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Abstract Behavioral modules are units of behavior providing reusable building
blocks that can be composed sequentially and hierarchically to generate extensive
ranges of behavior. Hierarchies of behavioral modules facilitate learning complex
skills and planning at multiple levels of abstraction and enable agents to incremen-
tally improve their competence for facing new challenges that arise over extended
periods of time. This chapter focuses on two features of behavioral hierarchy that
appear to be less well recognized: its influence on exploratory behavior and the
opportunity it affords to reduce the representational challenges of planning and
learning in large, complex domains. Four computational examples are described
that use methods of hierarchical reinforcement learning to illustrate the influence
of behavioral hierarchy on exploration and representation. Beyond illustrating these
features, the examples provide support for the central role of behavioral hierarchy
in development and learning for both artificial and natural agents.

1 Introduction

Many complex systems found in nature or that humans have designed are organized
hierarchically from components—modules—that have some degree of indepen-
dence. Herbert Simon called such systems “nearly decomposable” and suggested
that complex systems tend to take this form because it enhances evolvability due
to module stability (Simon 1996, 2005). The subject of modularity has attracted

A.G. Barto (�) � C. Vigorito
School of Computer Science, University of Massachusetts Amherst, Amherst,
MA 01003, USA
e-mail: barto@cs.umass.edu

G. Konidaris
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, USA

G. Baldassarre and M. Mirolli (eds.), Computational and Robotic Models
of the Hierarchical Organization of Behavior, DOI 10.1007/978-3-642-39875-9 2,
© Springer-Verlag Berlin Heidelberg 2013

13

mailto:barto@cs.umass.edu


14 A.G. Barto et al.

significant attention in psychology, neuroscience, evolutionary biology, computer
science, and philosophy (Callebaut and Rasskin-Gutman 2005). Although it is
widely accepted that modularity is critically important for understanding and
constructing complex systems, no single concept of modularity adequately covers
all the cases. Callebaut (2005), for instance, distinguishes modularity of structure
from modularity of process, further pointing out significant differences between
developmental, evolutionary, neural, and cognitive modularity. This chapter focuses
on a type of modularity in which modules are viewed as “building blocks” that can
be combined and connected to span large spaces of structured entities, whether they
are physical entities or behaviors.

Specifically, this chapter focuses on behavioral hierarchy. A behavioral hier-
archy is composed of behavioral modules: units of behavior by which an agent
interacts with its environment. Hierarchical structure results when a module is
itself composed of other modules. Human behavior has long been recognized to
exhibit hierarchical structure, with tasks being comprised of subtask sequences,
which in turn are built out of simpler actions. Behavioral hierarchy has been an
enduring theme in psychology, from the advent of cognitive views (e.g., Lashley
1951; Miller et al. 1960; Newell et al. 1963) to more recent models and cognitive
architectures (e.g., Anderson 2004; Botvinick and Plaut 2004; Langley et al. 2009;
Langley and Rogers 2004; Schneider and Logan 2006). Behavioral hierarchy has
also been of long-standing interest in artificial intelligence (e.g., Sacerdoti 1974),
control engineering (e.g., Antsaklis and Passino 1993), software design and analysis
(e.g., Alur et al. 2002), and neuroscience (e.g., Botvinick et al. 2009).

In this chapter we use the framework of hierarchical reinforcement learning
(HRL) to illustrate the benefits of behavioral hierarchy in addressing problems
of exploration and representation that arise in designing capable learning agents.
Although these benefits are well recognized by some, they are not as widely
appreciated as are more obvious benefits, and yet they also lie at the heart of the
utility of behavioral hierarchy. The relevance of behavioral hierarchy to exploration
and representation may also help explain why we see hierarchical structure in the
behavior of humans and other animals.

After discussing behavioral hierarchy and HRL, we describe four computational
experiments. The first two experiments illustrate how the influence of behavioral
hierarchy on exploration can greatly improve learning in structured environments
(Sects. 4.3 and 4.4). The third and fourth experiments, respectively, illustrate how
behavioral hierarchy can address representational challenges by allowing the use of
low-complexity function approximation methods (Sect. 5.1) and how an agent can
select different abstractions for each behavioral module to make learning easier in
problems with high-dimensional state spaces (Sect. 5.2). Our conclusion emphasizes
the generality of the principles illustrated by these examples and their relevance
to the design of agents that accumulate competence over extended time periods.
The chapter ends with a discussion of prospects for future research. Material in
this chapter has appeared previously in Konidaris and Barto (2009a,b), Konidaris
(2011), and Vigorito and Barto (2010).
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2 Behavioral Hierarchy

The most widely appreciated aspect of behavioral hierarchy is that actions can
make use of lower-level actions without concern for the details of their execution.
This facilitates both learning complex skills and planning at multiple levels of
abstraction. If an agent can construct a useful hierarchy of behavioral modules,
which here we think of as skills, then the search space of behaviors effectively
shrinks. This is because selecting between alternate higher-level skills allows the
agent to take larger, more meaningful steps through the search space of behavioral
strategies than does selecting between more primitive actions.

Another salient feature of behavioral modularity and hierarchy is that it facilitates
the transfer of results of learning in one task to other related tasks. This has been
called transfer learning and is recognized to be significant for both artificial and
natural agents (Taylor and Stone 2009). Rather than acquiring skills from scratch for
each problem it faces, an agent can acquire “portable skills” that it can deploy when
facing new problems. Illustrating this benefit of behavioral modularity is beyond the
scope of this chapter, and we refer the reader to Guestrin et al. (2003), Konidaris
et al. (2012a), Konidaris and Barto (2007), Liu and Stone (2006), Mehta et al.
(2008), Taylor et al. (2007), and Torrey et al. (2008).

The influence of behavioral hierarchy on exploratory behavior is less well
recognized. As new skills are added to an agent’s behavioral repertoire, they
become available as atomic behavioral modules that may be used when computing
behavioral strategies and models of more complex skills. The agent’s growing
skill set allows it to reach increasingly many areas of its state space that were
previously not easily accessible. This in turn allows for learning about more
complex environmental dynamics and consequently enables further skill discovery.
In this sense, behavioral hierarchy can provide a means for continual, developmental
learning in which the acquisition of new skills is bootstrapped on existing structural
and procedural knowledge.

Another aspect of behavioral hierarchy, and of behavioral modularity in general,
is the opportunity it affords to reduce the representational challenges of planning
and learning in large, complex domains. Each module can incorporate its own
module-specific representation that includes what is needed for its operation while
excluding information that is irrelevant to that operation. When we perform a skill
like throwing a ball, for instance, we do not have to take into account the vast
range of information available to us that is relevant to other skills, but not to ball
throwing. This can make it feasible to plan and learn successfully in complex
domains. This benefit of behavioral modularity is well recognized across artificial
intelligence, including the various approaches to HRL (e.g., Barto and Mahadevan
2003; Dietterich 2000a; Parr 1998; Parr and Russell 1998; Sutton et al. 1999), but
its profound importance may not be widely appreciated.
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3 Hierarchical Reinforcement Learning

This chapter is concerned with behavioral hierarchies implemented and learned
using computational reinforcement learning (RL, Sutton and Barto 1998). RL
algorithms address the problem of how a behaving agent can learn to approximate
an optimal behavioral strategy while interacting with its environment. More techni-
cally, RL is about the online approximation of solutions to stochastic optimal control
problems, usually under conditions of incomplete knowledge of the system being
controlled. By emphasizing incremental online algorithms instead of batch-style
algorithms, RL not only relates well to the kind of learning we see in animals, but it
is also useful for engineering control problems where it can have some advantages
over more conventional approaches (Lewis and Vrabie 2009).

RL problems consist of four elements: a set of environmental states; a set of
actions available to the agent in each state; a transition function, which specifies the
probability of the environment transitioning from one state to another in response
to each of the agent’s actions; and a reward function, which indicates the amount of
reward associated with each such transition. Given these elements, the objective for
learning is to discover a behavioral strategy that maximizes cumulative long-term
reward. Behavioral strategies are called policies, which are rules, or functions, that
associate with each possible state an action to be taken in that state. Policies are like
stimulus-response rules of learning theories except that a state is a broader concept
than a stimulus. A state characterizes relevant aspects of the learning system’s
environment, which includes information about the world with which the learning
agent interacts as well as information about the internal status of the agent itself.

In the usual RL scenario, an agent learns how to perform a “task” specified by a
given reward function—for instance, learning how to win at playing backgammon
(Tesauro 1994), where a win is rewarded and a loss punished.1 In these scenarios,
there is a conflict between exploitation and exploration: in deciding which action
to take, the agent has to exploit what it has already learned in order to obtain
reward, and it has to behave in new ways—explore—to learn better ways of
obtaining reward. RL systems have to somehow balance these objectives. However,
in other scenarios the goal is to learn a predictive model of the environment, the
environment’s causal structure, or a collection of widely useful skills. In these
scenarios, exploration is itself part of an agent’s task. Scenarios like this play a
role in some of the illustrations described below.

A key focus of RL researchers is the problem of scaling up RL methods so they
can be effective for learning solutions to large-scale problems. Artificial Intelligence
researchers address the need for large-scale planning and problem solving by
introducing various forms of abstraction into problem solving and planning systems

1In RL, the reward signal usually handles both rewards and punishments, which are, respectively,
represented by positive and negative values of the numerical reward signal. This abstraction is
widely used despite the fact that it is at odds with the differences between appetitive and aversive
systems in animals.
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(e.g., Fikes et al. 1972; Korf 1985; Sacerdoti 1974). Abstraction allows a system
to ignore details that are irrelevant for the task at hand. For example, a macro—
a sequence of operators or actions that can be invoked by name as if it were a
primitive operator or action—is one of the simplest forms of abstraction. Macros
form the basis of hierarchical specifications of action sequences because macros
can include other macros in their definitions: a macro can “call” other macros. A
macro is a type of module: a reusable component of a program.

HRL uses a generalization of a macro that is often referred to as a “temporally-
abstract action,” or just an “abstract action” (Sutton et al. 1999). Conventional
macros are open-loop behavioral policies in the sense that their unfolding does
not depend on information sensed during their execution. In contrast, HRL uses
closed-loop policies as modules, meaning that the course of execution can depend
on input from the agent’s environment. Unlike a macro, then, which specifies a
specific action sequence, an abstract action in HRL generates a sequence of actions
that depends on how the actions influence the environment. Thus, in addition to
specifying a single “primitive action” to execute in a given state, a policy in HRL
can specify a multi-step abstract action to execute in a state, which is characterized
by its own policy that can specify both primitive actions and other abstract actions.
Once a temporally abstract action is initiated, execution of its policy continues until
a specified termination condition is satisfied. Thus, the selection of an abstract action
ultimately results in the execution of a sequence of primitive actions as the policy
of each component abstract action is “expanded.”

Although several approaches to HRL have been developed independently, they
all use closed-loop policies as behavioral modules: the options formalism of Sutton
et al. (1999), the hierarchies of abstract machines (HAMs) approach of Parr and
Russell (Parr 1998; Parr and Russell 1998), and the MAXQ framework of Dietterich
(2000a). These approaches are reviewed by Barto and Mahadevan (2003).

The illustrations in this chapter are based on the theory of options, and we use the
terms option and skill interchangeably. An option consists of (1) an option policy
that directs the agent’s behavior when the option is executing, (2) an initiation set
consisting of all the states in which the option can be initiated, and (3) a termination
condition, which specifies the conditions under which the option terminates. In
addition, a system can maintain, for each option, an option model, which is a
probabilistic description of the effects of executing an option. As a function of
an environment state where the option is initiated, it gives the probability with
which the option will terminate at any other state, and it gives the total amount
of reward expected over the option’s execution. Option models can be learned from
experience (usually only approximately) using standard methods. Option models
allow algorithms to be extended to handle learning and planning at higher levels of
abstraction (Sutton et al. 1999).

The question of where options come from has occupied a number of researchers.
In many cases a system designer can define a collection of potentially useful options
by hand based on prior knowledge about the agent’s environment and tasks. To do
this, the designer specifies the policy, initiation set, and termination condition for
each of these “native options,” which are analogous to action patterns and their
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triggering conditions given to an animal through evolution, such as swallowing, the
fight-or-flight-or-freeze response, and many others. In other instances, it may be
possible to define an option by creating only a reward function for that option, and
let the agent learn a policy, together with its initiation and termination conditions,
through RL.2 This is most commonly done by identifying potentially useful option
goal states and rewarding the agent for reaching them. These goal states are potential
subgoals for problems the agent will face over its future.

Option goal states have been selected by a variety of methods, the most common
relying on computing visit or reward statistics over individual states to identify
useful subgoals (Digney 1996; McGovern and Barto 2001; Şimşek and Barto 2004,
2009). Graph-based methods (Mannor et al. 2004; Menache et al. 2002; Şimşek
et al. 2005) build a state-transition graph and use its properties (e.g., local graph
cuts, Şimşek et al. 2005) to identify option goals. Other methods create options that
allow the agent to alter otherwise infrequently changing features of its environment
(Hengst 2002; Jonsson and Barto 2006). Mugan and Kuipers (2009) developed a
related system, which they called Qualitative Learner of Actions and Perception
(QLAP), that creates a discrete qualitative representation of a continuous state space
using “landmarks” to partition the space. Options are created to change the values
of the resulting qualitative variables. A related method was presented by Bakker and
Schmidhuber (2004) that relies on unsupervised clustering of low-level sensations to
define subgoals. Clustering was also used to cluster subgoals to prevent the creation
of multiple options that all correspond to the same underlying skill (Niekum and
Barto 2011). Konidaris and colleagues (Konidaris and Barto 2009b; Konidaris et al.
2011a, 2012b) illustrated the utility of setting the goal of an option to be reaching
the initiation set of an already-formed option in a process called “skill chaining.”
This method is used in the example described in Sect. 5.1 below. Still other methods
extract options by exploiting commonalities in collections of policies over a single
state space (Bernstein 1999; Perkins and Precup 1999; Pickett and Barto 2002;
Thrun and Schwartz 1995).

Barto and colleagues (Barto et al. 2004; Singh et al. 2005) proposed that option
goals can be identified through reward signals unrelated to a specific task, such
as signals triggered by unexpected salient stimuli. This allows an agent to create
options that have the potential to be useful for solving many different tasks that
the agent might face in its environment over the future (see Sect. 4.4 below). Hart
and Grupen (2011) proposed a comprehensive approach in which a reward signal
identifies behavioral affordances (Gibson 1977) that expose possibilities for action
in the environment. Mugan and Kuiper’s (2009) QLAP system similarly adopts this
“developmental setting” in creating options outside the context of a specific task.
Reward signals that do not specify an explicit problem to solve in an environment
are related to what psychologists call intrinsic motivation. Whereas extrinsic

2Option reward functions have been called “pseudo reward functions” (Dietterich 2000a) to
distinguish them from the reward function that defines the agent’s overall task, a distinction not
emphasized in this chapter.
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motivation means doing something because of some specific rewarding outcome,
intrinsic motivation means “doing something because it is inherently interesting or
enjoyable” (Ryan and Deci 2000). Intrinsic motivation leads organisms to engage
in exploration, play, and other behavior driven by curiosity in the absence of
externally-supplied rewards. Schmidhuber (1991a,b) proposed that an RL agent
could be given a kind of curiosity by being rewarded whenever it improved its
environment model. Although he didn’t use the term “intrinsic reward,” this was the
first contribution to what we now call “intrinsically-motivated RL.” An extended
discussion of intrinsically-motivated RL is beyond the scope of this chapter, and the
reader is referred to Baldassarre and Mirolli (2012) for multiple perspectives on the
subject.

Overall, the problem of how to create widely useful options—or more generally,
how to create widely useful behavioral modules—is of central importance for
progress in HRL, and much research remains to be done. The illustrations described
in this chapter are relevant to creating useful options, but since our purpose here is
to highlight the utility of behavioral modularity, we do not deeply discuss option
creation algorithms.

4 Exploration in Structured Environments

Exploration is indispensable for an RL system’s operation. To learn in the absence
of explicit instructional information, meaning information that directly tells the
agent how it should act, an agent has to try out actions to see what effect they
have on reward signals and other aspects of the agent’s environment. In other
words, behavior has to exhibit some form of variety. The simplest RL systems
inject randomness into their action-generation procedures so that, for example, they
sometimes choose an action uniformly at random from the set of all possible actions
instead of taking an action that appears to be one of the best based on what they
have learned so far. But exploration does not have to be random: trying something
new can be directed intelligently, the only requirement being that an exploratory
action is not one of the actions currently assessed to be best for the current
situation. Behavioral hierarchy provides an important means for exploring more
intelligently than acting randomly because it allows exploration to take advantage
of an environment’s structure.

In this section we present two examples that illustrate how behavioral hierarchy is
implicated in intelligent exploration in structured environments. The first example
illustrates how hierarchically-organized skills can be discovered that facilitate
learning an environment’s structure. The second example shows how a skill
hierarchy can make it possible to solve a collection of learning problems that would
be essentially impossible to solve otherwise. Both examples use learning problems
posed in what Vigorito and Barto (2010) called the “Light Box Environment,”
described next.
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4.1 The Light Box Environment

Figure 1 shows the Light Box Environment in which many different problems can
be posed. There is a set of 20 “lights,” each of which can be on or off. For each,
the agent has an action that toggles the light on or off. Thus there are 20 actions,
220 � 1 million states, and approximately 20 million state-action pairs.

The nine circular lights are simple toggle lights that can be turned on or off by
executing their corresponding action. The triangular lights are toggled similarly,
but only if certain configurations of circular lights are active, with each triangular
light having a different set of dependencies. Similarly, the rectangular lights depend
on certain configurations of triangular lights being active, and the diamond-shaped
light depends on configurations of the rectangular lights. In this sense there is a strict
hierarchy of dependencies in the structure of this environment.

Figure 2 is the causal graph of the Light Box Environment, showing the
dependencies between the variables that represent the states (on or off) of the lights.
To remove clutter, the dependencies of the variables on themselves are not drawn,
but the state of each light obviously depends on its own value at the previous time
step. With the exception of these reflexive dependencies, each link in the causal
graph indicates that the parent light must be “on” in order to satisfy the dependency.3

3More technically, the complete structure of an environment like the Light Box can be represented
as a set of Dynamic Bayesian Networks (DBNs, Dean and Kanazawa 1989), one for each of the
agent’s actions. A DBN is a directed acyclic graph with nodes in two layers representing the
environment’s features at time steps t and t C 1, respectively. A DBN also includes conditional
probability tables that give the state-transition probabilities. A causal graph as shown in Fig. 2
summarizes the feature dependencies by including a directed edge from one feature’s node to
another’s if and only if there is an agent action whose DBN has an edge from that feature’s node
at step t to the second feature’s node at step t C 1 (Jonsson and Barto 2006).
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The Light Box Environment is also stochastic (each action taken fails to produce
its intended effect with probability 0.1), and it is even more complicated because if
an action is taken to toggle a light whose dependencies are not currently satisfied,
the environment’s entire state is reset to all lights being off.

This environment emulates scenarios in which accurate lower-level knowledge is
essential for successfully learning more complex behaviors and their environmental
effects. Because of the “reset” dynamics, random action selection is extremely
unlikely to successfully turn on any of the lights at the top of the hierarchy. An
agent must learn and make use of specific skills in order to reach and remain in the
more difficult-to-reach areas of the state space. We emphasize that the agent does
not perceive any structure directly: it only senses strings of 20 bits. The structure
must be discovered solely from the state transitions the agent experiences, which is
a nontrivial problem.

Skills, in the form of options, discovered in the Light Box Environment may
have nested policies, the relationship between two of which is shown in Fig. 3. The
policies are represented as trees, with internal nodes representing state variables
and leaves representing action choices, which may be either primitive actions or
options. Branches are labeled with the possible values of their parent variables.
In the example shown, the policy for the option to turn on light number 16 (O16)
contains at one of its leaves another option (O10) to turn on light number 10, which
is one of the dependencies for light number 16. This nesting of policies is a direct
result of the hierarchical nature of the environment.

4.2 Exploration for Learning Structure

If the causal structure of an agent’s environment is known, in the form of a causal
graph like that shown in Fig. 2, it can be used to create a hierarchical collection
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of skills that decompose a task into sub-tasks solved by these skills. Jonsson and
Barto (2006) presented an algorithm called Variable Influence Structure Analysis
(VISA) that creates options by analyzing the causal graph of an environment.
VISA identifies context-action pairs, called exits (Hengst 2002), that cause one or
more variables to be set to specific values when the given action is executed in
the corresponding context. A context is a setting of a subset of the environment’s
descriptive variables to specific values from which the exit’s action has the desired
effect; it is like a production system’s precondition (Waterman and Hayes-Roth
1978). By searching through the structured representation of the environment, VISA
constructs exit options that allow the agent to reliably set collections of variables to
any of their possible values. Variables for which such options have been formed are
called controllable variables. The result of executing VISA is a hierarchy of skills
that together represent a solution to the original task. VISA also takes advantage of
structure in the environment to learn compact policies for options by eliminating
variables on which a policies do not depend, a topic we address in detail in Sect. 5
below.

But it is unrealistic to assume that a causal model of the environment is available
to an agent before it has to tackle specific tasks in that environment. Although
discovering causal structure is a very subtle problem in general situations (Pearl
2000), the assumptions built into an environment such as the Light Box, in which
actions are the complete causes of state changes, make it possible to apply a number
of different approaches that have been developed to learn the structure of Bayesian
networks. Many of these apply to the case where there is a training set of possible
observations (assignments of values to the environment’s descriptive variables,
or sequences of such assignments) that can be accessed without restriction (e.g.,
Buntine 1991; Friedman et al. 1998; Heckerman et al. 1995). Some algorithms
accelerate learning by selecting the most informative data instances from the
training set through a process called active learning (e.g., Murphy 2001; Steck
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and Jaakkola 2002; Tong and Koller 2001). These methods effectively perform
experiments by fixing subsets of the variables to specific values and sampling over
the remaining variables.

In an RL setting where an agent learns while interacting with its environment, it
may not be easy for the agent to access data necessary for learning the environment’s
causal structure. For example, a mobile robot attempting to learn the structure of a
new environment cannot transport itself to any location instantaneously, making it
difficult to perform all the experiments that might be useful. A collection of exit
options formed by an algorithm like VISA would be valuable for allowing the
agent to perform useful experiments, but such an algorithm requires knowledge of
the environment’s causal structure to begin with. Degris et al. (2006), Diuk et al.
(2009), Jonsson and Barto (2007), Mugan and Kuipers (2009), and Strehl et al.
(2007) proposed methods for learning causal graphs of certain types of dynamic
environments as part of the RL process, where it is not possible to sample the process
in arbitrary states but only along trajectories.

Here we focus on the structure learning method of Jonsson and Barto (2007),
which is an active learning method that takes advantage of the growing structural
knowledge to guide behavior so as to collect useful data for refining and extending
this knowledge. It follows other structure-learning methods by estimating the
probability of observing the data given a particular graphical representation of the
system’s causal structure, and incrementally searches the space of structures by
adding and deleting the edges in the graph in an attempt to find the structure that
maximizes this probability. This is not guaranteed to find the best graph (the general
problem is NP-complete; Heckerman et al. 1995), but it usually succeeds in finding
high-scoring graphs.

Details of Jonsson and Barto’s (2007) active learning scheme are fairly compli-
cated and beyond the scope of this chapter, but for current purposes the essential
point is that the agent collects sample experiences so that the amount of evidence
for each possible graph refinement is roughly equalized. This is accomplished by the
agent choosing actions that maximize the entropies of the probability distributions
the system uses for its refinement criteria. This is advantageous because having
a more uniform distribution over the input values of a given refinement variable
makes the evaluation of that refinement more accurate. Thus, correct refinements
get discovered more quickly than they do with uniformly random action selection.

This approach does produce faster learning in some environments, but in
more complex environments it can fail to discover a significant portion of the
environment’s structure. This is because this active learning scheme is myopic,
only considering the effects of primitive actions at each step, and thus can cause
the agent to become stuck in “corners” of the state space that are difficult to get
out of. To partially remedy this the agent can learn skills, in the form of options,
while it is exploring. Selecting skills can allow the agent to reach configurations of
environmental variables that would be difficult to reach using only primitive actions.
In this approach, an agent uses its current skill collection to perform experiments
so as to expedite structure learning. An experiment in this scheme, like an exit, is
composed of a context and an associated primitive action. Vigorito and Barto (2010)
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studied a method that selects actions according to Jonsson and Barto’s (2007) active
structure learning method, but while interacting with its environment it constructs
options with hierarchically-defined policies like that shown in Fig. 3 and uses them
to improve active structure learning. Instead of selecting only from primitive actions,
it selects from the agent’s entire suite of primitive actions and available options.

Although this method takes advantage of acquired skills to explore more broadly
than possible with just primitive actions, in complex tasks with large state spaces
it still may fail to explore many regions of the state space, preferring to maintain
uniformity in the current region. This happens because the agent still uses only
local information in selecting actions: it only considers how the distributions change
locally as a result of executing single actions or single options. This method is
illustrated in the Light Box Environment in Sect. 4.3 below, where we call the agent
using it the LOCAL agent.

One way to produce a more global method is to allow the agent to use its
current environment model to plan to reach configurations of environmental variable
values that will likely yield more relevant information. Here, executing a plan means
executing the plan’s policy that specifies actions—primitive actions or options—in
response to observations from the environment. Vigorito and Barto (2010) produced
an algorithm that does this by introducing a reward function that rewards the agent
for achieving a context consisting only of controllable variables. This method is also
illustrated in the Light Box Environment in Sect. 4.3 below, where we call the agent
using it the GLOBAL agent.

Using this reward function, a policy is computed (using Structured Value
Iteration, Boutilier et al. 2000) to reach the rewarding context and execute the
action associated with it. The policy is executed to completion before the next best
experiment is computed. In this sense, the agent defines its own problems as it
continues to learn and explore, becoming “bored” with things that it understands
well and focusing its attention on the parts of its environment about which it is
uncertain. This is a property of intrinsically-motivated curiosity as pointed out by
Schmidhuber (1991b). We think of the reward function used by the GLOBAL agent
as producing intrinsic reward signals.

Since the GLOBAL agent starts out with no controllable variables, initial explo-
ration is carried out according to the local active learning scheme like that described
above. However, as enough structure is discovered and certain variables become
controllable via construction of low-level options, the agent can use these new skills
to reliably set contexts about which it has limited experience. When options happen
to be created prematurely and are malformed, their lack of utility is discovered
fairly quickly by the agent when it attempts to use these options in its experimental
plans and they fail repeatedly. These options are removed from the agent’s skill
collection until the agent performs more experiments relevant to discovering their
structure, at which point they will be re-created and tested in further experiments.
Once a correct option is learned, its empirical success rate will on average match its
expected success rate, and the option will remain in the agent’s skill collection to
be used in all further experiments. In this way, structure learning is bootstrapped on
existing structural and procedural knowledge.
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The next section describes a study by Vigorito and Barto (2010) that compares
the performance of agents using different types of exploration strategies to guide
behavior while learning the structure of the Light Box Environment. Although this
environment is relatively simple and was designed with an explicit hierarchical
structure, it clearly illustrates the advantages that skill hierarchies can confer to
exploration for learning an environment’s structure.

4.3 Active Learning of Light Box Structure

Three agents were compared in Vigorito and Barto’s (2010) illustration of the
behavior of structure-learning agents in the Light Box Environment. Agent RAN-
DOM always selected a random action from its set of available actions, which
included options previously acquired, and executed each to completion before
choosing another. Agent LOCAL also selected from its set of primitive actions
and previously acquired options, but employed the local active learning scheme
described above. Agent GLOBAL, on the other hand, used the global active learning
scheme of described above. This agent was able to compute plans (via Structured
Value Iteration) in order to select among primitive actions and previously acquired
options so as to maximize future reward. It therefore used more global information
than did agent LOCAL and so could reach more informative areas of the state space.

Since Vigorito and Barto (2010) knew the true transition structure of the Light
Box, they could compare the refinements made by each agent at any given time step
to the set of refinements that define the correct model. Figure 4 shows the number
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of correct refinements discovered by each agent as a function of the number of time
steps. The learning curves presented are averages of 30 runs for each agent. Clearly
the hierarchical nature of the environment made structure learning very difficult for
agents that could not plan ahead in order to reach more informative areas of the
state space. Both RANDOM and LOCAL were able to learn what is essentially the
bottom layer of the hierarchy, but once this structure was discovered they continually
sampled the same areas of the state space and their learning rate leveled out.

GLOBAL, on the other hand, used the options constructed from this initial
structure to plan useful experiments in its environment, allowing it to reach areas
of the state space that the other agents could not reach reliably. This allowed it to
uncover more of the environment’s structure, which in turn allowed it to generate
new skills that enabled further exploration not possible with only the previous set
of options. This bootstrapping process continued until all of the domain structure
had been discovered, at which point the agent possessed options to set each light
to either on or off. The structured representation of the environment allowed the
agent to uncover the transition dynamics without ever visiting a vast majority of
the environment states, with GLOBAL reliably finding the correct structure in under
40,000 time steps.

This experiment clearly demonstrates the utility of behavioral modularity in a
developmental framework. Using an initially learned set of skills as a basis for
further exploration in hierarchically-complex environments like the Light Box is
necessary for the discovery and learning of new, more complex skills. But the initial
learning of low-level skills may not be sufficient for learning complex tasks. An
agent must continue to learn new skills using those it has already discovered in order
to make full use of a behavioral hierarchy. Unlike agents RANDOM and LOCAL,
GLOBAL used those skills in a planning framework that drove it towards the more
informative areas of the state space, and thus it performed much better than the
others.

The learning curves for RANDOM and LOCAL in Fig. 4 eventually flatten out,
indicating that the agents reach a complexity plateau and are unable to learn
beyond that point. By contrast, agent GLOBAL is able to learn more complex
behavior, using its already acquired skills as building blocks. This kind of open-
ended learning, where the agent is able to continually acquire ever more complex
skills by progressively building on the skills it has already acquired, characterizes
the utility of this approach in complex hierarchically-structured environments.

4.4 Skills for Multiple Tasks

Another benefit of behavioral modularity for exploration occurs when an agent
has to face multiple tasks in an environment. Consider the following scenario.
Suppose an agent finds itself in an environment in which it will—over the future—
face a collection of tasks, where each task is specified by a different reward
function. Further suppose that the environment has structure that can be exploited to
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accumulate reward, but that the agent does not know anything about this structure
to begin with, or how it can be exploited. Assume also that at the start the agent
does not know what tasks it will have to face. This scenario captures some features
of the situation in which an infant finds itself, or in which an adult finds itself when
confronting an environment in which it has little experience and where there is
the luxury of a “developmental period” during which relatively few demands are
made. What should an agent do to prepare for future challenges? Clearly, it should
explore its environment and discover features of its structure that might be useful
later on. Our perspective is that it should not only accumulate knowledge of the
environment’s structure, but it should also acquire behavioral modules in the form of
skills that will be on call as it faces multiple tasks over the future, thereby enabling
it to learn to perform those tasks more efficiently than would be possible without
those skills.

Vigorito and Barto (2010) conducted experiments to illustrate this scenario in
the Light Box Environment. They compared the time it took to compute policies
for various tasks (defined by different reward functions) for an agent with only
primitive actions to the time taken by one with a full hierarchy of options (including
primitives). For each of the 20 lights they computed a policy for a task whose reward
function was 1 when that light was on and �1 otherwise. They averaged together
the computation times of the tasks at each level of the Light Box hierarchy, i.e.,
all times for circular lights were averaged together, and similarly for triangular and
rectangular lights, with only one task for the diamond light.

Results in Fig. 5 show that for the lowest level of the hierarchy, where each task
could be accomplished by one primitive action, the two agents took very little time
to compute policies, with the options agent being slightly slower due to having a
larger action set through which to search. However, once the tasks required longer
sequences of actions to perform, there was a significant increase in the computation
time for the primitives-only agent, and little or no increase for the options agent.
The overhead of computing the options in the first place was thus compensated for
once the agent had been confronted with just a few different higher-level tasks. The
savings became very substantial above level 2 (note the log scale).

These results illustrate that even with as few as two or three dependencies-
per-variable, the benefits of exploring with options can be dramatic. Lacking a
hierarchically-structured search, the probability of the agent “stumbling upon” the
solution to a higher-level task is extremely small. Indeed, in some environments, this
probability is essentially zero. Caching previous experience in the form of reusable
skills effectively restructures the search space, enabling the agent to experience the
consequences of behavior that would otherwise be very unlikely.

5 Representational Advantages of Behavioral Modularity

In addition to facilitating searches for highly rewarding behavior by restructuring the
search space, behavioral modularity presents the opportunity to greatly reduce the
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Fig. 5 Policy computation times. Times are given for tasks at varying levels of the Light Box
hierarchy for an agent with primitive actions only and for one with options plus primitives. Note
the log scale. c�2010 IEEE. Reprinted, with permission, from Vigorito and Barto (2010)

representation problem that is a major challenge in applying RL to problems with
large or infinite state and/or action sets. RL algorithms work by learning certain
functions of a problem’s set of states. Depending on the type of RL algorithm, these
functions can include value functions, which for each state (or possibly each state-
action pair) provide a prediction of the reward the agent can expect to receive over
the future after observing that state (and possibly performing a specific action in
that state). Or an algorithm may require directly learning a policy, a function that
for each state specifies an action that the agent should take when observing that
state.

Learning in environments with large state sets requires compact representations
of the needed functions when it is not feasible to explicitly store each function
value. This is especially an issue when state sets are multi-dimensional since the
size of the state set increases exponentially with the number of dimensions: the
well-known “curse of dimensionality” (Bellman 1957). The problem is compounded
when states are represented by multiple descriptive variables that can take real
numbers as values, which is the case for many applications of RL. Hierarchical
organizations of behavioral modules can be especially advantageous in these types
of problems.

An important component of all the approaches to HRL is that each behavioral
module, or skill, can operate with its own representations of states and actions, as
well as its own manner of representing any needed functions. The representations
on which a skill depends must be sufficient only for successfully learning and
performing that skill, and thus can exclude wide ranges of information that, while
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perhaps relevant to other skills, are irrelevant to the skill in question. This implies
that the problem of learning an individual skill can be much simpler than learning
to solve a larger problem.

To be more specific about how skill-specific representations can differ from one
another, consider the following common approach to representing the functions
a learning agent may need to maintain. Suppose each environmental state has a
“native representation” that is a vector of the values of a set of descriptive variables.4

For example, the native representation of a state of the Light Box Environment of
Sect. 4.1 is a tuple of 20 bits, each indicating the state of one of the lights. In the
Pinball Task described in Sect. 5.1 below, the native representation of a state is a
4-tuple of real numbers giving the two-dimensional position of the ball and its two-
dimensional velocity. These descriptive variables are usually called features, and
we can call them “native features.” Of course, what are considered native features
are not immutable properties of an environment. In designing artificial agents, these
features depend on design decisions and the nature of the problems the agent is
supposed to handle; in nature, they depend on the animal’s sensory repertoire and
perceptual processes, both exteroceptive and interoceptive.

Given a native state representation, it is necessary to implement a function
approximation method that receives as input a state’s native representation and
produces as output a function value, for example, an estimate of the amount of
reward expected over the future after the agent visits that state. Linear function
approximation is a simple and very well-studied way to do this. In this method,
a state’s native representation is transformed into another vector specified by a
set of basis functions, and this new vector’s components are linearly combined to
produce the function’s output value. Each basis function maps the space of native
representations to the real numbers. The weights used to combine the components
are adjusted by a learning algorithm.

The reason for using a set of basis functions is that although any function
implemented by this method is a linear function of the weights—which makes
it relatively easy to design and analyze learning algorithms—the overall function
can be a very complex nonlinear function of the native representation because the
basis functions can be nonlinear functions of the native representation. Further,
it is usual practice to use many more basis functions than native features. For
example, in continuous domains with many native features, an overall problem’s
value function or policy approximation may require hundreds of even thousands of
basis functions to represent it. The examples described in Sects. 5.1 and 5.2 below
use Fourier bases consisting of varying numbers of multivariate sinusoidal basis
functions (Konidaris et al. 2011b). Mahadevan (2009) provides a thorough account
of the use of basis functions in RL.

Skill-specific representations can therefore differ in terms of native features,
function approximation methods, basis functions, or all of these. For example,

4Actions similarly have native representations, but we restrict attention to state representations to
keep things simple.
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a skill may depend only on a subset of the environment’s full set of native
features, the rest being irrelevant to the skill. More generally, a skill may depend
only on an abstraction of the full native representation produced by transforming
the native representation in a many-to-one manner to produce a more compact
description that removes some of the distinctions originally present while preserving
relevant information (Dietterich 2000b; Li et al. 2006; Ravindran and Barto 2002).
Abstraction is a key approach to solving high-dimensional RL problems, but it
is typically difficult to find a single abstraction that applies to the entirety of a
complex problem: the problem itself may simply be intrinsically high-dimensional
and therefore hard to solve monolithically. Nevertheless, it may at the same time
consist of several subproblems that can be captured as skills, each of which can be
learned efficiently using a suitable abstraction.

Skill-specific representations can also differ in the function approximation
methods they use. In the case of linear function approximation, for example, each
skill may use its own set of basis functions. Alternatively, each skill might use the
same type of basis functions, but can use fewer of them than would be required to
provide sufficiently accurate function approximation over the environment’s entire
state space. This applies when skills generate activity that is concentrated on a subset
of the environmental state space.

In the next section we illustrate the case in which all the options rely on the same
native features, but the options are only required to achieve accuracy on subsets of
the state space. Each option therefore uses a function approximator based on many
fewer basis functions than would be required to achieve adequate accuracy over the
entire state space. Konidaris and Barto (2009b) called these “lightweight options,”
in reference to the relative simplicity of their function approximation methods. In
Sect. 5.2, we present an example in which each skill can select a different abstraction
of the task’s native representation.

5.1 Representing Complex Policies Using a Collection
of Lightweight Options

Konidaris and Barto (2009b) use a “Pinball Task” to illustrate lightweight options.
A Pinball Task is a dynamic navigation task with a 4-dimensional continuous state
space. Figure 6 shows an instance of a Pinball Task. Other instances have different
obstructions and different goal locations.

The goal of a Pinball Task is to maneuver a small ball from its starting location
into the large red hole in the upper right corner in Fig. 6. The ball’s movements
are dynamic so its state is described by four real-valued variables: x, y, Px, and Py.
Collisions with obstacles are fully elastic and cause the ball to bounce, so rather than
merely avoiding obstacles the agent may choose to use them to efficiently reach the
red hole. There are five primitive actions: incrementing or decrement Px or Py by a
small amount (which incurs a reward of �5 per action), or leaving them unchanged
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Fig. 6 An instance of a
Pinball Task. The goal is to
maneuver a small ball from a
starting location into the large
red hole in the upper right
corner. One possible starting
location is shown in the upper
left corner

(which incurs a reward of �1 per action); reaching the goal obtains a reward of
10;000.

Learning policies for a Pinball Task is very difficult because its dynamic aspects
and sharp discontinuities make it difficult for both control and for function approx-
imation, and it requires very accurate control for long periods of time. Konidaris
and Barto (2009b) compared Pinball agents that attempted to learn flat policies (that
is, policies not hierarchically defined) with agents that used hierarchical policies.
The latter agents used skill chaining to create skills such that from any point in the
state space, the agent could execute a sequence of skills, implemented as options, to
reach a given goal region of state space. This algorithm both discovers the skills and
determines their initiation sets by learning the local region from which their policies
consistently allow the agent to reach its goal. Skill chaining adaptively breaks the
problem into a collection of subproblems whose sizes depend on the complexity of
policy that they can represent. Its key mechanism is to treat the initiation sets of
options already acquired as goal regions for forming new options.5

We omit details of skill chaining and refer the reader to Konidaris and Barto
(2009b). It is related to what is known in robotics as pre-image backchaining or
sequential composition (Burridge et al. 1999). In related work by Neumann et al.
(2009), an agent learns to solve a complex task by sequencing motion templates.
The most recent related work is by Tedrake (2010) in a model-based control setting.

The options created by skill chaining were lightweight because they used a
function approximation scheme with many fewer basis functions than required to
approximate the value function adequately over the entire state space. Specifically,
whereas the flat policies were derived from value functions combining 1,296 basis
functions for each action for the Pinball instance shown in Fig. 6, the value functions

5In this respect, it is closely related to the algorithm used by agent GLOBAL described in Sect. 4.3
in which an intrinsic reward is generated for reaching a context consisting only of controllable
variables, although that algorithm does not immediately extend to problems with continuous state
spaces.



32 A.G. Barto et al.

50 100 150 200 250 300

x 104

Episodes

−16

−14

−12

−10

−8

−6

−4

−2

0

R
et

ur
n

No Options
Given Options
Skill Chaining

Fig. 7 Performance in the Pinball Task. Graphs show performance for agents employing skill
chaining, agents using given pre-learned options, and agents without options. Performance is
shown as an agent’s return for each episode, which is inversely related to the amount of time
the agent took to complete the task. Results are averages of 100 runs

of the options each combined only 256 basis functions for each action.6 Each option
therefore implemented a “lightweight policy”—a much simpler policy than the
overall task policy.

Figure 7 shows the performance (averaged over 100 runs) in the Pinball Task
shown in Fig. 6 for agents using a flat policy (without options) compared with agents
employing lightweight options obtained through skill chaining, and agents starting
with given (pre-learned) options. Performance is shown as an agent’s return for
each episode, which is the total amount of reward it received over that episode.
Given the task’s reward function, return is inversely related to the number of time
steps required to maneuver the ball into the hole. Pre-learned options were obtained
using skill chaining over 250 episodes in the same Pinball Task instance. The figure
shows that the skill chaining agents performed significantly better than flat agents by
50 episodes, and obtained consistently better solutions by 250 episodes, whereas the
flat agents did much worse and were less consistent. Konidaris and Barto (2009b)
observed similar results for another instance of the Pinball Task.

Agents that started with pre-learned options did very well initially—with an
initial episode return far greater than the average solution eventually learned by

6Konidaris and Barto (2009b) used Sarsa with linear function approximation using a 5th-order
Fourier basis (1,296 basis functions per action). Option policy learning was done using Q-learning
with a 3rd-order Fourier basis (256 basis functions per action). See Konidaris et al. (2011b) for
details about using Fourier bases in RL.
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Fig. 8 Sample solution trajectories from different start states in the Pinball Task. Acquired options
executed along each sample trajectory are shown in different colors; primitive actions are shown
in black

agents without options—and proceeded quickly to the same quality of solution as
the agents that discovered the options themselves. This shows that it was the options
acquired, and not a by-product of acquiring them, that were responsible for the
increase in performance. Given this set of lightweight options, the problem became
relatively easy to solve.

Figure 8 shows two sample solution trajectories from different start states
accomplished by an agent performing skill chaining in the Pinball Task, with the
options executed shown in different colors. The figure illustrates that this agent
discovered options corresponding to simple, efficient policies covering segments
of the sample trajectories.

The primary benefit of behavioral modularity in this problem is that it reduces
the burden of representing the task’s value function, allowing each option to focus
on representing its own local value function and thereby achieving a better overall
solution. Furthermore, using the strategy described here, an agent can create as many
options as necessary, thereby adapting to fit the problem difficulty. Although these
results illustrate a behavioral hierarchy consisting of only two levels (the level of
the options and the level of the primitive actions) the benefit of lightweight options
clearly extends to deeper hierarchies.

5.2 Selecting Skill-Specific Abstractions

The lightweight options described above illustrate the fact that a behavioral building
block can have lower complexity than would be required for a monolithic solution
to a given problem. Although the lightweight options in that example acquired
different policies applicable to different parts of the problem’s state space, they
were all built using the same, complete, set of native environmental features. It is
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also possible for each skill to be based on its own abstraction of the problem’s state
and action spaces. Here we describe an example due to Konidaris and Barto (2009a)
and Konidaris (2011) in which each skill selects its own abstraction, which in this
case is a subset of the environment’s native features.7 The goal is similar to that
of earlier work by Jonsson and Barto (2002) in which each option implemented a
separate instance of McCallum’s (1996) U-Tree algorithm designed to synthesize
state representations from past histories of observations and actions. The goal is
also similar to that of Seijen et al. (2007) who studied a method that included special
abstraction-switching actions.

In abstraction selection (Konidaris and Barto 2009a; Konidaris 2011), when an
agent creates a new option it also selects an appropriate abstraction for learning that
option from a library of existing abstractions. Once the agent has determined the
option’s termination condition—but not yet its policy or initiation set—the agent
uses trajectories that reach the option’s termination condition as sample trajectories
to determine the appropriate abstraction for the new option. The new option policy
is then defined using only the native features relevant to its selected abstraction.

Briefly, abstraction selection is treated as a model selection problem, where the
agent aims to find the highest likelihood model to fit the returns it receives along its
sample trajectories. For the example described below, the class of models considered
consists of linear combinations of a set of basis functions defined over the sets of
native features corresponding to the abstractions in the library. Konidaris and Barto
(2009a) used the Bayesian Information Criterion (BIC), a relatively simple metric
that balances an abstraction’s fit and its size while incorporating prior beliefs as to
which abstractions might be suitable. The process returns a selection probability as
output. These properties allow the agent, for example, to select an abstraction when
it is only 95 % sure it is the correct one. The abstraction selection algorithm runs on
each abstraction in parallel and is incremental and online. It compiles information
from the sample transitions into sufficient statistics and does not require them to be
stored. For details, see Konidaris and Barto (2009a), Konidaris (2011).

Konidaris and Barto (2009a) illustrate abstraction selection using the Contin-
uous Playroom, an environment where skill-specific abstractions can significantly
improve performance. The environment, a continuous version of the environment
of Barto et al. (2004) and Singh et al. (2005), consists of three effectors (an eye, a
marker, and a hand), five objects (a red button, a green button, a light switch, a bell,
a ball, and a monkey) and two environmental variables (whether the light is on, and
whether the music is on). The agent is in a 1-unit by 1-unit room, and may move any
of its effectors 0.05 units in one of the usual four directions. When both its eye and
hand are over an object, the agent may additionally interact with the object, but only
if the light is on (unless the object is the light switch). Figure 9 shows an example
configuration.

7More technically, each abstraction is a projection of the state space onto the subspace spanned by
a subset of the set of native features.
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Fig. 9 An example
Continuous Playroom. The
agent can move its eye, hand,
and marker (shown as the
cross). The objects are
randomly relocated at the
start of each episode

Interacting with the green button switches the music on, while the red button
switches the music off. The light switch toggles the light. Finally, if the agent
interacts with the ball and its marker is over the bell, then the ball hits the bell.
Hitting the bell frightens the monkey if the light and music are both on and causes it
to squeak, whereupon the agent receives a reward of 100,000 and the episode ends.
All other actions cause the agent to receive a reward of �1. At the beginning of each
episode the objects are arranged randomly in the room so that they do not overlap.

The agent has 13 possible actions (3 effectors with 4 actions each, plus
the interact action), and a full description of the Continuous Playroom requires 18
state variables: x and y pairs for three effectors and five objects (since the position
of the monkey may be omitted) plus a variable each for the light and the music.
Because the environment is randomly rearranged at the beginning of each episode,
the agent must learn the relationships between its effectors and each object, rather
than simply the absolute location for its effectors. Moreover, the settings of the
light and music are crucial for decision making and must be used in conjunction
with object and effector positions. Thus, for task learning the agent used 120 native
state features—for each of the four settings of the lights and music it used a set
of 30 features representing the difference between each combination of object and
effector (�x and �y for each object-effector pair, so 5 objects �3 effectors �2

differencesD 30).
The Continuous Playroom is a good example of a problem that should be easy—

and is easy for humans—but is made difficult by the large number of features and
the interactions between them that cannot all be included in an overall task function
approximator: a 1st order Fourier basis over 120 variables that does not treat each
variable as independent has 2120 basis functions. Thus, it is a problem in which
options can greatly improve performance, but only if those options are themselves
feasible to learn.
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Konidaris and Barto (2009a) assumed that the agent starts with primitive actions
only, and that a new option is created for moving each effector over each object
when the agent first successfully does so. The task is then to efficiently learn the
policies for these options using abstraction selection.

The agent was given an abstraction library consisting of 17 abstractions. Since
the environment consists of objects and effectors, abstractions were included for
each of the 15 object-effector pairs, with each abstraction consisting of just two
features: �x and �y for the object-effector pair. Also included in the library was
a random abstraction (two features with values selected uniformly at random over
Œ0; 1� at each step), and a null abstraction, which used all 120 native features.

For overall task learning in the Continuous Playroom, Konidaris (2011) used a
10th-order independent Fourier basis over the 120 native features (1,320 basis func-
tions per action). For learning an option policy with an option-specific abstraction,
a full 10th-order Fourier basis was used for each action (121 basis functions per
option). For option learning without abstraction, the lights and music features were
discarded and the agent used the 30 difference features and a 10th-order independent
Fourier basis (330 basis functions per action). For the abstraction selection process,
a 2nd-order Fourier basis was used.

Figure 10 compares the overall learning curves in the Continuous Playroom
for agents that used abstraction selection with those that did not use abstractions
when learning option policies. The figure also includes curves for agents that were
given pre-learned optimal option policies, and agents that were immediately given
the correct abstraction so that performance can be compared to the ideal case.
The abstraction selection agents were constrained to only perform selection after
5 episodes.

Figure 10 shows that agents performing abstraction selection performed iden-
tically to those that did not use abstractions initially, until about 5 episodes,
whereafter the agents were allowed to perform abstraction selection and their
performance improved relative to agents that did not use abstractions, matching
the performance of agents that were given the correct abstractions in advance by 10
episodes. The difference in performance between agents that did not use abstractions
and agents that performed abstraction selection was substantial.

This example illustrates advantages of using abstractions, but it does not explain
why it makes sense for an agent to select abstractions from a library instead of
developing them itself from its experiences. According to Konidaris and Barto
(2009a), the key advantage of abstraction selection is that it shifts the state-space
representation problem out of the agent’s control loop: instead of having to design a
relevant abstraction for each skill as it is discovered, a library of abstractions can
be provided and the agent can select a relevant one for each new skill. As the
Continuous Playroom example shows, this can significantly bootstrap learning in
high-dimensional state spaces, and it allows one to easily incorporate background
knowledge about the problem into the agent.

However, providing a library of abstractions to the agent in advance requires
both extra design effort and significant designer knowledge of the environment the
agent is operating in. This immediately suggests that the abstraction library should
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Fig. 10 Learning with abstraction selection. Learning curves for agents given optimal option
policies, agents given the correct abstraction in advance, agents using no abstractions, and agents
that performed abstraction selection. The dashed line at 5 episodes indicates the first episode where
abstraction selection was allowed; before this line, agents using abstraction selection learned option
policies without abstractions

be learned, rather than given. Just as an agent should learn a library of applicable
skills over its lifetime, so should it also learn a library of suitable abstractions over
its lifetime—because an agent’s abstraction library determines which skills it can
learn quickly. We refer the interested reader to Konidaris (2011) for more on these
issues.

6 Summary and Prospects

Modularity, in one form or another, is widely observed in both artificial and natural
systems. This chapter has focused on behavioral modularity in which “units of
behavior,” which we call skills (or in the HRL framework, options), are reusable
building blocks that can be composed to generate extensive ranges of behavior.
Perhaps the most widely appreciated feature of behavioral modularity becomes
apparent when hierarchical composition is possible, in which modules can be
composed of other, lower-level modules. Behavioral hierarchies facilitate both
learning complex skills and planning at multiple levels of abstraction. Another
salient feature of behavioral modularity is that it facilitates transfer learning,
in which results of learning in one task are transferred to other related tasks.
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In a developmental framework, this allows agents to incrementally improve their
competence for facing new challenges that arise over extended time periods.

This chapter focuses on two features of behavioral hierarchy that appear to be
less well recognized: its influence on exploratory behavior and the opportunity it
affords to reduce the representational challenges of planning and learning in large,
complex domains. Behavioral hierarchy not only allows exploration to take “bigger
steps,” but it can also make areas of a state space accessible that would be effectively
inaccessible otherwise. Our example using the Light Box Environment illustrates
this: without the ability to cache learned behavior into reusable skills, the agent
would have very little chance of ever causing “higher-level” events to occur, and thus
would have very little chance to learn about these aspects of its environment. This
additionally illustrates how behavioral hierarchy can provide a means for continual,
developmental learning in which the acquisition of new skills is bootstrapped on
previously acquired structural and procedural knowledge.

Our other examples using the Pinball and Continuous Playroom environments
illustrate the utility of allowing each module to incorporate its own module-
specific representation. Skills typically involve circumscribed aspects of an agent’s
environment, which allows irrelevant features to be omitted in the representations
underlying the skill. Because each skill in a Pinball Task applies to a restricted subset
of the problem’s state space, skills can use mechanisms of lower complexity than
they would need if they were more widely applicable. This was illustrated through
the idea of a “lightweight option.” In the Continuous Playroom, an example with
a higher dimensional state space, the skill-creation mechanism selected the subset
of state variables considered most relevant to learning and performing that skill.
This is an example of how individual skills can take advantage of skill-specific
abstractions. In this case, abstractions were selected from a pre-specified small
library of abstractions, but the principle would be similar with other methods for
creating and selecting abstractions.

The examples described in this chapter were developed to illustrate methods
designed to scale RL to larger and more complex problems. However, we believe
that key features of these examples are relevant to modularity in human and animal
behavior as well. A guiding principle of all of this research has been that behavioral
modules, especially when hierarchically organized, provide a powerful means for
continual, developmental learning. It is plausible that the benefits of behavioral
hierarchy that we have illustrated through these examples have counterparts that
influenced the evolution of hierarchical modularity in humans and other animals.

Although the examples presented in this chapter are based on the options frame-
work of Sutton et al. (1999), it would be a mistake to conclude that this framework is
fully developed, that it provides an adequate account of all the issues associated with
behavioral hierarchy, or that it is the only framework in which our main points could
have been framed. The options framework has the advantages of resting on a strong
theoretical base and affording a collection of principled algorithms, but much more
development is needed to make it better suited to engineering applications and to
improve its account of salient features of behavioral modularity observed in animals.
We conclude by briefly describing several avenues for continued development.
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1. Option Creation. The question of where options come from was briefly discussed
in Sect. 3. Although many different approaches are being studied, significant
challenges remain. For example, most of the methods that have been developed
focus on identifying state space regions that act as useful option goals, and
therefore as subgoals for higher-level tasks. These options terminate when
the goal region is entered. How to identify useful option goals is far from
settled. Further, many skills involve ongoing repetitive behavior, such as running,
swinging, and stirring. These kinds of skills are not characterized by goal regions
but rather by desired dynamic behavior, such as desired limit cycles. Little work
has been done on creating options of this type, although much work in robotics
is relevant, such as the methods used in the biped walker of Tedrake et al. (2004)
and the control-basis approach of Grupen and colleagues (Hart and Grupen 2011,
2012; Huber and Grupen 1997).

2. Parameterized Options. One limitation of the option model of a skill is that most
skills, as the term is ordinarily used, seem more flexible than options. What we
may think of as a single skill, for instance, throwing a ball, would correspond to
many different options whose policies would differ depending on the type of ball,
its desired trajectory, etc. Because option policies are closed-loop, the behaviors
that options specify are reactive to state information, which could include desired
trajectory specifics. However, it might be better to model a skill as a family
of options that are parametrically related to one another in the sense that they
share a basic structure and differ by the settings of only a few parameters. For
instance, the ball’s speed might be a parameter for a ball-throwing skill. Initial
investigations of parameterized options have been undertaken by Soni and Singh
(2006) and da Silva et al. (2012).

3. Representation and Abstraction. It is well known that how a problem is repre-
sented critically influences the performance of problem solving methods Amarel
(1981). The problems of designing and/or learning representations are intimately
related to the problem of forming useful abstractions: all representations involve
abstraction in one guise or another. The forms of representation and abstraction
illustrated by the examples in this chapter only touch the surface of these topics,
which have long occupied researchers in many fields. There is ample opportunity
for integrating the approaches to representation and abstraction taken in RL
and HRL, such as those described by Mahadevan (2009) and Osentoski and
Mahadevan (2010), with those developed by researchers in other areas.

4. Many-Level Skill Hierarchies. There is a shortage of examples in which an agent
automatically constructs a many-level skill hierarchy. The GLOBAL agent in
the Light Box illustration constructed a four-level skill hierarchy for turning on
the highest-level light, and the agent solving a Continuous Playroom problem
constructed a multi-level skill hierarchy, but these illustrations were accom-
plished in relatively simple environments with explicitly-designed hierarchical
structure. Other examples, such as the Pinball example described here, create
two-level hierarchies (primitives actions plus options that do not invoke other
options). Compelling support remains to be developed for the claim that truly
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open-learning can emerge from an HRL system with the ability to autonomously
form deep skill hierarchies.

5. Ensembles of Tasks: Competence and Transfer. A theme only briefly touched
upon in this chapter is the importance of considering ensembles of tasks instead
of single tasks. The example in Sect. 4.4 illustrates how appropriate skills can
make it much easier for an agent to learn any one of several tasks posed by
different reward functions in the Light Box Environment. The right kinds of
skills—based on the right kinds of representations and abstractions—can make
an agent “competent” (White 1959) in an environment, meaning that it is able to
efficiently solve many different problems that can come up in that environment.
Beyond this, competence can extend from multiple tasks in a single environment
to multiple tasks in multiple environments, where the environments have features
in common that make it possible to transfer knowledge and skills from one to
another. Developing algorithms for learning and problem solving across task
ensembles continues to be a challenge. Some perspectives on this theme are
discussed by Barto (2012) and Singh et al. (2010).

6. Real-World Applications. The illustrations described in this chapter all involved
simulated environments that were artificially structured to test and demonstrate
the capabilities of various HRL algorithms. Although these are considered to be
“toy” environments, the problems they pose are not trivial. For example, a Pinball
Task can be very difficult to solve for both humans and conventional control
methods. But in many respects HRL theory has far outpaced its applications.
Although there are many applications of related techniques to real-world prob-
lems (too many to attempt to cite here), there is a shortage of instances that
demonstrate the full potential of HRL in important real-world tasks. This is a
direction in which progress is much needed.
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