
A Hybrid Approach for Business

Environment-Aware Management
of Service-Based Business Processes

Olfa Bouchaala1,2, Samir Tata1, and Mohamed Jmaiel2

1 Insitut Mines-Telecom, TELECOM SudParis, CNRS UMR Samovar, Evry, France
{olfa.bouchaala,samir.tata}@it-sudparis.eu

2 University of Sfax, ReDCAD Laboratory, Tunisia
mohamed.jmaiel@enis.rnu.tn

Abstract. Enterprises struggle to find a balance between adapting their
business processes (BPs) against business environments and keeping com-
petitiveness. Indeed, while the imperative nature of monolithic BPs is too
rigid to adapt them at runtime, the declarative one of the purely rule-
based BPs is very time-consuming. Therefore, in this paper, we focus
on business environment-aware management of service-based business
processes (SBPs) aiming at conciliating imperative and declarative tech-
niques. Our challenge is to develop a hybrid management approach that
(1) preserves standards to describe SBPs, (2) keeps non-dependency to
a specific BP engine and (3) minimizes designers efforts. Based on a se-
mantic modeling, we are able to synthesize a controller, itself modeled
as a BP, connected to the BP to be monitored and configured. Using our
approach does not impact any existing business process management sys-
tem since controllers are BPs that can be deployed and enacted along
with the managed processes.

1 Introduction

Business processes (BPs) represent a key concept for automating enterprises’
activities. As enterprises encounter highly dynamic business environments, there
is a great need for business process management (BPM) at run-time. By dealing
with competitive and constantly changing business environments, enterprises’
policies change frequently. Thus, they need to focus on adapting their processes
from a business environment point of view. The business environment connotes
all factors external to the enterprise and that greatly influence its functioning.
It covers many factors such as economic, social ones (e.g. festive season).

Business environment-aware management (BEAM for short) [1,2,3,4] of BPs
consists in configuring them in order to change their behaviors in reaction to
business environment events (e.g. during a sales promotion, there is a decrease
in clothes prices). There are two types of approaches of BEAM: imperative and
declarative. Declarative approaches are based on ECA-rules [1,5] which are flex-
ible, since they are well adapted for adding, removing and changing rules at

C. Huemer and P. Lops (Eds.): EC-Web 2013, LNBIP 152, pp. 68–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Hybrid Approach for Business Environment-Aware Configuration of BP 69

runtime. Nevertheless, they are inefficient since they are time consuming be-
cause of inference change in the business environment. In addition, they may
not adopt standard notations for BP modeling such as BPMN or BPEL. On the
other hand, imperative approaches consist in hard coding management actions
into the BP. Consequently, they preserve standard notation for BP modeling and
are very efficient, in terms of execution time. Nevertheless, they are too rigid due
to over-specifying processes at design time.

An example depicting an online purchase order process of a clothing store is
represented in Fig. 1. Upon receipt of customer order, the seller checks product
availability. If some of the products are not in stock, the alternative branch ”or-
dering from suppliers” is executed. When all products are available, the choice
of a shipper and the calculation of the initial price of the order are launched. Af-
terwards, the shipping price and the retouch price are computed simultaneously.
The total price is then computed in order to send invoice and deliver the order.
During a sales promotion, a discount rule should be added and the relationships
with the existing rules ought to be established [6]. In addition, they may re-
quire that BPs, to be monitored, are also described in terms of rules rather than
standards such as BPEL and BPMN. On the contrary, imperative approaches
require over-specifying processes by predicting all possible events.

Fig. 1. Purchase order process

Given these limitations, in this paper, we address business environment-aware
management of SBPs that mainly raises the following questions.

– How to conciliate between imperative and declarative techniques in an inte-
grated hybrid approach aiming to strengthen their advantages?

– How to develop a hybrid management approach that (1) preserves industry
standards to describe SBPs, (2) keeps non-dependency to a specific business
process engine and (3) minimizes designers efforts?

In order to address these challenges, our approach models the management of an
SBP as a process connected to it for its monitoring and configuration. Monitor-
ing reads properties of services that compose the SBP while configuration alters
values of these properties. Contrary to the imperative approaches, in our ap-
proach, the management process defines several management paths. Therefore,
it can encapsulate different management behaviors. The choice of a management
path is based on events of the business environment which are semantically de-
scribed. Consequently, our approach presents a degree of flexibility inherited
from declarative approaches.

70 O. Bouchaala, S. Tata, and M. Jmaiel

The rest of this paper is organized as follows. Section 2 gives an overview
of our technique for generating a management process as well as the required
semantic modeling of SBPs, business environments and relationships between
them. Based on this model, section 3 describes an algorithm enabling the man-
agement process construction. Then, section 4 presents the implementation and
proves our concepts. In section 5, we present a literature review of business
environment-aware management approaches. Finally, section 6 summarizes the
main findings of our work and presents future directions.

2 A Hybrid Approach for BEAM of SBPS

2.1 Approach Overview

In our work, we consider that the management of a composition of services of-
fering management operations is realized through the composition of the offered
management operations. The enactments of management operations are trig-
gered by events that are captured from the business environment. The composi-
tion of management operations and the business environment events constitute a
BP that manages the original SBP. Fig. 2 illustrates the purchase order process
and its corresponding generated management process. The management process
uses the management operations to monitor and configure the original SBP.

In fact, in order to take into account the business environment changes into
the managed SBP, we use service properties that are adjusted. Indeed, service
properties allow for the configuration of an implementation with externally set
values. The value for a service property is supplied to the implementation of
the service each time the implementation is executed. In particular, the internal
value of a property can be altered at any time through business management
operations which enable its monitoring and configuration. The monitoring step
reads properties while the configuration one updates them if necessary. When
changing a property value, the corresponding service changes its behavior. For
example, the service ”Compute initial price” of Fig. 2 has a property named
”Discount rate” which can change its behavior by a setter operation when a
sales promotion is triggered. As we already mentioned, when changing a service
behavior, the BP is reconfigured and its behavior is accordingly modified.

Thus, the first step towards the automation of the managing operations com-
position is to identify the semantic concepts of the services properties from the
initial BP. The issue is how to modify these properties and in which order. To
deal with this issue, we adopted a three-phase methodology:

– Phase 1: Events represent the glue between business environments and
SBPs. Hence, events may trigger the update of service properties.

– Phase 2: Service properties may depend on each others. Accordingly, mod-
ifying a service property may engender changes on others depending on it.

– Phase 3: The structure of the initial BP gives an idea on the order of
management operations that modify properties.

A Hybrid Approach for Business Environment-Aware Configuration of BP 71

Consequently, this methodology requires appropriate semantic model. Therefore,
we propose an upper management ontology which correlated with a domain on-
tology represents a declarative description of the company management strategy
against dynamic business environment (section 2.2).

Based on the upper management ontology and the structure of the initial SBP,
we design an algorithm for generating the management process (Section 3).

Fig. 2. Purchase order process with its corresponding management process

2.2 Semantic Modeling of SBPs and Business Environment

As shown in Fig. 3, there are three main actors in BEAM: business environment,
BP and services. The BP has a service composition which is composed of activ-
ities and gateways. Activities are realized by services. Each service has a service
property and management operations. Services interact with the business envi-
ronment. This latter engenders events that trigger management operations
which act in turn on service properties. These three concepts represented in
grey ellipses in Fig. 3 represent the main concepts of the management ontology
at a high level of abstraction.

Fig. 3. Actors in the BEAM

72 O. Bouchaala, S. Tata, and M. Jmaiel

Upper Management Ontology. Services properties, management operations
and business environment events are described against a domain ontology. Such
ontology is defined by domain experts. To facilitate the management process
construction, we define an upper management ontology (Fig. 4). This ontology
represents two main relationships:

– Environment-Service relationship: Events trigger Actions (management
operations) which act on services properties.

– Service-Service relationship: Each service property has services proper-
ties that may depend on it.

Events play a prominent role in BEAM, since they are the glue between situations
in the real world and SBPs. Thus, to be in line with standards, we base events
semantics and definitions on the expressiveness of BPMN 2.0 [7]. Events are used
to model something happening in the process lifetime. They affect the flow of the
process by catching a trigger or throwing a result. Event definitions represent the
semantics of events. In BPMN 2.0, there are 10 event definitions among them
we use: Message, Signal, Timer and Conditional. Timer and Conditional events
are implicitly thrown. When they are activated they wait for a time based or
status based condition respectively to trigger the catch event (e.g. a timer event
definition is used to detect that the promotion time date is reached). Some events
(e.g. Message, Signal) have the capability to carry data (e.g. a Message event
is used to define a Discount rate message in order to carry the discount Rate
information).

The Structure of the Initial SBP. In SBPs, activities are realized by ser-
vices. In this work, a semantic service S is mainly characterized by its property
p, which, being adjusted, changes the service behavior. A service property has a
name, a value and is annotated with a concept from the domain ontology. The
initial SBP is a finite set of nodes representing activities, gateways and possibly
events described using a BP standard (e.g. EPC, BPEL, BPMN, etc). Abstract-
ing SBPs using graphs renders the management process generation possible for
any BP standard language. Thus, SBPs and its corresponding management pro-
cess are modeled using graphs. Each vertex/edge is annotated with a pair in-
dicating the vertex/edge type and the vertex/edge label. As stated earlier, the
available types of vertices depend on the adopted BP standard notation. In this
paper, we consider the BPMN notation which distinguishes between activities
(’a’), gateways (’g’) and events (’e’). There are also different types of BPMN
gateways and events. The activity name, the gateway type and the event type
represent possible vertex labels (e.g. (’a’, ’receive order’), (’g’,’AND-split’), (’e’,
’start event’)). The edge types are deduced from the control dependency graph of
the BPMN process. The control dependency graph of the purchase order process
(Fig. 1) is generated inspiring from [8,9] (Fig. 5).

A Hybrid Approach for Business Environment-Aware Configuration of BP 73

Fig. 4. Purchase order ontology

Fig. 5. Control dependency graph of the purchase order process (1: Receive order, 2:
Check availability, 3: OR-split, 4: Choose supplier, 5: OR-split, 6: Contact supplier 1,
7: Contact supplier 2, 8: OR-join, 9: Receive products, 10: OR-join, 11: AND-split, 12:
Compute initial price, 13: Compute retouch price, 14: Choose shipper, 15: Compute
shipping price, 16: AND-join, 17: Compute total price, 18: Send order and invoice, 19:
Receive delivery notification)

74 O. Bouchaala, S. Tata, and M. Jmaiel

3 Generating Management Process

In the following, we define a management process to handle an SBP during its
execution. We recall that services’ properties frequently change due to business
environment changes. When a new event in the business environment occurs, the
adequate properties should be updated. Therefore, the management process con-
sists in a composition of management operations that read and/or alter services’
properties. At this level, we define a getter and a setter for each property.

The construction of the management solution (composition of management
operations) is performed using semantic descriptions over domain ontology as
well as the structure of the initial BP. Thereby, the construction of the compo-
sition comprises three main phases: (1) constructing sub-processes based on the
Environment-Service relationship, (2) constructing sub-processes based on the
Service-Service relationship and (3) connecting generated sub-processes.

Properties externalize the service behavior. Thus, the first step towards the
automation of the managing operations composition is to capture the semantic
concepts of the services properties from the initial BP. Each service property
can have possible events that trigger the update of its value. Thus, Algorithm 1
is called with p as parameter for building sub-processes relating configuration
operations with events (see section 3.1). Configuring a service property may
engender the update of other properties related to it. Algorithm 2 is called
in turn to build a sub-process connecting management operations with each
other (see section 3.2). Finally, Algorithm 3 is performed to connect resulting
subprocesses based on the structure of the initial SBP (see section 3.3).

3.1 Constructing Sub-processes Based on Environment-Service
Relationship

In this first phase, the issue is to alter a service property based on the Environment-
Service relationship introduced in section 2.2. Indeed, when an event occurs the
corresponding service property is updated according to dependencies between busi-
ness environment events and services. In accordance with the running example,
when a ”Sales promotion” happens, there is a decrease in clothes prices. Subse-
quently, the property named ”Discount Rate” is altered. As stated in section 2.2,
the event ”Sales promotion” is composed of atomic events having event definitions:
DiscountRateMessage and PromotionTimeDate.

In order to create subprocesses aiming at modifying a service property, Algo-
rithm 1 is performed. These subprocesses relate a service management operation
with possible events that can trigger it. Fig. 6(b) is the resulting subprocess for
p=”DiscountRate”. Similarly, with p=”CriteriaList” the subprocess described in
Fig. 6(a) is generated.

The list of possible events as well as their definitions result from calling the
procedure FindEvents(p) that executes the following SPARQL query (Line 1):
”SELECT ?atomicEvent ?eventdefinition WHERE { ?event ns:trigger ?action. ?ac-

tion ns:act-on ?property. ?property rdf:type ns:”+p+”. ?event ns:hasEventstructure

A Hybrid Approach for Business Environment-Aware Configuration of BP 75

?events. ?events ns:composedOf ?atomicEvent. ?atomicEvent ns:hasEventDefinition

?definition. ?definition rdf:type ?eventdefinition.}”.
When an event occurs, the service property p will be altered automatically

using a set operation. A vertex (”a”, ”set(p)”) is added to the vertex-set of the
managing graph MG (Line 3). If the list of possible events that can modify the
property comprises only one event, we add this event to the set of vertices of
MG graph (Line 5). A single edge between the event and the ”set” operation
is also added (Line 6). Otherwise, a node of gateway type labeled ”Event-based
XOR” is added (Line 8). Then, a node for each event and edges relating it to
the gateway as well as the set operation are identified (Line 10, 11, 12).

Algorithm 1. ConstructESR(ServiceProperty p, Managing Graph MG)
Require: Managing Graph MG
Ensure: Managing Graph MG
1: List L1 ←− FindEvents(p)
2: if L1 �= ø then
3: V3(MG)←− V3(MG) ∪ {(”a”, ”set(p)”)}
4: if L1 = {l1} then
5: V3(MG)←− V3(MG) ∪ {(”e”, ”l1”)}
6: E3(MG)←− E3(MG) ∪ {((”e”, ”l1”), (”a”, ”set(p)”))}
7: else
8: V3(MG)←− V3(MG) ∪ {(”g”, ”Event − basedXOR”)}
9: for all l1 ∈ L1 do
10: V3(MG)←− V3(MG) ∪ {(”e”, ”l1”)}
11: E3(MG)←− E3(MG) ∪ {((”g”, ”Event − basedXOR”), (”e”, ”l1”))}
12: E3(MG)←− E3(MG) ∪ {((”e”, ”l1”), (”a”, ”set(p)”))}
13: end for
14: end if
15: end if
16: return MG

3.2 Constructing Sub-processes Based on Service-Service
Relationship

A service property may depend on others. Hence, updating a service property
may engender the modification of others depending on it. Therefore, in this sec-
ond phase, the concern is to properly identify the semantic relationship holding
between service properties. For instance, the service properties named ”Shipping
Price” and ”Retouch price” depend on ”Discount Rate” property (Fig. 4). Thus,
if the property ”Discount Rate” is updated, both ”Shipping price” and ”Retouch
price” properties should be updated. The corresponding resulting subprocess is
depicted in Fig. 6(c).

In order to generate this subprocess, Algorithm 2 explores the different de-
pendency relationships between concepts of services’ properties from the domain
ontology. Two services properties have a relationship if they are related with
”depends-on” relationship in the domain ontology. A SPARQL query is then
sent to the domain ontology to enquire for the sources of the property p :

”SELECT ?sourceType WHERE ?source ns:depends-on ?a. ?a rdf:type ns:”+p+”.

?source rdf:type ?sourceType. ?sourceType rdfs:subClassOf ns:ServiceProperty.”.

76 O. Bouchaala, S. Tata, and M. Jmaiel

The result of this query is performed by calling the procedure
ServiceSourceOfDepends-On(p) (Line 1). If p has properties that depend on it
(Line 2), then the get(p) operation is automatically invoked (Line 3). As a re-
sult, a setter for each property depending on p is defined (Line 4-6). If there
is only one property, then a simple edge links its setter with get(p). Otherwise,
the adequate gateway relating properties setters with get(p) is identified based
on the control dependency graph (Fig. 5). For example, the services ”Compute
retouch price” and ”Compute shipping price” are synchronized according to the
control dependency graph of the purchase order process. Therefore, a gateway
labeled (’g’,’AND-Split) is added. As for a well structured BP, when starting
with a gateway type, we finish by the same (Line 13, 16).

Algorithm 2. ConstructSSR(ServiceProperty p, Managing Graph MG)
Require: Managing Graph MG
Ensure: Managing Graph MG
1: List L2 ←− ServiceSourceOfDepends-On(p)
2: if L2 �= ø then
3: V3(MG)←− V3(MG) ∪ {(”a”, ”get(p)”)}
4: for all l ∈ L2 do
5: V3(MG)←− V3(MG) ∪ {(”a”, ”set(l)”)}
6: end for
7: if L2 = {l2} then
8: E3(MG)←− E3(MG) ∪ {((”a”, ”get(p)”), (”a”, ”set(l2)”))}
9: else
10: String GatewayType=ChooseGateway(L2, p)
11: V3(MG)←− V3(MG) ∪ {(”g”, GatewayType)}
12: E3(MG)←− E3(MG) ∪ {((”a”, ”get(p)”), (”g”, GatewayType))}
13: V3(MG)←− V3(MG) ∪ {(”g”, GatewayType)}
14: for all l2 ∈ L2 do
15: E3(MG)←− E3(MG) ∪ {((”g”, GatewayType), (”a”, ”set(l2)”))}
16: E3(MG)←− E3(MG) ∪ {((”a”, ”set(l2)”), (”g”, GatewayType))}
17: end for
18: end if
19: end if
20: return MG

(a) Result of phase 1
for p=”CriteriaList”

(b) Result of phase 1 for
p=”DiscountRate”

(c) Result of phase 2 for
p=”DiscountRate”

Fig. 6. Result of phase 1 and phase 2

3.3 Connecting Generated Sub-processes

So far, a set of sub-processes are created. Indeed, for each property sub-processes
based on the Environment-Service and/or Service-Service relationship are built.
How to connect their ends? How to determine their order?

A Hybrid Approach for Business Environment-Aware Configuration of BP 77

Resuming with the running example, till now, three sub-processes are built
(see Fig. 6). In order to connect them aiming to generate the whole management
process (Fig. 2), in this phase, we add missing links and gateways based on
the explicit semantic description of the initial BP. Doing so, we adopted the
following steps: (1) identifying management process ends, (2) capturing their
corresponding in the initial BP, (3) determining control dependencies for each
activity in order to add corresponding gateways and (4) organizing results based
on the control flow of the initial BP.

Algorithm 3 formalizes these steps as follows. The first step consists in find-
ing nodes having no targets (set operations) and nodes having no sources (get
operations) (Line 2). The second step is to identify nodes corresponding to these
activities having p as property in the process graph (Line 3). Afterwards, the
control dependency of each node is determined (Line 5). Control dependencies
for each node are then compared in order to identify the existence or not of
control dependency between subprocesses (Line 12-16). Then, with respect to
control-flow relations between activities in the process graph, the subprocesses
are organized and control flow edges are added to the managing graph.

As a final step, nodes which have no sources are linked to the start event
(Line 19, 20). In addition, nodes having no targets are connected to the end
event (Line 22, 23).

Algorithm 3. ConnectSP(Process Graph PG, Managing Graph MG)
Require: Managing Graph MG, Process Graph PG
Ensure: Managing Graph MG
1: for all v ∈ V3(MG) do
2: if (S(v) = ∅ ∧MG.τ3(v) =′ a′) ∨ (T (v) = ∅ ∧MG.τ3(v) =′ a′) then
3: Find v1 in V1(PG) such that v1.p.concept = MG.θ3(v)
4: v2 ←− searchControldependencies(CDG, v1)
5: if PG.ω1((v1, v2)) = ”commoncontrol− dependency” then
6: V3(MG)←− V3(MG) ∪ {(′g′, ”OR − Split”)}
7: E3(MG)←− E3(MG) ∪ {((′g′, ”OR − Split”), PG.θ1(v1)}
8: end if
9: Map←− Map ∪ (v1, v2)
10: end if
11: end for
12: if

⋂{Map(i)} = ∅ then
13: V3(MG)←− V3(MG) ∪ {(′g′, ”OR − Join”)}
14: E3(MG)←− E3(MG) ∪ {PG.θ1(v1), (

′g′, ”OR − Join”)}
15: E3(MG)←− E3(MG) ∪ {(′g′, ”OR− Split”), (′g′, ”OR − Join”)}
16: end if
17: V3(MG)←− V3(MG) ∪ {((”e”, ”Startevent”), (”e”, ”Endevent”))}
18: for all v ∈ V3(MG) do
19: if S(v) = ∅ then
20: E3(MG)←− E3(MG) ∪ {((”e”, ”Startevent”),MG.θ3(v))}
21: end if
22: if T (v) = ∅ then
23: E3(MG)←− E3(MG) ∪ {(MG.θ3(v), (”e”, ”Endevent”))}
24: end if
25: end for
26: return MG

78 O. Bouchaala, S. Tata, and M. Jmaiel

4 Implementation

As a proof of concept, we have implemented a business environment-aware man-
agement framework called BEAM4SBP. BEAM4SBP is a java library that in-
tends to generate a management process connected to an initial business process
allowing for its monitoring and configuration. The architecture and implementa-
tion details about BEAM4SBP can be found at: http://www-inf.int-evry.fr/
SIMBAD/tools/BEAM4SBP.

5 Related Work

As business environment changes keep increasing, enterprises are always seeking
for a balanced solution to manage their processes. However, most research has fo-
cused on efficiency or flexibility using either imperative or declarative techniques.
Therefore, different approaches [2,10,3,4] try to integrate these two techniques
in a joint approach by separating business logic (described by Business rules)
and process logic (described by imperative BP).

Charfi et al. [11] focus on Aspect Oriented Programming in order to integrate
Business rules and the process logic at run-time. Indeed, the business rules are
proposed to be implemented in an aspect-oriented extension of BPEL called
AO4BPEL. AO4BPEL is used to weave the adaptation aspects into the pro-
cess at run-time. Although they preserve BP standards, the weaving phase can
strongly limit the process efficiency at run-time since it can raises issues on
maintainability and transformation. On the contrary, our management process
is generated at deployment time and hence at run-time the managing process is
connected to the managed process creating an imperative and efficient process.

Other approaches, such as [2] and [10], address management issue by process
variants. When modeling process and their variants, one has to decide which
control flow alternatives are variant-specific and which ones are common for
all process variants. However, these process variants ought to be configured at
configuration time which leads to a static instance of the process model at run-
time. While in our case, the values of services properties are altered at run-time
taking into account changes in the business environment.

Authors in [10], present an adaptation of BPEL language called VxBPEL.
They emphasize on the lack of flexibility and variability when deploying BPEL
processes. Thus, they propose to extend BPEL language by adding Variation

Points and Variants. The former represents the places where the process can
be configured, while the latter defines the alternative steps of the process that
can be used. In this work, the variability is focused on BP aspects written in
VxBPEL language. The designers should consider this extension and add their
variation when designing the BP. However, in our work, variability are integrated
in services and the process designer will not re-write its process.

Ouyang et al. [3] introduce an ECA-based control-rule formalism to modu-
larize the monolithic BPEL process structure. Only one classification of rules is
defined that handle the control flow part of the composition linking activities
together. In this work, the designer should also take into account the defined
ECA-control rule and specify its process accordingly.

http://www-inf.int-evry.fr/SIMBAD/tools/BEAM4SBP
http://www-inf.int-evry.fr/SIMBAD/tools/BEAM4SBP

A Hybrid Approach for Business Environment-Aware Configuration of BP 79

6 Conclusion

In this paper, we proposed a novel hybrid approach for managing SBPs against
highly dynamic business environments. This approach conciliate between imper-
ative and declarative techniques while addressing the following issues: preserving
standards for describing SBPs, minimizing designers efforts and non-dependency
to a specific Business process engine. Our approach consists in generating, at
deployment time, a management process for an initial SBP connected to it al-
lowing its monitoring and configuring. The management process generation is
performed thanks to a semantic model. This semantic model involves an upper
management ontology, describing relationship between SBPs and business envi-
ronments, and an explicit semantic description of the initial BP. This latter is
based on identifying control dependencies to facilitate the organization of the
whole management process.

However, data dependencies are important in turn to identify other aspects
when creating the management process. Thereby, we are working on explicitly
defining semantic data dependencies between inputs, outputs and properties
which can include other service properties relationships such as mutuality and
exclusivity. Hence, as part of our short term perspective, we foresee to detail
more the service properties relationships in the upper management ontology. In
addition, at this level, our approach involves only getters and setters as managing
operations. Thus, we plan to specify a composition for managing operations given
by the service provider.

References

1. Boukhebouze, M., Amghar, Y., Benharkat, A.-N., Maamar, Z.: A rule-based mod-
eling for the description of flexible and self-healing business processes. In: Grund-
spenkis, J., Morzy, T., Vossen, G. (eds.) ADBIS 2009. LNCS, vol. 5739, pp. 15–27.
Springer, Heidelberg (2009)

2. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Rosa, M.L.: Config-
urable workflow models. Int. J. Cooperative Inf. Syst. 17(2), 177–221 (2008)

3. Ouyang, B., Zhong, F., Liu, H.: An eca-based control-rule formalism for the bpel
process modularization. Procedia Environmental Sciences 11(1), 511–517 (2011)

4. Gong, Y., Janssen, M.: Creating dynamic business processes using semantic web
services and business rules. In: ICEGOV, pp. 249–258 (2011)

5. Weigand, H., van den Heuvel, W.J., Hiel, M.: Business policy compliance in service-
oriented systems. Inf. Syst. 36(4), 791–807 (2011)

6. Boukhebouze, M., Amghar, Y., Benharkat, A.N., Maamar, Z.: Towards an ap-
proach for estimating impact of changes on business processes. In: CEC (2009)

7. Business process model and notation 2.0, http://www.omg.org/spec/BPMN/2.0/
8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)
9. Mao, C.: Slicing web service-based software. In: SOCA, pp. 1–8 (2009)

10. Koning, M., Ai Sun, C., Sinnema, M., Avgeriou, P.: Vxbpel: Supporting variability
for web services in bpel. Information & Software Technology 51(2), 258–269 (2009)

11. Charfi, A., Dinkelaker, T., Mezini, M.: A plug-in architecture for self-adaptive web
service compositions. In: ICWS, pp. 35–42 (2009)

http://www.omg.org/spec/BPMN/2.0/

	A Hybrid Approach for Business
Environment-Aware Management
of Service-Based Business Processes

	1 Introduction
	2 A Hybrid Approach for BEAM of SBPS
	2.1 Approach Overview
	2.2 Semantic Modeling of SBPs and Business Environment

	3 Generating Management Process
	3.1 Constructing Sub-processes Based on Environment-Service Relationship
	3.2 Constructing Sub-processes Based on Service-Service
	3.3 Connecting Generated Sub-processes

	4 Implementation
	5 Related Work
	6 Conclusion
	References

