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        Hematopoietic stem cells (HSCs) may be obtained 
by collection of bone marrow, mobilization and 
collection of peripheral blood stem cells (PBSCs), 
or collection of umbilical cord blood (UCB). The 
choice of HSC product depends upon the disease 
being treated, the availability of a suitable donor, 
and, to a certain extent, donor size. Donors of 
either PBSC or marrow rarely develop serious 
complications, although there are qualitative dif-
ferences in the types of adverse events associated 
with either procedure (Rowley et al.  2001 ). 

2.1    Autologous Hematopoietic 
Stem Cells 

 Autologous HSC provides a readily obtainable 
reservoir of cells for reconstitution of hematopoi-
etic function after high-dose therapy without risk 
of graft-versus-host disease (GVHD). The indica-
tions for autologous hematopoietic cell transplant 
(HCT) are limited to high-risk lymphoma or cer-
tain solid tumors, such as high-risk neuroblas-
toma. Autologous HSC may also serve as the 
source of cells for gene transfer for correction of 
single-gene defects, such as X-linked severe com-
bined immunodefi ciency (SCID) or Fanconi ane-
mia (Cavazzana-Calvo et al.  2000 ; Tolar et al. 
 2011 ). Autologous grafts have the potential disad-
vantage of tumor cell contamination and lack 
immune-mediated graft-versus-tumor effects, 
which may contribute to relapse of malignancy 
after transplant (Rill et al.  1994 ). In the late 1980s, 
the procedure of autologous HCT was advanced 
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signifi cantly by use of hematopoietic growth fac-
tors to stimulate circulation of large numbers of 
HSC that could be collected from the peripheral 
blood. PBSC has largely replaced marrow as the 
preferred product for reconstitution of autologous 
hematopoiesis because recovery of peripheral 
blood counts is more rapid. Consequently, com-
pared to marrow recipients, PBSC recipients have 
fewer platelet and red cell transfusions, days of 
antibiotic use, and days in hospital (Theilgaard-
Monch et al.  1999 ; Schmitz et al.  1996 ). Marrow 
and PBSC differ quantitatively and qualitatively in 
the number of CD34+ cells as well as other cell 
subsets, including a tenfold increase in number of 
CD3 cells in PBSC. CD34+ and CD3 cells obtained 
by granulocyte colony-stimulating factor (G-CSF) 
mobilization may be functionally different, and 
together with differences in types of accessory 
cells, the two products may not be equivalent in 
types of immune cells reinfused or the kinetics of 
immune reconstitution (Arpinati et al.  2000 ). 

 Private banking of autologous UCB has 
increased over the past 10 years, with approxi-
mately 2,000,000 units stored worldwide. To date, 
few of these units have been used for autologous 
HCT. One reason is that there are a limited number 
of indications for autologous HCT, and in these set-
tings the goal is generally to achieve rapid recovery 
of hematopoiesis after high-dose conditioning. 
Therefore, the potential benefi t of avoiding tumor 
cell contamination in the cord unit may be counter-
balanced by the slow engraftment kinetics of UCB. 
Secondly, the limited cell dose of most UCB units 
restricts the option to young children. Nonetheless, 
there have been several case reports of successful 
autologous HCT. Therefore, if available, it could be 
considered, particularly in cases in which a graft-
versus- leukemia effect is not required (Hayani 
et al.  2007 ; Rosenthal et al.  2011 ).  

2.2    HLA-Identical Related 
Donors 

 Allogeneic HCT requires availability of a suitable 
donor, determined by human leukocyte antigen 
(HLA) compatibility and physical fi tness for the 

procedure. The inheritance pattern of HLA hap-
lotypes results in the potential for matching HLA 
antigens at the genetic level among full siblings 
(HLA genotypic identity). Donor-recipient HLA 
genotypic identity confers the lowest risk for 
immunologically mediated complications, graft 
rejection and GVHD (Beatty et al.  1991 ; Anasetti 
et al.  1989 ). When an HLA genotypically identi-
cal donor is available, the choice of marrow or 
PBSC depends upon the patient’s disorder, as 
well as suitability of donor for the procedure. 
Randomized trials have found faster recovery of 
peripheral blood cells without signifi cant increase 
in the incidence of acute GVHD among recipi-
ents of PBSC compared to marrow (Schmitz et al. 
 1998 ; Bensinger et al.  2001 ). Allogeneic PBSCs 
are associated with a lower risk for relapse and 
increase the probability of relapse-free survival, 
suggesting that the higher dose of T cells may 
contribute an important graft-versus- leukemia 
(GVL) effect. The superiority of PBSC in treat-
ment of patients with hematologic malignancies 
cannot be extrapolated to patients with nonmalig-
nant conditions, as the risk of chronic GVHD is 
higher with PBSC grafts (Flowers et al.  2002 ).  

2.3    Alternative Donors 

 Most patients referred for allogeneic HCT lack an 
HLA-matched sibling; thus, an alternative donor 
must be identifi ed. Possible sources for an alterna-
tive donor include unrelated volunteer donors 
(URD), unrelated cord blood units, or extended 
family members. The suitability of each donor 
source depends upon the disease being treated, the 
urgency of the transplant procedure, and the avail-
able protocols. To date, there have been no ran-
domized studies comparing outcome of the various 
donor sources that could guide selection of an 
alternative donor. The best possible alternative 
donor will be HLA matched with the recipient; 
however, a less well-matched donor may be appro-
priate for patients with aggressive malignancies in 
the interest of shortening the time to HCT. 

 Large studies comparing outcome of HCT 
using HLA-matched sibling donor (MSD) grafts 
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compared to other donor sources have necessarily 
been retrospective analyses. Therefore, caution 
should be taken in the interpretation of these stud-
ies, particularly those with small numbers, as the 
results may be affected by selection bias or other 
confounding factors. As discussed in more detail 
below, high-resolution typing has improved the 
ability to select donors matched for HLA alleles. 
Although matching for HLA-A, HLA-B, HLA-C, 
and DRB1 (8/8) alleles has been shown to improve 
outcome of unrelated HCT, it is not clear whether 
this level of matching can be viewed as equivalent 
to an HLA-MSD (Petersdorf et al.  2004 ; Lee et al. 
 2007 ). A prospective, genetically randomized 
trial conducted by the French Society of Bone 
Marrow Graft Transplantation and Cell Therapy 
(SFGM-TC) found that disease- free survival 
(DFS) was not statistically different for patients 
given unrelated donor grafts matched for HLA-
A, HLA-B, HLA-C, DRB1, and DQB1 ( n  = 55) 
compared to patients given HLA-MSD grafts 
( n  = 181) (Yakoub-Agha et al.  2006 ; Hansen et al. 
 1998 ). However, larger, albeit retrospective, stud-
ies have shown that even very well- matched unre-
lated donor (MUD) grafts are not the equivalent 
of MSD grafts. In a study of patients with chronic 
myelogenous leukemia (CML) given myeloabla-
tive conditioning, Weisdorf and colleagues from 
the Center for International Blood and Marrow 
Transplant Research (CIBMTR) found that DFS 
was superior for those given MSD grafts ( n  = 450) 
compared to 8/8 HLA-MUD grafts ( n  = 667) (haz-
ard ratio (HR) 1.89, 95 % confi dence interval (CI) 
1.59–2.25,  p  < 0.0001) (Weisdorf et al.  2009 ). 
Another CIBMTR study of adults with hemato-
logic malignancies found that DFS was lower for 
8/8 MUD recipients with acute myeloid leuke-
mia (AML,  n  = 340) compared to MSD recipients 
( n  = 1,271), although no difference was observed 
for patients with acute lymphoblastic leukemia 
(ALL,  n  = 483 MSD versus 189 MUD) or CML 
( n  = 1,401 MSD versus 412 MUD) (Petersdorf 
et al.  1998 ; Ringdén et al.  2009 ). In this analy-
sis, the signifi cantly greater incidence of acute or 
chronic GVHD among MUD recipients did not 
appear to result in a reciprocal signifi cant reduc-
tion in relapse. 

 These studies primarily or exclusively include 
patients with chronic phase CML, not commonly 
diagnosed in pediatric patients, and now consid-
ered treatable with tyrosine kinase inhibitors, 
such that HCT is no longer considered frontline 
therapy. For this reason, a single-center retro-
spective study was conducted in 1,448 patients 
with advanced hematologic malignancies to 
determine whether the outcome of HCT with 
very well-matched (10/10) MUD grafts could 
approach that of MSD (Woolfrey et al.  2010 ). 
The risk for mortality and relapse was similar 
between the two groups; however, patients given 
10/10 MUD had a signifi cantly higher risk for 
acute GVHD grades 2–4 (odds ratio (OR) 1.77, 
95 % CI 1.33–2.36,  p  = 0.0001) and for clinical 
extensive chronic GVHD (adjusted HR 1.34, 
95 % CI 1.12–1.60,  p  = 0.001). Despite a higher 
incidence of chronic GVHD, there was no sig-
nifi cant difference in the performance scores, 
suggesting that quality of life was not apprecia-
bly different. There was, however, an effect of 
cell source that was apparent among patients with 
intermediate-risk disease, defi ned as acute leuke-
mia in remission, CML in accelerated phase, or 
refractory anemia with excess blasts (RAEB). 
Specifi cally, patients given PBSC grafts from 
10/10 MUD had signifi cantly higher risk for 
mortality compared to patients given MSD grafts 
or MUD marrow grafts (HR 1.62, 95 % CI 1.21–
2.17,  p  = 0.001). 

 Taken together, these retrospective studies 
support several concepts. First, despite match-
ing for HLA by high-resolution typing at 8 or 
10 alleles, MSD grafts remain the “gold stan-
dard” and therefore should be preferred over 
MUD when available. Second, if a suitable 
MSD is not available, an 8/8 or 10/10 MUD 
graft will result in nearly similar outcome. 
Third, the effect of using an alternative donor is 
mainly seen in patients with low-risk disease, 
and there is little difference in outcome for 
those with more advanced leukemia. Finally, 
the source of MUD cells (i.e., peripheral blood 
or marrow) may have an effect on outcome, par-
ticularly for patients with less advanced 
disease.  
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2.4    Selection of Unrelated 
Donors 

 Several factors should be considered in selection 
of the optimal URD in order to reduce transplant- 
related mortality (TRM), the most important of 
which is the degree of HLA match. Within the 
past decade, high-resolution typing techniques 
have been developed to allow identifi cation of 
the polymorphic alleles of class I HLA-A, HLA- 
B, and HLA-C antigens and class II HLA DRB1 
and DQB1 antigens. Retrospective studies have 
shown that only half of patient-donor pairs other-
wise matched for HLA-A and HLA-B by sero-
logic typing, and matched for the DRB1 alleles, 
will be matched at the allele level for all fi ve loci 
(HLA-A, HLA-B, HLA-C, DRB1, DQB1), and 
approximately 25 % will be mismatched for mul-
tiple alleles (Petersdorf et al.  1998 ). The ability to 
distinguish allele-level mismatches has allowed 
investigation of the relevancy of patient-donor 
mismatching. These studies show that the impact 
of patient-donor mismatching depends on the 
disease being treated, and within disease risk 
groups depends upon the degree of HLA mis-
match and the locus of HLA mismatch. 

 Initial studies of HLA matching based on ret-
rospective high-resolution typing suggested that 
both the number and the location of the allelic 
mismatch were associated with outcome. The 
Seattle group found an increased risk for graft 
failure when donors had multiple mismatches that 
involved at least one class I allele, but the highest 
risk for severe acute GVHD was observed with 
multiple mismatches involving at least one class 
II allele (Petersdorf et al.  1998 ; Petersdorf et al. 
 1997 ; Sasazuki et al.  1998 ; Petersdorf et al.  2001 ). 
The effect of HLA mismatching appeared to be 
greater for patients with low-risk diseases, such as 
CML, compared to those with more aggressive 
leukemias (Petersdorf et al.  2004 ). An important 
limitation of the Seattle studies was that patients 
were mainly of Caucasian ethnicity, so results 
may not be transferable to other ethnic popula-
tions. For example, studies conducted with the 
Japan Marrow Donor Program (JMDP) found that 
mismatching of HLA-A and HLA-B, but not class 
II HLA, decreased survival (Sasazuki et al.  1998 ). 

 Retrospective HLA-allele typing of patient 
and donor pairs performed by the National 
Marrow Donor Program (NMDP) has allowed 
analysis of larger donor-recipient cohorts, which 
has helped to distinguish the contribution of both 
number and locus of the HLA mismatch to out-
come. Of most use for clinicians is an under-
standing of the effects of HLA mismatching on 
overall mortality. The initial study by Flomenberg 
employed multivariate modeling to determine the 
independent effects of HLA mismatching 
detected by high-resolution typing of 1,874 
donor-recipient pairs (Flomenberg et al.  2004 ). 
Donor-recipient disparity of class I HLA loci 
HLA-A, HLA-B, and HLA-C was found to be 
independently associated with an increase in the 
risk for mortality. In this study, class I HLA mis-
matches that could be detected only with high- 
resolution typing (allele-level mismatch) did not 
appear to increase the risk for poor outcome, nor 
did mismatches at HLA-DQ. The subsequent 
2007 NMDP/CIBMTR study included 3,857 
patients and incorporated subset analyses in order 
to determine whether there were specifi c HLA 
locus effects (Lee et al.  2007 ). In this large cohort 
of patients with hematologic malignancies given 
myeloablative conditioning, mortality increased 
proportionately with the number of mismatches 
involving HLA-A, HLA-B, HLA-C, or DRB1, 
but again not HLA-DQ. Furthermore, the effect 
of an allele-level mismatch appeared to be simi-
lar to that of an antigen-level mismatch. The risk 
of mortality was 1.25-fold higher for patients 
given a single HLA-mismatched (7/8 match) 
graft and 1.65-fold higher for those given a dou-
ble mismatched graft (6/8 match) compared to a 
fully matched (8/8 match) graft. Mismatches at 
HLA-A and DRB1 appeared to have a greater 
negative effect on mortality compared to mis-
matches at HLA-B or HLA-C. In these studies, 
the negative effects of HLA mismatching on sur-
vival were due to higher incidence of both acute 
and chronic GVHD; negative effects on relapse 
and graft rejection were not discerned. 

 Although marrow is more commonly used as 
the graft source for pediatric patients, PBSC 
grafts have become the predominant source for 
adult patients. Because the previous studies were 
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confi ned almost entirely to recipients of marrow 
grafts, the CIBMTR conducted a separate analy-
sis of HLA matching in patients given PBSC 
grafts for treatment of hematologic malignancies 
(Woolfrey et al.  2011 ). Similar to the Lee study, 
matching for HLA-A, HLA-B, HLA-C, and 
DRB1 alleles (8/8 match) was associated with 
better survival at 1 year (56 % versus 47 %) com-
pared with 7/8 HLA-matched pairs. Mismatches 
involving the HLA-C antigen were associated 
with increased mortality. In the PBSC dataset, 
neither allele-level mismatches nor mismatches 
at antigens other than HLA-C had a signifi cant 
effect on mortality. The increase in mortality 
associated with HLA-C mismatching held for 
recipients given either myeloablative or reduced- 
intensity conditioning. The analysis also indi-
cated that in the case of an HLA-C antigen 
mismatch, switching from PBSC to marrow as 
the source did not mitigate the negative effect. 

 The studies discussed above were confi ned to 
patients treated for hematologic malignancies; 
therefore, the results may not be valid for patients 
with nonmalignant disorders. A recent CIBMTR 
study addressed this question by analysis of a 
separate cohort of 663 patients with nonmalig-
nant disorders, including aplastic anemia (which 
comprised around half of the cohort) (Horan 
et al.  2012 ). Again, survival was not affected by 
mismatching at either HLA-DQ or HLA-DP. 
Higher mortality was associated with mismatch 
of a single HLA antigen or two mismatches, but 
not with mismatch at a single HLA allele. In con-
trast to the fi ndings in patients with hematologic 
malignancies, in this study HLA mismatches 
were not associated with acute or chronic GVHD, 
but were strongly associated with graft failure, 
with two- to fourfold increased risk of graft fail-
ure depending on the number of mismatched loci. 
Most likely the lack of association with GVHD is 
because almost all patients in this cohort were 
given anti-T-cell antibody, such as antithymocyte 
globulin (ATG), and many were given T-depleted 
grafts. 

 Taken together, these studies support donor 
identifi cation strategies that limit HLA mismatch. 
Because the numbers of donor-recipient pairs in 
the PBSC study and the nonmalignant disease 

study were smaller than in the 2007 NMDP study, 
it should be assumed that mismatch at the allele 
level must be identifi ed by high-resolution typing 
and avoided if possible. These studies together 
also suggest that, in the instance when a mis-
match is unavoidable, a tolerable mismatch will 
depend upon the ethnicity of the recipient, the 
type of graft (PBSC or marrow), and the disease 
(Table  2.1 ). Among Caucasian recipients, mis-
match at HLA-DQB1 appears most tolerated, fol-
lowed by mismatch at HLA-B. In contrast, in 
Japanese recipients, HLA-A or HLA-B mis-
matches fare the worst. These data do not defi ne 
tolerable mismatches for other ethnic groups, due 
to insuffi cient patient numbers and diverse HLA 
haplotypes.

   Consideration of other donor-related factors is 
justifi ed when more than one donor of equivalent 
HLA match has been identifi ed. The source of 
the cell product has not been considered to affect 
outcome, and as noted above, PBSC has become 
the predominant source of unrelated hemato-
poietic stem cells. The recently completed 

   Table 2.1    General guidelines for selection of an unre-
lated donor   

  Primary donor selection criteria  
 HLA-A, HLA-B, HLA-C, DRB1 (8/8) match by 
high-resolution HLA typing 
 If no 8/8 donor 
   Avoid mismatch defi ned by donor-specifi c HLA 

antibody 
   For patient with nonmalignant disease: avoid HLA-C 

antigen mismatch 
  For patient with malignant disease: 
    Avoid HLA-C antigen mismatch with a PBSC 

donor 
    Avoid HLA-A or HLA-DRB1 mismatch with a 

marrow donor 
  Secondary donor selection criteria  
 (Apply when there are >1 potential donors with 
equivalent HLA match) 
  Younger age 
  ABO match 
  Other considerations: 
   CMV match 
   Male donor for male patient 

   CMV  cytomegalovirus,  HLA  human leukocyte antigen, 
 PBSC  peripheral blood stem cells  
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NMDP/CIBMTR randomized study of unrelated 
marrow versus PBSC, which included pediatric 
patients, found that indeed there was no signifi -
cant difference in mortality between recipients of 
PBSC compared to marrow. However, the inci-
dence of chronic GVHD was approximately 
55 % in PBSC compared to 40 % in marrow 
recipients ( p  < 0.014) (C. Anasetti, personal com-
munication). Based on these results, marrow 
should be the preferred source for pediatric 
patients, unless infectious comorbidities exist 
that would benefi t from the faster neutrophil 
recovery associated with PBSC grafts. 

 The contribution of donor age or gender to 
TRM may be important for certain diseases. The 
2001 NMDP analysis, which included 6,978 
patients, found that both male gender and younger 
age were independently associated with lower 
risk for GVHD and younger age with improved 
survival (Kollman et al.  2001 ). Importantly, the 
study suggested that these factors may be more 
important in the situation wherein the donor is 
HLA mismatched. In subsequent retrospective 
studies focused on the impact of high-resolution 
mismatches, donor age and gender were not 
found to be independently associated with sur-
vival; however, age and ABO incompatibility 
have been found to be associated with risk for 
mortality in a recent analysis of a larger cohort of 
patients (C. Kollman, personal communication). 
Earlier studies supported matching patients and 
donors for cytomegalovirus (CMV) serostatus 
(Bowden et al.  1993 ; Ljungman et al.  2003 ); in 
the current era, with early polymerase chain reac-
tion (PCR) detection methods and effective drugs 
for treatment of CMV reactivation, the CMV sta-
tus of the donor does not affect mortality (M. 
Boeckh, personal communication) (Lee et al. 
 2007 ). Several other variables have been associ-
ated with outcome, such as cell dose or time 
between collection and infusion; however, these 
factors are typically not under control of the phy-
sician caring for the patient (Collins et al.  2010 ; 
Lazarus et al.  2009 ). 

 Selection of the optimal URD must also con-
sider whether the donor has been sensitized to 
HLA. Screening recipient serum against a panel 
of reactive antibodies (PRA) will detect potential 

anti-HLA antibodies (Anasetti  1991 ). Crossmatch 
studies, which detect antibodies in recipient 
serum directed against proteins expressed by 
donor cells, are used to determine whether the 
antibody is specifi c or nonspecifi c. The impor-
tance of a positive crossmatch was demonstrated 
in a study of 522 patients in which there was a 
ninefold greater incidence of graft rejection 
among crossmatch-positive compared to 
crossmatch- negative recipients (Anasetti et al. 
 1989 ). More recent technology uses solid sur-
faces or beads coated with purifi ed HLA mole-
cules to detect donor-specifi c antibodies (DSA), 
resulting in enhanced sensitivity and specifi city 
compared to cell-based assays. Bead-based tech-
nology used in a prospective study of 604 patients 
given 8/8 or 7/8 matched URD grafts detected 
DSA in 1.4 % of patients, primarily directed 
against donor HLA-DPB1 (Ciurea et al.  2011 ). 
The presence of DSA was correlated with the risk 
for graft rejection ( p  = 0.0014). Recommendations 
for HLA-antibody studies are shown in Table  2.2 . 
Determination of the HLA specifi city of the anti-
body is important, as avoiding a donor with the 
sensitizing HLA may require typing of 
HLA-DPB1.

   Signifi cant advances have been made in 
understanding the role of natural killer (NK) cell 
activity after marrow grafting; however, the value 
of selecting an NK alloreactive donor has not 
been established. Killer immunoglobulin-like 
receptors (KIR) present on NK cells interact with 
specifi c HLA class I molecules, particularly 
HLA-C, to regulate NK cell activation. Several 
studies have evaluated the impact of KIR ligand 
mismatching, defi ned as the absence of one donor 
KIR ligand class I allele in the recipient. A study 
of 130 patients treated at three European centers 

   Table 2.2    Indications for donor-specifi c antibody assay   

 PRA result  HLA match a   DSA assay 

 Positive  Match or mismatch  Required 
 Negative  Match  Not required 
 Negative  Mismatch  Required 

   DSA  donor-specifi c antibody,  PRA  panel reactive 
antibody 
  a HLA match is defi ned by high-resolution typing for 
HLA-A, HLA-B, HLA-C, and DRB1  
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and conditioned with myeloablative conditioning 
and thymoglobulin found a signifi cant decrease 
in mortality ( p  = 0.0006) among patients given a 
KIR ligand mismatched graft. In contrast, retro-
spective analyses from Japan and Minnesota 
evaluated 1,449 and 175 URD transplants, 
respectively, and found no benefi t for KIR ligand 
incompatibility (Davies et al.  2002 ; Morishima 
et al.  2003 ). Although most of these latter patients 
did not receive T-cell depletion, though necessary 
for promoting NK alloreactivity, another study of 
190 patients, most of whom received ATG, also 
showed no benefi t; in fact, survival was lower 
and TRM higher among recipients of KIR ligand 
mismatched grafts (Schaffer et al.  2004 ). Thus, 
the value of KIR ligand mismatching in URD 
selection remains undetermined. More promising 
results have come from studies of KIR genotyp-
ing and categorization of donors into those who 
possess “favorable” or ≥2 B gene motifs (Cooley 
et al.  2009 ). In a retrospective study that included 
1,409 patients, those with AML who received 
their graft from a “favorable” KIR genotype had 
signifi cantly lower mortality and lower relapse 
(Cooley et al.  2010 ). A prospective study is cur-
rently under way to test the hypothesis that donor 
KIR haplotype has an independent effect on 
mortality.  

2.5    Selection of Umbilical Cord 
Blood Units 

 Umbilical cord blood (UCB) characteristically 
differs from marrow in a number of ways. The 
median doses of total nucleated cells (TNC), 
CD34+ cells, and CD3+ cells in UCB unit are 
approximately ten times lower than that of a bone 
marrow graft (Moscardo et al.  2004 ; Barker and 
Wagner  2003 ). Reduced cell numbers may be 
offset by a higher capacity for replication, as 
indicated by higher cell cycle rates and longer 
telomeres in UCB progenitor cells (Lewis and 
Verfaillie  2000 ; Mayani and Lansdorp  1998 ). 
Immune mediator cells in UCB have been char-
acterized as relatively immature compared to 
marrow cells, including less mature T- and B-cell 
phenotypes, reduced response to alloantigen, and 

lower capacity to generate infl ammatory cyto-
kines (Mayani and Lansdorp  1998 ; Garderet 
et al.  1998 ; Risdon et al.  1994 ; Risdon et al.  1995 ; 
Bradley and Cairo  2005 ). These biologic differ-
ences have signifi cant effect on outcome follow-
ing UCB transplant and as well infl uence the 
selection of a UCB unit. 

 Diminution of immunologic activity has 
allowed greater freedom to transplant HLA- 
mismatched UCB units. Conventionally, the 
degree of HLA match between recipient and 
UCB has been determined according to serologic 
typing at HLA-A and HLA-B along with high- 
resolution typing to distinguish DRB1 alleles. 
Hence, a UCB unit matched by serologic typing 
at HLA-A and HLA-B and matched for DRB1 
allele has been considered a full or 6 of 6 locus 
match. This defi nition of matching ignores mis-
matches at HLA-C and DQB1 as well as allele- 
level mismatches at HLA-A and HLA-B loci. 
Not surprisingly, around one-third of convention-
ally typed units will have at least one additional 
undetected HLA mismatch at HLA-A, HLA-B, 
HLA-C, DRB1, or DQB1 when retyped by high- 
resolution methods (Cornetta et al.  2005 ; Kogler 
et al.  2005 ). 

 Retrospective studies of HLA matching have 
shown an association with the risks for graft fail-
ure, TRM, and GVHD. Initial observations 
reported for 65 UCB transplants by the Eurocord 
registry in 1997 and 562 transplants by the New 
York Blood Center (NYBC) in 1998 found HLA 
mismatch to be associated with lower probability 
of neutrophil and platelet recovery and, in the lat-
ter study, a higher probability of acute GVHD 
and lower probability of survival (Gluckman 
et al.  1997 ; Rubinstein et al.  1998 ). The subse-
quent NYBC analysis of 607 UCB transplants 
found the degree of HLA mismatch correlated 
directly with the probability of TRM (Abstracts 
and summary of the 4th Annual International 
Umbilical Cord Blood Transplantation 
Symposium  2006 ). Particularly among patients 
who did not develop acute GVHD, HLA mis-
match was associated with high risk of death 
from infection, implying a potential negative 
effect on immune reconstitution. A Minnesota 
group study of 152 UCB transplants showed that 
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survival after transplant of a UCB unit matched 
at 4 of 6 loci was signifi cantly worse compared to 
those matched at 5 or 6 loci (Wagner et al.  2002 ). 
In contrast, the subsequent Eurocord report, 
which analyzed 550 patients, confi rmed the asso-
ciation of HLA mismatch with probability of 
neutrophil engraftment and acute GVHD grades 
III–IV, but showed an association with lower 
probability of relapse and thus no apparent effect 
on survival (Gluckman et al.  2004 ). More 
recently the relevance of matching the UCB unit 
based on high-resolution HLA typing was ana-
lyzed in a retrospective analysis of 803 recipients 
of UCB transplants registered at Eurocord- 
European Group for Blood and Marrow 
Transplantation, Netcord, and the CIBMTR 
(Eapen et al.  2011 ). Addition of mismatch at 
HLA-C to a 6/6 or 5/6 conventionally matched 
unit was found to signifi cantly increase the risk 
for TRM ( p  = 0.018 and 0.029, respectively). 
Taken together, these studies indicate that HLA 
matching is an important factor in reducing the 
risk for TRM and improving outcome after UCB 
transplants. Although not all UCB units have 
been typed for HLA-C, if the information is 
available, it may help in selection of the optimal 
unit. 

 The cell dose of a UCB unit, a critical factor in 
determining success, was observed in the fi rst 
large studies and correlated with probability of 
neutrophil engraftment and platelet recovery 
(Gluckman et al.  1997 ; Rubinstein et al.  1998 ). 
Based on the Eurocord results, the lower limit of 
an acceptable unit has generally been considered 
approximately 2 × 10 7  total nucleated cells (TNC) 
per kilogram recipient weight, as determined by 
TNC in the unit before cryopreservation 
(Migliaccio et al.  2000 ). In acknowledgement of 
the importance of cell dose, UCB banks subse-
quently made efforts to improve UCB volume at 
collection. However, until recently the problem 
of cell dose has limited UCB transplants to 
smaller patients; hence, most of the subsequent 
analyses have been performed in pediatric 
patients. These studies confi rmed the association 
of cell dose and engraftment, and in the most 
recent Eurocord analysis that included 550 UCB 
transplants, TNC was found to be associated with 

risk for acute GVHD (Gluckman et al.  2004 ). 
Together these studies support a minimum TNC 
dose of around 2 × 10 7  per kilogram recipient 
weight. Furthermore, stepwise increases in TNC 
dose appear to correlate with reduction in TRM, 
and there does not appear to be an upper limit 
over which TNC dose seems detrimental (Michel 
et al.  2003 ). 

 The best method to measure UCB progenitor 
cell dose for unit selection has not been estab-
lished. Several studies show superior predictive 
value using CD34+ cell dose compared to TNC 
(Wagner et al.  2002 ; Laughlin et al.  2001 ). In the 
Minnesota studies, the number of CD34+ cells 
per kilogram recipient weight was associated not 
only with graft recovery but also with TRM and 
survival. The doses of TNC and CD34+ mea-
sured after thawing may also have superior pre-
dictive value compared to values obtained before 
unit cryopreservation, although post-thaw assays 
have no practical value for unit selection. The 
lower limit of CD34+ cell dose has not been 
fi rmly established; however, a unit with less than 
1.7 × 10 5  CD34+ cells per kilogram recipient 
weight has generally been considered inadequate 
(Wagner et al.  2002 ; Laughlin et al.  2001 ). UCB 
graft progenitor cell content, measured by 
colony- forming cell assay, has also been shown 
to correlate with engraftment; however, no asso-
ciation with survival has been suggested 
(Migliaccio et al.  2000 ). Current data supports 
the utilization of either TNC or CD34+ cell dose 
as measure of unit suitability. 

 The selection of an optimum UCB unit must 
take into account both cell dose and HLA match, 
and there continues to be debate about which fac-
tor, if either, should be considered more impor-
tant. To address this question, Barker et al. 
analyzed 1,061 UCB recipients treated for hema-
tologic malignancies (Barker et al.  2010 ). Similar 
to previous studies, lower TNC and greater HLA 
match were independently associated with mor-
tality. Importantly, the analysis was able to eluci-
date interactions between cell dose and HLA 
match. Specifi cally, when the unit contained a 
TNC of at least 2.5 × 10 7 /kg recipient weight, 
HLA matching became the more signifi cant 
determiner of outcome. Thus, if a 5/6 unit has a 
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TNC above the threshold (e.g., TNC of 2.8 × 10 7 /
kg), selection of a 4/6 unit with higher TNC does 
not appear to improve outcome. In contrast, 
within a TNC range of 2.5–4.9 × 10 7 /kg, survival 
appears to be better with a 5/6 compared to 4/6 
matched unit. To continue the example, if the 
same 5/6 matched unit has a TNC below the 
threshold (e.g., 2.0 × 10 7 /kg), then selection of a 
4/6 unit with a TNC above the threshold appears 
to improve survival. 

 Consideration of cell dose in addition to HLA 
match has most profound implications for adult 
patients. While it is now possible to identify a 
4/6 matched UCB unit for most pediatric 
patients, the number of usable units decreases 
markedly when cell dose is considered (Stevens 
et al.  2005 ). A prospective multicenter study of 
single unit UCB transplants found <10 % sur-
vival in the adult arm of the protocol, in part 
because the median TNC was 2.3 × 10 7  per kilo-
gram recipient weight (Cornetta et al.  2005 ). 
These diffi culties have prompted exploration of 
methods to enhance cell dose given to adult 
patients, such as transplant of more than one 
UCB unit or expansion of UCB progenitor cells. 
Addition of a second unit is a practical method to 
increase the overall TNC given to the patient, as 
demonstrated in a study of 21 adult recipients 
wherein the median TNC after two units was 
4.0 × 10 6 /kg (Ballen et al.  2007 ; Barker et al. 
 2005 ). Single-center studies of double UCB 
transplants in adults also report comparatively 
improved outcome. The observation that only 
one of the two CB units engrafts long term sug-
gests a supportive role for the additional unit. 
Algorithms to aid in multiple unit selection have 
been devised, based upon HLA match and cell 
dose of each unit. One reasonable algorithm for 
selection of two CB units is shown in Table  2.3 . 
Without large numbers of patients to analyze, 
ambiguity remains regarding the allowable mini-
mum cell dose, HLA mismatch with recipient, 
and unit-to-unit HLA matching. Reports of sup-
porting single CB transplant with third-party 
G-mobilized PBSC suggest that HLA matching 
between cell products may not be relevant 
(Magro et al.  2006 ). The degree of HLA match 
of the recipient to each UCB unit appears to be 

much more important, since either may become 
the engrafting unit (Barker et al.  2005 ).

   Recipient sensitization to alloantigen is more 
diffi cult to assess prior to UCB transplant, since 
donor cells are not available for crossmatch 
assays. A reasonable approach is to screen UCB 
recipients for HLA antibodies by PRA assay, dis-
cussed in the previous section. Recipients with a 
positive PRA can be tested for further for HLA- 
antibody specifi city to determine whether DSA is 
present. A recent single-center analysis of 73 
recipients of double UCB transplants found that 
the presence of DSA was signifi cantly associated 
with graft rejection, delayed neutrophil engraft-
ment, and mortality. Patients at most risk for graft 
rejection were those with DSA to both units. 

 Thus, if DSA is detected in the recipient, it is 
prudent to avoid units with the identifi ed HLA 
whenever possible (Cutler et al.  2011 ). 

 Aside from HLA matching and cell dose, 
recent studies have suggested other potential fac-
tors to consider in selection of the optimal UCB 
unit(s). A retrospective study that included 218 
recipients of UCB grafts from the Eurocord 
group suggested that NK alloreactivity may play 
a role in GVL effects (Willemze et al.  2009 ). NK 
cells are essential effector cells of the innate 
immune system that, without prior activation, 
recognize and lyse target cells. NK cell cytolytic 
activity is regulated by the balance of inhibitory 
and activating signals generated by binding of 
NK cell surface receptors, or KIRs. Negative 

   Table 2.3    General algorithm for umbilical cord blood 
selection   

 Identify the best HLA match for HLA-A, HLA-B, and 
DRB1 with TNC dose of at least 2.5 × 10 7 /kg recipient 
weight 
 Above this TNC threshold, prioritize 6/6 match > 5/6 
match > 4/6 match 
 If there are no units above the TNC threshold of at least 
2.5 × 10 7 /kg, identify the unit with the highest TNC 
dose between 1.5 and 2.4 × 10 7 /kg 
 A second unit should be considered if the TNC is 
<2.5 × 10 7 /kg for any level of HLA match 
 A second unit should be considered if the best HLA 
match is 4/6 
 Selection of a second unit should follow the same 
criteria as the fi rst unit 
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 regulation occurs when inhibitory KIR bind to 
specifi c HLA class I molecules; hence, target 
cells expressing the appropriate HLA class I mol-
ecules are protected from NK cell cytolysis (a 
mechanism termed “missing self”) (Ljunggren 
and Kärre  1990 ; Lanier  1998 ). In the setting of 
allogeneic HCT, NK cell alloreactivity can occur 
when the recipient lacks the inhibitory ligand for 
donor KIR. Class I HLA epitopes involved in NK 
cell allorecognition include the Bw4 epitope, 
present on approximately 40 % of HLA-B alleles, 
and the allelic HLA-C1 and HLA-C2 epitopes, 
one of which is present on all HLA haplotypes 
and which have approximately equal frequencies 
(Biassoni et al.  1995 ; Colonna and Samaridis 
 1995 ) In the Eurocord study, KIR ligand incom-
patibility was defi ned as absent expression in the 
recipient of a predicted KIR ligand for the donor 
(i.e., absence of HLA-C group 1, HLA-C group 
2, or HLA-B24 allele group), which would cor-
relate with NK alloreactivity. KIR ligand incom-
patible UCB grafts were found to confer 
improved leukemia-free survival, in particular for 
patients with AML. 

 Investigators have speculated that exposure to 
noninherited alloantigen during pregnancy might 
induce a level of tolerance that could be exploited 
in selection of UCB grafts as well as haploidenti-
cal donors. Indeed, long-term presence of very 
small numbers of fetal cells can be detected in 
about 80 % of mothers and maternal cells in 
about 65 % of offspring, consistent with transfer-
ence of maternofetal tolerance. Several groups 
have investigated the role of matching for nonin-
herited maternal antigens (NIMA). Theoretically, 
placental blood cells could develop tolerance to 
noninherited maternal HLA, which might trans-
late to tolerance of mismatched HLA of the recip-
ient (van Rood et al.  2009 ). An analysis of 1,121 
recipients of single UCB grafts found that mor-
tality was signifi cantly lower among recipients of 
grafts with a NIMA match. NIMA match also 
was correlated with improved neutrophil recov-
ery and reduced risk for relapse. Rocha and col-
leagues have also found NIMA match to be 
associated with lower mortality and improved 
leukemia-free survival (V. Rocha, personal com-
munication). Taken together, the studies above 

suggest that, in the future, the selection of CB 
units will require consideration of factors other 
than HLA match or TNC.  

2.6    Selection of Haploidentical 
Donors 

 A haploidentical donor is defi ned as sharing one 
distinct inherited haplotype (genetically identi-
cal) with the patient; the unshared haplotype may 
be HLA matched (phenotypically identical) or 
mismatched at one or more HLA loci. Most 
patients have an HLA-haploidentical donor 
available, typically a parent or sibling. At the cur-
rent time, guidance on the selection of the opti-
mal HLA-haploidentical donor is not as clear as 
that for URD or UCB donors. The rapid develop-
ment of novel regimens, posttransplant immune 
suppression strategies, and cellular manipulation 
has outpaced the ability to perform large retro-
spective analyses to evaluate factors important in 
HLA-haploidentical donor selection. Further-
more, previously published retrospective studies 
of HLA-haploidentical graft recipients did not 
evaluate high-resolution HLA typing; therefore, 
the limit of tolerable HLA mismatches has not 
been defi ned with certainty. 

 Published studies have examined outcome 
risks associated with HLA mismatch defi ned 
by serologic typing for HLA-A and HLA-B 
plus identity for DRB1 alleles. The contribu-
tion of mismatching at HLA-C or DQB1, or of 
allele- level mismatching at HLA-A or HLA-B, 
is thus unknown. Nonetheless, these studies pro-
vide some guidance for selection of haploiden-
tical donors. An analysis of 1,199 recipients of 
marrow grafts found a sixfold increase in graft 
failure among recipients of grafts from HLA- 
haploidentical relatives mismatched for 0 to 3 
HLA-A, HLA-B, and DRB1 antigens of the non-
shared haplotype compared to those who received 
grafts from an HLA-identical sibling (genetically 
HLA identical) (Anasetti et al.  1989 ). The rela-
tive disparity between donor and host histocom-
patibility antigens, determined by the vectors of 
HLA incompatibility, also affects engraftment 
(Fig.  2.1 ). Specifi cally, recipients who were 
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homozygous at one or more mismatched loci 
had a threefold increase in the risk for graft fail-
ure compared to heterozygous recipients. Thus, 
when selecting a haploidentical donor, it is desir-
able to avoid the situation in which the number 
of HLA mismatches in the direction of host-
versus-graft is not counterbalanced by the same 
number of HLA mismatches in the direction of 
GVH (Woolfrey and Anasetti  1999 ). The historic 
analyses also showed that disparity of multiple 
HLA loci resulted in a prohibitive incidence of 
GVHD when the graft was not depleted of T cells 
(Ash et al.  1991 ; Tomonari et al.  2002 ; Speiser 
et al.  1997 ). These studies, together with knowl-
edge gained from analyses of URD transplants, 
support the use of high-resolution typing to dis-
criminate haploidentical donors potentially mis-
matched for HLA-A, HLA-B, HLA-C, DRB1, or 
DQB1 locus.

   Our current understanding of the important 
role of hematopoietic stem cell dose in HLA- 
haploidentical grafts is based on animal models. 
Early murine models demonstrated that engraft-
ment of allogeneic marrow required tenfold 
higher number of cells compared to syngeneic 

marrow (Gengozian et al.  1969 ). Similar mod-
els showed that host alloreactivity conferred 
by the presence of residual (or experimentally 
added- back) host T cells could be overcome by 
increasing the number of donor cells, presum-
ably by manipulating competition for marrow 
space in favor of the donor stem cells (Lapidot 
et al.  1989 ). In HLA-histoincompatible mod-
els, engraftment of T-cell depleted marrow was 
shown to require greater numbers of donor mar-
row cells compared to non-T-cell depleted grafts 
(Lapidot et al.  1990 ; Lebkowski et al.  1990 ). Stem 
cell dose also appeared to be the critical factor in 
determining engraftment of T-cell depleted HLA- 
histoincompatible marrow when intensity of 
immunosuppression was held constant (Bachar- 
Lustig et al.  1995 ; Rachamim et al.  1998 ). The 
benefi t of mobilized PBSC to attain high cell dose 
was reported by Aversa and colleagues in stud-
ies of HLA-haploidentical grafts for treatment of 
hematologic malignancies (Aversa et al.  1994 ; 
Aversa et al.  1998 ). After 2–4 apheresis proce-
dures followed by CD34+ selection or T-cell 
depletions, the PBSC graft contained a median 
CD34+ cell dose of 13.9–16 × 10 6  per kilogram 
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  Fig. 2.1    Alloreactivity vectors. The vector for graft-ver-
sus-host disease (GVHD) or graft rejection depends upon 
whether the recipient or donor is homozygous at the locus 
of mismatch. HLA typing is shown for a potential recipi-
ent ( left side ) and for three potential donors ( right side ). In 
the  top panel , both recipient and donor are heterozygous 
at the mismatched HLA-DRB1 locus; therefore, the mis-
match will generate alloreactivity in both the GVHD and 

the rejection vectors. In the  middle panel , the recipient is 
homozygous at the mismatched HLA-B locus; therefore, 
the mismatch will generate an alloreactivity reaction only 
in the direction of rejection. In the  bottom panel , the 
donor is homozygous at the mismatched HLA-A locus; 
therefore, the mismatch will generate an alloreactivity 
reaction only in the direction of GVHD       
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recipient weight and a median CD3+ cell dose 
of 0.27–1.43 × 10 5  per kilogram recipient weight, 
resulting in 95 % engraftment rate. Correlation 
of CD34+ cell dose with risk for graft failure 
has been confi rmed by other groups after differ-
ent conditioning regimens (Peters et al.  1999 ). 
The requirement for maximal CD34+ cell dose 
guides donor selection toward a preference for 
adult donors able to tolerate multiple apher-
esis procedures. In contrast, if a marrow graft 
instead of PBSC is planned, studies suggest that 
younger donor age may be preferable (Godder 
et al.  2000 ). 

 Studies by the Perugia group suggest that, in 
the absence of T cells, NK cell alloreactivity may 
play an important role in outcome of haploiden-
tical grafts (Biassoni et al.  1995 ). The existence 
of potential donor alloreactive NK cells can be 
deduced through comparison of donor and recipi-
ent HLA class I type. This “missing self” model 
of NK alloreactivity presumes that there exist 
NK clones in the donor capable of activation pro-
vided the recipient lacks the inhibitory ligand. 
The “missing self” model is an oversimplifi ca-
tion of NK cell receptor-ligand biology, as some 
individuals do not have the inhibitory KIR gene 
anticipated based on the HLA typing. Velardi and 
colleagues screened the KIR genotype of 162 
patients and found that prediction of NK alloreac-
tivity based solely on KIR ligand incompatibility 
would be invalid for 3 % of donors who do not 
possess KIR2DL1 receptor for group 2 HLA-C 
alleles and 6 % of donors who lack the gene for 
HLA-Bw4 inhibitory receptor KIR3DL1 (Ruggeri 
et al.  1999 ; Ruggeri et al.  2002 ; Ruggeri et al. 
 2004a ; Velardi et al.  2003 ; Ruggeri et al.  2004b ). 
This group also showed that direct identifi cation 
of NK alloreactive clones in the donor was useful 
for optimum donor selection. Potentially relevant 
to selection of haploidentical donors is the “miss-
ing ligand” model of donor NK activity, which 
takes into consideration that alloreactive donor 
NK clones may develop after transplant, provided 
the recipient lacks at least one KIR ligand. In 
contrast to the “missing self” model, there is no 
requirement for a mismatch of the class I HLA 
ligand between donor and recipient. Hence, the 

“missing ligand” model would potentially encom-
pass two-thirds of recipients, who will lack one 
or more of the class I HLA ligands for KIR. In 
this model, KIR genotyping is essential in order 
to identify a donor with potential to express an 
alloreactive KIR. 

 The Perugia group demonstrated the potential 
role for NK alloreactivity in protecting against 
relapse after T-cell-depleted HLA-haploidentical 
grafts for patients with myeloid malignancies 
(Ruggeri et al.  1999 ; Ruggeri et al.  2007 ). In an 
analysis of 112 patients, with AML, NK allore-
active clones were detected before transplant in 
all KIR epitope mismatched donors whose recip-
ients did not express HLA-C group ligands and 
two-thirds whose recipients did not express 
HLA-Bw4 alleles, whereas none were detected 
in donors whose recipients expressed the class I 
HLA groups present in the donor. Multivariate 
analysis confi rmed that donor-versus-host KIR 
“ligand mismatch” was an independent factor 
for survival, associated with a twofold reduction 
in death or relapse among all patients ( p  < 0.001), 
including those with relapsed disease at time of 
HCT (DFS 30 % versus 6 %,  p  = 0.04). In con-
trast, when the analysis took into consideration 
patients who lacked expression of at least one 
KIR ligand, for whom there was potential for 
NK alloreactivity according to the “missing 
ligand” model, no survival advantage was dis-
cerned. Although these results have not been 
confi rmed by others (Bishara et al.  2004 ), they 
suggest that the search for HLA-haploidentical 
donors should be extended beyond immediate 
family members, guided by KIR genotyping 
(Ruggeri et al.  2005 ).  

2.7    Selection of the Optimal 
Donor 

 Optimization of the donor graft, whether URD, 
UCB, or HLA haploidentical, takes into consid-
eration data derived from multivariate analyses 
of large numbers of transplants. In contrast, there 
are no randomized studies that address the ques-
tion of selection between the various donor 
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sources. Studies that seek to compare outcome 
between any donor type, whether HLA-matched 
sibling, HLA-matched URD, UCB, or haploiden-
tical donors, have been retrospective; therefore, 
consideration of the results must take into account 
the problem of selection bias, wherein poor-risk 
patients die before HCT can be performed. In 
general, time lapse between the decision to 
undergo HCT and donor identifi cation is greater 
for recipients of alternative donor grafts, increas-
ing the probability that poor-risk patients will not 
be included in these groups. In counterbalance, 
perception of an increased risk associated with 
alternative donor HCT may drive physicians to 
withhold referral of patients until the disease has 
progressed to an advanced stage. 

 Registry studies have provided comparative 
information about outcome among different 
alternative donor groups. The Eurocord group 
reported outcomes separately for pediatric and 
adult patients with acute leukemia given unre-
lated UCB compared to URD marrow trans-
plants. The fi rst large study reported by the 
Eurocord group analyzed outcome of pediatric 
patients given UCB or URD grafts between 1994 
and 1998 (Rocha et al.  2001 ). The adjusted anal-
ysis showed lower DFS and a twofold increase in 
TRM among the UCB recipients compared to 
URD ( p  < 0.01), with most of the mortality risk 
within the fi rst 100 days. In contrast, no differ-
ence in survival was reported for adult patients in 
the Eurocord comparison of 98 single UCB unit 
recipients to 584 recipients of 6 of 6 HLA- 
matched URD marrow grafts, reported to the reg-
istry between 1998 and 2002 (Rocha et al.  2004 ). 
An International Bone Marrow Transplant 
Registry study reported around the same time 
found that recipients of UCB or mismatched 
URD marrow had a higher risk for death from 
any cause ( p  < 0.001, HR 1.66, 1.53, respectively) 
compared to recipients of HLA-matched URD 
marrow (Laughlin et al.  2004 ). The increasing 
awareness of cell dose and advent of the double 
UCB unit transplant procedure have improved 
outcome in adult patients, and two recent 
 retrospective studies that compared outcome of 
double UCB grafts and URD grafts in adult 

patients with hematologic malignancies found no 
signifi cant difference in outcome. In patients 
with hematologic malignancy given myeloabla-
tive conditioning, the source of the donor graft 
(i.e., double UCB or HLA-matched URD or 
HLA- mismatched URD or HLA-identical sib-
ling) was not found to be signifi cantly associated 
with mortality (Brunstein et al.  2010 ). Donor 
source was also not found to be associated with 
outcome after reduced-intensity conditioning 
(Brunstein et al.  2012 ). 

 Most importantly, all comparative studies of 
URD, haploidentical donors, and mismatched 
cord blood grafts have shown that phase of dis-
ease at time of transplant is the most signifi cant 
predictor of survival (Gluckman et al.  2004 ; 
Speiser et al.  1997 ; Sierra et al.  1997 ; Aversa 
et al.  2005 ; Lu et al.  2006 ). Therefore the most 
important variable to consider at the start of the 
donor search is the urgency of the transplant 
procedure. Thus, optimal donor selection bal-
ances the risk of disease progression against the 
time required to identify the best donor 
(Woolfrey et al.  2002 ). Pragmatically, the time 
to disease progression or relapse (which depends 
upon the available therapies that presumably 
improve over time) should be estimated and 
donor identifi cation should proceed accord-
ingly. Advances in determining the biologic 
markers for disease progression should improve 
ability to decide in favor of HCT with an alter-
native donor (Bruggemann et al.  2006 ; Zhou 
et al.  2007 ). Table  2.4  shows a useful guideline 
which we use in our center to select the “opti-
mal” donor based on the predicted urgency of 
the need for transplant. By employing a strategy 
that identifi es an acceptable donor in the short-
est period of time, and that subsequently refi nes 
the search to optimize donor characteristics, we 
can meet our goal to move to transplant at the 
time most appropriate for the patient, knowing 
that we have identifi ed the best donor within the 
appropriate time frame.
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