
UtilSim: Iteratively Helping Users Discover
Their Preferences

Saurabh Gupta and Sutanu Chakraborti

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India - 600036

{sgupta,sutanuc}@cse.iitm.ac.in

Abstract. Conversational Recommender Systems belong to a class of knowl-
edge based systems which simulate a customer’s interaction with a shopkeeper
with the help of repeated user feedback till the user settles on a product. One of
the modes for getting user feedback is Preference Based Feedback, which is espe-
cially suited for novice users(having little domain knowledge), who find it easy to
express preferences across products as a whole, rather than specific product fea-
tures. Such kind of novice users might not be aware of the specific characteristics
of the items that they may be interested in, hence, the shopkeeper/system should
show them a set of products during each interaction, which can constructively
stimulate their preferences, leading them to a desirable product in subsequent in-
teractions. We propose a novel approach to conversational recommendation, Util-
Sim, where utilities corresponding to products get continually updated as a user
iteratively interacts with the system, helping her discover her hidden preferences
in the process. We show that UtilSim, which combines domain-specific “domi-
nance” knowledge with SimRank based similarity, significantly outperforms the
existing conversational approaches using Preference Based Feedback in terms of
recommendation efficiency.

Keywords: Knowledge based Recommendation, Preference Based Feedback,
Utility estimation, Case Based Recommendation.

1 Introduction

Imagine a prospective camera buyer who actually has very little domain knowledge
about cameras. Due to lack of information about product characteristics, it becomes dif-
ficult for her to express her preferences adequately/fluently at the start of her interaction
with the system[1]. She might not be aware of the product features/attributes that she
may be interested in (due to lack of domain knowledge). Therefore, the recommender
system should show her appropriate products spread across multiple interactions, which
can help stimulate her preferences and lead her to an acceptable product. Typically,
knowledge based recommendation systems estimate utility of a product with respect to
a given query(or a reference product) by using a weighted linear combination of the
local similarities(usually defined by experts) between the features of the query(or the
reference product) and the product concerned[2]. We refer to this model as the weighted
similarity model . Among the knowledge based approaches, single shot retrieval ap-
proaches assume that there is a fixed set of weights(importances) for each attribute and

C. Huemer and P. Lops (Eds.): EC-Web 2013, LNBIP 152, pp. 113–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 S. Gupta and S. Chakraborti

use these weights to compute the utility of each product for each type of user. Single
shot retrieval is of limited use for novice or non expert users who find it difficult to
express their preferences beforehand in the form of a query, as described earlier in this
section. If the user is not satisfied with what she is served by the system, then she has
to revise the initial query and start from scratch again. Also, even involving domain ex-
perts to get a handle on the weights used by these systems cannot be foolproof, because
the weights are user specific. As an alternative to single shot retrieval, conversational
recommender systems try to simulate the kind of interaction which usually happens
between a user and a shopkeeper with the goal of minimizing the cognitive load expe-
rienced by the user. Cognitive load can be defined as the effort on the part of the user
while interacting with the recommender system. Conversational systems provide a way
to capture user feedback at varying levels of granularity which can iteratively help the
recommendation system to get a handle on the hidden needs/preferences of the user.
Different user feedback mechanisms based on the decreasing order of cognitive load
experienced by the user as summarized by [3] are: Asking questions directly from the
user[4], Ratings based user feedback[5], Critique based feedback(user puts constraints
on features) [6,7,8,9,10] and Preference based feedback(user selects one product over
the others).

Case Based Recommender systems generally use the weighted similarity model to
estimate utilities of products. One drawback associated with range normalized local
similarity measures commonly used in the weighted similarity model was pointed by
[11] who argue that in view of the different types of range normalization(narrow or
wide) used for computing local similarities, it is not correct to assume that the way
these local similarity measures estimate similarity is equivalent. Another problem with
defining local similarity measures is the knowledge engineering effort involved.

In this paper, we propose a new conversational recommendation approach, UtilSim,
which dynamically updates product utilities while interacting with users. UtilSim in-
tegrates two kinds of knowledge to provide effective recommendations - a) domain
specific “dominance” knowledge across attributes, which is user invariant and easy
to acquire. For example - Price = 20 “dominates” (is better than) Price = 40. b)
SimRank[12] based similarity, which keeps getting robust with more data and does not
involve some of the drawbacks associated with traditional similarity measures as dis-
cussed earlier.

2 Related Work

Several knowledge based recommendation techniques rely on some notion of weighted
similarity to calculate the utility of a product for a user. Compromise driven re-
trieval(CDR)[13], a single shot retrieval scheme, uses a notion of compromise to better
reflect the user’s needs. Compromises may be defined as the ways in which the retrieved
products differ from the user’s requirements(specified query). Since it does single shot
retrieval, CDR would work well in scenarios when the user is well informed about the
domain and has her preferences clearly defined in her head. In contrast, our algorithm is
incremental and adaptive in nature and is able to help non expert users as well (who do
not have their preferences defined clearly in their head) to reach an acceptable product.

UtilSim: Iteratively Helping Users Discover Their Preferences 115

More Like This(MLT)[14] is a commonly used strategy using Preference Based Feed-
back(user prefers one item over the others), with the user selecting a product P during
every interaction cycle. In the next iteration, the user is shown those products that are
most similar(according to weighted similarity model) to P . False-leads is a problem
which plagues the MLT approach. Using all features of the selected product as the next
query might be a bad idea if some of the features of the selected product were irrelevant
for the user[15]. wMLT [14] dynamically weighs attribute values while interacting with
the user, based on the difference of the attribute value of the selected product to those of
the rejected products. UtilSim differs from wMLT in that it uses a SimRank based notion
of similarity as opposed to the weighted similarity model . Also, it uses domain-specific
“dominance” knowledge coupled with PageRank[16] to compute utility of a particu-
lar attribute value. Adaptive Selection(MLT-AS)[15], another conversational strategy
based on Preference Based Feedback uses weighted similarity model along with a di-
versity component and preference carrying mechanism to effectively focus the recom-
mender system in an appropriate region of the product space. On the other hand, in
addition to not using weighted similarity model, UtilSim does not include an explicit
diversity metric in its utility computation and the utility associated with attribute values
is dynamic. While ItemRank[17] uses collaborative data to establish links between dif-
ferent movies, UtilSim uses “dominance” knowledge across attributes to establish links
between different attribute values. The notion of “dominance” has earlier been used
to define Simple Dominance Model[18] which tries to identify and explain such de-
cision phenomena as Asymmetric Dominance Effect[19] and Compromise Effect[20].
Our approach, on the other hand, uses “dominance” knowledge to implicitly infer the
individual feature-value utilities during user interaction.

3 Our Approach

Numerous feedback mechanisms have been used to capture user preferences in con-
versational recommender systems. It was shown in [21] that expert users were more
satisfied with attribute based feedback elicitation methods whereas novice users con-
sidered it more useful to express their preferences on products as a whole, from which
attribute preferences can then be implicitly computed. In scenarios where the users are
not well versed with the domain, they might find it difficult to put constraints at the
level of specific attributes as required by critiquing. With a view towards improving
recommendation quality in these scenarios, our approach, UtilSim, uses a Preference
based feedback strategy where the user just expresses a preference for one product over
the others. After receiving feedback from the user, the system now has to construct
a revised model of the user’s preferences to account for the dynamic changes in user
preferences.

SimRank Based Similarity: To compute product-product as well as attribute-value -
attribute-value similarities, we construct a bipartite graph consisting of products and
their particular attribute values as shown in Figure 1. If an attribute value is present in
a particular product, then a link is created from that attribute value node to the product
node. The nodes A, B and C in Figure 1 refer to three cameras in our database. The other
nodes represent attribute values with M denoting Memory, R denoting Resolution

116 S. Gupta and S. Chakraborti

and P denoting Price. The numbers that follow M,R and P are the values of the re-
spective attributes. For e.g.- R6 means that Resolution equals 6. To infer similarities
from the product data, we use the main idea in SimRank - two objects are similar if
they are related to similar objects[12]. Hence, we can say that products are similar if
they have similar attribute values and attribute values are similar if they are present in
similar products. This kind of circularity leads to a recursive definition for similarity
computation which is defined for bipartite graphs in [12] as:

sim(A,B)=
C

|I(A)||I(B)|
|I(A)|∑

i=1

|I(B)|∑

j=1

sim(Ii(A), Ij(B)) (1)

sim(a, b)=
C

|O(a)||O(b)|
|O(a)|∑

i=1

|O(b)|∑

j=1

sim(Oi(a), Oj(b)) (2)

where C is a constant and Ii(A) represents the ith in-neighbour of A and Ij(B) rep-
resents the jth in-neighbour of B. Oi(A) represents the ith out-neighbour of A and
Oj(B) represents the jth out-neighbour of B. In Figure 1, P300 is an in-neighbour of
A and A is the out-neighbour of P300. Figure 2 shows how the flow of similarity takes

{P300}

{P200}

{M20}

{M32}

{R10}

{R6}

A

B

C

Fig. 1. Graph G having links from attribute
values to products

{A,B}

{B,C}

{A,C}

{M32, M32}

{P300, P300}

{M20, M32}

{R10, R6}

{P300, P200}

{R6, R6}

1.0

1.0

0.0447

0.0447

0.07998

1.0

0.0968

0.1848

0.0150

Fig. 2. Node pair graph G2 with SimRank
scores for C=0.8

place between the product-product nodes and the attribute value - attribute value nodes.
This representation allows us to calculate similarities between Price = 200 and Price =
300 as well as product A and product B simultaneously.

Dominance Criteria across Attributes: We adopt the criteria used by [13] and divide
the numerical attributes into two sets - more is better (MIB) and less is better (LIB).
For the Camera dataset, we classify attributes Price and Weight as LIB attributes which
implies that a lesser value of these attributes dominates a greater value. All the other at-
tributes - Optical Zoom, Digital Zoom, Resolution, Memory Included are considered as

UtilSim: Iteratively Helping Users Discover Their Preferences 117

MIB attributes which implies that a greater value of these attributes dominates a lesser
value. The idea of using MIB and LIB as the criteria for dominance can be motivated
through the following example: A camera with lower Price and higher Resolution will
always be preferred to a camera with higher Price and lower Resolution, all else being
equal. Similarly, for the PC dataset, we classify Processor Speed, Monitor, Memory,
Capacity as MIB attributes and Price as an LIB attribute. For example : Price = 200
dominates Price = 500. We make an assumption about the rationality of the user that
if she selects product A, it must have at least one attribute ai, which “dominates” the
corresponding attribute bi of at least one of the rejected products B. Note that in prin-
ciple, not every product attribute would be monotonic. There might be attributes whose
middle values are preferred to the extreme values. But, we think that those attributes
can also be handled in a similar manner by transforming them through a function so
that they reduce to being monotonic. For example, let us assume that an attribute X has
values in the range 0 to 24, with the value of 12 being the most preferred. Therefore,
we can transform X into

Y = 1− |12−X |
12

(3)

with Y being treated as an MIB attribute.
Dominance across nominal attributes is calculated as follows: Suppose, the user is

currently at the Rth iteration in her interaction with the system. Considering a nominal
attribute like Manufacturer for a camera, let S denote the list of all the values cor-
responding to the Manufacturer attribute for all the R − 1 selected products till the
current iteration. In the list S, the latest(last) value corresponds to the Manufacturer
value of the product selected in the (R− 1)th iteration, in that order. For any two prod-
ucts a and b in the current recommendation set, we say that aM dominates bM , where
aM and bM denote the Manufacturer value of product a and b respectively if:

[(∑

k∈S

α · sim(aM , k)
)
−
(∑

k∈S

β · sim(bM , k)
)]

≥ 0 (4)

where sim corresponds to the SimRank based similarity. The values of α and β keep
on changing based on the position of k in S. If the position of k is towards the end of
S, the values of α and β are high as compared to the scenario in which k is near the
front of the list. These values are so kept to give higher weights to values which were
selected more recently than to those which were selected during the initial part of the
interaction.

3.1 UtilSim

We now explain how UtilSim computes revised product utilities after each user inter-
action through the following example. Assuming that products 1, 2 and 3 from Table
1 are the most similar(according to the weighted similarity model) products to the user
query, the recommender system shows to the user these three products during the initial
interaction. Notice that the use of weighted similarity model is a one time affair at the
start of each dialogue after which it is never used in our approach. In principle, even for
the first recommendation cycle we can generate recommendations using only SimRank

118 S. Gupta and S. Chakraborti

Table 1. Camera Models in a Shop

Product Price Resolution Memory
1 300 10.0 MP 20
2 400 6.0 MP 32
3 200 8.0 MP 18
4 500 12.0 MP 32
5 600 12.1 MP 48

based similarity, but for all purposes in this paper, we used weighted similarity to start
off the interaction process. Assuming that the user chooses product 3, we start off by
giving high importance to all the attribute values of product 3 by creating links from
Price value of product 1 to Price value of product 3 and from Price value of product 2
to Price value of product 3, repeating the same procedure for attributes Resolution and
Memory as shown in Figure 3.

Price
200

Price
400

Price
300

Memory
18

Memory
32

Memory
20

Resolution
8.0MP

Resolution
10.0MP

Resolution
6.0MP

Fig. 3. Links formed due to the global dominance of selected product

But it may not be the case that the user liked all the attribute values of product 3 vis
a vis the other products.

Therefore in the second step, we create links from all the dominated attribute values
to the dominating attribute values, where domination is based on the criteria discussed
earlier. For example - we observe that the Resolution value of the selected product 3, is
dominated by the Resolution value of product 1. So, a link going out from the Resolution
value node of product 3 to the Resolution value node of product 1 is drawn. Similar pro-
cess is followed for all the other attribute values, with the newly formed links shown
in dashed lines in Figure 4. A node should have high utility if it is pointed to by large
number of high utility nodes; this circularity has a parallel with the observation that a

Price
200

Price
400

Price
300

Memory
18

Memory
32

Memory
20

Resolution
8.0MP

Resolution
10.0MP

Resolution
6.0MP

Fig. 4. Links formed due to the local dominance of attribute values

UtilSim: Iteratively Helping Users Discover Their Preferences 119

web page is important if it is pointed to by several important pages, and is hence re-
solved using PageRank[16] over the graph in Figure 4. Applying Pagerank on the graph
shown in Figure 4 gives us utilities of individual attribute values.

The final step involves recalculating the utility values of all the products in the cata-
log. Let the Price, Resolution and Memory values of an arbitrary product c be denoted
by Pc, Rc and Mc respectively. Similarly, Price, Resolution and Memory values of
the selected product(product 3) are denoted by P3, R3 and M3 respectively. Now, the
revised utility of a product c is calculated as

U(c)=sim(P3, Pc)·util(P3)+sim(R3, Rc)·util(R3) + sim(M3,Mc)·util(M3) (5)

where util(P3) is the utility of Price = 200 (product 3’s Price), calculated by running
PageRank[16] on the graph shown in Figure 4. The system then presents to the user, the
top k products according to the revised utilities as obtained from Eq. 5. The user can either
terminate the interaction if she is satisfied by a product in the current recommendation set
or can issue a preference for any one of the shown products and the system re-estimates
the utilities of the products through the same process outlined above. The sim function
used in Eq. 5 is the SimRank based similarity measure between attribute value pairs,
calculated according to Equations 1 and 2 applied to a bipartite graph, similar to the one
shown in Figure 1. The util function used in Eq. 5 is not a predefined weight value for a
particular attribute. Instead, it is a dynamic measure of importance of a particular attribute
value. Individual feature value utility estimation is made efficient in the case of UtilSim
by the use of PageRank(applied on a relatively small graph like the one shown in Figure
4), during every recommendation cycle. UtilSim can scale with increasing number of
products since SimRank based similarity estimation between products is done offline.
Although large number of attributes might lead to efficiency issues, theoretically, we can
encode dominance knowledge into the system as a one time effort. However, in practical
recommendation settings, it may not always be cognitively appealing to expose users to
a system that requires specification of large number of features.

4 Experimental Results

We compare UtilSim with well known preference based approaches - MLT[14],
wMLT[14] and MLT-AS[15]. We use two standard datasets in our experiments - Cam-
era1 and PC[14]. The Camera dataset contains 210 cameras with 10 attributes and
the PC dataset contains 120 PC’s with 8 attributes. We use a leave one out methodol-
ogy similar to the one used in [15], where each product is removed from the products
database and used to generate a particular query of interest. For each query, that product
is considered as target, which is most similar to the product from which the query is gen-
erated. The target corresponding to a particular query is computed using the weighted
similarity model(used by MLT, WMLT and MLT-AS approach) and not the SimRank
based notion of similarity on which UtilSim based. Hence, UtilSim starts off with a
bit of a disadvantage. We report the average number of cycles and unique products pre-
sented to a user en route a target product during a recommendation dialogue, as reported

1 http://josquin.cs.depaul.edu/˜rburke/research/
downloads/camera.zip

http://josquin.cs.depaul.edu/~rburke/research/downloads/camera.zip
http://josquin.cs.depaul.edu/~rburke/research/downloads/camera.zip

120 S. Gupta and S. Chakraborti

in [15,10]. For both the datasets, we generated queries of length 1, 3 and 5 to distin-
guish between difficult, moderate and easy queries respectively[22]. We refer to queries
of length 1, 3 and 5 as Q-1, Q-3 and Q-5 respectively. Q-1 corresponds to a non expert
user having limited domain knowledge who finds it difficult to express her preferences
clearly at the start whereas Q-5 corresponds to a user close to being an expert, who is
able to specify her preferences clearly. A total of 3938 and 2382 queries were generated
for the Camera and PC dataset respectively. In all our experiments, 4 products are pre-
sented in every recommendation cycle. Also, all the algorithms are made to select that
product in every cycle which is most similar to the target. The only difference is that
while all other algorithms use the weighted similarity model, UtilSim uses a similarity
measure based on SimRank.

Highly Focused Recommendation Framework

For a highly focused recommendation framework, we simulate an artificial user who is
relatively sure of her preferences and who, during each cycle, chooses a product which
is maximally similar to the target product. As can be seen from Figure 5a through Fig-
ure 5d, UtilSim outperforms all the other algorithms, in terms of cycles and unique
items. Specifically for the Q-1 case on the PC dataset, while MLT, MLT-AS and wMLT
take 11.705 cycles(and 22.14 items), 7.82 cycles(and 16.85 items) and 6.66 cycles(and
19.26 items) to reach the target respectively, UtilSim takes 5.07 cycles(and 15.45 items)
to reach the target, a 56% reduction in terms of cycles and 30% reduction in terms of
unique items over MLT. A similar trend is observed for the Camera dataset.

Preference Noise

We simulate an agent which does not act optimally during each recommendation cycle
by making it choose a product that might not be the most similar to the target. Noise
is introduced into the process by disturbing the similarities of the products in the rec-
ommendation set to the target product by some random amount within a threshold. We
have used a noise level of 5% in our experiments. As explained in [15], preference noise
of 5% implies that the similarities of each of the individual products to the target might
be changed by up to +/-5% of its actual value. As can be seen from Figure 5e through
Figure 5h, UtilSim outperforms the other algorithms on both the datasets. For the Q-1
case on the PC dataset, while MLT, MLT-AS and wMLT take on an average 12.085 cy-
cles(22.72 items), 7.66 cycles(16.55 items) and 8.52 cycles(22.69 items) respectively to
reach the target, UtilSim takes 5.25 cycles(16.17 items) to reach the target, a reduction
of 56% in terms of cycles and 28% in terms of unique items over MLT. It is interesting
to note that wMLT which performs better than MLT-AS in a highly focused framework
of recommendation(in terms of number of cycles), does not perform better than MLT-
AS in the presence of preference noise(especially for the Camera dataset). This might
be due to the fact that in the presence of noise, the recommendation dialogues asso-
ciated with wMLT include a lot of false leads, whereas MLT-AS is able to neutralize
their effect due to its diversity component. For reasons of brevity, it is worth noting that
UtilSim’s performance is superior to all the other approaches, even at higher levels of
noise.

UtilSim: Iteratively Helping Users Discover Their Preferences 121

Finding All “good” Items

Finding all “good” items is also important for users who only have some vague idea
about their preferences, because they can be sure that the recommender system will
recommend all the “interesting” products efficiently. Given a predefined target product
for a particular query, chosen as described earlier, we also treat as target for that query,
those products which are “better” than the target product according to some criterion.
For the Camera dataset, a camera which has a higher Resolution, Optical Zoom, Digital
Zoom, Memory and lower Weight and Price than the target product is also added to the
list of target products. For the PC dataset, a PC having higher Speed, Memory, Capacity
and lower Price than the target product is also considered as a target product. Let the set
of target products for a query be defined as T. During every recommendation cycle, the
simulated agent selects that product from the recommendation set which has the highest
average similarity to all the elements in T. If an element from T is part of the recom-
mendation set in a particular cycle, then that element is removed from T and a similar
process is followed until T becomes empty. As shown in Figure 5i and Figure 5j, for the
Q-1 case on the PC dataset, while MLT, MLT-AS and wMLT take on an average 23.83
cycles(40.87 items), 18.30 cycles(31.28 items) and 15.19 cycles(35.94 items) respec-
tively, UtilSim takes 12.02 cycles(30.73 items) to reach the target product, a reduction
of 49% in terms of cycles and 24% in terms of unique items over MLT. For the Cam-
era dataset, Figure 5k and Figure 5l present an interesting case study where UtiSim
significantly outperforms MLT-AS in terms of number of cycles but under performs
MLT-AS in terms of number of unique items shown. For the Q-1 case on the Cam-
era dataset, MLT-AS shows 36.26 unique items(reduction of 37.66% as compared to
MLT), whereas UtilSim shows 38.77 items(reduction of 33.35% as compared to MLT).
The marginal increase in the number of unique items notwithstanding, we think that
UtilSim is of value in this scenario as well because of the huge reduction it is able to
offer in terms of the number of cycles. For Q-1 on Camera dataset, UtilSim takes 14.71
cycles(reduction of 61.79% compared to MLT) as compared to MLT-AS which takes
24.26 cycles(reduction of 36.98% compared to MLT).

Why UtilSim Works

We considered reduced samples of the original PC dataset - the size of the smaller
datasets ranging from 30 to 120 products. The number of cycles taken by different
algorithms to reach the target are reported in Figure 6. We devised an algorithm, MLT-
sRank, which works exactly like the MLT approach, except that it uses a SimRank
based similarity measure to estimate utility instead of the weighted similarity model
which is used by MLT. As we can see from Figure 6, when the dataset size is between
30 and 90 products, MLT-sRank, which uses SimRank based similarity as a substitute
for utility, under-performs MLT. This is because SimRank does not get sufficient data to
model similarities in the domain effectively. But once it finds sufficient data(120 prod-
ucts), it, on its own outperforms MLT. More interestingly, we see that for any sample
size, UtilSim, with its additional layer of “dominance” knowledge over SimRank based
similarity, is able to perform better than MLT-sRank. Moreover, starting from dataset
size of 60 onwards, UtilSim starts outperforming even MLT, even though MLT-sRank,
based on the same SimRank based similarity as UtilSim, cannot match up to MLT.

122 S. Gupta and S. Chakraborti

0

2

4

6

8

10

12

14

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(a) PC Data

0

5

10

15

20

25

Q-1 Q-3 Q-5
U

ni
qu

e
Ite

m
s

Query Size

MLT MLT-AS wMLT UtilSim

(b) PC Data

0

5

10

15

20

25

30

35

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(c) Camera Data

0
5

10
15
20
25
30
35
40
45
50

Q-1 Q-3 Q-5

U
ni

qu
e

Ite
m

s

Query Size

MLT MLT-AS wMLT UtilSim

(d) Camera Data

0

2

4

6

8

10

12

14

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(e) PC Data

0

5

10

15

20

25

Q-1 Q-3 Q-5

U
ni

qu
e

Ite
m

s

Query Size

MLT MLT-AS wMLT UtilSim

(f) PC Data

0

5

10

15

20

25

30

35

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(g) Camera Data

0

10

20

30

40

50

60

Q-1 Q-3 Q-5

U
ni

qu
e

Ite
m

s

Query Size

MLT MLT-AS wMLT UtilSim

(h) Camera Data

0

5

10

15

20

25

30

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(i) PC Data

0
5

10
15
20
25
30
35
40
45

Q-1 Q-3 Q-5

U
ni

qu
e

Ite
m

s

Query Size

MLT MLT-AS wMLT UtilSim

(j) PC Data

0
5

10
15
20
25
30
35
40
45

Q-1 Q-3 Q-5

Cy
cl

es

Query Size

MLT MLT-AS wMLT UtilSim

(k) Camera Data

0

10

20

30

40

50

60

70

Q-1 Q-3 Q-5

U
ni

qu
e

Ite
m

s

Query Size

MLT MLT-AS wMLT UtilSim

(l) Camera Data

Fig. 5. Performance Analysis for (a) Highly focussed scenario (Row 1) (b) Preference Noise (Row
2) (c) ”All Good Items task” (Row 3)

0

1

2

3

4

5

6

7

8

9

30 60 90 120

Cy
cl

es

Reduced Dataset Size

MLT MLT-sRank UtilSim

Fig. 6. Cycles for variable number of
products

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29

Si
m

ila
ri

ty
 to

 th
e

Ta
rg

et

Cycles

MLT UtilSim

Fig. 7. Selected products’ similarity to target
in a session

UtilSim: Iteratively Helping Users Discover Their Preferences 123

In Figure 7, we have plotted the similarity(corresponding to weighted similarity
model) of the preferred product in every cycle, to the target product during a typical
recommendation dialogue. Generally, we would expect the similarity of selected prod-
ucts to the target, to increase over a period of a few cycles, instead, for MLT, we observe
that it encounters similarity troughs from cycles 1-4 and from 8-27, during which the
similarity to the target changes a little or falls down. We quantify this ability of each
algorithm to lead to the target by aggregating the slopes of all the lines joining the suc-
cessively preferred products divided by the number of cycles taken by the algorithm for
a typical recommendation dialogue like the one shown in Figure 7. We then calculate
the average of such scores obtained across all the recommendation dialogues for the PC
dataset. The scores achieved by UtilSim across Q-1, Q-3, Q-5 are 0.045, 0.029, 0.016
respectively. The scores achieved by MLT for Q-1, Q-3, Q-5 are 0.026, 0.020, 0.011
respectively. The higher scores achieved by UtilSim across dialogues associated with
all query sizes show that it has a better ability to lead the user to the target.

5 Conclusions

In this paper, we proposed a novel algorithm, UtilSim, which helps non-expert/novice
users (who have limited knowledge about product features and have difficulty in ex-
pressing their preferences clearly) discover their preferences in an iterative and adap-
tive fashion. UtilSim leads to efficient recommendations by combining domain-specific
“dominance” knowledge with SimRank based similarity as opposed to weighted sim-
ilarity which is generally used in case based recommender systems. The promising
results obtained by the use of SimRank based similarity has positive implications for
domains where it might be difficult to define local similarity measures across attributes.
We observe that the utility function used in UtilSim can get richer by taking into ac-
count feature interactions. Most Preference-Based Feedback algorithms do not model
feature interactions and we would like to pursue this line of research in the future.

References

1. Pu, P., Chen, L.: User-Involved Preference Elicitation for Product Search and Recommender
Systems. Ai Magazine 29, 93–103 (2008)

2. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Rec-
ommender Systems Handbook, pp. 1–35 (2011)

3. Smyth, B.: Case-Based Recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.)
Adaptive Web 2007. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007)

4. Shimazu, H.: Expertclerk: navigating shoppers’ buying process with the combination of ask-
ing and proposing. In: Proceedings of the 17th International Joint Conference on Artificial
Intelligence, IJCAI 2001, vol. 2, pp. 1443–1448. Morgan Kaufmann Publishers Inc., San
Francisco (2001)

5. Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age.
Knowledge-Based Systems 13(2-3), 53–59 (2000)

6. Burke, R., Hammond, K., Yound, B.: The findme approach to assisted browsing. IEEE Ex-
pert 12(4), 32–40 (1997)

124 S. Gupta and S. Chakraborti

7. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In:
Proceedings of the 10th International Conference on Intelligent User Interfaces, IUI 2005,
pp. 175–182. ACM, New York (2005)

8. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: A comparison of two compound cri-
tiquing systems. In: Proceedings of the 12th International Conference on Intelligent user
Interfaces, IUI 2007, pp. 317–320. ACM, New York (2007)

9. Zhang, J., Jones, N., Pu, P.: A visual interface for critiquing-based recommender systems. In:
Proceedings of the 9th ACM Conference on Electronic Commerce, EC 2008, pp. 230–239.
ACM, New York (2008)

10. Llorente, M.S., Guerrero, S.E.: Increasing retrieval quality in conversational recommenders.
IEEE Trans. Knowl. Data Eng. 24(10), 1876–1888 (2012)

11. Bridge, D., Ferguson, A.: An expressive query language for product recommender systems.
Artif. Intell. Rev. 18(3-4), 269–307 (2002)

12. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD 2002: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 538–543. ACM Press, New York (2002)

13. Mcsherry, D.: Similarity and compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR
2003. LNCS (LNAI), vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

14. McGinty, L., Smyth, B.: Comparison-based recommendation. In: Craw, S., Preece, A.D.
(eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 575–589. Springer, Heidelberg (2002)

15. Smyth, B., Mcginty, L.: The power of suggestion. In: IJCAI, pp. 127–132. Morgan Kauffman
(2003)

16. Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The pagerank citation ranking: Bring-
ing order to the web. Technical report, Stanford University (1998)

17. Gori, M., Pucci, A.: Itemrank: a random-walk based scoring algorithm for recommender
engines. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence,
IJCAI 2007, pp. 2766–2771. Morgan Kaufmann Publishers Inc., San Francisco (2007)

18. Teppan, E.C., Felfernig, A.: Calculating decoy items in utility-based recommendation. In:
Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS (LNAI),
vol. 5579, pp. 183–192. Springer, Heidelberg (2009)

19. Dan, A., Thomas, W.: Seeking Subjective Dominance in Multidimensional Space: An Expla-
nation of the Asymmetric Dominance Effect. Organizational Behavior and Human Decision
Processes 63(3), 223–232 (1995)

20. Simonson, I.: Choice Based on Reasons: The Case of Attraction and Compromise Effects.
Journal of Consumer Research 16(2), 158–174 (1989)

21. Knijnenburg, B.P., Willemsen, M.C.: Understanding the effect of adaptive preference elici-
tation methods on user satisfaction of a recommender system. In: Proceedings of the Third
ACM Conference on Recommender Systems, RecSys 2009, pp. 381–384. ACM, New York
(2009)

22. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Knowledge discovery from user preferences
in conversational recommendation. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R.,
Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 228–239. Springer, Heidelberg
(2005)

	UtilSim: Iteratively Helping Users DiscoverTheir Preferences
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Experimental Results
	5 Conclusions
	References

