variation there is in
the dependent variable between the raw value and the expected value in the regression:

S ¼ SSE

n� 2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi � ŷið Þ2

n� 2

vuuut
(11)

where SSE is the residual sum of squares or the sum of squares due to error. This
S allows us to generate the confidence interval on the regression line as well as on
regression coefficients.

Standard error (deviation) for parameters a and b: In regression analysis, the
standard errors of the least square estimators for a (Sa) and b (Sb) are estimated by

Sa ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ x2Pn

i¼1

xi � xð Þ2

vuuut (12)

Sb ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Pn

i¼1

xi � xð Þ2

vuuut (13)

3.1.3 Confidence Intervals
Confidence intervals are important for testing the statistical significance of the
regression coefficient as well as the regression line.

A 100(1-α)% confidence interval for a and b is:

â � tα=2Sa, â þ tα=2Sa
� �
b̂ � tα=2Sb, b̂ þ tα=2Sb
� �

where α is the significance level, and tα/2 is the critical value of the t-distribution with
degrees of freedom (d.f.) =n-2.
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A 100(1-α)% confidence interval on the regression line is:

ŷk � tα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xk � xð Þ2Pn

i¼1

xi � xð Þ2

vuuut
0
BB@

1
CCA

where ŷk represents the predicted mean value of ŷk; the confidence intervals are the
narrowest at xk ¼ x and widen as xk deviates from x as can be seen from Fig. 4.

A 100(1-α)% confidence interval on the individual points is:

ŷk � tα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ xk � xð Þ2Pn

i¼1

xi � xð Þ2

vuuut
0
BB@

1
CCA

where the symbols are the same as above.

50

50

100

150

200

250

300
95% CI on regression line

ŷ=a+bx

95% CI on individual predictedy
Data

100 150
Rainfall (mm)

R
u

n
o

ff
 (

m
m

)

200 250

Fig. 4 A typical plot of simple regression with the 95% confidence intervals and 95% prediction
intervals (modified from Haan, 2002)
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3.1.4 Significance of Coefficients
The statistical significance of parameters a and b equal to or larger/smaller than a
given value (including zero) can be tested based on the t-distribution against a one-
or two-sided alternative, depending on the nature of the relation that is anticipated.
For example, if we want to test if a is significantly different from zero, the
null hypothesis would be H0: a = 0, and the test statistic is t ¼ a�0

sa
. H0 will be

rejected if |t| � t1 � α/2 , n � 2.
Similarly, if we want to test if b is significantly different from zero, the

null hypothesis would be H0: b = 0, and the test statistic is t ¼ b�0
sb

. H0 will be

rejected if |t| � t1 � α/2 , n � 2.

3.2 Multiple Linear Regression Analysis

The general purpose of multiple linear regression is to learn more about the rela-
tionship of a dependent or criterion variable to several independent or predictor
variables.

In general, a multiple regression procedure estimates a linear equation
of the form:
Yi = a + b1xi1 + b2xi2 + � � � + bixip + ei i = 1 , . . . , n where xi1 , . . . ,
xip are the values of the input variables for the ith experimental run and Yi is the
corresponding response. The error terms ei are usually assumed to be independent
and normally distributed with mean zero and constant variance σ2. The unknown
parameters are a, bi, and σ2 or σ.

3.2.1 Parameter Estimation
As in the simple linear regression, the first step in the multiple regression analysis is
to obtain the least squares estimates of parameters a and bi that minimize

X
yi � a� xi1b1 � � � � � xipbp
� �2

In practice, n observations would be available on the dependent variable y and
independent variables x1 to xp. The p unknown parameters are estimated from the
n observations. Thus, n must be equal to or greater than p, and in practice, n should
be at least 3 or 4 times as large as p.

Most of least squares analyses of multiple linear regression models are carried out
with the aid of a computer.

3.2.2 Evaluation of Multiple Regression Model
Similar to simple linear regression, R2, the coefficient of multiple determination or
multiple coefficient of determination is computed and used to evaluate how good the
multiple regression is. The multiple coefficient of determination is defined as
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R2 ¼ Sum of squares due to regression

Sum of squares corrected for the mean
¼ Regression SS

Total SS

¼
Pn
i¼1

ŷi � yð Þ2

Pn
i¼1

yi � yð Þ2
(14)

where yi are the observed values of the dependent variable, y as its mean, and ŷi are
the fitted values.

There are two reasons causing R2 to tend to overestimate the variance accounted
for, compared to an estimate that would be obtained from the population: a large
number of predictors and a small sample size. Therefore, the calculated R2 values
usually need to be adjusted using Eq. (15). So, with a large sample and with few
predictors, adjusted R2 should be very similar to the R2 value.

R2
adjusted ¼ 1� 1� R2

� � n� 1

n� k � 1

� �
(15)

where n is the number of data, and k is the number of independent variables used in
the regression.

3.2.3 Stepwise Multiple Regression
In order to minimize the problem of over-parameterization, the independent variables
need to be carefully chosen. The principle is that on one hand all relevant variables for
theoretical or other reasons should be included, and on the other hand as few independent
variables as possible (principle of parsimony) should be included, also because the more
variables, the greater uncertainty, the larger type II error, and the fewer degrees of freedom.

In statistics, stepwise regression includes regression models in which the choice
of predictive variables is carried out by an automatic procedure. The decision as to
which variable should be included is determined by performing a sequence of F-tests
or t-tests, but other techniques are also possible.

The main approaches are as follows:
Forward selection: In stage one, the independent variable best correlated with

the dependent variable is included in the equation. In the second stage, the remaining
independent variables with the highest partial correlation with the dependent vari-
able, after the first independent variable is removed, is entered. The improvement of
R2 value in each step is checked by the F-test (Haan 2002).

Fc ¼
1� R2

k�1

� � � n� k � 1ð Þ
1� R2

k

� � � n� k � 2ð Þ (16)

where R2
k�1 and R2

k are the determination coefficient with k-1 and k-independent
variables, respectively; n is the number of data; and k is used as the number of
independent variables. If Fc > F1 � α , N � n � 1 , N � n � 2, we know that the addi-
tion of Xn is significant.
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We continue until no variables "significantly" explain the residual variation. At
each step, the increment of R2 is tested by the F-test.

Backward eliminationwhich involves starting with all variables and eliminating
independent variables one at a time until the elimination of one makes a significant
difference in R-squared.

Multiple linear regression models are probably one of the most commonly used
methods for hydrologic forecasting. However, various other types of statistically
based regression models, e.g., nonlinear regression, principal component regression,
partial least squares regression, are also used in hydrological studies (Eldaw et al.
2003; Sharda et al. 2008; Adamowski et al. 2012; Yasar et al. 2012).

3.3 Summary

Simple and multiple regression techniques are widely used in hydrology. Many
applications of regression models can be found in the following categories:
(1) hydrological forecasting, including streamflow forecasting (Yu and Liong
2007), rainfall prediction (Makarau and Jury 1997; Francis and Renwick 1998),
water demand forecasting (Billings and Agthe 1998; Polebitski and Palmer 2009),
etc.; (2) transferring information on hydrological behavior to ungauged catchments
(Vogel and Kroll 1990; Pandey and Nguyen 1999); (3) infilling missing values of
hydrologic variables, such as runoff, precipitation, temperature, soil moisture, etc.
(Beauchamp 1989; Eischeid et al. 2000; Dumedah and Coulibaly 2011); and
(4) regression models, which are also one of the four general categories of down-
scaling methods. The relationships between large-scale and local-scale climatic
fields were established by regression-based schemes (Hewitson and Crane 1996;
Wilby et al. 1999; Charles et al. 2007).

In regression models, it should be noted that the regression equation does not
imply a cause-and-effect relationship of the dependent variable to independent
variables. Both may be influenced by some other factors that are not readily
measured. However, there should be some physical tie between the variables if
the results can be considered meaningful. Thus, there should be a physically
plausible argument for selecting the explanatory variables to estimate the depen-
dent variable.

Like many other statistical procedures, the regression analysis method described
above is built under the assumption that the data are normally distributed, but the types
of data used in hydrology commonly are not normally distributed, and some have no
probability distribution at all. Hydrologists must select procedures most nearly suitable
to the characteristics of data and must interpret the results accordingly.

4 Time Series Models

This section deals with basic time series models, which have become a major tool in
hydrology in the era of information technology. In hydrology, time series models are
usually used for building mathematical models to generate synthetic hydrologic
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records, to forecast hydrologic events, to detect trends and shifts in hydrologic
records, and to fill in missing data and extend records (Salas et al. 1980, Salas
1993; Haan 2002).

A time series is a series of observations of a variable in the course of time, where
time is discretized to a series of time points or moments. A complete observed time
series, y(t), can be decomposed into a number of components as expressed by:

y tð Þ ¼ y1 tð Þ þ y2 tð Þ þ y3 tð Þ þ y4 tð Þ (17)

where y1(t) is the trend component, y2(t) is the periodic component, y3(t) is the
catastrophic event, and y4(t) is the random stochastic component. The first two terms
are deterministic and can be identified and quantified fairly easily; the last two are
stochastic and cannot easily be identified and quantified.

4.1 Types of Hydrologic Time Series

Stationary and nonstationary series: If the statistics of the sample (mean, variance,
covariance, autocorrelation, etc.) do not change with time or length of the sample,
then the time series is said to be stationary to the second-order moment, weakly
stationary, or stationary in a broad sense. Otherwise, it is a nonstationary series, i.e.,
if a definite trend is discernible in the series or there is periodicity in a series, then the
time series is nonstationary.

Generally, annual hydrologic time series are considered to be stationary,
although this assumption may not be strictly correct due to large-scale climate
changes and human activities. On the other hand, hydrologic time series defined
at time scales smaller than a year, such as monthly and daily series, are typically
nonstationary.

White noise series: For a stationary time series, if the process is purely random
and stochastically independent, the time series is called a white noise series. It is the
simplest example of a stochastic process. Such processes contain no memory by
construction, that is, for every t, element Xt is independent of every other element in
the process.

Gaussian time series: A Gaussian random process is a process (not necessarily
stationary) of which all random variables are normally distributed, and of which all
simultaneous distributions of random variables of the process are normal. When a
Gaussian random process is weakly stationary, it is also strictly stationary, since the
normal distribution is completely characterized by its first- and second-order
moments.

4.2 Time Series Models for Stationary Data

A time series model is an empirical model for stochastically simulating and fore-
casting the behavior of uncertain hydrologic systems. Time series models include
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stochastic models for a purely random time series with known distribution, for
stationary time series, e.g., autoregressive (AR) models, moving average
(MA) models, autoregressive moving average (ARMA) models, as well as for
nonstationary time series, e.g., autoregressive integrated moving average
(ARIMA) models, Thomas-Fiering model, etc.

4.2.1 Time Series Models for Purely Random Series with Known
Probability Distribution

Possibly, the simplest stochastic process to model is where the events can be
assumed to occur at discrete times with the time between events constant, the events
at any time are independent of the events at any other time, and the probability
distribution of the event is known. Stochastic generation from a model of this type
merely amounts to generating a sample of random observations from a univariate
probability distribution.

Example: If Xt is a white noise series and normally distributed, i.e., Xt � N

μx, σ
2
x

� �
, then the model can be

Xt ¼ μx þ σxZ (18)

where μx and σx are the mean and standard deviation of the Xt series, and Z ~ N(0, 1)
is a random series having standard normal distribution, which can be generated by
Monte Carlo simulation.

4.2.2 Autoregressive Models
The autoregressive models are used to model stationary time series when persistence
(memory) is present. The general form of a pth-order autoregressive model, also
called Markov type model, AR( p), is

yt ¼ μþ β1 yt�1 � μð Þ þ β2 yt�2 � μð Þ þ � � � þ βp yt�p � μ
� �þ et

¼ μþ
Xp
i¼1

βi yt�i � μð Þ þ et
(19)

where μ is the mean value of the series, p is the order of AR model, written as AR( p),
βt are the regression coefficients, and et are the noise or prediction error, normally
assumed as N 0, σ2e

� �
. There are p+2 parameters to be estimated: β1 , β2 , . . . , βp,

μ, and σ2e , the variance of residuals.
The most frequently encountered AR processes are of first or second order, and

AR(0) process is white noise.
The equation for the first-order autoregressive model is:

yt ¼ μþ β1 yt�1 � μð Þ þ et (20)

Parameters β1, μ, and σe of the model are estimated using the Yule-Walker
equations. The relation between regression coefficient β and autocorrelation coeffi-
cient ρ is written as:
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ρk ¼
XP
j¼1

βjρk�j (21)

where ρk is the autocorrelation coefficient. The parameters are estimated as:

β̂1 ¼ ρ1; σ̂
2
e ¼ σ2y 1� β21

� �
; μ̂ ¼ y ¼ 1

n

Xn
i¼1

yi (22)

The procedure for generating a series of values for yt using AR(1) model is:
• Estimate μy, σy, and β1 by y ¼ μy , sy = σy, and r1 = β1, respectively, and

σ2e ¼ σ2y 1� β21
� �

• Select a zt at random from an N(0, 1) distribution
• Select an initial value for yt � 1

• Calculate yt based on y, sy, and β1 , and yt � 1 by

yt ¼ μy þ β1 yt�1 � μy
� �þ ztσy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β21
� �q

(23)

• Delete the first 50 values to get rid of the influence of the initial values

4.2.3 Moving-Average Models
The moving-average model of order q process, denoted by MA(q), is formulated as
follows:

yt ¼ μy þ et þ θ1et�1 þ θ2et�2 þ � � � þ θqet�q (24)

where et is a white noise with et � N 0, σ2e
� �

; θi are parameters of order q, i.e.,
parameter θk = 0 for k > q.

The above equation gives the definition of the MA model: For a white noise or
purely random series, et is assumed to be normally distributed with zero mean and
constant standard deviation. That is, a moving average model is conceptually a linear
regression of the current value of the series against the previous (unobserved) white
noise error terms or random shocks.

4.2.4 ARMA Models
Autoregressive moving-average (ARMA) models, sometimes called Box-Jenkins
models (Box and Jenkins 1976), consist of two parts, an autoregressive (AR) part
and a moving-average (MA) part. The model is usually then referred to as the
ARMA( p, q) model, where p is the order of the autoregressive part and q is the
order of the moving-average part.

In this case, xt is a mixed process where the output is a function of past outputs
and current/past inputs
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xt ¼ cþ
Xp
t¼1

xt�iβi þ et þ
Xq
j¼1

θjet�j (25)

All notations have the same meaning as before. The error terms et are generally
assumed to be independent identically distributed random variables (i.i.d.) sampled
from a normal distribution with zero mean: et � N 0, σ2e

� �
, where σ2e is the variance of

the error.
There are p+q+2 parameters (βi, i = 1, . . . , p; θi, i = 1, . . . , q; c; σe). Some

formulations transform the series by subtracting the mean of the series from each
data point. This yields a series with a mean of zero. Whether one needs to do this or
not is dependent on the software one uses to estimate the model.

In practice, the ARMA(1,1) model is often used:

xt ¼ β1xt�1 þ et þ θ1et�1 (26)

Parameters β1, θ1, and σ2e can be estimated by solving the following equations:

ρ1 ¼
β1 � θ1ð Þ 1� θ1β1ð Þ
1þ θ21 � 2β1θ1

(27)

ρ2 ¼ β1ρ1 (28)

σ2e ¼
1� β21
� �

σ2x
1� 2β1θ1 þ θ21

(29)

4.3 Nonstationary Time Series Models

4.3.1 ARIMA Models
The acronym ARIMA stands for "Auto-regressive integrated moving average." The
ARMAmodels are suitable for data with the following two basic characteristics: (1) no
apparent deviation from stationary assumption and (2) rapidly decreasing autocorre-
lation function. If these conditions are not met by a time series, a proper transformation
should be performed to generate the time series with the above two conditions
satisfied. This has usually been achieved by differencing, which is the essence of
ARIMA models (Karamouz et al. 2012). It should be noted that the ARIMA models
are nonstationary and cannot be used for synthetic generation of stationary time series,
but they can be used for forecasting (Salas et al. 1980; Weeks and Boughton 1987).

4.3.2 First-Order Markov Process with Periodicity: Thomas-Fiering
Model

The first-order Markov model of the previous section assumes that the process is
stationary in its first three moments. It is possible to generalize the model so that the
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periodicity in hydrologic data is accounted for to some extent. The main application
of this generalization has been in generating monthly streamflow where pronounced
seasonality in monthly flows exists. In its simplest form, the method consists of the
use of 12 linear regression equations. If, say, 30 years of records are available, the
thirty January flows and the thirty December flows are abstracted and the January
flow is regressed upon the December flow; similarly, the February flow is regressed
upon the January flow, and so on for each month of the year.

qJan ¼ qJan þ bJan qDec � qDecð Þ þ eJan
qFeb ¼ qFeb þ bFeb qJan � qJanð Þ þ eFeb
. . . . . .

Fig. 5 shows a regression analysis of qj + 1 on qj, pairs of successive monthly
flows for the months ( j+1) and j over the years of record, where j = 1, 2, 3, . . .,
12 (January, February, . . ., December) and when j = 12, j+1= January of next year
(there would be 12 such regressions). If the regression coefficient of month j+1 on
j is bj, then the regression line values of a monthly flow, q̂jþ1, can be determined from
the previous month’s flow qj, by the equation:

q̂jþ1 ¼ qjþ1 þ bj qj � qj
� �

To account for the variability in the plotted points about the regression line
reflecting the variance of measured data about the regression line, a further random
component is added:

qj+1

qj qj

q–j+1

q–j

q̂j+1

Fig. 5 Regression analysis of qj + 1 on qj
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ej ¼ Z � Sjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2j

� �r

where sj + 1 is the standard deviation of flows in month j+1, rj is the correlation
coefficient between flows in months j+1 and j throughout the record, and Z= N(0, 1)
a normally distributed random deviate with zero mean and unit standard deviation.
The general form may be written as

q̂jþ1, i ¼ qjþ1 þ bj qj, i�1 � qj
� �þ Zjþ1, i � Sjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2j

� �r
(30)

where bj = rj � sj + 1/sj. There are 36 parameters for the monthly model (q, r, and s
for each month). Subscript j refers to a month. For monthly synthesis, j varies from
1 to 12 throughout the year. Subscript i is a serial designation from year 1 to year n.
Other symbols are the same as mentioned earlier.

The procedure for using the model is as follows:
1. For each month, j = 1, 2,. . ., 12, calculate

(a) Mean flow qj ¼ 1
n

X
i

qj, i; i ¼ j, 12þ j, 24þ j, . . .ð Þ

(b) Standard deviation Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

qj, i � qj
� �2

n�1

s

(c) The correlation coefficient with flow in the preceding month,

rj ¼

X
i¼1

qj, i � qj
� �

qjþ1, i � qjþ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

qj, i � qj
� �X

i

qjþ1, i � qjþ1

� �r

(d) The slope of the regression equation relating the month’s flow to flow in the
preceding month:

bj ¼ rj
Sjþ1

Sj

2. The model is then a set of 12 regression Eq. (30)

q̂jþ1, i ¼ qjþ1 þ bj qj, i � qj
� �þ Zjþ1, i � sjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2j

� �r

where Z is a random normal deviate N(0, 1)
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3. To generate a synthetic flow sequence, calculate (generate) a random number
sequence {Z1, Z2, . . .}, and substitute in the model

4.3.3 ANMAX Model
Autoregressive moving-average models with exogenous inputs are denoted by
ANMAX ( p, q, b), which shows a model with p autoregressive terms (AR( p)),
q moving-average terms (MA(q)), and b exogenous input terms as a linear combi-
nation of the last b terms of a known and external time series dt (Bailite 1980). The
model formulation is as follows:

yt ¼ et þ
Xp
i¼1

βi pð Þyt�i þ
Xq
i¼1

θiet�i þ
Xb
i¼1

ηidt�i (31)

where parameters η1 , . . . , ηb are related to the selected exogenous input. These
models can be successfully utilized in cases where the historical data cannot
completely cover the variations and behavior of the studied variables.

4.3.4 ARCH Model
Volatility (i.e., time-varying variance) clustering, in which large changes tend to
follow large changes and small changes tend to follow small changes, has been well
recognized in time series analysis. This phenomenon is called conditional hetero-
scedasticity, and can be modeled by ARCH-type (AutoRegressive Conditional
Heteroscedasticity, ARCH) models, including the ARCH model introduced by
Engle (1982) and their GARCH (the generalized ARCH) extension proposed by
Bollerslev (1986). In these models, the key concept is the conditional variance, i.e.,
the variance conditional on the past.

4.3.5 Disaggregation Model
Disaggregation models are used to decompose time series into several subseries that
are temporal or spatial fractions of the key time series. Valencia and Schaake (1973)
and later extension by Mejia and Rousselle (1976) introduced the basic disaggrega-
tion model for temporal disaggregation of annual time series into seasonal time
series. Disaggregation models of hydrologic time series are efficient techniques for
cases where the preservation of statistical characteristics of both annual and seasonal
scales is essential for the project under study. Most applications of disaggregation
have been in the temporal domain, although some investigators have applied the
same principle in the spatial domain.

4.4 Summary

Time series models are now a major tool in planning, operation, and decision making
in hydrology and water resources. On one hand, time series models possess many
appealing features. First, they can be used to model a time series without considering
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its physical nature. Second, they can be used to extrapolate past patterns of behavior
into the future. They allow a researcher, who has data only in past years, to forecast
future events without having to search for other related time series data. Third, the
time series approach also allows for the use of one time series to explain the behavior
of another series, if the other time series data are correlated with a variable of interest
and if there appears to be some cause for this correlation. On the other hand, some
time series models, like ARIMA, are complex techniques, and require a great deal of
experience and data. Although they often produce satisfactory results, those results
depend on the researcher’s level of expertise.

Machiwal and Jha (2006) reviewed both theoretical and applied research of time
series models in the hydrological science. In hydrologic studies, time series models
have been widely applied for detecting climatic changes (e.g., Kite 1989), investigat-
ing the long-term hydroclimatological trends (Lachtermacher and Fuller 1994),
exploring the possible impact of climate change on hydrologic variables or water
resources (Westmacott and Burn 1997), modeling precipitation (Janos et al. 1988),
evapotranspiration (Mohan and Arumugam 1995), streamflow (Moatmari et al. 1999;
Pekarova and Pekar 2006; Shao et al. 2009), groundwater (Houston 1983; Van Geer
and Zuur 1997), drought (Mishra and Desai 2005), water quality (Ahmad et al. 2001),
and water demand and consumption (Bougadis et al. 2005; Jorge 2007), etc.

5 Artificial Neural Network (ANN) Models

An artificial neural network (ANN) is a biologically inspired distributed computing
processor system in parallel with certain performance characteristics resembling bio-
logical neural networks of the human brain, which differs from conventional computers
in the way they process information (Haykin 1994). It has a distributed processing
structure (Alp and Cigizoglu 2007) and consists of processing elements and connec-
tions between themwith coefficients bound to the connections. Mathematically, ANNs
may be treated as a universal approximator. They are able to extract the relation between
inputs and outputs of a process without the physics being explicitly provided to them
and to generalize the structure hiddenwithin thewhole dataset. ANNmodels are able to
simulate nonlinear relationships through an automatic “training process” (Hsu et al.
1997). The ANNmodels have no limitations in the form of fixed assumptions or formal
constraints and are faster comparedwith its conventional simulationmethods, robust in
noisy environments, flexible in many problems, and highly adaptive to the newer
environments (Jain et al. 1999). There have been many standard ANN software that
can be used to pursue intricate multipurpose nonlinear solutions.

5.1 Structure of ANN

ANNs are a computational model and have been developed as a generalization of
mathematical models of human cognition or neural biology. An ANN is based on the
following rules:
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• Information processing occurs at many single elements called nodes, also referred
to as units, cells, or neurons

• Signals are passed between nodes through connection links
• Each connection link has an associated weight that represents its connection

strength
• Each node typically applies a nonlinear transformation called an activation

function to its net input to determine its output signal

According to the absence or presence of feedback connections in a network, two
types of architecture are distinguished: feedforward architecture and feedback archi-
tecture. A typical feedforward multilayer artificial neural network with a single
hidden layer is illustrated in Fig. 6 (Friedman and Kandel 1999; Xiong et al. 2004).

This kind of ANNs can solve a wide variety of problems, such as classifying
patterns, storing and recalling data, performing general mapping from input pattern
(space) to output pattern (space), grouping similar patterns, or finding solutions to
constrained optimization problems. It consists of input nodes Xi pð Þf gni¼1 (and one
input to the neuron, called a bias, has a constant value of 1 and is usually represented
as a separate input), hidden nodes Zj pð Þ	 
l

j¼1
(and a bias), and output nodes

Yk pð Þf gmk¼1 , where X, Z, and Y represent the input, hidden, and output layers,
respectively, n, l, m represent the number of the nodes in each layer, and p denotes
the training pattern. The weights associated with the connections between input and
hidden nodes are denoted by vij, 0 � i � n, 1 � j � l. Those between the hidden
and the output nodes are denoted by wjk, 0 � j � l, 1 � k � m.

For node Zj in the hidden layer (Fig. 6), its effective aggregated input signal,
denoted by z_inj, is calculated as:

z_inj ¼ v0j þ
Xn
i¼1

vijxi, 1 � j � l (32)

where xi, 1 � i � n represents the input to each node in the input layer.
For node Zj, its corresponding output signal, denoted by zj, is obtained by using an

activation function f(x)

zj ¼ f z_inj
� �

, 1 � j � l (33)

The most widely used activation function is the sigmoid function (Friedman and
Kandel 1999). The sigmoid function is a bounded, monotonic, nondecreasing
function that provides a graded and nonlinear response. Among several different
sigmoid functions, the one most often used for ANNs is the logistic function

zj ¼ f z_inj
� � ¼ 1

1þ e�σ�z_inj (34)

where σ is an adjustable parameter used in the activation function f(x). This function
enables a network to map any nonlinear process.
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5.2 Network Training

In order for an ANN to generate an output vector Y = (y1, y2, . . . , yP) that is as
close as possible to the target vector T = (t1, t2, . . . , tp), a training process, also
called learning, is employed to find optimal weight matrices vij and wjk, which
minimize a predetermined error function that usually has the form:

E ¼
X
p

X
l

yi � tið Þ2 (35)

Here, ti is a component of the desired output T; yi is the corresponding ANN
output; l is the number of output nodes; and p is the number of training patterns.
Training is a process by which the connection weights of an ANN are adapted
through a continuous process of stimulation by the environment in which the
network is embedded. The learning ability of a neural network is achieved by
applying a learning (training) algorithm.

Training algorithms are mainly classified into three groups (Kasabov 1996):

(1) Supervised. The training examples comprise input vectors x and the desired
output vectors y. Training is performed until the neural network “learns” to

1

1( )X p

1( )X p

1( )X p

1

1( )Z p

( )jZ p

( )lZ p

1( )Y p

( )kY p

( )mY p

Input layer Hidden layer Output layer

Fig. 6 A feedforward multilayer neural network with a single hidden layer (modified from
Friedman and Kandel, 1999)
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associate each input vector x to its corresponding and desired output vector y; for
example, a neural network can learn to approximate a function y = f(x)
represented by a set of training examples (x, y). It encodes the examples in its
internal structure.

(2) Unsupervised. Only input vectors x are supplied; the neural network learns some
internal features of the whole set of all the input vectors presented to it.

(3) Reinforcement learning, sometimes called reward-penalty learning, is a combi-
nation of the above two paradigms; it is based on presenting input vector x to a
neural network and looking at the output vector calculated by the network. If it is
considered “good,” then a “reward” is given to the network in the sense that the
existing connection weights are increased; otherwise, the network is “punished,”
the connection weights, being considered as “not appropriately set,” decrease.
Thus, reinforcement learning is learning with a critic, as opposed to learning
with a teacher.

Learning is not an individual ability of a single neuron. It is a collective process of
the whole neural network and a result of the training procedure. The connection
weight matrixW has its meaning as a global pattern. It represents “knowledge” in its
entirety. We do not know exactly how learning is achieved in the human brain. But
learning (supervised or unsupervised) can be achieved in an artificial neural network.
And there are some genetic laws of learning which have been discovered and
implemented.

After training has been accomplished, it is hoped that the ANN will then be
capable of generating reasonable results given new inputs. In contrast, an
unsupervised training algorithm does not involve a teacher. During training, only
an input data set is provided to the ANN that automatically adapts its connection
weights to cluster those input patterns into classes that have similar properties. There
are occasions when a combination of these two training strategies leads to reinforce-
ment learning. A score or grade is used to rate the network performance over a series
of training patterns. Most hydrologic applications have utilized supervised training.
The manner in which the nodes of an ANN are structured is closely related to the
algorithm that is used to train it.

5.3 Summary

ANNs have been utilized in many hydrologic problems and to evaluate if indeed all
the strengths of ANNs have been effectively utilized in these applications. These
appilications include streamflow simulation (Shamseldin 1997; Hsu et al. 1995; Kişi,
2007; Wu and Chau 2011; He et al. 2014; Abrahart and See 2000; Aziz et al. 2014),
water quality modeling (Rogers and Dowla 1994; Abyaneh 2014), ground water
modeling (Aziz et al. 1992; Daliakopoulos et al. 2005), reservoir operation (Raman
and Chandramouli 1996), water resources allocation and management (Raman
and Sunilkumar 1995), evaporation estimation (Kumar et al. 2002; Shiri et al.
2014), hydrograph generation from hydrometeorological parameters (Ahmad
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and Simonovic 2005), impact of climatic variations on flow discharge and
dissolved organic carbon and nitrogen contents (Clair and Ehrman 1998), etc.

Zealand et al. (1999) claim that ANNs have the following beneficial model
characteristics: (1) They infer solutions from data without prior knowledge of the
regularities in the data. (2) ANNs are able to adapt to solutions over time to
compensate for changing circumstances. (3) ANNs can generalize from previous
examples to new ones, which is useful because real-world data are noisy, distorted,
and often incomplete. (4) ANNs are also good at the abstraction of essential
characteristics from inputs containing irrelevant data. (5) They are nonlinear, i.e.,
they can solve some complex problems more accurately than do linear techniques.
(6) ANNs are highly parallel, containing many identical, independent operations
that can be executed simultaneously, often making them faster than alternative
methods.

However, ANNs also have several drawbacks for some applications. (1) Most of
the ANN applications have been unable to explain the basic process in a compre-
hensibly meaningful way by which ANNs arrive at a decision. (2) When there is no
learnable function or the data set is insufficient in size, they may fail to produce a
satisfactory solution. (3) The optimum network geometry as well as the optimum
internal network parameters are problem dependent and generally have to be found
using a trial-and-error process. (4) The performance of an ANN deteriorates rapidly
when the input vectors are far from the space of inputs used for training. (5) ANNs
cannot cope with major changes in the system, because they are trained on historical
data sets.

6 Fuzzy Logic Models

Fuzzy logic models are based on fuzzy logic system (Kruse et al. 1994; Klir and
Yuan 1995; Kasabov 1996; Zimmermann 2001). Fuzzy logic systems, or fuzzy
systems, are knowledge-based or rule-based systems. A fuzzy system is constructed
from a set of fuzzy IF-THEN rules. A fuzzy IF-THEN rule is an IF-THEN statement
in which some words are characterized by continuous membership functions (Wang
1997). For example, the following is an IF-THEN rule:

IF x is A, THEN y is B

The functioning of fuzzy systems is based on fuzzy sets theory (Zadeh 1965). The
fuzzy sets theory, as an extension of the classical sets theory, are generally used to
describe imprecision or vagueness. By translation into fuzzy IF-THEN rules, sub-
jective knowledge can be incorporated in fuzzy logic systems in a natural and
transparent way. Furthermore, the major strength of fuzzy logic systems resides in
their ability to infer the behaviour of complex systems purely from data (data-
driven), but still providing some insight about their internal operation. Finally,
fuzzy systems are flexible modeling tools, as their architecture and the inference
mechanisms can be adapted to the given modeling problem.
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Fuzzy logic models consist of three steps, taking inputs, applying fuzzy rules, and
producing outputs. Inputs to a fuzzy system can be either exact, crisp values, or fuzzy
values. Output values from a fuzzy system can be fuzzy or exact (crisp). The process of
transforming a single crisp value into a fuzzy value is called fuzzification, while the
process of transforming a fuzzy value into a single crisp value is called defuzzification.

6.1 Basic Concepts of Fuzzy Systems

6.1.1 Fuzzy Sets and Membership Functions
Fuzzy sets, which may be generally used to describe imprecision or vagueness, have
firstly been introduced by Zadeh (1965). Fuzzy sets are sets of objects without clear
boundaries; in contrast with ordinary sets where for each object it can be decided whether
it belongs to the set or not, a partial membership in a fuzzy set is possible. The traditional
way of representing elements x of a set A is through the characteristic function:

μA(x) = 1, if x is an element of set A, and
μA(x) = 0, if x is not an element of set A,

that is, an object either belongs or does not belong to a given set.
An object can belong to a set partially in fuzzy sets. The degree of membership is

defined through a generalized characteristic function called membership function:

μA xð Þ : U ! 0, 1½ 	
where U is called the universe and A is a fuzzy subset of U.

The values of the membership function are real numbers in the interval [0, 1],
where 0 means that the object is not a member of the set and 1 means that it belongs
entirely to the set. Each value of the function is called a membership degree. One
way of defining a membership function is through an analog function.

Fig. 7 (Kasabov 1996) shows three membership functions representing three
fuzzy sets labeled as “short,” “medium,” and “tall,” all of them being fuzzy values
of a variable “height.” As we can see, the value 174 cm belongs to the fuzzy set
“medium” to a degree of 0.6 and at the same time to the set “tall” to a degree of 0.4.

To take another familiar example (Bárdossy et al. 1995), the set of young persons
is fuzzy, as there is no generally accepted boundary between young and not young.
The membership function of this set A may be defined as

μA xð Þ ¼
1 if x � 25
40� x

15
if 25 < x � 40

0 if x > 40

8><
>:

Fuzzy set theory can be considered as an extension of ordinary set theory;
compared to the classical set theory, fuzzy set theory is very flexible in describing
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the features of objects; it has advantages in expressing vague, uncertain, and
imprecise information, which appears frequently in scientific and engineering fields
(Zadeh 1965; Zimmermann 2001).

6.1.2 Fuzzy Rules
A fuzzy rule consists of a set of arguments in the form of fuzzy sets with membership
functions and a response also in the form of a fuzzy set. For a general input vector,
the rule is applied as:

If a1isAi, 1
K

a2 is Ai, 2
K

. . .
K

ak is Ai, k , then Bi

where
J

is any logical operator, specified according to the application. Usually
rules are formulated using AND/OR operators. For example, in modeling moisture
movement in an unsaturated zone (Dou et al. 1999), it may consist of two premises
(i.e. k = 2). Ai , 1 may correspond to a class of upper layer moisture content (e.g.,
low, medium, high), and Ai , 2 to a class of lower layer moisture content (e.g., very
low, medium, high, saturated), and the response Bi may be the actual quantity of
water flux between the two layers.

6.2 Operations with Fuzzy Sets

Fuzzy set theory can be considered as an extension of ordinary set theory, i.e., the
classical sets are a special case of fuzzy sets, when two membership degrees only,
0 and 1, are used, and crisp borders between the sets are defined. The following
operations over two fuzzy sets A and B defined over the same universeU are the most
common in fuzzy theory (Zadeh 1965; Zimmermann 2001).

Containment, A 
 B

Fig. 7 Membership functions of representative three fuzzy sets for the variable “height” (modified
from Kasabov, 1996)
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A is contained inB (or, equivalently, A is a subset of B, or A is smaller than or
equal to B) if and only if μA � μB. In symbols

A 
 B , μA � μB

Intersection, A \ B
The intersection of two fuzzy sets A and B with respective membership functions

μA(x) and μB(x) is a fuzzy set of C, written as C = A \ B, whose membership
function is related to that of A and B by

μC xð Þ ¼ min μA xð Þ, μB xð Þ½ 	, x�U

or in abbreviated form

μC xð Þ ¼ μA xð Þ ^ μB xð Þ, x�U

Union, A [ B
The union of two fuzzy sets A and B with respective membership functions μA(x)

and μB(x) is a fuzzy set of C, written as C = A [ B, whose membership function is
related to that of A and B by

μC xð Þ ¼ max μA xð Þ, μB xð Þ½ 	, x�U

or in abbreviated form

μC xð Þ ¼ μA xð Þ _ μB xð Þ, x�U

Equality, A = B
Two fuzzy sets A and B are equal, written as A = B, if and only if

μA xð Þ ¼ μB xð Þ, x�U

Complement
The complement of a fuzzy set A is denoted by A0 and is defined by

μA0 xð Þ ¼ 1� μA xð Þ, x�U

Concentration, CON(A)

μCON Að Þ xð Þ ¼ μA xð Þð Þ2, x�U

this operation is used as a linguistic modifier “very”
Dilation, DIL(A)

μDIL Að Þ xð Þ ¼ μA xð Þð Þ0:5, x�U

this operation is used as a linguistic modifier “more or less.”
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Algebraic product, A � B
The algebraic product of two fuzzy sets A and B with respective membership

functions μA(x) and μB(x) is a fuzzy set of C, written as C = A � B, whose member-
ship function is related to those of A and B by:

μC xð Þ ¼ μA xð Þ � μB xð Þ, x�U

Algebraic sum, A + B
The algebraic sum of two fuzzy sets A and B with respective membership

functions μA(x) and μB(x) is a fuzzy set of C, written as C = A + B, whose mem-
bership function is related to thoses of A and B by

μC xð Þ ¼ μA xð Þ þ μB xð Þ, x�U

The De Morgan laws are valid for the algebraic sum and difference.
Bounded product
The bounded product of two fuzzy sets A and B with respective membership

functions μA(x) and μB(x) is a fuzzy set of C, whose membership function is related to
those of A and B by

μC xð Þ ¼ max 0, μA xð Þ þ μB xð Þ � 1½ 	, x�U

Bounded sum
The bounded sum two fuzzy sets A and B with respective membership functions

μA(x) and μB(x) is a fuzzy set of C, whose membership function is related to those of
A and B by

μC xð Þ ¼ max 1, μA xð Þ þ μB xð Þ½ 	, x�U

Bounded difference, A/ � /B
The bounded difference of two fuzzy sets A and B with respective membership

functions μA(x) and μB(x) is a fuzzy set of C, written as C = A/ � /B, whose
membership function is related to those of A and B by:

μC xð Þ ¼ min 0, μA xð Þ � μB xð Þ½ 	, x�U

Normalization, NORM(A)

μNORM Að Þ xð Þ ¼ μA xð Þ=max μA xð Þf g, x�U

The operations over fuzzy sets have some properties, for example, they are
associative, commutative, and distributive, that is,

Associative: (a � b) � c = a � (b � c)
Commutative: a � b = b � a (not valid for the bounded difference)
Distributive: a � (b ⋆ c) = (a ⋆ b) � (a ⋆ c)
where � and ⋆ denote any operations from those listed above.
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6.3 Types of Fuzzy Systems

To construct a fuzzy system, first we need to obtain a collection of fuzzy IF-THEN
rules from human experts or based on domain knowledge. The next step is to
combine these rules into a single system. Different fuzzy systems use different
principles for this combination. There are three types of fuzzy systems that are
commonly found in the literature: (i) pure fuzzy systems, (ii) Takagi-Sugeno-Kang
(TSK) fuzzy systems, and (iii) fuzzy systems with fuzzifier and defuzzifier.

6.3.1 Pure Fuzzy Systems
The main feature with the pure fuzzy system is that its inputs and outputs are fuzzy
sets, whereas the inputs and outputs are real-valued variables in engineering systems
(Fig. 8) (Wang 1997).

Each single IF-THEN rule of pure fuzzy systems has the following general form:
Rule m: IF x1 is A1,mð Þ AND x2 is A2,mð ÞAND . . . AND xk is Ak,mð Þ THEN

y is. . .expressing the relation between k input variables x1 , x2 , . . . , xk and
output y. Terms Ak , m in the antecedents of the rules (i.e., the IF part of the rules)
represent fuzzy sets (Zadeh 1965) used to partition the input space into over-
lapping regions.

6.3.2 Takagi-Sugeno-Kang (TSK) Fuzzy Systems
In contrast to pure fuzzy systems, Takagi and Sugeno (1985) and Sugeno and Kang
(1988) proposed another fuzzy system whose inputs and outputs are real-valued
variables, named Takagi-Sugeno-Kang (TSK) fuzzy systems. The TSK fuzzy sys-
tems have the following general structure:

IF x1 is A1,mð Þ AND x2 is A2,mð Þ AND . . . AND xk is Ak,mð Þ THEN
y = fm(x1, x2, . . . , xk)

Each fuzzy rule in a TSK fuzzy inference system can be regarded as a local model
of the system under consideration. The functions fm are usually first-order poly-
nomials, given by

f m x1, x2, . . . , xkð Þ ¼ b0,m þ b1,m � x1 þ b2,m � x2 þ � � � þ bk,m � xk
Fig. 9 shows a schematic diagram of the functioning of a typical multiple-input

single-output TSK fuzzy system (Jacquin and Shamseldin 2006). The first stage in
the inference process of a TSK fuzzy model is the calculation of the degree of
fulfilment (DOF) of each rule. The output of each rule is obtained by the evaluation
of the corresponding function fm . Finally, the overall fuzzy model response is
obtained as the weighted average of the individual rule responses.

The degree of fulfilment of a rule evaluates the compatibility of a given input
vector with the antecedent of the rule (i.e., the IF part). The degree of fulfilment is
normally evaluated using a T-norm, such as the algebraic product:

DOFm x1, x2, . . . , xkð Þ ¼ μA1,m x1ð Þ � μA2,m x2ð Þ � � � � � μAk,m xkð Þ
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Several types of the membership functions can be used for the fuzzy sets in the
antecedents of the rules (Zimmermann 2001; Piegat 2001). The Gaussian member-
ship functions, which have the following analytical expression:

μk,m xð Þ ¼ exp � xk � ck,m
� �

2σ2k,m

" #

are a common choice (Chang et al. 2001; Gautam and Holz 2001; Xiong et al. 2001).
In this case, each membership function has two parameters, namely the center ck , m

and the spread σk , m.
Some problems with the Takagi-Sugeno-Kang fuzzy system are listed as follows:

(i) its THEN part is a mathematical formula and therefore may not provide a natural
framework to represent human knowledge, and (ii) there is not much freedom left to

INPUT
1 2( , , , )kx x x…

1DOF 1( )f x 2DOF 2 ( )f x MDOF ( )Mf x

Aggregation
of Responses

OUTPUT
1 2( , , , )ky x x x= …

Rule 1 Rule 2 Rule M

Rule 
Base

Fig. 9 Functioning of a multiple-input single-output Takagi-Sugeno-Kang fuzzy inference system
(modified from Jacquin and Shamseldin 2006)

Fuzzy Inference EngineFuzzy Inference Engine

Fuzzy Rule BaseFuzzy Rule Base

fuzzy setsfuzzy sets

in Uin U

fuzzy setsfuzzy sets

in Vin V

Fig. 8 Basic configuration of pure fuzzy systems (modified from Wang, 1997)
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apply different principles in fuzzy logic, so that the versatility of fuzzy systems is not
well represented in this framework.

6.3.3 Fuzzy Systems with Fuzzifier and Defuzzifier
In order to use pure fuzzy systems for simulating engineering systems, a simple
method is to add a fuzzifier, which transforms a real-valued variable into a fuzzy set,
to the input, and a defuzzifier, which transforms a fuzzy set into a real-valued
variable, to the output. Thus, we get a fuzzy system with fuzzifier and defuzzifier,
as shown in Fig. 10 (Wang 1997).

6.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)

During the past four decades, significant progress has been made in the two artificial
intelligence techniques, i.e., fuzzy inference system (FIS) and artificial neural
networks (ANNs). A judicious integration of FIS and ANN can produce a functional
neural fuzzy system capable of learning, high-level thinking, and reasoning (Jang
et al. 1997; Loukas 2001). It provides an effective approach for dealing with large
imprecisely defined complex systems. An ANFIS works by applying neural learning
rules to identify and tune the parameters and structure of an FIS.

A typical architecture of an ANFIS, in which a circle indicates a fixed node,
whereas a square indicates an adaptive node, is shown in Fig. 11 (Jang et al. 1997).
For simplicity, we assume that the examined FIS has two inputs and one output.

In Fig. 11, x and y are the two crisp inputs and Ai and Bi are the linguistic labels
associated with the node function. For rainfall-runoff modeling in hydrology, the
input and output nodes represent rainfall process and discharge observations,
respectively.

The attractive features of an ANFIS include: easy to implement, fast and accurate
learning, strong generalization abilities, excellent explanation facilities through
fuzzy rules, and easy to incorporate both linguistic and numeric knowledge for
problem solving (Jang et al. 1997). Due to these fascinating features of the
ANFIS, it is widely used in hydrological science.

6.5 Summary

An important contribution of fuzzy system theory is that it provides a systematic
procedure for transforming a knowledge base into a nonlinear mapping. On one hand,
fuzzy systems are multi-input-single-output mappings from a real-valued vector to a
real-valued scalar (a multi-output mapping can be decomposed into a collection of
single-output mappings), and the precise mathematical formulas of these mappings
can be obtained; on the other hand, fuzzy systems are knowledge-based systems
constructed from human knowledge in the form of fuzzy IF-THEN rules.

The fields of hydrology and water resources commonly involve a system of
concepts, principles, and methods for dealing with modes of reasoning that are
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approximate rather than exact. The capability of dealing with imprecision gives fuzzy
logic great potential for hydrological analysis and water resources decision making.

In hydrology, the concept of fuzzy theory and its application have found many
applications in a number of research areas, such as groundwater flow in the
unsaturated zone (Bárdossy and Disse 1993; Bárdossy et al. 1995; Dou et al.
1995; Schulz and Huwe 1997; Dou et al. 1999; Hong et al. 2002; Afshar et al.
2007), the interdependence between global circulation and rainfall (Pongracz
et al. 2001), reconstruction of missing precipitation events (Abebe et al. 2000;
Coulibaly and Evora 2007), rainfall-runoff modeling (Yu and Yang 2000;
Hundecha et al. 2001; Huang et al. 2010), flood forecasting (See and Openshaw
1999; Xiong et al. 2001), flood frequency analysis (Shu and Burn 2004), reservoir

Fuzzy Inference Engine

Fuzzy Rule Base

fuzzy sets

in U

fuzzy sets

in V
Fuzzifier Defuzzifier

x in U y in V

Fig. 10 Basic configuration of fuzzy systems with fuzzifier and defuzzifier (modified from Wang,
1997)
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Fig. 11 Architecture of the
ANFIS (modified from Jang
et al., 1997)
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operation (Russell and Campbell 1996), water resources allocation and management
(Yurdusev and Firat 2009), drought prediction (Pesti et al. 1996), and evaporation
estimation (Cobaner 2011; Shiri et al. 2013, 2014).

The advantages of a fuzzy logic model include the following: (1) The model is not
sensitive to parameter changes, and can be easily programmed, codes remain simple,
short, and require little computer time. (2) The model is transparent and easy to
understand due to its rule-based structure, which imitates the human way of thinking.
(3) The fuzzy rule-based model can encode the expert’s knowledge. (4) The most
distinguishing property of fuzzy logic is that it deals with fuzzy propositions, that is,
propositions which contain fuzzy variables and fuzzy values; thus, the fuzzy systems
are especially good at dealing with nonlinear relatioships. However, it must be
reminded that fuzzy logic models, just like other types of the black-box models,
can only describe the input-output relationships without explicit consideration of the
internal hydrologic processes that lead to this transformation.

7 Frequency Analysis Models

Flood frequency estimation has been fundamental in engineering hydrology since
Fuller (1914) approached the temporal variability of flood flows of extremely high
return periods. The primary objective of frequency analysis is to relate the magnitude
of extreme events to their frequency of occurrence through the use of probability
distributions (Chow et al. 1988). The purpose of frequency analysis is to analyze past
records of hydrologic variables so as to estimate future occurrence probabilities of
extreme events.

The hydrologic data analyzed in frequency analysis are assumed to be independent
and identically distributed (i.e., the i.i.d. assumption), if the hydrologic system pro-
ducing them (e.g., a storm rain system) is considered to be stochastic, space-
independent, and time-independent. The hydrologic data employed in frequency
analysis should be carefully selected so that the assumptions of independence and
identical distribution are satisfied. The data used in the analysis must also be evaluated
in terms of the objectives, length of records available, and completeness of records. A
frequency analysis can be performed using single-site data, regional data, or both. It
can also include historical information and reflect physical constraints.

7.1 Graphical Method

Plotting position refers to the probability value assigned to each value in a random
sample. It is used to calculate and graphically display the empirical frequency curve
by plotting each ranked value against a probability scale. Numerous methods have
been proposed for the determination of plotting positions, most of which are
empirical. If n is the total number of values to be plotted and m is the rank of a
value in a list ordered by descending magnitude, the exceedance probability of the
mth largest value is xm; the general form of plotting positions can be written:
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P X � xmð Þ ¼ m� b

nþ 1� 2b
(36)

where b is a parameter commonly varying between 0 and 0.5 for various formulae.
For example, b = 0.5 for Hazen’s formula, b = 0.3 for Chegodayev’s formula. The
most popular plotting position formula is the Weibull plotting position when b=
0, which is an expected (unbiased) form of the exceedance probability at the mth
largest observation for all distributions.

The procedure of graphical method includes the following:

• Select a Qmax value from each year
• Arrange the data in a decreasing order, i.e., Q1 � Q2 � Q3. . .
• Assign a frequency/probability of exceedance to each Qi. The most common

method is the Weibull formula:

P Q > Qmð Þ ¼ m

nþ 1
(37)

where n is the total number of data and m is the order of Q. This means that m (Qmax)
=1, and m (Qmin) = n.

• Plot Q versus P(Q>Qm) or plot Q versus T = 1/P(Q>Qm), where T is return
period

• On millimeter paper (without distribution assumption) – fit a curve
• On probability paper (with distribution assumption) – fit a straight line if the data

fit the probability distribution as the probability paper presents
• Knowing the probability of P(Q>QT) or T, the design flow QT can be read from

the plot or knowing the magnitude ofQT, we can read P(Q>QT) or T from the plot

7.2 Analytical Method – Frequency Factor Method

A random variable X can be decomposed into two components and written as:

X ¼ xþ ΔX (38)

where ΔX is the deviation from the mean, x. A new quantity can be defined as: K = ΔX/s,
where s is the standard deviation of the data, and the former equation can be rewritten as:

X ¼ xþ sK (39)

For a design value XT with return period of T, Eq. (39) can be written as

XT ¼ xþ KTs or XT ¼ x 1þ CvKTð Þ (40)

where Cv is the coefficient of variation, and KT is the frequency factor depending on
the probability distribution being used and on the return period, T.
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Equation (40) is the working equation for frequency analysis, which can be used
to calculate the design value XT for given design level T and probability distribution.
It can also be used to estimate the return period of a given X value.

Examples of design flow calculation for different probability distributions are
presented below.

7.2.1 Example for Normal Distribution
If X is normally distributed, i.e., X � N x, s2ð Þ, from XT ¼ xþ KTs we get

KT ¼ XT � x

s

That means KT is the standardized normal variate Z Z ¼ X�μ
σ

� �
, i.e., KT = Z ~ N

(0, 1). KT can then be read from the standard normal distribution table for a given
T or calculated from the related equation by numerical methods.

7.2.2 Example for Lognormal Distribution
X is said to be lognormally distributed if Y= ln(X) is normally distributed with mean
μY and variance σ2Y .

The procedure for calculating XT from log-normal distribution is:
• Let yi = ln xi for all xi.

• Calculate y ¼ 1
n

P
yi and sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi�yð Þ2

n�1

q
• Read KT from normal distribution table for a given T
• Calculate YT ¼ yþ KTsy
• Calculate XT ¼ eYT

It should be noted that if only the mean and standard deviation x, sxð Þ of
a lognormally distributed variable X are available, then the mean and standard
deviation y, sy

� �
of the associated normally distributed variable Y=ln(X) are calcu-

lated as:

y ¼ ln
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2x þ x2
p
 !

, sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

s2x
x2

þ 1

� �s

7.2.3 Extreme Value Type I Distribution
The KT value can either be calculated by using the equation below or read from the
extreme value type I distribution table.
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KT ¼ �
ffiffiffi
6

p

π
0:5772þ ln ln

T

T � 1

� �� � �
, ) T

¼ 1

1� exp �exp � 0:5572þ πKtffiffiffi
6

p
� �� � � (41)

The design flow XT can then be calculated using Eq. (40).

7.2.4 Pearson Type III Distribution
The Pearson type III distribution has three parameters, λ, β, and e, which can be estimated
through the calculation of mean, standard deviation, and coefficient of skewness.

The procedure for the Pearson type III distribution is described as follows:

• Compute the mean, x ¼ 1
n

Pn
i¼1

xi ! λ

• Compute the standard deviation, s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi�xð Þ2

n�1

s
! β

• Compute the coefficient of skewness, Cs ¼ n
P

xi�xð Þ3
n�1ð Þ n�2ð Þs3 ! e

• Compute KT by Eq. (42) or read from the Table of KT values for P-III distribution

KT ¼ zþ z2 � 1
� �

k þ 1

3
z3 � 6z
� �

k2 � z2 � 1
� �

k3 þ zk4 þ 1

3
k5 (42)

where K = Cs/6

z ¼ w� 2:516þ 0:8029wþ 0:01033w2

1þ 1:4328wþ 0:1893w2 þ 0:00131w3

w ¼ ln
1

p2

� �� �1=2

p ¼ 1

T

• Compute xT ¼ xþ KTs

7.2.5 Log-Pearson Type III Distribution

Similar to the lognormal distribution, the procedure for log-Pearson type-III
distribution is as follows:
• Transform X to Y=log(X) or ln(X)
• Compute the mean, y
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• Compute the standard deviation, sy
• Compute the coefficient of skewness, Cs

• Compute KT by Eq. (42) or read from the Table of KT values for P-III distribution
• Compute yT ¼ yþ KTs
• Compute xT ¼ 10yTor xT ¼ eyT

7.3 Data Sampling Methods

Data for frequency analysis studies can be compiled in several ways. In general,
there are three data sampling methods: Annual Maximum Series, Partial Duration
Series, and Annual Exceedance Series.

Annual Maximum Series: The Annual Maximum Series (AMS) data consist of
the largest event in each year, regardless of whether the second largest event in a year
exceeds the largest events of other years. An objection to using the AMS is that, in many
cases, the second largest event in a year exceeds the largest event of other years.

Partial Duration Series: A Partial Duration Series (PDS) is a series of data
which are selected so that their magnitude is greater than a predefined base value
(Chow et al. 1988). Partial duration series or peaks-over-threshold (POT) pick all
peaks above a threshold.

Annual Exceedance Series: If the base value of the PDS is selected so that the
number of values in the series is equal to the number of years of record, the series is
called an Annual Exceedance Series (AES) (Chow et al. 1988). An AES may be
regarded as a special case of the PDS. Although AES is useful for some purposes, it
may be difficult to verify that all the observations are independent.

The return period TE of event magnitudes developed from an AES is related to the
corresponding return period T for magnitudes derived from an AMS by (Chow 1964)

TE ¼ ln
T

T � 1

� �� ��1

(43)

7.4 Outliers and Zeros

Outliers are data points that depart significantly from the trend of the remaining data.
The retention or deletion of these outliers can significantly affect the magnitude of
statistical parameters computed from the data. The U.S. Water Resources Council
(1982) Bulletin 17B suggests that outliers can be identified from

XH ¼ X þ KnSX

XL ¼ X � KnSX

where XH and XL are the threshold values for high and low outliers, and Kn can be
approximated from
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Kn � 1:055þ 0:981 log10n

where n is the number of observations.
The detailed description of the treatment of outliers is contained in the U.S. Water

Resources Council (1982) Bulletin 17B.
Treatment of zeros: Most hydrologic variables are bounded on the left by zero.

Zero values should not simply be ignored, nor do they necessarily reflect inaccurate
measurements of the minimum flow in a channel. A zero in a set of data that is being
logarithmically transformed requires special handling. One solution is to add a small
constant to all of the observations. Another method is to analyze the nonzero values
and then adjust the relation to the full period of record. This method biases the results
as the zero values are essentially ignored. A third and theoretically more sound
method would be to use the theorem of total probability (For details see Haan (2002,
pp168–169)).

7.5 Regionalization

Two broad categories of regionalization procedures have been widely used in the
field of frequency analysis: the index-flood approach (Dalrymple 1960) and the
multiple-regression approach (Benson 1962).

7.5.1 Index-Flood Method
The key assumption of an index-flood procedure is that the stations form a homo-
geneous region, meaning that the frequency distributions of the N stations are
identical apart from a site-specific scaling factor, the index flood. We may then write

Qi Fð Þ ¼ μiq Fð Þ, i ¼ 1, 2, . . . ,N (44)

whereQi(F), 0< F< 1, is the quantile function of the frequency distribution at site i;
μi is the index flood (Hosking and Wallis 1997); N is the number of sites; q(F) is the
regional growth curve, a dimensionless quantile function common to every site.

The index flood is estimated by μ̂i ¼ Qi, the sample mean of the data at site i, and
the dimensionless rescaled data are computed by qij ¼ Qij=μ̂i , where Qij is the
observed data at site i, j = 1 , 2 , . . . , ni, and ni is the sample size at site i.

Hosking and Wallis (1997) suggested an index-flood method where parameters
are estimated separately at each site. They considered the use of a weighted average
of the at-site estimates:

θ̂
R

k ¼
XN
i¼1

niθ̂
ið Þ
k =
XN
i¼1

ni (45)

where θ̂
ið Þ
k stands for the L-moment of interest. The estimated regional quantile q̂ Fð Þ

¼ q F; θ̂
R

1 , . . . , θ̂
R

P

� �
is obtained by substituting the estimates θ̂

ið Þ
k into q(F) (Hosking
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and Wallis 1993). The quantile estimates at site i can be obtained using the estimates
of μi and q(F).

Q̂i Fð Þ ¼ μ̂iq̂ Fð Þ (46)

This index-flood procedure makes the following assumptions: (i) observations at
any given site are identically distributed, and independent both serially and spatially;
(ii) frequency distributions at different sites are identical apart from a scale factor;
and (iii) the mathematical form of the regional growth curve is correctly specified.

7.5.2 Regional Regression
Regional regression models have long been used to predict flood quantiles at
ungauged sites, and in a nationwide test, this method did as well as or better than
more complex rainfall-runoff modeling in predicting flood quantiles (Newton and
Herrin 1982).

Consider the traditional log-linear model for a statistic yi which is to be estimated
by using watershed characteristics such as drainage area and slope:

yi ¼ αþ β1log areað Þ þ β2log slopeð Þ þ � � � þ e (47)

A challenge in analyzing this model and estimating its parameters with available
records is that one only obtains sample estimates, denoted ŷi , of the hydrologic
statistics yi. Thus, the observed error e is a combination of (1) the time-sampling
error in sample estimators of yi (these errors at different sites can be cross-correlated
if the records are concurrent) and (2) underlying model error (lack of fit) due to the
failure of the model to exactly predict the true value of the yi’s at every site. Often
these problems have been ignored and standard ordinary least squares (OLS)
regression has been employed (Thomas and Benson 1970).

7.6 Summary

Frequency analysis has been one of the earliest and most frequent uses of statistical
methods in hydrology. In the earlier years (before 1960s), frequency analysis was
mainly used for flood flow estimation, and nowadays, frequency analysis has been
applied to almost every hydrological extreme variable, such as floods (Vogel et al.
1993; Vogel and Wilson 1996), low flows (Nathan and McMahon 1990; Lawal and
Watt 1996; Durrans and Tomic 2001), rainfall events of various kinds (Pilgrim 1998;
Öztekin 2007; Stedinger et al. 1993), droughts and dry spells (Lana and Burgueno
1998; Lana et al. 2008; Hallack-Alegria and Watkins 2007), etc. Hydrological
frequency analysis (HFA) has been playing an essential role in the planning, design,
and management of projects for flood control and water usages.

As to regional frequency analysis, recent advances mainly refer to the use of
L-moments together with the index-flood method, as reported by Hosking andWallis
(1997). This methodology has been applied in modeling floods, rainfall extremes,
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and low flows (Hosking et al. 1985; Vogel and Wilson 1996; Kjeldsen et al. 2001;
Kumar et al. 2003; Yue and Wang 2004; Lim and Voeller 2009; Saf 2009).

The basic assumption of traditional HFA methods (both for one individual site
and for a region) is that the hydrological data used are stationary, independent, and
identically distributed over time. However, in the past decades, this stationarity
assumption has been severely challenged because global climate change and/or
large-scale human activities have altered the statistical characteristics of hydrolog-
ical processes. Nonstationary frequency analysis is now a relatively new modeling
approach and the number of studies is continuously increasing (Khaliq et al. 2006).

Studies of flood frequency analysis under nonstationary conditions have mostly
assumed trends in time (Strupczewski et al. 2001; Renard et al. 2006; Leclerc and
Ouarda 2007). In the last decade, some researchers have also explored the possibility
of incorporating climate indices as external forcing into models for flood frequency
analysis, assuming linear and nonlinear dependences (Sankarasubramanian and Lall
2003; El Aldouni et al. 2007; Ouarda and El-Aldouni 2011). Results have shown the
feasibility of incorporating climate indices as covariates in the models, thus enabling
the models to better describe changes in flood regimes over time.
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