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Abstract. The history of material equations and hence the development of present
material theory as a method to describe the behavior of materials is closely related
to the development of continuum theory and associated with the beginning of indus-
trialization towards the end of the 19th century. While on the one hand new concepts
such as continuum, stresses and strains, deformable body etc. were introduced by
Cauchy, Euler, Leibniz and others and mathematical methods were provided to their
description, the pressure of industrialization with the need to ever newer, and like-
wise also reliably secure, developments has led to the fact that, next to the descrip-
tion of elastic behavior of solid bodies, more appropriate models for the description
of plastic or elastic-plastic behavior were introduced. Upon this background, this
chapter wants to introduce into the history of plasticity and likewise highlight the
contributions of the Darmstadt graduate Heinrich Hencky who started his scientific
career there 100 years ago.

Keywords: Plasticity, Prandtl-Reuss-theory, deformation theory, hypoelasticity,
large deformation.

1 Introduction

Compared to the history of elasticity the plasticity theory is still relatively young,
if its birth - perhaps somewhat arbitrary - is identified with the publication of the
results of the French engineer Henri Tresca in 1868 [55]1. Based on the observations
of a series of experiments he had published a hypothesis according to which metals
begin to flow when the largest shear stress reaches a critical value. We will come
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back to that point later. At that time Henri Tresca was so highly esteemed that his
name was engraved as 3rd out of a total of 72 names on the outside of the first
platform of the Eiffel Tower. This birth now dates back almost 150 years.

Despite this relatively short period, the theory of plasticity meanwhile has taken a
dynamic development. Thus it would be helpful to differentiate between individual
development phases:

1. The origins and basics - development until 1945,
2. The expansion of these basics to approximately 1980,
3. The present status and recent developments.

The first of the above phases is characterized by the pioneering efforts of a few re-
searchers in the rapidly developing industry in Europe. Unfortunately, first results
produced in France were hardly noticed. It took about 30 years until in the early
20th Century a small group of - primarily German-speaking - engineers and mathe-
maticians adopted this topic. Among these outstanding persons were the two found-
ing fathers of the Society of Applied Mathematics and Mechanics (Gesellschaft
für Angewandte Mathematik und Mechanik - GAMM), Richard Edler von Mises
and Ludwig Prandtl, but also Willy (or William) Prager and Heinrich Hencky from
Darmstadt. With the specific fate of the latter we want to be concerned more in de-
tail in this contribution2. Incidentally, this contribution is to remain limited here to
the first of the three phases specified above.

Fig. 1 Richard von Mises (1883-1953) and Ludwig Prandtl (1875-1953)

It is one of the unfortunate facts of the second part of this first phase, that it
took place between the two world wars, with all their attendant destruction and
distortions. When finally in Germany the Nazi regime came to power, the above
mentioned dynamic development soon came to an end; many of the researchers
involved were forced to leave their country.

Finally, the following remark appears to be still appropriate: Much of what has
been initiated significantly by this – here simply called - ”German school” and then,

2 This text comprises a partly extended version of a lecture held at the GAMM Meeting
2012, March 26-30, Darmstadt, Germany.
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Fig. 2 Stepped wheel me-
chanical calculator, Rhein-
metall (Sömmerda)

due to the Nazi regime and its consequences, has been spread all over the world,
is today occasionally not appreciated accordingly of its actual achievement. We be-
lieve that this attitude does not cope with the partly ground breaking developments
of these years. These developments have been made by engineers and applied math-
ematicians and they could not wait, until the appropriate tools available to us today,
were ready. They had to act, i.e.: Find solutions with the tools available at that time.
To do this, it is worth remembering: There was no Finite Element Method (FEM),
no powerful computers - today assumed as naturally existing - and initially not even
simple mechanical calculators, as e.g. the stepped wheel calculator of Rheinmetall,
designed in the 1930s (refer to Fig. 2). As a rule, one had to use tables of loga-
rithms3, as multiplications and divisions were carried out “by hand“.

2 The Origins and Basics – Development Until 1945

Let us mentally go back these 150 years to the beginning of industrialization in
Europe. In many plants and constructions steel - or as it was called at that time
“iron” - is used. To get an idea of the historical context, we want to recall briefly the
following data:

• 1811, in Germany, Friedrich Krupp has founded the first cast steel factory in
Essen (Ruhr Area),

• 1825, in England, the first public railway is inaugurated (Stockton & Darling-
ton Railway Company, connecting Witton Park and Stockton-on-Tees in north
eastern England, 40 km in length),

• 1835, the first railway is opened in Germany (Bavarian Ludwig Railway from
Nuremberg to Fürth, 6 km in length).

An essential prerequisite for the operation of these railways was that from

• 1820, first rails were produced by rolling.

3 A typical example is e.g. given with the handbook [1]. These tables contain sequences of
mantissas of logarithms - preferably on the basis 10 - of natural numbers.
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In this way, the rails until then created in casting processes could be replaced by the
much smoother rolled profiles. Of course, one knew even at this early stage about
the non-linear behavior of the material in use.

Consider a cylindrical specimen subject to a tensile load F , with length L and
cross-sectional area A. Also, consider that for small elongations of this specimen
the change of this area is negligible4. Then stress and strain may be defined as

σ =
F
A
, ε =

ΔL
L0

=
L
L0

− 1 , (1)

where L0 is the initial length. From a typical tensile test (refer to Fig. 3) it may be
observed that up to a specific (yield) point σy the stress increases linearly. Beyond
this point we observe a general non-linear monotonic increase during loading, and
a linearly decreasing behaviour under reverse loading (unloading). Thus, from this
process of loading and subsequent unloading it turns out that the total strain reached
at final elongation may be split into a reversible part εr and an irreversible so-called
plastic part εi.

Fig. 3 Stress-strain curve of
mild steel during a process
of loading and subsequent
unloading
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What remains is the question how to characterize this behavior. With the above
remarks we already have mentioned the two different ways of looking at the behav-
ior of steel in the plastic range:

1. On the one hand, we have for example a vessel of the steam locomotive, which
should be tight and safely withstand a given pressure. The necessary strength
analyses - eventually carried out – however, were employed on the basis of the
elasticity theory developed by Euler (continuum, 1750) and Cauchy (stress con-
cept, 1822). This was admissible because thereby the structure has been assured
against the reaching of the yield stress, and even in the case of exceeding this
limit a "good-natured" failure - in conjunction with larger in time announcing
deformations was observed. We will come back separately to the deviating case
of possibly catastrophic failure in stability problems.

In this first case, the strength properties of the steel are in major focus and
accordingly the plastic behavior is interpreted as the behavior of a solid.

4 This assumption does not hold for larger deformations, where the change of cross-sectional
area has to be considered. We will come back to that point later.
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2. On the other hand, we consider the rolling of rails as a typical forming process.
Here, the material, which also then is often heated, is understood as a viscous
fluid. Usually, we are interested in the forces that must be applied in such a
rolling process. Similar problems might be given by the extrusion or even - on a
very different time scale - the tectonic movements in the collision of two tectonic
plates.

The general form of a linear elastic relation as the most simple form of a solid
material is due to Cauchy5 [3]

σσσ = 2μεεε +λ tr(εεε)III , εεε =
1

2μ

(
σσσ − λ

3λ + 2μ
tr(σσσ)III

)
, (2)

if common today’s notations are used. Herein σσσ and εεε are stress and strain tensors, λ
and μ are the two Lamé’s constants and III is a unit tensor. A fully general expression
for a relation combining stress and rate of deformation (strain rate) was first given
by Poisson [38]

σσσ =−pIII+ 2μvddd +λvtr(ddd)III . (3)

Accordingly, λv and μv are the corresponding viscosities, p is the hydrostatic pres-
sure and ddd the strain rate tensor (stretching), the symmetrical part of the velocity
gradient. Special cases of linear viscous fluids were discovered by Navier, de Saint-
Venant and Stokes [36; 47; 52]6

σσσ =−pIII+ 2μv

[
ddd − 1

3
tr(ddd)III

]
, ddd− 1

3
tr(ddd)III =

1
2μv

(σσσ + pIII) , (4)

From the very beginning the development of plasticity has been in this conflict:
Does the body under consideration behave more solid-like or like a fluid - and does
this possibly also depend on the specific task to be solved?

We now return to Henri Tresca. Tresca wanted to know whether a simple cri-
terion can be specified for achieving the flow state of his material. On the basis
of numerous experiments on various metallic materials he concluded7, that “in the
plastic state of the solid, the largest shear stress has a fixed value" (in commonly
used today’s notations):

|τ|max =
1
2
(σ1 −σ3) = k, (5)

with σ1 the largest and σ3 the smallest value of the principal stresses, and k the
shear yield limit. This was the first yield condition. Using this condition the already
73-year-old Barré de Saint-Venant (1797-1886) [48] 1870 has presented his "five
equations of hydro- stereodynamics" for the problem of plane deformations starting
from the above described material behavior as a viscous fluid. In addition to balance

5 Although the anagram ”ut tensio sic vis” of Hooke [22] may be interpreted as a first (uni-
axial) step in this direction.

6 Where in these cases μv = const. and in addition Navier adopted an incompressible mate-
rial with tr(ddd) = 0, whereas the latter two introduced 3λv +2μv = 0. Refer to [56].

7 He probably may have resorted also to earlier works by Coulomb.
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Fig. 4 Barré de Saint-Venant (1797-1886) and Maurice Lévy (1838-1910)

equations, the (assumed) incompressibility, as well as Tresca’s yield criterion (5),
this was a relationship of the form

dxx − dyy

dxy
=

σxx −σyy

σxy
. (6)

In the same year, his student Maurice Lévy (1838-1910) [28] has transferred this
representation to the general spatial problem. For this we can write

ddd− 1
3

tr(ddd)III = cτττ , τττ = σσσ − 1
3

tr(σσσ)III , (7)

with τττ the deviatoric stresses, and c is a simple proportionality.
Thus, the basics of a simple flow theory were established. Because of the asso-

ciated mathematical difficulties8 this theory, however, did not find any application.
It took another 30 years before these ideas were taken up again. Some spectacular
cases of damage as a result of stability failure may have contributed to this. Namely,
unlike the above-mentioned strength analysis after exceeding the yield point, in the
case of a stability failure, e.g. the buckling of a simply supported beam (Euler prob-
lem), the known elastic solution

σcrit = EI
π2

Al2 , E = μ
3λ + 2μ
λ + μ

(8)

may lead to an unsafe solution - if plastic deformations occur. Herein the modulus of
elasticity E occurs as the slope of the stress-strain curve. Corresponding spectacular
failure cases then may have led to the need that already before the turn of the century
modifications of the buckling load of elastic-plastic beams were discussed, where -
albeit very simplified - the material properties in the plastic range were taken into
account (refer to [4; 5; 24]). Incidentally, this discussion about the correct value of

8 The interested reader will recognize that, formerly, it was almost impossible to solve sys-
tems of partial differential equations.
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reduction of the modulus of elasticity in the above relationship (8)9 - as a result of
non-linearity of the problem, i.e., due to the fact that here the bifurcation load and
the stability limit no longer coincide as in the elastic range - took another 50 years.
This solution was finally delivered by Shanley [50; 51].

To simplify the flow theory outlined above, in 1913 v. Mises [31] replaced
Tresca’s yield condition (5) by

(τ1)
2 +(τ2)

2 +(τ3)
2 = 2k2 (9)

with τi the principal deviator stresses. The meaning of this condition and its rela-
tionship with a strength hypothesis already indicated by M.T. Huber10 in 1904 [23]
has been explained by Heinrich Hencky first 1924 [14]. The deformation law

ddd− 1
3

tr(ddd)III = cτττ

of v. Mises has indeed taken over from de Saint-Venant and Lévy (7)1. In the ad-
dressed work Hencky also specifies the until today used geometrical interpretation
of the v. Mises and the Tresca yield conditions as surfaces in the 9-dimensional
space of stresses (refer to Fig. 5)11.

Fig. 5 Yield conditions according to Tresca and v. Mises, refer to Hencky, 1924 [14]. Copy-
right Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

9 One might only contemplate the classical confusion regarding whether the tangent-
modulus or the reduced- modulus theory gives an adequate description of the critical load,
see e.g. [25; 6; 27]

10 Refer to footnote 3 on page 327 of the Hencky paper [14].
11 Figure 5 with a slight modification has been taken from the Hencky paper [14].
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This system of partial differential equations at the time has been considered un-
solvable – with a few pathological exceptions. In contrast, however, was the wish to
develop practically manageable procedures that allowed to regain the progress of the
material description in the calculation procedure and design rules. Thus, meaning-
ful and yet reasonable simplifications had to be made. Today, we would say: There
was a need for developing simplifying "models". In this sense, also the simplifica-
tions introduced by Prandtl [43] to consider the continuum as a) ideal-plastic or b)
elastic-plastic body are to be understood. A further simplification is pursued in 1921
and 1923 by Prandtl [44] and Hencky [13], emerging from the following question:
Do, possibly, exist special cases such that with the help of balance equations (equi-
librium conditions) and the additional yield condition alone, solutions to the given
problem can be found?

Fig. 6 Orthogonal families of α and β-slip lines, refer to Hencky, 1923 [13]. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

For the general spatial problem with its 4 conditions and 6 unknown stress
components this obviously would be not the case. If we restrict our considerations,
however, to axially symmetric problems, we note that only 3 unknown stress com-
ponents are facing 3 conditions. The focus of the forthcoming work is therefore on
the solution of such "statically determinate" cases. For problems of plane deforma-
tions, the yield conditions of Tresca and von Mises (5) and (9) coincide12. Based
on a system of hyperbolic differential equations then two orthogonal families of
characteristics can be introduced as geometrical places of directions of the principal
shear stresses. Following suggestions from Prandtl [44] and Nádai [34] these curves
according to their meaning in plastic behavior will be interpreted by Hencky [13] in
1923 as ”slip-lines” (α− and β-lines, see Fig. 6). Inclined at 45◦ to this family, we

12 We note that this is not the case for problems of plane stress.
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find the directions of the largest tensile and compressive stresses13. Between these
families, there exist certain phenomena which Hencky summarizes in 3 theorems.
That same year, Prandtl [45] as well as Carathéodory and Schmidt [2] adopt these
thoughts and complement them by graphical solution methods and numerous addi-
tional statements. 1925 v. Mises [32] finally summarizes this development: ”. . . from
(.) immediately follow the beautiful differential geometrical properties of the slip-
lines discovered by Mr. Hencky.”

Fig. 7 Half plane with prismatic indentation, refer to Hencky, 1923 [13]. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

In the above work Hencky, as v. Mises elsewhere, indicates the limits of this
approach which are given by the respective boundary conditions: Ideally here only
stresses should be prescribed. However, this is generally not the case.

Thus, the slip line theory is developed. Besides v. Mises, Prandtl and Hencky
especially Hilda Geiringer and Willy Prager [8] contribute to the spreading of this
theory.

Who was actually this Heinrich Hencky14 from (at the time) Delft, who together
with v. Mises and Prandtl has published numerous contributions to the development
of the theory of plasticity in the ZaMM15 (Zeitschrift für angewandte Mathematik
und Mechanik), at that time the leading journal of mechanics?

Heinrich Hencky was born in Ansbach (Bavaria), Germany on the 2nd of Novem-
ber 1885 as elder son of a Bavarian school administrator. After the early death of
his father and after finishing the senior high school in Speyer, he studies civil engi-
neering at the TH (Technische Hochschule) in Munich from 1904-1908; at the same
college his 4 years younger brother Karl Georg follows him, studying mechanical
engineering (1908-1912). After his military service in 1908/09 with the 3rd Pio-
neer Battalion in Munich and a short activity as engineer for the Alsacian Railway
in Strasbourg (1910-1912), in 1912 he moves to the Grand Ducal TH (Großher-
zogliche Technische Hochschule) in Darmstadt as ”design engineer and assistant
for engineering sciences”. In 1913 he receives his doctorate of engineering from the

13 The construction of a typical field of slip-lines is shown in Fig. 7 for a prismatic indentation
into a half-plane.

14 We here also refer to the sensitive article of Tanner and Tanner [53] where especially
Hencky’s pioneering work on rheology is underlined.

15 Now ZAMM.
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Fig. 8 Heinrich Hencky (1885-1951) and Boris G. Galerkin (1871-1945)

TH Darmstadt with a thesis on the numerical calculation of stresses in thin plates
[10].

After completing his doctorate he seeks for a new position in the field of railway
engineering16 and in 1914 moves to Kharkov (Kharkiv) in the Ukraine, an emerging
industrial and commercial center. The beginning of World War I and the revolution-
ary upheavals in Russia procure him his first unpleasant experience. His career is
abruptly terminated. Like many others, he is interned 1915-1918 in the Urals re-
gion. Although during this time he met his later wife Alexandra Yuditskaya, this
period must have had a decisive impact. After the war ended the Hencky family is
sent back to Germany. His attempt to restart as test engineer in Warnemünde (on a
project to develop a seaplane) fails. As a result of the general demobilization, the
project had to be stopped.

1919 he is again ”assistant for engineering sciences” at the TH Darmstadt. During
this time he turns to the treatment of stability problems of elastic structures. Within
this new subject he also wrote his habilitation treatise [11]. In 1920 he moves to the
mechanical department of the TH of Dresden, first as assistant, and after acceptance
of his habilitation in 1921 as lecturer. He is striving for a professorship. If one may
believe the rumors, this, however, failed due to "not convincing achievements in
teaching". Perhaps, his occasional reticence or shyness may have been an obstacle
on this way. In this Dresden period he also reflects on possible relationships between
philosophy and the description of nature [12]. Anyway, in 1922 he moves to the
Technical University of Delft (at the chair of Cornelis B. Biezeno) - hoping to get
a permanent professorship there. After all he is at the age of 37 and has a wife and
two children.

In Delft Hencky probably wrote his most significant works - we come back to that
in a moment. This, however, seems to have no influence on his position. In Delft,
he all the time remains lecturer. It seems only too understandable that this situation
must have affected his relationship with Biezeno. Therefore, in 1929 he leaves Delft
with his family towards the USA. Biezeno indeed believes that it was merely a tem-
porary research period; Hencky, however, is looking for a permanent job (he is now
at the age of 44). In the summer of 1930, he then becomes associate professor at

16 In those days one of the most attractive branches in civil engineering.
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MIT in Cambridge, Massachusetts. This position, again, is not permanent. In 1932
the MIT is reorganized, his former advocate has died and Hencky is no longer em-
ployed. Here again, if we can trust the sources, he was regarded as ”too theoretical”
in a department of mechanical engineering, mainly interested in practical problems.
In the following years he tried to survive as a consultant - interrupted by a short job
at Lafayette College in Easton, Penn., with E.C. Bingham.

What should he do? In Germany, he could not find any kind of work, as in 1935
an offer arrived from Boris Galerkin, whom he knows from his Delft period. After
careful consideration – in fact he probably had no choice – 1936 he accepts this
proposition as a professor of engineering mechanics at Kharkov Polytechnic Insti-
tute and later at the Institute of Mechanics of the Lomonosov University of Moscow
with A.A. Ilyushin17. Although he now has an adequate position, in his heart he
must have felt as a prisoner. Whether he expressed this accordingly and therefore
is "fallen from grace" can not be ascertained anymore. In any case, 1938, he has to
leave the Soviet Union with his family within 24 hours.

Back in Germany, he gets help from his brother Karl Georg, who meanwhile was
extraordinary professor (apl. Professor) at RWTH Aachen and now holds a senior
position at the IG Farben in Ludwigshafen, to find a position at MAN company
in Gustavsburg. Here he remains, suspiciously observed by the ”security service”
(SD), the intelligence agency of the SS, but under the protection of his supervisor at
MAN (Dr. Richard Reinhardt) until the end of the war and then until his retirement
in 1950. On the 6.07.1951, he died in a climbing accident at the age of 65.

Back to historical development. In the above mentioned paper from 1924 [14],
where Hencky explained the v. Mises yield condition and interpreted it in a today
still usual way as a hypothesis, according to which the boundary to plasticity is de-
scribed by the elastic shear strain energy, he also developed a simple constitutive
law for elastic as well as elastoplastic behavior, specifying a relationship between
stresses and strains. As he mentions in his introduction, he hereby revisits an ap-
proach by Haar and v. Kármán [9], whose meaning seems to be not properly recog-
nized.

For this purpose he assumes the specific complementary energy

A =
1

4μ

(
σikσik − 9λ

2+λ
σ2

m

)
=

1
4μ

(
S2 − λ

2+λ
S2

1

)
, (10)

with S1 = tr(σσσ), S2 = tr(σσσ2) and the limit of elastic behavior, which here is specified
with the condition

Φ = T2 − 2k2 , T2 = tr(τττ2) = S2 − 1
3

S2
1. (11)

17 Unfortunately, informations about Hencky’s second stay in the Soviet Union are very rare.
This is certainly due to the secrecy of those days. It is, however, believed that with the
help of Galerkin Hencky was hired to improve the Soviet Union lightweight (airplane)
construction. His deformation theory could contribute a lot to this matter, and it is known
that Ilyushin later was very much impressed by this theory.
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Hencky now solves the variational problem by seeking with

W = A+Lu+Mv+Nw+ϕΦ (12)

for an extremum of
∫

W dV . L, M and N herein are the balance equations as auxiliary
conditions. Thus, the bounding (yielding) condition Φ = 0 is multiplied by a local
function ϕ and then added to the elastic complementary energy. As a result, he
receives

εεε − 1
3

tr(εεε)III =
1+ϕ

2μ
τττ , tr(εεε) =

1
3K

tr(σσσ), 3K = 3λ + 2μ (13)

a model very similar to the elasticity law (2)2, where ϕ is a still undetermined La-
grange parameter, and K is the bulk modulus. For ϕ = 0, this law changes into that
of the elastic material. The compression is purely elastic and at plastic behavior the
shear modulus μ is reduced by (1+ϕ), the material thus becomes ”softer”.

Thus, for the first time it is possible to formulate a constitutive law to describe
elastoplastic behavior. This formulation later referred to as “deformation theory” is
rapidly accepted, even if it soon meets its limits: A neutral change of stresses, as
it for instance occurs in non-proportional loading, cannot be reflected. For many
so-called “proportional” problems, however, it represents not only the first but also
a very simple method. It should be noted that Hencky in this development has as-
sumed that a body under increasing load will be deformed first elastically and then
plastically after having reached the yield point. In the interior of the structure, how-
ever, still remains a so-called “elastic core”. This corresponds to the above men-
tioned concept of plastic behavior as that of a solid material.

In the case that the considered body, under further load increase, merges into a
“free flow”, Hencky in a paper [16] of 1925 reverts to Lévy’s approach (7), relating
the stresses with strain rates, thus describing plastic flow as a behavior of a fluid.

Apparently independent18 from a work by L. Prandtl [43], where already elas-
tic deformations have been considered in a plane problem, the Hungarian András
(Endre) Reuss in 1930 connects this Saint-Venant/Lévy approach (7) with the de-
scription of elastic behavior. For this purpose, like Hencky, he emanates from the v.
Mises yield condition and obtains on a comparable way a constitutive law

ddd− 1
3

tr(ddd)III =
1

2μ
τ̇ττ +λ τττ , (14)

that with λ still contains a yet undetermined function, and

tr(ddd) =
1

3K
tr(σ̇σσ) (15)

for its (purely elastic) compressible part. Thus, the basic version of the nowadays
commonly used Prandtl-Reuss theory is introduced.

18 We refer to a footnote of A. Reuss in [46] where it is stated that while elaborating his
1930 paper (Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie,
Z. angew. Math. Mech. 10, 266–274, 1930), the lecture of Prandtl was not known to him.
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Fig. 9 Hilda Geiringer-v. Mises (1893-1973) and Willy Prager (1903-1980)

Many generalizations of this theory are given shortly later. So H. Geiringer and
W. Prager [8] in addition to the yield condition Φ = 0 introduce a second condition
H = 0 as flow potential. The self-evident case Φ = H then is called an associated
theory and as with Hencky’s deformation theory a normality rule can be derived
from the potential property

ddd p = λ
1
2

∂Φ
∂τττ

. (16)

For the general case of elastoplastic deformations, the yet undetermined parameter λ
can be eliminated with the aid of the so-called condition of consistency, e.g. Φ̇ = 0.
This idea stems from H. Geiringer [7].

Also, the hardening of the material is taken into account by modifying the yield
condition. First steps towards the "isotropic" hardening adapt the function k of the
uniaxial tensile test for corresponding experiments and arrive at, e.g. the following
proposals:

k = k0 +F(J1), J1 =

√∫
σσσ : ddd p dt , (17)

k = k0 +F(J2), J2 =

∫ √
tr(ddd2

p)dt , (18)

where eq. (17) is introduced by Schmidt [49], and eq. (18) by Odqvist [37].
Approaches to the description of the "kinematic" hardening are derived from

Reuss and Prager [39]19 in the form

Φ = (τττ − cεεε p) : (τττ − cεεε p)− 2k2 (19)

and allow to take into account the Bauschinger effect. Then, the first evolution
equation for this kinematic hardening originates from Melan [30]

Φ = (τττ −ααα) : (τττ −ααα)− 2k2 , α̇αα =Cdddp . (20)

19 We refer to footnote 4 on page 79 of [39].
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Fig. 10 Tensile test, cyclic loading with reloading in different directions: same direction (left
Figure) and reverse loading expressing the Bauschinger effect (right Figure)

The debate as to what might be the “better” theory, starts of course immediately
and drags on until the 1950’s, 1960’s20. At the beginning, it even seems as if the
deformation theory of H. Hencky and A. Nádai21 has advantages compared to the
Prandtl-Reuss theory. K. Hohenemser [21] and W. Prager [40] for example indicate
that in comparison with numerous experiments the deformation theory can reflect
these results better. Moreover, in the aforementioned dispute about the “correct”
buckling load in the range of plastic deformations, this deformation theory at first
provides the “better” results. Finally, one also must recognize that in these pre-
war years, e.g. in aircraft construction, the deformation theory simply prevails in
practical applications because of its easy handling.

It is noticeable that until the 1930’s in the mathematical representation of the so
far considered contributions, we find Cartesian coordinates, small deformations, and
all relations written in detailed component notation. In his 1925 paper [15], Hencky
is one of the first to introduce the tensor analysis into mechanics, “to avoid the
maze of formulas, that so far has prevented from calculating finite deformations...”
as he says. To this end, in this work he also for the first time introduces convective
coordinates. Maybe he is thus too far ahead of the times.

Hencky now turns increasingly to the issues of finite deformations and thus in
[17; 18; 19] introduces first of all a logarithmic strain measure22, which is the only
one to allow for a correct superposition and, moreover, the only one capable to allow
for a physically meaningful description of a total compression23,

20 We e.g. refer to Prager [41] and the discussion between B. Budiansky and W. Prager in
[42].

21 A. Nádai with his book [35] has very much contributed to its publicity.
22 This strain is sometimes called natural strain or - simply - logarithmic strain. Here, we will

use the term Hencky strain hhh.
23 Such a compression to ”zero length” can be accompanied - think of an elastic body - only

with an infinitely large force.
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hhh =
1
2

lnbbb , bbb = FFFFFFT. (21)

hhh = eee(0) =
1
2

lnbbb =
1
2

n

∑
σ=1

(ln χσ )bbbσ . (22)

where FFF is the deformation gradient and χσ and bbbσ are n distinct eigenvalues and
eigenprojections24, respectively, of the left Cauchy-Green tensor bbb25. Moreover, eee(0)

is an Eulerian strain of the family of the Seth-Hill-Doyle-Ericksen strains (m = 0)

eee(m) =
1

2m
(bbbm − III) . (23)

Hencky introduces the Lagrangian and the Eulerian descriptions and discusses in
this context the importance of time derivatives occurring in the relevant constitutive
laws. For the Lagrangian analysis these will be understood as material time deriva-
tives. In an Eulerian description, which he prefers for physical reasons, he notes that
the time derivatives must be independent of the respective rigid-body rotation - or
simply objective in today’s notation. In [18] he therefore replaces the specified time
derivative of the stress tensor by

σ̇σσ ⇒ ◦
σσσ = σ̇σσ +σσσwww−wwwσσσ . (24)

Herein, the spin tensor (vorticity) www has been introduced as skew-symmetrical part
of the velocity gradient lll

www =
1
2

(
lll − lllT) , ddd =

1
2

(
lll+ lllT) , lll = ḞFFFFF−1. (25)

Unfortunately, the original work by Hencky [18] contains a small error. Instead of
the above spin tensor he used an alternative definition, which differs by a minus
sign. Due to this deviation, however, his derivative (24) looses its objectivity26.

We immediately recognize the so-called Jaumann derivative, previously already
discussed in this context by M.S. Zaremba [60] and G. Jaumann [26].27

24 In numerous discussions Hencky is confronted with the difficulties of this measure for
problems of non-principal axes. He then always refers to a possible transformation into
principal axes. He also notes that this approach is quite common among technologists
(refer e.g. to P. Ludwik, [29]). Nevertheless, this measure does not prevail. Knowing the
today’s computational possibilities, however, we should overcome this position and always
use the logarithmic Hencky strain measure in the description of finite deformations.

25 In today’s notations.
26 This may explain why proposition (24) is criticized by Truesdell in [56; 57], refer also to

[53].
27 It is not delivered whether Hencky knew these works. Rather not, we suspect. Otherwise

he certainly would have quoted them. The today occasionally widespread habit, to quote
only the works of the own school, has come up later.
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But even this - from today’s perspective - important statement is ignored. Until
much later–after the end of World War II - these ideas are taken up again, e.g. by
Oldroyd, Hill, Rivlin, Truesdell, and others. W. Prager e.g. in a work of 1960 refers
to Jaumann: "Jaumann’s work does not seem to be well known: the definition ... is
frequently used in the recent literature without reference to Jaumann".

The perception that even in this accordingly corrected Prandtl-Reuss law still
errors can occur, is generally attributed to C.A. Truesdell. For purely elastic pro-
cesses, e.g. during unloading of a plastically deformed material, the constitutive law
formulated in rates of stresses and deformation (which not until later is denoted hy-
poelastic by Truesdell [57]) does not have the properties of an elastic body. This can
be shown easily if a circular process is calculated and thereby at the end an accu-
mulated dissipation is observed. But even this can already be read in the work of G.
Jaumann, who then denotes his rate material a material with fluxes (Fluxionen). He
states that the behavior of this rate material is indeed not elastic and only in the limit
of infinitesimal deformations changes to that of an elastic body. The full solution of
this ”defect” is given only in recent times by introducing the so-called logarithmic
rate [58] to replace the rate of stress in the Prandtl-Reuss law. This allows for an
exact integration of these rate equations to reflect elastic behavior [59].

Of course, one could ask where actually the contributions of materials science
and materials physics remain, because naturally plastic behavior results primarily
from gliding as a consequence of dislocation movement. In the 1920’s, Bridgman
had managed to produce single crystals. Subsequently, Taylor and Elam, Schmid
and Sachs conducted experiments on such mono-crystalline metals. Sachs (1928)
and later Taylor (1938) also have determined yield stresses for polycrystalline ma-
terial by averaging the values of single crystals. As a result of the works of Egon
Orowan, Michael Polanyi and Geoffrey Ingram Taylor, 1934 may be considered the
birth year of the dislocation theory. The fundamental work of Johannes Martinus
Burgers followed in 1939.

And there is also a work by v. Mises [33] on the yield behaviour of single crystals
and a work by Hencky from his time at MIT [20], which begins as follows: ”The
behavior of metals in the inelastic states cannot be explained by theories which do
not assume a microstructure.” These pioneering works contain a proposal for the
description of polycrystalline metals based on a statistical method.

In this first phase, however, such considerations had no further influence on the
development of the plasticity theory. Yet the numerical methods and the associated
high-performance computers were missing. The plasticity theory was a purely phe-
nomenological one and remained so until the 70’s and 80’s of the last century.

At the beginning, we stated that research in the theory of plasticity theory took
place primarily in German-speaking countries, which among other things can be de-
tected from the fact that the Journal of applied Mathematics and Mechanics ZaMM
was the leading journal of mechanics at the time. Certainly, the question comes to
our mind, how this situation has changed due to political changes in Germany. Con-
sider the year 1938: Most of the aforementioned persons were Jewish or simply of
Jewish descents and as such no longer safe in Germany. Von Mises, 1933 has emi-
grated to Turkey - although he initially as a highly decorated veteran of World War
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I and respected test pilot thought to be safe from reprisals. Via Istanbul, in 1939, he
then attended Harvard University, Cambridge.

Prager has studied at the TH in Darmstadt, made his PhD in 1926, and remained
there as lecturer (1927-1929). In 1929 he became lecturer in Göttingen, and then in
1932 – as at the time youngest professor in Germany – he went to Karlsruhe. 1933,
he also emigrated to Turkey as a professor of theoretical mechanics in Istanbul. In
1940, he left Istanbul for Brown University, Providence.

Hilda Geiringer was assistant to von Mises. In 1927, she habilitated in Berlin
where she was a lecturer - incidentally after a short marriage as a single child’s
mother. After Hitler came to power, however, she was dismissed and 1934 followed
von Mises to Turkey - with a small detour over Brussels - and later in the United
States, where in 1944 she became a professor at Wheaton College, Norton. At that
time Hencky was already in the Soviet Union and was close to his deportation.

The Hungarian Arpád Nádai (1883-1963) and Theodore v. Kármán (1881-1963)
both have studied first at the Technical University of Budapest. Nádai then went to
the Technical University of Berlin and received his PhD in 1911; in 1918 he went
to Göttingen to Prandtl and became a professor there. In 1927 he finally became
the successor of Stepan Timoshenko at Westinghouse, Philadelphia. Von Kármán
1906 went to Göttingen to Ludwig Prandtl and Felix Klein, habilitated there, and in
1913 became professor at the RWTH Aachen. He also should be dismissed from his
office, however, anticipating his release, 1934 he emigrated to the United States at
Caltech, Pasadena.

The third Hungarian was by the way András Reuss (1900-1968), but also Orowan
(1902-1989) and Polanyi (1891-1976) were Hungarian, who made their PhD in
Berlin and Karlsruhe. Reuss never had left his home country, Orowan and Polanyi
went in time via Birmingham at the MIT and to Manchester, respectively.

The hitherto fruitful research in the surrounding of the two nuclei Richard von
Mises and Ludwig Prandtl had so definitively lost some of its most important fig-
ures; on the horizon, World War II announced itself in the course of which large
parts of Europe and Asia should sink into wrack and ruin.
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