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Abstract. This work introduces the most efficient universal accumula-
tor known today. For the first time, we have an accumulator which does
not depend on hidden order groups, does not require any exponentia-
tions in the target group associated with the pairing function, and only
requires two pairings to verify a proof-of-knowledge of a witness.

We present implementations of our accumulator and another recent
proposal utilizing Groth-Sahai proofs, with performance results. Our im-
plementations are designed with cryptography agility in mind. We then
built a library for revoking anonymous credentials using any accumula-
tors, and integrated it with Microsoft U-Prove, which has a significant
contribution to an European Union’s privacy standardization effort. Our
work enables U-Prove revocation without compromising untraceability.

Keywords: dynamic universal accumulator, U-Prove, revocation,
blacklist, privacy enhancing technologies, efficiency, anonymity, account-
ability, authentication, pairing, implementation, cryptography agility.

1 Introduction

Accumulator. A cryptographic accumulator allows aggregation of a large set
of elements into one constant-size accumulator value, and proving about whether
an element has been accumulated. Via the proof system, a prover with a witness
can convince a verifier about the truth of a statement, but any adversary cannot
convince a verifier about a false statement. The basic proof is about membership
statement, for proving that an element has been accumulated. An accumulator
is said to be universal if it has another proof system, called non-membership, to
prove that a given element is not accumulated. Moreover, if the costs of updating
the accumulator or witnesses, when elements are added to or deleted from the
accumulator, do not depend on the number of elements aggregated, we say it
is dynamic. Two universal dynamic accumulators have been proposed so far.
One is based on the Strong RSA assumption in hidden order groups [16], which
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is derived from a basic (non-universal) accumulator proposed [8]. The other
is based on the Strong Diffie-Hellman assumption in prime-order groups with
bilinear map (or pairing) [3] which is derived from a pairing-based non-universal
accumulator proposed [19]. There is another pairing-based dynamic accumulator
[7]; however, it is not universal.

Applications. Accumulators have been used in various applications for dif-
ferent purposes. Two of its major benefits include minimizing the bandwidth
requirement and protecting privacy. With the proliferation of mobile devices,
bandwidth requirement is becoming more crucial. On the other hand, privacy
is a growing concern in various different sectors such as healthcare, military,
intelligence, and mobile devices industry. The emergence of cloud computing also
leads to a different balance between trust and anonymity in identity manage-
ment. Some applications of accumulators include space-efficient time-stamping
[4], electronic voting [10], and many privacy-preserving authentication mecha-
nisms which include ad-hoc anonymous authentication [12], (ID-based) ring sig-
natures [12,19,11], dynamic k-times anonymous authentication [2], and
anonymous credentials which are revokable [8,7].

Anonymous Credentials. Using anonymous credentials a user can prove
the possession of some credentials without revealing any other private informa-
tion such as her identity. Applications include direct anonymous attestation [6],
anonymous electronic identity token [9,17], and implementations such as U-Prove
[17], Idemix [9] and in Java cards [5]. In practice, revocation is indispensable in
credential systems, as dispute, compromise, mistake, identity change, hacking
and insecurity could make any credential become invalid before its expiration,
especially when they are carried around by mobile devices.

Revocation. Revoking credentials is a notorious issue in cryptography, not
to say anonymous credentials. Consider public key infrastructure, there is a cer-
tificate revocation list which consists of invalid certificates, and is time-stamped
and signed by a certificate authority. Checking if a certificate is revoked requires
searching for the certificate’s identity in the entire list. For anonymous credential,
it is even trickier. In particular, the anonymity and the run-time requirements
of honest users should not be affected by revocation of other credentials.

Our contribution. The major contribution of this work is our efficiency im-
provement of (non-)membership proofs associated with an accumulator, which
brings benefits to many existing applications utilizing accumulator. Our effi-
ciency gain comes from a new design which only requires proving equations in
a base group G1 associated with the curves featuring the pairing function, in-
stead of the standard approach in the literature which proves about some pairing
equations. As a result, not only the number of pairing operations is greatly re-
duced, there are also no exponentiation or other operations in the target group
GT (nor in the other base group G2), which are often inefficient when compared
with the operations in G1. (Exponentiation in GT could be 4 or 5 times more
expensive than that in G1, and exponentiation in G2 could still be 1.5 to 2
times more expensive.) In particular, our proof systems require less exponentia-
tions and pairings compared to previous pairing-based schemes [19,3] which use
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symmetric pairings. It is especially suitable for Barreto-Naehrig pairing curves
(BN curves) [14], arguably one of the most efficient pairing-friendly curves, where
G1’s operations are also very efficient.

2 U-Prove with Revocation Using Our New Accumulator

In this section, we show how to use the non-membership proof of our accumulator
to blacklist U-Prove tokens. It will be embedded in the U-Prove presentation
protocol as detailed in U-Prove Crypto Specification V1.1 (‘Spec’) [17]. Due to
the lack of spaces, this part is a sketch and should be read in conjunction with the
Spec [17]. The text “[For Revocation]” highlights the additions of revocation
parts to the existing U-Prove protocols.

2.1 Entities

In the original U-Prove Spec, there are Issuer, Prover and Verifier. Issuer issues
each Prover U-Prove tokens that contain Issuer’s certification of the Prover’s
attributes. A Prover can prove some of her attributes to a Verifier in a U-Prove
token presentation protocol. Besides these three entities as in Spec, we introduce
Blacklist Authority (BA), who could be the same as or independent from Issuer.
There could be several BAs and several blacklists. Apart from proving Prover’s
attributes, our new token presentation protocol can also prove that the token is
not in any of the blacklists, with full anonymity.

2.2 System Parameters

The generation of the system parameters follows closely as the original Spec,
except that the system parameters for the accumulator will also be included.

Issuer Parameters: Define

IP := (UIDP, desc(Gq), UIDH, (g0, g1, . . . , gn, gt) , (e1, . . . , en) , S))

where UIDH is an application-specific unique identifier for Issuer parameters and
UIDH is an identifier of a cryptographically secure hash algorithm.

[For Revocation] Accumulator Parameters: Define

param := (q,G1,G2,GT , e, P1, P2, Ppub, H,K,G1)

where Ppub := P2
δ, K := Hδ for a random δ ∈ Zq and G1, H ∈ G1, P2 ∈ G2.

1. One may include vector t := (P1
δ, P1

δ2 , . . . , P1
δk) for the users to compute

their own witness (to be described). We can have a constant-size public-key
(without the vector t) when the BA computes the witness for each user using
the auxiliary secret value δ.

2. The order of the bilinear groups where e : G1 × G2 → GT should all have
the same prime order q, i.e., the accumulator should be instantiated with
the same prime number q used in Issuer’s parameter.
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2.3 Issuing U-Prove Token

The protocol for Issuer to issue U-Prove tokens to Provers is the same as in
the original Spec, except that there is a designated attribute xid in the U-Prove
token for revocation purpose.

Generating U-Prove Token: A U-Prove token has the same form as in Spec:

(UIDP, h, T I, PI, σ′
z, σ′

c, σ′
r)

where

– The public key h, with a number of attributes xt, x1, . . . , xn embedded, is
h = (g0g1

x1 . . . gid
xid . . . gn

xngt
xt)

α
(mod q).

– The private key is α−1 ∈ Z∗
q .

– TI/PI are token/prover information field respectively.
– A valid signature from an issuer is given in the form of (σ′

z , σ′
c, σ′

r).

2.4 Blacklist

A blacklist is published and managed by a BA. Note that BA has the auxiliary
information to efficiently compute the accumulator values. For example, on day
1, three elements xid1 , xid2 , xid3 can be accumulated in V1; then, on day 2, xid2

can be deleted, and xid4 can be added, which results in an updated V2.

[For Revocation] Maintaining Revocation List: BA decides an attribute
xid for revocation. We can have some options here: xid could uniquely identify a
token, a user or an organization. Suppose there are m revocations, BA publishes
the list of {xidi}, and accumulates them by

V := P1

∏m
i=1 (δ+xidi

).

2.5 Presenting U-Prove Tokens

The difference from the basic presentation protocol of a valid U-Prove token
is that, now a Prover also needs to prove the knowledge of xid, which is the
attribute used for revocation, is not accumulated in BA’s blacklist.

Input:

1. Ordered indices of disclosed attributes: D ⊂ {1, . . . , n}
2. Ordered indices of undisclosed attributes: U = {1, . . . , n} \D
3. U-Prove token: T = (UIDP, h, T I, PI, σ′

z, σ′
c, σ′

r)
4. Messages: m ∈ {0, 1}∗
5. Private key: α−1 ∈ Zq

6. Attribute values: (A1, · · · , An) ∈ ({0, 1}∗)n
7. [For Revocation] The current accumulator value: V
8. [For Revocation] The updated witness: (W,Q, d) where

– d =
∏m

i=1 (δ + xidi) (mod (δ + xid)) ∈ Zq,
which can be computed without knowing δ by simple polynomial division
of

∏
(z + xidi) by (z + xid), and is non-zero since xid /∈ {xidi}.
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– W = P1
(
∏m

i=1 (δ+xidi
)−d)/(δ+xid)

which is computable by using vector t in param.
– Q = VW−xidP1

−d.

Proof Generation

1. [For Revocation] Prepare for the commitment part of the proof that the
credential is not revoked:

Randomly pick x, u, t1, t2, t3, rx, ru, rt1 , rt2 , rt3 , rβ1 , rβ2 , rβ3 , rd, rd′ ∈ Zq. Set:

X := WHt1 , Y := QKt1 , C := G1
xHu, A := G1

rxHu

R := G1
t1Ht2 , S := G1

d′
Ht3 , Γ := X−rxHrβ1Krt1P1

−rd ,
T1 := G1

rt1Hrt2 , T2 := G1
rβ1Hrβ2R−rx , T3 := G1

rd′Hrt3 , T4 := Hrβ3S−rd .

2. [For Revocation] (In the original Spec, a := H(hw0(
∏

i∈U gwi

i ))).
Compute a := H(hw0(

∏
i∈U gwi

i ), H(X,Y,R, S, T1, T2, T3, T4, Γ, param)).
3. c := GenerateChallenge(IP, T , a,m,∅, D, {xi}i∈D) ∈ Zq.
4. [For Revocation] Prepare for the response part for the proof that the

credential is not revoked, by computing the following:

β1 := t1xid, β2 := t2xid, β3 := t3d, d′ := d−1

su := −cu+ ru, sx := −cx+ rx, sd := −cd+ rd, sd′ := −cd′ + rd′

st1 := −ct1 + rt1 , st2 := −ct2 + rt2 , st3 := −ct3 + rt2 ,
sβ1 := −cβ1 + rβ1 , sβ2 := −cβ2 + rβ2 , sβ3 := −cβ3 + rβ3 .

5. xt := ComputeXt(IP, T I) ∈ Zq.
6. For each i ∈ {1, . . . , n} , xi := ComputeXi(IP,Ai) ∈ Zq.
7. Generate w0 at random from Zq, set r0 := cα−1 + w0 (mod q).
8. For each i ∈ U , generatewi at random from Zq, set ri := −cxi+wi (mod q).
9. Return the U-proven token proof

(
{Ai}i∈D, a, r0, {ri}i∈U

)
.

10. [For Revocation] Also return the non-revoked proof:

(c, su, sx, sd, sd′ , st1 , st2 , st3 , sβ1 , sβ2 , sβ3 , C,X, Y,R, S) .

Proof Verification

1. Execute VerifyTokenSignature(IP, T ) which verifies (σ′
z, σ′

c, σ′
r).

2. xt := ComputeXt(IP, T I).
3. For each i ∈ D, xi := ComputeXi(IP,Ai).
4. Set c := GenerateChallenge(IP, T , a,m,∅, D, {xi}i∈D).
5. [For Revocation] Execute the following steps for non-membership proof

verification:

T̃1 := G1
st1Hst2Rc, T̃2 := G1

sβ1Hsβ2R−sx ,

T̃3 := G1
sd′Hst3Sc, T̃4 := G1

−cHsβ3S−sd ,

Ã := G1
sxHsuCc, Γ̃ := X−sxHsβ1Kst1P1

−sd(V
−1

Y )
c
.

Verify if e (Y, P2)
?
= e(X,Ppub), and if
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a = H((g0g
xt
t

∏

i∈D

gxi

i )
−c

hr0(
∏

i∈U

grii ),H(X,Y,R, S, T1, T2, T3, T4, Γ, param)).

3 Crypto-Agile Software Design

The design of our accumulator-and-applications system is illustrated in Figure
1. There is one common application program interface (API) for all accumu-
lators, providing the interface for the operations. Two accumulators, the new
one in this paper (based on Fiat-Shamir transformation [13], denoted as ACN)
and the existing one (based on Groth-Sahai proof [15], denoted as AccuGS) [1],
have been implemented according to the API. They are the first implementation
of universal accumulators, and AccuGS provides the only solution for revoking
delegatable anonymous credentials not relying on random oracles.

Fig. 1. Our Software Design

The API could be used to develop accumulator’s applications. One such appli-
cation is for revoking anonymous credentials. We further implement a revocation
API. A blacklist authority could use it to create a blacklist and accumulate re-
voked anonymous credentials, and an user could prove that a credential is not
accumulated in a blacklist. Several anonymous credential systems based on prime
order could use this revocation. We have used it for U-Prove.

This design supports crypto-agility. With a common accumulator API, it is
easy to add other accumulators’ implementations based on different assumptions,
to replace an existing implementation with a more efficient or safer one, and to
switch among them with minimum code refactoring. With a single revocation
API and a single accumulator API, we just need a single implementation of
“Revocation using Accumulators”. This reduces redundancy and allows us to
have a painless changes from, say, AccuGS to ACN.

The system is developed in C++ and built into 3 dynamic link libraries (dll)
in Windows. The first, accumulator.dll, implements ACN and AccuGS. The
second, RAC.dll, utilizes the first library for revoking anonymous credentials.
The third, UProveRAC.dll, uses the second library to integrate revocation into
U-Prove. UProveRAC.dll consists of all existing UProve API and additional
API functions with revocation capability. The new UProveRAC functions allow
generating revocation parameters and keys, computing and updating witnesses,
and proving and verifying that U-Prove tokens are not revoked.
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Table 1. Performance of ACN, ATSM, and AccuGS

(a) Operation counts: (E1, E
′
1, and

ET denote exponentiations in G1, G
′
1,

and GT resp.; x(+y): x pairings, an-
other y of them can be pre-computed)

Algorithms ACN ATSM

E1 e(·, ·) E′
1 Et e(·, ·)

NMPrf() 21 0 19 4 2 (+4)

NMVfy() 20 2 19 5 2 (+4)

MemPrf() 14 0 13 3 2 (+3)

MemVfy() 13 2 13 4 2 (+3)

(b) Running time (“Update wit-
ness” here is for adding 40 and re-
moving 5 elements, i.e., a total of
45 unit updates.)

Operations ACN AccuGS

Update witness 77.102 78.980

NMPrf() 11.882 30.609

NMVfy() 18.714 102.978

MemPrf() 24.148 117.897

MemVfy() 80.635 587.164

4 Performance

For a fair comparison, we compare the performances of ACN and the only previ-
ous universal accumulator ATSM [3], which derived the membership proof from
Nguyen’s [19] and introduced a new NM proof. We only compare the proof sys-
tems, as other algorithms are very similar. Both the proofs of ACN and ATSM
can be made interactive and do not rely on the random oracle heuristics, or can
be converted into non-interactive version via Fiat-Shamir heuristics [13] which
relies on the random oracle. ATSM only uses symmetric pairing G

′
1 ×G

′
1 → G

′
T ,

whereas ACN works for both symmetric and asymmetric settings G1×G2 → GT .
So ACN could use much more efficient asymmetric pairing groups, such as BN
curves [14]. Indeed, as discussed, operations in G1 are much more efficient than
corresponding operations inG′

1 andG′
T . ACN is especially suitable for BN curves,

which features not only one of the most efficient pairing operations, but also very
efficient exponentiation in G1. Even if we do not perform pre-computation for
some pairings, ACN is still significantly more efficient than ATSM. Table 1a com-
pares the numbers of exponentiations and pairings between these proof systems.

Table 1b shows the performance (in milliseconds) of the major functions in
ACN and AccuGS [1], running on a modest machine — Intel Core2 2.4 GHz
with 4 GB RAM, 64-bit Win7, using 254-bit BN curves. Again, the underlying
accumulators are the same so we focus on witness operations. Accumulating 40
elements take 3.5 ms, and updating accumulator with 1 element takes 1.71 ms.
Finally, it takes 36.055ms to generate a U-Prove proof and 73.817ms to verify
it. Those numbers never depend on the blacklist’s size.
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