
Ahmad-Reza Sadeghi (Ed.)

 123

LN
CS

 7
85

9

17th International Conference, FC 2013
Okinawa, Japan, April 2013
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 7859
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ahmad-Reza Sadeghi (Ed.)

Financial Cryptography
and Data Security

17th International Conference, FC 2013
Okinawa, Japan, April 1-5, 2013
Revised Selected Papers

13

Volume Editor

Ahmad-Reza Sadeghi
Technische Universität Darmstadt/CASED
Mornewegstraße 30
64293 Darmstadt, Germany
E-mail: ahmad.sadeghi@trust.cased.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39883-4 e-ISBN 978-3-642-39884-1
DOI 10.1007/978-3-642-39884-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943690

CR Subject Classification (1998): E.3, K.6.5, K.4.4, C.3, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the of the 17th International Conference
on Financial Cryptography and Data Security (FC), held at Bankoku Shinryokan
Busena Terrace Beach Resort in Okinawa, Japan, during April 1–5, 2013. For
more than 17 years, FC has been the primary forum where international experts
from academia, industry, and government present, debate, discuss, and advance
the security and privacy aspects of commercial and financial systems. In the
past, many successful companies have presented their very early ideas at FC.

This year, we assembled a diverse program of 14 regular papers and 17 short
papers, selected by the Program Committee from the 125 submissions by authors
from 32 countries, resulting in an acceptance rate of 12.5% for regular papers.
All submissions received at least three reviews from the 49 Program Commit-
tee members chosen by the Program Chair or the 70 external reviewers. The
conference was opened with a keynote by William Saito, founder of InTecur,
council member on national strategy and policy for the National Policy Unit,
and Chief Technology Officer of the Fukushima Nuclear Accident Independent
Investigation Commission (NAIIC). In his talk “Can Nature Help Us Solve Risk
Management Issues?” he presented intriguing insights into what we can learn
from nature and evolution to protect IT systems. The second keynote was given
by N. Asokan, Distinguished Researcher, formerly at the Nokia Research Center
and now professor at the University of Helsinki. His exciting talk “The Untapped
Potential of Trusted Execution Environments on Mobile Devices” showed the
rich potential of security hardware (trusted execution environments) in mobile
phones and the next-generation of mobile technology. The panel discussion was
on “The State of the Art in e-Banking Security and Usability.” In the co-located
workshops on usable security and homomorphic encryption, a variety of new
approaches and studies were presented and discussed.

The highlights of this year’s conference were timely topics such as Bitcoin,
which is a recently proposed virtual currency concept allowing P2P transactions,
and the current and the next-generation of e-banking systems as well as usable
security and privacy. A hot topic of several talks concerned the analysis of various
aspects of Bitcoin, which seems to have become very popular and is the most
successful electronic payment system to date with more than 300 million USD
in electronic coins. Bitcoins continue to be purchased and their value is rapidly
growing.

I thank the General Chair Kazue Sako from NEC, Japan, for her dedicated
work and the excellent local organization of the conference, all the authors for
the numerous submissions, and all the Program Committee members and the
external reviewers for contributing their expertise to the selection of the papers
for the program. Without their service and contribution, setting up such a con-
ference would have been impossible. Further, I would like to acknowledge the

VI Preface

members of the International Financial Cryptography Association (IFCA) board
of directors for their continuous effort. Finally, I thank all sponsors (NEC, ONR
Global, AIST, IPA, NICT, Google and WorldPay) for supporting the conference.

May 2013 Ahmad-Reza Sadeghi

Organization

Program Committee

Alessandro Acquisti Carnegie Mellon University, USA
Ross Anderson Cambridge University, UK
Rainer Boehme University of Münster, Germany
Jens Bohli NEC Laboritories Europe, Germany
Colin Boyd Queensland University of Technology, Australia
Liqun Chen Hewlett-Packard Laboratories, UK
Sherman Chow New York University, USA
Nicolas Christin Carnegie Mellon University, USA
Reza Curtmola New Jersey Institute of Technology, USA
George Danezis Microsoft Research Cambridge, UK
Emiliano De Cristofaro PARC, USA
Loic Duflot French Central Directorate for Information

Systems Security, France
William Enck North Carolina State University, USA
Bao Feng Institute for Infocomm Research, Singapore
Jens Grossklags Penn State University, USA
Xuxian Jiang North Carolina State University, USA
Ari Juels RSA Laboratories, USA
Stefan Katzenbeisser TU Darmstadt, Germany
Angelos Keromytis Columbia University, USA
Florian Kerschbaum SAP Research, Germany
Aggelos Kiayias University of Connecticut, USA
Yuichi Komano Toshiba Corporation, Japan
Kari Kostiainen ETH Zrich, Switzerland
Farinaz Koushanfar Rice University, USA
Xuejia Lai Shanghai Jiaotong University, China
Jiangtao Li Intel Corporation, USA
Benoit Libert Universite Catholique de Louvain, Belgium
Di Ma University of Michigan-Dearborn, USA
Mark Manulis University of Surrey, UK
Kanta Matsuura University of Tokyo, Japan
Atsuko Miyaji Japan Advanced Institute of Science and

Technology, Japan
Refik Molva EURECOM, France
Toru Nakanishi Okayama University, Japan
Satoshi Obana Hosei University, Japan
Claudio Orlandi Bar-Ilan University, Israel
Josef Pieprzyk Macquarie University, Australia

VIII Organization

Benny Pinkas University of Haifa, Israel
Bart Preneel Katholieke Universiteit Leuven (COSIC),

Belgium
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Thomas Schneider TU Darmstadt, Germany
Jamshid Shokrollahi Robert Bosch GmbH, Germany
Matthew Smith Leibniz Universität Hannover, Germany
Keiji Takeda Keio University, Japan
Isamu Teranishi NEC Corporation, Japan
Patrick Traynor Georgia Institute of Technology, USA
Ersin Uzun PARC, USA
Michael Wiener Irdeto Canada, Canada
Akira Yamada KDDI R&D Labs, Japan

Additional Reviewers

Amrutkar, Chaitrali
Androulaki, Elli
Argyros, George
Asghar, Hassan
Athanasopoulos, Elias
Azraoui, Monir
Bangerter, Endre
Boggs, Nathaniel
Breuker, Dominic
Carter, Henry
Choi, Seung Geol
Chow, Richard
Chow, Sherman
Chu, Cheng-Kang
Davi, Luca
De Cristofaro, Emiliano
Diaz, Jesus
Ding, Yi
Dmitrienko, Alexandra
Duplys, Paul
Elkhiyaoui, Kaoutar
Emura, Keita
Faber, Sky
Fischlin, Marc
Furukawa, Jun
Griffin, Robert
Hang, Isabelle
Hayashi, Ryotaro

Hazay, Carmit
Huang, Yun
Jawurek, Marek
Johnson, Benjamin
Katzenbeisser, Stefan
Kemerlis, Vasileios P.
Kontaxis, Georgios
Laguillaumie, Fabien
Leontiadis, Iraklis
Li, Xiangxue
Luhn, Sebastian
Manabe, Yoshifumi
Matsuda, Takahiro
Nikova, Svetla
Nochenson, Alan
Omote, Kazumasa
Önen, Melek
Papamanthou, Charalampos
Pashalidis, Andreas
Peeters, Roel
Perl, Henning
Peters, Thomas
Polychronakis, Michalis
Portokalidis, Georgios
Reaves, Brad
Rudolph, Larry
Samari, Katerina
Schroepfer, Axel

Organization IX

Seonghan, Shin
Sepehrdad, Pouyan
Seuken, Sven
Seurin, Yannick
Shao, Jun
Smith, Matthew
Suzuki, Kotaro
Tang, Qiang

Tselekounis, Yiannis
Wu, Yongdong
Xu, Hong
Yavuz, Attila Altay
Yoneyama, Kazuki
Yuen, Tsz Hon
Zhang, Haibin
Zohner, Michael

Table of Contents

Keynote

Can Nature Help Us Solve Risk Management Issues? Position Paper 1
William H. Saito

Electronic Payment (Bitcoin)

Quantitative Analysis of the Full Bitcoin Transaction Graph 6
Dorit Ron and Adi Shamir

Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk
(Short Paper) . 25

Tyler Moore and Nicolas Christin

Evaluating User Privacy in Bitcoin . 34
Elli Androulaki, Ghassan O. Karame, Marc Roeschlin,
Tobias Scherer, and Srdjan Capkun

Usability Aspects

The Importance of Being Earnest [In Security Warnings]
(Short Paper) . 52

Serge Egelman and Stuart Schechter

Exploring Extrinsic Motivation for Better Security: A Usability Study
of Scoring-Enhanced Device Pairing (Short Paper) 60

Alexander Gallego, Nitesh Saxena, and Jonathan Voris

RelationGram: Tie-Strength Visualization for User-Controlled Online
Identity Authentication (Short Paper) . 69

Tiffany Hyun-Jin Kim, Akira Yamada, Virgil Gligor,
Jason Hong, and Adrian Perrig

Secure Computation

Practical Fully Simulatable Oblivious Transfer with Sublinear
Communication . 78

Bingsheng Zhang, Helger Lipmaa, Cong Wang, and Kui Ren

Unconditionally-Secure Robust Secret Sharing with Minimum Share
Size . 96

Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini

XII Table of Contents

A Scalable Scheme for Privacy-Preserving Aggregation of Time-Series
Data . 111

Marc Joye and Benôıt Libert

Passwords

“Give Me Letters 2, 3 and 6!”: Partial Password Implementations and
Attacks . 126

David Aspinall and Mike Just

Hey, You, Get Off of My Clipboard: On How Usability Trumps Security
in Android Password Managers . 144

Sascha Fahl, Marian Harbach, Marten Oltrogge,
Thomas Muders, and Matthew Smith

Privacy Primitives and Non-repudiation

Unique Ring Signatures: A Practical Construction (Short Paper) 162
Matthew Franklin and Haibin Zhang

Aggregating CL-Signatures Revisited: Extended Functionality and
Better Efficiency . 171

Kwangsu Lee, Dong Hoon Lee, and Moti Yung

Accumulators and U-Prove Revocation (Short Paper) 189
Tolga Acar, Sherman S.M. Chow, and Lan Nguyen

Anonymity

Towards a Publicly-Verifiable Mix-Net Providing Everlasting Privacy
(Short Paper) . 197

Johannes Buchmann, Denise Demirel, and Jeroen van de Graaf

P4R: Privacy-Preserving Pre-Payments with Refunds for Transportation
Systems (Short Paper) . 205

Andy Rupp, Gesine Hinterwälder, Foteini Baldimtsi, and
Christof Paar

Hardware Security

Coupon Collector’s Problem for Fault Analysis against AES – High
Tolerance for Noisy Fault Injections (Short Paper) 213

Yu Sasaki, Yang Li, Hikaru Sakamoto, and Kazuo Sakiyama

Table of Contents XIII

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting:
A Feasibility Study (Short Paper) . 221

Jonas Maebe, Ronald De Keulenaer, Bjorn De Sutter, and
Koen De Bosschere

On the Need of Physical Security for Small Embedded Devices:
A Case Study with COMP128-1 Implementations in SIM Cards
(Short Paper) . 230

Yuanyuan Zhou, Yu Yu, François-Xavier Standaert, and
Jean-Jacques Quisquater

Secure Computation and Secret Sharing

Securely Solving Simple Combinatorial Graph Problems 239
Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet,
Olivier Pereira, and Mathieu Van Vyve

Parallel and Dynamic Searchable Symmetric Encryption 258
Seny Kamara and Charalampos Papamanthou

GMW vs. Yao? Efficient Secure Two-Party Computation with Low
Depth Circuits . 275

Thomas Schneider and Michael Zohner

Invited Talk

The Untapped Potential of Trusted Execution Environments on Mobile
Devices: Extended Abstract . 293

N. Asokan, Jan-Erik Ekberg, and Kari Kostiainen

Authentication Attacks and Countermeasures

Stark: Tamperproof Authentication to Resist Keylogging 295
Tilo Müller, Hans Spath, Richard Mäckl, and Felix C. Freiling

Risks of Offline Verify PIN on Contactless Cards (Short Paper) 313
Martin Emms, Budi Arief, Nicholas Little, and Aad van Moorsel

How to Attack Two-Factor Authentication Internet Banking
(Short Paper) . 322

Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis Karaolis

CAge: Taming Certificate Authorities by Inferring Restricted Scopes
(Short Paper) . 329

James Kasten, Eric Wustrow, and J. Alex Halderman

XIV Table of Contents

Privacy of Data and Communciation

Interdependent Privacy: Let Me Share Your Data . 338
Gergely Biczók and Pern Hui Chia

A Secure Submission System for Online Whistleblowing Platforms
(Short Paper) . 354

Volker Roth, Benjamin Güldenring, Eleanor Rieffel,
Sven Dietrich, and Lars Ries

Securing Anonymous Communication Channels under the Selective
DoS Attack (Short Paper) . 362

Anupam Das and Nikita Borisov

Private Data Retrieval

PIRMAP: Efficient Private Information Retrieval for MapReduce 371
Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan

Avoiding Theoretical Optimality to Efficiently and Privately Retrieve
Security Updates (Short Paper) . 386

Justin Cappos

Posters

Three-Factor User Authentication Method Using Biometrics Challenge
Response . 395

Haruhiko Fujii and Yukio Tsuruoka

Synthetic Logs Generator for Fraud Detection in Mobile Transfer
Services . 397

Chrystel Gaber, B. Hemery, Mohammed Achemlal, M. Pasquet, and
P. Urien

Onions for Sale: Putting Privacy on the Market . 399
Aaron Johnson, Rob Jansen, and Paul Syverson

Searchable Encryption Supporting General Boolean Expression
Queries . 401

Tarik Moataz and Abdullatif Shikfa

Table of Contents XV

A Privacy Preserving E-Payment Architecture . 402
Aude Plateaux, Vincent Coquet, Sylvain Vernois, Patrick Lacharme,
Kumar Murty, and Christophe Rosenberger

Communication Services Empowered with a Classical Chaos Based
Cryptosystem . 403

Gerard Vidal and Mikel Hernaez

Author Index . 405

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 1–5, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Can Nature Help Us Solve Risk Management Issues?

William H. Saito

William@saitohome.com

Abstract. As a member of the commission that investigated the Fukushima (Ja-
pan) nuclear disaster and studying other catastrophes over the past century, it
was discovered that all were man made and preventable; all resulted from a lack
of understanding of risk and/or a refusal to accept numerous warnings and risk
assessments. The lessons of Fukushima show clearly that true security planning
is not a quest for absolutes (100 percent reliability), but a flexible response to
the inevitability of system failures. One of the best approaches to understanding
and modeling IT security is to begin with a deep understanding of biological
processes in Nature. Because many contemporary security problems have ana-
logues in the natural world, effective solutions to these problems may already
exist. By ignoring them we are trying to reinvent the wheel.

Keywords: Nature, Risk, Resilience, Evolution, Biology, Systems, Fukushima.

A long time ago, towards the end of the 20th century, the software company that I
founded in California developed its own suite of security applications and solutions,
so it was only natural for us to study all the commercially available security tools on
the market. Soon we were digging deeper into the science behind authentication, en-
cryption and more. As our business grew, we developed a set of biometric interface
standards that Microsoft ultimately adopted as part of the Windows operating system.
Along this journey my interest in and knowledge about information security dee-
pened, and I found myself advising both public- and private-sector organizations. But
it was only a few years ago that I sat down and began writing about encryption, au-
thentication, digital signatures and fairly technical aspects of cryptography as well as
other esoteric aspects of security.

Then came 3.11. No, not 9.11, but March 11, 2011, the day a massive earthquake
and tsunami ripped across the northeastern coast of Japan. It was only then that the
life-and-death importance of risk management and its profound implications for all
types of security became apparent. Terrible as the natural devastation was, the tsuna-
mi precipitated an even more terrifying event, leading to the near-destruction of the
Fukushima Dai-ichi Nuclear Power Plant.

Later that year, I was appointed the Chief Technology Officer for the Fukushima
Nuclear Accident Independent Investigation Commission1, an ad hoc body reporting
to the national legislature (it was, in fact, the first independent investigation ever
commissioned by the National Diet of Japan). That position provided a unique oppor-
tunity to examine this catastrophe in detail and to see its multiple causes. Looking at

1 For more information about the disaster, its causes and consequences, see The National Diet

of Japan – Fukushima Nuclear Accident Investigation Commission (NAIIC) home page:
http://naiic.go.jp/

2 W.H. Saito

the long chain of errors and misjudgments that led up to Fukushima naturally brought
my thinking around to the idea of security and risk management. How could the risks
not have been more widely foreseen? How could the management of that risk have
been so inept? What steps were taken after the accident to limit risk and what steps
were put in place subsequently to prevent a similar situation from occurring?

One of my tasks as CTO was to develop a secure IT system that would allow the
members of the new Commission to share and store information, ideas, notes and
comments freely and flexibly without the danger of outsiders gaining access to those
private discussions. How could over a hundred participants from various regions of
Japan, and with widely varying levels of computing proficiency, securely conduct a
sensitive investigation without accidentally or intentionally leaking information by,
say, losing a personal computer or being subject to a hacker attack? Thankfully, be-
cause the IT system was designed from the ground up with security planning as a
primary directive, the Commission was able to conduct its work over a period of
months and publish its findings without any information being manipulated, destroyed
or leaked.

When the post-3.11 world finally began to settle down, my perspective had
changed and I now viewed the whole field of IT security through the broader lens of
risk management. I had never liked talking about security from a purely technical
perspective, which by definition misses the big picture, and after 3.11 my feelings
grew even stronger. My experiences studying the Fukushima disaster and managing
security for the Commission further reinforced my belief that “doing IT security”
simply by designing sophisticated new authentication systems or cryptography algo-
rithms was not the right approach. It misses the critical component of risk manage-
ment. As the old adage says, security is only as strong as the weakest link in the
chain. Real security, and not only in the world of IT, lies in maximizing your field of
view, expanding your thinking, for example, by canvassing the natural world for use-
ful examples, and even expanding your imagination to encompass what has never yet
existed.

The catalyst for my change in perspective began a month before the start of the
commission. Not being a nuclear safety or risk management expert, I took it upon
myself to study all the historically significant disasters. Thus, I spent most of my yea-
rend holiday reading over 4,000 pages of reports on disasters as varied as the Titanic,
Challenger, Three Mile Island, Chernobyl, Concord, BP, Katrina and many others.
What I realized was that all these catastrophes had one major factor in common: they
were all preventable. That is, in each case the relevant engineers saw the potential for
problems and warned their superiors, but in each case senior managers dismissed
those warnings, often due to a kind of hubris I call the “It can’t happen here” syn-
drome. More importantly, they did not comprehend the risks.

The Fukushima disaster was no different; in fact, it was totally preventable. Warn-
ings had been issued for years, warnings that would have been red flags to any risk
management officer, but those warnings were ignored. The Commission said as much

 Can Nature Help Us Solve Risk Management Issues? 3

in their conclusion: “What must be admitted — very painfully — is that this was a
disaster ‘Made in Japan’... Its fundamental causes are to be found in the ingrained
conventions of Japanese culture: our reflexive obedience; our reluctance to question
authority; our devotion to ‘sticking with the program’; our groupism; and our insulari-
ty.”2 They might also have echoed Dr. Richard Feynman, who concluded his adden-
dum to the official report on the Challenger disaster with these famous words: “For a
successful technology, reality must take precedence over public relations, for nature
cannot be fooled.”3

In the end, to do any kind of security, we must take to heart the a priori precepts of
risk management: a) people make mistakes, b) machines eventually break and c) acci-
dents inevitably happen. True risk management is not a quest for absolutes (100%
fail-proof operation over the life of a system), but a practice in resilience, in predicat-
ing one’s thinking on the assumption that all systems will sooner or later fail in some
way. If that is your starting assumption, then real “security” becomes a challenge in
how best to recover from all types of accidents, break-downs and system failures,
both foreseeable and as yet unimagined.

We Are All Risk Management Creatures

The most important thing to understand about “security” and risk management in
general is that these are not new additions to human thinking, but an intrinsic part of
our oldest, most basic brain structures. In fact, the most fundamental security systems
are “built in” – they’re literally part of our DNA. Nor are we unique in this aspect;
Nature has risk management in its genes. Which means we don’t “learn” security-type
thinking — we adapt, develop and (occasionally) improve on aspects of our natural
heritage. This is what Einstein was getting at when he said, “Look deep into Nature,
and then you will understand everything better.”

We are all risk management creatures. When we wake up in the morning, without
even thinking about it, we smell the air and listen for certain sounds. If we’re at home
and there’s no perceived threat, we will naturally be less attentive to our surroundings
than if we awoke, say, in an unfamiliar hotel room. Yet even in the comfortable,
“risk-free” environment of our own homes, we’re still safety-checking constantly,
from instinctively scanning the stairs for objects that don’t belong there to smelling
the milk before it goes in our coffee. Getting in the shower, getting dressed, sipping
that hot coffee, eating breakfast, watching the weather report — by the time we go out
the door in the morning we have done a hundred routine risk management checks.
Most of them require little or no conscious attention. We’d say they’re habits, but
that’s not entirely correct; they’ve become habits precisely because the fundamental
templates were biologically coded. We do these things instinctively because we
are security-oriented, risk-management animals to begin with. All larger, more

2 http://warp.da.ndl.go.jp/info:ndljp/pid/3856371/naiic.go.jp/wp
-content/uploads/2012/09/NAIIC_report_lo_res10.pdf

3 Feynman, R.P., “Personal observations on the reliability of the Shuttle”; Report of the
Presidential Commission on the Space Shuttle Challenger Accident, Appendix F (1986).

4 W.H. Saito

sophisticated approaches to controlling risk are variations on or amplifications of
Nature’s basic instincts of self-preservation. Humans, like all biological creatures,
cannot eliminate risk; but by instinctively performing many small risk-mitigating
actions, we usually manage to avoid the more serious negative outcomes, like dying.

First, Look to Nature

It is this background that causes me to take a step back when I hear discussions of the
newest security technologies. “Why re-invent the wheel?” I say. “If you’re faced with
a security problem, you should start by looking at how similar problems are dealt with
in Nature.” I’m not sure why this attitude seems so radical, because to me it seems
pretty obvious. Before you start to tell me about the newest, coolest, “unbreakable”
code, first show me that you’ve thought about, or at least that you’re aware of analog-
ous situations in the natural world.

Here’s a simple, elegant example: think about how a human egg is fertilized. One
and only one sperm is allowed to get inside that egg, and once it does, the vault doors
are closed and locked. This non-repudiation “system” prevents polyspermia through
electrical or chemical means while authenticating the spermatozoa itself4. I argue that
such examples should be our starting point when we talk about, e.g., financial systems
that need to specify and authenticate one and only one transaction.

Look at how white blood cells (lymphocytes), penicillin and other antibiotics
authenticate and attack certain bacteria but leave others untouched. Or how DNA
replication includes a regular checkpoint mechanism5 that verifies the integrity of the
copying process, thus ensuring that replication occurs perfectly every time. Our im-
mune system has spent millions of years evolving into a decentralized and distributed
control system that consists of billions of cells working together to manage a huge
variety of threats in a robust, scalable and flexible manner. Resilience manifests itself
in many ways, including organisms that switch between sexual and asexual reproduc-
tion depending on environmental conditions. The mechanism for cell signaling com-
prises at least six different communication methods, including hormones that trans-
modulate and encode different signals for different pathways.

In a truly “eat or be eaten” world, viral, bacterial and animal species have devel-
oped both offensive and defensive mechanisms to protect themselves, including
cloaking, stigmergy and mimcry, which clearly have IT security analogues, such as
polymorphic, APT, botnet, DDoS, phishing and pharming attacks. While the security
industry discovers and responds to a seemingly endless profusion of threats, our bo-
dies and Nature in general have been constantly fighting a far greater war just to stay
alive.

4 Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates;

2000. Gamete Fusion and the Prevention of Polyspermy.
5 Noguchi, E. The DNA Replication Checkpoint and Preserving Genomic Integrity During

DNA Synthesis; 2010 Nature Education 3(9):46.

 Can Nature Help Us Solve Risk Management Issues? 5

Not Short-Term Solutions, But Sustainable Success

There are thousands of other examples of efficient, effective security solutions, both
“out there” in the natural world and within our own bodies. Today’s IT systems are
still at a fairly primitive stage of mimicking existing natural systems. Natural systems
work exceedingly well because of a single key difference between their design and
modern, man-made systems — their risk control “protocols” are an integral part of
their being. Their security “code” is written in DNA; it’s designed-in from the start,
not added on later as an afterthought.

The other overwhelming characteristic of the natural world, and the one that has
produced so many risk management responses in animals and plants, is the process of
evolution. Remember that basic fact: Nature evolves — it changes; it learns; it gets
better – it is resilient. Yes, a whole species may suffer, and in extreme cases it might
nearly die out, but the “system” learns. It responds, it discovers ways to neutralize
threats, and eventually it triumphs over those threats. That “flexible response” is
another key to long-term, sustainable success. It is interesting to note that the same
tradeoffs in terms of cost, speed, and security vs. convenience that concern us in mod-
ern system design can also be studied in the natural world. The latter systems have
evolved over hundreds of millennia to provide the optimum mix of security and
efficiency.

Our security needs will continue to increase as fast as new technologies are com-
mercialized to make our lives faster and easier. Ironically, we will need to fundamen-
tally rethink our approach to security in order to remain up to date in this changing
environment. The problem will always be: How do we keep ourselves and our data
safe in an increasingly interconnected world? The answers may be closer than we
think, based on hints we discover in the natural world.

Quantitative Analysis

of the Full Bitcoin Transaction Graph

Dorit Ron and Adi Shamir

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Israel
{dorit.ron,adi.shamir}@weizmann.ac.il

Abstract. The Bitcoin scheme is a rare example of a large scale global
payment system in which all the transactions are publicly accessible (but
in an anonymous way). We downloaded the full history of this scheme,
and analyzed many statistical properties of its associated transaction
graph. In this paper we answer for the first time a variety of interest-
ing questions about the typical behavior of users, how they acquire and
how they spend their bitcoins, the balance of bitcoins they keep in their
accounts, and how they move bitcoins between their various accounts in
order to better protect their privacy. In addition, we isolated all the large
transactions in the system, and discovered that almost all of them are
closely related to a single large transaction that took place in November
2010, even though the associated users apparently tried to hide this fact
with many strange looking long chains and fork-merge structures in the
transaction graph.

Keywords: bitcoin, digital coins, electronic cash, payment systems,
transaction graphs, quantitative analysis.

1 Introduction

Bitcoins are digital coins which are not issued by any government, bank, or
organization, and rely on cryptographic protocols and a distributed network of
users to mint, store, and transfer. The scheme was first suggested in 2008 by
Satoshi Nakamoto [1], and became fully operational in January 2009. It had
attracted a large number of users and a lot of media attention [2] [3] [4], but so
far it was difficult to get precise answers to simple questions such as: How many
different users are there in the system? How many bitcoins are typically kept in
each account, and how does this balance vary over time? Are most bitcoins kept
by a few large users? Do they keep their bitcoins in “saving accounts” or do they
spend them immediately? How many users had large balances at some point in
time? What is the size distribution of bitcoin transactions, and how many of
them are micropayments?

In this paper we answer some of these questions. We use the fact that all the
transactions ever carried out in the Bitcoin system are available on the inter-
net (in an anonymous way). On May 13th 2012 we downloaded the full public

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 6–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantitative Analysis of the Full Bitcoin Transaction Graph 7

record of this system 1, which consisted of about 180,000 HTML files. After
parsing and processing these files, we built a graph of all the Bitcoin addresses
and transactions up to that date. We then used the methodology described in
the next section in order to try to identify which addresses are likely to belong
to the same entity, and used this information to contract the transaction graph
by merging such addresses, in order to get a more accurate picture of the full
financial activity of each user. We then analyzed many statistical properties of
both the original and the contracted transaction graphs (most of our statistical
results were very similar for the two graphs, within a factor of 2). The most
interesting and informative distributions we found are described in a series of
tables. In addition, we isolated all the large (≥ 50, 000 bitcoins) transactions
which were ever recorded in the system, and analyzed how these amounts were
accumulated and then spent. We discovered that almost all these large transac-
tions were the descendants of a single large transaction involving 90,000 bitcoins
which took place on November 8th 2010, and that the subgraph of these transac-
tions contains many strange looking chains and fork-merge structures, in which
a large balance is either transferred within a few hours through hundreds of
temporary intermediate accounts, or split into many small amounts which are
sent to different accounts only in order to be recombined shortly afterwards into
essentially the same amount in a new account.

There was one previous reported attempt [5] to download and analyze the
full Bitcoin history, which also used the same methodology to try to contract
all the addresses which are believed to belong to the same user. They created
the graph of transactions on July 12th 2011, which was before the scheme really
caught on. Thus, the total number of Bitcoins participating in all the transactions
in our graph is about three times larger than in their graph. In addition, we
expect the transactions in our more mature graph to better represent typical
use of the system, whereas their graph represents primarily the experiments
run by early adopters. However, the biggest difference between our papers is
that they were primarily interested in privacy issues, whereas we are primarily
interested in the statistical properties of the bitcoin transaction graph. Another
analysis of the Bitcoin transaction graph was presented at the Chaos Computer
Club Conference in Germany in December 2011 [6]. Again, they were primarily
interested in how to defeat the anonymity of the network, but also included
some interesting comments about the economic principles behind the scheme,
the effect of lost coins on its operation, weaknesses in its protocols, and the
general topological properties of this transaction graph.

The paper is organized as follows. In Section 2 we describe the Bitcoin scheme.
In Section 3 we summarize the main statistical distributions we extracted from
the downloaded transactions, which describemany interesting and even surprising

1 It is believed (but we could not fully verify) that the data from
http://blockexplorer.com/ should be exactly the same as what one could
get as a Bitcoin client. Even if there are tiny differences they are likely to have only
a negligible effect on our statistical results.

http://blockexplorer.com/

8 D. Ron and A. Shamir

properties of the scheme. Finally, in Section 4 we present the graph of the largest
transactions and analyze its strange structure.

2 The Bitcoin Scheme

Bitcoin is a decentralized electronic cash system using peer-to-peer networking
to enable payments between parties without relying on mutual trust. It was first
described in a paper by Satoshi Nakamoto (widely presumed to be a pseudonym)
in 2008. Payments are made in bitcoins (BTC’s), which are digital coins issued
and transferred by the Bitcoin network. The data of all these transactions, after
being validated with a proof-of-work system, is collected into what is called the
block chain.

Participants begin using bitcoin by first acquiring a program called a Bitcoin
wallet and one or more Bitcoin addresses. Bitcoin addresses are used for receiving
bitcoins, in the same way that e-mail addresses are used for receiving e-mails.
Even though Bitcoin is considered to be an experimental payment system, it
is already deployed on a large scale (in the sense that the current value of all
the coins issued so far exceeds 100,000,000 USD) and attracts a lot of media
attention. Its proponents claim that it is the first truly global currency which
does not discriminate its users based on citizenship or location, it is always
running with no holidays, it is easy to secure with very low usage fees, it has
no chargebacks, etc. On the other hand, its detractors claim that it is widely
misused to buy illegal items [7] and to launder large sums of money, and that it
is too easy to steal bitcoins from wallets via cyber attacks.

Unlike fiat currency, which has been declared to be legal tender by a gov-
ernment despite the fact that it has no intrinsic value and is not backed by
reserves, the Bitcoin scheme has no centralized issuing authority. The network
is programmed to increase the money supply in a slowly increasing geometric
series until the total number of bitcoins reaches an upper limit of about 21 mil-
lion BTC’s. Bitcoins are awarded to Bitcoin “miners” for solving increasingly
difficult proof-of-work problems which confirm transactions and prevent double-
spending. The network currently requires over one million times more work for
confirming a block and receiving an award (currently 50 BTC’s) than when the
first blocks were confirmed.

The exchange rate of bitcoins has fluctuated widely over the years, frommerely
$0.01 to over $30 per BTC. Today (October 2012) it is worth a little over $12
per BTC. The entire activity in the Bitcoin network is publicly available through
the internet in two major forms, and the one we decided to download appears
as a block chain, starting at block 0 [8] (created back on the 3rd of January
2009). Each block reports on as little as a single transaction to as much as over
a thousand transactions, and provides hyperlinks to other blocks and to other
activities of each address.

Many users adopt the Bitcoin payment system for political and philosophi-
cal reasons. Each user can have an unbounded number of addresses (which are
characterized by their public/private key pairs) owned by him. A transaction

Quantitative Analysis of the Full Bitcoin Transaction Graph 9

in bitcoins is a generalization of a regular bank transaction in the sense that it
allows multiple sending addresses and multiple receiving addresses in the same
transaction. It specifies how many bitcoins were taken from each sending address
and how many bitcoins were credited to each receiving address, without the de-
tails of who gave how much to whom. An address may receive bitcoins which
are either newly minted or have a specific sending address. Another important
difference between bitcoin transactions and regular bank transactions is the no-
tion of change, which is related to the fact that bitcoins are kept in (possibly
fractional sized) chunks which have to be transferred in an all or nothing way.
For example, a user can have three chunks of 10 bitcoins each. A transaction can
spend 12.5 bitcoins by transferring the first full chunk plus 2.5 bitcoins from the
second chunk, and then the 7.5 bitcoin change should be sent to a new address
owned by the same user with new public and private keys. The user then has the
option of either transferring the third chunk to the new address, or leaving it in
the old address. In fact, it is considered good practice for a user to generate a
new address, i.e., public-private key-pair, for every transaction even if this is not
necessary. To better protect their identity, users are advised to take the follow-
ing steps: they do not have to reveal any identifying information in connection
with their addresses; they can repeatedly send varying fractions of their BTC’s
to themselves using multiple (newly generated) addresses; and/or they can use
a trusted third-party in the form of a shared e-wallet to mix their transactions
with those of other owners.

These operational and privacy policies of the Bitcoin scheme make it desirable
for us to try to contract the transaction graph in order to get a more informative
picture of the total assets and financial activities of users which are associated
with many addresses, and to try to distinguish between “internal” and “external”
transfers of bitcoins in it. Performing this contraction in a completely accurate
way seems to be extremely difficult, but we can use the available data in order
to try to find a good first approximation. Since many transactions have mul-
tiple sending addresses, we can make the reasonable assumption that all these
addresses have the same owner. We then compute the transitive closure of this
property over all the transactions. For example, if there is one transaction in
which 1 and 2 are used as sending addresses, and another transaction in which
2 and 3 are used as sending addresses, we conclude that all three addresses are
jointly owned. This can lead to two types of errors: We can underestimate the
common ownership of some addresses because there was no evidence for it in the
available data, and we can overestimate it if several users decided to pool their
activities and to send a single transaction to which each one of them contributes
some of the sending addresses. Discussions with several members of the Bitcoin
community lead us to believe that at the moment there are likely to be very
few overestimation errors of this type, but quite a few underestimation errors.
For example, when we tried to use all the available transactions to merge the
addresses of a particular large user, we were told that we managed to identify
with our methodology only about one quarter of his real addresses. Note that the
linkability of the addresses does not imply that the identity of the user becomes

10 D. Ron and A. Shamir

known. However, if we have any external information about the real ownership
of any one of the merged addresses, we can get a fuller picture of the Bitcoin
activity of that particular individual or organization. For example, since Wik-
iLeaks publicly advertised one of its addresses when it asked for donations, we
can estimate with our methodology that WikiLeaks owns at least 83 addresses,
that it was involved in at least 1088 transactions, and that it had an accumulated
income in all these addresses of 2605.25 BTC’s.

We acquired the complete state of the Bitcoin transaction system on May 13th

2012, which contained all the transactions carried out in the system since its in-
ception on January 3rd 2009 until that date. This required downloading 180,001
separate but linked HTML files, starting from block number 180, 000 [9] and fol-
lowing the links backwards to the zeroth block initiating the system in January
2009. Each file was parsed in order to extract all the multisender/multireceiver
transactions in it, and then the collection of transactions was encoded as a stan-
dard database on our local machine. We then ran a variant of a Union-Find graph
algorithm [10] in order to find sets of addresses which are expected to belong to
the same user. We merged all the nodes and combined all the transactions which
can be associated with him (without eliminating the internal transfers, which
become self loops in the new graph). We call the original transaction graph the
address graph, and the contracted transaction graph the entity graph (we avoid
using the word “owner” with its complex legal connotations since we do not
really know who owns each address, and instead use the neutral word “entity”
as our best approximation to the common owner of multiple addresses). All the
statistics described in Section 3 are derived from both the address graph and the
entity graph, as indicated in the tables. In most (but not all) cases, we expect
the statistics to change monotonically as we move from the address graph to
the entity graph and then to the (unknown) owner graph, since each entity is
typically the union of several addresses which we managed to merge, and each
real owner is typically the union of several entities that we failed to merge. For
example, since the average balance of an address is 2.4 BTC’s and the average
balance of an entity is 3.7, we can argue that the average balance of an owner
is likely to be larger than 3.7 BTC’s. This monotonicity can thus be used to
provide plausible upper or lower bounds for the statistical properties of the real
ownership graph, even though we do not know it.

3 Statistics Calculated over the Bitcoin Transaction
Graph

At the time we downloaded the graph there were 3,730,218 different public keys,
each associated with a different address: 3,120,948 of them were involved as
senders in at least one transaction, while the additional 609,270 appear in the
network only as receivers of BTC’s. By running the Union-Find algorithm, we
were able to associate the 3,120,948 addresses with 1,851,544 different entities.
Since the other 609,270 addresses were never used as senders, they could not be
merged with any other addresses by the Union-Find algorithm, and thus they

Quantitative Analysis of the Full Bitcoin Transaction Graph 11

all remained as entities with a single address. By adding these singletons, we get
a total of 2,460,814 entities, which implies that each one of them has on average
about 1.5 addresses. However, there is a huge variance in this statistics, and
in fact one entity is associated with 156,722 different addresses. By analyzing
some of these addresses and following their transactions, it is easy to determine
that this entity is Mt.Gox, which is the most popular Bitcoin Exchange site
(responsible for almost 80% of all the exchange operations in the network). The
full distribution of the number of addresses per entity is given in Table 1.

In our reduced entity graph, eachm-to-n transaction has a single sender (since
the m sending addresses necessarily belong to the same entity) and at most n
receivers. It can thus be decomposed into at most n different transactions from
the single entity associated with the m senders to the entities associated with
the n receivers. In case some of the receiving addresses are identified as belong-
ing to the same entity, their amounts are accumulated to create a single common
transaction, and if some of the receivers are identified with the single sender, we
create a single self loop with the combined amounts. The resulting entity graph
has 7,134,836 single sender and single receiver transactions, out of which 814,044
(about 11%) involveDeepbit (the largestBitcoinmining pool), and 477,526 (about
7%) involve Mt.Gox. About 10% of the transactions are self loops. The entity
graph is not connected as it is composed of 133,742 different connected compo-
nents, many of size one. For instance, there are as many as 43,710 components
(about 33%) consisting of a single address which are used only for accepting (one
or several batches of) freshly minted bitcoins, and which have never participated
in any incoming or outgoing transactions. Note that the address graph has a larger
number of 13,734,847 transactions of lower values, since a single transaction with
2 sending addresses and 3 receiving addresses is represented in the address graph
as 6 single-sender and single-receiver transactions.

There are many types of statistics and graphs about the Bitcoin network which
can be readily downloaded from the internet [11] [12]. However, these types of
statistics tend to describe some global property of the network over time, such
as the number of daily transactions, their total volume, the number of bitcoins
minted so far, and the exchange rate between bitcoins and US dollars. We can
go much further than that, since the entire transaction graph can be used to
determine the financial history of each entity including all of its sending/receiving
activities along with the daily balance of bitcoins in its various addresses and
how they vary over time. Having this entity graph at hand enables us to study
various statistical properties of the network, which are not easy to determine by
following a small number of online links in the Blockexplorer representation of
the Bitcoin network. In the rest of this section, we describe some of our findings
so far.

Here is our first surprising discovery, which is related to the question of
whether most bitcoins are stored or spent. The total number of BTC’s in the
system is linear in the number of blocks. Each block is associated with the gen-
eration of 50 new BTC’s and thus there are 9,000,050 BTC’s in our address
graph (generated from the 180,001 blocks between block number zero and block

12 D. Ron and A. Shamir

number 180,000). If we sum up the amounts accumulated at the 609,270 ad-
dresses which only receive and never send any BTC’s, we see that they contain
7,019,100 BTC’s, which are almost 78% of all existing BTC’s. Due to the way
bitcoins can be repeatedly moved to fresh addresses, some of which can be very
recent, we can not claim that all these bitcoins are out of circulation. However,
76.5% of these 78% (i.e., 59.7% of all the coins in the system) are “old coins”,
defined as bitcoins received at some address more than three months before the
cut off date (May 13th 2012), which were not followed by any outgoing transac-
tions from that address after they were received. One can also argue that very
old dormant bitcoins were simply abandoned or lost by users who experimented
with the system in its early days, when it was very difficult to buy anything or
to exchange bitcoins into dollars. To be even more cautious with our estima-
tion of dormant bitcoins, we decided to ignore all the transactions which took
place prior to July 18th 2010, when Mt.Gox started its exchange and price quot-
ing services. The sum of the balances of all the addresses which have not been
active since that date is 1,657,480 bitcoins. Clearly, by considering all these bit-
coins as “lost” rather than “hoarded” we are underestimating the number of
bitcoins which are kept dormant in “saving accounts”. By ignoring these very
old bitcoins and repeating the same calculation, we found that 73% of all the
remaining BTC’s were accumulated at addresses which only receive and never
send bitcoins, and that 70% of these 73% (i.e., 51%) are dormant bitcoins in the
sense that they were received more than three months before our cutoff date but
after it became easy to exchange them. If instead of summing the transaction
values we sum the final balances of all the addresses that were active after July
18th 2010 but became inactive in the last three months, we get that 55% of all
coins in the system are dormant in this sense. This is strong evidence that the
majority of bitcoins are not circulating in the system, and since it is based on the
address rather than the entity graph, this conclusion is not affected by possible
inaccuracies in the way we associate addresses with users. Note that the total
number of bitcoins participating in all the transactions since the establishment
of the system (except for the actual minting operations) is 423,287,950 BTC’s,
and thus each coin which is in circulation had to be moved a large number of
times to account for this total flow.

A previously proposed measure of the level of activity in Bitcoin was the idea
of “bitcoin days destroyed” [13], which gives more weight to coins which haven’t
been spent in a while. To do this, one multiplies the amount of each transaction
by the number of days since those coins were last spent. This is believed to
give a better indication of how much real economic activity is occurring on the
Bitcoin network, rather than just looking at the total transaction volume per
day. The measure we use is incomparable to and fundamentally different from
the “bitcoin days destroyed” as it accumulates bitcoins left untouched (for at
least three months) in addresses, without adding any contribution from those
which have been recently moved: What we focus on are those coins that are kept
completely out of circulation.

Quantitative Analysis of the Full Bitcoin Transaction Graph 13

432 12/6

17 27/5

Fig. 5.

424 ; 18 23/6

384 18/7

500 16/11

Fig. 9.

10 29/4

10 29/4

85 29/4 200 30/4

125 19/6

125 10/6

10 10/6
135 6/6

10 6/6
145 29/4

430 8/12

50 16/11

40 ; 36 18/7

280 27/5

189 8/5

155 29/4 150 27/1

90 8/11/10

382 19/6

165 29/4

250 27/1

150 27/1

400 27/1

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 6.

Fig. 8.

Fig. 10.

430

150

90

400 200 85 250

424

500

165

50

50

50
 120

transactions

Largest transactions’ flow in the Bitcoin network

10

155 10

145 10

135 10

125

100 MG

Fig.

X

X d/m

MG

An entity of 1 address with balance of X*1000 BTC’s

Some transactions are sent via the exchange Mt. Gox
A sub graph which is expanded below in another Figure

X *1000 BTC‘s were transferred on day d of month m 2011 (unless otherwise specified)

+
+

17

+ 432 19/6

50 25/6

50 19/6

Fig. 7.

50

432

50
+

40

50
50

50 11/9

50

18 50 27/8 +
50 27/8

50 27/8

50 11/9

50 11/9
50 11/9

An address which has received X*1000 BTC’s and has not sent them since X
Y X Addresses X and Y (+ possibly others) are owned by the same entity

31

36

280

Incoming of many small transactions

432

Q

N

O
P

M

H

F

J

Fig. 1. The backbone of the graph of almost all largest transactions in the Bitcoin
scheme (those which are larger than 50,000 BTC’s). The red letters refer to some of
the most active entities in Bitcoin as listed in Table 7.

90 8/11/10

20 6/11/10 35 6/11/10 30 8/11/10

15 8/11/10

12 8/11/10

7 8/11/10 90 8/11/10

90

35

7

20

55

12

30

45

12

12 17/6

12

15

 80
transactions

Mostly
generations

15

15 15/6

Fig. 2. A Sub graph of Fig. 1: A trace back of some flows of BTC’s leading to the first
large transaction of 90,000 BTC’s on November 8th 2010

14 D. Ron and A. Shamir

5 10/6 3 2/3

5 2/3

135 1/3 130 2/3

5 2/3 5 1/3 5 1/3

140 1/3

5 1/3

145 1/3

5 1/3

150 27/1

32

130 145

5

22

135 150

27

140

18

 23
transactions

5 5 5 5

13 8

5 5 4 4 5 5

3

5 2/3 5 2/3 4 2/3 4 2/3 5 2/3

5 9/6

Fig. 3. A Sub graph of Fig. 1: A long chain of transactions where each address puts
aside a small amount of BTC’s. Those amounts sum up to 140,000 BTC’s.

50 11/9

Transactions from this address continue after we have downloaded the network
X

125 19/6

135 19/6

2.5 8/9 2.5 8/9

5 5/8 5 5/8 10 5/8 10 5/8

3 25/4/12 3 25/4/12

4 25/4/12 6 25/4/12

87 8/5/12

91 4/5/12

10 25/4/12 10 31/7

105 1/8 95 25/4/12

4 4/5/12 20 1/8

125 31/7

91

95 135

3

105 125

3

125

10

10 20 10 4

2.5

87

5 4 6 10 5

2.5

4

 15
transactions

+

+

Fig. 4. A Sub graph of Fig. 1: A long chain of transactions where each address transfers
most of its BTC’s forward. The rest is distributed in a binary tree-like structure.

Quantitative Analysis of the Full Bitcoin Transaction Graph 15

1 20/4 89 20/4 90 20/4 90 20/4 90 20/4 95 19/4 90 95

26

10 90

7

5

...

 26
transactions

...

 3
transactions

10

5

+

+

89

 88
transactions

1

1 20/4

1 20/4

1 20/4

90 20/4

MG MG

Fig. 5. A Sub graph of Fig. 1: An entity is sending 90,000 BTC’s to itself in a self
loop, then transfers it forward but gets it back via 90 transfers of 1,000 BTC’s each,
all carried out on the same day. 31,000 of it is then transferred forward.

189 8/5 280 27/5 17 27/5

5 14/5

5 16/5 5 16/5 5 16/5

200 13/5

5 14/5

20 23/5

19 23/5

100 22/5
80 23/5

230 14/5 235 14/5 240 14/5

172 13/5

20

200

100

 3
transactions

50

20

230 235 240 300

300

80

5 5 5

19

5 14/5 5 14/5
300 14/5

50 21/5

200 22/5

100 22/5

100 22/5

100 22/5 20 23/5

20

5 5 5 +

5 5

225

245

200

172

189

...

+

+

+

250 14/5

20 18/5

225 14/5

25 14/5 25 250 5 16/5

245 14/5

Fig. 6. A Sub graph of Fig. 1: Large amounts of BTC’s are transferred from one
address to another by sending parts of it to intermediate addresses, which are then
being merged into the same destination

16 D. Ron and A. Shamir

7 18/7

50 25/6

26/6 18/7 25/6 25/6
15 44 26 50 34

 100
transactions

7 5

5 18/7

... ...

 122
transactions

...

 120
transactions

...

 100
transactions

Fig. 7. A Sub graph of Fig. 1: Large amounts of BTC’s are rapidly transferred in a
very long chain of hundreds of transactions in a very short period of time

424 23/6 18 23/6

32 19/6

82 19/6

232 19/6 182 19/6 132 19/6 282 19/6 332 19/6

382 19/6

132

82

282

32

332

50

182 382

50

232

50 50 50 50 50 50 42

50 19/6

50 19/6

50 19/6 50 19/6 50 19/6 50 19/6 50 19/6

50 19/6

+ 4 +
50 19/6

M

Fig. 8. A Sub graph of Fig. 1: A very large amount of BTC’s is transferred by splitting
it into equal amounts each directed to a different address belonging to the same entity,
then most of the accumulated sums are transferred to a single receiver

Quantitative Analysis of the Full Bitcoin Transaction Graph 17

284 27/8 300 27/8

40 16/11 50 11/9

50 27/8

100 27/8

150 27/8

250 27/8 200 27/8 334 27/8

384 27/8

200

150

284 334

50

250 384

50

300

100

50 50 50 50

50 11/9

50

50 50 50 50

50

50 27/8 50 27/8 50 27/8
50 27/8

50 27/8

50 27/8 50 11/9 50 11/9 50 11/9

50 11/9
50 11/9

50 50

50 27/8

+
40

100

50 11/9

Fig. 9. A Sub graph of Fig. 1: A similar scenario as described in Fig. 8 but with more
intermediate addresses

430 8/12

203 227

94 109

430
227 8/12 203 8/12

42

101 126

59 53 48 64 45 52 66

126 8/12 101 8/12 94 8/12 109 8/12

39 8/12 66 8/12 53 8/12 48 8/12 45 9/12 64 9/12 42 8/12 52 8/12

38 28 34 25 31 22 27 21 34 30 24 21 26 26 17 25

25
8/12

17
8/12

16
8/12

16
8/12

34
9/12

30
9/12

24
9/12

21
9/12

31
8/12

22
8/12

27
8/12

21
8/12

38
8/12

34
8/12

25
8/12

28
8/12

MG

Fig. 10. A Sub graph of Fig. 1: The largest amount of transferred BTC’s is finally
distributed among many addresses via a binary tree-like structure

18 D. Ron and A. Shamir

Another interesting finding is that the total number of bitcoins received by
most entities and addresses is negligible. In the rest of this section, we use un-
parenthesized numbers to indicate values derived from the entity graph, and
parenthesized numbers to indicate values derived from the address graph. For
example, as can be seen from Table 2, 36% of all entities (and 40% of all ad-
dresses) received fewer than one BTC, currently worth about 12 USD, through-
out their lifetime, 52% (59%) received fewer than 10 BTC’s and 88% (91%) fewer
than 100. At the other end of the distribution there are only four entities (and
one address) which received over 800,000 BTC’s, and 80 entities (129 addresses)
which received over 400,000.

Similarly, as can be seen in Table 3 the current (on May 13th 2012) balance
of almost 97% (98%) of all entities (addresses) was less than 10 BTC’s. This
number decreases to 88% (91%) if instead of looking at one specific moment,
we look at the maximal balance ever seen throughout an entity’s (address’es)
lifetime. This statistics is summarized in Table 4. In addition, it can be seen
that there are only 78 entities (70 addresses) with current balance larger than
10,000 BTC’s. This number grows to 3,812 (3,876) when looking at the maximal
balance ever seen.

Another measure that may indicate the level of activity of an entity (address)
is the number of transactions it has been involved with. Its distribution is pre-
sented in Table 5. It is remarkable that 97% (93%) of all entities (addresses) had
fewer than 10 transactions each, while 75 entities (80 addresses) use the network
very often and are affiliated with at least 5,000 transactions.

We have also calculated the distribution of the size of the transactions in the
two graphs as summarized in Table 6. Again, it is evident that many transactions
are very small, and 28% (47%) are smaller than 0.1 BTC each. The Bitcoin
scheme actually enables sending micro transactions, which are of the order of
10−8 BTC (this is the smallest fraction into which a BTC can be broken, and
is called a satoshi). When we also consider midsize amounts, we see that 73%
(84%) of the transactions involve fewer than 10 BTC’s. On the other hand, large
transactions are rare at Bitcoin: there are only 364 (340) transactions larger
than 50,000 BTC’s. We have carefully inspected all these large transactions and
describe our findings in the next section.

It is interesting to investigate the most active entities in the Bitcoin system,
those who have either maximal incoming BTC’s or maximal number of trans-
actions. 19 such entities are shown in Table 7 sorted in descending order of the
number of accumulated incoming BTC’s shown in the third column. The left-
most column associates the entities with letters between A to S out of which
three are identified: B is Mt.Gox, G is Instawallet and L is Deepbit. Eight ad-
ditional entities: F, H, J, M, N, O, P, and Q are pointed out in the graph of
the largest transactions (Fig. 1) which is presented in the next section. The sec-
ond column gives the number of addresses merged into each entity. The fourth
column presents the number of transactions the entity is involved with.

Table 7 shows that Mt.Gox has the maximal number of addresses, but not
the largest accumulated incoming BTC’s nor the largest number of transactions.

Quantitative Analysis of the Full Bitcoin Transaction Graph 19

Entity A in the first row of Table 7 owns the next largest number of addresses,
about 50% of those of Mt.Gox’s, but received 31% more BTC’s than Mt.Gox.
Deepbit had sent 70% more transactions than Mt.Gox. It is interesting to re-
alize that the number of addresses of 13 of these entities is a fifth or more of
the number of transactions they have executed, which may indicate that each
address is indeed used for just a few transactions. It is also clear that six out
of the 19 entities in the table have each sent fewer than 30 transactions with a
total volume of more than 400,000 BTC’s. Since these entities were using large
transactions, we were able to isolate them and to follow the flow of their trans-
actions, see Section 4 below. On the other hand, entity A had never sent any
large transactions and thus it has not been included in our graph of the largest
transactions.

4 The Graph of the Largest Transactions in Bitcoin

We have identified and analyzed all the largest (≥ 50, 000 BTC’s) transactions
in the entity graph, (there were 364 such transactions as described in the last
column of Table 6), and followed their flow. We started with the earliest such
large transaction, the one of 90,000 BTC’s made on November 8th 2010. By
tracing each of the other 363 large transactions in this category, we were able
to show that 348 were actual successors of this initial transaction. The resulting
directed graph is depicted in Fig. 1. This graph reveals several characteristic
behaviors of the flow in the Bitcoin transaction graph: long consecutive chains
of transactions, fork-merge patterns that may include self loops, setting aside
BTC’s and final distribution of large sums via a binary tree-like structure.

Long Chains. A common prominent practice of Bitcoin users is to create chains
of consecutive transactions. Some of these chains can be explained by the change
mechanism in which small payments are accompanied by the creation of a new
address, into which the user transfers the difference. Such chains can be found
in Fig. 2, Fig. 4, Fig. 5 and Fig. 7, with lengths of 3, 15, 26, 80, 88 and 350
transactions. However, the behavior seen in Fig. 3 deviates significantly from
this pattern, since the same amount of 5,000 bitcoins is repeatedly split off the
main sum and put into accounts which have no additional transactions associated
with them.

Fork-Merge Patterns and Self Loops. Another frequent scenario in Bitcoin
is transferring a large number of BTC’s from one address to another via several
intermediate addresses, each receiving part of the entire amount and then sending
it, mostly in full, to the same destination whether directly or via other mediators.
Examples can be seen in Fig. 6, Fig. 8 and Fig. 9. A harder to follow fork-
merge pattern is presented in Fig. 5: An entity is sending 90,000 BTC’s to itself
three times in self loops. Each time it splits it into different amounts, 76+14,
72+18 and 69+21. It uses the same address for the small amounts and different
addresses for the large amounts. Then it exchanges the entire 90,000 BTC’s
at Mt.Gox. Finally, the 90,000 BTC’s are being transferred via a chain of 90

20 D. Ron and A. Shamir

transactions using 90 different addresses (which may or may not belong to the
same owner), where at each one of them 1,000 BTC’s are sent back to the first
entity, recombined into essentially the very first amount of 90,000 BTC’s.

Keeping Bitcoins in “Saving Accounts”. Another long chain of transactions
from the beginning of March 2011 can be seen in Fig. 3. This chain is different
from the above ones, since at 28 out of its 30 steps, it puts aside 5,000 BTC’s
in what seems to be “saving accounts”. The accumulated sum of 140,000 BTC’s
has never been sent since. These bitcoins are an example of our discovery that
most of the bitcoins are not circulating in the system.

Binary Tree-Like Distributions. Often amounts of BTC’s are distributed
among many addresses by splitting it into two similar amounts at each step.
This results in a binary tree-like structure as depicted in Fig. 10 and in Fig. 4.

5 Conclusions

The Bitcoin system is the best known and most widely used alternative payment
scheme, but so far it was very difficult to get accurate information about how
it is used in practice. In this paper we describe a large number of statistical
properties of the Bitcoin transaction graph, which contains all the transactions
which were carried out by all the users until May 13th 2012. We discovered
that most of the minted bitcoins remain dormant in addresses which had never
participated in any outgoing transactions. We found out that there is a huge
number of tiny transactions which move only a small fraction of a single bit-
coin, but there are also hundreds of transactions which move more than 50,000
bitcoins. We analyzed all these large transactions by following in detail the way
these sums were accumulated and the way they were dispersed, and realized
that almost all these large transactions were descendants of a single transaction
which was carried out in November 2010. Finally, we noted that the subgraph
which contains these large transactions along with their neighborhood has many
strange looking structures which could be an attempt to conceal the existence
and relationship between these transactions, but such an attempt can be foiled
by following the money trail in a sufficiently persistent way.

Acknowledgments. This research was supported by the Citi Foundation. We
would like to thank Ronen Basri, Uriel Feige, Michal Irani, Robert Krauthgamer,
Boaz Nadler, Moni Naor and David Peleg from the Computer Science and Ap-
plied Mathematics Department of the Weizmann Institute of Science for many
interesting and informative discussions. We would also like to thank Aharon
Friedman for his major help in acquiring and processing the Bitcoin data base.
Finally, we would like to thank all the members of the Bitcoin community, and
in particular Meni Rosenfeld, Stefan Richter and Peter Todd, who sent us ex-
cellent comments, criticisms and suggestions. We revised the original version of
the paper in order to respond to their input.

Quantitative Analysis of the Full Bitcoin Transaction Graph 21

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
2. Wallace, B.: The Rise and Fall of Bitcoin, Wired Magazine (November 23, 2011),

http://www.wired.com/magazine/2011/11/mf_bitcoin/all/

3. NPR Staff: Silk Road: Not Your Father’s Amazon.com (June 12, 2011),
http://www.npr.org/2011/06/12/137138008/silk-road-not-your-fathers-

amazon-com

4. Brett, W.: Senators seek crackdown on “Bitcoin currency”, Reuters (June 8,
2011), http://www.reuters.com/article/2011/06/08/us-financial-bitcoins-
idUSTRE7573T320110608

5. Reid, F., Harrigan, M.: An Analysis of Anonymity in the Bitcoin System,
arXiv:1107.4524v2 [physics.soc-ph] (May 7, 2012)

6. Hamacher, K., Katzenbeisser, S.: Bitcoin - An Analysis (December 29, 2011),
http://www.youtube.com/watch?v=hlWyTqL1hFA

7. Christin, N.: Traveling the Silk Road: A measurement analysis of a large anonymous
online, arXiv:1207.7139v1 [cs.CY] (July 31, 2012)

8. Bitcoin’s block number 0, http://blockexplorer.com/b/0
9. Bitcoin’s block number 180,000, http://blockexplorer.com/b/180000

10. Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C.: Data structures for Disjoint
Sets. In: Introduction to Algorithms, 2nd edn., ch. 21, pp. 498–524. MIT Press,
McGraw Hill (2001)

11. Forbes: Top 10 Bitcoin Statistics, http://www.forbes.com/sites/jonmatonis/

2012/07/31/top-10-bitcoin-statistics/

12. Block chain: Bitcoin charts, http://blockchain.info/charts
13. Bitcoin Days Destroyed, https://en.bitcoin.it/wiki/Bitcoin_Days_Destroyed

http://www.wired.com/magazine/2011/11/mf_bitcoin/all/
http://www.npr.org/2011/06/12/137138008/silk-road-not-your-fathers-amazon-com
http://www.npr.org/2011/06/12/137138008/silk-road-not-your-fathers-amazon-com
http://www.reuters.com/article/2011/06/08/us-financial-bitcoins-idUSTRE7573T320110608
http://www.reuters.com/article/2011/06/08/us-financial-bitcoins-idUSTRE7573T320110608
http://www.youtube.com/watch?v=hlWyTqL1hFA
http://blockexplorer.com/b/0
http://blockexplorer.com/b/180000
http://www.forbes.com/sites/jonmatonis/2012/07/31/top-10-bitcoin-statistics/
http://www.forbes.com/sites/jonmatonis/2012/07/31/top-10-bitcoin-statistics/
http://blockchain.info/charts
https://en.bitcoin.it/wiki/Bitcoin_Days_Destroyed

22 D. Ron and A. Shamir

Appendix: The Distributions and the List of the Active
Entities

Table 1. The distribution of the number of addresses per entity

Larger or equal to Smaller than Number of entities

1 2 2,214,186
2 10 234,015
10 100 12,026
100 500 499
500 1,000 35
1,000 5,000 41
5,000 10,000 5
10,000 50,000 5
50,000 100,000 1
100,000 1

Table 2. The distribution of the accumulated incoming BTC’s per entity and per
address

Larger or equal to Smaller than Number of entities Number of addresses

0 1 893,763 1,497,451
1 10 389,302 698,132
10 100 881,273 1,206,209
100 1,000 255,826 285,820
1,000 10,000 36,713 38,484
10,000 50,000 3,593 3,723
50,000 100,000 181 190
100,000 200,000 55 50
200,000 400,000 30 29
400,000 800,000 76 129
800,000 4 1

Quantitative Analysis of the Full Bitcoin Transaction Graph 23

Table 3. The distribution of the current (on May 13th 2012) balance of BTC’s per
entity and per address

Larger or equal to Smaller than Number of entities Number of addresses

0 0.01 2,097,245 3,399,539
0.01 0.1 192,931 152,890
0.1 10 95,396 101,186
10 100 67,579 68,907
100 1,000 6,746 6,778
1,000 10,000 841 848
10,000 50,000 71 65
50,000 100,000 5 3
100,000 200,000 1 1
200,000 400,000 1 1
400,000 0 0

Table 4. The distribution of the maximal balance of BTC’s ever seen per entity and
per address

Larger or equal to Smaller than Number of entities Number of addresses

0 0.1 547,763 1,063,876
0.1 10 668,247 1,160,170
10 100 945,083 1,188,596
100 1,000 259,142 276,613
1,000 10,000 36,769 37,087
10,000 50,000 3,513 3,521
50,000 100,000 163 159
100,000 200,000 40 41
200,000 400,000 26 26
400,000 500,000 68 129
500,000 2 0

Table 5. The distribution of the number of transactions per entity and per address

Larger or equal to Smaller than Number of entities Number of addresses

1 2 557,783 495,773
2 4 1,615,899 2,197,836
4 10 222,433 780,433
10 100 55,875 228,275
100 1,000 8,464 26,789
1,000 5,000 287 1,032
5,000 10,000 35 51
10,000 100,000 32 24
100,000 500,000 7 3
500,000 1 2

24 D. Ron and A. Shamir

Table 6. The distribution of the size of the transactions in the Bitcoin scheme

Larger or equal to Smaller than Number of transactions Number of transactions
in the graph of entities in the graph of addresses

0 0.001 381,846 2,315,582
0.001 0.1 1,647,087 4,127,192
0.1 1 1,553,766 2,930,867
1 10 1,628,485 2,230,077
10 50 1,071,199 1,219,401
50 100 490,392 574,003
100 500 283,152 262,251
500 5,000 70,427 67,338
5,000 20,000 6,309 6,000
20,000 50,000 1,809 1,796
50,000 364 340

Table 7. The list of most active entities in Bitcoin, which have either maximal incoming
BTC’s or maximal number of transactions. Some of the letters in the leftmost column:
F, H, J, M, N, O, P and Q refer to the red letters in Fig. 1 pointing these entities out.

Entity ID Number of Accumulated Number of
Addresses Incoming BTC’s Transactions

A 78,251 2,886,650 246,012
B (Mt.Gox) 156,722 2,206,170 477,526

C 13,289 941,013 77,525
D 12,520 867,996 48,347
E 191 692,864 1,353
F 12 660,000 23

G (Instawallet) 23,649 633,606 92,593
H 9 580,000 59
I 10,561 514,066 49,550
J 4 500,021 6
K 134 479,254 1,039

L (Deepbit) 2 452,929 814,044
M 9 442,000 10
N 128 432,161 137
O 10 432,286 14
P 1 432,078 3
Q 14 430,490 23
R 2,124 321,866 300,486
S 1,037 20,308 197,334

Beware the Middleman:
Empirical Analysis of Bitcoin-Exchange Risk

Tyler Moore1 and Nicolas Christin2

1 Computer Science & Engineering, Southern Methodist University, USA
tylerm@smu.edu

2 INI & CyLab, Carnegie Mellon University, USA
nicolasc@cmu.edu

Abstract. Bitcoin has enjoyed wider adoption than any previous crypto-
currency; yet its success has also attracted the attention of fraudsters who have
taken advantage of operational insecurity and transaction irreversibility. We study
the risk investors face from Bitcoin exchanges, which convert between Bitcoins
and hard currency. We examine the track record of 40 Bitcoin exchanges estab-
lished over the past three years, and find that 18 have since closed, with customer
account balances often wiped out. Fraudsters are sometimes to blame, but not al-
ways. Using a proportional hazards model, we find that an exchange’s transaction
volume indicates whether or not it is likely to close. Less popular exchanges are
more likely to be shut than popular ones. We also present a logistic regression
showing that popular exchanges are more likely to suffer a security breach.

Keywords: Bitcoin, currency exchanges, security economics, cybercrime.

1 Introduction

Despite added benefits such as enhanced revenue [1] or anonymity [2], and often ele-
gant designs, digital currencies have until recently failed to gain widespread adoption.
As such, the success of Bitcoin [3] came as a surprise. Bitcoin’s key comparative ad-
vantages over existing currencies lie in its entirely decentralized nature and in the use of
proof-of-work mechanisms to constrain the money supply. Bitcoin also benefited from
strongly negative reactions against the banking system, following the 2008 financial
crisis: Similar in spirit to hard commodities such as gold, Bitcoin offers an alternative
to those who fear that “quantitative easing” policies might trigger runaway inflation.

As of January 2013, Bitcoin’s market capitalization is approximately US$187 mil-
lion [4]. However, with success comes scrutiny, and Bitcoin has been repeatedly tar-
geted by fraudsters. For instance, over 43,000 Bitcoins were stolen from the Bitcoinica
trading platform in March 2012 [5]; in September 2012, $250,000 worth of Bitcoins
were pilfered from the Bitfloor currency exchange [6]. Interestingly, experience from
previous breaches does not suggest that failures necessarily trigger an exodus from the
currency. In fact, with two possible exceptions—a June 2011 hack into the largest Bit-
coin currency exchange, which coincided with the USD-Bitcoin exchange rate peaking,
and the August 2012 downfall of the largest Bitcoin Ponzi scheme [8]—the (volatile)
Bitcoin exchange rate has fluctuated independently from disclosed hacks and scams.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 25–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 T. Moore and N. Christin

While Bitcoin’s design principles espouse decentralization, an extensive ecosystem
of third-party intermediaries supporting Bitcoin transactions has emerged. Intermedi-
aries include currency exchanges used to convert between hard currency and Bitcoin;
marketplace escrow services [7]; online wallets; mixing services; mining pools; or even
investment services, be they legitimate or Ponzi schemes [8]. Ironically, most of the risk
Bitcoin holders face stems from interacting with these intermediaries, which operate as
de facto centralized authorities. For instance, one Bitcoin feature prone to abuse is that
transactions are irrevocable, unlike most payment mechanisms such as credit cards and
electronic fund transfers. Fraudsters prefer irrevocable payments, since victims usually
only identify fraud after transactions take place [9, 10]. Irrevocability makes any Bit-
coin transaction involving one or more intermediaries subject to added risk, such as if
the intermediary becomes insolvent or absconds with customer deposits.

In this paper, we focus on one type of intermediary, currency exchanges, and em-
pirically examine the risk Bitcoin holders face from exchange failures. Section 2 ex-
plains our data collection and measurement methodology. Section 3 presents a survival
analysis of Bitcoin exchanges, and shows that an exchange probability of closure is
inversely correlated to its trade volumes. Section 4 complements this analysis with a lo-
gistic regression that indicates that popular exchanges are more likely to suffer security
breaches. Section 5 reviews related work and Section 6 discusses follow-up research.

2 Data on Bitcoin-Exchange Closures

2.1 Data Collection Methodology

We begin by collecting historical data on the Bitcoin exchange rates maintained by the
website bitcoincharts.com. This includes the daily trade volumes and average
weighted daily price for 40 Bitcoin exchanges converting into 33 currencies until Jan-
uary 16, 2013, when the data collection was made. We calculated the average daily
trade volume for each exchange by tallying the total number of Bitcoins converted into
all currencies handled by the exchange for the days the exchange was operational.

We also calculate the “lifetime” of each exchange, that is, the number of days the
exchange is operational, denoted by the difference between the first and last observed
trade. We deem an exchange to have closed if it had not made a trade in at least two
weeks before the end of data collection. We further inspected the existence of a report
on the Bitcoin Wiki [11] or on Bitcoin forums [12] to confirm closure, and determine
whether closure was caused by a security breach (e.g., hack or fraud). We also checked
for reports on whether or not investors were repaid following the exchange’s closure.

Finally, to assess regulatory impact, we attempted to identify the country where each
exchange is based. We then used an index (ranging between 0 and 49) computed by
World Bank economists [13] to identify each country’s compliance with “Anti-Money-
Laundering and Combating the Financing of Terrorism” (AML-CFT) regulations [13].

2.2 Summary Statistics

Table 1 lists all 40 known Bitcoin currency exchanges, along with relevant facts about
whether the exchange later closed. Nine exchanges experienced security breaches,

bitcoincharts.com

Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk 27

Table 1. Bitcoin exchange indicators. “Origin” denotes the jurisdiction under which the exchange
operates, “AML,” the extent to which the exchange’s jurisdiction has implemented “Anti-Money
Laundering and Combating the Financing of Terrorism” international standards [13]. “Risk ratio”
is the relative risk of exchange failure based on the Cox proportional hazards model (Section 3).

Exchange Origin Dates Active Daily vol. Closed? Breached? Repaid? AML Risk Ratio

BitcoinMarket US 4/10 – 6/11 2454 yes yes – 34.3 1.12
Bitomat PL 4/11 – 8/11 758 yes yes yes 21.7 1.28
FreshBTC PL 8/11 – 9/11 3 yes no – 21.7 2.01
Bitcoin7 US/BG 6/11 – 10/11 528 yes yes no 33.3 1.59
ExchangeBitCoins.com US 6/11 – 10/11 551 yes no – 34.3 0.65
Bitchange.pl PL 8/11 – 10/11 380 yes no – 21.7 0.61
Brasil Bitcoin Market BR 9/11 – 11/11 0 yes no – 24.3 3.85
Aqoin ES 9/11 – 11/11 11 yes no – 30.7 1.57
Global Bitcoin Exchange ? 9/11 – 1/12 14 yes no – 27.9 1.45
Bitcoin2Cash US 4/11 - 1/12 18 yes no – 34.3 1.47
TradeHill US 6/11 - 2/12 5082 yes yes yes 34.3 0.94
World Bitcoin Exchange AU 8/11 – 2/12 220 yes yes no 25.7 1.80
Ruxum US 6/11 – 4/12 37 yes no yes 34.3 1.24
btctree US/CN 5/12 – 7/12 75 yes no yes 29.2 0.98
btcex.com RU 9/10 – 7/12 528 yes no no 27.7 0.61
IMCEX.com SC 7/11 – 10/12 2 yes no – 11.9 1.88
Crypto X Change AU 11/11 – 11/12 874 yes no – 25.7 0.53
Bitmarket.eu PL 4/11 – 12/12 33 yes no no 21.7 1.09
bitNZ NZ 9/11 – pres. 27 no no – 21.3 1.14
ICBIT Stock Exchange SE 3/12 – pres. 3 no no – 27.0 2.15
WeExchange US/AU 10/11 – pres. 2 no no – 30.0 2.23
Vircurex US? 12/11 – pres. 6 no yes – 27.9 4.41
btc-e.com BG 8/11 – pres. 2604 no yes yes 32.3 1.08
Mercado Bitcoin BR 7/11 – pres. 67 no no – 24.3 0.95
Canadian Virtual Exchange CA 6/11 – pres. 832 no no – 25.0 0.53
btcchina.com CN 6/11 – pres. 473 no no – 24.0 0.60
bitcoin-24.com DE 5/12 – pres. 924 no no – 26.0 0.52
VirWox DE 4/11 – pres. 1668 no no – 26.0 0.45
Bitcoin.de DE 8/11 – pres. 1204 no no – 26.0 0.49
Bitcoin Central FR 1/11 – pres. 118 no no – 31.7 0.91
Mt. Gox JP 7/10 – pres. 43230 no yes yes 22.7 0.49
Bitcurex PL 7/12 – pres. 157 no no – 21.7 0.76
Kapiton SE 4/12 – pres. 160 no no – 27.0 0.80
bitstamp SL 9/11 – pres. 1274 no no – 35.3 0.54
InterSango UK 7/11 – pres. 2741 no no – 35.3 0.45
Bitfloor US 5/12 – pres. 816 no yes no 34.3 1.45
Camp BX US 7/11 – pres. 622 no no – 34.3 0.63
The Rock Trading Company US 6/11 – pres. 52 no no – 34.3 1.14
bitme US 7/12 – pres. 77 no no – 34.3 1.04
FYB-SG SG 1/13 – pres. 3 no no – 33.7 2.23

caused either by hackers or other criminal activity. Five of these exchanges subsequently
closed, but four have survived so far (Mt. Gox, btc-e.com, Bitfloor, and Vircurex).
Another 13 closed without experiencing a publicly-announced breach.

The popularity of exchanges varied greatly, with 25% of exchanges processing under
25 Bitcoins each day on average, while the most popular exchange, Mt. Gox, has aver-
aged daily transactions exceeding 40 000 BTC. The median daily transactions carried
out by exchanges is 290, while the mean is 1 716.

One key factor affecting the risk posed by exchanges is whether or not its customers
are reimbursed following closure. We must usually rely on claims by the operator and
investors if they are made public. Of the 18 exchanges that closed, we have found ev-
idence on whether customers were reimbursed in 11 cases. Five exchanges have not

28 T. Moore and N. Christin

reimbursed affected customers, while six claim to have done so. Thus, the risk of losing
funds stored at exchanges is real but uncertain.

As a first approximation, the failure rate of Bitcoin exchanges is 45%. The median
lifetime of exchanges is 381 days. These summary statistics obscure two key facts:
exchanges are opened at different times and so their maximum potential lifetimes vary,
and a majority of exchanges remain viable at the end of our observation period. Survival
analysis can properly account for this.

3 Survival Analysis of Exchange Closure

We use survival analysis to estimate the time it takes for Bitcoin exchanges to close
and to identify factors that can trigger or stave off closure. Robust estimation requires
considering that some exchanges remain open at the end of our measurement interval
(“censored” data points). Two mathematical functions are commonly used. First, a sur-
vival function S(t) measures the probability that an exchange will continue to operate
longer than for t days. Second, a hazard function h(t) measures the instantaneous risk
of closure at time t. To identify factors affecting an exchange’s survival time, we use a
Cox proportional hazards model [14], rather than traditional linear regression. We can
also estimate the survival function using the best-fit Cox model.

3.1 Statistical Model

We hypothesize that three variables affect the survival time of a Bitcoin exchange:

Average daily transaction volume: an exchange can only continue to operate if it
is profitable, and profitability usually requires achieving scale in the number of fee-
generating transactions performed. We expect that exchanges with low transaction vol-
ume are more likely to shut down. We use a log-transformation of the transaction volume
given how skewed transaction volumes are.

Experiencing a security breach: suffering a security breach can erase profits, reduce
cash flow, and scare away existing and prospective customers. We thus expect breached
exchanges to be more likely to subsequently close.

AML/CFT compliance: some Bitcoin exchanges complain of being hassled by finan-
cial regulators. Thus, exchanges operating in countries with greater emphasis on anti-
money laundering efforts may be pressured into shutting down.

We then construct a corresponding proportional hazards model [14]:

hi(t) = h0(t) exp(β1 log(Daily vol.)i + β2Breachedi + β3AMLi).

Here, hi(t) is the hazard rate for exchange i, log(Daily vol.)i is the transaction volume
at exchange i, Breachedi indicates whether exchange i suffered a security breach, and
AMLi denotes the AML/CFT compliance score for the exchange’s country of incorpo-
ration. β1, β2, β3 are best-fit constants, and h0(t) is the unspecified baseline hazard.

Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk 29

3.2 Results

The best-fit Cox model is:

coef. exp(coef.) Std. Err.) Significance
log(Daily vol.)i β1 −0.173 0.840 0.072 p = 0.0156
Breachedi β2 0.857 2.36 0.572 p = 0.1338
AMLi β3 0.004 1.004 0.042 p = 0.9221

log-rank test: Q=7.01 (p = 0.0715), R2 = 0.145

0 200 400 600 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Days

S
u

rv
iv

a
l
p

ro
b

a
b

ili
ty

Intersango
Mt. Gox
Bitfloor
Vircurex
Average

Fig. 1. Empirically-derived survival probability function for Bitcoin exchanges

The daily volume is negatively associated with the hazard rate (β1 = −0.173):
doubling the daily volume rate corresponds to a 16% reduction in the hazard rate
(exp(β1) = 0.84) . Thus, exchanges that process more transactions are less likely to
shut down.

Suffering a breach is positively correlated with hazard, but with a p-value of 0.1338,
this correlation falls just short of being statistically significant at this time. Given that
just nine exchanges publicly reported suffering breaches and only five later closed, it is
not surprising that the association is not yet robust.

Finally, the anti-money laundering indicator has no measurable correlation with ex-
change closure. This could suggest that regulatory oversight is not triggering closures,
but it could also reflect that the indicator itself does not accurately convey differences
in attitudes the world’s financial regulators have taken towards Bitcoin.

Figure 1 plots the best-fit survival function according to the Cox model. The sur-
vival function precisely quantifies the probability of failure within a given amount of
time. This can help Bitcoin investors weigh their risks before putting money into an
exchange-managed account. The black solid line plots the estimated survival function
for the best fit parameters outlined above for the mean values of exchange volume,

30 T. Moore and N. Christin

whether a site has been hacked, and AML score. For instance, S(365) = 0.711 with
95% confidence interval (0.576, 0.878): there is a 29.9% chance a new Bitcoin ex-
change will close within a year of opening (12.2%–42.4% with 95% confidence).

Figure 1 also includes survival functions for several Bitcoin exchanges. These are
calculated based on the exchange’s values for parameters in the Cox model (e.g., trans-
action volume). For instance, Mt. Gox and Intersango are less likely to close than other
exchanges. Meanwhile, Vircurex (established in December 2011 and breached in Jan-
uary 2013) continues to operate despite low transaction volumes and a survival function
that estimates one-year survival at only 20%.

The right-most column in Table 1 presents relative risk ratios for all exchanges.
These indicate how the hazard function for each exchange compares to the baseline
hazard. Values less than 1 indicate that the exchange is at below-average risk for clo-
sure; values greater than 1 denote above-average risk. Of course, any exchange may
close, but those with lower risk ratios have a better chance of remaining operational.
For instance, while 6 of the 18 closed exchanges have risk ratios below 1, 12 of the 22
open ones do.

4 Regression Analysis of Exchange Breaches

While we cannot conclude that security breaches trigger exchanges to close, we can
examine whether any other factors affect the likelihood an exchange will suffer a breach.

4.1 Statistical Model

We use a logistic regression model with a dependent variable denoting whether or not
an exchange experiences a breach. We hypothesize that two explanatory variables in-
fluence whether a breach occurs:

Average daily transaction volume: bigger exchanges make richer targets. As an ex-
change processes more transactions, more wealth flows into its accounts. Consequently,
we expect that profit-motivated criminals are naturally drawn to exchanges with higher
average daily transaction volumes.

Months operational: every day an exchange is operational is another day that it could
be hacked. Longer-lived exchanges, therefore, are more exposed to breaches.

The model takes the following form:

log (pb/(1− pb)) = c0 + c1 log(Daily vol.) + c2 months operational + ε.

The dependent variable pb is the probability that an exchange experiences a secu-
rity breach, c0, c1, c2 are best-fit constants, log(daily vol.) is the log-transformed daily
transaction volume at the exchange, # months operational is the time (in months) that
the exchange has been operational, and ε is an error term.

Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk 31

4.2 Results

The logistic regression yields the following results:

coef. Odds-ratio 95% conf. int. Significance
Intercept −4.304 0.014 (0.0002,0.211) p = 0.0131
log(Daily vol.) 0.514 1.672 (1.183,2.854) p = 0.0176
Months operational −0.104 0.901 (0.771,1.025) p = 0.1400

Model fit: χ2 = 10.3, p = 0.00579

Transaction volume is positively correlated with experiencing a breach. Months opera-
tional, meanwhile, is negatively correlated with being breached, but the association just
falls short of statistical significance (p = 0.14). Thus, we face a conundrum: accord-
ing to the results of Section 3, high-volume exchanges are less likely to close but more
likely to experience a breach. Bitcoin holders can choose to do business with less popu-
lar exchanges to reduce the risk of losing money due to a breach, or with more popular
exchanges that may be breached, but are less likely to shut down without warning.

Figure 2 takes the coefficients for a best-fit logit model and plots the probability
that an exchange operational for the average duration of one year will be breached as
transaction volume increases. For example, exchanges handling 275 Bitcoins’ worth of
transactions each day have a 20% chance of being breached, compared to a 70% chance
for exchanges processing daily transactions worth 5570 Bitcoins.

5 50 500 5000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Daily transaction volume at exchange

P
ro

b
a

b
ili

ty
 e

x
c
h

a
n

g
e

 h
a

s
 b

re
a

c
h

Predicted probability
90% C.I.

Fig. 2. Probability that an exchange will experience a breach as the average volume of Bitcoins
exchanged varies, according to the best-fit logit model.

5 Related Work

Bitcoin’s recent success has piqued the interest of a number of researchers in study-
ing it. A couple of works looked into the cryptographic aspects [15, 16, 17] and ways
to either improve or build on Bitcoin. Another set of papers explored the Bitcoin net-
work of transactions [18, 19], and documented practical uses of Bitcoin [7]. Others yet
investigated economic considerations regarding, in particular, the economic costs of
proof-of-work mechanisms such as Bitcoin [20]. Different from these related efforts,
we believe our paper is the first to focus on Bitcoin exchanges.

32 T. Moore and N. Christin

6 Discussion

In this paper, we empirically investigated two risks linked to Bitcoin exchanges. We
conducted a survival analysis on 40 Bitcoin exchanges, which found that an exchange’s
average transaction volume is negatively correlated with the probability it will close
prematurely. We also presented a regression analysis which found that, in contrast to
the survival analysis, transaction volume is positively correlated with experiencing a
breach. Hence, the continued operation of an exchange depends on running a high trans-
action volume, which makes the exchange a more valuable target to thieves.

Our statistical analysis presents three notable limitations. First, there is substantial
randomness affecting when an exchange closes or is breached that is not captured by
our model. Future work might investigate additional explanatory variables, such as the
exchange reputation. Second, some explanatory variables did not achieve statistical sig-
nificance due to the data set’s modest size. The analysis is worth revisiting as time
passes and new exchanges are opened and old ones close. Third, some indicators may
need to be changed as Bitcoin grows. For instance, rapid increases in transaction vol-
umes may render long-term unweighted averages less meaningful.

Finally, we focused on economic considerations, such as closure risks, that a rational
actor would want to estimate before investing in a given exchange. However, reducing
Bitcoin to a mere speculative instrument misses an important piece of the puzzle. Most
Bitcoin users are early adopters, often motivated by non-economic considerations. For
instance, Silk Road users, who constitute a large share of the Bitcoin economy [7], may
shy away from exchanges that require identification, and instead prefer assurances of
anonymity. This may in turn lead them to use exchanges posing greater economic risk.
Studying the unique characteristics of Bitcoin users and investors, compared to typical
foreign exchange traders, is an avenue for future work we think well worth exploring.

Acknowledgments. We thank Rainer Böhme and our anonymous reviewers for their
extensive feedback on an earlier version of this paper. This research was partially sup-
ported by the National Science Foundation under ITR award CCF-0424422 (TRUST).

References

1. Birch, D., McEvoy, N.: Electronic cash – technology will denationalise money. In: Luby, M.,
Rolim, J.D.P., Serna, M. (eds.) FC 1997. LNCS, vol. 1318, pp. 95–108. Springer, Heidelberg
(1997)

2. Chaum, D.: Achieving electronic privacy. Scientific American, 96–101 (August 1992)
3. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://www.

bitcoin.org/bitcoin.pdf
4. Bitcoin Watch, http://bitcoinwatch.com/ (last accessed January 27, 2013)
5. Leyden, J.: Linode hackers escape with $70k in daring Bitcoin heist. The Reg-

ister (March 2012), http://www.theregister.co.uk/2012/03/02/linode_
bitcoin_heist/

6. Lee, T.: Hacker steals $250k in bitcoins from online exchange bitfloor. Ars Tech-
nica (September 2012), http://arstechnica.com/tech-policy/2012/
09/hacker-steals-250k-in-bitcoins-from-online-exchange-
bitfloor/

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://bitcoinwatch.com/
http://www.theregister.co.uk/2012/03/02/linode_bitcoin_heist/
http://www.theregister.co.uk/2012/03/02/linode_bitcoin_heist/
http://arstechnica.com/tech-policy/2012/09/hacker-steals-250k-in-bitcoins-from-online-exchange-bitfloor/
http://arstechnica.com/tech-policy/2012/09/hacker-steals-250k-in-bitcoins-from-online-exchange-bitfloor/
http://arstechnica.com/tech-policy/2012/09/hacker-steals-250k-in-bitcoins-from-online-exchange-bitfloor/

Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk 33

7. Christin, N.: Traveling the Silk Road: A measurement analysis of a large anonymous online
marketplace. Technical Report CMU-CyLab-12-018, Carnegie Mellon University (2012)

8. Jeffries, A.: Suspected multi-million dollar Bitcoin pyramid scheme shuts down, in-
vestors revolt. The Verge (August 2012), http://www.theverge.com/2012/8/27/
3271637/bitcoin-savings-trust-pyramid-scheme-shuts-down

9. Anderson, R.: Closing the phishing hole: Fraud, risk and nonbanks. In: Federal Reserve Bank
of Kansas City – Payment System Research Conferences (2007)

10. Moore, T., Han, J., Clayton, R.: The postmodern Ponzi scheme: Empirical analysis of high-
yield investment programs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 41–56.
Springer, Heidelberg (2012)

11. Bitcoin wiki, https://bitcointalk.org/ (last accessed January 27, 2013)
12. Bitcoin forums, https://en.bitcoin.it/ (last accessed January 27, 2013)
13. Yepes, C.: Compliance with the AML/CFT international standard: Lessons from a cross-

country analysis. IMF Working Papers 11/177, International Monetary Fund (July 2011)
14. Cox, D.: Regression models and life-tables. Journal of the Royal Statistics Society, Series

B 34, 187–220 (1972)
15. Clark, J., Essex, A.: CommitCoin: Carbon dating commitments with bitcoin (short paper).

In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg
(2012)

16. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better – how to make Bitcoin a better
currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Hei-
delberg (2012)

17. Karame, G., Androulaki, E., Capkun, S.: Two Bitcoins at the price of one? Double-spending
attacks on fast payments in bitcoin. In: Proc. ACM CCS, Raleigh, NC (October 2012)

18. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph, Cryptology
ePrint Archive, Report 2012/584 (October 2012)

19. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system, arXiv:1107.452a4v2
[physics.soc-ph] (May 2012), http://arxiv.org/abs/1107.4524

20. Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H.P., Böhme, R.: Can we afford integrity
by proof-of-work? Scenarios inspired by the Bitcoin currency. In: Proc. WEIS, Berlin, Ger-
many (June 2012)

http://www.theverge.com/2012/8/27/3271637/bitcoin-savings-trust-pyramid-scheme-shuts-down
http://www.theverge.com/2012/8/27/3271637/bitcoin-savings-trust-pyramid-scheme-shuts-down
https://bitcointalk.org/
https://en.bitcoin.it/
http://arxiv.org/abs/1107.4524

Evaluating User Privacy in Bitcoin

Elli Androulaki1, Ghassan O. Karame2, Marc Roeschlin1,
Tobias Scherer1, and Srdjan Capkun1

1 ETH Zurich, 8092 Zuerich, Switzerland
{elli.androulaki,capkuns}@inf.ethz.ch,

{romarc,schereto}@student.ethz.ch
2 NEC Laboratories Europe, 69115 Heidelberg, Germany

ghassan.karame@neclab.eu

Abstract. Bitcoin is quickly emerging as a popular digital payment system. How-
ever, in spite of its reliance on pseudonyms, Bitcoin raises a number of privacy
concerns due to the fact that all of the transactions that take place are publicly
announced in the system.

In this paper, we investigate the privacy provisions in Bitcoin when it is used as
a primary currency to support the daily transactions of individuals in a university
setting. More specifically, we evaluate the privacy that is provided by Bitcoin (i)
by analyzing the genuine Bitcoin system and (ii) through a simulator that faith-
fully mimics the use of Bitcoin within a university. In this setting, our results
show that the profiles of almost 40% of the users can be, to a large extent, recov-
ered even when users adopt privacy measures recommended by Bitcoin. To the
best of our knowledge, this is the first work that comprehensively analyzes, and
evaluates the privacy implications of Bitcoin.

Keywords: Bitcoin, user privacy, privacy definitions, experimental evaluation.

1 Introduction

Bitcoin [6] is an emerging digital currency that is currently being integrated across a
number of businesses [1] and exchange markets.

Bitcoin is a Proof-of-Work (PoW) based currency that allows users to generate digital
coins by performing computations. Bitcoin users execute payments by digitally signing
their transactions and are prevented from double-spending their coins (i.e., signing-over
the same coin to two different users) through a distributed time-stamping service [6].
This service operates on top of the Bitcoin Peer-to-Peer (P2P) network and ensures that
all transactions and their order of execution are available to the public. To strengthen
the privacy of its users, Bitcoin users participate in transactions using pseudonyms—
referred to as Bitcoin addresses. Generally, each user has hundreds of different Bitcoin
addresses that are all stored and transparently managed by its client.

In spite of the reliance on pseudonyms, the public timestamping mechanism of Bit-
coin raises serious concerns with respect to the privacy of users. In fact, given that
Bitcoin transactions basically consist of a chain of digital signatures, the expenditure of
individual coins can be publicly tracked [16].

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 34–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Evaluating User Privacy in Bitcoin 35

In this work, we evaluate the privacy that is provided by Bitcoin when it is used to
support the daily transactions of individuals in a university setting. This is achieved
(i) by investigating the behavior of Bitcoin client and exploiting its properties, and (ii)
through a novel simulator that mimics the use of Bitcoin as the primary currency within
a university setting. Finally, we discuss possible measures that can be used to enhance
the privacy of users in Bitcoin. To the best of our knowledge, this is the first work
that analyzes, and evaluates the privacy provisions in Bitcoin. More specifically, our
contributions in this paper can be summarized as follows:

- We adapt existing privacy notions to the Bitcoin context and we investigate the privacy-
enhancing measures that are used in current Bitcoin implementations.

- We design and implement a simulator that faithfully emulates the functionality of Bit-
coin. Our simulator also provides us with “ground truth” information that corresponds
to the use of Bitcoin in a university setting.

- We investigate the privacy provisions of Bitcoin in a realistic university setting through
our simulator. Our results show that the profiles of 40% of the university users can
be constructed using behavior-based clustering techniques with 80% accuracy, even
in the case when users manually transfer their Bitcoins among their addresses in an
attempt to enhance their privacy.

- We discuss possible measures that can be used by Bitcoin developers to enhance the
privacy of users in Bitcoin.

The remainder of this paper is organized as follows. In Section 2, we present a back-
ground on Bitcoin. In Section 3, we introduce metrics that we use to measure privacy
in Bitcoin. In Section 4, we present our Bitcoin simulator and our evaluation results. In
Section 5, we discuss the implications of our findings and we explore possible counter-
measures for enhancing privacy in Bitcoin. In Section 6, we overview the related work
and we conclude the paper in Section 7.

2 Background on Bitcoin

Bitcoin is a decentralized P2P payment system [6] that relies on PoW. Payments are
performed by generating transactions that transfer Bitcoin coins (BTCs) between Bit-
coin users. Users participate in transactions using pseudonyms—referred to as Bitcoin
addresses. Generally, each user has hundreds of different Bitcoin addresses that are all
stored and managed by its (digital) wallet. Each address is mapped through a transfor-
mation function to a unique public/private key pair. These keys are used to authorize
the transfer of the ownership of BTCs among addresses.

Transactions: Users transfer coins (BTCs) to each other by issuing a transaction. A
transaction is formed by digitally signing a hash of the transaction through which a BTC
was acquired. Given that in Bitcoin there is one-to-one correspondence between signa-
ture public keys and addresses, a transaction taking place between two addresses aS and
aR has the following form: τ(aS → aR) = {source, B, aR, SIGskaS

(source, B, aR)}.

36 E. Androulaki et al.

Here, SIGskaS
is the signature using the private key skaS

that corresponds to the pub-
lic key associated with the aS, B is the amount of BTCs transferred, and source is a
reference to the most recent transaction that aS acquired the B BTCs from. After their
creation, Bitcoin transactions are released in the Bitcoin network. Once the validity of τ
is confirmed (as described later in this section), aR can subsequently use this transaction
as a reference to spend the acquired BTCs. Consequently, Bitcoin transactions form a
public record and any user can verify the authenticity of a BTC by checking the chain
of signatures of the transactions in which the BTC was involved.

In the case where aS needs to spend a value that exceeds the maximum value of a
BTC that it possesses, then its Bitcoin client will automatically combine a number of
its BTCs as multiple inputs of the same outgoing transaction. We analyze the impact of
“multi-input” transactions on the privacy of users in Bitcoin in Section 4.1. Figure 4 in
Appendix A depicts an example of multiple-input transactions.

Shadow Addresses: In the current implementation of Bitcoin, a new address—the
“shadow” address [1]—is automatically created and used to collect back the “change”
that results from any transaction issued by the user. Besides the reliance on pseudonyms,
shadow addresses constitute the only mechanism adopted by Bitcoin to strengthen the
privacy of its users.

Confirmation of Transactions: As mentioned before, transactions are broadcasted in
the Bitcoin network and are subject to validity checks by users in the system. Valid
transactions are included by a special type of users, the miners, in Bitcoin blocks that are
also broadcasted in the network. More specifically, to generate a new block, miners must
find a nonce value that, when hashed with additional fields (i.e., the Merkle hash of all
valid and received transactions, the hash of the previous block, and a timestamp), results
in a value below a given threshold. If such a nonce is found, miners then include it in
a block thus allowing any entity to verify the PoW. Upon successful block generation,
a miner is granted a number of new BTCs. This provides an incentive for miners to
continuously support Bitcoin. Table 2 in Appendix B shows the information included in
Bitcoin block number 80,000 as reported in the Bitcoin block explorer [2]. The resulting
block is forwarded to all users in the network, who can then check its correctness by
verifying the hash computation. If the block is deemed to be “valid”1, then the users
append it to their previously accepted blocks, thus growing the Bitcoin block chain.
Bitcoin relies on this mechanism to resist double-spending attacks; for malicious users
to double-spend a BTC without being detected, they would not only have to redo all the
work required to compute the block where that BTC was spent, but also they need to
recompute all the subsequent blocks in the chain.

3 Modelling Privacy in Bitcoin

In this section, we introduce our adversarial model and we define a number of metrics
that can be used to quantify privacy in Bitcoin.

1 That is, the block contains correctly formed transactions that have not been previously spent,
and has a correct PoW.

Evaluating User Privacy in Bitcoin 37

3.1 Adversarial Model

We observe the public log of Bitcoin, denoted by pubLog, within a period of time Δt.
During this period, nU users, U = {u1, u2, . . . , unU}, participate in pubLog through a
set of nA addresses: A = {a1, a2, . . . , anA}. We assume that within Δt, nT transac-
tions have taken place as follows: T = {τ1(S1 → R1), . . . , τnT(SnT → RnT)}, where
τi(Si → Ri) denotes a transaction with (unique) ID number i and Si and Ri denote the
sets of senders’ addresses and recipients’ addresses, respectively.

We assume that the adversary A is motivated to acquire information about the ad-
dresses/transactions pertaining to all or a subset of Bitcoin users. As such, A does not
only have access to pubLog, but is also part of the Bitcoin system and can also incur one
or more transactions through Bitcoin. Furthermore, we assume that A can have access
to the (public) addresses of some vendors along with (statistical) information such as
the pricing of items or the number of their clients within a specified amount of time.
We, however, assume that A is computationally bounded and as such cannot construct
ill-formed Bitcoin blocks, double-spend confirmed transactions, or forge signatures, etc.

Throughout this paper, we consider the “privacy” measures adopted by existing Bit-
coin clients. Namely, we assume that (i) new shadow addresses are used to collect
change that results from issued transactions, (ii) users own many Bitcoin addresses, and
(iii) users are encouraged to frequently change their addresses (by transferring some
of their BTCs to newly created addresses); this conforms with the current practices
adopted in Bitcoin.

3.2 Quantifying Privacy in Bitcoin

In this section, we introduce two different notions of Bitcoin privacy, activity unlinka-
bility and profile indistinguishability and we provide metrics to appropriately quantify
these notions.

Activity unlinkability refers to the fact that an adversary A should not be able to link
two different addresses (address unlinkability) or transactions (transaction unlinkabil-
ity) pertaining to a user of her choice. By design, if A can link two Bitcoin addresses to
the same user, then she can also link all the transactions that these addresses participate
in. Therefore, we focus our analysis on address unlinkability. On the other hand, profile
indistinguishability refers to the (in-)ability of A to reconstruct the profiles of all the
users that participate in pubLog. Profiles, here, consist of the set of addresses (address-
based profiles) or set of transactions (transaction-based profiles) of Bitcoin users. As
such, profile indistinguishability property is a stronger privacy notion than the activity
unlinkability as it assesses the concealment of the profiles of all users in Bitcoin. Unlike
the activity unlinkability case, here we also account for transaction-based profiles. This
is due to the fact that address-based and transaction-based profiles are not equivalent
when it comes to modeling user profiles in Bitcoin2.

In the following, we provide definitions on both privacy notions, and we rely on
these definitions to provide metrics for them. In particular, we define address unlink-

2 An adversary can perform well in address-based profiling but not in transaction-based pro-
filing: she may correctly profile addresses of users that are involved in few transactions and
“miss-classify” few addresses who participate in many transactions.

38 E. Androulaki et al.

ability and profiling indistinguishability through the AddUnl and the ProfInd games,
respectively. We quantify these notions by assessing the advantage of an adversary A
in winning these games over an adversary who responds to all game challenges with
random guesses, AR. We assume that A has access to pubLog and that both A and AR

have gathered (the same) a-priori knowledgeKA with respect to correlations of a subset
of addresses (i.e., whether these addresses belong to the same user or not).

Activity Unlinkability (Address Unlinkability): We construct the address unlinkabil-
ity game in Bitcoin, AddUnl, as follows. A chooses an address a0 ∈ pubLog chosen
among the addresses that appear in pubLog and sends it to the challenger C. If the owner
of a0 does not have any other Bitcoin address, then A wins. Otherwise, the challenger
C randomly chooses a bit b. If b = 1, then C randomly chooses another address a1
∈ pubLog such that a0, a1 belong to the same user; otherwise, C randomly chooses a1
such that the two addresses are owned by different users. The challenger sends 〈a0, a1〉
to A, who responds with her estimate b ′ on whether the two addresses belong to the
same user. A wins the game if she answers correctly, i.e., b = b ′. We say that Bitcoin
satisfies address unlinkability if for all p.p.t. adversaries A and ∀〈a0, a1〉, A has only a
negligible advantage over AR in winning, i.e., if:

Prob[b ′ ← A(pubLog,KA) : b = b ′]− Prob[b ′ ← AR(KA) : b = b ′] ≤ ε,

where ε is negligible.

Quantifying Address Unlinkability: In Section 4.1, we show that due to inherent prop-
erties of the Bitcoin protocol and client, A can succeed with a considerable probability
in winning the above AddUnl game. In what follows, we measure the degree to which
Bitcoin addresses can be linked to the same user.

To do so, we express the estimate of A through an nA × nA matrix, Elink, where
Elink[i, j] = {pi,j}i,j∈[1,nA]. That is, that for every address ai, A assesses the probabil-
ity pi,j with which ai is owned by the same user as every other address aj in pubLog.
Note that Elink incorporates KA, and any additional information that A could extract
from pubLog (e.g., by means of clustering, statistical analysis, etc.). Similar to [15], we
quantify the success of A in the AddUnl game as follows. Let GTlink denote the gen-
uine address association matrix, i.e., GTlink[i, j] = 1, if ai and aj are of the same user
andGTlink[i, j] = 0 otherwise for all i, j ∈ [1, nA]. For each address ai we compute the
error in A’s estimate, i.e., the distance of Elink[i, ∗] from the genuine association of ai
with the rest of the addresses in pubLog, ||Elink[i, ∗]−GTlink[i, ∗]||, where ||·|| denotes
norm-L1 of the corresponding row-matrix. Thus, the success of A in AddUnl, SuccA,
can then be assessed throughA’s maximum error: max

∀ai /∈KA
(||Elink[i, ∗]−GTlink[i, ∗]||).

Similarly, we represent the estimate of AR in the AddUnl game for all possible pairs
of addresses by the nA × nA matrix ER

link which is constructed as follows. ER[i, j] =
πi,j if 〈ai, aj〉 ∈ KA, and ER

link[i, j] = ρ + (1 − ρ)12 otherwise. Here, πi,j represents
the probability that addresses ai aj correspond to the same user according to KA, and
ρ refers to the fraction of addresses in {pubLog-KA} that cannot be associated to other

Evaluating User Privacy in Bitcoin 39

addresses (i.e., when their owners have only one address)3. For pairs of addresses that
are not included in KA, this probability equals to ρ+ (1− ρ)12 .

Given this, we measure the degree of address unlinkability in Bitcoin against A by
measuring address linkability, i.e., by evaluating the additional success thatAcan achieve
from pubLog, when compared to AR. We call this advantage LinkabsA : LinkabsA =

SuccA − SuccAR , and its normalized version LinkA: LinkA =
SuccA−SuccAR

SuccAR .4

User Profile Indistinguishability: The profile indistinguishability property is a stronger
privacy notion than the activity unlinkability as it refers to the concealment of all Bitcoin
user profiles. Here, we require that an adversary is not able to group addresses or trans-
actions corresponding to Bitcoin users correctly. As mentioned before, we account for
the indistinguishability of the profiles of users, assuming address-based and transaction-
based profiles.

We construct the ProfInd game as follows. Here, the challenger C sends to A the
number of users nU in pubLog-KA. A responds with nU (non-overlapping) sets of ad-
dresses (or transactions) and with Eprof = {gi}nU

i=1 representing the estimate on the
profile of all users in the system. Let GTprof = {gti}nU

i=1 represent the genuine group-
ing of addresses (or transactions) to users. That is, GTprof = {aui}nU

i=1 for address-
based profiles, and GTprof = {τui}nU

i=1, for transaction-based profiles, where aui and
τui represent the sets of addresses and transactions respectively of user ui. Clearly, A
wins if she guesses correctly, i.e., if Eprof ≡ GTprof .

We say that a system satisfies the profile indistinguishability property if there is no
p.p.t. adversary A who wins the ProfInd game with better probability than AR, i.e.:
∀ p.p.t. A: Prob[Eprof ← A(pubLog, nU) : Eprof ≡ GTprof]−

Prob[ER
prof ← AR(nU) : E

R
prof ≡ GTprof] ≤ ε.

Quantifying User Profile Indistinguishability: We now proceed to quantify A’s advan-
tage in winning the ProfInd game by measuring the similarity of A’s estimate Eprof

from the genuine grouping of profiles GTprof , Sim(Eprof ,GTprof), where the simi-
larity function Sim ranges in [0, 1]. As in address unlinkability, we measure profile
indistinguishability against A by measuring the degree of profile distinguishability that
A can achieve, i.e., we assess the advantage of A in approximatingGTprof over AR by
ProfA = Sim(Eprof ,GTprof)− Sim(ER

prof ,GTprof).
5

We quantify Sim(Eprof ,GTprof) and ProfA by relying on two commonly used en-
tropy based distance metrics, namely: the Normalized Mutual Information (NMI) and
the Adjusted Mutual Information, (AMI). NMI assesses the similarity of two group-
ings of the same items (in our case, Eprof and GTprof), and takes higher values (1) the
more identical the groupings are [19, 20]. On the other hand, AMI assesses the advan-
tage of A in winning the ProfInd game. More specifically, given the two groupings

3 In our experiments in Section 4, we assume that ρ is negligible since there are at least two
addresses per user in Bitcoin (a real address and a “shadow” address).

4 We say that Bitcoin satisfies μ-address unlinkability if ∀ p.p.t. algorithms A and the corre-
sponding AR : Prob[Elink ← A(pubLog,KA),ER

link ← AR(KA) : LinkA ≥ 1− μ] ≤ ε.
5 We say that a system offers μ-profile indistinguishability, and we write μ-ProfInd, if ∀ p.p.t.
A: Prob[Eprof ← A(pubLog, nU),E

R ← AR(nU) : ProfA ≥ 1− μ] ≤ ε.

40 E. Androulaki et al.

Eprof and GTprof AMI approaches 0 when Eprof is close to random assignment of ad-
dresses/transactions to groups, i.e., ER

prof , and is 1 when Eprof matches GTprof [19,20].
Assuming address-based profiles, NMI and AMI are computed as follows:

NMI =
I(Eprof ,GTprof)

max(H(Eprof),H(GTprof))
, AMI =

I(Eprof ,GTprof)− E
max(H(Eprof),H(GTprof))− E ,

where:

I(Eprof ,GTprof) =
nU∑
i=1

nU∑
j=1

n(i,j)

nA
log(

n(i,j) ·nA

n(i,∗)n(∗,j)
),

H(Eprof) = −
nU∑
i=1

n(i,∗)
nA

log(
n(i,∗)
nA

), H(GTprof) = −
nU∑
j=1

n(∗,j)
nA

log(
n(∗,j)
nA

),

E =
nU∑
i=1

nU∑
j=1

∑
n∈M

n
nA

log(nAn
n(i,∗)n(∗,j)

)
n(i,∗)!n(∗,j)!(nA−n(i,∗))!(nA−n(∗,j))!

nA!(n(i,∗)−n)!(n(∗,j)−n)!(nA−n(i,∗)−n(∗,j)−n)! .

Here, nA is the number of Bitcoin addresses, n(i,j) is the number of ui’s addresses,
which are assigned to group gj , n(i,∗) and n(∗,j) are the number of addresses of ui

and gj respectively. E reflects the expected mutual information between GTprof and
a random grouping of addresses (ER

prof). Also, M = [max(n(i,∗) + n(∗,j) − nA, 0),
min(n(i,∗), n∗,j)]. Similar calculations can be derived to compute NMI and AMI for
transaction-based profiles.

Remark 1. Although NMI and AMI represent sufficiently well the success of A in
profiling all the users in the system, they do not measure the success of the adversary
on the profiling of a particular user ui. In Section 4.4, we measure the success of A in
profiling ui by assessing the maximum similarity of the addresses (or transactions) of
each user ui with each adversarial cluster gj i.e., max

∀j
(Sim(aui , gj)).

4 Evaluating Privacy in Bitcoin

In what follows, we show how the adversary, given pubLog, can gather some knowledge
about Bitcoin users by exploiting the properties of existing Bitcoin client implementa-
tions. We then evaluate, by means of our Bitcoin simulator, the success of the adversary
in the aforementioned privacy games given this knowledge.

4.1 Exploiting Existing Bitcoin Client Implementations

Current Bitcoin client implementations enable A to link a fraction of Bitcoin addresses
that belong to the same user.

Heuristic I—Multi-input Transactions: As mentioned earlier, multi-input transac-
tions occur when u wishes to perform a payment, and the payment amount exceeds the
value of each of the available BTCs in u’s wallet. In fact, existing Bitcoin clients choose
a set of BTCs from u’s wallet (such that their aggregate value matches the payment) and
perform the payment through multi-input transactions. It is therefore straightforward to
conclude that if these BTCs are owned by different addresses, then the input addresses

Evaluating User Privacy in Bitcoin 41

belong to the same user. Note that, currently, Bitcoin clients do not provide support for
different users to participate in a single transaction; to achieve this, users would have to
modify the Bitcoin client implementation themselves.

Heuristic II—“Shadow” Addresses: As mentioned earlier, Bitcoin generates a new
address, the “shadow” address [1], on which each sender can collect back the “change”.

This mechanism suggests a distinguisher for shadow addresses. Namely, in the case
when a Bitcoin transaction has two output addresses, aRn , aRo , such that aRn is a new
address (i.e., an address that has never appeared in pubLog before), and aRo corresponds
to an old address (an address that has appeared previously in pubLog), we can safely
assume that aRn constitutes a shadow address for ai. Note that, in the current Bitcoin
implementation, users rarely issue transactions to two different users.

Evaluating Heuristics I and II: In what follows, we evaluate the implications of these
heuristics on the user-privacy in Bitcoin. Given the absence of recent statistical data
on the number of Bitcoin users, we rely on an estimate of the number of Bitcoin users
performed in September 2011; at that time, Bitcoin users amounted to 60,000 users [1].
We then created a C++ parser that parses the first 140,000 blocks (till August 2011) in
the Bitcoin block explorer [2].

Our C++ parser extracts all the addresses in each block and categorizes them in clus-
ters of Generic Addresses, GAs, given the two aforementioned heuristics. The parser
then outputs a list of addresses organized in different GAs. Our results show that there
were 1,632,648 unique addresses in the first 140,000 blocks. Given Heuristic I, we could
classify these addresses into 1,069,699 distinct GAs. Given Heuristic II, this number
decreases to 693,051 GAs; this corresponds to grouping approximately 58% of Bit-
coin addresses with an average of 11.55 addresses per GA. This clearly shows that A’s
advantage in the AddUnl game is considerable given Heuristics I and II.

4.2 Behavior-Based Analysis

Besides exploiting current Bitcoin implementations,A could also make use of behavior-
based clustering techniques, such as K-Means (KMC), and the Hierarchical Agglom-
erative Clustering (HAC) algorithms. Let U be the set of users populating Bitcoin and
(GA1, . . . ,GAnGA) denote the GAs that A has obtained by applying the two aforemen-
tioned heuristics on pubLog, respectively. Given this, the goal of A is to output a group
of clusters of addresses Eprof = {g1, . . . , gnU

} such that Eprof best approximates U.
Since each GA is owned by exactly one user, the estimate on the assignment of each
GAi can be modeled by a variable zi such that zi = k, if and only if, GAi belongs to gk.

In fact, HAC assumes that initially each GA represents a separate cluster ({zi =
i}nGA

i=1) and computes similarity values for each pair of clusters. Clusters with higher
similarity value are combined into a single cluster and cluster-to-cluster similarity val-
ues are re-computed. The process continues until the number of created clusters equals
the number of users nU. KMC is then initialized using the output of HAC and assumes
that each user is represented by the center of each cluster. The algorithm iterates as-
signments of GAs to clusters and aims at minimizing the overall distance of GAs to

42 E. Androulaki et al.

the center of the cluster they have been assigned to. The centers of the clusters and the
GA-to-cluster distances are re-computed in each round.

In our implementation (cf. Section 4.3), we represent each transaction that appears
within a GA using: (i) the time at which the transaction took place, (ii) the indexes of
the different GAs that appear within the transaction (as senders or recipients), and (iii)
the values of the BTCs spent by the transaction. Let τx denote the set of transactions of
GAx. The degree of similarity between GAi and GAj , denoted by Simhac(GAi,GAj),
is then represented by the cosine similarity of lists τi and τj , i.e., Simhac(GAi,GAj) =∑

∀τ∈τi∩τj
(f(τ,i)·f(τ,j))

‖τi‖·‖τj‖ , where f(τ,i), f(τ,j) are the occurrences of item τ in lists τi and

τj respectively, and ‖X‖ denotes the norm II of vector X . Given this, the resulting
distance metric in KMC is Distkmc(GAi, gk) =

2
1+Simhac(GAi,gk)

− 1.
Our implementation also accounts for constraints that are posed by real-world set-

tings. Namely, since users cannot be physically located in two different places at the
same time, they cannot participate in two different (physical) exchanges of goods at the
same time. To account for this case (cf. Section 4.4), we apply different weighting for
similarity of GAs who participate in transactions concurrently.

4.3 Simulating the Use of Bitcoin in a University

To evaluate the success of A in the AddUnl and the ProfInd games, we simulate a
realistic case of using Bitcoin in the Department of Computer Science in ETH Zurich.
Here, we assume that the shops located around the university also accept BTCs as a
currency. Given the lack of details and statistics about the current use of Bitcoin, this
was one of the few “workable” uses of Bitcoin that we could try to accurately model
and through which we could evaluate the advantage of A in the system.

Experimental Setup: To evaluate the privacy implications of using Bitcoin in a univer-
sity environment, we devised the setup shown in Figure 1. Our Bitcoin simulator takes
an XML configurations file as input and outputs: (i) a log that details the events that
were simulated, the “ground truth”, as well as (ii) the resulting simulated public Bitcoin
log, pubLog. The XML configurations file contains all the necessary parameters to run
the simulator. These include the number of users, the number of miners, the simulation
time, the difficulty in block generation, as well as usage configurations for creating user
profiles and Bitcoin sellers/buyers. Further details about our simulator can be found in
Appendix D. As shown in Figure 1, the outputs of our simulator are used to evaluateA’s
success. In fact, once the simulations terminate, a Perl-based parser uses the simulated
Bitcoin block as input and pre-classifies the simulated addresses into GAs according
to Heuristics I and II. The resulting “pre-filtered output” is then fed into our clustering
algorithms, the HAC and the KMC algorithms (both implemented in C). The output
of these algorithms is then compared using another Perl-based script with the “ground
truth” generated by the simulator in order to compute the success of A in the AddUnl
and the ProfInd games.

We tuned our simulator to match a real-world scenario that reflects the actual behav-
ior of the staff and student members of a Computer Science Department of a university
in the Fall 2012 semester. In our setting, we consider a variable number of users, 5.2%

Evaluating User Privacy in Bitcoin 43

�������	

����������
�����������

���������

���������������

������
� �������!�"#
� �������!�$#

����������
�%�
������

��!!���
���!������

&��'��

���

���

��
�(���

����������)��!*
�����

���+	�������&��'��

Fig. 1. Experimental setup used throughout our simulations. The outputs of our Bitcoin simulator
are pre-filtered according to Heuristics I and II and then fed as input to our clustering algorithm.
The clustering result is then compared with the “ground truth” that is emulated by our simulator.

of which are “Professors”, 42.0% are “Staff” and the remaining 52.8% are “Students”.
We consider a total of 6 events, each having several options: lunching/dining (12 op-
tions), buying groceries (2 options), buying from vending machines (4 options), online
shopping (5 options), purchasing books (2 options), and performing barters with other
users, totalling 25 different Bitcoin vendors present in our system. For each user, we
assign a probability that the user undergoes each of the possible options of each event.
These probabilities are assigned according to the “category” of the user; that is, if the
user is a “Professor”, then it is more likely that he/she would eat lunches at more ex-
pensive restaurants, when compared to the case where the user falls in the “Student”
category. For each event, we specify in the XML configuration the following parame-
ters: the frequency of the event, and the price range per option of the event. Each option
is assigned a rating that would reflect its popularity. The probability of performing an
option is interpolated from the frequency of occurrence of the event per week, and from
the rating of the option. To ensure a large variety of profiles in our user base, we specify
in the XML configuration a minimum and maximum value for the frequency, rating and
price fields. These bounds depend on the category of the user, the event and option in
question (c.f. Appendix C). At the start of our experiments, users originally have few
(< 10) addresses; as they issue new transactions, new (shadow) addresses are created.
We also model the behavior of “privacy-aware” users; we assume that these users create
new addresses and send some of their BTCs from their old to their new addresses.

4.4 Experimental Results

Throughout our experiments, we emulated two different scenarios for each simulation
round. In the first scenario denoted by “Partial Knowledge”, we assume that A is aware
of the location/service of all Bitcoin vendors and as such can distinguish whether a

44 E. Androulaki et al.

Table 1. Behavior-based clustering results in the “Partial Knowledge” and “No Knowledge” sce-
narios. A column entitled X (Y%) denotes an experiment featuring X users among which Y%
are privacy-aware. Each data point in our plots is averaged over five rounds of experiments; we
also present the corresponding 95% confidence intervals (shown after the “±” sign).

100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)

LinkA 0.91 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01

ProfaA
NMI 0.76 ± 0.01 0.87 ± 0.01 0.79 ± 0.01 0.70± 0.01 0.80 ± 0.01
AMI 0.75 ± 0.01 0.86 ± 0.01 0.77 ± 0.01 0.68± 0.01 0.77 ± 0.01

Prof τA
NMI 0.68 ± 0.01 0.73 ± 0.02 0.70 ± 0.01 0.65± 0.01 0.72 ± 0.01
AMI 0.67 ± 0.01 0.72 ± 0.01 0.69 ± 0.01 0.63± 0.01 0.70 ± 0.01

(a) Results in the “Partial Knowledge” scenario.

100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)

LinkA 0.90 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01

ProfaA
NMI 0.79 ± 0.01 0.89 ± 0.01 0.79± 0.01 0.71 ± 0.02 0.80 ± 0.01
AMI 0.78 ± 0.02 0.88 ± 0.01 0.78± 0.02 0.69 ± 0.02 0.78 ± 0.01

Prof τA
NMI 0.69 ± 0.01 0.73 ± 0.03 0.69± 0.03 0.65 ± 0.01 0.72 ± 0.01
AMI 0.68 ± 0.01 0.72 ± 0.01 0.68± 0.03 0.63 ± 0.01 0.70 ± 0.01

(b) Results in the “No Knowledge” scenario.

transaction was performed in exchange of a physical good. In this case, we include
the vendors’s addresses in the prior knowledge of A when computing Advunl; we also
assume that A can tune the clustering algorithm to take into account that the same user
performing this transaction cannot appear in other transactions that takes place at the
same time. This case emulates the realistic setting where A can extract a subset of the
addresses owned by geographically co-located Bitcoin users/vendors from the overall
public Bitcoin log; for example,A can extract from the Bitcoin log all the addresses that
interact with a known address of a vendor located within the university environment. In
the second scenario denoted by “No Knowledge”, we consider the case where A does
not know the location or service of the vendors, and as such does not have any prior
knowledge, but assumes that up to 10% of the transactions are performed in exchange
of goods delivered over the Internet.

Given this setup, we evaluate the metrics LinkA, ProfaA (for address-based profiles),
and ProfτA (for transaction-based profiles) with respect to (i) the fraction of “privacy-
aware” users and (ii) the number of users nU. By privacy-aware users, we refer to users
that manually generate new Bitcoin addresses (following a configuration in the XML
file) to enhance their privacy in the system. Table 1 depicts our findings. Our results
show that both the “Partial Knowledge” and the “No Knowledge” configurations exhib-
ited comparable results.

In the first round of experiments, we evaluate the success of A with respect to the
fraction of “privacy-aware” users. More specifically, we run our clustering and privacy
evaluation algorithm in a setting featuring 200 users, among which 0%, 50%, and 100%
of the users are privacy-aware. Table 1 shows LinkA, ProfaA, and ProfτA with respect
to the fractions of privacy-aware users. Here, we use a normalized version on LinkA.

Evaluating User Privacy in Bitcoin 45

20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Fraction of Transactions Captured (%)

F
ra

c
ti
o
n
 o

f
U

s
e
rs

 (
%

)

●

●

●

●

●

●

●

●

0% Privacy Awareness
50% Privacy Awareness
100% Privacy Awareness

Fig. 2. Fraction of transactions captured
by our clustering algorithms in the “No
Knowledge” case

100 150 200 250 300 350

0
.6

0
.7

0
.8

0
.9

1
.0

Estimate of the Number of Users

P
ro

f A

NMI (Addresses)
AMI (Addresses)
NMI (Transactions)
AMI (Transactions)

Fig. 3. The case where A cannot accu-
rately estimate nU. We assume the ‘Partial
Knowledge” case where nU = 200.

In both configurations, the advantage of A in AddUnl game is only negligible af-
fected by the fraction of the privacy aware users in the system. More specifically, we
can see that our clustering algorithms outperform AR by almost 90%. On the contrary,
ProfaA and ProfτA show a better dependency on the fraction of privacy aware users.
When none of users in the system are privacy-aware, the performance of our clustering
algorithms is high. In particular, in both configurations ProfAa (NMI and AMI for ad-
dresses) range within 0.87 − 0.89, while ProfτA (NMI and AMI for transactions) are
0.73. However, as the fraction of the privacy aware users increases, the performance of
A drops and results in Profτ A and ProfaA of 0.70 and 0.63 respectively. This mischief
can be explained by the fact that privacy aware users add noise to the Bitcoin log. How-
ever, the fact that AMI values remain consistently far from 0 and close to 1 indicates
that A performs much better than AR and that the estimate chosen by A is close to the
genuine assignment of users to clusters.

Figure 2 depicts the overall fraction of user profiles (measured by means of the sim-
ilarity of transactions appearing in a user’s wallet and the corresponding cluster as dis-
cussed in Section 3.2) that are captured by A. Our results show that in the case when
nU = 200 users with 0% privacy awareness, almost 42% of the users have their pref-
erences captured with 80% accuracy. In the case featuring 100% privacy-aware users,
this fraction drops to 35% of the users whose profile was correctly clustered with an
accuracy of at least 80%. We therefore conclude that the privacy of users in Bitcoin can
be compromised, even if users manually create new addresses in order to enhance their
privacy in the system.

Furthermore, our results show that A’s advantage over AR is not significantly af-
fected by the number of participant users in the case of address unlinkability. ProfaA
and ProfτA increase from 0.76 and 0.68 to 0.80 and 0.72 respectively as the number
of users increases from 100 to 400. This is mostly because when the number of users
increases, the assignments of addresses (or transactions) into groups of users (AR) per-
forms worst. In Figure 3, we evaluate the case where A does not have an accurate
estimate of the number of users in the university setting. Our findings show that even

46 E. Androulaki et al.

if A’s estimate of the number of users is not accurate, the privacy of a considerable
fraction of users is still compromised.

5 Discussion

So far, our analysis focused on the current implementation of Bitcoin when used in
a university setting. Note that our results provide rather an upper bound to privacy
in the studied university setting than an accurate assessment of privacy in Bitcoin in
generic settings. In what follows, we analyze the implications of our findings in generic
implementations/uses of Bitcoin.

Evading Heuristic I: We start by showing that Heuristic I cannot be easily evaded in
any future implementation of Bitcoin without compromising the basic operation of Bit-
coin. Indeed, the combination of multiple inputs ensures that coins with “large” values
can be recreated from existing smaller BTCs; this prevents the value of coins from be-
ing continuously deprecated following every issued transaction until the value of these
coins reaches the minimum amount. At that point in time, the only way for Bitcoin
users to issue transactions without combining their previous coins is to perform mul-
tiple transactions with single-input, one coin at a time. This clearly does not solve the
problem since this process can still be tracked by the adversary (transactions will be
linked by time). Another alternative would be for Bitcoin developers to provide sup-
port for different users to transparently participate in a single transaction. While this
would increase the use-cases where Bitcoin finds applicability (e.g., performing con-
tracts [1]), the collaborative construction of transactions by different users is unlikely
to be predominately used in the network.

Evading Heuristic II: Similarly, it is easy to see that evading Heuristic II can only
decrease the privacy of Bitcoin users. That is, if “shadow” addresses were not utilized,
and the change of coins is simply put back in the sender’s address then users’ activities
can be traced in an easier way. We point out that Heuristic II results in the dispersion of
the coins among several addresses of the users. This makes the privacy leakage due to
Heuristic I even more considerable. One possible way to “evade” Heuristic II would be
for Bitcoin users to (i) first divide the coins according to the required payment in one
transaction and (ii) then make the payment with zero change at a random point later in
time. Another possible solution to “harden” the reliance on Heuristic II would be for
Bitcoin to support Mutli-Input Multi-Output (MIMO) transactions.

Implications to Generic Uses of Bitcoin: We argue that our findings are not specific to
the studied university setting and apply to other generic-uses of Bitcoin. More specifi-
cally, we believe that the adversary can, to a large extent, extract from the public Bitcoin
log a small set of addresses that correspond to geographically co-located users; the ad-
versary can subsequently run our clustering algorithms on the extracted set of addresses.
For instance, if Bitcoin were to be used across shops, then the adversary can extract
all the addresses that interacted with a specific set of Bitcoin vendors that are located
within a specific geographic region. The larger is the number of addresses of (physical)

Evaluating User Privacy in Bitcoin 47

vendors that the adversary knows, the more complete is the view of the adversary of the
geographic sub-network.

The reliance on third-party trusted entities (e.g., Bitcoin banks, Bitcoin Anonymiz-
ers, FlexCoin [3]) emerges as one of the few workable solutions to increase the privacy
of Bitcoin clients. These entities can hide the direct relationship between the inputs and
outputs of a transaction within a sufficiently large anonymity set. However, this solution
comes at odds with the main intuition behind the complete decentralization in Bitcoin.

6 Related Work

In [5], Elias investigates the legal aspects of privacy in Bitcoin. In [7], Babaioff et al.
address the lack of incentives for Bitcoin users to include recently announced transac-
tions in a block, while in [4], Syed et al. propose a user-friendly technique for managing
Bitcoin wallets. In [14], Karame et al. thoroughly investigate double-spending attacks
in Bitcoin and show that double-spending fast payments in Bitcoin can be performed
in spite of the measures recommended by Bitcoin developers. Clark et al. [11] pro-
pose the use of the Bitcoin PoW to construct verifiable commitment schemes. Reid and
Harrigan [16] analyze the flow Bitcoin transactions in a small part of Bitcoin log, and
show that external information, i.e., publicly announced addresses, can be used to link
identities and organizations to some transactions.

ECash [8–10] and anonymous credit cards were the first attempts to define privacy-
preserving transactions. Privacy in ECash consists of user anonymity and transaction
unlinkability; by relying on a set of cryptographic primitives ECash ensures that pay-
ments pertaining to the same user cannot be linked to each other or to the payer, pro-
vided that the latter does not misbehave. In [15], Pfitzmann et al. define unlinkability
and privacy in pseudonymous systems. Dwork [13] defined differential privacy and
quantified the information leakage from the query access of individuals. In Section 3.2,
we adapt Dwork’s generic differential privacy notion to our Bitcoin privacy notions.
Finally, in [18], Shokri et al. quantify location privacy by assessing the error of the
adversarial estimate from the ground truth. In [12, 17] the authors further introduce
entropy-based metrics to assess the communication privacy in anonymous networks.

7 Conclusion

In this paper, we evaluated the privacy provisions in Bitcoin when it is used as a primary
currency to support the daily transactions of individuals in a university setting.

Our findings show that the current measures adopted by Bitcoin are not enough to
protect the privacy of users if Bitcoin were to be used as a digital currency in a univer-
sity setting. More specifically, we rely on a simulator that mimics the use of Bitcoin in
a realistic university setting. Our results show that if Bitcoin is used as a digital cur-
rency to support the daily transactions of users in a typical university environment, then
behavior-based clustering techniques can unveil, to a large extent, the profiles of 40%
of Bitcoin users, even if these users try to enhance their privacy by manually creating
new addresses. Finally, we discussed a number of solutions that could be integrated by
Bitcoin developers to enhance the privacy of users.

48 E. Androulaki et al.

Acknowledgements. The authors would like to acknowledge the reviewers for their
valuable comments and feedback.

References

1. Bitcoin – Wikipedia, https://en.bitcoin.it/wiki
2. Bitcoin Block Explorer, http://blockexplorer.com/
3. Flexcoin –The Bitcoin Bank, http://www.flexcoin.com/
4. Bitcoin Gateway, A Peer-to-peer Bitcoin Vault and Payment Network (2011),

http://arimaa.com/bitcoin/
5. Bitcoin: Tempering the Digital Ring of Gyges or Implausible Pecuniary Privacy (2011),

http://ssrn.com/abstract=1937769 or http://dx.doi.org/10.2139/
ssrn.1937769

6. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System
7. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and Red Balloons. CoRR (2011)
8. Brands, S.: Electronic Cash on the Internet. In: Proceedings of the Symposium on the Net-

work and Distributed System Security (1995)
9. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)
10. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.

(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990),
http://dl.acm.org/citation.cfm?id=88314.88969

11. Clark, J., Essex, A.: CommitCoin: Carbon Dating Commitments with Bitcoin (Short Paper).
In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg
(2012)

12. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine,
R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)

13. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z.,
Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

14. Karame, G., Androulaki, E., Capkun, S.: Double-Spending Fast Payments in Bitcoin. In:
Proceedings of ACM CCS (2012)

15. Pfitzmann, A., Hansen, M.: Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management – A Consolidated Proposal for Terminology.
Fachterminologie Datenschutz und Datensicherheit, 111–144 (2008)

16. Reid, F., Harrigan, M.: An Analysis of Anonymity in the Bitcoin System. CoRR (2011),
http://www.bibsonomy.org/bibtex/257d6640d03ae4a5668ef8b326564
61eb/dblp

17. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Din-
gledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg
(2003)

18. Shokri, R., Theodorakopoulos, G., Boudec, J.L., Hubaux, J.P.: Quantifying location privacy.
In: Proceedings of the IEEE Symposium on Security and Privacy (2011)

19. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison:
is a correction for chance necessary? In: 26th Annual International Conference on Machine
Learning, ICML (2009)

20. Vinh, N.X., Epps, J., Bailey, J.: Information Theoretic Measures for Clusterings Comparison:
Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning
Research (2010)

https://en.bitcoin.it/wiki
http://blockexplorer.com/
http://www.flexcoin.com/
http://arimaa.com/bitcoin/
http://ssrn.com/abstract=1937769
http://dx.doi.org/10.2139/ssrn.1937769
http://dx.doi.org/10.2139/ssrn.1937769
http://dl.acm.org/citation.cfm?id=88314.88969
http://www.bibsonomy.org/bibtex/257d6640d03ae4a5668ef8b32656461eb/dblp
http://www.bibsonomy.org/bibtex/257d6640d03ae4a5668ef8b32656461eb/dblp

Evaluating User Privacy in Bitcoin 49

A Multi-input Transactions

Output H

Output P

Output Q

Output R

Output/Input A

Output/Input B

Fig. 4. Example of referencing input/output in transactions

B Bitcoin Block Explorer

Table 2. Example Block of Bitcoin. The block contains 2 transactions, one of which awards the
miner with 50 BTCs.

Hash: 000000000043a8c0fd1d6f726790caa2a406010d19efd2780db27bdbbd93baf6
Previous block: 00000000001937917bd2caba204bb1aa530ec1de9d0f6736e5d85d96da9c8bba
Next block: 00000000000036312a44ab7711afa46f475913fbd9727cf508ed4af3bc933d16
Time: 2010-09-16 05:03:47
Difficulty: 712.884864
Transactions: 2
textbfMerkle root: 8fb300e3fdb6f30a4c67233b997f99fdd518b968b9a3fd65857bfe78b2600719
Nonce: 1462756097

Input/Previous Output Source & Amount Recipient & Amount
N/A Generation: 50 + 0 total fees Generation: 50 + 0 total fees

f5d8ee39a430...:0 1JBSCVF6VM6QjFZyTnbpLjoCJ...: 50 16ro3Jptwo4asSevZnsRX6vf..: 50

50 E. Androulaki et al.

C Example Configuration File

Listing 1. Example of XML configuration parameters for a “lunch” event with 12 op-
tions corresponding to the profile of a “Professor”
<!– lunch, eventid="0" refers to event with id="0" from above –>
<ProfileEvent eventid="0" minFreqPerWeek="5" maxFreqPerWeek="5" >
<Store storeid="0" maxPref="1" minPref="0" maxPrice="10.0" minPrice="8.0" />
<Store storeid="1" maxPref="1" minPref="0" maxPrice="13.0" minPrice="10.0" />
<Store storeid="2" maxPref="1" minPref="0" maxPrice="15.0" minPrice="13.0" />
<Store storeid="3" maxPref="4" minPref="2" maxPrice="25.0" minPrice="15" />
<Store storeid="4" maxPref="2" minPref="0" maxPrice="20.0" minPrice="15.0" />
<Store storeid="5" maxPref="2" minPref="0" maxPrice="17.0" minPrice="12.0" />
<Store storeid="6" maxPref="0.5" minPref="0" maxPrice="20.0" minPrice="8.0" />
<Store storeid="7" maxPref="0.5" minPref="0" maxPrice="10.0" minPrice="7.5" />
<Store storeid="8" maxPref="4" minPref="2" maxPrice="25.0" minPrice="15" />
<Store storeid="9" maxPref="0.5" minPref="0" maxPrice="25.0" minPrice="10" />
<Store storeid="10" maxPref="0.5" minPref="0" maxPrice="10.0" minPrice="5.0" />
<Store storeid="11" maxPref="3" minPref="1" maxPrice="12.0" minPrice="9.0" />
</ProfileEvent>

D Bitcoin Simulator

Our simulator is round-based; in each simulation round (defined as a “weekly timestep-
ping” interval), events are added to a priority queue with a probability dictated by the
configuration file. These events correspond to one of the following operations:

– Issue a new transaction: Users might issue new Bitcoin transactions whose time,
value, beneficiary and purpose stem from the XML configurations file. The process
of transaction issuance in our simulator fully mimics its counterpart in the genuine
Bitcoin system.

– Generate a new Bitcoin address: Here, in addition to the automatically generated
addresses in Bitcoin (cf. Section 3), “privacy-aware” users might decide to generate
a number of new addresses to further “obfuscate” their usage of Bitcoin.

Conforming with the current use of Bitcoin, only few users in our setting were miners
(i.e., mining is currently mostly performed by dedicated mining pools).

Our Bitcoin simulator abstracts away network delays, congestion, jitter, etc.. We also
assume that all transactions in the system are well-formed and we do not model trans-
action fees that are incurred in the network. While malformed transactions and double-
spending attempts [14] can be indeed witnessed in the genuine Bitcoin system, we
believe that malicious behavior in Bitcoin is orthogonal to our privacy investigation—
which explains the reason why we did not model such a misbehavior in our simulator.
Moreover, our simulator relies on a variant greedy algorithm that closely approximates
the genuine algorithm used in Bitcoin. Note that while the distribution of generated
blocks in our simulator matches that in Bitcoin [14]6, we increased the average time

6 It was shown in [14] that the block generation in Bitcoin follows a shifted geometric distribu-
tion with parameter 0.19.

Evaluating User Privacy in Bitcoin 51

between the generation of successive blocks in the simulator to better cope with simu-
lated network dynamics7.

E Captured Transactions w.r.t. nU

Figure 5 shows the impact of the number of users nU on the performance of our profiling
algorithms.

20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Fraction of Transactions Captured (%)

F
ra

c
ti
o
n
 o

f
U

s
e
rs

 (
%

)

●

●

●

●

●

●

●

●

100 Users
200 Users
400 Users

Fig. 5. Fraction of captured transactions with respect to nU. Here, we consider the “No Knowl-
edge” case where 50% of the users are privacy-aware.

Our results show that the fraction of users whose transactions are correctly captured
by our algorithms is not considerably affected by the number of users in the system. For
instance, the fraction of users whose profiles were captured with an accuracy of at least
80% is approximately 40% when nU = 100, 200, 400.

Note that this conforms with our previous observations in Section 4.4; as shown in
Figure 3, ProfA is only slightly affected as nU increases.

7 Throughout our experiments, we considered that new blocks were generated every 20 minutes
on average.

The Importance of Being Earnest [In Security Warnings]

Serge Egelman1 and Stuart Schechter2

1 University of California, Berkeley
2 Microsoft Research, Redmond
egelman@cs.berkeley.edu

stuart.schechter@microsoft.com

Abstract. In response to the threat of phishing, web browsers display warnings
when users arrive at suspected phishing websites. Previous research has offered
guidance to improve these warnings. We performed a laboratory study to investi-
gate how the choice of background color in the warning and the text describing
the recommended course of action impact a user’s decision to comply with the
warning. We did not reveal to participants that the subject of the study was the
warning, and then we observed as they responded to a simulated phishing attack.
We found that both the text and background color had a significant effect on the
amount of time participants spent viewing a warning, however, we observed no
significant differences with regard to their decisions to ultimately obey that warn-
ing. Despite this null result, our exit survey data suggest that misunderstandings
about the threat model led participants to believe that the warnings did not apply
to them. Acting out of bounded rationality, participants made conscientious deci-
sions to ignore the warnings. We conclude that when warnings do not correctly
align users’ risk perceptions, users may unwittingly take avoidable risks.

Keywords: Usability, security warnings, risk communication.

1 Introduction and Background

Many web browsers use full screen warning messages that are displayed to users when-
ever they visit suspected phishing websites. Egelman et al. studied several of these
warnings and proposed a set of recommendations for improving them [1]. These rec-
ommendations included designing warnings that get noticed by interrupting the user’s
primary task, recommending a clear course of action so that the user knows what to do,
distinguishing them from less serious warnings to prevent habituation, and minimizing
the impact that a well-designed forgery has on a user’s trust. In this study, we performed
a controlled experiment to examine some of these recommendations.

The first question we examined was whether clearer explanations of users’ avail-
able options would result in them making better choices. Most browser-based phishing
warnings present users with multiple options, usually a recommendation not to visit a
suspicious website and another option to bypass the warning. We examined the options
offered by Microsoft’s Internet Explorer 8 phishing warning [3].

When a user visits a suspected phishing website, she is advised to “go to my homepage
instead.” Because this text does not conceptually help the user complete her primary
task—it was unlikely that she was trying to visit her homepage—we were concerned that
this text may contribute to the warning being ignored. Thus, we tested how option text

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 52–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Importance of Being Earnest [In Security Warnings] 53

impacts decisions by creating an experimental condition that appeared to be more likely
to aid in completing the primary task: “search for the real website.” We hypothesized that
this text would be more effective because it may facilitate completion of a primary task
and it underscores the threat model: the user was visiting a fraudulent website designed
to look like a legitimate one and therefore following this link may help the user locate
the intended website. In addition to examining the option text, we wanted to examine
the recommendation to minimize habituation by designing phishing warnings differently
from less-severe warnings. Thus, we also varied the background color by turning it red
in some conditions, while keeping it white in another.

We contribute to the literature on security warnings by showing that altering text
and color significantly increase user attention. However, we show that attention alone
is insufficient for warning compliance; because many participants did not believe the
warnings were relevant to them, they chose to ignore them. We conclude that a user
may face moral hazard when she encounters a security warning that does not effec-
tively communicate the risk it is trying to mitigate. We later validated this finding in
subsequent work [4].

2 Methodology

We performed our experiment on the Microsoft campus, using a recruitment service to
obtain a (non-university-biased) sample of 59 participants. We did not tell participants
that we were studying security, as that would compromise external validity by priming
them. Instead, we told them that we were performing a usability study of Hotmail and
therefore only recruited Hotmail users. At the time, Hotmail was the largest webmail
provider worldwide [5], and therefore we believe our sample is generalizable to a large
proportion of Internet users.

We randomly assigned participants to one of three between-group conditions and
then gave them a set of tasks that involved checking email. After completing the final
task, participants received a simulated phishing email. We observed their reactions to a
warning from one of the three treatments and then asked them to fill out an exit survey.

2.1 Recruitment

We recruited participants during September of 2008. Thirty were male and the mean
age was 37.6 (σ = 11.6). We selected participants who had previously opted in to be-
ing contacted about user studies at Microsoft, and screened out participants who either
did not use Hotmail for their email or IE as their primary web browser. Because we
were only interested in participants who were most vulnerable to phishing attacks, we
screened out participants who had technical jobs.

When a participant arrived for his individual session, we asked him to sign a consent
form, and then handed him an instruction sheet. The experimenter read the instructions
aloud to ensure that everyone received the same information. When ready to begin, the
experimenter left the room so as to not influence participants’ behaviors. The experi-
menter observed participants from a separate control room as they completed a series
of tasks. Once complete, the experimenter returned to administer an exit survey.

54 S. Egelman and S. Schechter

2.2 Tasks

To maximize ecological validity, we wanted participants to behave as they would when
seeing phishing warnings outside the laboratory. Since security is rarely a primary task
(e.g., users do not sit down at the computer to “not get phished”), we needed to mask
the purpose of the study. We told participants that we were examining the usability of
Hotmail. As an incentive, we paid them a dollar for each message that they opened
during the study, and an additional four dollars if they “interacted with that message.”
So as to not bias them towards our phishing messages—we did not want them to feel
compelled to click links in every message—we told them that filing messages away
or deleting them would also count. Thus, we created an incentive only to read every
received email, not necessarily to follow its instructions; participants received just as
much compensation for deleting a message as following its links.

Because we could not solely rely on them to receive real email during the study
period from outside sources, we explained that the experimenter would send them a
message every ten minutes, but did not specify how many times this would occur. The
first message sent by the experimenter was a personal message written in plaintext that
asked the participant to visit a movie website and respond with the movie they most
wanted to see. The second message was an HTML-based message that came from a
photo-sharing website inviting the participant to view a shared photo album that the ex-
perimenter had posted. These two messages served only to further convince participants
that they were part of an email usability study, we therefore do not mention them again.

Two minutes after participants viewed the second email message, the experimenter
sent a simulated phishing message. This message did not follow the ten minute interval
and was intended to create some ambiguity as to whether it was part of the study or not.
The domain that we used to send it was registered solely for the study, though in its
body it claimed to be from Microsoft and encouraged readers to click a link and enter
personal information on the resulting website. The domain used for the destination URL
as well as sending the email, microsoft-study.com, was added to a phishing blacklist,
thereby triggering a phishing warning when accessed. The message offered participants
the opportunity to enter a prize drawing if they visited the included URL. Upon arriving
at this URL, participants saw one of three warnings that we describe in the next section.
If they chose to ignore the warning and proceed to the website, they were presented
with a login form that appeared identical to the Hotmail login screen (i.e., the goal of
the simulated phishing scam was to capture Hotmail credentials).

In real life, a phishing warning appears after a user has clicked a link in a scam email.
For ecological validity, we needed participants to be in this same frame of mind, which
is why we incentivized them to read messages received during the study. Specifically, if
a participant did not read the message, she would never attempt to visit the suspicious
website, she would never see one of the three warning messages, and we would not
yield any data regarding whether or not she would have obeyed the warning. We were
not measuring how many messages participants read or how many websites they visited.
The behavior we were studying was whether, after reading a scam email and visiting
its included URL, participants would dismiss the phishing warning and submit login
credentials. Thus, our dependent variable was whether participants entered information
into the fake Hotmail login website.

The Importance of Being Earnest [In Security Warnings] 55

Fig. 1. Participants who clicked the link contained in the simulated phishing email were exposed
to one of three possible phishing warnings. The bottom represents the search condition, while the
middle represents the home condition, and the top represents the white condition.

2.3 Conditions

We created our initial two conditions to examine the role of the option text: one warning
recommended that users “go to my homepage instead,” while the warning in the other
condition recommended that they “search for the real website.” We refer to these as the
home and search conditions, respectively. Our hypothesis was that study participants
would be less likely to heed the recommendations of the phishing warnings if those
recommendations appeared unlikely to help complete a primary task (i.e., they were
not attempting to visit a homepage at the time that the warning appeared). We believed
that the text “search for the real website” would not conflict with the primary task as
well as underscore the threat model.

Previously, Egelman et al. concluded that users were habituated to ignoring the IE7
phishing warnings because these warnings were designed similarly to other IE7 security
warnings, such as those used to indicate SSL errors [1]. We created a third condition to
examine habituation effects by removing the red border, and replacing it with a white
border, so that it would look similar to the ubiquitous IE7 warnings. We refer to this
condition as the white condition. Our three experimental conditions are described in
Table 1 and depicted in Figure 1. We intentionally did not create a fourth condition,

56 S. Egelman and S. Schechter

to separate the effects of the red border from the effects of the new text (e.g., a warn-
ing with a white border using the “search for the real website” text), over concerns
about statistical power. Specifically, we designed this experiment as a first inquiry into
whether an effect exists, rather than an attempt to quantify the size of that effect.

Table 1. Descriptions of the three conditions as well as summary statistics for the total viewing
time, average number of views per user, and the average time per view. Participants in the search
condition viewed the warnings significantly more frequently as well as for significantly longer
periods of time in total.

Condition Option Text Background Total Time Average Views Average Time

White Go to my homepage instead White 12.00s 1.36 9.76s
Home Go to my homepage instead Red 17.81s 1.67 10.76s
Search Search for the real website Red 30.97s 2.67 11.84s

3 Results

We observed 48 of 59 participants (81%) follow the link to the suspected phishing web-
site. Due to technical difficulties, three of these participants saw no phishing warnings
and therefore proceeded to enter their personal information (i.e., in the absence of a
warning, participants believed this was a legitimate website). Throughout the rest of
this paper, we focus on the 45 remaining participants who saw one of the three phishing
warnings. Of these 45 participants who viewed the warnings, twelve entered personal
information (27%), whereas everyone else navigated away from the website.

A chi-square test did not show that participants in any one condition were signifi-
cantly more likely to divulge their credentials: five in the white condition (33% of 15),
three in the home condition (20% of 15), and four in the search condition (26.7% of
15). We believe that this null result has more to do with low statistical power stemming
from our limited sample size. However, we found a significant interaction effect based
on both the red border and the text of the warnings with regard to the amount of time
participants spent reading the warnings. Table 1 lists the total time participants in each
condition spent viewing the phishing warnings, the number of times they revisited the
phishing warnings, and the average time spent viewing the warnings.1

We performed a Kruskall-Wallis one-way analysis of variance and found that par-
ticipants in the search condition viewed the phishing warnings for significantly longer
time in total (χ2

2 = 7.83, p < 0.020). Upon performing post-hoc analysis using a
Mann-Whitney U test, we found that this was due to significant differences between
the 31s average viewing time in the search condition and the 12s average viewing time
in the white condition (p < 0.010; Cohen’s d = 0.98). Likewise, when examining the
total number of times that participants viewed the warnings, we found that those in the
search condition went back to review the warning significantly more often (i.e., they
closed the warning, reread the email message, clicked the link again, etc.; χ2

2 = 7.02,

1 We removed data from one participant in the white group after he—against directions—asked
for help and then waited for the experimenter to respond from the observation room, therefore
artificially increasing the amount of time he spent viewing the warning.

The Importance of Being Earnest [In Security Warnings] 57

p < 0.030). This was also attributed to the contrast with the white condition (p < 0.012;
Cohen’s d = 0.99). This indicates an interaction effect between the red background and
the new text; participants spent significantly longer analyzing the warnings only when
both these features were present.

Using our exit survey, we found a significant correlation between participants ig-
noring warnings during the experiment and claiming to have seen them previously
(φ = 0.497, p < 0.001); nine of the twelve “victims” said they recognized the warn-
ings (75%), whereas only seven of the thirty-three non-victims (21%) claimed to have
recognized the warnings. Thus, the combination of the new text and red background de-
creased habituation, which may explain why participants in the search condition spent
significantly longer viewing the warnings.

4 Discussion

Our warning manipulations increased the amount of time participants spent reading the
warnings. It is not clear whether the originality of the designs simply decreased habit-
uation, or whether the new option text caused them to think more about their choices.2

Still, a third of our participants ultimately succumbed to the attack. We found no correla-
tion between falling for the attack and the amount of time spent viewing the warnings.
Thus, while participants in the search condition paid more attention to the warnings,
they were just as likely to dismiss them. In this section we discuss some possible rea-
sons for why the warnings failed and how warning effectiveness may be improved.

4.1 Bounded Rationality

Of the twelve participants who divulged credentials, all but one understood that the
warnings wanted them to navigate away (i.e., “do not visit the website”). The one par-
ticipant, who was in the white condition, responded “check the sender or link to make
sure it would not be harmful.” Thus, participants did not disregard the warnings because
they did not understand what the warnings wanted them to do. Instead, we believe that
participants chose to disregard the warnings because they did not believe they were at
risk; none of the warnings (Figure 1) mentioned a specific threat unless the user clicked
the “more information” link. The warnings only said that the website “has been re-
ported as unsafe” and that it was reported for “containing threats to your computer.”
These terms are vague and do not describe one specific threat model. Thus, it is not
surprising that participants who ignored the warnings did not understand the threat: ten
of the participants who ignored the warnings (83% of 12) said that they did so because
they were visiting a legitimate website.

Users are exposed to many varying ill-defined online threats. In research on users’
mental models of computer security, Wash observed that this has resulted in widely
varying conceptualizations when given vague terms like “security” and “hacker” [6].
Because the warnings used terminology like “unsafe” and “threats to your computer,”

2 Six (40% of 15) participants in the search condition attempted to use the search functionality
of the warning to find the “real” website. Since no real website existed, this proved futile.

58 S. Egelman and S. Schechter

without providing details, participants likely had varying mental models. When given
explanations of the threat model, participants acted rationally: nine of ten participants
who clicked the “more information” link, and read about phishing, complied with the
warning. These participants correctly understood that the website was attempting to
steal their credentials.

4.2 Moral Hazard

We examined participants’ understandings of the threat model by asking them to ex-
plain the danger of ignoring the warnings. We coded correct answers as ones that said
phishing scams attempt to steal personal information. We found that only 14 understood
this (31% of 45). Of the remaining 31 participants, all of them mentioned other threats.
Some examples included:

– “I could potentially get a virus or spyware”
– “Getting a virus ruining your computer”
– “Will get some spyware”

Three participants who disregarded the warnings (25% of 12) said that they did not care
if our computer was infected with a virus. That is, because they believed that someone
else would bear all the risk from an infected computer, they did not believe there were
any incentives to obeying the warnings. While this would be a rational justification if
the threat were indeed malware (see, e.g., [2]), it illustrates how bounded rationality,
caused by a limited understanding of the threat model, resulted in moral hazard.

4.3 Lack of Motivation

In Wogalter’s Communication-Human Information Processing Model (C-HIP) [7], peo-
ple undergo several steps between warning exposure and choosing an action. Motivation
is a key step: users are unwilling to comply with warnings that they do not believe ap-
ply to them. Thus, the changes we made to the warning resulted in improvements at the
attention stages of the model by minimizing habituation effects (this was corroborated
by the significant correlation between participants ignoring the warnings and claiming
to recognize them; those in the search condition were least likely to recognize them).
However, the warnings failed because they failed to motivate participants.

We therefore believe that our experimental results indicate that motivation problems
may be preventable by designing warnings to explicitly state a threat model. In fact,
we later performed a followup experiment to validate this finding [4]: participants were
significantly more likely to obey SSL warnings when those warnings explicitly com-
municated threat models that participants found to be relevant to them.

5 Conclusion

We expected to find that by using techniques to increase attention, participants would
be more likely to obey the warnings because they would spend more time reading them.

The Importance of Being Earnest [In Security Warnings] 59

We found that we were partially correct: participants spent more time reading the warn-
ings, but they ultimately did not behave any differently. Our exit survey data suggests
participants who were unmotivated by the threat model—as they understood it—chose
to disobey the warnings. We expected to observe a much greater effect size and there-
fore used a limited sample. In the white condition, ten of fifteen participants complied
with the warnings. We consider this to be the baseline rate of compliance because this
condition was designed to appear similar to previous phishing warnings (i.e., this con-
dition approximated a control). Given our sample size, for there to be a significant
difference between one of the other experimental conditions and this baseline rate of
compliance (67%), the other conditions would need compliance rates of 100%. Thus,
phishing warnings have improved to the point that much larger sample sizes are needed
to quantitatively study minor design changes.

While we were unable to reject the null hypothesis, this study yielded important
lessons for future security mitigations. We showed that distinguishing severe risks from
other less-severe risks may aid in capturing user attention. However, warnings cannot
rely on attention alone, they must also communicate risk effectively. Many participants
incorrectly believed they were being warned about different irrelevant threats. In future
warnings, designers should highlight the risks of ignoring the warnings so that users
are more likely to understand that the warnings apply to them. This means warning
less often in low risk situations, providing stronger evidence of the presence of risk, or
helping users to link the risk to their immediate situations through contextual cues.

References

1. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: An empirical study of the effective-
ness of web browser phishing warnings. In: CHI 2008: Proceeding of the 26th SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 1065–1074. ACM, New York (2008)

2. Herley, C.: So long, and no thanks for the externalities: the rational rejection of security advice
by users. In: New Security Paradigms Workshop, pp. 133–144 (2009)

3. Lawrence, E.: IE8 Security Part III: SmartScreen Filter (July 2008),
http://blogs.msdn.com/ie/archive/2008/07/02/ie8-security-part
-iii-smartscreen-filter.aspx

4. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an empirical
study of ssl warning effectiveness. In: Proceedings of the 18th USENIX Security Symposium,
SSYM 2009, pp. 399–416. USENIX Association, Berkeley (2009)

5. Terdiman, D.: Microsoft aiming to clean up hotmail user’s inboxes. CNET News (October
3, 2011), http://news.cnet.com/8301-13772 3-20114975-52/microsoft-
aiming-to-clean-up-hotmail-users-inboxes/

6. Wash, R.: Folk models of home computer security. In: Proceedings of the Sixth Symposium
on Usable Privacy and Security, SOUPS 2010. ACM, New York (2010)

7. Wogalter, M.S.: Communication-Human Information Processing (C-HIP) Model. In: Wogal-
ter, M.S. (ed.) Handbook of Warnings, pp. 51–61. Lawrence Erlbaum Associates (2006)

http://blogs.msdn.com/ie/archive/2008/07/02/ie8-security-part-iii-smartscreen-filter.aspx
http://blogs.msdn.com/ie/archive/2008/07/02/ie8-security-part-iii-smartscreen-filter.aspx
http://news.cnet.com/8301-13772_3-20114975-52/microsoft-aiming-to-clean-up-hotmail-users-inboxes/
http://news.cnet.com/8301-13772_3-20114975-52/microsoft-aiming-to-clean-up-hotmail-users-inboxes/

Exploring Extrinsic Motivation for Better Security:
A Usability Study of Scoring-Enhanced Device Pairing

Alexander Gallego1, Nitesh Saxena2, and Jonathan Voris3

1 YieldMo, Inc.
2 University of Alabama at Birmingham

3 Columbia University

Abstract. We explore the use of extrinsic motivation to improve the state of
user-centered security mechanisms. Specifically, we study applications of scores
as user incentives in the context of secure device pairing. We develop a scoring
functionality that can be integrated with traditional pairing approaches. We then
report on a usability study that we performed to evaluate the effect of scoring on
the performance of users in comparison operations. Our results demonstrate that
individuals are likely to commit fewer errors and show more acceptance when
working with the scoring based pairing approach. Framing pairing as a game and
providing feedback to users in the form of a score is an efficient way to improve
pairing security, particularly among users such as children who may not be aware
of the consequences of their decisions while performing security tasks.

Keywords: Device Pairing, Games, Usability, Entertainment, Mobility, Ubiqui-
tous Computing.

1 Introduction

Devices which utilize short range wireless communication are commonplace and con-
tinue to proliferate. This popularity unfortunately increases the prominence of associ-
ated security risks. Wireless channels are easy to eavesdrop upon and manipulate. A
fundamental security objective is therefore to secure them. In this paper, the term “pair-
ing” refers to the process of bootstrapping secure communication between two wire-
less devices in a way that is resistant to eavesdropping and man-in-the middle attacks.
A promising research direction towards solving the pairing dilemma is to leverage an
Out-Of-Band (OOB) channel that is governed by human users. Examples of OOB chan-
nels include audio, visual, and tactile channels. Unlike classical radio channels, OOB
channels are “human-perceptible,” i.e., the underlying transmission and reception that
drives them can be perceived by human senses. Due to this property, OOB communica-
tion provides authentication and integrity, unlike radio communication.1

The usability of an OOB-based pairing method is very important. Since OOB chan-
nels typically have low bandwidth, the shorter the data that a pairing method needs to
transmit over these channels, the better its usability. A recent innovation to this end is

1 Previous research has shown that it is more difficult for humans to identify the origin of sound
than other forms of output [5]. Unlike traditional wireless channels, however, it is possible for
users to do so.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 60–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exploring Extrinsic Motivation for Better Security 61

the development of Short Authenticated String (SAS) based protocols (e.g.,[8]) that re-
duce the length of data transmitted over OOB channels. A variety of pairing methods
based on visual, audio, tactile, and infrared OOB channels have been proposed based
on these protocols [4].

Unfortunately, device pairing has not been addressed in a fully desirable manner.
Prior work on pairing raises several fundamental usability and security related concerns
and research challenges. One of the most prominent of these is that the amount of
security that a SAS based pairing method provides is dependent on the size of strings
that it uses; a k-bit SAS limits the probability of a successful attack to 2−k. Existing
pairing methods use short strings in their SAS protocols. Typically, these values are
only 15 bits long. SASs of this size are not large enough to provide sufficient security
for certain applications. Unfortunately, increasing the length of a pairing system’s SASs
causes pairing to take longer to complete. This, in turn, leads to poor usability and can
also have an impact on security.

Further, even while using short OOB strings, several comparison-based pairing
methods do not offer the theoretical level of security guaranteed by their underlying
protocols, as demonstrated in [4]. This is due to the potential for human errors in these
protocols. Such errors can be of two forms: fatal and safe [1]. Fatal errors (also known
as false positives or “Type I” errors) occur when a user accepts a pairing instance,
although the OOB strings on the two devices did not match, which may lead to a man-
in-the-middle attack. Safe errors (or false negatives or “Type II” errors), on the other
hand, occur when a user rejects a pairing instance even when the OOB strings on the
two devices match. Such errors undermine the usability of pairing, but can also have an
indirect impact on security; a failed pairing necessitates repetition, which may lead to
user annoyance and translate into attacks eventually.

Our overall solution to these challenges is to make use of a reward system as a way
of measuring and improving users’ performance during the pairing process. The system
draws from motivation research in human psychology. Motivation can be intrinsic or
extrinsic [7]. Intrinsic motivation emanates from oneself, i.e., when one is inherently
interested in a task. Clearly, human users lack intrinsic motivation for security tasks.
Extrinsic motivation, on the other hand, relates to how users can be externally motivated
for non-intrinsically interesting tasks [6], and is directly applicable to security tasks,
such as pairing. In this paper, we consider a very simple form of extrinsic motivation,
visual scores, to improve the security and usability of secure device pairing. Framing
pairing as a game and providing feedback to users in the form of a score is an efficient
way to improve pairing security, particularly among users such as children who may
not be aware of the consequences of their decisions while performing security tasks.

Our contributions in this paper are as follows: (1) We develop a scoring function-
ality that can be integrated with traditional pairing approaches that involve the manual
comparison of numbers displayed on two devices; (2) We report on a between-subjects
study to evaluate the effect of scoring on the performance of numeric comparisons.

2 Threat Model for Device Pairing

We summarize the threat model for device pairing based on OOB communication [8].
In this model, wireless devices can establish two types of communication mediums.

62 A. Gallego, N. Saxena, and J. Voris

The first is a traditional wireless radio channel, which is characterized by a large band-
width capacity. We imagine a worst case scenario in which an adversary has full con-
trol over the wireless channel. The second medium comprises the set of OOB chan-
nels, which feature modest bandwidths but are physically authenticatable. That is, OOB
channels are crafted from output which can be perceived by unassisted humans, which
allows users to verify transmission sources themselves.

3 Design of Pairing Methods

In this section, we present the design and implementation of two pairing approaches.
One of these, referred to as Plain Comparison, is a variant of the traditional approach in-
volving numeric comparisons. The other, referred to as Scored Comparison, integrates
a scoring and grading functionality with plain numeric comparisons. Traditional pairing
approaches involving numeric comparisons employ the comparison of a single 5 digit
number displayed on the screen of two devices. For better security, one possibility is
to employ longer numbers; however, longer numbers become harder for the users to
compare. In our Plain Comparison method, we display four 5 digit numbers on four
seperate quadrants of the screen, implying four times the security provided by the tra-
ditional method.

In order to add a scoring functionality to the Plain Comparison method, we needed
to incorporate some comparison instances that could be used to calculate the score
based on the performance of the user. Note that the “pairing instances,” that is, the
numbers resulting from the OOB strings generated by the pairing protocol, cannot be
used for this purpose because the devices themselves are not aware whether these in-
stances are matching or non-matching. To this end, we create some dummy “scoring
instances”; whether these are matching or non-matching is pre-determined and known
to the devices. A score is calculated based on how accurately users compare the scoring
instances. The scoring instances are required to calculate a user’s score, since unlike
the pairing instances, the device pair shares knowledge regarding whether or not they
match. As an alternative to scoring instances, the secure channel can be used to calculate
scores based on pairing instances if score calculation is postponed until after devices are
successfully paired. While this is more efficient, it further delays user feedback.

3.1 Scored Comparison Method

The scored pairing GUI consists of colored quadrants which are used as a visual
mnemonic technique to help users associate the numbers displayed within. We also used
another type of mnemonic technique called chunking, where information is broken up
into more manageable sizes to allow short-term memory to operate more efficiently.
This pairing method consisted of 2 rounds, and therefore 8 comparison instances. 4 in-
stances were shown per round; this was done to keep the design similar to the Plain
Comparison method. 4 instances were used for pairing and 4 instances were used for
scoring.

Initialization Step. In order for our pairing game to calculate a score, the two devices
that are being paired must have a mechanism for determining which displayed values

Exploring Extrinsic Motivation for Better Security 63

match and which differ. In order to accomplish this, the computers can first agree upon
a seed value. There are several ways in which the two devices can settle on a seed. Two
possibilities are the use of a publicly known value that is controlled by a service provider
or synchronized system times. We employed the latter approach in our implementation.
After a seed has been agreed upon, it is used to populate two binary arrays. These arrays
are used to generate the numeric values that will be displayed to users during the pairing
process. Note that our prototype implementation also utilizes the same seed in order to
generate pairing instances. In a real world implementation, however, pairing instances
would be generated from OOB strings that are created as a result of the underlying SAS
pairing protocol.

Pairing Step. The pairing step is the iterative game loop of our system. To start, all
four color quadrants of the pairing game’s display will be empty. The basic idea of
this portion of the pairing procedure is to populate these quadrants with random five
digit integer values. First, two of the quadrants are filled with pairing instances; these
will be used to determine the success or failure of the pairing operation. Next, the re-
maining half of the display is populated with scoring instances; whether or not a user
can successfully detect matches in these values will determine his or her score. In case
the pairing failed, a score is still displayed but the user will be asked to play another
round until pairing succeeds. Matching values are generated by hashing a portion of the
pertinent bit string, while mismatches are generated pseudorandomly.

Score Calculation. The method’s state was recorded with each press of the screen
(i.e., user’s input) and at the end of every round. This was an important part of our
score calculation. The score had two major components: performance points based on
accuracy of comparison and free give-away points for trying. First, we compared the
screen presses array with that of the non-matching instances. If the instance was a scor-
ing instance and it was a correct identification of a non-matching number, we gave the
user 5 points; otherwise, we gave the user 1 point. The last free give-away point was
added to the score as part of our extrinsically motivated design, disregarding whether
it was a pairing instance or a failed scoring instance. The give away points were the
user’s emotional reward, and to prevent the user from feeling bad about his perfor-
mance, which could potentially affect future pairing attempts. At this point, we give the
user another reward for his or her performance. If the user recieved a perfect score, we
displayed “You Performed Excellent! - Great job”. If the user was able to successfully
match three quarters of their values, we displayed “You Performed Well! - Good work”.
Otherwise, we displayed “You Performed Fair”.

3.2 Plain Comparison Method

In order to have a meaningful comparison of our system, we developed a non-scoring
version of the implementation which we refer to as the “Plain Comparison” method.
The non-scoring version differed from the scoring version in significant ways. First, as
the name indicates there was no scoring involved. Second, this version of the imple-
mentation had exactly half of the comparisons the scoring version had. This was due
to the fact that we added artificial sets of numbers to the scoring version, in order to

64 A. Gallego, N. Saxena, and J. Voris

account for the score. In other words, in the Plain Comparison method, there were 4
comparisons of 5 digit numbers, one number per quadrant. Since both the Plain and
Scored Comparison techniques used the same amount of scoring instances, they each
provided the same theoretical level of security.

4 Usability Evaluation

4.1 Testing Framework

To implement our pairing mechanisms as part of our study, we used two Nokia N97
phones. In order to ensure that the data we collected from our test subjects was as
meaningful as possible, we gave users hands on experience with an implementation
of our prototype deployed on these devices. Although we were attempting to simulate
as realistic of a pairing scenario as possible, we still desired to eliminate unnecessary
complexity from our testing system. To this end, we removed the traditional wireless
link between the two phones that were used throughout our study. Rather than transmit-
ting key information over this channel and using it to derive OOB pairing values, OOB
strings were generated by the N97s on the fly using a pseudorandom number generator.

To capture the efficiency and efficacy of our prototypes, user actions were logged. We
captured both the time taken to complete pairing tasks as well as any errors committed
along the way. We provided users with a post-conditional questionnaire in order to
gauge the opinions users had about our pairing system. Rather than developing our
own survey instrument from scratch, we made use of the System Usability Scale (SUS)
[2]. SUS is a technique for measuring the usability of a system in an efficient and
reliable manner [2]. Our survey consisted of the questions that comprise SUS along
with demographic questions and the following queries: (1) The method was enjoyable,
(2) The method took a long time, (3) I would like to pair with another user’s devices
by making use of this method, and (4) I perceive this method to be secure. Users who
evaluated the Scored Comparison pairing method were asked two additional questions:
(5) I was annoyed with the fact that the score was shown at the end of the method, and
(6) I would prefer to see the score after every comparison rather than at the end of the
method.

4.2 Participant Information

We decided to conduct a between-subjects study with two subsets of 20 volunteers.We
recruited these individuals from students working and studying at our college campus.
We spread awareness of the study through emails and by signing people up face to
face. Movie theater coupons were provided to participants as compensation for their
assistance. We aggregated the following data about our users’ backgrounds: age, gender,
education level, experience pairing wireless devices, and experience with video games.

Table 1 presents demographic information about our study volunteers. The two sets
of participants had similar levels of experience with wireless technology. 61.9%, of
scored users, stated that they had performed wireless device pairing before, while just
over half, 52.4% of plain users said they had done so. All users unanimously responded
that they had played video games in the past.

Exploring Extrinsic Motivation for Better Security 65

4.3 Experimental Design

To begin a test with a subject, the administrator navigated to the Scored or Plain Com-
parison entry in the devices’ application menus. The two phones were then turned over
to the testers for the remaining duration of the study. Before allowing users to begin
their pairing trials, instructions on how to utilize the Scored or Plain Comparison pair-
ing application were displayed to them. After making their way through the instruc-
tions, a “Play” button appeared. This initiated the numeric comparisons. Users then
proceeded to use either the Scored or Plain Comparison method. The act of pairing was
repeated five times in order to provide subjects with ample experience. When finished,
the “Play” button that initialized the pairing procedure was replaced with an “Exit” but-
ton. After getting several opportunities to perform simulated pairing with one of our
two prototypes, each volunteer was presented with a post-conditional questionnaire.
This included the demographic queries listed above followed by a series of five point
Likert items. There were 14 of these questions for the plain survey and sixteen for the
scoring version. The first ten of these comprised the System Usability Scale [2] with
the slight modification that our pairing implementation was referred to as a method as
opposed to a system.

Table 1. Demographics of participants

Demographic
Information

Plain
Comparison

Scored
Comparison

AGE

17 - 25 52.4 52.4
26 - 29 33.3 38.1
30 - 40 14.3 9.5
GENDER

Male 42.9 61.9
Female 57.1 38.1
EDUCATION

School graduate 14.2 19.0
Bachelor degree 28.6 38.1
Masters degree 52.4 33.3
Doctorate degree 4.8 9.5

Table 2. Summary of Experimental Results

Scored Comparison Plain Comparison

Execution Time
Average Standard Deviation Average Standard Deviation
22.0 sec 11.2 sec 16.6 sec 13.4 sec

Error Rates
Safe Fatal Safe Fatal
1.8% 2.8% 6.5% 4.8%

SUS Scores
Average Standard Deviation Average Standard Deviation

74.3 11.7 69.2 15.2

66 A. Gallego, N. Saxena, and J. Voris

4.4 Experimental Results

We have summarized the main results of our study in Table 2. Each volunteer who tested
the Plain or Scored Comparison prototype executed 5 pairing sessions, accounting for a
total of 100 test cases. The average execution time for the Scored Comparison method
was 22.0 seconds for one device and 22.1 seconds for the other with standard deviations
of 11.2 and 11.3 respectively. The Plain Comparison application completed in 16.7
seconds on average and a 13.6 standard deviation for the first device and 16.4 seconds
with a standard deviation of 13.3 on the second. The small variation in execution time
between the two mobile devices is attributable to the brief delay in pressing the “Finish”
buttons on the two devices.

For the method of Scored Comparison, users were presented with 2 matching values
and 6 mismatching values per pairing session for a total of 200 matches and 600 mis-
matched numbers over all 100 test cases. Out of these, 3 safe errors and 11 fatal errors
were committed on one device. This yields a safe error rate of 3/200 = 1.5% and a
fatal error rate of 11/600 = 1.8%. On the other device, 4 safe errors and 23 fatal errors
were committed, producing a 4/200 = 2.2% safe error rate and a 23/600 = 3.8% fatal
error rate. The average of the error rates on the two devices is 1.8% safe and 2.8% fatal.

With respect to Plain Comparison, each pairing attempt was comprised of one match-
ing entry and 3 mismatching entries, resulting in a total of 100 matches and 300 mis-
matches over the 100 test cases completed by our volunteers. On one device, 6 safe
errors and 18 fatal errors were committed, while users committed 7 safe and 11 fatal
errors on the other device. This results in a safe error rate of 6/100 = 6.0% and a fatal
error rate of 18/300 = 6.0% for the first device; and a safe error rate of 7/100 = 7.0%
and a fatal error rate of 11/300 = 3.7% for the second device. The average error rate
across both devices is 6.5% and 4.8% for safe and fatal errors respectively.

On average, users assigned the Scored Comparison technique a 74.3 on the SUS
scale with a standard deviation of 11.7. The Plain Comparison method was given a
SUS rank of 69.2 and a standard deviation of 15.2. Test subjects who utilized the Scored
Comparison method responded with a 3.5 on average when asked if they felt that the
pairing technique they used was enjoyable, while those using Plain Comparison pro-
vided a slightly higher 3.7 response to this query on average. Scored users assigned an
average score of 2.5 when asked if their pairing method took a long time. Volunteers
who worked with the Plain Comparison method gave this question a 2.6 average. When
asked if they would like to use the method, users of the Scored Comparison approach
provided an average response of 3.6 and Plain Comparison volunteers gave an average
rank of 3.7. When asked the question regarding their perception of the security of their
given method, the average responses were 3.4 from scored users and 3.7 from users of
the plain method. This was the last question posed to the Plain Comparison user group.
Scored users provided 2.5 and 3.0 average responses when asked if they were annoyed
about the score being withheld from them until after pairing and whether they would
prefer to see the score after each comparison, respectively.

4.5 Interpretation and Analysis of Results

Looking at the average execution times, the Plain Comparison method was faster than
the Scored Comparison variant by 5.2 seconds on one device and 5.7 seconds on the

Exploring Extrinsic Motivation for Better Security 67

other (unpaired t-tests, however, did not indicate any statistically significant difference
between the two methods). This is intuitive because the latter method involved more
comparisons due to the presence of scoring instances. It must be noted, however, that
users were required to make twice as many comparisons with the scored approach but
time taken was not doubled. This suggests that providing users with a score which as-
sesses their pairing performance could possibly encourage them to compare individual
pairing values more rapidly.

The effect of scoring on our participants’ pairing performance was one of the most
interesting results of our study. The inclusion of a score had a dramatic impact on users’
ability to successfully detect which pairing entries were matches and which were not.
The average safe error rate across the two devices fell from 6.5% to 1.8% when a score
was in use. Similarly, both devices’ average fatal error rate dropped from 4.8% to 2.8%.
The two proportions z-tests indicate that this difference is significant. In particular, the
change was statistically significant at a 95% confidence level with p-value of 0.0327 for
safe errors, and marginally significant at a 90% confidence level with p-value of 0.0874
for fatal errors. Since the only difference between the two techniques was the presence
or absence of a score, it can be deduced that providing users with a numeric evaluation
of their performance caused them to be more aware of their pairing decisions. Users
made errors at a far lower rate as a result.

Average SUS scores traditionally fall between 60 and 70 [3]. Therefore both the
Scored and Plain Comparison pairing methods can be considered rather positive. We
ran an unpaired t-test on the SUS responses provided by the users of each method. This
resulted in a low-end p-value of 0.12, but indicated a lack of statistical significance
between the two sets of answers. It is also worth noting that the standard deviation of
our participant’s SUS responses fell by 23%, or 3.5 points, between the group that did
not have scoring integrated into their pairing solution and the one that did. This positive
result indicates that there was more agreement among our testers regarding the usability
of the scored solution than there was for the plain pairing method.

5 Conclusions

In this paper, we explored the use of visual scores as user incentives in the context of
the secure device pairing task. By means of scoring and grading users’ performance, we
hoped to extrinsically motivate users and thereby improve the security and usability of
the pairing task. This approach is particularly applicable to certain population segments,
such as children, who are particularly vulnerable due to a lack of security awareness.
We developed a scoring functionality that can be integrated with traditional pairing
approaches. Further, we reported on a between-subjects study which we performed to
evaluate the effect of scoring on the performance of numeric comparisons. The results
of our study demonstrate that users are likely to commit fewer errors when working with
the pairing approach based on scored comparisons. We believe that our work opens up
a new area of research in usable security where security tasks can be combined with
gaming elements including perceptible scores and other rewards.

68 A. Gallego, N. Saxena, and J. Voris

Acknowledgements: The authors would like to thank their Financial Cryptography re-
viewers for their valuable feedback. This work is funded in part by NSF CNS-1255919
and a Google Research Award.

References

1. Uzun, E., Karvonen, K., Asokan, N.: Usability Analysis of Secure Pairing Methods. In: Diet-
rich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 307–324. Springer,
Heidelberg (2007)

2. Brooke, J.: SUS - A quick and dirty usability scale. In: Usability Evaluation in Industry (1996)
3. Lewis, J.R., Sauro, J.: The Factor Structure of the System Usability Scale. In: Kurosu, M. (ed.)

Human Centered Design, HCII 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg
(2009)

4. Kainda, R., Flechais, I., Roscoe, A.W.: Usability and security of out-of-band channels in se-
cure device pairing protocols. In: SOUPS: Symposium on Usable Privacy and Security (2009)

5. Saxena, N., Voris, J.: Pairing Devices with Good Quality Output Interfaces. In: Workshop on
Wireless Security and Privacy (2008)

6. Ryan, R., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being. American Psychologist 55(1), 68–78 (2000)

7. Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: Classic definitions and new direc-
tions. Contemporary Educational Psychology 25(1), 54–67 (2000)

8. Vaudenay, S.: Secure Communications over Insecure Channels Based on Short Authenticated
Strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 309–326. Springer, Heidel-
berg (2005)

RelationGram: Tie-Strength Visualization for

User-Controlled Online Identity Authentication

Tiffany Hyun-Jin Kim1, Akira Yamada2, Virgil Gligor1, Jason Hong1,
and Adrian Perrig1

1 Carnegie Mellon University
{hyunjin,gligor,jasonh,perrig}@cmu.edu

2 KDDI R&D Laboratories Inc.
yamada.akira@kddilabs.jp

Abstract. We consider the specific problem of how users can securely
authenticate online identities (e.g., associate a Facebook ID with its
owner). Based on prior social science research demonstrating that the
social tie strength is a useful indicator of trust in many real-world re-
lationships, we explore how tie strength can be visualized using well-
defined and measurable parameters. We then apply the visualization in
the context of online friend invitations and propose a protocol for secure
online identity authentication. We also present an implementation on a
popular online social network (i.e., Facebook). We find that tie strength
visualization is a useful primitive for online identity authentication.

Keywords: Online identity authentication, tie strength visualization,
trust establishment.

1 Introduction

Many real-world social interactions are based on various types of trust relations
derived from strong social ties [4,11–13]. As social interactions migrate from the
physical to the online world, current systems do not provide many cues upon
which users can base their identity authentication. For example, consider Face-
book: how can a user be certain that a Facebook invitation is really from the
claimed individual? As anyone can trivially set up a Facebook page with some-
one else’s photo, Facebook provides almost no help in ensuring correspondence
between the online and physical identity [1,2,5], even fooling security-conscious
individuals [14]. Furthermore, Irani et al. [7] recently propose reverse social en-
gineering attacks in Online Social Networks (OSNs), where the attacker sets up
fake accounts and lets the victim discover and contact the fake account.

Although at first glance Public Key Infrastructures (PKI) and Pretty Good
Privacy (PGP) appear to enable users to link an online identity to an individ-
ual, these approaches have significant shortcomings. Despite the long existence
of Certification Authorities (CAs), few users have personal certificates, which
are cumbersome to obtain. Moreover, CAs have recently suffered from several
attacks [3]. Unlike PKIs, PGP is a distributed approach based on the notion of
“Web of Trust” enabling identity certification. However, PGP’s chains of trust
are often unwieldy and offer limited security.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 69–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 T.H.-J. Kim et al.

Carol

Bob

Carol

Alice

Established relation
 Request to establish new relation

 Visual evidence
endorsed by Carol

Bob - Carol

Pending authentication decision

Social
collateral

Social
tie

Fig. 1. Our approach for online identity
authentication. Alice confirms Bob’s in-
vitation based on a RelationGram – a
visual evidence of Bob and Carol’s tie
strength.

Alice David

Carol Bob

A relationship exists
No relationship exists yet

Fig. 2. An example of a trust graph.
Bob wants to be Alice’s online friend,
and Carol and David are their mutual
friends.

Personal recommendation systems may appear to address these issues, where
a user would digitally sign a statement such as: “I trust that public key KA

really belongs to Alice, and I trust Alice to correctly validate other users.” In
the context of PGP, users could specify how much they trust others to assist
validation of a chain of trust. Unfortunately, this approach suffers from the
distrust revelation problem, defined by Kim et al. [8], where a polite or conflict-
averse user does not want to publicly admit distrusting another individual, and
thus specifies the untrusted user as trusted. Avoiding the distrust revelation
problem is a core challenge we aim to address.

According to a social collateral model, users can accept online friend invi-
tations from unknown senders based on explicitly endorsed recommendations
made by social relations [9]. We extend the social collateral to provide different
degrees of accountability for accepting friend invitations of unknown senders as
follows: invitee Alice holds recommender Carol accountable for her actions such
that Carol does not deceive Alice by creating or certifying bogus online iden-
tities. If Carol signs a bogus identity, the signature provides a non-repudiable
statement, which may result in loss of the social collateral (e.g., loss of social
relationship with Alice, loss of self-esteem, and feeling of guilt) for Carol. Prelim-
inary evidence shows that social accountability can have a stronger deterrence
effect than formal/legal punishment [6].

In this paper, we study how to enable users to authenticate OSN invitations to
ensure that an invitation from an online individual is indeed tied to the correct
individual. Our key idea is to derive tie strength between inviters and their
mutual friends to represent real-world physical interactions, and provide it as
evidence to empower users to authenticate online identities. More specifically,
prior research indicates that in practice, tie strength can be represented using
simple proxies such as frequency, reciprocity, and recency of communication,
which we believe can be feasibly acquired by smartphones using call logs, emails,
OSN comments, etc. Based on the simple proxies, we propose a RelationGram
– a visualization of tie strength between an inviter and the invitee’s friend(s) by
which the invitee can easily understand the degree to which her friends know the
inviter before she makes her own context-dependent authentication decisions.

RelationGram: Tie-Strength Visualization 71

As shown in Fig. 1, Alice can authenticate Bob’s online identity using a Re-
lationGram as follows. First, Alice personally knows Carol, and some level of
social accountability exists between them. Second, Bob has sent a friend invi-
tation to Alice and claims that Carol is a mutual friend. Before accepting the
invitation, Alice wants to validate that Carol has a strong tie with Bob. Thanks
to the RelationGram, visualizing tie strength between Bob and Carol, along with
Carol’s digital signature of the visualization and Bob’s public key, Alice gains
evidence and endorsement implying the strong tie. Hence, the combination of
Carol’s social accountability to Alice and the strong tie between Bob and Carol
results in Alice authenticating Bob’s online identity.

2 Problem Definition, Adversary Model, Assumptions

In this paper, we explore how to provide the evidence of social distance between
users through a simple visualization that is endorsed in the form of a digital
signature. Our goal is to help users correctly authenticate online identities using
endorsed visualizations of social tie strength.

A challenge then is to accurately capture aspects of tie strength among OSN
users and visually represent it to convey social proximity to other OSN users.

Relevance with Respect to Social Parameters. Every individual is unique
and has different criteria in judging social distance. Hence, it is important to
carefully select relevant parameters which accurately convey tie strength.

Robustness. Tie strength represented using social parameters must be robust
against active attackers who attempt to claim close social proximity to others.
Also, tie strength must be difficult to inflate due to social pressure (i.e., distrust
revelation problem [8]), because users do not want to publicly admit that they
do not trust another user.

Usability. It is crucial that OSN users can correctly interpret the visualization
of relevant social parameters and easily understand social tie strength.

We consider an adversary whose goal is to manipulate social parameters for
measuring tie strength such that he can claim to have a strong tie to a victim’s
friend. When the adversary deceives the victim who accepts the friend invita-
tion, he can successfully gather sensitive personal information of the victim and
possibly her friends.

We assume that trusted friends of a user do not misbehave due to their social
accountability. Furthermore, we consider an attacker who compromises a user’s
account to be orthogonal to the issues we address in this paper.

3 Interpersonal Tie Strength Visualization

Bob wants to be Alice’s online friend. Bob already knows Alice’s friends who
have social collateral with her. Rather than verifying any evidence provided by
Bob (since Alice has not met Bob in person), we want to help Alice make a

72 T.H.-J. Kim et al.

Time span
(logarithmic)

Frequency of
communication with Bob

Average (normalized)

Carol (significant other)

David (classmate)

4 m
on

ths
 ag

o

7 m
on

ths
 ag

o

2 y
ea

rs
ag

o

4 y
ea

rs
ag

o

2 m
on

ths
 ag

o
La

st
mon

th

La
st

ye
ar

Reciprocal communication

One-way communication from Bob nic

One-way communication from Bob’s friend

100% Online

65% Online
35% Offline

100% Online

70% Online
30% Offline

100% Online

60% Online
40% Offline

60% Online
40% Offline

100% Online

100% Offline

Fig. 3. RelationGram: a tie strength visualization from a trust graph

decision based on the evidence provided by her mutual friends who are socially
accountable to her. In Fig. 2, these mutual friends would be Carol and David.

Using this scenario, Fig. 3 depicts a RelationGram, a visualization from which
Alice can deduce appropriate social relationships between Bob and his friends,
Carol and David. Below are the 7 parameters that the RelationGram visualizes:

Interaction Frequency. This parameter is displayed on the y-axis without
a detailed scale, and we assume multiple types of communication (e.g., phone
calls, emails, OSN comments). Note that we also display a normalized average
line of the communication frequency (i.e., the normalized average frequency of
communication between Carol and all her other friends). The same line also rep-
resents the average frequency of communication between David and all his other
friends. Based on this average frequency, Alice can distinguish how frequently
her friends interact with Bob as compared to their other friends, such that Alice
can evaluate their tie strengths in a fair and unbiased manner.

Communication Reciprocity. This parameter is shown using the amount
of shade on each plotted dot. For example, a fully-colored dot implies that the
interaction is reciprocal, and a half-colored dot implies that the interaction is
one-way where the originator is based on the side of the color as shown in Fig. 3.

Recency of Communication. The x-axis to the right represents a more recent
time span than the left side. Fig. 3 confirms that Bob has communicated with
Carol more recently (last month) than with David (2 months ago).

The Existence of More than One Mutual Friend. This parameter is
depicted by the number of graphs in the same plot. In this case, Alice can infer
that two of her friends are also friends with Bob.

Length of Relationship. The x-axis represents a logarithmic timeline which
captures the length of Bob’s social relationships with Carol and David.

Relationship Status. Fig. 3 display the relationship status (e.g., classmates,
family, etc.) between the inviter and the mutual friends, and this relationship

RelationGram: Tie-Strength Visualization 73

label is assigned by the mutual friend. As a result, the inviter has no control
over the relationship label.

Communication Type. The RelationGram labels the composition of online
and offline communication frequencies, where online communication may in-
clude emails, OSN conversations, etc., and offline communication may include
phone conversations, physical interactions, etc. The “100% online” labels will
help indicate individuals who have only established a relationship over purely
online means. As a result, Alice may be able to infer, with higher confidence,
that Carol’s graph indicates a strong tie with Bob with both online and offline
interactions in Fig. 3.

We entrust full disclosure control to users such that the users themselves can
decide to either reveal or protect their own graphs depicting their interactions
with a particular set of friends. For extensive explanation of visualized parame-
ters, including how they are computed, as well as security and privacy analysis
of the RelationGram, please refer to our technical report for details [10].

4 Authenticating Online Friend Inviters

We introduce Indirect Friend Authentication (IFA) that can be used to authen-
ticate an online friend inviter who is a friend of the invitee.

For this application context, we assume that people use smartphones for com-
munication, as a greater number of smartphones are being sold.1 We further
assume that every user can use a smartphone to generate a public-private key
pair, measure the parameters to represent tie strength, and automatically com-
municate with cloud application providers. Cloud application providers may be
similar to Google which provides a backup service for contact information on
phones, and we trust them for the availability of user information.

4.1 Indirect Friend Authentication

Alice receives an online invitation from someone named Bob, and this invitation
indicates that they have two mutual friends: Carol and David.

Our Indirect Friend Authentication (IFA) protocol helps Alice authenticate
Bob by leveraging two mutual friends. In a nutshell, the IFA protocol presents
evidence that reflects the interpersonal tie strength between Alice’s friend(s) and
Bob in a RelationGram as explained in Section 3. Based on the visual evidence
and the strength of social ties with her friends, Alice can exercise sound judgment
when accepting Bob’s invitation.

Evidence Generation. Bob and Carol mutually agree to disclose the informa-
tion that reflects their social tie, and so do Bob and David. There are different
ways of gathering information to represent these parameters. For example, Bob’s

1 As of Q3 of 2012, 56% of all mobile consumers in the U.S. own smartphones
(http://blog.nielsen.com/nielsenwire/online mobile/nielsen-
tops-of-2012-digital/).

http://blog.nielsen.com/nielsenwire/online_mobile/nielsen-tops-of-2012-digital/
http://blog.nielsen.com/nielsenwire/online_mobile/nielsen-tops-of-2012-digital/

74 T.H.-J. Kim et al.

and David’s phones can automatically detect and record the duration of a meet-
ing, the call history between them, exchanged SMS text messages, Facebook
posts, etc. Furthermore, OSNs can analyze information about their online mes-
sage exchanging behavior, photos in which both are tagged together, etc. Note
that these are the optional features that users opt-in for usage and users with
privacy concerns may decline to use our protocols. When all the information
representing tie strength is properly gathered on David’s phone, it would sign
the visual graph of their tie strength from David’s perspective, sign Bob’s public
key, and hand it over to Bob. (With David’s permission, this process is trans-
parent to David.) Carol does the same for Bob. Thanks to Carol and David’s
release of the visual graphs, Bob has the evidence implying his social relations
with Alice’s friends and he inserts the graphs into the invitation.

Evidence Verification. When Alice receives the invitation from Bob, she has
an option of seeing the RelationGram to determine the tie strength between
Bob and her friends. Alice first verifies Carol’s signed graph and Bob’s public
key using Carol’s public key that she can retrieve from her own phone or from
the cloud application provider. She also verifies David’s graph in the same man-
ner. When Alice successfully verifies that the graphs are generated by her real,
trusted, and accountable friends (e.g., by verifying their digital signatures), she
may decide to accept Bob’s invitation based on his strength of social ties with her
friends. However, it is possible that the authentication fails or the graphs do not
convey strong ties, possibly due to some abnormal interaction conditions (e.g.,
David could have recently relocated, reducing his interaction frequency with Bob
and limiting the communication medium to Facebook only). We emphasize that
the visualization is one type of available evidence for users to make better tie
strength evaluation, and the IFA protocol recommends that Alice gathers other
evidence before accepting Bob’s invitation.

For the security analysis of IFA, please refer to our technical report [10].

5 Implementation

We have implemented the IFA protocol in the context of Facebook friend invi-
tations. Fig. 4 shows the architecture and the flow of our protocol to validate
Facebook friend invitations.

“Do I Really Know You?” is an integrated Facebook web application such
that (1) users can access their friends’ invitations and present visualizations in a
seamless manner and (2) the visualizations can be displayed on any smartphone
with a web browser.

We have implemented our application using three types of APIs that Facebook
provides: GraphAPI, OldREST API, and Facebook Query Language (FQL).
This application seeks permission from users to retrieve posts and comments
from their walls.

When a user invokes “Do I Really Know You?”, it gets a token which enables
this application to access the Facebook database on behalf of the user. The
application then queries the database according to the user’s policy. First, the

RelationGram: Tie-Strength Visualization 75

Alice

David

Carol

Bob

Friend Invitation

Facebook Online Social Network Facebook Application

David

Carol

DavidCarol

(1)

(2)

(3) Request for Information

(4) Launch Application

(5) Trust Evidence Gathering

(6) Trust Visualization

Key Exchange

Fig. 4. Architecture of IFA protocol on Facebook. This diagram illustrates the process
of IFA on Facebook as follows: (1) Alice exchanges keys with her friends Carol and
David. (2) Bob wants to be Alice’s friend. (3) Alice requests a RelationGram. (4) Face-
book launches our application. (5) Our application obtains RelationGrams from Alice’s
friends after endorsement. (6) The application returns the endorsed RelationGram to
Alice. (7) Alice verifies the tie strength between Bob and her friends (Carol and David)
using the endorsed RelationGram.

application retrieves a list of pending friend invitations (via Facebook’s notifica-
tions.get API). With at least one invitation, the application queries information
about the inviter and the mutual friends (via friends.getMutualFriends). Then,
the application retrieves a stream of wall information (via stream.get query with
limit=0 as a parameter).

When there are more than three mutual friends, this application prompts the
user to select the “best” friends with whom he wants to infer the inviter’s tie
strengths. Based on the comments from the selected mutual friend’s Facebook
wall, this application computes the number of comments between each mutual
friend and the inviter, and plots the interaction frequency for a RelationGram
on the web browser.

We conducted an online user study with 93 participants to verify how much
OSN users understand tie strengths between their own friends and the invitation
senders, and whether our visual approach provided more convincing
evidence to accept invitations as compared to the current OSN approaches. Par-
ticipants found RelationGrams to be relevant with social parameters, robust
against attackers, and easy to use. They also appreciated the visualizations to
make informed authentication decisions. Please refer to the technical report for
the evaluation results [10].

6 Discussion and Future Work

A first question is how usable such a system would really be, or whether it
would be a burden on the user such that its utility would be negated. Although

76 T.H.-J. Kim et al.

further research is needed, several points indicate that the burden would be
minimal. Existing systems could automatically collect interaction information
without burdening users by aggregating email, SMS, Google+, etc. exchanges.
Smartphones could also collect information about people users physically meet,
through the use of voice recognition or by detecting the proximity of the other
party’s smartphone. Generation of evidence, endorsement (i.e., digital signature),
and distribution to friends could also be automated. A minor burden would be
configuration, where a user can decide which tie strength visualizations to share
with others. This could occur through an opt-in process, where a user could add
friends whose tie strength information could be shared.

Another important question is on incentives: would users really have incen-
tives to share their tie strength visualizations, and how can privacy concerns be
dealt with? In our user studies, it was clear that users seemed eager to obtain
such information to validate online invitations with confidence. Although fur-
ther studies are needed, we believe that people’s inherent altruism that explains
Internet phenomenons such as Wikipedia would also encourage users to share
their tie strength visualizations, because little burden is required on their part,
and they can help their friends to befriend each other with more safety.

7 Conclusion

Online user behavior is faced with an uncomfortable trade-off: should we really
accept unauthenticated friends’ invitations that might represent impersonation
attempts to deceive; or should we deny them at the cost of losing potentially
valuable relationships and become socially isolated? Currently, there is no secure
and usable mechanism that would enable us to resolve this dilemma.

Our online identity authentication system implements a simple identity au-
thentication logic in a visually compelling manner that is consistent with mental
models derived from real-life experience. That is, it enables a casual user to
authenticate online identities in a safe and easy-to-use manner.

References

1. Sophos Facebook ID Probe, http://www.sophos.com/pressoffice/news/
articles/2007/08/facebook.html

2. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All Your Contacts Are Belong to Us:
Automated Identity Theft Attacks on Social Networks. In: Proceedings of WWW
(2009)

3. Economist. Duly notarised (September 2011), http://www.economist.com/
blogs/babbage/2011/09/internet-security

4. Granovetter, M.S.: The Strength of Weak Ties. The American Journal of Social-
ogy 78(6), 1360–1380 (1973)

5. Hamiel, N., Moyer, S.: Satan Is on My Friends List: Attacking Social Networks.
In: Black Hat Conference (2008)

6. Hu, Q., Xu, Z., Dinev, T., Ling, H.: Does Deterrence Work in Reducing Information
Security Policy Abuse by Employees? Communications of the ACM 84(6), 54–60
(2011)

http://www.sophos.com/pressoffice/news/articles/2007/08/facebook.html
http://www.sophos.com/pressoffice/news/articles/2007/08/facebook.html
http://www.economist.com/blogs/babbage/2011/09/internet-security
http://www.economist.com/blogs/babbage/2011/09/internet-security

RelationGram: Tie-Strength Visualization 77

7. Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E., Pu, C.: Reverse Social Engineer-
ing Attacks in Online Social Networks. In: Holz, T., Bos, H. (eds.) DIMVA 2011.
LNCS, vol. 6739, pp. 55–74. Springer, Heidelberg (2011)

8. Kim, T.H.-J., Bauer, L., Newsome, J., Perrig, A., Walker, J.: Challenges in Ac-
cess Right Assignment for Secure Home Networks. In: Proceedings of USENIX
Workshop on Hot Topics in Security, HotSec (August 2010)

9. Kim, T.H.-J., Gligor, V., Perrig, A.: Street-Level Trust Semantics for Attribute
Authentication. In: Christianson, B., Malcolm, J., Stajano, F., Anderson, J. (eds.)
Security Protocols 2012. LNCS, vol. 7622, pp. 96–115. Springer, Heidelberg (2012)

10. Kim, T.H.-J., Yamada, A., Gligor, V., Hong, J.I., Perrig, A.: RelationGrams: Tie-
Strength Visualization for User-Controlled Online Identity Authentication. Tech-
nical Report CMU-CyLab-11-014, Carnegie Mellon University (2011)

11. Krackhardt, D.: The Strength of Strong Ties: The Importance of Philos in Orga-
nizations. In: Nohria, N., Eccles, R. (eds.) Networks and Organizations: Structure,
Form, and Action, pp. 216–239 (1992)

12. Levin, D.Z., Cross, R.: The Strength of Weak Ties You Can Trust: The Mediating
Role of Trust in Effective Knowledge Transfer. Management Science 50(11), 1477–
1490 (2004)

13. Reagans, R., McEvily, B.: Network Structure and Knowledge Transfer: The Effects
of Cohesion and Range. Administrative Science Quarterly 48(2), 240–267 (2003)

14. Ryan, T.: Getting in Bed with Robin Sage. In: Black Hat Conference (2010)

Practical Fully Simulatable Oblivious Transfer

with Sublinear Communication

Bingsheng Zhang1, Helger Lipmaa2, Cong Wang3, and Kui Ren1

1 State University of New York at Buffalo, United States
2 University of Tartu, Estonia

3 City University of Hong Kong, China

Abstract. During an adaptive k-out-of-N oblivious transfer (OT), a
sender has N private documents, and a receiver wants to adaptively
fetch k documents from them such that the sender learns nothing about
the receiver’s selection and the receiver learns nothing more than those
chosen documents. Many fully simulatable and universally composable
adaptive OT schemes have been proposed, but those schemes typically
require O(N) communication in the initialization phase, which yields
O(N) overall communication. On the other hand, in some applications,
the receiver just needs to fetch a small number of documents, so the
initialization cost dominates in the entire protocol, especially for 1-out-
of-N OT. We propose the first fully simulatable adaptive OT with sub-
linear communication under the DDH assumption in the plain model.
Our scheme has O(N1/2) communication in both the initialization phase
and each transfer phase. It achieves better (amortized) overall commu-
nication complexity compared to existing schemes when k = O(N1/2).

Keywords: Adaptive oblivious transfer, fully simulatable security, sub-
linear communication, zero knowledge batch argument.

1 Introduction

Data outsourcing and online shopping have become during the recent years. To
address the related information security and privacy concerns, many crypto-
graphic protocols have been studied to accomplish tasks with minimal informa-
tion disclosure. Consider the case that an online store sells digital goods, such as
movies, books, music, etc. The buyer wants to purchase some of them without
revealing his/her choices. Here, we assume that there is a uniform price for those
goods in the same category, e.g. movies. 1 Oblivious transfer (OT) is a handy
primitive, which has found its usage in many security applications with this kind
of privacy requirements as in the aforementioned case.

OT family mainly consists of 1-out-of-2 OT, denoted as OT2
1, 1-out-of-N OT,

denoted as OTN
1 , k-out-of-N OT, denoted as OTN

k and k-out-of-N OT with
adaptive queries (also known as adaptive k-out-of-N OT), denoted as OTN

k×1.

1 It is also possible to protect the buyer’s privacy even if all the goods are paid at
unique prices. This problem is addressed by priced OT, see [33] for details.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 78–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Practical Fully Simulatable Oblivious Transfer 79

OT2
1 is widely used in secure multi-party/two-party computation, for example, it

serves as an important building block of Yao’s garbled circuit [34] in two-party
secure function evaluation (SFE). Based on earlier work of Lipmaa [26], Ishai
and Paskin [18] showed how to privately evaluate a branching program with
OT2

1. OT
N
1 also has rich applications in financial cryptography, for instance, one

can use OTN
1 to construct simultaneous contract signing schemes [29].

We focus on OTN
k×1 as well as its special case, OTN

1 when k = 1. During an

OTN
k×1 protocol, a sender hasN private documents, and a receiver can adaptively

fetch k documents from them such that the sender learns nothing about the
receiver’s selection and the receiver learns nothing more than those k documents.
The notion of OTN

k×1 was first introduced by Naor and Pinkas [30] who also gave
several applications, including oblivious search. In an oblivious search protocol,
the server owns a sorted database that the client wants to search. Given the
element that the client is searching for, they invoke an OTN

k×1 protocol using
binary search, where k = logN . After the protocol execution, the client can
determine whether the element is in the database while the server only has
revealed limited database information (logN elements).

There is always a trade-off between security and efficiency. Due to bandwidth
limitation, most applications employ OT schemes with so-called half-simulation
security, where the sender’s and receiver’s security are handled separately. Such
OTN

1 can achieve logarithmic communication [10] or sublinear computation [27]
and OTN

k can achieve optimal rate [1]. The receiver’s security is defined as indis-
tinguishability of the sender’s view of the protocol when the receiver’s choices
are different. The sender’s security follows the real-world/ideal-world paradigm
and guarantees that for any malicious receiver in the real world there is a receiver
in an ideal world where OT is implemented by a trusted party. However, this
security definition is vulnerable to the selective failure attack [30]. Namely, the
sender is able to cause protocol failure based on some property of the receiver’s
selection. Based on an arbitrary semisimulatable OT protocol, Laur and Lipmaa
proposed a consistent OT protocol [24] of virtually the same complexity that
allows to detect selective failures, but still does not obtain ideal security.

On the other hand, all existing fully simulatable and universally composable
adaptive OT schemes typically require O(N) communication in the initialization
phase. The huge initialization cost is not acceptable in many applications, espe-
cially when the receiver is only required to fetch a small number of documents.
For example, in 1-out-of-N OT the initialization cost dominates the entire pro-
tocol, so the overall communication cost becomes O(N). Can we make OT more
communication-efficient without sacrificing its security level? In this paper, we
try to answer this question by investigating a practical fully simulatable OTN

k×1

scheme with sublinear communication.

Our Contribution and Related Work. In theory, one can transform any se-
cure OT protocol in semi-honest model to an OT protocol that is secure against
malicious adversaries by plug-in zero-knowledge (ZK) proofs/arguments. To
achieve sublinear communication, we may use probabilistically checkable proofs
(PCP), e.g., [4] or a sublinear ZK argument [17,28]. The problem with such

80 B. Zhang et al.

Table 1. Comparison of OTN
k×1 schemes. The trivial factor logN is ignored.

Scheme Init Cost Transfer Cost Assumption Security

Prot. 3.1 [31] O(N) O(N1/2) DDH Full Sim

[5] O(N) O(1) q-Power DDH + q-Strong DH Full Sim

[13] O(N) O(1) DLIN + q-Hidden LRSW UC

[20] O(N) O(N) Dec. n-th Residuosity/DDH Full Sim

[19] O(N) O(1) Dec. Residuosity + q-DDHI Full Sim

[33] O(N) O(1) DLIN + q-Hidden SDH + q-TDH UC

[21] O(N) O(1) DDH Full Sim

[14] O(N) O(1) 3-DDH + DLIN Full Sim

[22] O(N) O(1) DDH/DLIN/DCR/QR/LWE Full Sim

[35] O(N) O(1) DDH/Dec. n-th Residuosity Full Sim

this work O(N1/2) O(N1/2) DDH Full Sim

approaches is that the OT protocol has to be reduced to some NP-complete
language, which is neither efficient nor practical. In this paper, we propose the
first fully simulatable OTN

k×1 scheme with O(
√
N) communication in both the

initialization phase and each transfer phase based on the standard DDH as-
sumption. When k = O(

√
N), our OTN

k×1 scheme has better amortized overall
communication complexity compared to existing schemes. In order to achieve
sublinear communication complexity, we constructed a few efficient batch ZK
arguments, such as masked multi-exponentiation batch argument (c.f. Sect. 4.3,
below). We use Lim’s multi-exponentiation algorithm in our implementation,
and a benchmark is given at the end of this paper.

We now give a survey on recent fully simulatable and universally composable
OTN

k×1 schemes. As shown by Canetti and Fischlin [6], an OT cannot be realized
in UC security without additional trusted setup assumptions. All the UC-secure
OTN

k×1 schemes mentioned here are in common reference string (CRS) model,

i.e. Fcrs-hybrid model. Whereas many fully simulatable OTN
k×1 schemes in this

survey, as well as our construction, are realized in the plain model. Table 1 lists
several existing OTN

k×1 schemes, together with our proposed scheme for com-

parison. In 2007, Camenisch, Neven and shelat [5] proposed OTN
k×1 under the

q-strong Diffie-Hellman and q-power decisional Diffie-Hellman assumptions in
bilinear groups. They used signatures as a key ingredient in their scheme. Later,
Green and Hohenberger [12] showed an OTN

k×1 in random oracle model under de-
cisional bilinear Diffie-Hellman assumption. In their scheme, the sender encrypts
message mi by identity-based encryption under identity i. The receiver executes
a blind key extraction protocol such that he/her can obliviously obtain the secret
key of any identity. In 2008, Green and Hohenberger [13] introduced another
OT that achieves UC security in the Fcrs-hybrid model, using a Groth-Sahai
non-interactive ZK (NIZK) proof for pairing product equations. The scheme is
based on the decisional linear and q-Hidden LRSW assumptions. Jarecki and

Practical Fully Simulatable Oblivious Transfer 81

Liu [19] simplified the Camenisch et al. construction to a fully simulatable OT
under the composite decisional residuosity and q-decisional Diffie-Hellman Inver-
sion assumptions. Rial, Kohlweiss and Preneel [33] presented an adaptive priced
OT that achieves UC security using “assisted decryption”. In 2009, Kurosawa
and Nojima [20] gave adaptive OT constructions based on Paillier and ElGa-
mal encryption schemes. Later, Kurosawa, Nojima and Phong [21] improved the
scheme [20] by increasing the complexity of initialization phase. In 2011, Green
and Hohenberger [14] proposed another fully simulatable OT under decisional 3-
party Diffie-Hellman assumption. Recently, Kurosawa et al. [22] and Zhang [35]
generalized the scheme in [21] to various schemes with different assumptions.

We emphasize that Prot. 3.1 in [31] is essentially different from our scheme.
In [31], the sender first ‘commits’ the documents to the receiver in the initializa-
tion phase. This step takes O(N) communication, because each “commitment”
serves as an encryption and the receiver should be able to extract (or decrypt)
the committed document from it later. Therefore, it is not possible to directly
plug a succinct commitment scheme in the Naor-Pinkas scheme.

2 Preliminaries

Let [n] := {1, . . . , n}. By a, we denote a vector a = (a1, . . . , an)
T . When S is a

set, a ←$ S means that a is uniformly and randomly chosen from S. Let λ be

the security parameter. By A
c≈ B, we mean that A and B are computationally

indistinguishable. We abbreviate probabilistic polynomial-time as p.p.t. and let
poly(·) be a polynomially-bounded function.

Elliptic Curves Over Fp. The implementation of our scheme is based on
elliptic curve groups for efficiency. Let σ := (p, a, b, g, q, ζ) be the elliptic curve
domain parameters over Fp, consisting of a prime p specifying the finite field Fp,
two elements a, b ∈ Fp specifying an elliptic curve E(Fp) defined by E : y2 ≡
x3 + ax+ b (mod p), a base point g = (xg , yg) on E(Fp), a prime q which is the
order of g, and an integer ζ which is the cofactor ζ = #E(Fp)/q. We denote the
cyclic group generated by g by G, and it is assumed that the DDH assumption
holds over G, that is for all p.p.t. adversary A:

AdvDDH
G (A) =

∣∣∣∣Pr
[
x, y ←$ Zq; b ←$ {0, 1} ;h0 = gxy;
h1 ←$ G : A(g, gx, gy, hb) = b

]
− 1

2

∣∣∣∣ ≤ ε(λ) ,

where ε(·) is a negligible function.

Security Definition (Fully Simulation Security). We use the same se-
curity definition as in [30,5,14]. Let (SI ,RI ,ST ,RT) be an OTN

k×1 protocol.
Let S∗, R∗ be private states. During the initialization phase, the sender sets
S0 ← SI(m1, . . . ,mN), and the receiver sets R0 ← RI(). During the �-th
transfer phase, � ∈ [k], the sender sets S� ← ST (S�−1), and the receiver sets
(R�,m

∗
σ�
) ← RT (R�−1, i�), where i� ∈ [N] is the index of the message to be

received. m∗
σ�

= mσ�
if retrieval succeeds, m∗

σ�
= ⊥ if fails. The security of an

82 B. Zhang et al.

OTN
k×1 scheme is defined in the real-world/ideal-world paradigm with static cor-

ruption, i.e. the adversary A can only choose to corrupt either the sender or the
receiver at the beginning of the experiment.

Real experiment. In experiment RealŜ,R̂(N, k,m1, . . . ,mN , I), a presumably

cheating sender Ŝ is given messages (m1, . . . ,mN) as input and interacts with

a presumably cheating receiver R̂(I), where I is a selection algorithm that on

input messages {mit}
�−1
t=1 outputs the index i� of the next message to be queried.

In the initialization phase, Ŝ and R̂ output the initial states S0 and R0. In the
�-th transfer phase, for � ∈ [k], the sender runs S� ← Ŝ(S�−1), and the receiver

runs (R�,m
∗
i�
) ← R̂(R�−1). After the k-th transfer, the output of the experiment

RealŜ,R̂ is the tuple (Sk, Rk).

We define the honest sender algorithm S as the one that runs SI(m1, . . . ,mN)
in the initialization phase, runs ST () during each transfer phase, and returns
Sk = ∅ as its final output. The honest receiver algorithm R runs RI() in the
initialization phase, runs RT (R�−1, i�) during the �-th transfer phase, where the
index i� is generated by I, and returns Rk = (mi1 , . . . ,mik) as its final output.

Ideal experiment. In experiment IdealŜ′,R̂′(N, k,m1, . . . ,mN , I), the presum-

ably cheating sender Ŝ′ and the presumably cheating receiver R̂′ communicate
with the ideal functionality FN×1

OT . In the initialization phase, Ŝ′(m1, . . . ,mN)

sends messages m∗
1, . . . ,m

∗
N to FN×1

OT . In the �-th transfer phase, � ∈ [k], R̂′(I)
sends to FN×1

OT an index i∗� . FN×1
OT then sends a tag ‘Received’ to Ŝ′, and Ŝ′

replies a bit b� ∈ {0, 1} to FN×1
OT . If b� = 1 and i∗� ∈ [N], FN×1

OT sends m∗
i∗�

to R̂′;

otherwise, it sends ⊥ to R̂′. After the k-th transfer, the output of the experiment
IdealŜ′,R̂′ is the tuple (Sk, Rk).

We define the honest sender algorithm S′(m1, . . . ,mN) as the one that sends
m1, . . . ,mN to FN×1

OT in the initialization phase, and sends b� = 1 during each
transfer phase, and returns Sk = ∅ as its final output. The honest receiver
R′ submits the indices i� that generated by I to FN×1

OT , and returns Rk =
(mi1 , . . . ,mik) as its final output.

Sender Security. An OTN
k×1 is sender-secure if for every real-world p.p.t. receiver

R̂, there exists an ideal-world p.p.t. receiver R̂′, s.t. for every N = poly(λ),
k ∈ [N], (m1, . . . ,mN), selection algorithm I, and p.p.t. distinguisher D,

RealS,R̂(N, k,m1, . . . ,mN , I) c≈ IdealS′,R̂′(N, k,m1, . . . ,mN , I) .

Receiver Security. An OTN
k×1 is receiver-secure if for every real-world p.p.t.

sender Ŝ, there exists an ideal-world p.p.t. sender Ŝ′, s.t. for every N = poly(λ),
k ∈ [N], (m1, . . . ,mN), selection algorithm I, and p.p.t. distinguisher D,

RealŜ,R(N, k,m1, . . . ,mN , I) c≈ IdealŜ′,R′(N, k,m1, . . . ,mN , I) .

Practical Fully Simulatable Oblivious Transfer 83

Definition 1. OTN
k×1 is fully simulatable iff it is both sender- and receiver-

secure.

Special Honest Verifier Zero-Knowledge Argument. Let R be a polyno-
mial time decidable binary relation, we say w is a witness for a statement x if
(x,w) ∈ R. We define the language L := {x | ∃w : (x,w) ∈ R} as the set of all
statements x that have a witness w for the relation R. Let a prover P and a
verifier V be two p.p.t. interactive algorithms. Denote τ ← 〈P(x,w),V(x)〉 as
the public transcript produced by P and V . After the protocol, V accepts iff
Φ(x, τ) = 1, where Φ is a predicate function.

Definition 2. We say (P ,V) is a perfectly complete argument for a relation R
if for all non-uniform p.p.t. interactive adversaries A it satisfies

– Perfect completeness: Pr[(x,w) ← A; τ ← 〈P(x,w),V(x)〉 : (x,w) ∈ R ∨
Φ(x, τ) = 1] = 1;

– Computational soundness: Pr[x ← A; τ ← 〈A,V(x)〉 : x /∈ L∧Φ(x, τ) = 1] ≈
0.

Denote V(x; r) as the verifier V on input x, given r as the randomness. An
argument (P ,V) is public coin if the verifier V picks his challenges randomly
and independently of the messages sent by the prover P .

Definition 3. A public coin argument (P ,V) is called a perfect special honest
verifier zero-knowledge (SHVZK) argument for a relation R if there exists a
p.p.t. simulator S such that for all non-uniform polynomial time adversaries A
we have

Pr[(x,w, r) ← A;τ ← 〈P(x,w),V(x; r)〉 : (x,w) ∈ R ∧A(τ) = 1]

=Pr[(x,w, r) ← A; τ ← S(x; r) : (x,w) ∈ R ∧A(τ) = 1] .

We define the SHVZK argument of knowledge similiarly to the definition
of [15,16,2]; namely, given an adversary that produces an acceptable argument
with probability p, there exists a witness-extended emulator that produces a
similar argument with probability p and outputs a witness. The standard defini-
tion of “proofs of knowledge (PoK)” by Bellare and Goldreich [3] does not work
for “arguments of knowledge (AoK)”. See [8] for more discussion of this issue
and an alternative definition of knowledge soundness.

Definition 4. A public coin argument (P ,V) has a witness extended emulator
if for all p.p.t. P∗ there exists an expected polynomial time emulator X = XP∗

such that for all non-uniform polynomial time adversaries A,

Pr

⎡
⎢⎣
(x, ψ) ← A;

τ ← 〈P∗(x, ψ),V(x)〉 :
A(τ) = 1

⎤
⎥⎦ = Pr

⎡
⎢⎣
(x, ψ) ← A;

(τ, w) ← X 〈P∗(x,ψ),V(x)〉(x, ψ) :
A(τ) = 1 ∧ (Φ(x, τ) = 0 ∨ (x,w) ∈ R)

⎤
⎥⎦ .

Here, X has access to a transcript oracle 〈P∗(x, ψ),V(x)〉 that can be rewound
to a particular round and run again with the verifier using fresh randomness. Let
ψ be the state of P∗, including the randomness. Whenever P∗ is able to make a
convincing argument with state ψ, the emulator X can extract a witness w.

84 B. Zhang et al.

3 Building Blocks

Additively Homomorphic Public-Key Cryptosystem. The lifted ElGa-
mal public-key cryptosystem consists of the following 4 p.p.t. algorithms:

– Gengk(1
λ): inputs a security parameter λ, and outputs σ := (p, a, b, g, q, ζ).

– Genpkc(σ): picks sk ←$ Z∗
q , sets pk := h = gsk, and outputs (pk, sk).

– Encpk(m; r): outputs e := (e1, e2) = (gr, gmhr).
– Decsk(e): outputs DLg(e2 · e−sk

1), where DLg(x) is the discrete logarithm of
x. (Note that since DLg(·) is not efficient, the message space should be a

small set, say {0, 1}ξ, for ξ ≤ 30.)

It is well known that lifted ElGamal encryption scheme is IND-CPA secure
under the DDH assumption. It is additively homomorphic: Encpk(m1; r1) ·
Encpk(m2; r2) = Encpk(m1 +m2; r1 + r2).

Additively Homomorphic Succinct Vector Commitment. In our proto-
col, we use a generalized version of the Pedersen commitment scheme [32]. The
generalized Pedersen commitment scheme consists of the following 4 algorithms:

– Gengk(1
λ): inputs security parameter λ, and outputs σ := (p, a, b, g, q, ζ).

– Genped(σ): outputs distinct generators ck := (g1, . . . , gn, f).
– Comck(m; r): outputs a commitment c := f r

∏n
i=1 g

mi

i for m ∈ Zn
q and

r ∈ Zq.
– Openck(c): outputs m ∈ Zn

q , r ∈ Zq such that c = f r
∏n

i=1 g
mi

i . Open also
receives some private information that was created during the commitment.

The generalized Pedersen commitment is perfect hiding and computationally
binding if the discrete logarithm problem is hard in G. It is additively homo-
morphic: Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2).

In the plain model, if Alice wants to commit N elements to Bob, the best
communication complexity with generalized Pedersen commitment scheme is
O(

√
N). Namely, Bob first sends to Alice n :=

√
N commitment keys ck, and

Alice commits and sends to Bob
√
N commitments.

4 Fully Simulatable OTN
k×1 with Square-Root

Communication

We now propose a fully simulatable OTN
k×1 protocol with a square-root overall

communication complexity. The basic idea comes from the classic KO private
information retrieval (PIR) scheme [23]. Intuitively, when not concerned about
privacy, the receiver sends two n-dimensional unit-vectors u,v to the sender,
where n =

√
N . The sender computes and sends m∗ = u ·M ·vT to the receiver,

where M = {mi,j}i,j∈[n] is the sender’s database.

Both the ElGamal encryption scheme and the generalized Pedersen commit-
ment scheme are based on elliptic curves, so the membership of a group element is

Practical Fully Simulatable Oblivious Transfer 85

Common input: σ := (p, a, b, g, q, ζ) ← Gengk(1
λ).

Sender’s input: M := {mi.j}i,j∈[n] = {mj}j∈[n], where mj = (m1,j , . . . ,mn,j)
T .

Receiver’s output: i� := mx�,y� for the �-th transfer phase, where x�, y� ∈ [n].

Initialization Phase:

1. R computes (pk, sk) ← Genpkc(σ) and ck ← Genped(σ) , and sends pk, ck to S.
2. S picks r ←$ Zn

q and sends {ci := Comck(mi; ri)}ni=1, where r := (r1, . . . , rn)
T .

The �-th Transfer Phase:

1. R sets two unit vectors u,v ∈ {0, 1}n according to (x�, y�), i.e., ux� = 1,
vy� = 1 and the rest are 0’s. He picks tu, tv ←$ Zn

q , and sends eu :=

{e(i)u := Encpk(ui; t
(i)
u)}ni=1 and ev := {e(i)v := Encpk(vi; t

(i)
v)}ni=1 to S, where

u := (u1, . . . , un)
T , v := (v1, . . . , vn)

T , tu := (t
(1)
u , . . . , t

(n)
u)T and tv :=

(t
(1)
v , . . . , t

(n)
v)T .

2. R proves to S that eu,ev encrypt unit vectors by unit vector PoK (c.f. Sect. 4.1).

3. S picks ts ←$ Zn
q ,a, ta ←$ Zn

q , tz ←$ Zq. S sets for i ∈ [n], c
(i)
a = Comck(ai; t

(i)
a),

wi = Encpk(ai; t
(i)
s)

∏n
j=1(e

(j)
u)mj,i , and z = Encpk(0; tz)

∏n
j=1(e

(j)
v)aj .

4. S sends ca,w, z to R.
5. S proves to R that

– w, eu, c, ca are consistent by masked multi-exp batch AoK (c.f. Sect. 4.3);
– eu, z, ca are consistent by multi-exp AoK (c.f. Sect. 4.2, below).

6. R computes gay� = z2 ·z−sk
1 and then returns mi� as DLg(wx�,2 ·w−sk

x�,1
·(gay�)−1).

Fig. 1. Fully Simulatable OTN
k×1 With Square-root Communication

efficiently decidable. Hence, during our protocol, if the message consists of group
elements/generators, the parties always first check their group membership. We
will not mention this step in the protocol description explicitly.

We give the protocol description in Fig. 1. Our OTN
k×1 scheme consists of

the initialization phase and the transfer phase. If the prover is honest, then wi

encrypts ai +
∑

mj,iuj = ai +mx�,i and z encrypts
∑

ajvj = ay�
, and thus the

verifier can retrieve mx�,y�
as claimed.We show how to construct the SHVZK

proofs/arguments in the following sections. All the SHVZK proofs/arguments
should be compiled to general ones via a standard transformation by using com-
mitments and a public coin flipping protocol, e.g. [9]. To keep the exposition
simple, we will not explicitly mention the transformation in the protocol.

4.1 SHVZK Unit Vector Proof

Now we show how to construct the SHVZK Unit Vector Proof that is used in
our OTN

k×1 scheme. In a Unit Vector Proof, given an encrypted vector e :=
(e1, . . . , en)

T = (Encpk(b1; r1), . . . ,Encpk(bn; rn))
T ∈ (G×G)n, the prover wants

to convince the verifier that b := (b1, . . . , bn)
T ∈ Zn

q is a unit vector, i.e., there
is exactly one i ∈ [n] such that bi = 1 and ∀j �= i : bj = 0. Considering the lifted
ElGamal encryption, we have ei := (ei,1, ei,2) = (gri , gbihri). As depicted in

86 B. Zhang et al.

Fig. 2, we give a ZK proof of knowledge (PoK) of b, r ∈ Zn
q such that for i ∈ [n],

ei = Encpk(bi; ri), bi ∈ {0, 1} and
∑n

i=1 bi = 1, where r := (r1, . . . , rn)
T . The

proof uses ∨,∧ compositions of the basic Σ protocol to prove that ei encrypts 0
or 1, based on DDH tuple proof technique [7].

Common input: Group information σ and the public key pk := h.
Prover’s private input: b ∈ {0, 1}n and r ∈ Zn

q .
Statement: {(ei,1, ei,2) := (gri , gbihri)}ni=1. Let E1 :=

∏n
i=1 ei,1, E2 :=

∏n
i=1 ei,2.

1. Since bi ∈ {0, 1}, let b̄i := 1 − bi. For i ∈ [n], the prover picks random

si, ρi,b̄i , zi,b̄i ←$ Zq and computes a
(bi)
i,1 = gsi , a

(bi)
i,2 = hsi , a

(b̄i)
i,1 = g

zi,b̄i e
−ρi,b̄i
i,1 and

a
(b̄i)
i,2 = h

zi,b̄i ·(ei,2 ·g−b̄i)
−ρi,b̄i . He picks random s ←$ Zq, sets A1 = gs, A2 = hs,

and sends {(a(0)
i,1 , a

(0)
i,2), (a

(1)
i,1 , a

(1)
i,2)}ni=1 and (A1, A2) to the verifier.

2. The verifier picks random challenge ρ ←$ Z∗
q and sends ρ to the prover.

3. For i ∈ [n], the prover sets ρi,bi = ρ− ρi,b̄i and zi,bi = riρi,bi + si. He computes
Z = ρ ·∑n

i=1 ri + s, and sends {ρi,0, zi,0, zi,1}ni=0 and Z to the verifier.
Verification:
1. The verifier checks Eρ

1A1 = gZ ∧ (E2/g)
ρA2 = hZ . For i ∈ [n], the verifier

computes ρi,1 = ρ− ρi,0 and checks

e
ρi,0
i,1 a

(0)
i,1 = gzi,0 ∧ e

ρi,0
i,2 a

(0)
i,2 = hzi,0 ∧ e

ρi,1
i,1 a

(1)
i,1 = gzi,1 ∧ (ei,2/g)

ρi,1a
(1)
i,1 = hzi,1 .

Fig. 2. Public Coin SHVZK Unit Vector Proof

Theorem 1. The protocol depicted in Fig. 2 is a 3-move public coin perfect
special honest verifier zero-knowledge proof of knowledge of b and r such that
ei = Encpk(bi; ri) ∧ bi ∈ {0, 1} ∧

∑n
i=1 bi = 1.

Proof. For perfect completeness, if bi ∈ {0, 1}, it is easy to verify that all the
equations hold. For soundness, we have to construct an extractor X that runs on
〈P∗,V〉 to get a transcript. It rewinds the protocol to the challenge phase and
runs it with fresh challenges until it has 2 acceptable proofs. Assuming the prover
P has probability of p(λ) of making an acceptable proof, so the extractor X will
take an average of 2/p(λ) rewinds, which is polynomial running time. Thus, there
is overwhelming probability that we have transcripts with 2 different challenges
ρ(1), ρ(2). From those transcripts, the extractor can extract the knowledge b
and r. Namely, for each i ∈ [n], we have at least one different pair between

(ρ
(1)
i,0 , ρ

(2)
i,0) and (ρ

(1)
i,1 , ρ

(2)
i,1). Assume ρ

(1)
i,x , ρ

(2)
i,x are different, we can compute ri =

(z
(1)
i,x − z

(2)
i,x)/(ρ

(1)
i,x − ρ

(2)
i,x). Subsequently, X can extract bi by checking ei. Hence,

we have constructed an extractor X that outputs b and r.
For perfect zero-knowledge, we construct a simulator S that on challenge ρ

outputs simulated proof that is indistinguishable from a real proof with challenge
ρ. On challenge ρ, for i ∈ [n], S randomly picks ρi,0, zi,0, zi,1, Z ←$ Zq and com-

putes ρi,1 = ρ − ρi,0, A1 = gZE−ρ
1 , A2 = hZ(E2/g)

−ρ, a
(0)
i,1 = gzi,0e

−ρi,0

i,1 , a
(0)
i,2 =

hzi,0e
−ρi,0

i,2 , a
(1)
i,1 = gzi,1e

−ρi,1

i,1 , a
(1)
i,2 = hzi,1(ei,2/g)

−ρi,1 . S outputs

Practical Fully Simulatable Oblivious Transfer 87

τ∗ :=
(
{(a(0)i,1 , a

(0)
i,2), (a

(1)
i,1 , a

(1)
i,2)}ni=1, (A1, A2), ρ, {ρi,0, zi,0, zi,1}ni=0

)
.

Note that simulated zi,0, zi,1, Z have the same distribution as in the real
proof, because si, s are uniformly random. It is easy to see that ρ0 and
ρ1 have identical distribution of them in a real proof. Finally, we argue

that {(a(0)i,1 , a
(0)
i,2), (a

(1)
i,1 , a

(1)
i,2)}ni=1, (A1, A2) are uniquely determined for fixed

ρ0, ρ0, zi,0, zi,1, Z. Therefore, we have shown that the distribution of simulated
τ∗ is identical to τ in a real proof. ��

4.2 Multi-exponentiation Argument

In Fig. 3, we give an argument of knowledge of m := (m1, . . . ,mn)
T , r :=

(r1, . . . , rn)
T ∈ Zn

q and t ∈ Zq such that v = Encpk(0; t)
∏n

j=1 e
mj

j and ci =
Comck(mi; ri), for i ∈ [n].

Common input: Group information σ and pk, ck.
Statement: e ∈ (G×G)n, v ∈ (G×G) and c ∈ Gn.
Prover’s private input: m, r ∈ Zn

q and t ∈ Zq .
1. The prover picks x,y ←$ Zn

q , t
′ ←$ Zq and sends v′ := Encpk(0; t

′)
∏n

i=1 e
xi
i ,

ui := Comck(xi; yi) to the verifier.
2. The verifier picks a random challenge ρ ←$ Z∗

q and sends ρ to the prover.
3. The prover sends w := ρ ·m+ x, t̂ = ρ · t+ t′ and z := ρ · r + y to the verifier.

Verification:
1. The verifier checks cρi ui = Comck(wi; zi) ∧ vρv′ = Encpk(0; t̂)

∏n
i=1 e

wi
i .

Fig. 3. Public Coin SHVZK Multi-exponentiation Argument

Theorem 2. The protocol depicted in Fig. 3 is a 3-move public coin perfect
special honest verifier zero-knowledge argument of knowledge of m, r, t such that
v = Encpk(0; t)

∏n
j=1 e

mj

j ∧ ci = Comck(mi; ri).

Proof. For perfect completeness, it is easy verify that all the equations hold.
Now we prove soundness and show that the protocol is an argument of knowl-
edge (AoK). Since ρ ∈ Z∗

q is randomly chosen, by Schwartz-Zippel lemma, the
prover has negligible probability of convincing the verifier unless all ρ related
terms match on each side of the equality. Now we construct the witness-extended
emulator X runs 〈P∗,V〉 to get a transcript. If the prover P has probability p(λ)
of making an acceptable argument, the black-box witness-extended emulator X
also has success probability p(λ) to produce an accepting argument. It rewinds
the protocol to the challenge phase and runs it with fresh challenges until it has
2 acceptable arguments. Since the prover P has probability p(λ) of making an
accepting argument in the first place, the emulator X will take an average of
2/p(λ) rewinds, which is polynomial running time. Again, there is overwhelm-
ing probability that we have transcripts with 2 different challenges ρ(1), ρ(2).

88 B. Zhang et al.

After obtaining w(η) = ρ(η) ·m+x, t̂(η) = ρ(η) · t+ t′, z(η) = ρ(η) · r+y for η ∈
{1, 2}, X computes m = (w(1)−w(2))/(ρ(1)−ρ(2)), t = (t̂(1)− t̂(2))/(ρ(1)−ρ(2))
and r = (z(1) − z(2))/(ρ(1) − ρ(2)). Hence, we have extracted a valid witness
m, r, t for the statement.

For perfect zero-knowledge, we have to construct a simulator S on challenge ρ
outputs the simulated argument that is indistinguishable from a real argument
with challenge ρ. On challenge ρ, the simulator S randomly picksw, z ←$ Zn

q and

t̂ ←$ Zq. S computes v′ = Encpk(0; t̂)
∏n

i=1 e
wi

i ·v−ρ and ui = Comck(wi; zi) ·c−ρ
i .

S outputs τ∗ := (v′,u, ρ,w, t̂, z). Since x,y, t are uniformly random in a real
argument, the distribution of simulated w, t̂, z is identical to the distribution
of them in a real argument. Furthermore, v′,u are uniquely determined for
fixed ρ,w, t̂, z; therefore, simulated τ∗ has the same distribution as τ in a real
argument. ��

4.3 Masked Multi-exponentiation Batch Argument

In this section, we propose the masked multi-exponentiation batch argument.
Given two vectors of ciphertexts e := (e1, . . . , en)

T ∈ (G × G)n, v :=
(v1, . . . , v�)

T ∈ (G×G)� and two vectors of commitments c := (c1, . . . , c�)
T ∈ G�

and u := (u1, . . . , u�)
T ∈ G�, as depicted in Fig. 4, we will give an argument of

knowledge of M := {mj,i}n,�j,i=1 ∈ Zn×�
q , r, s, t,d ∈ Z�

q such that for i ∈ [�],

vi = Encpk(si; ti)
n∏

j=1

e
mj,i

j , ui = Comck(si; di) and ci = Comck(mi; ri)

where mi := (m1,i, . . . ,mn,i)
T , r := (r1, . . . , r�)

T , s := (s1, . . . , s�)
T , t :=

(t1, . . . , t�)
T and d := (d1, . . . , d�)

T .

Theorem 3. The protocol depicted in Fig. 4 is a 3-move public coin perfect
special honest verifier zero-knowledge argument of knowledge of M , r, s, t,d such
that for i ∈ [�],

vi = Encpk(si; ti)
n∏

j=1

e
mj,i

j , ui = Comck(si; di) and ci = Comck(mi; ri) .

Proof. For perfect completeness, it is easy to verify that all the equations hold.
Now we prove soundness and show that the protocol is an argument of knowl-
edge (AoK), by showing that it has a witness-extended emulator. Since ρ ∈ Z∗

q

is randomly chosen, by Schwartz-Zippel lemma, the prover has negligible proba-
bility of convincing the verifier unless all ρi related terms match on each side of
the equality for all i ∈ [�]. The witness-extended emulator X runs 〈P∗,V〉 to get
a transcript. If the prover P has probability p(λ) of making an acceptable argu-
ment, the black-box witness-extended emulator X also has success probability
p(λ) to produce an accepting argument. It rewinds the protocol to the challenge
phase and runs it with fresh challenges until it has �+ 1 acceptable arguments.

Practical Fully Simulatable Oblivious Transfer 89

Common input: Group information σ and pk, ck.
Statement: e ∈ (G×G)n,v ∈ (G×G)� and c,u ∈ G�.
Prover’s private input: M ∈ Zn×�

q and r, s, t,d ∈ Z�
q .

1. The prover picks x ←$ Zn
q , s0, t0, r0, d0 ←$ Zq and sends v0 :=

Encpk(s0; t0)
∏n

i=1 e
xi
i , cx := Comck(x; r0) and u0 := Comck(s0; d0) to the ver-

ifier.
2. The verifier randomly picks a challenge ρ ←$ Z∗

q and sends ρ to the prover.
3. Set ρ := (ρ, ρ2, . . . , ρ�)T . The prover sends w := M · ρ + x, t′ = tT · ρ + t0,

s′ = sT · ρ + s0, d
′ = dT · ρ + d0 and r′ := rT · ρ + r0 to the verifier, where

w := (w1, . . . , wn)
T .

Verification:
1. The verifier checks

u0

�∏

i=1

uρi

i =Comck(s
′; d′)∧cx

�∏

i=1

cρ
i

i =Comck(w; r′)∧v0
�∏

i=1

vρ
i

i =Encpk(s
′; t′)

n∏

i=1

ewi
i .

Fig. 4. Public Coin SHVZK Masked Multi-exponentiation Batch Argument

Since the prover P has probability p(λ) of making an accepting argument in
the first place, the emulator X will take an average of �+1

p(λ) rewinds, which takes

poly(λ) running time. Again, there is overwhelming probability that we have
transcripts with �+ 1 different challenges. The �+ 1 different challenges give us
a (�+ 1)× (�+ 1) transposed Vandermonde matrix

V =

⎛
⎜⎜⎜⎝

1 1 · · · 1

ρ(1) ρ(2) · · · ρ(�+1)

...
...

. . .
...

(ρ(1))� (ρ(2))� · · · (ρ(�+1))�

⎞
⎟⎟⎟⎠ .

Note that V is invertible because ρ(1), . . . , ρ(�+1) are different, and X computes
V −1. Let Mx be the n × (� + 1) matrix that is the column x concatenated
at the left side of M and denote W as the matrix that consists of columns
(w(1), . . . ,w(�+1)). We have W = Mx · V , and X can compute Mx = W ·
V −1. Similarly, X can extract r, s, t,d; hence, X has extracted a valid witness
M , r, s, t,d for the statement.

For perfect zero-knowledge, we have to construct a simulator S on chal-
lenge ρ outputs the simulated argument that is indistinguishable from a real
argument with challenge ρ. On challenge ρ, the simulator S randomly picks

w ←$ Zn
q and r′, s′, t′, d′ ←$ Zq. S computes u0 = Comck(s

′; d′)/(
∏�

i=1 u
ρi

i),

v0 = (Encpk(s
′; t′)

∏n
i=1 e

wi

i)/(
∏�

i=1 v
ρi

i) and cx = Comck(w; r′)/(
∏�

i=1 c
ρi

i). S
outputs τ∗ := (u0, v0, cx, ρ,w, r′, s′, t′, d′). Since x, r0, s0, t0, d0 are uniformly
random in a real argument, the distribution of simulated w, r′, s′, t′, d′ is iden-
tical to the distribution of them in a real argument. Furthermore, u0, v0, cx are
uniquely determined for fixed ρ,w, r′, s′, t′, d′, therefore, simulated τ∗ is identical
to the distribution of τ in a real argument. ��

90 B. Zhang et al.

4.4 Security Analysis of Our OTN
k×1 Scheme

In this section, we examine the security of our OTN
k×1 scheme in Fig. 1. Since wi in

step 3 of the transfer phase is masked by ai, it does not reveal information about
M ; therefore, the receiver can only decrypt one document in each transfer phase.
In our security proof of fully simulation, we don’t consider the initialization
phase and transfer phase as separated experiments. One may add argument of
knowledge of the openings of commitment c [15] in the initialization phase in
order to exact the sender’s input M in the initialization phase. Note that it is
the receiver’s responsibility to choose correct commitment key ck to achieve the
binding property. Since, the order of G is q, the sender only needs to check
group membership of ck to guarantee that his commitments will not reveal
anything information about the messages even if the receiver is cheating. Its
formal security proof is given in App. A.

4.5 Implementation and Efficiency

In terms of communicational efficiency, it is clear that the proposed OTN
k×1

scheme (shown in Fig. 1) costs O(
√
N) in both the initialization phase and each

transfer phase. Let k = 1, as far as we know, our proposed OTN
1 is the first

fully simulatable OTN
1 that achieves O(

√
N) communication complexity. The

computation complexity of our proposed OTN
k×1 scheme is O(N) in both initial-

ization phase and each transfer phase. As mentioned before, since the scheme
uses lifted ElGamal encryption, the message space should be small enough to
compute discrete logarithm, e.g., mi ∈ {0, 1}ξ, where ξ ≤ 30.

In practical implementation, the actual complexity of our protocol is smaller.
Since the protocol only uses multi-exponentiation operations in both homo-
morphic operations and commitments. We employ Lim’s multi-exponentiation
algorithm to reduce the actual computation. In [25], Lim showed how to com-
pute a product of n exponentiations using only O(n

logn) multiplications. We

implemented the proposed OTN
k×1 scheme on elliptic curve group over Fp. The

performance benchmark is tested with the 192-bit elliptic curve domain param-
eters recommended by NIST p192, where p = 2192 − 264 − 1, which gives about
96-bit security level. In order to save communication bandwidth, we also used
the standard point compression technique: a point on E(Fp) is represented by
its x coordinate together with the least significant bit of its y coordinate. The
code is implemented in C++, using Multi-precision Integer and Rational Arith-
metic C/C++ Library (MIRACL) crypto SDK. All the tests are performed on
a linux desktop with an Intel Core i5-2400 CPU running at 3.10 GHz. Table 2
depicts the sender’s and receiver’s running time (in seconds) as well as the com-
munication complexity (in bytes) in both initialization phase and each transfer
phase. We can see our scheme is very efficient even with relatively large database
size.

Practical Fully Simulatable Oblivious Transfer 91

Table 2. Performance Benchmark. (r.t. stands for running time. Messages are chosen
from {0, 1}10, and the network delay is not considered.)

Initialization phase Each transfer phase

DB size S’s r.t. (s) R’s r.t. (s) Comm.
(byte)

S’s r.t. (s) R’s r.t. (s) Comm.
(byte)

1× 104 0.06 0.045 4065 0.98 1.16 44320

2.5×105 0.29 0.565 20165 4.9 7.24 220320

1× 106 0.59 1.975 40290 9.7 17.68 440320

2.5×107 2.92 43.555 201290 48.61 223.25 2200320

1× 108 5.83 171.24 402540 96.94 786.77 4400320

5 Conclusions

In this paper, we proposed an efficient OTN
k×1 scheme in the plain model. It

achieves fully simulatable security with O(
√
N) communication in both the ini-

tialization phase and each transfer phase. Ideally, the scheme is dedicated to
1-out-of-N oblivious transfer, whereas it also achieves better (amortized) com-
munication, comparing with existing schemes when k = O(N1/2), which covers
majority OT usage cases. We also implemented and highly optimized the pro-
posed scheme, and its perform benchmark shows very impressive results. When k
is very large, sayO(N), we recommend the user to adopt ORAM based two-party
computation schemes, e.g. [11], so the cost of each transfer is minimum after the
setup phase. We would like to further reduce the communication complexity of
fully simulatable OTN

1 in our future research.

Acknowledgements. The second author was supported by Estonian Research
Council, the Tiger University Program of the Estonian Information Technology
Foundation, and European Union through the European Regional Development
Fund. The last author was supported in part by US National Science Foundation
under grants CNS-1262277 and CNS-1116939.

References

1. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Informa-
tion Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)

2. Bayer, S., Groth, J.: Efficient Zero-Knowledge Argument for Correctness of a Shuf-
fle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

3. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs
Verifiable in Polylogarithmic Time. In: CCC (2005)

5. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

92 B. Zhang et al.

6. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Chaum, D.: Zero-Knowledge Undeniable Signatures (extended abstract). In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer,
Heidelberg (1991)

8. Damg̊ard, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002.
LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

9. Damg̊ard, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest Verifier vs Dis-
honest Verifier in Public Coin Zero-Knowledge Proofs. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

10. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

11. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure Two-party Computation in Sublinear (amortized) Time. In: CCS (2012)

12. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable
Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 265–282. Springer, Heidelberg (2007)

13. Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

14. Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple
Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer,
Heidelberg (2011)

15. Groth, J.: Linear Algebra with Sub-linear Zero-knowledge Arguments. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)

16. Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. Journal of
Cryptology 23, 546–579 (2010)

17. Groth, J.: hort Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

18. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

19. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

20. Kurosawa, K., Nojima, R.: Simple Adaptive Oblivious Transfer Without Random
Oracle. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 334–346.
Springer, Heidelberg (2009)

21. Kurosawa, K., Nojima, R., Phong, L.T.: Efficiency-improved fully simulatable
adaptive OT under the DDH assumption. In: Garay, J.A., De Prisco, R. (eds.)
SCN 2010. LNCS, vol. 6280, pp. 172–181. Springer, Heidelberg (2010)

22. Kurosawa, K., Nojima, R., Phong, L.T.: Generic Fully Simulatable Adaptive Obliv-
ious Transfer. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp.
274–291. Springer, Heidelberg (2011)

23. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS (1997)

Practical Fully Simulatable Oblivious Transfer 93

24. Laur, S., Lipmaa, H.: On the Feasibility of Consistent Computations. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 88–106. Springer,
Heidelberg (2010)

25. Lim, C.H.: Efficient Multi-exponentiation and Application to Batch Verification of
Digital Signatures (2000), online Tech. Report:
http://dasan.sejong.ac.kr/~chlim/pub/multiexp.ps

26. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication.
In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

27. Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg
(2010)

28. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg (2012)

29. Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing. In: Deswarte, Y.,
Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Protection in Information
Processing Systems. IFIP, vol. 147, pp. 440–455. Springer, Boston (2004)

30. Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

31. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryp-
tology 18, 1–35 (2005), http://dx.doi.org/10.1007/s00145-004-0102-6

32. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

33. Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced
Oblivious Transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 231–247. Springer, Heidelberg (2009)

34. Yao, A.: Protocols for Secure Computations (Extended Abstract). In: FOCS (1982)
35. Zhang, B.: Simulatable Adaptive Oblivious Transfer with Statistical Receiver’s

Privacy. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 52–67.
Springer, Heidelberg (2011)

A Security Proof of Our OTN
k×1 Scheme

Theorem 4. The proposed OTN
k×1 scheme (as shown in Fig. 1) is secure against

the sender corruption under the DDH assumption.

Proof. We show that for every real-world cheating p.p.t. sender Ŝ there exists
an ideal-world cheating p.p.t. sender Ŝ′ such that for every distinguisher D:

RealŜ,R(N, k,m1, . . . ,mN , I) c≈ IdealŜ′,R′(N, k,m1, . . . ,mN , I)

Considering a sequence of games G0, . . . , G4, where Game G0 = RealŜ,R and
Game G4 = IdealŜ′,R′ . We define

Adv[D] =
∣∣∣Pr[D(X) = 1 : X

$← IdealŜ′,R′]− Pr[D(X) = 1 : X
$← RealŜ,R]

∣∣∣ .

Game G0: The real-world experiment RealŜ,R. By definition, Pr[D(X) = 1 :

X
$← G0] = Pr[D(X) = 1 : X

$← RealŜ,R].

http://dasan.sejong.ac.kr/~chlim/pub/multiexp.ps
http://dx.doi.org/10.1007/s00145-004-0102-6

94 B. Zhang et al.

Game G1: Game G1 is the same as Game G0 except the following. In the first
transfer phase, the receiver uses the witness-extended emulator of the masked
multi-exponentiation batch AoK to extract M∗, r∗ that is committed in c. If
extraction fails, then the protocol aborts. The failure probability is negligible.
Furthermore, if the server can open the commitments to a different set M ′, r′

from what is extracted, then we have broken the blinding property of generalized
Pedersen Commitment; namely, the discrete logarithm assumption does not hold,
neither does the DDH assumption. Assume the DDH problem is hard over G,

we have Pr[D(X) = 1 : X
$← G1] ≈ Pr[D(X) = 1 : X

$← G0].

Game G2: Game G2 is the same as Game G1 except the following. In the ini-
tialization phase, the receiver randomly picks pk such that he does not know
the discrete logarithm of pk. In the �-th transfer phase, the receiver skips all the
decryption steps, and returns m∗

i�
according M∗ that is extracted in Game

G1. Since all the zero-knowledge arguments and proofs are sound, we have

Pr[D(X) = 1 : X
$← G2] ≈ Pr[D(X) = 1 : X

$← G1].

Game G3: Game G3 is the same as Game G2 except the following. In the �-th
transfer phase, the receiver picks two random unit vectors u,v, regardless i�.
Since ElGamal encryption is IND-CPA secure under the DDH assumption, we

have Pr[D(X) = 1 : X
$← G3] ≈ Pr[D(X) = 1 : X

$← G2].

Game G4: The ideal-world experiment IdealŜ′,R′ in which an ideal-world sender

Ŝ′ uses the real-world sender Ŝ as a black-box as follows.

1. After receiving (m1, . . . ,mN), Ŝ′ forwards them to Ŝ.

2. Ŝ′ acts as the receiver and plays Game G3 with Ŝ.
3. In the first transfer phase, Ŝ′ sends (m∗

1, . . . ,m
∗
N) that is extracted in Game

G1 to Fn×1
OT (for the initialization phase). 2

4. In the �-th transfer phase, if Ŝ behaved in an acceptable way, then Ŝ′ sends
b� = 1 to Fn×1

OT . Otherwise, Ŝ′ sends b� = 0 to Fn×1
OT .

To sum up, it is easy to see that

Adv(D) =
∣∣∣Pr[D(X) = 1 : X

$← G4]− Pr[D(X) = 1 : X
$← G0]

∣∣∣ ≤ ε(λ) ,

where ε(·) is a negligible function. ��

Theorem 5. The proposed OTN
k×1 scheme (as shown in Fig. 1) is statistically

secure against the receiver corruption.

Proof. We show that for every real-world cheating p.p.t. receiver R̂ there exists
an ideal-world cheating p.p.t. receiver R̂′ such that for every distinguisher D:

RealS,R̂(N, k,m1, . . . ,mN , I) c≈ IdealS′,R̂′(N, k,m1, . . . ,mN , I)
2 Remark: the experiments do not separate initialization phase and transfer phase.

Practical Fully Simulatable Oblivious Transfer 95

Again, we consider a series of hybrid games G0, . . . , G4, where Game G0 =
RealS,R̂ and Game G4 = IdealS′,R̂′ . We define

Adv[D] =
∣∣∣Pr[D(X) = 1 : X

$← IdealS′,R̂′]− Pr[D(X) = 1 : X
$← RealS,R̂]

∣∣∣ .

Game G0: The real-world experiment RealS,R̂. By definition, Pr[D(X) = 1 :

X
$← G0] = Pr[D(X) = 1 : X

$← RealS,R̂].

Game G1: Game G1 is the same as Game G0 except the following. In the �-th
transfer phase, the sender uses the knowledge extractor of unit vector PoK to
extract the plaintext and randomizers of each ciphertext, i.e., those two unit
vectors u∗,v∗. Subsequently, we know the index i∗� . If extraction fails, then the

protocol aborts. Since the failure probability is negligible, Pr[D(X) = 1 : X
$←

G1] ≈ Pr[D(X) = 1 : X
$← G0].

Game G2: Game G2 is the same as Game G1 except the following. In each
transfer phase, the sender uses the simulator of the masked multi-exponentiation
batch AoK to prove that w is computed correctly without using M . If simulation
fails, then the protocol aborts. Since the failure probability is negligible, we have

Pr[D(X) = 1 : X
$← G2] ≈ Pr[D(X) = 1 : X

$← G1].

Game G3: Game G3 is the same as Game G2 except the following. In the
initialization phase, the sender randomly picks α ←$ Zn

q and sets ci = gαi as

fail commitments. Since the distribution of c is unchanged, Pr[D(X) = 1 : X
$←

G3] = Pr[D(X) = 1 : X
$← G2].

Game G4: The ideal-world experiment IdealS′,R̂′ in which an ideal-world re-

ceiver R̂′ uses the real-world receiver R̂ as a black-box as follows.

1. R̂′ acts as the sender and plays Game G3 with R̂.
2. In the �-th transfer phase, R̂′ sends i∗� that is extracted in Game G1 to

Fn×1
OT and fetches mi∗� from Fn×1

OT . R̂′ prepares M ′ such that m′
i∗�

= mi∗� and

∀j �= i∗� : m′
j = 0.

3. Compute w according to M ′ and complete the rest of the protocol as de-
scribed in Game G3.

To sum up, it is easy to see that

Adv(D) =
∣∣∣Pr[D(X) = 1 : X

$← G4]− Pr[D(X) = 1 : X
$← G0]

∣∣∣ ≤ ε(λ) ,

where ε(·) is a negligible function. ��
Theorem 6. The proposed OTN

k×1 scheme (as shown in Fig. 1) is fully simu-
latable secure under the DDH assumption.

Proof. By Definition 1, the proposed OTN
k×1 framework is fully simulatable se-

cure due to both Theorem. 4 and Theorem. 5.

Unconditionally-Secure Robust Secret Sharing

with Minimum Share Size

Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini

Department of Computer Science
University of Calgary, Canada

Abstract. An n-player (t, δ)-secure threshold robust secret sharing
scheme is a (t, n)-threshold secret sharing scheme with the additional
property that the secret can be recovered, with probability at least 1−δ,
from the set of all shares even if up to t players provide incorrect shares.
The existing constructions of threshold robust secret sharing schemes for
the range n/3 ≤ t < n/2 have the share size larger than the secret size.
An important goal in this area is to minimize the share size. In the paper,
we propose a new unconditionally-secure threshold robust secret sharing
scheme for the case n ≥ 2t + 2 with share size equal to the secret size.
This is the minimum possible size as dictated by the perfect secrecy of
the scheme.

Keywords: Shamir secret sharing, robust secret sharing, secret sharing
with cheating detection.

1 Introduction

Secret Sharing is one of the most important tools in modern cryptography. The
concept and the first realization of secret sharing were presented independently in
[24] and in [3]. In a secret sharing scheme, there exists a dealer, n participants,
and possibly a reconstructor. The dealer splits a secret s ∈ S, into n pieces,
called shares, and sends one share to each participant over a private point-to-
point channel. An access structure is the set of subsets of participants that
are qualified to recover the secret. In a (t, n)-threshold access structure, where
1 ≤ t < n, any t + 1 or more participants can reconstruct the secret, and the
knowledge of t or less shares leaves the secret s indeterminate. A (t, n)-threshold
secret sharing scheme is said to be perfect if no subset of t or less shares can leak
any information about the secret s where the leakage is in information theoretic
sense and without assuming any limit on the computational resources of the
adversary.

In its basic form, secret sharing assumes that the corrupted participants are
passive (or semi-honest) and follow the protocol during the reconstruction phase.
Extensions of this basic model considers cases that the corrupted participants
deviate from the protocol [19,27,22,4,6,20]. In these extensions different require-
ments such as cheater detection [4], cheater identification [20] and untrusted

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 96–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 97

dealer [8] have been considered. A minimal robust requirement when partici-
pants are allowed to submit incorrect shares, is that the set of all shares, some
possibly corrupted, can recover the correct secret. Perfect secret sharing schemes
that satisfy this additional property are called robust secret sharing schemes.

Threshold robust secret sharing schemes provide a powerful tool for building
secure and reliable distributed data storage systems. Users’ data (files) can be
broken into pieces (shares) and stored on multiple servers such that privacy
of data against servers is provided, and the system ensures recovery of the data
when a subset of servers corrupt their stored shares, accidentally or intentionally.
In recent years, systems and architectures based on this primitive have emerged
[16,28,11] which shows importance of robust secret sharing in practice. Threshold
robust secret sharing has also direct application to Secure Message Transmission
(SMT). In an unconditionally secure SMT [10,12,13], a sender is connected to a
receiver through n wires such that up to t of which are controlled by an adversary.
The goal of an SMT protocol is to ensure that the message sent by the sender
is received correctly by the receiver, and no information about the message is
leaked to the adversary. Good threshold robust secret sharing schemes lead to
good secure message transmission schemes [18]. Robust secret sharing schemes
may also be seen as an stepping stone towards the construction of verifiable
secret sharing (VSS) schemes [8], in which, in addition to the corrupted players,
the dealer is dishonest and may hand out inconsistent shares. Finally robust
secret sharing is an important primitive for secure multi-party computation.

1.1 Motivation

In perfect threshold robust secret sharing schemes, in addition to the requirement
of perfect threshold secret sharing schemes,

– any t+1 shares reconstruct the secret, and any t shares give no information
about the secret,

it is also required that,

– the secret can be reconstructed with high probability from the set of all
shares, even if up to t shares are incorrect.

The reconstruction may be with, or without, a reconstructor, and may include
one or more rounds of communication [9,7]. Also, reconstruction failure may be
defined differently [9,7]. These variations of the model needs careful considera-
tions in comparing schemes and their performances. A framework for consider-
ing robust secret sharing is provided in [23], which includes schemes in both the
information-theoretic and computationally secure settings.

In this paper we shall follow the model of [7], where during the reconstruction,
all the n players communicate their shares to a trusted third party called the
reconstructor. Based on the received shares (some of them are incorrect), the
reconstructor then produces an output s′, which with a probability at least 1−δ
is the same as the original secret s.

98 M.P. Jhanwar and R. Safavi-Naini

Important efficiency measures for robust secret sharing schemes are the com-
munication cost (number of communicated bits) of reconstruction [9] and the
share size measured by the number of bits required to represent a share. In this
paper we focus on the latter measure. It is well known that in any perfect se-
cret sharing scheme, the length of a share σi is at least the length of the secret,
that is log |S| [25]. Secret sharing schemes that meet this lower bound are called
ideal [25]. Shamir secret sharing meets this lower bound and is ideal. This lower
bound also holds for robust secret sharing scheme which are perfect secret shar-
ing schemes. So a natural question is how much redundancy, that is extra share
length compared to the secret length, is needed for robustness.

It follows from the theory of Reed-Solomon error correcting codes that Shamir
secret sharing scheme is robust if (and only if) t < n/3 [1] and so no increase in
the share size is needed to obtain robustness. On the other hand, the robust secret
sharing is impossible if t ≥ n/2: the (t, n)-threshold access structure requires at
least (t+1) correct shares for the recovery of the original secret. The interesting
range is n/3 ≤ t < n/2. In this range, all existing schemes have share sizes that
are strictly larger than the secret size. The problem is naturally more difficult
when t is maximal in the range n/3 ≤ t < n/2 i.e., n = 2t+ 1 (when n is odd)
and n = 2t + 2 (when n is even). In particular, for the range n/3 ≤ t < n/2,
there is no known threshold robust secret sharing scheme such that,

– the maximum length of individual share size of a participant is the same
as the secret size (thus no increase in the share size), and the probability
of correctly recovering the secret from the set of all shares is at least 1 − δ,
where δ is a negligible value.

This is irrespective of the computational complexity of reconstruction which can
be exponential in n. The result of this paper shows that it is possible to keep
the share size same as the secret size when n ≥ 2t+ 2.

1.2 Our Contribution

We consider the model of [7] in which reconstruction is by a trusted reconstruc-
tor, and propose a new construction of robust secret sharing which is based on
Shamir’s secret sharing and has share size equal to the secret size, which is the
minimum required by perfect secret sharing schemes. That is, the extra robust-
ness property is obtained without increasing the share size. The system’s public
parameter, in addition to what is required by Shamir’s scheme, includes a struc-
tured matrix that has O(n) random elements. This matrix can be distributed
during share distribution, or stored on an authenticated and publicly accessible
storage. The system works for n ≥ 2t + 2 and effectively uses the share of the
extra participants as the verification information. We note that if n is even, then
n = 2t+ 2 is the minimum required number of participants.

The reconstruction is one round and requires participants to send their shares
to the reconstructor. The reconstruction is secure against a non-rushing adver-
sary (this is properly defined in Sect. 2.2), and the reconstruction procedure
may output an incorrect secret with a negligible probability. The reconstruction

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 99

algorithm however is inefficient and requires that all subsets of size t + 1 of n
shares be considered. Construction of schemes with the above properties and
efficient reconstruction, remains an open problem.

1.3 Related Work

Cheating detection and providing robustness against cheaters, is an important
problem in secret sharing schemes. Different models and constructions have been
proposed for this problem over the year [22,4,6,19,27,20]. Robustness in the sense
of recoverability of the secret when some shares are wrong is a basic property
that ensures the secret is not lost because of the share corruption. Robust secret
sharing with unconditional security was first considered by McEliece and Sarwate
[19] where they pointed out the close relationship between Shamir secret sharing
scheme and Reed-Solomon coding. Little is known about robust secret sharing
for the range n/3 ≤ t < n/2. The first scheme for the range n/3 ≤ t < n/2 is due
to Rabin and BenOr [22]. Their scheme consists of Shamir secret sharing, but
enhanced by means of an unconditionally secure message authentication code.
The constructions in [9,7] represent the two main approaches to this problem
and provide the best performances in terms of trade-off results between share
size and the reconstruction complexity (see Sect. 5 for their description). In
[9], the redundancy of the share size is exactly two field elements (here n =
2t+1, secert size is one field element, and the reconstruction model is different).
The reconstruction time is however exponential in n. The scheme in [7] has
the smallest share size (see Sect. 6) among schemes with efficient (polynomial)
reconstruction.

2 Preliminaries

We begin by formally defining the model of threshold robust secret sharing. The
“definitions” are taken verbatim from [7].

2.1 Robust Secret Sharing

A threshold robust secret sharing scheme can be described by two interactive pro-
tocols, Share and Rec, where Share involves a dealer D and n players P1, . . . , Pn,
and Rec involves the n players and a reconstructor R. The dealer is connected to
every player by a secure, untappable channel. There is also a broadcast channel
that can be used by everyone in the system. An n-player threshold robust se-
cret sharing scheme for a secret space S consists of two phases, the sharing and
the reconstruction phase, specified by two protocols Share and Rec respectively,
described below. Let [n] = {1, . . . , n}.

– Share: The dealer D takes as input a secret s ∈ S, locally computes shares
σ1, . . . , σn, and for every i ∈ [n], sends the i-th share σi privately to player
Pi.

100 M.P. Jhanwar and R. Safavi-Naini

– Rec: During reconstruction, player Pi, i ∈ [n], communicates, possibly by
means of several synchronous communication rounds, σi to the reconstructor
R. The reconstructor R uses the received shares to produce an output s′,
which is supposed to be the original secret s.

2.2 Adversarial Capabilities

We now specify the capabilities (and limitations) of the adversary who has un-
bounded computing power. The goal of the adversary is to make the reconstruc-
tor output a value different from the original secret s.

– During the sharing phase, the adversary remains inactive, and does not learn
any information about the secret as the shares are distributed using private
channels between players and the dealer.

– After the sharing phase, the adversary can adaptively corrupt up to t of
the players Pi, where t is the threshold parameter. The corruption can
be done between communication rounds and continue as long as the total
number of corrupted players does not exceed t. D or R are assumed incor-
ruptible. Once a player Pi is corrupted, the adversary learns Pi’s share σi,
and from then on, the adversary has full control over Pi. The corruptions
being adaptive means that after each corruption, the adversary can decide
on whom to corrupt next depending on the shares he has seen so far.

– During the reconstruction phase, the adversary sees the communications
between players Pi and the reconstructor R. Furthermore, he controls the
information that the dishonest players send to the reconstructor R. Recon-
struction in general has multiple rounds. In every communication round, for
every corrupted player, the adversary decides what this player should send
to R. A rushing adversary can choose these values after observing what
honest players send to R in the current round. A non-rushing adversary
selects the corrupted shares before the start of the reconstruction phase.

2.3 Security

An n-player robust secret sharing scheme (Share,Rec) is (t, δ)-secure if the fol-
lowing properties hold for any distribution of s ∈ S and for any adversary as
specified above:

1. Privacy: Before Rec starts, the adversary has no more information about
the shared secret s than he had before the execution of Share.

2. Reconstructability: At the end of Rec, the reconstructor R outputs s′ = s
with probability at least 1− δ.

It is well known that in any perfect secret sharing scheme, the bit-size of a share
σi is at least the same as the bit-size of secret, that is log |S| [25]. Much research

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 101

effort focused on finding the least required redundancy to achieve robustness. Let
σi denotes the share for player Pi. The redundancy (also known as overhead) is
measured by the quantity maxi{log σi}− log |S|. For t < n/3, one can use Reed-
Solomon error correcting codes to construct a robust secret sharing scheme with
efficient reconstruction algorithm and no redundancy in the share size i.e., the
share size is the same as the secret size [1]. On the other hand, for t ≥ n/2 there
is no solution to the problem (the (t, n)-threshold access structure requires at
least t+1 correct shares for the recovery of the original secret). In this work we
construct a robust secret sharing scheme for n = 2t+ 2 with no redundancy in
the share size. The construction works for any t in the range n

3 ≤ t ≤ n
2 − 1.

3 The Proposed Scheme

The scheme of [9] can be understood as being obtained from a secret sharing
scheme that allows error detection, i.e., that detects if a set of t + 1 shares
contains some incorrect ones (but can not necessarily tell which ones). It was
analyzed in [15] that any secret sharing scheme with error detection [5,21,27] can
be transformed into a robust secret sharing scheme by looping over all sets of
size t+1. This line of thinking has provided schemes with low share redundancy
and the work in [9] represents the best so far. It is apparent that any such
scheme will suffer from the same exponential complexity and our new proposal,
being constructed on this line, is no exception, but what is interesting is that
the proposed scheme employs a technique that leverage some extra public values
to eliminate redundancy in the shares.

3.1 The Scheme

Let t and n are positive integers such that n = 2t+2. Let Fq be a finite field with
q elements, where q is a prime power with q > n. We now present an n-player
robust secret sharing scheme over Fq which is (t, δ) secure and individual share
size is same as secret size.

– Share:
• Let s ∈ Fq be a secret.
• The dealer randomly chooses a polynomial f(x) ∈ Fq[x] of degree at
most t such that f(0) = s and computes si = f(i) for all i ∈ [t+ 1].

• D choose n vectors of length t + 1, (ri1, . . . , ri(t+1)) ∈ (Fq)
n, 1 ≤ i ≤ n

such that any t+1 of them are linearly independent (see below for such

a selection) and for every i ∈ [n], he computes σi =
∑t+1

j=1 rijsj ∈ Fq.
• For every i ∈ [n], the dealer D sends to player Pi the share σi (just one
field element). The n vectors {(ri1, . . . , ri(t+1))}1≤i≤n are part of system’s
public parameters. The dealer can send the public parameters to users,
using the broadcast channel. Alternatively the public parameters can be
stored on a publicly accessible authenticated bulletin board.

102 M.P. Jhanwar and R. Safavi-Naini

– Rec:
• Every player sends σi to the reconstructor R.
• To reconstruct the secret, the reconstructor does the following for every
subset of t+ 1 players.
∗ He reconstructs (s′1, s

′
2, . . . , s

′
t+1) using t+ 1 shares by solving t + 1

equations in t+ 1 variables.
∗ He checks if

∑t+1
j=1 rijs

′
j = σi for at least one of the remaining t+ 1

shares, and halts if it holds.
• R then computes (using Lagrange interpolation) a polynomial f(x) ∈
Fq[x] of degree at most t and outputs s = f(0).

3.2 Remarks

Standard methods are available to choose n vectors of length t+ 1 over Fq with
the property that any t+ 1 of them are linearly independent. For completeness
we describe some of them here. Let z1, . . . , zn, w1, . . . , wt+1 ∈ Fq be such that
the zi’s are distinct, the wj ’s are distinct, and zi + wj �= 0 for all i, j. Define

ri =

(
1

zi + w1
, . . . ,

1

zi + wt+1

)
, 1 ≤ i ≤ n .

One can check that any t + 1 vectors chosen among these n row vectors are
linearly independent as the matrix so formed has non-zero determinant (see Ch
11, [17]). In particular let M denote the matrix with rows r1, . . . , rt+1, then

det(M) =

∏
i<j(zj − zi)(wj − wi)∏

i,j(zi + wj)
.

The number of field elements that are distributed publicly is equal to n+ t+ 1.
Another way of selection is to choose an n× (t+1) Vandermonde matrix which
also has the property that any t + 1 rows are independent. A Vandermonde
matrix of size n× (t + 1) can be described by n elements and in this case only
n field elements are distributed publicly.

4 Security

4.1 Perfect Secrecy

The secret is the constant term of a random polynomial of degree at most t. The
t+1 evaluations of the polynomial, {s1, . . . , st+1}, are independent and are needed
to reconstruct the secret. We will show that any group CP = {Pi1 , . . . , Pit} of
corrupted participants will be completely uncertain about at least one value from
{s1, . . . , st+1}. This is true because the group CP has t shares {σi1 , . . . , σit} and
these shares correspond to t equations,

M · (s1, . . . , st+1)
T = (σi1 , . . . , σit)

T ,

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 103

where M is the t × (t + 1) matrix consisting of the t row vectors ri1 , . . . rit
associated with the corrupted users, and ‘T’ denotes matrix transpose.

Let M1, . . . ,Mt+1 be the column vectors of M . As Mi’s constitute a set of
t+1 t-dimensional vectors, they are linearly dependent. Thus there exists at least
one column vector, without loss of generality say M1, such that M1 belongs
to the subspace 〈M2, . . . ,Mt+1〉. So there exists a (t + 1)-dimensional vector
b = (b1, . . . , bt+1) such that MbT = 0 and b1 �= 0. Thus, we have

(σi1 , . . . , σit)
T = M · (s1, . . . , st+1)

T = M · ((s1, . . . , st+1)
T + α(b1, . . . , bt+1)

T)

for all α ∈ Fq. Hence, given any β1 ∈ Fq, there exists (β1, . . . , βt+1) ∈ (Fq)
t+1

such that M · (β1, . . . , βt+1)
T = (σi1 , . . . , σit)

T . Therefore, the participants in
CP cannot rule out any element of Fq as a possibility for s1. Thus, there exists q
values for s1 and distinct values for s1 leads to distinct polynomials. This makes
f(0) indeterminate. ��

4.2 Reliability

Theorem 1. Let k be a security parameter. For any positive integer n and t such
that n = 2t + 2, and any finite field Fq with k = �log2 q�, the pair (Share,Rec)
forms an n-player (t, δ)-robust secret sharing for message space Fq with

δ ≤
√
t+ 1

2k−n
.

Proof. Consider the state of the reconstruction phase right before the recon-
structor R has received the shares from the players. We may assume that at this
stage the adversary has corrupted t players. Thus R has now n shares of which
at most t are corrupted. To reconstruct the secret, R does the following for every
subset of t+ 1 players.

(a) He computes (s′1, s
′
2, . . . , s

′
t+1) using t+1 chosen shares (σ′

i1
, σ′

i2
, . . . , σ′

it+1
)

(by solving t+ 1 equations in t+ 1 variables).

(b) He then checks if
∑t+1

j=1 rijs
′
j = σi for at least one of the remaining t + 1

shares, and halts if it holds.

Consider an arbitrary set A = {σ′
i1
, . . . , σ′

it+1
} of t + 1 shares submitted during

the reconstruction phase. Let us assume that j (0 ≤ j ≤ t) of them are corrupted.
Let M be the matrix with rows ri1 , . . . , rit+1 such that,

M · (s′1, . . . , s′t+1)
T = (σ′

i1 , . . . , σ
′
it+1

)T .

Then (s′1, . . . , s
′
t+1)

T = σ′
i1
M̃1+ · · ·+σ′

it+1
M̃t+1, where the M̃i’s are the columns

of the inverse matrix M−1. For a fix set of values of the j corrupted shares,
there are qt+1−j solution vectors to the above equality. Therefore the probabil-
ity that the solution vector is a solution to one of the remaining equations is
t+1

qt+1−j , the maximum value is t+1
q when j = t. Thus, taking into account union

104 M.P. Jhanwar and R. Safavi-Naini

bound over all subsets of size t+1 leaves us with the failure probability ≤
√
t+1

2k−n(
as (t+ 1) ·

(
n

t+ 1

)
≤

√
t+ 1 · 2n when n = 2t+ 2 and k = �log2 q�

)
. ��

The efficiency comparison for the proposed scheme with the known schemes
(described below) is given in Sect. 6.

5 Known Schemes and Possible Extensions

Previous works on robust secret sharing schemes with unconditional security for
the range n/3 ≤ t < n/2 can be broadly divided into two classes. We now briefly
recall the best scheme from each class.

The first one is due to Cramer et al. [9], based on an idea by [5]. The scheme
works as follows. Using standard Shamir secret sharing, the dealer shares inde-
pendently the actual secret s ∈ Fq, a randomly chosen field element r ∈ Fq,
and their product p = s · r. To reconstruct the secret, the reconstructor does
the following: for every subset of t+ 1 players, he reconstructs s′, r′ and p′ and
checks if s′ · r′ = p′, and halts and outputs s′ if it is the case. One can show that
for any subset of t+ 1 players: if s′ �= s then s′ · r′ �= p′ except with probability
1/q. Thus for a field of size 2k, taking into account union bound over all subsets
of size t + 1, gives a robust secret sharing scheme with failure probability 2k−n

and shares of size 3k bits (consisting of three field elements).
The second scheme is given by Cevellos, Fehr, Ostrovsky and Rabani [7], and

is based on the scheme of Rabin and BenOr [22] with an elegant twist to its
reconstruction algorithm. This scheme’s description is given below.

– Share:
• Choose a random polynomial f(x) ∈ Fq[X] with degree at most t such
that f(0) = s.

• Compute the Shamir shares s1 = f(x1), . . . , sn = f(xn), where xi’s are
distinct points in Fq.

• For every pair i, j ∈ [n], choose a random key keyij ∈ K and compute
τij = MAC(keyji, si), where MAC : Fq × K → T be an ε-secure MAC
[29,30,7] with message space Fq.

• For every i ∈ [n], the player Pi is given the share

σi = (si, τi1, . . . , τin, keyi1, . . . , keyin).

– Rec:
• First Round: Every player Pi sends si and τi1, . . . , τin. to the recon-
structor R.

• Second Round: Every player Pi sends keyi1, . . . , keyin to R.
• Local Computation:

∗ For every pair i, j ∈ [n], R sets νij to be 1 if the share si of player
Pi is accepted by the corresponding key of player Pj , i.e., if τij =
MAC(keyji, si), and else to 0.

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 105

∗ R computes the largest set I ⊆ [n] with the property that

∀i ∈ I : |{j ∈ I|νij = 1}| =
∑
j∈I

νij ≥ t+ 1 ;

in other words, every share of a player in I is accepted by at least t+1
players in I. Clearly I contains all honest players. Let c = |I|−(t+1)
be the maximum number of corrupt players in I.

∗ Use the Berlekamp-Welch algorithm [2,14] to compute a polynomial
f(x) ∈ F[X] of degree at most t such that f(xi) = si for at least
(t+1)+ c

2 players i in I. If no such polynomial exists then R outputs
⊥; otherwise, he outputs s = f(0).

The Share algorithm of this scheme is the same as the well-known scheme of
Rabin and Ben-Or [22] which relies on message authentication. The redundancy
in share size for Rabin and Ben-Or scheme consists of 3n elements from the field
where the secret is drawn from. The scheme uses a message authentication code
with short tags and keys and with the resulting weak security. The short tags and
keys result in the required saving (improvement over Rabin and Ben-Or scheme)
in the share size. The weakened security of authentication (and so higher chance
of forging) is compensated with a more sophisticated reconstruction procedure
which runs in polynomial time and results in an exponentially small failure
probability. The overhead of the share size depends directly on the exponent of
the failure probability.

Assuming the same share distribution as Rabin and Ben-Or’s scheme [22], one
may consider further reduction in authentication information and improvement
in the reconstruction, to obtain shorter share sizes. In Sect. 5.1 we explore one
such possibility by employing list decoding algorithm for Reed-Solomon codes
[26] in the reconstruction algorithm of [7]. Our goal is to reduce δ, the error
probability of the decoder, which will translate into smaller share size. Our anal-
ysis shows that this modification does not reduce δ and so the share size cannot
be further reduced.

5.1 Using List Decoding to Improve Decoding Error in [7]

We begin by describing a natural modification to the Cevallos et al.’s Scheme.

– Share: Same
– Rec:

• First Round: Same
• Second Round: Same
• Local Computation: Step 1 and 2 are the same as above. Recall that
c = |I| − (t+ 1) is the maximum number of corrupt players in I.
∗ Step 3 of Cevallos et al. scheme: Use Berlekamp-Welch to com-
pute a polynomial f(x) ∈ F[X] of degree at most t such that f(xi) �=
si for at most c

2 players in I.

106 M.P. Jhanwar and R. Safavi-Naini

∗ Modification: Use list decoding algorithm for [n = 2t + 1, k =
t+1, d = n−k+1 = t+1] Reed-Solomon codes [26] that corrects up
to n−

√
nt of errors, to compute a (list of) polynomial(s) f(x) ∈ F[X]

of degree at most t such that f(xi) �= si for at most 1

1+
√

t
t+1+c

(c+1)

players in I.
∗ Find correct f from the decoding list and output s = f(0).

5.2 Robustness

The analysis is similar to [7]. Define the following sets: A ⊂ [n] is the set of
corrupted players that have handed in modified Shamir shares, and P ⊂ [n] is
the set of corrupted players that have handed in the correct Shamir shares. It
holds that |A| + |P| = t. The set H = [n]\(A ∪ P) is the set of uncorrupted
players.

The set I computed during reconstruction contains H and P with certainty.
Thus, the reconstruction procedure is guaranteed to output the correct secret

if at most 1
θ · (p + 1) players i ∈ A end up in I, where p = |P| and θ =

√
t
n .

Indeed, if |A∩I| ≤ 1
θ · (p+1), then the requirement for list-decoding is satisfied

(|I| = t + 1 + c = t + 1 + p + e where e = |A ∩ I| ≤ 1
θ · (p + 1) and thus

e = 1
θ · (p+ 1) = 1

1+θ (p+
1
θ (p+ 1) + 1) = 1

1+θ (c+ 1)).

We need to find the probability P [|A ∩ I| > 1
θ · (p + 1)]. It is sufficient to

consider the case p ≤ θ
1+θ · t; indeed if p > θ

1+θ · t and thus p ≥ θ
1+θ · (t− 1) then

obviously |A| ≤ t− θ
1+θ · (t− 1) = 1

1+θ · (t+1) and hence P [|A∩P| ≤ 1
θ · (p+1)].

Thus

δ =

θ
1+θ ·t∑
p=1

P [|A ∩ I| > 1

θ
· (p+ 1)] .

For any p in the range 1 ≤ p ≤ θ
1+θ ·t, we first compute P [|A∩I| > 1

θ ·(p+1)]. Let

us assume that 1
θ · (p+1) is an integer. In order to bound the above probability,

it is convenient to introduce the following random variables:

– For every pair i, j ∈ [n], we define the binary random variable Vij that
specifies if the player Pi’s share and his submitted tag associated with player
Pj are accepted by player Pj ’s key. Note that, all the Vij with i ∈ [n] and
j ∈ H are independent. Further P [Vij = 1] ≤ ε for all i ∈ A and j ∈ H.

– For every i ∈ A the random variable

Ni =
∑
j∈H

Vij = |{j ∈ H|Vij = 1}| ,

i.e., the number of honest players that accept Pi’s incorrect share. Note that
since the Vij ’s are independent for all i ∈ [n] and j ∈ H, so are all the Ni’s.

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 107

P [|A ∩ I| > 1

θ
· (p+ 1)] = P [

(
|A ∩ I| = 1

θ
· (p + 1) + 1

)
∪ · · · ∪

(
|A ∩ I| = t − 1

θ
· (p + 1)

)
]

≤ P [|A ∩ I| = t− 1

θ
· (p + 1)] (best strategy for adversary)

= P [∩i∈A\P(Ni = 1)]

=
∏

i∈A\P
P [Ni = 1]

=
∏

i∈A\P
P [∃H0 ⊆ H : (|H0| = 1) ∧ (∀j ∈ H0 : Vij = 1)]

≤
∏

i∈A\P

⎛
⎝ ∑

H0⊆H:|H0|=1

P [∀j ∈ H0 : Vij = 1)]

⎞
⎠

≤
∏

i∈A\P
((t + 1) · ε)

= ((t + 1) · ε)t− 1
θ
·(p+1)

We can now compute the robustness probability as follows:

δ =

θ
1+θ ·t∑
p=1

P [|A ∩ I| > 1

θ
· (p+ 1)]

≤
θ

1+θ ·t∑
p=1

((t+ 1) · ε)t− 1
θ ·(p+1)

≤ ((t+1) · ε) θ
1+θ ·t− 1

θ (1+((t+ 1) · ε) 1
θ +((t+ 1) · ε) 2

θ +· · ·) [assuming, ε≤ 1

t+ 1
]

≤ 2((t+ 1) · ε) θ
1+θ ·t− 1

θ

Note that the bound on δ is similar to the bound while considering the Berlekamp-
Welch setting. Also note that we have not included the analysis for the required
probability to find the correct polynomial from the list of polynomials output
by the list decoding algorithm.

6 Efficiency Comparison

In this section we compare the efficiency of our scheme, in terms of relation
among the following three parameters: secret size, the share size and the relia-
bility in the reconstruction, with the schemes of Cramer et al. [9] and Cevallos
et al. [7]. Note that our scheme works for n ≥ 2t+2 while the other two schemes
work for n ≥ 2t + 1. To share a k-bit secret among the n players using our

proposed scheme, the failure probability is at most
√
t+1

2k−n , and for the Cramer et

al. scheme it is 1
2k−n . The share size for the two schemes are k bits and 3k bits,

respectively.

108 M.P. Jhanwar and R. Safavi-Naini

Understanding the relation for [7] is more subtle. Here the failure probability
depends on an extra parameter. Let λ be a parameter that can be chosen inde-
pendent of the secret size k. The two parameters λ, k are used in the following
MAC function which has been used in [7]:

MAC : GF (2k)× (GF (2k/λ))2 → GF (2k/λ) .

Sharing a k-bit secret among the n players using the scheme [7], results in the
failure probability of at most 1

2n
k
λ

−n log(n·λ)
. For λ ≤ n, the failure probability is

less than for the other schemes. The share size for [7] is k+3n k
λ . Clearly [7] has

efficient reconstruction complexity and improved failure probability. However
the share size is higher than the other two schemes. In the table, the secret size
and share size are given in bits.

Table 1. Comparison Table

Scheme Secret size Share size Rec Complexity δ Public Parameters

[9] k 3k Exp. in n 2−(k−n) Nil

[7] k k + 3n k
λ

Poly. in n 2−(n k
λ

−n log(n·λ)) Nil

Proposed Scheme k k Exp. in n
√
t + 1 · 2−(k−n) n field elements

The last column for public parameters represents the elements that are re-
quired in addition to the interpolating points for Shamir’s secert sharing scheme.

7 Conclusion

The problem of the minimum share size for threshold robust secret sharing has
received considerable attention in recent years. In this paper, we proposed and
analyzed a new threshold robust secret sharing scheme for which the share size of
participants is the same as the secret size. This is the minimum possible value for
the share size of a perfect secret sharing scheme and hence also the least possible
share size for threshold robust secret sharing. The result is interesting as it means
that the extra robustness property can be obtained with no extra cost on the
share size. However the scheme works only for n ≥ 2t + 2 and effectively uses
the share of one extra honest participant as the verification information. The
reconstruction algorithm is exponential in the number of players. Construction
of schemes with efficient reconstruction in our setting remains an open problem.

Acknowledgments. Financial support for this research was provided in part by
Alberta Innovates - Technology Futures, in the Province of Alberta in Canada.
The authors would also like to thank Pengwei Wang for many useful discussions.

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size 109

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Si-
mon, J. (ed.) STOC 1988, pp. 1–10. ACM (1988)

2. Berlekamp, E.R., Welch, L.R.: Error correction of algebraic block codes. U.S. patent
number 4.633.470 (1986)

3. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS National Computer Con-
ference, vol. 48, pp. 313–317 (1979)

4. Brickell, E.F., Stinson, D.R.: The detection of cheaters in threshold schemes. SIAM
J. Discrete Math. 4(4), 502–510 (1991)

5. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters
for a general access structure. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS,
vol. 1684, pp. 185–194. Springer, Heidelberg (1999)

6. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

7. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EU-
ROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

8. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS
1985, pp. 383–395. IEEE Computer Society (1985)

9. Cramer, R., Damg̊ard, I., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

10. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
In: FOCS 1990, pp. 36–45. IEEE Computer Society (1990)

11. Ganger, G.R., Khosla, P.K., Bakkaloglu, M., Bigrigg, M.W., Goodson, G.R., Oguz,
S., Pandurangan, V., Soules, C.A.N., Strunk, J.D., Wylie, J.J.: Survivable storage
systems. In: Proceedings of DARPA Information Survivability Conference & Ex-
position II, DISCEX 2001, vol. 2, pp. 184–195 (2001)

12. Garay, J.A., Givens, C., Ostrovsky, R.: Secure message transmission with small
public discussion. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
177–196. Springer, Heidelberg (2010)

13. Garay, J., Givens, C., Ostrovsky, R.: Secure message transmission by public dis-
cussion: A brief survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y.,
Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 126–141. Springer,
Heidelberg (2011)

14. Gemmell, P., Sudan, M.: Highly resilient correctors for polynomials. Inf. Process.
Lett. 43(4), 169–174 (1992)

15. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmis-
sion scheme. IEICE Transactions 92-A(1), 105–112 (2009)

16. Lakshmanan, S., Ahamad, M., Venkateswaran, H.: Responsive security for stored
data. IEEE Trans. Parallel Distrib. Syst. 14(9), 818–828 (2003)

17. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-
Holland publishing company

18. Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and
one-round perfectly secure message transmission for general adversary structures.
Cryptography and Communications 3(2), 65–86 (2011)

110 M.P. Jhanwar and R. Safavi-Naini

19. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
mun. ACM 24(9), 583–584 (1981)

20. Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer,
Heidelberg (2011)

21. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure
against cheating. SIAM J. Discrete Math. 20(1), 79–95 (2006)

22. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC 1989, pp. 73–
85. ACM (1989)

23. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: Ning, P., De Capitani di Vimercati, S.,
Syverson, P.F. (eds.) ACM Conference on Computer and Communications Secu-
rity, pp. 172–184. ACM (2007)

24. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

25. Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogra-
phy 2(4), 357–390 (1992)

26. Sudan, M.: Decoding of Reed-Solomon codes beyond the error-correction bound.
J. Complexity 13(1), 180–193 (1997)

27. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2),
133–138 (1988)

28. Waldman, M., Rubin, A.D., Cranor, L.F.: The architecture of robust publishing
systems. ACM Trans. Internet Techn. 1(2), 199–230 (2001)

29. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
FOCS 1979, pp. 175–182. IEEE Computer Society (1979)

30. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

A Scalable Scheme for Privacy-Preserving

Aggregation of Time-Series Data

Marc Joye and Benôıt Libert

Technicolor
975 avenue des Champs Blancs, 35576 Cesson-Sévigné Cedex, France

{marc.joye,benoit.libert}@technicolor.com

Abstract. Suppose that a set of multiple users uploads in every time
period encrypted values of some data. The considered problem is how an
untrusted data aggregator can compute the sum of all users’ values but
nothing more. A solution was recently given by Shi et al. (NDSS 2011).
However, as advocated by the authors, the proposed encryption scheme
suffers from some limitations. In particular, its usage is restricted to small
plaintext spaces. This paper presents a practical scheme which, advanta-
geously, can accommodate large plaintext spaces. Somewhat surprisingly,
it comes with an efficient security reduction, regardless of the number of
users. Furthermore, the proposed scheme requires a minimal number of
interactions, is efficient for both encryption and decryption/aggregation
and can operate in an off-line/on-line mode.

Keywords: Private aggregation, smart metering, homomorphic encryp-
tion, large data sets.

1 Introduction

A fundamental problem is that of private data analysis where a third party has to
compute some aggregate statistics over some sensitive data held by individuals.
This problem finds concrete applications in a number of situations. When the
third party, called hereafter aggregator, is trusted an easy solution would be
to ask the users to encrypt their data using the aggregator’s public key. Upon
receiving the ciphertexts the aggregator applies its private key to recover the
data in clear and then compute statistics. The problem becomes much more
challenging in the case of an untrusted aggregator. This is the setting we are
dealing with in this paper.

As an illustrative example, consider the case of smart energy metering (e.g.,
gas, electricity or water). Frequent aggregates of consumption over a popula-
tion of users is very useful to finely tune the service by adapting the load or
forecasting the supply, which results in better prices. It also reveals useful to
rapidly detect anomalies on the grid in the case of accidental leakage. While
the computation of aggregate statistics is beneficial to the consumers, it may
legitimately raise privacy concerns. Electricity smart meters typically report the
electricity usage every 15 minutes. Such data can be used to infer information

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 111–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

112 M. Joye and B. Libert

about users’ behaviors (e.g., when they are at home and what they do). Other
examples include collecting medical data for disease monitoring or developing
new drugs, collecting users’ preferences for recommendation systems, etc.

The previous examples clearly highlight the need of allowing users to privately
share their data while at the same time allowing a [non-necessarily trusted]
aggregator to carry out aggregate statistics. Different types of statistics can be
computed over private data. Sums and averages are widespread examples.

Privacy-preserving protocols. Several approaches can be found in the literature
(see [18] for a comprehensive survey of these) to address the problem of comput-
ing the sum of time-series data, in a privacy-preserving fashion.1

Borrowing the taxonomy of [18], general privacy-preserving protocols can be
characterized from the following dimensions:

– Aggregate function: This is the function evaluated by the aggregator. In our
case, the function is the sum of the users’ private inputs.

– User synchronization: A protocol is said asynchronous if the users can re-
port their data independently of each other to the aggregator and at any
time. Following the terminology of [18], our protocol is synchronous as we
consider time-series data aggregation and so users should report their data
at approximatively the same time (i.e., the time when aggregation is com-
puted). However, it does not require interaction among users. In that sense,
the protocol we propose in this paper is synchronous yet non-interactive.

– Fault tolerance: This notion captures the capability of coping with failures.
Our basic protocol assumes that there are no failures: all users report their
data. This basic protocol can nevertheless be adapted to support failures;
see [8,17].

– Communication model: The communication between the users and the ag-
gregator can be unidirectional or bidirectional. The bidirectional setting re-
quires a return channel from the aggregator to the users or among users.
Our protocol merely requires an unidirectional communication link to the
aggregator.

– Privacy notions: There are different flavors of privacy. Our protocol provably
achieves the strongest notion of aggregator-obliviousness: The aggregator
learns nothing beyond the output of the aggregate function. See Section 3.

– Aggregate error: The output of the aggregate function can be exact or noisy.
Our basic protocol returns the exact sum of all users’ data. It can however
be modified to return a noisy sum through differential-privacy techniques,
similarly to [25].

– Group management: This last notion indicates if the protocol is static or
dynamic. Dynamic protocols allow users to join or leave the group without
requiring a new set-up phase. As described, our protocol is static. Techniques
for dealing with dynamic settings can be found in [8,17].

1 We note that very efficient solutions are known, based on symmetric-key cryptogra-
phy, in the case of a trusted aggregator. See e.g. [7].

A Scalable Scheme for Privacy-Preserving Aggregation 113

Related work. In [24], Rastogi and Nath suggested that each user encrypts her
private data using an additively homomorphic encryption scheme. The aggre-
gator collects all the ciphertexts, aggregates them to get the encryption of the
aggregate sum and sends this value back to the users. All the users, who possess
each a share of the decryption key, contribute to the decryption of the aggregate
sum by sending their decryption share to the aggregator. The aggregator then
combines all decryption shares received from the users to get in clear the sum
of the users’ private data.

Like other proposals [1,20,21], the approach of [24] requires a bidirectional
communication link between the users and the aggregator. Unfortunately a re-
turn channel is not always available. To alleviate this issue, Garcia and
Jacobs [15] came up with an aggregation protocol based on homomorphic encryp-
tion and additive secret sharing. Their proposal eliminates the need for a bidi-
rectional channel. On the downside, the communication complexity is quadratic
in the number of users and each user has to compute a linear number of homo-
morphic encryptions.

Independently, Kursawe et al. [19] described four protocols allowing the ag-
gregation of users’ data and comparisons among data aggregates without using
bidirectional channels. Nevertheless, the first three protocols incur interaction,
Diffie-Hellman key agreements or bilinear map evaluations. They thus require ei-
ther user-to-user communication or somewhat costly arithmetic operations. The
fourth protocol of [19] has low overhead but, like the previous ones, it requires
each user to store the fixed public key of all other users.

Back in 2011, Shi, Chan, Rieffel, Chow and Song [25] described a completely
non-interactive solution. They astutely suggested to split the aggregator capabil-
ity, viewed as an un-blinding key s0, into additive shares among the set of users,
say s0 =

∑
i si. Each user makes use of her secret share si and blinds her private

data xi,t at time period t with a one-time mask derived from si and t to obtain
a masked value ci,t. At each time period, the aggregator collects all the ci,t’s.
The difficulty resides in finding a scheme such that the aggregation results in
the private data adding together and the masks summing up to a value depend-
ing only on t and on

∑
i si = s0. Using the un-blinding key s0, the aggregator

can so recover in clear the sum of the users’ private data. Shi et al. [25] gave
a solution that generically works in any prime order group where the Decision
Diffie-Hellman (DDH) assumption holds. They also provided a security proof in
a formally defined privacy model. See § 3.2 for a detailed description of their
scheme. The authors however left open a couple of research challenges (cf. [25,
Section 8]). One of them is that of user failure (fault tolerance) and efficient
support of dynamic joins and leaves. Solutions to this problem have been found
in [1,8,17].

Among the fault-tolerant systems [1,8,17], the construction of Ács and Castel-
lucia [1] requires shared keys among all pairs of users, which incurs a linear
storage in the size of the network at each user. Moreover, users should also be
able to receive messages from the aggregator. In a recent work, Jawurek and
Kerschbaum [17] managed to avoid these overheads in a protocol that further

114 M. Joye and B. Libert

computes weighted sums. On one hand, their protocol allows for an arbitrary
number of missing inputs from users. It also eliminates the need for synchro-
nization among these. On the other hand, it involves distributed key manag-
ing authorities whose task is to jointly decrypt Paillier encryptions during the
protocol. As a result, these key managing authorities have to be involved—
and interact with the user performing the calculation— in each aggregation
operation.

Our contribution. In this paper, we reconsider the fully non-interactive construc-
tion of Shi et al. [25] and show how to get rid of one of its limitations. An im-
portant challenge left open in [25] (and also discussed in [8]) is that of efficiently
computing sums over large plaintext spaces. This paper proposes a scheme that
supports large plaintext spaces and number of users. At the same time, the de-
cryption algorithm operates in constant time, regardless of the number of users.
As a bonus, the scheme also provides a great on-line/off-line efficiency: namely,
using pre-computations, the encryptor is left with a mere modular multiplica-
tion in the on-line phase (i.e., when the data to be encrypted is known), which
is highly desirable when computations take place on resource-limited devices.

To achieve this, we follow the research direction suggested in [25], namely
investigating other algebraic settings. The natural candidate is the Paillier cryp-
tosystem [23]. However, the proof given in [25] does not seem to readily extend
to this setting due to technical difficulties arising when we want to rely on the
DDH assumption. The main hurdle appears to find a way to efficiently hash to
a cyclic subgroup of hidden order while remaining able—in order to properly
simulate the adversary’s view in the security proof— to explain hash values as
being obtained by exponentiating the output of a random oracle whose range
has no specific algebraic structure. While several techniques are known (e.g.,
[5,16]) to efficiently hash onto cyclic groups of public order, this turns out to
be more complicated in DDH-hard groups of hidden order like the subgroup of
squares modulo N or N2, for some moduli N = pq of unknown factorization.
By trading the DDH assumption for the Decision Composite Residuosity (DCR)
assumption [23], we eliminate the need to hash onto a group of hidden order.
Somewhat surprisingly, we are moreover able to derive a security proof with a
much tighter (i.e., independent of the number of users) reduction in the random
oracle model [2]. This in turn results in better parameters when the scheme is
concretely instantiated.

While practical, our scheme inherits the limitations of [25] in that it does
not allow partial aggregations in the presence of missing contributions. Un-
like [20,21,17], it does not extend to compute weighted sums and, unlike [21,17],
it requires synchronization among participants. On the other hand, our system
inherits the main advantage of [25]: the data aggregator can process users’ data
by itself without having to interact with a distributed key-managing authority
at each aggregation. Here, the trusted party that generates the Paillier public
key is never involved in any aggregation and can remain off-line after the setup
phase. As for its advantages over [1], our construction only requires users to store
O(1) values and does not require a bidirectional channel.

A Scalable Scheme for Privacy-Preserving Aggregation 115

Like [24,25], the proposed scheme can serve as a building block for the fault-
tolerant solution of [8] while enjoying the benefits of our construction. In fact,
all the extensions of [25] are also possible with our system. In particular, al-
though the focus of this paper is put on the encryption, the proposed scheme
is compatible with the differential-privacy framework [13,12]. In this case, the
users simply need to add some appropriately-generated noise to their data prior
to encryption.

Outline of the paper. The rest of this paper is organized as follows. The next sec-
tion introduces some mathematical background and related cryptographic prob-
lems. Section 3 explains what is meant by aggregator obliviousness. Section 4 is
the core of the paper. It presents a new aggregator-oblivious encryption scheme,
a security proof of which is provided in Section 5. Finally, Section 6 discusses
the performance of the proposed scheme and some implementation issues.

2 Preliminaries

In this section we review the necessary background and introduce some notation
used throughout the paper.

2.1 N-th Residues and Discrete Logarithms in (Z/N2Z)∗

Let p be a prime. Consider the ring Z/p2Z = {0, 1, . . . , p2−1}. Its multiplicative
group is given by (Z/p2Z)∗ = {x ∈ Z/p2Z | gcd(x, p) = 1}. This group has
p(p−1) elements. Letting ord(x) denote the order of x as an element of (Z/p2Z)∗

(i.e., the smallest nonnegative integer α such that xα ≡ 1 (mod p2)), Lagrange’s
theorem tells that ord(x) divides p(p− 1). In particular, (Z/p2Z)∗ has a p-order
subgroup Γp given by

Γp = {x ∈ (Z/p2Z)∗ | xp ≡ 1 (mod p2)} .

Suppose now that x = 1 + βp with β ∈ {0, . . . , p− 1}—observe that such an x
is in (Z/p2Z)∗ since gcd(1 + βp, p) = 1. Further, the binomial identity yields

(1 + βp)t ≡
t∑

k=0

(
t

k

)
1n−k(βt)k ≡

(
t

0

)
+

(
t

1

)
βp ≡ 1 + tβp (mod p2) .

Hence, we have (1 + βp)p ≡ 1 (mod p2) and consequently 1 + βp ∈ Γp. From
Γp

∼= (Z/pZ)+ (a cyclic group), we also deduce that any element x �= 1 ∈ Γp

generates it. In particular, 1 + p is a generator of Γp. As a result, we get

Γp = {(1+ p)β (mod p2) | β ∈ {0, . . . , p− 1}} = {1+βp | β ∈ {0, . . . , p− 1}} .

Let now N = pq where p and q are (distinct) primes. By Chinese remaindering,
we can construct the multiplicative group (Z/N2Z)∗ ∼= (Z/p2Z)∗ × (Z/q2Z)∗.
This group has order #(Z/N2Z)∗ = #(Z/p2Z)∗×#(Z/q2Z)∗ = p(p−1)q(q−1) =

116 M. Joye and B. Libert

Nφ(N) where φ(N) = (p − 1)(q − 1) is Euler’s totient function. Similarly, we
can define ΓN

∼= Γp × Γq with #ΓN = #Γp ×#Γq = pq = N as

ΓN = {(1 +N)β (mod N2) | β ∈ {0, . . . , N − 1}}
= {1 + βN | β ∈ {0, . . . , N − 1}} .

Again, it is worth noticing that (1 + N)β mod N2 = 1 + βN ; note also that β
is defined modulo N . This shows that computing discrete logarithms in ΓN is
easy. Namely, given two random elements u, v ∈ ΓN , it is easy to find α such
that v = uα (mod N2):

α =
L(v)

L(u)
mod N where L(x) =

x− 1

N
.

Proof. Since u ∈ ΓN , we have u ≡ 1 (mod N) and so we can write u = 1 + βN
where β = (u − 1)/N = L(u). Likewise, we can write v = 1 + L(v)N . Since we
have that uα = v, it follows that (1 + L(u)N)α ≡ 1 + L(v)N (mod N2) ⇐⇒
1+αL(u)N ≡ 1+L(v)N (mod N2) ⇐⇒ N(αL(u)−L(v)) ≡ 0 (mod N2). Since
N(αL(u) − L(v)) mod N2 = N [(αL(u) − L(v)) mod N], we get αL(u) ≡ L(v)
(mod N) and consequently α = L(v)/L(u) mod N . ��
Another subgroup of (Z/N2Z)∗ is the group of N -th residues given by

SN = {xN (mod N2) | x ∈ (Z/N2Z)∗} .

This subgroup has order φ(N) and computing discrete logarithms in SN is
as hard as computing discrete logarithms in (Z/NZ)∗ (see [22,26]). Given two
elements u, v ∈ SN with v = uα (mod N2) for some α ∈ {0, . . . , φ(N)}, it
turns out that v ≡ uα (mod N). It is also worth observing that each N -th
residue possesses exactly N roots of order N , of which only one is smaller than
N . Indeed, if y ≡ xN (mod N) then so is y ≡ (x0 + βN)N (mod N2) with
x0 := x mod N and β ∈ {0, . . . , N − 1}.

2.2 DCR Complexity Assumption

We need the following hardness assumption, introduced in [23], which is implied
by the commonly assumed intractability of factoring.

Definition 1. Let N = pq be a product of two large primes. The Decision Com-
posite Residuosity (DCR) assumption in (Z/N2Z)∗ is to distinguish among the
following two distributions given only N = pq:

D0 = {xN (mod N2) | x ∈R (Z/N2Z)∗} and D1 = {x ∈R (Z/N2Z)∗} .

The DCR assumption states that the advantage of any distinguisher D, defined
as the distance

AdvDCR(D) =
∣∣Pr[D(y,N) = 1 | y = xN mod N2, x ∈R (Z/NZ)∗]

− Pr[D(y,N) = 1 | y ∈R (Z/N2Z)∗]
∣∣

where probabilities are taken over all coin tosses, is a negligible function.

A Scalable Scheme for Privacy-Preserving Aggregation 117

3 Aggregator-Oblivious Encryption

We start with the definition and then proceed with the corresponding security
notion. We refer the reader to [25] for further introductory background.

Definition 2. An aggregator-oblivious encryption scheme is a tuple of algo-
rithms, (Setup,Enc,AggrDec), defined as:

Setup(1κ) On input a security parameter κ, a trusted dealer generates the system
parameters param, the aggregator’s private key sk0, and the private key ski
for each user i (1 ≤ i ≤ n);

Enc(param, ski, xi,t) At time period t, user i encrypts a value xi,t using her pri-
vate encryption key ski to get ci,t = Enc(param, ski, xi,t).

AggrDec(param, sk0, c1,t, . . . , cn,t) At time period t, the aggregator using sk0 ob-
tains Xt =

∑n
i=1 xi,t as Xt = AggrDec(param, sk0, c1,t, . . . , cn,t).

3.1 Aggregator Obliviousness

Basically, the security notion of aggregator obliviousness (AO) requires that the
aggregator cannot learn, for each time period, anything more than the aggregate
value Xt from the encrypted values of n (honest) users. If there are corrupted
users (i.e., users sharing their private information with the aggregator), the
notion only requires that the aggregator gets no extra information about the
values of the honest users beyond that their aggregate value. Furthermore, it is
assumed that each user encrypts only one value per time period.

More formally, AO is defined by the following game between a challenger and
an attacker.

Setup. The challenger runs the Setup algorithm and gives param to the attacker.
Queries. In a first phase, the attacker can submit queries that are answered by

the challenger. The attacker can make two types of queries:
1. Encryption queries: The attacker submits (i, t, xi,t) for a pair (i, t) and

gets back the encryption of xi,t under key ski for time period t;
2. Compromise queries: The attacker submits i and receives the private

key ski of user i; if i = 0, the attacker receives the private key of the
aggregator.

Challenge. In a second phase, the attacker chooses a time period t�. Let U� ⊆
{1, . . . , n} be the whole set of users for which, at the end of the game, no
encryption queries have been made on time period t� and no compromise
queries have been made. The attacker chooses of a subset S� ⊆ U� and two
different series of triples

〈(i, t�, x(0)
i,t�)〉i∈S� and 〈(i, t�, x(1)

i,t�)〉i∈S� ,

that are given to the challenger. Further, if the aggregator capability sk0 is
compromised at the end of the game and S� = U�, it is required that∑

i∈S�

x
(0)
i,t� =

∑
i∈S�

x
(1)
i,t� . (1)

118 M. Joye and B. Libert

Guess. The challenger chooses at random a bit b ∈ {0, 1} and returns the

encryption of 〈x(b)
i,t�〉i∈S� to the attacker.

More queries. The attacker can make more encryption and compromise queries.
Outcome. At the end of the game, the attacker outputs a bit b′ and wins the

game if and only if b′ = b. As usual, A’s advantage is defined to be

AdvAO(A) := |Pr[b′ = b]− 1/2|.

Remark 1. Note in the “More queries” stage that since S� ⊆ U�, the attacker
cannot submit an encryption query (i, t�, ·) with i ∈ S� or a compromise query i
with i ∈ S�.

Definition 3. An encryption scheme is said to meet the AO security notion if
no probabilistic polynomial-time attacker can guess correctly in the above game
the bit b with a probability non-negligibly better (in the security parameter) than
1/2. The probability is taken over the random coins of the game according to the
distribution induced by Setup and over the random coins of the attacker.

3.2 Shi et al.’s Scheme

In [25], Shi, Chan, Rieffel, Chow and Song consider the following encryption
scheme. They show that the scheme meets the AO security notion under the
DDH assumption [4], in the random oracle model.

Setup(1κ). Let a group G of prime order q for which the DDH assumption
holds, and let a random generator g ∈ G. Let also a hash function H :
Z → G viewed as a random oracle. Finally, let n random elements in Z/qZ,
s1, . . . , sn, and define s0 = −

∑n
i=1 si mod q.

param = {G, g,H}; ski = si (for 0 ≤ i ≤ n).
Enc(param, ski, xi,t). At time period t, for a private input xi,t ∈ Z/qZ, user i

produces
ci,t = gxi,tH(t)si .

AggrDec(param, sk0, c1,t, . . . , cn,t). The aggregator obtains the sum Xt for time
period t by first computing Vt := H(t)s0

∏n
i=1 ci,t = gXt and next the dis-

crete logarithm of Vt w.r.t. basis g.

Remark 2. Since g has order q, note that the so-obtained value for Xt is defined
modulo q.

We see that in the AggrDec algorithm the aggregator has to compute the value
of Xt from Vt = gXt in G. For known groups satisfying Shi et al.’s setting
(i.e., prime-order DDH groups), the most appropriate method is Pollard’s λ
algorithm (or variants thereof) and requires that the range of Xt is small. In the
next section, we present a scheme where the computation of discrete logarithms
can be done efficiently without such a restriction on the range, while at the same
time, meeting the AO security notion.

A Scalable Scheme for Privacy-Preserving Aggregation 119

4 New Scheme

Shi et al.’s scheme involves the computation of a discrete logarithm in a prime-
order group for which the DDH assumption holds. We rather consider groups G
of composite order for which there is a subgroup G1 [of unknown order] wherein
some intractability assumption holds and another subgroup G2 wherein discrete
logarithms are easily computable. It is crucial that the order of G1, #G1, is only
known to a trusted dealer. For anyone else (including the aggregator), #G1 must
remain unknown. Merely an upper bound on #G1 can be derived. We present
below a scheme fulfilling these requirements.

Setup(1κ). On some input security parameter κ, the trusted dealer randomly
generates a modulus N = pq, which is the product of two equal-size primes
p, q. Note that size condition on p and q implies that gcd(φ(N), N) = 1.
It also defines a hash function H : Z → (Z/N2Z)∗ that will be viewed
as a random oracle in the security analysis. Letting � the bit-length of N ,
from n randomly chosen elements in ±{0, 1}2�, s1, . . . , sn, it finally sets s0 =
−
∑n

i=1 si and defines param = {N,H} as well as ski = si (for 0 ≤ i ≤ n).
Enc(param, ski, xi,t). At time period t, for a private input xi,t ∈ Z/NZ, user i

produces
ci,t = (1 + xi,tN) ·H(t)si mod N2 .

AggrDec(param, sk0, c1,t, . . . , cn,t). The aggregator obtains the sum Xt for time
period t by first computing Vt := H(t)s0

∏n
i=1 ci,t mod N2 and next Xt as

Xt =
Vt − 1

N
.

The correctness follows by observing that

H(t)s0
n∏

i=1

ci,t ≡
n∏

i=1

(1 + xi,tN) ≡ 1 +
(n∑
i=1

xi,t mod N
)
N (mod N2) .

Again, observe that the value ofXt is defined moduloN . Hence, if
∑n

i=1 xi,t < N ,
we have Xt =

Vt−1
N =

∑n
i=1 xi,t over the integers. The main difference with the

scheme of Shi et al. resides in that there is no discrete logarithm to compute in
a group in which the DDH assumption holds. On the contrary, the recovery of
Xt from the accumulated product, Vt, is now easy. As a result, there is no longer
the restriction on the size of xi,t or on the total number n of users, as long as∑n

i=1 xi,t < N . Typically, N is a 2048-bit value. In practice, there is therefore
no restriction.

Another interesting advantage of the scheme over [25] is that it allows ef-
ficiently encrypting “on-the-fly” [14]. Namely, exponentiations H(t)si mod N2

can be pre-computed in such a way that, when the plaintext xi,t is known, the
sender only has to compute a modular multiplication to get ci,t. In applica-
tions to smart metering systems, this advantage may be crucial as computations
usually take place in constrained devices.

120 M. Joye and B. Libert

One surprising thing about the scheme is its extreme simplicity. Indeed, some-
what unexpectedly, we do not even need to restrict the range of the random
oracle H to, for example, the subgroup of quadratic residues in (Z/N2Z)∗ or the
subgroup of elements with positive Jacobi symbol modulo N . If H(t) mod N has
Jacobi symbol −1 modulo N , the parity of si is leaked by ci,t. However, as will
be established in Section 5, this does not jeopardize the security of the scheme
as long as the values si mod N remain computationally hidden.

5 Security Proof

Although the scheme is very similar to the construction of Shi et al., its security
analysis is completely different (and actually simpler). Albeit taking place in the
random oracle model [2], it bears similarities with the techniques of Cramer and
Shoup [10] (see also [6]) in that it appeals to an information theoretic argument
exploiting some entropy hidden in the private key.

As a result, we obtain a much tighter security reduction than in [25]. Here,
the gap between the DCR distinguisher and the adversary’s advantage is only
proportional to the number of encryption queries. In contrast, the construction
in [25] suffers from an additional degradation factor of O(n3), where n is the
number of users in the system, in terms of concrete security. In contrast, our
security bound is completely independent of the number of users.

Theorem 1. The scheme provides AO security under the DCR assumption in
the random oracle model. Namely, for any probabilistic polynomial-time adver-
sary A, there exists a DCR distinguisher B with comparable running time and
such that

AdvAO(A) ≤ e · (qenc + 1) ·AdvDCR(B) ,

where qenc is the number of encryption queries and e is the base for the natural
logarithm.

Proof. The proof proceeds with a sequence of three games. The latter begins
with Game 0, which is the real game, and ends with Game 2, where even a
computationally unbounded adversary has no advantage. For each j ∈ {0, 1, 2},
we denote by Sj the event that the challenger B outputs 1 in Game j. We also
define Adv j = |Pr[Sj]− 1/2|.

In the sequel, we assume w.l.o.g. that the adversary A has always already
queried the random oracle H on the input t before any encryption query for
the time period t. Indeed, the challenger can always enforce this by making
H-queries for itself. For simplicity, we also assume that the adversary does not
query the random oracle more than once for a given t.

Game 0: This is the real game. Namely, the challenger performs the setup of

the system by choosing s1, . . . , sn
R← ±{0, 1}2� and defining s0 = −

∑n
i=1 si.

Queries to the random oracle H are answered by returning uniformly ran-
dom elements in (Z/N2Z)∗. Encryption queries (i, t, xi,t) are answered by

A Scalable Scheme for Privacy-Preserving Aggregation 121

returning the ciphertext ci,t = (1 + xi,tN) · H(t)si mod N2. Whenever the
adversary decides to corrupt some player i ∈ {0, . . . , n}, the challenger re-
veals si. In the challenge phase, the adversary chooses a target time period t�,

an uncorrupted subset S� ⊆ U� and two distinct series 〈(i, t�, x(0)
i,t�)〉i∈S� ,

〈(i, t�, x(1)
i,t�)〉i∈S� which must satisfy Equation (1) if S� = U� and the aggre-

gator’s private key s0 is exposed at some point of the game (cf. § 3.1). At this
stage, the challenger flips a fair binary coin b

R← {0, 1} and the adversary A
receives {

ci,t� = (1 + x
(b)
i,t�N) ·H(t�)si mod N2

}
i∈S� .

We assume that the adversary queries H(t�) before the challenge phase.
Otherwise, B can simply make the query for itself. In the second phase, after
a second series of queries, A outputs a bit b′ ∈ {0, 1}. We let the challenger
B output 1 if b′ = b and 0 otherwise. The adversary’s advantage in Game 0
is thus Adv0 = |Pr[S0]− 1/2| = AdvAO(A).

Game 1: This game is identical to Game 0 with the following difference. For
each random oracle query t, the challenger B flips a biased coin δt ∈ {0, 1}
that takes the value 1 with probability 1/(qenc + 1) and the value 0 with
probability qenc/(qenc +1). At the end of the game, B considers the event E
that either of the following conditions holds:

– For the target time period t�, the coin δt� flipped for the hash query
H(t�) was δt� = 0.

– There exists a time period t �= t� such that an encryption query (i, t, .)
was made for some user in i ∈ U� but for which δt = 1.

If event E occurs (which B can detect at the end of the game), B halts and
outputs a random bit. Otherwise, it outputs 1 if and only if b′ = b. The same
analysis as that of Coron [9] shows that Pr[¬E] = 1/e(qenc + 1), where e is
the base for the natural logarithm. The transition from Game 0 to Game 1
is thus a transition based on a failure event of large probability [11] and we
thus have Adv1 = Adv0 · Pr[¬E] = Adv0/e(qenc + 1).

Game 2: In this game, we modify the distribution of random oracle outputs.
Specifically, the treatment of each hash query t depends on the random coin
δt ∈ {0, 1}.
– If δt = 0, the challenger B chooses a random N -th residue zt = rt

N mod

N2, with rt
R← (Z/NZ)∗, and defines H(t) = zt. Note that the resulting

hash value H(t) is now a N -th residue in (Z/N2Z)∗.
– If δt = 1, B chooses a uniformly random rt ∈ (Z/N2Z)∗ and programs

H so as to have H(t) = rt.

Lemma 1 below shows that Game 2 and Game 1 are computationally indis-
tinguishable if the DCR assumption holds. It follows that

|Pr[S2]− Pr[S1]| ≤ AdvDCR(B) .

In Game 2, we claim that Pr[S2] = 1/2 so that A has no advantage. Indeed, with
probability 1/e(qenc+1), we have H(t�) ∈R (Z/N2Z)∗ for the target time period

122 M. Joye and B. Libert

t� (for which the challenge ciphertexts {ci,t� = (1+N)xi,t� ·H(t�)si mod N2}i∈S�

are generated) whereas, for each t �= t�, the hash valueH(t) is uniform in the sub-
group ofN -th residues. For each t �= t�,H(t) thus lives in a subgroup whose order
is co-prime with N since gcd(N,φ(N)) = 1. By the Chinese Remainder Theo-
rem, for each i ∈ S�, the value H(t)si is completely independent of si mod N
when t �= t�. In other words, encryption queries for periods t �= t� leak no infor-
mation about {si mod N}i∈S� . At the same time, for period t�, {H(t�)si}i∈S�

contain random components of order N which only appear in the challenge ci-

phertexts {ci,t� = (1 + N)x
(b)

i,t� · H(t�)si mod N2}i∈S� , where they completely

blind {x(b)
i,t�}i∈S� .

More precisely, let us consider what a computationally unbounded adversary
A can see. We have the following two mutually exclusive situations.

– If S� � U� or A did not compromise the aggregator, then A has no infor-
mation about {si mod N}i∈S� whatsoever. Even the sum

∑
i∈S� si mod N

remains hidden because there exists θ ∈ (U�\{S�})∪{0} such that sθ mod N
is completely independent of A’s view. If we consider individual ciphertexts
{ci,t�}i∈S� and their partial aggregation

cS�,t� =
∏
i∈S�

ci,t� mod N2 , (2)

for each value of b ∈ {0, 1}, there exist {si mod N}i∈S� that explain the
adversary’s view.

– If S� = U� and A has obtained s0 by corrupting the aggregator, we must

have
∑

i∈S� x
(0)
i,t� =

∑
i∈S� x

(1)
i,t� . Since

∑n
i=0 si = 0, the only information that

A obtains about {si mod N}i∈S� is the sum
∑

i∈S� si mod N , which an all-
powerful adversary can infer via corruption queries or encryption queries
during period t�. However, if consider the partially aggregated ciphertext

(Eq. (2)), then c
φ(N)
S�,t� mod N2 does not depend on the bit b ∈ {0, 1}.

In Game 2, we can only have b′ = b with probability 1/2. Putting all together,
we therefore find

AdvAO(A) ≤ e · (qenc + 1) ·AdvDCR(B) ,

which concludes the proof. ��

Lemma 1. Under the DCR assumption, Game 2 is computationally indistin-
guishable from Game 1.

Proof. The proof is by contradiction and builds a DCR distinguisher B from an
adversary A that has noticeably different behaviors in Game 1 and Game 2.

The reduction B receives as input a pair (N, z) and has to decide whether z =
rN mod N2, for some r ∈ (Z/NZ)∗, or z ∈R (Z/N2Z)∗. To this end, B begins by

picking s1, . . . , sn
R← ±{0, 1}2� and sets s0 = −

∑n
i=1 si, exactly as the challenger

of Game 1 does. Throughout the game, B always answers encryption queries and

A Scalable Scheme for Privacy-Preserving Aggregation 123

corruption queries faithfully. However, the treatment of random oracle queries
H(t) depends on the value of the biased coin δt ∈ {0, 1}. Namely, when δt = 0,
B uses the random self-reducibility of DCR and builds many instances {zt}t for
the same N out of z.

– If δt = 0, B chooses αt
R← Z/NZ, βt

R← (Z/NZ)∗ and computes zt = zαt ·
βt

N mod N2. Observe that, if z is a N -th residue (resp. a random element
of (Z/N2Z)∗), zt is uniformly distributed in the subgroup of N -th residues
modulo N2 (resp. uniformly distributed in (Z/N2Z)∗). Then, B programs
the random oracle H to have H(t) = zt.

– If δt = 1, B draws zt
R← (Z/N2Z)∗ instead of choosing it among N -th

residues. It defines H(t) = zt.

When A terminates, B outputs a random bit if event E has come about during
the game. Otherwise, B outputs 1 if b′ = b and 0 otherwise.

Clearly, if z ∈R (Z/N2Z)∗,A’s view is exactly the sameas inGame1. In contrast,
if z is a N -th residue, B is rather playing Game 2 with the adversary. ��

6 Concluding Remarks

This paper presented a new scheme allowing an untrusted aggregator to eval-
uate the sum of user’s private inputs. In contrast to prior solutions, there is
no restriction on the message space or on the number of users. This results in
always fast decryption and aggregation, even over large plaintext spaces and/or
population of users.

Our scheme provides many other advantages over prior solutions. One of these
is a much better concrete security in the random oracle model as our bound is
completely independent of the number n of users. In comparison, the security
proof in [25] entails a multiplicative gap proportional to n3 in the reduction
from the DDH assumption. Considering that large values of n such as n ≈ 220

are expectable in practical applications, it seems advisable to increase the key
size accordingly. In our setting, our reduction decreases the security loss to only
30 bits if we allow for qenc = 230, as recommended in the literature [3] (note
that, in this setting, this value should be seen as a rather theoretical bound
since, using a counter, one can always bound qenc to arbitrarily small values
like, e.g., qenc ≤ 3).2

Finally, our scheme makes it possible to encrypt data in off-line/on-line mode
through the use of coupons: once the message is known, the user only has to
evaluate a single modular multiplication. It is therefore well-suited to low-power
devices that are typically used in applications like smart metering or sensor
networks.

2 The proof in [25] additionally features a degradation factor of qH , where qH is the
number of random oracle queries. We suspect that it can be reduced to qenc using
Coron’s technique [9]. The main limiting factor in [25] is thus the cubic dependence
on n.

124 M. Joye and B. Libert

References

1. Ács, G., Castelluccia, C.: I have a dream! (differentially private smart metering).
In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp.
118–132. Springer, Heidelberg (2011)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Denning, D.E., et al. (eds.) 1st ACM Conference on
Computer and Communications Security, pp. 399–416. ACM Press (1993)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

4. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

6. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

7. Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Transac-
tions on Sensor Networks 5(3), Article 20 (2009)

8. Hubert Chan, T.-H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012)

9. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Dent, A.W.: A note on game-hopping proofs. Cryptology ePrint Archive: Report
2006/260 (2006)

12. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

14. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital schemes. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

15. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic en-
cryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010.
LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)

16. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

17. Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In:
Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238.
Springer, Heidelberg (2012)

18. Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids
– A survey of options. Technical Report MSR-TR-2012-119, Microsoft Research
(November 2012)

A Scalable Scheme for Privacy-Preserving Aggregation 125

19. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (2011)

20. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homo-
morphic encryption. In: 2010 First IEEE International Conference on Smart Grid
Communications, SmartGridComm (2010)

21. Lin, H.-Y., Tzeng, W.-G., Shen, S.-T., Lin, B.-S.P.: A practical smart metering
system supporting privacy preserving billing and load monitoring. In: Bao, F.,
Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 544–560. Springer,
Heidelberg (2012)

22. McCurley, K.S.: A key distribution system equivalent to factoring. Journal of Cryp-
tology 1(2), 95–105 (1988)

23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

24. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Elmagarmid, A.K., Agrawal, D. (eds.)
2010 ACM SIGMOD International Conference on Management of Data (SIGMOD
2010), pp. 735–746. ACM Press (2010)

25. Shi, E., Hubert Chan, T.-H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving
aggregation of time-series data. In: Network and Distributed System Security Sym-
posium (NDSS 2011). The Internet Society (2011)

26. Shmuely, Z.: Composite Diffie-Hellman public key generating systems hard to
break. Technical Report 356, Israel Institute of Technology, Computer Science De-
partment, Technion (February 1985)

“Give Me Letters 2, 3 and 6!”:

Partial Password Implementations and Attacks

David Aspinall1 and Mike Just2

1 University of Edinburgh
david.aspinall@ed.ac.uk

2 Glasgow Caledonian University
mike.just@gcu.ac.uk

Abstract. A partial password is a query of a subset of characters from
a full password, posed as a challenge such as “Give me letters 2, 3 and
6 from your password”. Partial passwords are commonly used in the
consumer financial sector, both online and in telephone banking. They
provide a cheap way of providing a varying challenge that prevents eaves-
droppers or intermediate systems learning a shared secret in a single
step. Yet, despite widespread adoption among millions of consumers, this
mechanism has had little attention in the academic literature. Answers to
obvious questions are not clear, for example, how many observations are
needed for an attacker to learn the complete password, or to successfully
answer the next challenge? In this paper we survey a number of online
banking implementations of partial passwords, and investigate the secu-
rity of the mechanism. In particular, we look at guessing attacks with a
projection dictionary ranked by likelihood, and recording attacks which
use previous information collected by an attacker. The combination of
these techniques yields the best attack on partial passwords.

Keywords: passwords, PINs, dictionary attack, recording attack, bank
security

1 Introduction

A partial password is a query of a subset of characters from a full password. The
mechanism is widely adopted in the financial sector; it is particularly popular
in consumer online banking in the UK [1]. As far as we can tell, the idea spread
from telephone banking, where it was invented to prevent an operator seeing
a customer’s complete password. It is now widely used in online banking web
applications and by some instances of the 3DSecure system employed by Visa
and Mastercard. Online, the main benefit of the mechanism is that it is a cheap
way to impede attackers who can observe password entry by shoulder surfing, key
logging or browser malware. This is because it allows a time-varying challenge
that does not reveal complete information in a single step.

Despite widespread adoption among millions of consumers, this mechanism
seems to have received only cursory attention in the academic literature so far.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 126–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Partial Password Implementations and Attacks 127

There are some obvious questions that remain unanswered, such as: what level
of security is provided by this scheme? How many observations does an attacker
need to learn the complete password or the correct response to the next chal-
lenge? Is it safe to use weak passwords? What are good choices for parameters
such as the challenge size or the schedule of challenges issued? Is there already
an industry consensus on preferred range of parameters?

To address these questions, we studied the security of the protocol design
and also examined (externally, as users) 15 different implementations across 4
countries. Most of the implementations we examined were UK-based; we believe
the protocol is more commonly used in the UK than other countries at present.

Security is assessed by measuring the difficulty of attacks. Password attacks
may occur online or offline. The difficulty of offline attacks, where a password
database is stolen, will depend on exactly what is stored in the database. To
support the partial protocol the implementation will need to either store plain-
text for the password, or devise a mechanism for performing one-way checks on
all combinations that might be queried (which can be a large number for long
passwords). We don’t investigate this attack mode here.

Our focus is on online attacks. These may be either targeted against a partic-
ular user, or trawling, working through as many accounts as possible to break
a percentage of them. Trawling takes statistical advantage of large numbers of
users to circumvent the rate-limiting that applies on individual accounts. There
are two basic techniques the attacker can use: he can guess responses using back-
ground information (e.g., a dictionary) or he can record previous observations
of the protocol and try to replay them appropriately. These techniques can be
combined: recording can be used to reduce the guesses needed at each stage. In
either case, the goal is to break into accounts by either responding correctly to
the next challenge issued in the protocol, or learning the complete password to
answer all future challenges.

Contributions and highlights. To the best of our knowledge, this is the first time
a detailed study of the partial password protocol has been given. Our main
contributions are: (1) a survey of current implementations of partial passwords
in online banking; (2) a framework for analysing and comparing these in terms
of parameter choices; (3) investigation of a family of attacks based on guessing
and recording, and an analysis of their success rates.

A short partial challenge is obviously less secure than a challenge to produce
the full password, even guessing randomly without background information. To
see what happens with background data, we measure guessing against subsets
of the widely analysed RockYou leaked password set, coalescing entries for each
challenge to form what we call a projection dictionary. We find that with 6
guesses, an attacker can respond correctly to 2-place challenges on 6-digit PINs
with a success rate of 30%. Recording up to 4 runs, an attacker can succeed
over 60% of the time, or by combining guessing and recording, over 90%. Al-
phanumeric passwords do somewhat better: responding to 3-place challenges
on 8-character alphanumeric passwords, with up to 10 guesses, the attacker can

128 D. Aspinall and M. Just

achieve a success rate of 5.5%. Combining guessing and recording increases that
to 25% with one recorded run and at least 80% with four runs.

Related work. Human identification methods attempt to mitigate against an ob-
server by using time-varying challenges to prevent replay, and by concealing the
shared secret by requiring the user to do some manipulations [2,3]. These schemes
are reminiscent of partial passwords but require the user to do much more work,
going well beyond what would be comfortable for most mainstream users, to
achieve probabilistic security guarantees [4]. The actual mechanisms in use by
industry have not been widely examined in the open literature. One paper that
has examined it is the study of Goring et al [5], which considered a particular at-
tack enabled by hardware key-loggers that build up information about responses
but not challenges; our recording attacks consider more powerful attackers who
can see both challenge and response. This incremental learning about a secret
has similarity to PIN guessing through faulty APIs in which an attacker is able
to query the API to gradually learn different PIN positions [6,7] although in the
case of partial passwords, active attacks are not required. Instead, an observer
can use partial information, either to answer the next challenge directly, or in
combination with information about likely password distributions to make very
good guesses. To show this, we adapt recent work on guessing attacks [8,9] and
analysing large leaked password sets [10,11,12] to partial passwords.

Overview. The remainder of the paper is organised as follows. In Section 2 we
survey 15 implementations of partial passwords, to find the parameters they
use. Broadly, these split into PINs and alphanumeric passwords; we choose two
typical cases for further investigation. In Section 3 we consider guessing at-
tacks, building up the capability of the attacker: we go from random guessing,
through attacks that use letter frequencies and finally to dictionaries, in partic-
ular, a projection dictionary attack that guesses responses based upon projected
characters from likely password dictionaries. In Section 4 we analyse recording
attacks, where an adversary has the capability to observe previous runs. We
show how the information learned can be used to respond exactly to a fraction
of next challenges and how quickly the whole password is eventually (almost
certainly) discovered. We then combine recording with guessing to achieve our
optimal attacks. Section 5 concludes and discusses the different attacks as well
as some recommendations.

2 System Model and Survey

Fig. 1 shows some partial password challenges from real implementations. These
show two different choices in the format for presenting the challenge, and for
filling in the response. The overall protocol works as follows:

Registration. In the initialisation phase, the user chooses a password. Often,
this is a short (e.g., 6–10 characters) password taken from a restricted alpha-
bet (e.g., lower case letters and numbers only), and without rules enforcing

Partial Password Implementations and Attacks 129

Fig. 1. Partial password implementations

special password formats, so weak (but memorable) passwords are allowed.
In several implementations, short PINs are used.

Login. The user is presented with a challenge such as: Please provide letters
2, 3 and 6 from your password. He or she responds by projecting out the
requested positions.
Here is an explicit example:

Positions: 1 2 3 4 5 6 7
User password: a s h u f 1 0

Correct response: s h 1

From our anecdotal discussions, some users perform the projection mentally,
some count off letters using their fingers; others write the password down
as above. If the correct response is given, the user has completed partial
password authentication.

Retry. If the response is not correct, the user is challenged again, perhaps
using the same challenge or perhaps changing the challenge. We observed
both cases, and rate limits being enforced to restrict the number of attempts
before re-registration is required.

Next time. On the next login, the user is presented with a new challenge.

This process achieves the basic requirement of not revealing the password to an
observer in a single step. In almost all cases we’ve seen, the partial password
is used in addition to another credential (e.g., a full password) in a multi-stage
authentication, where both credentials must be entered correctly to proceed.

2.1 Survey

We conducted a survey of online web banking implementations in four coun-
tries: Canada, Germany, Ireland, and the UK. We investigated the credentials
they use for authentication (password, PINs, hardware token, etc.), and the
way they check those credentials (partial queries, sequentially or together, etc.).
We used several collection methods, including publicly available demos and web
pages (see Appendix A.1) and direct access with personal accounts. Most of the
implementations were in the UK, as we were able to generate accounts there to
try them out; moreover we believe that the UK is the biggest user of this form
of authentication at present. The data we collected is necessarily a snapshot;
banking implementations are updated periodically.

130 D. Aspinall and M. Just

For partial password and partial PIN checks, there are several parameters
which vary between implementations, summarised in Fig. 2. The parameters of
interest are:

– The password format. This constrains the set of allowed passwords. We
suppose that the password consists of n characters chosen from an N charac-
ter set. For partial passwords, this set is often deliberately small, in particular
typically not including non-alphanumeric symbols and not distinguishing up-
per and lower case letters. This may be for better usability, e.g., by reducing
the size of pull-down menus for implementations that use them.

– The challenge format. The challenge asks for characters in m unique pass-
word positions, where 1≤m≤n. In all but one case we surveyed, the posi-
tions are queried in ascending order. This reduces the number of possible
challenges but, we suppose, it may be easier for the user to step through the
letters in order from left to right rather than hop around.

– The number of guesses. If the user responds incorrectly to a challenge,
they may be allowed more attempts; we will use β to stand for the maximum
number of tries allowed before the account is locked in some manner. This
is also the number of guesses an online attacker may make.

We gathered values for β but they are not shown in the table as they are difficult
to corroborate without owning an account with the bank in question, and even
then can vary in unexpected ways from our “black box” view. Smaller limits
give better security, but inconvenience the user: it has been suggested that ten
attempts at password entry should be allowed to provide good usability [13]. It
seems reasonable that this limit would also be applied to partial passwords, and
we found some implementations do use β=10. For PINs there may be concerns
about allowing too many guesses because of the smaller answer space; imple-
mentations of protocols behind ATMs typically use β=6 as an upper limit [9].

In Fig. 2 we have listed the second credential used by each bank, whether
a full password, full PIN, response to a challenge question, or multi-purpose
information such as a credit card number and date of birth. In several cases, the
banks also offer alternatives to their customers (e.g., tokens and card readers),
though the option to not use these remains. The failure behaviours differed
considerably between implementations, e.g., what kind of feedback was provided
when the user made a mistake, and whether failure required re-entry of other
credentials. These choices affect the overall security of the system so that, for
example, for a bank that uses a password as a second credential, a guessing
attack would need to compromise both the full and the partial password. Some
work has been undertaken to investigate the overall security in this case [14],
but in this paper we focus on the security of the partial password stage.

There is another system parameter not listed in the table: the system’s sched-
ule of issued challenges. Without knowledge of the system implementation, we
can only view the challenge schedule externally and make assumptions about the
sequence. A plausible working assumption that fits with our observations is that
challenges are chosen uniformly at random from the

(
n
m

)
possible challenges.

Partial Password Implementations and Attacks 131

Bank character password challenge second
(UK based unless noted) set size, N length, n size, m credential

ING DiBa (Germany) 10 6 2 PIN
Cooperative 10 4 2 question
Tesco 10 6 2 password
Smile 10 6 2 question
Nationwide 10 6 3 password
AIB 10 5 3 question
Bank of Ireland (Ireland) 10 6 3 date of birth
Nat West, step 1 10 4 2 (see next row)
Nat West, step 2 36 6–20 3 (see prev row)
HBoS 36 6–15 3 password
3DSecure, B. of Ireland (UK) 36 8–15 3 credit card #
Standard Life 36 8–10 3 none
Skipton 36 8–30 3 question
First Direct 36 6–30 3 question
Barclays 52 6–8 2 PIN
HSBC (Canada) 62 8 3 question

Fig. 2. Survey of partial password parameters (as of 25 Sept 2012)

The survey motivates two typical parameter cases which we use for empirical
study: PINs with N=10, n=6, m=2 and β=6 (

(
n
m

)
= 15) and alphanumeric

passwords with N=36, n=8, m=3 and β=10 (
(
n
m

)
= 56).

3 Guessing Attacks

In a guessing attack, the attacker attempts to answer the next challenge, or find
the whole password, by selecting from a set of possible answers, possibly using
background data such as a dictionary. The plain brute force attack uses only
knowledge of the response alphabet. Assuming a uniform distribution, the prob-
ability of guessing a randomly chosen user’s complete password is 1

Nn , which is
10−6 for the PIN case and approximately 10−12 for the alphanumeric. The prob-
ability of guessing the next challenge is 1

Nm , so 1
100 for PINs and approximately

2× 10−5 for alphanumeric; already a reduced baseline.
The attacker usually can make more than one guess, however. The β-success

rate [8,15] is a useful measure of the effectiveness of online attacks: it describes
the (maximal) proportion of a data set that can be covered by a fixed number β
of guesses. A trawling attack repeats guessing against many accounts; assuming
these are selected randomly from the same distribution without replacement, we
expect to break a fraction of them given by the success rate.

For a uniformly distributed password set we would expect to break the pro-
portion β

Nn of accounts by guessing whole passwords, or β
Nm guessing partial

challenges. A system security designer wants to keep the β-success acceptably
low. With brute force attacks, the β-success rates goes up to 1 in 5000 for guess-
ing the next challenge in the alphanumeric case (β=10) and 6% for PINs (β=6).

132 D. Aspinall and M. Just

Guessing non-uniformly can change things dramatically. Real passwords are
often chosen from common names, dictionary words and their variations; certain
PINs are also very common, chosen from dates, or simple numeric or keypad-
layout sequences. Dictionary attacks exploit this; their success depends on their
coverage. For offline (or unbounded online) attacks, enormous cracking dictionar-
ies are pre-calculated and stored [16] or generated on-the-fly from lists of words
and rules for making variations by mutation, or by approximate methods [17].
For online attacks where rate-limiting applies, the attacker benefits from word
ranking, so he can guess the most likely (i.e., most commonly chosen) password
first, then the second most likely, and so on, up to the rate limit.

3.1 Letter Position Frequency Attack

We can improve on brute force by using letter frequencies to choose guesses.
Compared with storing or generating a large dictionary, attack code with letter
frequencies can be small and efficient, thus easily run in many places or on
small devices. The attack could simply use overall frequency of letters, but the
partial password challenges give us position information too. So we can exploit
calculated letter-position frequencies to skew choices when guessing letters.

Fig. 3. Position frequency attack for RockYou PINs and passwords

It’s easy to generate tables of relative letter frequencies from a dictionary. For
example, in RockYou (a large set of leaked passwords described further below in
Sect. 3.3), while the letter ‘a’ occurs 8% of the time in 8-character alphanumeric
passwords, in position 2 it occurs 18% of the time. Similarly, for 6 digit PINs
taken from RockYou, the digit 1 occurs on average 17% of the time, but almost
40% in position 1. (see Appendix A.2 for pictures that illustrate these numbers.)
To attack using these relative frequencies we can guess characters randomly but
in proportion to their frequency of occurrence by position, or, more simplistically,
in a fixed order guessing the most common letters in each position in turn. For
example, in the RockYou case above, the first guess for position 2 in any challenge
will always be ‘a’. The ideal success rate of this latter strategy is illustrated by

Partial Password Implementations and Attacks 133

Fig. 3, where we measure the attack against the same sets used to generate the
frequencies, and show the proportion that are broken for increasing numbers of
guesses β. Each dotted line on the plot indicates success rates for a different
challenge; the bold line indicates the success rates averaged over all challenges.
For PINs, after 6 guesses we get an average success rate of 17% whereas for
passwords, we get an average of 0.3% after 10 guesses. Because we assume that
challenges are issued uniformly at random for different accounts, we take these
average figures as the overall success rates.

This attack is obviously poor because it ignores correlations between letter
positions; if we choose position 2 to be ‘a’, this changes the distributions of letters
that may appear in other positions. We can improve it by using a dictionary that
contains the most common answers to the projected positions.

3.2 Projection Dictionary Attacks

Using a dictionary D during the attack we could draw words at random; if the
dictionary matches the target set of passwords, the success rate would be β

|D| . But
for guessing an answer to the next challenge, there is a better strategy. Because
many words may share the same projections onto the challenged positions, some
responses are more frequent than others. We can pre-compute for this attack, by
taking an ordinary dictionary and building a projection dictionary that contains
combinations of positions from words and ranks the results by frequency.

For example, taking a 11,660 word dictionary of 8-letter English words1, we
find there are 2,736 possible answers to the positions 2, 3 and 6 (about 16% of
the possible 263 = 17, 576) and 1,793 answers to challenges of the first three
positions (only 10% of all possible). The projection dictionary tables give the
top β guesses for each challenge, ranking them by number of occurrences, and
giving the cumulative fraction covered so far:

Challenge 2 3 6:

1. r a i 79 0.69
2. r e i 77 1.34
3. r o i 63 1.88
4. l o i 59 2.38
5. l a i 57 2.87

Challenge 1 2 3:

1. c o n 116 1.00
2. d i s 88 1.75
3. p r o 83 2.46
4. o v e 75 3.11
5. p r e 74 3.74

So, for example, for the challenge 1 2 3, the prefix “ove” occurs in 75 words, and
the first four answers cover 3.11% of the set. The β-success rate is given by the
cumulative coverage at position β. For β=10 and m=3 we get rates of 5.1% and
6.3% for the two challenges shown; these are close, but there wider variations:
the most successful (weakest) case is 6 7 8 which achieves 30% after 10 guesses;
this is skewed by the very common ending “ing”.

Fig. 4 shows success rates of the projection dictionary attack for larger num-
bers of guesses. By comparison, a brute force attack would take up to Nm =
17, 576 guesses; an ordinary (unordered) dictionary-based attack is also shown on

1 More precisely: /usr/share/dict/words on Ubuntu 12.04, converted to lower case.

134 D. Aspinall and M. Just

the graph as a diagonal line, this does better than brute force (omitting responses
that do not occur), but not as well as the ordered attack using projections.

Fig. 4. Projection dictionary attack for an English dictionary

3.3 Projection Dictionaries from Password Distributions

We could use the English projection dictionary, but a better attack is possible by
starting with a dictionary that more closely matches the likely target distribution
of passwords, such as a real leaked password list. Many leaked password sets
have been analysed by researchers, to measure the success rates of attacks that
use them [10,12] and also by practitioners, to build better cracking tools [18].
The RockYou data set (leaked in 2009) is one of the most useful, with over
32 million entries. Although it is captured from a social gaming website and one
might hope that users choose better passwords to secure their bank accounts
than for online gaming, there is some evidence that passwords used to secure
financial information are not necessarily better chosen [15]. Moreover, some bank
implementations actually encourage weak choices for partial passwords by not
enforcing any password composition rules and by restricting the character sets
available (presumably for usability reasons).

If we take the 8-letter alphanumeric passwords from the leaked RockYou data
set, including frequency counts for the words, we get a ranked dictionary:

RockYou password frequencies (N=36, n=8):

1. password 59462 1.01
2. iloveyou 49952 1.85
3. princess 33291 2.41
4. 12345678 20553 2.76
5. babygirl 15163 3.02

again, showing frequencies and cumulative percentage coverage of the whole set.
There are about 5.9m 8-character alphanumeric passwords in RockYou, with
2.5m distinct, only 0.00009% of the 368 possible combinations; the top ten cov-
ers 3.88% of the whole set. For PINs, there are about 2.3m 6-digit passwords

Partial Password Implementations and Attacks 135

appearing in RockYou, but only 390,000 are distinct. The top 6 choices cover
15.3% of the whole set, although this is very skewed by the top choice “123456”
(12.8%). In trawling attacks on data sets sharing the same distributions this
means 1 in 26 alphanumeric passwords could be broken by making the top 10
guesses, and 1 in 7 PINs could be broken within 6 guesses.2

Responding to a partial password challenge we can do even better. We build a
projection dictionary taking frequencies into account; by construction, this can
only improve the success rate. For example, for alphanumeric passwords:

Challenge 2 3 6:

1. a s o 64819 1.10
2. l o y 52074 1.98
3. r i e 47833 2.79
4. 2 3 6 24857 3.21
5. a r e 21192 3.56

Challenge 1 2 3:

1. i l o 76508 1.29
2. p a s 66758 2.42
3. m a r 58058 3.40
4. b a b 52785 4.30
5. p r i 46565 5.08

The effect of combining words to rank projections is apparent by comparing
this with the previous table. For example, the most frequently occurring 8-letter
password in RockYou is “password” but responding to a challenge on the first
three positions, an attacker will succeed slightly more often with the letters i l o,
the projection on the second most common word “iloveyou”. This is because
there are more variations that share those first three letters. (See Appendix A.3
for some examples with PINs.)

Fig. 5. Projection dictionary attacks for RockYou PINs and passwords

Fig. 5 shows the success rates of the projection dictionary attack on RockYou
PINs and passwords themselves for smaller numbers of guesses. For PINs, the
rates at our limit point β=6 vary from 22% to 50% with an average of 30.6%; for
passwords at β=10, the rates vary from 4.2% to 10%, with the average of 5.5%.
These are our best success rates for guessing the answer to the next challenge.

2 In [9] the success rate for guessing 4 digit PINs with 6 guesses is given as 12.29%,
based on almost 1.8m PINs assembled from all 4 digit sequences appearing anywhere
in a password; the RockYou set only contains 20,661 4-digit passwords.

136 D. Aspinall and M. Just

4 Recording Attacks

The attacks considered in the last section do not require the attacker to eaves-
drop. But if an attacker can record previous challenges and responses, he will be
able to gradually learn the password, as well as make better informed guesses.

4.1 Pure Recording Attacks

A recording attack consists of observing k previous protocol runs and using
the recorded challenge-response pairings to either learn the full password, or to
respond to a new challenge. And once k > 1 runs have been recorded, an attacker
can respond to an increasing number of challenges. For example, after recording
the responses corresponding to the challenges 1 3 5 and 2 4 5, new challenges
such as 1 2 4 can be correctly answered.

How quickly are positions learned? The following recurrence defines the prob-
ability pmn (i, k) of observing exactly i different positions after k runs:

pmn (i, k) =

⎧⎪⎪⎨
⎪⎪⎩

1

(n
m)

∑m
j=0

(
i−j
m−j

)(
n−(i−j)

j

)
pmn (i− j, k − 1) m ≤ i ≤ n, k ≥ 1

1 i = 0, k = 0

0 otherwise

(1)

We can use Equation 1 to recursively compute a probability for run k as a
function of the number of positions observed at run k− 1, by summing over the
number of fresh positions j that are learned in the kth run and considering how
the remaining m− j positions may be chosen from positions already observed.

Fig. 6 (left) shows the probability pmn (n, k) of observing all n positions after
k runs for different choices of n and m. For both our PIN (n=6, m=2) and al-
phanumeric cases (n=8,m=3), after k=6 recorded runs an attacker has a greater
than 50% probability of learning the full password. This is purely recording with
no guessing, so it is unaffected by the N or β parameters.

In terms of guessing the next challenge after recording k runs, if the attacker
knows m ≤ i ≤ n password positions, then the proportion of challenges to which
they can immediately respond can be computed as a fraction smn (i). We can then
compute the proportion of challenges learned after k runs as smn (k).

smn (i) =

(
i
m

)(
n
m

) smn (k) =
n∑

i=m

pmn (i, k)smn (i) (2)

The results are displayed for different choices of n and m in Fig. 6 (right). For
both our PIN and alphanumeric cases, after k=4 recorded runs an attacker has
a greater than 50% probability of learning the next challenge. More generally,
50% of challenges can be answered after 3 ≤ k ≤ 7 for password lengths of
8 ≤ n ≤ 11, and common choices of m=2 or m=3.

The attacker may be able to find out the password, or answer the next chal-
lenge, quicker still than this, by using partial recording information and then
making guesses on unknown positions.

Partial Password Implementations and Attacks 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19

Number of recorded runs, k

n=6,m=3

n=7,m=3

n=8,m=3

n=6,m=2

n=9,m=3

n=7,m=2

n=10,m=3

n=8,m=2

n=9,m=2

n=10,m=2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19

Number of recorded runs, k

n=6,m=3

n=7,m=3

n=8,m=3

n=6,m=2

n=9,m=3

n=7,m=2

n=10,m=3

n=8,m=2

n=9,m=2

n=10,m=2

Fig. 6. Probability pmn (n, k) of learning password (L), or smn (k) next challenge (R)

4.2 Recording Plus Guessing Attacks

Let 0 ≤ m′ ≤ m be the number of positions that an attacker might know in a
given challenge. If an attacker knows i ≤ n password positions, then the propor-
tion of challenges with m′ known positions is given by smn (i,m′) in Equation 3
(generalizing Equation 2).3 As before, we can compute the fraction of challenges
with 0 ≤ m′ ≤ m known positions after k ≥ 1 runs as smn (k,m′):

smn (i,m′) =

(
i
m′
)(

n−i
m−m′

)
(
n
m

) smn (k,m′) =
n∑

i=m

pmn (i, k)smn (i,m′) (3)

When an attacker knows 0 ≤ m′ < m positions in a challenge after k runs,
guessing can be used to determine remaining m−m′ response positions. We can
calculate the β-success rate to give us the fraction of responses that are correctly
learned after β guesses, as shown in Equation 4.

m∑
j=0

smn (k, j)wj (4)

Here, the new term wj represents the success rate of guesses when j ≤ m posi-
tions are known in a challenge, which depends on β and N and varies according
to the guessing method. The sum weights wj by the proportion of challenges
with 0 ≤ j ≤ m matches to recorded positions.

First, we combine recording and brute force guessing. If m′ positions are
known in a given challenge, then at most Nm−m′

guesses are required to brute
force guess the remainingm−m′ positions. Here wj is the probability of guessing

3 The computation for smn (i,m′) was used by Goring et al [5] to determine the expected
number of positions known in subsequent challenges.

138 D. Aspinall and M. Just

correctly with β guesses, which is 1 when the number of guesses is less than or
equal to the maximum allowed, β:

wj =

{
1 if Nm−j ≤ β

β
Nm−j otherwise

(5)

The results are displayed in Fig. 7 which show different choices for n and m. For
the PIN case (third line up on left graph of Fig. 7) the proportion of guessable
challenges exceeds 50% after only k=2 runs, while for the alphanumeric case
(third line down on right graph in Fig. 7) it takes k=3 runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20

Number of runs, k

n=4,m=3

n=5,m=3

n=4,m=2

n=6,m=3

n=5,m=2

n=7,m=3

n=8,m=3

n=6,m=2

n=7,m=2

n=8,m=2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of runs, k

n=6,m=3

n=7,m=3

n=8,m=3

n=6,m=2

n=9,m=3

n=7,m=2

n=10,m=3

n=8,m=2

n=9,m=2

n=10,m=2

Fig. 7. Success rates for recording and brute force guesses, N=10 and N=36

We can improve the performance beyond brute force guessing by using our
letter position frequency and projection dictionary attacks of Section 3. We
provide a lower bound for the success rates in these cases by taking the best
values for each wj from Equation 4 for our example cases. In the alphanumeric
case, w0 represents the number of guesses when j=0 challenge positions are
known; we earlier calculated a success rate of 5.5% using a projection dictionary.
For w1, guessing the two remaining positions, we take the success rate from a
projection dictionary with m=2 sized challenges, which is 12% (versus 4% for the
letter position frequency option). This is a rough lower bound: it treats the two
remaining challenge positions as a lone challenge without taking into account any
dependence upon the known password positions, which would reduce the answers
possible (but would require the attacker to use more background dictionary
data). Based upon a letter position frequency attack we computed a success rate
of 60% for w2 where we guess one remaining position in the challenge. Again,
this success rate would be improved if knowledge of the two known positions is
used. Finally, w3=100% since all three positions are known.

For the PIN case, we similarly chose values w0 = 30.6%, w1 = 77.35% and
w2 = 100%. By plugging these values in Equation 4 we can compute the success
rate for recording and best guessing attacks. The results for both k=1 and k=4
recorded runs are shown in our summary table in Fig. 8.

Partial Password Implementations and Attacks 139

5 Summary

Partial passwords, introduced to prevent a telephone operator learning a user’s
password, have taken on a broader role in securing the online accounts of many
banks. In addition to their likely susceptibility to guessing attacks, they do not
appear to be adequate even to mitigate against a small number of recorded
protocol runs, at least for typical choices of parameters used today.

Fig. 8 displays a summary of our attacks, showing success rates responding to
challenges on partial PINs and passwords with the typical parameters sizes we
found. For guessing attacks, our results are relative to data from the RockYou
leak, and cannot be taken to be accurate for real PINs and passwords actually
used in online banking. Nevertheless, these success rates are worryingly high,
especially for banks that allow weak passwords and do not use a second credential
or rely upon a second credential that may be easily obtainable such as a credit
card number. Within the limited scope of our survey, Standard Life and 3DSecure
for Bank of Ireland look at risk here, although, like some other banks, it appears
that user ids are an additional credential for Standard Life as they are bank-
issued and, we assume, unpredictable if they are not recorded.

Attack type parameters percentage success rate

PINs: β=6, alphanumeric: β=10,
N=10, n=6, m=2 N=36, n=8, m=3

Brute force 6 0.002
Letter position frequency RockYou 17.2 0.3
Dictionary RockYou 15.3 3.9
Projection dictionary RockYou 30.6 5.5

Recording k=1 (k=4) 6.7 (63.1) 1.8 (59.0)

Recording + BF Guessing k=1 (k=4) 41.1 (83.8) 9.6 (69.1)
Recording + Best Dictionary k=1 (k=4) 60.2 (90.4) 25.2 (81.2)

Fig. 8. Summary of next-challenge attacks on partial passwords

Once recording takes place, attack success rates rapidly increase. It is claimed
that half of online banking users access their account at least weekly [19,20].
Malware detection and removal, if operating, has a similar frequency, suggesting
that if a key-logger is installed on a user’s machine (or a public terminal), there is
a good chance that at least one run of a partial password will be recorded. With
k=1, only the PIN case yields a >50% success rate (k=2 for the alphanumeric
case), so it can be argued that the partial mechanism provides some improve-
ment over normal password authentication where an observer learns a complete
password in a single step. As more runs are recorded, all success rates exceed
50%, and there is question over whether the partial scheme adds any useful se-
curity; reliance on the additional authentication mechanisms (where applicable)
becomes primary.

140 D. Aspinall and M. Just

Nonetheless, since the scheme is already widely used, it seems worthwhile
for banks to enforce parameter choices that might improve the resistance to
attack. There is an optimisation problem to solve here, to balance parameters
both for sufficient usability and security. While a larger N improves resistance
to guessing, it does not affect recording. So it may be worth first looking at
the graphs in Fig. 6, which show that, unsurprisingly, larger password lengths n
and smaller challenge sizes m increase the attack difficulty (the latter because
it reduces the rate of revealing characters). But reducing m too far raises the
success rate of guessing. Keeping m=3, but with n = 16, it requires recording
8 runs before the success rate exceeds 50% for an alphanumeric partial password.
Longer passwords may be supportable by using passphrases (with a suitable
interface) or even physical cards to store longer passwords; the latter is done
with some products in a two-dimensional matrix [21].

Further work. There are several areas we want to investigate further. We have
started to extend our study to the case considered by Goring et al [5] where the
observer captures the response but not the corresponding challenge, which is the
case when using a hardware key-logger. Varying the challenge format or sequence
can have an effect. For example, repeating positions or giving positions in any
order, not only ascending (one of our surveyed banks does this) greatly increases
the number of challenges which would thwart the hardware key-logger case. We
also want to extend our analysis to model adaptive projection dictionary attacks
whereby guesses use the information previously learned. However, this requires
the attacker to have the full dictionary, not just the top β answers for each
challenge. Finally, we also plan to explore the usability of partial passwords,
to explore the impact of parameter choices on users, as well as the effect of
different presentation formats (e.g., drop-down menus versus text boxes) and
challenge schedules. In the case of the latter, it may be interesting to examine
how users react to different schedules, such as those generated maliciously in
order to quickly reveal as many password positions as possible.

Acknowledgements. We’re grateful to Atif Hussain who spent several months
gathering the survey data used in Section 2 and to Ronald Bowes for hosting
some of the password sources we used on his blog [18].

References

1. UK Consumers Association: Bank websites: How safe is yours? Which? Magazine,
24–27 (September 2011)

2. Matsumoto, T., Imai, H.: Human identification through insecure channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409–421. Springer,
Heidelberg (1991)

3. Li, X.Y., Teng, S.H.: Practical human-machine identification over insecure chan-
nels. Journal of Combinatorial Optimization 3(4), 347–361 (1999)

4. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

Partial Password Implementations and Attacks 141

5. Goring, S., Rabaiotti, J., Jones, A.: Anti-keylogging measures for secure internet
login: An example of the law of unintended consequences. Computers & Secu-
rity 26(6), 421–426 (2007)

6. Berkman, O., Ostrovsky, O.M.: The unbearable lightness of PIN cracking. In: Diet-
rich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 224–238.
Springer, Heidelberg (2007)

7. Focardi, R., Luccio, F.: Guessing bank PINs by winning a mastermind game. The-
ory of Computing Systems 50(1), 52–71 (2012)

8. Bonneau, J., Just, M., Matthews, G.: What’s in a name? Evaluating statistical at-
tacks on personal knowledge questions. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052,
pp. 98–113. Springer, Heidelberg (2010)

9. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wallets?
The security of customer-chosen banking PINs. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 25–40. Springer, Heidelberg (2012)

10. Weir, M., et al.: Testing metrics for password creation policies by attacking large
sets of revealed passwords. In: Proc. 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 162–175. ACM (2010)

11. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Mea-
suring password strength by simulating password-cracking algorithms. In: IEEE
Symposium on Security and Privacy, pp. 523–537. IEEE Computer Society (2012)

12. Malone, D., Maher, K.: Investigating the distribution of password choices. In:
WWW, pp. 301–310. ACM (2012)

13. Brostoff, S., Sasse, M.A.: “Ten strikes and you’re out”: Increasing the number
of login attempts can improve password usability. In: Proceedings of CHI 2003
Workshop on HCI and Security Systems. John Wiley (April 2003)

14. Just, M., Aspinall, D.: On the security and usability of dual credential authentica-
tion in UK online banking. In: 7th International Conference for Internet Technology
and Secured Transactions (ICITST 2012). IEEE (December 2012)

15. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy, pp. 538–552. IEEE CS
(2012)

16. Yan, J.J.: A note on proactive password checking. In: Proc. 2001 New Security
Paradigms Workshop, NSPW 2001, pp. 127–135. ACM (2001)

17. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proc. of the 12th ACM CCS, pp. 364–372. ACM (2005)

18. Bowes, R.: SkullSecurity blog, passwords page,
http://www.skullsecurity.org/wiki/index.php/Passwords (accessed Septem-
ber 2012)

19. Mahmood, Z.: Attitudes towards the use of e-banking: Result of a pilot study.
Communications of the IBIMA 8, 170–174 (2009)

20. Thepaypers.com: UK consumers prefer online banking - survey (May 2011)
21. Voice, C.B., Chiviendacz, M., Pillman, E.: United states patent: 8060915 - Method

and apparatus for providing electronic message authentication (November 2011)

http://www.skullsecurity.org/wiki/index.php/Passwords

142 D. Aspinall and M. Just

A Appendix

In this appendix we provide more detail behind our calculations and data sets.

A.1 Bank Survey Resources

We gathered data directly from personal accounts and also consulted the follow-
ing demo and information pages (see collected parameters in Fig. 2):

– ING DiBa: https://www.ing-diba.de/kundenservice/banking-und-brokerage/#!01091
– First Direct: http://www1.firstdirect.com/1/2/banking/ways-to-bank/online-banking
– Smile: http://www.smile.co.uk/images/flash/smiledemo/
– HBoS: http://www.onlinebankingdemo.co.uk/launchbos.html
– Nat West: http://www.rbs.co.uk/personal/online-banking/g1/existing-customers/

problems-logging-in.ashx

– 3DSecure: http://www.bank-of-ireland.co.uk/3dsecure/
– AIB: http://www.aibgb.co.uk/onlinebankingdemo/index.html
– Bank of Ireland: https://personalbanking.bankofireland.com/online-banking-demo/
– Standard Life: http://www.standardlife.co.uk/html/demo/home1.html and

http://www.standardlife.co.uk/1/site/uk/help/faqs/online-servicing

– Cooperative: http://www.co-operativebank.co.uk/bankdemo/2008-06-04/IB_Demo_v2.html
– Nationwide: http://media.nationwide.co.uk/swfs/Demos/default.htm?DemoId=7
– Skipton: http://www.skipton.co.uk/demo/
– Tesco: http://www.tescobank.com/demos/index.html
– Barclays: http://www.barclays.co.uk/online/demo/?WT.ac=coukolbdemo

– HSBC: https://www.hsbc.ca/1/2/personal/banking

A.2 Letter-Position Frequency Data

Fig. 9 shows the relative letter position frequencies from the RockYou set cal-
culated on our two parameter cases: 6 digit PINs and 8 character alphanumeric
passwords. These illustrate the statistics used in Sect. 3.1, demonstrating how

Fig. 9. Letter frequencies by position for RockYou passwords

https://www.ing-diba.de/kundenservice/banking-und-brokerage/#!01091
http://www1.firstdirect.com/1/2/banking/ways-to-bank/online-banking
http://www.smile.co.uk/images/flash/smiledemo/
http://www.onlinebankingdemo.co.uk/launchbos.html
http://www.rbs.co.uk/personal/online-banking/g1/existing-customers/problems-logging-in.ashx
http://www.rbs.co.uk/personal/online-banking/g1/existing-customers/problems-logging-in.ashx
http://www.bank-of-ireland.co.uk/3dsecure/
http://www.aibgb.co.uk/onlinebankingdemo/index.html
https://personalbanking.bankofireland.com/online-banking-demo/
http://www.standardlife.co.uk/html/demo/home1.html
http://www.standardlife.co.uk/1/site/uk/help/faqs/online-servicing
http://www.co-operativebank.co.uk/bankdemo/2008-06-04/IB_Demo_v2.html
http://media.nationwide.co.uk/swfs/Demos/default.htm?DemoId=7
http://www.skipton.co.uk/demo/
http://www.tescobank.com/demos/index.html
http://www.barclays.co.uk/online/demo/?WT.ac=coukolbdemo
https://www.hsbc.ca/1/2/personal/banking

Partial Password Implementations and Attacks 143

frequencies of letters vary by position. The ranking of the top 10 characters in
each position from this data is shown below, for each case:

1 1 0 2 8 3 9 6 7 5 4

2 2 1 0 5 9 4 3 8 6 7

3 0 1 3 2 9 6 8 5 4 7

4 4 1 2 9 0 5 3 6 8 7

5 5 8 9 0 2 1 7 3 6 4

6 6 0 1 3 9 2 5 8 7 4

1 s m p b c 1 a l j d

2 a o e i u r l h 2 n

3 n r a o l i s e 0 t

4 e a i n t s r l o y

5 e 1 i a l 2 n o r t

6 e i a o 9 n r 1 l y

7 0 1 2 e a n o r 8 9

8 1 e a 3 2 s 7 4 8 5

So, for the challenge 2 3 6 the simplistic attack measured in Sect. 3.1 would
guess in turn “a n e”, “o r i”, “e a a” and so on. We measure the success rate
by seeing what proportion of the data set is then broken by making β of these
guesses. This attack is not particularly successful, but is meant to illustrate a
simple improvement using position data that improves over guessing at random.

A.3 Projection Dictionary Data

Projection dictionaries are built by taking a source dictionary, finding the an-
swers to each of the

(
n
m

)
challenges, and ranking each result by the number of

times it occurs. The calculations are performed using some scripts written in
Python. For PINs, an example table entry looks like this:

Challenge (1, 3) has 100 distinct responses, and 2278919 total

Challenge Response Occurrences Coverage % Cum. %

1. (1, 3) 13 340719 14.951% 14.951%

2. (1, 3) 00 191577 8.406% 23.357%

3. (1, 3) 11 175642 7.707% 31.065%

4. (1, 3) 10 164900 7.236% 38.301%

5. (1, 3) 01 143302 6.288% 44.589%

6. (1, 3) 20 127502 5.595% 50.184%

Metrics for Challenge (1, 3): Beta success rate: 50.18%

An attacker following this strategy would, given the challenge (1,3), reply with
responses 1,3, then 0,0 and so on. As with the alphanumeric example, this or-
dering differs from the global ordering, where the top six PINs occurring as
RockYou passwords were:

Passwords selected from data/rockyou-N10n6.txt

Selected passwords of length 6

Total of 2278919 passwords, with 390529 unique (17.14%)

Most common password ’123456’ occurs 290729 times

Word Occurrences Coverage % Cum. %

1. 123456 290729 12.757% 12.757%

2. 654321 13984 0.614% 13.371%

3. 111111 13272 0.582% 13.953%

4. 000000 13028 0.572% 14.525%

5. 123123 9516 0.418% 14.943%

6. 666666 7419 0.326% 15.268%

Password metrics: Beta success rate (beta = 6): 15.268%

Hey, You, Get Off of My Clipboard
On How Usability Trumps Security

in Android Password Managers

Sascha Fahl, Marian Harbach, Marten Oltrogge,
Thomas Muders, and Matthew Smith

Distributed Computing & Security Group
Leibniz University of Hannover

Hannover, Germany
lastname@dcsec.uni-hannover.de

Abstract. Password managers aim to help users manage their ever in-
creasing number of passwords for online authentication. Since users only
have to memorise one master secret to unlock an encrypted password
database or key chain storing all their (hopefully) different and strong
passwords, password managers are intended to increase username/pass-
word security. With mobile Internet usage on the rise, password managers
have found their way onto smartphones and tablets. In this paper, we
analyse the security of password managers on Android devices. While en-
cryption mechanisms are used to protect credentials, we will show that
a usability feature of the investigated mobile password managers puts
the users’ usernames and passwords at risk. We demonstrate the conse-
quences of our findings by analysing 21 popular free and paid password
managers for Android. We then make recommendations how to over-
come the current problems and provide an implementation of a secure
and usable mobile password manager.

Keywords: Android, Security, Apps, Password Managers, Vulnerability.

1 Introduction

Today, using text-based passwords is the most prominent authentication scheme
in computer systems. Although researchers have been criticising this scheme as
being hard to use in a secure way, it is still the most widely adopted system
for authenticating users. Previous research has shown that passwords chosen by
users are often easy to compromise by attackers [1,2,3,7,10].

Another problem with the wide-spread application of passwords is password
re-use. Users register with many services on the Internet, each requiring them to
create a new username/password tuple. Previous research has shown that users
often deal with this password overload by re-using the same or similar passwords
for multiple accounts [8,13].

Multiple mechanisms have been proposed to support the user in choosing more
secure passwords (cf. [12,14]), all trying to alleviate the challenges password-
based authentication holds for their users.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 144–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On How Usability Trumps Security in Android Password Managers 145

However, due to the bounded cognitive abilities and motivation of users, pass-
word re-use is still commonplace. Password managers (PMs) aim to overcome
this problem: they help the user to handle a large number of different passwords
by storing them in encrypted form. To access the encrypted passwords, the user
usually has to enter a single master secret that decrypts the password database.
Password managers often include a password generator to simplify the creation of
new unique and secure passwords. For convenience, login forms are pre-filled and
account information for new websites is captured on the fly. Another prominent
feature is the synchronisation of password databases between multiple devices.

While early password manager applications were limited to desktop comput-
ers and their browsers [11], current implementations offer mobile password man-
ager apps, that can be synchronised over the cloud to ensure that the password
database is available on all of the users’ devices. While users of desktop password
managers benefit from a smooth integration into browsers, password manager
apps on mobile platforms offer less comfort. First, web browsers on smartphones
and tablets often do not provide a plugin interface, that would allow for a smooth
integration of password managers. Second, the existence of dedicated apps for
many online services steadily increases the number of users that access online
services through an app instead of a website in a general-purpose web browser.
This circumstance requires that mobile password managers have to be able to
manage passwords not only for browsers but also for apps.

Unfortunately, there is a fundamental problem with password manager apps
on Android: The OS does not offer an API to integrate password managers with
the browser or other apps. This has led to the adoption of a highly insecure
practice to overcome this weakness: Password managers use the OS clipboard
to transfer credentials from a password manager app to the browser or other
apps. This method effectively broadcasts credentials to all apps installed on the
smartphone.

We analysed the security of 21 password manager apps on Android, hav-
ing a combined install base of 2,500,000 to 10,900,000 devices1. We found that
apps mostly use AES, Blowfish or a combination of both to encrypt credential
databases, although some apps use their own crypto implementations and do
not rely on a proven open-source library. Seven apps use a key derivation func-
tion to derive the symmetric encryption key from the user’s master secret to
strengthen the security of encrypted credentials. We found one PM that directly
inputs the user’s password as the encryption key and truncates passwords longer
than 16 characters. In case the password has less than 16 characters, the string
‘FEDCBA9876543210” is appended to “strengthen” the password. Another PM
app uses an HMAC algorithm with SHA-256 and the fixed initialisation vec-
tor ”notverysecretiv” for key derivation for every encrypted credential tuple.
Three password manager apps provide their own cloud synchronisation feature
to easily share passwords between multiple devices. Two of them synchronise
the users’ databases over a broken TLS channel (i. e. the apps are vulnerable

1 The numbers are based on information provided by Google’s Play Market. Google
does not provide more fine-grained numbers for an app’s install base.

146 S. Fahl et al.

due to incomplete TLS certificate validation) and hence allow a Man-In-The-
Middle attacker to capture the databases. We investigated this problem in [5]
in more detail and analysed 13,500 popular Android apps and found that many
app developers failed to apply TLS appropriately. However, most critically, all
apps use the clipboard feature to transfer credentials from the password man-
ager to browsers or other apps. Two apps automatically copy credentials to the
clipboard when the user clicks the URL for the given online account. Only one
app allows a user to disable the clipboard feature.

While there is known malware on desktop computers that threatens passwords
copied to the computer’s clipboard2, this circumstance has not been investigated
in detail yet. Hence, to the best knowledge of the authors, this paper is the first
analysis of password managers’ security on mobile devices.

The remainder of the paper is organised as follows: Section 2 gives background
information on password managers and discusses peculiarities of password man-
agers on desktops and mobile devices. Section 3 describes our attack against
password managers on Android and illustrates how captured credentials can be
linked to online services and how stolen information can be transferred to the
attacker’s server without giving the user a chance to notice. Section 4 gives more
details on the security of the PMs we analysed. To understand why developers
added the clipboard features to their apps, Section 5 summarises open inter-
views with app developers. Section 6 discusses countermeasures and presents an
implementation of a secure and usable password manager that overcomes the
presented vulnerabilities. In Section 7, we conclude the paper and discuss future
work.

2 Background

While early password managers were simply a username/password database em-
bedded in desktop computers’ browsers, the features of modern password man-
agers are much more extensive and can be categorised as follows:

Browser-Embedded PM: Most web browsers, such as Google Chrome, Microsoft
Internet Explorer, Mozilla Firefox or Apple’s Safari, include an embedded pass-
word management feature. In case a user logs into a website for the first time,
the PM inquires whether the login credentials should be saved to ease future
logins by automatically filling the username and password into the login form.
These embedded password managers traditionally store credentials locally on the
user’s computer, but are increasingly syncing them between multiple devices us-
ing proprietary Cloud services. Some browsers do not encrypt credentials stored
locally or require the user to set a master secret to enable encryption. For exam-
ple, Chrome uses the Google Account password to encrypt the synced password
database by default, but offers to use a dedicated secret as an advanced feature.

2 e. g.: http://www.f-secure.com/v-descs/trojan_w32_qhost_je.shtml

On How Usability Trumps Security in Android Password Managers 147

Browser Plugins: The majority of modern desktop web browsers provide an API
to extend their functionality by allowing the user to install third-party plugins
or extensions. Many password managers are hence available as browser plugins.
KeePass3, 1Password4 and Lastpass5 are prominent examples of plugin-based
password managers. They encrypt passwords and protect them with a master
secret. These third-party password managers often provide further functionality
and act as encrypted storage for more than just usernames and passwords: other
sensitive information such as credit card numbers, online banking information
or secret notes can be stored as well.

2.1 Password Managers on Desktops

Password managers on desktop computers are generally well integrated into the
users’ everyday Internet-facing software, such as browsers and email clients. Re-
gardless of whether an embedded password manager or a third-party plugin is
used, when the user accesses an online account for the first time or creates a
new account, the password manager automatically comes into play and offers
the user to securely store the new account information. The plugin APIs of
modern browsers offer a very comfortable integration of password managers into
the users’ workflows. When a user visits a website that requires authentication,
a password manager typically auto-fills the username and password and might
even automatically submit the login form.

Early password managers for desktop computers (e. g. [11]) assumed a single
device environment. Nowadays users often work with multiple devices such as
desktops, notebooks, smartphones and tablet PCs, which makes it necessary to
synchronise password databases between multiple devices to have credentials
available whenever needed. For this reason, some password managers offer to
sync databases between multiple devices by storing credentials in the Cloud or by
putting the database on USB drives. A popular way to sync password databases
is the Dropbox service. The encrypted password database is stored in the user’s
Dropbox account and can be accessed from all the user’s devices. 1Password for
example maintains an encrypted database for sensitive information and allows
users to store and share the database via their Dropbox account.

2.2 Password Managers on Mobile Devices

While password managers in desktop environments are well integrated into
browsers and users’ workflows, the situation for third-party password managers
on mobile platforms is different. Neither of the major mobile platforms (Android,
iOS and Windows Mobile) nor mobile browsers provide a plugin API comparable
to desktop computers. Additionally, the paradigm shift away from the browser
as a generic tool to surf the Internet towards the „there is an app for everything”
approach makes integrating PMs into mobile ecosystems even harder.
3 cf.: http://keepass.info/
4 cf.: https://agilebits.com/onepassword
5 cf.: https://lastpass.com

148 S. Fahl et al.

API limitations and the requirement to support arbitrary apps creates a dif-
ferent usage pattern for mobile PMs. Instead of storing new account information
automatically and auto-filling authentication forms, the workflows of mobile PMs
typically consist of the following steps:

1. The user has to switch to the PM app,
2. then needs to find the appropriate username/password tuple from a list of

stored credentials,
3. copies the password to the clipboard,
4. switches back to the app that requires authentication, and
5. finally pastes the password into the corresponding text field before submit-

ting the login form.
6. In case the user does not remember the username for a given service, these

steps (except step 2) are repeated for the username as well.

Although this workflow’s usability is far from optimal, it is the best mobile
password managers can provide so far. To understand why users nevertheless
use password managers on mobile devices, we analysed 2,000 user reviews in
Google’s Play Market. To this end, we downloaded user reviews, manually ex-
tracted factors that motivate users to use PMs on their Android device and
identified the following reasons to be substantial:

Protection: Users feel that embedded PMs do not store the passwords in a way
they believe to be secure (e. g. some users were angry that Android’s stock
browser does not encrypt stored usernames and passwords).

Confidentiality: Users do not trust embedded PMs in keeping their data confi-
dential (e. g. users were afraid that their credentials could be sent to Google).

Features: Embedded PMs are usually limited to usernames/passwords. Users
often want to store other confidential data, such as banking information.

Availability: Embedded PMs are usually limited to a single browser. Since
many users need access to their information on multiple devices and browsers,
a vendor-independent PM is preferred.

After having outlined background information on password managers, the next
section presents our attack on PM apps on Android and illustrates its conse-
quences for the user.

3 Password Sniffing on Android

As illustrated in Section 2.2, the workflow of mobile password managers requires
the user to copy account credentials to the clipboard before switching to the tar-
get app and pasting them before actually logging in. There are some problems
with this practice: On Android, writing data to or reading data from the clip-
board does not require any permission. Therefore, every app currently running
on an Android device can read the items stored in the clipboard at any time.
To make matters worse for password managers, the Android SDK provides the

On How Usability Trumps Security in Android Password Managers 149

android.content.ClipboardManager.OnPrimaryClipChangedListener inter-
face, which defines a listener callback that is invoked each time the primary item
on the clipboard changes. This can be used by malicious apps to harvest passwords
as they are passed through the clipboard. As a proof of concept we implemented a
password sniffer named PWSniff using this mechanism. PWSniff runs as a back-
ground service and does not require any Android permission to work properly.

As long as no changes to the clipboard occur, the background service idles
and therefore does not consume any CPU cycles. Directly after a new item is
copied to the clipboard, the listener callback is invoked by Android and the idling
PWSniff background service is notified and then reads the primary item. Next,
PWSniff determines the app which is currently in the foreground. This informa-
tion can also be acquired without requesting any permission. We assume that
the foreground app at the time of copying is the app from which a user copied
data (cf. Section 2.2 step 1). In case this app is a known password manager, we
assume that the primary clipboard item is either a service URL, a username or
a password (cf. Section 2.2 step 3). Whether the app is a password manager can
be determined based on the app’s user ID, which is assigned at install time and
can be mapped to the a unique app market ID. The third step in our attack
is to wait for a foreground app switch by checking the current foreground app
in a loop and waiting until the user brings another app to the foreground. In
case we identified the primary clipboard item as possibly confidential data (no
matter if it is a username or a password) copied from a password manager, the
new foreground app is assumed to be the destination of the credentials-copy-
operation (cf. Section 2.2 step 4). Hence, by exploiting features of the Android
SDK that require no special permissions in combination with a typical workflow
in the context of using password manager apps on Android, it is easily possi-
ble to harvest (still potentially noisy) usernames and passwords from the world
readable clipboard.

At this point, an attacker cannot be sure which item is the username and
which the password. But, in many cases it is possible to differentiate between
both items based on their structure. Usernames are often chosen to be easily
memorable (e. g. an email address) while passwords, especially those which are
managed with PM software, usually are more “cryptic”. Even in cases where the
username and password cannot be easily distinguished, an attacker could first
try one combination of the sniffed items and in a second attempt the reversed
order. In both cases, breaking into an account is straightforward.

Advanced Username Capture: The attack described above relies on the user copy-
ing and pasting both the username and the password. Since users might just type
their usernames from memory or use browser or app autofill features to save this
effort, it might become necessary to acquire the username through an alterna-
tive method. For this, PWSniff can be equipped with the GET_ACCOUNTS
permission. The permission allows the app to see usernames that other apps
handle on the smartphone and which are registered with the AccountManager6.

6 cf.: http://developer.android.com/reference/android/accounts/
AccountManager.html

http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/reference/android/accounts/AccountManager.html

150 S. Fahl et al.

This also includes all email addresses used on the device. Since many online ser-
vices use email addresses as usernames, this list offers a good basis from which
to guess usernames for many services.

The downside of this extension is that it involves the danger of a user becoming
suspicious of the app’s permissions, which are presented to the user at install
time. However, Felt et al. [6] demonstrated that users pay little attention to the
permissions of an app and mostly do not understand the permissions’ meaning.
While Felt et al’s. results account for Android’s permission system in general,
an app’s permissions are also grouped and classified based on their security
relevance. In this respect, the GET_ACCOUNTS permission does not rank
particularly high and thus is not often shown on the first page. To ensure that
the GET_ACCOUNTS permission is not shown on the first page, an attacker
only needs to add more than three popular permissions such as INTERNET,
LOCATION and STORAGE which are used by many apps to his malware app.
The best composition of permissions to mask the GET_ACCOUNTS permission
is outside the scope of this work.

Advanced Account Capture: In Section 3, we illustrated that an Android app
which holds no special permissions is able to sniff online account credentials
that are copied to the clipboard when working with any password manager on
Android in most cases. It is also possible to learn from which app a value was
copied to the clipboard and into which app the value was pasted. If the target
app has a special purpose (e. g. the Skype app only logs into Skype), it is easy to
guess to which online service the harvested credentials belong. However, in case
the target app is a multi-purpose Internet client such as a web browser, finding
the intended service is not quite as straightforward.

To learn for which account a password is used, an attacker can benefit from
Android’s ProcFS features. The ProcFS is an interface to the kernel and pro-
vides information about a device such as information about the CPU, memory
and network details. On Linux-based systems such as Android, the ProcFS is
usually mounted at /proc. Most entries in /proc and its subdirectories can be
read by everyone. The /proc/net/tcp file contains information about all TCP
connections on an Android device and is also world-readable and hence accessi-
ble by every app without requiring any permissions. Information such as source
IP and port, destination IP and port and the UID of the process that created
the network connection are listed there. Since Android creates a static mapping
of Apps to a UID at install time, one can easily learn which app connects to
which Internet hosts based on the UID entry in /proc/net/tcp. Having the
destination IP for an app’s network connection at hand allows an attacker to
easily infer to which online service a credential pair is connected by logging all
network connections of an app, immediately after a copy operation from a PM
to another app was discovered.

Exfiltrating the Data: In [5], we found that 92.8 % of 13,500 popular An-
droid apps request Internet access. Adding the Internet permission to PWS-
niff should thus not raise undue concern. With this permission, transmitting

On How Usability Trumps Security in Android Password Managers 151

the harvested data is of course trivial. However, if a zero permission attack
app is desired, exfiltration of the harvested data can still be done using an-
other flaw in Android’s permission system. Egners et al. [4] describe a loophole
in Android’s permission system that we adopt for our purposes and which al-
lows PWSniff to send gathered credential information to a remote HTTP server
without requiring the Internet permission. After the account login information
was gathered, the harvested data is cached until the device’s display is turned
off. When this happens, an HTTP URL with the following structure is built:
http://<pwsniff-master>/pw#username#service. This URL is used to invis-
ibly open Android’s stock browser when the display is turned off by running
the following code in PWSniff. We explicitly call Android’s stock browser since
some third-party browsers do not hand back control for unknown protocols to
the Android OS, which is required to keep the attack stealthy.

The server behind the URL replies with a location header containing a custom
protocol, for example: ’Location:pwsniff://all.ok’. Since PWSniff includes
an activity that previously registered for the custom pwsniff:// protocol, the
browser passes handling for the URI pwsniff://all.ok to PWSniff. Staying
invisible, the activity then simply terminates.

After demonstrating how credentials can be sniffed when Android password
managers are used, how they can be mapped to online accounts and how this
information can be exfiltrated stealthily, the next section gives some relevant
excerpts of our detailed security analysis of PMs on Android.

4 Security in Detail

We analysed 13 free and 8 paid Android PM apps in detail. Our intention was
to analyse which apps include the clipboard feature for credential copy & paste,
which encryption algorithms protect the password database, whether or not the
app includes an embedded browser, whether or not the SD card is used to store
the password database and whether or not the app removes itself from the recent
apps view. For analysis, we installed all apps on a Samsung Galaxy Nexus with
Android 4.0. We applied forensic techniques7 to learn database and configuration
files’ structures of the installed password manager apps. To learn internals of the
password managers, we decompiled them8 and conducted manual static code
analysis.

We also conducted static code analysis on the same dataset as in [5] and found
that only two apps in this dataset registered for the clipboard change listener.
We analysed both apps manually and found no malicious behaviour in the apps.
907 apps (6.7 %) in the sample access the clipboard API programatically to

7 We used the adb tool (cf.: http://developer.android.com/tools/help/adb.html)
for logical extraction.

8 We used a bundle of decompilation tools: JD-GUI (cf.: http://java.decompiler.
free.fr/?q=jdgui), apktool (cf.: http://code.google.com/p/android-apktool/)
and dex2jar (cf.: http://code.google.com/p/android-apktool/)

http://<pwsniff-master>/pw#username#service
'Location: pwsniff://all.ok'
pwsniff://
pwsniff://all.ok
http://java.decompiler.free.fr/?q=jdgui
http://java.decompiler.free.fr/?q=jdgui

152 S. Fahl et al.

share more complex objects than simple text strings such as images, video or
audiofiles.

Table 1 in the Appendix shows an overview of the security parameters we
analysed.

4.1 Encryption

One important aspect of PM security is the encryption mechanism to store cre-
dential databases. Android’s stock browser does not encrypt stored passwords in
any way but protects them from unauthorised access by file system permissions.
Android’s AccountManager mechanism provides centralised credential storage
and also protects user credentials from unauthorised access by file system per-
missions, but the accounts.db database is not protected with an extra layer of
encryption. This does not protect the password from forensic analysis.

All third party PMs we analysed apply some encryption mechanism to protect
the data. Android supports (3)DES, RC2, and RC59 to encrypt data out of
the box. Other encryption algorithms require the developer to add third-party
libraries to their app. We decompiled the PMs to find out what kind of encryption
algorithm is applied in each PM app. To provide stronger security, most password
managing apps use the Advanced Encryption Standard (AES) with several key
lengths. aWallet uses a combination of AES, Blowfish and 3DES.

A critical aspect of encrypting password databases is the derivation of the
encryption key [9] that is directly connected to the master secret used to un-
lock/decrypt the password database. Seven apps use a dedicated key derivation
function to derive the symmetric encryption key from the user’s master secret
to strengthen the security of encrypted credentials. We found one app that di-
rectly inputs the user’s password as the encryption key, truncating passwords
longer than 16 characters. In case the password has less than 16 characters, the
string ”FEDCBA9876543210” is appended to ”strengthen” the password. Another
app uses an HMAC algorithm with SHA-256 and the fixed initialization vector
”notverysecretiv” for key derivation.

4.2 Storage

Most password managers, including Android’s stock browser, store password
databases in files or SQLite databases that are only accessible by the password
manager app itself. Hence, other Android apps cannot access account infor-
mation regardless of whether it is encrypted or not. Ten of the analysed PMs
store databases on the SD card that is world readable without requiring fur-
ther permissions on all devices with Android 4.0 and older. In combination with
inappropriate database structures (not encrypting all information stored in the
password manager), an attacker is for instance able to learn for which services a
user holds accounts or for which services the same username and/or passwords
are used.
9 cf.: http://developer.android.com/reference/javax/crypto/spec/
package-summary.html

On How Usability Trumps Security in Android Password Managers 153

4.3 Recent Apps

An essential feature of Android devices is an overview of the currently running
apps, also called the Recent Apps View. The Recent Apps View shows thumbnails
of current foreground activities of all running apps. While a security feature
of all analysed password managers is the automatic locking of the password
database either immediately after the password manager app was left or after
a configurable amount of time, we found only three apps that also replace their
thumbnails in the recent apps view (cf. Table 1). In case the user copied online
account information (usually the location, username and password) and then
leaves the password manager app to paste the information into another app, the
account information is left in the recent apps view and can be seen by anyone
with physical access to the user’s device. Although this threat is orthogonal to
our attack (cf. Section 3), it outlines a security risk for users’ online credentials.

4.4 Cloud Sync

While all password managers store their databases locally and allow synchroni-
sation of their databases, most offer a more manual functionality using Dropbox
or similar services. LastPass, SecureSafe and RoboForm provide dedicated Cloud
storage features to automatically synchronise all passwords remotely. In [5] we
analysed popular Android apps and found that many app developers fail to ap-
ply TLS appropriately, being vulnerable to active Man-In-The-Middle attacks.
Although LastPass, SecureSafe and RoboForm protect their network communi-
cation with TLS, SecureSafe and RoboForm fail to verify the cloud servers’ TLS
certificates. Instead, they accept all certificates. In case of SecureSafe this how-
ever has not further security implications since in addition to TLS, SecureSafe
uses a session-specific symmetric key, which is set up during the SRP-login10, to
additionally encrypt password-data end-to-end. However, RoboForm leaks the
users’ credentials which are used for password encryption in the default case (i. e.
the user did not choose an extra password for encryption). Hence, an attacker
can gain access to the data in cleartext under this circumstances.

5 The Developers View

After analysing Android password managers on a technical basis, we contacted
their developers via email and informed them about a possible security threat
for their users. We offered them to get in contact either via email or telephone to
discuss the details of the PWSniff attack. We also posed the following questions:

– Why was the C&P feature used in the password manager app?
– Were developers aware of the security threats arising from using the clip-

board for username/password sharing, and, if so, why did they add the C&P
feature nonetheless?

10 cf. RFC2945.

154 S. Fahl et al.

– Which features, if any, do developers miss in Android’s SDK for developing
a password manager app?

15 of the 21 developers agreed to participate in the email interview and are
anonymously referred to as P1, . . . , P15 in the following.

5.1 Results

During the discussions with developers, we were able to identify three different
reasons to add the usability-enhancing clipboard feature to PM apps. One was
because the developers themselves were users of their apps and desired the fea-
ture themselves. (“As I’m a [. . .] program user too, I added the copy feature
because I needed to transfer usernames (that are usually long email addresses)
and passwords to login forms in web browsers.”; P7). The second reason provided
by PM developers was the wish to come as close as possible to PM functionality
on the desktop, because developers believed that users would reject their apps
if they were not sufficiently usable. (“Copy to clipboard has been in [. . .] An-
droid from early on. [. . .] It was something that we knew we needed to make the
application usable at all”; P4). Lastly, developers reported that users directly
requested a C&P feature for their app (“The feature was highly requested by
users. The most common example: users want to login to a website on their
mobile device, so he/she copies credentials from [our PM] to the clipboard and
then pastes them into the browser.”; P15).

All but one developer were aware of security threats resulting from putting
passwords into a device’s clipboard. Developers who were aware of the security
threat justified adding the clipboard integration, stating that they had no other
choice. They described it as a tradeoff between usability and security which was
decided in favour of increasing usability (“It’s a balance between ease of use
and security. Of course it would be much more secure to not use the clipboard,
however people accept the risk of doing so; the alternative of not using a password
manager is worse.”; P3). One developer interestingly described his decision not
as a usability-security tradeoff but as a “one type of security versus another type
of security” decision, alluding to the fact that without password managers users
would choose less secure passwords. Additionally, P4 stated: “On the whole,
I think that password reuse [. . .] is currently the biggest single problem with
password security today. And so, if a password manager gets people to use unique
passwords for each site, the dangers of a publicly readable clipboard is a security
risk that can be worthwhile. [. . .] What’s the alternative?”.

All developers criticised Android’s missing support for password manager
apps. A native integration into third party apps and browsers was described as
the most effective countermeasure against the password sniffing security threat
(“Android doesn’t offer hooks into the native default browser [. . .] and does not
allow our app to access input fields of other apps [. . .] which makes it necessary
that password managers make heavy use of the clipboard.”; P3).

On How Usability Trumps Security in Android Password Managers 155

5.2 Discussion

Based on the lack of API support for third-party password managers on the
Android OS, developers decided to opt for the best usability they could achieve
by including the clipboard feature to allow users to copy-and-paste usernames
and passwords from their apps to other apps. Although all but one developer
were aware of the possible security threat, they decided that better usability
was more important than stronger security. A justification multiple developers
offered was that they had no other choice and that it was necessary to add the
best possible usability even if security was threatened.

6 Countermeasures

With the results of our analysis and the developers’ comments in mind, we
first discuss possible countermeasures to improve the security of a smartphone’s
clipboard facilities as a global shared memory. Additionally, we present a PM
implementation for Android based on a customised soft-keyboard that provides
usability features similar to desktop PMs and does not leak credentials over
public channels.

Secure Clipboard Architecture: Sniffing confidential information on Android de-
vices is currently easy since on the one hand, a proper plugin API for integrating
password managers is missing and, on the other hand, the design of the current
clipboard mechanism on Android is not made for sharing confidential information
between apps. The current clipboard model allows an arbitrary app to access
clipboard items deposited by any other app. With the assumption that both,
the copy as well as the paste operation are triggered by the user, such a clip-
board model does not cause security concerns. However, on Android, two other
API features open the door for malicious activity: Android’s background service
feature for apps and the ClipboardManager.OnPrimaryClipChangedListener
allow for stealthy harvesting of clipboard items (cf. Section 3). Therefore, we
present two possible modifications to improve Android’s clipboard model when
it is accessed using API functionalities:

Permissions. The current clipboard model allows every app to programmat-
ically read data from and write data to the clipboard, without requiring
permission for that. While user-triggered clipboard operations can remain
unchanged, we propose two new permissions for API-based access to clip-
board functionality: WRITE_TO_CLIPBOARD and READ_FROM_CLIPBOARD. Al-
though the limited effects of Android’s permission model for the average
app user have been discussed (cf. Felt et al. [6]), these permissions should be
added for completeness. This way, at least the tech-savvy users would have
a chance to see if an app is capable of accessing the clipboard programmati-
cally and can warn the rest of the community. Since we identified only very
few apps to access the clipboard programatically (cf. Section 4), the proposed
changes would only impact a small number of apps. Regular, user-triggered
copy-and-paste operations would not be influenced by this modification.

156 S. Fahl et al.

Targeted Clipboard. Copying a value to the clipboard on current Android
smartphones is equivalent to broadcasting the information to all other apps.
This is contrary to the users’ intuition of using a copy-and-paste feature that
is generally used to transfer information from one app to another. Therefore
we propose to extend API calls to the clipboard with a “target app” param-
eter that the app may request from the user. Keeping usability in mind, the
number of target apps should be kept to a minimum. Apps providing an
API-based copy feature may let the user choose target apps from a list of
all apps or suggest useful targets as well as remember previous preferences.
If clipboard operations are triggered by the user, reading the clipboard’s
contents should only be possible through explicit user interaction as well.

The modifications to Android’s current clipboard model proposed above do not
only protect credentials from unwanted disclosure, but can also serve to shield
any other (possibly confidential) information (such as financial or medical infor-
mation), that a user might copy to the clipboard.

USecPassBoard: While the above solutions would alleviate the current security
problems of PMs, they would also require modification of the Android OS itself.
Additionally, these measures cannot address the usability issues of mobile PMs,
i. e. that the user needs to manually select credentials, switch apps and manually
paste. To offer both better security and usability we propose a novel password
manager: USecPassBoard. To overcome the issues plaguing the traditional ap-
proach of mobile password managers, we went down a different path. We created
a soft-keyboard which integrates a password manager. Since soft-keyboards are
available in every app and can access a shared credential database, they integrate
well with most scenarios where credentials need to be entered. A custom soft-
keyboard implementation on Android replaces the default keyboard and provides
a custom means to input data into user-input fields. Figure 1 in the Appendix
shows the user interface of the USecPassBoard PM. Besides preserving the reg-
ular keyboard functionality, it essentially adds two operations: (1) Creating a
new username/password entry and (2) inserting a username/password tuple at
the user’s discretion. Since USecPassBoard is a soft-keyboard, it is available in
every application, including the browser and stores passwords in a master secret-
protected AES-256 encrypted database11 to protect username/password tuples
from unauthorized access. This effectively avoids the use of copy-and-paste on
usernames and passwords while maintaining the flexibility of all available pass-
word managers.

New Account: USecPassBoard analyses the context of user input to determine if
credentials are being entered. The password context is determined by identifying
which app is currently used (i. e. which app is in the foreground) and in case
the foreground app is a browser, it determines the website which is displayed by
reading the browser’s first item cached in the history. Apps are uniquely identified
11 We use the SQLCipher (cf.: http://sqlcipher.net/sqlcipher-for-android/)

database.

On How Usability Trumps Security in Android Password Managers 157

based on their package names managed by the Android operating system12.
USecPassBoard then caches the input of all textfields in the foreground activity.
This is possible since soft-keyboards on Android are triggered when a textfield
is activated by the user. Additionally, a soft-keyboard receives a reference of the
EditorInfo class13 which identifies an input as a text or a password field. After
the user completes the input and the keyboard loses the focus on a password
field, a notification is displayed in the status bar that a new dataset was created
(cf. Figure 1) if there is no identical username/password tuple for the current
context in the database. New username/password tuples are bound to the target
app – based on its package name – and are not available for possibly malicious
apps. In case the user would like to share credentials between different apps
(e. g. between two Facebook client apps), we allow this in the settings menu of
USecPassBoard.

Credential Insertion: In case USecPassBoard recognises a known password con-
text (i. e. a package name of an app for which credentials are stored in the
database), the user can choose to insert this information by tapping into the in-
put field for the username or password. A popup message appears after the user
tapped onto the key button (cf. Figure 1) and a list of available credentials for
the given password context is displayed. Subsequently the selected username/-
password tuple is inserted at the user’s discretion and the login process can be
started.

Security Considerations: All interactions between the USecPassBoard virtual
keyboard and a target app must be initiated by the user by tapping into a text
input field. This creates a communication channel between the keyboard and the
target app through Android’s InputMethodManager14 which is not accessible
from other third party apps. This allows the automatic storage of new account
credentials and insertion of stored credentials into uniquely identifiable target
apps.

Target apps are uniquely identified based on their package name that is man-
aged by the Android OS and cannot be spoofed by malicious apps15. In case the
target app is the browser, a password context consists of the browser’s package
name and a target website. We identify the target website by reading the top item
from the browser’s history. This is accessible with Android’s READ_HISTORY_
BOOKMARKS permission and gives us the currently viewed website. Hence, we
can avoid that users falsely insert credentials another website.

12 cf.: http://developer.android.com/guide/topics/manifest/manifest-element.
html

13 cf.: https://developer.android.com/reference/android/view/inputmethod/
EditorInfo.html

14 cf.: http://developer.android.com/reference/android/view/inputmethod/
InputMethodManager.html

15 cf.: http://source.android.com/tech/security/

http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html
http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html

158 S. Fahl et al.

7 Conclusions

With the rise of mobile devices, mobile password manager apps could be an
integral security tool for smartphone and tablet PC users. Since Android based
devices lack APIs for the integration of password managers, current solutions rely
heavily on the clipboard to share credentials between the PM and other apps.
We analysed 21 popular password managers on Android which all are vulnerable
to credential sniffing because a device’s clipboard is a publicly available storage
that can be accessed from any app. We showed that, using additional context
information, malware is able to link the stolen credentials to the corresponding
online account in many cases. We interviewed developers of the analysed PM
apps and found that the majority of them were aware of possible security threats
but accepted the risk to provide better usability. Based on the analyses’ find-
ings and developers’ feedback, we discuss modifications to Android’s clipboard
mechanism to increase security for sensitive information. Finally, we present a
soft-keyboard that integrates a secure and easy-to-use password manager which
prevents the leakage of usernames/passwords via the clipboard. This password
manager design is the first to offer both usability and security for Android-based
password managers.

Since, in addition to security, usability is crucial for a password manager, in
future work we plan to conduct multiple user studies for the USecPassBoard
password manager.

References

1. Bishop, M., Klein, D.V.: Improving system security via proactive password check-
ing. Computers & Security 14(3), 233–249 (1995)

2. Bonneau, J.: The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords. In: 2012 IEEE Symposium on Security and Privacy (SP), pp.
538–552 (2012)

3. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password Strength: An Empirical Anal-
ysis. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9 (2010)

4. Egners, A., Marschollek, B., Meyer, U.: Messing with Android’s Permission Model.
In: IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (IEEE TrustCom 2012) (May 2012)

5. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: an analysis of android ssl (in)security. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 50–61. ACM, New York (2012)

6. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security, SOUPS 2012, pp. 3:1–3:14. ACM,
New York (2012)

7. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Pro-
ceedings of the 16th International Conference on World Wide Web, pp. 657–666
(2007)

On How Usability Trumps Security in Android Password Managers 159

8. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
Proceedings of the Second Symposium on Usable Privacy and Security, SOUPS
2006, pp. 44–55. ACM, New York (2006)

9. Kaliski, B.: PKCS #5: Password-Based cryptography specification version 2.0.
RFC 2898, Internet Engineering Task Force (September 2000)

10. Malone, D., Maher, K.: Investigating the distribution of password choices. In: Pro-
ceedings of the 21st international Conference on World Wide Web, WWW 2012,
pp. 301–310. ACM, New York (2012)

11. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: Proceedings of the 14th Conference
on USENIX Security Symposium, SSYM 2005, vol. 14, p. 2. USENIX Association,
Berkeley (2005)

12. Shay, R., Kelley, P.G., Komanduri, S., Mazurek, M.L., Ur, B., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F.: Correct horse battery staple: exploring the usability of
system-assigned passphrases. In: Proceedings of the Eighth Symposium on Usable
Privacy and Security, SOUPS 2012, pp. 7:1–7:20. ACM, New York (2012)

13. Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G., Mazurek, M.L., Bauer, L.,
Christin, N., Cranor, L.F.: Encountering stronger password requirements: user at-
titudes and behaviors. In: Proceedings of the Sixth Symposium on Usable Privacy
and Security, SOUPS 2010, pp. 2:1–2:20. ACM, New York (2010)

14. Ur, B., Kelley, P.G., Komanduri, S., Lee, J., Maass, M., Mazurek, M.L., Passaro, T.,
Shay, R., Vidas, T., Bauer, L., Christin, N., Cranor, L.F.: How does your password
measure up? The effect of strength meters on password creation. In: Proceedings of
the 21st USENIX Conference on Security Symposium, Security 2012, p. 5. USENIX
Association, Berkeley (2012)

160 S. Fahl et al.

A Investigated Password Managers

Table 1. Overview of the analysed Android password manager apps.
(EM=Encryption Method, KD=Key Derivation, C&P=copy&paste functional-
ity, EB=Embedded Browser, SD=Writes database to SD card, RA=Removes
itself from the recent apps view)

Free
App Installs1 EM KD C&P EB SD RA
PassDroid 100-500k AES SHA-256 � – Backup �
1Password 100-500k AES PBKDF2 � � Always �
KeePassDroid 500k-1m AES1 SHA-256 � – Always �
UPM 100-500k AES PBE � – Backup �
Pocket 100-500k AES PBE � – Backup �
NS Wallet 10-50k AES – � – � �
LastPass 100-500k AES ◦4 � � – –
PasswdSafe 10-50k AES – � – � �
OI Safe 100-500k AES PBE � – � �
aWallet 100-500k AES2 SHA-256 � – Backup �
Moxier Wallet 10-50k AES SHA-256 � – – �
Keeper 1-5m AES SHA-1 � � Backup �
RoboForm 100-500k ◦4 ◦4 � � Backup �
Paid
mSecure 100-500k Blowfish SHA-256 � – � –
Secret Safe 50-100k AES3 SHA-2563 � – Backup �
SafeWallet 10-50k AES HmacSHA1 � – � �
SPB Wallet 10-50k AES ◦4 � – � �
eWallet 10-50k AES PBE � – � –
Handy Safe Pro 10-50k Blowfish – � – – �
DataVault 1-5k AES – � – Backup �
Password Box 5-10k AES – � – � �

1 KeePassDroid combines AES and Twofish
2 aWallet combines AES, Blowfish and 3DES
3 Secret Safe combines AES and Twofish for encryption and multiple rounds

of SHA-256 and Whirlpool for key derivation.
4 This information could not be found by reverse engineering.

On How Usability Trumps Security in Android Password Managers 161

B USecPassBoard User Interface

(a) Asking the user to store new
credential tuple.

(b) Successfully stored new cre-
dential tuple.

(c) Selecting existing credential
tuple.

(d) Credentials filled in.

Fig. 1. The USecPassBoard workflow for storing new credential tuples and filling in
stored credentials

Unique Ring Signatures:

A Practical Construction

Matthew Franklin and Haibin Zhang

Dept. of Computer Science, University of California, Davis, California 95616, USA
{franklin,hbzhang}@cs.ucdavis.edu

Abstract. We propose unique ring signatures that simplify and capture
the spirit of linkable ring signatures. We use new techniques to provide
an instantiation which can be tightly related to the DDH problem in the
random oracle model, leading to the most efficient linkable/unique ring
signature.

Keywords: anonymity, authentication, e-voting system, provable secu-
rity, ring signature, tight reduction, unique signature, verifiable random
function.

1 Introduction

Ring signatures [23] are very useful tools for many privacy-preserving applica-
tions. However, they are not adequate in settings where some degree of pri-
vacy for users must be balanced against limited access. For example, a service
provider might have the list of public keys that correspond to all users that
have purchased a single access to some confidential service for that day (re-
quiring anonymous authentication). For this kind of application, a number of
restricted-use ring signatures are proposed. Notable examples include linkable
ring signatures [19,26,20,25,1,7] and traceable ring signatures [13,14].

Linkable ring signature asks that if a user signs any two messages (same or
different) with respect to the same ring, then an efficient public procedure can
verify that the signer was the same (although the user’s identity is not revealed).

Traceable ring signature is a ring signature scheme where each message is
signed not only with respect to a list of ring members, but also with respect to
an issue (e.g., identifying label of a specific election or survey). If a user signs
any two different messages with respect to the same list of ring members and
the same issue label, then the user’s identity is revealed by an efficient public
procedure. If a user signs the same message twice with respect to the same list
of ring members and the same issue label, then the two signed messages can be
determined to have come from the same signer by an efficient public procedure
(although the signer’s identity remains concealed).

Both linkable ring signatures and traceable ring signatures admit interesting
applications such as various e-voting systems and e-token systems, and so on.
Notably, the e-voting schemes directly from linkable or traceable ring signatures

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 162–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unique Ring Signatures: A Practical Construction 163

do not need any central authorities, a unique and desirable property in sharp
contrast to all the schemes from other methods.

Unique ring signatures. We define unique ring signatures that capture the
essence of linkable ring signatures and traceable ring signatures without identity
revelation. We may say a ring signature scheme unique if whenever a signer
produces two different ring signatures of the same message with respect to the
same ring, such that both will pass the verification procedure, then these two
ring signatures will always have a large common component (hereinafter unique
identifier). For all the applications introduced in this paper, we further need a
non-colliding property for a unique ring signature. Call a unique ring signature
non-colliding if two different signers of the same message, almost never produce
ring signatures with the same unique identifier.

Our contributions. We provide an efficient instantiation of unique ring sig-
nature in the random oracle model (ROM). Security of the scheme can be tightly
reduced to the DDH problem (where, by “tight,” it means that the success
probability of some adversary in some time is roughly equal to the probability
of solving some hard problem within almost the same period of time). Despite
the similarities with the linkable ring signature due to Liu, Wei, and Wong [19],
our construction employs a proof technique fundamentally different from the
Cramer-Damg̊ard-Schoemaker (CDS) type of ring signatures [8,17] which rely on
“rewinding”. Namely, our proof does not require proof of knowledge but heavily
relies on zero-knowledge proof of membership. Tight reduction usually comes at
a cost, but it turns out that our scheme has a tight reduction without sacrific-
ing on efficiency. In toto, this scheme gives the most efficient linkable/unique
ring signature in the ROM, in terms of key generation, signing, and verification
algorithms.

Typically, one evaluates provably secure signature schemes from three perspec-
tives: efficiency, indicating how fast the scheme can be implemented, which has
an immediate impact on its genuine utility; concrete security reduction, which
gives explicit bounds on success probability of the adversary, enabling meaning-
ful comparisons for a given level of provable security; and cryptographic assump-
tions, preferably being simple, standard, and well-studied, on which the security
of the scheme relies. A desirable provably secure cryptographic signature, com-
monly recognized, whether in the random oracle standard or the standard model,
should be at first efficient, and could be as well tightly related to a reasonable
assumption. Of course, it is also desirable to consider various tradeoffs among
the three factors, provided that the scheme is still sufficiently efficient.

For signature schemes based on discrete logarithm problems, the most efficient
scheme is the Schnorr signature [24] that is proven secure in the ROM under the
DL assumption by Pointcheval and Stern [22]. The technique used is the Forking
Lemma: by rewinding the forger O(qh/ε) times, where qh denotes the number of
the forger makes to the random oracles and ε denotes its success probability one
can compute the discrete logarithm of the public key. The reduction is unfortu-
nately too loose. To obtain tight security reductions for the DL-based signature
schemes, a number of constructions that are less efficient or/and under stronger

164 M. Franklin and H. Zhang

assumptions are proposed, including the EDL scheme by Goh and Jarecki [16]
(under the CDH assumption), subsequent work by Chevallier-Mames [6] (under
the CDH assumption), two schemes by Katz and Wang [18] (from the CDH and
DDH problems respectively), and Fischlin’s scheme [10] (that relies on the DL
assumption but is relatively inefficient).

Turning to the DL-type ring signature schemes, tight reductions are more
challenging to achieve. This is due, first, to the fact that all the DL based ones,
to the best of our knowledge, follow the CDS paradigm [8] whose security seems
to inevitably rely on the (generalized) rewinding technique (see, e.g., [17]). This
is further due to the fact that the ring signature runs in the multi-user setting
such that the reduction might naturally lose a factor of n which denotes the
number of users in the ring. Last, we emphasize that ring signatures (in general)
have multiple security notions such as unforgeability, anonymity, and possibly
some others (see [3]). Tight reductions (to possibly different assumptions) here
should be satisfied for all the required security notions. To put it differently, the
security notion with the loosest reduction and the strongest assumption is the
benchmark against which the security of the system can be measured.

The linkable ring signature [19] from the DDH assumption inherit the CDS
framework and its analysis for ordinary ring signatures. In particular, if we let
ε be an upper bound on the probability that the DL problem can be solved,
then the success probability of any adversaries attacking the unforgeability is
roughly nqhε, but for anonymity one has to rely on the potentially stronger
DDH assumption. Similar results hold for the traceable ring signature [13], where
Fujisaki and Suzuki therefore consider using Fischlin’s technique [10, Remark 5.7]
to improve the reduction tightness at a notable cost.

Instead, our random oracle based scheme has security tightly reduced to the
DDH problem for each of the security notions, which implies that the scheme is as
secure as the DDH problem. One main reason our scheme has tight reductions
is the use of NIZK proof of membership, instead of the conventional proof of
knowledge such that one has to rewind the forger for sufficient times.

For standard signature and ring signature schemes, to obtain tighter security,
they necessarily become less efficient or rely on stronger assumptions. In contrast,
our unique ring signature scheme is as efficient as the previous scheme [19] with
a loose reduction. Notice that the PRF part not only enables NIZK proof of
membership but happens to serve as the unique identifier.

2 Unique Ring Signature Model

We begin by recalling the definition of a ring signature schemeRS = (RK,RS,RV)
that consists of three algorithms:

RK(1λ). The randomized user key generation algorithm takes as input the
security parameter λ and outputs a public key pk and a secret key sk.

RS(sk,R,m). The probabilistic ring signing algorithm takes as input a
user secret key sk, a ring R that is a set of public keys (such that pk ∈ R),
and a message m to return a signature σ on m with respect to the ring R.

Unique Ring Signatures: A Practical Construction 165

RV(R,m, σ). The deterministic ring verification algorithm takes as input
a ring R, a message m, and a signature σ for m to return a single bit b.

The following correctness condition is required: for any security parameter λ,

any integer n, any {(pki, ski)}n1
$← RK(1λ) (where now R = {pki}n1), any i ∈ [n],

and any m, it holds that RV(R,m,RS(R, ski,m)) = 1.

We consider unique ring signature where the signature should have the form of
(R,m, σ) = (R,m, τ, π) where τ is the unique identifier for some message m
and some signer i, and π is the rest of the signature. For our constructions,
one may simply consider that τ is the signature, and π is the corresponding
(maybe probabilistic) proof of correctness. Following the recent formulation for
ring signature due to Bender, Katz, and Morselli [3], we define for unique ring
signature three security requirements: uniqueness, anonymity, and unforgeability.
The way we define uniqueness property largely follows from that for unique
group signature [11], where the uniqueness security is coupled to a non-colliding
property. The formalization of the definitions of security can be found in [12].

3 Unique Ring Signature in Random Oracle Model

We start by describing our basic underlying signature/VRF scheme, and then
give the construction of unique ring signature. Notice that our proof techniques
do not require proof of knowledge but heavily rely on zero-knowledge proof of
membership, which is one of the main reasons our signature enjoys tight security
reductions and admits an improvement in efficiency for a given level of security.

The Underlying VRF Scheme. The signature we shall describe is first pred-
icated on a (well-known) observation that given a random public group element
y = gx, the function F (m) := H(m)x is a PRF, if we model the hash function
H(·) as a random oracle.

Our scheme is furthermore based on a well-known zero-knowledge proof sys-
tem for equality of discrete logarithm due to Chaum and Pederson [5]:

A prover and a verifier both know (g, h, y1, y2) with g, h �= 1 and y1 = gx and
y2 = hx for an exponent x ∈ Zq. A prover also knows the exponent x. They
run the following protocol:
1. The prover chooses r

$← Zq and sends a ← gr, b ← hr to the verifier.

2. The verifier sends a challenge c
$← Zq to the prover.

3. The prover sends t ← r − cx mod q to the verifier.
4. The verifier accepts iff a = gtyc1 and b = htyc2.

The above protocol is a sound proof system but also honest-verifier zero-knowledge
(HVZK). By using Fiat-Shamir transformation [13], it becomes a NIZK proof sys-
tem if we model the hash function as a random oracle. Given the above PRF and
NIZK proof system, we apply the Bellare-Goldwasser (BG) paradigm [2] to obtain
a VRF scheme depicted in Figure 1. (The scheme is in fact a PRF with a NIZK
proof and of course a secure signature scheme.) Note that the function thatmaps x

166 M. Franklin and H. Zhang

to gx is not a commitment scheme: the binding property is satisfied while the hid-
ing property is not. This prevents us from following the general BG construction’s
proof strategy exactly. However, under the DDH assumption, this can be proven
secure with a similar proof to that of BG signature.

Setup(1λ).
The setup algorithm takes as input the security parameter λ and outputs a

multiplicative group G of prime order q and a randomly chosen generator g of G. It
also provides two hash functions H : {0, 1}∗ → G and H ′: {0, 1}∗ → Zq. It outputs
the public parameters as

pp = (λ, q,G, H,H ′).

Gen(1λ, pp).

The key generation algorithm takes as input the parameter pp and chooses x
$← Zq

and sets y ← gx. It outputs the public key as pk = y and the secret key as sk = x.

Sig(sk,m).

To sign the message m, the signer selects r
$← Zq and computes

(m,H(m)x, c, t),

where c ← H ′(m,gr,H(m)r) and t ← r − cx mod q.

Vrf(sk,m, σ) .
The verification algorithm first parses σ as (m,τ, c, t) and checks if

c = H ′(m, gtyc, H(m)tτ c).

Fig. 1. Efficient Signature/VRF from the DDH assumption in the random
oracle model. The algorithms are described in the context of digital signature. It is
also a VRF scheme, where VRF .Eva(sk,m) = H(m)x, VRF .Prove(sk,m) = (c, t), and
VRF .Ver(m,σ) = DS .Vrf(m,σ).

Extending the underlying proof system. We now extend the underlying
NIZK proof to an “or” language—a proof system that a unique identifier τ (for a
message m and a ring R) has the same logarithm with respect to base H(m||R)
as one of the public keys yj := gxj (j ∈ [n]) with respect to base g. Assume,
without loss of generality, logH(m||R) τ = logg yi and the prover knows xi. In
particular, we use the proof system between a prover and a verifier.

1. For j ∈ [n] and j �= i, the prover selects cj , tj
$← Zq and computes aj ←

gtjy
cj
j and bj ← H(m)tj (H(m)xi)cj ; for j = i, the prover selects ri

$← Zq

and computes ai ← gri and bi ← H(m)ri . It sends {aj , bj}n1 to the verifier.

2. The verifier sends a challenge c
$← Zq to the prover.

3. The prover computes ci ← c−
∑

j �=i cj and t ← r− cixi mod q, and sends
c1, t1, · · · , cn, tn to the verifier.

4. The verifier accepts iff aj = gtjy
cj
j and bj = H(m)tjτcj for every j ∈ [n].

Unique Ring Signatures: A Practical Construction 167

The above protocol combines the Chaum-Pederson (CP) technique for proving
the equality of two discrete logarithms of [5] and Cramer-Damg̊ard-Schoenmakers
(CDS) transformation [8]. Since both of the conversions “preserve” the properties
of Σ -protocols, the above system is a sound proof system,1 and also an inter-
active honest-verifier zero-knowledge of membership. However, as far as we are
concerned, its soundness property has never been used in any signature schemes
related to the above proof system. (This is perhaps due to the fact no one needs
this property in these schemes anyway.) We now prove that the above proof
system is sound;2 in particular, even an arbitrarily malicious prover P ∗ cannot
convince the verifier to accept a false statement.

Proof. The goal is to show that if logH(m) τ �= logg yj for every j ∈ [n], then given
any {aj, bj}n1 sent by P ∗ there is at most one value c for which P ∗ can respond
correctly. Recall above that we let x0 denote logH(m) τ and xj denote logg yj for
every j ∈ [n]. In this case, we have that x0 �= xj (j ∈ [n]). Given any {aj , bj}n1
(where we assume aj = grj and bj = H(m)r

′
j) sent to the verifier by a cheating

prover, we have the following: if the verifier is to accept, then we must have that

c =

n∑
1

cj , (1)

and for every j ∈ [n],

aj = gt1y
cj
j , (2)

bj = H(m)tj τcj . (3)

By (2) and (3) we obtain that for every j ∈ [n],

rj = tj + xjcj , (4)

r′j = tj + x0cj . (5)

Noting that x0 �= xj for every j ∈ [n], we have cj ← (rj − r′j)(xo − xj)
−1

mod q. According to equation (1), we can now conclude that there is at most
one challenge which the cheating prover can respond to. Therefore, the verifier
generates this challenge with probability 1/q and the proof now follows.

If we turn the above system into a NIZK proof system by following Fiat-Shamir
transformation through a hash function H ′ then one can check that the sound-
ness property is bounded by qh/q, where qh denotes the number of times the
adversary makes to the random oracle H ′. Indeed, in this case, for any {aj , bj}n1
and any query H(m, {aj, bj}n1) made by an adversary P ∗, it follows from the

1 Strictly speaking, Σ -protocols can be divided into two categories: Σ -protocols for
proof of knowledge, and Σ -protocols for proof of membership. In particular, we can
formally show, in the setting of proof of membership, the special soundness property
implies that a Σ -protocol is always an interactive proof system.

2 This is needed, since we shall be providing the exact bound on the soundness property
in the random oracle model which appears in our full paper [12].

168 M. Franklin and H. Zhang

above proof that there is at most one possible value of c satisfying the verifi-
cation equations. The unique ring signature (from the DDH assumption in the
ROM) is described in Figure 2.

Setup(1λ).
The setup algorithm takes as input the security parameter λ and outputs a

multiplicative group G of prime order q and a randomly chosen generator g of G. It
also provides two hash functions H : {0, 1}∗ → G and H ′: {0, 1}∗ → Zq. It outputs
the public parameters as

pp = (λ, q,G,H,H ′).

RG(1λ, pp).
The key generation algorithm for user i takes as input the parameter pp and

selects an element xi
$← Zq and computes yi ← gxi . It outputs the public key as

pki = (pp, yi) and the secret key as ski = (pp, xi).

RS(ski, R,m).
To sign the message m in the ring R = (pk1, ..., pkn), the signer i with the secret

key ski = xi generates the signature in the following way:

1. (Simulation step.) For j ∈ [n] and j 	= i, select cj , tj
$← Zq and compute aj ←

gtjy
cj
j and bj ← H(m||R)tj (H(m||R)xi)cj .

2. For j = i, select ri
$← Zq and compute ai ← gri and bi ← H(m||R)ri .

3. Let ci ← H ′(m,R, {aj , bj}n1)−
∑

j �=i cj mod q and ti ← ri − cixi mod q.
4. Return (R,m,H(m||R)xi , c1, t1, · · · , cn, tn).

RV(R,m, σ).
On receiving the signature (R,m, σ), the verification algorithm first parses σ as

(τ, c1, t1, · · · , cn, tn) and checks if
∑n

1 cj = H ′(m,R, {gtjycj
j ,H(m||R)tjτ cj}n1).

Fig. 2. Unique ring signature from the DDH assumption in the ROM

The following theorem establishes the security of the above scheme (with proof
and exact security bounds in our full paper [12]).

Theorem 1. The scheme presented in this section is a unique ring signature in
the random oracle model under the DDH assumption.

Acknowledgments. The authors thank Tsz Hon Yuen and anonymous review-
ers for comments.

References

1. Au, M., Chow, S., Susilo, W., Tsang, P.: Short linkable ring signatures revisited.
In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115.
Springer, Heidelberg (2006)

2. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

Unique Ring Signatures: A Practical Construction 169

3. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. Journal of Cryptology 22(1), 114–138 (2009)

4. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

5. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

6. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005)

7. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006)

8. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proof of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

10. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168.
Springer, Heidelberg (2005)

11. Franklin, M., Zhang, H.: Unique group signatures. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 643–660. Springer,
Heidelberg (2012); Full version in Cryptology ePrint Archive: Report 2012/204,
http://eprint.iacr.org

12. Franklin, M., Zhang, H.: A Framework for Unique Ring Signatures. Cryptology
ePrint Archive: Report 2012/577, http://eprint.iacr.org

13. Fujisaki, E., Suzuki, K.: Traceable ring signature. IEICE Transactions 91-A(1),
83–93 (2008)

14. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg
(2011)

15. Goh, E., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
security reductions to the Diffie-Hellman problems. J. of Cryptology 20(4), 493–
514 (2007)

16. Goh, E., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003)

17. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)

18. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: CCS 2003, pp. 155–164. ACM Press (2003)

19. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)

20. Liu, J.K., Wong, D.S.: Linkable ring signatures: Security models and new schemes.
In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer,
Heidelberg (2005)

http://eprint.iacr.org
http://eprint.iacr.org

170 M. Franklin and H. Zhang

21. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptology 15(1), 1–18 (2002)

22. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

23. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applications
of ring signatures. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoret-
ical Computer Science. LNCS, vol. 3895, pp. 164–186. Springer, Heidelberg (2006)

24. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

25. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for E-voting, E-cash and
attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS,
vol. 3439, pp. 48–60. Springer, Heidelberg (2005)

26. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separa-
ble linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)

Aggregating CL-Signatures Revisited:

Extended Functionality and Better Efficiency

Kwangsu Lee1,2,�, Dong Hoon Lee1,��, and Moti Yung2,3

1 CIST, Korea University, Korea
{guspin,donghlee}@korea.ac.kr

2 Columbia University, USA
{kwangsu,moti}@cs.columbia.edu

3 Google Inc., USA

Abstract. Aggregate signature is public-key signature that allows any-
one to aggregate different signatures generated by different signers on
different messages into a short (called aggregate) signature. The notion
has many applications where compressing the signature space is impor-
tant: in infrastructure: secure routing protocols, in security: compressed
certificate chain signature, in signing incrementally changed data: such
as software module authentications, and in transaction systems: like in
secure high-scale repositories and logs, typical in financial transactions.
In spite of its importance, the state of the art of the primitive is such
that it has not been easy to devise a suitable aggregate signature scheme
that satisfies the conditions of real applications, with reasonable param-
eters: short public key size, short aggregate signatures size, and efficient
aggregate signing/verification. In this paper, we propose two aggregate
signature schemes based on the Camenisch-Lysyanskaya (CL) signature
scheme whose security is reduced to that of CL signature (i.e., secure un-
der the LRSW assumption) which substantially improve efficiency con-
ditions for real applications. The first scheme is an “efficient sequential
aggregate signature” scheme with the shortest size public key, to date,
and very efficient aggregate verification. The second scheme is an “effi-
cient synchronized aggregate signature” scheme with a very short pub-
lic key size, and with the shortest (to date) size of aggregate signatures
among synchronized aggregate signature schemes. Signing and aggregate
verification are very efficient. Furthermore, our schemes are compatible:
a signer of our aggregate signature schemes can dynamically use two
modes of aggregation “sequential” and “synchronized,” employing the
same private/public key.

Keywords: Public-key signature, Aggregate information applications,
Aggregate signature, CL signature, Bilinear map.

� Supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea, under
the C-ITRC (Convergence Information Technology Research Center) support pro-
gram (NIPA-2013-H0301-13-3007) supervised by the NIPA (National IT Industry
Promotion Agency).

�� Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MEST) (No. 2010-0029121).

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 171–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 K. Lee, D.H. Lee, and M. Yung

1 Introduction

Public-key signature (PKS) is a central cryptographic primitive with numerous
applications. However, constructing a PKS scheme that is efficient, secure, and
flexible enough for a range of possible applications is not easy. Among such
schemes, CL signature, proposed by Camenisch and Lysyanskaya [12], is one of
the pairing-based signature schemes [8,10,12,24] that satisfies these conditions.
It was widely used as a basic component in various cryptosystems such as anony-
mous credential systems, group signature, RFID encryption, batch verification
signature, ring signature [2, 3, 5, 11, 12], as well as in aggregate signature [22].

Pubic-key aggregate signature (PKAS), introduced by Boneh, Gentry, Lynn,
and Shacham [9], is a special type of PKS that enables anyone to aggregate differ-
ent signatures generated by different signers on different messages into a short ag-
gregate signature. Boneh et al. proposed the first full aggregate signature scheme
in bilinear groups and proved its security in the random oracle model under the
CDH assumption. After the introduction of aggregate signatures, various types
of aggregate signatures such as sequential aggregate signatures [6,15,17–19] and
synchronized aggregate signatures [1, 14] were proposed. PKAS has numerous
applications. In network and infrastructure: secure routing protocols, public-key
infrastructure systems (signing certificate chains), sensor network systems, proxy
signatures, as well as in applications: dynamically changing document compo-
sition (in particular, secure updating of software modules), secure transaction
signing, secure work flow, and secure logs and repositories [1,6,7,9]. In all these
applications, compressing the space consumed by signatures is the major ad-
vantage. Note that in the area of financial transactions, in particular, logs and
repositories are very large due to regulatory requirements to hold records for
long time periods. The effect of compressing signatures by aggregation increases
with the number of data items; thus it is quite plausible that the financial sector
may find variations of aggregate signature most useful.

Though PKAS can reduce the size of signers’ signatures by using the aggrega-
tion technique, it cannot reduce the size of signers’ public keys since the public
keys are not aggregated. Thus, the total information the verifier needs to access
is still proportional to the number of signers in the aggregate signature, since
the verifier should retrieve all public keys of signers from a certificate storage.
Therefore, it is very important to reduce the size of public keys. An ideal solution
for this problem is to use identity-based aggregate signature (IBAS) that repre-
sents the public key of a signer as an identity string. However, IBAS requires a
trust structure different from public key infrastructure, namely, the existence of
an additional trusted authority, (the current IBAS schemes are in [6,14,15] and
are all secure in the random oracle model.) To construct a PKAS scheme with
short public keys, Schröder proposed a sequential aggregate signature scheme
with short public keys based on the CL signature scheme [22]. In the scheme of
Schröder, the public key consists of two group elements and the aggregate sig-
nature consists of four group elements, but the aggregate verification algorithm
requires l pairing operations and l exponentiations where l is the number of sign-
ers in the aggregate signature. Therefore, this work, while nicely pointing at the

Aggregating CL-Signatures Revisited 173

CL signature as a source of efficiency for the context of aggregate signatures, still
leaves out desired properties to build upon while exploiting the flexibility of the
CL signature: can we make the public key shorter? can we require substantially
less work in verification? and, can we build other modes of aggregate signatures?
While asking such questions, we revisit the subject of aggregate signature based
on CL signatures.

1.1 Our Contributions

In this paper, we indeed solve the problem of constructing a PKAS scheme that
has short public keys, short aggregate signatures, and an efficient aggregate ver-
ification algorithm. We first propose an efficient sequential aggregate signature
scheme based on the CL signature scheme and prove its security based on that of
CL signature (i.e., the LRSW assumption) without random oracles. A sequential
aggregate signature assumes that the aggregation mode is done in linear order:
signed message after signed message. In this scheme, the public key consists of
just one group element and the aggregate signature consists of just three group
element. The size of the public key is the shortest among all sequential aggregate
schemes to date (except IBAS schemes). The aggregate verification algorithm of
our scheme is quite efficient since it just requires five pairing operations and
l exponentiations (or multi-exponentiations). Therefore our scheme simultane-
ously satisfies the conditions of short public keys, short aggregate signatures,
and efficient aggregate verification.

Next, we propose an efficient synchronized aggregate signature scheme based
on the CL signature scheme and prove its security based on the CL signature
security in the random oracle model (the random oracle can be removed if the
number of messages is restricted to be polynomial). Synchronized aggregate sig-
nature is a mode where the signers of messages to be aggregated are synchro-
nized, but aggregation can take any order. In this scheme, the public key consists
of just one group element and the aggregate signature consists of one group ele-
ment and one integer. The size of the aggregate signature is the shortest among
all synchronized aggregate signature schemes to date. The aggregate verification
algorithm of this scheme is also quite efficient since it just requires three pairing
operations and l exponentiations (or multi-exponentiations).

Additionally, our two aggregate signature schemes can be combined to give
a new notion of aggregate “multi-modal” signature scheme: A scheme which
supports, both, sequential aggregation or synchronized aggregation, since the
public key and the private key of two schemes are the same. This property can
increase the utility and flexibility of the suggested scheme(s).

1.2 Related Work

Given the importance of aggregation to saving signature space, much work has
been invested in the various notions allowing aggregation.

Full Aggregation. The notion of public-key aggregate signature (PKAS) was
introduced by Boneh, Gentry, Lynn, and Shacham [9]. They proposed the first

174 K. Lee, D.H. Lee, and M. Yung

PKAS scheme in bilinear groups that supports full aggregation such that anyone
can freely aggregate different signatures signed by different signers on different
messages into a short aggregate signature [9]. The PKAS scheme of Boneh et al.
requires l number of pairing operations in the aggregate verification algorithm
where l is the number of signers in the aggregate signature. Bellare et al. modified
the PKAS scheme of Boneh et al. to remove the restriction such that the message
should be different by hashing a message with the public key of a signer [4].

Sequential Aggregation. The concept of sequential aggregate signature was
introduced by Lysyanskaya, Micali, Reyzin, and Shacham [19]. In sequential ag-
gregate signature, a signer can generate an aggregate signature by adding his
signature to the previous aggregate signature that was received from a previ-
ous signer. Lysyanskaya et al. proposed a sequential PKAS scheme using cer-
tified trapdoor permutations, and they proved its security in random oracle
models [19]. Boldyreva et al. proposed an identity-based sequential aggregate
signature (IBSAS) scheme (in the trust model of identity-based schemes with
a trusted private keys authority), in bilinear groups and proved its security in
the random oracle model under an interactive assumption [6]. Recently, Gerbush
et al. showed that a modified IBSAS scheme of Boldyreva et al. in composite
order bilinear groups can be secure in the random oracle model under static
assumptions [15].

The first sequential PKAS scheme without random oracles was proposed by
Lu et al. [18]. They constructed a sequential PKAS scheme based on the PKS
scheme of Waters and proved its security without random oracles under the
CDH assumption. However, this sequential PKAS scheme has a disadvantage
such that the size of public keys is very long. To reduce the size of pubic keys
in PKAS schemes, Schröder proposed the CL signature based scheme discussed
above [22]. Recently, Lee et al. proposed an efficient sequential PKAS scheme
with short public keys and proved its security without random oracles under
static assumptions [17].

Synchronized Aggregation. The concept of synchronized aggregate signature
was introduced by Gentry and Ramzan [14]. In synchronized aggregate signa-
ture, all signers have synchronized time information and individual signatures
generated by different signers within the same time period can be aggregated
into a short aggregate signature. They proposed an identity-based synchronized
aggregate signature scheme in bilinear groups and proved its security in the
random oracle model under the CDH assumption [14]. Ahn et al. proposed an
efficient synchronized PKAS scheme based on the PKS scheme of Hohenberger
and Waters and proved its security without random oracles under the CDH
assumption [1].

2 Preliminaries

In this section, we define bilinear groups, and introduce the LRSW assumption
which is associated with the security of the CL signature scheme, which is, then,
presented as well.

Aggregating CL-Signatures Revisited 175

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a
generator of G. The bilinear map e : G×G → GT has the following properties:

1. Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

2. Non-degeneracy: ∃g such that e(g, g) has order p, that is, e(g, g) is a generator
of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as
well as the bilinear map e are all efficiently computable.

2.2 Complexity Assumption

The security of our aggregate signature schemes is based on the following LRSW
assumption. The LRSW assumption was introduced by Lysyanskaya et al. [20]
and it is secure under the generic group model defined by Shoup [23] (and
adapted to bilinear groups in [12]).

Assumption 1 (LRSW). Let G be an algorithm that on input the security
parameter 1λ, outputs the parameters for a bilinear group as (p,G,GT , e, g). Let
X,Y ∈ G such that X = gx, Y = gy for some x, y ∈ Zp. Let OX,Y (·) be an oracle
that on input a value M ∈ Zp outputs a triple (a, ay, ax+Mxy) for a randomly
chosen a ∈ G. Then for all probabilistic polynomial time adversaries A,

Pr[(p,G,GT , e, g) ← G(1λ), x ← Zp, y ← Zp, X = gx, Y = gy,

(M,a, b, c) ← AOX,Y (·)(p,G,GT , e, g,X, Y) :

M /∈ Q ∧M ∈ Z∗
p ∧ a ∈ G ∧ b = ay ∧ c = ax+Mxy] < 1/poly(λ)

where Q is the set of queries that A made to OX,Y (·).

2.3 The CL Signature Scheme

The CL signature scheme is a public-key signature scheme that was proposed by
Camenisch and Lysyanskaya [12] and the security was proven without random
oracles under the LRSW assumption. Although the security of the CL signature
scheme is based on this interactive assumption, it is flexible and widely used for
the constructions of various cryptosystems [5, 11, 12, 20, 22] (this is so, perhaps
due to its relatively elegant and simple algebraic structure).

PKS.KeyGen(1λ): The key generation algorithm first generates the bilinear
groupsG,GT of prime order p of bit size Θ(λ). Let g be the generator of G. It
selects two random exponents x, y ∈ Zp and sets X = gx, Y = gy. It outputs
a private key as SK = (x, y) and a public key as PK = (p,G,GT , e, g,X, Y).

PKS.Sign(M,SK): The signing algorithm takes as input a message M ∈ Z∗
p

and a private key SK = (x, y). It selects a random element A ∈ G and
computes B = Ay, C = AxBxM . It outputs a signature as σ = (A,B,C).

176 K. Lee, D.H. Lee, and M. Yung

PKS.Verify(σ,M,PK): The verification algorithm takes as input a signature
σ = (A,B,C) on a message M ∈ Z∗

p under a public key PK = (p,G,GT , e,

g,X, Y). It verifies that e(A, Y)
?
= e(B, g) and e(C, g)

?
= e(A,X) · e(B,X)M .

If these equations hold, then it outputs 1. Otherwise, it outputs 0.

Theorem 2 ([12]). The CL signature scheme is existentially unforgeable under
a chosen message attack if the LRSW assumption holds.

3 Sequential Aggregate Signature

In this section, we propose an efficient sequential aggregate signature (SeqAS)
scheme based on the CL signature scheme, and prove its security without random
oracles.

3.1 Definitions

Sequential aggregate signature (SeqAS) is a special type of public-key aggregate
signature (PKAS) that allows each signer to sequentially add his signature on
a different message to the aggregate signature [19]. That is, a signer with an
index i receives an aggregate signature σ′

Σ from the signer of an index i − 1,
and he generates a new aggregate signature σΣ by aggregating his signature
on a message M to the received aggregate signature. The resulting aggregate
signature has the same size of the previous aggregate signature.

Formally, a SeqAS scheme consists of four PPT algorithms Setup, KeyGen,
AggSign, and AggVerify, which are defined as follows:

– Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

– KeyGen(PP). The key generation algorithm takes as input the public pa-
rameters PP , and outputs a public key PK and a private key SK.

– AggSign(σ′
Σ ,M,PK,M, SK,PP). The aggregate signing algorithm takes

as input an aggregate-so-far σ′
Σ on messagesM = (M1, . . . ,Mk) under public

keys PK = (PK1, . . . , PKk), a message M , and a private key SK with PP ,
and outputs a new aggregate signature σΣ .

– AggVerify(σΣ ,M,PK, PP). The aggregate verification algorithm takes as
input an aggregate signature σΣ on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl) and the public parameters PP , and outputs
either 1 or 0 depending on the validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all
(PK, SK) output byKeyGen, anyM , we have that AggVerify(AggSign(σ′

Σ ,
M′,PK′,M, SK,PK,PP),M′||M,PK′||PK,PP) = 1 where σ′

Σ is a valid
aggregate-so-far signature on messages M′ under public keys PK′.

The security model of SeqAS was introduced by Lysyanskaya et al. [19]. In
this paper, we follow the security model that was proposed by Lu et al. [18].
The security model of Lu et al. is a more restricted model that requires the

Aggregating CL-Signatures Revisited 177

adversary to correctly generate other signers’ public keys and private keys except
the challenge signer’s key. To ensure the correct generation of public keys and
private keys, the adversary should submit the corresponding private keys of the
public keys to the challenger before using the public keys. A realistic solution of
this is for the signer to prove that he knows the corresponding private key of the
public key by using zero-knowledge proofs when he requests the certification of
his public key.

Formally, the security notion of existential unforgeability under a chosen mes-
sage attack is defined in terms of the following experiment between a challenger
C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup
to obtain public parameters PP andKeyGen to obtain a key pair (PK, SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK, SK). Then C adds the key pair (PK, SK) to
KeyList if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by
providing an aggregate-so-far σ′

Σ on messages M′ under public keys PK′),
on a message M to sign under the challenge public key PK, and receives a
sequential aggregate signature σΣ .

Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature σ∗

Σ on messages M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions,
or outputs 0 otherwise: 1) AggVerify(σ∗

Σ ,M
∗,PK∗, PP) = 1, 2) The chal-

lenge public key PK must exist in PK∗ and each public key in PK∗ except
the challenge public key must be in KeyList, and 3) The corresponding mes-
sage M in M∗ of the challenge public key PK must not have been queried
by A to the sequential aggregate signing oracle.

The advantage of A is defined as AdvSeqAS
A = Pr[C = 1] where the probability

is taken over all the randomness of the experiment. A SeqAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

3.2 Construction

We first describe the design idea of our SeqAS scheme. To construct a SeqAS
scheme, we use the “public key sharing” technique such that the element Y in
the public key of the original CL signature scheme can be shared with all signers.
The modified CL signature scheme that shares the element Y of the public key
is described as follows: The setup algorithm publishes the public parameters
that contain the description of bilinear groups and an element Y . Each signer
generates a private key x ∈ Zp and a public key X = gx. A signer who has
the private key x of the public key X can generate an original CL signature

178 K. Lee, D.H. Lee, and M. Yung

σ = (A,B,C) on a message M just using the private key x and a random r as
A = gr, B = Y r, and C = AxBxM since the element Y is given in the public
parameters.

We construct a SeqAS scheme based on the modified CL signature scheme that
supports “public key sharing” by using the “randomness re-use” technique of Lu
et al. [18]. It is easy to sequentially aggregate signatures if the element Y is shared
with all signers since we only need to consider the aggregation of the {Xi} values
of signers instead of the {Xi, Yi} values of signers. For instance, the first signer
who has a private key x1 generates a signature σ1 = (A1, B1, C1) on a message
M1 as A1 = gr1 , B1 = Y r1 , and C1 = (gr1)x1(Y r1)x1M1 . The second signer with
a private key x2 generates a sequential aggregate signature σ2 = (A2, B2, C2) on
a message M2 as A2 = A1, B2 = B1, and C2 = C1(A1)

x2(B1)
x2M2 by using the

“randomness re-use” technique. Therefore a sequential aggregate signature of
signers is formed as σΣ = (A = gr, B = Y r, C = A

∑
xiB

∑
xiMi). Additionally,

each signer should re-randomize the aggregate signature to prevent a simple
attack.

Our SeqAS scheme is described as follows:

SeqAS.Setup(1λ): This algorithm first generates the bilinear groups G,GT of
prime order p of bit sizeΘ(λ). Let g be the generator ofG. It chooses a random
element Y ∈ G and outputs public parameters as PP = (p,G,GT , e, g, Y).

SeqAS.KeyGen(PP): This algorithm takes as input the public parameters
PP . It selects a random exponent x ∈ Zp and sets X = gx. Then it outputs
a private key as SK = x and a public key as PK = X .

SeqAS.AggSign(σ′
Σ,M

′,PK′,M, SK,PP): This algorithm takes as input an
aggregate-so-far σ′

Σ = (A′, B′, C′) on messages M′ = (M1, . . . ,Mk) under
public keys PK′ = (PK1, . . . , PKk) where PKi = Xi, a message M ∈ Z∗

p,
and a private key SK = x with PP . It first checks the validity of σ′

Σ by
calling AggVerify(σ′

Σ ,M′,PK′, PP). If σ′
Σ is not valid, then it halts. It

checks that the public key PK of SK does not already exist in PK′. If
the public key already exists, then it halts. Note that if k = 0, then σ′

Σ =
(g, Y, 1). It selects a random exponent r ∈ Zp and computes

A = (A′)r, B = (B′)r, C =
(
C′ · (A′)x · (B′)xM

)r
.

It outputs an aggregate signature as σΣ = (A,B,C).
SeqAS.AggVerify(σΣ ,M,PK, PP): This algorithm takes as input an aggre-

gate signature σΣ = (A,B,C) on messages M = (M1, . . . ,Ml) under public
keys PK = (PK1, . . . , PKl) where PKi = Xi. It first checks that any Mi is
in Z∗

p, any public key does not appear twice in PK, and any public key in
PK has been certified. If these checks fail, then it outputs 0. If l = 0, then
it outputs 1 if σΣ = (1, Y, 1), 0 otherwise. Next, it verifies that

e(A, Y)
?
= e(B, g) and e(C, g)

?
= e(A,

l∏
i=1

Xi) · e(B,
l∏

i=1

XMi

i).

If these equations hold, then it outputs 1. Otherwise, it outputs 0.

Aggregating CL-Signatures Revisited 179

A sequential aggregate signature σΣ = (A,B,C) on messages M = (M1, . . . ,
Ml) under public keys PK = (PK1, . . . , PKl) has the following form

A = gr, B = Y r, C =
(
gr
)∑l

i=1 xi
(
Y r
)∑l

i=1 xiMi

where PKi = Xi = gxi.

3.3 Security Analysis

We prove the security of our SeqAS scheme based on the security of the CL
signature scheme without random oracles.

Theorem 3. The above SeqAS scheme is existentially unforgeable under a cho-
sen message attack if the CL signature scheme is existentially unforgeable under
a chosen message attack.

Proof. The main idea of the security proof is that the aggregated signature of
our SeqAS scheme is independent of the order of aggregation, and the simulator
of the SeqAS scheme possesses the private keys of all signers except the private
key of the challenge public key. That is, if the adversary requests a sequential
aggregate signature, then the simulator first obtains a CL signature from the
target scheme’s signing oracle and runs the aggregate signing algorithm to gen-
erate a sequential aggregate signature. If the adversary finally outputs a forged
sequential aggregate signature that is non-trivial, then the simulator extracts
the CL signature of the challenge public key from the forged aggregate signature
by using the private keys of other signers.

Suppose there exists an adversaryA that forges the above SeqAS scheme with
non-negligible advantage ε. A simulator B that forges the CL signature scheme
is first given: a challenge public key PKCL = (p,G,GT , e, g,X, Y). Then B that
interacts with A is described as follows:

Setup: B first constructs PP = (p,G,GT , e, g, Y) and PK∗ = X from PKCL.
Next, it initializes a key-pair list KeyList as an empty one and gives PP
and PK∗ to A.

Certification Query: A adaptively requests the certification of a public key
by providing a public key PKi = Xi and its private key SKi = xi. B checks
the private key and adds the key pair (PKi, SKi) to KeyList.

Signature Query: A adaptively requests a sequential aggregate signature by
providing an aggregate-so-far σ′

Σ on messages M′ = (M1, . . . ,Mk) under
public keys PK′ = (PK1, . . . , PKk), and a message M to sign under the
challenge private key of PK∗. B proceeds the aggregate signature query as
follows:

1. It first checks that the signature σ′
Σ is valid by calling SeqAS.AggVerify

and that each public key in PK′ exits in KeyList.
2. It queries its signing oracle that simulates PKS.Sign on the message M

for the challenge public key PK∗ and obtains a signature σ.

180 K. Lee, D.H. Lee, and M. Yung

3. For each 1 ≤ i ≤ k, it constructs an aggregate signature on message Mi

using SeqAS.AggSign since it knows the private key that corresponds
to PKi. The resulting signature is an aggregate signature for messages
M′||M under public keys PK′||PK∗ since this scheme does not check
the order of aggregation. It gives the result signature σΣ to A.

Output: A outputs a forged aggregate signature σ∗
Σ = (A∗, B∗, C∗) on mes-

sages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for
some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds
as follows:
1. It first checks the validity of σ∗

Σ by calling SeqAS.AggVerify. Addi-
tionally, the forged signature should not be trivial: the challenge public
key PK∗ must be in PK∗, and the message M1 must not be queried by
A to the signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = Xi from PK∗, and it retrieves the
private key SKi = xi of PKi from KeyList. It then computes

A = A∗, B = B∗, C = C∗ ·
((

A∗)∑l
i=2 xi

(
B∗)∑l

i=2 xiMi
)−1

.

3. It outputs σ∗ = (A,B,C) on a messageM∗ = M1 as a non-trivial forgery
of the CL signature scheme since it did not make a signing query on M1.

To finish the proof, we first show that the distribution of the simulation is cor-
rect. It is obvious that the public parameters and the public key are correctly
distributed. The distribution of the sequential aggregate signatures is correct
since this scheme does not check the order of aggregation. Finally, we can show
that the resulting signature σ∗ = (A,B,C) of the simulator is a valid signature
for the CL signature scheme on the message M1 under the public key PK∗ since
it satisfies the following equation:

e(C, g) = e(C∗ ·
(
(A∗)

∑l
i=2 xi(B∗)

∑l
i=2 xiMi

)−1
, g)

= e((A∗)
∑l

i=1 xi(B∗)
∑l

i=1 xiMi · (A∗)−
∑l

i=2 xi(B∗)−
∑l

i=2 xiMi , g)

= e((A∗)x1(B∗)x1M1 , g) = e(A∗, gx1) · e(B∗, gx1M1)

= e(A,X) · e(B,XM∗
).

This completes our proof. ��

3.4 Discussions

Efficiency. The public key of our SeqAS scheme consists of just one group el-
ement and the aggregate signature consists of three group elements, since the
public key element Y of the CL signature scheme is moved to the public pa-
rameters of our scheme. The aggregate signing algorithm requires one aggregate
verification and five exponentiations, and the aggregate verification algorithm
requires five pairing operations and l exponentiations where l is the number of
signers in the aggregate signature. In the SeqAS scheme of Schröder [22], the

Aggregating CL-Signatures Revisited 181

public key consists of two group elements, the aggregate signature consists of
four group elements, and the aggregate verification algorithm requires l pairing
operations and l exponentiations.

4 Synchronized Aggregate Signature

In this section, we propose an efficient synchronized aggregate signature (Syn-
cAS) scheme based on the CL signature scheme, and prove its security in the
random oracle model.

4.1 Definitions

Synchronized aggregate signature (SyncAS) is a special type of public-key ag-
gregate signature (PKAS) that allows anyone to aggregate signer’s signatures
on different messages with a same time period into a short aggregate signature
if all signers have the synchronized time period information like a clock [1, 14].
In SyncAS scheme, each signer has a synchronized time period or has an access
to public time information. Each signer can generate an individual signature
on a message M and a time period w. Note that the signer can generate just
one signature per one time period. After that, anyone can aggregate individual
signatures of other signers into a short aggregate signature σΣ if the individual
signatures are generated on the same time period w. The resulting aggregate
signature has the same size of the individual signature.

Formally, a SyncAS scheme consists of six PPT algorithms Setup, KeyGen,
Sign, Verify, Aggregate, and AggVerify, which are defined as follows:

– Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

– KeyGen(PP). The key generation algorithm takes as input the public pa-
rameters PP , and outputs a public key PK and a private key SK.

– Sign(M,w, SK,PP). The signing algorithm takes as input a message M , a
time period w, and a private key SK with PP , and outputs an individual
signature σ.

– Verify(σ,M,PK,PP). The verification algorithm takes as input a signa-
ture σ on a message M under a public key PK, and outputs either 1 or 0
depending on the validity of the signature.

– Aggregate(S,M,PK). The aggregation algorithm takes as input individual
signatures S = (σ1, . . . , σl) on messagesM = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . , PKl), and outputs an aggregate signature σΣ .

– AggVerify(σΣ ,M,PK, PP). The aggregate verification algorithm takes as
input an aggregate signature σΣ on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl), and outputs either 1 or 0 depending on the
validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all
(PK, SK) output byKeyGen, anyM , we have thatAggVerify(Aggregate(S,

182 K. Lee, D.H. Lee, and M. Yung

M,PK),M,PK, PP) = 1 where S is individual signatures on messages M un-
der public keys PK.

The security model of SyncAS was introduced by Gentry and Ramzan [14].
In this paper, we follow the security model that was proposed by Ahn et al. [1].
The security model of Ahn et al. is a more restricted model that requires the
adversary to correctly generate other signers’ public keys and private keys except
the challenge signer’s key. To ensure the correct generation of public keys and
private keys, the adversary should submit the private key of the public key, or
he should prove that he knows the corresponding private key by using zero-
knowledge proofs.

Formally, the security notion of existential unforgeability under a chosen mes-
sage attack is defined in terms of the following experiment between a challenger
C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup
to obtain public parameters PP andKeyGen to obtain a key pair (PK, SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK, SK). Then C adds the key pair (PK, SK) to
KeyList if the key pair is a valid one.

Hash Query: A adaptively requests a hash on a string for various hash func-
tions, and receives a hash value.

Signature Query: A adaptively requests a signature on a message M and a
time period w that was not used before to sign under the challenge public
key PK, and receives an individual signature σ.

Output: Finally (after a sequence of the above queries), A outputs a forged
synchronized aggregate signature σ∗

Σ on messages M∗ under public keys
PK∗. C outputs 1 if the forged signature satisfies the following three condi-
tions, or outputs 0 otherwise: 1) AggVerify(σ∗

Σ ,M
∗,PK∗, PP) = 1, 2) The

challenge public key PK must exist in PK∗ and each public key in PK∗

except the challenge public key must be in KeyList, and 3) The correspond-
ing message M in M∗ of the challenge public key PK must not have been
queried by A to the signing oracle.

The advantage of A is defined as AdvSyncAS
A = Pr[C = 1] where the probability

is taken over all the randomness of the experiment. A SyncAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

4.2 Construction

We first describe the design idea of our SyncAS scheme. In the previous section,
we proposed a modified CL signature scheme that shares the element Y in the
public parameters. The signature of this modified CL signature scheme is formed
as σ = (A = gr, B = Y r, C = AxBxM). If we can force signers to use the same
A = gr and B = Y r in signatures, then we easily obtain an aggregate signature

Aggregating CL-Signatures Revisited 183

as σΣ = (A = gr, B = Y r, C = A
∑

xiB
∑

xiMi) by just multiplying individual
signatures of signers. In synchronized aggregate signatures, it is possible to force
signers to use the same A and B since all signers have the same time period w.
Therefore, each signer first sets A = H(0||w) and B = H(1||w) using the hash
function H and the time period w, and then he generates an individual signature
σ = (C = AxBxM , w). We need to hash a message for the proof of security.

Let W be a set of time periods where |W| is fixed polynomial in the security
parameter1. Our SyncAS scheme is described as follows:

SyncAS.Setup(1λ): This algorithm first generates the bilinear groups G,GT

of prime order p of bit size Θ(λ). Let g be the generator of G. It chooses two
hash functions H1 : {0, 1}×W → G and H2 : {0, 1}∗ ×W → Z∗

p. It outputs
public parameters as PP = (p,G,GT , e, g,H1, H2).

SyncAS.KeyGen(PP): This algorithm takes as input the public parameters
PP . It selects a random exponent x ∈ Zp and sets X = gx. Then it outputs
a private key as SK = x and a public key as PK = X .

SyncAS.Sign(M,w, SK,PP): This algorithm takes as input a message M ∈
{0, 1}∗, a time period w ∈ W , and a private key SK = x with PP . It first
sets A = H1(0||w), B = H1(1||w), h = H2(M ||w) and computes C = AxBxh.
It outputs a signature as σ = (C,w).

SyncAS.Verify(σ,M,PK,PP): This algorithm takes as input a signature σ =
(C,w) on a message M under a public key PK = X . It first checks that
the public key has been certified. If these checks fail, then it outputs 0.
Next, it sets A = H1(0||w), B = H1(1||w), h = H2(M ||w) and verifies that

e(C, g)
?
= e(ABh, X). If this equation holds, then it outputs 1. Otherwise, it

outputs 0.

SyncAS.Aggregate(S,M,PK, PP): This algorithm takes as input signatures
S = (σ1, . . . , σl) on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where σi = (C′

i, w
′
i) and PKi = Xi. It first checks that that

w′
1 is equal to w′

i for i = 2 to l. If it fails, it halts. Next, it sets w = w′
1 and

computes C =
∏l

i=1 C
′
i. It outputs an aggregate signature as σΣ = (C,w).

SyncAS.AggVerify(σΣ ,M,PK, PP): This algorithm takes as input an ag-
gregate signature σΣ = (C,w) on messages M = (M1, . . . ,Ml) under pub-
lic keys PK = (PK1, . . . , PKl) where PKi = Xi. It first checks that
any public key does not appear twice in PK and any public key in PK
has been certified. If these checks fail, then it outputs 0. Next, it sets
A = H1(0||w), B = H1(1||w), hi = H2(Mi||w) for all 1 ≤ i ≤ l and ver-
ifies that

1 The set W does not need to be included in PP since an integer w in the range [1, T]
can be used where T is fixed polynomial in the security parameter. In practice, we
can set T = 232 if the maximum time period of certificates is 10 years and a signer
generates a signature per each second. The previous SyncAS schemes [1,14] support
exponential size of time periods while our SyncAS scheme supports polynomial size
of time periods.

184 K. Lee, D.H. Lee, and M. Yung

e(C, g)
?
= e(A,

l∏
i=1

Xi) · e(B,

l∏
i=1

Xhi

i).

If this equation holds, then it outputs 1. Otherwise, it outputs 0.

A synchronized aggregate signature σΣ = (C,w) on messagesM = (M1, . . . ,Ml)
under public keys PK = (PK1, . . . , PKl) has the following form

C = H1(0||w)
∑l

i=1 xiH1(1||w)
∑l

i=1 xiH2(Mi||w)

where PKi = Xi = gxi.

4.3 Security Analysis

We prove the security of our SyncAS scheme based on the security of the CL
signature scheme in the random oracle model.

Theorem 4. The above SyncAS scheme is existentially unforgeable under a cho-
sen message attack if the CL signature scheme is existentially unforgeable under
a chosen message attack.

Proof. The main idea of the security proof is that the random oracle model sup-
ports the programmability of hash functions, the adversary can request just one
signature per one time period in this security model, and the simulator possesses
the private keys of all signers except the private key of the challenge public key.
In the proof, the simulator first guesses the time period w′ of the forged syn-
chronized aggregate signature and selects a random query index k of the hash
function H2. After that, if the adversary requests a signature on a message M
and a time period w such that w �= w′, then he can easily generate the signa-
ture by using the programmability of the random oracle model. If the adversary
requests a signature for the time period w = w′, then he can generate the signa-
ture if the query index i is equal to the index k. Otherwise, the simulator should
abort the simulation. Finally, if the adversary outputs a forged synchronized
aggregate signature that is non-trivial on the time period w′, then the simulator
extracts the CL signature of the challenge public key from the forged aggregate
signature by using the private keys of other signers.

Suppose there exists an adversary A that forges the above SyncAS scheme
with non-negligible advantage ε. A simulator B that forges the CL signature
scheme is first given: a challenge public key PKCL = (p,G,GT , e, g,X, Y). Then
B that interacts with A is described as follows:

Setup: B first constructs PP = (p,G,GT , e, g,H1, H2) and PK∗ = X from
PKCL. It chooses a random value h′ ∈ Z∗

p and queries its signing oracle
PKS.Sign to obtain σ′ = (A′, B′, C′). Let qH1 and qH2 be the maximum
number of H1 and H2 hash queries respectively. It chooses a random index
k such that 1 ≤ k ≤ qH2 and guesses a random time period w′ ∈ W of
the forged signature. Next, it initializes a key-pair list KeyList, hash lists
H1-List,H2-List as an empty one and gives PP and PK∗ to A.

Aggregating CL-Signatures Revisited 185

Certification Query: A adaptively requests the certification of a public key
by providing a public key PKi = Xi and its private key SKi = xi. B checks
the private key and adds the key-pair (PKi, SKi) to KeyList.

Hash Query: A adaptively requests a hash value for H1 and H2 respectively.
If this is a H1 hash query on a bit b ∈ {0, 1} and a time period wi, then B
treats the query as follows:

– If b = 0 and wi �= w′, then it selects a random exponent r0,i ∈ Zp and
sets H1(0||wi) = gr0,i .

– If b = 0 and wi = w′, then it sets H1(0||wi) = A′.
– If b = 1 and wi �= w′, then it selects a random exponent r1,i ∈ Zp and

sets H1(1||wi) = gr1,i .
– If b = 1 and wi = w′, then it sets H1(1||wi) = B′.

If this is a H2 hash query on a message Mi and a time period wj , then B
treats the query as follows:

– If i �= k or wj �= w′, then it selects a random value hi,j ∈ Zp and sets
H2(Mi||wj) = hi,j .

– If i = k and wj = w′, then it sets H2(Mi||wj) = h′.
Note that B keeps the tuple (b, wi, rb,i, H1(b||wi)) in H1-List and the tuple
(Mi, wj , hi,j) in H2-List.

Signature Query: A adaptively requests a signature by providing a message
Mi and a time period wj to sign under the challenge private key of PK∗. B
proceeds the signature query as follows:

– If wi �= w′, then it responds σi,j = (Xr0,iXr1,ihi,j , wj) where r0,i, r1,i,
and hi,j are retrieved from the H1-List and H2-List.

– If wi = w′ and i = k, then it responds σi,j = (C′, wj).
– If wi = w′ and i �= k, it aborts the simulation.

Output: A outputs a forged aggregate signature σ∗
Σ = (C∗, w∗) on messages

M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for some
l. Without loss of generality, we assume that PK1 = PK∗. B proceeds as
follows:

1. It checks the validity of σ∗
Σ by calling SyncAS.AggVerify. Addition-

ally, the forged signature should not be trivial: the challenge public key
PK∗ must be in PK∗, and the message M1 must not be queried by A
to the signature query oracle.

2. If w∗ �= w′, then it aborts the simulation since it fails to guess the forged
time period.

3. For each 2 ≤ i ≤ l, it retrieves the private key SKi = xi of PKi from
KeyList and sets hi,∗ = H2(Mi||w∗). Next, it computes

A = A′, B = B′, C = C∗ ·
((

A′)∑l
i=2 xi

(
B′)∑l

i=2 xihi,∗
)−1

.

4. If H2(M1||w∗) = h′, then it also aborts the simulation.
5. It outputs σ∗ = (A,B,C) on a message h1,∗ as a non-trivial forgery of

the CL signature scheme since h1,∗ �= h′ where h1,∗ = H2(M1||w∗).

186 K. Lee, D.H. Lee, and M. Yung

To finish the proof, we first show that the distribution of the simulation is cor-
rect. It is obvious that the public parameters and the public key are correctly
distributed. The distribution of the signatures is also correct. Next, we show
that the resulting signature σ∗ = (A,B,C) of the simulator is a valid signature
for the CL signature scheme on the message h1,∗ �= h′ under the public key PK∗

since it satisfies the following equation:

e(C, g) = e(C∗ ·
(
(A′)

∑l
i=2 xi(B′)

∑l
i=2 xiH2(Mi||w∗))−1

, g)

= e((A′)
∑l

i=1 xi(B′)
∑l

i=1 xihi,∗ · (A′)−
∑l

i=2 xi(B′)−
∑l

i=2 xihi,∗ , g)

= e((A′)x1(B′)x1h1,∗ , g) = e(A′, gx1) · e(B′, gx1h1,∗)

= e(A′, X) · e(B′, Xh1,∗).

We now analyze the success probability of the simulator B. At first, B succeeds
the simulation if he does not abort in the simulation of signature queries and he
correctly guesses the time period w∗ such that w∗ = w′ in the forged aggregate
signature from the adversary A. B aborts the simulation of signature queries if
the time period w′ is given fromA and he incorrectly guessed the index k since he
cannot generate a signature. Thus B succeeds the simulation of signature queries
at least q−1

H2
probability since the outputs ofH2 are independently random. Next,

B can correctly guess the time period w∗ of the forged aggregate signature with
at least |W|−1 probability since he randomly chooses a random w′. Note that the
probability H2(M2||w∗) = h′ is negligible. Therefore, the success probability of

B is at least |W|−1 ·q−1
H2

·AdvSyncAS
A where AdvSyncAS

A is the success probability
of A. This completes our proof. ��

4.4 Discussions

Efficiency. The public key of our SyncAS scheme consists of just one group ele-
ment since our SyncAS scheme is derived from the SeqAS scheme of the previous
section, and the synchronized aggregate signature consists of one group element
and one integer since anyone can compute A,B using the hash functions. The
signing algorithm requires two group hash operations and two exponentiations,
and the aggregate verification algorithm requires two group hash operations,
three pairing operations, and l exponentiations where l is the number of signers
in the aggregate signature. Our SyncAS scheme provides the shortest aggregate
signature size compared to the previous SyncAS schemes [1, 14]

Combined (Multi-modal) Aggregate Signature. We can construct a com-
bined aggregate signature scheme that supports sequential aggregation and syn-
chronized aggregation at the same time by combining our SeqAS scheme and our
SyncAS scheme since the private key and the public key of our two schemes are
the same. In the combined aggregate signature scheme, the public parameters is
PP = (p,G,GT , e, g, Y,H1, H2), the private key and the public key are SK = x
and PK = X respectively. The security model of the combined aggregate sig-
natures can be defined by combining the security models of SeqAS schemes and

Aggregating CL-Signatures Revisited 187

SyncAS schemes. The details of this scheme are given in the full version of this
paper [16].

Removing Random Oracles. If the number of messages is restricted to be
polynomial, then we can use the universal one-way hash function [13, 21]. How-
ever, the SeqAS scheme using the universal one-way hash function of Canetti et
al. is inefficient since it requires large number of exponentiations.

5 Conclusion

In this paper we concentrated on the notion of aggregate signatures which appli-
cations are in reducing space of signatures for large repositories (such as in the
legal, financial, and infrastructure areas). We proposed a new sequential aggre-
gate signature scheme and a new synchronized aggregate signature scheme using
a newly devised “public key sharing” technique, and we proved their security
under the LRSW assumption. Our two aggregate signature schemes in this pa-
per sufficiently satisfy the efficiency properties of aggregate signatures such that
the size of public keys should be short, the size of aggregate signatures should
be short, and the aggregate verification should be efficient.

Acknowledgements. We thank the anonymous reviewers of FC 2013 for their
valuable comments.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: ACM Conference on Computer and
Communications Security, pp. 473–484 (2010)

2. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insubvert-
ible encryption. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conference on
Computer and Communications Security, pp. 92–101. ACM (2005)

3. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005), http://eprint.iacr.org/2005/385

4. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (2007)

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 114–138 (2009)

6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications
to secure routing. Cryptology ePrint Archive, Report 2007/438 (2010),
http://eprint.iacr.org/2007/438

7. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for del-
egation of signing rights. J. Cryptology 25(1), 57–115 (2012)

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2007/438

188 K. Lee, D.H. Lee, and M. Yung

9. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

11. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007)

12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

13. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

14. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006)

15. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: An ap-
proach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)

16. Lee, K., Lee, D.H., Yung, M.: Aggregating cl-signatures revisited: Extended func-
tionality and better efficiency. Cryptology ePrint Archive, Report 2012/562 (2012),
http://eprint.iacr.org/2012/562

17. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: Design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013)

18. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

19. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

20. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended
abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

21. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Johnson, D.S. (ed.) STOC, pp. 33–43. ACM (1989)

22. Schröder, D.: How to aggregate the CL signature scheme. In: Atluri, V., Diaz, C.
(eds.) ESORICS 2011. LNCS, vol. 6879, pp. 298–314. Springer, Heidelberg (2011)

23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2012/562

Accumulators and U-Prove Revocation�

Tolga Acar1, Sherman S.M. Chow2, and Lan Nguyen3

1 Intel Corporation
tolga.acar@intel.com

2 Department of Information Engineering
Chinese University of Hong Kong

sherman@ie.cuhk.edu.hk
3 Microsoft Research

lan.duy.nguyen@microsoft.com

Abstract. This work introduces the most efficient universal accumula-
tor known today. For the first time, we have an accumulator which does
not depend on hidden order groups, does not require any exponentia-
tions in the target group associated with the pairing function, and only
requires two pairings to verify a proof-of-knowledge of a witness.

We present implementations of our accumulator and another recent
proposal utilizing Groth-Sahai proofs, with performance results. Our im-
plementations are designed with cryptography agility in mind. We then
built a library for revoking anonymous credentials using any accumula-
tors, and integrated it with Microsoft U-Prove, which has a significant
contribution to an European Union’s privacy standardization effort. Our
work enables U-Prove revocation without compromising untraceability.

Keywords: dynamic universal accumulator, U-Prove, revocation,
blacklist, privacy enhancing technologies, efficiency, anonymity, account-
ability, authentication, pairing, implementation, cryptography agility.

1 Introduction

Accumulator. A cryptographic accumulator allows aggregation of a large set
of elements into one constant-size accumulator value, and proving about whether
an element has been accumulated. Via the proof system, a prover with a witness
can convince a verifier about the truth of a statement, but any adversary cannot
convince a verifier about a false statement. The basic proof is about membership
statement, for proving that an element has been accumulated. An accumulator
is said to be universal if it has another proof system, called non-membership, to
prove that a given element is not accumulated. Moreover, if the costs of updating
the accumulator or witnesses, when elements are added to or deleted from the
accumulator, do not depend on the number of elements aggregated, we say it
is dynamic. Two universal dynamic accumulators have been proposed so far.
One is based on the Strong RSA assumption in hidden order groups [16], which

� This is an extended abstract. We thank the help of Benôıt Libert and Toru Nakanishi.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 189–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 T. Acar, S.S.M. Chow, and L. Nguyen

is derived from a basic (non-universal) accumulator proposed [8]. The other
is based on the Strong Diffie-Hellman assumption in prime-order groups with
bilinear map (or pairing) [3] which is derived from a pairing-based non-universal
accumulator proposed [19]. There is another pairing-based dynamic accumulator
[7]; however, it is not universal.

Applications. Accumulators have been used in various applications for dif-
ferent purposes. Two of its major benefits include minimizing the bandwidth
requirement and protecting privacy. With the proliferation of mobile devices,
bandwidth requirement is becoming more crucial. On the other hand, privacy
is a growing concern in various different sectors such as healthcare, military,
intelligence, and mobile devices industry. The emergence of cloud computing also
leads to a different balance between trust and anonymity in identity manage-
ment. Some applications of accumulators include space-efficient time-stamping
[4], electronic voting [10], and many privacy-preserving authentication mecha-
nisms which include ad-hoc anonymous authentication [12], (ID-based) ring sig-
natures [12,19,11], dynamic k-times anonymous authentication [2], and
anonymous credentials which are revokable [8,7].

Anonymous Credentials. Using anonymous credentials a user can prove
the possession of some credentials without revealing any other private informa-
tion such as her identity. Applications include direct anonymous attestation [6],
anonymous electronic identity token [9,17], and implementations such as U-Prove
[17], Idemix [9] and in Java cards [5]. In practice, revocation is indispensable in
credential systems, as dispute, compromise, mistake, identity change, hacking
and insecurity could make any credential become invalid before its expiration,
especially when they are carried around by mobile devices.

Revocation. Revoking credentials is a notorious issue in cryptography, not
to say anonymous credentials. Consider public key infrastructure, there is a cer-
tificate revocation list which consists of invalid certificates, and is time-stamped
and signed by a certificate authority. Checking if a certificate is revoked requires
searching for the certificate’s identity in the entire list. For anonymous credential,
it is even trickier. In particular, the anonymity and the run-time requirements
of honest users should not be affected by revocation of other credentials.

Our contribution. The major contribution of this work is our efficiency im-
provement of (non-)membership proofs associated with an accumulator, which
brings benefits to many existing applications utilizing accumulator. Our effi-
ciency gain comes from a new design which only requires proving equations in
a base group G1 associated with the curves featuring the pairing function, in-
stead of the standard approach in the literature which proves about some pairing
equations. As a result, not only the number of pairing operations is greatly re-
duced, there are also no exponentiation or other operations in the target group
GT (nor in the other base group G2), which are often inefficient when compared
with the operations in G1. (Exponentiation in GT could be 4 or 5 times more
expensive than that in G1, and exponentiation in G2 could still be 1.5 to 2
times more expensive.) In particular, our proof systems require less exponentia-
tions and pairings compared to previous pairing-based schemes [19,3] which use

Accumulators and U-Prove Revocation 191

symmetric pairings. It is especially suitable for Barreto-Naehrig pairing curves
(BN curves) [14], arguably one of the most efficient pairing-friendly curves, where
G1’s operations are also very efficient.

2 U-Prove with Revocation Using Our New Accumulator

In this section, we show how to use the non-membership proof of our accumulator
to blacklist U-Prove tokens. It will be embedded in the U-Prove presentation
protocol as detailed in U-Prove Crypto Specification V1.1 (‘Spec’) [17]. Due to
the lack of spaces, this part is a sketch and should be read in conjunction with the
Spec [17]. The text “[For Revocation]” highlights the additions of revocation
parts to the existing U-Prove protocols.

2.1 Entities

In the original U-Prove Spec, there are Issuer, Prover and Verifier. Issuer issues
each Prover U-Prove tokens that contain Issuer’s certification of the Prover’s
attributes. A Prover can prove some of her attributes to a Verifier in a U-Prove
token presentation protocol. Besides these three entities as in Spec, we introduce
Blacklist Authority (BA), who could be the same as or independent from Issuer.
There could be several BAs and several blacklists. Apart from proving Prover’s
attributes, our new token presentation protocol can also prove that the token is
not in any of the blacklists, with full anonymity.

2.2 System Parameters

The generation of the system parameters follows closely as the original Spec,
except that the system parameters for the accumulator will also be included.

Issuer Parameters: Define

IP := (UIDP, desc(Gq), UIDH, (g0, g1, . . . , gn, gt) , (e1, . . . , en) , S))

where UIDH is an application-specific unique identifier for Issuer parameters and
UIDH is an identifier of a cryptographically secure hash algorithm.

[For Revocation] Accumulator Parameters: Define

param := (q,G1,G2,GT , e, P1, P2, Ppub, H,K,G1)

where Ppub := P2
δ, K := Hδ for a random δ ∈ Zq and G1, H ∈ G1, P2 ∈ G2.

1. One may include vector t := (P1
δ, P1

δ2 , . . . , P1
δk) for the users to compute

their own witness (to be described). We can have a constant-size public-key
(without the vector t) when the BA computes the witness for each user using
the auxiliary secret value δ.

2. The order of the bilinear groups where e : G1 × G2 → GT should all have
the same prime order q, i.e., the accumulator should be instantiated with
the same prime number q used in Issuer’s parameter.

192 T. Acar, S.S.M. Chow, and L. Nguyen

2.3 Issuing U-Prove Token

The protocol for Issuer to issue U-Prove tokens to Provers is the same as in
the original Spec, except that there is a designated attribute xid in the U-Prove
token for revocation purpose.

Generating U-Prove Token: A U-Prove token has the same form as in Spec:

(UIDP, h, T I, PI, σ′
z, σ′

c, σ′
r)

where

– The public key h, with a number of attributes xt, x1, . . . , xn embedded, is
h = (g0g1

x1 . . . gid
xid . . . gn

xngt
xt)

α
(mod q).

– The private key is α−1 ∈ Z∗
q .

– TI/PI are token/prover information field respectively.
– A valid signature from an issuer is given in the form of (σ′

z , σ′
c, σ′

r).

2.4 Blacklist

A blacklist is published and managed by a BA. Note that BA has the auxiliary
information to efficiently compute the accumulator values. For example, on day
1, three elements xid1 , xid2 , xid3 can be accumulated in V1; then, on day 2, xid2

can be deleted, and xid4 can be added, which results in an updated V2.

[For Revocation] Maintaining Revocation List: BA decides an attribute
xid for revocation. We can have some options here: xid could uniquely identify a
token, a user or an organization. Suppose there are m revocations, BA publishes
the list of {xidi}, and accumulates them by

V := P1

∏m
i=1 (δ+xidi

).

2.5 Presenting U-Prove Tokens

The difference from the basic presentation protocol of a valid U-Prove token
is that, now a Prover also needs to prove the knowledge of xid, which is the
attribute used for revocation, is not accumulated in BA’s blacklist.

Input:

1. Ordered indices of disclosed attributes: D ⊂ {1, . . . , n}
2. Ordered indices of undisclosed attributes: U = {1, . . . , n} \D
3. U-Prove token: T = (UIDP, h, T I, PI, σ′

z, σ′
c, σ′

r)
4. Messages: m ∈ {0, 1}∗
5. Private key: α−1 ∈ Zq

6. Attribute values: (A1, · · · , An) ∈ ({0, 1}∗)n
7. [For Revocation] The current accumulator value: V
8. [For Revocation] The updated witness: (W,Q, d) where

– d =
∏m

i=1 (δ + xidi) (mod (δ + xid)) ∈ Zq,
which can be computed without knowing δ by simple polynomial division
of
∏
(z + xidi) by (z + xid), and is non-zero since xid /∈ {xidi}.

Accumulators and U-Prove Revocation 193

– W = P1
(
∏m

i=1 (δ+xidi
)−d)/(δ+xid)

which is computable by using vector t in param.
– Q = VW−xidP1

−d.

Proof Generation

1. [For Revocation] Prepare for the commitment part of the proof that the
credential is not revoked:

Randomly pick x, u, t1, t2, t3, rx, ru, rt1 , rt2 , rt3 , rβ1 , rβ2 , rβ3 , rd, rd′ ∈ Zq. Set:

X := WHt1 , Y := QKt1 , C := G1
xHu, A := G1

rxHu

R := G1
t1Ht2 , S := G1

d′
Ht3 , Γ := X−rxHrβ1Krt1P1

−rd ,
T1 := G1

rt1Hrt2 , T2 := G1
rβ1Hrβ2R−rx , T3 := G1

rd′Hrt3 , T4 := Hrβ3S−rd .

2. [For Revocation] (In the original Spec, a := H(hw0(
∏

i∈U gwi

i))).
Compute a := H(hw0(

∏
i∈U gwi

i), H(X,Y,R, S, T1, T2, T3, T4, Γ, param)).
3. c := GenerateChallenge(IP, T , a,m,∅, D, {xi}i∈D) ∈ Zq.
4. [For Revocation] Prepare for the response part for the proof that the

credential is not revoked, by computing the following:

β1 := t1xid, β2 := t2xid, β3 := t3d, d′ := d−1

su := −cu+ ru, sx := −cx+ rx, sd := −cd+ rd, sd′ := −cd′ + rd′

st1 := −ct1 + rt1 , st2 := −ct2 + rt2 , st3 := −ct3 + rt2 ,
sβ1 := −cβ1 + rβ1 , sβ2 := −cβ2 + rβ2 , sβ3 := −cβ3 + rβ3 .

5. xt := ComputeXt(IP, T I) ∈ Zq.
6. For each i ∈ {1, . . . , n} , xi := ComputeXi(IP,Ai) ∈ Zq.
7. Generate w0 at random from Zq, set r0 := cα−1 + w0 (mod q).
8. For each i ∈ U , generatewi at random from Zq, set ri := −cxi+wi (mod q).
9. Return the U-proven token proof

(
{Ai}i∈D, a, r0, {ri}i∈U

)
.

10. [For Revocation] Also return the non-revoked proof:

(c, su, sx, sd, sd′ , st1 , st2 , st3 , sβ1 , sβ2 , sβ3 , C,X, Y,R, S) .

Proof Verification

1. Execute VerifyTokenSignature(IP, T) which verifies (σ′
z, σ′

c, σ′
r).

2. xt := ComputeXt(IP, T I).
3. For each i ∈ D, xi := ComputeXi(IP,Ai).
4. Set c := GenerateChallenge(IP, T , a,m,∅, D, {xi}i∈D).
5. [For Revocation] Execute the following steps for non-membership proof

verification:

T̃1 := G1
st1Hst2Rc, T̃2 := G1

sβ1Hsβ2R−sx ,

T̃3 := G1
sd′Hst3Sc, T̃4 := G1

−cHsβ3S−sd ,

Ã := G1
sxHsuCc, Γ̃ := X−sxHsβ1Kst1P1

−sd(V
−1

Y)
c
.

Verify if e (Y, P2)
?
= e(X,Ppub), and if

194 T. Acar, S.S.M. Chow, and L. Nguyen

a = H((g0g
xt
t

∏
i∈D

gxi

i)
−c

hr0(
∏
i∈U

grii),H(X,Y,R, S, T1, T2, T3, T4, Γ, param)).

3 Crypto-Agile Software Design

The design of our accumulator-and-applications system is illustrated in Figure
1. There is one common application program interface (API) for all accumu-
lators, providing the interface for the operations. Two accumulators, the new
one in this paper (based on Fiat-Shamir transformation [13], denoted as ACN)
and the existing one (based on Groth-Sahai proof [15], denoted as AccuGS) [1],
have been implemented according to the API. They are the first implementation
of universal accumulators, and AccuGS provides the only solution for revoking
delegatable anonymous credentials not relying on random oracles.

Fig. 1. Our Software Design

The API could be used to develop accumulator’s applications. One such appli-
cation is for revoking anonymous credentials. We further implement a revocation
API. A blacklist authority could use it to create a blacklist and accumulate re-
voked anonymous credentials, and an user could prove that a credential is not
accumulated in a blacklist. Several anonymous credential systems based on prime
order could use this revocation. We have used it for U-Prove.

This design supports crypto-agility. With a common accumulator API, it is
easy to add other accumulators’ implementations based on different assumptions,
to replace an existing implementation with a more efficient or safer one, and to
switch among them with minimum code refactoring. With a single revocation
API and a single accumulator API, we just need a single implementation of
“Revocation using Accumulators”. This reduces redundancy and allows us to
have a painless changes from, say, AccuGS to ACN.

The system is developed in C++ and built into 3 dynamic link libraries (dll)
in Windows. The first, accumulator.dll, implements ACN and AccuGS. The
second, RAC.dll, utilizes the first library for revoking anonymous credentials.
The third, UProveRAC.dll, uses the second library to integrate revocation into
U-Prove. UProveRAC.dll consists of all existing UProve API and additional
API functions with revocation capability. The new UProveRAC functions allow
generating revocation parameters and keys, computing and updating witnesses,
and proving and verifying that U-Prove tokens are not revoked.

Accumulators and U-Prove Revocation 195

Table 1. Performance of ACN, ATSM, and AccuGS

(a) Operation counts: (E1, E
′
1, and

ET denote exponentiations in G1, G
′
1,

and GT resp.; x(+y): x pairings, an-
other y of them can be pre-computed)

Algorithms ACN ATSM

E1 e(·, ·) E′
1 Et e(·, ·)

NMPrf() 21 0 19 4 2 (+4)

NMVfy() 20 2 19 5 2 (+4)

MemPrf() 14 0 13 3 2 (+3)

MemVfy() 13 2 13 4 2 (+3)

(b) Running time (“Update wit-
ness” here is for adding 40 and re-
moving 5 elements, i.e., a total of
45 unit updates.)

Operations ACN AccuGS

Update witness 77.102 78.980

NMPrf() 11.882 30.609

NMVfy() 18.714 102.978

MemPrf() 24.148 117.897

MemVfy() 80.635 587.164

4 Performance

For a fair comparison, we compare the performances of ACN and the only previ-
ous universal accumulator ATSM [3], which derived the membership proof from
Nguyen’s [19] and introduced a new NM proof. We only compare the proof sys-
tems, as other algorithms are very similar. Both the proofs of ACN and ATSM
can be made interactive and do not rely on the random oracle heuristics, or can
be converted into non-interactive version via Fiat-Shamir heuristics [13] which
relies on the random oracle. ATSM only uses symmetric pairing G′

1 ×G′
1 → G′

T ,
whereas ACN works for both symmetric and asymmetric settings G1×G2 → GT .
So ACN could use much more efficient asymmetric pairing groups, such as BN
curves [14]. Indeed, as discussed, operations in G1 are much more efficient than
corresponding operations inG′

1 andG′
T . ACN is especially suitable for BN curves,

which features not only one of the most efficient pairing operations, but also very
efficient exponentiation in G1. Even if we do not perform pre-computation for
some pairings, ACN is still significantly more efficient than ATSM. Table 1a com-
pares the numbers of exponentiations and pairings between these proof systems.

Table 1b shows the performance (in milliseconds) of the major functions in
ACN and AccuGS [1], running on a modest machine — Intel Core2 2.4 GHz
with 4 GB RAM, 64-bit Win7, using 254-bit BN curves. Again, the underlying
accumulators are the same so we focus on witness operations. Accumulating 40
elements take 3.5 ms, and updating accumulator with 1 element takes 1.71 ms.
Finally, it takes 36.055ms to generate a U-Prove proof and 73.817ms to verify
it. Those numbers never depend on the blacklist’s size.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (2011)

2. Au, M.H., Susilo, W., Mu, Y., Chow, S.S.M.: Constant-size dynamic k-times anony-
mous authentication. IEEE Systems Journal 17(3), 46–57 (2013)

196 T. Acar, S.S.M. Chow, and L. Nguyen

3. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

4. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

5. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard java card. In: ACM CCS 2009, pp. 600–610 (2009)

6. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS 2004, pp. 132–145 (2004)

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS 2002, pp. 21–30 (2002)

10. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with
ballot secrecy and verifiability. In: NDSS 2008, pp. 81–94 (2008)

11. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006)

12. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 609–626. Springer, Heidelberg (2004)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Geovandro, C.C.F.P., Simpĺıcio Jr., M.A.S., Naehrig, M., Barreto, P.S.L.M.: A
family of implementation-friendly BN elliptic curves. Journal of Systems and Soft-
ware 84(8), 1319–1326 (2011)

15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

16. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

17. Microsoft. U-Prove cryptographic specification V1.1 Revision 2 (2013),
http://research.microsoft.com/en-us/projects/u-prove (last visited on May
6, 2013)

18. Nelson, D.: Crypto-agility requirements for remote authentication dial-in user ser-
vice (RADIUS). RFC 6421 (Informational) (November 2011)

19. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

http://research.microsoft.com/en-us/projects/u-prove

Towards a Publicly-Verifiable Mix-Net Providing

Everlasting Privacy

Johannes Buchmann1, Denise Demirel1, and Jeroen van de Graaf2

1 Technische Universität Darmstadt, Germany
2 Universidade Federal de Minas Gerais, Brazil

Abstract. All implementations of verifiable mix-nets provide computa-
tional privacy only, because the audit information published is encrypted
using some public key algorithm. Consequently, at some time in the fu-
ture, when the underlying cryptographic assumption is broken, privacy
is violated, and each output message can be traced back to its input.
We address this problem by presenting a mix-net that uses a homomor-
phic, unconditionally hiding commitment scheme to encrypt the audit
information, implying unconditional or everlasting privacy towards the
public. The correctness of our mix-net is guaranteed with overwhelming
probability even if all authorities conspire, under the assumption that the
commitment scheme is computationally binding until the mixing process
has ended. An implication of our result is that many current applications
that use mix-nets can be upgraded to unconditional privacy.

Keywords: Mix-Net, Everlasting Privacy, Universal Verifiability.

1 Introduction

1.1 Motivation

Mix-nets were introduced by David Chaum in 1981 [2] to allow anonymous
communication within a network. Its basic functionality is to process a set of
input messages, so that the content remains unchanged while any link between
a single input and its associated output is removed. The reencryption mix-net
introduced in 1993 by Park et al. [10] is based on this technique and allows that
its correctness can be verified by any third party, i.e. showing that each message
that comes in, goes out. Universally verifiable mix-nets are of interest for several
applications where privacy plays an important role. Examples of real use are
electronic auctions [6], electronic exam systems [7], and electronic voting [1,12].

In all solutions for universal verifiable mix-nets that we know of, the audit
information is encrypted using some public key algorithm, which is assumed to
be computationally hard. However, when the underlying cryptographic assump-
tion is broken (perhaps decades later) all the audit information can be decrypted
and privacy is violated: each output message published can be traced back to
its input. With current trends in technology, like quantum computers, such a
scenario is realistic. With the cost for storing information becoming less, the

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 197–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 J. Buchmann, D. Demirel, and J. van de Graaf

fact that (encrypted) information has been published on the internet makes it
virtually impossible to remove this data later on. In addition, processing power
increases continually following Moore’s law. So all an attacker needs to do is
to download the audit information published, wait until the cryptographic as-
sumption is broken, and decrypt it. In other words, the privacy offered by current
implementations of mix-nets has an (often unknown) expiration date.

1.2 High-Level Description of Our Result

In this paper we show how to use a homomorphic, unconditionally hiding com-
mitment scheme to encode the audit information, i.e. the encoded messages and
the proofs published for correct mixing. The system commits to a submitted mes-
sage t with a (randomly chosen) decommitment value s. Like with homomorphic
encryption, each mix can recode (or rerandomize) a commitment u = Com(t, s)
by multiplying it with Com(0, s′), that is, u′ = Com(t, s + s′). Further, due to
the homomorphic property of the commitment scheme the correctness of the
rerandomization can be shown by proving knowledge of the used permutation
and rerandomization value. However, in order to open shuffled commitments,
one needs to know the decommitment values. Our solution is to send this data
together with message t as auxiliary information through a private mix-net
to which the public has no access. Any rerandomization u′ = Com(0, s′)u has
matching rerandomizations 〈v′, w′〉 = 〈Enc(0)v,Enc(s′)w〉, where v = Enc(t) and
w = Enc(s) and Enc is a suitable homomorphic encryption scheme. So essentially
we use two tightly synchronized mix-nets run by the same mixes: one which is
mixing commitments and which is fully public. And a second mix-net which
uses homomorphic encryption to which the public has no access. Then, after the
last mix Mn has published its data, vn and wn are jointly decrypted yielding
s∗ = s0 + · · ·+ sn and t, the opening values of un = Com(t, s0 + · · ·+ sn).

The scheme sketched in the above paragraphs already provides everlasting
privacy towards observers. But it has one drawback: the first mix, to whom
the users submit their message, gets to see Enc(t). So when, in some future,
the encryption scheme gets broken, this mix, if dishonest, could reconstruct the
user’s message. If this is considered a problem, an obvious solution is to split the
input in two (or more) parts, submit each part to a separate mix-net, and have
the parts recombined, decoded, and published by a special publication authority.

1.3 Related Work

Despite the vast literature on mix-nets, we are not aware of any publication that
accomplishes everlasting privacy for mixing. The protocol that comes closest to
what we propose here is the shuffling used in the Split-Ballot voting system [9].
However, this protocol is devised for a very particular situation: two voting au-
thorities who want to shuffle ballot shares of a specific format, allowing them to
jointly compute the tally. It is not at all obvious how to utilize this shuffle proto-
col in other voting protocols, nor how to obtain a general, unconditional mix-net
for mixing messages of arbitrary format. Another way to illustrate the difference

Towards a Publicly-Verifiable Mix-Net Providing Everlasting Privacy 199

is as follows: in Split-Ballot, the voter shares a secret with two authorities “in
parallel”, whereas in conventional mixing a message is processed sequentially.

In [4] similar ideas presented here are directly applied on the Helios voting
system. In independent work parallel to ours, Pereira et al. [11] approach the
ideas of [4] and this paper from a different angle. The commitment scheme with
matching encryption is presented as a new, unified primitive, and then used
to show that any voting scheme which uses homomorphic tallying can have an
unconditionally (or perfectly) private audit trail. A similar statement is made
for voting protocols that use mix-nets, but, unlike this paper, no details of the
mixing process are presented, nor does it address the issue of a mix-net providing
everlasting privacy towards both the public and the mixing authorities.

The structure of this paper is straightforward: In Section 2 we show how the
standard reencryption process can be adapted to provide everlasting privacy
towards observers and present formal statements of the properties. Section 3
describes a mixing process providing everlasting privacy also towards the au-
thorities, followed by conclusion and future work.

2 Mixing with Everlasting Privacy Towards the Public

2.1 Cryptographic Primitives

The protocol uses two cryptographic primitives. First, a commitment scheme
in order to provide everlasting privacy and universal verifiability towards the
public. Second, a matching encryption scheme allowing the authorities to open
the commitment at the end of the mixing process and at the same time providing
privacy towards the authorities.

A (non-interactive) commitment scheme is a triple (GenCom,Com,Unv)
such that GenCom(1κ) generates the public commitment key ck for security pa-
rameter κ. Note that the security parameter defines the message space M and
the randomization space R. We will suppose implicitly the presence of ck in the
remainder, leaving it out of the notation. c = Com(m, s) ∈ C takes as input a
message m ∈ M, a uniformly chosen decommitment value s ∈ R, resulting in
a commitment c ∈ C. The algorithm Unv(c,m, s) returns m if c = Com(m, s)
and ⊥ if not. The commitment scheme has to provide the following proper-
ties. (1) Correctness: For any m ∈ M, r ∈ R : Unv(Com(m, r),m, r) = m. (2)
Non-Interactive: All communication goes from the sender to the receiver. (3)
Computationally Binding: Given a commitment c = Com(m, r), for any PPT
A the probability to find a second opening pair (m′, r′) with m �= m′ such
that Com(m, r) = Com(m′, r′) is negligible in κ. (4) Unconditionally Hiding:
For any pair m,m′ ∈ M the distribution of the randomized values Com(m, r)
and Com(m′, r′) must be identical when r, r′ ∈ R are chosen uniformly random.
(Obviously, this property can be weakened to statistically hiding, but for ease
of exposition we do not explore this.) (5) Homomorphic: For all m,m′ ∈ M and
r, r′ ∈ R Com(m, r) ·C Com(m′, r′) = Com(m +M m′, r +R r′). In the following,
we will denote the neutral element 0M of M and 0R of R as 0. Furthermore, we
will refer to the group operations +M and +R by +.

200 J. Buchmann, D. Demirel, and J. van de Graaf

The encryption scheme (GenEnc,Enc,Dec) used is identical to the one al-
ready used in standard reencryption mix-nets. The mixing process is based on
a homomorphic public key encryption algorithm defined by the triple
(GenEnc,Enc,Dec) such that GenEnc generates two separate keys, a public key
pk and a private key sk, where the private key is presumed to be shared among
a set of key trustees T using threshold decryption. Enc(t, s) = c denotes the
encryption of message t ∈ G with randomness s ∈ H and public key pk.
Dec(c) = t denotes the decryption of ciphertext c to message t ∈ G using
private key sk. Note that the algorithm should provide semantical (CCA) se-
curity and be homomorphic in t and in s, meaning that for all t, t′ ∈ G and
for all s, s′ ∈ H : Enc(t, s) · Enc(t′, s′) = Enc(t +G t′, s +H s′), where +G and
+H are operations in group G and H . As a consequence, reencrypting a ci-
phertext c = Enc(t, s) without knowing and changing message t is possible by
multiplying it with an encryption of the neutral element 0G of group G, i.e.
ReEnc(c, s′) = Enc(t, s) · Enc(0G, s′) = Enc(t, s+ s′). However, because both the
message m ∈ M and the auxiliary value r ∈ R have to be sent over the pri-
vate channel, we need two instances of this encryption scheme. One, denoted as
EM, which must be homomorphic over the message space M. The second one,
denoted as ER, whose message space is homomorphic over group R.

An additional ingredient for reencryption mix-nets are proofs of correct
reencryption: each mix has to provide a zero-knowledge proof that the data
has been processed correctly, such that the set of output values is a valid shuffle
of the set of input values. These proofs are made public, thus providing universal
verifiability. In addition this mix-net uses proofs of consistency: each mix has
to privately prove that the same permutation and random values have been used
to rerandomize the published commitments and to reencrypt the corresponding
private encrypted opening values. Note that both proofs have to be perfect zero-
knowledge. More precisely, if a proof published by the prover is correct, even a
computationally unbounded verifier cannot learn more than that.

To show the viability we now give some instantiations of a commitment scheme
with matching encryption scheme satisfying the properties above. For their Split-
Ballot voting system, Moran and Noar proposed the use of Paillier encryption in
combination with a slightly modified Pedersen commitment Scheme [9, Appendix
A]. We also believe that an alternative implementation with unconditional Ja-
cobi symbols commitments and Rabin encryption might work, but the scheme
would be very inefficient since each Jacobi symbol would implement only one
bit. More interesting is the recent suggestion of Pereira et al. [11] for an effi-
cient unconditionally hiding commitment scheme with matching homomorphic
encryption scheme based on elliptic curves. If this could be used in combination
with a non-interactive proof (or rather, argument) [5,8] this might lead to a very
efficient mixing procedure.

2.2 Assumptions

For a standard reencryption mix-net to be secure the following assumptions are
made: (A) The authorities cannot break the underlying computational problem of

Towards a Publicly-Verifiable Mix-Net Providing Everlasting Privacy 201

the encryption scheme. (B) At least one mix is honest and keeps the association
between its input and output values secret. (C) Using (k, n)-threshold decryption
at least (n− k+1) “key trustees” act honestly and keep their key portion secret.
(D) All random challenge bits used in the mixing and verification steps comes
from a trusted Random Beacon and are unpredictable.

Apart from that, we make the following additional assumptions: (E) The
authorities cannot break the computational binding property of the commitment
scheme for the parameters chosen before the messages have been published and
certified. (F) There exists a private channel between the user and the first mix M1

of the mix-net, between each mix and its successor in the mix-net, and between
the last mix and the key trustees T . (H) After the protocol has been certified all
authorities destroy all information private to them.

2.3 Adapted Mixing Process

For legibility, we will interpret a batch of messages each from a different user by
a vector, denoted by a capital letter. Operations on the entries of vectors carry
over to the vectors. For instance, the Perm operation permutes the entries of a
vector: T ′ = Permπ(T) means that t′(i) = t(π(i)).

(I) Submission.To submit a message t ∈ M encoded with randomness s, the
user calculates the triple (u, v, w) = (Com(t, s),EncM(t),EncR(s)) and provides
a proof of knowledge (POK) that the t and s used in all three components are
the same. The user uses a private channel to send the triple (u, v, w) to the
system together with the POK for consistency. The input batch of the first mix
consists of all triples received ordered in some canonical way and is denoted as
(U0, V0,W0). The public part of the input batch, U0, is published.

(II) Mixing. We now describe the shuffling procedure for K inputs and a
mix-net consisting of n mixes M1,M2 . . . ,Mn. The input batch of Mj is de-
fined as the output batch of the preceding mix Mj−1, except that the first
mix receives its inputs directly from the system. In addition, the output batch
of the last mix will be sent to the key trustees T . In other respects, the
shuffling procedure for each mix is identical. (1) Let the input batch of the
mix Mj be (Uj−1, Vj−1,Wj−1). Then Mj rerandomizes the commitment vector:
U ′
j = Uj−1 · Com(0, Sj), it reencrypts the vector of encryptions of the contents:

V ′
j = Vj−1 ·EncM(0) and, through homomorphic encryption, updates the decom-

mit value: W ′
j = Wj−1 · EncR(Sj). (2) To obtain the output batch, Mj chooses

a random permutation πj and sets (Uj , Vj ,Wj) = Permπj (U
′
j , V

′
j ,W

′
j). (3) The

commitments Uj are published, whereas the corresponding encryptions Vj and
Wj are sent to Mj+1 through a private channel. (4) Mj proves, in a publicly
verifiable way, that Uj is a recoding and permutation of Uj−1. (5) Mj provides
a POK to Mj+1 that the output batch is a consistent rerandomization and per-
mutation of the entire input batch, i.e. it shows it knows permutation πj and
the vector of random values Sj . Note that T verifies the output of the last mix.

(III) Decoding and publication. The key trustees T compute and publish
T ∗ = Dec(Vn) and S∗ = Dec(Wn). Observe that due to the homomorphic prop-
erties and to the fact that the same permutations πj have been used in public

202 J. Buchmann, D. Demirel, and J. van de Graaf

and the private network, we have that T ∗ and S∗ are the values to open Un,
that is, Un = Com(T ∗, S∗).

(IV) Certification. Auditors verify whether Un = Com(T ∗, S∗) and certify
the output if this condition and all public proofs of knowledge hold.

2.4 Properties

For proving correctness, it is necessary to show that the mixes did not change
any of the messages. In other words, T0 ≡ Tn, where ≡ stands for the existence
of a permutation that maps T0 to Tn. In our case correctness does not follow
straightaway from existing proofs of mixing schemes since these are all based
on encryption implying that the message t is unambiguously defined. Since we
want the correctness to be universally verifiable while preserving unconditional
privacy, only public information can be used. However, as long as T can open
the commitments that are published by the last mix, i.e. publish the values T ∗

and S∗ such that Un = Com(T ∗, S∗), then T0 ≡ Tn. In other words, we argue
that for correctness it is completely irrelevant how T obtained T ∗ and S∗. This
is a consequence of the fact that the commitment scheme used is uncondition-
ally hiding and computationally binding. This can be proven by contradiction,
showing that if after running the protocol T0 �≡ Tn, then there exists an efficient
algorithm violating the binding property by computing a commitment u that
can be opened to two distinct values: u = Com(τ1, σ1) = Com(τ2, σ2). Note that,
because of the audit information published during all the mixing steps, any ob-
server can perform the checks. This, together with the fact that the randomness
of the challenge bit is guaranteed means that the protocol is universally ver-
ifiable. Individual verifiability follows, simply because of the fact that the
users can check that their input u0 is published.

If at least one mix is honest and keeps the used permutation secret, then pri-
vacy follows from the fact that the output batch Tout is an unknown permuta-
tion of the input batch, Tin. Even a computationally unbounded attacker cannot
obtain any additional information, since the commitments used to encode the
messages are unconditional and all used proofs provide perfect zero-knowledge.

Regarding robustness, it is clear from the construction that if everybody
is honest, then the process must succeed, always. If cheating is detected the
malicious mix or the whole mix-net can simply be replaced. To avoid that a mix
can lie about its private input towards the verifier, we ask the user and each mix
to sign its output. In addition the users have to send a POK for consistency to
ensure that they cannot submit inconsistent inputs without being detected.

3 Everlasting Privacy Towards the Authorities

Using the protocol presented in Section 2, the users submit the triple (u, v, w),
where v is an encryption of the message t. Though they use a private channel,
this protects them from outsiders, but not from the first mix, who will be able to
recover t once the computational assumption is broken. If this is unacceptable, a

Towards a Publicly-Verifiable Mix-Net Providing Everlasting Privacy 203

possible solution is to have several mix-nets in parallel, have the users split their
message, and submit each part to a different mix-net. As long as none of the
first mixes nor any of their verifiers share their information with one mix of each
mix-net, the privacy of the submitted message is guaranteed unconditionally.

A problem that arises here is how to match the various shares of one specific
user that come out of the various mix-nets, needed to recombine the complete
message. We solve this by supposing that a user submits each share labeled with
the same, randomly chosen identification number ri, which should be chosen
large enough to avoid collision (say 128 bits). Since these ris cannot be public
(to prevent any of the first mixes or its verifier from tracing back a message),
the message t and the random identity ri are encoded in separate commitments
which are published and the decommitment values are sent together with the
opening values of the corresponding messages towards the private mix-nets. After
all data have been made anonymous by the mix-nets, the ris are decrypted by T
and a new authority Z who keeps the obtained IDs private. The same ri should
appear in each of the output batches of the various mixes and Z should therefore
be able to match shares coming from the same user, reconstruct the message,
and publish it. In addition, Z can use the published commitments to convince
the public that the correct tuples were matched.

Correctness, Individual and Universal Verifiability can be shown similar to
Section 2.4. The only difference is that Z has to prove that messages coming
from the same user have been matched correctly. This is accomplished by a POK
showing that when Z matches, shares coming from different mixes have the same
ri. With respect to privacy, we claim that under the additional assumption that
the publication authority Z does not share its information with any of the first
mixes or its verifier, nor do one of the first mixes or its verifier collaborate with
one mix of each mix-net, privacy is also unconditional towards the authorities.
But if they do share information then, as long as a sufficient number of “key
trustees” are honest, they still need to break the encryption algorithm. For ro-
bustness, if all parties are honest then the protocol terminates successfully, unless
two users chose the same ri, which is an extremely unlikely event. Observe that
when using secret sharing, a user can submit inconsistent IDs. There seems no
obvious way to verify their consistency while maintaining unconditional privacy
towards the first i mixes, Mi,1. However, if users err, it just means their mes-
sage cannot be decoded by Z; it does not affect messages sent by other users.
For applications where this can be caused by malicious software, a verification
step during the submission phase could be implemented which prevents both,
generating invalid messages and inconsistent IDs.

4 Conclusion and Future work

We presented a novel protocol for a publicly-verifiable mix-net which offers ev-
erlasting privacy towards observers, meaning that the information made public
does not help an adversary with unlimited computational resources. Further, we
showed how the input can be split, each share mixed by a separate mix-net and

204 J. Buchmann, D. Demirel, and J. van de Graaf

recombined providing everlasting privacy towards both, the observers and the
authorities. We believe this is an important step forward since, as Chaum him-
self already argued in 1984 [3], individuals cannot be expect to understand the
difference between computational and unconditional security, and they should
not have to worry about it. In particular, computational security is simply not
enough in some applications like elections, invalidating many proposed schemes.
We plan to introduce this mix-net to mixing based voting systems like Prêt à
Voter [12] or Split-Ballot [9]. Further, all known instantiations for a homomor-
phic commitment and encryption scheme are based on computational problems
that are not quantum resistant. We plan to work on this matter in the future.

Acknowledgement. This work is a direct result of the third author’s visit to
Dagstuhl and Darmstadt in July 2011, and he would like to express his gratitude
to the Dagstuhl Institute, to SnT at the University of Luxemburg, to CASED at
the University of Darmstadt, and to his hosts, Peter Ryan and Johannes Buch-
mann, for making this visit possible. His research was partially supported by a
FAPEMIG grant, number APQ-02719-10. Further, this paper has been devel-
oped within the project ‘VerKonWa’, funded by the DFG. Finally, we would like
to thank Tal Moran, Olivier Pereira and Jeremy Clark for interesting discussions.

References

1. Norwegian evote project, http://www.regjeringen.no/en/dep/
2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.

Commun. ACM 24(2), 84–88 (1981)
3. Chaum, D.: A new paradigm for individuals in the information age. In: IEEE

Symposium on Security and Privacy, pp. 99–106 (1984)
4. Demirel, D., van de Graaf, J., Samarone dos Santos Araújo, R.: Improving helios

with everlasting privacy towards the public. In: Proceedings of EVT/WOTE (2012)
5. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,

M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

6. Howlader, J., Ghosh, A., Pal, T.D.: Secure Receipt-Free Sealed-Bid Electronic Auc-
tion, p. 228 (2009)

7. Huszti, A., Pethö, A.: A secure electronic exam system. Publicationes Mathemat-
icae Debrecen 77(3-4), 299–312 (2010)

8. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)

9. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur. 13(2) (2010)

10. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994)

11. Pereira, O., Cuvelier, E., Peters, T.: Election verifiability or vote privacy: Do we
need to choose? In: SecVote 2012 (2012), http://secvote.uni.lu/

12. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE TransIFS 4(4), 662–673 (2009)

http://www.regjeringen.no/en/dep/
http://secvote.uni.lu/

P4R: Privacy-Preserving Pre-Payments

with Refunds for Transportation Systems

Andy Rupp1, Gesine Hinterwälder2, Foteini Baldimtsi3, and Christof Paar4

1 Karlsruhe Institute of Technology, Germany
andy.rupp@rub.de

2 University of Massachusetts Amherst, USA
hinterwalder@ecs.umass.edu

3 Brown University, USA
foteini@cs.brown.edu

4 Ruhr-University Bochum, Germany
christof.paar@rub.de

Abstract. We propose a new lightweight payment scheme for transit
systems called P4R: Privacy-Preserving Pre-Payments with Refunds. In
P4R a user deposits money to obtain a bundle of credentials, where each
credential allows to make an arbitrary ride. The actual fare of a trip is
determined on-the-fly when exiting. Overpayments are refunded where
all trip refunds of a user are aggregated in a single token thereby saving
memory and increasing privacy. We build on Brands’ e-cash scheme to
realize the pre-payment system and a new variant of blind Boneh-Lynn-
Shacham signatures to implement the refund capabilities. Our construc-
tion is secure against malicious users and guarantees user privacy. We
also provide an efficient implementation that shows the suitability of our
scheme as future transit payment system.

Keywords: E-cash, refunds, lightweight payments, transit systems.

1 Introduction

Deploying electronic payment systems in transportation as opposed to sticking
with traditional systems (like cash or ticket systems) offers important benefits
like significantly reduced revenue collection costs, enhanced customer satisfaction
as well as improved services such as dynamic pricing. Hence, electronic payment
systems for transportation (EPST) already are and will become an even more
important component of the critical infrastructure “transportation”.

Currently deployed systems like the MBTA “Charlie Card” [14] or the E-
ZPass [9] show the potential of electronic payment systems as a reasonable, fair,
and efficient method for revenue collection. However, at the same time they are
examples demonstrating the serious shortcomings of today’s EPST since they
lack sufficient mechanisms protecting their security and especially the privacy of
their users: One problem that EPST seem to share with many other commercial
systems implementing security functions is the deployment of cryptographically
weak proprietary primitives as, e.g., demonstrated for the Charlie Card or Oys-
ter Card [13]. Besides security issues, frequently concerns about the location

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 205–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 A. Rupp et al.

privacy of EPST users are raised, i.e., the un-/traceability of users within the
transportation system. For instance, E-ZPass and Fast Lane toll plaza records
have been used by lawyers to prove that their client’s cheating spouses were not
where they pretended to be at a certain date and time [11] which shows that
these systems do not respect locational privacy at all. However, in order to en-
able a large-scale deployment and broad acceptance of EPST, adequate security
and privacy mechanisms are essential.

While currently deployed EPST suffer from serious privacy and security flaws
there is a wealth of cryptographic payment schemes (Section 1.1) offering strong
security and privacy properties. However, the unique requirements of the trans-
portation domain, especially engineering constraints and functional requirements,
prevent the use of well-established crypto like e-cash schemes.

In this paper we restrict to the consideration of a transit payment scenario
such as payment systems for subways. Here payment devices can be fairly low-
cost platforms such as RFID transponders, contactless or hybrid smart cards
which are provided by the Transportation Authority (TA). Given such a device,
a user can charge it at a vending machine to pay for rides in the subway system.
The entry and exit points are typically physically secured by turnstiles that are
equipped with readers responsible for calculating fares and conducting payment
transactions with user devices. To avoid congestion in front of turnstiles, trans-
actions have to be fast: A payment transaction should be executable within a few
hundred milliseconds. Transactions at the vending machine are less time-critical
but should also not take longer than several seconds.

The resource constraints of the user devices together with the realtime re-
quirements are one of the main obstacles preventing the application of e-cash
schemes. User devices are typically equipped with only a few tens of kilobytes of
memory and an 8 or 16-bit microcontroller running at not more than 16 MHz.
This situation greatly limits the performance achievable for a crypto primitive.
Currently, on widely-used microcontrollers, operated at 16 MHz, a modular ex-
ponentiation in 1024-bit RSA with full-length exponents requires about 5 s while
a point multiplication on a 160-bit elliptic curve group takes around 400 ms [10].

So clearly, it is prohibitive to do much more than a single full public-key
operation on such a CPU during a payment transaction. However, almost all e-
cash schemes make excessive use of exponentiations or ECC point multiplications
in the spending protocol. Fortunately, by employing an ECC coprocessor as
accelerator, the runtime of a point multiplication can be improved by roughly
one order of magnitude, (e.g., a factor 12 for the coprocessor in [16]). Yet, due
to power constraints we may only assume the usage of such a coprocessor when
the payment device is in contact mode, e.g., when interacting with the vending
machine, which fits our transit scenario.

1.1 Related Work

E-Cash. An e-cash scheme typically consists of a bank, users, merchants and the
following protocols: (1) a withdrawal protocol where a user obtains e-coins from
the bank; (2) a spending protocol where the user sends coins to a merchant; (3)

P4R: Privacy-Preserving Pre-Payments with Refunds 207

a deposit protocol where a merchant deposits coins obtained from a user to his
bank account; and (4) other protocols for identifying malicious behavior.

In his seminal paper [7] Chaum introduced anonymous electronic cash that
allows anonymous and unlinkable payments, while at the same time it ensures
unforgeability of e-coins. Since then, e-cash protocols have been extensively stud-
ied. To name only a few important results: Brands [5] proposed one of the first
and most famous offline anonymous e-cash schemes with the most efficient proto-
col when it comes to spending an e-coin. However, Brands’ coins occupy a fairly
large amount of memory and the withdrawal protocol is relatively expensive. To
solve the memory issue, Camenisch et al. [6] proposed so-called compact e-cash
but at the cost of a far less efficient spending protocol.

Payment Schemes Tailored to Transportation. Recently, EPST has started to
attract the attention of the crypto community. Heydt-Benjamin et al. [12] were
the first to propose an informal cryptographic framework for transit payment
systems. Sadeghi et al. [19] present an RFID-based e-ticket scheme which does
not expect the user’s payment device to carry out too much expensive compu-
tations, but the existence of external trusted devices is assumed for the costly
operations and their system only protects a user’s privacy with respect to out-
siders and not the transportation authority. Blass et al. [4] proposed another
offline “privacy-preserving” payment system for transit applications that solely
relies on a 128-bit hash function and lots of precomputed data on the backend’s
side. Again, a user’s privacy in their system is not protected from the TA.

Popa et al. [17], Balasch et al. [1], Meiklejohn et al. [15] and Day et al. [8]
proposed privacy-preserving payment systems for electronic toll collection. In
their schemes, user devices are battery-powered on-board units that collect GPS
location data and report this data or fare information (computed thereof) to
the toll collection provider. However, these were developed for a scenario where
users subscribe for a service and pay by the end of a billing period. In the transit
scenario, we cannot assume that each user has access to a trusted PC to settle
accounts: an untrusted vending machine is more realistic.

1.2 Our Approach and Contribution

Due to their strong security and privacy guarantees, it would be highly desir-
able to build a transit payment system based on e-cash. A good candidate for
this purpose is Brands’ scheme because of its exceptionally efficient spending
protocol.1 On the downside, Brands’ coins are large and their withdrawal is ex-
pensive. Hence, it would be beneficial to limit the amount of coins that a user
has to spend to pay his fare, having to spend only a single coin per trip would be
ideal. However, this conflicts with the necessity of allowing flexible and dynamic
prices, i.e., fares should not be flat but arbitrary monetary amounts: Setting
the denomination of a coin to be 1 cent certainly allows for flexible pricing but
users would need plenty of them to pay for a trip. Setting the face value to $2

1 Recent results show that Brands protocol cannot be proven secure using the currently
known techniques [3], however it has not been shown that the scheme is insecure.

208 A. Rupp et al.

reduces the number of required coins per trip but severely restricts the system of
fares. To do a tradeoff and have coins for different monetary values, one would
need to deal with overpayments and change in a privacy-preserving way. This is
especially difficult in EPST where bank and merchants are the same entity.

Our proposal of the transit payment system P4R addresses the issues discussed
above. The idea is to “let a single coin be worth exactly the (variable) cost of
an arbitrary trip in the system”. More precisely, our payment system is not a
typical e-cash scheme but based on the concept of pre-payments with refunds:
a user has to make a deposit to get a coin worth an arbitrary ride and gets a
refund if the actual fare is less than his deposit. We build our payment system
using Brands’ scheme where we minimize the number of coins a user needs to
pay for his rides. To be precise, our approach is not limited to Brands’ but also
works for other schemes that can be modified in a way that coins can be shown
twice without revealing the ID of a user (e.g., [2]). The refund system is realized
using a new variant of blind BLS signatures and allows to aggregate refunds.

As for security, we can show that it is infeasible for malicious users to abuse
the system. This includes users who try to dodge the fare or redeem higher
refunds than issued. Such users will be identified by double-spending checks.
Vice versa, we can show that the transportation authority cannot distinguish
between trips of honest users with the same aggregated refund amounts and it
cannot link rides of the same user thus providing user privacy.

Furthermore, we implemented P4R for 160-bit elliptic curves on the Moo
computational RFID tag [20] which houses a 16-bit MSP430 microcontroller and
may be seen as an approximation of a future payment token. The results show
that the scheme is fairly efficient even on this, not for our purposes optimized,
device. Assuming a clock rate of 16 MHz for a fielded version of the device, the
computations required for spending can be executed in 2 ms, getting a refund
takes 340 ms, and redeeming the refund token 350 ms. Withdrawal (5.29 s) is also
not far from meeting real-world requirements and could strongly be improved by
making use of dedicated hardware (e.g., an ECC coprocessor in contact mode).

Due to the page limit we refer to the full version [18] for a formal description of
P4R, proofs of security and privacy, a detailed discussion of the implementation,
as well as interesting tradeoffs between security, privacy, and efficiency.

2 A Privacy-Preserving Transit Payment System

High-Level Description. P4R is composed of three subsystems: Trip Authoriza-
tion Token (TAT), Refund Calculation Token (RCT), and Refund Token (RT)
system. The TAT system is offline. Here vending machines play the role of the
“bank” issuing TATs and (offline) readers at the entry turnstiles play the role of
a “merchant” where tokens can be spent. The RT system is online. Here roles are
reversed compared to the TAT system, i.e., readers at the exit turnstiles issue
refunds and the (online) vending machines redeem these tokens.

A TAT (aka ticket) is a credential that authorizes a user to make exactly
one trip. A user initially makes a deposit to obtain a number of TATs where

P4R: Privacy-Preserving Pre-Payments with Refunds 209

the cost of a TAT equals the price of the most expensive trip in the system.
Of course, to reduce this deposit it is also possible to have different types of
TATs for different zones of the transportation system. The withdrawal of a TAT
is done in a blind fashion such that a later use cannot be linked. The ID of a
user is encoded in each TAT to prevent a repeated use for entering the system
(double-spending detection). At the beginning of a ride a user presents an unused
TAT to the reader at the entry turnstile. If it is valid and the user can show
(using a zero-knowledge proof) that he knows the ID encoded in the TAT, access
is granted. When leaving the system the actual fare is determined at the exit
turnstile. This is done as follows: on entering, the user also received an RCT
(aka stamped ticket), which contains a MAC on the TAT, the date and time,
as well as on the ID of the reader. When he leaves he presents this RCT to the
exit turnstile which calculates the trip cost based on this information. He also
provides a blinded version of his RT (blank RT tokens are available from the
vending machines) to which the reader adds the difference between the deposit
for the TAT and the actual fare. To prevent re-using an RCT and thus claiming
the same refund several times, the idea is to bind an RCT to the TAT which
has been used on entering, and force a user to again prove the knowledge of the
ID encoded into this TAT when he leaves. An RT (aka piggy bank) is used to
add up several refunds instead of having a separate RT per refund. When a user
decides to cash the collected refund he presents his RT to the vending machine
which redeems the RT if it is not already marked as cashed in the central DB.

Some Technical Details. The TAT and RCT subsystems are loosely coupled
and realized based on an extension of Brands’ protocol that allows to show
a TAT twice without revealing the user’s identity. To setup the TAT system,
the TA chooses a cyclic group G of prime order q = Θ(2k1), group generators
g, g1, g2 ∈ G, a random number x ∈ Z∗

q , and a collision-resistant hash function

H : G5 → Zq. The public key is pkTAT = (G, g, g1, g2, g
x, gx1 , g

x
2 , H) and the secret

key is skTAT = x. The user’s secret ID is some number idU ∈ Zq. This corresponds
to Brands’ setting. A TAT is a tuple TATi = (Ai, Bi, Ci, sigx(Ai, Bi, Ci)), where

Ai = gidUsi
1 gsi2 , Bi = gxi

1 gyi

2 , Ci = g
x′
i

1 g
y′
i

2 , and sigx(Ai, Bi, Ci) is a Chaum-
Pedersen signature. Ai encodes the user’s ID and a random serial number. Bi

and Ci (where Ci does not exist in Brands’ original system) are commitments to
random values which are later used as blinding factors for proving the ownership
of a TAT (i.e., knowledge of idU and si) when entering and leaving the system.
If a user tries to show a TAT twice to enter or leave and is thus forced to re-use
xi, yi or x

′
i, y

′
i, respectively, idU can easily be revealed. Note that since a TAT is

withdrawn in a blind fashion, only the user knows the values comprising TATi.
To setup the RCT system, a random k2-bit keyK for a MAC scheme is chosen.

An RCT has the form RCTi = (TATi, ts, idR,MACK(TATi, ts, idR)), where ts is
the current timestamp and idR is the ID of the reader at the entry.

The RT system is based on a new variant of blind BLS signatures. For setting
up this system, the TA chooses cyclic groups G,GT of prime order p = Θ(2k3)
with an efficient, non-degenerated pairing e : G ×G → GT , a generator h ∈ G,
and an exponent d ∈ Zp. Let W be the set of all possible single-trip refunds.

210 A. Rupp et al.

U V (online)

(1) User buys TATs and receives fresh RT at vending machine

PoK of idU←−−−−−−−−−−−−−−−−−→
TATi = (Ai, Bi, Ci, sigx(Ai, Bi, Ci))

blind sigs on (Ai, Bi, Ci)←−−−−−−−−−−−−−−−−−→
where Ai = g

idUsi
1 g

si
2 , Bi = g

xi
1 g

yi
2

where Ci = g
x′
i

1 g
y′i
2

RT = SNRT, R = 1, v = 0
SNRT←−−−−−−−−−−−−−−−−−−− SNRT

$← G, add SNRT to DB

(4) User redeems RT at vending machine

r
$← Zp, RT

′ = RTr

R = Rr mod p
SNRT, RT

′, v, R−−−−−−−−−−−−−−−−−−−→ check validity of SNRT

v
?
< p − 1

e(SNR
RT, h

dv)
?
= e(RT′, h)

mark SNRT as redeemed in DB

U R (offline)

(2) User shows TAT and receives RCT when entering system

TATi−−−−−−−−−−→ check validity of TATi

z1 = xi + c(idUsi) mod q
c←−−−−−−−−−− c

$← Zq

z2 = yi + csi mod q
z1, z2−−−−−−−−−−→ g

z1
1 g

z2
2

?
= Ac

iBi

add (TATi, z1, z2, c) to DB
RCTi←−−−−−−−−−− RCTi = (TATi, ts, idR,

MACK(TATi, ts, idR))

(3) User shows RCT and collects refund on his RT when leaving system

RCTi−−−−−−−−−−→ check validity of RCTi,TATi

z′
1 = x′

i + c′(idUsi) mod q
c′←−−−−−−−−−− c′ $← Zq

z′
2 = y′

i + c′si mod q
z′
1, z

′
2−−−−−−−−−−→ g

z′1
1 g

z′2
2

?
= Ac

iCi

add (TATi, z
′
1, z

′
2, c

′) to DB

r
$← Z

∗
p

w←−−−−−−−−−− determine refund w ∈ Zp−1

RT′ = RTr RT′
−−−−−−−−−−→

v = v + w, R = Rr mod p, RT = RT′′ RT′′
←−−−−−−−−−− RT′′ = RT′dw

Fig. 1. Main P4R protocols executed by users U , vending machines V, and readers R

Then, the public key is pkRT = (G,GT , e, h, (h
dw

)w∈W) and the secret key is
skRT = d. Note that assuming users do not verify RTs (which is similar to not
counting change for small amounts) pkRT does not need to be stored on user
devices. An RT holding the refund value v ∈ Zp−1 corresponds to the multi-

signature RT = SNdv

RT, where SNRT is a random serial number chosen by the TA.

Clearly, a refund RT = SNdv

RT can be increased to v + w by raising it to dw. To
blind an RT before collecting a refund RT is raised to some random r ∈ Z∗

p. There
is actually no need to remove the old blinding r before blinding RT again using
r′ to collect another refund, so blinding factors can be aggregated as R = rr′.

P4R: Privacy-Preserving Pre-Payments with Refunds 211

More details on P4R are given in Figure 1 showing the main interactions
between users U , vending machines V , and readers R.

3 Security and Privacy

TA Security. P4R guarantees that the TA does not lose any money: users are
not able to receive reimbursements which exceed the overall deposit for TATs
minus the overall fare of their trips without being identified by the TA. In order
for a user to cheat the TAT subsystem he would need to either forge a TAT, re-
use it or use a foreign (eavesdropped) one. Fortunately, all these possibilities are
ruled out by the (assumed) security of Brands’ scheme: unforgeability, double-
spending security (restrictiveness), and soundness. A user could also try to cheat
the RCT subsystem by creating RCTs himself, use the same RCT twice or use
a “foreign” RCT not corresponding to his current trip. Security against those
attacks can be reduced to MAC unforgeability and Brands’ restrictiveness and
soundness under the assumption that we exclude physical attacks (i.e., users
jumping over turnstiles) and users adhere to the protocol schedule. Finally, a
user cannot cheat the RT system: RTs cannot be redeemed twice due to online
checks. Also, a user cannot forge RTs or claim higher values on his RT since this
would require breaking the Σ-Incremental DH-Assumption [18].

User Security. Individual users are protected in the sense that a passive adver-
sary is not able to steal tickets or refunds from a user. In particular, an adversary
neither can use “foreign” TATs or RCTs since he would have to prove knowledge
of the encoded idU and si nor he can redeem an eavesdropped RT since he would
need to know the aggregated blinding factor R. In the full version [18] we also
consider security against more powerful adversaries.

User Privacy. A transportation system should provide location privacy for
its users, i.e., it should not be possible to trace the movements of individual
users within the system. Unfortunately, in P4R redeeming refunds leaks some
information on the sequence of trips a user did. Luckily, we can show that this
sequence is still hidden within the set of all possible trip sequences leading to the
same total refund amount and argue that theoretically this set should be pretty
large (equals the number of integer partitions of the refund value). However,
one should also be aware of the limits of this approach: In practice, we cannot
guarantee that during a certain period of time many such sequences actually
appear in the records of the TA. For instance, it could happen that since the issue
date of a RT nobody but the owner of this token did trips resulting in a particular
refund amount (though in theory many sequences lead to this amount). Hence,
the exact level of location privacy provided by P4R depends on the characteristics
of the transportation system and user behavior. Nevertheless, we believe that
for real-world transportation systems these limits are no real issues.

Acknowledgments. We would like to thank Marc Fischlin for his valuable
input to the security proofs and the anonymous reviewers for helpful comments.

212 A. Rupp et al.

References

1. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.:
PrETP: Privacy-preserving electronic toll pricing. In: USENIX Security Sympo-
sium, pp. 63–78. USENIX Association (2010)

2. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. IACR Cryptology
ePrint Archive 2012, 298 (2012)

3. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. IACR Cryptology ePrint Archive 2012, 197 (2012)

4. Blass, E.O., Kurmus, A., Molva, R., Strufe, T.: PSP: private and secure payment
with rfid. In: Al-Shaer, E., Paraboschi, S. (eds.) WPES, pp. 51–60. ACM (2009)

5. Brands, S.: An efficient off-line electronic cash system based on the representation
problem. Tech. Rep. CS-R9323, CWI (1993)

6. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R.
(ed.) EUROCRYPT2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

7. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO, pp. 199–203. Plenum Press, New York (1982)

8. Day, J., Huang, Y., Knapp, E., Goldberg, I.: SPEcTRe: spot-checked private ecash
tolling at roadside. In: Chen, Y., Vaidya, J. (eds.) WPES, pp. 61–68. ACM (2011)

9. E-ZPass Interagency Group: E-ZPass, http://www.ezpass.com/
10. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve

Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

11. Hager, C.: Divorce lawyers using fast lane to track cheaters,
http://msl1.mit.edu/furdlog/docs/2007-08-10_wbz_fastlane_tracking.pdf

12. Heydt-Benjamin, T.S., Chae, H.-J., Defend, B., Fu, K.: Privacy for public trans-
portation. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 1–19.
Springer, Heidelberg (2006)

13. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A practical attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

14. Massachusetts Bay Transportation Authority: CharlieCards & Tickets,
http://www.mbta.com/fares_and_passes/charlie/

15. Meiklejohn, S., Mowery, K., Checkoway, S., Shacham, H.: The phantom tollbooth:
Privacy-preserving electronic toll collection in the presence of driver collusion. In:
USENIX Security Symposium. USENIX Association (2011)

16. Park, J., Hwang, J.T., Kim, Y.C.: FPGA and ASIC implementation of ECC pro-
cessor for security on medical embedded system. In: ICITA (2), pp. 547–551. IEEE
Computer Society (2005)

17. Popa, R.A., Balakrishnan, H., Blumberg, A.J.: VPriv: Protecting privacy in
location-based vehicular services. In: USENIX Security Symposium, pp. 335–350.
USENIX Association (2009)

18. Rupp, A., Baldimtsi, F., Hinterwalder, G., Paar, C.: Efficient and privacy-
preserving payments in transportation systems: Cryptographic theory meets prac-
tice (2013), http://homepage.rub.de/andy.rupp/papers/p4r_full.pdf

19. Sadeghi, A.R., Visconti, I., Wachsmann, C.: User privacy in transport systems
based on RFID e-tickets. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S.
(eds.) PiLBA. CEUR Workshop Proceedings, vol. 397. CEUR-WS.org (2008)

20. Zhang, H., Gummeson, J., Ransford, B., Fu, K.: Moo: A batteryless computational
RFID and sensing platform. Tech. Rep. UM-CS-2011-020, Department of Com-
puter Science, University of Massachusetts Amherst, Amherst, MA (June 2011),
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf

http://www.ezpass.com/
http://msl1.mit.edu/furdlog/docs/2007-08-10_wbz_fastlane_tracking.pdf
http://www.mbta.com/fares_and_passes/charlie/
http://homepage.rub.de/andy.rupp/papers/p4r_full.pdf
https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf

Coupon Collector’s Problem

for Fault Analysis against AES
— High Tolerance for Noisy Fault Injections

Yu Sasaki1, Yang Li2, Hikaru Sakamoto2, and Kazuo Sakiyama2

1 NTT Secure Platform Laboratories
sasaki.yu@lab.ntt.co.jp

2 The University of Electro-Communications
{liyang,sakiyama}@uec.ac.jp

Abstract. In this paper, we propose a new technique for Square Dif-
ferential Fault Analysis (DFA) against AES that can recover a secret
key even with a large number of noisy fault injections, while the previ-
ous approaches of the Square DFA cannot work with noise. This makes
the attack more realistic because assuming the 100% accuracy of obtain-
ing intended fault injections is usually impossible. Our success lies in
the discovery of a new mechanism of identifying the right key guess by
exploiting the coupon collector’s problem and its variant. Our attack pa-
rameterizes the number of noisy fault injections. If the number of noisy
faults is set to 0, the analysis becomes exactly the same as the previous
Square DFAs. Then, our attack can work even with a large number of
noisy faults. Thus our work can be viewed as a generalization of the pre-
vious Square DFAs with respect to the number of tolerable noisy fault
injections.

Keywords: AES, Fault analysis, DFA, Noisy fault model, SQUARE
DFA, Coupon collector’s problem.

1 Introduction

Fault analysis is one of the major approaches of the side-channel analysis. In
particular, Differential Fault Analysis (DFA) has been applied to very wide range
of ciphers. The suitable fault injection rounds for DFA (DFA round) are almost
uniquely determined depending on the structure of the target cipher. These
DFA rounds are the first place to be protected for the DFA countermeasures. A
common approach is to take redundancy in hardware cost or time to trade the
ability of detecting faulty calculations [1–3]. When the faults are injected before
the DFA rounds, the complexity of the key recovery process usually becomes
impractical in a straightforward DFA application.

For the AES-128 encryption [9], many DFA results [4–8] imply that the DFA
rounds are 8 and 9. Even after the countermeasure is proposed so that rounds 8
and 9 are protected, researchers have proposed practical DFA variants based on

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 213–220, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 Y. Sasaki et al.

Table 1. Comparison of Square DFA

Approach α #Tolerable noise Time #Fault Injections

[10] 256 0 236.68 255
[12] 44 0 234.14 43

256 1610 244.54 59712
Ours 128 49 241.15 5664

64 13 239.94 2464

the fault injected at round 7 such as Square DFA [10], impossible DFA [10, 11],
and Meet-in-the-Middle (MitM) DFA [11].

The Square DFA exploits a property of the AES algorithm, i.e., if the at-
tacker collects 256 ciphertexts where one byte at the beginning of round 7 takes
all 256 distinct values and other bytes are fixed to a constant, in a few rounds
after, all bytes take exactly 256 distinct values with probability 1. The illustra-
tion of the property is available in Fig. 1. Then, the attacker guesses the last
round key and performs a partial inverse computations for 256 ciphertexts. The
correctness of the key guess is verified by checking whether or not 256 distinct
values are observed. The attack requires to obtain 255 distinct fault values on
a target byte with exactly 255 fault injections. Hence, the attack cannot accept
the noise, and [10] assumed the bit-fault model.

Kim improved the Square DFA based on the observation that 256 distinct
values are not necessary to recover the key [12]. The attacker collects only α dis-
tinct values at the beginning of round 7, and thus the number of fault injections
is reduced and the attack model is relaxed to the random-byte fault model. The
attack requires to obtain α−1 distinct fault values on a target byte with exactly
α− 1 fault injections. Hence, the attack cannot accept the noise.

In practice, fault injections cannot assure the 100% accuracy of the intended
fault injections. As a result, it is necessary to introduce the noisy fault model.,
where random faulty ciphertexts corresponding to unintended fault injections
are mixed in the data to be analyzed for recovering a key.

Our Contributions. We propose a new technique for the Square DFA, which
can recover the key even with a large number of noisy fault injections.

Assume that an attacker can inject an intended fault every two trials. First of
all, the attacker obtains one ciphertext without injecting the fault. In order to
collect α − 1 intended faulty ciphertexts, the same number of noisy ciphertexts
are obtained, and the total number of data to be analyzed is n = 2(α − 1) + 1.
Our attack still can find the key with such a high probability of obtaining noise
at a small additional cost. See Table 1 for the comparison with previous work.

Our attack collects α distinct values at the beginning of round 7. However,
the attacker also obtains n − α unintended ciphertexts due to the noise, and
she does not know which are intended ones. For the right key guess, at least
α distinct values appear after the partial decryption. If the probability of this
event is small enough, the key space is reduced. The probability of this event is
estimated by solving the coupon collector’s problem and its variant, Let β be

Coupon Collector’s Problem for Fault Analysis against AES 215

the size of each cell of the cipher (β = 256 for AES). The probability that a key
guess is regarded as a right key candidate, i.e., α distinct values appear in one
byte after the partial decryption is equivalent to the probability where at least
α out of β coupons are collected with n coupon drawing events.

2 Related Work

2.1 Specification of AES

AES-128 [9] is a 128-bit block cipher using a 128-bit key. It consists of 10 rounds.
Subkeys ski for round i are generated from the original secret key K. At first,
subkey sk0 is XORed to the plaintext. Then a round function AK◦MC◦SR◦SB
is iteratively applied, where SB is an S-box transformation, SR is a byte shift,
MC is a multiplication by an MDS matrix, and AK is a subkey XOR. Note
that MC is omitted for the last round. We denote the initial state in round x by
#xI . Then, states immediately after each operation in round x are denoted by
#xSB , #xSR, #xMC , and #xAK . Obviously, #xAK is identical with #(x+1)I .
We denote 4-byte positions in column j of state #S by #S[Col(j)].

2.2 Square DFA on AES

Phan and Yen showed that the key is recovered with the fault injected at the
beginning of round 7 [10]. The attack uses the idea of the Square attack, which
was firstly proposed by Daemen et al. for the Square cipher.

The attack collects 256 distinct values on a single byte at the beginning of
round 7. The attacker firstly obtains a ciphertext. While the same plaintext is
encrypted 255 times. she injects a fault on a target byte. The fault model by
Phan and Yen [10] is summarized as follows.

Fault model 1 (bit-fault and deterministic-fault)
– An attacker can inject the fault in any intended bit position, and

moreover, several target bits can be flipped simultaneously.
– The fault injection to the target bits always succeeds.

All in all, the attacker can obtain 255 distinct fault values with 255 injections
without obtaining any noisy data. 256 distinct values for a single byte at #7I

result in 256 distinct values for all bytes at #9AK′ as shown in Fig. 1. Note that
the order of the linear operations are exchanged in rounds 9 and 10.

After 256 ciphertexts following the data structure of Fig. 1 are obtained, the
attacker recovers the converted last round key sk′10, where sk′10 = SR−1(sk10).
The key recovery phase is described in Fig. 2. At first, the inverse of SR is
applied to all ciphertexts. Then, the attacker guesses sk′10 column by column.
Let us focus our attention on column 0, which is colored in Fig. 2. 232 value
of sk′10[Col(0)] are exhaustively guessed. For each guess, the attacker decrypts
α = 256 converted ciphertexts (C′

0, . . . , C
′
255) up to #9AK′

[Col(0)]. Then, the
right key can be identified based on the following mechanism.

216 Y. Sasaki et al.

SB SR MC

#8I #8SB #8SR #8MC sk
8

Round

8

� � � �
� � � �
� � � �
� � � �

SB SR MC

#7I #7SB #7SR #7MC sk
7

Round

7

� c c c

c c c c

c c c c

c c c c

� c c c

c c c �
c c � c

c � c c

SB SR

#10I #10SB #10AK’ sk
10

Ciphertext (C
i
)

: � distinct values�

Round

10

: no property

SB

#9I #9SB

Round

9

� � � �
� � � �
� � � �
� � � �

SR

#9SR sk
9#9AK’

MC

MC -1sk
9
’

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

SR -1sk
10

’

� c c c

c c c c

c c c c

c c c c

� c c c

c c c c

c c c c

c c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

� c c c

: constantc

Fig. 1. Fault injection at #7I . The key is a fixed value but the notation c is omitted.

SB

#10I #10SB

C’
i
= SR-1(C

i
)

sk
10

’ = SR-1(sk
10

)

� � � �
� � � �
� � � �
� � � �

MC

#9AK’

Fig. 2. The structure of the key recovery phase

Key Recovery Mechanism 1: For the right guess, 256 distinct values
appear for each byte of #9AK′

[Col(0)]. This is unlikely to occur for wrong
guesses. In fact, the probability of this event for a wrong guess is

(255∏
i=0

(256− i)

256

)4
≈ 0. (1)

Finally, the right key value is recovered with 255 fault injections and about
232 · 256 · 1/10 ≈ 236.68 AES computations.

2.3 Improved Square DFA with a Small Number of Fault Injections

Kim proposed an improved Square DFA on AES [12]. The entire attack struc-
ture again follows Fig. 1. Suppose that the attacker obtains α distinct values

Coupon Collector’s Problem for Fault Analysis against AES 217

at the target single byte at #7I , where 1 ≤ α ≤ 256. The only difference from
the original Square DFA [10] is the value of α. Phan and Yen only considered
α = 256 while Kim regarded it as a variable ranging from 1 to 256. Due to the
same reason as [10], each byte at #9AK′

takes α distinct values.

Fault model 2 (random byte-fault and deterministic fault)
– An attacker can inject α− 1 distinct fault values in an intended byte

position. Fault value is uncontrollable and is uniformly distributed.
– The fault injection to the target byte always succeeds.

For a fixed α, the right key can be identified based on the following mechanism.

Key Recovery Mechanism 2: For the right guess, α distinct values
appear for each byte of #9AK′

[Col(0)]. If this event is unlikely to occur
for wrong guesses, the right key can be identified. The probability of this
event for a wrong guess is

(α−1∏
i=0

(256− i)

256

)4
. (2)

Kim showed that when α = 44, Eq. (2) is smaller than 2−32 and thus the right
key is recovered. Finally, the right key value is recovered with 43 fault injections
and about 232 · 44 · 1/10 ≈ 234.14 AES computations.

3 Square DFA Based on Coupon Collector’s Problem

We generalize the previous Square DFA to accept the noise. Our attack has two
parameters. 1) how many distinct values can be obtained at #7I , α, and 2) how
many ciphertexts are obtained before α intended ciphertexts are collected, n.
Note that n is the sum of the numbers of intended and unintended ciphertexts.
If we set the number of noisy fault to 0 (n = α), the analysis becomes the same
as [12]. If we further set α = 256, the analysis becomes the same as [10]. Hence,
we call our approach generalized Square DFA. For the further generalization,
we also parameterize the size of each cell by β, e.g. β = 256 for AES.

3.1 Overview

The parameters of the attacker’s abilities α and n basically depend on the en-
vironment e.g., how much cost can be spent for the attack. We assume that the
attacker’s ability is independently measured before the analysis is started.

Fault model 3 (random byte-fault and probabilistic-fault)
– An attacker can inject at most α − 1 distinct fault values in an in-

tended byte position, The fault value is uncontrollable and is uni-
formly distributed.

– The intended fault injection can be obtained only probabilistically,
with a probability of (α− 1)/(n− 1).

218 Y. Sasaki et al.

The attack firstly obtains 1 ciphertext without the fault injection. While the
same plaintext is encrypted n − 1 times, the attacker injects the fault n − 1
times and obtains the corresponding n − 1 ciphertexts. α − 1 intended faulted
ciphertexts are included in the n− 1 faulted ciphertexts, but which ciphertexts
are intended ones is unknown. After collecting such 1+ (n− 1) = n ciphertexts,
we recover the last round key sk′10 column by column.

Key Recovery Mechanism 3: For the right guess, at least α distinct
values appear for each byte of #9AK′

[Col(0)]. If this event is unlikely to
occur for wrong guesses, the right key can be identified.

Therefore, for each guess of sk′10[Col(0)], if less than α distinct values are ob-
served in at least one byte of #9AK′

[Col(0)], we know the guess is wrong, and
thus the key space is reduced. Let P (α, β, n) be the probability that, for each key
guess, at least α distinct values appear for one byte of #9AK′

[Col(0)]. The key
space of sk′10[Col(0)] is reduced from β4 to β4 × P (α, β, n)4 after the analysis.

For simplicity, let us discuss the case where α = β, which implies that all
values are collected at #7I . For AES, α = β = 256. In this case, P (α, β, n) is
equivalent to the success probability of the coupon collector’s problem.

There are β coupons. With 1 coupon-drawing event, 1 coupon which is
uniformly distributed from β coupons is obtained. The success probability
of the coupon collector’s problem for parameters (β, n) is the one that all
β coupons are completed with n coupon-drawing events.

For α < β, P (α, β, n) is equivalent to a variant of the coupon collector’s problem
where at least α kinds out of β kinds of coupons are collected with n coupon-
drawing events. In the next section, we will evaluate the value of P (α, β, n).

3.2 Probability Evaluation of P (α, β, n)

Proposition 1 Let Q(α, n) be the number of permutations of n coupons includ-
ing all of the α different coupons completely (1 ≤ α ≤ n). Then

Q(α, n) =

α∑
k=1

(
(−1)α−k

(
α

k

)
kn
)
. (3)

Proof. As Q(j, n)
(
α
j

)
covers all the possible ways to collect j different coupons

chosen from α coupons (j ≤ α) using n random coupon-drawing trials, its sum-
mation for j = 1, 2, . . . , α, where α = 0, 1, . . . , n, always becomes αn as

α∑
k=1

(
Q(k, n)

(
α

k

))
= αn, (4)

For an =
∑n

k=1

(
n
k

)
bk, we have bn =

∑n
k=1(−1)n−k

(
n
k

)
ak. Therefore for Eq. (4),

consider αn as an and Q(k, n) as bk, we can derive Eq. (3). ��

Coupon Collector’s Problem for Fault Analysis against AES 219

Proposition 2 Let P (α, β, n) be the probability that one collects at least α out
of β coupons through n trials, where 2 ≤ α ≤ β. Then

P (α, β, n) =

(
β

α

)(
α

1

) n∑
i=α

Q(α− 1, i− 1)

βi
, (5)

Proof. We have the probability that one collects α coupons out of β exactly at
the i-th trial, i.e., α− 1 coupons are collected through the i− 1 trials, as

Q(α− 1, i− 1)
(

β
α−1

)(
β−α+1

1

)
βi

=

(
β

α

)(
α

1

)
Q(α− 1, i− 1)

βi
.

As the probability of P (α, β, n) equals the summation of the above probabilities
for i = α, α+ 1, . . . , n, Eq. (5) is derived. ��

4 Details of the Generalized Square DFA on AES-128

The parameters (α, n) should be measured depending of the attacker’s ability.
The parameter β is fixed to 256. In this section, we explain the attack with
the parameter (α, β, n) = (256, 256, 1553), where P (α, β, n) = 1/2 according to
Eq. (5). Note that (α, n) = (256, 1553) is just an example for the case study.

The attack consists of the data collecting phase and the key recovery phase.
The procedure of the data collecting phase is as follows.

1. Obtain a ciphertext C0 without injecting the fault, and store it in a table.
2. While the same plaintext is encrypted, try to inject a fault in a target single

byte at #7I . If the obtained ciphertext does not overlap with already stored
ones in a table, add this ciphertext into a table. Otherwise, discard it.

3. Repeat Step 2 until n ciphertexts C0, . . . , Cn−1 are obtained.

For one plaintext, a set of n ciphertexts is constructing. For (α, n) = (256, 1553),
we collect 8 sets of n ciphertexts by using 8 different plaintexts.

The input to the key recovery phase is 1553 ciphertexts C0, . . . , C1552, where
256 values are collected in the target single byte at #7I . Then, do as follows.

1. Compute C′
i ← SR−1(Ci) for 0 ≤ i ≤ 1552.

2. For each column (j = 0, 1, 2, 3), exhaustively guess the value for sk′10[Col(j)]
and compute #9AK′

[Col(j)].
3. If only less than 256 distinct values are observed in at least one byte of

#9AK′
[Col(j)], discard the guessed sk′10[Col(j)] from the key candidates.

4. Repeat steps 1 to 3 by 8 times with changing the ciphertext set.

The attack cost is evaluated as follows. The number of the faulty ciphertexts is
8 · 1553 = 12424. In the key recovery phase, Step 1 costs 8 · 1553 inverse SR
computations, which essentially does not cost anything. Step 2 costs 8 ·1553 ·232
one round computations, which is (8 · 1553 · 232)/10 ≈ 242.28 AES computations.
The memory requirement is 232 AES state to count the remaining key space.

220 Y. Sasaki et al.

The time complexity can be optimized. Once a key candidate is identified to
be a wrong key, it does not have to be examined again. Therefore, the complexity
is 1553 · (232 + 228 + 224 + · · ·+ 24)/10 ≈ 239.37 AES computations.

If not only for the ciphertext, but also the plaintext is available for the at-
tacker, she can combine the brute force attack. Hence, step 4 can be stopped
when the key space is reduced to a sufficiently small size, rather than 1.

5 Concluding Remarks

In this paper, we presented the new fault analysis called generalized Square

DFA, which was an extension of the previous Square DFA with respect to the
noisy fault injections. The probability that a key candidate is judged as a correct
key is estimated with a coupon collector’s problem and its variant.

References

1. Fischer, W.: Aspects of the development of secure and fault-resistant hardware.
In: FDTC, pp. 18–22 (2008)

2. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N.: Fault injection resilience. In:
FDTC, pp. 51–65 (2010)

3. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent
Error Detection Scheme for AES Hardware. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

4. Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

5. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003)

6. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

7. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

8. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

9. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)
10. Phan, R.C.-W., Yen, S.-M.: Amplifying Side-Channel Attacks with Techniques

from Block Cipher Cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling,
D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)

11. Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-Middle and Impossible Dif-
ferential Fault Analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 274–291. Springer, Heidelberg (2011)

12. Kim, C.H.: Efficient methods for exploiting faults induced at AES middle rounds.
Cryptology ePrint Archive, Report 2011/349 (2011)

Mitigating Smart Card Fault Injection with

Link-Time Code Rewriting: A Feasibility Study

Jonas Maebe, Ronald De Keulenaer, Bjorn De Sutter, and Koen De Bosschere

Computer Systems Lab, Ghent University
{jmaebe,rdkeulen,brdsutte,kdb}@elis.ugent.be

Abstract. We present a feasibility study to protect smart card software
against fault-injection attacks by means of binary code rewriting. We
implemented a range of protection techniques in a link-time rewriter
and evaluate and discuss the obtained coverage, the associated overhead
and engineering effort, as well as its practical usability.

Keywords: smart card, fault injection, software protection, binary
rewriting.

1 Introduction

Cryptographic keys and PIN hashes are often embedded in bank smart cards.
To steal that data, attackers inject faults with power glitches, clock period al-
terations, temperature rises, active probing of buses, or light attacks [2]. The
faults cause bit flips to alter data values or program code. When this remains
undetected, security barriers risk being broken: private keys can leak [1], encryp-
tion rounds are skipped [4], buffers can overflow [2], and critical checks can be
skipped [8]. To protect software against such attacks, redundancy can be inserted
in the code to detect occurring faults. Ideally, some tool can apply generic forms
of low-overhead redundancy fully automatically to implement security policies
specified in a convenient form without impeding the programmer’s productivity.

Many redundancy schemes have been proposed in the past to protect soft-
ware against soft errors [14] and to prevent control flow from deviating from
predetermined paths [13]. However, all automated techniques that try to limit
the performance overhead of the introduced redundancy is implemented in tools
that do not cooperate well with other compilers.

In practice, companies rely on multiple in-house and third-party development
tool chains that may change over time. To maintain interoperability with differ-
ent tool chains and avoid vendor lock-in, tools that automate the implementation
of security policies should therefore be separate tools that do not break existing
tool chains and do not depend on their internal operation. This leaves two basic
options to insert redundancy: source code rewriting and binary code rewriting.

Source-to-source rewriters essentially insert redundancy in the source code
by duplicating statements. They suffer from major drawbacks. First, optimizing
compilers risk undoing the protection by eliminating the redundancy they detect
in the source code. Secondly, as security is a problem that concerns many ab-
straction and implementation layers, many security policies involve lower-level

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 221–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 J. Maebe et al.

aspects that are hard to control in source code when the used compilers are black
boxes. Thirdly, source-to-source rewriters are by definition language-dependent
and hence need to be redeveloped for every programming language. Finally,
white and black box security testing typically takes place on the final binary
code. Communication between testing teams and protection tool developers is
much harder if the former are studying assembly code generated by some black-
box compiler while the latter are working on source code.

Binary code rewriters do not suffer from these problems. They do suffer, how-
ever, from the fact that they have to operate on binary code that lacks symbolic
information. This limits the precision and scope of many program analyses and
transformations, which affects the provided level of protection and the overhead.

This paper presents a feasibility study of link-time binary code rewriting to
protect against fault-injection attacks. We argue why such an approach is feasi-
ble. We evaluate the coverage and overhead of link-time code rewriting that
implements certain security policies. The policies we examine are cookbook
recipes [10] for local hardening of code against certain classes of single-instruction
failures, i.e., single instructions that are skipped as the result of an injected fault.

We know of no automated fault-injection protection tools in use today for
smart card software.We believe that the need to provide this protection manually
is the main reason why manual assembly programming is still so common. By
providing convincing arguments for the feasibility of automating this protection
in a tool that does not disrupt proprietary compiler-based tool flows, we hope to
contribute a significant step towards more productive smart card programming.

2 Link-Time Software Protection against Fault Injection

Around the turn of the century, link-time rewriters were presented for perfor-
mance optimization [12] and code compaction [6]. Today, compilers like gcc and
LLVM also include so-called link-time optimizations. Those operate on the com-
piler’s intermediate representation, however, not on binary code. These compilers
therefore do not meet the practical requirements set forward in the introduction.

By contrast, Diablo (http://diablo.elis.ugent.be) is a true link-time rewriting
framework [15]. Its flexibility, versatility, extensibility, retargetability, portabil-
ity, and reliability have been demonstrated extensively in the past, which make
it a promising candidate tool for the automated protection of binary code. In
short, Diablo has been used to develop tools that rewrite code for a range of
goals including optimization, compaction, (de-)obfuscation, anti-tampering, for-
mal verification, instrumentation, GUI executable editing, and OS customiza-
tion. These tools have been applied to binaries from different source languages,
including C, C++, assembler, and Fortran. Several of those tools have been ap-
plied to binaries generated by different compiler generations covering 10 years
of proprietary as well as open-source compilers (incl. ARM ADS, ARM RVCT,
and gcc). Finally, the Diablo framework has been used to rewrite the Linux
kernel for both ARM and x86. This kernel features artifacts such as code for
physical and virtual address spaces, privileged instructions, manually written

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 223

assembler not adhering to the conventions as specified in application binary in-
terfaces (ABIs), and a complicated, non-standard build process. For an overview
of all Diablo-related research results, we refer to the Diablo website.

Together, these demonstrations show that link-time rewriters can meet the
requirements discussed before: they can cooperate reliably with black box, third-
party tool chains and code libraries. It is, however, not clear a priori that a tool
like Diablo can deliver acceptable protection at acceptable overhead, with an
acceptable engineering effort. Link-time tools are designed to depend only on in-
formation available in object files, such as symbol and relocation information [9].
This enables them to handle code generated by open-source as well as closed,
proprietary compilers. However, this also limits their capabilities.

First, they lack high-level semantic information about the code to be rewrit-
ten. For example, no type information is available, which makes alias analysis
much less precise [11]. Consequently, link-time rewriters typically need to handle
memory by and large as a black box. Rather than performing register allocation
globally, like compilers do, they need to find free registers locally to store tem-
porary values. In case they cannot find them, the values have to be spilled to
the stack. Applying this spilling locally in a link-time rewriter introduces con-
siderably more overhead. Secondly, at link time indirect control flow transfers
of which binary code analysis cannot resolve the targets precisely have to be
modeled conservatively, i.e., over-approximated, on the basis of relocation infor-
mation [5]. Through additional edges that model the over-approximation, the
control flow graph (CFG) then models a superset of all possible program execu-
tions. This is safe, but leads to a loss in analysis precision. It is mainly because
of these limitations that a feasibility study like this one is needed.

For this feasibility study, we implemented three first-line-of-defense cook-
book protection schemes that provide local hardening against certain single-
instruction failure attacks [10]. We implemented these in a tool on top of the
Diablo framework for the ARM Cortex-M0 instruction set architecture (ISA),
which is used in the ARM smart card SecurCore SC000 processors [16] that
target future smart card applications. In these protection schemes, the program
executes some “invalid state exception” code when a fault is detected. In our
prototype, we opted for an infinite loop to prevent the export of any secret data.

ldr r0,[r1]
cmp r0,#5
beq .success
<failure handling code>

.success:
<sensitive code>

Fig. 1. Original code

Conditional Branch Duplication. Sensitive code
paths are often shielded by checks that, e.g., verify
whether a correct password was entered. On smart
card processors like the ARM SecurCore SC000, these
checks correspond to conditional branches in the bi-
nary code. The branches are taken or not depending
on flags in a status register, that can either be set us-
ing an explicit comparison instruction or implicitly according to the result of an
ALU operation. Attacks can focus on the input values used to perform the op-
eration that sets the flags, on that operation itself, or on the conditional branch
that depends on the flag.

224 J. Maebe et al.

To protect against attacks that make the checks ineffective by skipping one
of these instructions, we duplicate the computation of the flags and the con-
ditional branch. A typical scenario targeted by this transformation is depicted
in Figure 1, which is then transformed into the code of Figure 2. The shown
transformation defends against all avenues of attack mentioned above: The in-
put value is protected by duplicating the defining instruction, the flag setting is
covered by duplicating the comparison, and branching based on the flag values
is covered by duplicating the conditional branch.

ldr r0,[r1]
cmp r0,#5
beq .dup1
<failure handling code>

.dup1:
ldr r0,[r1]
cmp r0,#5
beq .success
<invalid state exception>

.Success: <sensitive code>

Fig. 2. Protected code

More complex variations of the code shown in Fig-
ure 1 can occur. First, there may be multiple, different
definitions of the input value(s) of the comparison in
different predecessors of the comparison’s basic block.
In that case the duplication of the definition can be
skipped, which weakens the protection because of re-
duced redundancy, or a significant amount of code
needs to be duplicated through so-called tail dupli-
cation [11] even before the actual redundancy can be
inserted. So far, we implemented only the former in our prototype. Secondly,
sometimes we cannot simply duplicate the instruction defining the value to be
compared because its source operands are no longer available. This is the case,
e.g., when the defining instruction is a load like ldr r0, [r0]. In that case, we
need to find a free register to store a copy of the original source operands, and
use that register in the duplicate. When no free registers are found, they are
created by inserting spill code. Apart from spilling data register to the stack to
free them for use in the duplicated code, it can also be necessary to spill the
status register when flags are used beyond the conditional branch. This adds
overhead. Finally, when the flags are set by an ALU operation that overwrites a
source operand with a new value, we also needs to find a free register.

Caller:
...
mov r4,#id
blx Callee
...

Callee:
cmp r4,#id
beq .success
<invalid state exception>
...

.success:
<sensitive code>

Fig. 3. ID Passing & checking

Call Graph Integrity. Security analyses per-
formed on a program’s call graph are only as trust-
worthy as the guarantee that only modeled calls
or returns can occur. By injecting bogus call or re-
turn addresses into the execution of a program, it
is possible to invalidate any call graph constructed
statically. Our integrity transformation works at a
local level: at each individual call and return site a
value is set to be checked at the intended destina-
tion. At every function entry and at every return,
we then verify that control indeed came from one of the allowed points. This is
less strong than a protection that verifies entire call chains, but it can be easily
applied to call graphs with hard to analyze constructs such as recursion.

Since our transformation is applied at link time, supporting indirect function
calls through function pointers or polymorphic method invocations requires extra
care. Lacking type information, link-time rewriters typically cannot determine
the exact targets of an indirect call. This is solved by clustering all functions that

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 225

may be called indirectly (according to the symbol and relocation information
found in the object files) and treating them as a single function as far as this
transformation is concerned. While this makes the protection less tight, it allows
dealing statically with uncertainties introduced by dynamic program behavior.

Figure 3 shows how each check consists of two parts. Before every call a
register or global variable is set to the unique identifier id of the callee (or
cluster of callees). Next, instructions inserted in each function’s prologue verify
whether the set value matches its identifier (or that of its cluster). Similarly,
before every return instruction a register or global variable is set to another id.
This value is checked at the return points in the callers.

str r0,[r1]
ldr r2,[r1]
cmp r0, r2
beq .ok
<invalid state exception>

.ok:
...

Fig. 4. Store verification

The process starts by partitioning the program’s
functions into clusters whose members can call each
other indirectly or that can be called from the same
indirect call site. Next, the registers free on entry and
exit in all functions in a cluster are collected. If some
register is always free on entry, it will be used to pass
the value from the caller to the callee, otherwise the
value is passed via a global variable. The same happens at the function exits.

Memory Store Verification. The failure of a store operation at run time
generally means that program state is lost. This can be addressed by checking
that the store actually took place and that the correct value was written to
memory. Such a transformation also introduces some resiliency to memory errors.

The proper execution of a store can be verified by loading the stored value
back from memory and verifying that it matches the value that should have been
stored. This happens with a comparison, as depicted in Figure 4. This transfor-
mation requires an extra free register to reload the stored value. Additionally,
the status flags must be available since we insert a comparison. We do not have
to duplicate the comparison in order to be safe from a single-instruction failure
attack, since such an attack corrupts either the store or the comparison, but
not both. Multiple attacks can be dealt with by duplicating the inserted code as
many times as the number of attacks that should be handled.

Besides discussing the transformations we implemented support for, it is useful
to discuss the engineering effort we invested in Diablo’s core infrastructure. This
demonstrates that we can build on existing infrastructure in link-time rewriters
to solve technical issues of automated protection, rather than having to adapt
their fundamental concepts or having to implement ad-hoc solutions.

First, inserting redundancy involves static as well as dynamic code dupli-
cation: In Figure 2, the load occurs twice in the code statically and it will
be executed twice dynamically. For memory-mapped IO, this is problematic:
Memory-mapped IO operations should obviously not be duplicated dynamically.
So on architectures like ARM, our tool faces the problem to differentiate between
normal memory operations and memory-mapped IO operations. To solve this,
the software developer has to provide our tool with a list of IO register mem-
ory addresses. Diablo constant propagation analysis [11] detects instructions
that access constant memory addresses. When such instructions are detected

226 J. Maebe et al.

that access IO registers, we have those instructions marked as memory-mapped
IO to prevent the protecting transformations from duplicating them. This re-
quired no changes at all to Diablo’s basic infrastructure. In practice, it works
because memory-mapped IO is typically programmed with hard-coded constant
addresses, for example through macros in the source code, for which the de-
tection based on constant propagation works well. In theory, it is possible to
write an application for which this solution will not work (and for which no fully
automated solution will work, due to the undecidability of the aliasing problem).

int some_routine(void){
...
return some_value;
check_unreachable();

}

Fig. 5. Unreachable code

Secondly, like all compilers, Diablo iteratively
applies analyses and transformations. To simplify
their implementation, most of them make some as-
sumptions about the state of the IR. In Diablo, many
analyses and transformations assume that the CFG
contains no unconnected nodes. To guarantee this, an
unreachable code elimination pass [11] is run before almost all analyses.

This is problematic when a programmer wrote code that is unreachable under
normal, fault-free conditions as in Figure 5, but that was added for security
reasons. By default, Diablo eliminates the call to check unreachable. To avoid
this we adapted Diablo’s basic infrastructure to keep track of the program points
where it deleted unreachable code. The user of our tool can provide exception
handling code, which our tool will then insert at those points before writing out
the code. This provides a simple mechanism to compensate for eliminated code.

3 Experimental Evaluation

Table 1. Benchmarks (code size in bytes)

benchmark domain nr size
full benchmarks for semi-hosted simulation
basicmath small floating-point s1 19480
bitcnts integer bitcounting s2 8204
qsort large 3D point sorting s3 14824
qsort small string sorting s4 8012
susan image processing s5 32172
aes crypto s6 37092
sha crypto s7 7296
stripped-down benchmarks for native execution
basicmath small floating-point n1 12928
bitcnts integer bitcounting n2 3124
aes (encoder only) crypto n3 3760
sha crypto n4 1592

To evaluated our protections, we
compiled and protected seven C
MiBench [7] benchmarks (see Ta-
ble 1) for a semi-hosted simulation
environment (QEMU 1.0 [3]) with
which we verified correctness, but
on which no accurate performance
can be measured. We refer to these
benchmark versions as s1–s7. We used
the ARM RVCT 4.1 compiler for
ARM Cortex-M0 platforms with -O2.
This compiler is a centerpiece of Keil
(http://www.keil.com/smartcards), a
tool box often used in industrial smart
card software development. Next, we ported four benchmarks to a USB device
with an ARM Cortex-M3 with 32 kB of flash ROM and 8 kB of SRAM. This
memory was too small for all benchmarks, so this limits our evaluation on real
hardware to the four stripped-down benchmarks in Table 1. We will refer to
these four natively executed, stripped-down programs as n1–n4. All binaries are
linked statically, such that they include all needed RVCT 4.1 C library code.
Whereas developers of real smart card applications would apply protections to

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 227

���

����

����

����

����

	����

	
�

�
�

�
�

�
�

�
�

�
�

�

�	
�

��
�

��
�

��
�

���������
���������������
�����������

��
�

��
�

��
�

��
�

�	
�

��
�

�

�

��
�

��
�

��
�

��
�

��������������

������������

��
�

��
�

�	
�

��
�

�

�

��
�

��
�

��
�

��
�

�	
�

��
�

�������������������������
�����������������

(a) conditional branches (b) memory stores (c) call graph integrity

Fig. 6. Coverage results

�"�
��"�
��"�
#�"�
$�"�
���"�
���"�
���"�

��� ��� �%� ��� ��� �#� �&� ��� ��� �%� ���

����	
������������� ������������
����������	����	��� ����

Fig. 7. Code size overhead

�����

���

����

����

����

����

	
� 	�� 	�� 	��

Fig. 8. Performance overhead

only the sensitive parts of the applications, there is no notion of sensitivity in
our benchmarks. They serve the purpose of estimating the potential overhead of
our protections, so we made our tool apply them to the whole programs (with
the exception of back edges for the conditional branch duplication).

Figure 6(a) shows the fraction of all conditional branches that get protected,
together with the instructions setting the condition flags and, if available in the
branch’s basic block, the instruction defining the operand of that instruction.
From all conditional branches, 97% on average and at least 92% per benchmark
can be protected with our current implementation. As for the small fraction
of branches not being duplicated, this was mainly the result of not finding the
flag-setting instruction in the branch’s basic block. Figure 6(b) shows that our
prototype was able to insert checks for 100% of the stores. We differentiate be-
tween 32-bit and other stores because the latter require an additional instruction
to mask the 32 bits of which 16 or 8 are stored. The bars in Figure 6(c) show
the fractions of all call sites and return points of at which the call graph in-
tegrity is checked. The first bar depicts the number of points checked with a
strong check, i.e., for which the callee is in a singleton cluster. The second bar
depicts the number of points at which the identifier is passed in a register for
minimal overhead, not in a global variable. A relatively large number of all calls
involves clustered functions, for which we can typically not find a free register.
The clustering mainly happens for C-library’s use of function pointer tables.

Figure 7 depicts the code size overhead of our transformations. The combined
overhead varies between 25–115%. The main reason why the combined protection
overhead is bigger than the sum of the isolated overheads is that Diablo’s liveness
analysis becomes less precise after transformations have been applied. Another
reason is that as the programs grow bigger, the corresponding ever larger branch
offsets can no longer be encoded in single 16-bit Thumb2 instructions. Compared

228 J. Maebe et al.

to the size overhead, the performance overhead depicted in Fig. 8 for the bench-
marks for which we could conduct precise measurements is relatively small. We
should remind the reader that we blindly applied the protections to the whole
benchmarks, which inflates the overhead. In reality, smart card developers will
likely limit them to the sensitive parts of their applications.

4 Conclusions

From previously demonstrated capabilities to reliably cooperate with black-box,
third-party, industrial-strength proprietary compilers, combined with experi-
mental results obtained with our prototype tool, we conclude that automated
link-time fault-injection protection is a realistic, promising direction.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on RSA
with CRT: Concrete results and practical countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s ap-
prentice guide to fault attacks. Cryptology ePrint Archive, Report 2004/100 (2004)

3. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proc. USENIX,
pp. 41–46 (2005)

4. Choukri, H., Tunstall, M.: Round reduction using faults. In: Proc. FDTC, pp.
13–24 (2005)

5. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting techniques
for program compaction. ACM Trans. Prog. Lang. and Syst. 27(5), 882–945 (2005)

6. Debray, S.K., Evans, W., Muth, R., De Sutter, B.: Compiler techniques for code
compaction. ACM Trans. Prog. Lang. and Syst. 22(2), 378–415 (2000)

7. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
Mibench: A free, commercially representative embedded benchmark suite. In: Proc.
IEEE WWC-4, pp. 3–14 (2001)

8. Kim, C.H., Quisquater, J.-J.: Fault attacks for CRT based RSA: New attacks,
new results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer,
Heidelberg (2007)

9. Levine, J.R.: Linkers and Loaders. Morgan Kaufmann Publishers Inc. (1999)
10. Markantonakis, C., Mayes, K., Tunstall, M., Sauveron, D., Piper, F.: Smart card

security. In: Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.) Computa-
tional Intelligence in Information Assurance and Security. SCI, vol. 57, pp. 201–233.
Springer, Heidelberg (2007)

11. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

12. Muth, R., Debray, S.K., Watterson, S., De Bosschere, K.: Alto: a link-time opti-
mizer for the Compaq alpha. Softw. Pract. Exper. 31(1), 67–101 (2001)

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 229

13. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signa-
tures. IEEE Trans. Reliability 51(1), 111–122 (2002)

14. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: Soft-
ware implemented fault tolerance. In: Proc. ACM CGO, pp. 243–254 (2005)

15. Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K.: DIABLO:
a reliable, retargetable and extensible link-time rewriting framework. In: Proc.
ISSPIT, pp. 7–12 (2005)

16. Yiu, J.: The Definitive Guide to the ARM Cortex-M0. Newnes (2011)

On the Need of Physical Security for Small

Embedded Devices: A Case Study with
COMP128-1 Implementations in SIM Cards

Yuanyuan Zhou1, Yu Yu2,
François-Xavier Standaert3, and Jean-Jacques Quisquater3

1 Brightsight, Delft, The Netherlands
2 East China Normal University and Tsinghua University, China

3 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium

Abstract. Ensuring the physical security of small embedded devices is
challenging. Such devices have to be produced under strong cost con-
straints, and generally operate with limited power and energy budget.
However, they may also be deployed in applications where physical access
is indeed possible for adversaries. In this paper, we consider the case of
SIM cards to discuss these issues, and report on successful side-channel
attacks against several (old but still deployed) implementations of the
COMP128-1 algorithm. Such attacks are able to recover cryptographic
keys with limited time and data, by measuring the power consumption
of the devices manipulating them, hence allowing cards cloning and com-
munications eavesdropping. This study allows us to put forward the long
term issues raised by the deployment of cryptographic implementations.
It provides a motivation for improving the physical security of small em-
bedded devices early in their development. We also use it to argue that
public standards for cryptographic algorithms and transparent physical
security evaluation methodologies are important tools for this purpose.

Keywords: side-channel analysis, hardware security, embedded devices.

1 Introduction

Protecting present information systems requires considering both hardware and
software security issues, with their specific risks and constraints. In general,
software attacks are cheaper and tools for performing them can be rapidly dis-
seminated. Yet, they are also easier to patch with code updates. By contrast,
hardware attacks are more difficult to perform, as they require laboratory equip-
ment that ranges from low-cost to highly expensive. But they can be more diffi-
cult to fix a posteriori, as hardware updates imply more expensive development
processes, and usually take place in the longer term. Hence, finding the best
balance between hardware and software security is a difficult task for system
designers. This concern is particularly critical with cryptographic implemen-
tations that may be the target of fault insertion attacks [2] and side-channel
attacks [11,12,19]. In the latter case (that will be our focus in this paper), the
adversary exploits physical information leakage such as the power consumption

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 230–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Need of Physical Security for Small Embedded Devices 231

of the device running a cryptographic algorithm, in order to extract secret infor-
mation such as secret keys. As the power consumption of a device is expected to
be correlated with the data it manipulates, these attacks essentially proceed by
comparing key-dependent leakage predictions with actual measurements. When
no particular care is taken, cryptographic implementations frequently turn out
to be highly susceptible to side-channel attacks, as recently exhibited with re-
sults against the KeeLoq remote keyless entry systems (at CRYPTO 2009 [8]),
the Mifare DESFire contactless smart cards (at CHES 2011 [18]), or Xilinx’s
FPGA bitstream encryption mechanisms (at ACM CCS 2011 [16]).

Since side-channel attacks do not target algorithms but instances of their im-
plementation in various technologies, it is hard to design general solutions that
allow making any implementation of an algorithm secure. Hence, state-of-the-art
techniques to improve security against such attacks rely on heuristic assumptions
(e.g. the masking and hiding in [14]), and need to be confirmed by empirical eval-
uation. Note that although this situation raises challenging research problems
(e.g. discussed at the CHES workshops [6]), producing practically secure inte-
grated circuits is not out of reach. Nowadays, most smart card companies have
products evaluated by independent laboratories and granted with high security
levels by certification authorities, e.g. [1,5]. But this improved security usually
comes at the cost of implementation overheads that may limit their practical
deployment. In addition, and although having certificates may be a good selling
point, obtaining them also takes time and money (see, e.g. the Common Crite-
ria [7] and EMVco [9]). Hence, while such certificates are a frequent requirement
for security products of government agencies and banking applications, they are
less usual in lower-cost applications using SIM or transport cards.

A typical example of this lack of general approaches for preventing side-channel
attacks was actually given by a team from IBM in 2002, for implementations of
the COMP128-1 algorithm used in GSM communications. In a paper from IEEE
S&P [20], Rao et al. first showed that a straightforward application of Differen-
tial Power Analysis (DPA) was not successful against the instances of SIM cards
they were analyzing (presumably because of some ad hoc countermeasures). Then,
they observed that at the first round of COMP128-1’s compression function, the
substitution-box (S-box) consists of 512 values (i.e. are accessed by a 9-bit index).
It implies that on low-speed SIMs (with 8-bit CPU) this S-box has to be imple-
mented using two (typically equal-size) lookup tables. Knowing which table is be-
ing accessed (which could be identified from the power traces) could result in a key
recovery with a maximum of 1000 random challenges, or 255 chosen ones, or just 8
adaptively chosen ones (i.e. as efficient as a binary search). This data corresponds
to the monitoring of a few minutes of SIM card operations. In other words, while
the standard DPA approach did not directly lead to successful key recoveries, a
slightly modified path taking advantage of the implementation specificities did
a perfect job. Fortunately, the attack (exploiting the 8-bit addressing) was only
applicable to 8-bit-CPU SIM cards. Since 2003, the major operators have been
gradually phasing out the use of legacy SIM by issuing products equipped with
16-bit CPU data bus, ruling out this possibility.

232 Y. Zhou et al.

In this paper, we take advantage of this SIM card example to discuss the
practical challenges raised by hardware security issues. For this purpose, we in-
vestigate the resistance of SIM cards from two different GSM operators and four
different manufacturers against DPA. Our experiments target implementations
of the COMP128-1 algorithm in 16-bit CPUs, that are secure against the IBM
2002 attack. They are also secure against the algorithmic collision attacks de-
scribed in [3]. While COMP128-1 is progressively being replaced by improved
versions, it is still deployed in commercial devices, and sometimes being dis-
tributed. We show how DPA can be used to recover its 128-bit secret key, allow-
ing cards cloning and communications eavesdropping. Depending on the targets
and measurement setup available to the adversary, the attacks require physical
access to the device ranging from minutes to a couple of hours. Interestingly, our
results can be seen as the methodological counterpart of the 2002 ones. While
the previous analysis in [20] targets instances of SIM cards (presumably) secure
against standard DPA attacks but weak against dedicated ones, our instances
are robust against the IBM attack but weak against standard DPA.

The important conclusions of this work are methodological. First, our results
exhibit the long term nature of physical security concerns. While cryptographic
implementations are not deployed as long as algorithms, they may remain in
service for a couple of years, and are not straightforward to upgrade. This ob-
servation makes a case for considering physical security as an important feature
of small embedded devices in general. Technical solutions exist to make side-
channel attacks significantly more difficult to perform, e.g. the previously men-
tioned masking and hiding. But they work best if considered early in a design
process. Second, we observe that public standards for cryptographic algorithms
are useful to improve the efficiency of countermeasures against physical attacks.
By contrast, the closed-source nature of COMP128-1 has significantly limited the
amount of research about its secure implementations. Finally, transparent and
reproducible (possibly standardized) methodologies for physical security evalu-
ations are required, in order to quantify physical security on a sound basis.

Contact with the Operators. Our experiments have been performed in 2010.
The different operators exploiting the SIM cards that we discuss in this paper
have been contacted before publication of our results. Updates towards imple-
mentations of COMP128-2 and COMP128-3, including protections against side-
channel attacks, are under development (or maybe already deployed).

2 Background

For place constraints, details about the GSM infrastructure and previous works
on SIM cloning fraud and countermeasures have been deferred to the long version
of the paper [23]. In this section, we briefly recall the processing of the compres-
sion function in COMP128-1 and necessary basics on side-channel attacks.

COMP128-1 is a cryptographic hash function that takes a 32-byte input
(i.e. a 16-byte challenge RAND and a 16-byte secret key KI), and produces a
12-byte output by iterating 8 rounds. In our attacks, the most important part

On the Need of Physical Security for Small Embedded Devices 233

of this algorithm is its compression function that consists of 5 (sub-)rounds that
combine the key material and randomness. In particular, the sensitive operations
that we will target are the following data update occurring in the first round:

y = (KI[m] + 2·RAND[m]) mod 29−j ,
z = (2·KI[m] + RAND[m]) mod 29−j,

that occur for 0 ≤ m ≤ 15 secret key bytes (with j the RAND byte index).

Side-channel attacks generally exploit the existence of data-dependent and
physically observable phenomenons caused by the execution of computing tasks
in present microelectronic devices. Typical examples of such information leakages
include the power consumption and the electromagnetic radiation of integrated
circuits. We will focus on the first one in the rest of this paper. The literature
usually divides such attacks in two classes. First, Simple Power Analysis (SPA)
attempts to interpret the power consumption of a device and deduce information
about its performed operations. This can be done by visual inspection of the
power consumption measurements in function of the time. SPA in itself does not
always lead to key recovery. For example with block ciphers, distinguishing the
encryption rounds does not reveal any sensitive information. Yet, it is usually an
important preliminary step in order to reduce the computational requirements
of more advanced attacks. Second, Differential Power Analysis (DPA) intends
to take advantage of data-dependencies in the power consumption patterns. In
its standard form [15], DPA is based on a divide-and-conquer strategy, in which
the different parts of a secret key (usually denoted as “subkeys”) are recovered
separately. The attack is best illustrated with an example. Say one targets the
first round of a block cipher, where the plaintext is XORed with a subkey and
sent through a substitution box S. DPA is made of three main steps:

1. For different plaintexts xi and subkey candidates k∗, the adversary predicts
intermediate values in the target implementation. For example, one could
predict S-box outputs and get values vk

∗
i = S(xi ⊕ k∗).

2. For each of these predicted values, the adversary models the leakages. For
example, if the target block cipher is implemented in a CMOS-based micro-
controller, the model can be the Hamming weight (HW) of the predicted
values. One then obtains modeled leakages mk∗

i = HW(vk
∗

i).

3. For each subkey candidate k∗, the adversary compares the modeled leakages
with actual measurements, produced with the same plaintexts xi and a secret
subkey k. In the univariate DPA attacks (that we will apply), each mk∗

i

is compared independently with many single points in the traces, and the
subkey candidate that performs best is selected by the adversary.

Different statistical tools have been proposed to perform this comparison. In our
experiments, we will consider a usual DPA distinguisher, namely Pearson’s cor-
relation coefficient [4]. In this case, and denoting a leakage sample produced with
plaintext xi and subkey k as lki , the adversary selects the subkey candidate as:

234 Y. Zhou et al.

k̃ = argmax
k∗

∑
i(m

k∗
i −mk∗

) · (lki − l
k
)√∑

i(m
k∗
i −mk∗

)2 ·
∑

i(l
k
i − l

k
)2
,

where mk∗
and l

k
are the sample means of the models and leakage samples. The

complete master key is recovered by repeating this procedure for every subkey.

3 DPA Attacks against Implementations of the
COMP128-1 Algorithm in SIM Cards

3.1 Target SIM Cards and Measurement Setup

In this section, we perform DPA attacks on four representative SIM cards de-
noted as #1,#2, #3 and #4. Besides corresponding to various operators and
manufacturers, the main difference between these implementations is that they
sometimes include protections against the algorithmic collision attacks described
in [3], next denoted as the “Indexed Challenges” (I-C) and “Collision Free” (C-
F) countermeasures. The details of these countermeasures are not necessary for
the understanding of the paper, but are given in the long version [23]. As sum-
marized in Table 1, SIM#1 and SIM#2 are susceptible to collision attacks in
20 000 and more queries, SIM#3 and SIM#4 are immune against them.

Table 1. Target SIM cards

Manufact. Operator Countermeasure(s)

SIM#1 I A Not Available

SIM#2 II B I-C

SIM#3 III B I-C + C-F

SIM#4 IV B I-C + C-F

We used a LeCroy WavePro 950 oscilloscope to acquire the power traces, via
a small resistor of 25 Ohm between the GND of power supply and the GND
of a self-made Card-to-Terminal adapter. The Card-to-Terminal adapter was
tweaked to provide an external DC power to the test card via a Kenwood P18A
power supply (+5V), and to provide an external clock to the card via an Agilent
33120A function generator(5MHz Frequency, 2.2V Amplitude and 1.1V Offset).
We used a commercially available card reader and software to control the test
card during the acquisitions. In addition, we used a Keithley 488 GPIB card
(i.e. a PCI card installed inside a PC) to communicate with the oscilloscope.

3.2 Preprocessing of the Traces

As usual when implementing side-channel attacks, we started by applying SPA
in order to identify the relevant parts of the power traces. This task is easy for

On the Need of Physical Security for Small Embedded Devices 235

Fig. 1. Left: a power trace from SIM#1. Right: a power trace from SIM#3.

SIM#1 and SIM#2. As shown in the left part of Figure 1, we can identify the 8
iterative rounds of COMP128-1 by visual inspection. By further zooming on the
different iterations, we could even observe the 5 sub-rounds of the COMP128-1
compression function (see Figure 2 in [23]). Therefore, it is directly possible to
extract the parts of the power traces where to apply DPA for these two targets.
The situation slightly differs for SIM cards #3 and #4, where the Collision Free
countermeasure was implemented. As illustrated in the right part of Figure 1
(and Figure 6 in [23]), it is again possible to identify the COMP128-1 operations
(as well as the Indexed Challenges) in the power traces. Yet, the Collision Free
countermeasure includes a randomized memory writing operation (i.e. it uses
randomness to decide whether to store a current request or not). Therefore, the
length of the power traces varies for different inputs, which requires special care
for aligning the traces after acquisition. In order to deal with this situation, a
simple solution is to apply pattern matching techniques. That is, we selected a
characteristic pattern including the samples of interest for our DPA attacks, and
then systematically identified them in following traces using cross-correlation. As
the noise level in our measurements was relatively low, such a simple heuristic
was sufficient for performing successful key recoveries, as will be described next.

3.3 DPA Attack Results

Since no countermeasures in our target SIM cards prohibit random queries, we
generated our traces by repeatedly executing the COMP128-1 algorithm with
such inputs. Next, we applied exactly the divide-and conquer strategy focusing
on the intermediate values y and z at the first sub-round of the first round in the
implementation of COMP128-1, as described in Section 2. For each 0 ≤ m ≤ 15,
we built predictions for the 256 possible values of KI[m] and performed the com-
parison. The result of such a comparison for one of the 16 COMP128-1 subkeys
is given in Figure 2 for SIM#2 and SIM#3 (similar results are given for the
other targets in [23]). The figures plot the value of Pearson’s correlation coeffi-
cient over time, using y as a target value. We observe that a significant peak is
distinguishable at the time samples where the computation of y actually takes
place, and this peak only appears for the correct subkey candidate. As expected,
the situation was slightly more challenging for SIM#3 and SIM#4. This is due

236 Y. Zhou et al.

Fig. 2. Left: DPA result against SIM#2. Right: DPA result against SIM#3.

to more noisy traces and the previously mentioned synchronization issue. Yet,
in both cases, a DPA peak remained clearly distinguishable, and we could al-
ways identify the COMP128-1 subkeys. Finally, we consistently recovered the
full key of SIM#1 and SIM#2 with an amount of traces in the hundreds range,
and this number extends to the thousands range for SIM#3 and SIM#4. These
estimated data complexities are in accordance with the work of Mangard at
CT-RSA 2004 [13], where it is shown that the number of measurement traces
needed to recover a subkey is inversely proportional to the square of the corre-
lation coefficient estimated for the correct key candidate. In practice, these data
complexities corresponds to a few minutes to a couple of hours of acquisition.

4 Conclusions and Future Work

Technically, it is not a surprise that weakly protected chips can be defeated by
side-channel attacks. Yet, our results exhibit (or recall) that such attacks are
relatively easy to implement, and are certainly accessible to determined adver-
saries. Taking the example of SIM cards, this can have severe consequences for
the security of GSM communications. Overall, the security of a system is always
as strong as its weakest point. Hence, distributing cryptographically-enhanced
chips without a sufficient care for physical security leads to unbalanced situa-
tions, as side-channel attacks may constitute a trapdoor to circumvent math-
ematical security. This is especially important for small embedded devices, for
which physical access may sometimes be granted to adversaries. In this respect, it
is more surprising that (somewhat) security sensitive applications do not always
build on certified chips (following what is done, e.g. for bank cards). Admit-
tedly, the target SIM cards investigated in this paper implement old versions of
the GSM algorithms, in old technologies. Nevertheless, some of these cards are
still in circulation and cards cloning is an important concern that could prevent
the adoption of new services. Hence, this situation illustrates the long term na-
ture of hardware security issues. It provides a general motivation for considering
them as an important element to take into account early in cryptographic de-
velopments. In this respect, we note that the use of proprietary algorithms in
commercial products significantly slows down progresses in securing their im-
plementation. In view of the implementation-specific nature of physical attacks,

On the Need of Physical Security for Small Embedded Devices 237

it frequently turns out that protection mechanisms that are tailored to certain
cryptographic algorithms provide the best efficiency vs. security tradeoffs. For
example, secure implementations of the AES have been the subject of a large
literature over the last 10 years. By contrast, no similar analysis is available for
COMP128-1.Worse, the use of large (e.g. 512-bit) tables makes it hardly suitable
for implementation of countermeasures such as software masking [10]. Following
this observation and in the long term, considering protections against physical
attacks as a design criteria for cryptographic algorithms could be useful.

While resorting to certification would be an important step in improving the
security of SIM cards, we finally note that the procedures used by evaluation
laboratories could also benefit from an improved transparency. That is, currently
certified chips certainly rule out the possibility of simple attacks as we describe in
this paper. But it remains that the exact security level they guarantee is opaque
for the end-users, and this opaqueness generally increases as countermeasures are
added to the chips. Proposals of worst-case security evaluations aiming at lim-
iting the risks of a “false sense” of security could improve this situation [21,22].
Considering the strongest available adversaries and taking advantage of the latest
cryptanalytic progresses during evaluations of cryptographic hardware appears
important in view of the difficulty to fix physical security breaches a posteri-
ori. Eventually, better reflecting side-channel evaluation methodologies in public
standards would be highly beneficial too. In this respect, it is noticeable that the
ISO 19790 draft standard on “security requirements for cryptographic modules”
(aka. FIPS-140-3 [17]) leaves the section on non-invasive attack methods essen-
tially optional to vendors, with little details about the evaluation procedures.

Acknowledgements. Yu Yu was supported by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61033001, 61172085, 61061130540, 61073174,
61103221, 11061130539, 61021004 and 61133014. F.-X. Standaert is an associate
researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work
has been funded in part by the ERC project 280141 on CRyptographic Algo-
rithms and Secure Hardware.

References

1. ANSSI. Agence nationale de la securite des systemes d’information, http://www.
ssi.gouv.fr/en/products/certified-products/ (retrieved on February 1, 2012)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Briceno, M., Goldberg, I., Wagner, D.: GSM Cloning (1998), http://www.

isaac.cs.berkeley.edu/isaac/gsm-faq.html (retrieved on October 14, 2011)
4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. BSI. Federal office for information security, https://www.bsi.bund.de/en/topics/
certification/certification node.html (retrieved on February 1, 2012)

http://www.ssi.gouv.fr/en/products/certified-products/
http://www.ssi.gouv.fr/en/products/certified-products/
http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html
http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html
https://www.bsi.bund.de/en/topics/certification/certification_node.html
https://www.bsi.bund.de/en/topics/certification/certification_node.html

238 Y. Zhou et al.

6. CHES, http://www.chesworkshop.org/
7. Common Criteria, http://www.commoncriteriaportal.org/
8. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Manzuri Shal-

mani, M.T.: On the power of power analysis in the real world: A complete break
of the keeloqcode hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

9. EMVco, http://www.emvco.com/ (retrieved on April 11, 2012)
10. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”

method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–
172. Springer, Heidelberg (1999)

11. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Mangard, S.: Hardware countermeasures against DPA – A statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

14. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

15. Mangard, S., Oswald, E., Standaert, F.-X.: One for all – all for one: unifying
standard differential power analysis attacks. IET Information Security 5(2), 100–
110 (2011)

16. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of fpga
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-ii fpgas. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS, pp.
111–124. ACM (2011)

17. National Institute of Standards and Technologies,
http://csrc.nist.gov/publications/PubsDrafts.html (retrieved on March 25,
2012)

18. Oswald, D., Paar, C.: Breaking mifare desfire MF3ICD40: Power analysis and tem-
plates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

19. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

20. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: Or how to
rapidly clone some gsm cards. In: IEEE Symposium on Security and Privacy, pp.
31–44 (2002)

21. Standaert, F.-X.: Some hints on the evaluation metrics & tools for side-channel
attacks. In: proceedings of the NIST non-Invasive Attacks Testing workshop, Nara,
Japan (September 2011)

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

23. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the Need of Physical
Security for Small Embedded Devices: A Case Study with COMP128-1 Implemen-
tations in SIM Cards (long version)

http://www.chesworkshop.org/
http://www.commoncriteriaportal.org/
http://www.emvco.com/
http://csrc.nist.gov/publications/PubsDrafts.html

Securely Solving

Simple Combinatorial Graph Problems

Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet,
Olivier Pereira, and Mathieu Van Vyve

Université catholique de Louvain
ICTEAM and IMMAQ institutes
1348 Louvain-la-Neuve – Belgium

Abstract. We investigate the problem of solving traditional combina-
torial graph problems using secure multi-party computation techniques,
focusing on the shortest path and the maximum flow problems. To the
best of our knowledge, this is the first time these problems have been
addressed in a general multi-party computation setting. Our study high-
lights several complexity gaps and suggests the exploration of various
trade-offs, while also offering protocols that are efficient enough to solve
real-world problems.

Keywords: Secure multi-party computation, Graph theory, Algorithms.

1 Introduction

Secure multi-party computation – the problem of jointly evaluating a function
on a set of secret inputs without leaking anything but the output of the function
– has been at the center of cryptography research for almost 30 years. A first
series of foundational works [1,2,3,4] demonstrated the possibility to evaluate
any function in various models, the function being described as a circuit. The
attention then largely focused on building solutions for the evaluation of func-
tions of specific interest, leading to secure and efficient protocols for auctions [5],
voting [6], benchmarking [7], face recognition [8] or AES evaluation [9] to only
mention a few.

One common point of all these applications is that the function evaluation pro-
cess is naturally oblivious of the inputs on which the function has to be evaluated.
Computing the highest of n bids or summing n votes is carried out by performing
n comparisons or sums independently of the values that are considered.

There are large classes of problems however for which the natural evaluation
process depends on the input data. In that case, even if all the manipulated data
are appropriately shared or encrypted, the execution flow might just be sufficient
to leak undesirable information.

This is typically the case in combinatorial problems, of which graph problems
are one of the most common examples. Consider, for instance, a consortium of
delivery companies covering different territories through regular distribution cir-
cuits. These companies might be interested in computing the fastest way to bring

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 239–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 A. Aly et al.

a package from one place to another, but be reluctant to share with each other the
precise connections they use and the performance of their trucks. Their problem
could be solved by securely evaluating traditional shortest path algorithms such
as those of Bellman-Ford or Dijkstra. The immediate way of securely comput-
ing the shortest path would be to blind (encrypt or share) the weight of all the
edges of the corresponding graph. However this approach could completely miss
its purpose depending on the graph encoding and shortest path algorithm that
are used: if the algorithm conditionally visits the graph by branching as a func-
tion of the secret weights, then the branching patterns could leak a substantial
amount of secret information. In a similar way, the resolution of combinatorial
problems, even on obfuscated inputs, can leak substantial information through
the structure of the combinatorial object that is manipulated, as well as through
its running time. We stress that this is not just a theoretical concern: numerous
techniques have been developed, notably in the line of work on side-channel at-
tacks [10], that can successfully exploit branching patterns and running times in
order to recover the secrets on which computation is performed.

1.1 Our Contributions

This paper investigates the problem of securely solving combinatorial problems
in a multi-party setting through a series of examples taken from graph theory.
To the best of our knowledge, this is the first time that these most classical
algorithmic problems have been addressed in a general secure multi-party setting.
Our solutions have applications in the numerous contexts where a graph is shared
between competing entities. Natural examples include: privacy-preserving GPS
guidance in which one party knows the map while the other knows his origin and
destination, privacy-preserving determination of topological features in social
network (the number of different ways to connect two people can be seen as a
special case of the maximum flow problem, for instance, in which case each party
would know his own friends but no more), or privacy-preserving determination of
the performance of the cooperation between competing network operators (gas,
electricity, logistics, . . .), in which each party would know the capacity of his
own infrastructure but no more. Furthermore, our study raises several intriguing
complexity gaps and suggests the exploration of various trade-offs.

Algorithm Design. We focus our research on computing the shortest path and
the maximum flow based on the secure arithmetic black-box functionality of
Damg̊ard and Nielsen [11] augmented with comparison [12]. That is, our proto-
cols assume access to a functionality that offers secure addition, multiplication
and comparison. This allows us to abstract from the specific security model in
which we want our protocol to be secure: depending on the implementation of
the secure arithmetic black-box that is used, our protocols will be secure only in
the presence of an honest majority or with up to all but one corrupted player, in
the information theoretic or computational model, in front of passive or active
adversaries, . . . Various such implementations, in various models, are available in
tools designed for multi-party computation such as FairplayMP [13], Sepia [14],
Sharemind [15] or VIFF [16].

Securely Solving Simple Combinatorial Graph Problems 241

We focus on two of the most standard graph problems, chosen for their wide
diversity of applications: computing shortest paths and maximum flows. For each
of these problems, we discuss secure evaluation techniques inspired from classical
algorithms of various complexities: Bellman-Ford and Dijkstra for the shortest
path, and Edmonds-Karp and Push-Relabel for the maximum flow.

Our resulting algorithms offer quite different overheads, depending on the
algorithm and the graph structure, as illustrated in Table 1. For those algorithms,
the table shows first the traditional (non secure) complexity, then the complexity
of our secure versions expressed in number of calls to the arithmetic functionality.
There, we consider the case of a graph with public structure and then with
private structure, meaning that not only the weight of each edge is kept secret,
but that the adjacency relation between vertices is kept private as well.

Several observations can already be made.
– The best implementations, using advanced data structures as dynamic trees

[17] or Fibonacci heaps [18], are definitely non-trivial to replicate in the se-
cure setting (see also discussion in Section 1.2 below). Their relevance is also
unclear for the relatively small size of the problems that we are addressing,
as they usually come with large constants.

– The overheads resulting from moving from the original algorithms to their
secure versions largely differ between algorithms: in the case of a public
structure for instance, we see either no difference, or an |E| factor or a |V |
factor depending on the algorithm.

– The overhead resulting from hiding the graph structure largely differs de-
pending on the algorithm and type of graph. For Bellman-Ford and Push-
Relabel, the difference essentially corresponds to always handling a complete
graph when the structure needs to be hidden. For Dijkstra however, the se-
crecy of the graph structure has no impact.

– While Bellman-Ford is traditionally less efficient than Dijkstra, this is not
true anymore (asymptotically at least) for our secure variants: Bellman-Ford
becomes substantially more efficient for sparse graphs (e.g., if |E| = O(|V |))
and the asymptotic complexities are similar for dense graphs.

The overheads in terms of number of protocol participants, round complexity, . . .
largely depend on the implementation of the secure arithmetic functionality, and
are in line with traditional works.

Table 1. Asymptotic complexities: original algorithms and secure versions with public
and private graph adjacency matrix

Optimized Original Public Structure Secret Structure

Bellman-Ford |V ||E| |V ||E| |V ||E| |V |3
Dijkstra |E|+ |V | log |V | |V |2 |V |3 |V |3
Edmonds-Karp |V |2|E| |V ||E|2 |V ||E|2 |V |5
Push-Relabel |V ||E| log(|V |2

|E|) |V |3 |V |2|E| |V |4

242 A. Aly et al.

Complexity: The Constants Matter. In order to challenge our algorithms in prac-
tice, we implemented them all using the Virtual Ideal Functionality Framework
(VIFF) of Geisler et al. [16], in the honest-but-curious model.

This allowed us to further investigate the constants hidden by the asymptotic
notations discussed above. This made particularly visible the difference of cost
between the different black-box primitives that we used: addition based on linear
secret sharing [19] comes for free (no communication involved), multiplication
is noticeable (it involves one secret sharing), and comparison (based on Toft’s
protocol [20]) is ≈ 165 times more expensive than a multiplication, something
that strongly contrasts with the execution time of traditional algorithms.

These differences have strong practical impact and motivated some trade-offs
as well.

– Our version of Dijkstra’s algorithm involves only |V |2 comparisons compared
to |V |3 (or |V ||E|) in Bellman-Ford. As a result of this, for dense graphs or
when the graph structure is secret, Dijkstra’s algorithm remains considerably
more efficient than Bellman-Ford’s, even when the structure of the graph is
public, provided that the graphs have a reasonably small size (a hundred
vertices).

– For sparse public graphs that contain a small number of paths from the
source to the sink, a variant of the Edmonds-Karp’s algorithm that relies
on an exhaustive public enumeration of the source to sink paths can be
considerably simpler and more efficient than a secure version of the breadth-
first search for augmenting paths that is performed in the original algorithm:
this allows trading expensive book-keeping and addressing operations for
more but much simpler rounds.

So, besides the fact that our work offers the first solutions for the secure eval-
uation of various graph properties, we think that it raises several intriguing
complexity issues. Notably, we wonder whether the complexity gaps that we
have are inherent to the added security or if they can be improved.

1.2 Related Works

As mentioned above, the large majority of works on secure multi-party compu-
tation focused on functions whose evaluation execution flow is independent of
the secret inputs. There are important exceptions to this, however.
Branching Programs. Branching programs are decision procedures that, based
on some inputs and decision parameters such as thresholds, perform a specific
classification of the input. Secure versions of these programs, where a user does
not learn the branching program of the server while the server does not learn
the user’s inputs, have been considered in various works [21], [22], [23], [7], [24].
While these works share our goals of hiding the data path through which the
program is going, they do not aim at hiding the length of that path which, in
our case at least, could leak a substantial amount of information.

Securely Solving Simple Combinatorial Graph Problems 243

Shortest Path In The Two-Party Setting. Brickell and Shmatikov [25] addressed
the problem of solving some graph problems securely and their work is, as such,
the closest to ours. Substantial differences appear, though.

First, their security model is quite different from ours. Their protocols, which
are based on a privacy-preserving set union protocol, proceed by making their
outputs known to the participants progressively as part of the execution (e.g.,
edge by edge as the protocol runs). Even though this is not revealing more than
the eventual outcome, this makes their protocols unusable as sub-components
of other higher-level protocols that would rely on using these outputs as part
of their secret state. Revealing outputs part-by-part as the protocol runs might
also be problematic in applications in which some participants could abort the
protocol in the middle of its execution, based on what they have already learned.
Our protocols, on the other hand, can be freely used as subroutines, and one of
our secure max-flow algorithms will make use of a secure shortest-path algorithm.

Second, the graph problems they consider are different from ours as well.
They do not consider the maximum flow problem at all: their work focuses on
computing shortest distances, from a known source to all the vertices or for all
the vertex pairs, in a setting where all the participants assign a weight to all
edges. We further investigate the problem of computing the shortest path from
a single source to a single destination, which cannot be done using their set union
technique as it would reveal much more information than the specific distance
we are interested in.

Eventually, their protocols are not based on generic building-blocks, like the
arithmetic black-box functionality on which we rely. Specifically, their protocols
are designed for the two-party computation setting in the honest-but-curious
model. While these specifics allow them to develop techniques that are quite
efficient in this two-party setting, it is unclear how efficient a transposition of
their approach to the multi-party setting would be.
Efficient Secure Datastructures. The problem of computing securely on datas-
tructures has recently been investigated by Toft [12], in the case of a secure
priority queue, which he implements using a variation of bucket heap. The prob-
lem studied there shares similar flavors with those we address here: to compute
securely on structured data by keeping the actions independent of the inputs.
The computational overhead compared to the efficiency of the original bucket
heap is logarithmic, making it occupy an interestingly different spot in the list
of overhead examples discussed above.

Similar effects could also be achieved through the use of oblivious memo-
ries [26], [27].

Overview. Section 2 describes the building blocks we will use and our main imple-
mentation choices. Section 3 describes our approach to the classical single source
and single-pair shortest path problems, and Section 4 describes our approaches
of the maximum flow problem.

244 A. Aly et al.

2 Preliminaries

2.1 Black-Box Operations

Arithmetic Black-Box. We build our protocols on top of an ideal functionality :
the arithmetic black-box functionality FABB of Damg̊ard and Nielsen [11], whose
definition captures the properties we need.

This functionality allows n parties to securely store elements of a ring Zm, to
repeatedly perform the ring operations of addition and multiplication on these
elements, and to open the result of the computation when needed. Following
Toft [12], we consider a slightly extended and abstracted version of this func-
tionality that offers the possibility to perform secure comparison and consider
any possible ring. So, storing, opening, addition, multiplication and comparison
will be the only secure operations on which our protocols will rely. Following
the tradition, we will write [x] to address the version of x securely stored by
FABB, and denote the secure arithmetic operations on secret values in the nat-
ural way, e.g., [z] ← [x] + [y] for the addition of two secrets. The actual protocol
implementing these operations depends on the details of the realization of this
functionality. Numerous MPC schemes can be used for that purpose [4,3,11] or,
for more recent approaches [28,29,30], depending on the security model that is
appropriate.
Graph Representation. Depending on the algorithm we are trying to compute
and on the part of the graph description that is part of the secret input, different
graph representation approaches will show to be useful.

In all cases, we will assume that the number of vertices in the graph is public
(or at least an upper bound on it). Depending on the setting, the adjacency
relationship between the vertices might be public or not. For instance, it is
natural to have it public if the graph represents the connections between places
on a map, but it might be desirable to keep it secret if the presence of edges
reveals the existence of transactions between competing companies.

A traditional structure for storing a graph consists in storing, with every ver-
tex, a list of its neighbors (and the weight of the corresponding edges). This
structure is quite efficient in terms of memory. However, it might be quite prob-
lematic from a security point of view, as it discloses the degree of each vertex.
A solution would be to tolerate the leakage of an upper bound on these degrees,
but that upper bound would be close to imply the storage of a complete graph
as soon as one single vertex is of high degree. Furthermore, even if the leakage
of the degree of the vertices is tolerated, algorithms that perform breadth-first
search on vertices and branch depending on the weight of edges could reveal a
lot of information. As a result, this graph representation can show to be very
effective in some cases, but completely inappropriate in others, even when the
graph structure is public.

A second traditional way of representing graphs is to store their adjacency
matrix, the elements of the matrix representing the weight of the edges between
vertices. This approach has the benefit of offering a storage that is independent
of the graph structure. While running our algorithms, we will often need to

Securely Solving Simple Combinatorial Graph Problems 245

perform some operations on a specific vertex designated by a secret index. This
will typically be performed by running that operation on all vertices, including
a canceling factor everywhere but on the vertex that needs to be treated. An
obvious way of testing whether we are working on the right vertex would be
to perform a test at each step. We actually use a more effective approach by
representing the index of the vertex i by a vector [i] ∈ {[0], [1]}1×n

where each
entry is [0] except for the i’th which is [1]. We can then access the weight of
the edge from vertex i to vertex j by computing the matrix product [i].[M].[j]t.
Protocol 1 provides a way to update an element in a shared list and it can
be easily extended to update an element in a shared matrix. This protocol also
exemplifies a common way of emulating a branching depending on a secret value:
the arithmetic operation in the loop is actually equivalent to computing if [i]j =
[1] then [l]j = [x].

Protocol 1: Update an element in a shared list and at a shared position

Input: A list [l] of length n, a shared index [i], a shared value [x].
Output: The list [l] with the update [l]i = [x].

1 for j ← 1 to n do
2 [l]j ← [l]j + [i]j · ([x]− [l]j);
3 end

For a graph with n vertices, this protocol allows retrieving a secret position
in the adjacency matrix in O(n2) multiplications instead of O(n2) comparisons,
which is considerably more efficient, even if it implies a considerable overhead in
storage (moving from 1 secret index to n secret bits). We note that, in all cases,
this approach implies treating the graph as if it were complete, which can be a
considerable waste of resources if the graph is actually sparse.

3 Privacy-Preserving Shortest Path Problem

The single-source shortest path problem is a major problem in graph theory. It
has several immediate applications. The typical one is finding the shortest way to
connect two cities on a road map where each city is represented by a vertex and
each road between two cities by an edge. The edge weights are the road distances
between cities. In this context, a user may then want to obtain driving directions
without revealing neither his starting point nor his destination. Another applica-
tion is the one of two entities owning each a secret location in a shared network
and willing to compute the distance between them without disclosing their loca-
tion.We note that such a problem is worth solving even for relatively small graphs.
Consider for instance a routing network with a dozen hubs in different European
countries and three competing logistic companies having each their own trans-
portation costs for a defined set of roads. As costs typically represent sensitive
information that should not be disclosed to competitors, being able to solve the
shortest path problem securely for 3 parties and a graph with a dozen of vertices is
quite helpful. Similar problems happen for network traffic on routers where a small
number of big hubs is involved. Competing companies have to solve the shortest

246 A. Aly et al.

path to define routing scheme without revealing sensitive information about in-
ternal network configuration.

Shortest path algorithms are also used as subalgorithms for more advanced
problems like the Chinese postman problem or the max-flow problem that we ad-
dress below: this highlights the importance of keeping our protocols composable.

We investigate two standard algorithms for finding the single-source shortest
path in a graph with weighted edges: Dijkstra’s algorithm and Bellman-Ford’s
algorithm. The first one requires all edge weights to be positive, while the second
one only assumes there is no negative-weight cycle in the input graph. As the
non-secure version of all the algorithms that we treat is widely available [31], we
will only briefly outline them.

All our protocols assume that inputs are already stored in the FABB function-
ality and give access to the stored outputs (that can be opened through opening
requests to FABB). This feature guarantees the composability of the protocols.
The way inputs and outputs are shared depends on the application: they might
come from a specific problem, or from the needs of a higher-level protocol using
this protocol as a sub-routine, for instance.

3.1 Bellman-Ford’s Algorithm

The algorithm of Bellman-Ford is particularly simple, making it a natural target
for building a secure version. This algorithm proceeds by repeatedly scanning
all edges, in search of adding edges that decrease the ongoing distance from
the source to the various vertices. If a pass over the edges did not improve the
current solution, or if the edges were scanned |V | times, the algorithm halts. An
interesting feature of this algorithm is that its flow of operations only depends
on the structure of the graph but not on the weight of the edges. Its drawback
is its time-complexity: its classical implementation runs in O(|V ||E|) time.

Protocol 2 (the SSP1 protocol) presents our secure shortest path protocol
based on Bellman-Ford. Note that h(e) and t(e) represent the head and tail
vertex of an edge e respectively. Also, note that " is a number agreed in advance
by the players as a higher bound for some calculations of the protocol. We refer
to Appendix A for discussion of the values of " and m in all our protocols.
Finally, note that updatevector refers to Protocol 1. The SSP1 protocol differs
from the original algorithm only in a limited number of aspects: a) the branching
corresponding to the discovery of a shorter path is handled on Lines 8–10 through
arithmetic operations as in Protocol 1, b) the early termination condition of the
Bellman-Ford algorithm, which is triggered if the inner loop happens to have no
effect during one pass, is removed as it could leak information. This does not
invalidate the correctness of the algorithm but only increases the running time.

The structure of this algorithm makes it easy to implement with either of the
two graph representations discussed above (list or matrix), making it possible
to fully exploit the sparsity of graphs when it is public (we use the matrix
representation if it has to be kept secret).

Securely Solving Simple Combinatorial Graph Problems 247

Protocol 2: SSP1 protocol based on Bellman-Ford’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a set of shared weights [w]e for each e ∈ E, and a share of the
source vertex [s] ∈ V .

Output: The list of immediate predecessors p and/or total distances d.
1 for i ← 1 to |V | do
2 pi ← [0]; di ← [
];
3 end
4 updatevector([d], [s], [0]);
5 for i ← 1 to |V | do
6 for e ← 1 to |E| do
7 [y] ← [d]t(e) − [d]h(e) + [w]e;
8 [x] ← [y] < 0;
9 [d]h(e) ← [d]h(e) + [x] · [y];

10 [p]h(e) ← ([1]− [x]) · [p]h(e) + [x] · t(e);
11 end

12 end
13 If there was an update during the very last pass, solution is unbounded (∃

negative cycle). Open required output.

It can be seen that our implementation requires |V ||E| secure comparisons,
dominating the time required to perform 2|V ||E| secure multiplications and
5|V ||E| additions. These complexities grow to O(|V |3) when the graph structure
is secret, as the graph is then treated as complete (i.e., augmented with edges of
infinite weight). Very interestingly, this algorithm is the only one among those
we treated in which our solution does not raise any asymptotic overhead (when
the structure is public).

Security. The simulation of an execution of this protocol is immediate from the
simulators available for the different calls that can be made by the FABB func-
tionality: the simulators corresponding to each of the ’+’, ’·’ and ’<’ operations
can be invoked in turn, in an order defined by the protocol execution, and a
number of times that only depends on public values (|V | and |E|). The same
argument will apply to the other protocols we present in this paper, and we will
therefore not come back to it.

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm computes the shortest path from the source to all vertices
in the graph, that is, the shortest path tree rooted at the source. The algorithm
is greedy. At each iteration one vertex (the one with the smallest distance label)
is permanently updated to the status scanned.
Adapting Dijkstra. The fact that Dijkstra’s algorithm goes through the graph
in an order that depends on the weight of the edges makes it very difficult to
efficiently exploit the sparsity of a graph: our best solutions have all a complexity
that amounts to the one of a complete graph, and we therefore use the matrix
representation in all cases for our protocol.

248 A. Aly et al.

Protocol 3: SSP2 protocol based on Dijkstra’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a matrix of shared weights [M]i,j for i, j ∈ {1, ..., |V |} and a
source vertex [s] ∈ V .

Output: The vector of distances di and the matrix of predecessor [P]i,j for
i, j ∈ {1, ..., |V |}.

1 for i, j ← 1 to |V | do
2 [P]i,j ← [0]; [d]i ← [
]; [q]i ← [0];
3 end
4 updatevector([d], [s], [0]);
5 for i ← 1 to |V | do
6 [d’] ← [d] + [q];
7 [min], [k] ← binarymin([d’]);
8 updatevector([q], [k], [
]);
9 for j ← 1 to |V | do

10 [a] ← ([d] + [M]∗,j) · [k];
11 [c] ← [a] < [d]j ;
12 [P] ← updaterow([P], j, [P]j + [c] · ([k]− [P]j));
13 [d]j ← [d]j + [c] · ([a]− [d]j);

14 end

15 end
16 return [d], [P];

Protocol 3 (the SSP2 protocol) presents our secure shortest path protocol
based on Dijkstra. Note that updatevector refers to Protocol 1 and that
updaterow is the natural extension of updatevector for replacing a complete
row in a shared matrix. Protocol binarymin has been introduced by Toft in
[32] to obtain the minimal value out of a vector of shared values. It securely
computes a share of the minimal value, [min], along with a share of its index,
[k]. The protocol uses O(n) comparisons and multiplications. Its overall round
complexity is O(log(n)) rounds. Vector q records the status of each vertex. An
entry is equal to zero if the corresponding vertex has not been scanned yet. It is
updated to " as soon as the vertex has been scanned.

The main differences between the traditional and our secure version of Dijk-
stra’s algorithm happen in the inner loop: a) On Line 9, the loop goes through all
vertices instead of only considering the neighbors of the current vertex. In par-
ticular, this includes an always transparent step where we consider the current
vertex and gives a substantial overhead if a public sparse graph is considered.
b) On Lines 4 – 8 – 12, we need to go through all elements of a row or a vector,
even if we know that only one of them is going to be updated. Those two mod-
ifications contribute to the same effect: they increase the original complexity of
Dijkstra from O(|V |2) to O(|V |3). More precisely, the exact number of compar-
isons is 2|V |2 − 3|V | + 1 and the exact number of dot products (used for the
multiplication of vectors, costing |V | multiplications) is 2|V |2 − |V | for |V | ≥ 4.

Securely Solving Simple Combinatorial Graph Problems 249

As the comparison protocol we use requires 165 multiplications to compute
a comparison, the number of multiplications to compute the shortest path in a
complete tree is around 2|V |3 + 329|V |2 − 495|V |+ 165.

The switch from quadratic to cubic dominance is at around 165 vertices which
is precisely the number of multiplications used by a single comparison.

Our secure version of Dijkstra comes with an overhead of a factor |V | com-
pared to the original one, even when the graph structure can be considered as
public. We note that this was not the case in the work of Brickell [25] who consid-
ered running Dijkstra securely as well, but accepted to output the shortest paths
step by step. Besides the limitation that this brings when the protocol has to
be composed, we also observe that our algorithm can be used to solve problems
that could not be solved by Brickell’s approach, namely, computing the shortest
path between two specific vertices without leaking any other information: their
approach indeed leaks the shortest path to all vertices.

3.3 Implementation Prototype

We implemented our protocols over the Virtual Ideal Functionality Framework
to challenge their performance. We considered a 3-party execution in the in-
formation theoretic model with passive security: secret values are shared using
Shamir’s secret sharing, the BGW protocol is used for multiplication [2], and
Toft’s protocol is used for comparison [20]. These choices were made for sim-
plicity and ease of prototyping, though much more efficient protocols exist and
would have led to considerably shorter running times [28,30]. The computation
was performed on a single workstation equipped with an Intel Xeon CPUs X5550
(2.67GHz) and 24GB of memory, running a standard Debian Squeeze.

We ran the two shortest path protocols described above on complete graphs
of various sizes. This first showed that Protocol 2 can only be conveniently used
for graphs where |V ||E| ≈ 103 (a few minutes on a standard laptop): see Table 2.

Table 2. Execution times of Protocols 2 and 3 for a complete shortest path tree

Number of vertices 4 8 16 32 64 128

Execution times (in seconds)
SSP1 9 63 501 4003 31951 -
SSP2 9 13 50 217 1018 5622

Our secure versions of Bellman-Ford and Dijkstra have approximately the
same complexity for complete graphs. However the quadratic number of com-
parisons makes it possible to run our secure version of Dijkstra on a 64-vertex
complete graph in roughly twice the time as taken by Bellman-Ford on a 16-
vertex graph, and we have been able to run it up to a 128-vertex complete graph
(i.e., counting 16256 directed edges) in a bit more than an hour.

While these timings might look fairly high, they still make it possible to solve
natural problems in a reasonable time. For instance, if the 3-party, 12-vertex
problem outlined above could be solved in around 30 seconds.

250 A. Aly et al.

4 Maximum Flow

In an oriented graph where the edges have a constraint of capacity, the maximum
flow problem consists in finding the maximum number of units that can be car-
ried from a vertex called source to another vertex called sink. The flow through
an edge designates the number of units passing by it. This number cannot exceed
the capacity.

This problem has numerous classical applications. In the spirit of our pre-
vious examples, one of them could be competing transport companies willing
to determine the capacity they could reach if they decided to realize a joint-
venture. It is natural in such a context to expect that these companies will not
be willing to disclose their full network structure to each other. As in the case of
the shortest path, algorithms solving the maximum flow problem are also very
useful as subroutines for solving other problems. The minimum cut problem is
one such traditional example, which can be solved using O(|V |) invocations of
the maximum flow algorithm. Solving this problem is then useful to determine
where the weak points of the joint network would be.

Although we investigated many different algorithm for a transportation in
MPC, this paper only presents two secure protocols based on the Edmonds-
Karp’s and the Push-Relabel algorithms.

4.1 Edmonds-Karp’s Algorithm

The basic idea of the Edmonds-Karp’s (EK) algorithm is to find an augmenting
path in the residual graph that is the graph in which the edges are weighted by
their residual capacity, i.e., the capacity minus the current flow. Each augmenting
path increases the total flow so that the algorithm eventually terminates when
there are no augmenting paths left. The increase is monotonic and paths are
considered once only. Typically, the EK algorithm uses a breadth-first search to
find the next augmenting path.

The asymptotic complexity of the traditionalEKalgorithm isO(|V ||E|2),which
we can match securely (see Appendix B.) As we have seen in the case of the short-
est path problem, this complexity will be prohibitive even for very small graphs
if they are complete. It therefore makes sense to focus our attention on (oriented)
strongly sparse graphs, of which we consider the structure to be public. More pre-
cisely, we consider graphs in which the number of paths from the source to the sink
is fairly small, e.g., bounded by a small polynomial in the number of vertices.

The algorithm is given on input a list containing all the paths sorted in a
growing order of length, p = (p1, ..., pk) where k is the number of paths in
the graph. This list is not secret as the structure is not, and can therefore be
easily constructed in public. Our protocol based on Edmonds-Karp (the SMF1
protocol) is presented in Protocol 4.

The main differences between this protocol and Edmonds-Karp’s approach
are: a) the public enumeration of all the paths instead of building of a breadth-
first search for capacity augmenting paths, and b) the treatment of all the paths
as if they were augmenting.

Securely Solving Simple Combinatorial Graph Problems 251

Protocol 4: SMF1 maximum flow protocol based on Edmonds-Karp’s al-
gorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a source vertex so ∈ V , a sink vertex si ∈ V , and a list p of
length k containing the paths between so and si sorted in a growing
order of length. A set of capacities [c]e and a set of flows [f]e initially set
to [0] for e ∈ E. ē is the edge opposite to e.

Output: The maximum flow value from so to si.
1 while |p| > 0 do
2 p ← pop(p);
3 [r], [i] ← binarymine∈p([c]e − [f]e);

4 [b] ← [r] > 0;
5 [a] ← [b] · [r];
6 for e ∈ p do
7 [f]e ← [f]e + [a];
8 [f]ē ← [f]ē − [a];

9 end

10 end
11 return

∑

e∈S

[f]e where S = {e ∈ E|h(e) = so};

The SMF1 protocol is correct as the set of all the augmenting paths is con-
tained in the set of all the paths p. Moreover, it ensures the confidentiality of the
edge capacities as no information is leaked about which path of p is augmenting
and which is not.

It is easy to see that the SMF1 Protocol requires O(k|V |) comparisons, as
the length of the longest path in the graph is bounded by |V | − 1, and O(k)
multiplications. This protocol makes a crucial use of the existence of a small
number of paths in the graph, something that we were not able to use in the
SSP2 protocol for instance. It is however highly inefficient for dense graph and
would have a factorial complexity for complete graphs.

This protocol applies well to our previous example of the three competing
logistic companies trying to determine the max flow in their joint networks. If
we consider a case with 10 vertices and 37 different paths, the execution takes
less than a minute as shown in Table 3.

Table 3. Execution times of Protocol 4 for 10-vertex graphs

Number of paths 2 4 8 14 37 86 135

Number of edges 22 21 25 25 32 30 30

Execution times (in seconds) 3 6 9 18 40 94 148

4.2 Push-Relabel Privacy-Preserving Implementation

The Push-Relabel algorithm, also called relabel-to-front when implemented with
a FIFO list, introduces two additional attributes for the vertices, the height and

252 A. Aly et al.

the excess. An edge is called admissible if it goes from a higher to a lower
vertex. The algorithm alternatively pushes the excess along admissible edges
and increases the height of the vertices until all excess has been pushed to the
sink or back to the source.

The basic operation of the algorithm is Push/Relabel applied to a given vertex.
This operation pushes all the excess through incident admissible edges (updating
the excesses of incident vertices accordingly). Finally, in case not all the excess
has been pushed, the elevation of the vertex is minimally increased so as to
create at least one more admissible edge, and Push/Relabel terminates.

Throughout the algorithm a list L with vertices with positive excess (except
the source and the sink) is maintained. At each iteration, one vertex of L is
selected and Push/Relabel is applied. The algorithm terminates when the list
is empty. In the FIFO implementation, the next vertex of L to be treated is
selected in the FIFO order. This FIFO Push/Relabel algorithm terminates in
O(|V |3) operations.

Our protocol based on Push-Relabel is presented in Protocol 5. The main
differences between this protocol and the traditional Push/Relabel algorithm
are as follows : a) when Push/Relabel is applied to a vertex with zero excess,
no update of the elevation is performed at the end, b) in each phase, treat all
vertices except the source and the sink, in a fixed order agreed between the
players, and c) during each Push/Relabel operation applied to a vertex i, the
order in which the edges (i, j) are considered is fixed and agreed in advance
between the players. It is clear that these changes do not modify the correctness
of the original algorithm.

Protocol 5: A phase of the SMF2 protocol based on Push/Relabel

Input: A complete graph G = (V,E) where V is the list of vertices and E the
list of edges. A vertex i to be treated, a vector of elevations [h], a
matrix of residual capacities [R] and a vector of excesses [e].

Output: Update of the elevations [h], the residual capacities [r] and the
excesses [e].

1 [δ] ← 2|V | ; for j ← 1 to |E| do
2 [α] ← [h]i > [h]j ;
3 [x] ← min([e]i, [R]i,j);
4 [y] ← [α].[x];
5 [R]i,j ← [R]i,j − [y]; [R]j,i ← [R]j,i + [y];
6 [e]i ← [e]i − [y]; [e]j ← [e]j + [y];
7 [δ] ← min([δ], [h]j + 2|V | · [α]);
8 end
9 [α] ← [e]i > 0;

10 [h]i ← [h]i · (1− [α]) + ([δ] + 1) · [α];

Moreover, it can be verified that the relabel-to-front algorithm terminates in
maximum 4|V |2−10|V |+12 complete phases. Therefore we obtain an ”all-cases”
complexity of O(|V |2|E|), both in comparisons and multiplications. Note that
this does not match the FIFO complexity, because we scan all edges at each
pass, even when the excess of the tail vertex is zero.

Securely Solving Simple Combinatorial Graph Problems 253

The complexity of this algorithm remains lower than the one of the original
Edmonds-Karp and it is asymptotically better than the optimized version of
Edmonds-Karp presented in Section 4.1 for graphs with vertices of high degree.
However, the running time of Protocol SMF2 remains very high. Experiments
showed that the use of a traditional halting criterion at the end of each SMF2
phase (i.e. nothing has been pushed) results in dramatic running time improve-
ments. However it also demonstrated a huge variability (the algorithm may halt
after a single phase), which suggests that a substantial amount of information
could be derived from it. Quantifying this information is left for future work,
and its impact is likely to depend on the application.

5 Conclusion

We proposed two protocols for securely computing shortest paths as well as two
protocols for securely computing maximum flows in graphs. Besides the interest
that these protocols have in the numerous contexts in which their insecure coun-
terparts have found applications in the past (possibly relying on a trusted third
party), our investigation raised interesting complexity gaps between centralized al-
gorithms and secure protocols, ranging from a constant to something growing like
the number of vertices in the graphs. It is then natural to wonder whether these
gaps, when they arise, can be decreased. Various avenues appear for that purpose:

– Design efficient datastructures adapted to the investigated problems. For
instance, the recent work of Toft [12] on priority queues could lead to con-
siderably more efficient versions of our secure shortest-path protocols. In
particular, whether data structures similar to dynamic trees or Fibonacci
heaps are implementable in a secured setting without revealing the execu-
tion flow remains an open question.

– Investigate whether secure comparisons, which often are a bottleneck, can be
traded for other, cheaper, arithmetic operations. This raises unusual ques-
tions from a traditional algorithmic point of view, as comparisons are usually
considered as basic operations.

Considering other standard combinatorial problems could also provide new in-
sights. The protocols and results presented in the paper are prototypes that val-
idate the theoretical complexity evaluations. While the running times given for
the protocols look unpractical for large graphs, this issue must be put in perspec-
tive. Indeed, an implementation for concrete applications should definitively be
improved by relying on lower level programming languages and optimized under-
lying libraries. Various optimization techniques (see, e.g., [28,30]) would lead to
performance increases of several orders of magnitude, as was observed in the case
of the AES during the last 3 years for instance (see [29] and the references within).

Acknowledgements. This research was supported by the WIST Walloon Re-
gion project CAMUS. Edouard Cuvelier and Sophie Mawet are funded by a FRIA
grant of the F.R.S.-FNRS. Mathieu Van Vyve is supported by the Belgian IAP

254 A. Aly et al.

Program initiated by the Belgian State, Prime Minister’s Office, Science Pol-
icy Programming. The scientific responsibility is assumed by the authors. The
authors are grateful to Claudio Orlandi and the anonymous reviewers for their
constructive feedback. They also sincerely thank Sylvie Baudine for her help in
improving the paper.

References

1. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10. ACM
(1988)

3. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19. ACM (1988)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

5. Bogetoft, P., Damg̊ard, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006)

6. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

7. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009)

8. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010)

9. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

10. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

11. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

12. Toft, T.: Secure data structures based on multi-party computation. In: PODC, pp.
291–292. ACM (2011)

13. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: CCS, pp. 257–266. ACM (2008)

14. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: privacy-preserving
aggregation of multi-domain network events and statistics. In: Proceedings of the
19th USENIX Conference on Security, USENIX Security 2010. USENIX (2010)

15. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

Securely Solving Simple Combinatorial Graph Problems 255

16. Geisler, M.: Cryptographic protocols: theory and implementation. PhD thesis,
Aarhus University Denmark, Department of Computer Science (2010)

17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

18. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

19. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
20. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis,

Department of Computer Science, Aarhus University (2007)
21. Kruger, L., Jha, S., Goh, E.J., Boneh, D.: Secure function evaluation with ordered

binary decision diagrams. In: ACM CCS, pp. 410–420. ACM (2006)
22. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan,

S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)
23. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote

diagnostics. In: ACM CCS, CCS 2007, pp. 498–507. ACM (2007)
24. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A.R., Schneider, T.: Privacy-

preserving ECG classification with branching programs and neural networks. IEEE
TIFS 6(2), 452–468 (2011)

25. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005)

26. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

27. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

28. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

29. Damg̊ard, I.,Keller,M., Larraia, E.,Miles, C., Smart,N.P.: ImplementingAESvia an
actively/covertly securedishonest-majorityMPCprotocol. In:Visconti, I.,DePrisco,
R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg (2012)

30. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

31. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

32. Toft, T.: Solving linear programs using multiparty computation. In: Dingledine,
R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg
(2009)

A Bounds

The size of the ring Zm has to be chosen carefully to prevent overflows. For each
protocol presented in this paper, we provide the bounds of m and the value of
" in Figure 1. These bounds depend on numbers such as the maximum weight
w or the maximum capacity c allowed for the edges. These maxima are agreed
in advance by the players. Remark that " is smaller than m. Most comparison
protocols require a much larger m than the values to compare. This dependence
is taken into account via a function f .

256 A. Aly et al.

Protocol
 > m >

SSP1 |V | ·w f(
)

SSP2 |V | ·w |V | · f(
)

Protocol
 > m >

SMF1 - |V | · f(c)
SMF2 - max(2|V |, |V | · f(c))
SMF3 c max(f(
+ c), |V | · f(c))

Fig. 1. Minimal bounds on
 and m to avoid overflows

B Protocols

Protocol 6 presents the complete Edmonds-Karp’s implementation of the max-
imum flow problem in MPC. The binarymin function refers to the function
introduced by Toft in [32] to securely compute the minimum between different
values. The Bellman-Ford function is a natural adaptation of Protocol 2 that
outputs the shortest path from the source to the sink in the form of a vector
of {[0], [1]} where a [1] at the i-th position indicates that edge i belongs to the
augmenting path. Note that the first augmenting path p is public and given in
input. We refer to Figure 1 for the value of ".

Protocol 6: SMF3 maximum flow protocol based on complete Edmonds-
Karp’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list of
edges, a source vertex so ∈ V , a sink vertex si ∈ V . A list of positive
capacities [c]i for each edge. The first augmenting path p.

Output: The maximum flow value from so to si.
1 for i ← 1 to |E| do
2 [f]i ← [0]; [w]i ← [1];
3 end
4 for i ← 1 to |E| do
5 for j ← 1 to |E| do
6 [c]j ← (1− [p]j) ·
+ [c]j ; [f]j ← [p]j · [f]j ;
7 end
8 [r], [k] ← binaryminj∈{1,...,|E|}([c]j − [f]j); [b] ← [r] > 0; [a] ← [b] · [r];
9 for j ← 1 to |E| do

10 [f]j ← [f]j + [p]j · [a]; [f]j̄ ← [f]j̄ − [p]j · [a]; [cond] ← [c]j − [f]j = 0;
[w]j ← [cond] · |V |+ (1− [cond]) · [w]j ;

11 end
12 [p], [d] ← SSP1(G, [w], so, si);

13 end
14 return

∑

e∈S

[f]e where S = {e ∈ E|h(e) = so};

The main differences between protocol and the traditional Edmonds-Karp
algorithm are as follows :

– Each iteration goes through all the edges but only those which form the
current path are updated.

– The SSP1 protocol is used instead of the Breath-First-Search protocol to
find the smallest augmenting path because there is a serious overhead in a
straightforward secure implementation of the BFS. To run the SSP1 protocol,

Securely Solving Simple Combinatorial Graph Problems 257

SMF3 maintains a list of shared weights [w] for the edges where the weight of
an edge is [1] when it remains in the residual graph and it is [|V |] otherwise.

It is straightforward to see that the asymptotic complexity of the algorithm is
O(|V ||E|2) as the original algorithm. The number of comparisons is |V ||E|2 +
|E|2 + |E| and the number of multiplications is |V ||E|2 + 5|E|2 + |E|.

Parallel and Dynamic Searchable
Symmetric Encryption

Seny Kamara1 and Charalampos Papamanthou2

1 Microsoft Research
senyk@microsoft.com

2 UC Berkeley
cpap@cs.berkeley.edu

Abstract. Searchable symmetric encryption (SSE) enables a client to outsource
a collection of encrypted documents in the cloud and retain the ability to per-
form keyword searches without revealing information about the contents of the
documents and queries. Although efficient SSE constructions are known, previ-
ous solutions are highly sequential. This is mainly due to the fact that, currently,
the only method for achieving sub-linear time search is the inverted index ap-
proach (Curtmola, Garay, Kamara and Ostrovsky, CCS ’06) which requires the
search algorithm to access a sequence of memory locations, each of which is
unpredictable and stored at the previous location in the sequence. Motivated by
advances in multi-core architectures, we present a new method for constructing
sub-linear SSE schemes. Our approach is highly parallelizable and dynamic. With
roughly a logarithmic number of cores in place, searches for a keyword w in our
scheme execute in o(r) parallel time, where r is the number of documents con-
taining keyword w (with more cores, this bound can go down to O(log n), i.e.,
independent of the result size r). Such time complexity outperforms the optimal
Θ(r) sequential search time—a similar bound holds for the updates. Our scheme
also achieves the following important properties: (a) it enjoys a strong notion
of security, namely security against adaptive chosen-keyword attacks; (b) com-
pared to existing sub-linear dynamic SSE schemes (e.g., Kamara, Papamanthou,
Roeder, CCS ’12), updates in our scheme do not leak any information, apart from
information that can be inferred from previous search tokens; (c) it can be im-
plemented efficiently in external memory (with logarithmic I/O overhead). Our
technique is simple and uses a red-black tree data structure; its security is proven
in the random oracle model.

Keywords: Searchable encryption, parallel search, cloud storage.

1 Introduction

Cloud storage promises high data availability, easy access to data, and reduced infras-
tructure costs by storing data with remote third-party providers. But availability is often
not enough, as clients need privacy guarantees for many kinds of sensitive data that is
outsourced to untrusted providers.

The standard approach to achieving privacy in storage systems is to encrypt data
using symmetric encryption. Storage systems based on this approach provide end-to-
end privacy in the sense that data is protected as soon as it leaves the client’s possession.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 258–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel and Dynamic Searchable Symmetric Encryption 259

While such a solution provides strong security guarantees, it induces a high cost in terms
of functionality and is therefore inadequate for storage systems that handle data at large
scales. This is because after the data leaves the client’s machine in encrypted form, the
server cannot perform any meaningful computation on it.

To address this, one can either use general-purpose solutions (e.g., fully-homomorphic
encryption [7] or oblivious RAMs [9]) or special-purpose solutions (e.g., searchable
encryption). Although general-purpose solutions have advantages, including general-
ity and stronger security properties, they are mostly of theoretical interest (e.g., recent
work [19] has shown that ORAM can be relatively practical). On the other hand, special-
purpose solutions like searchable encryption are practical and aim to provide a reason-
able trade-off between efficiency, functionality and security.

Using a symmetric searchable encryption (SSE) scheme, a client can store a collec-
tion of encrypted documents remotely while retaining the ability to perform keyword
searches without revealing any information about the contents of either the documents
or the queries. There are two high-level approaches to designing reasonably efficient
and secure SSE schemes. The first approach, proposed by Goh [8] and used in [3],
associates to each document an encrypted data structure that can be tested for the oc-
currence of a given keyword. This approach naturally results in schemes with search
time that is linear in n, where n the number of documents in the collection. The second
approach, introduced by Curtmola et al. [6], associates an encrypted inverted index to
the entire document collection. This approach yields very efficient schemes since search
time is O(r), where r is the number of files that contain the keyword. Note that, O(r) is
not only sub-linear, it is optimal. Due to its efficiency, the inverted index approach has
been used in many subsequent works, including [4,11,13,20].

While the inverted index approach yields the most efficient SSE schemes to date, it
has at least two important limitations. The first is that it is not well-suited to handle dy-
namic collections (i.e., document collections that must be updated). Although Kamara
et al. [11] recently showed how to construct an encrypted inverted index that handles dy-
namic data, their construction is very complex and difficult to implement. In addition,
the update operations reveal a non-trivial amount of information. The second limita-
tion of the inverted index approach is that it is inherently sequential, requiring Ω(r)
time even in a parallel model of computation. This is mainly because the encrypted
indexes used by these constructions store data at random disk locations (for security
and space efficiency), and because the associated search algorithms are adaptive in the
sense that they find the next memory location to access at the currently accessed mem-
ory location. In addition, we note that even in the sequential setting, where the O(r)
time bound for search is optimal, these constructions can still introduce significant la-
tency when searching for a very frequent keyword whose output contains thousands of
documents.

Our Contributions. We introduce a new approach for designing SSE schemes that
yields constructions with sub-linear search time but that has none of the limitations of
the inverted index approach. In particular, our approach is simple, highly parallel and
can easily handle updates. More precisely, for n documents indexed over m keywords
and with p cores (processors) available, our construction has the following properties:

260 S. Kamara and C. Papamanthou

Table 1. Comparison of several SSE schemes, in terms of worst case parallel search time per key-
word w. With n we denote the size of the documents collection, with r the number of documents
containing keyword w, with m the size of the keywords space and with p the number of cores.

scheme dynamism security search time index size

Song et al. [18] static CPA O(n
p
) N/A

Goh [8] dynamic CKA1 O(n
p
) O(n)

Chang and Mitzenmacher [3] static CKA1 O(n
p
) O(mn)

Curtmola et al. [6] (SSE-1) static CKA1 O(r) O(m+ n)

Curtmola et al. [6] (SSE-2) static CKA2 O(r) O(mn)

van Liesdonk et al. [20] dynamic CKA2 O(n) O(mn)

Chase and Kamara [4] static CKA2 O(r) O(mn)

Kurosawa and Ohtaki [13] static UC O(n) O(mn)

Kamara et al. [11] dynamic CKA2 O(r) O(m+ n)

THIS WORK dynamic CKA2 O(r
p
log n) O(mn)

1. Searches for a keyword w run in O((r/p) log n) parallel time, where r is the num-
ber of documents containing keyword w. Note that for p = ω(logn), our parallel
search time is o(r), i.e., less than the optimal sequential search time.1

2. Updates for a document f containing q unique keywords run in O((m/p) log n)
parallel time. Again, in that case, for p = ω((m/q) logn), our parallel update time
is o(q), i.e., less than the optimal sequential update time.

3. Finally, unlike the updates supported in the works of van Liesdonk et al. [20] and
Kamara et al. [11], the updates of our scheme do not leak information about the
keywords contained in a newly added or deleted document f , apart from informa-
tion that is leaked through search tokens that have been issued in the past (updates
in our scheme however require one round of interaction, as in [20]). For exam-
ple, if we start adding documents into our encrypted index before we perform any
search (which is common in practical applications like streaming), no information
is leaked due to these update operations.

We finally note that our scheme enjoys security against adaptive chosen-keyword at-
tacks (CKA2), as defined by Curtmola et al. [6] and can also be implemented efficiently
in external memory (with logarithmic I/O overhead).

Our Approach. Our approach is based on a new tree-based multi-map data structure
we refer to as a keyword red-black (KRB) tree. As we show in Section 3, KRB trees
can index a document collection in such a way that keyword search can be performed
in O(r log n) sequential time and O(rp logn) parallel time. In addition, a KRB tree
supports efficient updates because all the information it contains about a given file f
can be found and updated in O(log n) time. To construct our SSE scheme, we show
how to encrypt KRB trees based on simple and efficient primitives like pseudorandom
functions and permutations and a random oracle. The resulting scheme is CKA2-secure
and preserves the same (asymptotic) efficiency as an unencrypted KRB tree.

1 Taking p = ω(log n) is very reasonable, given that even 64-core CPUs are now available, e.g.,
see the TILE64 processor at http://en.wikipedia.org/wiki/TILE64.

http://en.wikipedia.org/wiki/TILE64

Parallel and Dynamic Searchable Symmetric Encryption 261

Related Work. The problem of searching on symmetrically encrypted data can be
solved in its full generality using the work of Goldreich and Ostrovsky [9] on oblivious
RAM (ORAM). In addition to handling any type of search query, this approach also
provides the strongest levels of security, namely the server does not learn any informa-
tion about the data or the queries—not even information inferred by the client’s access
pattern. This approach requires interaction and has a high overhead for the server and
the client, especially for more involved functionalities like search. Lorch et al. [14] ex-
plored the notion of parallel ORAM and proposed a parallel ORAM scheme based on a
binary tree approach. Finally, while a recently introduced ORAM scheme [19] has been
shown to be relatively practical, it still requires O(

√
n) storage at the client.

Song et al. [18] were the first to explicitly consider the problem of searchable en-
cryption and presented a non-interactive solution that with search time that is linear
in the length of the data collection. Goh [8] introduced formal security definitions for
SSE and proposed a construction based on Bloom filters [1] that requires O(n) search
time and results in false positives. Chang and Mitzenmacher [3] proposed an alternative
security definition and construction also with O(n) search time but without false posi-
tives. While both the schemes of Goh and of Chang and Mitzenmacher can be naively
parallelized, this would require a linear (in n) number of cores.

Curtmola et al [6]. gave the first constructions (SSE-1 and SSE-2) to achieve sub-
linear (and in fact optimal) search time. Like previous work [8,3], SSE-1 was shown
secure against chosen-keyword attacks (CKA1). In that work, it was noted, however,
that CKA1-security does not suffice for practical use. To address this, the stronger no-
tion of security against adaptive chosen-keyword attacks (CKA2) was proposed and a
CKA2-secure SSE scheme (SSE-2) was proposed. A similar CKA2-secure scheme was
also described by Chase and Kamara [4] but its space complexity is high. Finally, recent
work by Kurosawa et al. [13] shows how to construct a (verifiable) SSE scheme that is
universally composable (UC). While UC-security is a stronger notion of security than
CKA2-security, their construction requires linear search time.

None of the above schemes are “explicitly dynamic”, i.e., to handle dynamic data one
must use general dynamization techniques that are relatively inefficient (except for the
scheme of Goh [8] which unfortunately has linear search time). The first explicitly dy-
namic scheme was presented by Liesdonk et al. [20], but unfortunately that construction
supports a limited number of updates and can has linear search time in the worst case.
Recently, Kamara et al. [11] constructed an SSE scheme that is CKA2-secure, achieves
optimal search time (with small constants) and is explicitly dynamic, Unfortunately, this
construction leaks the tokens of the keywords contained in an updated document. Our
construction avoids such leakage and, in addition, is considerably simpler. A complete
comparison of all the schemes can be found in Table 1.

All the above solutions are either inherently sequential or admit naive parallelization.
For example, in the schemes based on the inverted index approach of Curtmola et al
[4,6,11,13,20], in order to retrieve the documents d1, d2, . . . , dr containing keyword
w, the algorithm uses the pointer to d1 along with a special token t(w) to decrypt the
pointer to d2, then it uses the pointer to d2 and the token t(w) to decrypt the pointer
to d3 until the final pointer to dr can be decrypted. Similarly, to delete a document
that contains keywords w1, w2, . . . , wq , the algorithm deletes the entry corresponding

262 S. Kamara and C. Papamanthou

to wi only after it deletes the entry corresponding to wi−1. Both these procedures are
sequential in nature.

Although this work focuses on the case of single-keyword equality queries, we note
that more complex queries have also been considered. This includes conjunctive queries
in the symmetric key setting [10]; it also includes conjunctive queries [16,2], compari-
son and subset queries [2], and range queries [17] in the public-key setting.

2 Preliminaries

Our construction makes use of several basic cryptographic primitives. A private-key en-
cryption scheme consists of three algorithms E = (Gen,Enc,Dec) such that Gen(1k; r)
is a probabilistic polynomial-time (PPT) algorithm that takes a security parameter k and
randomness r and returns a secret key K; Enc(K,m) is PPT algorithm that takes a key
K and a message m and returns a ciphertext c; Dec(K, c) is a deterministic algorithm
that takes a key K and a ciphertext c and returns m if K was the key under which c was
produced. Informally, a private-key encryption scheme is CPA-secure if the ciphertexts
it outputs do not leak any partial information about the plaintext even to an adversary
that can adaptively query an encryption oracle.

In addition to encryption schemes, we also make use of pseudorandom functions
(PRF), which are polynomial-time computable functions that cannot be distinguished
from random functions by any PPT adversary and random oracles, to which we assume
all parties have black-box access. We refer the reader to [12] for formal definitions of
CPA-security, PRFs and random oracles.

Keyword Hash Tables. In our construction we use static hash tables [5] to store some
specific information for each one of the m keywords. The entries of the hash table λ
are tuples (key, value), where the key key is from a domain of exponential size, i.e.,
from {0, 1}k and value is an encryption of a boolean value. However, the maximum
number of entries in our hash table will be polynomial in k and equal to m, the number
of keywords. If, for a table λ, the key field is from {0, 1}k, and there are at most m
entries in λ, then we say λ is a (k,m) hash table. For each x ∈ {0, 1}k, we denote with
λ[x] the value associated with key x, if key x exists.

Searchable Symmetric Encryption. SSE allows a client to encrypt data so that it can
later generate search tokens which the server can use to search over the encrypted data
and return the appropriate encrypted files.

The encryption algorithm in an SSE scheme takes as input an index δ, a sequence of
n files f = (fi1 , . . . , fin) that have unique identifiers i = (i1, . . . , in),2 and a universe
of keywords w = (w1, . . . , wm). The index δ efficiently maps a keyword w ∈ w to a
set of identifiers iw ⊆ i that correspond to a set of files fw ⊆ f . The encryption algo-
rithm outputs an encrypted index γ and a sequence of n ciphertexts c = (ci1 , . . . , cin),
corresponding to the identifiers i = (i1, . . . , in). We assume all the ciphertexts include
the identifiers of their plaintext files. All known constructions (except for [18]) can en-
crypt the files f using any CPA-secure encryption scheme. The encrypted index γ and

2 The identifiers are chosen uniformly at random and do not reveal any information about the
plaintexts they are representing, e.g., they can be the i-nodes of the underlying file system. In
order not to overload the notation, file fi has identifier i.

Parallel and Dynamic Searchable Symmetric Encryption 263

the ciphertexts c do not reveal any information about f other than the number of files n
and their length,3 so they can be stored safely at an untrusted cloud provider.

To search for a keyword w, the client generates a search token τs and given τs, γ and
c, the provider can find the subset of ciphertexts cw ⊆ c that contain w. Notice that
the provider learns some limited information about the client’s query. In particular, it
knows that whatever keyword the client is searching for is contained in whichever files
resulted in the ciphertexts cw. A more serious limitation of known SSE constructions
(including ours) is that the tokens they generate are deterministic, in the sense that the
same token will always be generated for the same keyword. This means that searches
leak statistical information about the user’s search pattern. Currently, it is not known
how to design efficient SSE schemes with probabilistic trapdoors.

Our scheme supports parallel keyword search as well as parallel addition and deletion
of files. For updates, we use 1.5 rounds of interaction (i.e., three messages between
client and server). For example, to add a file f , the client generates—with the help
of the server—an addition token τa. Given such token and γ, the server can update
the index γ. The same pattern occurs for deletion. To account for this interaction, we
slightly change the definition of CKA2-security for dynamic SSE which was recently
presented by Kamara et al. [11].

Definition 1 (Dynamic SSE). A dynamic SSE scheme is a tuple (Gen,Enc, SrchToken,
Search,UpdHelper,UpdToken,Update,Dec) of eight polynomial-time algorithms such
that:

1. K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter
k and outputs a secret key K .

2. (γ, c) ← Enc(K, δ, f): is a probabilistic algorithm that takes as input a secret key
K , an index δ and a sequence of files f . It outputs an encrypted index γ and a
sequence of ciphertexts c.

3. τs ← SrchToken(K,w): is a (possibly probabilistic) algorithm that takes as input
a secret key K and a keyword w and outputs a search token τs.

4. iw ← Search(γ, c, τs): is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c and a search token τs. It outputs a sequence of
identifiers iw ⊆ i.

5. infoi,u ← UpdHelper(i, u, γ, c): is a deterministic algorithm that takes as input a
file identifier i, the update type u ∈ {add, delete}, an encrypted index γ and se-
quence of ciphertexts c. It outputs helper information infoi,u for the specific update.

6. τu ← UpdToken(K, fi, infoi,u): is a (possibly probabilistic) algorithm that takes
as input a secret key K , a file fi and the respective helper information infoi,u as
output by algorithm UpdHelper. It outputs an update token τu for the update type
u ∈ {add, delete}.

7. (γ′, c′) ← Update(γ, c, τu): is a deterministic algorithm that takes as input an
encrypted index γ, a sequence of ciphertexts c and an update token τu. It outputs a
new encrypted index γ′ and new sequence of ciphertexts c′.

8. f ← Dec(K, c): is a deterministic algorithm that takes as input a secret key K and
a ciphertext c and outputs a file f .

3 Note that this information leakage can be mitigated by padding if desired.

264 S. Kamara and C. Papamanthou

We can now easily define correctness of the above dynamic SSE scheme definition.

Definition 2 (Correctness). Let D be a dynamic SSE scheme consisting of the tuple
of eight algorithms as given in Definition 1. We say that D is correct if for all k ∈ N,
for all K output by Gen(1k), for all tuples (δ, f), for all tuples (γ, c) output by one
execution of Enc(K, δ, f) and successive executions of Update(γ, c, τu), where τu is
the update token output by UpdToken(K, fi,UpdHelper(i, u, γ, c)) for all files fi and
all u ∈ {add, delete}, for all keywords w, for all tokens τs output by SrchToken(K,w),
for all iw output by Search(γ, c, τs), the plaintexts fw = {Dec(K, ci) : i ∈ iw} are all
the plaintexts in f containing keyword w.

Security. Intuitively, the security guarantee we require from a dynamic SSE scheme
is that (1) given an encrypted index γ and a sequence of ciphertexts c, no adversary
can learn any partial information about the files f ; and that (2) given, in addition, a
sequence of search tokens τ = (τ1, . . . , τt) for an adaptively generated sequence of
keywords q = (q1, . . . , qt) (which can be for the search, add or delete operations),
no adversary can learn any partial information about either f or q. This exact intuition
can be difficult to achieve and most known efficient and non-interactive SSE schemes
[3,6,8,11,13,20] reveal the access and search patterns.4 We therefore need to weaken the
definition appropriately by allowing some limited information about the messages and
the queries to be revealed to the adversary. To capture this, we follow the approach of
[4] and [6] and parameterize our definition with a set of leakage functions that capture
precisely what is being leaked by the ciphertext and the tokens. Specifically, the leakage
functions we consider in this work are defined as follows:

1. L1(δ, f): given the index δ and the set of files f (along with the respective identi-
fiers), this function outputs the number of keywords m, the number of files n, the
identifiers i of the file and the size of each file;

2. L2(δ, f , w, t): this function takes as input the index δ, the set of files f and a key-
word w for a search operation that took place at time t. It outputs two different
types of information, namely the search pattern P(δ, q, t) and the access pattern
Δ(δ, f , w, t), both of which are described in the following definitions.

Definition 3 (Search pattern). Given a search query for keyword w at time t, the
search pattern P(δ, q, t) is defined as the binary vector of length t with a 1 at loca-
tion i if the search at time i ≤ t was for w; and 0 otherwise. Namely the search pattern
reveals whether the same search was performed in the past or not.

Definition 4 (Access pattern). Given a search query for keyword w at time t, the ac-
cess pattern Δ(δ, f , w, t) is defined as the identifiers in the set fw at time t.

Discussion on Leakage. In our scheme (described in Section 3), if one searches for
w at time t, the output of the leakage function L2(δ, f , w, t) consists of Δ(δ, f , w, t),
which includes the identifiers iw of the files fw that contain keyword w at time t. As
we add files to the collection, Δ(δ, f , w, t) is expanded with the identifiers of the new

4 One exception is the construction described in [4] which leaks only the access and the inter-
section patterns.

Parallel and Dynamic Searchable Symmetric Encryption 265

files that contain w. This is a limitation of our construction since search tokens are valid
even for future documents added to the collection and effectively allow the server to use
old tokens to search over newly-added documents. It is an open problem to construct
efficient dynamic SSE schemes that do not have this limitation.5

We note that with our construction, if one adds documents to the index before per-
forming any search operations (which is common in practical applications like stream-
ing), no information is leaked due to the updates. From a security point of view, this
is the main difference between our scheme and the recently proposed construction of
Kamara et al. [11], which always leaks information on an update. In this sense, our con-
struction satisfies a slightly stronger notion of security since since the leakage of our
updates is conditional on previous operations and does not occur unconditionally. This
is also why, unlike [11], we do not use an explicit leakage algorithm for updates.

Finally, as observed in [6], another issue with respect to SSE security is whether
the scheme is secure against adaptive chosen-keyword attacks (CKA2) or only against
non-adaptive chosen keyword attacks (CKA1). The former guarantees security even
when the client’s queries are based on the encrypted index and the results of previous
queries. The latter only guarantees security if the client’s queries are independent of
the index and of previous results. Our scheme achieves the stronger notion of secu-
rity, namely CKA2-security. In our definition of security below, we adapt the notion of
CKA2-security from [11] to the setting of dynamic SSE with interactive updates. We
model the interaction required by our scheme with an algorithm UpdHelper.

Definition 5 (CKA2-security). Let D be a dynamic SSE scheme consisting of the tu-
ple of eight algorithms as given in Definition 1. Consider the following probabilistic
experiments, where A is a stateful adversary, S is a stateful simulator and L1 and L2

are stateful leakage algorithms:

RealA(k): the challenger runs Gen(1k) to generate a key K . A outputs a tuple (δ, f)
and receives (γ, c) ← Enc(K, δ, f) from the challenger. The adversary makes a
polynomial number of adaptive queries by picking q ∈ {w, fi}. If q = w is
a search query then the adversary receives from the challenger a search token
τs ← SrchToken(K,w). If q = fi is an update of type u, then the adversary also
sends the helper information infoi,u ← UpdHelper(i, u, γ, c) to the challenger and
then receives from the challenger the update token τu ← UpdToken(K, fi, infoi,u).
Finally, A returns a bit b that is output by the experiment.

IdealA,S(k): A outputs a tuple (δ, f). Given L1(δ, f), S generates and sends a pair
(γ, c) to A. The adversary makes a polynomial number of adaptive queries by
picking q ∈ {w, fi}. If q = w is a search query then the simulator is given
L2(δ, f , w, t). If q = fi is an update of type u, the simulator is given the updated
output of L2(δ, f , w, t) for all keywords w that have appeared before in the adaptive
queries.6 The adversary also sends infoi,u ← UpdHelper(i, u, γ, c) to the simula-
tor. The simulator returns an appropriate token τ . Finally, A returns a bit b that is
output by the experiment.

5 The scheme of Chang and Mitzenmacher [3] does not have this limitation but requires linear
time search.

6 This will be used to simulate searches for previous tokens, the output of which (of those
searches) has changed due to the update. This is the only leakage that our updates cause.

266 S. Kamara and C. Papamanthou

We say that D is (L1,L2)-secure against adaptive dynamic chosen-keyword attacks if
for all PPT adversaries A, there exists a PPT simulator S such that

|Pr [RealA(k) = 1]− Pr [IdealA,S(k) = 1]| ≤ neg(k).

3 Our Dynamic SSE Construction

In this section we describe our parallel and dynamic construction. Let f = (fi1 , . . . , fin)
be a sequence of documents with corresponding identifiers i = (i1, . . . , in) over a set
of keywords w = (w1, . . . , wm). We view each individual fi document as a bit-string
of polynomial length, i.e., fi = {0, 1}poly(k). Recall that an index δ maps a keyword
w ∈ w to a set of documents identifiers iw.

We assume that the universe of keywords is fixed but that the number of documents
can grow. In particular, we assume that the total number of keywords m is much smaller
than the number of files n. We now introduce a standard (i.e., unencrypted) data struc-
ture keyword search which we refer to as a keyword red-black tree. KRB trees will be
the basis of our dynamic SSE scheme.

The KRB Tree. The KRB tree is a dynamic data structure that—similarly to an in-
verted index—can be used to efficiently answer multi-map queries. A KRB tree δ is
constructed from a set of documents f = (fi1 , . . . fin) (which include the identifiers
i = (i1, . . . , in)) and a universe of keywords w. The data structure is constructed using
the following procedure, which we denote as buildIndex(f):

1. Assume a total order on the documents f = (fi1 , . . . , fin), imposed by the ordering
of the identifiers i = (i1, . . . , in). Build a red-black tree T on top of i1, . . . , in. At
the leaves, store pointers to the appropriate documents. We assume the documents
are stored separately, e.g., on disk. Note that this is a slight modification of a red
black tree since the tree is constructed on top of the identifiers but the leaves store
pointers to the files.

2. At each internal node u of the tree, store an m-bit vector datau. The i-th bit of
datau accounts for keyword wi, for i = 1, . . . ,m. Specifically, if datau[i] = 1,
then there is at least one path from u to some leaf that stores some identifier j, such
that fj contains wi;

3. We guarantee the above property of vectors datau, by computing datau as fol-
lows: for every leaf l storing identifier j, set datal[i] = 1 if and only if document
fj contains keywordwi. Now let u be an internal node of the tree T with left child v
and right child z. The vector datau of the internal node u is computed recursively
as follows:

datau = datav + dataz , (1)

where + denotes the bitwise boolean OR operation.

To search for a keyword w in a KRB tree T one proceeds as follows. Assuming that w
has position i in the m-bit vectors stored at the internal nodes, check the bit at position
i of node v and examine v’s children if the bit is 1. When this traversal is over, return
all the leaves that were reached.

Parallel and Dynamic Searchable Symmetric Encryption 267

The intuitive reason the KRB tree is so useful for our purposes is that it allows both
keyword-based operations (by following paths from the root to the leaves) and file-
based operations (by following paths from the leaves to the root). As we will see later,
this property is useful for handling updates efficiently. We now have the following:

Lemma 1 (KRB tree data structure). Let f = (fi1 , . . . , fin) be a set of n documents
containing keywords from a dictionary of m keywords w = (w1, . . . , wm). Then there
exists a dynamic data structure for keyword search such that: (a) the space complexity
of the data structure is O(mn); (b) constructing the data structure takes time O(mn);
(c) the search time for a keyword w is O(r logn), where r is the number of documents
containing w; (d) the time to insert and delete a document f is O(q logn), where q
is the number of unique keywords contained in document f ; (e) search and updates
take parallel O(rp logn) and O(qp logn) time, respectively, with p processors in the
concurrent-read-exclusive-write (CREW) model of parallel computation.

Proof. Since the underlying red-black tree has space complexity O(n) and we have
to store at each node a bit-vector of m bits, it follows that the space complexity of
the KRB tree is O(mn). Now due to the property of Relation 1, given the document
collection f one can start building the data structure following a postorder traversal.
Since a postorder traversal visits O(n) nodes and the time spent at each node is O(m)
(to compute the OR of two m-bit vectors), the time required for constructing the data
structure is O(mn).

Recall that sequential search for a keyword w (corresponding to position i of the m-
bit vectors) proceeds as follows: while the bit at position i of node v is 1, examine v’s
children. Therefore the search procedure will traverse as many paths as the documents
containing keyword w, namely r paths. Since the maximum height of the red-black tree
is maintained to be O(log n) [5], the search time is O(r logn).

The parallel search is executed as follows. Let 0, 1, . . . , p− 1 be the processors that
are available. Processor 0 queries the root r of the tree for a specific keyword. If the
search is to be continued in both the subtrees Tu and Tv of the processor’s children u
and v, processor 0 continues with one subtree (say Tu) and assigns the other subtree
Tv to be explored by another processor. The same algorithm is recursively applied for
nodes u and v. However, if at some point during the search no more processors are
available (i.e., all p processors are working—this test can be achieved with concurrent
read of the same data structure by all processors, that is why we require CREW model),
the current processor simply selects one of its two possible children to continue, marks
the other child c as “unexplored” and pushes c into a local stack of unexplored nodes
so that it can be explored later. All p processors terminate their execution in O(log n)
time, outputting p documents containing the queried keyword. In the second round,
each processor i starts over by popping (and removing) a node c from the processor’s
local stack and by resuming the search from that node c. Again, during that round, each
processor pushes nodes it cannot explore into its local stack. At the end of the second
round, at least another p documents are retrieved in O(log n) time. Eventually, after
r/p rounds of logarithmic time, all documents are retrieved (and all the local stacks are
guaranteed to be empty). Therefore, search executes in parallel O(rp logn) time.

268 S. Kamara and C. Papamanthou

The sequential update time follows from the complexity of the update of the red-
black tree [5]. Since it involves bit operations between q independent vector positions,
it can be implemented in O(qp logn) parallel time. This completes the proof. �

We now show the following corollary, establishing the number of processors required
for improving the optimal sequential performance:

Corollary 1 (Number of processors). With ω(logn) processors available, parallel
searches take o(r) time and parallel updates take o(q) time in a KRB tree.

KRB-Based Dynamic SSE. We now describe in detail our KRB-based parallel and
dynamic SSE construction. Let f = (fi1 , . . . , fin) be the set of documents and w =
(w1, . . . , wm) be the set of keywords. We use the following cryptographic primitives:

1. A pseudo-random function G : {0, 1}k × {w1, . . . , wm} → {0, 1}k;
2. Another pseudo-random function P : {0, 1}k × {w1, . . . , wm} → {0, 1}k;
3. A random oracle H : {0, 1}k × {0, 1} → {0, 1}.

f1 f2

r21

r11

f3 f4

r22

f5 f6

r23

r12

f7 f8

r24

r

1 0

0 0 1

0 1 1

0 1

1 0 1

1 1

1 00

1 1

1

10 1 1

0 1

0 0 0

0 0

0 1 0 0 00 0 1

0 1

0 1

0 1 1

0 1

1 0 00 1 1

1 1

0 1 1

0

1 10 1

0 0 0 1

1

1

1

0

1

1

Fig. 1. The construction of a dynamic symmetric searchable encryption (DSSE) scheme using the
KRB tree data structure, for a collection of n = 8 documents indexed over m = 5 keywords.
Note that for each node v we store two vectors. The encryption of the actual bit of position i at
node v is stored to either hash table λ0v or hash table λ1v , depending on the output of the random
oracle. The red arrows indicate the search for keyword 5, returning documents f3, f6, f7. Note
that the two searches displayed can be parallelized.

We now describe the algorithms (Gen,Enc, SrchToken, Search,UpdHelper,UpdToken,
Update,Dec) of the DSSE scheme from Definition 1 in detail:
Algorithm K ← Gen(1k): Generate three random k-bit strings K1, K2 and r. Instanti-
ate one private-key CPA-secure encryption scheme for encrypting documents by calling
K3 ← E .Gen(1k; r). Set K := (K1,K2,K3);
Algorithm (γ, c) ← Enc(K, δ, f): Let δ ← buildIndex(f) be a KRB tree and proceed
as follows:

1. Instantiate a second private-key CPA-secure encryption scheme R. Derive a secret
key SKi per keyword wi by calling SKi = R.Gen(1k;GK2(wi)), for i = 1, . . . ,m.

2. For 1 ≤ j ≤ n, let cij ← E .Enc(K3, fij), outputting a vector of ciphertexts c;

Parallel and Dynamic Searchable Symmetric Encryption 269

3. Store c on disk (note that the identifiers i remain the same) and then delete f . For ev-
ery node v of the KRB tree T , that has identifier id(v), do the following: (a) Instan-
tiate two (k,m) keyword hash tables λ0v and λ1v—see Section 2 for the definition
of a (k,m) keyword hash table. Store λ0v and λ1v at v; (b) For every i = 1, . . . ,m,
set λbv[PK1(wi)] ← R.Enc(SKi,datav[i]), where b = H(PK1(wi), id(v)) is a
bit computed as the output of a random oracle and datav is the vector at node v in
T ; (c) Store a random string at λ|1−b|v[PK1(wi)] (namely at each node v, the bit b
dictates which hash table (either λ1v or λ0v) contains the actual entry for keyword
wi); (d) Delete vector datav .

4. Output γ := T and c := (ci1 , . . . , cin).

Algorithm τs ← SrchToken(K,wi): Call R.Gen(1k;GK2(wi)) to output the secret
key SKi and output the search token τs := (PK1(wi), SKi);

Algorithm iw ← Search(γ, c, τs): Parse τs as (τ1, τ2). Call search(r), where r is the
root of the KRB tree T . Let v and z be the left and right child of a node u respectively.
Algorithm search(u) is recursively defined as follows:

1. Output a bit b = H(τ1, id(u)) and compute a = R.Dec(τ2, λbu[τ1]);
2. If a = 0, return;
3. If u is a leaf, set cw := cw ∪ cu, where cu is the ciphertext corresponding to file

identifier u (and also stored at node u). Else call search(v) and search(z).

Output cw (note here that, by Lemma 1, this algorithm can be parallelized to execute in
O(|cw |

p logn) time, where p is the number of processors).

Algorithm infoi,u ← UpdHelper(i, u, γ, c): The update u in this algorithm refers to
the document fi and is either an insertion of document fi or a deletion of document
fi (with identifier i). To compute the information infoi,u, the algorithm performs the
structural update7 on the KRB tree T . Note that in order to perform the structural update,
no access to the actual content of the documents is required, since such an update is only
based on the identifier i. The information infoi,u consists of the portion T (u) of the
KRB tree T that is accessed during the update. In other words T (u) suffices to perform
the update, in absence of the rest of the tree T − T (u). Moreover, the size of T (u) is
O(m log n) in the worst case, given that a red-black tree update takes O(log n) time in
the worst case (see Lemma 1) and therefore it can “touch” as many bits (multiplied by
the size m of the encrypted vectors that are stored at the tree nodes). To give an example,
in Figure 1, info3,u, where u is “deletion of file f3”, contains the nodes r22, r11 and r
(along with the encrypted vectors stored at them).

Algorithm τu ← UpdToken(K, fi, infoi,u): If the updateu is an insertion of document
fi, compute first an encryption ci ← E .Enc(K3, fi) of the added document. Now let
infoi,u contain the specific portion T (u) of the KRB tree, as returned by UpdHelper.
Perform the structural update on T (u) and let T ′(u) be the new subtree after the update.

7 The structural update involves the necessary rotations that are performed during an update of
a red-black tree, so that its height can be maintained to be logarithmic. The details of such
operations are described in the book by Cormen, Leiserson, Rivest and Stein (CLRS) [5].

270 S. Kamara and C. Papamanthou

Every node v of T ′(u) that has new/modified ancestors (compared to its structure in
T (u)) must also change its encrypted local information, since this is always computed
as a function of its ancestors (in a sense, its encrypted local information is going to
be recomputed and rerandomized). Also it changes its identifier from id(v) to id(v′).
Specifically, for every such node v ∈ T ′(u) we do the following:

1. Instantiate two new (k,m) keyword hash tables with random entries λ0v and λ1v .
Store λ0v and λ1v at v;

2. Update the new hash tables by setting λbv[PK1(wi)] ← R.Enc(SKi,datav[i])
(i = 1, . . . ,m), where b = H(PK1(wi), id(v

′)) is a bit computed as the output of
the random oracle and datav is the updated vector due to the update;

3. Output τu := (T ′(u), ci).

Algorithm (γ′, c′) ← Update(γ, c, τu): On input τu, just copy the new information
T ′(u) to the already structurally updated KRB tree T (note that T was structurally
updated by the UpdHelper algorithm) and output the new encrypted index γ′ and the
new set of ciphertexts c′.
Algorithm fi ← Dec(K, ci): Output the plaintext fi := E .Dec(K3, ci).

Correctness, security and main result. In this section we prove that our scheme is
correct (Lemma 2) and secure (Lemma 3). Then we give the final result (Theorem 1).

Lemma 2 (Correctness). The dynamic searchable symmetric encryption scheme pre-
sented above is correct according to Definition 2.

Proof. Note that the Update algorithm modifies the encrypted KRB tree in a way that
Relation 1 is satisfied, since the correct value of the bit at each node v is stored as
indicated by the random oracle. Since the Search algorithm will query the same random
oracle, it follows that when searching for a keyword w, it will follow the tree paths that
lead to the correct set of documents.

Lemma 3 (Security). The dynamic searchable symmetric encryption scheme presented
above is (L1,L2)-secure in the random oracle model and according to Definition 5
(CKA-2 security), where L1 leaks the number of the keywords, the number of the docu-
ments, the identifiers of the documents and the size of each document; and L2 leaks the
search pattern and the access pattern, as defined in Definitions 3 and 4.

The proof of Lemma 3 can be found in the Appendix. We now state our final theorem.

Theorem 1 (Parallel and dynamic SSE scheme). There exists a dynamic searchable
symmetric encryption scheme for a collection of n documents indexed over a set of
m keywords such that: (a) it is correct according to Definition 2 and secure accord-
ing to Definition 3 and in the random oracle model; (b) searches for keywords w can
be performed in sequential O(r logn) time or parallel O(rp logn) time in the CREW
model of parallel computation, where r is the number of documents containing w and
p is the number of processors available; (c) additions or deletions of a document fi
can be performed in sequential O(m log n) time or parallel O(mp logn) time, with one
interaction, and have O(m log n) communication complexity; (d) the encrypted data
structure γ has size O(mn) and the local space needed is O(1).

Parallel and Dynamic Searchable Symmetric Encryption 271

Proof. Correctness follows from Lemma 2, security follows from Lemma 3 and most
complexities (including the parallel ones) follow from Lemma 1. Note that the update
complexity is not O(q logn), as in Lemma 1—it is O(m log n), since we do not want
to reveal which keywords are contained in the file of the update. Also, our scheme has
interactive updates due to the algorithm UpdHelper in the definition. �

In the following corollary we give the minimum number of processors required so that
the parallel operations of our scheme outperform the optimal sequential complexity.

Corollary 2 (Number of processors). With ω(logn) processors available in the above
scheme, parallel searches take o(r) time. Similarly, with ω(mq log n) processors avail-
able, parallel updates take o(q) time.

4 Extensions and Optimizations

Improving the Space Complexity. We note here that the space complexity of our
encrypted KRB tree is O(mn), where m is the number of the keywords and n is the
number of documents. Since m # n in practical scenarios, the space complexity can
be kept low in practice. However, one way to reduce the size of the data structure is
to use a tree of depth 2 with internal nodes of degree O(

√
n). Similarly to KRB trees,

one can store m-bit vectors at the internal nodes of such a tree and perform search,
add and delete operations in the same manner. Encryption of these trees can also be
handled with the same algorithm that encrypts KRB trees. The space complexity of this
structure is O(n +m

√
n), which is O(n) as long as m ≤

√
n. Note however that this

construction increases the search time and communication complexity (for updates) to
O(r

√
n), where r is the number of the documents that contain w.

Supporting I/O-Efficient Search. In the case of very large indexes that cannot fit into
main memory8, our approach can be implemented in an I/O-efficient way by using a
B-tree instead of a red-black tree. With such a structure, search always requires logB n
I/Os. Note that after the disk page has been loaded into main memory, the encrypted
search in main memory can be parallelized. In order now to store the B siblings of a
B-tree node in a single disk page of x bits, one has to choose B such that 2Bm ≤ x.
This is because at each node of the B-tree we need to store two encrypted m-bit vectors,
where m is the size of the universe of keywords.

Verifiability of Encrypted Searches. Our model assumes an adversary that is curious
but honest. However, we note that our scheme can be potentially extended to support
verifiability of results in a scenario where the adversary is malicious. This could be
achieved by turning our KRB tree into a hash-based KRB tree (e.g., using Merkle hash
trees [15]) and maintaining hashes at the internal nodes of the KRB tree. For verifying
the result the client could access a logarithmic number of hashes and verify the search
computation step-by-step, in logarithmic time (for that, the client also needs to store and
update the root hash of the tree). In this way, a client could be assured that no encrypted

8 E.g., Amazon Common Crawl Corpus, http://aws.amazon.com/datasets/41740.

http://aws.amazon.com/datasets/41740

272 S. Kamara and C. Papamanthou

documents have been omitted from the results, unless the adversary is able to break the
collision resistance of the hash function. We defer a more formal description of such a
scheme and a proof of security to future work.

Acknowledgments. The second author was supported by Intel through the ISTC for
Secure Computing. Part of this work was performed while the second author was in-
terning at Microsoft Research. The authors would like to thank Elaine Shi, Dawn Song,
Emil Stefanov and Tom Roeder for useful discussions.

References

1. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM 13(7), 422–426 (1970)

2. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

3. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted
data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
442–455. Springer, Heidelberg (2005)

4. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
The MIT Press (2009)

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Im-
proved definitions and efficient constructions. In: Computer and Communications Security
(CCS), pp. 79–88 (2006)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of
Computing (STOC), pp. 169–178 (2009)

8. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)
9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. Jour-

nal of the ACM 43(3), 431–473 (1996)
10. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In:

Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer,
Heidelberg (2004)

11. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Computer and Communications Security (CCS), pp. 965–976 (2012)

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2008)
13. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D.

(ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012)
14. Lorch, J.R., Mickens, J.W., Parno, B., Raykova, M., Schiffman, J.: Toward practical private

access to data centers via parallel ORAM. IACR Cryptology ePrint Archive, 2012:133 (2012)
15. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomer-

ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)
16. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search.

In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidel-
berg (2005)

17. Shi, E., Bethencourt, J., Chan, T., Song, D., Perrig, A.: Multi-dimensional range query over
encrypted data. In: IEEE Symposium on Security and Privacy (SSP), pp. 350–364 (2007)

18. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted data. In:
IEEE Symposium on Security and Privacy (SSP), pp. 44–55 (2000)

Parallel and Dynamic Searchable Symmetric Encryption 273

19. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. In: Network and Distributed
System Security Symposium, NDSS (2012)

20. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient
searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS,
vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

Appendix

Proof sketch of Lemma 3. We describe a simulator S that interacts with an adversary
A in an execution of an IdealA,S(k) experiment as described in Definition 5. Given
the leakage L1(δ, f), it constructs (γ, c) as follows. It simulates the encrypted files
c = (ci1 , . . . , cin) using the simulator SE , which is guaranteed to exist by the CPA-
security of E , together with the value n and the size of each file (both of which are
included in the leakage function). To simulate γ, it constructs a red black tree T using
the identifiers i = (i1, . . . , in) included in the leakage function. It then picks m random
addresses addri ∈ {0, 1}k and generates m keys (SK1, . . . , SKm) for R to be used for
encrypting the entries of the bit-vectors at the internal nodes of T . Note that m is also
included in the leakage function.

Now, for every node v of the tree T the simulator sets up two (k,m) keyword hash
tables Λ0v and Λ1v as follows: for every i = 1, . . . ,m, the simulator stores (a) either
an encryption of a “0” at Λ0v[addri] and an encryption of a “1” at Λ1v[addri] or,
(b) an encryption of “1” at Λ0v[addri] and an encryption of a “0” at Λ1v[addri].
This is decided, for every node, by flipping a coin. To encrypt bit biti ∈ {0, 1} at
position addri, the simulator uses R, outputting the ciphertext R.Enc(SKi, biti) for
all i = 1, . . . ,m. The simulator also stores this information locally: For each node v
of T it stores a vector statev such that statev[i] = j ∈ {0, 1} if and only if the
encryption of “1” was stored at vector Λjv , for all i = 1, . . . ,m.9 Finally, the simulator
outputs the encrypted KRB tree γ to the adversary. γ consists of the red black tree T and
the vectorsΛ0v andΛ1v for every node v of T . We continue by distinguishing two cases,
one for adaptive queries and one for adaptive updates. Before that we recall that given a
search query for keyword w that takes place at time t, the leakage L2(δ, f , w, t) consists
of the search pattern P(δ, q, t) and the access pattern Δ(δ, f , w, t) (from Definitions 3
and 4):

1. Adaptive queries: Suppose the simulator receives a new query q for a keyword
wi. Using L2(δ, f , wi, t) the simulator knows whether this query has appeared be-
fore (due to the search pattern P(δ, q, t)), and if so, it outputs the same token τs.
Else, the simulator picks an address addri that has not been used before. The
simulated token is τs = (addri, SKi). After the adversary receives the token
τs = (addri, SKi) = (τ1, τ2) he is able to execute the search by using the algo-
rithm Search(γ, c, τs), in a way that Search is accessing exactly the same locations
contained in the access pattern Δ(δ, f , wi, t), therefore always returning the correct
answer. We show, that this can be achieved by appropriate use of the random oracle.

9 Note that the simulator could also retrieve that information without storing it, by using the
initial randomness he used to compute it.

274 S. Kamara and C. Papamanthou

Namely, the output b of the random oracle at Step 1 of the Search(γ, c, τs) algo-
rithm (with reference to node v) is programmed by the simulator in the following
manner: if v is contained in the path to an identifier contained in the access pat-
tern Δ(δ, f , wi, t), then b is the bit such that R.Dec(τ2, Λbv[τ1]) = 1. Otherwise,
b is the bit such that R.Dec(τ2, Λbv[τ1]) = 0. Note that the appropriate bit can be
determined by the simulator, since it is storing the state vector statev , for every
node v of the tree T .

2. Adaptive updates: Suppose the simulator receives a new query q = u = fi for in-
serting/deleting document fi with identifier i. If u is an insertion, the simulator uses
SE to simulate ci (note that while fi is not available to the simulator, its identifier
is revealed through the updated leakage L1(δ, f)). Now let infoi,u be the helper in-
formation that is returned during the protocol by UpdHelper. We recall that infoi,u
consists of a certain subtree T (u) of T , namely the portion of the red-black tree T
that is accessed during the update. The simulator can now compute T ′(u) (since
he knows the identifier of the new document) which is the new subtree after the
update. For every node v′ that changes its structure in the subtree T ′(u) (e.g., it ob-
tains a new child), and has a new identifier id(v′), the simulator does the following
(similar actions taken in the setup phase of the simulation):
(a) it instantiates two (k,m) keyword hash tables with random entries Λ0v′ and

Λ1v′ and stores λ0v′ and λ1v′ at v;
(b) For every i = 1, . . . ,m, the simulator reinitializes the keyword hash tables

Λ0v′ and Λ1v′ by storing (a) either an encryption of a “0” at Λ0v′ [addri]
and an encryption of an “1” at Λ1v′ [addri] or, (b) an encryption of “1” at
Λ0v′ [addri] and an encryption of a “0” at Λ1v′ [addri]. This is decided by
flipping a coin. Again, to encrypt bit bi ∈ {0, 1} at position addri, the sim-
ulator executes R.Enc(SKi, bi). Also the simulator updates its state statev′

accordingly.
(c) Output τu := (T ′(u), ci).

After the update, if the adversary searches for keywords for which it has old tokens, the
simulator can again control the search by programming the random oracle appropriately
since it gets the updated leakage Δ(δ, f , wi, t) for each previous keyword for which a
token was issued at time t.

It remains to show that for all PPT adversaries A, the outputs of a RealA(k) and of
an IdealA,S(k) experiment are negligibly close. This holds for the following reasons.
The keys used in the tokens and the ones used to encrypt the hash table elements are
indistinguishable from real keys since they are constructed with PRFs which are indis-
tinguishable from random functions. Therefore, the CPA-security of E and R guarantee
that the adversary cannot distinguish between the real and simulated encryptions of
the files and bit vectors, respectively. Finally, the answers returned by simulator to the
adversary’s random oracle queries are consistent and are appropriately distributed. �

GMW vs. Yao? Efficient Secure Two-Party

Computation with Low Depth Circuits

Thomas Schneider and Michael Zohner

Engineering Cryptographic Protocols Group (ENCRYPTO),
European Center for Security and Privacy by Design (EC SPRIDE),

Technische Universität Darmstadt, Germany
{thomas.schneider,michael.zohner}@ec-spride.de

Abstract. Secure two-party computation is a rapidly emerging field of
research and enables a large variety of privacy-preserving applications
such as mobile social networks or biometric identification. In the late
eighties, two different approaches were proposed: Yao’s garbled circuits
and the protocol of Goldreich-Micali-Wigderson (GMW). Since then, re-
search has mostly focused on Yao’s garbled circuits as they were believed
to yield better efficiency due to their constant round complexity.

In this work we give several optimizations for an efficient implemen-
tation of the GMW protocol. We show that for semi-honest adversaries
the optimized GMW protocol can outperform today’s most efficient im-
plementations of Yao’s garbled circuits, but highly depends on a low
network latency. As a first step to overcome these latency issues, we
summarize depth-optimized circuit constructions for various standard
tasks. As application scenario we consider privacy-preserving face recog-
nition and show that our optimized framework is up to 100 times faster
than previous works even in settings with high network latency.

Keywords: GMW protocol, optimizations, privacy-preserving face
recognition.

1 Introduction

Generic secure two-party computation allows two parties to jointly compute
any function on their private inputs without revealing anything but the result.
Interestingly, two different approaches have been introduced at about the same
time in the late eighties: Yao’s garbled circuits [33] and the protocol of Goldreich-
Micali-Wigderson (GMW) [11, 12]. Both protocols allow secure evaluation of a
function that is represented as a Boolean circuit and, in their basic form, provide
security against semi-honest adversaries who honestly follow the protocol but try
to learn additional information from the observed messages – this widely used
model allows to construct highly efficient protocols and is the focus of our paper.

As Yao’s protocol has a constant number of rounds and requires Oblivious
Transfers (OTs) only for the inputs of one of the parties while the secure evalu-
ation of a gate requires only symmetric cryptographic operations, it was believed

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 275–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

276 T. Schneider and M. Zohner

to be more efficient than the GMW protocol, which requires an interactive OT
for each AND gate (see for example [13, Sect. 1.2]). In fact, many subsequent
works presented improvements to Yao’s protocol and showed that it can be made
truly practical and applied to a large variety of privacy-preserving applications,
e.g., [14, 15, 19, 20, 24, 29].

In a recent work [5], it was shown that by implementing OTs efficiently us-
ing symmetric cryptographic primitives, the semi-honest version of the GMW
protocol can outperform previous secure computation protocols with n ≥ 3 par-
ties. However, for the two-party case, the authors of [5] state that they expect
their implementation to be roughly a factor of two slower than today’s fastest
implementation of Yao’s garbled circuit protocol of [15]. For stronger active ad-
versaries, it has been shown in [27] that an extension of the GMW protocol
achieves a performance that can compete with garbled circuit-based protocols.

1.1 Outline and Our Contributions

In this work we show that the GMW protocol is truly practical in the setting
with two semi-honest parties and in fact has some advantages over Yao’s garbled
circuits protocol. Our contribution is threefold:

Depth-Efficient Circuits. As the GMW protocol requires interaction for the
secure evaluation of AND gates, the dependence on the latency can be reduced
by using circuit constructions that have both, low size and depth. We give a
summary of such circuit constructions for standard functionalities in §3.

Implementation-Specific Optimizations. We extend the implementation of the
GMW protocol of [5] with various optimizations to yield better performance in
the setting with two parties. Our optimizations are described in §4 and include
load balancing (to distribute the workload equally among the parties) and pro-
cessing multiple gates in parallel. Overall, our optimized implementation yields
a more than 10 times faster runtime compared to the implementation of [5] for
an example circuit with about 800,000 gates.

Performance Evaluation. Finally, in §5, we compare the optimized GMW pro-
tocol with today’s most efficient techniques for garbled circuits on a conceptual
level (independent of the implementation). Afterwards, we experimentally mea-
sure and evaluate the performance of our implementation for two example appli-
cations: a mobile social network [5] and privacy-preserving face recognition using
Eigenfaces [9, 14, 30] and the Hamming distance [28] in a desktop environment
that has a network with high bandwidth. In settings with low network latency
our implementation is able to process up to 1,000,000 AND gates (1-out-of-4
OTs) per second in the setup phase and 50,000,000 AND gates per second in the
online phase. Our evaluation indicates that the GMW protocol is a noticeable
alternative to previous protocols based on garbled circuits.

1.2 Related Work

Circuit Optimizations. Since the communication complexity of garbled circuits
is independent of the depth of the evaluated circuit, cryptographic literature

GMW vs. Yao? Efficient Secure Two-Party Computation 277

mostly focused on minimizing the multiplicative size of circuits, i.e., the number
of AND gates where XOR gates are free, e.g. [4,18,29]. Most of the existing work
on minimizing circuit depth originates from the area of electrical engineering
(cf. [8,31,32]), where the circuit depth directly affects the computation latency.
Our setting for circuit optimization is slightly different from this as we can
evaluate XOR gates for free, can store intermediate results indefinitely, and have
unbounded fan-out.

Garbled Circuit Frameworks. Starting with Fairplay [24] that demonstrated
the practical feasibility of Yao’s garbled circuits, various frameworks for secure
two-party computation have been developed. The currently fastest garbled cir-
cuits framework with security in the semi-honest model is [15]. A garbled circuit
framework secure against malicious adversaries was given in [20].

GMW Frameworks. The implementation of [5] showed that for semi-honest
adversaries the GMW protocol can outperform previous secure multi-party com-
putation frameworks for circuits that can be efficiently represented as Boolean
circuits. However, they show this only for the setting with n ≥ 3 parties and
expect that their implementation requires about twice the computation time
of [15] in the two-party setting (cf. [5, Sect. 1.2]). The GMW protocol was re-
cently extended into a new approach for secure two-party computation with
security against malicious adversaries in [27].

Other Frameworks. For completeness we mention that there exist also other
approaches for secure two-party computation (beyond garbled circuits and the
GMW protocol) that evaluate arithmetic instead of Boolean circuits. These ap-
proaches use additively homomorphic encryption as implemented in the VIFF
framework [6] or the SPDZ framework [7] and can even be combined with garbled
circuits as implemented in [14]. Although these approaches are well-suited for
outsourcing computations in scenarios where one party has substantially more
computing power than the other party (e.g., cloud computing), they involve rel-
atively expensive public-key operations in the online phase. Hence, these works
are orthogonal to the protocols we consider that require only fast operations per
gate and allow to distribute the workload equally among the parties.

2 Preliminaries

2.1 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic protocol executed between a sender S
and a receiver R in which R obliviously selects one of the inputs provided by S.
More specifically, in 1-out-of-n OTm

� , S provides m n-tuples (x11, . . . , x1n), . . . ,
(xm1, . . . , xmn) of
-bit strings; R provides m selection numbers r1, . . . , rm with
1 ≤ ri ≤ n and obtains xjrj (1 ≤ j ≤ m) as output. The widely used Naor-Pinkas
OT protocol [25] is secure against semi-honest adversaries under the Decisional
Diffie-Hellman (DDH) assumption in the random-oracle model and requires both
parties to perform O(m) modular exponentiations. The following two techniques
can be used to substantially speed up OTs.

278 T. Schneider and M. Zohner

OT pre-computations [2] allows to pre-compute the OTs on random inputs
and later on in the online phase use these pre-computed values as one-time pads
to run the OT on the actual inputs. In the online phase, R sends one message
of size m log2 n bits to S who sends back a message of size mnl bits.

OT extensions [16,22] allow to perform a large number ofm OTs (OTm
�) using

a small number of t base OTs on t-bit keys (OTt
t), where t is a security parameter.

The marginal cost for each additional OT is a small number of evaluations of
a cryptographic hash function (modeled as random oracle) and of a pseudo-
random function. More specifically, for each of the m OTs, S computes n hash
evaluations and t(1 + log2 n) pseudo-random bits, whereas R computes 1 hash
evaluation and t(1 + n) pseudo-random bits. The communication complexity is
one message from R to S of size mnt bits and one in the opposite direction of
size mn
 bits.

2.2 Approaches for Secure Two-Party Computation

We summarize the main approaches for secure two-party computation of Boolean
circuits next: Yao’s garbled circuits (§2.2.1) and the GMW protocol (§2.2.2).

2.2.1 Yao’s Garbled Circuits Protocol [33]. The basic idea of Yao’s gar-
bled circuits is to let one party, called creator, encrypt the function to be com-
puted. For this, the plain values are mapped to random-looking symmetric keys
and for each gate an encryption table is generated that allows to compute the
gate’s output key given its input keys. The creator then transmits the encrypted
circuit along with the corresponding encrypted inputs to the other party, called
evaluator. The creator sends his encrypted inputs directly to the evaluator and
the evaluator obtains his encrypted inputs obliviously via 1-out-of-2 OT. The
evaluator then uses the encrypted inputs to evaluate the encrypted function
gate by gate. Finally, the creator provides a mapping from the encrypted out-
put to plain output. As the evaluation of Yao’s garbled circuits is performed
non-interactively, the resulting protocol has a constant number of rounds.

The following extensions enhance the speed of Yao’s garbled circuits protocol:
point-and-permute [24], free XOR [19], efficient encryption with a cryptographic
hash function [23], garbled row reduction [26, 29], and pipelining [15]. Put to-
gether, these techniques allow “free” evaluation of XORgates (i.e., no communica-
tion and negligible computation), interweaving circuit generation and evaluation,
and per non-XOR gate 4 evaluations of a cryptographic hash function for the cre-
ator, transmissions of an encrypted gate table with 3 entries, and 1 evaluation of
a cryptographic hash function for the evaluator.

2.2.2 GMW Protocol [11, 12]. In the GMW protocol two parties interac-
tively compute a function using secret-shared values. For this, the value v of each
input and intermediate wire is shared among the two parties with a 2-out-of-2
secret sharing scheme such that each party holds a random-looking share vi with
v = v1 ⊕ v2. As XOR is an associative operation, XOR gates can be securely
evaluated locally by XORing the shares. For secure evaluation of AND gates,

GMW vs. Yao? Efficient Secure Two-Party Computation 279

the parties run an interactive protocol using one of the two techniques described
below. We note that AND gates of the same layer in the circuit can be computed
in parallel. Finally, the parties send the respective shares of the output wires to
the party that should obtain the output.

Oblivious Transfers. To securely evaluate an AND gate on input shares x1, x2

and y1, y2, the two parties can run a 1-out-of-4 OT1
1 protocol. Here, the chooser

inputs its shares x1, y1 and the sender chooses a random output share z2 and
provides four inputs to the OT protocol such that the chooser obliviously obtains
its output share z1 = z2 ⊕ ((x1 ⊕ x2) ∧ (y1 ⊕ y2)). As described in §2.1, all OTs
can be moved into a pre-processing phase such that the online phase is highly
efficient (only two messages and inexpensive one-time-pad operations).

Multiplication Triples. An alternative method to securely evaluate an AND
gate on input shares x1, x2 and y1, y2 aremultiplication triples [1]. Multiplication
triples are random shares ai, bi, ci satisfying (c1⊕c2) = (a1⊕a2)∧(b1⊕b2). They
can be generated in the setup phase using a 1-out-of-4 OT1

1 protocol in a similar
way to the OT-based solution described above. In the online phase the parties
use these pre-generated multiplication triples to mask the input shares of the
AND gate, exchange di = xi ⊕ ai and ei = yi⊕ bi, and compute d = d1 ⊕ d2 and
e = e1⊕e2. The output shares are computed as z1 = (d∧e)⊕(b1∧d)⊕(a1∧e)⊕c1
and z2 = (b2 ∧ d) ⊕ (a2 ∧ e) ⊕ c2. The advantage of multiplication triples over
the OT-based solution is that, per AND gate, each party needs to send only
one message (independent of each other) and the size of the messages is slightly
smaller (2 + 2 bits instead of 2 + 4 bits).

2.3 Evaluation Metrics and Notation

Motivated by the fact that both approaches for secure two-party computation
summarized in §2.2 provide free XORs, we consider the (multiplicative) size S(C)
of a circuit C as the number of AND gates in C and the (multiplicative) depth
D(C) as the maximum number of AND gates on any path from an input to an
output of C.

We denote a bit sequence of length
 bits as x� and use xi to refer to its i-th bit,
starting with the least-significant bit x1. x̄

� denotes the bitwise complement of
x�. x�

1...n is a sequence of n
-bit values x�
1, x

�
2, ..., x

�
n. A circuit C that processes

n values of (
1,
2, ...,
n)-bits each is denoted by C((�1,�2,...,�n),n). If all inputs

n have the same length
, we shorten the notation to C(�,n). When n is clear
from the context we use C� instead. We use the standard notations for binary
operations, i.e. concatenation ||, bitwise XOR ⊕, bitwise AND ∧, and bitwise
OR ∨.

3 Circuit Constructions with low Depth and Size

In the following we briefly summarize circuit building blocks that have low depth
and only a slightly larger size compared to constructions that are optimized for
size only. A detailed list of constructions is given in Appendix A, Tab. 7 (due to
space restrictions we defer details to the full version).

280 T. Schneider and M. Zohner

3.1 Addition

The standard method for adding two
-bit numbers is the Ripple-carry adder
ADD�

RC that has linear size and depth, S(ADD�
RC)=D(ADD�

RC) =
 [18]. In
the following we summarize techniques for addition in sub-linear depth.

3.1.1 Ladner-Fischer Adder. The Ladner-Fischer adder ADD�
LF [21] is a

so-called parallel prefix adder that adds two
-bit values x� and y� in logarithmic
depth. The idea of parallel prefix adders is to evaluate multiple carry-bits in
parallel. During the computation of the sum, the Ladner-Fischer adder computes
a parity bit pi,j and a carry bit ci,j in each node at bit position i (1 ≤ i ≤
)
and level j (0 ≤ j ≤ �log2
�). At level 0, the Ladner-Fischer adder computes
pi,0 = xi ⊕ yi and ci,0 = xi ∧ yi. Then, for every node at level j > 0, the
parity and carry bit are computed as pi,j = pi,j−1 ∧ pk,j−1 and ci,j = (pi,j−1 ∧
ck,j−1) ∨ ci,j , where k is the node that propagates the carry-bit to position i.
Lastly, at level �log2
� + 1, the sum s�+1 is computed as s�+1 = c�,�log2 ��,
si = pi,0⊕ ci−1,�log2(i−1)� for 1 < i ≤
, and s1 = p1,0. The Ladner-Fischer adder

has size S(ADD�
LF) = 1.25
�log2
�+
 and depth D(ADD�

LF) = 2�log2
�+ 1.

3.1.2 Carry-Save Adder. The carry-save adder ADD
(�,3)
CSA [8] converts the

sum of three
-bit unsigned integers x�, y�, and z� into two
 + 1-bit unsigned
integers p�+1 and c�+1 such that p�+1 + c�+1 = x� + y� + z�. To obtain the
result of the addition in sub-linear depth, p�+1 and c�+1 can again be added
using the Ladner-Fischer adder (cf. §3.1.1). The carry-save adder is composed
from
 1-bit full-adders that compute the parity pi = xi ⊕ yi ⊕ zi and the carry
ci+1 = zi ⊕ ((zi ⊕ xi) ∧ (zi ⊕ yi)) in parallel for every bit position 1 ≤ i ≤
.
Finally, p�+1 and c1 are set to 0.

The carry-save adder has linear size and constant depth, allowing three
-bit

numbers to be added with a circuit of size S(ADD
(�,3)
CSA) =
+S(ADD

(�+1)
LF) and

depth D(ADD
(�,3)
CSA) = 1+D(ADD

(�+1)
LF). Multiple carry-save adders can be com-

bined to create a carry-save network ADD
(�,n)
CSN that converts n
-bit numbers to

two
+�log2 n�-bit numbers and adds themusing ADD
�+�log2 n�
LF withS(ADD

(�,n)
CSN)

= (
− 1)(n− 2) +
∑�log2 n�

i=0 i n
2i + S(ADD

(�+�log2 n�)
LF) ≈
n− 2
+ n− �log2 n�+

S(ADD
(�+�log2 n�)
LF) and D(ADD

(�,n)
CSN) = �log2 n�+D(ADD

(�+�log2 n�)
LF) [31].

3.2 Squaring

Although the square of a number can be computed with a multiplication circuit,
a squaring circuit is smaller by a factor of about two. The standard school method
multiplication circuit MUL� [18] computes the product x�x� as

∑�
i=1 2

i−1(x�xi).
Since each xjxi with i �= j is computed twice, xjxi + xixj can be simplified to
2xixj and xixi can be replaced with xi [34]. The corresponding depth-efficient

squarer circuit SQR�
LF has size S(SQR�

LF) =
2 + 1.25
�log2
� − 1.5
 − 2 and

depth D(SQR�
LF)=D(ADD

(2�,��/2�)
CSA)+D(ADD2�

LF)+1 = 3�log2
�+ 3.

GMW vs. Yao? Efficient Secure Two-Party Computation 281

3.3 Comparison

A circuit that checks the equality of two values EQ� has linear size S(EQ�)
=
 − 1 [19] and can be built in a pairwise tournament fashion to achieve
logarithmic depth D(EQ�) = �log2
�. The standard greater than circuit GT�

S

that checks whether one number is greater than another has linear size, but
also linear depth S(GT�

S)=D(GT�
S)=
 [18]. The greater than operation can

be computed in logarithmic depth using the circuit GT�
DC of [10] that recur-

sively splits the
-bit parameters into half. More precisely, let x� = (xH ||xL)
and y� = (yH ||yL) be two
-bit integers with xH , yH being � �

2�-bit and xL,

yL being $ �
2%-bit unsigned integers. GT�

DC is then recursively computed as

GT�
DC(x

�, y�) = GT
� �
2 �

DC(xH , yH) ⊕ EQ� �
2 �(xH , yH) ∧ GT

� �
2 �

DC(xL, yL) until x and

y are bits for which GT1
DC(xi, yi) = xi ∧ ȳi. The circuit has size S(GT�

DC)
= 3
− �log2
� − 2 and depth D(GT�

DC) = �log2
�+ 1.

3.4 Hamming Weight

The Hamming weight circuit CNT� counts the number of one entries in x�, i.e., it

computes its Hamming weight dH(x�) =
∑�

i=1 xi. In [4], a Hamming weight cir-

cuit CNT�
BP was given that splits a value x� into three parts of lengthm = � �−1

2 �,
n = $ �−1

2 %, and one bit, respectively: x� = (xm||xn||x1). CNT
�
BP is then com-

puted recursively as CNT�
BP (x

�) = ADD
�log2 ��
RC (CNTm

BP (x
m),CNTn

BP (x
n), x1)

where x1 can be provided as carry-in to the addition circuit at no extra cost.
The circuit has size S(CNT�

BP) =
− dH(
) and depth D(CNT�
BP) = $log2
%.

4 Optimizations for Two-Party GMW

The original paper of [5] provides an implementation of the GMW protocol
and gives performance numbers for n ≥ 3 parties. For two parties, they expect
that their implementation is slower than the currently fastest garbled circuit
implementation of [15] by a factor of two (cf. [5, Sect. 1.2]). We modified and
extended their GMW implementation for better efficiency in the two-party set-
ting. In the following we give an overview of our modifications that improved
the overall performance the most. We list the modifications in the order they
were implemented and summarize the performance numbers in Tab. 1. Hence,
the performance numbers for each modification include the improvement of all
previous optimizations. In total, we improve the overall runtime of the following
example application by more than a factor of 10.

Benchmarking Environment. In our experiments we evaluate the time for the
setup phase (Naor-Pinkas OTs and OT extension), online phase (sharing of
inputs, circuit evaluation, and combining output shares), and the overall time
(circuit construction, setup phase, and online phase). We perform the comparison
on an unoptimized 512-bit multiplication circuit C with S(C) = 800,227 and

282 T. Schneider and M. Zohner

D(C) = 38 using the average time of 100 executions. For the Naor-Pinkas OT
we use the group Z∗

p with |p|= 512 bit, also used in [5]. For the OT extensions we
set the security parameter to t = 80. The server and client run on two 2.5 GHz
Intel Core2Quad CPU (Q8300) Desktop PCs with 4 GB RAM each that are
connected via Gigabit LAN with a ping latency of 0.2 ms.

Table 1. Time improvements for the individual optimizations

Optimization
None MT PRF LB GMP Bytewise SHA-1 SIMD
[5] §4.1 §4.2 §4.3 §4.4 §4.4 §4.4 §4.5

Setup Phase [s] 13.39 13.82 11.41 7.41 6.87 1.68 0.89 0.84

Online Phase [s] 0.73 0.70 0.70 0.71 0.70 0.31 0.32 0.012

Overall Time [s] 14.19 14.52 12.16 8.14 7.60 2.10 1.35 0.85

4.1 Multiplication Triples

To reduce the impact of the latency during the online time we use Beaver’s
multiplication triples [1] instead of pre-computed OTs for secure evaluation of
AND gates (cf. §2.2.2). This results in a slightly slower setup phase (13.82 s
instead of 13.39 s) due to the additional overhead for computing c2 (instead
of using random inputs). However, the online phase gets more efficient (0.70 s
instead of 0.73 s) as we only require one instead of two interaction steps and 4
instead of 6 bits sent per AND gate.

4.2 Using AES Instead of SHA as Pseudo-Random Function

The original implementation of [5] used SHA-1 not only for instantiating the
random oracle, but also for generating pseudo-random values in the OT exten-
sion. To reduce the computational complexity, we use AES in the counter mode
as pseudo-random function (PRF). More precisely, we benchmarked the SHA-1
implementation of PolarSSL that was used in [5] against the SHA-1 implemen-
tation (sha1-x86 64) and the AES128 (aes-x86 64) implementation of OpenSSL
v. 1.0.1c. The results for 109 iterations are depicted in Tab. 2. This decreased the
number of expensive hash function calls per AND gate (to instantiate the ran-
dom oracle) from 3.5 to 1 for the receiver R and from 4.5 to 4 for the sender S;
additionally, R performs 3.1 AES calls and S performs 0.65 AES calls per AND
gate (to instantiate the PRF). Overall, using AES as PRF decreased the setup
time from 13.82 s to 11.41 s. We note that the performance could be improved
even further by using the Intel AES New Instructions (AES-NI) provided by
recent CPUs.

4.3 Load Balancing

In the OT extension protocol executed in the setup phase, the sender and the
receiver have different computational workload (cf. §4.2). As the multiplication

GMW vs. Yao? Efficient Secure Two-Party Computation 283

Table 2. Comparison of SHA-1 and AES128 implementations for 109 iterations

Algorithm Iterations/s Bits/s

SHA-1 PolarSSL 1.30 · 106 2.08 · 108
SHA-1 OpenSSL 3.65 · 106 5.83 · 108
AES128 OpenSSL 4.99 · 106 6.39 · 108

triples used in the online phase (cf. §4.1) are symmetric, we can run the OTs
to generate them in the setup phase in either direction. Hence, to balance the
workload, we run two instantiations of the OT protocol (each for half of the AND
gates) in parallel with the roles reversed. With this optimization, each party has
the same workload: 2.5 SHA-1 invocations and 1.8 AES invocations per AND
gate. Note that now we also need to run the Naor-Pinkas OT protocol for the
seed OTs twice, which however amortizes fairly quickly (35 ms computation
time and 10 kByte to be transferred). Since the original implementation of [5]
already used multi-threading for implementing the OT extensions, we now use
four parallel threads during the setup phase (two for each role such that one
thread evaluates the pseudo-random function in the first round and the other
the random oracle in the second round of the protocol). Overall, load balancing
decreased the setup time from 11.41 s to 7.41 s.

4.4 Implementation-Specific Optimizations

In order to further speed up the execution time we performed several implementa-
tion-specific optimizations as summarized next.

Arithmetic. For modular arithmetics within the Naor-Pinkas base OTs we
replaced the Number Theory Library (NTL) v. 5.5.2 used in [5] with the GNU
Multiple Precision Arithmetic Library (GMP) v. 5.0.5. This decreased the time
for the Naor-Pinkas base OTs from 590 ms using NTL to 35 ms using GMP for
modular operations on 512 bit values.

Bytewise Operations. A major bottleneck was the bitwise processing order
during the OT extension step and the online phase. We reduced the impact of
the processing order by performing the operations bytewise instead of bitwise.
For the setup phase we thereby gained a decrease in time from 6.87 s to 1.68 s.
For the online phase we achieved a decrease in time from 0.70 s to 0.31 s.

SHA-1. Afterwards, the evaluation of SHA-1 for the random oracle became
the major bottleneck for the OT extension. We replaced the implementation of
SHA-1 from PolarSSL used in [5] with an assembler implementation of OpenSSL
v. 1.0.1c (sha1-x86 64). This decreased the setup time from 1.68 s to 0.89 s.

4.5 Single Instruction Multiple Data (SIMD) Operations

The Sharemind framework [3] for secure three-party computation showed that
Single Instructions Multiple Data (SIMD) operations can result in substantial

284 T. Schneider and M. Zohner

performance gains. The idea of SIMD operations is to replace the evaluation of
n identically copies of the same sub-circuit on one-bit values by one evaluation
of the sub-circuit on n-bit values. This optimization reduces the overall compu-
tation time and the memory footprint as the circuit needs to be generated only
once. SIMD operations are especially beneficial in data mining applications [3].

We show the benefit of SIMD operations by running the benchmarking circuit
C 32 times in parallel on different inputs, resulting in a circuit Cpar with S(Cpar)
= 32 · S(C) = 25,607,264 and D(Cpar) = D(C) = 38. The evaluation without
SIMD operations required 36.44 s (i.e., amortized 1.13 s for each circuit C), of
which 26.76 s (0.84 s) were spent in the setup phase and 2.87 s (0.09 s) in the
online phase. Using the SIMD operations, the overall time decreased to 27.34 s
(0.85 s), with similar setup time of 26.74 s (0.82 s) but 7.5 times faster online
time of 0.38 s (0.012 s). In our implementation the RAM requirement of one
gate without the SIMD extension is 14 Byte. C has 3,168,202 gates (including
XOR gates) in total and requires 42.3 MByte of memory. To store Cpar without
the SIMD extension we therefore would need 1.32 GByte of memory. The SIMD
extension increases the size per gate to 25 Byte plus one bit for each parallel
exection and adds a negligible management overhead for the conversion between
bitwise and SIMD operations. In total, the SIMD circuit for Cpar requires only
88.6 MByte of memory, which corresponds to 6.5% of the non-SIMD variant.

5 Evaluation

We consider two application scenarios to evaluate the benefits of depth-optimized
circuits (§3) and the optimizations of the GMW protocol (§4): privacy-preserving
mobile social networks (§5.1) and privacy preserving face-recognition (§5.2).

Conceptual Performance Comparison. We first give a conceptual comparison
between the GMW protocol, optimized as described in §4, with today’s most
efficient techniques for garbled circuits, as summarized in Tab. 3. Both techniques
provide free XOR gates. Unlike garbled circuits, for each AND gate, the GMW
protocol allows to shift all usage of symmetric cryptography into the setup phase
(cf. §2.2.2) and to distribute the workload equally among client C and server S (cf.
§4.3). Since GMW operates on single bits during the online phase, multiple gates
can be evaluated in one instruction (cf. §4.4 and §4.5), whereas garbled circuits
need to evaluate each gate individually. However, the total communication per
AND gate for the GMW protocol is slightly larger. The memory requirement
during secure evaluation of the circuit is smaller for the GMW protocol as for
every wire of the circuit each party only needs to store a 1-bit share instead
of an 80-bit wire label. Also the inputs are cheaper in the GMW protocol as
only one random bit needs to be chosen and sent to the other party, whereas in
garbled circuits a random 80-bit key needs to be chosen and sent to the evaluator
(using OT for evaluator’s inputs). The main disadvantage of the GMW protocol
is its need for interaction during evaluation of AND gates which becomes an
inevitable performance bottleneck for high network latency as shown in our
practical experiments next.

GMW vs. Yao? Efficient Secure Two-Party Computation 285

Table 3. Conceptual Comparison between state-of-the-art Garbled Circuits (using
Point-and-Permute, Free XORs, Garbled Row Reduction, and Pipelining) and the
GMW Protocol (using optimizations of §4) for security parameter t = 80 bits. C:
client, S: server, SHA: SHA-1, AES: AES128.

Properties Garbled Circuits Optimized GMW

Free XOR yes yes

per AND gate:
setup computation - C&S: 2.5×SHA+1.8×AES
setup communication [bit] - C→S&C←S: 162
online computation C: 1×SHA; S: 4×SHA negligible
online communication [bit] C←S: 240 C→S&C←S: 2

per wire storage C&S [bit] 80 1

per input: rnd bits | comm. [bit] 80 | C: OT resp. S: 80 1 | 1

Benchmarking Environment. We measure runtimes for different (round-trip)
latencies that are typical for the following network types: LAN (0.2 ms), intra-
country internet (10 ms), and trans-atlantic internet (100 ms). The latency on
the network interfaces was enforced by changing the traffic control settings on
Linux using the tc command. We used the same benchmarking environment as
described in §4, but use a subgroup of order q with |q| = 128 and |p| = 1024 in
the Naor-Pinkas OT to match the parameters of previous works. The time for
the Naor-Pinkas OT on 1024 bit values in the LAN setting is 2,950 ms for the
original implementation of [5] and 170 ms for our implementation.

5.1 Mobile Social Networks

In the mobile social network scenario of [5] one party inputs a database ofN users
Ui (1 ≤ i ≤ N) that each have a set of interests Hi (represented as
-bit vector)
and a m-bit location Li. The other party is a user U who can identify the user
Uk that shares the most interests among all users Ui within a certain distance
δm+1. As a result, U obtains in a privacy-preserving way only the identity k of
Uk and 0 otherwise. We give more details on the circuit in §C.

In our experiments we use N = 128 users, m = 32-bit locations Li, and

 = 255-bit sets of interests Hi. We build two versions of the circuit, a size-
efficient version MSNS with S(MSNS) = 89,321 and D(MSNS) = 98 and a
depth-efficient version MSND with S(MSND) = 203,102 and D(MSND) = 68.
We compare the performance on both circuits for the original implementation
of [5] to our implementation in Tab. 4.

For the LAN setting (0.2 ms) our implementation outperforms the original im-
plementation by factor 13 (factor 3 in the online phase). Due to the multiplication
triple optimization (cf. §4.1), the online time of our implementation increases only
half as much as the original implementation with rising latency. While the on-
line time of MSND is marginally higher than MSNS in the LAN setting (0.2 ms),
the latency becomes the dominant factor in the overall execution time for the

286 T. Schneider and M. Zohner

Table 4. Runtimes for secure evaluation of mobile social networks

Framework [5] This work

Circuit MSNS MSND MSNS MSND

Latency [ms] 0.2 10 100 0.2 10 100 0.2 10 100 0.2 10 100

Setup phase [s] 4.65 4.82 6.27 6.48 6.62 8.24 0.30 0.51 1.62 0.42 0.62 1.92

Online phase [s] 0.15 1.12 9.94 0.23 0.92 7.04 0.05 0.54 4.92 0.06 0.40 3.55

Overall time [s] 4.83 5.97 16.24 6.73 7.57 15.31 0.36 1.06 6.58 0.50 1.03 5.50

intra-country internet setting (10 ms) and the trans-atlantic internet setting
(100 ms), i.e., MSND is better for settings with higher latency.

5.2 Privacy-Preserving Face Recognition

To show the performance of our framework on large circuits we benchmark it
on circuits for privacy-preserving face recognition. Here, the client holds a query
face and wants to determine whether it matches one of the faces input by the
server. We consider two commonly used face-recognition algorithms: Eigenfaces
(§5.2.1) and the index-based Hamming distance scheme of SCiFI [28] (§5.2.2).

5.2.1 Using Eigenfaces. Here, the client inputs a query face image Γ with N
pixels of b-bits each. The server inputs M faces projected into a K-dimensional
feature space Ω1, ..., ΩM . If Γ matches one of the faces in the database, the
client receives the index imin of the closest match (see §D for details). A privacy-
preserving protocol based on additively homomorphic encryption was given in [9]
and subsequently improved by combining it with garbled circuits [14, 30].

We use the same parameters as [9, 14, 30]: N = 10,304; b = 8; K = 12. Using
the depth-optimized circuits of §3 results in a circuit for 320 faces in the database
FR320

Eig with S(FR320
Eig) = 14,887,713 and D(FR320

Eig) = 120 and a circuit for 1,000

faces FR1000
Eig with S(FR1000

Eig) = 22,811,392 and D(FR1000
Eig) = 128.

The performance of our implementation in comparison with previous works
is shown in Tab. 5 (similar machines connected via LAN). Our implementation
outperforms previous work by at least factor 8 in the online phase for a database
with 320 faces (factor 10 for 1,000 faces) while maintaining a fast setup time.
Also, our implementation scales very well with increasing database size due to
the SIMD operations of §4.5 (≈ 0.33 ms online time per face in the database).

5.2.2 Using Hamming Distance. In the Hamming distance based algo-
rithm proposed in [28], the client maps his query face to an
-bit index vector
that represents the characteristics of the face. Face recognition is done by com-
puting the Hamming distance between the client’s index vector and each of the
server’s M index vectors of faces in the database and checking whether this dis-
tance is below a pre-computed, face-specific threshold. The original protocols
proposed in SCiFI [28] were based on additively homomorphic encryption and
later improved by the garbled circuits framework of [15].

GMW vs. Yao? Efficient Secure Two-Party Computation 287

Table 5. Runtimes for Eigenfaces-based face recognition (on similar machines)

Faces in Database 320 1,000

Framework [9] [14] [30] This work [9] [14] [30] This work

Setup phase [s] 18 38.1 n/a 15.7 n/a 83.4 n/a 24.0

Online phase [s] 22 41.5 8.4 1.1 n/a 56.2 13 1.3

Overall time [s] 40 76.9 n/a 17.7 n/a 139.6 n/a 26.3

Table 6. Runtimes for index-based face recognition (on similar machines)

Framework [28] [15] This work

Faces in Database 100 100 320 100 320 50,000

Latency [ms] LAN 0.2 100 0.2 100 0.2 100 0.2 100 0.2 100

Setup phase [s] 213 0.40 0.67 0.40 0.67 0.30 1.09 0.49 1.35 44.85 55.87

Online phase [s] 31 1.75 2.18 5.14 6.34 0.006 0.53 0.01 0.62 0.90 3.02

Overall time [s] 244 8.79 9.85 42.9 44.5 0.31 1.64 0.51 2.01 45.98 59.68

We construct a circuit FR
(�,N)
SCI for the SCiFI recognition algorithm that con-

sists of N parallel instantiations of the Boyar-Peralta count circuit CNT�
BP (cf.

§3.4)1 and the size-optimized greater than circuit GT
�log2 �+1�
S (cf. §3.3) with

S(FR
(�,N)
SCI) = N(
 + �log2
 + 1� − dH(
)) and D(FR

(�,N)
SCI) = �log2
 + 1� + 1.

Similar to previous works we choose
 = 900, resulting in a circuit with 906 AND
gates per face in the database and a depth of 11. Tab. 6 shows a performance
comparison between the original protocols of [28] and the framework of [15] and

our framework, both evaluating the SCiFI circuit FR
(900,N)
SCI .

The original SCiFI protocols [28] require a constant setup time of 213 s and
an online time of 0.31 s per face in the database. Their main advantage is that
the online phase can be parallelized on multiple servers. For the circuit-based
approaches we can observe that our framework outperforms [15] in online time
by factor 300 for 100 faces (factor 500 for 320 faces) in the LAN setting and
by factor 4 (factor 10 for 320 faces) in the trans-atlantic internet setting. Most
notable is the sub-linear scaling in the database size due to the SIMD operations
(cf. §4.5), which enable our framework to process large-scale databases within a
very short online time (18 μs per face in the LAN setting and 60 μs per face in
the trans-atlantic internet setting). In contrast, the main performance bottleneck
of the [15] framework is the time for generating large circuits, i.e., the difference
between overall time and setup plus online time.

Acknowledgement. This work was supported by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE and by the Hessian
LOEWE excellence initiative within CASED.

1 This circuit has about half the size of the count circuit proposed in [15].

288 T. Schneider and M. Zohner

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992)

2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

3. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptographically
secure privacy-preserving data mining. In: Chau, M., Wang, G.A., Yue, W.T.,
Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 112–126. Springer, Heidelberg
(2012)

4. Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189.
Springer, Heidelberg (2006)

5. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-
party computation of Boolean circuits with applications to privacy in on-line mar-
ketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432.
Springer, Heidelberg (2012)

6. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

7. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

8. Earle, L.G.: Latched carry-save adder. IBM Technical Disclosure Bulletin 7(10),
909–910 (1965)

9. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

10. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007)

11. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Symposium on Theory
of Computing (STOC 1987), pp. 218–229. ACM (1987)

13. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Con-
structions, 1st edn. Springer (2010)

14. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: Tool
for Automating Secure Two-partY computations. In: Computer and Communica-
tions Security (CCS 2010), pp. 451–462. ACM (2010)

15. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Security Symposium. USENIX (2011)

16. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

17. Kerschbaum, F.: Automatically optimizing secure computation. In: Computer and
Communications Security (CCS 2011), pp. 703–714. ACM (2011)

GMW vs. Yao? Efficient Secure Two-Party Computation 289

18. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009)

19. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

20. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: Security Symposium. USENIX (2012)

21. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. Journal of the ACM 27(4),
831–838 (1980)

22. Li, B., Li, H., Xu, G., Xu, H.: Efficient reduction of 1 out of n oblivious transfers
in random oracle model. Cryptology ePrint Archive, Report 2005/279 (2005)

23. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: Security Symposium, pp. 287–302. USENIX (2004)

25. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

26. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Electronic Commerce (EC 1999), pp. 129–139. ACM (1999)

27. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

28. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure
face identification. In: Symp. on Security and Privacy, pp. 239–254. IEEE (2010)

29. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

30. Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–244.
Springer, Heidelberg (2010)

31. Savage, J.E.: Models of Computation: Exploring the Power of Computing, 1st edn.
Addison-Wesley Pub., Boston (1997)

32. Sklansky, J.: An evaluation of several two-summand binary adders. IRE Transac-
tions on Electronic Computers EC-9(2), 213–226 (1960)

33. Yao, A.C.: How to generate and exchange secrets. In: Foundations of Computer
Science (FOCS 1986), pp. 162–167. IEEE (1986)

34. Yoo, J.T., Smith, K.F., Gopalakrishnan, G.: A fast parallel squarer based on divide-
and-conquer. IEEE Journal of Solid-State Circuits 32, 909–912 (1995)

290 T. Schneider and M. Zohner

A Summary of Circuit Building Blocks

Table 7. Size and Depth of Circuit Constructions (dH : Hamming weight)

Circuit Size S Depth D

Addition

Ripple-carry ADD/SUB�
RC � �

Ladner-Fischer ADD�
LF 1.25��log2 �+ � 2�log2 �+ 1

LF subtraction SUB�
LF 1.25��log2 �+ 2� 2�log2 �+ 2

Carry-save ADD
(�,3)
CSA � + S(ADD�) D(ADD�)+1

RC network ADD
(�,n)
RC �n− �+ n− �log2 n − 1 �log2 n− 1+ �

CSA network ADD
(�,n)
CSA

�n− 2�+ n− �log2 n �log2 n− 1
+S(ADD

�+�log2 n�
LF) +D(ADD

�+�log2 n�
LF)

Multiplication

RCN school method MUL�
RC 2�2 − � 2�− 1

CSN school method MUL�
CSN 2�2 + 1.25��log2 � − �+ 2 3�log2 �+ 4

RC squaring SQR�
RC �2 − � 2�− 3

LF squaring SQR�
LF �2 + 1.25��log2 � − 1.5� − 2 3�log2 �+ 3

Comparison

Equality EQ� �− 1 �log2 �
Sequential greater than GT�

S � �

D&C greater than GT�
DC 3�− �log2 � − 2 �log2 �+ 1

Selection

Multiplexer MUX� � 1

Minimum MIN(�,n) (n− 1)(S(GT�)+�) �log2 n(D(GT�)+1)

Minimum index MIN
(�,n)
IDX (n− 1)(S(GT�)+�+ �log2 n) �log2 n(D(GT�)+1)

Set Operations

Set union ∪� � 1

Set intersection ∩� � 1

Set inclusion ⊆� 2� − 1 �log2 �+ 1

Count

Full Adder count CNT�
FA 2�− �log2 � − 2 �log2 �

Boyar-Peralta count CNT�
BP �− dH(�) �log2 ��

Distances

Manhattan distance DST�
M 2S(SUB�)+S(ADD(�,3))+1 D(SUB�)+D(ADD(�,3))+1

Euclidean distance DST�
E

2S(SUB�)+2S(SQR�) D(SUB�)

+S(ADD(2�,4))+2S(MUX�) +D(SQR�)+3

B Depth Efficient Distance Circuits

B.1 Manhattan Distance

The Manhattan distance DST�
M between two points p1 = (x�

1, y
�
1) and p2 =

(x�
2, y

�
2) is the distance in a two dimensional space allowing only horizontal and

vertical moves and is computed as |x�
1 − x�

2| + |y�1 − y�2|. [5] give such a circuit
DST�

M,C with size S(DST�
M,C) = 9
 and depth D(DST�

M,C) = 2
+ 2. They use

4 multiplexer circuits MUX� (cf. [18]), 2 GT�
S circuits (§3.3), 2 SUB�

RC circuits
(cf. [18]), and one ADD�

RC circuit (§3.1).

GMW vs. Yao? Efficient Secure Two-Party Computation 291

Optimization. We build a more efficient Manhattan distance circuit DST�
M as

x�+1 = SUB�(x�
1, x

�
2), y�+1 = SUB�(y�1, y

�
2)

b�1 = (x�+1||x�+1||...)� ⊕ (x�...1)
�, b�2 = (y�+1||y�+1||...)� ⊕ (y�...1)

�

DST�
M (p1, p2) = ADD(�,3)(b�1, b

�
2, 0

�−2||x�+1 ∧ y�+1||x�+1 ⊕ y�+1).

We can choose between the size-optimized Ripple-carry and the depth-opti-
mized Ladner-Fischer instantiations of SUB� and ADD� (§3.1). Using the Ripple-
carry adder yields DST�

M,RC with S(DST�
M,RC) = 4
 + 1 and D(DST�

M,RC)

= 2
+2. The Ladner-Fischer variant DST�
M,LF has approximately S(DST�

M,LF)

= 3.75
�log2
�+ 7
+ 1 and D(DST�
M,LF) = 4�log2
�+ 6.

B.2 Euclidean Distance

The Euclidean distance DST�
E between two points p1 = (x�

1, y
�
1) and p2 = (x�

2, y
�
2)

is computed as
√
(x�

1 − x�
2)

2 + (y�1 − y�2)
2. Since computing the square root is

very inefficient, the square of the Euclidean distance is often used instead (cf. [9]).
We propose an efficient (squared) Euclidean distance circuit DST�

E as

x�+1 = SUB�(x�
1, x

�
2), y�+1 = SUB�(y�1, y

�
2)

a� = (x�+1||x�+1||...)� ⊕ (x�...1)
�, b� = (y�+1||y�+1||...)� ⊕ (y�...1)

�

c� = MUX�((0||0||...)�, a�, x�+1), d� = MUX�((0||0||...)�, b�, y�+1)

DST�
E(p1, p2) = ADD(2�,4)(SQR�(a�), c�||x�+1, SQR�(b�), d�||y�+1).

where MUX�((0||0||...)�, a�, x�+1) is a multiplexer that selects (0||0||...)� if x�+1

is 0, and a� else. Note that adding c�||x�+1 and d�||y�+1 in the last step can be
done as part of an addition network (§3.1.2), requiring only 2
+2 additional AND
gates and a constant overhead in depth. DST�

E can be instantiated with depth
or size efficieny in mind. The size-efficient variant DST�

E,RC uses the Ripple-

carry adder and has size S(DST�
E,RC) = 2
2 + 6
 + 2 and depth D(DST�

E,RC)

= 3
 + 2. The depth-efficient variant DST�
E,LF uses the Ladner-Fischer adder

and has S(DST�
E,LF) = 2
2 + (7.5
 + 2)�log2
� + 11
 − 5 and D(DST�

E,LF)
= 5�log2
�+ 9.

C Mobile Social Network Circuit

The mobile social network circuit MSN((�,m),N) has two steps. First, the Manhat-
tan distance between U and each user Ui in the database is computed and com-
pared to the threshold δm+1, resulting in a bit ci =GEm+1(δm+1, DSTm

M (Lr, Li))
which is used to multiplex between 0 and the size of the set intersection as
si=MUX�log2 ��(0�log2 ��,CNT�(∩�(Hr, Hi)), ci), where MUX is a multiplexer cir-
cuit (cf. [18]) and ∩ is a circuit for set-intersection (cf. [5]). Next, the index k

292 T. Schneider and M. Zohner

of the user Uk with maximum value si is determined using the MAXIDX cir-

cuit (cf. [18]): MSN((�,m),N)(H1...N , L1...N) = MAX
(�log2 ��,N)
IDX (s1...N). The origi-

nal circuit MSNC in [5] has approximately size S(MSN
((�,m),N)
C)= N(10m+3
+

2�log2
�+�log2 N�) and depthD(MSN
((�,m),N)
C)= 2m+�log2 N�(�log2
�+1)+7.

Using the optimized circuit building blocks CNTBP (§3.4), DSTM,RC (§B.1),
and GTS (§3.3) we obtain a size-efficient variant MSNS with approximately size

S(MSN
((�,m),N)
S) = N(5m+2
+3�log2
+1�+ �log2 N�− dH(
)+ 2) and depth

D(MSN
((�,m),N)
S) = 2m + �log2 N�(�log2
 + 1� + 1) + 4. Alternatively, using

DSTM,LF (§B.1) and GEDC (§3.3) yields a depth-efficient variant MSND which

has size S(MSN
((�,m),N)
D)= N(3.75m�log2 m�+9m+3
+4�log2
+1�+�log2 N�)

and depth D(MSN
((�,m),N)
D)= 5�log2 m� + �log2 N�(�log2�log2
 + 1��+ 2) + 8.

The difference between the two circuits is that the size of the depth-efficient
circuit is larger by approximately N(3.75m�log2 m�+4m+
) whereas its depth
decreases logarithmically in m and log2
.

D Face Recognition Circuit

The circuit for face recognition FR implements the Eigenface recognition algo-
rithm (cf. [30] for a detailed description) by first projecting the face image Γ into
the K-dimensional Eigenface space. The projection is performed by computing
for i = 1, . . . ,K: ωi =

∑N
j=1 ui,jΓj −

∑N
j=1 ui,jΨj where the server inputs the

Eigenfaces ui,j and the average face Ψ and locally precomputes −
∑N

j=1 ui,jΨj .
Afterwards, the square of the Euclidean distance between the ωi and the server’s
projected faces Ω1, ..., ΩM is computed as Dj =

∑K
i=1(Ωj,i − ωi)

2, for j =
1, . . . ,M . Finally, the minimum distance Dmin is selected and compared to a
pre-determined threshold τ , input by the server. If Dmin ≤ τ the client learns
jmin and ⊥ otherwise.

As squaring is cheaper than multiplying (cf. §3.2), we optimize computation

of the projection phase by computing
∑N

j=1 ui,jΓj as
∑N

j=1

(ui,j+Γj)
2−u2

i,j−Γ 2
j

2 .
Although this form might look more complex at a first glance, the resulting cir-
cuit requires only around half the number of AND gates compared to [30]. Using

the optimization of [17], the server locally computes and inputs −
∑N

j=1 u
2
i,j and

the client locally computes and inputs −
∑N

j=1 Γ
2
j .

As building blocks we use a generalization of the Euclidean distance circuit
DSTE (§B.2) to K dimensions, ADDCSA and ADDRC (§3.1), GTDC (§3.3), and
a circuit for computing the minimum index MINIDX,DC (cf. [18]).

The Untapped Potential of Trusted Execution

Environments on Mobile Devices

N. Asokan1, Jan-Erik Ekberg2, and Kari Kostiainen3

1 University of Helsinki
asokan@acm.org

2 Nokia Research Center
jan-erik.ekberg@nokia.com

3 ETH Zurich
kari.kostiainen@inf.ethz.ch

A trusted execution environment (TEE) is a secure, integrity-protected process-
ing environment, consisting of processing, memory and storage capabilities. It is
isolated from the “normal” processing environment, sometimes called the rich
execution environment (REE), where the device operating system and applica-
tions run. TEEs can make it possible to build REE applications and services
with better security and usability by partitioning them so that sensitive opera-
tions are restricted to the TEE and sensitive data, like cryptographic keys, never
leave the TEE. In our daily lives, we encounter more and more services that use
dedicated hardware tokens to improve their security: one-time code tokens for
two-factor authentication, wireless tokens for opening doors in buildings or cars,
tickets for public transport, and so on. Mobile devices equipped with TEEs have
the potential for replacing these many tokens thereby improving the usability for
users while also reducing the cost for the service providers without hampering
security.

Chances are that the mobile device in your pocket sports a hardware-based
TEE. Chances are, too, that you have not come across too many applications
that actually make use of TEE functionality. In this article, we explain why this
situation came to pass and what the future may hold.

Security in mobile world had a very different trajectory compared to the
world of personal computers [6]. The various stakeholders had strict security
requirements, some of which date back to two decades ago, right at the beginning
of the explosion of personal mobile communications. Some examples of such
requirements are:

– Standardization requirements like ensuring that the device identifier (also
known as International Mobile Equipment identifier or IMEI) will resist
“manipulation and change, by any means (e.g., physical, electrical and soft-
ware)” [1],

– Regulatory requirements like ensuring secure storage for radio frequency
parameters calibrated during manufacture,

– Business requirements like ensuring that subsidy locks on subsidized mobile
phones given to a subscriber as part of a contract with a mobile operator

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 293–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

294 N. Asokan, J.-E. Ekberg, and K. Kostiainen

cannot be circumvented; and implementing digital rights management schemes
as securely as possible, and

– end user perceptions which had grown accustomed to the reliability of early
feature phones (e.g., no blue screen of death).

These requirements incentivized mobile device manufacturers, chip vendors and
platform providers to design and deploy hardware and platform security mech-
anisms for mobile platforms from early on. Hardware-based TEEs were seen as
essential building blocks in meeting these requirements. The first mobile phones
with hardware-based TEEs appeared almost a decade ago in the form of Nokia
phones using processors from Texas Instruments [7]. One way to realize a TEE
is by implementing a secure processor mode. The primary example of such an
implementation is ARM TrustZone [2]. ARM processors capable of TrustZone
power the overwhelming majority of smartphones and tablets today. Almost ev-
ery smartphone and tablet today contains a TEE like ARM TrustZone (as well
as software platform security mechanisms [6]).

Despite such a large-scale deployment, the use of TEE functionality has been
largely restricted to its original intended uses. There has been no widely available
means for application developers to benefit from existing TEE functionality.
Some recent research projects, like the On-board Credentials system [5,4,3] we
developed at Nokia Research Center have been deployed in commercial products,
but these remain proprietary.

Fortunately, with emerging standardization in Global Platform
(http://www.globalplatform.org) and the Mobile Working Group of the the
Trusted Computing Group (https://www.trustedcomputinggroup.org/) this
situation is about to change. We expect to see implementaitons of standardized
interfaces for accessing and using TEE emerging across different platforms.

References

1. 3GPP: 3GPP TS 42.009 Security Aspects. 3GPP (March 2001),
http://www.3gpp.org/ftp/Specs/html-info/42009.htm

2. ARM: Building a Secure System using TrustZone c©Technology. ARM Security Tech-
nology (April 2009), http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.prd29-genc-009492c/index.html
3. Ekberg, J.E.: Securing Software Architectures for Trusted Processor Environments.

Doctoral dissertation, Aalto University (May 2013)
4. Kostiainen, K.: On-board Credentials: An Open Credential Platform for Mobile

Devices. Doctoral dissertation, Aalto University (May 2012)
5. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with

open provisioning. In: Proceedings of ACM Symposium on Information, Computer
and Communications Security, ASIACCS (2009)

6. Kostiainen, K., Reshetova, E., Ekberg, J.E., Asokan, N.: Old, new, borrowed, blue –
a perspective on the evolution of mobile platform security architectures. In: Proceed-
ings of the First ACM Conference on Data and Application Security and Privacy
(CODASPY) (February 2011)

7. Srage, J., Azema, J.: M-Shield mobile security technology, TI White paper (2005),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

http://www.globalplatform.org
https://www.trustedcomputinggroup.org/
http://www.3gpp.org/ftp/Specs/html-info/42009.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

Stark

Tamperproof Authentication to Resist Keylogging

Tilo Müller, Hans Spath, Richard Mäckl, and Felix C. Freiling

Department of Computer Science
Friedrich-Alexander-University, Erlangen, Germany

Abstract. The weakest link in software-based full disk encryption is the
authentication procedure. Since the master boot record must be present
unencrypted in order to launch the decryption of remaining system parts,
it can easily be manipulated and infiltrated by bootkits that perform
keystroke logging; consequently password-based authentication schemes
become attackable. The current technological response, as enforced by
BitLocker, verifies the integrity of the boot process by use of the trusted
platform module. But, as we show, this countermeasure is insufficient in
practice. We present Stark, the first tamperproof authentication scheme
that mutually authenticates the computer and the user in order to resist
keylogging during boot. To achieve this, Stark combines two ideas in a
novel way: (1) Stark implements trust bootstrapping from a secure token
(a USB flash drive) to the whole PC. (2) In Stark, users can securely
verify the authenticity of the PC before entering their password by using
one-time boot prompts, that are updated upon successful boot.

Keywords: Disk Encryption, Evil Maid Attacks, Authentication, TPM.

1 Introduction

Full disk encryption (FDE) protects sensitive data against unauthorized access
in the event that a device is physically lost or stolen. The risk of data exposure is
reduced by rendering disks unreadable to unauthorized users through encryption
technologies like AES [11]. Unlike file encryption, FDE encrypts whole disks
automatically on operating system level, without the need to take action for
single files. Therefore, FDE is both more secure and more user-friendly than
file encryption, and consequently, it can be considered best practice for securing
sensitive data against accidental loss and theft.

As stated in a SECUDE survey from 2012 [36], full disk encryption is the
most popular strategy for data protection in the majority of U.S. enterprises
today. Also, the U.S. government recommends agencies to encrypt data on mo-
bile devices to compensate the lack of physical security outside their agency
location [19]. In Ponemon’s annual study about the U.S. Cost of a Data Breach
from 2011 [32], it is stated that “breaches involving lost or stolen laptop com-
puters or other mobile data-bearing devices remain a consistent and expensive
threat”. This threat must be counteracted by full disk encryption systems like

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 295–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 T. Müller et al.

BitLocker for Windows, FileVault for Mac, dm-crypt for Linux, or the cross-
platform utility TrueCrypt.

1.1 Threat Model

FDE cannot protect sensitive data when a user logs into the system and leaves it
unattended. Likewise, FDE does generally not protect against system subversion
through malware. In the case of malware infiltration, adversaries can access data
remotely over a network connection with user privileges after the user logged in.
Hence, hard disk encryption is only intended for scenarios where an adversary
gains physical access to a target.

Given physical access, two types of attacks can be distinguished: opportunistic
and targeted attacks. In opportunistic attacks the adversary steals a computer
and immediately tries to retrieve the data. This is the attack scenario which is
withstood by all widespread FDE solutions, including BitLocker and TrueCrypt.
If an attacker simply grabs the computer and runs, data decryption without
having the key or password is a futile task with today’s crypto primitives like
AES. However, a more careful adversary can carry out a targeted attack on the
key, password, or access control management. Besides cold boot attacks [13,8] and
DMA attacks over FireWire [5,30], PCIe [7,9] or Thunderbolt [6,33], keylogging
attacks via bootkits [24,25] are a notable threat.

Software-based FDE needs to modify the master boot record (MBR) of a
hard drive in order to present pre-boot environments for user authentication.
Commonly, pre-boot screens ask users for credentials in form of a secret password
or passphrase, but they can also ask for credentials such as smart cards and
tokens. Only after a user is authenticated, the operating system is decrypted
and prepared to take over system control.

The MBR of an encrypted hard drive can easily be manipulated because it is
necessarily left unencrypted for bootstrapping since CPUs can interpret only un-
encrypted instructions. As a consequence, bootkits can always be placed in the
MBR to subvert the original bootloader with software-based keylogging. Such at-
tacks are also referred to as evil maid attacks [16] and typically require access to the
target machine twice: Let the victim be a traveling salesman who left his laptop in
a hotel room and goes out for dinner. An “evil maid” can gain physical access to
her target system unsuspiciously now. She replaces the original MBR with a ma-
licious bootloader that performs keylogging and, later on, the unaware salesman
boots up his machine and enters his password. On the next event, the evil maid
can access the laptop a second time and reads out the logged passphrase.1

As shown by a recent study [29] on the security of hardware-based FDE (so-
called self-encrypting drives, SEDs), evil maid attacks are generally not defeated
by SEDs although these drives encrypt theMBR [14]. The reason is that evil maids
can alternatively replace the entire disk drive, plug in a tiny bootable USB drive,
flash the BIOS image [35,18] or UEFI image [26,3], or even replace the machine

1 Following this cover story, we refer to female attackers and male victims throughout
this paper.

Stark: Tamperproof Authentication to Resist Keylogging 297

with an identical model. Overall, targeted attacks with repeated physical access
(such as evil maid attacks) constitute the threat model of our paper.

1.2 Bootkit Attacks

The original evil maid attack was implemented against TrueCrypt in 2009 [16].
Earlier that year, another bootkit, called theStonedBootkit [31], had circumvented
TrueCrypt as well. Until today, TrueCrypt is vulnerable to these attacks and the
program’s authors do not plan future improvements. To the contrary, they argue
that bootkits “require the attacker to have [...] physical access to the computer, and
the attacker needs you to use the computer after such an access. However, if any
of these conditions is met, it is actually impossible to secure the computer”. [39]

Microsoft’s BitLocker, on the other hand, defeats software keyloggers up to
a certain degree as it assures the integrity of the boot process by means of the
trusted platform module (TPM). TPMs are used to build trusted checksums
over sensitive boot parameters, such as firmware code, the BIOS, and the boot-
loader [40]. BitLocker’s decryption key can only be derived if these checksums
are in line with the reference configuration from system setup. Otherwise, users
cannot decrypt their data and hopefully become suspicious that somebody ma-
nipulated their machine.

However, at the end of 2009, even BitLocker was successfully compromised by
bootkit attacks. Türpe et al. [42] practically performed tamper and revert attacks
that (1) tamper with the bootloader for introducing keylogging functionality,
(2) let the victim enter his password into a forged text-mode prompt, (3) revert
to the original bootloader, and (4) reboot. The victim may wonder about the
reboot, but most likely he will enter his password again and proceed as usual –
unaware of the fact that his password was already logged.

We reproduced both, the attack against TrueCrypt and the attack against
BitLocker, with our own malicious bootloaders. Both attacks are still effective
today.

1.3 Related Work: Attempts for Countermeasures

As shown by tamper and revert attacks, TPMs alone are not suitable to guaran-
tee a trusted password prompt. Consequently, other countermeasures have been
taken into consideration in recent years.

The first countermeasures were external bootloaders such as the Anti-Bootkit
Project [2] from 2010. But even if the integrity of external USB bootloaders can
be assured, because they are never left unattended, this measure is insufficient
for several reasons: First, it remains unclear which USB port is preferred for
booting. An attacker could plug in her own, tiny USB flash drive at the back
of the machine. Second, BIOS passwords can often be reset by removing the
onboard battery. This allows an attacker to reconfigure the boot sequence at
her convenience, e.g., to boot from MBR. Third, the BIOS or UEFI might be
manipulated and display a fake password prompt. And fourth, the entire target
machine could simply be replaced with a manipulated model.

298 T. Müller et al.

Another countermeasure named Anti Evil Maid [17] was introduced in 2011.
This project mentions a mutual authentication scheme in the context of hard disk
encryption for the first time: Only if the boot process behaves with integrity, a
secret (user-defined) message can be unsealed by means of the trusted platform
module. This message must be shown to the user before he enters his password.
If the secret message cannot be shown, the user is strongly advised not to enter
his password because the boot process is likely to be compromised.

1.4 Possible Attacks against Anti Evil Maid

Considering travelers who boot their laptops at public places like airports, and
in conference and meeting halls, it is unlikely that the authentication message
from Anti Evil Maid remains confidential for a long time. It will be present on
surveillance cameras, can be spied upon by shoulder surfing, and can perfectly
be reconstructed as it is simple ASCII text.

Even worse, the authentication scheme of Anti Evil Maid is not secure if we
take the confidentiality of the authentication message for granted. It is also not
secure if we additionally assume that the sealed authentication message is placed
on an external USB drive. Anti Evil Maid only raises the number of required
physical accesses from two to three, because the attack by Türpe et al. [42]
against BitLocker can be extended as follows:

1. On the first physical access, an evil maid manipulates the bootloader in a way
that it copies USB drives, e.g., into the very last sectors of the hard drive or
into another USB drive. Then she lets the victim plug in his USB drive and,
after it has been cloned, the bootloader automatically reverts to its original
state and reboots. The reboot occurs quickly after the copy procedure, and
thus an unaware user may not even recognize suspicious behavior.

2. On the second physical access, the evil maid boots up her target with the
recently cloned thumb drive and notes down the appearing authentication
message. She builds her own bootloader with this message and overwrites the
original bootloader a second time. The remaining attack equals the procedure
of tamper and revert: The evil maid lets her victim enter his password and
after it has been logged, the bootloader automatically reverts to its original
state and reboots again. This time, the victim may wonder about the reboot,
but most likely he will re-enter his password and proceed as usual.

3. On the third physical access, the evil maid can read out the logged password
and so she gains full access to the data.

If a second password, e.g., in form of a PIN for the TPM, is used instead of
external thumb drives, as alternatively proposed [17], the attack works analo-
gously with a second password logger instead of the USB drive cloner. If images
instead of simple text messages are used, as alternatively proposed [17], too, the
attack works similarly as well, because appearing images can be photographed
or digitally retrieved through cold boot attacks.

Stark: Tamperproof Authentication to Resist Keylogging 299

1.5 Contributions

We present the design and implementation of Stark, an authentication protocol
that fully defends against targeted attacks with repeated physical access for the
first time. The goal of Stark is to reveal boot process manipulations before
the user enters his password. To this end, we introduce a mutual authentication
scheme that proves the integrity of a computer to its users. Similar to Anti Evil
Maid, our authentication scheme is based on sealed authentication messages and
external USB drives, but beyond that it introduces the concept of a one-time
password prompt.

Roughly speaking, the authentication sequence of Stark works as follows:

– Upon boot, a user-defined authentication message is displayed. The message
is sealed by the TPM and can only be unsealed if the boot process behaves
with integrity. If the secret message is not displayed, the user must not enter
his password.

– To prevent replay attacks as in Anti Evil Maid, we introduce monces : au-
thentication messages that are used only once. Each time an authentication
message has been displayed and verified, the user must define a new one. All
monces are sealed by means of the TPM and stored on external USB drives.
Upon boot, a consumed monce is always overwritten by a new one.

– The USB drive must be handled like a physical key and never be left unat-
tended. The trustworthiness of our authentication scheme depends on the
trust we have in the thumb drive (trust bootstrapping).

– Additionally, we store a sealed token value on the USB drive, to bind the
drive necessarily to the decryption process (two-factor authentication).

In short, the trustworthiness of a machine state is authenticated to the user by
displaying ever-changing authentication messages. Attacks against those mes-
sages must fail because an attacker can only retrieve messages that have already
been consumed. To summarize, our contribution is threefold:

1. With Stark, we present a mutual boot authentication protocol between
users and computers that is more secure than existing solutions (cf. Sect. 2).

2. We describe a practical implementation of Stark, for which we integrated
the protocol into the bootloader of the FDE solution Tresor [28] (cf.
Sect. 3).

3. We give a formal argument for the security of Stark (cf. Appendix A).

Our implementation is open source (under GNU GPL v2) and together with
other information available at http://www1.cs.fau.de/stark/.

2 Stark Protocol and Design Choices

We now describe the actual Stark protocol. Stark is a protocol for mutual
authentication between users and computers. So there are two parties that follow
the Stark protocol: The user U and the computer C. Computer C must contain
a TPM, because Stark requires its sealing capabilities to attest to U that it
behaves with integrity. On the other hand, to attest to C that U is who he claims
to be, traditional passwords are used.

300 T. Müller et al.

2.1 The Stark Protocol

We formulate Stark in the standard notation of authentication protocols. Stark
requires a bootstrapping phase, called session 0. Authentication sessions are
numbered consecutively starting with session 1.

Bootstrapping Phase. In the bootstrapping phase (see Fig. 1), U exchanges
password p and the initial monce m0 with C and receives sealedC(m0, t) from
C; t is a token value that binds the USB drive to the authentication process.
Computer C permanently stores a hash sum h(p, t) over p and the token value.
After the setup phase, U and C can engage in an infinite sequence of authenti-
cation sessions.

User U Computer C
construct p and m0 p,m0−−−−−−−−−−−−−−−−→

construct t
save h(p, t)
seal (m0, t)

save sealedC(m0, t) on USB

sealedC(m0, t)←−−−−−−−−−−−−−−−−

Fig. 1. Session 0 (bootstrapping phase)

Authentication Sessions. In authentication session i (see Fig. 2), U plugs in
his USB drive and boots up C. Computer C reads out sealedC(mi−1, t), unseals
it, and displays mi−1 to U . If U does not recognize mi−1, U must abort the
protocol and consider C as compromised. Otherwise, if U recognizes mi−1, C is
authenticated and U can safely enter his password.

User U Computer C
plug in USB

sealedC(mi−1, t)−−−−−−−−−−−−−−−−→
unseal (mi−1, t)

authenticate C and enter p

mi−1←−−−−−−−−−−−−−−−−
p−−−−−−−−−−−−−−−−→

calc h(p, t) to authenticate U
construct mi

ACK←−−−−−−−−−−−−−−−−
mi−−−−−−−−−−−−−−−−→

seal (mi, t)

save & unplug USB

sealedC(mi, t)←−−−−−−−−−−−−−−−−

Fig. 2. Session i, i ≥ 1 (authentication sessions)

Stark: Tamperproof Authentication to Resist Keylogging 301

Afterwards C computes h(p, t) and compares it to the permanently saved
value. If both values do not match, U is asked to enter his password again.
Otherwise, U is now authenticated to C, i.e., both parties are mutually authen-
ticated. Only then U and C are safe to exchange a new monce mi that will be
used in session i + 1. User U enters mi, C seals it and then it is stored on the
USB thumb drive. Finally, U can unplug the thumb drive and C passes control
on to the operating system.

2.2 Security Argument

The central idea behind the security of Stark is that monces disallow replay
attacks on the authentication message displayed to the user. To prove the se-
curity of the scheme, it is however vital that the user installs a new monce
after every successful login without interference by the adversary. In traditional
cryptographic protocols, replay attacks are oftentimes defeated by nonces, i.e.,
pseudo-random numbers that are used once. However, compared with traditional
authentication schemes, the difficulty in the context of FDE is that one of the
communication endpoints is human. Most humans have limited computational
capabilities and therefore, authentication schemes requiring public/private key
computations on both sides must be excluded and we introduce the concept of
monces, i.e., messages that are used once. Basically, we replace the single au-
thentication messages known from Anti Evil Maid with a series of continuously
alternating messages.

In short, we use the sealing capabilities of the TPM to authenticate the
computer towards the user. The user then authenticates towards the computer
with traditional passwords as well as with a USB token. So upon each boot,
the user gives two inputs: his password and a new authentication message mi.
Consequently evil maids can only catch outdated messages. We give a formal
correctness argument for Stark in form of an inductive proof in Appendix A.

2.3 Design Components of Stark

We now describe the design choices that influenced Stark. There were two
questions we had to answer when designing Stark. The first question was: What
is the best way to achieve mutual authentication? Since users authenticate using
a password, the problem of mutual authentication lies in having the computer
prove its integrity first. We do this using a novel combination of the trusted
platform module and one-time messages.

The second question was: How can we best protect the necessary authentica-
tion messages? Here we use a USB flash drive to hold the sealed monces. Another
design decision, not directly related to the evil maid scenario, regards the use
of token values, that are placed on the USB drive to protect users who choose
weak passwords (two-factor authentication).

302 T. Müller et al.

Mutual Authentication by Means of the Trusted Platform Module. In
practice all implementations to date that are based upon TPMs fail to attest
the trustworthiness of boot parameters in a way that cannot be tampered. An
example for this are attacks by Türpe et al. against BitLocker as described above.
Even though BitLocker builds upon TPMs, users can easily be tricked into bogus
password prompts because BitLocker looks exactly the same on every machine.
An attacker can reproduce the original BitLocker prompt perfectly in her own
bootloaders and victims have no chance to distinguish malicious from benign
behavior. However, TPMs are neither insecure nor useless taken by themselves,
they must just carefully be integrated into protocols. In Stark, the TPM is used
to protect one-time messages and bind them to the computer at the same time.

Bootstrapping Trust from USB Flash Drives. We store sealed monces
on an external USB thumb drive. If the monces were stored on the local hard
drive, Stark would be insecure to attackers who simply boot the machine and
note down the appearing monce, because such attackers could build their own
bootloaders with the exactly same message. If only the laptop or the USB drive
is missing, monces remain confidential because they can only be unsealed if both
entities act together. Practically, that means we can leave PCs unattended when
we assure the trustworthiness of USB drives. In this sense, Stark is a protocol
that performs trust bootstrapping from trusted USB drives.

Two-Factor Authentication with Passwords and Token Values. Besides
the machine state and the user password, the FDE decryption key is based on a
token value stored on the USB drive. Similar to monces, the token is sealed by
means of the TPM and can only be unsealed if the machine is in line with its
reference configuration. While all components introduced above defeat bootkit
attacks, token values prevent dictionary attacks against weak passwords. With-
out a token value, adversaries would be able to boot their targets and enter
passwords one after another. Tokens are also a protection in scenarios where the
user disclosed his password but did not lose the thumb drive. This can be the
case due to social engineering [38], skimming and shoulder surfing [23,4], reusing
the password in a different system [15], or writing it down. Token values pre-
vent such attacks because they bind USB drives compulsorily to the decryption
process.

3 Potts: A Linux-Based Implementation of Stark

We now present Potts, our practical implementation of the authentication pro-
tocol given above.2 Potts protects opportunistic and targeted threat scenarios
through the integration of Tresor and Stark.

2 Note that Pepper Potts is the personal secretary of Tony Stark [10].

Stark: Tamperproof Authentication to Resist Keylogging 303

3.1 Integrating Stark with Tresor

When an attacker gains physical access to a machine while it is running or in
standby mode, it is not protected by Stark but must be protected by separate
mechanisms. Therefore we integrated Stark into Tresor [28] because Tresor

already defeats another kind of physical access attacks, namely cold boot
attacks [13].

Cold boot attacks exploit the remanence effect of DRAM [12], meaning that
RAM contents fade away gradually over time. Due to the remanence effect, en-
cryption keys can be restored from memory through rebooting a system with
malicious USB drives, or by replugging RAM chips physically into another ma-
chine. That makes cold boot attacks rather generic and therefore they constitute
a threat for all software-based FDE technologies to date, including BitLocker
and TrueCrypt.

Tresor, as a countermeasure, runs encryption securely outside RAM. To this
end, Tresor avoids RAM usage entirely and runs the key management, as well
as the AES algorithm, solely on the microprocessor. Some processor registers (in
detail, these are the debug registers) are permanently used as cryptographic key
storage. Tresor is implemented as a Linux kernel patch because side effects
like context switching, which leak information into RAM, cannot be controlled
in user mode.

3.2 Stark Protocol Extensions

In the presentation of Stark above we reduced the protocol to the communi-
cation of authentication messages between U and C. However, we ignored some
real-world aspects, like error recovery and usability, to make the protocol more
amendable for its security analysis (cf. Appendix A). We now make up for those
aspects and present protocol extensions of Stark within Potts.

Data Rescue and Recovery Mechanism. To recover from protocol failures,
from hardware configuration changes, and from system compromise, we use two
different keys in Potts: a key encryption key (KEK) and a data encryption key
(DEK). KEK k is composed of token value t and a checksum over password p.
KEK k decrypts DEK d which is encrypted using AES and therefore is safe to
be stored on hard disk. DEK d is used to decrypt user data.

While k may change frequently, e.g., through password changes, d is designed
to be constant. So d prevents cumbersome re-encryption of the disk in the case of
password changes since only d must newly be encrypted. Furthermore, d allows
for data recovery in the case of password loss, and in the case that USB drives
are lost or TPM hardware failures occur. For data recovery, users must store d
in plaintext at a physically secure place, e.g., in a vault at home. This allows for
migration of the hard disk into other machines and can be consulted in the case
of hardware configuration changes that lead to different TPM states.

Not all protocol inconsistencies must necessarily point to a system compromise
but can arise from technical problems, too. However, this is hard to differentiate

304 T. Müller et al.

in practice, and thus we advise users to act carefully: In practice, data can be re-
covered with d by mounting potentially compromised HDDs on a second, trusted
computer as an external device. After data rescue, the HDD in question must be
formatted, including the master boot record, and the PC must be reset to factory
settings (including the BIOS or UEFI image). Only then, Stark’s bootstrapping
phase can be rerun securely to set up a new system. Overall, Stark enables users
to identify a potential system compromise; we do not strictly regulate which ac-
tions to take if such a compromise is detected in Potts.

Key Derivation Function. In the previous section we stated that k is derived
from a checksum over the user password p and the token value t. We now specify
the key derivation function used in Potts in detail. We do not use a single
SHA-256 checksum over p but run the password-based key derivation function 2
(PBKDF2) from RSA laboratories [20], which is recommended by NIST [41].

PBKDF2 applies a cryptographic hash to the password along with a salt and
repeats the procedure several times to derive the final key (key stretching). The
salt as well as the additional iterations make brute force attacks on the password
difficult. Salt values reduce the risk of precomputed tables (rainbow tables) that
allow attackers to look up hash values of frequently used passwords. Additionally,
several iterations slow down the brute force approach.

PBKDF2 library calls are usually parameterized with algorithm, password,
salt, iterations, and keylen. In Potts we have chosen the variant

k = pbkdf2(HMAC-SHA-256, p, t, 4096, 256)

to derive KEK k from password p. We use the token value t as salt, perform
4096 iterations of SHA-256, and get a final keysize of 256 bits. The decrypted
DEK variant d is then derived from its encrypted variant D via

d = decrypt(AES-256, k,D)

meaning that the DEK is encrypted with k and AES-256. Decrypted DEK d is a
256-bit value and used to encrypt the disk. In the case that AES-128 or AES-192
is used, superfluous key bits are just ignored.

Usability vs. Security. We now discuss some obvious limitations concerning
the tradeoff between security and usability. A reasonable argument against the
practical applicability of Stark might be the additional overhead we demand
from users by regularly defining new monces. To be able to generate and re-
member different monces quickly, we advise users to write sentences about their
current activities, the places they have been during the day, or their personal
sentiments.

However, to increase the usability (at expense of security) in Potts, we al-
low users to skip the creation of new monces and to continue with the current
monce by pressing F12. Skipping new monces can be harmless in many practical
scenarios, because the actual threat situation varies heavily with the physical

Stark: Tamperproof Authentication to Resist Keylogging 305

environment. Monces that have been displayed on a business trip should always
be exchanged, of course, but monces that were displayed at home can mostly be
considered as confidential.

If a user skips monces permanently, the authentication scheme of Potts

falls back to that of Anti Evil Maid. But skipping monces carefully, users have a
flexible authentication scheme that is both convenient in unthreatened situations
and secure in threatened situations. That is, Potts can be adapted to the user’s
environment on a daily basis.

The Potts Protocol. Potts uses a setup phase in which U enters secret
password p and authentication message m0. C generates the 256-bit token t and
the 256-bit data encryption key d. C then seals m0 and t and gives the sealed
tuple sealedC(m0, t) back to U who stores it on USB drive. DEK d is encrypted
by means of KEK k, as described above, and can safely be stored inside a crypto
footer of the disk drive. The disk drive is encrypted with Tresor, i.e., with
AES-128, -192, or -256.

User U Computer C
plugin USB drive

sealedC(mi−1, t)−−−−−−−−−−−−−−−−→
unseal mi−1, tmi−1←−−−−−−−−−−−−−−−−

authenticate C, enter PW p−−−−−−−−−−−−−−−−→
k =

pbkdf2(HMAC, p, t, 4096, 256)
d = decrypt(AES-256, k,D)

authenticate U

construct mi (or press F12)
ACK←−−−−−−−−−−−−−−−−
mi−−−−−−−−−−−−−−−−→

seal (mi, t)

save sealed (mi, t) on USB

sealedC(mi, t)←−−−−−−−−−−−−−−−−
decrypt disk with Tresor

Fig. 3. Potts authentication session i for i ≥ 1

After the setup phase, U and C can engage in an infinite sequence of mutual
authentication sessions. The extended protocol of Potts for session i, i ≥ 1 is
given in Fig. 3. C derives KEK k via PBKDF2 from p and t, so that d can be
decrypted. With d, a block of the hard disk is decrypted exemplarily in order to
verify the correctness of p. If p is wrong, the user is asked to enter his password
again.

306 T. Müller et al.

3.3 Potts Implementation Details

The integration of Stark into Tresor was clearly motivated by the fact that
we wanted to build an FDE system which is more secure than common FDE
solutions in use today. Cold boot attacks do not fall into the defined threat model
of this paper, but combining the concepts of Stark with that of Tresor seemed
reasonable. We now give some more information about the implementation of
Potts. The full details are contained in our open source distribution available
online.

Potts is based on two Linux kernels: (1) a minimized kernel for the Stark

authentication which is loaded as first stage, and (2) the Tresor patched kernel
which is loaded as second stage. The reason behind this design choice was that
TPM toolchains like TrouSerS [1] are available for user mode only, and that
talking to the TPM in a pre-boot environment turned out to be difficult. In a
nutshell, the boot process of Potts follows the following sequence:

– Users plug in a bootable USB drive that contains TrustedGRUB. Trusted-
GRUB is an extended version of the known bootloader GRUB with TPM
support. This makes a secure bootstrap architecture possible because Trusted-
GRUB measures the whole boot process and makes it verifyable for system
integrity checks.

– From TrustedGRUB we boot into the first Linux system. The kernel and the
user mode initialization of the first system are optimized for speed and it
takes less than 3 seconds to boot it.

– In the first stage we display an ncurses-based interface that encapsulates
the Stark protocol in a user-friendly way. For example, the interface dis-
plays the recently defined monce, asks for the password, and asks for a new
monce (if F12 is not pressed). Internally, the Stark protocol is implemented
via tpm sealdata and tpm unsealdata from the TPM toolchain. For the key
derivation function PBKDF2 we make use of the OpenSSL library.

– With the recently derived key, the second kernel, which is stored on hard
drive, is decrypted. After the authentication, we boot into this second kernel
via kexec, a Linux command that replaces the currently running OS with a
new OS without actually rebooting the system.

– After the second stage booted into full (Tresor-based) Linux, end-users can
use their systems as usual. Internally we pass on the decryption key to the
Tresor system over the debug registers of CPU0. Incidentally, kexec does
not reset the debug registers of CPU0 while booting into a new kernel. All
residues of the key and the password are wiped out from RAM between the
first and the second stage.

Besides the simplicity of the implementation, the design choice provides us with
a flexible system for future enhancements. Since passwords are not entered in
pre-boot environments but in full Linux systems, we can easily add functionality
to bootstrap trust from smartphones (cf. Sect. 4.2), for example.

Stark: Tamperproof Authentication to Resist Keylogging 307

4 Limitations and Outlook

To conclude, we give an outlook on current limitations (Sect. 4.1) and possible
future enhancements (Sect. 4.2).

4.1 Limitations: Hardware-Based Attacks

Stark defeats traditional evil maid attacks that require physical access to the
machine. In practice, however, the borderline from software-only attacks to more
complex, hardware-based attacks is blurred. For example, hardware-based at-
tacks can install hidden USB or PS/2 keyloggers, even to laptops [22]. Such
keyloggers are generally hard to defeat in software. Academic attempts for de-
tecting hardware keyloggers in software exist [27], but they are hardware-specific
and cannot be generalized well. Another countermeasure against hardware key-
logging, which is often used by online banking software, is the use of on-screen
keyboards or randomized keyboard mappings. However, such countermeasures
can in turn be attacked through VGA and DVI loggers [21]. So hardware-based
attacks cannot be counteracted well by software solutions. In the abstract model
of Stark, attackers can arbitrarily manipulate the software configuration, in-
cluding the BIOS and the MBR, but they cannot manipulate hardware that is
not measured by the TPM.

4.2 Outlook: Taking Advantage of New Hardware

An interesting question is whether the upcoming technologyUEFI secure boot [43]
is an alternative to Stark on future PCs. Secure boot will be supported by
Windows 8 for the first time, meaning that the Windows 8 bootloader will be
signed by Microsoft, and the underlying UEFI can refuse unsigned bootload-
ers [37]. While a TPM is a passive module and neither halts the computer, nor
warns the user when the current configuration differs from its reference config-
uration [34], secure boot extends the trusted computing architecture by active
components. However, UEFI images could still be replaced or manipulated with
physical access and, consequently, users can still be tricked into bogus password
prompts. Only Stark pursues the idea of authenticating the machine state to
the user first. While secure boot stops malicious bootloaders from getting loaded,
it does not prove the system state to users. Hence, Stark should be combined
with secure boot in the future, but it cannot be fully replaced by secure boot.

Besides that, we plan to extend the idea of trust bootstrapping. Currently,
we use passive USB devices as confidential storage for sealed monces. For the
future, we consider more intelligent devices as confidential, e.g., Android-based
smartphones which can always be carried along like physical keys, too, in order to
bootstrap trust from them. Such devices have the advantage that they come with
computing capabilities that allow for more advanced, RSA-based authentication
schemes and can eliminate the need for monces.

Acknowledgments. We would like to thank Stefan Vömel and Johannes Bauer
for helpful comments on prior versions of this paper.

308 T. Müller et al.

References

1. TrouSerS: The open-source TCG Software Stack,
http://trousers.sourceforge.net/

2. Ebfe’s Anti-Bootkit Project (2010),
http://ebfes.wordpress.com/tag/bootloader/

3. Galauner, A.: EFI Rootkits: Pwning your OS before it’s even running. Tech. rep.,
dexlabs.org, SIGINT (2012)

4. Asonov, D., Agrawal, R.: Keyboard Acoustic Emanations. Tech. rep., IBM Al-
maden Research Center, San Jose, CA. IEEE Symposium on Security and Privacy.
IEEE Computer Society (2004)

5. Böck, B.: Firewire-based Physical Security Attacks on Windows 7, EFS and
BitLocker. Secure Business Austria Research Lab (August 2009)

6. Break & Enter: Adventures with Daisy in Thunderbolt-DMA-Land: Hacking Macs
through the Thunderbolt interface (February 2012)

7. Carrier, B.D., Spafford, E.H.: Getting Physical with the Digital Investigation Pro-
cess. IJDE 2, 2 (2003)

8. Carbone, Bean, Salois: An in-depth analysis of the cold boot attack. Tech. rep.,
DRDC Valcartier, Defence Research and Development, Canada, Technical Memo-
randum (January 2011)

9. Devine, C., Vissian, G.: Compromission physique par le bus PCI. In: Proceedings
of SSTIC 2009, Thales Security Systems (June 2009)

10. Favreau, J.: Iron Man (movie), Paramount Pictures (2008)

11. FIPS. Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, NIST (November 2001)

12. Gutmann, P.: Data Remanence in Semiconductor Devices. In: Proceedings of the
10th USENIX Security Symposium, Washington, D.C. USENIX Association (Au-
gust 2001)

13. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryptions Keys. In: Proceedings of the 17th USENIX Security Sym-
posium, San Jose, CA, pp. 45–60. USENIX Association, Princeton University (Au-
gust 2008)

14. Intel Corporation. Solid-State Drive 520 Series (2012), http://www.intel.com/
content/www/us/en/solid-state-drives/solid-state-drives-520-series.html

15. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Com-
munications of the ACM 47(4) (April 2004)

16. Rutkowska, J.: Evil Maid goes after TrueCrypt. The Invisible Things Lab (October
2009)

17. Rutkowska, J.: Anti Evil Maid, The Invisible Things Lab (September 2011)

18. Heasman, J.: Implementing and Detecting an ACPI BIOS Rootkit. Tech. rep., NGS
Consulting, BlackHat Briefings, Europe (2006)

19. Johnson, C.: Protection of Sensitive Agency Information. U.S. Executive Office of
the President, Washington, D.C. 20503 (June 2006)

20. Kaliski: PKCS #5: Password-Based Cryptography Specification. In: Request for
Comments (RFC): 2898, Internet Engineering Task Force, vol. 2.0. RSA Labora-
tories (2000)

21. KeeLog. Video Ghost (2012),
http://www.keelog.com/hardware_video_logger.html

http://trousers.sourceforge.net/
http://ebfes.wordpress.com/tag/bootloader/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-520-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-520-series.html
http://www.keelog.com/hardware_video_logger.html

Stark: Tamperproof Authentication to Resist Keylogging 309

22. KeyGhost Ltd. PCI/Mini-PCI Hardware Keylogger (2006),
http://www.keyghost.com/PCI-MPCI-Keylogger.htm

23. Kuhn, M.G.: Optical Time-Domain Eavesdropping Risks of CRT Displays. Tech.
rep., Proceedings 2002 IEEE Symposium on Security and Privacy (SSP 2002),
University of Cambridge, Computer Laboratory, Berkeley, California (May 2002)

24. Kumar, N., Kumar, V.: VBootKit 2.0 - Attacking Windows 7 via Boot Sectors. In:
Hack In The Box Conference (HITBSecConf), Dubai (April 2009)

25. Li, X., Wen, Y., Huang, M., Liu, Q.: An Overview of Bootkit Attacking Approaches.
In: Seventh International Conference on Mobile Ad-hoc and Sensor Networks (MSN
2011), pp. 428–431. IEEE Computer Society (2011)

26. Loukas, K.: De Mysteriis Dom Jobsivs – Mac EFI Rootkits. Tech. rep., assurance,
Black Hat Conference Proceedings, USA (2012)

27. Mihailowitsch, F.: Detecting Hardware Keyloggers. In: HITB SecConf, Kuala
Lumpur, Malaysia (October 2010); cirosec GmbH. Hack In The Box

28. Müller, T., Freiling, F., Dewald, A.: TRESOR Runs Encryption Securely Outside
RAM. In: 20th USENIX Security Symposium, San Francisco, California. University
of Erlangen-Nuremberg, USENIX Association (August 2011)

29. Müller, T., Latzo, T., Freiling, F.: Hardware-based Full Disk Encryption
(In)Security Survey. Tech. rep., Friedrich-Alexander University of Erlangen-
Nuremberg, Technical Report (September 2012)

30. Panholzer, P.: Physical Security Attacks on Windows Vista. Tech. rep., SEC Con-
sult Vulnerability Lab, Vienna (May 2008)

31. Kleissner, P.: Stoned Bootkit. Black Hat, USA (2009)
32. Ponemon Institute, LLC. 2010 Annual Study: U.S. Cost of a Data Breach. Syman-

tec (March 2011)
33. Graham, R.D.: Thunderbolt: Introducing a new way to hack Macs, Errata Security

(February 2011)
34. Rutkowska, J., Tereshkin, A., Wojtczuk, R.: Thoughts about Trusted Computing.

In: EUSecWest 2009 (May 2009); The Invisible Things Lab
35. Sacco, A.L., Ortega, A.A.: Persistent BIOS Infection: The early bird catches the

worm. In: Proceedings of the Annual CanSecWest Applied Security Conference,
Vancouver, British Columbia, Canada. Core Security Technologies (2009)

36. SECUDE. US Full Disk Encryption 2011 Survey. Research SECUDE AG (2012)
37. Software Freedom Law Center. Microsoft confirms UEFI fears, locks down ARM

devices. Tech. rep. (January 2012)
38. Thornburgh, T.: Social engineering: the Dark Art. Tech. rep., New York, NY, USA,

Proceedings of the 1st Annual Conference on Information Security Curriculum
Development (InfoSecCD 2004) (2004)

39. TrueCrypt Foundation. TrueCrypt: Free Open-Source On-The-Fly Disk En-
cryption Software for Windows 7/Vista/XP, Mac OS X and Linux (2012),
http://www.truecrypt.org/

40. Trusted Computing Group, Incorporated. TPM Main Specification. Tech. Rep.
Specification Version 1.2, rev. 116, TCG Published (March 2011)

41. Turan, M., Barker, E., Burr, W., Chen, L.: Special Publication 800-132: Recom-
mendation for Password-Based Key Derivation. Tech. rep., NIST, Computer Secu-
rity Division, Information Technology Laboratory (December 2010)

42. Türpe, S., Poller, A., Steffan, J., Stotz, J.-P., Trukenmüller, J.: Attacking the
BitLocker Boot Process. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009.
LNCS, vol. 5471, pp. 183–196. Springer, Heidelberg (2009)

43. Unified EFI, Inc. Unified Extensible Firmware Interface Specification, Ver. 2.3.1,
Errata B ed. (April 2012)

http://www.keyghost.com/PCI-MPCI-Keylogger.htm
http://www.truecrypt.org/

310 T. Müller et al.

A Formal Security Argument

In this section, we formalize Stark as a security protocol within an abstract
system model. To this end, we add a third player: attacker A who wants to break
the authentication scheme between U and C. Parties U and C follow the protocol
given above and additional rules given below (Sect. A.1, Sect. A.2). Attacker A
can act arbitrarily under the restrictions described below (Sect. A.3).

In the formal model of Stark, parties communicate by exchanging messages
in an abstract sense. This can correspond to typing text on the keyboard, dis-
playing a message on the screen, or attaching a USB thumb drive. Due to the
immediate geographical vicinity of all parties, we assume that message exchange
is reliable and synchronous, meaning that if a party sends message m, the other
party receives m within a short delay.

The senders of individual messages cannot be authenticated, i.e., the receiver
of a message does not necessarily know who sent the message. For example, C
cannot distinguish text typed by A or U . Similarly, a message prompt shown to
U may come from C (using the original boot loader) or from A (using a forged
boot loader).

A.1 User Model

We now give the rules that U has to conform to. U corresponds to a human user
sitting in front of the keyboard and wishes to authenticate securely to C. The
security of Stark relies on the following rules for U :

– Completeness : U must complete the protocol and define a new mi as soon
as he started session i and consumed mi−1.

– Singularity: Every monce mi chosen by U must be unpredictable and used
only once.

– Coherence: U must not leave the computer during the authentication phase
but execute all steps consecutively.

– Correctness : If U cannot authenticate C, U must abort the protocol entirely
and never engage in the protocol with the same participants again.

If any of these rules are violated, the security of Stark cannot be proven, and
disk encryption may become insecure. In order to fulfill completeness, e.g., after
C crashed due to a power cut, U is allowed to restart Stark at any point and to
consume mi−1 a second time if our assumption about coherence is not violated.

A.2 Computer Model

We now define the possibilities for C. Unlike U , C is an electronic system that has
powerful computation capabilities, including crucial cryptographic primitives.
Stark relies on the following properties of C:

– Integrity: C must not be compromised initially during setup phase.

Stark: Tamperproof Authentication to Resist Keylogging 311

– Crypto Competence: We assume that C can seal information in the following
sense: Given a precise software configuration c of C, C can encrypt and sign
a message m such that C itself can decrypt it only when being in c again. It
is unfeasible to seal or unseal information for any party besides C as well as
for C itself if it is not in c.

– Reliability: C waits indefinitely for message mi and password p to be entered
without shutting down. Reading from and writing to a USB thumb drive
does not fail, neither do other electronic operations fail.

Intuitively, the crypto competence of C corresponds to the sealing capabilities
of trusted platform modules, meaning that C is required to have a TPM. Most
notably, configuration c encompasses the BIOS settings and the master boot
record. The reliability of C is an interesting property, both in practice as in
theory, because it is generally hard to differentiate between malicious and faulty
behaviors. This makes secure recovery mechanisms in the case of accidental data
corruption difficult (see Sect. 3.2).

A.3 Attacker Model

Attacker A corresponds to an evil maid who may additionally be equipped with
electronic devices. So A can perform both human actions as well as computa-
tionally complex calculations. Overall, A acts arbitrarily under the following
restrictions:

– Attacker A can let C unseal any data for her (when she plugs in a USB drive
and boots C), but she cannot break cryptography, i.e., she cannot derive the
password from a hash, and she cannot seal data herself.

– Attacker A can inject or replay arbitrary messages before and after the
authentication process of Stark, and she can start an authentication process
herself. But she cannot send messages to U or C within complete protocol
parts, i.e., she is not allowed to interrupt the authentication process of U .
This corresponds to the event that A interferes with U while he boots up C,
which we exclude.

– Attacker A cannot get physical access to the USB drive. Nevertheless, she
can make a one-to-one copy of it after manipulating the MBR (as sketched
in the attacks from Sect. 1.4); so she may know all monces up to mi−2.

A.4 Security Argument

The security argument is by induction. We argue that over an infinite sequence of
sessions, the following invariant is maintained at the beginning of every session i
(the security of Stark follows from item 3 of the invariant):

1. User U knows p and mi−1 and owns sealedC(mi−1) on a USB drive.
2. Attacker A does not know mi−1.
3. Attacker A does not know p.

312 T. Müller et al.

Note that token t does not play a role in our security model, because t does not
add security to the evil maid scenario, but in other scenarios as described above.

We now prove that Stark maintains the invariant by induction over the
number of sessions. The base case (session 0) is straightforward and follows from
the setup phase: U knows m0 and has it sealed by C, and the attacker A can
neither have the password p nor the monce m0 because of the initial integrity of
C.

For the induction step, assume that the invariant holds at the beginning of
session i. There are two possibilities: Either A manipulates C and tries to inject
messages, or U starts the protocol with regular behavior of C, possibly after a
reboot, and possibly after his USB drive was cloned. We discuss both cases in
turn:

– Case 1 (A manipulates C and tries to inject messages): Since A does not
know mi−1 (from invariant) and mi−1 cannot be guessed (from singularity
of monces), any value injected by A towards C results in a wrong monce
displayed to U . C cannot unseal sealedC(mi−1) because it is not in line with
its reference configuration (from crypto competence of C). Consequently, the
protocol will be aborted and never restarted with the engaged parties (from
correctness of user behavior).

– Case 2 (U starts the protocol with regular behavior of C, possibly after a
reboot): A may know sealedC(mi−1), and hence, A can learn mi−1 from C.
However, A cannot inject any messages because U started the protocol (from
coherence of user behavior). U successfully authenticates towards C using his
password p, and completes the protocol by defining mi (from completeness
of user behavior), such that sealedC(mi) is stored on a USB drive (from
reliability of C).

In both cases, session i completes and session i+ 1 commences. Before the new
session starts, observe the following points:

1. From session i, U knows mi and has a sealed version of it. Of course, U still
knows p.

2. Attacker A does not know mi. Indeed, A may know mi−1, but A cannot
exploit it to fool U because U already defined mi.

3. Attacker A does not know password p (from invariant).

Overall the invariant still holds at the beginning of session i + 1, concluding
the proof. Crucial for our argument is that complete protocol phases restrict
the behavior of adversary A. As explained above, we assume that U completes
session i, meaning that when U executes the first step of a session, U does not
abort but runs the protocol to completion. Without the completeness property,
Stark would be insecure.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 313–321, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Risks of Offline Verify PIN on Contactless Cards

Martin Emms, Budi Arief, Nicholas Little, and Aad van Moorsel

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{martin.emms,budi.arief,n.little,aad.vanmoorsel}@ncl.ac.uk

Abstract. Contactless card payments are being introduced around the world al-
lowing customers to use a card to pay for small purchases by simply placing the
card onto the Point of Sale terminal. Contactless transactions do not require veri-
fication of the cardholder’s PIN. However our research has found the redundant
verify PIN functionality is present on the most commonly issued contactless credit
and debit cards currently in circulation in the UK. This paper presents a plausible
attack scenario which exploits contactless verify PIN to give unlimited attempts to
guess the cardholder’s PIN without their knowledge. It also gives experimental
data to demonstrate the practical viability of the attack as well as references to
support our argument that contactless verify PIN is redundant functionality which
compromises the security of payment cards and the cardholder.

Keywords: Contactless Payments, Verify PIN, NFC, EMV, Chip & PIN,
Credit Card, Debit Card, Card Payment.

1 Introduction

The EMV1 specifications [5][6] control the operation of 1.62 billion of payment cards
and 23.8 million of Point of Sale terminals worldwide [15]. EMV payments can be
contact transactions commonly termed Chip & PIN or contactless transactions also
known as Near Field Communication (NFC).

Contact payments require the cardholder to insert their card into the Point of Sale
terminal and enter their PIN to authorise the transaction. Contact transactions can be
any value up to the card limit or available balance on the card. Contactless payments
are designed to be a convenient way to pay for low value transactions (currently up to
£20 per transaction in the UK) with a card rather than cash. Designed to be faster
than a traditional Chip & PIN transaction, the card is simply placed in close proximity
(approximately 4cm) to the Point of Sale terminal to authorise the payment, PIN entry
is not required.

In the UK the EMV specification for contact transactions supports PIN verification
locally by the card (offline) and PIN verification remotely by the bank’s computers
(online). The specifications for contactless transactions specifically exclude the use
of offline PIN verification (full details in [6] Book A section 5.9.3 and [10] section 2.4

1 Europay, MasterCard, Visa is a collaboration between Visa, MasterCard, American Express

and JCB to create an interoperable card payment system.

314 M. Emms et al.

point 5). Contactless offline PIN verification requires the PIN to be transmitted wire-
lessly to the card which poses a security risk from eavesdropping.

The EMV specification only permits PIN entry in contactless transactions made us-
ing NFC enabled mobile devices. PIN entry is not permitted for contactless card
transactions. Mobile device payments are controlled by Consumer Device CVM2
rules, which permit online PIN verification, but not offline PIN (full details in [6]
Book C3 sections 2.1 and 5.7).

This paper examines the security implications of the verify PIN functionality intended
for Chip & PIN operation also being available over the contactless interface, where it can
be accessed without the cardholder’s knowledge or consent. Surprisingly many of the
contactless cards currently in circulation in the UK allow access to offline verify PIN.

The attack scenario presented draws upon research carried out into the predictabil-
ity of PINs [2] which shows that there is a subset of PINs that are much more com-
monly used; meaning guesses from this subset are much more likely to be successful.

The implementation work builds upon related investigations into the vulnerability
of EMV contactless payment cards to various attacks, such as skimming [7][8] and
transaction relay [4][9]. These papers show that the wireless interface makes contact-
less payment cards vulnerable to new modes of attack that were not present in Chip &
PIN. Other research [3][11] show that the EMV protocol sequence can be manipu-
lated to produce erroneous behaviour in the cards and the Point of Sale terminals.

In what follows, we first introduce the attack scenario then the technology used and
finally the performance results demonstrating the practicality of the attack. A critical
part of our software implementation is the ability to find and attack EMV payment
cards contained in a wallet with various other contactless cards. Our software imple-
ments the ISO-14443 part 3 protocol sequence for card initialisation and anti-
collision. It can identify multiple cards, select each card in turn and communicate
with each card once selected.

2 Attack Scenario

The attack scenario outlined in this paper is presented as supporting evidence of our
assertion that allowing contactless access to offline verify PIN represents a tangible
threat to a large number of EMV payment cards currently in circulation in the UK.

Newcastle University, like many other companies and institutions, uses NFC en-
abled identity cards to control access to our buildings. When entering the building,
many of us place our whole wallet on the door access reader as it is quicker and easier
than taking the access card out of the wallet. This gives an attacker the opportunity to
access the other cards in the wallet, communicating with any contactless payment
cards also present.

Given that the person will enter the building on a regular basis and that the number
of available PIN attempts is reset each time the payment card is used in a Point of
Sale terminal or ATM, the attacker can have unlimited attempts to guess a card’s PIN.

2 Cardholder Verification Method is used to approve the transaction either by PIN or by

signature.

 Risks of Offline Verify PIN on Contactless Cards 315

In our experimental implementation of the attack scenario we make use of (i) a
protocol sequence which exploits the verify PIN functionality (ii) the ability to access
multiple cards in a single wallet presented to the door access reader (iii) a strategy for
guessing PINs [2] which will yield greatest number of correct guesses.

2.1 PIN Verify Protocol Sequence

The full protocol sequence (Fig 1) is designed to guess the PIN without locking the
card. Locking occurs when all of the available PIN attempts are used (i.e. the card is
locked when the counter for PIN attempts remaining becomes zero). The protocol
uses the minimum number of commands possible so that it can be completed quickly
(<500ms) to avoid arousing the suspicions of the cardholder. Moreover, to avoid lock-
ing the card we need to keep at least one PIN attempt remaining on the card. The
protocol sequence is therefore limited to a maximum of two guesses each time the
cardholder uses the door. However, over time the attack has multiple chances to run
the protocol sequence as the person will regularly return to the door access reader and
each time the card is used in a Point of Sale terminal or ATM, the PIN attempt
counter is reset, giving more chances for further guesses.

The PIN verify protocol sequence described above ensures that at least one PIN at-
tempt is left on the card. However the logic can be changed to create a nuisance attack

Fig. 1. - Verify PIN protocol sequence

316 M. Emms et al.

which wipes out all of the available PIN attempts on all of the EMV payment cards in
the wallet. This would not yield any financial gain, but there are many malicious
attacks performed purely for the nuisance value. A card that has zero PIN attempts
remaining cannot be reactivated at the Point of Sale terminal and the cardholder must
go to a bank ATM.

2.2 Reading Multiple Cards

The scenario requires reader software capable of distinguishing between multiple
NFC cards in a wallet, allowing it to locate the EMV payment cards (implementation
details can be found in section 3.2). This also gives the potential to look for addi-
tional data such as the cardholder’s birthday on the other cards in the wallet, such as
loyalty cards which may hold personal data unencrypted. Bonneau et al. [2] shows
that knowing the person’s birthday increases the chances of guessing their PIN within
6 guesses from 1.94% to 8.23%.

2.3 PIN Guessing Strategy

The attack scenario presented accesses the card each time the cardholder enters the
building. This gives it potentially unlimited guesses at the PIN over time, two guesses
each time the door access is used. Bonneau et al. [2] presents a survey containing a
study of 1,351 respondents, 805 of which detailed the respondents’ choice of PIN and
their reason for choosing it. The survey shows that 23% of respondents chose a memo-
rable date (birthday and anniversary) as their PIN. The paper goes further and identifies
a list of PINs which are statistically more likely; using this list, the paper calculates that
given 6 guesses, the chance of correctly guessing the PIN is 1.94%, which rises to
8.23% if the birthday of the cardholder is known. This research is backed up by a recent
news story [14] where a burglar stole a wallet in which he found a driving licence and
two ATM cards, he correctly guessed the PIN from the date of birth on the driving li-
cence and was able to obtain £1,000 from a nearby ATM.

3 Software Implementation

The experimental work in preparing this paper includes (i) an implementation of the
verify PIN protocol sequence which makes multiple attempts to guess the PIN of any
EMV payment card detected in the wallet (ii) a multiple card reader implementation
which will identify and communicate with all of the contactless cards in the wallet.

The experiments were performed using an ACR122-U contactless card reader [1]
and the Java™ Smart Card I/O API [13].

3.1 Verify PIN Implementation

The UML sequence diagram (Fig 1) illustrates the protocol sequence required to per-
form the verify PIN attack sequence. The sequence employs the minimum number of
commands which achieve two contactless verify PIN attempts, this minimises total
execution time (on average 457.2ms) for the sequence. Minimising execution time is

 Risks of Offline Verify PIN on Contactless Cards 317

important to ensure that the attack is not easily detected by the cardholders using the
door access.

The protocol sequence is initiated when the multiple card reader (section 3.2) de-
tects an EMV payment card in the wallet. The protocol sequence therefore starts with
the EMV payment card in the active state ready to accept commands (see Table 1
for a full explanation of the possible card states). Once the reader has established
communication with the card, it reads the number of PIN attempts remaining using
GetData(PIN Attempts). It then calls the verify PIN command in a loop. The
card responds with 0x9000 if the PIN is correct or 0x63Cn if the PIN is incorrect,
where ‘n’ is the number of PIN attempts remaining. The loop is repeated until the
correct PIN is guessed or only one PIN attempt remains.

We observed that the contactless PIN is the same as the contact PIN, this was con-
firmed by changing the card’s contact PIN using an ATM and verifying that the con-
tactless PIN had also changed.

3.2 Multiple Card Reader Implementation

EMV contactless payment cards are compliant with the ISO-14443:Part 3 which de-
fines the disambiguation and activation sequence. Disambiguation involves obtaining
the Unique Identifiers (UID) of each of the cards in the NFC field. Once this is com-
plete, the UID is used to activate each card individually. The card is then ready to
accept commands. For successful communication only one card can be active at
any one time. Table 1 below describes the transitions between the different states
idle, ready, active and halt which allow the reader to successfully commu-
nicate with an individual card when there are multiple cards in the field.

Table 1. ISO-14443 Card State Transitions

State Description
idle Upon entry to the NFC field all cards will power up into the idle

state.
ready The reader transmits REQA / WUPA command putting the cards into the

ready state. Once all of the cards are in the ready state the anti-
collision loop sequence can begin.

active The anti-collision loop sequence is an iterative process used by the
NFC reader to find the UID of the next card in the field. The anti-
collision command is repeatedly sent to all cards until only one card
answers with a complete UID and no collisions. The UID is then
used in the Select command which moves that card into the ac-
tive state. At this point the reader can communicate with the card
using the card type specific protocol (EMV, MIFARE etc.) or instruct
the card to halt and store the UID for future use.

halt To communicate with the next card in the NFC field the reader must
halt the currently active card. Cards can be re-awakened from the
halt state using the WUPA.

318 M. Emms et al.

The process of communicating with multiple cards is as follows:

1. the anti-collision loop finds the UID of each card in turn
2. Select(UID) moves the card with the given UID into the active state
3. the active card is now ready for communication with the reader, only one

card at a time can be active
4. halt is used to stop communicating with the card and move to the next card

The current implementation of the disambiguation and activation sequence is com-
patible with all ISO-14443:Part 3 compliant cards. Once disambiguation is complete
each card type has its own specific communication protocol. We have implemented
protocol sequences for three commonly available card types: EMV payment cards,
MIFARE classic door access cards and MIFARE DESFire travel pass cards. Com-
munication with the implemented card types is not affected if an unknown card type
is also present in the NFC field, the unknown card type is simply ignored once the
disambiguation process has identified its UID. The software utilises hardware com-
mands specific to the NXP PN532 chipset [12] to perform the anti-collision loop,
disambiguation and card selection.

4 Results

The test results in this section focus on the time taken to perform each of the steps
involved in performing the attack scenario presented in section 2. These results are
presented to support our assertion that the delay introduced by the attack would not
arouse the suspicions of the users of the door access system.

4.1 Verify PIN Protocol Sequence

Based on the data obtained in our tests the average time taken to perform the complete
protocol sequence (Fig 1) was only 457.2ms; thereby strengthening the case that the
door access reader attack scenario can be implemented without raising the suspicions
of the users of the door access system.

Table 2. Verify PIN command execution times

Command average (ms) standard deviation (sec)

ListAvailableNFCApplications() 18.4 12.7

SelectApplication(AID) 19.2 5.5

GetData(PIN attempts) 29.8 17.9

GetChallenge() 24.6 7.0

VerifyPIN(incorrect PIN) 175.8 7.2

GetChallenge() 12.2 6.8

VerifyPIN(correct PIN) 177.2 9.6

Complete Protocol Sequence 457.2 24.9

 Risks of Offline Verify PIN on Contactless Cards 319

The time taken to perform each of the commands in the verify PIN protocol se-
quence is detailed in Table 2, which shows the average time and standard deviation
calculated from 20 test runs performed using EMV payment cards issued by a UK
bank.

The results show that 77.2% of the total time was taken by the card responding to
the VerifyPIN() command. It is also interesting to note that there is no significant
difference between a correct PIN (177.2ms) and an incorrect PIN (175.8ms).

4.2 Multiple Card Identification

For the multiple card identification tests we used three of the more popular contactless
card types: EMV payment cards, MIFARE classic door access cards and MIFARE
DESFire travel pass cards. The test results in Table 3 show the average time (over 60
test runs) to identify each card, when there are multiple cards in the NFC field. Re-
sults of the tests show the identification of each card takes longer when more cards
are in the field.

Table 3. Multiple Card Identification Times

Cards in NFC Field 2 cards 3 cards 4 cards 5 cards
Identification of Each Card (ms) 214.36 285.82 305.95 358.30
Standard Deviation (ms) 16.91 16.66 72.54 53.87

The maximum number of cards that the ACR-122U reader (used in our tests) can

identify in the NFC field varies by card type. Table 4 shows the maximum number of
each card type that the reader could identify and communicate with. The first three
rows show tests with a single card type in the NFC field. The following three rows
represent wallets containing a mixture of card types, with at least one EMV payment
card and one MIFARE classic door access card (as the attack scenario described is
based on wallets containing these two cards).

Table 4. Maximum Cards in NFC field

 EMV payment MIFARE classic MIFARE DESFire
 2 cards

Single card type 5 cards
 4 cards
 2 cards 1 card

Multiple card types 1 card 1 card 1 card
 1 card 3 cards

4.3 Total Attack Time

Table 5 illustrates the total time taken by the verify PIN attack on two example
wallets: wallet 1 containing one MIFARE classic door access card and one EMV

320 M. Emms et al.

payment card; and wallet 2 containing one MIFARE classic, one EMV and one
MIFARE DESFire travel pass. The complete sequence identifies all of the cards pre-
sent in the wallet and then performs two PIN guesses on the EMV payment card.

Table 5. Multiple Card Identification and Communication Time

Scenario Identify Card
(ms)

Communication
(ms)

Total (ms)

wallet 1 428.73 457.20 855.93
wallet 2 643.09 457.20 1070.29

In summary, the test results (Table 3) show that it is possible to attack a wallet con-

taining multiple card types. Moreover, Table 5 shows that for both wallet 1 and wal-
let 2, the total attack time of around 1 second is fast enough to avoid detection by the
cardholder. The attack should also delay the green light that signifies the card has
been read and delay the opening of the door. This will reassure the cardholder that the
system is operating normally (if a little slowly) and allows time for the attack to
complete.

5 Conclusion

The attack scenario described in this paper exploits contactless verify PIN to give
potentially unlimited attempts to guess the cardholder’s PIN without their knowledge,
this significantly increases the odds that the attack will guess their PIN correctly. The
implementation work has successfully built and tested software that proves this attack
scenario is technically viable. The timing tests prove that the attack protocol se-
quence can be performed in less than 1 second (wallet 1), making it possible to access
the payment cards in the wallet without arousing the suspicions of the cardholder.

It is our assertion that the attack scenario and experimental implementation work
presented in this paper make a compelling case that contactless verify PIN can be
misused to find out the PIN of the card without the knowledge of the cardholder. This
significantly impacts the underlying security assumption of the Chip & PIN payment
system, that an attacker can only gain knowledge of the cardholder’s PIN through the
negligence or collaboration of the cardholder. Moreover, offline verify PIN is not
required in the processing of contactless transactions and is therefore redundant func-
tionality. These findings suggest that it would be prudent to remove the contactless
verify PIN functionality. It would also help to educate cardholders remove their card
from their wallet before placing it on a reader.

References

1. Advanced Card Systems: ACR122U NFC Reader Application Programming Interface
(2011), http://www.acs.com.hk/drivers/eng/API_ACR122U_v2.00.pdf
(accessed January 29, 2013)

 Risks of Offline Verify PIN on Contactless Cards 321

2. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wallets? The se-
curity of customer-chosen banking PINs. In: Keromytis, A.D. (ed.) FC 2012. LNCS,
vol. 7397, pp. 25–40. Springer, Heidelberg (2012)

3. Choudary, O.S.: The Smart Card Detective: a hand-held EMV interceptor, Cambridge
(2010)

4. Drimer, S., Murdoch, S.: Keep Your Enemies Close: Distance Bounding Against Smart-
card Relay Attacks. In: USENIX Security Symposium (2006)

5. EMVCo. EMV Specifications for Payment Systems, Books 1,2,3 and 4, Version 4.3
(2011)

6. EMVCo. EMV Contactless Specifications for Payment Systems, Books A,B,C-1,C-2,C-
3,C-4 and D, Version 2.2 (2012)

7. Emms, M.: Practical Attack on Contactless Payment Cards. In: HCI 2011 Workshop -
Heath, Wealth and Identity Theft (2011)

8. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Potential Misuse of NFC Enabled
Mobile Phones with Embedded Security Elements as Contactless Attack Platforms. In: In-
ternational Conference for Internet Technology and Secured Transactions (2009)

9. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical Relay Attack on Contact-
less Transactions by Using NFC Mobile Phones (2011)

10. MasterCard: PayPass - M/Chip Acquirer Implementation Requirements (2006)
11. Murdoch, S., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is Broken. In: IEEE Sym-

posium on Security and Privacy (2010)
12. NXP PN532 User Manual (2007), http://www.adafruit.com/datasheets/

pn532um.pdf (accessed January 29, 2013)
13. Oracle: Java Smart Card I/O API (2012), http://docs.oracle.com/javase/7/

docs/jre/api/security/smartcardio/spec/javax/smartcardio/pac
kage-summary.html (accessed January 29, 2013)

14. Willey, G.: PIN Number burglar used victims’ card. Newcastle Evening Chronicle (April
27, 2012)

15. Worldwide EMV Deployment (2011), http://www.emvco.com/about_emvco.
aspx?id=202 (accessed January 29, 2013)

How to Attack Two-Factor Authentication

Internet Banking

Manal Adham1, Amir Azodi1,3, Yvo Desmedt2,1, and Ioannis Karaolis1

1 University College London, UK
2 The University of Texas at Dallas, USA

3 Hasso Plattner Institute, Germany

Abstract. Cyber-criminals have benefited from on-line banking (OB),
regardless of the extensive research on financial cyber-security. To bet-
ter be prepared for what the future might bring, we try to predict how
hacking tools might evolve. We briefly survey the state-of-the-art tools
developed by black-hat hackers and conclude that automation is start-
ing to take place. To demonstrate the feasibility of our predictions and
prove that many two-factor authentication schemes can be bypassed, we
developed three browser rootkits which perform the automated attack
on the client’s computer. Also, in some banks attempt to be regarded as
user-friendly, security has been downgraded, making them vulnerable to
exploitation.

Keywords: Two-Factor Authentication, Browser Rootkits, Internet
Banking, Online Banking.

1 Introduction

A lot of research has been done on the cyber-security of financial transactions,
both from a cryptographic as well as from a computer security viewpoint. Due
to work like [9], wholesale transactions are now relatively secure. The challenge
today is to secure the PC-based transactions. We see that identity theft has
been for more than a decade the most frequent white collar crime. We know that
attacks against US and UK Internet banking systems have been quite successful
[18]. Tools like the Zeus malware kit [17] and the SilentBanker Trojan [21], have
been helping criminals perform fraudulent on-line bank transactions.

Since research should be ahead of hackers, the main goal of this paper is to
predict the next generation of OB attacks and how they may worsen the already
questionable security. We survey the tools hackers use and see that, attacks
against on-line banking systems (OBS) are getting more sophisticated and auto-
mated. The hacker community independently worked on automation, deploying
Trojans and malware kits that overpass the requirement of having humans to
manually perform the fraudulent transactions [24] (the work done in [1–3] was
done in 2010-2011). To demonstrate the feasibility of a fully automated attack,
three advanced browser rootkits (for Firefox Browsers) were developed, targeting
the Internet banking systems of NatWest, HSBC and a European Bank which we

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 322–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

How to Attack Two-Factor Authentication Internet Banking 323

were unable to contact, (hereinafter after called “Bank A”). An attack against
Barclays’ system is also proposed. 1 Security of these major banks is largely
dependent on the commonly used two-factor authentication schemes. By suc-
cessfully circumventing and exploiting the weaknesses of such systems, we hope
to raise awareness on how dangerous the current situation is.

Aside from security in the absolute sense, we consider auxiliary factors like
usability. This is a critical factor that can drive a bank to lower its security
threshold in order to satisfy its customers’ desires (e.g., Barclays).

2 Background

2.1 Attack Strategies and Techniques

We distinguish between three main Internet banking attack vectors that can
be used alone or in combination. Firstly, a Credential Stealing attack, is where
fraudsters try to gather users’ credentials, either with the use of a malicious
software or through phishing [10]. Secondly, a Channel Breaking attack, involves
intercepting the communication between the client side and the banking server,
by masquerading as the server to the client and vice versa [20]. Finally, a Content
Manipulation (also called man-in-the-browser (MiTB) [16]) attack, takes place
in the application layer between the user and the browser. The adversary is
granted with privileges to read, write, change and delete browser’s data “on the
fly”, whilst the legitimate user is seamlessly unaware.

A Browser Rootkit , is a content manipulation technique, which is capable
of completely changing the browser’s display and behavior [7]. It is basically
a malicious browser extension, which are used to extend and/or customize the
browser’s functionality [4]. To control unauthorized installation of browser exten-
sions, modern browsers like Firefox, have employed numerous but weak security
measures, which can be easily bypassed [7].

2.2 Related Work and Attacks

A Firefox malicious extension called BROWSERSPY was developed, which once
installed on the victim’s machine, begins collecting personal data that is later
sent to the remote attacker [22].

Zeus [17], SilentBanker [21] and URLZone1 [5], are infamous Trojans, which
have been successfully used against on-line banking systems to steal millions
of dollars [14, 18]. They are primarily used to steal login credentials and card
numbers with their security codes, but can also change transaction details on the
fly. This is commonly achieved by adding form fields at the browser level. The
stolen data is sent to a command and control server (C&C server) controlled by
the remote attacker, who is then able to manually connect to the victims on-line
banking accounts.

1 NatWest, HSBC and Barclays were informed about the findings of this study.

324 M. Adham et al.

In [24], sophisticated and automated attacks against OBSs, built on the estab-
lished Zeus and SpyEye tactics are presented. In contrast with Zeus/SpyEye, these
attacks offer automated bypass of two-factor physical authentication, server-side
automation to conceal the attacks, techniques to avoid fraud detection, techniques
to hide evidence, and finally, techniques against standard security software.

An attack against Helios 2.0 e-voting system is described in [7]. The attack
exploits Adobe Acrobat/Reader vulnerabilities to install a browser rootkit on the
voters’ machines. This rootkit changes the selected legitimate candidate vote to
the one chosen by the extension’s author, and also misleads the voters to believe
they have voted for their desired candidate.

3 Authentication Systems Used in Internet Banking

Currently, several banks implement an additional layer of secondary authentica-
tion, required for monetary transactions. Four common classes of authentication
schemes are usually employed.

One-Time-Password (OTP) schemes, generate passwords using pseudo-
random generators or mathematical algorithms in order to authenticate the users.
However, they offer no security against man-in-the-middle (MiTM) or MiTB at-
tacks [11]. Bank A uses the DigiPass GO3 token for authenticating its customers’
monetary transactions [23].

In Full Transaction Authentication schemes, the OTP generated to authen-
ticate the transaction is cryptographically bound to the transaction data. For
example, Barclays’ PINsentry device, which adopts the CAP protocol, imple-
ments this scheme when in ‘Sign mode” [19]. However, since August 2011, the
implementation of PINsentry has been relaxed and favors usability rather than
security. Specifically, account holders no longer need to use PINsentry for au-
thenticating transactions when the payee is in their beneficiary list. It is evident
that pressures from unhappy customers, who are unaware of security issues, have
influenced Barclays to downgrade its security [8, 15].

Partial Transaction Authentication is a “relaxed” form of full transaction
authentication, where only part of the transaction data are required during au-
thentication. Example implementations of these systems include NatWest card
reader (challenge/response mode) and HSBC security key. Here the cryptograms
generated to authenticate transactions are based only on the last four digits of
the payees’ account numbers [19].

Finally, some OBSs do not require authentication of monetary transactions
(i.e., No Secondary Authentication is required). This situation is true for NatWest
and HSBC customers, who can perform payment transactions to payees who
have previously been authenticated and to governmental/financial institutions
deemed trustworthy by the banks.

4 Automation of the Attack

Traditional black-hat hackers’ software requires manual intervention to perform
fraudulent transactions, limiting the damage that can be caused. In the recent

How to Attack Two-Factor Authentication Internet Banking 325

past, more automated and sophisticated attacks have been deployed [24].In the
future, hackers may adapt their tools to take advantage of the weaknesses in
modern OBSs and fully automate their attack. In order to demonstrate the
current shortcomings of OBSs, we have implemented three browser rootkits that
undermine the OB security of HSBC, NatWest and Bank A. An attack against
Barclay’s OBS is also proposed.

4.1 Automatic Fraudulent Transaction

Once the browser rootkit is installed on the victims’ machines, it passively mon-
itors their browsing activities, and activates once they successfully log onto the
targeted OB.

In order to achieve successful fraudulent transactions, some conditions must
first be met. In the case of HSBC and NatWest , the last 4 digits of the bene-
ficiary’s account number must match the respective last 4 digits of an account
controlled by the attacker (as this paper is a proof of concept, the attacker’s
account numbers are stored in the browser rootkits. To counter traceability,
different account numbers, which can be mule accounts, can be fetched from
different locations). In the case of Bank A, a freshly generated OTP must be
typed. When the necessary condition is met, the respective browser rootkit can
successfully execute a fraudulent transaction by changing the transaction data
“on the fly” (i.e., the beneficiary’s account number and amount), whilst display-
ing what the user expects to see (i.e., the intended by the user transaction data).
In order to keep the attacks undetectable for a longer period, a small percentage
of the holdings in an account is taken each time.It is more likely that the victim
will disregard a few missing dollars compared to a few hundred missing dollars.

At the time this study began, Barclays’ OBS required a fresh full authenti-
cating signature from PINsentry for every monetary transaction, thus no browser
rootkit was feasible on its own to successfully attack the given system (full transac-
tion authentication for every transaction beats browser rootkit attacks). However,
the fact that account numbers in the user’s beneficiary list need no signature, cre-
ates a vulnerability. Specifically, if the attacker is successful in tricking the victim
to purchase or buy a fake service (e.g., through scareware [13]), then the account
number used by the attacker will be listed in the victim’s beneficiary list. The
browser rootkit will then be capable to perform fraudulent transactions to the at-
tacker’s account number, since money transfers to that account will require no
signature! Similarly with NatWest and HSBC, money transfers to a host of busi-
nesses (deemed trustworthy) do not require a transaction verification step. In this
case, the browser rootkit can be instructed to perform funds transfers to these
hosts, hidden from the user’s view. Although there is no direct financial gain for
the attacker, this remains a vulnerability of this specific OBS and other similar.

4.2 Hiding the Attacks

The developed browser rootkits cover up all traces of their activities. Specifically,
they store the information pertaining to the fraudulent transactions in browser

326 M. Adham et al.

cookies and on the victim’s hard drive (under Firefox’s ”Profiles” directory). All
fraudulent activity is successfully hidden from the victim by first, having the
browser displaying the expected by the victim account balance rather than the
actual one (which obviously has less money since the browser rootkit fraudulently
transfered money from it), and secondly, by removing all fraudulent activity
from the victims’ statements. This is achieved by exploiting DOM elements of
the HTML page. The fraudulent activity is kept hidden from the user no matter
when and how many times the user logs out and back in again. As long the
malicious extension is installed, the attack remains hidden.

4.3 Advantages

The biggest advantage of the developed browser rootkits is that they are fully
automated. Once they are successfully installed, they are capable of performing
fraudulent transactions and covering their traces at the same time, without any
further human intervention or instructions from a remote C&C server, as in the
case of Zeus and the like Trojans [5,17,21]. This is feasible since the attacks are
against fixed banks, with the browser rookits explicitly designed to attack the
given OB systems of the respective targeting banks. In addition, the adversarial
bank account numbers are stored in the browser rootkits code.

Additionally, no theft of banking information is necessary. Our browser rootk-
its are clever enough to remain hidden and submit when successful fraudulent
transactions are possible.

Finally, in contrast with Trojans of black-hat hackers that create files and
modify the registry keys in the victims’ machines, our developed browser rootkits
are simple browser extensions written in a few hundred lines of code. Browser
rootkits are really hard detected by any antivirus program, since once installed
they become a part of the browser. In contrast, OS rootkits and Trojans are much
easier to detect with an updated antivirus or an Intrusion Detection System.

5 Future Work

Real deployments of two-factor authentication schemes suffer from security is-
sues as a result of bad design, underestimating client-side attacks and lack of
usability. An ideal scheme must accommodate for the trade-off between usabil-
ity and security. Clearly, new ideas that focus on security with minimal user
interaction are very important. For instance, in [11], a low-cost hardware token
based on PIN/TAN system is proposed for protecting e-banking systems against
possible situations where the adversary has full control over the user’s computer.
Given that a secure element (i.e., something the user has) has become essential
to reach the standards of modern secure authentication schemes, the question
of whether we can get rid of them may no longer stand. However, whether a
universal security device for all OBSs could be deployed still remains, and de-
pends on the willingness, effort and cooperation of the financial institutions. In
addition, as the use of smartphones has transformed our daily lives, it is possible

How to Attack Two-Factor Authentication Internet Banking 327

to use mobile phones to generate transaction authentication signatures. Mobile
phones are in fact used as a second authentication, but the question is whether
they can improve the current processes. Finally, some advances that could be
addressed in a future work may be the use of Out-of-Band (OOB) communica-
tion channels [6]. In such a setting, the device is able to communicate with the
authenticating servers through the secure OOB channel and display the infor-
mation for confirmation.

6 Conclusions and Reflections

Two-factor authentication (excluding full transaction verification) is still inade-
quate to deal with browser rootkit attacks. Although the original user-unfriendly
approach of Barclays shows that if criminals would automate their attacks, cer-
tain banks are ready to roll out their modifications and annul most of the attacks,
the hardware/software used by most banks, as HSBC, NatWest and Bank A, may
not allow them to switch quickly. We finally observe that full transaction veri-
fication may not fully address all security concerns. The information displayed
on the PC including; account numbers, name, balance and transaction details,
do not remain private! Indeed, a browser rootkit can leak all this information
to an attacker who could use it to physically target rich users, use identity theft
techniques, etc. To deal with this problem banks need to carefully consider what
they display on the browser. Finally, this study has multiple precautions to en-
sure that no malware was released in the wild. No bank servers were violated.
A longer version of this paper is available in [12].

Acknowledgments. We would like to thank the referees for their feedback and
the shepherd of the paper Ahmad-Reza Sadeghi for his effort. We would also like
to thank Hans van Tilburg and Karl Brincat from VISA, who helped us contact
HSBC, NatWest and Barclays. Finally, we also thank Natasha Lewis (Director
of Legal Services - UCL), Stephen Brett (External Legal Advisor) and Diran
Solanke (Head of Research Contracts) for their advice.

References

1. Adham, M.: Barclays, NatWest and Halifax Internet Banking Security, with a
Simulation of Browser Exploit, MSc Thesis, University College London (2011)

2. Azodi, A.: Simulation of an Attack on HSBC’s Two-factor Authentication with
Transaction Verification Online Banking System, MSc Thesis, University College
London (2011)

3. Karaolis, I.: Automating the Hacking of Internet Banking: Simulation of an Attack
for ...5 Internet Banking, MSc Thesis, University College London (2011)

4. Mozilla Developer Centre. Extensions, https://developer.mozilla.org/en-US/docs
5. Chechik, D.: Malware Analysis Trojan Banker URLZone/Bebloh (September

2009), http://goo.gl/z7YSV
6. Chou, D.: Strong User Authentication on the Web (August 2008),

http://goo.gl/6xbky

https://developer.mozilla.org/en-US/docs
http://goo.gl/z7YSV
http://goo.gl/6xbky

328 M. Adham et al.

7. Estehghari, S., Desmedt, Y.: Exploiting the client vulnerabilities in internet E-
voting systems: hacking Helios 2.0 as an example. In: Proceedings of the 2010
International Conference on Electronic Voting Technology/Workshop on Trust-
worthy Elections, EVT/WOTE 2010, pp. 1–9 (2010)

8. PistonHeads Web Forum. Barclays PINsentry, what a dumb POS (2008),
http://goo.gl/wRoJV

9. Greenlee, F.M.B.: Requirements for key management protocols in the wholesale
financial services industry. IEEE Communications Magazine 23(9), 22–28 (1985)

10. Jakobsson, M.: Modeling and Preventing Phishing Attacks. In: S. Patrick, A., Yung,
M. (eds.) FC 2005. LNCS, vol. 3570, p. 89. Springer, Heidelberg (2005)

11. Li, S., Sadeghi, A.-R., Heisrath, S., Schmitz, R., Ahmad, J.J.: hPIN/hTAN: A
Lightweight and Low-Cost E-Banking Solution Against Untrusted Computers. In:
Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 235–249. Springer, Heidelberg
(2012)

12. Adham, M., Azodi, A., Desmedt, Y., Karaolis, I.: How To Attack Two-Factor
Authentication Internet Banking (2013), http://goo.gl/YsA6j

13. Microsoft Safety & Security Centre. Watch out for fake virus alerts,
http://goo.gl/YEZMT

14. Mills, E.: Banking Trojan steals money from under your nose (September 2009),
http://goo.gl/tuDfJ

15. moneysavingexpert Web Forum. Stupid Barclays PINsentry Thingymajic. Can I
Log Into My Online Account Without It? (2010), http://goo.gl/eqaey

16. RSA White Paper. Making Sense of Man-in-the-browser Attacks: Threat Analysis
and Mitigation for Financial Institutions (2010), http://goo.gl/NRcez

17. Ragan, S.: Overview: Inside the Zeus Trojan’s source code (May 2011),
http://goo.gl/nsvpG

18. RiskAnalytics LLC: $70 Million Stolen From U.S. Banks With Zeus Trojan (Oc-
tober 2010), http://goo.gl/XkSgq

19. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to Fail: Card Readers for
Online Banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp.
184–200. Springer, Heidelberg (2009)

20. Schneier, B.: Two-Factor Authentication: Too Little, Too Late. Commun.
ACM 48(4), 136 (2005)

21. Symantec. Banking in Silence (June 2009), http://goo.gl/aj61F
22. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible Web Browser Security.

In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19.
Springer, Heidelberg (2007)

23. VASCO. DIGIPASS GO 3 (August 2012), http://goo.gl/EmLFy
24. Marcus, D., Sherstobitoff, R.: Dissecting Operation High Roller (2012), http://

www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf

http://goo.gl/wRoJV
http://goo.gl/YsA6j
http://goo.gl/YEZMT
http://goo.gl/tuDfJ
http://goo.gl/eqaey
http://goo.gl/NRcez
http://goo.gl/nsvpG
http://goo.gl/XkSgq
http://goo.gl/aj61F
http://goo.gl/EmLFy
http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf
http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf

CAge: Taming Certificate Authorities
by Inferring Restricted Scopes

James Kasten, Eric Wustrow, and J. Alex Halderman

The University of Michigan
{jdkasten,ewust,jhalderm}@eecs.umich.edu

Abstract. The existing HTTPS public-key infrastructure (PKI) uses a
coarse-grained trust model: either a certificate authority (CA) is trusted
by browsers to vouch for the identity of any domain or it is not trusted
at all. More than 1200 root and intermediate CAs can currently sign
certificates for any domain and be trusted by popular browsers. This
violates the principle of least privilege and creates an excessively large
attack surface, as highlighted by recent CA compromises. In this paper,
we present CAge, a mechanism that browser makers can apply to dras-
tically reduce the excessive trust placed in CAs without fundamentally
altering the CA ecosystem or breaking existing practice. CAge works
by imposing restrictions on the set of top-level domains (TLDs) under
which each CA is trusted to sign certs. Our key observation, based on an
Internet-wide survey of TLS certs, is that CAs commonly sign for sites
in only a handful of TLDs. We show that it is possible to algorithmi-
cally infer reasonable restrictions on CAs’ trusted scopes based on this
behavior, and we present evidence that browser-enforced inferred scopes
would be a durable and effective way to reduce the attack surface of the
HTTPS PKI. We find that simple inference rules can reduce the attack
surface by nearly a factor of ten without hindering 99% of CA activity
over a 6 month period.

Keywords: TLS, HTTPS, Certificate Authorities, Authentication.

1 Introduction

Every day, millions of Internet users rely on HTTPS to secure their online
transactions against malicious eavesdroppers or tampering through man-in-the-
middle attacks. HTTPS relies on a public-key infrastructure (PKI) based on cer-
tificate authorities (CAs) that are trusted by the browser. Each server presents
an X.509 certificate tying its public key to its domain name. This certificate is
digitally signed by a CA, which is responsible for verifying the site’s identity.

CA-signed certificates cannot protect users from compromise of the CAs them-
selves. Several recent high-profile attacks on CAs resulted in the signing of fraud-
ulent certificates. For instance, in 2011, an attacker breached the security of the
Dutch CA DigiNotar and created certificates for dozens of popular sites, includ-
ing *.google.com [3]. An ISP in Iran subsequently abused this latter certificate
to conduct man-in-the-middle attacks against Google services.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 329–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 J. Kasten, E. Wustrow, and J.A. Halderman

Preventing DigiNotar-style attacks is difficult, because there are currently very
few technical restrictions on what domains trusted CAs can sign for. Once the CA
convinces a browser (or another CA) that they are trustworthy, they are given an
almost unrestricted capability to vouch for any domain name they choose. This
ability leads to an enormous attack surface: an attacker who compromises any
one of over 1200 CAs can then impersonate any website that relies on HTTPS.
This violates the principle of least privilege: DigiNotar should not have had
the capability to sign certificates for Google, nor should a CA run by a small
university be allowed to sign certificates for foreign government agencies. In other
words, each CA’s trust should come with a limited scope.

One way to limit the scope of CA trust is to designate a set of top-level
domains (TLDs), such as .com or .uk, within which each CA may sign. Indeed,
we present data that suggests that most CAs currently only sign certificates
for sites in a small number of TLDs, and conversely, that sites in most TLDs
utilize only a small set of CAs. Many CAs appear to sign exclusively for domains
belonging to a single organization, and others appear to operate within a specific
country, sector, or both. Although this suggests that TLD-based restrictions
could be fruitful, realizing them within the existing PKI is a challenge. The X.509
name constraints extension (see Section 2) introduced the ability to explicitly
declare such restrictions in new CA certificates, but has seen almost no adoption.

Rather than relying on each CA to explicitly declare a TLD scope, we explore
the possibility that browser makers could infer such scopes without CA par-
ticipation. We propose a mechanism called CAge that creates a profile of each
CA based on the TLDs of publicly visible certificates it has previously signed.
These restrictions can be implemented without cooperation from the CAs, at
the risk that CAs will change their behavior over time and begin signing for
certificates outside their previous pattern. Empirically, we find that this rate of
change is quite low, that inferred scopes generated with simple algorithmic rules
would result in a low false-positive rate, and that the CAge approach would
allow browser makers to dramatically reduce the attack surface of the HTTPS
PKI.

For further details, see the full version of this paper, which is available online
at https://jhalderm.com/papers/.

2 Related Work

There have been several prior proposals for addressing CA shortcomings [3,11,14].
Multi-path probing [2,10,13] has been suggested as a way to reduce reliance on
CAs; however, it necessitates the availability and access to trusted notaries.
Browser extensions have also been proposed to pin previously seen certificates
or CAs to domains [6,9,12].

Scopes on CA signing have previously been proposed through X.509 Name
Constraints [4], a certificate extension with the ability to restrict CAs to a par-
ticular set of domains. However, this approach has yet to see significant adoption
due to several practical impediments, including lack of direct browser authority

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 331

��
��

��
�	

�
����	

Fig. 1. This matrix shows which trusted CAs have signed certs for at least one domain
(blue) or at least ten domains (green) in each TLD. Columns are scaled by fraction of
valid certs (left is .com). Note sparseness of CA signing practices.

over intermediate CAs, the long lifetime of root CA certs, and the need to re-
place site certs when an issuing CA implements constraints. In contrast, CAge
can be applied immediately by browsers without CA collaboration.

3 Analyzing the CA Infrastructure

Currently, important aspects of browser trust behavior and CA signing practices
are surprisingly opaque to outside observers. Certificate chaining conceals the full
set of trusted CAs by including an unknown number of intermediate authorities.
Furthermore, CAs typically do not publish the domains for which they have
issued certificates, obfuscating their signing patterns.

To understand these aspects of the HTTPS PKI, we analyzed a large corpus
of certificates collected for another recent study [7] using an Internet-wide scan
of HTTPS servers. We determined which certificates would be trusted by major
web browsers and extracted the set of trusted CAs. See the full paper for details.

The number of certificates signed by each CA varied considerably; the top 20
CAs were responsible for more than 80% of valid certificates. Over 90% of all
signed .com domain names used certificates issued by just 25 CAs.

Despite this lopsided distribution of CA size, 1207 CAs had the ability to
issue trusted certificates for any domain name. To examine how much of this
authority each CA exercised, we extracted the set of domain names that each
CA had directly issued certificates for, and then examined the set of TLDs to
which these domains belonged. We find that 89% of CAs had signed for domains
in fewer than 10 unique valid TLDs [8], with the majority (65.8%) of CAs signing
for domains in either zero or one TLD.

332 J. Kasten, E. Wustrow, and J.A. Halderman

Although .com accounts for 51% of signed domains, fewer than 35% of trusted
CAs had signed a certificate for even a single .com domain, and only 20% had
signed for 10 or more such certificates. There were 787 CAs that had never signed
for a .com domain. Similarly, fewer than 11% of CAs had signed certificates in
the .uk TLD, and only 6.6% had signed for 10 or more in the .uk domain.

Many CAs belong to private companies and organizations and are used for
domains under their control. More than 200 German universities and research
institutions control browser-trusted CAs, as do corporations such as Ford, Dis-
ney, and Wells Fargo. We observed that such CAs generally limit their public
signing practices to a few specific second-level domains. Other smaller CAs ap-
pear to focus their business within a specific geographic region and tend to sign
domains under a country-specific TLD.

4 Our Proposal

In this section, we propose CAge, a browser-based approach that restricts CA
signing to TLDs in which they have already signed. CAge consists of two phases:
In the initialization phase, we collect certificates from an Internet-wide scan and
infer rules from the observed current CA signing practices. Browsers then apply
these rules in the enforcement phase to restrict CAs to the inferred scopes and
handle exceptions. See the full paper for more details and for a description of
our browser extension prototype.

4.1 Initialization and Rule Inference

Prior to deploying CAge, the browser maker needs to develop an initial set of
restricted scopes to apply to existing CAs; however, creating justifiable rules for
existing CAs necessitates knowledge of current CA practice. A comprehensive
survey of public HTTPS servers (like that completed by Heninger et al. [7])
can be performed to determine the observable list of intermediate CAs and the
domains for which they have directly signed certificates.

After scanning and collecting the raw data, we infer rules and restrictions for
the CAs, based on current practices. As stated earlier, there are many CAs that
have never signed for particular top-level domains. If a user is later presented
such a certificate, this may indicate that the certificate is fraudulent, and the user
should be alerted. As a first approach, CAge can generate the inferred scopes by
looking at the TLDs that each CA has previously signed for. Under the simplest
form of this approach, the inferred rules will allow a CA to sign for domains in
a given TLD only if that CA has signed for a domain in that TLD before.

Rules are stored for each CA in the form of a set of regular expressions that
governs the domains the CA is trusted to sign. This allows for the rule inference
to be improved with more sophisticated algorithms in the future. In general,
rule inference should be generated from an algorithm taking the CAs and their
signed domains as input and producing the CA restrictions as output. CAs could
be constrained to second-level domains or more specific rules could be required

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 333

for larger TLDs, factoring in the cost of false positives and both the size and
brittleness of the rule set.

4.2 Enforcement and Exception Handling

Once CAge has inferred CA signing rules from the collected scans, CAge relies
on browsers to enforce these rules during certificate validation. Browsers have a
strong incentive to protect their users from fraudulent certificates, making them
a natural place to enforce these restrictions.

Normally, browsers verify that HTTPS certificates have a valid signed chain to
a trusted root. With CAge, browsers additionally compare the domain to the set
of regular expression rules inferred for that certificate’s intermediate (signing)
CA. If the domain does not fall within the allowed rules for the given CA, CAge
alerts the user with a warning explaining that the website’s origin is certified by
an unusual source. CAge also asks the user if they want to send the violation to
the browser developers for further inspection. This feedback allows the browser
to potentially verify the authenticity of the certificate via other means, while
respecting the privacy of its users.

4.3 Updating

Keeping the rule set accurate and current is crucial to keeping a low false positive
rate and avoiding user habituation to clicking through warning messages. The
CAge rule set must be updated as CA policies change and new CAs emerge.
Luckily, browser makers are in a good position to provide updates to users,
based on newly discovered certificates reported collectively by users. Updates to
the CAge rules can also be pushed to users through browser update mechanisms.

The update mechanism must be carefully designed to avoid being gamed by
attackers. For example, we might be tempted to regenerate the inferred rules
based on any newly signed domain. However, in that case, an attacker who
compromised a CA that was not allowed to sign for a domain in .com could
simply purchase a certificate from that CA for a .com domain the attacker
legitimately controlled. The inferred TLD rules would then update to allow this
CA to sign for .com, and the attacker could use their compromise to sign for
other .com domains fraudulently.

While CAge would still protect users from illegitimate certificates signed by
CAs that do not sign publicly (including private organizations, root CAs and
inactive intermediates), attackers can still try to increase the scope of all publicly
signing intermediate CAs. For this reason, we propose that the CAge rule set
should be updated on a per-domain basis. When a domain exception is reported
to browsers, the domain should be added to a “watchlist” where the domain can
be manually vetted before the specific certificate is whitelisted and pushed as
an update. We show in Section 5.2 that these updates are infrequent and thus
enable manual inspection and verification.

Over the long term, new CAs, without any recorded behavior, can be added
by browsers after interrogating the CAs about their intended scope and policies.

334 J. Kasten, E. Wustrow, and J.A. Halderman

��

��

���

���

���

���

���

�� �� ��� ��� ��� ���

�
�	

��

��
�
��
��
���

��
��
��

�
��

������	��

Fig. 2. HTTPS PKI attack surface under the basic CAge inference policy, compared
to current practice. Even this simple approach achieves 75–90% reduction.

While this might pose an additional hurdle for new CAs entering the market,
ultimately, the authority to say if a particular CA is trusted or not lies with the
browser, and users’ security interests demand a high level of scrutiny.

5 Evaluation

5.1 Attack Surface Reduction

While restricted scopes would reduce the attack surface across a large number
of CAs, they are most effective against small and private CAs. In the Comodo
attack that occurred in March 2011 [11], an attacker issued fraudulent certificates
for .com domains signed by “CN=UTN-USERFirst-Hardware”, a relatively large
CA which had signed over 25,000 other .com certificates previously. Due to these
signing practices, CAge would have been unable to protect against the Comodo
attack. Similarly, all but two of the top 20 CA certificates have signed domains
from over 100 unique TLDs, limiting the usefulness of restricting these large CAs
to the TLDs they currently sign.

However, the vast majority of CAs do not sign for such a diverse market, al-
lowing CAge to provide protection during a CA compromise. For instance, CAge
would have detected the DigiNotar compromise. The EFF’s SSL Observatory [5]
data, which was collected a year before the attack, shows that the issuer of the
fraudulent *.google.com certificate, “DigiNotar Public CA 2025” [1], had not
signed certificates for any .com domains. Had CAge been implemented at the
time, it would have prevented the attack against Internet users in Iran.

In light of these conflicting case studies, we attempt to quantify what kinds
of attacks CAge would or would not protect against by developing an attack

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 335

surface metric. The goal of this metric is to quantify the relative risk of damage
that could be caused by an attacker-compromised CA. We compare this metric
under different scenarios; namely, current CA practice (all CAs can sign for all
domain names) versus CAge (CAs are restricted to a particular set of domains).

We approximate the attack surface by
∑

c∈CAs domains[c]. The function
domains[c] is the number of existing, validly signed domains for which a certificate
signed by a given CA c would be trusted under a given set of policies. (Intuitively,
the number of signed valid domains represents the number of protected entities on
the Internet.) Under current practice, domains[c] is constant across all CAs and is
simply the number of signed valid domains in existence. Under CAge, domains[c]
is reduced to domains in TLDs that are allowed under the inferred trust scope for
c. For example, if a CA is trusted to sign for only .com because it previously signed
for 100 of the 1.3 million .com domains (and zero domains under other TLDs), then
domains[c] for that CA would be 1.3 million.

While this attack surface metric is by no means complete, it provides a first-
order approximation that allows us to quantitatively compare the risks of dif-
ferent CA restriction policies. Applied to our data set, the simple CAge rule set
inference method described in the previous section yields an attack surface that
is 75% smaller than current practice.

We can improve this result by modifying the inference procedure to only allow
a CA to sign for domains in a TLD if it has previously signed for a minimum
threshold t of unique domains in that TLD. If a CA has signed fewer than t
domains in a particular TLD, these domains can either be viewed as suspicious
anomalies or whitelisted as individual rules within the rule set. Applied to our
scan data with t = 25, this policy would reduce the attack surface by 89%
compared to current practice.

5.2 Rule Set Durability

Although the attack surface metric provides a quantifiable goal, reducing it is not
our only objective. The minimum attack surface would be achieved by pinning
every observed domain to the CA that signed its cert, but the result would
be an enormous rule set that would require constant updating and lead to an
impractical number of false positives. CAge must instead attempt to capture
CAs’ actual signing policies so as to produce rules that are compact and stable.

In order to test the durability of our inferred rules, we acquired a second scan
in April 2012 (6 months after the original scan). Focusing on changes during this
interval, we found that the large majority of domains observed in newly issued
certificates conformed to our rules, supporting our hypothesis that the TLDs
that CAs sign for are generally static. The basic policy, restricting CAs to TLDs
they have signed in the past, accommodated 99.84% of new certificates. Most of
the 1506 violations that occurred were in unpopular or small TLDs. See the full
version of this paper for additional analysis.

336 J. Kasten, E. Wustrow, and J.A. Halderman

6 Conclusion

In this paper, we presented CAge, a mechanism for inferring TLD-based re-
stricted scopes for HTTPS CAs. Based on the empirical observation that the
vast majority of browser-trusted CAs do not utilize their unconstrained signing
power, we argue that each CA should be restricted to signing for domains within
a limited set of TLDs. We show how restrictions can be realized in practice by
profiling past CA behavior, and we find that such an approach would dramati-
cally reduce the attack surface of the HTTPS PKI without a high rate of false
alarms over time.

While browsers have a positive record of revoking compromised CA certificates
once a breach is discovered, we believe much more can be done to proactively
mitigate the damage caused by attacks against CAs and to provide defense-in-
depth to the HTTPS PKI. Given the relative ease with which CAge could be
deployed by browsers, we strongly encourage browser developers to adopt this
approach to help combat the growing threats that HTTPS users face.

Acknowledgements. The authors gratefully acknowledge Zakir Durumeric for
providing HTTPS certificate data for this study, and we thank the anonymous
reviewers for their constructive comments and feedback. This work was sup-
ported in part by the National Science Foundation (NSF) under contract num-
bers CNS 1255153 and DGE 0654014 and an NSF Graduate Research Fellowship.

References

1. Gmail.com SSL MITM Attack by Iranian government (August 2011),
http://pastebin.com/ff7Yg663

2. Alicherry, M., Keromytis, A.D.: Doublecheck: Multi-path verification against man-
in-the-middle attacks. In: ISCC, pp. 557–563. IEEE (2009)

3. Bhat, S.: Gmail users in Iran hit by MITM Attacks. Website (August 2011),
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html

4. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard) (May 2008)

5. EFF. The EFF SSL Observatory, https://www.eff.org/observatory
6. Evans, C.: New Chromium security features (June 2011), Website, http://blog.

chromium.org/2011/06/new-chromium-security-features-june.html
7. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and

Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Conference on Security Symposium, Security 2012, p. 35. USENIX
Association, Berkeley (2012)

8. IANA. Top level domains, http://data.iana.org/TLD/tlds-alpha-by-domain.txt
9. Loesch, C.: Certificate patrol. Website, http://patrol.psyced.org/

10. Marlinspike, M.: SSL and the future of authenticity, BlackHat USA (August 2011)
11. Richmond, R.: Comodo fraud incident (March 2011),

http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

http://pastebin.com/ff7Yg663
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
https://www.eff.org/observatory
http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://patrol.psyced.org/
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

CAge: Taming Certificate Authorities by Inferring Restricted Scopes 337

12. Soghoian, C., Stamm, S.: Certified lies: Detecting and defeating government inter-
ception attacks against SSL (short paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012)

13. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style host
authentication with multi-path probing. In: USENIX 2008 Annual Technical Con-
ference, pp. 321–334. USENIX Association, Berkeley (2008)

14. Zusman, M.: Criminal charges are not pursued: Hacking PKI, DefCon 17 (August
2009)

Interdependent Privacy:

Let Me Share Your Data

Gergely Biczók1 and Pern Hui Chia2

1 Dept. of Telematics
Norwegian University of Science and Technology

gbiczok@item.ntnu.no
2 Centre for Quantifiable Quality of Service (Q2S)
Norwegian University of Science and Technology

chia@q2s.ntnu.no

Abstract. Users share massive amounts of personal information and
opinion with each other and different service providers every day. In
such an interconnected setting, the privacy of individual users is bound
to be affected by the decisions of others, giving rise to the phenomenon
which we term as interdependent privacy. In this paper we define online
privacy interdependence, show its existence through a study of Facebook
application permissions, and model its impact through an Interdependent
Privacy Game (IPG). We show that the arising negative externalities can
steer the system into equilibria which are inefficient for both users and
platform vendor. We also discuss how the underlying incentive misalign-
ment, the absence of risk signals and low user awareness contribute to
unfavorable outcomes.

Keywords: Interdependent Privacy, Application Permissions, Facebook
Apps, Externality, Incentive Misalignment, Game Theory.

1 Introduction

In today’s networked world, users of online services have become logically in-
terconnected in many ways. Such relationships often involve sharing personal
information or opinion via named or unnamed user accounts or pseudonyms.
Privacy concerns arise along with data sharing. In such an intertwined setting,
the privacy of individual users is bound to be affected by the decisions of oth-
ers, and could be out of their own control. This gives rise to the phenomenon
which we term as interdependent privacy. While there is a plethora of online
services where privacy interdependence matters, including the blogosphere, fo-
rums, photo and video sharing portals, the low-hanging fruits in this context are
Online Social Networks (OSNs). A particularly interesting example is Facebook
and its platform for third-party apps. Through its app platform, Facebook pro-
vides an efficient way to create a lock-in effect for users. However, the structure
of the permission system associated with the platform raises some questions [1].

In this paper we take a first step towards understanding interdependent pri-
vacy. Our contribution is threefold. First, we define the concept of interdependent

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 338–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Interdependent Privacy: Let Me Share Your Data 339

privacy in the context of today’s networked society. Second, through a study on
third party Facebook apps, we point out the permissions causing privacy inter-
dependence, and quantify their prevalence. Third, we present the Interdepen-
dent Privacy Game (IPG), and show how positive (network effect) and negative
(privacy loss) externalities can shape the behavior of social network users with
regard to app usage. Our main finding is that equilibrium outcomes may be inef-
ficient and contrary to best interest of users and/or platform vendor. We discuss
how the underlying incentive misalignment, the absence of risk signals and low
user awareness contribute to the unfavorable outcome, and hint on designing a
possibly better application installation mechanism by mitigating negative exter-
nalities. Our intention is to introduce privacy interdependence to the research
community, and outline interesting future research directions of both theoretical
and experimental nature.

The paper is organized as follows. Section 2 explains the notion of inter-
dependent privacy, while Section 3 exemplifies privacy interdependence on the
Facebook application platform through a measurement study. Motivated by the
Facebook case study, Section 4 presents a game theoretical model of interde-
pendent privacy and analyzes its potential equilibria. We discuss our findings
in Section 5. Section 6 shortly describes related work. Finally, we provide a
summary and potential topics for future research in Section 7.

2 Interdependent Privacy

An early definition given by Clarke [2] was that privacy is the interest that
individuals have in sustaining a ‘personal space’, free from interference by other
people and organizations. Clarke further outlined four dimensions of privacy:
bodily, behavioral, communication and data privacy.�

Online Privacy. As the digital world evolves, and changes online user behavior
and expectations, there is no single widely accepted definition of online privacy
today. Yet, adapting from Clarke’s categorization, we can structure online pri-
vacy risks in three dimensions:

– Personal: Potential loss of information about a user and his behavioral
data.

– Relational:Revelation of how a user relate to and communicate with others.
– Spatial: Invasion of the virtual space of an online user (e.g. uninvited post-

ings on the user’s blog and social media spaces).

� Bodily privacy concerns the integrity of the individual’s body including issues such
as blood transfusion without consent, and compulsory submission of body fluids
or tissues. Meanwhile, behavioral privacy concerns all aspects of human behaviors
including sensitive information such as sexual preferences, political activities and re-
ligious practices. On the other hand, communication privacy demands for the ability
to communicate with intended targets without routine monitoring by others, while
data privacy concerns the protection of personal data, and the ability to exercise
control over data that is to be processed by others [2].

340 G. Biczók and P.H. Chia

There exists a rich literature on the protection of online personal and relational
privacy. Spatial privacy is another important subject as virtual spaces including
blogs and social media spaces (e.g., Facebook’s user timeline, LinkedIn’s user
profile) are being claimed by and associated with the users.

Privacy Interdependence and Externality. Rather than focusing on pro-
tecting each of the 3 online privacy dimensions from malicious actors, we present
in this article an important aspect yet to be adequately addressed in the commu-
nity – privacy interdependence. Indeed, the protection of personal, relational and
spatial privacy of individuals is increasingly dependent on the actions of others,
rather than the individuals themselves, in the interconnected digital world.

The interdependence in online privacy is perhaps not a new phenomenon.
Alice could easily embarrass Bob by taking and sharing a “funny” photo of
Bob through conventional mediums such as posters, emails or blogs. Yet, the
advent of online social networking services has made data sharing much easier
across networks of users and thus a higher concern for privacy interdependence.
How appropriate it could be for an OSN service to allow a user to share an
information concerning or on behalf of another user, based on their relationship,
for an improved user experience?

Sharing a user’s information without his direct consent can lead to the emer-
gence of externalities. We know from [3] that an externality arises when an entity
engages in an activity that influences the well-being of a bystander and yet nei-
ther pays nor receives any compensation for that effect. If the impact on the
bystander is beneficial, it is called a positive externality. On the contrary, a neg-
ative side-effect is termed as negative externality. While sharing someone else’s
information may yield benefits for her (e.g., personalized experience), it is also
almost certain to cause a decrease in her utility (i.e., loss of online privacy).

A straightforward example of privacy interdependence in OSN is with photo
tagging. Consider the case where Alice tags Bob in a photo and shares it in the
OSN without explicit consent from Bob. Both Alice’s and Bob’s friends gain
access to the photo in the default setting. Another excellent example of privacy
interdependence is exemplified by the Facebook application platform. How well a
user can protect his privacy from third party developers depends not only on his
decisions, but also the decisions of his friends. We leverage the case of Facebook
applications as the primary example in this article.

3 Case Study: Facebook Application Platform

The Facebook Help Center [4] describes why apps need to access user informa-
tion before she can use them. As expected, it says that apps look to maximize
user experience by collecting personal information. Common ways of using this
information are: helping you find friends using the same app, personalizing con-
tent, aiding content sharing and quick bootstrapping of required data. It is also
stated that apps are not allowed to use information for advertisements or trans-
fer user information without your consent. We will show in this section that the
last statement is not entirely valid.

Interdependent Privacy: Let Me Share Your Data 341

Fig. 1. The new permission request dialog of Facebook – Enhanced Auth Dialog. (Top)
First screen displays the non-extended permissions requested by the app. (Bottom) Sec-
ond screen shows the list of extended permissions requested, and an optional description
by the developer to justify the need for extended permissions. Extended permissions
can be individually rejected by the user.

Facebook relies on permission-based platform security to apply the least priv-
ilege principle to third party applications on the platform. Similarly to the An-
droid mobile platform, third party Facebook apps wanting to access specific user
information or account features are required first to ask for user consent to grant
the relevant permissions. Chia et al. termed this as a user-consent permission
system, as opposed to the centralized permission model of iOS where Apple
decides which permissions can be requested by third party apps [5].

Application Permissions on Facebook. Facebook has a total of 65 permis-
sions as of June 2012. They are categorized into 5 different types: basic, user or
friend information, extended, open graph, and page permissions [6]. Towards the
users, Facebook however distinguishes only between non-extended and extended
permissions since early 2012. As shown in Fig. 1, the newly introduced Enhanced
Auth Dialog of Facebook presents extended permissions to the users more promi-
nently (on the second screen) as compared to the non-extended permissions (on
the first screen).

342 G. Biczók and P.H. Chia

We are most interested in investigating the interdependence aspect of differ-
ent app permissions. Table 1 shows the three dimensions of online privacy risks
affecting the user himself and his friends (hence the negative externality). In-
deed, privacy control with app permissions on Facebook depends not only on
the user’s own due diligence, but also the discipline of his friends. The table
shows the number and percentage of apps exhibiting a particular privacy risk,
derived from a data set of 27,029 apps constructed by Chia et al. [5]. The data
set was constructed by first downloading the list of all Facebook applications
on socialbakers.com, and then visiting each of the apps to save the list of
permissions requested at install-time.

Personal privacy concerning the potential leak of user interests, birth date,
education history and political views can depend on the user’s own, or any
of his friends’ decisions to install a third party application. Facebook has 24
permissions as shown in Table 2 (right), which allow an app to obtain not the
personal information of the user himself, but that of his friends. 1.92% of apps
request for friends’ personal information. While it is a smaller sum compared
to 17.15% of apps requesting for the user’s own personal information (excluding
those that asks for only the basic permission), we believe that a majority of users
are unaware of the privacy externality (or control dependency) with Facebook
app permissions (see [7] for a different angle).

More than just friendship links, we consider relational privacy to include the
conversations (chats, messages) and joint events between two users. Relational
privacy thus affects both parties, and its protection depends on the actions of
both. Installation of an app requesting a set of relational permissions, as listed in
Table 3, can reveal the relation between the user and his friends. Note that the
basic permission reveals the list of friends for a user, while read friendlists

reveals the custom lists of friends (e.g., close friends, band members, colleagues,
relatives) that a user has made. The permission manage friendlists further
allows an app to edit the custom lists of friends. At the same time, xmpp login

exposes private chat messages, while read stream allows an app to read the less
private messages such as postings by friends onto user’s timeline. Excluding the
basic permission, 1.75% of apps pose the risk of relational privacy breach.

The third dimension is spatial privacy. Again, the protection of the user’s dig-
ital space depends on his own and his friends’ decisions. Third party apps with
publish actions and publish checkins permissions can post to the user’s own

Table 1. Online privacy dimensions, dependency of privacy control (equivalently, the
affected victim), and the number of apps posing the respective risks. Figures in [brack-
ets] exclude apps that request only the single basic permission.

Dimension Dependency (Affecting) # app % app

Personal Self 18204 [4634] 67.35 [17.15]
Friends 518 1.92

Relational Both self and friends 18204 [480] 67.35 [1.78]

Spatial Self 494 1.83
Friends 6249 23.12

socialbakers.com

Interdependent Privacy: Let Me Share Your Data 343

Facebook timeline. Meanwhile, publish streams has been designed to be the
superset permission of publish actions, allowing an app to post also onto the
friends’ spaces. This single permission of publish streams, which has been re-
quested by 23.12% of apps, is the main culprit for uninvited and often disgraceful
postings on a user’s timeline or feeds, including invitations from spammy apps
or obscene postings. We regard this as a violation of spatial privacy.

Table 2. Facebook permissions with implications to personal privacy; control lies with
the user himself (left), or depends on the decisions of his friends (right)

Permission # app % app

basic 18204 67.35
email 3766 13.93
user about me 284 1.05
user activities 67 0.25
user birthday 914 3.38
user checkins 24 0.09
user education history 67 0.25
user events 27 0.10
user games activity 5 0.02
user groups 35 0.13
user hometown 204 0.75
user interests 94 0.35
user likes 314 1.16
user location 412 1.52
user notes 12 0.04
user online presence 67 0.25
user photos 574 2.12
user questions - -
user relationships 77 0.28
user relationship details 21 0.08
user religion politics 50 0.18
user status 131 0.48
user subscriptions - -
user videos 187 0.69
user website 12 0.04
user work history 107 0.40

Permission # app % app

friends about me 25 0.09
friends activities 23 0.09
friends birthday 162 0.60
friends checkins 15 0.06
friends education history 30 0.11
friends events 7 0.03
friends games activity 5 0.02
friends groups 8 0.03
friends hometown 44 0.16
friends interests 33 0.12
friends likes 51 0.19
friends location 62 0.23
friends notes 3 0.01
friends online presence 89 0.33
friends photos 256 0.95
friends questions - -
friends relationships 19 0.07
friends relationship details 8 0.03
friends religion politics 20 0.07
friends status 16 0.06
friends subscriptions - -
friends videos 75 0.28
friends website 2 0.01
friends work history 29 0.11

4 The Interdependent Privacy Game

Motivated by our measurement findings, we propose a game-theoretic model
called the Interdependent Privacy Game (IPG). While IPG is general enough to
model most decision scenarios involving privacy interdependence, here we choose
to focus on the inter-user effects of app installations on Facebook. We concentrate
on the 2-player-1-app case, while also providing some insight for multiple players
and apps. The main feature of IPG is the possibly simultaneous emergence of
both positive and negative externalities, and the effect of this phenomenon on
the stable outcome.

344 G. Biczók and P.H. Chia

Table 3. Facebook permissions with impli-
cations to relational privacy. Control depends
on both the user himself and his friends. The
basic permission reveals the list of friends,
while read friendlists exposes the custom
lists of friends of the user.

Permission # app % app

basic 18204 67.35
read friendlists 114 0.42
read mailbox 1 0.00
read requests 5 0.02
read stream 356 1.32
rsvp event 12 0.04
xmpp login 14 0.05
manage friendlists 1 0.00
manage notifications 7 0.03

Table 4. Facebook permissions
with implications to spatial pri-
vacy. Control lies with the user
himself (top), or his friends (bot-
tom). The publish actions per-
mission allows an app to post to
the user’s spaces (wall, timeline)
while publish stream allows an
app to post to friends’ spaces.

Permission # app % app

publish actions 485 1.79
publish checkins 9 0.03

Permission # app % app

publish stream 6249 23.12

4.1 Game Structure

Assumptions. We assume that the players are non-cooperative. Players have
a connection in the social network, hence they are “friends”. We only consider
apps that ask for permissions affecting the privacy of the friends of the user.
We assume that these permissions are independent of the set of permissions
requested by the app directly from the user. For tractability reasons, we focus
on the scenario of two players and a single app.

Players. IPG is played by two players. Players embody users of Facebook, who
also have an established friend connection.

Strategies. In the simplest form of the game, the decision is whether to install
or not to install the given single app. Formally, the strategy space is S = {i, n}
for both players. Mixed strategies are probability distributions over these (pure)
strategies.

Payoffs. The main characteristics of IPG is that both positive and negative
externalities could emerge from the decisions of the two players. The positive
externality is the so-called network effect : having more users install the same app
could actually improve user experience [4]. On the other hand, negative external-
ity can emerge as the other user’s decision to install an app imposes privacy risks
to this user. As detailed in Section 3, Facebook’s app permission model exhibits
characteristics of interdependent privacy. Many of the app permissions poses
personal, relational or spatial privacy risks to the friends of an app user. Adding
to positive and negative externalities, users also have their own valuations of
each app. The valuation v can be positive (e.g., fun, useful) or negative (e.g.,
useless, waste of time, buggy); note that v represent the app’s value without
network effect, and therefore is independent from other parameters. Formally:

π(s1,s2) = f
(
v, e+ (s1, s2) , e

− (s1, s2)
)
, (1)

Interdependent Privacy: Let Me Share Your Data 345

Table 5. Payoff matrix for IPG

(I)nstall (N)ot

(I)nstall (v + e+ + e−, v + e+ + e−) (v, e−)
(N)ot (e−, v) (0, 0)

where s1 (s2) is the strategy that player 1 (player 2) plays, v ∈ R is the user’s own
valuation for the app, while e+ > 0 (e− < 0) represents the positive (negative)
externality. Note that we assume identical players with respect to valuation of
both app and externalities, therefore the payoff matrix is symmetric. Payoff
values are shown in Table 5.

It is important to emphasize that the positive externality emerges only when
both players choose to install the app, while the negative externality appears
if either one of them does. Also, the signum of the payoff has a more impor-
tant message than the exact value; especially, since user valuations are hard to
estimate/measure.

4.2 Analysis

In such a 2-player matrix game with parametric payoffs, the equilibrium depends
on the relation of payoffs for the possible 4 outcomes. In fact, 4 inequalities (1
for each neighboring outcome-pair) are satisfactory to describe these relations.
These are:

πii > πin iff e+ + e− > 0 (2)

πii > πni iff v + e+ > 0 (3)

πin > πnn iff v > 0 (4)

πnn > πni always. (5)

It can be seen that there are 8 possible cases with regard to the three parametric
inequalities. Since we aim to explore the solution space, we assign a single bit to
each inequality in the order of Eq. (2)-(3)-(4), and set it to 1 if the inequality
holds and to 0 if it does not. After checking for conflicts, we find that Case 101
and 001 are not feasible. This leaves us with 6 potential cases.

Possible Nash Equilibria. Let us identify Nash equilibria (NE) on a case-by-
case basis. The first three cases have intuitive outcomes, and a simple NE. We
also characterize Pareto-optimality (PO) and social optimality (SO).

– Case 111. Unique NE: (i, i). This is an intuitively beneficial outcome: di-
rect valuation is positive, and positive network effects are stronger than the
privacy loss; the result is mutual installation. The NE is both PO and SO.

346 G. Biczók and P.H. Chia

– Case 110. Unique NE: (n, n). Strong positive externality cannot overcome
the negative direct valuation resulting in not installing the app. The NE is
both PO and SO.

– Case 000. Unique NE: (n, n). This is the mirror image of Case 111: negative
direct valuation and strong negative externality result in not installing the
app. The NE is both PO and SO.

In the following case, IPG turns into the classic prisoner’s dilemma (PD), when
the payoff is negative in equilibrium. Note that cooperating in the original PD
is analogous to not installing in IPG.

– Case 011. Unique NE: (i, i). When v < |e− + e+|, the payoff is negative in
the NE. Under this condition, the relation of payoffs becomes πin > πnn >
πii > πni, which in turn leads to a PD-type game. Hence, the NE is neither
Pareto- nor socially optimal. The strategy profile (n, n) is both PO and SO.
Putting it differently, users will install the app because they fear that the
other player would possibly inflict a negative externality on them.

In the last two cases IPG turns into a coordination game.

– Case 110. Three possible NE: (i, i), (n, n) and a symmetric mixed NE; in
the mixed NE players play i with a positive probability p = −v

e+ , while they
play n with a probability of 1 − p. The strategy profile (i, i) is PO and SO
if |e+| > |v|+ |e−|; (n, n) is PO and SO otherwise.

– Case 010. Three possible NE: (i, i), (n, n) and a symmetric mixed NE; in
the mixed NE players play i with a positive probability p = −v

e+ , while they
play n with a probability of 1 − p. The strategy profile (n, n) is both PO
and SO. All three other cases result in negative payoffs. In fact, (i, i) could
yield the worst possible aggregate social payoff (sum of the 2 players), if
|e−| − e+ > |e+| − |v|. This could be interpreted as the following: users can
punish each other with installing the app, even if their own valuation v and
their total payoff is negative.

Evolutionary Stability. In order to view the IPG from a different angle, here
we apply the evolutionary perspective. We think this is particularly fitting in
the case of social networks, since organisms (persons) of the same population
(users) do interact (establish connections, comment, chat) with each other, and
user behavior could be considered inherent regarding certain actions (“genetic”
strategies). While we can consider the same strategies as above, the solution
concept here is Evolutionarily Stable Strategy (ESS). ESS is analogous to NE in
an evolutionary setting: a genetically determined strategy that tends to persist
once it is prevalent in a population [8]. On the other hand, ESS is a refinement
of NE, and relies on a stricter definition of equilibrium. Due to this, an ESS is
always a NE, but a NE is not always an ESS.

Consider the general, symmetric game shown in Table 6. A well-known result
for ESS is that in a two-player. two-strategy, symmetric game, S is an ESS iff
(i) a > c or (ii) a = c and b > d [8]. Now, putting it into the context of IPG,

Interdependent Privacy: Let Me Share Your Data 347

Table 6. General symmetric game

S T

S (a, a) (b, c)

T (c, b) (d, d)

let S = I (install) and T = N (not install). Further along, this makes a = πii,
b = πin, c = πni and d = πnn.

The relations between payoffs of the two strategies are different for the 6
cases described above. We now determine in which cases the ESS conditions
are satisfied with regard to strategy I (install); these are 111, 110, 011 and 010,
respectively. Interestingly, with the exception of 111, these are exactly the contro-
versial or uncertain cases going back to the prisoner’s dilemma and coordination
games. Put plainly, both players installing the app is an equilibrium in a stricter
sense (ESS is stricter than NE) in the exact scenarios, where this is contrary to
the individual and aggregate interest of players (inefficient equilibrium).

Multiple Players and Apps. When considering more than two players, an
interesting phenomena arises. First, the positive externality is getting stronger
with the increasing number of users installing the same app (network effect).
On the other hand, the maximum impact of the negative externality is already
present with a single other user deciding for installing the app: the privacy loss
is already there. Also factoring in multiple different applications j, the payoff
function of a user i will be composed of the aggregate valuation, network effects
and negative externalities:

πi =
∑
j

sij

(
vij +

(∑
k

skj:k �=i

)
ej

+ + I{∑k skj:k �=i>0}ej−
)
, (6)

where sij ∈ {0, 1} is the decision of user i whether to install app j, vij is the
valuation of app j by user i, I ∈ {0, 1} is a variable indicating whether at least
one friend of user i installed app j , while ej

+ > 0 (ej
− < 0) denotes the

unit positive (negative) externality inflicted by app j. Note that apps differ in
nature and permissions requested, so their inflicted externalities can be very
different (e.g., game app vs. news feed app). Solving such an extended game
is not straightforward. We plan to utilize the measurement results to give a
numerical solution in future work.

5 Discussion

Table 7 summarizes the analysis of the different scenarios of our IPG model. We
discuss several insights and implications in the following.

Sub-optimal Equilibrium. Notice that the Nash equilibrium is not always
socially and/or Pareto optimal. For example, in case 011, when negative exter-
nality e− outweighs the sum of network effect e+ and positive user evaluation

348 G. Biczók and P.H. Chia

Table 7. Nash Equilibrium (NE) as well as the Social Optimality (SO), Pareto Op-
timality (PO) and Vendor Optimality (VO) of different app scenarios. v denotes if
initial user valuation on app is positive (+) or negative (–), while e+ + v indicates if
the network effect (e+) offsets a negative initial valuation

Case v e++v NE SO PO VO

111 + + (i, i) Y Y Y

100 – – (n, n) Y Y N

000 – – (n, n) Y Y N

011 + + (i, i) Y/N Y/N Y

110
– +

(n, n), (i, i),
Y/N Y/N Y/N

010 mixed

v, the game becomes the classic Prisoner’s Dilemma. In this situation, while it
is socially optimal not to install the app, both users do otherwise. Similarly,
inefficiency can arise in the coordination game scenarios (i.e., case 110 and 010).
The question is who will be incentivized to remedy the situation. Inefficiency
can cause users to suffer from installing potentially risky or useless apps, as well
as to miss out on potentially good or useful apps.

Incentive Misalignment. It is not counter-intuitive to assume that a platform
vendor such as Facebook has in its best interest to stimulate app installation
and data sharing. We thus define vendor optimality (VO) based on the users’
decision whether to install an app in equilibrium. Comparing the SO and VO
columns in Table 7, one can quickly notice the mismatched interests between
platform vendor and user. This has serious implications. For example, in the
Prisoner’s Dilemma version of case 011, the vendor may not have direct incen-
tives to warn against the potentially privacy-invasive apps. A similar situation
can be observed on mobile application platforms. As platform owners compete
in boosting the number of apps to increase platform attractiveness, problems
with inappropriate apps, coupled with a lax app review process, have not been
adequately addressed [9].

Absence of Risk Signaling. Attributable to the incentive mismatch, we see
that the prominent cue for users to avoid bad apps today has remained with
community app ratings. Unfortunately, most of the rating systems have neither
factored in the risk aspects of an app nor the negative externality e−. In their
current form, ratings are thus not helpful for privacy control, particularly in the
Prisoner’s Dilemma situation of case 011. Specifically to Facebook, the platform
has stopped displaying the average community rating of an app in the permission
request dialog with the launch of the Enhanced Auth Dialog (see Fig. 1). Instead,
Facebook displays a list of friends, if any, who have installed the app. This is
an interesting move. Knowing that friends have installed a particular app can
indeed help users better estimate positive network effects and negative privacy
externality; this helps in the coordination cases of 110 and 010. However, the
platform does not inform users when a friend uninstalls an app. Omitting the
app ratings completely may also be unhelpful. While current user ratings do not

Interdependent Privacy: Let Me Share Your Data 349

Fig. 2. Default interdependent privacy settings on Facebook

warn against privacy risks, they can be at least useful to filter off apps with low
user valuation (i.e., a low v in our model).

User Awareness and Default Settings. Rather than blaming the users for
not paying enough attention, we argue that a greater effort should be made to
raise the user awareness on privacy implications. Privacy interdependence with
regard to apps on Facebook is certainly an area urgently requiring more atten-
tion. We expect very few users to actually realize the interdependent privacy
control with Facebook apps. Permissions requesting friends’ personal informa-
tion are not extended permissions; they are also not prominently shown on the
(first screen of the) Enhanced Auth Dialog. Furthermore, the default settings
in Facebook do not protect users against the negative privacy externality. As
shown in Fig. 2, other than user interests, religious views and political activities,
all other personal information may be “brought to others as friends use their
apps”. There is certainly more that Facebook can do to protect the users. By
default, Facebook users also cannot review photo tagging by friends. However,
when configured, users are prompted to approve or disprove individual photo
tags. Such fine grain control is missing for apps; one cannot specify which apps
that friends are using could gain access to their personal data currently.

6 Related Work

Since privacy is both an inherent human need and a complex technological chal-
lenge in OSNs, there has been a flurry of research in this area. Almost all authors
agree on the fact that the privacy settings of OSNs are both complicated [10]

350 G. Biczók and P.H. Chia

and non-uniform [11]. This hinders the users’ ability to protect their online pri-
vacy [12], and gives rise to strange privacy patterns [13].

Chia et al. [5] studied the effectiveness of user-consent permission systems
across three different platforms – Facebook, Chrome and Android. They found an
absence of effective risk signals in the current app markets in addition to evidence
of attempts to entice or trick users into compromising their privacy through free
and mature apps [5]. Related to Facebook apps, King et al. [7] conducted a
survey on the privacy knowledge, behavior and concerns of Facebook app users.
They found that while almost all survey participants had heard of Facebook
apps, only 77% of them were aware that apps are both created by Facebook
and third parties. In addition, half of them were uncertain if Facebook reviews
the apps [7]. A number of other works (e.g., [14–17]) have commented on the
weaknesses of app permission systems in safeguarding user privacy and presented
ways for improvement. In particular, Wang et al. [17] presented some insights
regarding app permission dialogues, and gave an example where installing a
given calendar app would violate the user’s global privacy setting.

Observations that online privacy may be out of the control of the user him-
self have been made earlier. Researchers [18, 19] demonstrated the ability to
infer private user information using only friendship links, group memberships
and information shared by others publicly. Albeit similar, there is a distinctive
difference between our work and theirs. Rather than focusing on unintended dis-
closure of private information inferred by combining pieces of public information,
our work has looked into the case of explicit sharing of friends’ data (through
Facebook permissions).

Dealing with explicit collaborative information sharing, Hu et al. [20] pro-
posed a method to detect and resolve privacy conflicts. Here, we focus on the
interdependent nature of app privacy: we study how the Facebook permission
system affects not only the user installing an app but also his friends.

Finally, [21] is closest to our work in terms of modeling interdependence.
It shows the negative externality inflicted by websites using a weak password
criterion to websites with strong authentication mechanisms. In order to incor-
porate both positive and negative externalities, our formulation of user welfare
follows [22].

7 Summary and Future Work

In this paper we have taken a first step towards defining and understanding
interdependent privacy. We have demonstrated the existence of privacy interde-
pendence through a study on the Facebook application platform and its permis-
sion system. By constructing a simple Interdependent Privacy Game, we have
analyzed the externalities caused by privacy interdependence and their effect on
the users’ and vendor’s welfare in equilibrium. We have also discussed why these
inefficient equilibria can emerge, and hinted on how to design a better applica-
tion installation mechanism. We hope that our paper could also inspire further
theoretical and experimental research on interdependent privacy.

Interdependent Privacy: Let Me Share Your Data 351

Future Work. We have identified three potential directions of research.
Future modeling directions. Several game-theoretical extensions of IPG can be

explored in the future. These include: taking into consideration the amount and
sensitivity of personal data stored in the given OSN user account; incorporating
unfriending by using a coordination game with a secure outside option [23]; re-
peated games leading to iterated PD; an evolutionary game of privacy-conscious
and thrill-seeking users; and a game model based on the decisions of friends who
cooperate. A very interesting improvement would be to play the multiple person,
multiple app game on real social graphs.

Mechanism design based on economic theory and usability guidelines. The
standard economic literature offers two ways of dealing with negative external-
ities: taxing of externality-producing activities and compensation of the victim
by the entity inflicting the externality. While the theory is clear, it rarely makes
its way into practice due to cost-minimizing behavior, hard-to-identify exter-
nality sources or the ineffectiveness of monetary compensation [24]. A possibly
more effective way involves a slow cultural change which can be implemented
by educating the actors of the ecosystem about externalities. Putting it into
the context of OSNs, this means incentivizing the users to learn about privacy
(interdependence). While this may be useful in the long run, current Facebook
privacy settings may hinder its success [10].

Another alternative solution is redesigning the system mitigating negative
externalities. Regarding OSNs and Facebook in particular, this means providing
the user with an intuitive, yet economically inspired app install mechanism.
Such a mechanism may include giving explicit control to the user (similarly to
the already existing photo tagging) and/or introducing extended control over
apps with negative externality potential. Explicit control for the user could be
aided by an intuitive and informative interface, such as the one presented in [25].
Stronger control over apps with negative externality could be implemented, e.g.,
by requiring that such apps should be able to operate both without and with
“friend permissions”, defining two levels of operation. In addition, designing a
method for acquiring meaningful user valuations for apps could help the platform
vendor steer the system towards a favorable steady state. Note that all these
ideas are very challenging to implement, since they have to satisfy strict usability
requirements and be to the OSN providers’ liking.

Other online platforms with privacy interdependence. Other online systems
exhibiting privacy interdependence are abundant, e.g., various mobile applica-
tion platforms (Android, iOS, Windows Phone), blogs, forums, webshops and
even public cloud services. Collecting measurement data on such systems and
modeling their interdependent privacy aspects are important future work.

References

1. The 3 Facebook permissions you should never agree too,
http://facecrooks.com/Internet-Safety-Privacy/the-3-facebook-app-

permissions-you-should-never-agree-to.html (last accessed: October 2012)

http://facecrooks.com/Internet-Safety-Privacy/the-3-facebook-app-permissions-you-should-never-agree-to.html
http://facecrooks.com/Internet-Safety-Privacy/the-3-facebook-app-permissions-you-should-never-agree-to.html

352 G. Biczók and P.H. Chia

2. Clarke, R.: Introduction to dataveillance and information privacy,
and definitions of terms (1997) (revised in 1999, 2005, 2006),
http://www.rogerclarke.com/DV/Intro.html (last accessed: June 2012)

3. Mankiw, N.: Principles of Economics. Available Titles CourseMate Series, vol. 1.
South-Western Cengage Learning (2008)

4. Facebook Help Center – App Basics,
https://www.facebook.com/help/178140838985151/ (last accessed: October
2012)

5. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this app safe? A large scale study on
application permissions and risk signals. In: Proceedings of the 21st International
Conference on World Wide Web, WWW 2012. ACM, New York (2012)

6. Facebook Permissions Reference,
https://developers.facebook.com/docs/authentication/permissions (last
accessed: June 2012)

7. King, J., Lampinen, A., Smolen, A.: Privacy: Is there an app for that? In: Proc. of
the 7th Symposium on Usable Privacy and Security, SOUPS 2011, pp. 12:1–12:20.
ACM (2011)

8. David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York (2010)

9. Chia, P.H., Heiner, A.P., Asokan, N.: Use of ratings from personalized communities
for trustworthy application installation. In: Aura, T., Järvinen, K., Nyberg, K.
(eds.) NordSec 2010. LNCS, vol. 7127, pp. 71–88. Springer, Heidelberg (2012)

10. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated.
In: Proceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS
2012, pp. 9:1–9:15. ACM, New York (2012)

11. Bonneau, J., Preibusch, S.: The privacy jungle: On the market for data protection
in social networks. In: The Eighth Workshop on the Economics of Information
Security, WEIS 2009 (2009)

12. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook pri-
vacy settings: user expectations vs. reality. In: Proceedings of the 2011 ACM SIG-
COMM Conference on Internet Measurement Conference, IMC 2011, pp. 61–70.
ACM, New York (2011)

13. Dey, R., Jelveh, Z., Ross, K.: Facebook users have become much more private: A
large-scale study. In: 2012 IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), pp. 346–352 (March
2012)

14. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: Proc. of the 2nd USENIX Conf. on Web Application Development, We-
bApps 2011. USENIX Association (2011)

15. Barrera, D., van Oorschot, P.C., Somayaji, A.: A Methodology for Empirical Anal-
ysis of Permission-Based Security Models and its Application to Android Cate-
gories and Subject Descriptors. In: Proc. of the 17th ACM Conf. on Computer and
Communications Security, CCS 2010, pp. 73–84. ACM (2010)

16. Tam, J., Reeder, R.W., Schechter, S.: I’m Allowing What? Disclosing the author-
ity applications demand of users as a condition of installation. Technical report,
Microsoft Research, MSR-TR-2010-54 (2010)

17. Wang, N., Xu, H., Grossklags, J.: Third-party apps on facebook: privacy and the
illusion of control. In: Proceedings of the 5th ACM Symposium on Computer Hu-
man Interaction for Management of Information Technology, CHIMIT 2011, pp.
4:1–4:10. ACM, New York (2011)

http://www.rogerclarke.com/DV/Intro.html
https://www.facebook.com/help/178140838985151/
https://developers.facebook.com/docs/authentication/permissions

Interdependent Privacy: Let Me Share Your Data 353

18. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, Madrid, Spain, April
20-24, pp. 531–540. ACM (2009)

19. Jernigan, C., Mistree, B.F.: Gaydar: Facebook friendships expose sexual orienta-
tion. First Monday 14(10) (October 2009)

20. Hu, H., Ahn, G.J., Jorgensen, J.: Detecting and resolving privacy conflicts for
collaborative data sharing in online social networks. In: Proceedings of the 27th
Annual Computer Security Applications Conference, ACSAC 2011, pp. 103–112.
ACM, New York (2011)

21. Preibusch, S., Bonneau, J.: The password game: negative externalities from weak
password practices. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010.
LNCS, vol. 6442, pp. 192–207. Springer, Heidelberg (2010)

22. Johari, R., Kumar, S.: Congestible services and network effects. In: Proceedings of
the 11th ACM Conference on Electronic Commerce, EC 2010, pp. 93–94. ACM,
New York (2010)

23. Goeree, J.K., Holt, C.A.: Ten little treasures of game theory and ten intuitive
contradictions. Virginia Economics Online Papers 333, University of Virginia, De-
partment of Economics (February 2000)

24. Center for the Advancement of Steady State Economy – Negative Externalities Are
the Norm, http://steadystate.org/negative-externalities/ (last accessed:
October 2012)

25. Besmer, A., Lipford, H.R., Shehab, M., Cheek, G.: Social applications: exploring a
more secure framework. In: Proceedings of the 5th Symposium on Usable Privacy
and Security, SOUPS 2009, pp. 2:1–2:10. ACM, New York (2009)

http://steadystate.org/negative-externalities/

A Secure Submission System

for Online Whistleblowing Platforms

Volker Roth1, Benjamin Güldenring1, Eleanor Rieffel2,
Sven Dietrich3, and Lars Ries1

1 Freie Universität Berlin
2 FX Palo Alto Laboratory

3 Stevens Institute of Technology

Abstract. We motivate and introduce our design and development of a
secure submission front-end for online whistleblowing platforms. Our sys-
tem is designed to provide a level of anonymity in the face of adversaries
who can perform end-to-end traffic analysis.

Keywords: Whistleblowing, traffic analysis, homomorphic encryption.

1 Introduction

Corporate or official corruption and malfeasance can be difficult to uncover
without information provided by insiders, so-called whistleblowers. Even though
many countries have enacted, or intend to enact, laws meant to make it safe for
whistleblowers to disclose misconduct [2,12], whistleblowers fear discrimination
and retaliatory action regardless, and sometimes justifiably so [4,10].

It is therefore unsurprising that whistleblowers often prefer to blow the whistle
anonymously through other channels than those mandated by whistleblowing
legislature. This gave rise to whistleblowing websites such asWikileaks. However,
the proliferation of surveillance technology and the retention of Internet protocol
data records [3] has a chilling effect on potential whistleblowers. The mere act
of connecting to a pertinent Website may suffice to raise suspicion [9], leading
to cautionary advice for potential whistleblowers.

The current best practice for online submissions is to use an SSL connection
over an anonymizing network such as Tor [7]. This hides the end points of the con-
nection and it protects againstmalicious exit nodes and Internet Service Providers
(ISPs) who may otherwise eavesdrop on or tamper with the connection. However,
this does not protect against an adversary who can see most of the traffic in a
network [5,8], such as national intelligence agencies with a global reach and view.

In this paper, we suggest a submission system for online whistleblowing plat-
forms that we call AdLeaks. The objective of AdLeaks is to make whistleblower
submissions unobservable even if the adversary sees the entire network traffic. A
crucial aspect of the AdLeaks design is that it eliminates any signal of intent that
could be interpreted as the desire to contact an online whistleblowing platform.
AdLeaks is essentially an online advertising network, except that ads carry addi-
tional code that encrypts a zero probabilistically with the AdLeaks public key and

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 354–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Secure Submission System for Online Whistleblowing Platforms 355

sends the ciphertext back to AdLeaks. A whistleblower’s browser substitutes the
ciphertext with encrypted parts of a disclosure. The protocol ensures that an ad-
versary who can eavesdrop on the network communication cannot distinguish be-
tween the transmissions of regular browsers and those of whistleblowers’ browsers.
Ads are digitally signed so that a whistleblower’s browser can tell them apart from
maliciously injected code. Since ads are ubiquitous and there is no opt-in, whistle-
blowers never have to navigate to a particular site to communicate with AdLeaks
and they remain unobservable. Nodes in the AdLeaks network reduce the resulting
traffic by means of an aggregation process. We designed the aggregation scheme
so that a small number of trusted nodes with access to the decryption keys can
recover whistleblowers’ submissions with high probability from the aggregated
traffic. Since neither transmissions nor the network structure of AdLeaks bear
information on who a whistleblower is, the AdLeaks submission system is immune
to passive adversaries who have a complete view of the network.

In what follows, we detail our threat model and our assumptions, we give an
overview over the design of AdLeaks, we report on the current state of its imple-
mentation, we summarize the outcome of our scalability analysis, and we explain
how AdLeaks uses cryptographic algorithms to achieve its security objectives.
We give a more detailed report in [14].

2 Assumptions and Threats in Our Scope

The primary security objective of AdLeaks is to conceal the presence of whistle-
blowers, and to eliminate network traces that may make one suspect more likely
than another in a search for a whistleblower. We assume that whistleblowers
use AdLeaks only on private machines to which employers have no access. In
fact, sending information from work computers even using work-related e-mail
accounts is a mistake whistleblowers make frequently. We hope that the software
distribution channels we discuss in Section 3.3 will help reminding whistleblowers
to not make that mistake.

AdLeaks addresses the threat of an adversary who has a global view of the
network and the capacity to store or obtain Internet protocol data records for
most communications. The adversary may even require anonymity services to re-
tain connection detail records for some time and to provide them on request. The
adversary may additionally store selected Internet traffic and he may attempt
to mark or modify communicated data. However, we assume that the adversary
has no control over users’ end hosts, and he does not block Internet traffic or
seizes computer equipment without a court order. We assume that the court does
not per se consider organizations that relay secrets between whistleblowers and
journalists as criminal. The objective of the adversary is to uncover the identities
of whistleblowers. The threat model we portrayed is an extension of [3] and it is
likely already a reality in many modern states, or it is about to become a real-
ity. For reasons we explain in [14] we do not consider additional threats that we
would doubtless encounter, for example, in technologically advanced totalitarian
countries.

356 V. Roth et al.

3 System Architecture

AdLeaks consists of two major components. The first component is an online ad-
vertising network comparable to existing ones. The network has advertising part-
ners (the publishers) who include links or scripts in their web pages which request
ads from the AdLeaks network and display them. Publishers may receive com-
pensation in accordance with common advertising models, for example, per mille
impressions, per click or per lead generated. Advertisers run campaigns through
the AdLeaks network. AdLeaks may additionally run campaigns through other
ad networks to extend its reach, for example, funded by donations or profits from
its own operations. The ecosystem of partners and supporters may include large
newspapers, bloggers, human rights organizations and their affiliates. For exam-
ple, Wikileaks has partnered with organizations such as Der Spiegel, El Páıs and
the New York Times, and OpenLeaks had hinted at support by Greenpeace and
other organizations. The key ingredient of an AdLeaks ad is not its visual dis-
play but its active JavaScript content. Supporters who would forfeit significant
revenue when allocating advertising space to AdLeaks ads have a choice to only
embed the JavaScript portion. The JavaScript is digitally signed by AdLeaks
and contains public encryption keys.

The second major component of AdLeaks is its submission infrastructure.
This infrastructure consists of three tiers of servers. We refer to these tiers as
guards, aggregators and decryptors. When a browser loads an AdLeaks ad, the
embedded JavaScript encrypts a zero probabilistically with the embedded public
key and submits the ciphertext to a guard. The guard strips unnecessary encod-
ing and protocol meta-data from the request and forwards the ciphertext to an
aggregator. An aggregator aggregates the ciphertexts it receives per second and
transmits them to the decryptor. What makes this setting challenging is that
we want to limit the bandwidth of the decryptor to a household Internet con-
nection so that we can keep a close eye on the all-important machine with the
decryption keys. The aggregation leverages the homomorphic properties of the
Damg̊ard-Jurik (DJ) encryption scheme [6], which means that the product of
the ciphertexts is an encryption of the sum of the plaintexts. We chose the DJ
scheme because it has a favorable plaintext to ciphertext ratio.

The decryptor decrypts the downloaded ciphertexts and, if it finds data in
them, reassembles the data into files. The files come from whistleblowers. In
order to submit a file, a whistleblower must first obtain an installer that is digi-
tally signed and distributed by AdLeaks. This is already a sensitive process that
signals intent. We defer the discussion of safe distribution channels for the in-
staller to section 3.3. Installing the obtained software likewise signals the intent
to disclose a secret, and therefore it is crucial that the whistleblower verifies
the signature before running the installer, and assures himself that the signer is
indeed AdLeaks. Otherwise, he is vulnerable to Trojan Horse software designed
to implicate whistleblowers. When run, the installer produces an instrumented
browser and an encryption tool. The whistleblower prepares a file for submis-
sion by running the encryption tool on it. The tool’s output is a sequence of

ciphertexts. Henceforth, whenever an instrumented browser runs an ad signed

A Secure Submission System for Online Whistleblowing Platforms 357

by AdLeaks, it replaces the script’s ciphertext with one of the
 ciphertexts it
has not already used as a replacement.

In order to distinguish ciphertexts that are encryptions of zeros from cipher-
texts that are encryptions of data we refer to the former as white and to the
latter as gray. If the aggregator aggregates a set of white ciphertexts then the
outcome is another white one. If exactly one gray ciphertext is aggregated with
only white ones then the outcome is gray as well. If we decrypt the outcome
then we either recover the data or we determine that there was no data to begin
with. If two or more gray ciphertexts are aggregated then we cannot recover the
original data from the decryption. We call this event a collision and we refer
to such an outcome as a black one. Obviously, we must expect and cope with
collisions in our system. In what follows, we elaborate on details of the design
that are necessary to turn the general idea into a feasible and scalable system.

3.1 Disclosure Preparation

In order to handle collisions, the encryption tool breaks a file into blocks of a
fixed equal size and encodes them with a loss tolerant Fountain Code. Fountain
codes encode n packets into an infinite sequence of output packets of the same
size such that the original packets can be recovered from any n′ of them where
n′ is only slightly larger than n. For example, a random linear Fountain Code
decodes the original packets with probability 1 − δ from about n + log2(1/δ)
output packets [11]. Let n′′ be somewhat larger than n′ and let m1, . . . ,mn′′

be the Fountain encoding of the file. The tool then generates a random file
identification number k and computes: ci = Encccaκ1

(EncDataκ2(mi, k||i||n)) for
1 ≤ i ≤ n′′ where κ1 is an aggregator key and κ2 is the actual submission key.
The purpose of the dual encryption will become clear in Section 4. We assume
that the outer encryption is a fast hybrid IND-CCA secure cipher. We defer the
specification of the inner encryption scheme to Section 6. It assures that, when
the decryptor receives the ciphertexts, it can verify the integrity of individual
chunks and of the message as a whole and he can associate the chunks that
belong to the same submission with all but negligible probability (in |k|).

3.2 Decryption

It is substantially cheaper to multiply two DJ ciphertexts in the ciphertext group
than it is to decrypt one. Furthermore, the product of ciphertexts decrypts to the
sum of the plaintexts in the plaintext group. Recollect that we expect to receive
a large number of white ciphertexts, that is, encryptions of zeroes. This leads to
the following optimization: we form a full binary tree of fixed height, initialize its
leaves with received ciphertexts c1, . . . , cn and initialize each inner node with the
product of its children. Then, we begin to decrypt at the root. If the plaintext
is zero then we are done with this tree, because all nodes in the tree are zeroes.
Otherwise, the decryption yields γ = α + β �= 0 where α, β are the plaintexts
of the left and right child, respectively. We decrypt the left child, which yields
α, and calculate the plaintext of the right child as β = γ − α (without explicit

358 V. Roth et al.

decryption). If α or β are zeroes then we ignore the corresponding subtree.
Otherwise, we recurse into the subtrees that have non-zero roots. If a node is
a leaf then we decrypt and verify it. If we find it invalid then we ignore the
leaf. Otherwise we forward its plaintext to the file reassembly process. This
algorithm saves us 61% decryptions or more, depending on the system load [14].
Our analysis and measurements suggest that a 12-core Mac Pro can serve 51480
concurrent whistleblowers at any time with a 18 Mb/s uplink for the decryptor,
independent of the number of users whom AdLeaks serves ads.

3.3 Software Dissemination

We cannot simply offer the installer software for download because the adversary
would be able to observe that. Instead, we pursue a multifaceted approach to soft-
ware distribution. Our simplest and preferred approach involves the help of part-
ners in the print media business. At the time of writing, popular print media often
come with attached CDROMs or DVDs that are loaded with, for example, pro-
motional material, games, films or video documentaries. Our installer software
can be bundled with these media. Our second approach is to encode the installer
into a number of segments using a Fountain Code. In this approach, AdLeaks
ads randomly request a segment that the browser loads into the cache. A small
bootstrapper program extracts the segments from the browser cache and decodes
the installer from it when enough of them have been obtained. Since extraction
happens outside the browser it cannot be observed from within the browser. The
bootstrapper can be distributed in the same fashion. This reduces the distribu-
tion problem to extracting a specific small file from the cache, for example, by
searching for a file with a specific signature or name in the cache directory. This
task can probably be automated for most platforms with a few lines of script code.
The code can be published periodically by trusted media partners in print or ver-
batim in webpages or it could even be printed on T-Shirts. Our third approach is
to enlist partners who bundle the bootstrapper with distributions of popular soft-
ware packages so that many users obtain it along with their regular software.With
our multifaceted approach we hope to make our client software available to most
potential whistleblowers in a completely innocuous and unobservable fashion.

4 Security Properties

Eavesdropping and Traffic Analysis AdLeaks funnels all incoming transmissions
to the decryptor, and transmissions occur without any explicit user interaction.
Hence, the posterior probability that anyone is a whistleblower, given his trans-
mission is observed anywhere in the AdLeaks system, equals his prior probability.
From that perspective, AdLeaks is immune against adversaries who have a com-
plete view of the network. Furthermore, AdLeaks’ deployment model is suitable
to leapfrog the long-drawn-out deployment phase of anonymity systems that rely
on explicit adoption. For example, if Wikipedia deployed an AdLeaks script then
AdLeaks would reach 10% of the Internet user population overnight, based on
traffic statistics by Alexa [1].

A Secure Submission System for Online Whistleblowing Platforms 359

Outer Encryption and Dishonest Aggregators. Assume that AdLeaks did not use
outer encryption. Then adversaries might employ the following active strategy to
gain information on who is sending data to AdLeaks. The adversary samples ci-
phertexts of suspects from the network and aggregates the ciphertexts for each
suspect. He prepares a genuine-looking disclosure that is enticing enough so that
the AdLeaks editors will want to publish it with high priority. We call this disclo-
sure the bait.The adversary then aggregates suspects’ ciphertexts to his disclosure
and submits it. If AdLeaks does not publish the bait within a reasonable time in-
terval then the adversary concludes that the suspect is a whistleblower. The rea-
soning is as follows. If the suspect ciphertexts were zeroes then the bait is received
and likely published. Since the bait was not published, the suspect ciphertexts car-
ried data which invalidated the bait ciphertexts. This idea can be generalized to an
adaptive and equally effective non-adaptive attack that identifies a single whistle-
blower in a group of W suspects at the expense of log2 W baits. For this reason,
AdLeaks employs an outer encryption which prevents this attack. However, if an
adversary takes over an aggregator then he is again able to launch this attack.
Therefore, aggregators should be checked regularly, remote attestation should be
employed to make sure that aggregators boot the correct code, and keys should be
rolled over regularly. Note that it may takemonths before a disclosure is published
and that a convincing bait has a price — the adversarymust leak a sufficiently at-
tractive secret in order to make sure it is published. From this, the adversary only
learns that a suspect has sent something but not what was sent.

5 Implementation

We developed fully-functional multi-threaded aggregation and decryption servers
with tree decryption support as well as a Fountain Code encoder and decoder.
Decryptors write recovered data to disk and the decoder recovers the original
file. We also developed a fake guard server which is capable of generating and
sending chunks according to a configurable ratio of white and gray ciphertexts.
All servers connect to each other through SSH tunnels via port forwarding. The
entire implementation consists of 101 C, header and CMake files with 7493 lines
of code overall. This includes our optimized DJ implementation [6], which is
based on a library by Andreas Steffen, a SHA-256 implementation by Olivier
Gay, and several benchmarking tools. Our ads implement the DJ scheme based
on the JSBN.js library and use Web Workers to isolate the code from the rest
of the browser. The entire ad currently measures less than 81 KB. The size can
be reduced further by eliminating unused library code and by compressing it.
The ad submits ciphertexts via XmlHttpRequests. We instrumented the Firefox
browser for our prototype and patched the source code in two locations. First, we
hook the compilation of Web Worker scripts and tag every script as an AdLeaks
script if it is labeled as one in lieu of carrying a valid signature. We placed
a second hook where Firefox implements the XmlHttpRequest. Whenever the
calling script is an AdLeaks script running within a Web Worker, we replace the
zero chunk in its request with a data chunk. Since Web Workers run concurrently
the cryptographic operations do not negatively affect the browsing experience.

360 V. Roth et al.

6 Ciphertext Aggregation Scheme

Our ciphertext aggregation scheme is based on the Damg̊ard-Jurik (DJ) scheme,
which IND-CPA secure and is also an isomorphism of

ψs : ZNs × Z∗
N ↔ Z∗

Ns+1 ψs(a; b) '→ (1 +N)a · bNs

modNs+1

where N is a suitable public key. The parameter s controls the ratio of plaintext
size and ciphertext size. We use two two DJ encryptions c, t to which we jointly
refer as a ciphertext. We refer to t separately as the tag. The motivation for this
arrangement is improved performance. We wish to encrypt long plaintexts and
the costs of cryptographic operations increase quickly for growing s. Therefore
we split the ciphertext into two components. We use a shorter component with
s = 1, which allows us to test quickly whether the ciphertext encrypts data or a
zero. The actual data is encrypted with a longer component with s > 1. The two
components are glued together using Pederson’s commitment scheme [13], which
is computationally binding and perfectly hiding. This requires two additions to
the public key, which are a generator g of the quadratic residues of Z∗

N and
some h = gx for a secret x. Instead of committing to a plaintext the sender
commits to the hash of the plaintext and some randomness. We use a collision
resistant hash function H for this purpose, which outputs bit strings of length
|N/16|. Furthermore, let R be a source of random bits. The details of the data
encryption and decryption algorithms are as follows:

EncData(m, r0) =
r1, r2 ← R
chk ← if m, r0 = 0 then 0
else H(m, r0)

c ← ψ(m;hchk · gr1))
t ← ψ(r0||r1; gr2)
return c, t

DecVrfy(c, t) =
(m; k), (r0||r1; ·) ← ψ−1(c), ψ−1(t)
chk ← if m, r0 = 0 then 0
else H(m, r0)

if hchk · gr1 = k then
return m, r0

return ⊥

We assume that |r0|, |r1|, |r2| are polynomial in the security parameter. Here, r0
corresponds to k||i||n as we introduced it in Section 3.1. We define EncZero =
EncData(0, 0). Aggregation is simply the multiplication of the respective ci-
phertext components. In order to avoid fields overflowing into adjacent ones we
assume that r0, r1, r

′
0, r

′
1 are left-padded with zeroes. The amount of padding

determines how many ciphertexts we can aggregate in this fashion before an ad-
ditive field overflows into an adjacent one and corrupts the ciphertext. If we use
B bits of padding then we can safely aggregate up to 2B ciphertexts. A length
of B = 40 is enough for our purposes.

7 Conclusions

AdLeaks leverages the ubiquity of online advertising to provide anonymity and
unobservability to whistleblowers making a disclosure online. The system intro-
duces a large amount of cover traffic in which to hide whistleblower submissions,

A Secure Submission System for Online Whistleblowing Platforms 361

and aggregation protocols that enable the system to manage the huge amount
of traffic involved, enabling a small number of trusted nodes with access to the
decryption keys to recover whistleblowers’ submissions with high probability. We
analyzed the performance characteristics of our system extensively, please refer
to [14] for details. Our research prototype demonstrates the feasibility of such a
system. We expect many aspects of the system can be improved and optimized,
providing ample opportunity for further research.

Acknowledgements. The first, second and last author are supported by an
endowment of Bundesdruckerei GmbH.

References

1. Alexa (April 2012), http://www.alexa.com
2. Banisar, D.: Whistleblowing — International Standards and Developments. Trans-

parency International (February 2009)
3. Berthold, S., Böhme, R., Köpsell, S.: Data retention and anonymity services. In:

Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) The Future of Iden-
tity. IFIP AICT, vol. 298, pp. 92–106. Springer, Heidelberg (2009)

4. E. R. Center: 2011 National Business Ethics Survey, 2345 Crystal Drive, Suite 201,
Arlington, VA 22202, USA (2012), http://www.ethics.org/nbes

5. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Traffic analysis against low-latency
anonymity networks using available bandwidth estimation. In: Gritzalis, D., Pre-
neel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 249–267.
Springer, Heidelberg (2010)

6. Damg̊ard, I., Jurik, M., Nielsen, J.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. International Journal of Information
Security 9, 371–385 (2010)

7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proc. USENIX Security Symposium, pp. 303–320 (2004)

8. Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you:
Why efficient traffic analysis countermeasures fail. In: IEEE Symposium on Secu-
rity and Privacy, pp. 332–346 (2012)

9. Gustin, S.: Columbia university reverses anti-WikiLeaks guidance (December
2010), http://www.wired.com/threatlevel/2010/12/
columbia-wikileaks-policy/

10. Lennane,K.J.: “Whisteblowing” a health issue. BritishMedical Journal 307, 667–670
(1993)

11. MacKay, D.: Fountain codes. IEE Proceedings 152(6) (December 2005)
12. Osterhaus, A., Fagan, C.: Alternative to Silence — Whistleblower Protection in 10

European Countries. Transparency International (2009)
13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

14. Roth, V., Güldenring, B., Rieffel, E., Dietrich, S., Ries, L.: A secure submission
system for online whistleblowing platforms (January 2013),
http://arxiv.org/abs/1301.6263

http://www.alexa.com
http://www.ethics.org/nbes
http://www.wired.com/threatlevel/2010/12/columbia-wikileaks-policy/
http://www.wired.com/threatlevel/2010/12/columbia-wikileaks-policy/
http://arxiv.org/abs/1301.6263

Securing Anonymous Communication Channels under
the Selective DoS Attack

Anupam Das and Nikita Borisov

University of Illinois at Urbana Champaign, USA
{das17,nikita}@illinois.edu

Abstract. Anonymous communication systems are subject to selective denial-
of-service (DoS) attacks. Selective DoS attacks lower anonymity as they force
paths to be rebuilt multiple times to ensure delivery, which increases the oppor-
tunity for more attack. We present a detection algorithm that filters out com-
promised communication channels for one of the most widely used anonymity
networks, Tor. Our detection algorithm uses two levels of probing to filter out
potentially compromised tunnels. We probabilistically analyze our detection al-
gorithm and show its robustness against selective DoS attacks through simulation.
We also analyze the overhead of our algorithm and show that we can achieve bet-
ter security guarantee than the conventional Tor path selection algorithm, while
adding only approximately 5% bandwidth overhead to the Tor network. Finally,
we validate our design with experiments using the live Tor network.

Keywords: Anonymity, Tor network, denial of service (DoS) attack.

1 Introduction

Anonymous communication was first introduced in 1981 with Chaum’s seminal paper
on “Untraceable electronic mail, return addresses, and digital pseudonyms” [14]. Since
then, many researchers have concentrated on building, analyzing and attacking anony-
mous communication systems such as Tor [18], I2P [4], Freenet [3]. In this paper we
concentrate on Tor [18], one of the most widely used low-latency anonymity networks,
which conceals users’ identities and activities from surveillance and traffic analysis. Tor
provides confidentiality and privacy to users of various types ranging from ordinary in-
dividuals to business personnel, journalists, government employees and even military
personnel [8]. Currently, Tor has over 3000 relays all around the world and it is used by
hundreds of thousands of people every day [7, 19, 21].

Users’ identities, however, can become exposed when multiple relays are compro-
mised. By default, Tor uses three relays and an attacker who can gain control of the
entry and exit relays is capable of compromising user identity using timing analysis
[20, 25]. Moreover, malicious nodes can perform a selective denial-of-service (DoS) at-
tack [12, 13] where malicious relays drop circuits if they cannot compromise them. This
increases the probability of such a path being built and as a result lowers anonymity.
The selective DoS attack is particularly useful for an attacker with moderate resources;
as one potential example, the Dutch ministry of Justice and Security proposed pass-
ing a law which would enable the law enforcement office to launch any form of attack

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 362–370, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Securing Anonymous Communication Channels under the Selective DoS Attack 363

(i.e., selective DoS could one form of attack) on any system in order to gather evidence
[1]. So some form of mechanism is needed to ensure secure path construction in the
presence of compromised/controlled relays.

Danner et al. [15] showed that it is possible to identify relays mounting selective DoS
using exhaustive probing. The intent is to periodically carry out these probes and black-
list the misbehaving relays; however, the total number of probes required is prohibitive–
3 times the size of the network at a minimum, and many more (typically retrying each
probe 10 times) to account for non-malicious failures. So, their approach seems practi-
cal for a centralized design, but we wanted to create a local mechanism to defend against
selective DoS. By using probabilistic inference, we can make do with orders of magni-
tude fewer probes and thus our approach is practical to be executed at each individual
client. We perform simulations and real world experiments to show the effectiveness of
our detection mechanism.

2 Background

2.1 Tor Network

Tor [18] is an anonymous communication network that allows users to make TCP con-
nections to Internet sites without revealing their identity to the destination or third-party
observers. We briefly explain the main components of Tor relevant to this work. To ini-
tiate an anonymous TCP connection, a Tor user constructs a circuit (also known as a
tunnel or path) comprised of several Tor relays. The relays form a forwarding chain that
sends traffic from the user to the destination, and vice versa. Circuits typically involve
three relays: the entry, middle, and exit. The traffic contents are protected by a layered
encryption scheme [24], where each relay peels off a layer while forwarding. As a re-
sult, any individual router cannot reconstruct the whole circuit path and link the source
to the destination. The relays in a circuit are chosen following specific constraints [17].
Each user selects a small, fixed number (currently 3) of entry relays that are used for
all circuits. These relays are called guard relays [23, 28]; their use is designed to de-
fend from the predecessor attack [29]. To choose the exit relay, the user picks from
among those relays that have an exit policy compatible with the desired destination.
After these constraints, the relays for each position are chosen randomly, weighted by
their bandwidth1.

Tor aims to provide low-latency traffic forwarding for its users. As a result, as traffic
is forwarded along a circuit, timing patterns remain discernible, and an attacker who
observes two different relays can use timing analysis to determine whether they are
participating in the same circuit [20, 25, 27, 30]. So, to link a Tor user to a destination,
it suffices to observe the entry and the exit relays of a circuit. Standard security analysis
of Tor [18, 27] shows that if t is the fraction of relays that are observed, an adversary
will be able to violate anonymity on t2 of all of the circuits. Note that, due to bandwidth-
weighted path selection in Tor, t is best thought of as the fraction of total Tor bandwidth

1 Guard and/or exit relays are underweighted when chosen as middle node to improve the overall
balancing of load, however, these details are not key to our discussion.

364 A. Das and N. Borisov

that belongs to relays under observation2. The security of Tor, therefore, relies on the
assumption that a typical adversary will not be able to observe a significant fraction of
Tor relays. The easiest way to observe relay traffic is to run your own relays as there is
no barrier to entry other than Internet connectivity and sufficient bandwidth.

2.2 Selective Denial of Service in Tor

An adversary who controls a Tor relay can perform a number of active attacks to in-
crease the odds of compromise [12, 13]. One approach, which is the focus of this work,
is selective denial of service [13]. A compromised relay that participates in a circuit
can easily check whether both the entry and exit relays are under observation. If this is
not the case, the relay can “break” the circuit by refusing to forward traffic. This will
cause the user to reformulate a new circuit for the connection, giving the adversary an-
other chance to compromise the circuit. A simple analysis shows that this increases the
overall fraction of compromised circuits to t2

t2+(1−t)3 > t2, because only circuits with

compromised entry and exit relays (t2) or circuits with no compromised relays ((1−t)3)
will be functional, and out of those t2 will be compromised. E.g., if t = 0.2, selective
DoS increases the fraction of compromised circuits by 81.25%. The use of guard nodes
changes the analysis somewhat; compromised guards can amplify the effect of selec-
tive DoS. Bauer et al. [11] showed that deploying a moderate number of inexpensive3

middle-only relays can boost the effect of selective DoS attack.

2.3 Threat Model

In our threat model we assume that a small fraction (typically 20%) of the Tor relays
are compromised and for each user g (where g ∈ {0, 1/3, 2/3, 1}) fraction of the guard
nodes are compromised. Compromised relays carry out selective DoS attack, however
they may choose to perform probabilistic dropping where a compromised relay termi-
nates a certain fraction of all circuits that it cannot compromise. Finally, we assume that
probes are indistinguishable from real user traffic4.

3 Detection Algorithm

Our algorithm is built on the fundamental assumption of the Tor security model that
a relatively small fraction of all relays are compromised. The algorithm works in two
phases and runs periodically. Table 1 summarizes the different parameters used for our
detection algorithm.

2 To be more precise, the correct fraction would be tg · te, where tg and te are the fractions of
the guard and exit bandwidth under observation, respectively. For simplicity of presentation,
we will assume tg = te = tm = t in the rest of the paper.

3 Middle-only nodes do not have to fulfill stronger commitments (e.g., minimum bandwidth,
minimum uptime, legal issues related to exit policies) that guard and exit nodes have to fulfill.

4 To mask probes from actual user traffic we propose downloading popular web pages listed by
Alexa [5]. More discussion is available in our technical report [16].

Securing Anonymous Communication Channels under the Selective DoS Attack 365

Table 1. Parameters Used

Setting Parameter Description
t Fraction of relays compromised

Environmental g Fraction of compromised guards per user
d Random drop rate by compromised nodes
N # of working Tor circuits created in 1st phase

Tunable K # of probes used per circuit in 2nd phase
θ Threshold for classifying circuit

3.1 First Phase

Under active use, Tor will switch to a new circuit every 10 minutes, meaning that we
need 6 non-compromised circuits every hour. So in the first phase of our detection
algorithm we iteratively generate a random Tor circuit and test its functionality by re-
trieving a random web file through the circuit. If it fails we discard the circuit and try a
new circuit. We stop when we have N (we can calculate the value of N using equation:

N =
⌈
6× gt+(1−g)(1−t)2

(1−g)(1−t)2

⌉
. Considering worst case scenario we can set the value of N

to 10) working circuits. If an adversary is carrying out selective DoS attack then after
the first phase we should have a set of circuits of form either CXC or HHH, where C
denotes a compromised relay, H denotes an honest one, and X is a relay of any type.

3.2 Second Phase

In the second phase, we examine each of the circuits passing the first phase (we will
call these circuits as potential circuits) as follows:

• We randomly pick K(1 ≤ K < N) other circuits (we will call them as candidate
circuits) out of the list of potential circuits.

• For each of the K candidate circuits, we change the exit relay of the potential
circuit being evaluated with the exit relay of the candidate circuit and choose a
random middle relay from the candidate set. We then test the functionality of the
new circuit by performing a web retrieval through it. If, out of these K probes,
θ or more succeed, we consider the evaluated circuit to be honest; otherwise, we
consider it to be compromised.

Note that under selective DoS, if we change the exit relay of a compromised circuit with
that of an honest circuit, we will get a circuit where the entry is compromised while the
exit is honest and hence the file retrieval should fail. On the other hand, if both the
evaluated and candidate circuits are honest or compromised, the probe will succeed.
We expect more success for an honest circuit, since most of the potential circuits are
honest; we use θ as a threshold for distinguishing between the two circuit types. At the
end of the second phase, we will have some number of potentially honest circuits. This
collection of circuits is then used for making real anonymous connections.

366 A. Das and N. Borisov

4 Security Analysis

4.1 False Error Rates

We first evaluate the false-negative (FN) and false-positive (FP) errors of our
algorithm under selective DoS strategy. False-negative (FN) error, i.e., the fraction of
compromised circuits that pass our detection algorithm, depends upon the number of
compromised (n(CXC)) and honest (n(HHH)) circuits that pass the first phase (we can
compute such probabilities using Binomial distributions). Now, a false-negative error
occurs when a compromised circuit is paired with at least θ other compromised candi-
date circuits in the second phase. So we can use hypergeometric distribution to calculate
Pr(FN) (similarly we can compute Pr(FP)). Detailed derivation of these false errors
can be found in our technical report [16]. Transient network failure can directly influ-
ence the success rate of our probing, so it can affect both FN and FP errors. We discuss
the impact of such failures in our technical report [16] as well.

4.2 Tuning Parameters

Security vs Overhead: Our detection algorithm has two tunable parameters (K, θ)
(see Table 1 for description). For tuning purpose, we introduce two evaluation metrics:
security (ψ) and overhead (η). We then tune K and θ in terms of these evaluation
metrics. We define security as the probability of not choosing a compromised circuit for
actual usage and overhead as the expected number of probes required for each usable
circuit (by usable circuits we refer to circuits that are used for actual client traffic). We
define ψ and η using the following functions (both of these metrics are approximations):

ψ = 1− gt× Pr(FN)

gt× Pr(FN) + (1− g)(1− t)2 × (1− Pr(FP))
(1)

η =
1 +
[
gt+ (1 − g)(1− t)2

]
×K

gt× Pr(FN) + (1− g)(1− t)2 × (1− Pr(FP))
(2)

Detailed derivations of these metrics can be found in our technical report [16]. We can
then look at the distribution of ψ vs η for different values of (K, θ) and choose a (K, θ)
pair that achieves satisfactory security guarantee at the cost of reasonable overhead.

5 Experimental Evaluation

5.1 Simulation Results

We implemented a simulator in C++ that emulates the basic functionality of Tor circuit
construction and selective DoS attacks. We collected real Tor node information from
the Tor network status page [10] and randomly tagged 20% (t = 0.2) of the bandwidth
to be controlled by a compromised entity. To analyze the robustness and effectiveness
of our detection algorithm we vary g (0 ≤ g ≤ 1) and d (0 ≤ d ≤ 1) in our simulations.
Here, 100% drop rate refers to selective DoS and 0% drop means no dropping at all.
Based on empirical results from our technical report [16], we set K = 3 and θ = 2 in all
the simulations. All simulation results are averaged over 100 runs with 95% confidence
interval.

Securing Anonymous Communication Channels under the Selective DoS Attack 367

Robustness: First, we will look at the robustness of our detection algorithm in filtering
out compromised circuits. For this purpose we evaluate the probability of selecting
compromised circuits, Pr(CXC)5, against different drop rates, d.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
(C

X
C

)

Drop rate (d)

our case, g=0
our case, g=0.33
our case, g=0.67
our case, g=1
normal case, g=0
normal case, g=0.33
normal case, g=0.67
normal case, g=1

Fig. 1. Probability of selecting compromised cir-
cuits (CXC) for different drop rates d. In general
Pr(CXC) decreases as d rises compared to the
conventional Tor network.

From Figure 1, we see that as drop
rate d increases, the probability of se-
lecting compromised circuits for our
approach lowers compared to the conven-
tional Tor circuit construction policy (in-
dicated by the dashed lines). The main
reason behind the decrease of Pr(CXC)
lies on the fact that as compromised
nodes start to perform aggressive drop-
ping, the pool of available circuits after
the first phase quickly converges to the
set {CXC,HHH}. This in turn lowers a
compromised circuit’s chance of selecting
other compromised circuits as candidates
in the second phase because honest cir-
cuits dominate over compromised circuits
for t = 0.2.

5.2 Real-World Experiment

We carried out real-world experiments by introducing our own relays into the Tor net-
work, all of which acted as compromised nodes. For this purpose we used 11 Emulab
[2] machines, 10 of which were configured to act as Tor relays with a minimum band-
width capacity of 20Kbps. Note that all our nodes belonged to the same /16 subnet,
meaning that no user would (by default) choose two of our nodes in the same circuit.
Moreover, to prevent other users from using our nodes as exit nodes, we configured our
relays with a fixed exit policy (allowing connection to only specific destinations). All
these measures were taken to respect the privacy of Tor users. To implement selective
DoS, we take an approach similar to the one described by Bauer et al. [12]. We mod-
ified Tor source code version-tor-0.2.2.35 and implemented our detection algorithm in
the client side in Python (we used the Python version of Tor-Controller [6]).

Robustness: We first query the Tor directory server to retrieve a list of all available
Tor relays and then consider only those routers which are flagged as running, stable
and valid, because we want our routers to be alive and running during our experiments.
We selected 40 Tor nodes (3 guards, 19 exits and 18 relays) at random with probability
proportional to their bandwidth and added our own 10 nodes to this set to get a total of
50 nodes. Then we ran our experiments on this small set of Tor nodes where nodes were
selected randomly. This choice results in about 20% of the nodes being compromised.
To emulate user traffic, we retrieve random web files 100–300 KB in size. We set K =
3, θ = 2 for our experiments. Table 2 summarizes our findings.

5 Pr(CXC) = n(CXC)/ [n(HHH) + n(CXC) + (1− d)n(Others)].

368 A. Das and N. Borisov

Overhead: Let us now estimate what kind of bandwidth overhead our mechanism
would inflict on the real Tor network. Now on average a single usable circuit requires
approximately 4 probes (one in the 1st phase and 3 in the 2nd phase). And since we
are proposing to use popular web sites as probing destinations we can approximate the
average probe size to be 300KB [26]. So the total traffic used by a single user every
one hour is (6 × 3 × 300× 4)KB≈ 21MB. Now, Tor’s bandwidth capacity was found
to be 3.21GB/s [7] during the month of September 2012. If we allow 5% of the band-
width to be used for our detection algorithm then we can support approximately 28,000
simultaneous users per hour (i.e.,≈ 672, 000 user attempts daily which is comparable
to 619, 696, the peak number of daily Tor users for October 2012 [7]).

Table 2. Results from the Tor Network

g FN FP ψ
Security in
Current Tor

0 0.0 0.0664 1.0 1.0
1/3 0.0 0.178 1.0 0.867
2/3 0.133 0.283 0.843 0.612
1 1.0 0.0 0.0 0.0

From Table 2 we see that as g increases the secu-
rity assurance provided by both our approach and
the conventional Tor network goes down. How-
ever, for g = 1/3, 2/3 our approach shows signif-
icant improvement in filtering out compromised
circuits.

6 Related Work

Borisov et al. [13] first showed that carrying out selective DoS could benefit an adver-
sary to increase its chance of compromising anonymity for both high and low-latency
anonymous communication systems. In fact, it was pointed out that with 20% com-
promised nodes in Salsa [22], the selective DoS attack results in 19.14% compromised
tunnels compared to the conventional security analysis of 6.82% compromised tunnels.

Later on Danner et al. [15] proposed a detection algorithm for selective DoS attack
on Tor. Their algorithm basically probes each individual Tor node in the network and
they prove that this requires O(n) probes to detect all compromised nodes in a Tor
network comprising of n participants. For circuits of length 3, their algorithm requires
3n probes; however to handle transient network failures they propose to repeat each
probe 10 times. Clearly, their approach seems only practical for a centralized design,
but ours is a local mechanism to defend against selective DoS.

Recently, Mike Perry proposed a client-side accounting mechanism that tracks the
circuit failure rate of each guard node used by a client [9]. The goal is to avoid ma-
licious guards that deliberately fail circuits extending to non-colluding exit nodes. We
take a more proactive approach to finding malicious circuits through probing instead of
tracking actual circuit usage.

7 Conclusion

Anonymous communication systems like Tor are vulnerable to selective DoS attacks
that considerably lower anonymity. Such attacks however, can be detected through

Securing Anonymous Communication Channels under the Selective DoS Attack 369

probing. Our detection algorithm probes communication channels to filter out poten-
tially compromised ones with high probability. We also show that adaptive adversaries
who choose to deny service probabilistically do not benefit from adopting such a strat-
egy. Our experimental results demonstrate that our detection algorithm can effectively
defend users against selective DoS attack.

References

[1] Dutch government proposes cyberattacks against... everyone,
https://www.eff.org/deeplinks/2012/10/
dutch-government-proposes-cyberattacks-against-everyone

[2] Emulab, https://www.emulab.net
[3] Freenet, https://freenetproject.org/
[4] I2P, http://www.i2p2.de/
[5] Top sites on the web, http://www.alexa.com/topsites
[6] Tor controller,

https://svn.torproject.org/svn/blossom/trunk/TorCtl.py
[7] Tor metrics portal, https://metrics.torproject.org/
[8] Tor project, https://www.torproject.org/
[9] Tor proposal-209, https://gitweb.torproject.org/user/

mikeperry/torspec.git/blob/path-bias-tuning:/
proposals/209-path-bias-tuning.txt

[10] Torstatus, http://torstatus.blutmagie.de/index.php
[11] Bauer, K., Juen, J., Borisov, N., Grunwald, D., Sicker, D., Mccoy, D.: On the optimal path

length for Tor. In: 3rd Workshop on Hot Topics in Privacy Enhancing Technologies (2010)
[12] Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing attacks

against Tor. In: ACM Workshop on Privacy in Electronic Society, pp. 11–20 (2007)
[13] Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of security? In:

14th ACM Conference on Computer and Communications Security, pp. 92–102 (2007)
[14] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM 24, 84–90 (1981)
[15] Danner, N., Krizanc, D., Liberatore, M.: Detecting denial of service attacks in Tor. In: Din-

gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 273–284. Springer, Heidelberg
(2009)

[16] Das, A., Borisov, N.: Securing Tor tunnels under the selective-DoS attack,
http://arxiv.org/abs/1107.3863

[17] Dingledine, R., Mathewson, N.: Tor path specification,
https://gitweb.torproject.org/torspec.git/
blob/HEAD:/path-spec.txt

[18] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In:
13th USENIX Security Symposium, pp. 303–320 (2004)

[19] Hahn, S., Loesing, K.: Privacy-preserving ways to estimate the number of Tor users (2010),
https://metrics.torproject.org/papers/
countingusers-2010-11-30.pdf

[20] Levine, B.N., Reiter, M.K., Wang, C.-X., Wright, M.: Timing attacks in low-latency mix
systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265. Springer, Heidelberg
(2004)

[21] Loesing, K.: Measuring the Tor network: Evaluation of client requests to the
directories. Tech. rep. (2009), https://metrics.torproject.org/papers/
directory-requests-2009-06-25.pdf

https://www.eff.org/deeplinks/2012/10/dutch-government-proposes-cyberattacks-against-everyone
https://www.eff.org/deeplinks/2012/10/dutch-government-proposes-cyberattacks-against-everyone
https://www.emulab.net
https://freenetproject.org/
http://www.i2p2.de/
http://www.alexa.com/topsites
https://svn.torproject.org/svn/blossom/trunk/TorCtl.py
https://metrics.torproject.org/
https://www.torproject.org/
https://gitweb.torproject.org/user/mikeperry/torspec.git/blob/path-bias-tuning:/proposals/209-path-bias-tuning.txt
https://gitweb.torproject.org/user/mikeperry/torspec.git/blob/path-bias-tuning:/proposals/209-path-bias-tuning.txt
https://gitweb.torproject.org/user/mikeperry/torspec.git/blob/path-bias-tuning:/proposals/209-path-bias-tuning.txt
http://torstatus.blutmagie.de/index.php
http://arxiv.org/abs/1107.3863
https://gitweb.torproject.org/torspec.git/blob/HEAD:/path-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/path-spec.txt
https://metrics.torproject.org/papers/countingusers-2010-11-30.pdf
https://metrics.torproject.org/papers/countingusers-2010-11-30.pdf
https://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf
https://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf

370 A. Das and N. Borisov

[22] Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity. In: 13th
ACM Conference on Computer and Communications Security, pp. 17–26 (2006)

[23] Overlier, L., Syverson, P.: Locating hidden servers. In: IEEE Symposium on Security and
Privacy, pp. 100–114 (2006)

[24] Reed, M., Syverson, P., Goldschlag, D.: Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications 16, 482–494 (1998)

[25] Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks and de-
fenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 18–33. Springer, Heidelberg (2006)

[26] Sreeram Ramachandran, G.: Web metrics: Size and number of resources,
https://developers.google.com/speed/articles/web-metrics

[27] Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an analysis of onion routing
security. In: Federrath, H. (ed.) Anonymity 2000. LNCS, vol. 2009, pp. 96–114. Springer,
Heidelberg (2001)

[28] Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending anonymous communications
against passive logging attacks. In: IEEE Symposium on Security and Privacy, pp. 28–41
(2003)

[29] Wright, M.K., Adler, M., Levine, B.N., Shields, C.: An analysis of the degradation of anony-
mous protocols. In: Network and Distributed System Security Symposium (2002)

[30] Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks and counter-
measures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424,
pp. 207–225. Springer, Heidelberg (2005)

https://developers.google.com/speed/articles/web-metrics

PIRMAP: Efficient Private Information Retrieval
for MapReduce

Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan

College of Computer and Information Science
Northeastern University, Boston MA-02115, USA
{travism,blass,ahchan}@ccs.neu.edu

Abstract. Private Information Retrieval (PIR) allows a user to retrieve bits from
a database while hiding the user’s access pattern. However, the practicality of PIR
in a real-world cloud computing setting has recently been questioned. In such a
setting, PIR’s enormous computation and communication overhead is expected
to outweigh the cost saving advantages of cloud computing. In this paper, we
first examine existing PIR protocols, analyzing their efficiency and practicality in
realistic cloud settings. We identify shortcomings and, subsequently, present an
efficient protocol (PIRMAP) that is particularly suited to MapReduce, a widely
used cloud computing paradigm. PIRMAP focuses especially on the retrieval
of large files from the cloud, where it achieves good communication complex-
ity with query times significantly faster than previous schemes. To achieve this,
PIRMAP enhance related work to allow for optimal parallel computation during
the “Map” phase of MapReduce, and homomorphic aggregation in the “Reduce”
phase. To improve computational cost, we also employ a new, faster “somewhat
homomorphic” encryption, making our scheme practical for databases of use-
ful size while still keeping communication costs low. PIRMAP has been imple-
mented and tested in Amazon’s public cloud with database sizes of up to 1 TByte.
Our evaluation shows that non-trivial PIR such as PIRMAP can be more than one
order of magnitude cheaper and faster than trivial PIR in the real-world.

Keywords: Privacy, MapReduce, cloud computing, Private Information
Retrieval.

1 Introduction

Cloud computing has recently been identified as an important business technology [10],
as it offers greater flexibility and reduced costs to companies outsourcing data and com-
putation. The cost advantage of cloud computing comes from the fact that cloud users
do not need to maintain their own, expensive data center, but instead can pay a cloud
provider for hosting. However, despite the hype, hesitations remain among potential
cloud users. Lack of security and privacy guarantees has been identified as a major
adoption obstacle for both large enterprise [19] and governmental organizations [14].

Privacy issues stem from the fact that, when a user hands over his information to the
cloud, control of that data is relinquished to the cloud. Public clouds are threatened by
hackers due to the much larger target they present. Insiders such as data center admin-
istrative staff can easily access private data that has been outsourced. Such attacks are

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 371–385, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

372 T. Mayberry, E.-O. Blass, and A.H. Chan

realistic and have already been reported [11, 21]. This shows that users need to take
precautions to ensure the privacy and integrity of their cloud data.

While encryption of data at rest helps to protect data confidentiality, it is often not
sufficient: the subsequent data access patterns can leak information about patients. For
example, if the outsourced data in question contains encrypted patient records, the cloud
provider might learn that a patient has been diagnosed with cancer when it sees that the
patient’s records have been retrieved by an oncologist. In general, it is hard to assess
which information may be leaked, what inferences an adversary may make, and what
risks the leakage may incur.

Private Information Retrieval (PIR) offers a solution to the information leakage prob-
lem by hiding access patterns [6, 12], independent of an encryption mechanism. In PIR,
a database stored at a server holds n strings each of size l bits, and a user can query for
one l bit string without leaking which string to the database. A trivial way to accomplish
this is to simply transmit the entire database to the user. However, this is communica-
tion inefficient, and research focuses on achieving lower communication bounds. In
contrast, computational cost of every PIR scheme is necessarily O(n · l), as the server
must “touch” every piece of the database if the server is to remain oblivious of the
requested piece.

In existing work, the server’s computation is comprised of expensive cryptographic
operations over the entire database. Because of the significant overhead this imposes,
it has recently been questioned whether PIR will ever become practical in a real-world
cloud computing setting, cf. Sion and Carbunar [18]. Typically, cloud providers such as
Amazon charge their customers for both data transfer and CPU hours [2]. Due to the
necessary condition that PIR protocols compute over the entire database for each query,
it has been argued that trivial PIR (retrieving the whole (l · n) bit database) is not only
faster, but also cheaper for the cloud customer compared to a PIR query that involves
lengthy computation [5, 16, 18].

Another open question is how to perform PIR in a real-world cloud computing en-
vironment. In contrast to a single machine server storing the data, one of the biggest
challenges in cloud computing is a design that scales easily to the large distributed
systems which are characteristic in cloud settings. In order to alleviate this difficulty,
major cloud providers (e.g., Amazon, Google, IBM, Microsoft) offer an interface to the
prominent MapReduce [8] API for distributed computing to their users. MapReduce
comprises not only parallelization (“Map”) of work, but an aggregation (“Reduce”) of
individual results to keep computational burden on the user side low.

This paper considers the single-server, computationally-private information retrieval
setting. This is appropriate, because, although a cloud provider may allow access to
many servers, they must all be considered a single “trust entity”: they are under the
control of the same organization. Trust-wise, the cloud as a single, large server with
many distributed CPUs. In the single-server setting, it is known that unconditionally
secure PIR cannot be more efficient than transferring the entire database [7], so we are
concerned instead with a computationally secure protocol (cPIR). Further use of the
term PIR will be in reference to computationally-secure PIR, unless otherwise noted.

We present PIRMAP, an efficient single-server cPIR protocol suited for MapReduce
clouds. PIRMAP especially targets retrieval of relatively large files, a more specific

PIRMAP: Efficient Private Information Retrieval for MapReduce 373

setting than considered by previous work. In a scenario with n files each of size l bits
and l (n, PIRMAP achieves communication complexity linear in l with low constants.
PIRMAP is designed for and leverages MapReduce parallelization and aggregation.
We have implemented PIRMAP in Hadoop MapReduce, and its performance will be
presented in Section 5.

Our contributions are:

1.) An analysis of existing work with respect to its practicality in a MapReduce cloud
setting.

2.) PIRMAP, an efficient, practical PIR scheme for MapReduce with optimal com-
munication complexity O(l) when retrieving an l bit file for l (n. Additionally,
PIRMAP has computational complexity as good or better than prominent related work
due to use of a more efficient homomorphic encryption. PIRMAP runs on top of stan-
dard MapReduce, not requiring changes to the underlying cloud infrastructure.

3.) An implementation of PIRMAP that is usable in real-world MapReduce clouds
today, e.g., Amazon. We evaluate PIRMAP, first, in our own (tiny) local cloud and, sec-
ond, with Amazon’s cloud. We verify its practicality by scaling up to 1 TByte of data in
Amazon’s cloud setting. Compared to the previously largest single database PIR exper-
iment with up to 28 GByte of data [16], this demonstrates the efficiency and practicality
of PIRMAP in the real-world. PIRMAP is more than one order of magnitude cheaper
and faster than trivial PIR, and – in our particular scenario – we can significantly out-
perform related work. PIRMAP’s source code is available for download [17].

2 Problem Statement

PIR: A PIR protocol is a series of interactions between a user and a server storing n
files that results in the user retrieving one file while the server does not learn which file.
More formally, the server cannot guess with probability greater than 1/n which file was
queried. Note that this probability does not increase over multiple queries. This effec-
tively hides the user’s access pattern as each query is computationally indistinguishable
from the others. The only information leaked is the number of files queried.

A CPIRn
l protocol (Query,Transfer,Recover) is a computationally-secure pri-

vate information retrieval protocol over a database of n elements, each of bit length l.
The Query function generates the query and sends it to the server. Transfer is run on
the server and involves transforming the received query into the results of the query
and sending it back to the client. Finally, Recover is run by the client to transform the
response from the server into the correct plaintext query result.

MapReduce: With the trend towards more computers and more cores rather than faster
individual processors, it is important that any practical PIR implementation be deploy-
able in a way that can take full advantage of parallel and cluster computing environ-
ments. Perhaps the most widely adopted architecture for scaling parallel computation
in public clouds today is Google’s MapReduce [8]. Its design allows for a set of com-
putations, or “job”, to be deployed across many nodes in a cloud cloud. Its biggest
advantage is that it scales transparently to the programmer. That is, once an implemen-
tation is written using MapReduce, it can run on any number of nodes in the data center,

374 T. Mayberry, E.-O. Blass, and A.H. Chan

from one up to hundreds or thousands, without changes in the code. This is managed
by splitting computation into two phases, each of which can be run in parallel on many
computing nodes.

The first phase is called the “Map” phase. MapReduce will automatically split the in-
put to the computation equally among available nodes in the cloud data center, and each
node will then run a function called map on their respective pieces (called InputSplits).
It is important to note that the splitting actually occurs when the data is uploaded into
the cloud (in our case when the patient record/files are uploaded) and not when the job
is run. This means that each “mapper” node will have local access to its InputSplit as
soon as computation has started and you avoid a lengthy copying and distributing pe-
riod. The map function runs a user defined computation on each InputSplit and outputs
a number of key-value pairs that go into the next phase.

The second phase, “Reduce”, takes as input all of the key-value pairs emitted by the
mappers and sends them “reducer” nodes in the data center. Specifically, each reducer
node receives a single key, along with the sequence of values output by the mappers
which share that key. The reducers then take each set and combine it in some way,
outputting a single value for each key.

Despite being widely used, MapReduce is a very specific computational model and
not all algorithms can be easily adapted to it. A practical PIR such as PIRMAP has to
take its specifics into account – as we will see below.

3 Related Work Analysis

Despite the large amount of theoretical research, there has not been much investigation
into practical PIR. Recently, Trostle and Parrish [20] experimented with the state of the
art and found that it took at least 8 minutes to retrieve a file of size only 3 MB, out of
a data set of 3 GB on commodity hardware. Additionally, existing schemes have sig-
nificant communication overhead for files of that size and larger. For example, Lipmaa
[13], enjoying the most efficient asymptotic communication complexity today, requires
30 MB of communication in the above scenario.

In examining related work, we make two nonstandard observations which apply to
our MapReduce cloud setting. First, since computation for PIR must necessarily be
O(n · l), computation will most likely be the bottleneck in any protocol. The time to
communicate queries and responses will be relatively small in our setting, compared to
the time it takes to calculate over the entire database. Therefore, it may be useful to trade
some extra communication for smaller computational burden. The second observation
relates to MapReduce itself. Since each mapper may run on a different node in the cloud,
communication and synchronization within the cloud are very expensive. To take full
advantage of the cloud, there should be few, if any, inter-dependencies between stages
of computation.

Overview. One of the first cPIR schemes to achieve sublinear communication is that of
Kushilevitz and Ostrovsky [12], using an additively homomorphic cipher E as follows:

1. The server arranges an n elements database as a
√
n×

√
n matrix

2. Query(x) – The user generates a vector v of length
√
n where vx = E(1), and

vi = E(0), ∀i �= x

PIRMAP: Efficient Private Information Retrieval for MapReduce 375

3. Transfer(v) – Vector v is sent to the server. The server multiplies v with the
database matrix and returns the result as vector v′

4. Recover(v′) – v′ now consists of
√
n encrypted elements, one of which is the

element the user is interested in. The user chooses this element and decrypts it,
discarding the rest.

The scheme is sound, because the user sends a vector v which “zeroes out” all the
rows in the matrix besides the row requested. The communication costs is O(l ·

√
n)

which is still quite high for large values of n. Kushilevitz and Ostrovsky [12] also
show that this protocol can be repeated recursively to achieve communication less than
O(nc) for any c > 0, but at the cost of worse constants and computational complexity.
This “square-root solution” computes only once over the database, but has impractically
large communication costs.

Lipmaa [13] reduces communication complexity to O(l · logn+ k · log2 n), where
k is a security parameter. This is accomplished by generalizing the Kushilevitz and
Ostrovsky [12] scheme into a family of protocols, parameterized by a dimension α.
The Kushilevitz and Ostrovsky [12] scheme can be seen as two-dimensional, because
the database elements are arranged in a

√
n×

√
n matrix. If α = log(n), the database

is viewed as a log(n) dimensional 2 × 2 × . . . × 2 matrix. In this manner, the user
may send a sequence of log(n) vectors, each only length 2 which “zero out” half of the
remaining database elements at each step. It is conceptually similar to specifying a path
in a binary tree, and when the leaf node is reached the only element that will remain
non-zero is the one corresponding to that node.

The down side of this scheme is that it requires computing over the entire database
twice (

∑logn
i=1

1
2i = 2). While not a significant problem asymptotically, as mentioned

before, cPIR schemes are usually bottlenecked by their computational cost. Increasing
this cost by 100% dramatically effects the efficiency of the scheme, especially given
the cloud setting where twice the computation corresponds to twice the monetary cost.
Another problem is that the computational complexity of Lipmaa [13] is O(n · l · k2),
because it requires modular exponentiations on ciphertexts of size k. This is a significant
overhead that we can avoid by using a more efficient homomorphism.

Although Lipmaa [13] requires only one round of communication with the user, it
is iterative in that it requires log(n) rounds of computation on the server, each round
depending on the output of the previous round and operating on a smaller set of data.
As we will see, a large part of the cost for MapReduce is in initializing the parallel
computation, so restarting MapReduce log(n) times adds a significant overhead.

More recently, Aguilar-Melamine and Gaborit [1] have proposed a scheme using
lattice-based homomorphic encryption (similar to NTRU) which has much better com-
putational complexity, both asymptotically and in practice. Their scheme also takes
advantage of the fact that modern GPUs can solve large parallel problems very quickly.
Aguilar-Melamine and Gaborit [1] are able to achieve fast query response times, but at
the cost of a large communication cost. Additionally, their protocol is tuned specifically
to the requirements of GPUs and would not scale well in a real-world distributed cloud
environment like MapReduce.

Using a different encryption scheme based on the Trapdoor Group Assumption, Tros-
tle and Parrish [20] propose a more traditional PIR scheme based on Kushilevitz and

376 T. Mayberry, E.-O. Blass, and A.H. Chan

Table 1. Communication and computational complexities of related work

Communication Computation
Kushilevitz and Ostrovsky [12] O(

√
n · l) O(l · n · k2)

Lipmaa [13] O(l · log(n)2) O(l · n · k2)

Aguilar-Melamine and Gaborit [1] O(l + n · k) O(l · n · log(k) · log(log(k)))
PIRMAP O(l + n · k) O(l · n · log(k) · log(log(k)))

Ostrovsky [12]. They also achieve much faster query response, but again, with large
communication costs.

Comparison of existing work. To understand how existing work compares and is suited
to the application targeted in this paper, we start by examining asymptotic computation
and communication complexities in Table 1. We can see that Lipmaa [13] has very
good communication complexity with relatively bad computational complexity, while
Aguilar-Melamine and Gaborit [1] have the opposite. While our protocol PIRMAP has
the same asymptotic complexities than Aguilar-Melamine and Gaborit [1], this does not
adequately describe the costs involved with PIR: we are primarily addressing a concrete,
practical setting where constants become very important.

Consequently, in Table 2, we present analytically calculated communication costs
for specific database and file sizes. Aguilar-Melamine and Gaborit [1] state that their
requests are of size 25kb · n and the responses are 6 · l. For databases with l > n ·
k, Lipmaa [13] requires transmitting log2(n) elements of size k in the request and
receiving a response of size log(n) · l. We chose to use k = 2048, as suggested by
Lipmaa [13].

In Table 2, we can see that even though Lipmaa [13] has good asymptotic commu-
nication, there is room for improvement in a concrete setting, especially for databases
composed of large files. Aguilar-Melamine and Gaborit [1], similarly to PIRMAP, is
designed specifically for these types of databases but it also has relatively high commu-
nication costs due to large constants.

Our approach. In conclusion, we would like to achieve, in real world settings, the
small communication cost of Lipmaa [13] with the fast query response times of Aguilar-
Melamine and Gaborit [1] and Trostle and Parrish [20]. Lipmaa notes that, when α = 1,
the PIR scheme is particularly efficient for databases where l > n · k. We choose this
case as a base for our new protocol PIRMAP, because it requires only one iteration
of the database during Transfer and has communication complexity of O(l + n · k).
When l > n · k, this is optimal, since the server response must always be of size l. In
short, PIRMAP can be thought of as a combination of this protocol with the fast en-
cryption scheme used by Trostle and Parrish [20]. This new “somewhat” homomorphic
encryption scheme requires only modular multiplications rather than exponentiations,
significantly improving the asymptotic and real world computational requirements.

PIRMAP: Efficient Private Information Retrieval for MapReduce 377

Table 2. Real communication costs of related work in MB for different database sizes

1 MB Files 5 MB Files 10 MB Files
1 GB 10 GB 100 GB 1 GB 10 GB 100 GB 1 GB 10 GB 100 GB

Lipmaa 10 13 17 38 55 71 66 100 133
Aguilar-Gaborit 29 240 2350 35 77 499 62 83 295

PIRMAP 3 6 38 11 12 18 22 22 26

4 PIRMAP

PIRMAP modifies the PIR protocol by Lipmaa [13], specifically addressing the short-
comings perceived in regards to retrieval of large files in a parallelization-aggregation
computation framework such as MapReduce. We start by giving an overview of PIRMAP
which can be used with any additively homomorphic encryption scheme.

Upload. In the following, we assume that the cloud user has already uploaded its files
into the cloud using the interface provided by the cloud provider.

Query. Our data set holds n files, each of l bits length. Additional parameter k specifies
the block size of a cipher. For ease of presentation, we consider the case where all
files are the same length, but PIRMAP can easily be extended to accommodate variable
length files using padding. PIRMAP is summarized as follows:

1. Query – If the user wishes to retrieve file 1 ≤ x ≤ n out of the n files, he creates
a vector v = (v1, . . . , vn), where vx = E(1) and vi = E(0)∀i �= x. Here, E is
any IND-CPA additively homomorphic encryption scheme. The user sends v to the
cloud.

2. Multiply – The cloud arranges files into a table T similar to Table 3. The cloud
divides each file i into l

k blocks {Bi,1, . . . , Bi, l
k
} and multiplies each block by vi,

i.e., B′
i,j = vi · Bi,j . Here, “·” denotes scalar multiplication.

3. Sum – The cloud adds column-wise to create one result vector r = (r1, . . . , r l
k
).

Each element ri of that vector is of size k, so the total bit length of r is l bits. Vector
r is an encryption of file x. Vector r is returned to the user who decrypts it.

Table 3. Cloud splits files into pieces

1 2 · · · l
k

file1 B1,1 B1,2 · · · B1, l
k

file2 B2,1 B2,2 · · · B2, l
k· · · · · ·

filen Bn,1 Bn,2 · · · Bn, l
k

The cloud performs the matrix-vector multiplication r = v · T . In practice, the cloud
does not need to create a table, but just needs to perform the block wise scalar multipli-
cations and additions.

378 T. Mayberry, E.-O. Blass, and A.H. Chan

The computation consists of multiplying each of the n · l
k blocks by a value in the

request vector and then performing (n − 1) · l
k additions to obtain the final sum. The

computational complexity of this scheme is O(n · l ·M(k) + (n− 1) · l · A(k), where
M(k) is the cost of performing one scalar multiplication in the additively homomorphic
encryption system, andA(k) is the cost of one addition. The communication complexity
can be broken down into two parts: user to cloud and cloud to user. The user sends
a vector of size n containing ciphertexts of size k, so the bandwidth complexity user-
cloud is O(n·k). The cloud sends back a vector of l

k entries, each of size O(k), resulting
in complexityO(l). This results in the overall communication complexity ofO(n·k+l).

PIRMAP achieves better overhead than related work [4, 13] in practice, due to the
specific values of n and l in our setting. Existing work in PIR is efficient only for
data sets with large values for n and small values for l. PIRMAP would do poorly in
that setting, because the complexity would be dominated by n. However, PIRMAP’s
cloud-to-user communication is optimal at O(l), because the cloud must send back a
message at least the size of the file the user queries for. For values of l larger than
n · k, PIRMAP allows for complexity of O(l) with small constants. We argue that in
practice this is often true. For example, if a user has a 1 TB data set of 10 MB files,
l
n ≈ 800. In contrast, under the same conditions, arranging the files in a

√
n × √

n
matrix would result in a download cost of 1024 · 10 MB ≈ 10 GB. Even if n > l,
the actual communication costs are low for practical choices of the parameters, see
Section 5. Many cloud providers such as Amazon do not charge the user for uploads,
but only for downloads. This is an additional benefit of our scheme, because the query
result (communication the user is charged for) is always very close to optimal, even
when the overall communication is not.

Our assumption of l > n is realistic and useful for many real-world applications.
For example, medical records may contain one or more images (x-ray, MRI, etc) which
would make them several megabytes at the very least.

Optimization: Although the cloud performs most of the computation in this scheme,
the user is still required to generate a vector of ciphertexts of length n and then decrypt
the resulting response. As encryption is relatively expensive for additive IND-CPA ci-
phers, this might require a non-trivial amount of computation that might hurt, e.g., users
with low-powered devices such as smartphones. A way to alleviate this problem is to
have a moderately powerful trusted server to pre-generate vectors of ciphertexts and up-
load them to the cloud for the users to use. This trusted server would generate m “dis-
posable” vectors of size n such that Vi,j = E(1) where j = HMAC(i) and Vi,j = E(0)
otherwise. This allows the user to use one of these disposable vectors at query time
and permute it so that the single E(1) is at the index of the file it wishes to retrieve. If
the key used in the HMAC is shared between the user and trusted server, the user can
efficiently locate E(1). The user then generates a description of a permutation which
moves the E(1) value to the correct position and randomly shuffles all other locations.
A description of this permutation is of size n · log(n) which is smaller than the size of
the vector for k > 30. This also effectively front loads the upload cost of the query and
makes response time even faster.

PIRMAP: Efficient Private Information Retrieval for MapReduce 379

Although the particular encryption scheme we use (see Section 4.2 below) can per-
form encryptions very quickly and does not require the use of this optimization, we
point it out as a general improvement regardless of the cipher used.

4.1 PIRMAP Specification

In our protocol, the cloud performs two operations: multiplication of each block by the
corresponding value in the “PIR vector” v, and column-wise addition to construct the
encrypted file chosen by the user. These two stages translate exactly to map and reduce
implementations respectively. The files will be distributed evenly over all participating
nodes where the map function will split each file into blocks and multiply the blocks
by the correct encrypted value. The output of these mappers is a set of key-value pairs
where the key is the index of the block, and the value is the product of the block and
encrypted PIR value. These values are all passed on to the reducers, which take a set of
values for each key (block position or column) and add them together to get the final
value for each block.

Being interested in filex, the user executes the above Query to compute v which is
sent to the MapReduce cloud. There, each mapper node evaluates Multiply on its locally
stored file and generates key-values pairs for the reducer. The reducer simply computes
the Sum step by adding all values with the same key and sending them back to the user.
The user receives l

k values of size k from the reducers and decrypts to get filex.

User Cloud

function GenQuery(n, x)
v := {}
for i = 1 to n do

if i = x then
vi := E(1)

else
vi := E(0)

end if
end for

end function

function Map(file, v)
for i = 1 to n do

c := Bi · vi
Emit(i, c)

end for
end function
function Reduce(key, v)
total := 0
for i = 1 to n do

total := total + vi
end for
Emit(key, total)

end function

4.2 Encryption Scheme

Since the map phase of our protocol involves multiplying every piece of the data set by
an encrypted PIR value, it is important that we choose an efficient cryptosystem. Tra-
ditional additively homormorphic cryptosystems, such as Paillier’s, use some form of
multiplication as their homomorphism. That is, for elements a and b, E(a) · E(b) =
E(a + b). Since our map phase consists of multiplying ciphertexts by unencrypted
scalars, we would have to do exponentiation of a ciphertext. PIRMAP, and all PIR
schemes, must compute on the whole data set, so this step would be computationally
intensive.

Similar to our recent findings [3], we mitigate this problem by using a somewhat ho-
momorphic encryption scheme introduced by Trostle and Parrish [20] that relies on the

380 T. Mayberry, E.-O. Blass, and A.H. Chan

trapdoor group assumption. Fully homomorphic encryption schemes support an unlim-
ited number of computations without increasing the size of the ciphertexts. In contrast,
this scheme results in ciphertexts which grow in size by O(log2 n) bits for n additions.
In return for this size increase, we can have an encryption scheme where the additive
homomorphism is integer addition. This scheme encryptsn bits with security parameter
k > n as follows:

KeyGen(1k): Generate a prime m of k bits and a random b < m; b and m are secret.
Encrypt E(x) = b · (r · 2n + x) mod m, for a random r
Decrypt D(c) = b−1 · c mod m mod 2n

This encryption has the desired homomorphic property E(a) + E(b) = E(a + b). This
scheme is somewhat homomorphic, because it cannot support an unlimited number of
additions. When two ciphertexts c1 and c2 are added, you can express the sum as

b · (r1 · 2n + x1) + b · (r2 · 2n + x2) = b · ([r1 + r2] · 2n + x1 + x2).

As m remains secret, note that the cloud performs addition as integer addition, not
modulo m. If the inside term (r1 + r2) · 2n + x1 + x2 exceeds m and “wraps around”,
then it will not be decrypted correctly, because application of the modulus will cause a
loss of information. The modulusm must be chosen large enough to support the number
of additions expected to occur. To support t additions, m should be increased by log2 t
bits. Additionally, each scalar multiplication can be thought of as up to 2n additions,
meaning that the size of m must be doubled for each supported scalar product. For
our PIR scheme, m must be chosen to be O(2k + log2(n)) to support the required
homomorphic operations.

In return for the reasonable increase in ciphertext size caused by the larger modulus
(about 300% in our evaluations in Section 5), we are able to do very efficient computa-
tions over the encrypted data. Additionally, encryption is equivalent to only two multi-
plications, an addition and a modular reduction, while decryption is one multiplication
and a reduction. This compares very favorably with other homomorphic encryption
schemes, such as Paillier, requiring a modular exponentiation.

With our encryption scheme defined, we can now express more precise computa-
tional complexities for the protocol. Our previous complexity was parameterized over
M(k) and A(k), the complexity of scalar multiplication and addition, respectively.
For our encryption, addition is simply regular integer addition. Since each cipher text
is at most 2k + log2(n) bits long, addition is O(2k + log2(n)). We can do scalar
multiplication as integer multiplication as well. Integer multiplication can be done
for m bits in O(m log(m) log(log(m))) [9], so M(k) = O(2k + log2(n) log(2k +
log2(n)) log(log(2k + log2(n)))). The complexity is then dominated by the multipli-
cation cost and results in:

O(n · l
k
· (k + log(n)) log(k + log(n)) log(log(k + log(n)))) (1)

= O((n · l + n · log(n)) log(k + log(n)) log(log(k + log(n)))) (2)

If l > n, then l > log(n), and we can simplify to O(n · l · log(k+log(n)) · log(log(k+
log(n)))). Additionally, k has to be much larger than log(n), otherwise the server has

PIRMAP: Efficient Private Information Retrieval for MapReduce 381

the resources to find key (m, k) by brute force. This allows us to simplify to O(n · l ·
log(k) · log(log(k))).

4.3 Privacy Analysis

PIRMAP inherits privacy properties of the work it is based on, i.e., Lipmaa [13] and
the PIR variant by Trostle and Parrish [20]. In the following, we sketch our privacy
rationale.

PIRMAP is privacy-preserving, iff an adversary (the cloud) cannot guess, after each
query, with probability greater than 1/n, which file was retrieved by the user after an
invocation of the protocol. There are two pieces of information that the adversary has
access to: the set of uploaded files and the vector v of PIR values. The uploaded files are
independent of any encryption used in the PIR protocol and can be efficiently simulated
by the adversary. Therefore, privacy depends only on v.

Vector v contains many encryptions of “0” and one encryption of “1”. The problem
of determining which file was selected is then equivalent to distinguishing between
encryptions of “0” and encryptions of “1” in the underlying encryption. However, the
scheme we use is provably secure against distinguishing under the Trapdoor Group
Assumption [20]. Consequently, PIRMAP preserves user privacy.

5 Evaluation

We have evaluated the performance of our scheme in three contexts: a local “cloud” (a
single server with multiple CPUs), a commodity laptop, and Amazon’s EC2 cloud using
Elastic MapReduce [2]. We have implemented PIRMAP in Java for standard Hadoop
MapReduce version 1.0.3 and the source code is available for download [17].

5.1 Setup

Local We used a local server to prototype and debug our application and to do de-
tailed timing analysis requiring many runs of MapReduce. This server, running Arch
Linux 2011.08.19, has a dual 2.4 GHz quad-core Xeon E-5620 processor and 48 GB of
memory. Based on specs and benchmark results, this local server is closest to an “EC2
Quadruple Extra Large” instance, which has dual 2.9 GHz quad-core Xeon X-5570
processors and 24 GB of memory.

We have measured the time needed for PIR queries, i.e., the time to upload PIR
vector v plus the time to process the query and download the result. Using Amazon’s
standard cost model, we have calculated the price of each PIR query as the amount
of money required to run the query on one of the above EC2 instances (for the same
amount of time it took to run locally) plus the bandwidth cost of downloading the re-
sults [2]. Since uploading data to Amazon is free, this does not add any additional cost.
To put our measurements into perspective, we have also evaluated time and cost of two
other, hypothetical, PIR protocols. We have implemented a Baseline, which does not
perform any cryptographic operations and merely “touches” each piece of data through
the MapReduce API. This measure shows the theoretical lower bound of computation

382 T. Mayberry, E.-O. Blass, and A.H. Chan

 100

 200

 500

 1000

 2000

 5000

 10000

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Total amount of data (GByte)

Trivial PIR
PIRMAP
Baseline

Fig. 1. Time per query, local server

 0.01

 0.02

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 10 20 30 40 50 60 70 80 90 100

C
os

t (
$)

Total amount of data (GByte)

Trivial PIR
PIRMAP
Baseline

Fig. 2. Cost per query, local server

 100

 200

 500

 1000

 2000

 5000

 10000

 20000

 50000

 100000

 50 100 150 200 1000

T
im

e
(s

)

Total amount of data (GByte)

Trivial PIR
PIRMAP
Baseline

Fig. 3. Time per query, Amazon

 2

 5

 10

 15
 20

 50

 100

 50 100 150 200 1000

C
os

t (
$)

Total amount of data (GByte)

Trivial PIR
PIRMAP
Baseline

Fig. 4. Cost per query, Amazon

and time required for any PIR scheme that uses MapReduce, independent of the en-
cryption and exact PIR method used.

To highlight the advantage of computational PIR, we have also included the time
and cost required for the “trivial” PIR scheme. The trivial scheme is one where the user
downloads the entire data set and simply discards the files he is not interested in. This
is very bandwidth intensive, but computationally lightweight. Sion and Carbunar [18]
conjecture this trivial PIR to be the most cost effective in the real-world. We have calcu-
lated the cost based on the amount that Amazon charges to download the corresponding
amount of data and the time based on a 11.28 Mbps connection, an average as reported
by Nasuni [15]. Note that we generally do not count the cost for long-term storage of
data at Amazon. Although potentially significant for large amounts of data, the user has
to pay for this regardless of whether he wants queries to be privacy-preserving or not.
PIRMAP does not increase the amount of storage in Amazon.

Laptop. We also ran our implementation on a 2012 MacBook Pro with a 2.3 Ghz
i7, 8 GB of RAM and an NVIDIA GeForce 650M. The purpose of this test was to
compare query time with related work, and the results are shown in Table 4. The
Aguilar scheme takes advantage of GPU resources, so we chose a machine with com-
parable graphics and GPU resources (unlike the above server, which had no discrete

PIRMAP: Efficient Private Information Retrieval for MapReduce 383

Table 4. Query time in minutes, including generation, evaluation, and decryption, for databases
of varying sizes, composed of 5 MB files

5 GB 10 GB 15 GB 20 GB 25 GB 30 GB

Lipmaa 1852 3704 5508 7312 9116 10920
Aguilar-Gaborit 4 7 11 14 17 20
PIRMAP 1 2 3 3 4 4

graphics). This represents the performance you would get on a commodity machine
and also shows that query generation is not very taxing. To compare with Lipmaa [13],
we used openssl speed rsa to time determine how many RSA private key oper-
ations can be computed per second. Each scalar multiplication in that scheme is equiv-
alent to one modular exponentiation, or one RSA private key operation as required by
Lipmaa [13]. This estimation is quite generous for Lipmaa [13], because it does not
include disk access or homomorphic additions (modular multiplication), but we believe
it is close due to the time being largely dominated by exponentiations.

Amazon. Besides the local experiments, to demonstrate the scalability of PIRMAP,
we have also evaluated it on Amazon’s Elastic MapReduce cloud. Amazon imposes a
maximum limit of 20 instances per MapReduce job by default. In keeping with this
restriction, we used 20 “Cluster Compute Eight Extra Large” instances which each
having dual eight-core Xeon E5-2670 processors and 64 GB of RAM.

5.2 Results

Time and Total Cost: Figures 1 to 4 show our evaluation results. Figures 1 and 2 show
the local server evaluation, while figures 3 and 4 show evaluation with Amazon. In each
figure, the x-axis shows the total amount of data stored at the cloud, i.e., number of files
n times file size l. The y-axis shows either the time elapsed (for the whole query from
the time the user submits the query until MapReduce returns the result back) or the cost
implied with the query. In all four graphs, we scale the y-axis logarithmically, and in
figures 3 and 4 we also scale the x-axis logarithmically. Each data point represents the
average of at least 3 runs. Relative standard deviation was low at ≈ 5%.

To verify the impact of varying file sizes l, for our local evaluation, we show results
with file sizes of 1 MB and 3 MB, attaining approximately equal runtime in both cases.
This is to be expected because, in each data point, we have fixed the size of the database
so varying retrieval sizes merely reshapes the matrix without changing the number of
elements in it. The execution is dominated by the scalar multiplications that occur dur-
ing the map phase, and the same number of those is required no matter the dimension
of the matrix.

Our evaluation shows that PIRMAP outperforms trivial PIR in both time and cost
by one order of magnitude. We also compare performance to a baseline PIR protocol
implemented in MapReduce where the mappers simply read and ignore any rows that
are no requested and return the single row that was. Any MapReduce-based PIR proto-
col will require at least this amount of computation. Compared to this theoretical, yet

384 T. Mayberry, E.-O. Blass, and A.H. Chan

unrealistic optimum, PIRMAP introduces only 20% of overhead in the case of Amazon.
Locally, we experience slightly larger overhead of 100%. This is because executing on
Amazon has a much higher “administrative” cost due to the higher number of nodes
and more distributed setting. These results indicate not only PIRMAP’s efficiency over
Trivial PIR and Baseline, but also its real-world practicality: in a small database com-
prising 10,000 files of size 1 MB each (10 GByte), a user can retrieve a single record in
≈ 3 min for only ≈ $0.03. In a huge data set with 1, 000, 000 files, a single file can be
retrieved in ≈ 13 min for ≈ $14. In scenarios where it is necessary to retrieve data in a
fully privacy-preserving manner, we conjecture that this to be acceptable.

Although a comparison with related research is not straightforward (as PIRMAP tar-
gets a very special scenario), we put our results into perspective with those of Aguilar
and Lipmaa. We show that, while Lipmaa’s scheme has very good communication com-
plexity in all cases, it is completely impractical due to the enormous amount of com-
putation needed to respond to queries. We also show that our scheme is comparable
with that of Aguilar, in terms of computation, and beats it in communication cost by a
significant margin.

Query Generation and Decryption: Due to the efficiency of the encryption in
PIRMAP, PIR query generation is very fast. One ciphertext (element of v) is gener-
ated for each file in the cloud, so the generation time is directly proportional to the
number of files. We omit in-depth analysis, but in our trials on our commodity laptop
running on a single core it takes about 2.5 seconds per 100,000 files in the cloud. De-
cryption is slightly more expensive than encryption, but we still managed, on the same
machine, to decrypt approximately 3 MB per second. We conclude this overhead to be
feasible for the real-world.

Bandwith: PIRMAP introduces bandwith overhead, 1.) to upload v, and 2.) to down-
load the encrypted version of the file. For security, we set k = 2048 bit, so each of the n
elements of vector v has size 2048 bit. For a data set with 10,000 files (10 GByte), this
requires the user to upload ≈ 2.5 MByte. As this can become significant with larger
number of files, we suggest to then use the optimization in Section 4, especially for
constrained devices.

6 Conclusion

Retrieval of previously outsourced data in a privacy-preserving manner is an important
requirement in the face of an untrusted cloud provider. PIRMAP is the first practical
PIR mechanism suited to real-world cloud computing. In the case where a cloud user
wishes to privately retrieve large files from an untrusted cloud, PIRMAP is communica-
tion efficient. Designed for prominent MapReduce clouds, it leverages their parallelism
and aggregation phases for maximum performance. Our analysis shows that PIRMAP
is an order of magnitude more efficient than trivial PIR and introduces acceptable over-
head over non-privacy-preserving data retrieval. Additionally, we have shown that our
scheme can scale to cloud stores of up to 1 TB on Amazon’s Elastic MapReduce.

Acknowledgments: This work was partially supported by NSF grant 1218197.

PIRMAP: Efficient Private Information Retrieval for MapReduce 385

References

[1] Aguilar-Melamine, C., Gaborit, P.: A Lattice-Based Computationally-Efficient Private In-
formation Retrieval Protocol (2007), http://eprint.iacr.org/2007/446.pdf

[2] Amazon. Elastic MapReduce (2010),
http://aws.amazon.com/elasticmapreduce/

[3] Blass, E.-O., Di Pietro, R., Molva, R., Önen, M.: PRISM – Privacy-Preserving Search
in MapReduce. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384,
pp. 180–200. Springer, Heidelberg (2012)

[4] Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with poly-
logarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
402–414. Springer, Heidelberg (1999)

[5] Chen, Y., Sion, R.: On securing untrusted clouds with cryptography. In: Workshop on Pri-
vacy in the Electronic Society, Chicago, USA, pp. 109–114 (2010)

[6] Chor, B., Goldreich, O., Kushilevitz, E.: Private Information Retrieval. In: Proceedings of
Symposium on Foundations of Computer Science (1995)

[7] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: Pro-
ceedings of Symposium on Foundations of Computer Science, pp. 41–50 (1995)

[8] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
Proceedings of Symposium on Operating System Design and Implementation, San Fran-
cisco, USA, pp. 137–150 (2004)

[9] Fürer, M.: Faster integer multiplication. In: Proceedings of Symposium on Theory of Com-
puting (1997)

[10] Gartner. Gartner Identifies the Top 10 Strategic Technologies for 2011 (2010),
http://www.gartner.com/it/page.jsp?id=1454221

[11] Google. A new approach to China (2010),
http://googleblog.blogspot.com/
2010/01/new-approach-to-china.html

[12] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-
private information retrieval. In: Proceedings of Symposium on Foundations of Computer
Science, pp. 364–373 (1997)

[13] Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou,
J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer,
Heidelberg (2005)

[14] McClure, D.: GSA’s role in supporting development and deployment of cloud computing
technology (2010), http://www.gsa.gov/portal/content/159101

[15] Nasuni: State of Cloud Storage Providers Industry Benchmark Report (2011),
http://cache.nasuni.com/Resources/
Nasuni Cloud Storage Benchmark Report.pdf

[16] Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private Informa-
tion Retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer,
Heidelberg (2012)

[17] PIRMAP. Source Code (2012), http://pasmac.ccs.neu.edu
[18] Sion, R., Carbunar, B.: On the Computational Practicality of Private Information Retrieval.

In: Proceedings of Network and Distributed Systems Security Symposium, San Diego,
USA, pp. 1–10 (2007)

[19] Symantec. State of Cloud Survey (2011), http://www.symantec.com
[20] Trostle, J., Parrish, A.: Efficient computationally private information retrieval from

anonymity or trapdoor groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)
ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)

[21] Whittaker, Z.: Microsoft admits Patriot Act can access EU-based cloud data (2011),
http://www.zdnet.com/

http://eprint.iacr.org/2007/446.pdf
http://aws.amazon.com/elasticmapreduce/
http://www.gartner.com/it/page.jsp?id=1454221
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html
http://googleblog.blogspot.com/2010/01/new-approach-to-china.html
http://www.gsa.gov/portal/content/159101
http://cache.nasuni.com/Resources/Nasuni_Cloud_Storage_Benchmark_Report.pdf
http://cache.nasuni.com/Resources/Nasuni_Cloud_Storage_Benchmark_Report.pdf
http://pasmac.ccs.neu.edu
http://www.symantec.com
http://www.zdnet.com/

Avoiding Theoretical Optimality to Efficiently

and Privately Retrieve Security Updates

Justin Cappos
NYU Poly

jcappos@poly.edu

Abstract. This work demonstrates the feasibility of building a PIR sys-
tem with performance similar to non-PIR systems in real situations. Prior
Chor PIR systems have chosen block sizes that are theoretically opti-
mized to minimize communication. This (ironically) reduces the through-
put of the resulting system by roughly 50x. We constructed a Chor PIR
system called upPIR that is efficient by choosing block sizes that are the-
oretically suboptimal (from a communications standpoint), but fast and
efficient in practice. For example, an upPIR mirror running on a three-
year-old desktop provides security updates from Ubuntu 10.04 (1.4 GB of
data) fast enough to saturate a T3 link. Measurements run using mirrors
distributed around the Internet demonstrate that a client can download
software updates with upPIR about as quickly as with FTP.

Keywords: Private Information Retrieval, Performance, Practical
Security.

1 Introduction

Each year, thousands of vulnerabilities in software are discovered and fixed. To
fix a vulnerability, a computer will request and install a security update. How-
ever, the request to retrieve a security update is very much a public action. Most
software updaters do not encrypt the request for a security update in any way
and the request itself is often directed to an untrustworthy party like a mirror.
For example, Cappos [1] set up an official mirror for popular Linux distributions
using dubious credentials and rented hosting. The official mirrors received re-
quests for security updates (and thus a notification that the requesting system
is unpatched) from a large number of computers including banking, government,
and military computers. Thus the act of fixing a security vulnerability ironically
also notifies potential attackers that the client has a security vulnerability!

Fortunately, Private Information Retrieval (PIR) [2] addresses this issue. There
are now myriad schemes proposing how clients can retrieve information from a
database without disclosing which information is requested [2–5]. The academic
literature has primarily optimized these systems by improving their theoretical
properties [6–9], primarily to reduce communications overhead.

The biggest open problem related to PIR systems is how to make them prac-
tical. An academic panel titled “Achieving Practical Private Information Re-
trieval” lamented that the performance of existing PIR systems makes them

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 386–394, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Avoiding Theoretical Optimality to Efficiently 387

unsuitable for practical use [10]. Recently, Sion suggested that many PIR tech-
niques are so inefficient that it is faster to simply transmit all data stored on the
server to the client [11]. More recently, Olumofin and Goldberg [12] have shown
faster practicality results (especially with Chor PIR); however, these results are
still much slower than non-PIR systems.

We demonstrate that it is possible to build a practical PIR system
that provides performance similar to that of non-PIR production sys-
tems. Our system, upPIR uses the Chor multi-server PIR scheme [2], which
uses XOR instructions that can be efficiently computed on modern hardware.
By carefully choosing the block size to match the processor’s cache size, upPIR’s
throughput is substantially faster than existing results. (This is opposed to prior
work which has focused on reducing communication complexity.) upPIR allows
clients to retain information-theoretic privacy while providing performance sim-
ilar to popular HTTP and FTP servers.

2 Software Updaters

Software Updater Architecture. The architecture of software update sys-
tems (including upPIR) consists of three parties. The software vendor, such
as Ubuntu or Microsoft, creates a set of updates and bundles them into a re-
lease. The vendor also creates some metadata that describes the release, called
a manifest. The release is obtained and copied by a set of mirrors. For economic
and configurability reasons, mirrors are an important and essential part of the
software update landscape. Unfortunately, it is trivial for a malicious party to
register as an official mirror and receive requests from clients, including requests
for security updates [1].

Software Update Contents. The size and number of items stored by a mirror
vary over software projects, ranging between .5GB and 4.3GB for recent versions
of popular Linux distributions. The size of the security updates for a distribution
is several orders of magnitude smaller than the full mirror data which contains
normal updates. In this work we focus on distributing security updates and
leave private distribution of complete software mirrors for future work. Further
details about the suitability of PIR for software updates are provided in a tech
report [13].

3 Threat Model

In our threat model, a client may contact many mirrors, including those that
may be honest-but-curious. Our goal in this work is to prevent a mirror from
knowing which software update is being retrieved by a vulnerable client. We
assume that:

– The vendor is creating valid updates that the client wishes to retrieve.
– A non-malicious mirror may fail at any time.

388 J. Cappos

– A malicious party may operate one or more mirrors. These mirrors may share
or publicize any information they receive.

– An adversary may be able to observe all traffic sent over the network. This
is consistent with a malicious access point or ISP.

4 Architectural Overview

Vendor. The vendor produces a set of updates that it wishes to package into
a release and provide to clients. It also provides a list of mirrors to clients. The
vendor generates a manifest that contains metadata about the updates provided
in the release including secure hashes of the files. The release provided by a
vendor conceptually breaks the updates into equally sized blocks. If this were
not done, then performing an XOR of all updates together causes every XORed
chunk of data to be the size of the largest update. This would effectively mask
the size of the update being retrieved, but would be very inefficient if there is a
wide distribution of update sizes. In our implementation, the vendor selects the
block size when the manifest is created. (Section 5.3 discusses how to choose an
efficient block size).

Mirror. An upPIR mirror obtains the files for the release from the vendor using
rsync or another file transfer mechanism for distributing updates to mirrors.
Following this, the mirror reads in all of the software updates in the release
and stores them in one contiguous memory region. (The order of the software
updates in memory is specified in the manifest file.) The mirror uses the manifest
to validate each block. The mirror then notifies the vendor’s server that it is
ready to serve blocks to clients. The mirror provides the vendor with a public
key to prevent a man-in-the-middle from viewing client requests. When a client
sends a string of bits to the mirror, the mirror will XOR together all blocks
with a 1 in their position of the client’s request string. The mirror then sends
the result back to the client (which is the size of one block). This response over
an encrypted channel and is signed by the mirror’s private key to provide non-
repudiation. Note that the mirror can concurrently serve (non-private) FTP and
HTTP requests.

Client. A client first contacts the vendor’s server to obtain the latest manifest
and mirror list. From the manifest, the client can determine which blocks of
the release it needs to retrieve in order to receive its update. The client also
has some value N that represents the number of mirrors that would have to
collude to compromise the client’s privacy. To retrieve a single block, the client
generates N − 1 cryptographically suitable random strings. The client derives
the Nth string by XORing the other N −1 random strings together and flipping
the bit of the desired update. Each string is sent to a different mirror over an
encrypted channel (to prevent eavesdropping on the strings). Each mirror returns
a block consisting of the specified blocks XORed together. The mirror signs the
request and response in its reply to allow the client to demonstrate to a third
party when a mirror is corrupt or malicious. If multiple blocks are desired, the
procedure is repeated.

Avoiding Theoretical Optimality to Efficiently 389

Fig. 1. Time to fetch one block against
the Ubuntu release on multiple machines

1
6

K
B

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6

M
B

Block Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
p
d
a
te

 E
ff

ic
ie

n
c
y

OpenSuse

Ubuntu

Fedora

Fig. 2. Space efficiency of updates with
various block sizes

5 Evaluation

This section compares the impact of different block size choices. Our focus is on
examining whether the theoretically optimal block size from a communications
perspective [12] (where the block size is the square root of the database size)
results in good throughput. We also examine the performance of upPIR on real
data sets and in a realistic deployment using the block size we recommend. Since
mirrors are often set up using outdated server hardware or in a VM on shared
resources. The different machines used are as follows:

– ec2 large and ec2 xlarge are Amazon EC2 instances [14].
– emulab is an three-year-old Emulab node with an Intel E5530 CPU with

an 8MB L2 cache and 12GB of RAM on a virtual 100Mbps LAN [15, 16].
– local is an undergraduate student’s three-year-old PC with an Intel E5506

CPU with a 4MB L2 cache and 6GB of RAM on a shared 100Mbps LAN.

5.1 Mirror XOR Microbenchmarks

Figure 1 demonstrates the time it takes to produce a block of data when a
mirror serves the Ubuntu 10.04 data. We generated 10 random bit strings of the
appropriate size and then measured the amount of time the mirror spent XORing
the relevant update blocks together. Notice that the theoretically optimal block
size from a communications standpoint [12] has essentially the same speed as
block sizes up to 1MB. Both a 1MB and 2MB block size allow local and emulab
to produce blocks quickly enough to saturate a T3 link. Once the block size
increases to 2MB, the throughput no longer increases linearly with the block
size due to data and code not fitting entirely in L2 cache. Producing a 1MB
block in the same time as the theoretically optimal block size results in about a
50x increase in throughput.

390 J. Cappos

Fig. 3. Goodput for an average sized up-
date in three releases

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
M

B

2
M

B

4
M

B

Block Size in Bytes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 (

s
e
c
o
n
d
s
)

b
y
 C

a
u
s
e

time to generate keystring

network time

time to perform XOR

Fig. 4. Time to privately fetch one block

The release size is an important factor in speed because larger releases contain
more blocks. To explore the impact of the release size, we fixed the block size to be
1MB and then varied the release size on ‘emulab’ (not shown) The performance
scales at the same rate as the release size until the release no longer fits in
memory. Once the release exceeds the size of RAM, the performance drops by
over an order of magnitude as disk latency comes into play (not shown). Our
results show that upPIR scales linearly as the release size grows provided the
data served fits within memory.

5.2 The Impact of Block Size on Efficiency

The previous discussion showed how quickly a mirror could produce XOR blocks.
However, there is a difference between useful data and data. If a mirror can pro-
duce a 1MB block in .1 second or a 2MB block in .15 second, from a throughput
standpoint, the 2MB block size is superior. However, if the client wants a 1MB
update but must retrieve 2MB of data to get it, then 1MB of the space is wasted.
In essence, the data efficiency is the amount of retrieved data that is useful.

Figure 2 shows how changing the block size impacts efficiency for different
data sets. The lines represent different update sizes (or data sets) and illustrate
the performance difference when block size is varied. The values given were
calculated by dividing the size of the release by the amount of data that a client
would have to download to obtain every update in it one update at a time using
our PIR scheme. This figure 2 demonstrates that the amount of useful data
within a block decreases rapidly as the block size increases over 2MB. This is
to be expected since larger blocks imply that there is more wasted space when
retrieving an update. For example, between 70-85% of update data is unneeded
when using 8MB blocks, but less than 5% is unneeded with 64KB blocks.

Avoiding Theoretical Optimality to Efficiently 391

5.3 Choosing a Block Size to Optimize Goodput

One decision the vendor makes when creating the manifest for a release is to
choose the block size. As we previously saw, this choice greatly impacts both
the mirror XOR performance and the client’s goodput. (Goodput is defined as
the desired bytes per second, so ignores padding and packet headers.) In order
to determine how to optimize the mirror’s goodput, one can combine the mirror
XOR time and the data efficiency to compute the goodput of the mirror.

Figure 3 shows how the goodput varies based on the throughput of the mirror
and the space efficiency of the block size. This chart is generated by retrieving
an average sized update from three distributions on the system ‘local’. (Other
systems show qualititatively similar results.) This graph shows that the goodput
is optimal when block size is between 1MB to 2MB for each distribution. As
a result, these block sizes seem to be the most efficient for this system. The
theoretically optimal from a communications standpoint (the square root of the
distribution size) has one to two orders of magnitude less throughput.

5.4 Controlled Macrobenchmarks

Figure 4 shows where time is spent retrieving a block from a mirror on emulab.
First of all, the time to generate the cryptographically suitable random string
is only paid on the client side of the connection. Similarly, the time that is
spent XORing content is only performed by the mirror. The communication
time is perceived by both systems. When the block size is small, the client’s
time to generate the string incurs a non-negligible cost. For larger block sizes,
the network communication time is the dominant factor. For example, for a
4MB block size, the XOR takes about 200 ms, and the retrieval time is nearly 1
second. The theoretically optimal block size from a communications standpoint
(about 38KB) has about 100 times slower throughput than a 2MB block.

5.5 Deployment Table 1. Ubuntu update times

Location Protocol Time

US-West (EC2) HTTP .64s
US-West (EC2) FTP 1.5s
US-West (EC2) upPIR 1.2s

US-East (EC2) HTTP 1.5s
US-East (EC2) FTP 2.1s
US-East (EC2) upPIR 3.1s

EU-West (EC2) HTTP 2.7s
EU-West (EC2) FTP 4.5s
EU-West (EC2) upPIR 4.1s

US Mirrors HTTP 1.6s
US Mirrors FTP 2.1s

Worldwide (EC2) upPIR 3.5s

To understand the performance of up-
PIR in realistic environments, we de-
ployed our software on machines around
the world. We used our machine ‘local’
as an Ubuntu 10.04 vendor with a 2MB
block size, three EC2 instances in ei-
ther the US East, US West, or EU West
availability zones as mirrors, and ran the
client at the University of Washington. For
the worldwide setting, we ran one mir-
ror in each availability zone. We com-
pared the time to download the 1.5MB

392 J. Cappos

libc6-prof 2.12.1-0ubuntu6 i386.deb package using upPIR, HTTP (apache),
and FTP (vsftpd) on the same EC2 instances. For comparison’s sake, we also
downloaded the same file using FTP and HTTP from every available official
Ubuntu mirror inside the United States.

Table 1 shows the result of distributing updates via upPIR and other mecha-
nisms. The first thing to observe is that HTTP is slightly faster than FTP. We
believe that this is because FTP uses more back and forth communication than
HTTP (or upPIR) and therefore suffers the most from latency. HTTP is faster
than upPIR, which is expected because the client is downloading 2MB of data
from three mirrors instead of 1.5 MB from one mirror. Despite the additional
information downloaded, upPIR’s time is comparable to FTP on the same hard-
ware. However, unlike HTTP and FTP, upPIR retrieves the update privately.
Since our upPIR client downloads from three mirrors, even if two mirrors collude,
they do not learn which update the upPIR client is retrieving.

6 Related Work

Impracticality results from researchers including Sion [11], Yoshida [17] and Sas-
saman [18] reveal inefficiencies in existing PIR schemes. Perhaps most inter-
esting is Sion’s argument that many types of computational PIR are presently
impractical and, given hardware trends, unlikely to improve from a performance
perspective [11]. He argues that it is faster to transfer the entire database than
to perform PIR with a large class of proposed schemes.

Olumofin and Goldberg [12] recently provided performance results for a PIR
system that does not use the primitives mentioned as impractical in Sion’s prior
work. Olumofin’s resulting system is shown to be one to three orders of magni-
tude more efficient than transferring the entire database. They use the theoret-
ically optimal block size in their analysis, so their reported performance results
are significantly slower. For example, for a 2GB database, they produce a 46KB
block in just over 1 second (roughly 370Kbps). upPIR produces a 1MB block
in .2 seconds from a 2GB data store, showing throughput of roughly 40Mbps:
two orders of magnitude higher throughput. We contacted the authors and dis-
covered that their Chor implementation is similar to ours in performance when
given the non-theoretically optimal block size.

Similarly, Melchor [19] provides a fast PIR implementation that uses lattices
instead of the XOR-based primitives in our work. The authors mention they
aimed to maximize throughput by choosing experimental data that fit exactly
within cache (instead of using realistic data sets). As a result, they retrieved
3MB results from a 36MB database to achieve their 230Mbps speed number.
On our system with comparable hardware (‘local’) [20], our implementation can
produce results for a 36MB database at over 1Gbps. This demonstrates that
careful block size choice results in far greater throughput improvements.

Another common way to try to speed up PIR is to use specialized hard-
ware. Proposals have suggested leveraging GPUs [19], secure co-processors [21]
or oblivious RAM [22]. These results show promise, but our work demonstrates

Avoiding Theoretical Optimality to Efficiently 393

that it is possible to achieve excellent performance simply with universally de-
ployed hardware (commodity CPUs).

7 Conclusion

This work demonstrates that in PIR systems, the theoretically optimal block
size (for minimizing communications cost) can be far less efficient than larger
block sizes in practice. In fact, it is possible to construct a PIR system with
performance similar to production non-PIR systems. We chose to motivate and
test upPIR by privately distributing security updates on commodity hardware
and show this has performance similar to FTP. Our source code is available at
https://uppir.poly.edu.

References

1. Cappos, J., Samuel, J., Baker, S., Hartman, J.: A Look in the Mirror: Attacks on
Package Managers. In: CCS 2008, pp. 565–574. ACM, New York (2008)

2. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
Journal of the ACM 45, 965–982 (1998)

3. Ding, X., Yang, Y., Deng, R., Wang, S.: A new hardware-assisted PIR with
O(n) shuffle cost. International Journal of Information Security 9, 237–252 (2010),
10.1007/s10207-010-0105-2

4. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
STOC, pp. 294–303 (1997)

5. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (Octo-
ber 1997)

6. Beimel, A., Ishai, Y., Kushilevitz, E., François Raymond, J.: Breaking the O(n
1/(2k-1)) Barrier for Information-Theoretic Private Information Retrieval. In:
FOCS 2002, pp. 261–270 (2002)

7. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

8. Asonov, D., Freytag, J.-C.: Almost Optimal Private Information Retrieval. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 209–223.
Springer, Heidelberg (2003)

9. Ambainis, A.: Upper bound on communication complexity of private information
retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997)

10. Achieving Practical Private Information Retrieval (Panel @ Securecomm 2006),
http://www.cs.sunysb.edu/~sion/research/PIR.Panel.Securecomm.2006/

11. Sion, R.: On the Computational Practicality of Private Information Retrieval. In:
NDSS 2007 (2007)

12. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private in-
formation retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172.
Springer, Heidelberg (2012)

https://uppir.poly.edu
http://www.cs.sunysb.edu/~sion/research/PIR.Panel.Securecomm.2006/

394 J. Cappos

13. Cappos, J.: Avoiding Theoretical Optimality to Efficiently and Privately Retrieve
Security Updates (full version). Technical Report TR–CSE–2013–01, Department
of Computer Science and Engineering, NYU Poly (February 2013)

14. AWS Instance Types, http://aws.amazon.com/ec2/#instance
15. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-

bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. In: Proc. 5th OSDI, Boston, MA, pp. 255–270
(December 2002)

16. Emulab d710 Node Type Information,
https://www.emulab.net/shownodetype.php3?node_type=d710

17. Yoshida, R., Cui, Y., Shigetomi, R., Imai, H.: The practicality of the keyword
search using PIR. In: ISITA 2008, pp. 1–6 (December 2008)

18. Sassaman, L., Preneel, B., Esat-cosic, K.U.L.: The Byzantine Postman Problem:
A Trivial Attack Against PIR-based Nym Servers. Technical report, ESAT-COSIC
2007-001 (2007)

19. Melchor, C., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-Speed Private
Information Retrieval Computation on GPU. In: SECURWARE 2008, pp. 263–272
(August 2008)

20. Compare of Intel E5506 to E5345,
http://ark.intel.com/Compare.aspx?ids=37096,28032

21. Khoshgozaran, A., Shirani-Mehr, H., Shahabi, C.: SPIRAL: A Scalable Private
Information Retrieval Approach to Location Privacy. In: MDMW 2008 (2008)

22. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS 2008, pp. 139–148.
ACM, New York (2008)

http://aws.amazon.com/ec2/#instance
https://www.emulab.net/shownodetype.php3?node_type=d710
http://ark.intel.com/Compare.aspx?ids=37096,28032

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 395–396, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Three-Factor User Authentication Method
Using Biometrics Challenge Response

Haruhiko Fujii and Yukio Tsuruoka

Nippon Telegraph and Telephone Corporation
{fujii.haruhiko,tsuruoka.yukio}@lab.ntt.co.jp

Abstract. We propose a three-factor authentication method by pointing out the
weakness in the two-factor authentication method that uses telephony currently
used in Internet banking by adding voice verification, creating a three-
authentication method (password, possession of phone, and voice printing) .

Keywords: multi-factor authentication, phone as a token, voice verification.

The use of the two-factor authentication (two-path authentication) method using tele-
phony has recently spread in terms of user authentication in electronic service appli-
cations, such as e-government, Internet banking, Amazon, Google, and Facebook. For
example, Internet banking involves the following steps. Terminals such as PCs/smart
phones send an ID and password a user enters into a server. The server checks the ID
and password (knowledge factor), calls back the user’s phone, which was registered
beforehand, and finishes authentication when the user answers (possession factor).
Since an attacker can remotely change the legitimate user’s call-transfer setting to
his/her telephone with only a stolen PIN, he/she can pretend to be the legitimate user;
therefore, this system is not secure. In contrast, we have proposed a method with
which users call the server and the server checks the caller’s number (caller ID) [1].
Although this method solves the above-mentioned problem, the caller ID can still be
changed in several countries, although not in Japan.

To solve this problem, we add voice verification to this method. The server asks
the user a question, which is changed each time to prevent a replay attack in the audio
line, receives a response, and uses voice recognition to check if the user has said the
correct word, and conducts voiceprint recognition to check if the voice print matches
the user. When all of these steps have been completed, user authentication (inherence
factor) finishes successfully. This method enables a biometrics challenge response by
using voice recognition and voice print recognition to prevent a replay attack. This
feature is difficult to realize with other biometric methods such as face and fingerprint
authentication. Even though another study argues that the crossover error rate of
voiceprint authentication on public networks is 6.47% [2], our method is practical due
to the use of multiple authentication factors (knowledge: password, possession:
phone, and inherence: voice printing).

 H. Fujii and Y. Tsuruoka

396

References

1. Fujii, H., et al.: Telelogin: a two-factor two-path authentication Technique Using Caller ID.
NTT Technical Review 6(8), 1–6 (2008)

2. Tsuchiya, N., et al.: Speech Identification in VoIP (Voice over IP) System. In: Symposium
on Mobile Interactions and Navigation, March 17-18 (2004)

Synthetic Logs Generator
for Fraud Detection in Mobile Transfer Services

Chrystel Gaber1,2, B. Hemery2, Mohammed Achemlal1,2, M. Pasquet2, and P. Urien3

1 Orange Labs, France Telecom, 42 rue des Coutures, BP 6243, F-14066 Caen, France
2 UNICAEN, ENSICAEN, CNRS, UMR 6072 GREYC, F-14032 Caen, France

3 Telecom Paristech, UMR 5141, 37/39 rue Dareau 75014, Paris, France
{chrystel.gaber,mohammed.achemlal}@orange.com

Abstract. This article presents a simulator which generates synthetic data for
fraud detection. It models fraudsters and legitimate users.

Keywords: synthetic data, simulation, fraud detection.

Mobile payments become more and more popular and, thus, are very attractive targets
for fraudsters. As new ways to commit crimes and avoid detection appear, research in
the field of fraud is always evolving. Yet, research in fraud detection is limited as pub-
licly available transactional databases containing frauds and groundtruth are scarce [1].
The main cause is that stakeholders are very reluctant to disclose information about
frauds and their clients. We address this issue by generating synthetic data of a mobile
transaction system. Done in the scope of the European FP7 project MASSIF, our model
is based on the mobile-based transaction system and its users described by the MASSIF
scenario providers in [2]. We create a tool which can be used by the project contributors
and the fraud detection community. Synthetic data are not commonly used in the field of
fraud detection although there is a lack of test data. To our knowledge, only one method
is used to generate synthetic data for the training and testing of fraud detection systems
[3]. Compared to it, ours enables to highlight specific characteristics of fraud detection
algorithms because it is not necessarily set up with parameters driven from real data.
We model the mobile money transfer platform and the behavior of regular users and
fraudsters. Regular users behavior is modeled as a set of habits whereas fraudsters be-
havior is based on attack patterns. Only superimposed frauds were modeled [1]. A first
prototype based on multi-agent models was implemented. We evaluated the model and
the data created with the implemented simulator. The period and amount parameters are
overfitted. It results in frequent transactions of higher value but a correct value of the
total amount of money spent during the simulation. The outcome is encouraging and
sets a reference in this field.

References

1. Bolton, R.J., Hand, D.J.: Unsupervised profiling methods for fraud detection. In: Conference
on Credit Scoring and Credit Control (2001)

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 397–398, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

398 C. Gaber et al.

2. Achemlal, M., Gharout, S., Gaber, C., Llanes, M., Prieto, E., Diaz, R., Coppolino, L.,
Sergio, A., Cristaldi, R., Hutchison, A., Dennie, K.: Scenario requirements (March 2011),
http://www.massif-project.eu/

3. Barse, E.L., Kvarnstrom, H., Jonsson, E.: Synthesizing test data for fraud detection systems.
In: Proceedings of the 19th Annual Computer Security Applications Conference (2003)

http://www.massif-project.eu/

Onions for Sale: Putting Privacy on the Market

Aaron Johnson, Rob Jansen, and Paul Syverson

U.S. Naval Research Laboratory, Washington, DC
{aaron.m.johnson,rob.g.jansen,paul.syverson}@nrl.navy.mil

Abstract. We propose that Tor supports the purchase of its services.

Keywords: Onion Routing, Tor, Privacy.

Problem Overview. Onion routing, and in particular the Tor network, is tech-
nically well-designed to provide communications privacy. However, the resource
constraints of a volunteer network result in unacceptable performance for many
users. As a consequence, many users turn to paid services, but even when avail-
able they aren’t ideal solutions. For example, Virtual Private Networks (VPNs)
are often used for anonymous communication and censorship avoidance. How-
ever, VPNs are not designed to work against an active or state-level adversary
and present a fragile single source of trust, as well as suffering from more subtle
flaws [1]. As another example, users hide peer-to-peer file sharing via “seedboxes”
that run the P2P protocol at a paid host. However, accessing such services is
recognizable, and these solutions again present a single source of trust.

Proposed Solution. We propose that Tor supports the optional purchase of its
services to simultaneously provide communications privacy to a new population
while improving privacy for the old. In this approach, the existing Tor network
infrastructure will be used to provide both paid and unpaid service, but paid ser-
vice will be prioritized to deliver acceptable performance. Users migrating their
activity from existing services will improve their communication anonymity and
privacy while at the same time providing additional cover traffic and additional
resources for Tor’s existing user base.

Technical Approach. There are several technical components needed to incorpo-
rate payments into Tor’s main services. To provide incentive to pay for service,
traffic from users who pay is prioritized over traffic from those who don’t using a
new circuit scheduling architecture [2]. Communication between hidden service
providers who pay and their clients is similarly prioritized. To enhance censor-
ship evasion, users paying for this service are provided with access to a special
reserved pool of bridges. To allow anonymous payments, we can take advantage
of Bitcoin, although there are other possibilities. Similarly, there are multiple
options for investing those payments into Tor network improvement without
centralizing control or liability, such as using trusted third-parties that take di-
rect payment. We feel that the challenges in this approach are surmountable and
that the benefits outweigh the associated risks.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 399–400, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

400 A. Johnson, R. Jansen, and P. Syverson

References

1. Appelbaum, J., Ray, M., Koscher, K., Finder, I.: vpwns: Virtual pwned networks.
In: The 2nd FOCI Workshop (August 2012)

2. Jansen, R., Johnson, A., Syverson, P.: LIRA: Lightweight Incentivized Routing for
Anonymity. In: The 20th NDSS Symposium (February 2013)

Searchable Encryption Supporting General

Boolean Expression Queries

Tarik Moataz1 and Abdullatif Shikfa2

1 Telecom Bretagne, Rennes, France
tarik.moataz@telecom-bretagne.eu

2 Bell Labs Research, Alcatel-Lucent, Nozay France
abdullatif.shikfa@alcatel-lucent.com

Abstract. We present in this poster a symmetric searchable encryption
scheme supporting general boolean search.

Keywords: Searchable encryption, boolean expressions, keyword search.

Searchable encryption is a mechanism that allows a user to store encrypted doc-
uments in an outsourced server, and later on query for some of these documents
that match a given keyword. All these operations are performed with encrypted
data, meaning both the documents and the queries are encrypted in such a way
as to minimize leaked information: the server is considered to be semi-honest
or honest-but-curious. Searchable encryption is an active research area and has
witnessed several interesting schemes since the beginning of the 2000’s, and in
particular R.Curtmola et al. presented a construction which is asymptotically
optimal with respect to search complexity. However, most prior works focused
only on single keyword query and thus single keyword searches.

We target a more general model, which encompasses all basic boolean searches
-the disjunction, the conjunction and the negation- over encrypted data at the
same time. We propose a first construction of symmetric searchable encryption
that supports generic boolean search over encrypted data which consists of four
algorithms: Gen, Enc, Query and Test. The construction is based on an original
idea of considering keywords as vectors and using the Gram-Schmidt process to
orthogonalize and then orthonormalize them. It further makes use of a very ef-
ficient operation, the inner product, to perform searches at the server side. The
inner product indeed leverages the orthonormalized keywords to efficiently test
if a boolean expression query matches the label corresponding to an encrypted
document or not. The label construction consists on the orthonormalized key-
words sum, while the queries sent for retrieving encrypted documents are further
randomized to guarantee the security of our scheme. As the keywords need to be
orthonormalized their size n is necessarily bigger than their number (otherwise
we need to pad them). Hence, if the size of orthonormalized keywords is equal
to n, then the size of any arbitrary query will be equal to n, the same follows
for the size of labels. The details of the scheme are presented in [1].

Reference

1. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. To Appear in
AsiaCCS (2013)

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, p. 401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Privacy Preserving E-Payment Architecture

Aude Plateaux1,2, Vincent Coquet2, Sylvain Vernois1, Patrick Lacharme1,
Kumar Murty3, and Christophe Rosenberger1

1 ENSICAEN, 17 rue Claude Bloch, 14000 Caen, France
2 BULL SAS, Avenue Jean Jaurès, 78340 Les Clayes-sous-Bois, France
3 Department of Mathematics, 40 St. George Street, Toronto, Canada

Abstract. This poster proposes a secure e-payment architecture for on-
line shopping protecting users’ privacy.

Keywords: e-payment, privacy, banking security.

Introduction. Online shopping is becoming more and more interesting for cus-
tomers because of the ease of use and the choice of products. A vast amount
of sensitive information is transferred during such online payment transactions
involving privacy problems. Current e-payment schemes, such as 3D-Secure or
the SET protocol, attempt to ensure the actors’ security without adressing the
privacy protection. For instance, when the customer purchases an online service,
he/she must provide his/her personal bank information: Personal Authentica-
tion Number, Card Verification Value and expiration date. These data are then
transferred and can be known by all actors while such knowledge is not necessary.

Proposition. In the proposed architecture, private information is only disclosed
when necessary and hidden from both the service provider SP , and the payment
providers. This solution is mainly based on the generation of two documents: an
electronic bank cheque associated with certificates and a contract between the
SP and the customer. In this architecture, we conserve two of the three 3D-
Secure domains: the acquirer domain and the issuer domain. The interoperabil-
ity domain is replaced by an interbank trusted third party. This latter enables
communication between banks without disclosing information about the other
actors and without adding any additional message. Moreover, this e-payment
architecture is fully compliant with the data minimization, sovereignty and sen-
sitivity principles. More particularly, the payment transaction never discloses
any customer’s bank information. Finally, the customer does not need to have
particular cryptographic knowledges.

Conclusion. With an equivalent level of security, the proposed e-payment ar-
chitecture is more respectful of the privacy than the ones currently used. This
scheme also supports the following properties: the customer’s basket, as well as
the SP’s name, are unknown to the customer’s bank. Moreover, the customer
does not know the SP’s bank and is unknown to this latter. Finally, the cus-
tomer’s banking information and the customer’s banks are unknown to the SP.

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, p. 402, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Communication Services Empowered

with a Classical Chaos Based Cryptosystem

Gerard Vidal1,2 and Mikel Hernaez2

1 Institute of Physics, University of Navarra
2 Enigmedia Corp.

{gerard,mikel}@enigmediacorp.com

Abstract. Enigmedia is an encryption system based on a pseudo-
random bit generator (PRBG) which relies on hyperchaotic system, sam-
pled under certain rules in order to avoid any attempt to reconstruct the
original trajectory or statistical attacks [1]. The plaintext is XOR’ed with
the keystream, obtained from the PRBG. This PRBG is highly efficient,
being several orders of magnitude faster than other standards. Further-
more Enigmedia cryptosystem has passed NIST and Diehard statistical
test, and it is involved in a validation process. First application featur-
ing Enigmedia is a plug&play $70 USB-device transforming any TV into
encrypted HD-videoconference for e-health purpose. This development
is also available for mobile & tablet integration throught App. Further
work will include sensor integration for monitoring patients.

Keywords: Lightweight Encryption, Real-Time Video, Chaos Systems.

Reference

[1] Vidal, G., Baptista, M.S., Mancini, H.: Fundamentals of a classical chaos-based
cryptosystem with some quantum cryptography features. Int. J. Bif. Chaos 22,
1250243 (2012)

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, p. 403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Author Index

Acar, Tolga 189
Achemlal, Mohammed 397
Adham, Manal 322
Aly, Abdelrahaman 239
Androulaki, Elli 34
Arief, Budi 313
Asokan, N. 293
Aspinall, David 126
Azodi, Amir 322

Baldimtsi, Foteini 205
Biczók, Gergely 338
Blass, Erik-Oliver 371
Borisov, Nikita 362
Buchmann, Johannes 197

Capkun, Srdjan 34
Cappos, Justin 386
Chan, Agnes Hui 371
Chia, Pern Hui 338
Chow, Sherman S.M. 189
Christin, Nicolas 25
Coquet, Vincent 402
Cuvelier, Edouard 239

Das, Anupam 362
De Bosschere, Koen 221
De Keulenaer, Ronald 221
Demirel, Denise 197
Desmedt, Yvo 322
De Sutter, Bjorn 221
Dietrich, Sven 354

Egelman, Serge 52
Ekberg, Jan-Erik 293
Emms, Martin 313

Fahl, Sascha 144
Franklin, Matthew 162
Freiling, Felix C. 295
Fujii, Haruhiko 395

Gaber, Chrystel 397
Gallego, Alexander 60

Gligor, Virgil 69
Güldenring, Benjamin 354

Halderman, J. Alex 329
Harbach, Marian 144
Hemery, B. 397
Hernaez, Mikel 403
Hinterwälder, Gesine 205
Hong, Jason 69

Jansen, Rob 399
Jhanwar, Mahabir Prasad 96
Johnson, Aaron 399
Joye, Marc 111
Just, Mike 126

Kamara, Seny 258
Karame, Ghassan O. 34
Karaolis, Ioannis 322
Kasten, James 329
Kim, Tiffany Hyun-Jin 69
Kostiainen, Kari 293

Lacharme, Patrick 402
Lee, Dong Hoon 171
Lee, Kwangsu 171
Li, Yang 213
Libert, Benôıt 111
Lipmaa, Helger 78
Little, Nicholas 313

Mäckl, Richard 295
Maebe, Jonas 221
Mawet, Sophie 239
Mayberry, Travis 371
Moataz, Tarik 401
Moore, Tyler 25
Muders, Thomas 144
Müller, Tilo 295
Murty, Kumar 402

Nguyen, Lan 189

Oltrogge, Marten 144

Paar, Christof 205
Papamanthou, Charalampos 258

406 Author Index

Pasquet, M. 397
Pereira, Olivier 239
Perrig, Adrian 69
Plateaux, Aude 402

Quisquater, Jean-Jacques 230

Ren, Kui 78
Rieffel, Eleanor 354
Ries, Lars 354
Roeschlin, Marc 34
Ron, Dorit 6
Rosenberger, Christophe 402
Roth, Volker 354
Rupp, Andy 205

Safavi-Naini, Reihaneh 96
Saito, William H. 1
Sakamoto, Hikaru 213
Sakiyama, Kazuo 213
Sasaki, Yu 213
Saxena, Nitesh 60
Schechter, Stuart 52
Scherer, Tobias 34
Schneider, Thomas 275
Shamir, Adi 6
Shikfa, Abdullatif 401

Smith, Matthew 144
Spath, Hans 295
Standaert, François-Xavier 230
Syverson, Paul 399

Tsuruoka, Yukio 395

Urien, P. 397

van de Graaf, Jeroen 197
van Moorsel, Aad 313
Van Vyve, Mathieu 239
Vernois, Sylvain 402
Vidal, Gerard 403
Voris, Jonathan 60

Wang, Cong 78
Wustrow, Eric 329

Yamada, Akira 69
Yu, Yu 230
Yung, Moti 171

Zhang, Bingsheng 78
Zhang, Haibin 162
Zhou, Yuanyuan 230
Zohner, Michael 275

	Preface
	Organization
	Table of Contents
	Keynote
	Can Nature Help Us Solve Risk Management Issues?

	Electronic Payment (Bitcoin)
	Quantitative Analysisof the Full Bitcoin Transaction Graph
	1 Introduction
	2 TheBitcoinScheme
	3 Statistics Calculated over the Bitcoin Transaction Graph
	4 The Graph of the Largest Transactions in Bitcoin
	5 Conclusions
	References

	Beware the Middleman:Empirical Analysis of Bitcoin-Exchange Risk
	1 Introduction
	2 Data on Bitcoin-Exchange Closures
	2.1 Data Collection Methodology
	2.2 Summary Statistics

	3 Survival Analysis of Exchange Closure
	3.1 StatisticalModel
	3.2 Results

	4 Regression Analysis of Exchange Breaches
	4.1 StatisticalModel
	4.2 Results

	5 Related Work
	6 Discussion
	References

	Evaluating User Privacy in Bitcoin
	1 Introduction
	2 Background on Bitcoin
	3 Modelling Privacy in Bitcoin
	3.1 AdversarialModel
	3.2 Quantifying Privacy in Bitcoin

	4 Evaluating Privacy in Bitcoin
	4.1 Exploiting Existing Bitcoin Client Implementations
	4.2 Behavior-Based Analysis
	4.3 Simulating the Use of Bitcoin in a University
	4.4 Experimental Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Usability Aspects
	The Importance of Being Earnest [In SecurityWarnings]
	1 Introduction and Background
	2 Methodology
	2.1 Recruitment
	2.2 Tasks
	2.3 Conditions

	3 Results
	4 Discussion
	4.1 Bounded Rationality
	4.2 Moral Hazard
	4.3 Lack of Motivation

	5 Conclusion
	References

	Exploring Extrinsic Motivation for Better Security:A Usability Study of Scoring-Enhanced Device Pairing
	1 Introduction
	2 Threat Model for Device Pairing
	3 Design of Pairing Methods
	3.1 Scored Comparison Method
	3.2 Plain Comparison Method

	4 Usability Evaluation
	4.1 Testing Framework
	4.2 Participant Information
	4.3 Experimental Design
	4.4 Experimental Results
	4.5 Interpretation and Analysis of Results

	5 Conclusions
	References

	RelationGram: Tie-Strength Visualization forUser-Controlled Online Identity Authentication
	1 Introduction
	2 Problem Definition, Adversary Model, Assumptions
	3 Interpersonal Tie Strength Visualization
	4 Authenticating Online Friend Inviters
	4.1 Indirect Friend Authentication

	5 Implementation
	6 Discussion and Future Work
	7 Conclusion
	References

	Secure Computation
	Practical Fully Simulatable Oblivious Transferwith Sublinear Communication
	1 Introduction
	2 Preliminaries
	3 Building Blocks
	4 Fully Simulatable OTNk×1 with Square-RootCommunication
	4.1 SHVZK Unit Vector Proof
	4.2 Multi-exponentiation Argument
	4.3 Masked Multi-exponentiation Batch Argument
	4.4 Security Analysis of Our
	4.5 Implementation and Efficiency

	5 Conclusions
	References

	Unconditionally-Secure Robust Secret Sharingwith Minimum Share Size
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Robust Secret Sharing
	2.2 Adversarial Capabilities
	2.3 Security

	3 The Proposed Scheme
	3.1 The Scheme
	3.2 Remarks

	4 Security
	4.1 Perfect Secrecy
	4.2 Reliability

	5 Known Schemes and Possible Extensions
	5.1 Using List Decoding to Improve Decoding Error in [7]
	5.2 Robustness

	6 Efficiency Comparison
	7 Conclusion
	References

	A Scalable Scheme for Privacy-PreservingAggregation of Time-Series Data
	1 Introduction
	2 Preliminaries
	2.1 N-th Residues and Discrete Logarithms in (Z/N2Z)∗
	2.2 DCR Complexity Assumption

	3 Aggregator-Oblivious Encryption
	3.1 Aggregator Obliviousness
	3.2 Shi

	4 New Scheme
	5 SecurityProof
	6 Concluding Remarks
	References

	Passwords
	“Give Me Letters 2, 3 and 6!”:Partial Password Implementations and Attacks
	1 Introduction
	2 System Model and Survey
	2.1 Survey

	3 Guessing Attacks
	3.1 Letter Position Frequency Attack
	3.2 Projection Dictionary Attacks
	3.3 Projection Dictionaries from Password Distributions

	4 Recording Attacks
	4.1 Pure Recording Attacks
	4.2 Recording Plus Guessing Attacks

	5 Summary
	References

	Hey, You, Get Off of My Clipboard
	1 Introduction
	2 Background
	2.1 Password Managers on Desktops
	2.2 Password Managers on Mobile Devices

	3 Password Sniffing on Android
	4 Security in Detail
	4.1 Encryption
	4.2 Storage
	4.3 Recent Apps
	4.4 Cloud Sync

	5 The Developers View
	5.1 Results
	5.2 Discussion

	6 Countermeasures
	7 Conclusions
	References

	Privacy Primitives and Non-repudiation
	Unique Ring Signatures:A Practical Construction
	1 Introduction
	2 Unique Ring Signature Model
	3 Unique Ring Signature in Random Oracle Model
	References

	Aggregating CL-Signatures Revisited:Extended Functionality and Better Efficiency
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Complexity Assumption
	2.3 The CL Signature Scheme

	3 Sequential Aggregate Signature
	3.1 Definitions
	3.2 Construction
	3.3 Security Analysis
	3.4 Discussions

	4 Synchronized Aggregate Signature
	4.1 Definitions
	4.2 Construction
	4.3 Security Analysis
	4.4 Discussions

	5 Conclusion
	References

	Accumulators and U-Prove Revocation
	1 Introduction
	2 U-Prove with Revocation Using Our New Accumulator
	2.1 Entities
	2.2 System Parameters
	2.3 Issuing U-Prove Token
	2.4 Blacklist
	2.5 Presenting U-Prove Tokens

	3 Crypto-Agile Software Design
	4 Performance
	References

	Anonymity
	Towards a Publicly-Verifiable Mix-Net ProvidingEverlasting Privacy
	1 Introduction
	1.1 Motivation
	1.2 High-Level Description of Our Result
	1.3 Related Work

	2 Mixing with Everlasting Privacy Towards the Public
	2.1 Cryptographic Primitives
	2.2 Assumptions
	2.3 Adapted Mixing Process
	2.4 Properties

	3 Everlasting Privacy Towards the Authorities
	4 Conclusion and Future work
	References

	P4R: Privacy-Preserving Pre-Paymentswith Refunds for Transportation Systems
	1 Introduction
	1.1 Related Work
	1.2 Our Approach and Contribution

	2 A Privacy-Preserving Transit Payment System
	3 Security and Privacy
	References

	Hardware Security
	Coupon Collector’s Problemfor Fault Analysis against AES— High Tolerance for Noisy Fault Injections�
	1 Introduction
	2 Related Work
	2.1 Specification of AES
	2.2 Square DFA on AES
	2.3 Improved Square DFA with a Small Number of Fault Injections

	3 Square DFA Based on Coupon Collector’s Problem
	3.1 Overview
	3.2 Probability Evaluation of P(α, β, n)

	4 Details of the Generalized Square DFA on AES-128
	5 Concluding Remarks
	References

	Mitigating Smart Card Fault Injection withLink-Time Code Rewriting: A Feasibility Study
	1 Introduction
	2 Link-Time Software Protection against Fault Injection
	3 Experimental Evaluation
	4 Conclusions
	References

	On the Need of Physical Security for SmallEmbedded Devices: A Case Study withCOMP128-1 Implementations in SIM Cards
	1 Introduction
	2 Background
	3 DPA Attacks against Implementations of the COMP128-1 Algorithm in SIM Cards
	3.1 Target SIM Cards and Measurement Setup
	3.2 Preprocessing of the Traces
	3.3 DPA Attack Results

	4 Conclusions and Future Work
	References

	Secure Computation and Secret Sharing
	Securely SolvingSimple Combinatorial Graph Problems
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Black-Box Operations

	3 Privacy-Preserving Shortest Path Problem
	3.1 Bellman-Ford’s Algorithm
	3.2 Dijkstra’s Algorithm
	3.3 Implementation Prototype

	4 Maximum Flow
	4.1 Edmonds-Karp’s Algorithm
	4.2 Push-Relabel Privacy-Preserving Implementation

	5 Conclusion
	References

	Parallel and Dynamic SearchableSymmetric Encryption
	1 Introduction
	2 Preliminaries
	3 Our Dynamic SSE Construction
	4 Extensions and Optimizations
	References

	GMW vs. Yao? Efficient Secure Two-PartyComputation with Low Depth Circuits�
	1 Introduction
	1.1 Outline and Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Oblivious Transfer
	2.2 Approaches for Secure Two-Party Computation
	2.3 Evaluation Metrics and Notation

	3 Circuit Constructions with low Depth and Size
	3.1 Addition
	3.2 Squaring
	3.3 Comparison
	3.4 Hamming Weight

	4 Optimizations for Two-Party GMW
	4.1 Multiplication Triples
	4.2 Using AES Instead of SHA as Pseudo-Random Function
	4.3 Load Balancing
	4.4 Implementation-Specific Optimizations
	4.5 Single Instruction Multiple Data (SIMD) Operations

	5 Evaluation
	5.1 Mobile Social Networks
	5.2 Privacy-Preserving Face Recognition

	References

	Invited Talk
	The Untapped Potential of Trusted ExecutionEnvironments on Mobile Devices
	References

	Authentication Attacks and Countermeasures
	StarkTamperproof Authentication to Resist Keylogging
	1 Introduction
	1.1 Threat Model
	1.2 Bootkit Attacks
	1.3 Related Work: Attempts for Countermeasures
	1.4 Possible Attacks against Anti Evil Maid
	1.5 Contributions

	2 Stark Protocol and Design Choices
	2.1 The Stark Protocol
	2.2 Security Argument
	2.3 Design Components of Stark

	3 Potts: A Linux-Based Implementation of Stark
	3.1 Integrating Stark with Tresor
	3.2 Stark Protocol Extensions
	3.3 Potts Implementation Details

	4 Limitations and Outlook
	4.1 Limitations: Hardware-Based Attacks
	4.2 Outlook: Taking Advantage of New Hardware

	References

	Risks of Offline Verify PIN on Contactless Cards
	1 Introduction
	2 Attack Scenario
	2.1 PIN Verify Protocol Sequence
	2.2 Reading Multiple Cards
	2.3 PIN Guessing Strategy

	3 Software Implementation
	3.1 Verify PIN Implementation
	3.2 Multiple Card Reader Implementation

	4 Results
	4.1 Verify PIN Protocol Sequence
	4.2 Multiple Card Identification
	4.3 Total Attack Time

	5 Conclusion
	References

	How to Attack Two-Factor AuthenticationInternet Banking
	1 Introduction
	2 Background
	2.1 Attack Strategies and Techniques
	2.2 Related Work and Attacks

	3 Authentication Systems Used in Internet Banking
	4 Automation of the Attack
	4.1 Automatic Fraudulent Transaction
	4.2 Hiding the Attacks
	4.3 Advantages

	5 Future Work
	6 Conclusions and Reflections
	References

	CAge: Taming Certificate Authoritiesby Inferring Restricted Scopes
	1 Introduction
	2 Related Work
	3 Analyzing the CA Infrastructure
	4 Our Proposal
	4.1 Initialization and Rule Inference
	4.2 Enforcement and Exception Handling
	4.3 Updating

	5 Evaluation
	5.1 Attack Surface Reduction
	5.2 Rule Set Durability

	6 Conclusion
	References

	Privacy of Data and Communciation
	Interdependent Privacy:Let Me Share Your Data
	1 Introduction
	2 Interdependent Privacy
	3 Case Study: Facebook Application Platform
	4 The Interdependent Privacy Game
	4.1 Game Structure
	4.2 Analysis

	5 Discussion
	6 Related Work
	7 Summary and Future Work
	References

	A Secure Submission Systemfor Online Whistleblowing Platforms
	1 Introduction
	2 Assumptions and Threats in Our Scope
	3 System Architecture
	3.1 Disclosure Preparation
	3.2 Decryption
	3.3 Software Dissemination

	4 Security Properties
	5 Implementation
	6 Ciphertext Aggregation Scheme
	7 Conclusions
	References

	Securing Anonymous Communication Channels underthe Selective DoS Attack
	1 Introduction
	2 Background
	2.1 Tor Network
	2.2 Selective Denial of Service in Tor
	2.3 ThreatModel

	3 Detection Algorithm
	3.1 First Phase
	3.2 Second Phase

	4 Security Analysis
	4.1 False Error Rates
	4.2 Tuning Parameters

	5 Experimental Evaluation
	5.1 Simulation Results
	5.2 Real-World Experiment

	6 Related Work
	7 Conclusion
	References

	Private Data Retrieval
	PIRMAP: Efficient Private Information Retrievalfor MapReduce
	1 Introduction
	2 Problem Statement
	3 Related Work Analysis
	4 PIRMAP
	4.1 PIRMAP Specification
	4.2 Encryption Scheme
	4.3 Privacy Analysis

	5 Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Avoiding Theoretical Optimality to Efficientlyand Privately Retrieve Security Updates
	1 Introduction
	2 Software Updaters
	3 Threat Model
	4 Architectural Overview
	5 Evaluation
	5.1 Mirror XOR Microbenchmarks
	5.2 The Impact of Block Size on Efficiency
	5.3 Choosing a Block Size to Optimize Goodput
	5.4 Controlled Macrobenchmarks
	5.5 Deployment

	6 Related Work
	7 Conclusion
	References

	Posters
	Three-Factor User Authentication MethodUsing Biometrics Challenge Response
	References

	Synthetic Logs Generatorfor Fraud Detection in Mobile Transfer Services
	References

	Onions for Sale: Putting Privacy on the Market
	References

	Searchable Encryption Supporting GeneralBoolean Expression Queries
	Reference

	A Privacy Preserving E-Payment Architecture
	Communication Services Empoweredwith a Classical Chaos Based Cryptosystem
	Reference

	Author Index

