
Semi-automated Structural Adaptation

of Advanced E-Commerce Ontologies

Marek Dudáš1, Vojtěch Svátek1, László Török2,
Ondřej Zamazal1, Benedicto Rodriguez-Castro2, and Martin Hepp2

1 University of Economics Prague, Nám. W. Churchilla 4, 13067 Praha 3, Czech Rep.
{xdudm12,svatek,ondrej.zamazal}@vse.cz

2 Univ.der Bundeswehr Munich, W.-Heisenberg-Weg 39, 85579 Neubiberg, Germany
{laszlo.toeroek,bene.rodriguez,martin.hepp}@unibw.de

Abstract. Most ontologies used in e-commerce are nowadays taxonomies
with simple structure and loose semantics. One exception is the OPDM
collection of ontologies, which express rich information about product cat-
egories and their parameters for a number of domains. Yet, having been
created by different designers and with specific bias, such ontologies could
still benefit from semi-automatic post-processing. We demonstrate how
the versatile PatOMat framework for pattern-based ontology transforma-
tion can be exploited for suppressing incoherence within the collection and
for adapting the ontologies for an unforeseen purpose.

Keywords: ontology, e-commerce, GoodRelations, transformation, on-
tology pattern, linked data.

1 Introduction

The idea that well-designed, structurally rich ontologies would allow to partially
automate e-commerce operations has been around for years [1]. Nevertheless,
even nowadays, most ontologies exploited in this field are plain taxonomies with
imprecise semantics. Proposals for sophisticated modeling remain at the level of
academic prototypes, or, at most, are used in closed B2B settings [5].

The GoodRelations (GR) ontology [3] has been conceived, as an attempt to
balance expressiveness and practical usability, with size comparable to popular
linked data vocabularies1, OWL ontology language2 expressivity and stress on
favorable learning curve thanks to a cookbook with a number of recipes.3 As
‘vertical’ extensions to GR, ontologies for specific product/service categories
then started to be developed, most recently within the Ontology-Based Product
Data Management (OPDM) project.4 This family of ontologies already enjoyed

1 http://lov.okfn.org/dataset/lov/
2 http://www.w3.org/TR/owl2-overview/
3 http://wiki.goodrelations-vocabulary.org/Cookbook
4 http://www.opdm-project.org/

C. Huemer and P. Lops (Eds.): EC-Web 2013, LNBIP 152, pp. 51–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://lov.okfn.org/dataset/lov/
http://www.w3.org/TR/owl2-overview/
http://wiki.goodrelations-vocabulary.org/Cookbook
http://www.opdm-project.org/

52 M. Dudáš et al.

industrial adoption, such as the car sales ontology used by a major automotive
manufacturer.5

In this paper we focus on two aspects of such product ontologies for which
further enhancement is possible. First, the rapid pace of creation of the on-
tologies and involvement of multiple designers in parallel occasionally leads to
incoherence in modeling patterns and naming conventions, both within a single
ontology and across a set of them. Second, some of their features are compro-
mises between the best practices for publishing linked data [2] and somewhat
different requirements imposed by the e-commerce and web engineering worlds,
given they are to be used in direct integration with web-based product catalogs.
Therefore they need to be adapted in order to be used in a ‘canonical’ linked
data setting.

As either kind of structural adaptation potentially involves a wide scope of
restructuring and renaming operations, it can benefit from application of a user-
friendly ontology transformation framework. Such framework has been recently
developed under the name of PatOMat [6,8]. In the rest of the paper we first
describe the material, i.e., the GoodRelations ontology and the product ontolo-
gies based on it (Section 2). Then we present the incoherence problems of both
types discovered in the product ontologies (Section 3). Next, the principles of
the PatOMat framework and its user interfaces are briefly reviewed (Section 4),
and its application on the OPDM ontologies is described (Section 5). Finally,
the paper is wrapped up (Section 6).

2 GoodRelations and Product Ontologies

GoodRelations (further GR) is a generic ontology for e-commerce, which offers
conceptual elements to capture facts that are most relevant for exchanging arbi-
trary goods and services. The core model revolves around the abstraction that
an agent offers to transfer certain rights related to a product or service [3]. This
model is independent of a particular e-commerce domain, since the agent can
be any commercial entity making the offer, and rights transferring can range
from simple sale to rental or leasing. GR includes generic conceptual elements
for products and services and their properties (including prices, delivery or war-
ranty conditions etc.), but no domain-specific product classes or taxonomies.

A premier use case for GR is adding semantic annotation to of e-commerce
web sites. Aside the website-level application, there are also domain-specific ex-
tensions of GR that can be used within e-commerce business information sys-
tems as a common data schema that all software services support. Product data
available in many systems is often unstructured or incomplete. As sophisticated
automated business processes require precise, highly structured data, they are
likely to benefit from ontologies capturing data about products from particular
domains. OPDM ontologies, designed to fulfil this need, extend a subset of GR:
domain-specific product classes are subclasses of gr:ProductOrService, product
properties are subproperties of gr:quantitativeProductOrServiceProperty

5 http://www.w3.org/2001/sw/sweo/public/UseCases/Volkswagen/

http://www.w3.org/2001/sw/sweo/public/UseCases/Volkswagen/

Semi-automated Structural Adaptation 53

or its ‘quantitative’ or ‘datatype’ counterparts,6 and a few generic properties
such as color, dimension or weight are directly reused from the GR ontology.
The ontologies are self-contained, and capture the most frequently occurring
properties of each particular product type.

3 Incoherence Problems in OPDM Ontologies

3.1 Incoherence Types Considered

When an OWL ontology is being developed, there is often more than one op-
tion how to model a specific concept or structure, due to high expressiveness of
the language. Modeling incoherence may thus arise when such modeling options
differ for concepts/structure of similar nature. The fact that OPDM ontologies
are all grafted upon the GR ontology somewhat alleviates this problem. Never-
theless, there is still space for incoherence; both at structural level, e.g., using a
datatype property instead of object property, or at the level of naming conven-
tions, such as arbitrarily switching between synonymous lexical constructs.

Another way of incoherence classification is according to the situation in which
a particular part of an ontology is considered ‘incoherent’. Due to the large number
of OPDM ontologies and involvement of multiple designers, intrinsic incoherence
may easily occur, which is a term we suggest for unintentional heterogeneousmod-
eling occurring either within a single ontology or within a collection of ontologies
typically presented together (such as the OPDM collection). On the other hand, if
the ontologies are to be used outside the original context, it is likely that one will
run into what we call export-based extrinsic incoherence. Finally, we could also
consider import-based extrinsic incoherence, which occurs when legacy ontologies
have to be adapted to a ‘canonical’ modeling style (here, the style pre-supposed
by GR).7 In the rest of this section we discuss examples8 of different types of in-
coherence in the context of OPDM ontologies.9

3.2 Intrinsinc Incoherence

Intrinsic structural incoherence. One example of intrinsic structural incoherence
is related to modeling the support of various media data types (e.g., GIF, JPEG,
AVI etc.) available in an electronic device. There are several ontologies in the
OPDM project that cover the described concept (ontologies of computers, cam-
eras, bluray players, portable media players etc.), and as the OPDM ontologies

6 We omit their full names for typographic reasons – excessive length.
7 Pre-cursor work on resolving import-based extrinsic incoherence (though not labeled
by this term) at a generic level – with ‘canonical’ modeling defined by ontology content
design patterns – is described in [9].

8 A longer version of this article with more examples is available athttp://nb.vse.cz/
svabo/patomat/tp/opdm/ecweb13su.pdf.

9 In all examples, local entities from the individual OPDMontologies are without prefix,
while the GR ontology entities are presented with their usual gr prefix.

http://nb.vse.cz/~svabo/patomat/tp/opdm/ecweb13su.pdf
http://nb.vse.cz/~svabo/patomat/tp/opdm/ecweb13su.pdf

54 M. Dudáš et al.

are not modular and are designed to be used independently, the same concept
has been designed separately in each ontology. In most of the ontologies there
is a class MediaFormat, with instances JPEG, GIF, AVI etc., as well as an ob-
ject property playbackFormat, which has the class MediaType as its range. In
one of the ontologies, however, a different approach is used: there is a boolean
data property for each of the media data types. So, for example, the fact that a
hypothetical portable media player supports AVI would be expressed as player
playbackFormat AVI in the former case and as player AVI true in the latter.
We will refer to this incoherence pattern as to ‘boolean vs. instance’.

3.3 Extrinsic Structural Incoherence

An example of extrinsic structural incoherence comes from considerations of
using OPDM ontologies in an ‘orthodox’ linked data environment. A very rele-
vant opportunity for advanced product ontologies is, for example, their use by
an application for public contracts management. The Public Contracts Ontol-
ogy10 designed within the EU LOD2 project, as well as the processing tools
that provision RDF data according to this ontology [4], strictly adhere to the
linked data principles, which suggest using object properties rather than data
properties.11 Each OPDM ontology is meant to be used independently, outside
the linked data cloud, and barriers for their usage by practitioners (unfamiliar
with semantic web technologies) is lowered as much as possible, hence most of
the properties are datatype properties. This makes them easy to populate with
‘instances’ in the form of literals; however, in the linked data environment, the
benefits of interlinking could not be exploited.

4 PatOMat Framework for Ontology Transformation

The central notion in the PatOMat framework12 is that of transformation pattern
(TP). A TP contains two ontology patterns (the source OP and the target OP)
and the description of transformation between them, called pattern transforma-
tion (PT). The representation of OPs is based on the OWL 2 DL profile, except
that placeholders are allowed in addition to concrete OWL entities. An OP con-
sists of entity declarations (of placeholders and/or concrete entities), axioms and
naming detection patterns (NDP); the last capture the naming aspect of the OP,
which is important for its detection. A PT consists of a set of transformation links
and a set of naming transformation patterns (NTP). Transformation links are
either logical equivalence relationships or extralogical relationships (holding be-
tween two entities of different type, thus also called ‘heterogeneous equivalence’).

10 http://code.google.com/p/public-contracts-ontology/
11 The use of object properties allows for explicitly referring to resources (ontological

instances) from external datasets.
12 [8] provides details about the initial version of the framework, [6] about the user-

oriented tools, and at http://owl.vse.cz:8080/tutorial/ there is a fully-fledged
tutorial for the current version.

http://code.google.com/p/public-contracts-ontology/
http://owl.vse.cz:8080/tutorial/

Semi-automated Structural Adaptation 55

Naming transformation patterns serve for generating names for target entities.
Naming patterns range from passive naming operations, such as detection of a
head noun for a noun phrase, to active naming operations, such as derivation of
verb form of a noun. Syntactically, the patterns are expressed according to an
XML schema13 However, the patterns needn’t be edited manually, as a graphical
editor is available for their authoring.14 The framework prototype implementa-
tion is available either as a Java library or as three RESTful services.15 The Java
library is used by the GUIPOT tool16 and other transformation GUIs.

The framework has already been used in multiple use cases, such as:

– Adaptation of the style of an ontology to another one to which it is to be
matched [8]

– Adaptation of the style of a legacy ontology to a best-practice content pattern
being imported into it [9]

– Repair use cases, including downgrading of an ontology to a less expressive
dialect of OWL [7] or entity naming canonicalization [10].

5 Pattern-Based Transformation of OPDM Ontologies

5.1 Selected Transformation in Depth

Transformation patterns were designed for all of the previously described inco-
herence cases. One of them17 is presented in this section in detail.

Transformation for ‘boolean vs. instance’ This incoherence case requires a trans-
formation of boolean data properties to instances of a new MediaFormat class,
while also adding a property such as playbackFormat, whose range is this class.
It can be achieved using the transformation pattern in Fig. 1.18 The source
pattern thereof fits all boolean (as specified in the first axiom) subproperties
of gr:datatypeProductOrServiceProperty (specified in the second axiom), of
which those representing media types have to be selected (currently, manually).
The rest of the transformation is performed automatically according to the tar-
get ontology pattern and the pattern transformation parts of the transformation
pattern, as shown below. The role of the two axioms concerning annotations (la-
bels and comments) is to transfer them to the target transformed ontology. The
purpose of the last axiom in the source pattern is to keep the information about
the domain of the transformed data property (i.e., some product class) in the
placeholder ?pc. It will be used to set the domain of the newly created object
property playbackFormat, whose range will be the newly created MediaFormat

13 http://nb.vse.cz/~svabo/patomat/tp/tp-schema.xsd
14 http://owl.vse.cz:8080/tpe/
15 All accessible via the web interface at http://owl.vse.cz:8080/.
16 http://owl.vse.cz:8080/GUIPOT/
17 All patterns are in full extent at http://nb.vse.cz/~svabo/patomat/tp/opdm/.
18 The | symbols are not part of the code: they only mark elements that are referred

to in the explanatory text.

http://nb.vse.cz/~svabo/patomat/tp/tp-schema.xsd
http://owl.vse.cz:8080/tpe/
http://owl.vse.cz:8080/
http://owl.vse.cz:8080/GUIPOT/
http://nb.vse.cz/~svabo/patomat/tp/opdm/

56 M. Dudáš et al.

<op1>

<entity_declarations>

<placeholder type="DatatypeProperty">?m</placeholder>

<placeholder type="Literal">?a1</placeholder>

<placeholder type="Literal">?a2</placeholder>

<placeholder type="Class">?pc</placeholder>

<entity type="Class">&xsd;boolean</entity>

<entity type="DatatypeProperty">

&gr;datatypeProductOrServiceProperty</entity>

<entity type="AnnotationProperty">&rdfs;label</entity>

<entity type="AnnotationProperty">&rdfs;comment</entity>

</entity_declarations>

<axioms>

| <axiom>DataProperty: ?m Range: boolean</axiom>

| <axiom>DataProperty: ?m SubPropertyOf:

datatypeProductOrServiceProperty</axiom>

| <axiom>DataProperty: ?m Annotations: label ?a1</axiom>

| <axiom>DataProperty: ?m Annotations: comment ?a2</axiom>

| <axiom>DataProperty: ?m Domain: ?pc</axiom>

</axioms>

</op1>

<op2>

<entity_declarations>

<placeholder type="Individual">?OP2_m</placeholder>

<placeholder type="Class">?OP2_C</placeholder>

<placeholder type="ObjectProperty">?OP2_p</placeholder>

<placeholder type="Literal">?OP2_a1</placeholder>

<placeholder type="Literal">?OP2_a2</placeholder>

<placeholder type="Class">?OP2_pc</placeholder>

<entity type="ObjectProperty">

&gr;qualitativeProductOrServiceProperty</entity>

</entity_declarations>

<axioms>

| <axiom>Individual: ?OP2_m Types: ?OP2_C</axiom>

<axiom>ObjectProperty: ?OP2_p SubPropertyOf:

qualitativeProductOrServiceProperty</axiom>

<axiom>Individual: ?OP2_m Annotations: label ?OP2_a1</axiom>

<axiom>Individual: ?OP2_m Annotations: comment ?OP2_a2</axiom>

<axiom>ObjectProperty: ?OP2_p Domain: ?OP2_pc</axiom>

<axiom>ObjectProperty: ?OP2_p Range: ?OP2_C</axiom>

</axioms>

</op2>

<pt>

<eqHet op1="?m" op2="?OP2_m"/> <eq op1="?a1" op2="?OP2_a1" />

<eq op1="?a2" op2="?OP2_a2" /> <eq op1="?pc" op2="?OP2_pc" />

<ntp entity="?OP2_C">MediaFormat</ntp>

<ntp entity="?OP2_p">playbackFormat</ntp>

<ntp entity="?OP2_a1">"+?a1+"</ntp>

<ntp entity="?OP2_a2">"+?a2+"</ntp>

</pt>

Fig. 1. Pattern for transforming (media type) boolean properties to instances

Semi-automated Structural Adaptation 57

class; its instances arise from the transformed data properties. All the datatype
properties ?m selected in the previous step are transformed into instances ?OP2 m

of class MediaFormat, which is created as a new entity. The selected properties ?m
are removed from the ontology and replaced with instances ?OP2 m. Axioms de-
scribing ?m are also removed except labels and comments (as mentioned above),
which are connected to the newly created instances ?OP2 m. The playbackFormat
object property (represented by placeholder ?OP2 p) is created, its domain set
to ?OP2 pc – the domain of the transformed data property – and its range to
?OP2 C – the newly created MediaClass.

5.2 Transformation Pattern Application Using GUIPOT

As one of the user-oriented add-ons [6] to the PatOMat framework we devel-
oped the Graphical User Interface for Pattern-based Ontology Transformation
(GUIPOT), as means for comfortable application of transformation patterns.
GUIPOT is a plugin for Protégé.

After loading a transformation pattern it displays a list of pattern instances of
the source OP detected in the given ontology: see the upper-center of the screen
in Fig. 2, for an application of the ‘boolean vs. instance’ pattern. By selecting
one or more instances, the detected entities are highlighted in the hierarchical
view of the ontology in the left part of the plugin window. The right part of
the window shows the ontology after the transformation with entities that were
affected (changed or added) by the transformation marked with red arrows.

Fig. 2. Processing of ‘boolean vs. instance’ pattern by GUIPOT

58 M. Dudáš et al.

6 Conclusions and Future Work

The presented research leverages on several years of research on both e-commerce
ontology principles and ontology transformation techniques. It aims to provide
collections of product ontologies with better internal coherence as well as external
reusability, in particular, in the linked data world.

In the future, we also plan to address import-based extrinsic incoherence, i.e.,
adaptation of various legacy ontologies to GR-based modeling. Presumably, the
design of ontologies for novel domains of products and services (such as the
building industry, which plays an important role in public procurement) will
also bring into light novel kinds of pattern, thus leading to enrichment of the
transformation pattern library. The proliferation of specific transformation pat-
terns will also need to be backed by a user-friendly pattern portal integrated
with the mainstream ontology pattern portal.19

References

1. Ding, Y., Fensel, D., Klein, M., Omelayenko, B., Schulten, E.: The role of ontologies
in e-Commerce. In: Handbook on Ontologies. Springer (2004)

2. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space,
1st edn. Morgan & Claypool (2011)

3. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI),
vol. 5268, pp. 329–346. Springer, Heidelberg (2008)

4. Kĺımek, J., Knap, T., Mynarz, J., Nečaský, M., Svátek, V.: Framework for Creating
Linked Data in the Domain of Public Sector Contracts. Deliverable 9a.1.1 of the
EU FP7 LOD2 project, http://lod2.eu/Deliverable/D9a.1.1.html

5. Lee, T., Lee, I.-H., Lee, S., Lee, S.-G.,Kim,D., Chun, J., Lee,H., Shim, J.: Building an
operational product ontology system. El. Commerce Res. and App. 5, 16–28 (2006)

6. Šváb-Zamazal, O., Dudáš, M., Svátek, V.: User-Friendly Pattern-Based Transfor-
mation of OWL Ontologies. In: ten Teije, A., Völker, J., Handschuh, S., Stucken-
schmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.)
EKAW 2012. LNCS, vol. 7603, pp. 426–429. Springer, Heidelberg (2012)

7. Šváb-Zamazal, O., Schlicht, A., Stuckenschmidt, H., Svátek, V.: Constructs Replac-
ing and Complexity Downgrading via a Generic OWL Ontology Transformation
Framework. In: vanEmdeBoas, P.,Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack,
H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 528–539. Springer, Heidelberg (2013)

8. Šváb-Zamazal, O., Svátek, V., Iannone, L.: Pattern-Based Ontology Transforma-
tion Service Exploiting OPPL and OWL-API. In: Cimiano, P., Pinto, H.S. (eds.)
EKAW 2010. LNCS, vol. 6317, pp. 105–119. Springer, Heidelberg (2010)

9. Svátek, V., Šváb-Zamazal, O., Vacura, M.: Adapting Ontologies to Content
Patterns using Transformation Patterns. In: Workshop on Ontology Patterns
(WOP 2010) collocated with ISWC 2010, Shanghai, China, November 8 (2010),
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-671/

10. Zamazal, O., Bühmann, L., Svátek, V.: Checking and Repairing Ontological Nam-
ing Patterns using ORE and PatOMat. In: WoDOOM 2013, Workshop at ESWC
2013 (2013)

19 http://ontologydesignpatterns.org

http://lod2.eu/Deliverable/D9a.1.1.html
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-671/
http://ontologydesignpatterns.org

	Semi-automated Structural Adaptationof Advanced E-Commerce Ontologies
	1 Introduction
	2 GoodRelations and Product Ontologies
	3 Incoherence Problems in OPDM Ontologies
	3.1 Incoherence Types Considered
	3.2 Intrinsinc Incoherence
	3.3 Extrinsic Structural Incoherence

	4 PatOMat Framework for Ontology Transformation
	5 Pattern-Based Transformation of OPDM Ontologies
	5.1 Selected Transformation in Depth
	5.2 Transformation Pattern Application Using GUIPOT

	6 Conclusions and Future Work
	References

