
DIESECT : A DIstributed Environment
for Simulating E-commerce ContracT s

Damian Wood, Özgür Kafalı, and Kostas Stathis

Department of Computer Science
Royal Holloway, University of London

Egham, TW20 0EX, UK
{damian.wood.2010,ozgur.kafali,kostas.stathis}@cs.rhul.ac.uk

Abstract. We study the development of a distributed, agent-based, simulation
environment where autonomous agents execute e-commerce contracts. We present
a multi-agent architecture in which contracts are represented as a set of commit-
ments that an agent must be capable of monitoring and reason with in order to
be able to verify that the contract is not violated during interaction. We employ
the JADE agent platform to build the multi-agent simulation infrastructure, and
the Reactive Event Calculus to provide agent reasoning for monitoring and ver-
ification of contracts. We then experimentally evaluate the performance of our
system by analysing the time and memory requirements as the number of agents
increases, and by looking whether the behaviours of agents have any significant
effect on the system’s overall performance.

Keywords: Agent Technology for E-Commerce, Contracts and Commitments,
Distributed Simulation.

1 Introduction

Contracts are normally construed as agreements describing the terms of how two or
more parties should act in exchanges between or among them. When a customer wants
to buy a book from an online store, the terms of the contract describe how the payment
should be done as well as the deadline for the delivery of the book. Unless the customer
pays, the contract is not binding for the store. After customer payment the contract is
fulfilled - if the store delivers the book on time, or violated - if the store delivers late.

In open environments where autonomous agents collaborate to do business together,
contracts describe how agents should act to fulfil their duties. The fulfillment of con-
tracts depends on how agents behave and communicate in the environment. Previous
work has considered contract execution either in a centralised manner where a central
authority manages contract monitoring for all agents, or without taking into account
the effect of agent autonomy for contract outcomes. There has been a plethora of work
in the literature for formal modeling of electronic contracts: preparation, negotiation,
monitoring [1,2,3,4,5]. Among others, commitments are a widely accepted formalisa-
tion of representing contracts in agent-based environments [6]. A commitment binds
two agents (e.g. a customer and a store) with a property (e.g. deliver), in which one
agent is committed to the other (e.g. by paying) for bringing about the property. For the
above example a commitment is represented as:

C. Huemer and P. Lops (Eds.): EC-Web 2013, LNBIP 152, pp. 39–50, 2013.
© Springer-Verlag Berlin Heidelberg 2013

40 D. Wood, Ö. Kafalı, and K. Stathis

Cc
store,customer(pay, deliver)

That is, the store is committed to deliver the book after payment is completed. The
commitment is in conditional state (denoted with the superscript c) until the customer
makes the payment. As a result, to effectively monitor and verify contracts amounts to
effectively monitoring and verifying commitments.

There has been considerable effort to provide several logic-based tools for monitor-
ing and verification of commitments [7,8,9]. While these tools allow significant results
to be achieved in terms of contract execution, e.g., detect violations, diagnose the cause
of exceptions, predict future problems, they normally assume the existence of a trace
representing the agents’ interactions; they are used offline. However, a realistic system
should take into account different agent behaviours as well as environmental effects
online, when considering contract execution.

Our contribution in this work is two-fold: (i) we integrate agent autonomy with con-
tract execution in order to provide a simulation environment for electronic contracts, (ii)
we provide a practical implementation based on the widely-used JADE agent develop-
ment framework and evaluate our system’s performance via experiments. We build upon
previous work with commitments to provide an agent-based distributed environment,
which we call DIESECT , for the simulation of contract executions in e-commerce.
We use the JADE agent platform to build agents, and the Reactive Event Calculus to
provide contract monitoring and verification. Our approach combines the strengths of
object-oriented programming to provide the infrastructure and network operations for
distribution and communication of agents, and logic programming to provide a declar-
ative and efficient way to deal with agent reasoning for contracts. We describe the gen-
eral architecture and the components for DIESECT . Each agent has a partial view of
the environment concerning its own contracts. We use commitments to represent agent
contracts. Our contribution is the integration of agent autonomy with contract execution
accompanied by a practical implementation.

We provide two sets of experiments to evaluate the performance of our system. The
first set is designed to test the system by increasing the number of agents. The second
set focuses on the agent behaviour. We take a fixed number of agents and change the
agents’ behaviours to see whether it has an effect on the system’s performance. We
record the time it takes to complete simulation and the peak memory usage for the
system, and comment on the results.

The rest of the paper is organised as follows. Section 2 reviews relevant background
on JADE, commitments and the Reactive Event Calculus. Section 3 introduces a de-
livery protocol from e-commerce as our running example. Section 4 describes the dis-
tributed multi-agent architecture for simulating contract execution. Section 5 shows the
performance results for our system. Section 6 reviews related work and concludes the
paper.

2 Background

We describe next the background for the infrastructure and main components of our
system, by explaining their main characteristics.

DIESECT : A DIstributed Environment for S imulating E -commerce ContracT s 41

2.1 JADE Agent Platform

The JADE1 agent platform is a distributed Java-based middleware for developing multi-
agent systems [10]. We have chosen JADE to develop our agents since it is the most
widely used agent platform that provides reliable agent communication and documen-
tation support. JADE consists of a runtime environment, a library of classes which to
develop agents, and a set of graphical tools to allow agent administration and moni-
toring. JADE agents use the FIPA2 specification to communicate with each other via
messages. The platform provides a set of behaviours to describe agent tasks, which
the developers can extend to implement their own agent behaviours. It also provides
a yellow page service for publish & subscribe type services, allows mobile agents to
be developed for J2ME, and has graphical tools for debugging agents during run-time
execution. JADE allows agents to be distributed over a network via containers, pos-
sibly located in a separate physical machine and holding agents connected to a main
container where JADE is initiated from.

2.2 Commitments

A contract describes how the participants should act in a business dealing. We repre-
sent contracts with commitments between two agents: the debtor agent commits to the
creditor agent about a specific property [6]. Definition 1 defines a commitment for-
mally. Below, X and Y denote agents, Ant and Cons are propositions (either atomic
propositions or conjunctions of them).

Definition 1 A commitment CS
X,Y (Ant, Cons) denotes the commitment between the

agents X and Y , where S is the state of the commitment. Four commitment states are
meaningful for our work: conditional, active, fulfilled and violated. The above is a condi-
tional commitment; if the antecedentAnt is satisfied (i.e., becomes true), then the debtor
X becomes committed to the creditor Y for satisfying the consequent Cons, and the
commitment becomes active. If Ant is already True (denoted �), then this is an active
base-level commitment;X is committed to Y for satisfyingCons unconditionally.

We follow the idea and notation of [11] to represent commitments (i.e., every com-
mitment is conditional). A base-level commitment is simply a commitment with its
condition being true. Commitments are live objects; we always consider a commitment
with its state. The commitment states are demonstrated in Fig. 1. Further details on the
use of commitments in multi-agent systems can be found in [6,3,11].

2.3 Reactive Event Calculus

The Reactive Event Calculus (REC) [12,8] is a logic programming tool that extends the
Event Calculus [13] for run-time monitoring, including commitments. When used for
monitoring the states of commitments the REC engine takes as input the following:

1 http://jade.tilab.com/
2 http://www.fipa.org/

http://jade.tilab.com/
http://www.fipa.org/

42 D. Wood, Ö. Kafalı, and K. Stathis

Cc(Q, P)

conditional

Cf (Q, P), P

fulfilled

Ca(Q, P), Q

active

Cv(Q, P), Q, ¬P

violated

Cf (Q, P), Q, P

fulfilled

(a) Conditional

Ca(�, P)

active

Cv(�, P), ¬P

violated

Cf (�, P), P

fulfilled

(b) Base-level

Fig. 1. Commitment states

– a commitment theory that contains the rules on how commitments are manipulated,
e.g., a commitment is fulfilled when its consequent is satisfied within its deadline.
This rule-base is shared amongst all agents. Listing 1 shows part of the implemen-
tation for the commitment theory.

– a protocol description that contains rules describing the consequences of the agents’
actions as well as domain facts, e.g., customer payment makes the commitment for
delivery active. This is agent and domain dependent rule-base; each agent has a
separate protocol description that relates to its own view. For example, a courier
does not know the rules between the customer and the store.

– an event trace that contains the actions performed throughout time, e.g., the cus-
tomer has paid at time 4 , the courier has delivered at time 7. Like protocol descrip-
tions, event traces are also agent-dependent. That is, each agent is aware of only the
events that are related to it, but does not see the events that might take place among
other agents.

Once the REC engine is run with above input, it produces an outcome that demonstrates
the fluents the agent is aware of through time (e.g., states of commitments). A detailed
explanation of how REC manipulates commitment states can be found in [12].

� �

% create as conditional
initiates(E, status(C, conditional), T):- ccreate(E, C, T).

% conditional to active
terminates(E, status(C, conditional), T):- detach(E, C, T).

initiates(E, status(C, active), T):- detach(E, C, T).

detach(E, c(X, Y, property(e(T1, T2), Q), P), T):-
conditional(c(X, Y, property(e(T1, T2), Q), P), T),
T >= T1, T =< T2, initiates(E, Q, T).

� �

Listing 1. Commitment theory in REC

Commitment tracking with REC is extended in [2] to integrate exception handling
behaviour for agents using an exception theory in addition to the above input.

DIESECT : A DIstributed Environment for S imulating E -commerce ContracT s 43

Customer

Bank

Store

Courier

Cc
store,customer(paid, delivered)

Cc
bank,customer(paid, verified)

notify payment

Cc
courier,store(requested, delivered)

deliver

(a) Delivery protocol. (b) REC output.

Fig. 2. E-commerce protocol

3 Running Example

In the sequel we use a delivery protocol [14] from e-commerce to demonstrate our sim-
ulation environment. Figure 2(a) shows the delivery protocol with four parties. In a de-
sired execution, first the customer sends the payment to the bank regarding its purchase
of a book from the store (pay). Then, the bank verifies the payment of the customer
(verify), and informs the store about the payment (notify payment). Upon receiving the
payment, the store requests the delivery of the book from the courier (request). Finally,
the courier delivers the book to the customer (deliver).

� �

% payment
initiates(exec(pay(Customer, Bank, Item)), paid(Item), _).

% verification of payment
initiates(exec(verify(Bank, Customer, Item)), verified(Item), _).

% commitment for payment
create(exec(pay(Customer, Bank, Item)), Bank,

c(Bank, Customer, property(e(Ts, Te), verified(Item))), Ts):-
Te is Ts + 3.

� �

Listing 2. Domain dependent REC rules for the customer

There are three commitments among the parties that regulate their interactions:

– Cc
store,customer (paid, delivered): if the customer pays, the store commits to de-

liver.
– Cc

bank,customer (paid, verified): the customer uses a bank for payment.
– Cc

courier,store (requested, delivered): the store delivers via a courier.

44 D. Wood, Ö. Kafalı, and K. Stathis

Agenti

behaviours

REC engine

Agentj

...

JADE message

Fig. 3. Distributed architecture for contract execution and monitoring

Listing 2 shows the REC rules that describe the interaction between the customer and
the bank. Fig. 2(b) shows the output of REC for a sample trace of the protocol. The
horizontal axis shows the events that happened throughout time, and the vertical axis
demonstrates how fluents (i.e., predicates and commitments) evolve due to the events
happened.

4 Multi-agent Simulation Architecture

DIESECT is a distributed agent-based architecture to simulate e-commerce contracts.
Previous work has paid little attention on environments where agents can track down
their contracts while they autonomously act within the environment and interact with
each other. That is, there are either distributed agent platforms that do not deal with con-
tract execution, or systems that support offline contract monitoring, i.e., given a trace of
agent actions that accounts to a predefined scenario designed prior to execution. Among
others, the most similar work to ours is that of Faci et al. ’s [4]. Their focus is on nor-
mative multi-agent systems where contracts are described by a set of norms, while we
deal with commitment-based protocols. In addition, they provide centralised entities for
monitoring of contracts such as observer, manager, contract store. In contrast, execu-
tion in our system is fully distributed such that each agent monitors and verifies its own
contracts using its partial knowledge of the environment.

Our proposal enables the simulation of distributed contract execution and monitoring
for e-commerce protocols by following two directions: (i) we develop a fully distributed
multi-agent system using JADE and provide agents with distinguished behaviours (e.g.,
strategies) that lead to different contract executions, (ii) we enable agents to reason
on their contacts throughout execution using logic programming. Fig. 3 depicts the
proposed multi-agent architecture. Agents are developed using JADE libraries and com-
bined with logic programming capabilities. The underlying JADE infrastructure en-
ables distributed execution and inter-agent communication (e.g., social aspect) while
the powerful temporal reasoning capability allows the agent to perform reasoning on its

DIESECT : A DIstributed Environment for S imulating E -commerce ContracT s 45

commitments through time (e.g., individual aspect). Different agent behaviours can be
associated with the roles in the protocol, leading to different contract outcomes, as if
the agents have a personality that affect how the agent acts during the protocol (e.g., a
courier that always delivers on time) [15].

Agents in JADE communicate via messages. Messages correspond to executed ac-
tions among agents. For example, when the customer pays for a book, this corresponds
to a message from the customer agent to the bank agent with the content payment. Ac-
tions have consequences in terms of changes in the environment: (i) they cause fluents
to be initiated or terminated, e.g., the payment action causes the fluent paid to be ini-
tiated, (ii) they also caused related commitments to change states, e.g., the payment
action causes the commitment of store to become active since its antecedent is satisfied.
These are handled by the REC reasoner component of an agent. At certain points in
time, the agent may run its REC engine to check the states of its commitments. In order
to do so, the agent creates a trace of events using its message history. Each agent has
a separate REC engine that it can run at any time throughout the execution. Thus, an
agent operates only with partial information that it has gained through messages in the
environment.

� �

<simulation>
<agents>
<customer name="bob" eagerness="0.3" lateness="0.0">
<wanteditems><product name="ipad"/></wanteditems>

</customer>

<store name="ebay" eagerness="0.0" lateness="0.0" bank="hsbc" courier="ups">
<inventory>
<product name="ipad" deliveryCost="5" price="450"/>
<product name="iphone" deliveryCost="5" price="350"/>
</inventory>

</store>

<bank name="hsbc" eagerness="0.0" lateness="0.0"/>

<courier name="ups" eagerness="0.0" lateness="0.2"/>
</agents>

</simulation>
� �

Listing 3. A simulation profile

A simulation can then be run in one of three modes:

– Manual mode: where the user increments the simulation clock and selects what
actions the agents should perform at each timestep. Note that with this mode, we
can simulate what has already been proposed by existing systems, e.g., test specific
execution traces offline that would lead to different contract outcomes.

– Simulation mode: where agents schedule their actions to be executed at a specific
timestep and perform them autonomously according to a customised simulation
profile. A sample profile is given in Listing 3. Note that this mode can be used to
test different agent behaviours online, and see how contract execution is affected.

46 D. Wood, Ö. Kafalı, and K. Stathis

Fig. 4. DIESECT simulation panel

Fig. 5. JADE sniffer agent used in DIESECT

– Silent mode: where the user again initiates the simulation by selecting a profile and
the system carries it out automatically. In this mode, the interface is not shown but
rather text-based statistics are logged after the simulation is finished. We use this
mode to evaluate performance.

DIESECT : A DIstributed Environment for S imulating E -commerce ContracT s 47

The manual and simulation modes provide a graphical demonstration of how the protocol
is executed. Fig. 4 demonstrates this simulation panel after the execution is started. The
current simulation time is displayed at the top left. The user can press the “Forward”
button to advance simulation time. In simulation mode, the user can press the “Run to
End” button to make the simulation cycle through each timestep until the end of it.

The “Actions” panel shows running actions in yellow and completed in green, while
the “Commitments” panel shows active commitments in yellow, fulfilled commitments
in green and violated commitments in red. The status column of the “Commitments”
panel shows the status of the commitment that the agent’sREC engine has determined3.

The sequence diagram shows the ordering of agents’ actions through time. Com-
pleted actions are represented in green text, while running actions are represented with
blue. If operating in manual mode, the user may either click a blue action text on the
sequence diagram to trigger its completion, or double click the action in the top table.
Note that the underlying JADE environment also allows us to utilise the sniffer agent
which helps debug and diagnose certain exceptions regarding the messaging of agents,
see Fig. 5.

5 Experimental Evaluation

We carry out two sets of experiments to test the performance of our agents: (i) with
increasing number of agents, (ii) with different agent behaviours. We run simulations in
silent mode on an Intel Core2 Quad 2.40 GHz computer with 4 GB of memory running
Windows 7 64-bit OS. We repeat each experiment five times and record the average
statistics for (i) the time it takes for the agents to complete the simulation, and (ii) the
peak memory usage of the system.

5.1 Increasing Agents

For the first set of experiments, we gradually increase the number of agents to test how
it affects the system’s overall performance. Fig. 6 shows the performance results for
10 to 140 customer agents with the addition of two store agents, one bank agent and
one courier agent. We record the time it takes in seconds to complete simulation, and
the peak memory usage in megabytes. It can be seen that there is a linear increase for
memory usage, and the time requirements stay within reasonable values for a consid-
erable number of agents executing an e-commerce protocol. Note that these results are
compatible with the performance of REC discussed in [16].

5.2 Different Agent Behaviours

For the second set of experiments, we take 30 customer agents (again with the addition
of other agents as above), and change the simulation profile by assigning different be-
haviours to the agents. Fig. 7 shows the performance results for changing behaviours
of each agent type. It can be seen that there is no significant difference in performance,
and the results are compatible with the previous one with 30 customer agents.

3 The complete implementation with sample simulation profiles for DIESECT can be down-
loaded from http://dice.cs.rhul.ac.uk/article.php?id=7.

http://dice.cs.rhul.ac.uk/article.php?id=7

48 D. Wood, Ö. Kafalı, and K. Stathis

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

Tim
e (

sec
on

ds)

Number of Agents

 150

 200

 250

 300

 350

 400

 20 40 60 80 100 120 140

Me
mo

ry
(M

B)

Number of Agents

Fig. 6. Performance of DIESECT for increasing number of agents. The figure on the left shows
time it takes to complete simulation while the figure on the right shows peak memory usage.

Agent behaviour Time (s) Memory (mb)
Customer eagerness 100% 5.62 218
Customer eagerness 50% 4.63 207
Bank lateness 100% 3.87 208
Bank lateness 50% 4.02 211
Store lateness 100% 3.41 217
Store lateness 50% 4.30 213
Courier lateness 100% 3.98 208
Courier lateness 50% 4.27 210

Fig. 7. Performance of DIESECT for different agent behaviours. The time and memory values
are recorded for full and half eagerness / lateness.

6 Discussion

In this paper, we have presentedDIESECT to provide a distributed simulation environ-
ment for contract execution and monitoring. Contracts have been discussed extensively
in the literature in the context of business workflows [17,1,18], modeling, execution
and exceptions [19,7,2], and ontologies [20]. However, most of these work have either
approached contract monitoring in a centralised manner ignoring the distributed aspect
of open systems where the contents of a contract should be kept private among its par-
ticipants, and thus be managed individually by each agent, or they have failed to the
take into account the relation between agent autonomy and contract outcomes in their
systems. Here, we present a simulation environment where the autonomous behaviour
of an agent may lead to different contract outcomes during execution.

Commitments are proven to be effective in modeling multi-agent interactions [6,3].
In central monitoring systems, tracking the states of individual commitments is an ef-
fective way to detect protocol exceptions [8], since all the interactions of agents are
observable. However, this is not a valid assumption for realistic e-commerce scenarios.
In our system, each agent has forms a partial view of its environment via interacting
with other agents through JADE messages.

DIESECT : A DIstributed Environment for S imulating E -commerce ContracT s 49

Normative multi-agent systems are an alternative to commitment-based protocols,
where artificial institutions and organisations are modeled via norms rather than com-
mitments [21,22,4]. Similar to commitments, norms represent obligations for agents to
follow, but they also possess additional properties like power, which is needed to rep-
resent the hierarchical behaviour in organisations, e.g., whether an agent possessing a
certain role can enforce a norm. In this paper, we do not consider power or the hierarchy
among agents when managing commitments.

We have shown via two sets of experiments that (i) our systems performs well under
increasing number of agents (with a linear increase in memory usage and reasonable
simulation times), and (ii) the changing of agent behaviours does not have a significant
effect on the system’s performance. We plan to extend DIESECT with the following
possible extensions:

– We aim for a generic contract execution and monitoring environment where proto-
cols can be described by defining commitment templates and the associated agent
roles. We are currently working on this direction so that new e-commerce protocols
can be created and tested in our platform.

– We use REC as the current reasoning mechanism for agents to detect and diagnose
commitment violations. Another interesting direction for contract execution is to
predict that a commitment might be violated in the future. One powerful tool for
such prediction is model checking [23,9]. Model checking is based on temporal
logic, and creates possible future worlds given an initial world model and a set of
transition rules. We plan to integrate the model checking capability besides REC
into the agents’ reasoning. By doing so, we could report on the soundness of the
system, i.e., whether commitments reach their final states.

– We plan to extend our performance evaluation by distinguishing between the time
spent on JADE side and the time spent for executing REC. This will provide in-
sight on how to improve the system’s overall performance, e.g., agents might not
execute REC at each timestep. We also plan to run experiments with larger agent
populations and report the communication costs among agents.

References

1. Krishna, P.R., Karlapalem, K., Chiu, D.K.W.: An erec framework for e-contract modeling,
enactment and monitoring. Data Knowl. Eng. 51(1), 31–58 (2004)

2. Kafalı, Ö., Torroni, P.: Exception diagnosis in multiagent contract executions. Annals of
Mathematics and Artificial Intelligence 64(1), 73–107 (2012)

3. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proceedings of the 1st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 527–534 (2002)

4. Faci, N., Modgil, S., Oren, N., Meneguzzi, F., Miles, S., Luck, M.: Towards a monitoring
framework for agent-based contract systems. In: Klusch, M., Pěchouček, M., Polleres, A.
(eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 292–305. Springer, Heidelberg (2008)

5. McGinnis, J., Stathis, K., Toni, F.: A formal model of agent-oriented virtual organisations
and their formation. Multiagent and Grid Systems 7(6), 291–310 (2011)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

50 D. Wood, Ö. Kafalı, and K. Stathis

7. Kafalı, Ö., Yolum, P.: A distributed treatment of exceptions in multiagent contracts. In: Pro-
ceedings of the 9th International Workshop on Declarative Agent Languages and Technolo-
gies, DALT (2011)

8. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event
calculus. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence
(IJCAI), pp. 91–96 (2009)

9. El Menshawy, M., Bentahar, J., Qu, H., Dssouli, R.: On the verification of social commit-
ments and time. In: Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 483–490 (2011)

10. Bellifemine, F., Poggi, A., Rimassa, G., Turci, P.: An object-oriented framework to realize
agent systems. In: WOA Workshop: From Objects to Agents, pp. 52–57 (2000)

11. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
937–944 (2009)

12. Chesani, F., Mello, P., Montali, M., Torroni, P.: Monitoring time-aware social commit-
ments with reactive event calculus. In: 20th European Meeting on Cybernetics and Sys-
tems Research, 7th International Symposium ”From Agent Theory to Agent Implementa-
tion” (AT2AI-7), pp. 447–452 (2010)

13. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1),
67–95 (1986)

14. Malone, T.W., Crowston, K., Herman, G. (eds.): Organizing Business Knowledge: The MIT
Process Handbook. MIT Press, Cambridge (2003)

15. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Declarative agent control. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 96–110. Springer,
Heidelberg (2005)

16. Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P.: Reactive event calculus for
monitoring global computing applications. In: Artikis, A., Craven, R., Kesim Çiçekli, N.,
Sadighi, B., Stathis, K. (eds.) Sergot Festschrift 2012. LNCS (LNAI), vol. 7360, pp. 123–
146. Springer, Heidelberg (2012)

17. Grefen, P., Aberer, K., Ludwig, H., Hoffner, Y.: Crossflow: Cross-organizational workflow
management in dynamic virtual enterprises. International Journal of Computer Systems Sci-
ence & Engineering 15, 277–290 (2000)

18. Urovi, V., Stathis, K.: Playing with agent coordination patterns in MAGE. In: Padget, J.,
Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.) COIN
2009. LNCS, vol. 6069, pp. 86–101. Springer, Heidelberg (2010)

19. Molina-jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Contract representation for
run-time monitoring and enforcement. In: Proc. IEEE Int. Conf. on E-Commerce (CEC), pp.
103–110. IEEE (2003)

20. Grosof, B.N., Poon, T.C.: Sweetdeal: Representing agent contracts with exceptions using
xml rules, ontologies, and process descriptions, pp. 340–349. ACM Press (2003)

21. Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Computational & Mathematical Or-
ganization Theory 12(2-3), 101–126 (2006)

22. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institutions. In:
Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1481–1484 (2008)

23. Kafalı, Ö., Günay, A., Yolum, P.: PROT OSS: A run time tool for detecting PRivacy
viOlaT ions in Online Social networkS . In: IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (2012)

	DIESECT : A DIstributed Environment
for Simulating E-commerce ContracT s

	1 Introduction
	2 Background
	2.1 JADE Agent Platform
	2.2 Commitments
	2.3 Reactive Event Calculus

	3 Running Example
	4 Multi-agent Simulation Architecture
	5 Experimental Evaluation
	5.1 Increasing Agents
	5.2 Different Agent Behaviours

	6 Discussion
	References

