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Computational and Robotic Models
of the Hierarchical Organization
of Behavior: An Overview

Gianluca Baldassarre and Marco Mirolli

Abstract The hierarchical organisation of behaviour is a fundamental means
through which robots and organisms can acquire and produce sophisticated and
flexible behaviours that allow them to solve multiple tasks in multiple conditions.
Recently, the research on this topic has been receiving increasing attention. On the
one hand, machine learning and robotics are recognising the fundamental impor-
tance of the hierarchical organisation of behaviour for building robots that scale up
to solve complex tasks, possibly in a cumulative fashion. On the other hand, research
in psychology and neuroscience is finding increasing evidence that modularity and
hierarchy are pivotal organisation principles of behaviour and of the brain. This book
reviews the state of the art in computational and robotic models of the hierarchical
organisation of behaviour. Each contribution reviews the main works of the authors
on this subject, the open challenges, and promising research directions. Together,
the contributions give a good coverage of the most important models, findings,
and challenges of the field. This introductory chapter presents the general aims and
scope of the book and briefly summarises the contents of each chapter.

1 Modelling the Hierarchical Organization of Behaviour

The performance of flexible behaviour to accomplish multiple goals requires a
hierarchical organisation of actions. Each action consists in a sensorimotor mapping
that associates a flow of motor commands with the flow of sensory inputs.
The mappings related to different actions can be substantially different. When
this happens, different actions have to be encoded in distinctive portions of the

G. Baldassarre (�) � M. Mirolli
Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences
and Technologies, National Research Council, Via San Martino della Battaglia 44,
I-00185 Rome, Italy
e-mail: gianluca.baldassarre@istc.cnr.it; marco.mirolli@istc.cnr.it

G. Baldassarre and M. Mirolli (eds.), Computational and Robotic Models
of the Hierarchical Organization of Behavior, DOI 10.1007/978-3-642-39875-9 1,
© Springer-Verlag Berlin Heidelberg 2013

1

mailto:gianluca.baldassarre@istc.cnr.it
mailto:marco.mirolli@istc.cnr.it
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architecture of the control system to avoid a crosstalk or catastrophic interference
between them (French 1999; McCloskey and Cohen 1989). On the other hand,
when sensorimotor mappings are very similar their encoding in common structures
facilitates generalisation and the reuse of knowledge for the accomplishment
of different purposes (Meunier et al. 2010; Singh 1992). Hierarchical control
architectures can allow both the avoidance of catastrophic interference and the
exploitation of previously acquired skills to accomplish new tasks. Furthermore,
they can also allow the decomposition of complex control problems into smaller
tractable problems (Hart and Grupen 2011) and the chunking of simpler actions
into higher level actions so that increasingly complex behaviours can be acquired
cumulatively (Bakker and Schmidhuber 2004; Balleine and Dickinson 1998).

For all these reasons, hierarchical architectures are becoming increasingly impor-
tant in robotics, in particular when robots are requested to solve not only one task
but also multiple tasks, and not only in one condition but also in multiple conditions.
Hierarchical architectures are now generally considered as the necessary condition
to allow robots to undergo a prolonged autonomous development (Baldassarre
and Mirolli 2010) and to scale up robot behaviour to address real-life problems
(e.g., Demiris and Khadhouri 2006; Yamashita and Tani 2008). As shown in various
chapters presented in this book, state-of-the-art robotics uses hierarchical control
architectures to solve multiple tasks, to facilitate the reuse of acquired knowledge
to solve other tasks, to facilitate human-to-robot transfer of knowledge, to avoid
interference, and so on.

If the adoption of hierarchical architectures is rather new in robotics,
the recognition that animal behaviour is hierarchically organised is quite older,
dating back at least to the early 1960s (Miller et al. 1960). Today, the hierarchical
organisation of behaviour is given for granted in psychology, where it is generally
conceived that humans cumulatively build a repertoire of skills that can be flexibly
composed to form increasingly complex action programs. Empirical, theoretical,
and computational research has been carried out in psychology to understand the
details of such a hierarchical organisation of behavior (Botvinick and Plaut 2004;
Cooper and Shallice 2000; Fischer 1980; Schneider and Logan 2006; Zacks et al.
2007).

Recent research has also been demonstrating that the hierarchical organisation
of behaviour is supported by a hierarchical organisation of the brain (Fuster 2001;
Meunier et al. 2010). In particular, animals’ brains have been suggested to exploit
hierarchy in order to chunk pieces of behaviour so as to reuse them in new tasks
(Graybiel 1998), to easily recall behaviours at later times (e.g., to pursue goals
associated with them; Redgrave and Gurney 2006), to avoid crosstalk, and to
exploit the compositionality allowed by a modular organisation of information
(Graziano 2006). Furthermore, recent neuroscientific research is revealing that the
brain is hierarchically organised at multiple levels both within cortical (Miller and
Cohen 2001) and sub-cortical regions (Yin and Knowlton 2006). In this respect,
it can be said that much of the behavioural flexibility exhibited by real organisms
depends on the fine hierarchical organisation of the underlying brain structure
(Meunier et al. 2010).
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The aim of the present book is to review the state of the art in computational
and robotic models of the hierarchical organisation of behaviour. The books covers
the full spectrum of models: from (scientific) models that try to explain behavioural
and/or neural phenomena found in real animals to (technological) models that aim
to endow robots with increasingly powerful controllers (including models that try
to do both things). Indeed, we are convinced that the cross-fertilisation between
different disciplines and approaches is of the most importance both if we want
to better understand human behaviour and if we want to construct more useful
artificial systems (in the case of hierarchies as in any other). And that computational
modelling is the lingua franca that can help to bridge different disciplines that have
different concepts, methods, and traditions.

In order to provide a wide overview of current computational research on the
hierarchical organisation of behaviour we asked the authors of the various contri-
butions, which represent some of the most active researchers in the field today, to:
(1) offer a broad survey of their main works on hierarchical behaviour, (2) highlight
the problems and open challenges they see in their area, and (3) when possible, point
to the most promising research direction for tackling those challenges. We hope
that, taken together, the resulting contributions, collected in one unique venue and
following homogeneous guidelines, will aid the reader novel to the field to have
a comprehensive panoramic knowledge on hierarchical behaviour, and the more
expert reader to be informed of the latest advancements in the field.

2 Book Overview

The chapters of this book have been organised as follows. Part I presents the
contributions that address the issue of the hierarchical organisation of behaviour
by mainly addressing the problem of how to build skilled robots. Some of these
contributions are “bio-inspired”, but their distinctive feature is to aim to build useful
intelligent technological artefacts. Part II presents computational models directed to
understand the hierarchical organisation of behaviour in real animals. The distinctive
feature of the models of this part is to aim to answer scientific questions on the
organisation of natural intelligence. Although some contributions are robotic and/or
refer also to elements of the brain organisation, its major focus is, however, the
study of animal behaviour. Finally, Part III presents computational models focussed
on understanding the hierarchical organisation of an animal’s brain. As those of the
previous part, these contributions aim to understand natural intelligence. Although
these models refer heavily to behaviour, given their system-level approach to the
study of brain their distinctive feature is their close reference to the empirical
evidence on the organisation and functioning of real nervous systems. Together,
the models illustrated in the chapters represent a solid basis from which to depart
to build future robots solving multiple problems or to foster further investigations
of the hierarchical organisation of action in the behaviour and brain of real animals.
We now present brief summaries of the contents of each book chapter.
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2.1 Part I: Hierarchical Organization of Behaviour in Robots

Behavioral Hierarchy: Exploration and Representation. In this chapter,
Andrew G. Barto, George Konidaris, and Christopher Vigorito discuss the
advantages of behavioural hierarchy from the point of view of hierarchical
reinforcement learning. In particular, the authors explore two kinds of benefits
that are often overlooked: the benefits given by behavioural hierarchies with
respect to the problem of how to efficiently explore the environment, and those
related to the problem of how to appropriately represent the state space on which
an agent works. Each of the two kinds of benefits is exemplified by reviewing
two couples of computational experiments: the first two experiments show how
a behavioural hierarchy can improve exploration in structured environments so
as to significantly improve learning speed; the other two experiments show how
behavioural hierarchies can allow the use of low complexity function approximation
methods for complex problems and how they can allow the selection of different
state abstractions for different skills to be learned, thus facilitating learning in high
dimensional state spaces. Finally, the authors discuss the generality of their findings
and some promising directions for future research in hierarchical reinforcement
learning.

Self-Organized Functional Hierarchy Through Multiple Timescales: Neuro-
dynamical Accounts for Behavioral Compositionality. In this chapter, Yuichi
Yamashita and Jun Tani review their work on functional hierarchies of behaviors
in distributed neural systems that work at multiple timescales. They first discuss
the problems encountered in scaling up a modular architecture to complex robotic
systems with many degrees of freedom and then present two kinds of systems based
on distributed representations. In the first system, the recurrent neural network with
parametric biases (RNNPB), different sensory-motor sequences are encoded in the
fixed activation patterns of the parametric bias units. In the more recent multiple
timescale recurrent neural network model (MTRNN), different classes of context
units have different time constants thus working at different timescales. Through
a supervised learning processes, fast units learn to encode different primitives
while slow units learn to appropriately switch between those primitives so as to
perform higher level behaviors. The authors conclude by discussing the challenge
of overcoming the limits of both distributed and localist systems, and how these
might be tackled in future work.

Autonomous Representation Learning in a Developing Agent. In this chapter,
Jonathan Mugan and Benjamin Kuipers present a hierarchical computational model,
called Qualitative Learner of Action and Perception (QLAP), that has been built for
developing high-level qualitative representations from low-level continuous sensor
and actuator representations while autonomously interacting with its environment.
The system has been built on the basis of four principles, devoted in particular
to facing the problem of learning useful representations: (1) the exploitation of
the synergy between created representations and the agent’s development; (2) the
generation of new qualitative representations that capture in an abstract form
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relevant “phenomena” in the environment; (3) the decomposition of the environment
into many sub-parts; (4) the creation of representations making learning more
efficient. After explaining these principles, the authors present QLAP in detail and
show how such systems can effectively learn useful representations and hierarchical
actions in a simulated robotic environment with realistic physics.

Hierarchies for Embodied Action Perception. In this chapter, Dimitri Ognibene,
Yan Wu, Kyuhwa Lee, and Yiannis Demiris present the Hierarchical Attentive
Multiple Models for Execution and Recognition (HAMMER) architecture, a bio-
inspired learning framework for endowing robots with the ability to understand and
imitate human actions. The model, which is based on a repertoire of paired inverse
and forward models, is based on three key principles: (1) human knowledge is hier-
archically structured, both at the perceptual and at the execution level; (2) perception
is active, and driven by task requirements and context; (3) learning is pivotal for
action perception, permitting the continuous acquisition of new behaviours. After
discussing these principles and describing the general architecture and functioning
of HAMMER, the authors review some robotic experiments directed to test the
architecture. The experiments demonstrate how the hierarchical organisation and the
repertoire of inverse and forward models of the architecture facilitate its autonomous
acquisition of complex behaviours and also the acquisition of sequences of actions
on the basis of imitation processes.

Learning and Coordinating Repertoires of Behaviors with Common Reward: Credit
Assignment and Module Activation. In this chapter, Constantin A. Rothkopf and
Dana H. Ballard present a reinforcement learning computational model that
autonomously learns different simultaneous tasks on the basis of different compu-
tational modules and learns how to appropriately mix them to maximise a common
indistinct reward. The model is composed by many modules that have different state
representations and that collectively control the behaviour of the system by sharing
the same action space. The proposed algorithm learns to use the modules that are
more appropriate for each task at hand by combining each module’s reward estimate
with an error signal depending on the difference between the unique reward estimate
and the sum of the reward estimates of other co-active modules. The efficacy of the
model is demonstrated through different experiments involving both simple abstract
grid-world tasks and a more complex navigation task in a virtual 3D environment.

2.2 Part II: Hierarchical Organization of Animal Behaviour

Modular, Multimodal Arm Control Models. In this chapter, Stephan Ehrenfeld,
Oliver Herbort, and Martin V. Butz discuss some important challenges faced
by human motor control and present modular and hierarchical computational
architectures that are able to meet those challenges. In particular, the authors identify
three main challenges for flexible human motor control: (1) sensory redundancy,
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related to the fact that different sources of information about the state of the body
and of the environment must be considered for motor control; (2) motor redundancy,
related to the fact that different postures and trajectories can be used for the
same goal, thus requiring the resolution of behavioural alternatives; (3) uncertainty,
related to the fact that many features of the motor task can change from time to
time and even during the execution of a movement while both movement execution
and sensory processing are always noisy. After identifying the modularity of
representations and the hierarchical organisation of planning and control as the two
main mechanisms that the brain may exploit to meet these challenges, the authors
present a computational model, based on direct inverse modelling mechanisms, that
has been used to account for the human behavioural flexibility in motor planning, the
SURE-REACH model. Furthermore, since the representational scheme of SURE-
REACH is computationally very expensive, a new model, called the Modular
Modality Frame (MMF) model, is presented. This model aims to cope with the
problem of scalability by further modularising the representational space and by
exploiting modular and hierarchical representations at several levels.

Generalization and Interference in Human Motor Control. In this chapter,
Luca Lonini, Christos Dimitrakakis, Constantin A. Rothkopf, and Jochen Triesch
identify the problem of generalization without interference as a fundamental issue
in modeling human motor control. Indeed, a cumulative learning system that is
learning a new motor skill must be able to efficiently exploit previously acquired
abilities while avoiding that catastrophic interference disrupts old knowledge,
as is typically the case in simple neural systems. The authors first review the
available empirical data on consolidation of procedural memories and then discuss
the different computational models that have been proposed for learning multiple
tasks in bio-inspired learning architectures.

A Developmental Framework for Cumulative Learning Robots. In this chapter,
Mark Lee, James Law, and Martin Hülse provide an extensive review of their
work on the Lift-Constraint, Act, Saturate (LCAS) approach, a framework for
building robot controllers inspired by developmental psychology (developmental
robotics). The basic idea behind LCAS is that development proceeds in a staged
fashion, thanks to the presence of learning constraints of various sorts (anatomical,
maturational, computational, environmental, etc.). These facilitate skill learning
and are progressively released as soon as learning is saturated, thus allowing the
cumulative development of increasingly complex abilities. The authors first present
their approach to learn sensorimotor mappings: these constitute the fundamental
building block of all their systems. Then the authors show how such sensorimotor
mappings can be acquired from autonomous experience and how the LCAS
framework can lead to a staged development similar to those observed in children.
Finally, the authors discuss the role of novelty in the LCAS framework, a possible
developmental program for humanoid robots based on it, the research challenges
facing the framework, and its relations with other works.
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The Hierarchical Accumulation of Knowledge in the Distributed Adaptive Control
Architecture. In this chapter, Encarni Marcos, Milanka Ringwald, Armin Duff,
Martı́ Sánchez-Fibla, and Paul F.M.J. Verschure present the Distributed Adaptive
Control (DAC) architecture as a biologically-motivated cumulative learning system.
In this hierarchical framework, a reactive layer stores built-in stimulus-response
associations, an adaptive layer co-adapts behavioral responses and perceptual
representations according to reinforcements, and a contextual layer stores sensory-
motor chains and uses them to perform memory-based goal-directed behaviors. The
authors review several recent studies on this architecture focused on the interactions
and arbitration between the higher contextual layer and the lower-level ones and
discuss how important challenges in cumulative learning can be tackled within the
DAC framework.

2.3 Part III: Hierarchical Organization of Animal Brain

The Hierarchical Organisation of Cortical and Basal-Ganglia Systems:
A Computationally-Informed Review and Integrated Hypothesis. In this chapter,
Gianluca Baldassarre, Daniele Caligiore, and Francesco Mannella discuss an
important problem existing in the neuroscientific literature, related to the presence
of two research frameworks focussed on either the hierarchical organisation of
cortex or the hierarchical organisation of sub-cortical structures, in particular basal
ganglia. The problem is that these two research threads proceed quite in isolation
from each other, so failing to account for the integrative nature of hierarchical brain
and encountering important limitations in its explanation. To better illustrate this
problem, the authors review in detail two of their computational models developed,
respectively, in each of the two research frameworks. This allows them to exemplify
in detail the problems, brain areas, experiments, main concepts, and limitations of
the two frameworks. On this basis, the authors then propose a theoretical integration
of the two perspectives and show how this leads to solve most problems found by the
two accounts when taken in isolation. Overall, the chapter shows that the cortex and
the basal ganglia form a whole highly-integrated system solving all the challenges
of choice, selection, and behaviour implementation posed by adaptive behaviour on
the basis of a sophisticated hierarchical organisation.

Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition
in Humans. In this chapter, Carlos Diuk, Anna Schapiro, Natalia Córdova,
José Ribas-Fernandes, Yael Niv, and Matthew Botvinick present recent empirical
research that investigates the brain mechanisms underlying complex human
behaviour requiring task decomposition by using hierarchical reinforcement
learning computational models as interpretative tools. In particular, after briefly
reviewing the field of hierarchical reinforcement learning, the authors summarise
two recent experiments that demonstrate the existence of neural correlates
of key predictions of hierarchical reinforcement learning, i.e. the presence of
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prediction error signals at different levels of abstraction, and the presence of
pseudo-reward signals generated in the presence of sub-goal accomplishment.
The authors then focus on the important problem, currently still open in both
robotics and neuroscience/psychology, of how a system can autonomously acquire
goals/sub-goals that can guide the acquisition of repertoires of skills, essential
for supporting hierarchical behaviour. Finally, the authors review three other
behavioural and neuroimaging experiments devoted to investigating the brain
mechanisms underlying the solution of this problem in animals.

Neural Network Modelling of Hierarchical Motor Function in the Brain. In this
chapter, Juan M. Galeazzi and Simon M. Stringer review their recent work on
modelling of the hierarchical organisation of motor function in the brain. This
work is based on biologically-plausible neural network architectures in which
hierarchically organised dynamical and recurrent neural populations learn through
biologically-plausible Hebbian synaptic learning rules. The authors review various
simulations in which they demonstrate how their system can learn to perform both
low-level motor primitives and high-level motor programs, how novel movement
sequences can be learned through the modulation of high-level motor programs by
context, and how motor sequences can be learned on the basis of delayed reward
signals, thanks to an associative learning rule. Finally, the authors discuss what they
consider the most important future challenges in the modelling of hierarchical motor
function.

Restoring Purpose in Behavior. In this chapter, Henry H. Yin provides an
original perspective towards behaviour. Yin is not a computational modeller but
a behavioural neuroscientist and has in particular contributed to the understanding
of the hierarchical organisation of the brain as expressed in goal-directed behaviour.
In this contribution, the author criticises the dominant paradigm in the behavioural
and brain sciences, which views behaviour as determined by its antecedent causes
(i.e. external or internal stimuli), on the ground that organisms’ behaviour is
teleologic, and hence must be understood by considering the animal’s goals. The
author’s proposal, which builds on the works of cybernetics and its concept of
negative feedback, views behaviour as the manifestation of control in systems that
act to make inputs match their goals. The author tries to demonstrate the flaws
of previous theories in the explanation of behaviour and then discusses the kind of
control allowed by a hierarchical organisation of behaviour. Finally, the contribution
ends with a discussion of the possible experimental protocols that may be used to
exploit the proposal for improving our understanding of animal behaviour.

3 Conclusions

The present book offers a broad overview on the major works and open problems in
the field of the hierarchical organisation of behaviour in robots and organisms. The
contributions presented here, coming from some of the most active and important
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researchers of the field, can surely give both the expert and the non-expert reader
a panoramic knowledge on what can be found in this area and this can hopefully
prompt new ideas. We thus hope that the book will attract new researchers and
foster further investigations in this exciting front-edge field of research at the core
of robotics and cognitive science.
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Behavioral Hierarchy: Exploration
and Representation

Andrew G. Barto, George Konidaris, and Christopher Vigorito

Abstract Behavioral modules are units of behavior providing reusable building
blocks that can be composed sequentially and hierarchically to generate extensive
ranges of behavior. Hierarchies of behavioral modules facilitate learning complex
skills and planning at multiple levels of abstraction and enable agents to incremen-
tally improve their competence for facing new challenges that arise over extended
periods of time. This chapter focuses on two features of behavioral hierarchy that
appear to be less well recognized: its influence on exploratory behavior and the
opportunity it affords to reduce the representational challenges of planning and
learning in large, complex domains. Four computational examples are described
that use methods of hierarchical reinforcement learning to illustrate the influence
of behavioral hierarchy on exploration and representation. Beyond illustrating these
features, the examples provide support for the central role of behavioral hierarchy
in development and learning for both artificial and natural agents.

1 Introduction

Many complex systems found in nature or that humans have designed are organized
hierarchically from components—modules—that have some degree of indepen-
dence. Herbert Simon called such systems “nearly decomposable” and suggested
that complex systems tend to take this form because it enhances evolvability due
to module stability (Simon 1996, 2005). The subject of modularity has attracted
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significant attention in psychology, neuroscience, evolutionary biology, computer
science, and philosophy (Callebaut and Rasskin-Gutman 2005). Although it is
widely accepted that modularity is critically important for understanding and
constructing complex systems, no single concept of modularity adequately covers
all the cases. Callebaut (2005), for instance, distinguishes modularity of structure
from modularity of process, further pointing out significant differences between
developmental, evolutionary, neural, and cognitive modularity. This chapter focuses
on a type of modularity in which modules are viewed as “building blocks” that can
be combined and connected to span large spaces of structured entities, whether they
are physical entities or behaviors.

Specifically, this chapter focuses on behavioral hierarchy. A behavioral hier-
archy is composed of behavioral modules: units of behavior by which an agent
interacts with its environment. Hierarchical structure results when a module is
itself composed of other modules. Human behavior has long been recognized to
exhibit hierarchical structure, with tasks being comprised of subtask sequences,
which in turn are built out of simpler actions. Behavioral hierarchy has been an
enduring theme in psychology, from the advent of cognitive views (e.g., Lashley
1951; Miller et al. 1960; Newell et al. 1963) to more recent models and cognitive
architectures (e.g., Anderson 2004; Botvinick and Plaut 2004; Langley et al. 2009;
Langley and Rogers 2004; Schneider and Logan 2006). Behavioral hierarchy has
also been of long-standing interest in artificial intelligence (e.g., Sacerdoti 1974),
control engineering (e.g., Antsaklis and Passino 1993), software design and analysis
(e.g., Alur et al. 2002), and neuroscience (e.g., Botvinick et al. 2009).

In this chapter we use the framework of hierarchical reinforcement learning
(HRL) to illustrate the benefits of behavioral hierarchy in addressing problems
of exploration and representation that arise in designing capable learning agents.
Although these benefits are well recognized by some, they are not as widely
appreciated as are more obvious benefits, and yet they also lie at the heart of the
utility of behavioral hierarchy. The relevance of behavioral hierarchy to exploration
and representation may also help explain why we see hierarchical structure in the
behavior of humans and other animals.

After discussing behavioral hierarchy and HRL, we describe four computational
experiments. The first two experiments illustrate how the influence of behavioral
hierarchy on exploration can greatly improve learning in structured environments
(Sects. 4.3 and 4.4). The third and fourth experiments, respectively, illustrate how
behavioral hierarchy can address representational challenges by allowing the use of
low-complexity function approximation methods (Sect. 5.1) and how an agent can
select different abstractions for each behavioral module to make learning easier in
problems with high-dimensional state spaces (Sect. 5.2). Our conclusion emphasizes
the generality of the principles illustrated by these examples and their relevance
to the design of agents that accumulate competence over extended time periods.
The chapter ends with a discussion of prospects for future research. Material in
this chapter has appeared previously in Konidaris and Barto (2009a,b), Konidaris
(2011), and Vigorito and Barto (2010).
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2 Behavioral Hierarchy

The most widely appreciated aspect of behavioral hierarchy is that actions can
make use of lower-level actions without concern for the details of their execution.
This facilitates both learning complex skills and planning at multiple levels of
abstraction. If an agent can construct a useful hierarchy of behavioral modules,
which here we think of as skills, then the search space of behaviors effectively
shrinks. This is because selecting between alternate higher-level skills allows the
agent to take larger, more meaningful steps through the search space of behavioral
strategies than does selecting between more primitive actions.

Another salient feature of behavioral modularity and hierarchy is that it facilitates
the transfer of results of learning in one task to other related tasks. This has been
called transfer learning and is recognized to be significant for both artificial and
natural agents (Taylor and Stone 2009). Rather than acquiring skills from scratch for
each problem it faces, an agent can acquire “portable skills” that it can deploy when
facing new problems. Illustrating this benefit of behavioral modularity is beyond the
scope of this chapter, and we refer the reader to Guestrin et al. (2003), Konidaris
et al. (2012a), Konidaris and Barto (2007), Liu and Stone (2006), Mehta et al.
(2008), Taylor et al. (2007), and Torrey et al. (2008).

The influence of behavioral hierarchy on exploratory behavior is less well
recognized. As new skills are added to an agent’s behavioral repertoire, they
become available as atomic behavioral modules that may be used when computing
behavioral strategies and models of more complex skills. The agent’s growing
skill set allows it to reach increasingly many areas of its state space that were
previously not easily accessible. This in turn allows for learning about more
complex environmental dynamics and consequently enables further skill discovery.
In this sense, behavioral hierarchy can provide a means for continual, developmental
learning in which the acquisition of new skills is bootstrapped on existing structural
and procedural knowledge.

Another aspect of behavioral hierarchy, and of behavioral modularity in general,
is the opportunity it affords to reduce the representational challenges of planning
and learning in large, complex domains. Each module can incorporate its own
module-specific representation that includes what is needed for its operation while
excluding information that is irrelevant to that operation. When we perform a skill
like throwing a ball, for instance, we do not have to take into account the vast
range of information available to us that is relevant to other skills, but not to ball
throwing. This can make it feasible to plan and learn successfully in complex
domains. This benefit of behavioral modularity is well recognized across artificial
intelligence, including the various approaches to HRL (e.g., Barto and Mahadevan
2003; Dietterich 2000a; Parr 1998; Parr and Russell 1998; Sutton et al. 1999), but
its profound importance may not be widely appreciated.
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3 Hierarchical Reinforcement Learning

This chapter is concerned with behavioral hierarchies implemented and learned
using computational reinforcement learning (RL, Sutton and Barto 1998). RL
algorithms address the problem of how a behaving agent can learn to approximate
an optimal behavioral strategy while interacting with its environment. More techni-
cally, RL is about the online approximation of solutions to stochastic optimal control
problems, usually under conditions of incomplete knowledge of the system being
controlled. By emphasizing incremental online algorithms instead of batch-style
algorithms, RL not only relates well to the kind of learning we see in animals, but it
is also useful for engineering control problems where it can have some advantages
over more conventional approaches (Lewis and Vrabie 2009).

RL problems consist of four elements: a set of environmental states; a set of
actions available to the agent in each state; a transition function, which specifies the
probability of the environment transitioning from one state to another in response
to each of the agent’s actions; and a reward function, which indicates the amount of
reward associated with each such transition. Given these elements, the objective for
learning is to discover a behavioral strategy that maximizes cumulative long-term
reward. Behavioral strategies are called policies, which are rules, or functions, that
associate with each possible state an action to be taken in that state. Policies are like
stimulus-response rules of learning theories except that a state is a broader concept
than a stimulus. A state characterizes relevant aspects of the learning system’s
environment, which includes information about the world with which the learning
agent interacts as well as information about the internal status of the agent itself.

In the usual RL scenario, an agent learns how to perform a “task” specified by a
given reward function—for instance, learning how to win at playing backgammon
(Tesauro 1994), where a win is rewarded and a loss punished.1 In these scenarios,
there is a conflict between exploitation and exploration: in deciding which action
to take, the agent has to exploit what it has already learned in order to obtain
reward, and it has to behave in new ways—explore—to learn better ways of
obtaining reward. RL systems have to somehow balance these objectives. However,
in other scenarios the goal is to learn a predictive model of the environment, the
environment’s causal structure, or a collection of widely useful skills. In these
scenarios, exploration is itself part of an agent’s task. Scenarios like this play a
role in some of the illustrations described below.

A key focus of RL researchers is the problem of scaling up RL methods so they
can be effective for learning solutions to large-scale problems. Artificial Intelligence
researchers address the need for large-scale planning and problem solving by
introducing various forms of abstraction into problem solving and planning systems

1In RL, the reward signal usually handles both rewards and punishments, which are, respectively,
represented by positive and negative values of the numerical reward signal. This abstraction is
widely used despite the fact that it is at odds with the differences between appetitive and aversive
systems in animals.
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(e.g., Fikes et al. 1972; Korf 1985; Sacerdoti 1974). Abstraction allows a system
to ignore details that are irrelevant for the task at hand. For example, a macro—
a sequence of operators or actions that can be invoked by name as if it were a
primitive operator or action—is one of the simplest forms of abstraction. Macros
form the basis of hierarchical specifications of action sequences because macros
can include other macros in their definitions: a macro can “call” other macros. A
macro is a type of module: a reusable component of a program.

HRL uses a generalization of a macro that is often referred to as a “temporally-
abstract action,” or just an “abstract action” (Sutton et al. 1999). Conventional
macros are open-loop behavioral policies in the sense that their unfolding does
not depend on information sensed during their execution. In contrast, HRL uses
closed-loop policies as modules, meaning that the course of execution can depend
on input from the agent’s environment. Unlike a macro, then, which specifies a
specific action sequence, an abstract action in HRL generates a sequence of actions
that depends on how the actions influence the environment. Thus, in addition to
specifying a single “primitive action” to execute in a given state, a policy in HRL
can specify a multi-step abstract action to execute in a state, which is characterized
by its own policy that can specify both primitive actions and other abstract actions.
Once a temporally abstract action is initiated, execution of its policy continues until
a specified termination condition is satisfied. Thus, the selection of an abstract action
ultimately results in the execution of a sequence of primitive actions as the policy
of each component abstract action is “expanded.”

Although several approaches to HRL have been developed independently, they
all use closed-loop policies as behavioral modules: the options formalism of Sutton
et al. (1999), the hierarchies of abstract machines (HAMs) approach of Parr and
Russell (Parr 1998; Parr and Russell 1998), and the MAXQ framework of Dietterich
(2000a). These approaches are reviewed by Barto and Mahadevan (2003).

The illustrations in this chapter are based on the theory of options, and we use the
terms option and skill interchangeably. An option consists of (1) an option policy
that directs the agent’s behavior when the option is executing, (2) an initiation set
consisting of all the states in which the option can be initiated, and (3) a termination
condition, which specifies the conditions under which the option terminates. In
addition, a system can maintain, for each option, an option model, which is a
probabilistic description of the effects of executing an option. As a function of
an environment state where the option is initiated, it gives the probability with
which the option will terminate at any other state, and it gives the total amount
of reward expected over the option’s execution. Option models can be learned from
experience (usually only approximately) using standard methods. Option models
allow algorithms to be extended to handle learning and planning at higher levels of
abstraction (Sutton et al. 1999).

The question of where options come from has occupied a number of researchers.
In many cases a system designer can define a collection of potentially useful options
by hand based on prior knowledge about the agent’s environment and tasks. To do
this, the designer specifies the policy, initiation set, and termination condition for
each of these “native options,” which are analogous to action patterns and their
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triggering conditions given to an animal through evolution, such as swallowing, the
fight-or-flight-or-freeze response, and many others. In other instances, it may be
possible to define an option by creating only a reward function for that option, and
let the agent learn a policy, together with its initiation and termination conditions,
through RL.2 This is most commonly done by identifying potentially useful option
goal states and rewarding the agent for reaching them. These goal states are potential
subgoals for problems the agent will face over its future.

Option goal states have been selected by a variety of methods, the most common
relying on computing visit or reward statistics over individual states to identify
useful subgoals (Digney 1996; McGovern and Barto 2001; Şimşek and Barto 2004,
2009). Graph-based methods (Mannor et al. 2004; Menache et al. 2002; Şimşek
et al. 2005) build a state-transition graph and use its properties (e.g., local graph
cuts, Şimşek et al. 2005) to identify option goals. Other methods create options that
allow the agent to alter otherwise infrequently changing features of its environment
(Hengst 2002; Jonsson and Barto 2006). Mugan and Kuipers (2009) developed a
related system, which they called Qualitative Learner of Actions and Perception
(QLAP), that creates a discrete qualitative representation of a continuous state space
using “landmarks” to partition the space. Options are created to change the values
of the resulting qualitative variables. A related method was presented by Bakker and
Schmidhuber (2004) that relies on unsupervised clustering of low-level sensations to
define subgoals. Clustering was also used to cluster subgoals to prevent the creation
of multiple options that all correspond to the same underlying skill (Niekum and
Barto 2011). Konidaris and colleagues (Konidaris and Barto 2009b; Konidaris et al.
2011a, 2012b) illustrated the utility of setting the goal of an option to be reaching
the initiation set of an already-formed option in a process called “skill chaining.”
This method is used in the example described in Sect. 5.1 below. Still other methods
extract options by exploiting commonalities in collections of policies over a single
state space (Bernstein 1999; Perkins and Precup 1999; Pickett and Barto 2002;
Thrun and Schwartz 1995).

Barto and colleagues (Barto et al. 2004; Singh et al. 2005) proposed that option
goals can be identified through reward signals unrelated to a specific task, such
as signals triggered by unexpected salient stimuli. This allows an agent to create
options that have the potential to be useful for solving many different tasks that
the agent might face in its environment over the future (see Sect. 4.4 below). Hart
and Grupen (2011) proposed a comprehensive approach in which a reward signal
identifies behavioral affordances (Gibson 1977) that expose possibilities for action
in the environment. Mugan and Kuiper’s (2009) QLAP system similarly adopts this
“developmental setting” in creating options outside the context of a specific task.
Reward signals that do not specify an explicit problem to solve in an environment
are related to what psychologists call intrinsic motivation. Whereas extrinsic

2Option reward functions have been called “pseudo reward functions” (Dietterich 2000a) to
distinguish them from the reward function that defines the agent’s overall task, a distinction not
emphasized in this chapter.
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motivation means doing something because of some specific rewarding outcome,
intrinsic motivation means “doing something because it is inherently interesting or
enjoyable” (Ryan and Deci 2000). Intrinsic motivation leads organisms to engage
in exploration, play, and other behavior driven by curiosity in the absence of
externally-supplied rewards. Schmidhuber (1991a,b) proposed that an RL agent
could be given a kind of curiosity by being rewarded whenever it improved its
environment model. Although he didn’t use the term “intrinsic reward,” this was the
first contribution to what we now call “intrinsically-motivated RL.” An extended
discussion of intrinsically-motivated RL is beyond the scope of this chapter, and the
reader is referred to Baldassarre and Mirolli (2012) for multiple perspectives on the
subject.

Overall, the problem of how to create widely useful options—or more generally,
how to create widely useful behavioral modules—is of central importance for
progress in HRL, and much research remains to be done. The illustrations described
in this chapter are relevant to creating useful options, but since our purpose here is
to highlight the utility of behavioral modularity, we do not deeply discuss option
creation algorithms.

4 Exploration in Structured Environments

Exploration is indispensable for an RL system’s operation. To learn in the absence
of explicit instructional information, meaning information that directly tells the
agent how it should act, an agent has to try out actions to see what effect they
have on reward signals and other aspects of the agent’s environment. In other
words, behavior has to exhibit some form of variety. The simplest RL systems
inject randomness into their action-generation procedures so that, for example, they
sometimes choose an action uniformly at random from the set of all possible actions
instead of taking an action that appears to be one of the best based on what they
have learned so far. But exploration does not have to be random: trying something
new can be directed intelligently, the only requirement being that an exploratory
action is not one of the actions currently assessed to be best for the current
situation. Behavioral hierarchy provides an important means for exploring more
intelligently than acting randomly because it allows exploration to take advantage
of an environment’s structure.

In this section we present two examples that illustrate how behavioral hierarchy is
implicated in intelligent exploration in structured environments. The first example
illustrates how hierarchically-organized skills can be discovered that facilitate
learning an environment’s structure. The second example shows how a skill
hierarchy can make it possible to solve a collection of learning problems that would
be essentially impossible to solve otherwise. Both examples use learning problems
posed in what Vigorito and Barto (2010) called the “Light Box Environment,”
described next.
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4.1 The Light Box Environment

Figure 1 shows the Light Box Environment in which many different problems can
be posed. There is a set of 20 “lights,” each of which can be on or off. For each,
the agent has an action that toggles the light on or off. Thus there are 20 actions,
220 � 1 million states, and approximately 20 million state-action pairs.

The nine circular lights are simple toggle lights that can be turned on or off by
executing their corresponding action. The triangular lights are toggled similarly,
but only if certain configurations of circular lights are active, with each triangular
light having a different set of dependencies. Similarly, the rectangular lights depend
on certain configurations of triangular lights being active, and the diamond-shaped
light depends on configurations of the rectangular lights. In this sense there is a strict
hierarchy of dependencies in the structure of this environment.

Figure 2 is the causal graph of the Light Box Environment, showing the
dependencies between the variables that represent the states (on or off) of the lights.
To remove clutter, the dependencies of the variables on themselves are not drawn,
but the state of each light obviously depends on its own value at the previous time
step. With the exception of these reflexive dependencies, each link in the causal
graph indicates that the parent light must be “on” in order to satisfy the dependency.3

3More technically, the complete structure of an environment like the Light Box can be represented
as a set of Dynamic Bayesian Networks (DBNs, Dean and Kanazawa 1989), one for each of the
agent’s actions. A DBN is a directed acyclic graph with nodes in two layers representing the
environment’s features at time steps t and t C 1, respectively. A DBN also includes conditional
probability tables that give the state-transition probabilities. A causal graph as shown in Fig. 2
summarizes the feature dependencies by including a directed edge from one feature’s node to
another’s if and only if there is an agent action whose DBN has an edge from that feature’s node
at step t to the second feature’s node at step t C 1 (Jonsson and Barto 2006).
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The Light Box Environment is also stochastic (each action taken fails to produce
its intended effect with probability 0.1), and it is even more complicated because if
an action is taken to toggle a light whose dependencies are not currently satisfied,
the environment’s entire state is reset to all lights being off.

This environment emulates scenarios in which accurate lower-level knowledge is
essential for successfully learning more complex behaviors and their environmental
effects. Because of the “reset” dynamics, random action selection is extremely
unlikely to successfully turn on any of the lights at the top of the hierarchy. An
agent must learn and make use of specific skills in order to reach and remain in the
more difficult-to-reach areas of the state space. We emphasize that the agent does
not perceive any structure directly: it only senses strings of 20 bits. The structure
must be discovered solely from the state transitions the agent experiences, which is
a nontrivial problem.

Skills, in the form of options, discovered in the Light Box Environment may
have nested policies, the relationship between two of which is shown in Fig. 3. The
policies are represented as trees, with internal nodes representing state variables
and leaves representing action choices, which may be either primitive actions or
options. Branches are labeled with the possible values of their parent variables.
In the example shown, the policy for the option to turn on light number 16 (O16)
contains at one of its leaves another option (O10) to turn on light number 10, which
is one of the dependencies for light number 16. This nesting of policies is a direct
result of the hierarchical nature of the environment.

4.2 Exploration for Learning Structure

If the causal structure of an agent’s environment is known, in the form of a causal
graph like that shown in Fig. 2, it can be used to create a hierarchical collection
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of skills that decompose a task into sub-tasks solved by these skills. Jonsson and
Barto (2006) presented an algorithm called Variable Influence Structure Analysis
(VISA) that creates options by analyzing the causal graph of an environment.
VISA identifies context-action pairs, called exits (Hengst 2002), that cause one or
more variables to be set to specific values when the given action is executed in
the corresponding context. A context is a setting of a subset of the environment’s
descriptive variables to specific values from which the exit’s action has the desired
effect; it is like a production system’s precondition (Waterman and Hayes-Roth
1978). By searching through the structured representation of the environment, VISA
constructs exit options that allow the agent to reliably set collections of variables to
any of their possible values. Variables for which such options have been formed are
called controllable variables. The result of executing VISA is a hierarchy of skills
that together represent a solution to the original task. VISA also takes advantage of
structure in the environment to learn compact policies for options by eliminating
variables on which a policies do not depend, a topic we address in detail in Sect. 5
below.

But it is unrealistic to assume that a causal model of the environment is available
to an agent before it has to tackle specific tasks in that environment. Although
discovering causal structure is a very subtle problem in general situations (Pearl
2000), the assumptions built into an environment such as the Light Box, in which
actions are the complete causes of state changes, make it possible to apply a number
of different approaches that have been developed to learn the structure of Bayesian
networks. Many of these apply to the case where there is a training set of possible
observations (assignments of values to the environment’s descriptive variables,
or sequences of such assignments) that can be accessed without restriction (e.g.,
Buntine 1991; Friedman et al. 1998; Heckerman et al. 1995). Some algorithms
accelerate learning by selecting the most informative data instances from the
training set through a process called active learning (e.g., Murphy 2001; Steck
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and Jaakkola 2002; Tong and Koller 2001). These methods effectively perform
experiments by fixing subsets of the variables to specific values and sampling over
the remaining variables.

In an RL setting where an agent learns while interacting with its environment, it
may not be easy for the agent to access data necessary for learning the environment’s
causal structure. For example, a mobile robot attempting to learn the structure of a
new environment cannot transport itself to any location instantaneously, making it
difficult to perform all the experiments that might be useful. A collection of exit
options formed by an algorithm like VISA would be valuable for allowing the
agent to perform useful experiments, but such an algorithm requires knowledge of
the environment’s causal structure to begin with. Degris et al. (2006), Diuk et al.
(2009), Jonsson and Barto (2007), Mugan and Kuipers (2009), and Strehl et al.
(2007) proposed methods for learning causal graphs of certain types of dynamic
environments as part of the RL process, where it is not possible to sample the process
in arbitrary states but only along trajectories.

Here we focus on the structure learning method of Jonsson and Barto (2007),
which is an active learning method that takes advantage of the growing structural
knowledge to guide behavior so as to collect useful data for refining and extending
this knowledge. It follows other structure-learning methods by estimating the
probability of observing the data given a particular graphical representation of the
system’s causal structure, and incrementally searches the space of structures by
adding and deleting the edges in the graph in an attempt to find the structure that
maximizes this probability. This is not guaranteed to find the best graph (the general
problem is NP-complete; Heckerman et al. 1995), but it usually succeeds in finding
high-scoring graphs.

Details of Jonsson and Barto’s (2007) active learning scheme are fairly compli-
cated and beyond the scope of this chapter, but for current purposes the essential
point is that the agent collects sample experiences so that the amount of evidence
for each possible graph refinement is roughly equalized. This is accomplished by the
agent choosing actions that maximize the entropies of the probability distributions
the system uses for its refinement criteria. This is advantageous because having
a more uniform distribution over the input values of a given refinement variable
makes the evaluation of that refinement more accurate. Thus, correct refinements
get discovered more quickly than they do with uniformly random action selection.

This approach does produce faster learning in some environments, but in
more complex environments it can fail to discover a significant portion of the
environment’s structure. This is because this active learning scheme is myopic,
only considering the effects of primitive actions at each step, and thus can cause
the agent to become stuck in “corners” of the state space that are difficult to get
out of. To partially remedy this the agent can learn skills, in the form of options,
while it is exploring. Selecting skills can allow the agent to reach configurations of
environmental variables that would be difficult to reach using only primitive actions.
In this approach, an agent uses its current skill collection to perform experiments
so as to expedite structure learning. An experiment in this scheme, like an exit, is
composed of a context and an associated primitive action. Vigorito and Barto (2010)
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studied a method that selects actions according to Jonsson and Barto’s (2007) active
structure learning method, but while interacting with its environment it constructs
options with hierarchically-defined policies like that shown in Fig. 3 and uses them
to improve active structure learning. Instead of selecting only from primitive actions,
it selects from the agent’s entire suite of primitive actions and available options.

Although this method takes advantage of acquired skills to explore more broadly
than possible with just primitive actions, in complex tasks with large state spaces
it still may fail to explore many regions of the state space, preferring to maintain
uniformity in the current region. This happens because the agent still uses only
local information in selecting actions: it only considers how the distributions change
locally as a result of executing single actions or single options. This method is
illustrated in the Light Box Environment in Sect. 4.3 below, where we call the agent
using it the LOCAL agent.

One way to produce a more global method is to allow the agent to use its
current environment model to plan to reach configurations of environmental variable
values that will likely yield more relevant information. Here, executing a plan means
executing the plan’s policy that specifies actions—primitive actions or options—in
response to observations from the environment. Vigorito and Barto (2010) produced
an algorithm that does this by introducing a reward function that rewards the agent
for achieving a context consisting only of controllable variables. This method is also
illustrated in the Light Box Environment in Sect. 4.3 below, where we call the agent
using it the GLOBAL agent.

Using this reward function, a policy is computed (using Structured Value
Iteration, Boutilier et al. 2000) to reach the rewarding context and execute the
action associated with it. The policy is executed to completion before the next best
experiment is computed. In this sense, the agent defines its own problems as it
continues to learn and explore, becoming “bored” with things that it understands
well and focusing its attention on the parts of its environment about which it is
uncertain. This is a property of intrinsically-motivated curiosity as pointed out by
Schmidhuber (1991b). We think of the reward function used by the GLOBAL agent
as producing intrinsic reward signals.

Since the GLOBAL agent starts out with no controllable variables, initial explo-
ration is carried out according to the local active learning scheme like that described
above. However, as enough structure is discovered and certain variables become
controllable via construction of low-level options, the agent can use these new skills
to reliably set contexts about which it has limited experience. When options happen
to be created prematurely and are malformed, their lack of utility is discovered
fairly quickly by the agent when it attempts to use these options in its experimental
plans and they fail repeatedly. These options are removed from the agent’s skill
collection until the agent performs more experiments relevant to discovering their
structure, at which point they will be re-created and tested in further experiments.
Once a correct option is learned, its empirical success rate will on average match its
expected success rate, and the option will remain in the agent’s skill collection to
be used in all further experiments. In this way, structure learning is bootstrapped on
existing structural and procedural knowledge.
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Fig. 4 Structure learning performance for three exploration policies. c�2010 IEEE. Reprinted,
with permission, from Vigorito and Barto (2010)

The next section describes a study by Vigorito and Barto (2010) that compares
the performance of agents using different types of exploration strategies to guide
behavior while learning the structure of the Light Box Environment. Although this
environment is relatively simple and was designed with an explicit hierarchical
structure, it clearly illustrates the advantages that skill hierarchies can confer to
exploration for learning an environment’s structure.

4.3 Active Learning of Light Box Structure

Three agents were compared in Vigorito and Barto’s (2010) illustration of the
behavior of structure-learning agents in the Light Box Environment. Agent RAN-
DOM always selected a random action from its set of available actions, which
included options previously acquired, and executed each to completion before
choosing another. Agent LOCAL also selected from its set of primitive actions
and previously acquired options, but employed the local active learning scheme
described above. Agent GLOBAL, on the other hand, used the global active learning
scheme of described above. This agent was able to compute plans (via Structured
Value Iteration) in order to select among primitive actions and previously acquired
options so as to maximize future reward. It therefore used more global information
than did agent LOCAL and so could reach more informative areas of the state space.

Since Vigorito and Barto (2010) knew the true transition structure of the Light
Box, they could compare the refinements made by each agent at any given time step
to the set of refinements that define the correct model. Figure 4 shows the number
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of correct refinements discovered by each agent as a function of the number of time
steps. The learning curves presented are averages of 30 runs for each agent. Clearly
the hierarchical nature of the environment made structure learning very difficult for
agents that could not plan ahead in order to reach more informative areas of the
state space. Both RANDOM and LOCAL were able to learn what is essentially the
bottom layer of the hierarchy, but once this structure was discovered they continually
sampled the same areas of the state space and their learning rate leveled out.

GLOBAL, on the other hand, used the options constructed from this initial
structure to plan useful experiments in its environment, allowing it to reach areas
of the state space that the other agents could not reach reliably. This allowed it to
uncover more of the environment’s structure, which in turn allowed it to generate
new skills that enabled further exploration not possible with only the previous set
of options. This bootstrapping process continued until all of the domain structure
had been discovered, at which point the agent possessed options to set each light
to either on or off. The structured representation of the environment allowed the
agent to uncover the transition dynamics without ever visiting a vast majority of
the environment states, with GLOBAL reliably finding the correct structure in under
40,000 time steps.

This experiment clearly demonstrates the utility of behavioral modularity in a
developmental framework. Using an initially learned set of skills as a basis for
further exploration in hierarchically-complex environments like the Light Box is
necessary for the discovery and learning of new, more complex skills. But the initial
learning of low-level skills may not be sufficient for learning complex tasks. An
agent must continue to learn new skills using those it has already discovered in order
to make full use of a behavioral hierarchy. Unlike agents RANDOM and LOCAL,
GLOBAL used those skills in a planning framework that drove it towards the more
informative areas of the state space, and thus it performed much better than the
others.

The learning curves for RANDOM and LOCAL in Fig. 4 eventually flatten out,
indicating that the agents reach a complexity plateau and are unable to learn
beyond that point. By contrast, agent GLOBAL is able to learn more complex
behavior, using its already acquired skills as building blocks. This kind of open-
ended learning, where the agent is able to continually acquire ever more complex
skills by progressively building on the skills it has already acquired, characterizes
the utility of this approach in complex hierarchically-structured environments.

4.4 Skills for Multiple Tasks

Another benefit of behavioral modularity for exploration occurs when an agent
has to face multiple tasks in an environment. Consider the following scenario.
Suppose an agent finds itself in an environment in which it will—over the future—
face a collection of tasks, where each task is specified by a different reward
function. Further suppose that the environment has structure that can be exploited to
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accumulate reward, but that the agent does not know anything about this structure
to begin with, or how it can be exploited. Assume also that at the start the agent
does not know what tasks it will have to face. This scenario captures some features
of the situation in which an infant finds itself, or in which an adult finds itself when
confronting an environment in which it has little experience and where there is
the luxury of a “developmental period” during which relatively few demands are
made. What should an agent do to prepare for future challenges? Clearly, it should
explore its environment and discover features of its structure that might be useful
later on. Our perspective is that it should not only accumulate knowledge of the
environment’s structure, but it should also acquire behavioral modules in the form of
skills that will be on call as it faces multiple tasks over the future, thereby enabling
it to learn to perform those tasks more efficiently than would be possible without
those skills.

Vigorito and Barto (2010) conducted experiments to illustrate this scenario in
the Light Box Environment. They compared the time it took to compute policies
for various tasks (defined by different reward functions) for an agent with only
primitive actions to the time taken by one with a full hierarchy of options (including
primitives). For each of the 20 lights they computed a policy for a task whose reward
function was 1 when that light was on and �1 otherwise. They averaged together
the computation times of the tasks at each level of the Light Box hierarchy, i.e.,
all times for circular lights were averaged together, and similarly for triangular and
rectangular lights, with only one task for the diamond light.

Results in Fig. 5 show that for the lowest level of the hierarchy, where each task
could be accomplished by one primitive action, the two agents took very little time
to compute policies, with the options agent being slightly slower due to having a
larger action set through which to search. However, once the tasks required longer
sequences of actions to perform, there was a significant increase in the computation
time for the primitives-only agent, and little or no increase for the options agent.
The overhead of computing the options in the first place was thus compensated for
once the agent had been confronted with just a few different higher-level tasks. The
savings became very substantial above level 2 (note the log scale).

These results illustrate that even with as few as two or three dependencies-
per-variable, the benefits of exploring with options can be dramatic. Lacking a
hierarchically-structured search, the probability of the agent “stumbling upon” the
solution to a higher-level task is extremely small. Indeed, in some environments, this
probability is essentially zero. Caching previous experience in the form of reusable
skills effectively restructures the search space, enabling the agent to experience the
consequences of behavior that would otherwise be very unlikely.

5 Representational Advantages of Behavioral Modularity

In addition to facilitating searches for highly rewarding behavior by restructuring the
search space, behavioral modularity presents the opportunity to greatly reduce the
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Fig. 5 Policy computation times. Times are given for tasks at varying levels of the Light Box
hierarchy for an agent with primitive actions only and for one with options plus primitives. Note
the log scale. c�2010 IEEE. Reprinted, with permission, from Vigorito and Barto (2010)

representation problem that is a major challenge in applying RL to problems with
large or infinite state and/or action sets. RL algorithms work by learning certain
functions of a problem’s set of states. Depending on the type of RL algorithm, these
functions can include value functions, which for each state (or possibly each state-
action pair) provide a prediction of the reward the agent can expect to receive over
the future after observing that state (and possibly performing a specific action in
that state). Or an algorithm may require directly learning a policy, a function that
for each state specifies an action that the agent should take when observing that
state.

Learning in environments with large state sets requires compact representations
of the needed functions when it is not feasible to explicitly store each function
value. This is especially an issue when state sets are multi-dimensional since the
size of the state set increases exponentially with the number of dimensions: the
well-known “curse of dimensionality” (Bellman 1957). The problem is compounded
when states are represented by multiple descriptive variables that can take real
numbers as values, which is the case for many applications of RL. Hierarchical
organizations of behavioral modules can be especially advantageous in these types
of problems.

An important component of all the approaches to HRL is that each behavioral
module, or skill, can operate with its own representations of states and actions, as
well as its own manner of representing any needed functions. The representations
on which a skill depends must be sufficient only for successfully learning and
performing that skill, and thus can exclude wide ranges of information that, while
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perhaps relevant to other skills, are irrelevant to the skill in question. This implies
that the problem of learning an individual skill can be much simpler than learning
to solve a larger problem.

To be more specific about how skill-specific representations can differ from one
another, consider the following common approach to representing the functions
a learning agent may need to maintain. Suppose each environmental state has a
“native representation” that is a vector of the values of a set of descriptive variables.4

For example, the native representation of a state of the Light Box Environment of
Sect. 4.1 is a tuple of 20 bits, each indicating the state of one of the lights. In the
Pinball Task described in Sect. 5.1 below, the native representation of a state is a
4-tuple of real numbers giving the two-dimensional position of the ball and its two-
dimensional velocity. These descriptive variables are usually called features, and
we can call them “native features.” Of course, what are considered native features
are not immutable properties of an environment. In designing artificial agents, these
features depend on design decisions and the nature of the problems the agent is
supposed to handle; in nature, they depend on the animal’s sensory repertoire and
perceptual processes, both exteroceptive and interoceptive.

Given a native state representation, it is necessary to implement a function
approximation method that receives as input a state’s native representation and
produces as output a function value, for example, an estimate of the amount of
reward expected over the future after the agent visits that state. Linear function
approximation is a simple and very well-studied way to do this. In this method,
a state’s native representation is transformed into another vector specified by a
set of basis functions, and this new vector’s components are linearly combined to
produce the function’s output value. Each basis function maps the space of native
representations to the real numbers. The weights used to combine the components
are adjusted by a learning algorithm.

The reason for using a set of basis functions is that although any function
implemented by this method is a linear function of the weights—which makes
it relatively easy to design and analyze learning algorithms—the overall function
can be a very complex nonlinear function of the native representation because the
basis functions can be nonlinear functions of the native representation. Further,
it is usual practice to use many more basis functions than native features. For
example, in continuous domains with many native features, an overall problem’s
value function or policy approximation may require hundreds of even thousands of
basis functions to represent it. The examples described in Sects. 5.1 and 5.2 below
use Fourier bases consisting of varying numbers of multivariate sinusoidal basis
functions (Konidaris et al. 2011b). Mahadevan (2009) provides a thorough account
of the use of basis functions in RL.

Skill-specific representations can therefore differ in terms of native features,
function approximation methods, basis functions, or all of these. For example,

4Actions similarly have native representations, but we restrict attention to state representations to
keep things simple.



30 A.G. Barto et al.

a skill may depend only on a subset of the environment’s full set of native
features, the rest being irrelevant to the skill. More generally, a skill may depend
only on an abstraction of the full native representation produced by transforming
the native representation in a many-to-one manner to produce a more compact
description that removes some of the distinctions originally present while preserving
relevant information (Dietterich 2000b; Li et al. 2006; Ravindran and Barto 2002).
Abstraction is a key approach to solving high-dimensional RL problems, but it
is typically difficult to find a single abstraction that applies to the entirety of a
complex problem: the problem itself may simply be intrinsically high-dimensional
and therefore hard to solve monolithically. Nevertheless, it may at the same time
consist of several subproblems that can be captured as skills, each of which can be
learned efficiently using a suitable abstraction.

Skill-specific representations can also differ in the function approximation
methods they use. In the case of linear function approximation, for example, each
skill may use its own set of basis functions. Alternatively, each skill might use the
same type of basis functions, but can use fewer of them than would be required to
provide sufficiently accurate function approximation over the environment’s entire
state space. This applies when skills generate activity that is concentrated on a subset
of the environmental state space.

In the next section we illustrate the case in which all the options rely on the same
native features, but the options are only required to achieve accuracy on subsets of
the state space. Each option therefore uses a function approximator based on many
fewer basis functions than would be required to achieve adequate accuracy over the
entire state space. Konidaris and Barto (2009b) called these “lightweight options,”
in reference to the relative simplicity of their function approximation methods. In
Sect. 5.2, we present an example in which each skill can select a different abstraction
of the task’s native representation.

5.1 Representing Complex Policies Using a Collection
of Lightweight Options

Konidaris and Barto (2009b) use a “Pinball Task” to illustrate lightweight options.
A Pinball Task is a dynamic navigation task with a 4-dimensional continuous state
space. Figure 6 shows an instance of a Pinball Task. Other instances have different
obstructions and different goal locations.

The goal of a Pinball Task is to maneuver a small ball from its starting location
into the large red hole in the upper right corner in Fig. 6. The ball’s movements
are dynamic so its state is described by four real-valued variables: x, y, Px, and Py.
Collisions with obstacles are fully elastic and cause the ball to bounce, so rather than
merely avoiding obstacles the agent may choose to use them to efficiently reach the
red hole. There are five primitive actions: incrementing or decrement Px or Py by a
small amount (which incurs a reward of �5 per action), or leaving them unchanged
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Fig. 6 An instance of a
Pinball Task. The goal is to
maneuver a small ball from a
starting location into the large
red hole in the upper right
corner. One possible starting
location is shown in the upper
left corner

(which incurs a reward of �1 per action); reaching the goal obtains a reward of
10;000.

Learning policies for a Pinball Task is very difficult because its dynamic aspects
and sharp discontinuities make it difficult for both control and for function approx-
imation, and it requires very accurate control for long periods of time. Konidaris
and Barto (2009b) compared Pinball agents that attempted to learn flat policies (that
is, policies not hierarchically defined) with agents that used hierarchical policies.
The latter agents used skill chaining to create skills such that from any point in the
state space, the agent could execute a sequence of skills, implemented as options, to
reach a given goal region of state space. This algorithm both discovers the skills and
determines their initiation sets by learning the local region from which their policies
consistently allow the agent to reach its goal. Skill chaining adaptively breaks the
problem into a collection of subproblems whose sizes depend on the complexity of
policy that they can represent. Its key mechanism is to treat the initiation sets of
options already acquired as goal regions for forming new options.5

We omit details of skill chaining and refer the reader to Konidaris and Barto
(2009b). It is related to what is known in robotics as pre-image backchaining or
sequential composition (Burridge et al. 1999). In related work by Neumann et al.
(2009), an agent learns to solve a complex task by sequencing motion templates.
The most recent related work is by Tedrake (2010) in a model-based control setting.

The options created by skill chaining were lightweight because they used a
function approximation scheme with many fewer basis functions than required to
approximate the value function adequately over the entire state space. Specifically,
whereas the flat policies were derived from value functions combining 1,296 basis
functions for each action for the Pinball instance shown in Fig. 6, the value functions

5In this respect, it is closely related to the algorithm used by agent GLOBAL described in Sect. 4.3
in which an intrinsic reward is generated for reaching a context consisting only of controllable
variables, although that algorithm does not immediately extend to problems with continuous state
spaces.
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Fig. 7 Performance in the Pinball Task. Graphs show performance for agents employing skill
chaining, agents using given pre-learned options, and agents without options. Performance is
shown as an agent’s return for each episode, which is inversely related to the amount of time
the agent took to complete the task. Results are averages of 100 runs

of the options each combined only 256 basis functions for each action.6 Each option
therefore implemented a “lightweight policy”—a much simpler policy than the
overall task policy.

Figure 7 shows the performance (averaged over 100 runs) in the Pinball Task
shown in Fig. 6 for agents using a flat policy (without options) compared with agents
employing lightweight options obtained through skill chaining, and agents starting
with given (pre-learned) options. Performance is shown as an agent’s return for
each episode, which is the total amount of reward it received over that episode.
Given the task’s reward function, return is inversely related to the number of time
steps required to maneuver the ball into the hole. Pre-learned options were obtained
using skill chaining over 250 episodes in the same Pinball Task instance. The figure
shows that the skill chaining agents performed significantly better than flat agents by
50 episodes, and obtained consistently better solutions by 250 episodes, whereas the
flat agents did much worse and were less consistent. Konidaris and Barto (2009b)
observed similar results for another instance of the Pinball Task.

Agents that started with pre-learned options did very well initially—with an
initial episode return far greater than the average solution eventually learned by

6Konidaris and Barto (2009b) used Sarsa with linear function approximation using a 5th-order
Fourier basis (1,296 basis functions per action). Option policy learning was done using Q-learning
with a 3rd-order Fourier basis (256 basis functions per action). See Konidaris et al. (2011b) for
details about using Fourier bases in RL.
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Fig. 8 Sample solution trajectories from different start states in the Pinball Task. Acquired options
executed along each sample trajectory are shown in different colors; primitive actions are shown
in black

agents without options—and proceeded quickly to the same quality of solution as
the agents that discovered the options themselves. This shows that it was the options
acquired, and not a by-product of acquiring them, that were responsible for the
increase in performance. Given this set of lightweight options, the problem became
relatively easy to solve.

Figure 8 shows two sample solution trajectories from different start states
accomplished by an agent performing skill chaining in the Pinball Task, with the
options executed shown in different colors. The figure illustrates that this agent
discovered options corresponding to simple, efficient policies covering segments
of the sample trajectories.

The primary benefit of behavioral modularity in this problem is that it reduces
the burden of representing the task’s value function, allowing each option to focus
on representing its own local value function and thereby achieving a better overall
solution. Furthermore, using the strategy described here, an agent can create as many
options as necessary, thereby adapting to fit the problem difficulty. Although these
results illustrate a behavioral hierarchy consisting of only two levels (the level of
the options and the level of the primitive actions) the benefit of lightweight options
clearly extends to deeper hierarchies.

5.2 Selecting Skill-Specific Abstractions

The lightweight options described above illustrate the fact that a behavioral building
block can have lower complexity than would be required for a monolithic solution
to a given problem. Although the lightweight options in that example acquired
different policies applicable to different parts of the problem’s state space, they
were all built using the same, complete, set of native environmental features. It is
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also possible for each skill to be based on its own abstraction of the problem’s state
and action spaces. Here we describe an example due to Konidaris and Barto (2009a)
and Konidaris (2011) in which each skill selects its own abstraction, which in this
case is a subset of the environment’s native features.7 The goal is similar to that
of earlier work by Jonsson and Barto (2002) in which each option implemented a
separate instance of McCallum’s (1996) U-Tree algorithm designed to synthesize
state representations from past histories of observations and actions. The goal is
also similar to that of Seijen et al. (2007) who studied a method that included special
abstraction-switching actions.

In abstraction selection (Konidaris and Barto 2009a; Konidaris 2011), when an
agent creates a new option it also selects an appropriate abstraction for learning that
option from a library of existing abstractions. Once the agent has determined the
option’s termination condition—but not yet its policy or initiation set—the agent
uses trajectories that reach the option’s termination condition as sample trajectories
to determine the appropriate abstraction for the new option. The new option policy
is then defined using only the native features relevant to its selected abstraction.

Briefly, abstraction selection is treated as a model selection problem, where the
agent aims to find the highest likelihood model to fit the returns it receives along its
sample trajectories. For the example described below, the class of models considered
consists of linear combinations of a set of basis functions defined over the sets of
native features corresponding to the abstractions in the library. Konidaris and Barto
(2009a) used the Bayesian Information Criterion (BIC), a relatively simple metric
that balances an abstraction’s fit and its size while incorporating prior beliefs as to
which abstractions might be suitable. The process returns a selection probability as
output. These properties allow the agent, for example, to select an abstraction when
it is only 95 % sure it is the correct one. The abstraction selection algorithm runs on
each abstraction in parallel and is incremental and online. It compiles information
from the sample transitions into sufficient statistics and does not require them to be
stored. For details, see Konidaris and Barto (2009a), Konidaris (2011).

Konidaris and Barto (2009a) illustrate abstraction selection using the Contin-
uous Playroom, an environment where skill-specific abstractions can significantly
improve performance. The environment, a continuous version of the environment
of Barto et al. (2004) and Singh et al. (2005), consists of three effectors (an eye, a
marker, and a hand), five objects (a red button, a green button, a light switch, a bell,
a ball, and a monkey) and two environmental variables (whether the light is on, and
whether the music is on). The agent is in a 1-unit by 1-unit room, and may move any
of its effectors 0.05 units in one of the usual four directions. When both its eye and
hand are over an object, the agent may additionally interact with the object, but only
if the light is on (unless the object is the light switch). Figure 9 shows an example
configuration.

7More technically, each abstraction is a projection of the state space onto the subspace spanned by
a subset of the set of native features.
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Fig. 9 An example
Continuous Playroom. The
agent can move its eye, hand,
and marker (shown as the
cross). The objects are
randomly relocated at the
start of each episode

Interacting with the green button switches the music on, while the red button
switches the music off. The light switch toggles the light. Finally, if the agent
interacts with the ball and its marker is over the bell, then the ball hits the bell.
Hitting the bell frightens the monkey if the light and music are both on and causes it
to squeak, whereupon the agent receives a reward of 100,000 and the episode ends.
All other actions cause the agent to receive a reward of�1. At the beginning of each
episode the objects are arranged randomly in the room so that they do not overlap.

The agent has 13 possible actions (3 effectors with 4 actions each, plus
the interact action), and a full description of the Continuous Playroom requires 18
state variables: x and y pairs for three effectors and five objects (since the position
of the monkey may be omitted) plus a variable each for the light and the music.
Because the environment is randomly rearranged at the beginning of each episode,
the agent must learn the relationships between its effectors and each object, rather
than simply the absolute location for its effectors. Moreover, the settings of the
light and music are crucial for decision making and must be used in conjunction
with object and effector positions. Thus, for task learning the agent used 120 native
state features—for each of the four settings of the lights and music it used a set
of 30 features representing the difference between each combination of object and
effector (�x and �y for each object-effector pair, so 5 objects �3 effectors �2

differencesD 30).
The Continuous Playroom is a good example of a problem that should be easy—

and is easy for humans—but is made difficult by the large number of features and
the interactions between them that cannot all be included in an overall task function
approximator: a 1st order Fourier basis over 120 variables that does not treat each
variable as independent has 2120 basis functions. Thus, it is a problem in which
options can greatly improve performance, but only if those options are themselves
feasible to learn.
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Konidaris and Barto (2009a) assumed that the agent starts with primitive actions
only, and that a new option is created for moving each effector over each object
when the agent first successfully does so. The task is then to efficiently learn the
policies for these options using abstraction selection.

The agent was given an abstraction library consisting of 17 abstractions. Since
the environment consists of objects and effectors, abstractions were included for
each of the 15 object-effector pairs, with each abstraction consisting of just two
features: �x and �y for the object-effector pair. Also included in the library was
a random abstraction (two features with values selected uniformly at random over
Œ0; 1� at each step), and a null abstraction, which used all 120 native features.

For overall task learning in the Continuous Playroom, Konidaris (2011) used a
10th-order independent Fourier basis over the 120 native features (1,320 basis func-
tions per action). For learning an option policy with an option-specific abstraction,
a full 10th-order Fourier basis was used for each action (121 basis functions per
option). For option learning without abstraction, the lights and music features were
discarded and the agent used the 30 difference features and a 10th-order independent
Fourier basis (330 basis functions per action). For the abstraction selection process,
a 2nd-order Fourier basis was used.

Figure 10 compares the overall learning curves in the Continuous Playroom
for agents that used abstraction selection with those that did not use abstractions
when learning option policies. The figure also includes curves for agents that were
given pre-learned optimal option policies, and agents that were immediately given
the correct abstraction so that performance can be compared to the ideal case.
The abstraction selection agents were constrained to only perform selection after
5 episodes.

Figure 10 shows that agents performing abstraction selection performed iden-
tically to those that did not use abstractions initially, until about 5 episodes,
whereafter the agents were allowed to perform abstraction selection and their
performance improved relative to agents that did not use abstractions, matching
the performance of agents that were given the correct abstractions in advance by 10
episodes. The difference in performance between agents that did not use abstractions
and agents that performed abstraction selection was substantial.

This example illustrates advantages of using abstractions, but it does not explain
why it makes sense for an agent to select abstractions from a library instead of
developing them itself from its experiences. According to Konidaris and Barto
(2009a), the key advantage of abstraction selection is that it shifts the state-space
representation problem out of the agent’s control loop: instead of having to design a
relevant abstraction for each skill as it is discovered, a library of abstractions can
be provided and the agent can select a relevant one for each new skill. As the
Continuous Playroom example shows, this can significantly bootstrap learning in
high-dimensional state spaces, and it allows one to easily incorporate background
knowledge about the problem into the agent.

However, providing a library of abstractions to the agent in advance requires
both extra design effort and significant designer knowledge of the environment the
agent is operating in. This immediately suggests that the abstraction library should
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Fig. 10 Learning with abstraction selection. Learning curves for agents given optimal option
policies, agents given the correct abstraction in advance, agents using no abstractions, and agents
that performed abstraction selection. The dashed line at 5 episodes indicates the first episode where
abstraction selection was allowed; before this line, agents using abstraction selection learned option
policies without abstractions

be learned, rather than given. Just as an agent should learn a library of applicable
skills over its lifetime, so should it also learn a library of suitable abstractions over
its lifetime—because an agent’s abstraction library determines which skills it can
learn quickly. We refer the interested reader to Konidaris (2011) for more on these
issues.

6 Summary and Prospects

Modularity, in one form or another, is widely observed in both artificial and natural
systems. This chapter has focused on behavioral modularity in which “units of
behavior,” which we call skills (or in the HRL framework, options), are reusable
building blocks that can be composed to generate extensive ranges of behavior.
Perhaps the most widely appreciated feature of behavioral modularity becomes
apparent when hierarchical composition is possible, in which modules can be
composed of other, lower-level modules. Behavioral hierarchies facilitate both
learning complex skills and planning at multiple levels of abstraction. Another
salient feature of behavioral modularity is that it facilitates transfer learning,
in which results of learning in one task are transferred to other related tasks.
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In a developmental framework, this allows agents to incrementally improve their
competence for facing new challenges that arise over extended time periods.

This chapter focuses on two features of behavioral hierarchy that appear to be
less well recognized: its influence on exploratory behavior and the opportunity it
affords to reduce the representational challenges of planning and learning in large,
complex domains. Behavioral hierarchy not only allows exploration to take “bigger
steps,” but it can also make areas of a state space accessible that would be effectively
inaccessible otherwise. Our example using the Light Box Environment illustrates
this: without the ability to cache learned behavior into reusable skills, the agent
would have very little chance of ever causing “higher-level” events to occur, and thus
would have very little chance to learn about these aspects of its environment. This
additionally illustrates how behavioral hierarchy can provide a means for continual,
developmental learning in which the acquisition of new skills is bootstrapped on
previously acquired structural and procedural knowledge.

Our other examples using the Pinball and Continuous Playroom environments
illustrate the utility of allowing each module to incorporate its own module-
specific representation. Skills typically involve circumscribed aspects of an agent’s
environment, which allows irrelevant features to be omitted in the representations
underlying the skill. Because each skill in a Pinball Task applies to a restricted subset
of the problem’s state space, skills can use mechanisms of lower complexity than
they would need if they were more widely applicable. This was illustrated through
the idea of a “lightweight option.” In the Continuous Playroom, an example with
a higher dimensional state space, the skill-creation mechanism selected the subset
of state variables considered most relevant to learning and performing that skill.
This is an example of how individual skills can take advantage of skill-specific
abstractions. In this case, abstractions were selected from a pre-specified small
library of abstractions, but the principle would be similar with other methods for
creating and selecting abstractions.

The examples described in this chapter were developed to illustrate methods
designed to scale RL to larger and more complex problems. However, we believe
that key features of these examples are relevant to modularity in human and animal
behavior as well. A guiding principle of all of this research has been that behavioral
modules, especially when hierarchically organized, provide a powerful means for
continual, developmental learning. It is plausible that the benefits of behavioral
hierarchy that we have illustrated through these examples have counterparts that
influenced the evolution of hierarchical modularity in humans and other animals.

Although the examples presented in this chapter are based on the options frame-
work of Sutton et al. (1999), it would be a mistake to conclude that this framework is
fully developed, that it provides an adequate account of all the issues associated with
behavioral hierarchy, or that it is the only framework in which our main points could
have been framed. The options framework has the advantages of resting on a strong
theoretical base and affording a collection of principled algorithms, but much more
development is needed to make it better suited to engineering applications and to
improve its account of salient features of behavioral modularity observed in animals.
We conclude by briefly describing several avenues for continued development.
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1. Option Creation. The question of where options come from was briefly discussed
in Sect. 3. Although many different approaches are being studied, significant
challenges remain. For example, most of the methods that have been developed
focus on identifying state space regions that act as useful option goals, and
therefore as subgoals for higher-level tasks. These options terminate when
the goal region is entered. How to identify useful option goals is far from
settled. Further, many skills involve ongoing repetitive behavior, such as running,
swinging, and stirring. These kinds of skills are not characterized by goal regions
but rather by desired dynamic behavior, such as desired limit cycles. Little work
has been done on creating options of this type, although much work in robotics
is relevant, such as the methods used in the biped walker of Tedrake et al. (2004)
and the control-basis approach of Grupen and colleagues (Hart and Grupen 2011,
2012; Huber and Grupen 1997).

2. Parameterized Options. One limitation of the option model of a skill is that most
skills, as the term is ordinarily used, seem more flexible than options. What we
may think of as a single skill, for instance, throwing a ball, would correspond to
many different options whose policies would differ depending on the type of ball,
its desired trajectory, etc. Because option policies are closed-loop, the behaviors
that options specify are reactive to state information, which could include desired
trajectory specifics. However, it might be better to model a skill as a family
of options that are parametrically related to one another in the sense that they
share a basic structure and differ by the settings of only a few parameters. For
instance, the ball’s speed might be a parameter for a ball-throwing skill. Initial
investigations of parameterized options have been undertaken by Soni and Singh
(2006) and da Silva et al. (2012).

3. Representation and Abstraction. It is well known that how a problem is repre-
sented critically influences the performance of problem solving methods Amarel
(1981). The problems of designing and/or learning representations are intimately
related to the problem of forming useful abstractions: all representations involve
abstraction in one guise or another. The forms of representation and abstraction
illustrated by the examples in this chapter only touch the surface of these topics,
which have long occupied researchers in many fields. There is ample opportunity
for integrating the approaches to representation and abstraction taken in RL
and HRL, such as those described by Mahadevan (2009) and Osentoski and
Mahadevan (2010), with those developed by researchers in other areas.

4. Many-Level Skill Hierarchies. There is a shortage of examples in which an agent
automatically constructs a many-level skill hierarchy. The GLOBAL agent in
the Light Box illustration constructed a four-level skill hierarchy for turning on
the highest-level light, and the agent solving a Continuous Playroom problem
constructed a multi-level skill hierarchy, but these illustrations were accom-
plished in relatively simple environments with explicitly-designed hierarchical
structure. Other examples, such as the Pinball example described here, create
two-level hierarchies (primitives actions plus options that do not invoke other
options). Compelling support remains to be developed for the claim that truly
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open-learning can emerge from an HRL system with the ability to autonomously
form deep skill hierarchies.

5. Ensembles of Tasks: Competence and Transfer. A theme only briefly touched
upon in this chapter is the importance of considering ensembles of tasks instead
of single tasks. The example in Sect. 4.4 illustrates how appropriate skills can
make it much easier for an agent to learn any one of several tasks posed by
different reward functions in the Light Box Environment. The right kinds of
skills—based on the right kinds of representations and abstractions—can make
an agent “competent” (White 1959) in an environment, meaning that it is able to
efficiently solve many different problems that can come up in that environment.
Beyond this, competence can extend from multiple tasks in a single environment
to multiple tasks in multiple environments, where the environments have features
in common that make it possible to transfer knowledge and skills from one to
another. Developing algorithms for learning and problem solving across task
ensembles continues to be a challenge. Some perspectives on this theme are
discussed by Barto (2012) and Singh et al. (2010).

6. Real-World Applications. The illustrations described in this chapter all involved
simulated environments that were artificially structured to test and demonstrate
the capabilities of various HRL algorithms. Although these are considered to be
“toy” environments, the problems they pose are not trivial. For example, a Pinball
Task can be very difficult to solve for both humans and conventional control
methods. But in many respects HRL theory has far outpaced its applications.
Although there are many applications of related techniques to real-world prob-
lems (too many to attempt to cite here), there is a shortage of instances that
demonstrate the full potential of HRL in important real-world tasks. This is a
direction in which progress is much needed.
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Self-Organized Functional Hierarchy Through
Multiple Timescales: Neuro-dynamical Accounts
for Behavioral Compositionality

Yuichi Yamashita and Jun Tani

Abstract Based on the ideas of self-organized functional hierarchy in dynamics
of distributed neural activities, we introduce a series of neural modeling studies.
The models have been examined through robot experiments for the purpose of
exploring novel phenomena appearing in the interaction between neural dynamics
and physical actions, which could provide us new insights to understand nontrivial
brain mechanisms. Those robot experiments successfully showed us how a set
of behavior primitives can be learned with distributed neural activity and how
functional hierarchy can be developed for manipulating these primitives in a
compositional manner.

1 Introduction

Functional hierarchy, defined broadly as the principle by which complex entities
may be segmented into simpler elements and these simple elements may be
integrated into a complex entity, is a ubiquitous feature of information processing
in biological neural systems (Botvinick 2008; Felleman and Van Essen 1991; Fuster
2001; Hilgetag et al. 2000). For example, in primary sensory areas such as V1 and
S1, the receptive field of neurons is relatively small, and these neurons respond
to features of the stimulus that are simpler than those responded to by higher
associative areas. Such functional hierarchy allows humans to perceive various
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complex sensations and to produce countless patterns of behavior. This productivity
of hierarchical organization of neural systems is inevitably related to the perspective
of cumulative learning. Therefore, investigating how these functional hierarchies are
implemented in neural systems is a fundamental challenge not only in the field of
neuroscience but also in the studies of artificial intelligent agents.

The human behavior generation system is a representative example of a system
with functional hierarchy. Humans acquire a number of skilled behaviors through
the experience of repeatedly carrying out the same movements. Certain components
of such movements, through repetitive experiences, are segmented into reusable
elements referred to as “primitives.” In adapting to various situations, a series
of motor primitives are in turn also integrated into diverse sequential behaviors.
For example, the action of drinking a cup of coffee may be broken down into a
combination of motor primitives such as the motion of reaching for the cup on the
table, and the motion of grasping the cup and bringing it to one’s mouth. Ideally,
these motor primitives should be represented in a generalized manner, in the sense
that the representation should be adaptive for differences in locations and in shapes
of the cup. Primitives must also be flexible with respect to changes in the sequence
of actions; for example, after grasping a cup, one sometimes brings the cup to one’s
mouth to drink, but one also sometimes takes the cup off the table to wash up.
It is this adaptability (intra-primitive level) and flexibility (inter-primitive level) of
primitives that allow humans to generate countless patterns of sequential behaviors.
The idea underlying this basic process was proposed by Arbib et al. (1998) in
terms of “schema theory” and has since been used as the basis for many studies
(e.g., Kuniyoshi and Sangawa 2006; Mussa-Ivaldi and Bizzi 2000).

A number of biological observations suggest the existence of motor primitives
in real animals. At the behavioral level, Thoroughman and Shadmehr (2000), for
example, showed that humans learn the dynamics of reaching motions through
a flexible combination of movement elements. Sakai et al. (2003) showed that,
in visuomotor sequential learning, human subjects spontaneously segmented motor
sequences into elementary movements. At the level of animal muscle movement,
Giszter et al. (1993), through observations of muscle movement in the frog’s leg,
found that there are a finite number of linearly combinable modules, organized in
terms of muscle synergies on limbs. At the brain level, meanwhile, it has been
shown that electrical stimulation in the primary motor and premotor cortex of
the monkey brain evokes coordinated movements, such as reaching and grasping
(Graziano et al. 2002). These observations strongly suggest that the diversity of
behavior sequences in animals is made up of flexible combinations of reusable
movement elements, i.e. motor primitives. From the perspective of cognitive
science, such productivity of the animal behavior generation system is also referred
to as behavioral “compositionality.” The concept of compositionality originates in
the principle of compositionality in linguistics (Evans 1981), describing that the
meaning of complex expression is determined by the meaning of its constituents
and the rules that combine them. This principle can be naturally transferred to
our problem such that complex goal-directed behavior sequences can be generated
by combining a set of re-usable behavior primitives by following corresponding
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rules. Although this is a minimal notion of the compositionality, the functional
hierarchy of behavior organization systems plays a key role in achieving behavioral
compositionality. The idea of compositionality is also related to the higher cognitive
functions of human and artificial agents, such as executive control, meta-cognition,
and logical thought. The functional hierarchy in neural systems could be considered
as one possible implementation of such compositional structures of cognitive
system. Therefore, investigating the underlying mechanisms of functional hierarchy
in behavior generating systems may contribute to further understanding of the higher
cognitive functions of human and artificial agents.

In the field of conventional cognitive science, it has been considered that
functional hierarchy is achieved by means of symbol representation and their
manipulations in the higher cognitive level. In contrast, we have assumed an
alternative account that the functional hierarchy of behavior generation systems
could be self-organized in the neural dynamics of distributed activity through
repetitive learning of sensory-motor experiences. In the following, we will introduce
a series of neural modeling studies based on these ideas. The models have been
examined through robot experiments for the purpose of exploring novel phenomena
appearing in the interaction between neuro-dynamics and physical actions which
could provide us with new insights to understand nontrivial brain mechanisms.
Those robot experiments successfully showed us how a set of behavior primitives
can be learned with distributed neural activity and how functional hierarchy can be
developed for manipulating these primitives in a goal-directed manner.

2 Self-Organized Segmentation of Motor Primitives
in Distributed Representation

First, we show how a set of behavior primitives can self-organize with distributed
neural activity through repetitive learning of behavioral experiences. For this
problem, we (Tani and Nolfi 1999) first proposed a model of gated modular
networks based on a “local representation” scheme, representative examples being
the “mixture of expert” model (Baldassarre 2002) and the “MOSAIC” model
(Haruno et al. 2001).

In the local representation schema, functional hierarchy is realized through
the use of explicit hierarchical structure, with local modules representing motor
primitives in the lower level, and a higher module representing the order of motor
primitives switched via additional mechanisms such as gate-selection (Fig. 1).

The modular networks as forward models compete to predict current sensory-
motor sequence and the gate of the winner, established on the basis of the
minimum prediction error opens exclusively. The winner is entitled to learn the
pattern to become an expert for it. Although the local representation model worked
successfully in a simple simulation experiment of navigation learning, it could not
scale easily to more complex problems dealing with robots with larger degrees of
freedom (DOF)(Tani et al. 2008a).
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For this reason, we proposed an alternative scheme based on distributed
representation, which is referred to as the recurrent neural network with parametric
biases (RNNPB; for details of the modeling, please refer to our prior publications
(Sugita and Tani 2004; Tani 2003; Tani and Ito 2003)). The PB is static vector input
to the network which acts as the bifurcation parameters of nonlinear dynamical
systems (Tani 2003). Owing to this characteristic of the PB, the proposed network
was able to generate multiple patterns of sensory-motor sequences through the
self-organized associations between a specific PB activity and different dynamic
patterns in the network (i.e., different combinations of behavior primitives). The
learning of RNNPB is conducted by means of usual back-propagation through time
(BPTT) algorithm. In the learning phase, a set of movement patterns are learned
through the forward model of the RNNPB by self-organized both the PB vectors,
which are assigned differently for each movement pattern, and a synaptic weight
matrix, which is common for all the patterns. After learning, learned sensory-motor
sequence patterns can be regenerated by setting corresponding PB values (Fig. 2a).

The robot experiment (Tani and Ito 2003) showed that a set of discrete move-
ments and periodic movements can be learned simultaneously as fixed point and
limit cycling attractors, respectively (Fig. 3). These results suggest that, continuous
behavior sequences are segmented into chunks of spatio-temporal patterns of the
sensory-motor flow (primitives), each of which corresponds to different values
of PB. The results also showed that the system has certain generalization capability
in learning, in the sense that similar patterns were learned with those PB values
that were close to each other (Tani et al. 2004). For example, the changes in
the amplitude and frequencies of cyclic movements can be extracted into the
two-dimensional PB space, suggesting that those movements were generated by
interpolating the set of actions in training data (Ito and Tani 2004).

Another important feature of the RNNPB is that the system works as both a
behavior recognizer and generator (Fig. 2). When given a fixed PB vector, the
RNNPB generates the corresponding dynamic patterns. On the other hand, when
given target patterns to be recognized, the corresponding PB vectors are obtained



Self-Organized Functional Hierarchy Through Multiple Timescale 51

Predicition

(St, mt)

Set PB values

(St+1, mt+1)

Reconstruct

Regression

Target

(St, mt)

PB value determined

(St+1, mt+1)

Error

Generation Recognition PB shifts by regression
of sensory pattern

P
B

S
en

so
ry

in
pu

ts

Time Steps

Primitive1

Primitive2

Primitive3

PB1

PB2

a b c

Fig. 2 RNNPB
(a) Generation mode. By setting a particular value of PB, spatio-temporal patterns of the sensory-
motor sequence (primitives) can be generated based on the self-organized associations between a
specific PB activity and different dynamic patterns in the network. Gray-filled circle corresponds
to PB units which give static vector inputs to the network. (b) Recognition mode. When a target
patterns are given, the corresponding PB vectors can be obtained through an iterative inverse
computation. (c) Combination of behavior primitives through the switching of PB activities. st

and mt are current sensory-motor inputs, and stC1 and mtC1 are predictions of the network for the
next time step, respectively

Fig. 3 Examples of learned movements, each of which corresponds to different values of PB.
Discrete movements (a), (b), and (c), and periodic movements (d) and (e). Lines correspond to
4 out of a total of 8 dimensional arm joint angles. Values of joint angles were mapped to values
ranging from 0.0 to 1.0

through an iterative inverse computation (Regression: Fig. 2b). As an illustrative
example, on the topics of imitation learning (Ito and Tani 2004), a humanoid robot
with 8 DOF arms was trained for multiple movement patterns demonstrated by a
human experimenter. More specifically, the robot, facing with the experimenter,
learned to predict how the positions of the experimenter’s both hands change in
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time based on visual sensory sequences and also it learned corresponding own
arm movements in terms of motor sequences by imitation. It was shown that
the robot can successfully follow sudden shifts from a learned pattern to another
demonstrated by the experimenter by utilizing the PB regression. In this experiment,
the functional role of PB can be associated with that of mirror neurons found in
the ventral premotor area of monkeys, in the sense that the same PB activation
accounts for both recognizing others’ particular movement patterns and generating
own corresponding movement patterns (Tani et al. 2004).

3 Self-Organized Functional Hierarchy Through Multiple
Timescale

In this section, we describe the self-organized functional hierarchy of the behavior
generation system, within which series of reusable primitives are integrated into
a variety of goal-directed behavior sequences through sensory-motor experiences.
In order to overcome difficulties associated with the explicit hierarchical structure
of the local representation model, we introduce a different type of representation for
functional hierarchy. The representation we use neither uses separate local modules
to represent primitives nor introduces explicit hierarchical structure to manipulate
these primitives. Instead of setting up an explicit hierarchy, we attempt to realize the
self-organization of a functional hierarchy by means of neural activity with multiple
timescales (“hierarchy in time”). This functional hierarchy is made possible through
the use of two distinct types of neurons, each with different temporal properties. The
first type of neuron is the “fast” unit, whose activity changes quickly over the short
term. The second type of neuron is the “slow” unit, whose activity changes over the
long term.

The idea that multiple timescales may carry advantages for neural systems in
interacting with complex environments is intuitively understandable. Indeed, the
importance of multiple timescales in neural systems has been emphasized in a
number of earlier studies from various different fields. For example, in a study of
reinforcement learning, Sutton’s group showed that learning speed can be increased
by using not only short-term rewards but also long-term rewards (Precup and Sutton
1997). At the level of behavior, it has been shown that the process of acquiring motor
skills develops through multiple timescales (Huys et al. 2004; Newell et al. 2001).
Biological observations on motor adaptation, such as saccade adaptation and force
field adaptation, likewise suggest that these processes involve distinct subsystems
with differing timescales (Kording et al. 2007; Smith et al. 2006). At the level
of neural synchrony, meanwhile, it is thought that differing timescales in neural
synchrony are involved at different levels of information processing, such as in
local and global interactions of brain regions (Honey et al. 2007; Varela et al. 2001).
These previous studies strongly suggest the possibility that multiple timescales may
be essential for the emergence of functional hierarchy in neural systems.
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At the neuron level, the use of timescale variation has also been proposed as
a means of representing different levels of functionality. In a study of auditory
perception, for example, Poeppel et al. (2008) hypothesized that different temporal
integration windows in neural activities correspond to a perceptual hierarchy
between formant transition level and syllable level. In a study of an evolutional
neural network model using a mobile robot, Nolfi (2002) showed that a model with
differing temporal integration windows is superior to the normal model in cases in
which the robot is required to achieve two different tasks: collision avoidance, which
requires short-term sensory-motor control, and self-localization, which requires
long-term sensory integration. Furthermore, Paine and Tani (2005) showed that,
using a similar evolutional neural network model with a mobile robot, it was
possible to achieve hierarchical functionality of motor primitives (wall avoidance)
and execution of a given sequence of primitives (global goals) through a particular
constraint on neural connectivity. In this model, one part of the network evolved
so as to be responsible for primitives with fast dynamics, whereas another part of
the network evolved so as to be responsible for sequences of primitives with slower
dynamics.

Based on the idea of the functional hierarchy through multiple timescale,
we proposed a continuous time RNN model referred to as a “multiple timescale
RNN (MTRNN)” (Arie et al. 2009; Namikawa et al. 2011; Nishimoto and Tani
2009; Yamashita and Tani 2008), in which a network is made up of two different
types of context units, each type with its own distinct time constant: large � (slow
context) and small � (fast context). Continuous time characteristic of the MTRNN is
described by the following differential equation, which uses a parameter � referred
to as the time constant:

�i Pui;t D �ui;t C
X

j

wijaj;t (1)

where ui;t is the membrane potential, ai;t is the neural state of the i th unit, and wij

is synaptic weight from the j th unit to the i th unit. The second term of Eq. (1)
corresponds to synaptic inputs to the i th unit. The time constant � is defined as
the decay rate of the unit’s membrane potential, analogous to the leak current
of membrane potential in real neurons. One might consider this decay rate to
correspond to an integrating time window of the neuron, in the sense that the decay
rate indicates the degree to which the earlier history of synaptic inputs affects the
current state. When the � value of a unit is large, the activation of the unit changes
slowly, because the internal state potential is strongly affected by the history of the
unit’s potential. On the other hand, when the � value of a unit is small, the effect of
the history of the unit’s potential is also small, and thus it is possible for activation
of the unit to change quickly.

The lower level network receives current visuo-proprioceptive (VP) state (vt , pt )
as inputs and generates its prediction outputs (vtC1, ptC1) for the next time
step (Fig. 4).
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Here, proprioceptive state means the current body posture in terms of joint
positions. The lower level network can generate variety of VP sequences depending
on the synaptic weights of the whole network as well as the initial states set in the
higher level network. The network is trained to regenerate a set of VP sequences
by determining optimal synaptic weights and specific initial states of some of the
higher level units corresponding to each of the sequences. The initial states of other
neural units are set as neutral, i.e. the internal state of each neuron is set to 0. This
means, in other words, that if initial states of the slow context units had not been set,
the network would not have been able to produce multiple behavior sequences.

Training of the network is conducted by means of supervised learning (BPTT)
using teaching sequences obtained through tutoring by the experimenter. Through
the training process, the network can also generate motor imagery of the learned
sequences without receiving real sensation for the current VP state but by feeding
own prediction to next sensory inputs by closing the loop.

The MTRNN was tested through the interaction of a humanoid robot with a
physical environment (Yamashita and Tani 2008). In the experiment, the robot
learned to reproduce five different types of learned behavior each of which is
composed of sequences of various behavior primitives, including reaching to
the object, moving the object up and down, moving the object left and right,
moving the object backward and forward, touching the object with one hand
and clapping hands. Through training, the robot was able to reproduce perfectly
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Fig. 5 Examples of behavior sequences generated by the robot after training.
Proprioception (arm), vision sense (vison), fast and slow context activation of teaching signal
(teach), and actual sensory feedback in physical environment (robot) during four different patterns
of behavior 3 are shown. In proprioception, 4 out of a total of 8 dimensions were plotted (full line:
left arm pronation, dashed: left elbow flexion, dot-dash-dot-dash: right shoulder flexion, dotted:
right arm pronation). In the case of vision, two lines correspond to the relative position of the
object (full line: X-axis, dashed line: Y-axis). Values for proprioception and vision were mapped
to the range from 0.0 to 1.0. In the graph of context unit activity, a long sideways gray-rectangle
indicates the single unit activity over many time steps. Colors of rectangles indicate activation level
(cf. color bar). Fast context and Slow context indicates activity of units in the lower level and the
higher level of the network

learned behavior sequences generalized across object locations, and also managed
to successfully interact with the physical environment. Figure 5 illustrates examples
of sensory-motor sequences, as well as examples of teaching signal, activation
of the slow units and the fast units, of the trained model network interacting
with a physical environment through the body of the robot. In the analysis of the
internal network representations for each pattern of behavior, activity of the slow
context units exhibited very little location-dependent variation, and no patterns
corresponding to repetitive movements were observed (Fig. 6). On the other hand, in
the fast context units, trajectories for each behavior exhibited a particular structure
which shifted with the object position. These observations suggest that functional
hierarchy of primitives and sequence of primitives was self-organized in the
model network. That is, in the task behavior sequences, movements that appeared
repeatedly (e.g., cyclic patterns) were segmented into reusable “primitives.” These
primitives were represented in fast context dynamics in a form that was generalized
across object locations. On the other hand, the slow context units appeared to be
more abstract in nature, representing sequences of primitives in a way that was
independent of the object location.

If the fast context units and slow context units encode, respectively, motor prim-
itives and sequences of primitives, one would anticipate that novel combinations of
primitives would be generated only by altering the activity of the slow context units.
In order to test this idea, the network was trained to additionally generate novel
sequences of behavior assembled out of new combinations of primitives. During
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Fig. 6 Position-dependent changes in context state space.
Changes of context activation during each behavior at every position are shown in a 2-dimensional
space based on the results of PCA analysis. The four graphs on the left side and single graph on
the right side correspond to fast context activities and slow context activities, respectively. State
changes of the fast context units for each behavior exhibit a particular structure which shifts with
the object position. On the other hand, activity of the slow context units for a particular behavioral
task exhibited very little location-dependent variation

the additional training, only connections of the slow context units were allowed
to change, weights of the other units remaining fixed at the values that were set
through the basic training. As a result of the additional training, the robot was able
to reproduce perfectly the novel behavior sequences (Yamashita and Tani 2008).

These results indicate the role of functional differentiation in the current model:
motor primitives, such as reaching for the object, moving the object up and down,
and moving the object left and right, were represented in the dynamics of fast
context units, whereas activities of the slow context units represented switching of
these primitives. By changing activities of slow context units, segmented primitives
moreover were integrated into new behavior sequences by combining them in
different orders.

In other studies using the same model (Nishimoto and Tani 2009), the
MTRNN also succeeded in incremental learning of additional primitives, which
can be integrated into novel patterns of behavior sequences. Moreover, our study
(Arie et al. 2009) also showed that MTRNN can generate action plans for achieving
given goals. Action programs in terms of the initial state are searched such that
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imagery VP sequences generated from them can reach to the goal states in the distal
steps. It was shown that such planning can generate even novel combinations of
learned episodic sequences.

4 Discussion and Summary

The current chapter reviewed our attempts that functional hierarchy of behavior
generation system could be self-organized in neural dynamics of distributed activity
through repeative learning of sensory-motor experiences. First, we introduced
RNNPB schema, in which reusable behavior primitives can be represented in
distributed neural activity in a generalized manner. In the RNNPB, by manipulating
values of PB, behavioral compositionality could be achieved, in the sense that by
setting PB values in different order, diverse patterns of behavior sequences could be
generated.

We next introduced MTRNN that is an alternative way for realizing the
functional hierarchy in behavior generating system. In the MTRNN, through
the introduction of multiple timescales, continuous sequences of behavior are
segmented into reusable primitives, and the primitives, in turn, are flexibly
integrated into novel sequences. It is important to mention that what had been
achieved by the MTRNN is not just ordinal compositionality of combining
primitives. Elaboration between the slow and the fast dynamics during the learning
process achieved quite smooth transitions between one primitive to another
rather than just connecting discrete objects of primitives. Moreover, the slow
dynamics carries contextual information, for example, counting of cycles of periodic
movements. Although this counting of times could be often imprecise with plus-
minus one in our experiment, the transitions never take through in the middle of
primitives. When combinatorial action sequences can be generated with carrying
context, with smooth transitions of primitives and with enough generalization, the
appeared structures are not only just compositional but also as fluid and “organic”
(Nishimoto and Tani 2009; Tani et al. 2008b).

4.1 Multiple Scales in Space and Time: General Mechanisms
for Hierarchy

At the conceptual level, it is intuitively understandable that forms of hierarchy can
be realized through differing scales in space and time. In a photo image, for example,
elemental information in a narrow space, such as the edges of an object and the
color of pixels, is integrated into complex features of the image in a larger space.
In speech sounds, syllable-level information on short timescale is integrated into
word-level information over a longer timescale. It is not unrealistic to think that
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the mechanisms of multiple scales in space and time, which are responsible for
generating these hierarchies, might also be at work in the neural systems of animals.

Information processing in the visual cortex, investigated extensively in the study
of visual perception, is thought to occur on multiple spatial scales (Hubener et al.
1997; Tootell et al. 1981; Vuilleumier et al. 2003). It is as such considered that
functional hierarchy in visual information processing operates on the basis of the
spatial structure of visual cortices, such as connections between local modules at a
narrow spatial scale, and connections between brain regions at a wider spatial scale.
This observation of functional hierarchy based on spatial hierarchy leads naturally
to the idea of the local representation model.

On the other hand, there also exists a hypothesis claiming that hierarchical
functional differentiation is caused by different timescales of neural activities,
specifically, difference in the temporal integration window of neural activities.
Based on the observation that speech perception requires multi-time resolution
at the formant transition level (20–50 ms) and at the syllable level (200–300 ms),
Poeppel et al. (2008) hypothesized that different temporal integration windows in
neural activities correspond to a perceptual hierarchy between formant transition
level and syllable level. In a neuroimaging study using auditory stimuli, Poeppel
and his colleagues found that different brain regions responded in a way which
corresponded to differences in the temporal properties of stimuli: one stimulus
required precise temporal resolution and activated one particular brain region, while
the other stimulus modulated the sound stimulus slowly and activated a different
region (Boemio et al. 2005).

It is also intuitively understandable that spatial scales of neural connectivity and
timescales of neural activity work in concert with each other. Certain biological
observations suggest that multiple scales in space and time in neural systems play
an important role in giving rise to functional differentiation. For example, visual
cortices of primates, considered to be organized according to a spatial hierarchy, also
exhibit functional differentiation that is based on the timescales of neural activity.
Many neurons in area V4, which is considered to process wavelength domains, fire
in a sustained fashion (possibly to integrate longer timescale information); firing
patterns in area MT/V5, on the other hand, which is considered to process visual
motion perception, are phasic and brief in duration (possibly in order to achieve
precise time resolution) (Schiller and Logothetis 1990).

There also exist studies emphasizing the relationship between spatial orga-
nization (neural connectivity) and the presence of multiple timescales in neural
activity. For example, Honey et al. (2007) showed that, in simulations of a neural
network that captured interregional connections of the macaque neocortex, neurons
spontaneously synchronized at multiple timescales corresponding to local and
global interactions in regions of the brain. This study can be considered to have
shown that multiple timescales can emerge in neural activity through constraints on
connectivity. As mentioned earlier, Paine and Tani (2005) showed that a particular
constraint on connections encouraged the emergence in neural activity of functional
hierarchy with multiple timescales. These facts strongly suggest that the spatial
connections between neurons and the timescales of neural activity are strongly
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related to each other, and that both act as essential mechanisms leading to functional
hierarchy in neural systems.

4.2 Current Problem and Future Challenge

From the perspective of biological plausibility, one may be concerned about the
use of the BPTT algorithm. However, in the current chapter, BPTT was used not
for mimicking the learning process of biological neural systems, but rather as a
general learning rule. Results obtained reflect characteristic features of the proposed
network architecture, and not of the learning algorithm. Similar results could be
obtained using a different learning algorithm, such as the biologically plausible
algorithm, a kind of reinforcement learning (Seung 2003; Xie and Seung 2004).

Among dynamical systems models, the use of reservoir computing (e.g. echo
state network, Jaeger and Haas 2004 and liquid state machine, Maass et al. 2002)
has become popular in studying the mechanisms of complex sequential behavior.
In reservoir computing, complex temporal patterns of sequences can be acquired
based on the simple associations between complex dynamics of reservoir network
and readouts. The main advantage of reservoir computing is that the training is
performed only at the readout stage with a simple learning algorithm. However,
it is nonetheless still difficult for this type of model to reproduce hierarchical
organization of sequential behavior in robots starting at the level of sensory motor
interactions.

Although we have emphasized advantages of distributed representation schema,
there are a number of possible advantages to the local representation. First, the
learning of one module would seem not to affect other modules. Second, based on
this independence in the learning process, it would seem that increasing the number
of local modules would lead to an increase in the number of acquirable primitives.
An earlier study using multiple sensory-motor sequences, however, demonstrated
that difficult problems arise in the local representation model as a result of its local
nature (Tani et al. 2008a). Similarities in learned sensory-motor sequences create
competition in the learning process between corresponding modules. Generalization
requires similar patterns to be represented in the same module as the same primitive,
even subtle differences exist in the treatment of sets between such patterns. On
the other hand, for the purposes of achieving “crisp” segmentation of sensory-
motor flow, different patterns must be represented as separate primitives in distinct
modules. This conflict between generalization and segmentation poses serious
problems in the treatment of sets of multiple sensory-motor sequences within which
there are similarities and overlaps. On the other hand, distributed representation
schema also have difficulties in cumulative learning as a result of their distributed
nature, namely temporal interference and spatial interference.

To overcome such disadvantages of these types of models could be the next
challenge in the study of hierarchical actions for cumulative learning. The following
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directions may be possible. For example, introduction of “topological structure”
among local modules may increase generalization capability of the local repre-
sentation model. Tokunaga and Furukawa (2009) proposed a modular network
self-organizing map (mnSOM), in which an array of multi-layer perceptrons is used
as local modules, instead of the vector units of the conventional SOM. Through
the introduction of this topological structure, in the mnSOM, function space can
be self-organized with generalization capability (Tokunaga and Furukawa 2009).
On the other hand, the introduction of sparseness of connectivity would lead to
certain localization in the distributed representation model, which may reduce
the interference of learning, and may result in an increase in the capability for
cumulative learning.
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Autonomous Representation Learning
in a Developing Agent

Jonathan Mugan and Benjamin Kuipers

Abstract Our research goal is to design an agent that can begin with low-level
sensors and effectors and autonomously learn high-level representations and actions
through interaction with the environment. This chapter focuses on the problem of
learning representations. We present four principles for autonomous learning of
representations in a developing agent, and we demonstrate how these principles can
be embodied in an algorithm. In a simulated environment with realistic physics,
we show that an agent can use these principles to autonomously learn useful
representations and effective hierarchical actions.

1 Introduction

A developing agent is one who learns continually in an environment so that its
capabilities expand over time. Such an agent receives a flood of information from its
sensors, and it must abstract its sensor input to create high-level representations that
allow it to learn to act effectively. Many algorithms exist for learning actions using a
given representation, but there has been less work on learning representations. In this
chapter, we present four principles for creating representations and we present an
algorithm, called the Qualitative Learner of Action and Perception (QLAP), that
embodies those principles.

The first principle is to exploit the synergy between the created representations
and the development of the agent. The agent’s goals should drive the learning of new
representations, and new representations should, in turn, expand what the agent can
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learn. The developmental psychologist Jean Piaget described learning in humans as
a process of assimilation and accommodation (Piaget 1952). For Piaget, assimilation
is the process of fitting new information into what the learner already knows. This
information may have to be warped to fit into the learner’s current knowledge, and
the more the agent does this warping, the less the learned knowledge fits with reality.
The agent must therefore also engage in accommodation, which he described as the
modification of this knowledge to fit new information.

Most machine learning algorithms do not take this developmental learning
approach. Instead, they first create a representation and then have the agent learn
using that representation. One example of this approach is clustering, for example
of time-series data (Cohen et al. 2002). Clustering is an important abstraction tool
when the statistics of the sensory input are such that clustering can find meaningful
states for the robot. However, clustering can miss subtle but important distinctions
that may be small in the statistics of the data, but large with respect to the goals
of the robot. For example, consider a Skinner box (Skinner 1961). To a clustering
algorithm, all of the small details of the box may be equally salient, but the important
feature indicating the coming electrical shock may be a small red light (a similar
point was made by Goodman et al. 2007).

The developmental approach embodied in this first principle is to allow the
agent’s current developmental goals to drive the learning of new representations.
This creates a synergy between representations and learning because new repre-
sentations are learned to better help the agent achieve its current goals, and these
new representations open up further possibilities for learning. An implementation
of this principle was provided by Mugan and Kuipers (2007). Additional examples
of simultaneously learning a structure and a discretization where each constrains the
other are provided by Friedman and Goldszmidt (1996) and Goodman et al. (2007).

The second principle is to generate representations to stand for phenomena in
the environment. A phenomenon can be described as something, such as an object
or event, that an agent can identify in the environment. Once an agent can identify a
phenomenon in the environment, it can then track statistics on its occurrence. This
stands in contrast to clustering or state-based representations where the goal is to
map the environment onto one of a set number of identified states. By contrast,
generating representations to stand for phenomena is concerned with identifying
the existence or nonexistence of particular phenomena and then tracking statistics.1

This helps to manage the flood of information because the agent can process the
input through the intermediary step of the representations.

One example is learning what a chair is. Once an agent has created a separate
representation to stand for a chair, it can identify when there are chairs in the
environment and track statistics on their occurrence and location. The agent can

1Of course, for any fixed number of phenomena and any fixed number of statements about the
phenomena, this is equivalent to a state-based representation. The differences are that the number
of phenomena will change over time, and phenomena are considered largely independent of other
phenomena.
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then generate hypotheses based on these phenomena to create self-supervised
learning problems and watch the environment for evidence of these hypotheses.
An implementation of this principle was provided by Drescher (1991). He proposed
a method whereby an agent learns predictive rules of the environment and then
tracks statistics on their reliability. This principle is also related to reification,
the process of converting sensory input to symbolic information (Gunderson and
Gunderson 2008).

The third principle is to break the environment into many small parts. The envi-
ronment can be too big to be represented in its entirety and representing it with one
big model or one big plan does not scale well. An alternative approach is to represent
the environment using subsets that are well understood and contained. This allows
each model or plan to be small, and the agent can learn which to choose in which
situation. This idea can be traced back to Piaget (1952). In his theory of child
development, children organize knowledge into self-contained units called schemas.

The fourth principle is to create representations so learning is easy. Often,
researchers focus on creating increasingly sophisticated algorithms to achieve better
performance on a given representation. This principle states that an alternative
approach is to represent the problem so that simple algorithms can be used.

In this chapter, we present a developmental learning algorithm that embodies
these four principles. We call it QLAP. QLAP builds on the groundwork laid by
Pierce and Kuipers (1997) and Modayil and Kuipers (2007). This previous work
allows an agent to identify objects in its sensory input and to learn a set of orthogonal
motor primitives, enabling the agent to sense the world through a set of continuous
variables and affect the world using a set of continuous effectors. QLAP begins
with this low-level representation of continuous variables, and through autonomous
exploration learns a set of hierarchical actions.

QLAP is able to make this transition from low-level perception to high-level
actions by learning a sequence of representations that build on each other. This
sequence of representations includes a discretization of the environment that allows
QLAP to build predictive models. These models are used both to refine the
discretization and to build plans to perform actions. This chapter focuses on how
QLAP creates representations. For a full technical description of QLAP, see Mugan
(2010); Mugan and Kuipers (2012).2

2 Landmarks Discretize Continuous Variables
and Define Events

QLAP bridges the gap between a continuous and a discrete representation by
creating landmarks. A landmark allows the agent to represent the value of a
continuous variable Qv.t/ as being less than, greater than, or equal to that landmark.

2A video describing QLAP can be seen at http://www.youtube.com/watch?v=xJ0g-NoerZ0.

http://www.youtube.com/watch?v=xJ0g-NoerZ0
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In this way, landmarks discretize the input so that the continuous variable Qv.t/

can be converted to the qualitative variable v.t/. A qualitative variable v with
two landmarks .v�

1 ; v�
2 / would have five distinct qualitative values, Q.v/ D

f.�1; v�
1 /; v�

1 ; .v�
1 ; v�

2 /; v�
2 ; .v�

2 ;C1/g. This type of representation is called a
qualitative representation (Kuipers 1994).

Creating a landmark also allows the agent to create a second type of represen-
tation called an event. We say that an event takes place when a qualitative variable
changes qualitative value. More specifically, if q is a qualitative value of a qualitative
variable v, meaning q 2 Q.v/, then the event vt!q is defined by v.t � 1/ ¤ q and
v.t/ D q.

Initially, the agent has no landmarks for each magnitude input variable Qv.t/. But
for each such variable, QLAP creates a direction of change variable Pv that has a sin-
gle intrinsic landmark at 0, so its quantity space is Q. Pv/ D f.�1; 0/; 0; .0;C1/g,
which can be abbreviated as Q. Pv/ D fŒ��; Œ0�; ŒC�g. Motor variables are also given
an initial landmark at 0. The agent must learn new landmarks for magnitude and
motor variables. Each additional landmark allows the agent to perceive or affect the
world at a finer level of granularity.

A qualitative representation affords two important advantages. The first is
generalization. In a qualitative representation, many different real values map to
the same qualitative value. For example, if a noise occurs each time a variable value
is less than some landmark, then the agent can learn the association between the
variable value and the noise because each instance maps to the same state. Without
a qualitative representation, each instance would appear unique. This is an example
of creating a representation so learning is easy.

The second advantage of a qualitative representation is that the learner can focus
on important events. As the fire hose of sensory input comes in, the agent needs
some way to know what to pay attention to and what to track statistics on. The
goal of a QLAP agent is to predict and control the environment. We will see in
Sect. 3.2 that QLAP can identify landmarks that are useful for making predictions.
By defining these landmarks, the agent can focus on important events. This is an
example of generating representations to stand for phenomena in the environment.

3 Models Use One Event to Predict Another

Identifying events allows the agent to learn when one event leads to another. Such a
pairing of events is called a contingency. For example, flicking a light switch leads to
the light coming on. It has been proposed that humans have an innate contingency
detection module (Gergely and Watson 1999), and it has been shown that human
infants can detect contingencies in their environment shortly after birth (DeCasper
and Carstens 1981).

Contingencies have two important advantages. First, they are easy to learn
since the agent needs only to look for pairs of events. Second, they are a natural
representation for planning. The models in QLAP are based on contingencies.
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Mathematically, these models are represented as dynamic Bayesian networks (Dean
and Kanazawa 1989).

3.1 Creating Models

QLAP searches for contingencies by examining pairs of events. Once a contingency
is found, a new representation is created in the form of a model based on that
contingency. A model is created if a contingency is found linking the occurrence of
an antecedent event E1 with the occurrence of a consequent event E2. Specifically,
a model is created if observing the antecedent event E1 makes it more likely that the
consequent event E2 will soon be observed than otherwise:

Pr.soon.t; E2/jE1.t// > Pr.soon.t; E2// (1)

where Pr.soon.t; E2// is the probability of event E2 occurring within a window of
k time steps beginning at a random time t . The statement Pr.soon.t; E2/jE1.t// is
the conditional probability of event E2 occurring within a window of k time steps
beginning at time t , given that event E1 has occurred at time t . The time window
size k is learned based on the environment.

Creating models based on contingencies differs in an interesting way from other
methods that create a single model for each variable (Hester and Stone 2009) or
create a model for each variable and action combination (Strehl et al. 2007). QLAP
tracks statistics of almost all possible pairs of events in a large matrix and retrieves
all pairs of events that may form a contingency. Because QLAP is considering large
numbers of possible contingencies, QLAP potentially learns multiple models to
predict each event on each variable, and the models can be small and be applicable
in different situations. For example, the agent might also learn that the sound of
clapping hands leads to the light going on. Then, instead of one model that would
have to account for observing a flicking of a switch or hearing a clapping noise,
QLAP would have two small models. Also note that the flicking of the switch or
the clapping would not have to be given as actions in QLAP, the agent could just
observe that these events lead to the light going on. QLAP could then learn that
anything that brought these events about could be used to turn the light on.

3.2 Improving Models

Once a new representation is created in the form of a model, the agent can track
statistics on when the model successfully predicts the environment and when it does
not, resulting in self-supervised learning. Since each model uses one event E1 to
predict another event E2, when the antecedent event E1 occurs, the agent can watch
the environment to determine under which conditions the consequent event E2 will
occur.
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As was shown by Drescher (1991), self-supervised learning allows the agent to
learn context variables to make each model more reliable by enabling QLAP to note
correlations between values of qualitative variables and the reliability of the model.
For example, by tracking statistics, the agent could learn that flicking the switch
only leads to the light going on in rooms with white walls. It could then add room
color as a context variable in the model. QLAP adds context variables one at a time
as they are found to improve the model.

In QLAP, self-supervised learning also allows the agent to learn new landmarks
by enabling the search for regions of real values that are correlated with the
reliability of the model. For the light switch example, the agent might observe that
the light only came on when the temperature v was below v D 100 degrees. QLAP
could learn this by noting the value of v each time the switch was flicked. It could
then observe that the light went on when v D 99, v D 42, and v D 57; and it could
observe that the light did not go on when v D 101, v D 119, and v D 109. This
would allow QLAP to improve the model by adding a landmark on v at v D 100

and adding v to the context. Since there is often a lot of noise in the environment,
we use the information-theoretic method of Fayyad and Irani (1992) to find the best
landmark value. New landmarks lead to new events, and new events can lead to new
models. This leads to a synergy between models and landmarks.

The goal of improving each model is to identify a situation (a value in the
Cartesian product of the context variables) where the antecedent event E1 almost
always leads to the consequent event E2. Specifically, when a situation is found
where the probability of event E1 leading to event E2 is greater than 0:75, the model
is said to be sufficiently reliable. Sufficiently reliable models are converted into plans
to bring about their consequent events, as described in the next section.

4 Plans are Different Ways to Perform Actions

Actions are how the QLAP agent brings about changes in the world. QLAP creates
an action a.v; q/ for each combination of qualitative variable v and qualitative value
q 2 Q.v/. When it performs an action a.v; q/, the agent strives to set v D q in the
environment. QLAP performs actions using plans. As mentioned in the last section,
a plan is added to an action a.v; q/ when QLAP learns a sufficiently reliable model
to predict the event v!q.

Since there may be many models that predict the same event, there may be many
plans to perform the action to bring about that event. This is good, because it keeps
the plans small and the agent can learn which plan to choose in which situation. And
according to the principle of breaking up the world into pieces, we want each plan
to be like a Piagetian schema so the plan can be small and self-contained.
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4.1 Plans in QLAP are Inspired by Schemas

How can an agent convert an observed model based on a contingency into a schema
that can be used as a plan to bring about changes in the world? There has been
much research into how humans consolidate knowledge. Within developmental
psychology, Mandler (2004a) proposed a theory of perceptual meaning analysis,
which is an experimentally grounded theory that explains how infants can learn
concepts and how these concepts can be represented. She describes perceptual
meaning analysis as “the central attentive process that redescribes attended per-
ceptual information into a simpler and conceptual (accessible) form” (Mandler
2004b). In Mandler’s theory, concepts are represented with image schemas. Mandler
(2004a) says that “the image-schemas that perceptual meaning analysis creates are
analog representations that summarize spatial relations and movements in space”
(p. 79). The notion of image schemas and the idea of using them as a foundation for
understanding was advanced by Lakoff and Johnson (1980). Johnson (1987) writes
that an image schema consists of a set of components that are related by a definite
structure.

While Mandler (2004a) focuses mostly on perception in her discussion of image
schemas, Arbib (1992) has suggested that schemas can provide a type of “action-
oriented memory.” In QLAP, action-oriented memory is represented with a Markov
Decision Process (MDP).

4.2 Plans in QLAP are Implemented as MDPs

In QLAP, each plan is implemented as an MDP. MDPs are a framework for
understanding decision making over time (Puterman 1994). An MDP is a four-
tuple of the form M D hS; A; T; Ri where S is a set of states, A is a set of
actions, T .s; a; s0/ D P.s0js; a/ is the transition function over states and actions,
and R.s; a; s0/ is a reward function.

MDPs are often used as the structure for decision making for learning agents
(Sutton et al. 1999; Vigorito and Barto 2010). An MDP breaks the environment up
into states: it represents what is in the environment, and it represents everything that
can be perceived about the environment. Additionally, an MDP represents how the
environment can change, including how the agent’s actions affect the environment.
And it also includes what is “good” for the agent in the reward function.

MDPs are not analog representations and are missing the “image” part of the
image schemas, but MDPs do encapsulate knowledge about the world in a principled
framework, and QLAP takes advantage of MDPs to represent how the agent can
interact with the world. QLAP assumes that the world is too large to be represented
with a single MDP and therefore QLAP does not assume a single, underlying MDP.
Instead, QLAP creates many small MDPs, where each MDP represents some small
aspect of the environment. These MDPs are not assumed to objectively exist in the



70 J. Mugan and B. Kuipers

world—like the discretization, they are created by the agent. For example, to grab
a block, a QLAP agent might learn an MDP that encodes that its hand must be
centered over the block at a certain height. If its hand is to the left of the block, the
MDP specifies that the agent must move its hand to the right. The only part of the
world that is relevant is the location of the hand relative to the block.

4.3 Converting Models to Plans

When a model r is converted into a plan, the plan reflects the structure of the model.
The model is first converted into an MDP Mr D hSr ; Ar ; Tr ; Rri where the state
space Sr of the MDP comes from the variables identified as important in the model.
These variables are those in the antecedent event, the consequent event, and the
context. The action space Ar is the set of QLAP actions to reach values in the
state space Sr , the transition function Tr is computed using observed statistics, and
the reward function Rr gives a reward for reaching the goal state of achieving the
consequent event on r .

For each MDP Mr , QLAP learns a policy �r that serves as the plan. The policy
specifies which action the agent should choose for each state s 2 Sr . Because QLAP
knows the transition function Tr and the reward function Rr for the MDP Mr , and
because each MDP consists of only a small subset of the possible variables, QLAP
can learn the policy using dynamic programming (Sutton and Barto 1998).

Arbib (1992) has described that schemas can be put together into coordinated
control programs that consist of recursively defined schemas. In QLAP, the set of
actions and plans becomes a linked network and results in a set of hierarchical
actions. Plans are linked to actions because plans are ways to perform actions. When
an action is to be performed, QLAP first chooses the best plan for the situation. The
interesting thing is that the actions in each plan are QLAP actions. This is what
creates the hierarchy. It is also worth noting that once a plan is created, QLAP can
treat it similarly to how models are treated and learn statistics on when it will be
reliable. These statistics are used by the action to pick a plan in the current state,
and they are also used to add additional state variables in the same way that context
variables are added to models.

A full summary of the learned representations can be seen in Fig. 1.

5 Exploration

A QLAP agent is not given any external task; it is driven by a desire to control its
environment, and it explores the world autonomously based on that drive. As the
agent explores, it is continually learning new landmarks, events, models, plans, and
actions. Initially, the agent motor babbles by picking random values for the motor
variables. Once the agent begins to learn plans for actions, it explores by continually
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landmark

event

model

plan

action

Variable v represented with  
qualitative values Q( v)

Dynamic Bayesian Network

Markov Decision Process

Goal to get to v = q 

(d)

(c)

(b)

(a)

(e)

Learned representation Mathematical implementation

(f) v( t−1) q and v( t ) = q¹

Fig. 1 Progression of learned representations created by QLAP. (a) QLAP creates landmarks to
discretize each continuous input variable into a set of qualitative values. These landmarks lead to
events, which occur when a variable changes its qualitative value. (b) Events allow QLAP to learn
models that predict when one event will follow another. (c) When these models become sufficiently
reliable, they can be converted into plans. (d) Plans are different ways to perform actions. (e) QLAP
creates an action to achieve each qualitative value of each variable. This means that new landmarks
also lead to new actions. (f) QLAP creates a new landmark when it estimates that adding that
landmark would make a model more reliable

choosing actions to practice. As the agent develops, it will have a growing set of
actions that it can perform. How can it best choose which actions to practice?

Ideally, the agent should choose actions where it can learn the most, that is,
actions that are neither too hard nor too easy. Schmidhuber (1991) proposed a
method whereby an agent learns to predict the decrease in the error of the model
that results from taking each action. The agent can then choose the action that
will cause the biggest decrease in prediction error. Oudeyer et al. (2007) apply this
approach with a developing agent and have the agent explore regions of the sensory-
motor space that are expected to produce the largest decrease in predictive error.
Their method is called Intelligent Adaptive Curiosity (IAC). QLAP uses a modified
version of IAC to choose actions that are expected to produce the largest increase in
reliability.

6 Evaluation

We want to evaluate how well QLAP can use the learned representations to act in
the world. Evaluating autonomous learning is difficult because there is no pre-set
task on which to evaluate performance. The approach we take is to first have the
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Fig. 2 The evaluation environment (shown here with floating objects) (a) Not grasping,
(b) Grasping, (c) Above view

agent learn autonomously in an environment; we then evaluate if the agent is able
to perform a set of tasks. It is important to note that during learning the agent does
not know on which tasks it will be evaluated.

6.1 Evaluation Environment

The evaluation environment is implemented in Breve (Klein 2003) and has
realistic physics. Breve simulates physics using the Open Dynamics Engine
(ODE) (Smith 2004). The simulation consists of a robot at a table with a block
and floating objects. The robot has an orthogonal arm that can move in the x, y,
and z directions. The environment is shown in Fig. 2, and the variables perceived by
the agent for the core environment are shown in Table 1. The block has a width that
varies between 1 and 3 units. The block is replaced when it is out of reach and not
moving, or when it hits the floor. See Mugan (2010) for further details.

The robot can grasp the block in a way that is reminiscent of both the palmar
reflex (Payne and Isaacs 2007) and having a sticky mitten (Needham et al. 2002).
The palmar reflex is a reflex that is present from birth until the age 4–6 months in
human babies. The reflex causes the baby to close its hand when something touches
the palm. In the sticky mittens experiments, three-month-old infants wore mittens
covered with Velcro that allowed them to more easily grasp objects.

Grasping is implemented on the robot to allow it to grasp only when over the
block. Specifically, the block is grasped if the hand and block are colliding, and the
Euclidean 2D distance from the center of the block in the x and y directions is less
than half the width of the palm, 3=2 D 1:5 units.

In addition to the core environment, QLAP is also evaluated with distractor
objects. This is done using the floating extension environment, which adds two
floating objects that the agent can observe but cannot interact with. The purpose of
this environment is to see if the robot can learn in the presence of distractor objects.
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Table 1 Variables of the core environment

Variable Meaning

ux , uy , uz Force in x, y, and z directions
uUG Ungrasp the block

hx , hy , hz Global location of hand in x, y, and z directions
Phx , Phy , Phz Derivative of hx , hy , hz

yTB, PyTB Top of hand in frame of reference of bottom of block (y direction)
yBT, PyBT Bottom of hand in frame of reference of top of block (y direction)
xRL, PxRL Right side of hand in frame of reference of left side of block (x direction)
xLR, PxLR Left side of hand in frame of reference of right side of block (x direction)
zBT, PzBT Bottom side of hand in frame of reference of top of block (z direction)

zF, PzF Distance from the bottom of the block to the floor

TL, PTL Location of nearest edge of block in x direction in coordinate frame
defined by left edge of table

TR, PTR Location of nearest edge of block in x direction in coordinate frame
defined by right edge of table

TT, PTT Location of nearest edge of block in y direction in coordinate frame
defined by top edge of table

cx , Pcx Location of hand in x direction relative to center of block
cy , Pcy Location of hand in y direction relative to center of block

T Block is grasped, true or false. Becomes true when the hand is touching
the block and the 2D distance between the center of the hand and the
center of the block is less than 1.5.

bang Is true when block hits the floor

Table 2 Variables added to the core environment to make up the floating
extension environment

Variable Meaning

f 1
x , f 1

y , f 1
z Location of first floating object in x, y, and z directions

Pf 1
x , Pf 1

y , Pf 1
z Derivative of f 1

x , f 1
y , f 1

z

f 2
x , f 2

y , f 2
z Location of second floating object in x, y, and z directions

Pf 2
x , Pf 2

y , Pf 2
z Derivative of f 2

x , f 2
y , f 2

z

In addition, the floating extension environment addresses scaling by showing that
most of QLAP is entirely insensitive to the number of variables that are not causally
connected (i.e., connected by some chain of contingencies) to events of interest.
In the floating extension environment, the objects float around in an invisible
box. The variables added to the core environment to make the floating extension
environment are shown in Table 2.
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6.2 Experimental Conditions

We compare the performance of QLAP with the performance of a supervised learner
on a set of tasks. The supervised learner is supervised in the sense that it is trained
only on the evaluation tasks. Not knowing the tasks on which it will be evaluated
puts the QLAP learner at a disadvantage on the evaluation tasks because QLAP
explores broadly and learns more than the evaluation tasks. The evaluation will
determine if QLAP can demonstrate developmental learning by getting better at
the tasks over time, and if QLAP can do as well as the supervised learner.

Each agent is evaluated on three tasks. These are referred to as the core tasks.

Move the block. The evaluator picks a goal to move the block left ( PTL D ŒC�),
right ( PTR D Œ��), or forward ( PTT D ŒC�). The goal is chosen randomly based on
the relative position of the hand and the block. A trial is terminated early if the
agent hits the block in the wrong direction.

Hit the block to the floor. The goal is to make bang D true.
Pick up the block. The goal is to get the hand in just the right place so the robot

can grasp the block and make T D true. A trial is terminated early if the agent
hits the block out of reach.

The supervised learner is trained using linear, gradient-descent Sarsa(�) with
binary features (Sutton and Barto 1998) where the binary features come from
tile coding. Tile coding is a way to discretize continuous input for reinforcement
learning. Both the QLAP and the tile-coding agents are evaluated on the core tasks
in both the core environment and the floating extension environment under three
experimental conditions.

QLAP The QLAP algorithm.
Tile-1 Tile coding choosing an action every time step.
Tile-10 Tile coding choosing an action every 10 time steps.

Tile-1 and Tile-10 are both used because Tile-1 has difficulty learning the core tasks
due to high task diameter (the number of time steps needed to complete the task).

QLAP learns autonomously for 250,000 time steps (about 3.5 h of physical
experience) as described in Sect. 5. The tile coding agents repeatedly perform trials
of a particular core task for 250,000 time steps. At the beginning of each trial, the
core task that the tile coding agent will practice is chosen randomly. The state of the
agent is saved every 10,000 time steps (about every 8 min of physical experience).
The agent is then evaluated on how well it can do the specified task using the
representations from each stored state.

At the beginning of each trial, a block is placed in a random location within
reach of the agent and the hand is moved to a random location. Then, the goal is
given to the agent. The agent makes and executes plans to achieve the goal. If the
QLAP agent cannot make a plan to achieve the goal, it moves randomly. The trial
is terminated after 300 time steps or if the goal is achieved. The agent receives a
penalty of�0:01 for each time step it does not achieve the goal and a reward of 9:99

on the time step it achieves the goal. (Tile-10 gets a penalty of �0:1 every 10th time
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step it does not reach the goal and a reward of 9:99 on the time step it reaches the
goal.)

Each evaluation consists of 100 trials. The rewards over the 100 trials are
averaged, and the average reward is taken as a measure of ability. For each
experiment, 20 QLAP agents and 20 tile-coding agents are trained.

6.3 Results

The results are shown in Figs. 3 and 4. Figure 3 compares QLAP and tile coding
on the task of moving the block in the specified direction. As can be seen in
Fig. 3a, Tile-1 was not able to do the task well compared to QLAP due to the
high task diameter. Having the tile-coding agents choose an action every 10 time
steps improved their performance, as can be seen in Fig. 3c. But as can be seen by
visually inspecting Fig. 3e, the performance of tile coding degrades much more than
the performance of QLAP degrades when the distractor objects are added.

Figure 4 shows the performance of QLAP and tile coding on the tasks of hitting
the block off the table and picking up the block. For brevity, this figure only contains
the final comparison of QLAP and Tile-10 with floating objects on those tasks.
We see that QLAP does better than Tile-10 on these more difficult tasks in the
environment with floating objects. For all three tasks, QLAP displays developmental
learning and gets better over time. It is worth noting that before much learning
has taken place, the developmental learning agents running QLAP may not do as
well as the reinforcement learning agents. For example, in Fig. 4c, Tile-10 starts
out higher than QLAP. This is because a Tile-10 agent can do minimally well
on the task by picking a motor value and moving in that direction for 10 time
steps. Similarly, in Fig. 4 we see that it takes about 50,000 time steps before the
QLAP developmental learning agents gain any proficiency. This result is interesting
given the oft-cited observation that humans are born more helpless than other
animals (Rosenberg and Trevathan 2002).

6.4 Description of Learned Representations

One of the first contingencies (models) that QLAP learns is that if it gives a positive
force to the hand, the hand will move to the right. This contingency is not very
reliable because in the simulator it takes a force of at least 300 units to move the
hand. The agent learns a landmark at 300 on that motor variable and modifies the
model to state that if the force is at least 300, then the hand will move to the right.
However, this model still is not completely reliable, because if the hand is already all
the way to the right, then it cannot move any farther. But from this model, the agent
can note the location of its hand each time it applies a force of 300, and it can learn a
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c d

a b

e f

Fig. 3 Moving the block. (a, b) QLAP does better than Tile-1 because of the high task diameter.
(c, d) Tile-10 does better than QLAP. (e, f) When the floating objects are added, the performance
of Tile-10 degrades much more than the performance of QLAP degrades. (Bar graphs show the
average values after 100,000 time steps.)

landmark to indicate when the hand is all the way to the right. The completed model
states that if the hand is not all the way to the right and a force of at least 300 is given,
then the hand will usually move to the right. Even this model is not completely
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a b

Fig. 4 QLAP outperforms reinforcement learning using tile coding on the more difficult tasks in
the floating extension environment. (a) Knock the block off the table. (b) Pick up the block

reliable, because there are unusual situations where, for example, the hand is stuck
on the block. Since the model is probabilistic, it can handle nondeterministic cases.

The agent also learns that the location of the right side of the hand in the frame of
reference of the left side of the block has a special value at 0. It learns this because it
notices that the block begins to move to the right when that value is achieved. It then
creates a landmark to indicate that value and an action to reach that value. Based on
this landmark, QLAP can learn a contingency (model) that says if the value goes
to 0, then the block will move to the right. It can then learn other landmarks that
indicate in which situations this will be successful. In a similar way, it learns to pick
up the block and knock the block off the table.

7 Open Issue: Learning Representations Consisting
of Combinations of Variables

QLAP can only learn actions to achieve values on existing variables. For example,
QLAP cannot learn an action to stack blocks if there is no input variable to indicate
when the blocks are stacked. QLAP can, however, generate sub-actions that are
novel combinations of variables. It learns, for example, that picking up the block
requires the agent to first center its hand over the block. Centering its hand over the
block requires learning a value among a combination of variables and learning how
to achieve that value. Nevertheless, all end-result actions must be specified with a
single variable. QLAP could conceivably learn to stack blocks if having stacked
blocks were a precondition for some higher-level action, but it is an open issue how
agents can robustly and efficiently generate representations that involve multiple
input variables.
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One approach to tackling this problem is the standard AI approach of generate
and test (Winston 1992). This approach could also be used to generate useful
intermediate variables that are not given in the input (Stober and Kuipers 2008).
These intermediate variables could be combinations of existing variables. For
example, if for two existing variables a and b, there was a model that was reliable
when a� b D 90, then it might make sense to create a new variable v D a� b with
a landmark at 90. The challenge with a generate-and-test approach is that the space
of possible representations is too large to try them all. We need a method to only
generate representations that have a high potential for being useful, and an efficient
way to test if indeed they are useful for the agent.

A related issue is how developmental learning can take place in domains with
tens of thousands of variables. One approach would be to define a type system on the
variables and to restrict representation learning to combinations of particular types.
It would be interesting to investigate if this type system could itself be learned,
possibly through clustering.

8 Conclusion

This chapter presents four principles for autonomously creating representations
for a developing agent. It also presents the QLAP algorithm that embodies these
principles. To summarize, the principles are as follows. (1) Exploit the synergy
between the created representations and the development of the agent. Landmarks
lead to new models, and each model can add new landmarks to make it more reliable.
This means that in QLAP, the drive to create new representations comes from
the goal of better predicting the environment based on the current representation.
(2) Generate representations to stand for phenomena in the environment. QLAP
creates landmarks, events, models, plans, and actions. Each of these representations
helps QLAP to focus its attention in the continuous flood of input and to track
statistics to learn new knowledge. (3) Break the environment into many small
parts. QLAP learns models by searching for correlations among pairs of events.
This results in many small models and many small plans. These models and plans
partition the world into small, tractable parts. (4) Create representations so learning
is easy. QLAP learns landmarks that allow the agent to generalize. And these
landmarks lead to events, which makes the learning of models easy. These models,
in turn, identify the relevant variables in the environment and lead to plans that use
those variables. These models are small and that allows simple planning algorithms
to be used. By employing these principles to create representations, QLAP can
progress from low-level motor primitives to high-level hierarchical actions.

Future work for QLAP is to apply it to other domains. Since a QLAP agent
is motivated to understand and control its environment, QLAP could be useful in
any domain where the goal of learning is not known in advance. One such domain
is cyber security. In the cyber domain, QLAP could learn to understand normal
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patterns of network traffic and to take basic actions on the network such as blocking
a port. With this knowledge and ability, the QLAP agent could identify anomalies
and actively work the thwart attacks.
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Hierarchies for Embodied Action Perception

Dimitri Ognibene, Yan Wu, Kyuhwa Lee, and Yiannis Demiris

Abstract During social interactions, humans are capable of initiating and respond-
ing to rich and complex social actions despite having incomplete world knowledge,
and physical, perceptual and computational constraints. This capability relies on
action perception mechanisms that exploit regularities in observed goal-oriented
behaviours to generate robust predictions and reduce the workload of sensing sys-
tems. To achieve this essential capability, we argue that the following three factors
are fundamental. First, human knowledge is frequently hierarchically structured,
both in the perceptual and execution domains. Second, human perception is an
active process driven by current task requirements and context; this is particularly
important when the perceptual input is complex (e.g. human motion) and the agent
has to operate under embodiment constraints. Third, learning is at the heart of
action perception mechanisms, underlying the agent’s ability to add new behaviours
to its repertoire. Based on these factors, we review multiple instantiations of a
hierarchically-organised biologically-inspired framework for embodied action per-
ception, demonstrating its flexibility in addressing the rich computational contexts
of action perception and learning in robotic platforms.

1 Introduction

When a boxer is facing an adversary, its action perception system operates
under hard embodiment constraints. It should not only recognise the adversary’s
movements, but also select appropriate response actions based on its prediction of
the opponent’s goals. To react in time, predicting only immediate movements is
insufficient. The boxer needs to infer longer sequences of adversarial actions and
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the underlying intentions (e.g. moving the fight to a corner) and perform strategic
movements to unveil the opponent’s intentions while hiding its own. This example
illustrates the human capabilities to actively perceive others’ actions, to predict
their intentions at different levels of abstraction and to learn from the observation
of others’ activities. Our research is focused on equipping robots with robust action
perception capabilities to allow them to participate in rich social interactions.

This chapter reports on several experiments on robotic platforms investigating
the essential factors to achieve robust action perception performance. We argue
that these factors include (a) the use of hierarchical knowledge representation
and processing architectures; (b) the use of active perceptual systems, where
sensors actively seek the required data to process; (c) the prediction of the sensory
consequences of the most probable actions; and (d) the reuse of action execution
knowledge for action perception.

The remaining of this section reports on the computational principles underlying
these factors along with relevant neuroscience research that supports their role in
the human action perception system.

Hierarchical action representations have long been adopted in AI and robotics
(Tate 1977) both at the planning and execution stages for coping with large search
spaces and long-term decisions that characterise real-world conditions. Different
hierarchical frameworks for planning have been proposed such as options or angelic
semantics (Sutton et al. 1999). Such frameworks share the presence of a relationship
connecting each element in a higher or more abstract level to many elements of the
lower levels. However, in each framework the semantics of the relationship can
be different, for example the execution of one abstract element can represent a
selective, parallel, sequential or order-independent execution of the connected lower
level elements.

Hierarchical representations also present advantages for learning and adaptation
(Hinton 2010). They may allow for more efficient inference and learning with
fewer samples by exploiting partial reuse (Theocharous et al. 2004). At the sensory
level, hierarchical processing is extremely helpful in integrating cues from several
levels of abstraction while avoiding an expensive centralised computation (the
“local administration advantage” Dawkins 1976). Such systems have compact
representations and exhibit good generalisation between objects with similar parts
(Epshtein and Ullman 2007). In biology, the hierarchical structure of the nervous
system has been seen as a general principle that enables animals to behave
efficiently in complex environments (Simon 1962). Evidence of a hierarchical
nervous architecture is present in many vertebrates (Hess 1957; Honeycutt and
Nichols 2010) and invertebrates (Liske 1999). An extensive review on the evidence
of a hierarchical organisation of action representation in the human brain, including
goals (short-term) and intentions (long-term) is available in (Grafton et al. 2007).

Active perception directs sensors and selects data to process using additional
sources of information, such as task knowledge, and predictions based on previous
inputs (Aloimonos et al. 1988; Bajcsy 1988; Ballard 1991). By selecting only
the relevant input for the current task, active perception permits parsimonious
use of the sensory and computational resources (Kato and Floreano 2001). Active
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perception can also facilitate more efficient exploration of the environment (Rao and
Ballard 1995) and enhance the system robustness to conditions in which relevant
information is hidden when observed with passive sensors (Ognibene et al. 2011;
Suzuki and Floreano 2006). Apart from reducing the computational costs, active
perception can, in some cases, facilitate learning (Ognibene et al. 2010). The active
and top-down components of human perception have been confirmed by behavioural
(Malcolm and Henderson 2010; O’Regan and Noé 2001; Tatler et al. 2011), imaging
(Bar et al. 2006) and recording (Buschman and Miller 2007) evidence.

Prediction of the sensory consequences of actions enables a system to recog-
nise actions in unseen contexts by utilising learned causal relationships between
actions and their sensory consequences. Predictive approaches have been exten-
sively studied in machine learning to exploit the capability of generative models
to use both unlabelled and labelled data (Bishop and Lasserre 2007). Generative
models enable learning of hierarchical representations of the task structure using
fewer samples since each layer of abstraction captures domain structure information
that is exploited by the other levels (Hinton and Ghahramani 1997). Internal
generation of expected results enhances perception with a more robust management
of noise and missing observations (sensory substitution). By enabling incremental
and anticipative recognition of actions, it extends the decision time available to
produce effective behavioural responses. The existence of internal representations,
prediction mechanisms and simulation machinery in the brain has been one of the
most discussed subjects in the cognitive science literature. Recent studies (Grush
2004; Hesslow 2002; Jeannerod 1994; Pezzulo et al. 2011) collectively show that
the presence of low level representations and simulation mechanisms strongly
coupled with perception and motor control is the foundation for building higher level
processes and representations. This hypothesis is supported by modern imaging and
recording evidences (Bar 2007; Bar and Biederman 1999; Reddy and Kanwisher
2006).

The reuse of action execution knowledge for action perception allows the
observing agent to recognise others’ actions based on the agent’s own experience of
embodied task execution and vice versa. Evidence of shared mechanisms between
execution and recognition has been demonstrated in recent neuroscience studies,
such as the different activation of brain areas due to variable level of motor profi-
ciency in the observed action (Calvo-Merino et al. 2005), and improved performance
in recognition shown by subjects with higher motor proficiency (Pezzulo et al.
2010). The integration of shared mechanisms and internal generation of expected
results leads to what is known as the “simulation theory of action perception”
(Gallese and Goldman 1998). According to the simulation theory, the observer
recognises an action by comparing it with its internal simulations. Simulations
are generated from the perspective of the performer and produced through the
motor systems of the observer. By using its own motor system, the observer can
directly have access to goal-based representations detached from raw observations.
In neuroscience, the discovery of mirror-neurons—motorneurons active during both
execution and perception—in primates (Gallese et al. 1996) and humans (Fadiga
et al. 1995; Gazzola and Keysers 2009; Iacoboni et al. 1999; Keysers and Gazzola
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2010) provides support to the simulation theory of action understanding (Cuijpers
et al. 2006; Demiris 2007; Shanton and Goldman 2010).

In the next section, we introduce Hierarchical Attentive Multiple Models for
Execution and Recognition (HAMMER) (Demiris and Johnson 2003; Johnson and
Demiris 2004) as a prototype of hierarchical action recognition architectures which
possess the aforementioned characteristics.

2 Hierarchical Attentive Multiple Models for Execution
and Recognition

The HAMMER architecture is a framework based on simulation theory, designed to
empower robots with capabilities to understand and imitate human actions based
on the four factors described in the previous section. This framework has been
implemented in real-dynamics robot simulators (Demiris and Hayes 2002) and
real robotic platforms (Demiris and Johnson 2003; Demiris and Khadhouri 2008;
Johnson and Demiris 2004). Open source versions of the architecture have been
freely released (Sarabia et al. 2011) with support for the NAO and iCub humanoids.

Figure 1 shows the schematics of the HAMMER architecture. The basic building
block of HAMMER consists of an inverse–forward model pair. The inverse model
generates action commands from a set of input states aiming to advance the robotic
agent towards a goal. This goal can be implicitly or explicitly specified in the model.
The forward model provides an estimate of the upcoming states given the action
commands and current state. Predictions of upcoming states in execution mode can
be used to overcome delays, to handle input noise and as sensory substitution. When
it is used to recognise actions, such predictions from each model are compared
against the demonstrator’s actual states.

For each inverse/forward model pair, the prediction of the demonstrator’s next
state is evaluated against the ground truth to provide an error signal. The error signal
accumulated over time is used to compute the confidence value of the model pair,
which is an indicator of how closely the demonstrated action matches the model.
During execution, the confidence value is used to detect the actual context and/or
hidden states. This enables the switching from one model to another according to
the confidence indicator of the fittest model. The confidence signal can also be
used as credit assignment for module training (Haruno et al. 2001, 2003). The
architecture recognises actions of others by comparing the observed movements
with the different expected results produced by running its own motor models
(“putting the observer in the shoes of the demonstrator”) in parallel while inhibiting
the models from sending their generated commands to motor systems.

The HAMMER architecture incorporates a top-down allocation of sensory and
computational resources. For action-execution, HAMMER can rely on the simple
principle of “attention for action” and seek the information required by the current
task. On the other hand, action-recognition poses new problems for the attention
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Fig. 1 The core of the HAMMER architecture consists of a distributed network of inverse and
forward models that compete to predictively explain the ongoing demonstration. Comparators (C)
compute the confidence signals from current and predicted states of the models

system since the observer does not know in advance what the observed task is.
HAMMER maps simulations to attentional needs using the following principle:
during the demonstration of actions, the information requested by the attention
system of the observer are those needed to generate the internal simulated actions
(Demiris and Khadhouri 2006). For example, the inverse model for executing an
arm movement will request the state of the corresponding arm of the performer
when it is used in perception mode. This principle is compatible with the pre-motor
theory of attention in humans which states that the preparation or simulation of
action enhances the perception of related stimuli (Fagioli et al. 2007).

Action imitation can be achieved by integrating recognition and execution
in HAMMER. The system starts in recognition mode, and when a model with
the highest confidence reaches a certain threshold, the command inhibition is
deactivated to allow the model to reproduce the observed action if required. If no
confidence value reaches the threshold within a time limit, a new motor model is
learned to represent the postural and posture-object configurations of the observed
action.

The HAMMER models can be connected in arbitrarily complex configurations.
Their overt execution does not need to be mutually exclusive, i.e. models managing
different joints (Demiris and Hayes 2002) can be executed overtly in parallel. This
arrangement has been extended to hierarchical structure as shown in Fig. 2 (Demiris
and Johnson 2003): primitive models are combined to form higher, more complex
sequences, with the eventual goal of achieving increasingly more abstract inverse
models (Johnson and Demiris 2004).

Using the underlying principles in HAMMER, Demiris (Demiris and Hayes
2002) derived a set of testable predictions for the behaviour of biological systems.
A key prediction states that mirror neurons in monkeys would not fire (or fire less)
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Pick up object

Move gripper to object Close gripper Move gripper away from table

Place object

Move gripper to table Open gripper Move gripper away from table

a

b

Fig. 2 Example arrangements of primitive inverse models into more complex inverse models:
(a) pick up object (b) place object

when the demonstrated movement was performed at speeds unattainable by the
observer. Experiments subsequently reported in (Gangitano et al. 2001) showed
that the amplitude of the motor evoked potentials (MEP) induced by transcranial
magnetic stimulation (TMS) in humans observing a reaching-grasping action was
modulated by the kinematics of the observed finger aperture.

Modelling human grasping action and its perception with HAMMER reproduced
several interesting neuroscience observations: (a) the computational grasping model
reproduced some of the characteristics of human grasping including (Jeannerod
1981) an overshoot in the grip aperture at approximately 70 % of the movement
time (Simmons and Demiris 2006); (b) the TMS-based results on the response of
mirror neurons to different action timings and coordination properties reported in
(Gangitano et al. 2004).

In the next section, we will present experiments demonstrating how the hierarchi-
cal generative approach to action perception may be used to cope with embodiment
constraints in action perception.

3 Hierarchical Action Perception and Abstraction

This section describes a HAMMER implementation (Johnson and Demiris 2004)
on an ActivMedia Peoplebot, and how its hierarchical representation is used to cope
with the “correspondence problem” (Nehaniv and Dautenhahn 2002), the problem
incurred by an imitator during imitation of actions produced by a performer with
different embodiment.

In this implementation, two kinds of models were used: (a) Primitive mod-
els constructed as a simple motor program (the inverse model) tightly coupled
with a hand-coded forward model; and (b) Higher level models implemented as
graphs: to create a hierarchy, graphs are handled recursively with a graph node
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Robot
1

2

3, 4
5

6, 7

8

9, 10

11

12

1. Gripper open

2. Move to object

3. Gripper close

4. Switch from object to table 1

5. Move object away from table 1

6. Rotate to table 2

7. Switch from table 1 to table 2

8. Move object to table 2

9. Gripper open

10. Switch from table 2 to object

11. Move away from object

12. Rotate to centre

Table 1 Table 2

Demonstrator

Fig. 3 The sequence of primitive inverse models that constitute the abstract inverse model for
moving an object from one table to another

being either a graph itself or a primitive (e.g. Fig. 2). Models connected serially
are executed in serial manner, and those connected in parallel are executed in
parallel. A goal state is associated with each inverse model. During execution,
a graph will execute each of its constituent nodes in turn until completion.
At this point, the node will reset its confidence and the graph will continue
execution of the subsequent node. For recognition, the sequential execution con-
straint is relaxed. Inverse models at all levels of the hierarchy are executed in
parallel regardless of the recognition stage. At each step, every model signals its
performance to all parent-models by propagating its confidence value. Each high-
level model computes its confidence based on (and normalised against) the first
model in the child model sequence whose confidence value has reached a certain
threshold.

In these experiments, the Peoplebot had to learn to recognise and transport
objects between two tables following a human demonstration of this task, with
the two agents, human and Peoplebot having very different embodiments. State
information was extracted using visual markers. The states consisted of the positions
of the hand, tables and objects, the relative distances among them, their derivatives,
and a boolean flag indicating “object in gripper”. The high-level abstract inverse
model was constructed by learning primitive inverse models from human demon-
stration. Twenty three primitive inverse models were available to the architecture,
while 20 repeated demonstrations performed at natural speeds and trajectories were
conducted in the experiment (Johnson and Demiris 2004). Note that not all actions
in Fig. 3 are absolutely necessary for the human demonstrator to achieve the final
goal. Moreover for the robot, it is not easy to perceive some of them. The confidence
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Fig. 4 Graphs of confidence over time for four inverse models in recognition mode. The dashed
series is the high-level inverse model for moving an object between two tables. The other three
inverse models are numbered as in Fig. 3. Graph (A) shows the confidences of these inverse models
recognised using the abstraction mechanism. The high-level inverse model, represented by series 1,
incorporates the other inverse models as salient features of the demonstration, achieves the highest
overall confidence and thus is successfully recognised. Graph (B) shows the confidences of the
inverse models when recognition is performed without the abstraction mechanism. The high-level
inverse model fails to incorporate the other inverse models, achieves a low overall confidence, and
thus is not recognised

evolution plot of recognition with the abstraction mechanism (Fig. 4a) shows how
the high-level inverse model recognises the other inverse models as being salient and
incorporates them to achieve the highest overall confidence. Figure 4b shows the
high-level inverse model failing to achieve high confidence; without the abstraction
mechanism, the motor pattern of the high-level inverse model is so fundamentally
different to that performed by the demonstrator, that it fails to match. The reported
experiments (full details in Johnson and Demiris 2004) show that an agent endowed
with hierarchical action representations with abstraction capabilities can understand
and imitate a composite action and its final goal even if it cannot directly execute
it or does not know each single composing action. Moreover the actions which
are recognised and can be executed may not contribute by themselves to the
achievement of the goal, or may also miss some precondition to be executable. With
a hierarchical representation the agent can use the recognised actions as clues for the
rehearsal of a higher level action which will put the recognised lower level actions
in the proper context for execution.

4 Acquiring Hierarchical Representations for Integrated
Social and Autonomous Learning

The previous section demonstrated how hierarchically organised inverse and
forward models were able to observe and imitate a sequence of actions.
A fundamental question underlying this research is where do these models come
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Fig. 5 The Bayesian network for the ActivMedia Peoplebot’s gripper forward model. The robot
has to learn the mappings (indicated by question marks) between sequences of motor commands
(top row M-nodes) and resulting states of the gripper (perceived through a camera, bottom row),
despite the inherent sensory delays of real-robotic systems

from? In the following sections we will describe how these hierarchies can be
learned, starting from learning primitive forward and inverse models, to learning
action descriptions using stochastic context free grammars (SCFG).

4.1 Learning Primitive Models Through Motor Babbling

First, we are faced with the problem of how to learn the models at the lowest part
of a hierarchy, i.e. primitive inverse and forward models. We have developed a
system that learns primitive forward and inverse models through motor babbling
(Dearden and Demiris 2005), a learning method that associates randomly executed
motor commands and their effects on environment (Gopnik and Meltzoff 1997).
The system learns a forward model implemented with a Bayesian network (Pearl
2000) as shown in Fig. 5 without prior knowledge of its motor system or the external
environment. The forward model represents a probability distribution of the states of
the robot and other objects in the environment after d time-steps from the previous
motor commands. The network structure is learned online by performing a search
through the set of possible structures (with different delays in motor commands
and different observation nodes for each possible object) and choosing the one
which maximises the log-likelihood of the observed experiment results. Expectation
maximisation (EM) is used with the inference stage performed with the junction-tree
algorithm (Pearl 2000). Moving objects in the scene are automatically detected and
tracked by clustering the low-level image features of the visual input (Lucas and
Kanade 1981). An inverse model is derived by the forward model by exploiting the
Bayesian representation (see Fig. 6).

The learned HAMMER inverse–forward model enables the robot to imitate
simple human hand movements by replacing the robot’s observations of its own
movements by those of a human demonstrator shown in Fig. 7.
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Fig. 6 Using the learnt Bayesian network as an inverse model. Evidence is supplied to the
observations or the state, and the task is to infer the probability distribution of motor commands
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Fig. 7 Imitation using a single inverse model. The top images are corresponding frames from
the demonstration (left) and imitating (right) sequences. The graphs show the trajectory of the
demonstrating hands, and the corresponding imitating trajectory of the grippers

4.2 Learning Action Sequences by Demonstration

Having learned the primitive inverse and forward models, imitation can be used to
learn sequences of these models in order to complete more complex tasks. An early
study (Demiris and Johnson 2003) used two ActiveMedia Peoplebots facing each
other. One robot executed a sequence of actions while the other observed and
learned this sequence of actions. The observer initially is equipped with basic action
primitives to control its gripper (open, close, rise and lower) but does not possess any
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high level action model. A typical experiment consisted of the robot demonstrator
executing a random sequence of basic action primitives, with the imitator robot
observing, storing the observed sequence of inverse models in working memory
and subsequently replicating. These early experiments demonstrated how sequence
learning can occur, but attempted no further processing in the models in working
memory other than simplying storing. For the purposes of this chapter, an interesting
aspect is how low level sequences can be generalised to new situations and how
we can infer action hierarchies from these observations, in order to utilise their
benefits as advocated in this chapter. In order to do so, we first turn our attention
to how observations can lead to generalisable primitives; the benefit of the next
algorithm (OSILA) is that it can generalise from a single demonstration, but it lacks
certain types of expressiveness (for example, it cannot readily learn to represent
recursion). The final section will describe an algorithm that enables the learning of
more expressive abstract representations involving probabilistic grammars.

4.3 Learning Generalisable Action Templates from Single
Observation

Humans can learn new tasks from a single demonstration; an one-shot imitation
learning algorithm (OSILA) was proposed in Wu and Demiris (2010) to tackle the
problem of learning (through a single observation) action primitives that can be
adapted to new contexts. It stores observed actions as human-readable movement
templates and re-adapts them according to the constraints of the new contexts.
OSILA (Fig. 8) conjectures a spatial relationship between the template and the
applied environment to locate relevant invariant landmarks or invariant control
points (ICPs) in both contexts. Subsequently, it uses a minimum distortion function
based on Thin Plate Splines (TPS) warping to define a mapping between the two
spaces. This allows the definition of a set of candidate waypoints in the applied
space extracted from the observed action. The adaptation mechanism is based on
the use of a warping energy measure that reduces the deformation of the performed
action with different environmental structures.

An inverse model in OSILA reproduces the action using the visual state infor-
mation of the new context and adapting the previously-observed action template,
setting a threshold for tolerable warping energy when matching available hypotheses
(templates). In this way the algorithm has a principled way for selecting when
to learn new primitives or use combinations of the already learnt primitives.
Experiments conducted in Wu and Demiris (2010) show that the trajectories stably
generated by OSILA resemble the paths produced by humans under similar circum-
stances. Experimental scenarios using the iCub humanoid robot included the game
of tic-tac-toe (Fig. 9), where the robot learned (through one-shot demonstration)
different templates of movements (for example, making an O in one position of the
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Fig. 8 Adapting a OSILA-learned template of an inverse model to a new context

Fig. 9 Using OSILA to adapt learned templates to new board positions using the iCub humanoid
in a tic-tac-toe game

board, that it could subsequently generalise to other positions of a different-sized
board at another location).

4.4 Learning Action Hierarchies Using Probabilistic
Grammars

The previously described learning mechanisms do not explicitly tackle the problem
of learning a hierarchical structure which is particularly important both for general-
isation and for keeping resource requirements bounded. They also do not explicitly
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focus on the advantages of hierarchical representations to boost noise robustness
when perceiving complex and long action sequences.

Lee et al. (2012) studied these issues using a generative approach to learn task
representations in the form of SCFG from demonstrations. These representations
allow the expression of complex hierarchies of actions in a compact and efficient
manner. During recognition, they take into account the uncertainties of actions com-
mon in real-world settings in a probabilistic manner which makes this framework
highly scalable. SCFGs are also capable of recognising arbitrary lengths of action
sequences composed of a finite set of action symbols using recursive expressions.
SCFGs essentially extend the Context-Free Grammars (CFG) framework (Ryoo
and Aggarwal 2006) by associating a probability with each production rule, which
enables all parse trees to be assigned with probability values based on the production
rules used. In Lee et al. (2012), the terminal symbols of the grammar are generated
by primitive action detectors, while non-terminal symbols can be thought of as
sequences of primitive actions. In an example scenario, “take out all the objects
in a bag and give them to a human”, the robot must repeatedly perform high-level
actions such as “take out objects” and “give them to a human”, which are composed
of lower-level actions such as “locate”, “approach”, “grasp”, “move” and “release”.
Researchers have argued that understanding everyday human behaviour requires
such hierarchical and recursive representation (Ivanov and Bobick 2000; Ryoo and
Aggarwal 2006) and that the recognition using a direct pattern-matching approach
against all possible behaviours is not a computationally efficient approach. As
described below, the HAMMER-like SCFG restrains the set of candidate behaviours
through the use of higher level grammatical production rules and predicts future
observations using the available information online.

Using SCFGs to recognise an action involves selecting a parse tree (that is a
hierarchical structure using the connections represented in the grammar) that best
explains the observation, i.e. the parsed action sequence with the highest probability.
In Lee and Demiris (2011), it was applied in a real-world scenario where an iCub
humanoid robot uses task-independent action templates in the form of SCFGs to
recognise human behaviours.

The algorithm proposed in Lee et al. (2012) exploits the confidence values
computed by the primitive action detectors during both learning and recognition
to deal with ambiguities inherent in perception. During parsing, the algorithm
computes probability distributions of the possible parse trees based on (noisy)
symbols observed so far and updates the distribution after each new input. The
probability distribution over the parse tree permits to derive the expectation of the
future inputs in a compact way.

During learning, the algorithm starts with a naive grammar containing all input
sequences. It then builds grammar hypotheses using “Substitute” and “Merge”
operators to find the grammar with the minimum description length (Langley and
Stromsten 2000) that maximises the posterior probability. The algorithm actively
searches for frequently occurring sub-sequences of actions to infer the hierarchi-
cal structure which allows more compact and generalised representations while
offering robustness to observations containing errors. Thus, erroneous sequences
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Fig. 10 Observing and learning new hierarchical behaviours in the Towers of Hanoi game, using
stochastic context free grammars

are assigned lower probability values than frequently occurring ones. Furthermore,
the confidence values of the primitive action detectors are considered to emphasise
symbols with less ambiguity. The Substitute operator replaces a partial sequence
of symbols in the right-hand side of the rule and groups them into a new symbol,
thus building a structural hierarchy. The Merge operator is applied on two symbols
in such a way that both symbols are replaced with a single symbol. This process
turns the current representation into a more generalised, compact representation.
Both operators are applied until the grammar with the minimum description length
is found.

The algorithm (Lee et al. 2012) was tested on artificial data sets and on real videos
of humans solving the tower of Hanoi game (Fig. 10). In the artificial data set, the
tested data was generated by a grammar model (ancbn) with various levels of noise
manifested by substituting and inserting terminal symbols in the input strings with
a random symbol. Each symbol was also assigned with varying confidence values.
As compared to other state-of-the-art algorithms, the algorithm proved to be able to
produce grammars that were more compact and more robust to noise and execution
errors. In the real-world experiments, videos of humans solving the Towers of Hanoi
puzzle were used as input (Fig. 10). The primitive action detectors were designed
using HMMs that can recognise different actions of moving a disk between two
poles. In this experiment, the algorithm was able to acquire accurate representations
of the task despite the fact that the observations contained several errors.

These results show an interesting aspect of hierarchical action representations
that is advantageous for learning by observation: learned hierarchical structures can
effectively deal with observation ambiguities. Moreover, the experiments demon-
strate that the chosen hierarchical approach is able to learn a generalised task
representation that is able to recognise unforeseen, more complex actions with the
same task type, e.g. playing the Towers of Hanoi puzzle with a larger number of
disks than those demonstrated.
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5 Conclusions

In this chapter, we argued for the computational benefits of hierarchies for embodied
action perception. We presented the HAMMER architecture that we use as a
framework to empower our robots with capabilities to understand, learn from and
imitate human actions.

The experiments reported in this chapter described the essential roles played by
hierarchical representations implemented in/with HAMMER in action perception
and social learning. We argued that:

– hierarchical representations allow internal representations of a task to match
external demonstrations of it when performed by others, even when the
embodiment characteristics of the demonstrator and the imitator are different.
In general, hierarchical representations allow the demonstrated and predicted
information to be compared at the appropriate of level of abstraction, providing
flexibility and robustness to execution variability.

– hierarchical representations can be learned through a combination of low-level
inverse/forward model learning using techniques such as motor babbling and
low-level imitation, while more abstract hierarchical representations can be
constructed using tools such as SCFG which exploit the symbolic representations
provided by the lower level models.

While the reported experiments demonstrated several successful applications
of HAMMER in human robot interactions, natural social interactions pose far
more complex challenges. Action perception and imitation capabilities are crucial
for enabling robots to behave in unstructured social environments and for natural
interactions in dynamic contexts. In these contexts, the information is far richer
and more complex, and the set of behaviours that the robot will need to recognise
and discriminate will be more wide-ranging. The role played by hierarchical
representations will grow in importance as our robots increasingly tackle more
challenging social interaction scenarios.

Acknowledgments This research has received funding from the European Union Seventh Frame-
work Programme FP7/2007-2013, under grant agreement no. [270490]- [EFAA].

References

Aloimonos, J., Weiss, I., Bandyopadhyay, A. (1988). Active vision. International Journal of
Computer Vision, 1(4), 333–356.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 966–1005.
Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57–86.
Bar, M. (2007). The proactive brain: using analogies and associations to generate predictions.

Trends in Cognitive Science, 11(7), 280–289.
Bar, M., & Biederman, I. (1999). Localizing the cortical region mediating visual awareness of

object identity. Proceedings of the National Academy of Sciences USA, 96(4), 1790–1793.



96 D. Ognibene et al.

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Schmidt, A. M., Dale, A. M.,
Hamalainen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., Halgren, E. (2006). Top-
down facilitation of visual recognition. Proceedings of the National Academy of Sciences USA,
103(2), 449–454.

Bishop, C. M., & Lasserre, J. (2007). Generative or discriminative? getting the best of both worlds.
Bayesian Statistics, 8, 3–24.

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the
prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862.
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Learning and Coordinating Repertoires
of Behaviors with Common Reward: Credit
Assignment and Module Activation

Constantin A. Rothkopf and Dana H. Ballard

Abstract Understanding extended natural behavior will require a theoretical under-
standing of the entire system as it is engaged in perception and action involving
multiple concurrent goals such as foraging for different foods while avoiding
different predators and looking for a mate. A promising way to do so is rein-
forcement learning (RL) as it considers in a very general way the problem of
choosing actions in order to maximize a measure of cumulative benefits through
some form of learning, and many connections between RL and animal learning
have been established. Within this framework, we consider the problem faced by
a single agent comprising multiple separate elemental task learners that we call
modules, which jointly learn to solve tasks that arise as different combinations of
concurrent individual tasks across episodes. While sometimes the goal may be to
collect different types of food, at other times avoidance of several predators may
be required. The individual modules have separate state representations, i.e. they
obtain different inputs but have to carry out actions jointly in the common action
space of the agent. Only a single measure of success is observed, which is the sum
of the reward contributions from all component tasks. We provide a computational
solution for learning elemental task solutions as they contribute to composite goals
and a solution for how to learn to schedule these modules for different composite
tasks across episodes. The algorithm learns to choose the appropriate modules for a
particular task and solves the problem of calculating each module’s contribution to
the total reward. The latter calculation works by combining current reward estimates
with an error signal resulting from the difference between the global reward and the

C.A. Rothkopf (�)
Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main,
Germany
e-mail: rothkopf@fias.uni-frankfurt.de

D.H. Ballard
Department of Computer Science, University of Texas at Austin, Austin, TX, USA
e-mail: dana@cs.utexas.edu

G. Baldassarre and M. Mirolli (eds.), Computational and Robotic Models
of the Hierarchical Organization of Behavior, DOI 10.1007/978-3-642-39875-9 6,
© Springer-Verlag Berlin Heidelberg 2013

99

mailto:rothkopf@fias.uni-frankfurt.de
mailto:dana@cs.utexas.edu


100 C.A. Rothkopf and D.H. Ballard

sum of reward estimates of other co-active modules. As the modules interact through
their action value estimates, action selection is based on their composite contribution
to individual task combinations. The algorithm learns good action value functions
for component tasks and task combinations which is demonstrated on small classical
problems and a more complex visuomotor navigation task.

1 Introduction

Making progress in understanding natural human visuomotor behavior requires
considering the entire system as it is engaged in solving tasks involving natural
perception and action sequences. A wealth of previous research has demonstrated
that active perceptual strategies and perceptual states are highly dependent on
the ongoing tasks (e.g., Ballard et al. 1995; Land and McLeod 2000; Yarbus
1967). It is therefore important to consider vision as it is performed within its
natural setting of an embodied agent who is engaged in goal directed behavior.
This requires developing models that inherently represent these behavioral goals.
A particularly promising theoretical framework for addressing these questions is
therefore reinforcement learning (RL) (Sutton and Barto 1998).

The promise of RL is to have an agent learn how to solve a task based on the
experience they accumulate while interacting with an environment. The generality
of RL leads to the hope that it may be applied to a large variety of problems
in sequential perception and action. This hope has partially been nourished by
successes in relating psychophysical and neuronal data obtained under laboratory
settings in animals and humans to specific quantities in RL algorithms (Daw and
Doya 2006; Schultz et al. 1997). Nevertheless, many open problems in relating
everyday human visuomotor behavior in complex environments to RL remain, as
the studied examples both at the theoretical and at the experimental level often are
limited to worlds, which are simple with respect to how they evolve over time, how
the observations of the agent are related to the states of the world, how the actions
play out in the world, and how the feedback about the success in achieving the goal
of actions is obtained.

One fundamental problem of RL algorithms is that they do not scale up well
to large tasks since the state spaces, i.e. the representations of the states of the
world, grow exponentially in the number of state variables per dimension: the
so-called curse of dimensionality. This problem has made it difficult to apply RL
to naturalistic settings, with the result that the state spaces considered are generally
small in the number of dimensions and small in the number of states per dimension.
Another problem is that RL has classically considered agents that learn to solve
only a single task but animals and humans are faced with multiple concurrent and
in part highly unrelated tasks. Further complicating the solutions is that new tasks
may become relevant over time. A related issue is how to address the availability
of different types of reward such as rewards related to different tasks, or related to
different types of learners, or related to intrinsic versus extrinsic goals.
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Many of these issues with RL have been attacked in the past by trying to use
additional structure present in the respective domain so as to somehow factor the
problem. This idea has been proposed by several authors early on and has reappeared
in many different settings (see, e.g., Dayan and Hinton 1992; Guestrin et al. 2003;
Humphrys 1996; Kaelbling 1993; Kok and Vlassis 2004; Russell and Zimdars 2003;
Sallans and Hinton 2004; Schneider et al. 1999; Singh and Cohn 1998; Sprague
and Ballard 2003). One specific approach, that we pursue here too, is to start with
learners that represent separate non-overlapping parts of the state space. The main
idea is that there will be a large number of situations that can be handled by different
sets of independent modules used concurrently (e.g., Humphrys 1996; Singh and
Cohn 1998; Sprague and Ballard 2003). This requires the agent to have access
to a collection of independent variables describing the state of the world. In the
context of human visuomotor behavior, one navigation module requires a learner
to represent the position of obstacles independently from a second module that
represents the position of goal positions. Such individual modules can be obtained
by solving individual problems separately (Singh and Cohn 1998), or in our case,
by having the modules learn their action values when activated concurrently.

The idea of a modular organization of cognitive processes has appeared in the
literature in many different variations (see e.g. Barrett and Kurzban 2006; Brooks
1986; Fodor 1983; Minsky 1988; Pinker 1999). Concrete and direct evidence for a
modular organization of task solutions in the human brain conform with the modular
RL framework used in the present chapter comes from experiments by Gershman
et al. (2009). Human subjects made simultaneous decisions with their left and right
hands and received separate rewards for each hand movement. Not only was the
choice behavior better described by a modular learning model that decomposed
the values of bimanual movements into separate values for each component but
also blood oxygen level-dependent activity in reward learning related areas of the
subjects’ brains reflected specific values of modular RL models. This suggests that
the human brain can use modular decompositions to solve RL problems allowing
for factorization.

Having a collection of individual modular solvers for separate concurrent tasks
requires to specify how the rewards from different sources are handled by the agent.
In multi-criterion RL a learner tries to maximize the return not only for a single
reward source but also for multiple separate rewards (Gábor et al. 1998; Mannor
and Shimkin 2004; Natarajan and Tadepalli 2005). Here instead we treat extrinsic
and intrinsic rewards as well as rewards from different sources together by assuming
that a common currency exist for the comparison of many different rewards. Such a
setting has been considered previously within RL by several authors (e.g., Russell
and Zimdars 2003; Singh and Cohn 1998; Sprague and Ballard 2003). Empirical
evidence for a single currency in biological systems is abundant (see Kable and
Glimcher 2009 for a discussion).

But observing only a single composite reward also introduces a computational
problem, which is a variant of the classical credit assignment problem. Individual
learners have their respective state representations and all observe the global reward,
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which we model here as the sum of the individual rewards. The goal is to find
such sets of learners across different task combinations so that the global reward
obtained is divided up correctly among the learners, given their respective state
representations. This means that individual learners do not have access to the full
state representation of all other learners. Again, in the context of human visuomotor
behavior, the navigation learner avoiding obstacles may not represent how other
learners approach goals or carry out hand movements within reaches. Thus, different
active reinforcement learning modules have the problem of dividing reward up
between them. A solution to this credit assignment problem for the modular case
considered here has been previously given in Rothkopf (2008) and Rothkopf and
Ballard (2010).

A second problem introduced by the use of individual modules stems from the
fact that at different times, different sets of modules may be active within their
respective tasks. One therefore needs to specify a module activation policy that
attempts to pick a good set of modules for any particular task combination and
an action selection process for active modules. In the past, Doya et al. (2002)
proposed to use modules that consist each of a state predictor and a controller in
an actor-critic-type architecture (Jacobs et al. 1991). After learning, the modules all
contribute to the action of the system on the basis of how well each module is able
to predict the next state of the world using each of their explicitly learnt models
of the world transitions. Thus, the better an individual module is predicting the
dynamics of the world the more it contributes to the composite action, irrespective
of value or overall outcome. A different approach was used by Daw et al. (2005),
who considered selecting a single action from different types of learners. In their
system, the learner with the smallest uncertainty associated with its value prediction
is selected. Thus, a single controller selects the next action alone based solely on
the uncertainty of the current value estimates of a state so that each module needs
to represent the same, full set of state variables. Here we propose to learn the
selection of module combinations by the respective value of an action that these
are predicting. Note that this is fundamentally different, as it allows arbitration of
actions at the level of their expected returns, thereby avoiding conflicts that result
from arbitration at the level of the actions. As learning of the task solutions by
individual modules progresses, better and better estimates of the total discounted
reward that each module expects will be available and therefore those modules that
promise to give larger returns will be picked probabilistically more often whereas
those modules that promise high returns that are not attainable will make progress
in learning so. This finally leads to the scheduling of module combinations that
obtain the highest combined reward and select individual actions jointly, as their
value estimates are combined, and not their actions.

The modular framework that we propose naturally accommodates several desir-
able properties. First, it allows for continual learning (see, e.g., Ring 1994) as
individual modules will learn to solve specific task components when they appear,
and solutions learnt by other modules in previous tasks can be reused. This is valid
under the assumption that the independent state representations are available to
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the learners. Secondly, by learning which modules should participate in individual
task combinations the system learns to coordinate the elemental task solutions
learnt by the individual modules in order to achieve more complex goals in the
composite tasks. By combining all rewards from different sources into a single
internal currency, the respective contributions can be weighted by their expected
contribution to the current goals and action selection can be carried out on the
basis of the sum of the expected reward. Finally, the system is able to adjust
to new external and internal reward structures, as it learns and combines the
values of individual actions from the individual modules. As rewards change, the
corresponding value functions are just rescaled (Von Neumann et al. 1947) instead
of learning new task solutions or a new action arbitration.

We describe a solution to the credit assignment problem and the selection
of appropriate learners that avoids previous restrictions by introducing additional
structure in the form of a module activation protocol and by making the additional
assumption that each module has access to the estimated sum of the reward
estimates of other active modules. We derive formulas for estimates of reward that,
assuming properties specified in the activation protocol, converge rapidly to their
true values. Furthermore, it is shown that such learning can be implemented both in
the setting where individual modules have independent action spaces as in Chang
et al. (2004) and also in the single-agent case where individual modules’ policies
are combined to specify an action (Russell and Zimdars 2003; Sprague and Ballard
2003). We demonstrate that the algorithm can solve the credit assignment problem
in variants of classical problems in the literature (Singh and Cohn 1998; Sutton and
Barto 1998) as well as a more complex case of an avatar learning to navigate in a
naturalistic virtual environment (Sprague et al. 2007).

2 Background

The problem setting is that of a Markov Decision Processes. An individual MDP
consists of a 4-tuple .S; A; T; R/ with S being the set of possible states, A the set of
possible actions, T the transition model describing the probabilities P.stC1jst ; at /

of reaching a state stC1 when being in state st at time t and executing action at , and
R is a reward model that describes the expected value of the reward rt , which is
distributed according to P.rt jst ; at / and is associated with the transition from state
st to some state stC1 when executing action at .

Reinforcement learning attempts to find a policy � that maps from the set of
states S to actions A so as to maximize the expected total discounted future
reward through some form of learning. The dynamics of the environment T and
the reward function R may not be known in advance. In the present case an explicit
reward function R is learned from experience so that individual modules can learn
from experience about their contributions to the global reward. The central goal in
model free RL is to assign a value V �.s/ to each state .s/, which represents this
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expected total discounted reward obtainable when starting from the particular state
s and following the policy � thereafter:

V �.s/ D E�
� 1X

tD0

� t rt

�
(1)

Alternatively, the values can be parametrized by state and action pairs, leading to
the Q-values Q�.s; a/. Where Q� denotes the Q-value associated with the optimal
policy ��, the optimal achievable reward from a state s can be expressed as V �.s/ D
maxa Q�.s; a/ and the Bellman optimality equations for the quality values can be
formulated as:

Q�.s; a/ D
X

r

rP.r js; a/C �
X

s02S

P.s0js; a/ max
a0

Q�.s0; a0/ (2)

Temporal difference learning (Sutton and Barto 1998) uses the error between
the current estimated values of states and the observed reward to drive learning.
Evidence for temporal difference learning in animals comes from a multitude of
studies (e.g., Schultz et al. 1997). The values of state-action pairs can be updated by
this error ıQ using a learning rate ˛:

Q.st ; at / Q.st ; at /C ˛ıQ (3)

Evidence for the representation of action values has also been found (e.g., Samejima
et al. 2005). Two classical learning rules for the Q-values Q.s; a/ are (1) the
original Q-learning rule (Watkins 1989) and (2) SARSA (Rummery and Niranjan
1994). While the Q-learning rule is an off-policy rule, i.e. it uses errors between
current observations and estimates of the values for following an optimal policy,
while actually following a potentially suboptimal policy during learning, SARSA
is an on-policy learning rule, i.e. the updates of the state and action values reflect
the current policy derived from these value estimates. The temporal difference for
SARSA is accordingly:

ıQ D rt C �Q.stC1; atC1/ �Q.st ; at /: (4)

Empirical evidence for learning in animals consistent with the SARSA learning rule
has similarly been found (Morris et al. 2006).

3 Multiple Modules as Individual Task Solutions

Within the composite state space both the relationship between the optimal value
functions for each of the individual component tasks and the global task in which
multiple objectives are pursued depend on the overall structure of the problem
and can be very complex when considering the most general case in which
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arbitrary dependencies between state transitions and between rewards exist. Our
main simplifying assumption is to define a restricted venue where the required
behavior can be realized with separate RL modules. The primary assumption is that
such modules are available by virtue of having many modules with independent
state variables so that they do not interfere with each other when activated in
subsets (Chang et al. 2004; Russell and Zimdars 2003; Sprague and Ballard 2003).
Of course in many interesting problems it may turn out that modules interfere with
each other, but our assumption is that for the tasks at hand, independent state
representations are available for the considered modules. This assumption shifts the
problem of interacting modules to having independent state representations.

We will consider two separate but related cases. In the first setting, a collection
of individual modules has separate and independent state spaces as well as separate
and independent action spaces. In this case, the individual modules do not interact
through state transitions or rewards. As an example, Chang et al. (2004) considered
the case of ten individual learners working on ten separate and not interacting tasks
in ten separate mazes but observing a single cumulative reward signal. The second
case also uses the assumption of separate states with independent state transitions
but all modules share the same action space. As an example, Singh and Cohn (1998)
considered the case of a single agent moving in a grid world while foraging for
different food types and avoiding a predator. While individual modules represented
their states with respect to the different food types and the predator independently,
the action of moving within the maze had to be coordinated within a single action
space of moving in the grid world.

Let’s first consider the case of separate action spaces. A module with its own
actions can be defined as an MDP, i.e. the i -th module is given by

M .i/ D fS.i/; A.i/; T .i/; R.i/g (5)

where the superscripts reflect that the information is referred to the i th MDP. The
states of the different modules are assumed to be non-overlapping. In such a case,
the optimal value function is readily expressible in terms of the component value
functions and the states and actions are fully factored so that there is no overlap and
additionally the following two conditions hold:

P.s
.1/
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Then these two conditions can be used together with Eq. (2) in order to arrive at the
result:

Q.s
.1/
t ; : : : ; s

.N /
t ; a

.1/
t ; : : : ; a

.N /
t / D
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iD1

Q.i/.s
.i/
t ; a

.i/
t / (8)
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If Eqs. (6) and (7) hold and all the rewards are known, the action maximizing Eq. (8)
can be selected and is guaranteed to be optimal. In this decomposed formulation,
each module can follow its own policy �.i/, mapping from the local states s.i/ to
the local actions a.i/. This case is appropriate for the case of all modules having
separate action spaces when each module can be identified with an agent that may
be expected to act independently.

The second case, which is our focus, is that of a single agent pursuing multiple
goals that are divided up between multiple independent modules that the agent can
activate internally (Humphrys 1996; Karlsson 1997; Russell and Zimdars 2003;
Singh and Cohn 1998; Sprague and Ballard 2003). The main problem specification
that this constraint introduces is that the action space is shared such that a.i/ D a,
for all i , so the i -th module is now:

M .i/ D fS.i/; A; T .i/; R.i/g (9)

An even simpler case arises, when all individual states s.i/ correspond to the full
state s, as, e.g., in Russell and Zimdars (2003). Although this obviously does not
give any advantage in terms of reducing the dimensionality of the state space for
individual modules, this case is interesting, because it is straightforward to prove
the optimality of individual modules’ values when using an on-policy learning
algorithm such as SARSA.

How are actions selected when all modules share a single common action space?
This case requires some form of action selection in order to mediate the competition
between actions proposed by individual modules. While other modular RL solutions
commonly employ action selection at the level of the actions selected by the
modules (e.g., Daw et al. 2005; Doya et al. 2002) we have the modules interact
at the level of their values. This has the distinct advantage that conflicts of modules
proposing different actions can be resolved at the level of the expected total future
rewards. We use the probabilistic softmax action selection with temperature � :

P.at js.1/
t ; : : : ; s

.N /
t / D

exp
�PN

iD1 Q.i/.s
.i/
t ; at /=�

�

P
b exp

�PN
iD1 Q.i/.s
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t ; b/=�

� (10)

Once the action has been selected it is used for all modules. Note how the above
equation combines the Q-values from all N active modules to probabilistically
select an action that jointly promises high reward.

Finally we introduce the idea of a common single global reward that is obtained
as result of the actions relative to the individual component state spaces of the
contributing tasks. As an example, Sprague et al. (2007) considered the task of
navigating along a walkway while avoiding obstacles and approaching targets.
This task can be modeled as a composition of three individual component tasks,
requiring one module for navigation, a second module for obstacle avoidance, and
a third module for target approach. In this case, the global reward is the sum of the
individual rewards obtained for each of the three component tasks.
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Accordingly, the agent now needs to compute the credit for each module. That
is, initially the individual rewards due to each module are not known, but only the
global reward is observed by the agents at each time step. Here we assume for
simplicity that the total, global reward Gt at some time t is the linear sum of all
component MDPs’ rewards:

Gt D
X

i2M
r

.i/
t : (11)

Thus we can write:

M .i/ D fS.i/; A; T .i/; GMg (12)

where the subscript M denotes that at each time step G is a function of the modules
that are active.

4 Learning Module Activation

Our central assumption is that an overall complex problem can be factored into a
small set of MDPs. Given a large set of modules with separate state representations
it is now necessary to learn which modules to select in order to solve a specific task.
In the following we assume that tasks are encapsulated within episodes of fixed
length parameter � (See Fig. 1). During each episode, only a subset of the total
module set is active. The guiding hypothesis is that in the timecourse of behavior,
a certain set of goals is pursued and therefore the corresponding set of modules
that are needed to achieve these goals become active and those that correspond to
tasks that are not pursued become inactive (Sprague et al. 2007). During an episode
the composition of a particular module set is assumed to not change. Given this
constraint, the pivotal idea is that, within each episode, each active module can
refine its own reward estimates by having access to the sum of the reward estimates
of the other active modules. Thus, the set of active modules may change between
episodes so that over time the actions taken direct the agent to different parts of
the composite state space. The simplifying assumption of episodes allows reducing
the problem of selecting modules to the beginning of an episode and also allows
for a formal proof that the rewards of individual modules can be estimated correctly
with the proposed credit assignment algorithm. As example, consider the previously
mentioned problem of collecting food and avoiding a predator. Within an episode,
only two food source may be present, requiring only the two associated foraging
modules to be active. But within a later episode, the predator and the remaining
food source may also be present, requiring all three food modules and the predator
module to be active.

To model the factorization, let us suppose that in a substantial repertoire of N 0
modules, at the beginning of an episode it can be determined for one reason or
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Fig. 1 The credit assignment algorithm exploits the constraint that in any period during behavior
there is only a subset of the total module set that is active. We term these periods episodes. In the
timecourse of behavior, modules that are needed become active and those that are no longer needed
become inactive. The diagram depicts two sequential episodes of three modules each. The different
modules are denoted with different shading. The vertical arrows denote the scheduler’s action in
activating and deactivating modules. On the top is the large library of possible modules. Our formal
results only depend on each module being chosen sufficiently often and not on the details of the
selection strategy. The same module may be selected in sequential episodes

another that only a smaller set N are sufficient for solving the task at hand where
typically N < N 0. So what is the best way to choose N modules from a possible
N 0? We select modules probabilistically according to the value of the initial state at
the beginning of each episode using the softmax function:

P.M .i// D e
V .i/.s.i //

�

Z
(13)

where Z D PN 0

j D1 e
V .j /.s.j //

� is a normalizing term over the applicable modules,

V .i/.s.i//, the value of the sate s.i/ for module i is given by V .i/.s.i// D
arg maxafQ.i/.s.i/; a/g, and � is the common temperature parameter of the Boltz-
mann distribution that governs the stochasticity of module selection given the
difference in values V .i/.s.i//. The idea is that although initially the value estimates
of different modules will be unreliable, as the modules learn their respective
rewards, the estimates will improve and direct the effort towards modules that
can achieve the promised rewards. Note that this sampling strategy does not affect
whether or not individual modules’ value functions will converge. That is, a given
learner of a component MDP M .i/ working alone will converge towards its optimal
value function as long as the space of states and actions S.i/ � A.i/ is sampled
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infinitely often in the limit. The same criterion applies when it is working with other
modules, although whether or not a module follows its optimal policy is a separate
question. Independent agents may follow their own policy recommendations, but
for modules activated with a single agent, a separate function that must be supplied
to adjudicate among the possibly different action recommendations, as in Sprague
et al. (2007), where the action selected was a maximum of reward weighted Q

values.
In summary,

1. The overall behavior of modules (or agents in the multi-agent venue) is such
that they work together in different subsets for a set time � so that the reward
estimates can be learned;

2. The sum of the current estimates of the reward across all subset is accessible to
each individual module in the subset at each moment by assumption;

3. The sampled subsets must span the module space because the reward calculations
demand this.

The consequences of a module being activated are that:

1. It has used an associated procedure, such as a visual routine (Ballard et al. 1997;
Ullman 1984), to compute the initial state the module is in. In our examples the
state is computed at the beginning of an episode for all modules.

2. Its Q-values are included in the sum indicated in Eq. (10) used to select an action.
3. It influences the global reward that is received at every time step.

5 Credit Assignment with Modular Behaviors

Each active module represents some portion of the entire state space and contributes
to the composite actions, but without some additional constraint they only have
access to a global performance measure, defined according to Eq. (11) as the sum
of the individual rewards collected by all of the M active modules at each time
step to a global reward, i.e. Gt DP

i2M r
.i/
t . The problem that we tackle is how to

learn the composite quality values Q.i/.s.i/; a.i// when only global rewards Gt are
directly observed, but not the individual values fr.i/

t g (See Fig. 2), across many task
combinations. The additional constraint that we introduced is that the system can
use the sum of reward estimates from the modules that are co-active at any instant.
This knowledge leads to the idea to use the different sets to estimate the difference
between the total observed reward Gt and the sum of the current estimates of
the individual rewards of the concurrently running behaviors. Credit assignment is
achieved by bootstrapping these estimates over multiple task combinations, during
which different subsets of behaviors are active. Dropping the temporal subscript for
convenience, this reasoning can be formalized as requiring the individual behaviors
to learn independent reward models r.i/.s.i/; a.i//. The current reward estimate Or.i/

for one particular behavior i , is obtained as
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Fig. 2 The fundamental credit assignment problem for a biological agent using a modular
architecture. When individual component learners transition between states represented by circles
they carry out actions represented by arrows. At a particular instant shown with dotted arrows,
when multiple modules are active and only a global reward signal G is available, the modules each
has to be able to calculate how much of the rewards is due to their activation. Our setting simplifies
the problem by assuming that individual reinforcement learning modules are independent and
communicate only their estimates of their reward values. The modules can be activated and
deactivated asynchronously across episodes

Or.i/  Or.i/ C ˇır.i/ (14)

where the error on the reward estimates ır is calculated as the difference between
the global reward and the sum of the component estimates:

ır.i/ D G �
X

j 2M
Or.j / (15)

so that Eq. (14) becomes:

Or.i/  Or.i/ C ˇ
�
G �

X

j 2M
Or.j /

�

D .1 � ˇ/Or.i/ C ˇ
�
G �

X

j 2M;j ¤i

Or.j /
�

(16)

Together with the module activation protocol, described by Eq. (13) and �,
Eq. (16) represents the core of our solution to the credit assignment problem. When
one particular subset of tasks is pursued, each active behavior adjusts the current
reward estimates Ori in the individual reward functions according to Eq. (16) at each
time step. Over time, the set of tasks that have to be solved will change, resulting



Learning and Coordinating Repertoires of Behaviors with Common Reward 111

in a different set of behaviors being active, so that a new adjustment is applied
to the reward functions according to Eq. (16). This bootstrapping process therefore
relies on the assertion that subsets of active behaviors visit all component behaviors.
Intuitively, the global reward, which is the sum of all obtained rewards, should
equal the sum of the reward estimates of all active modules. Each individual module
therefore adjusts its reward estimate by combining its current reward estimate, i.e.
what it believes it is contributing, and what the other active modules believe it is
contributing, i.e. the difference between the total global reward and the sum of all
other modules’ reward estimates.

The component Q values for the state-action pairs of the individual behaviors
are learned using the above estimates of the individual reward functions. Given
the current reward estimates obtained through repeated application of Eq. (16), the
SARSA algorithm is used to learn the component Q-functions:

Qi .s
.i/
t ; a

.i/
t / Qi .s

.i/
t ; a

.i/
t /C ˛ıQi (17)

where ıQi now contains the estimates Or.i/
t and is given by:

ıQi D Or.i/
t C �Qi.s

.i/
tC1; a

.i/
tC1/�Qi.s

.i/
t ; a

.i/
t / (18)

Note that the usage of an on-policy learning rule such as SARSA is essential as
noted in Sprague and Ballard (2003), because the arbitration process specified by
Eq. (10) may select actions that are suboptimal for one or more of the modules.
This has to be kept in mind when considering the optimality of the learnt solutions
(cf. Russell and Zimdars 2003). A feature of the SARSA algorithm is that it makes
use of suboptimal policy decisions during learning.

To investigate the dynamics of Eq. (16) we ask: in such a setting, given only
global reward together with an arbitrary initial estimate of the rewards, will our
algorithm for computing rewards converge?

5.1 Proof of Convergence

First of all, note that the equations for Or are independent of the Q values and
only depend on the sampling strategy. Next, note that, once the rewards have been
determined, the MDPs will converge to their correct policies (Russell and Zimdars
2003) starting from any initial condition. While the rewards are being determined,
the MDPs may or may not be converging but that is of no consequence to the proof.
So it suffices to show that the reward calculation converges. To do this note that
Eq. (16) can be rewritten as:

Or.i/ D .1 � ˇ/Or.i/ � ˇ
X

j ¤i

Or.j / C ˇG: (19)
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This in turn can be written in vector form for a Jacobi iteration k by rewriting the
reward estimates Or.i/ at iteration k for all states and actions as a column vector rk ,
defining the column vector G with all entries being equal to the global reward G,
and defining the error matrix B according to Eq. (19):

rkC1 D Brk C ˇG

Now write rkC1 as ro C ekC1 where ro represents the correct values. Then

ro C ekC1 D B.ro C ek/C ˇG

but since ro D Bro C ˇG then

ekC1 D Bek

This system will converge to 0 if the spectral radius of the matrix B forming any
spanning set of these equations has a value 	 < 1. This is satisfied because its
diagonal terms are all 1 � ˇ and the off diagonal terms are either zero or �ˇ.
Thus the determinant is dominated by the trace for small ˇ as the other factors all
contain products of at least ˇ2. Convergence of such a system is therefore geometric
provided (a) all the potential variables are included in the equations (b) any two
variables do not always appear together, and (c) the diagonal terms in the error
matrix B dominate the rest. The first two conditions are satisfied by the assumption
in the module activation policy. The last requirement can be assured provided ˇ is
chosen appropriately.

5.2 Incorporating Uncertainty in Reward Model

One way to handle uncertainty in reward estimates is to model the sum of the other
modules’ rewards as noise as in Chang et al. (2004). This approach learns correct
policies as long as the set of agents (or modules in the single-agent setting) remains
constant, but it can introduce severe biases into the Q values. This makes it unusable
for our setting where modules are used in different subsets in different episodes must
have correct Q values for the equations to work.

Our module activation strategy of using modules in different combinations
overcomes the Q value bias problem. When one particular subset of goals is pursued
in any particular episode, the corresponding behaviors are active and the estimates of
the respective rewards is updated according to Eq. (16) for all component behaviors.
The sampling strategy assures that the equation set for the rewards has full rank.

However one can do better. During the computation, the modules’ MDPs are
typically in different states of completion and consequently have different levels
of uncertainty in their reward estimates. This means that on a particular task
combination, all component behaviors weight reward estimates in the same way,
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independent of how well component behaviors have already estimated their share.
Thus a drawback of any updating scheme that uses a fixed ˇ value is that it is
possible for a behavior to unlearn good reward estimates if it is combined with
other behaviors whose reward estimates are far from their true values. Learning can
be made much more efficient by considering the respective uncertainties in the esti-
mates of the respective rewards separately. Thus one can have individual ˇi values
for each module reflect their corresponding reward estimates of uncertainty values.

Assuming that the between-module fluctuations are uncorrelated and follow a
Gaussian distribution one can express the gain for each reward estimate in terms of
the individual uncertainties in the respective reward estimates .
.i//2:

ˇi D .
.i//2

PN
j D1 .
.j //2

D .
.i//2

PN
j ¤i .
.j //2 C .
.i//2

(20)

where the last term in the denominator is the variance in the observation noise.
This can be seen as a straightforward approximation of the respective measurement
uncertainties as in a cue integration setting. Since the factor for weighting the current
estimate of a module’s reward (See Eq. (16)) is 1 � ˇi , the effect is that relatively
high-variance reward estimates will be discounted with respect to those of co-active
modules. Thus, reward estimates for states that have been visited often and modules
that have been used will tend to have lower uncertainties than reward estimates of
states that have been visited rarely or modules that have not yet been used often.

6 Simulation Results

We demonstrate the algorithm on three separate problems that are chosen to
illustrate different aspects of the proposed solution. The first problem uses ten
individual modules that live in separate, non-interacting state spaces and carry out
independent, non-interfering actions but observe a single common reward, which
is the sum of all individual learners’ contributions. The example is from Chang
et al. (2004) and utilizes component tasks originally introduced by Sutton and Barto
(1998). The second example is a predator–prey type problem and considers the case
in which all component modules are within the same agent, i.e. where there is only
a single action space which is shared among all individual learners. This problem
was considered by Singh and Cohn (1998) and has been expanded here from its
original version to include 15 different food sources and 5 predators to illustrate
how to learn module selection over episodes. The third problem is a multi-tasking
problem of an agent walking on a sidewalk while avoiding obstacles and picking up
litter (Sprague and Ballard 2003). This problem illustrates the calculation of reward
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a b c

Fig. 3 Learning progress for the separate action spaces case following Chang et al. (2004).
(a) Each agent is able to move in the four cardinal directions. Each transition results in a reward
of 0 with the exception of the two states from where the arrows start. (b) The plot shows that each
of the ten modules obtains the same average reward per iteration after learning of all tasks. (c) The
plot shows that the RMS error between the optimal value functions and learned value functions
decreases with learning

in a simulated three-dimensional world. For all these simulations, the RL learning
parameter ˛ was 0:1. The first set of experiments uses both constant ˇ values from
the set f0:01; 0:1; 0:2; 0:4; 0:8g and the variance weighted ˇ computed according to
Eq. (20), i.e. it weights the reward estimates by their respective uncertainties. The
remaining experiments use constant ˇ values between 0:01 and 0:5 as indicated on
the respective figures.

6.1 The Computation of Accurate Q-Values with Separate
Actions

The first problem, drawn from Sutton and Barto (1998), allows testing the basic
credit computation algorithm by considering multiple modules with independent
action spaces, a case that is closely related to multi-agent problems. This results in
a setting without the complicating factor of action selection that is required when
modeling multiple active modules forming a single agent. With multiple modules,
each learner is placed on a 5 � 5 grid and is able to move in four directions, i.e.
North, East, South, and West (See Fig. 3).

A transition between positions results in a reward of 0. If a movement is made
toward the walls of the grid, the agent obtains a reward of �1 and stays at the same
location. There are two locations on the grid, which result in a transition to a new
state for all selected actions. On one of these a reward of 20 units is obtained while in
the second case a reward of 10 units is obtained. The problem is set up in such a way
that the optimal policy successively collects the reward of 20 units, given a discount
factor of 0.9. For the simulation, after each � of 30 iterations, a new subset of agents
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Fig. 4 Comparison of learning rate settings. Effect of different learning rates and the variance-
weighted (v.w.) learning on the accumulated reward averaged over all modules in the Sutton and
Barto problem in comparison with a Kalman Filter that has perfect state information (p.s.i.) about
all component modules

of sizes between 3 and 7 were chosen randomly. The scheduler chose these subsets
according to a uniform distribution over all modules. These modules were then run
on the grid world and learned their respective Q-values with reward estimates that
were updated according to Eq. (16). Part (c) of Fig. 3 shows that the agents learn to
divide up the global reward and are therefore able to learn their respective policies.
These results show that the basic algorithm for computing Q values works in this
multi-agent setting.

While one can choose the value for ˇ guided by the convergence theorem, a more
informed possibility is to use Eq. (20) to weight the module’s reward estimates
by their inverse variances. To test this formula, we ran experiments to compare
the weighting of reward estimates by their variance estimates with weightings
using hand chosen ˇ values. Figure 4 shows different learning rates compared to
the variance-weighted result as well as a Kalman filter simulation with perfect
information about the entire state space. The graph clearly shows the superiority
of the variance-weighted estimation process compared to the fixed ˇ values as well
as the small loss incurred compared to the filtering agent in the considered problem.

6.2 Module Selection for Single Agent with Multiple Reward
Sources

This problem is described in Singh and Cohn (1998) where the authors explore
the use of multiple modules for a single task in a grid-world problem. These
single-agent problems come closer to representing a problem that would have to
be addressed by a biological agent since, unlike in the multi-agent problem of the
previous section, the action space is shared by the modules.
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In the original formulation, an agent moves on a 5�5 grid. Possible actions move
the agent in the eight compass directions. Moves at the edge of the grid-world which
would result in the agent leaving the grid result in the agent staying in the current
position. The grid is populated by three food items and one predator. The picking
up of a food item results in a reward of one unit and the repositioning of the food
item to a new and empty location. The world is also populated by a predator, which
moves every other time unit towards the current position of the agent. The agent
obtains a reward of 0.5 units for every time step during which it does not collide
with the predator. Each learner represents the position of the respective food item
or predator, i.e. there are 625 states for each of the three food modules and for the
predator module, where in the original problem a total of four learners were always
active in order to solve a single task with four component goals.

Previously Singh and Cohn (1998) and Sprague and Ballard (2003) used this task
in multi-goal learning but both studies used individual rewards that were delivered
for each task as separate reward signals. In the current study the problem was
made harder by making the reward that each behavior sees be the global sum of
the individual rewards G. Furthermore, instead of using three food sources and one
predator there are a total of 15 types of food sources and 5 types of predators. At
the beginning of each episode, three food sources are selected randomly according
to a uniform distribution over the total of 15 different food sources. Similarly, one
predator is selected randomly from the pool of 5 different predators according to
a uniform distribution, so that during every episode a total of three food sources
and one predator are present, as in the original problem. But now the set of
necessary modules may change for each episode, as each food source and each
predator requires the corresponding module to be active. So now the agent has
to learn which modules to select for an episode and each module has to learn its
respective reward model by solving the credit assignment problem. The probabilistic
module activation according to Eq. (13) was used to select four different modules at
the beginning of each episode. The behaviors therefore also have to learn when they
are best activated.

Simulations were run for different values of ˇ and compared to a learner that
instead of choosing the set of modules according to Eq. (13) selected learners at
random with equal probability at the beginning of each episode. The learning rate
for the reward model of this learner was set to an intermediate value of ˇ D 0:2. The
temperature T in Eq. (13) was changed from 3 to 0.01 over the course of learning.
The rewards for all foods and predators were set to the values of the original problem
by Singh and Cohn (1998). Figure 5 shows the average reward earned at each time
step and the root mean square error between the true and learnt value functions.
For intermediate learning rates of ˇ between 0.01 and 0.2, the obtained reward
approaches the maximum obtainable reward and the corresponding value functions
approach the correct ones.

The learners are able to learn when they are best scheduled to run and the reward
estimates become more accurate over trials according to Fig. 6, which demonstrates
that for intermediate learning rates for ˇ between 0.01 and 0.2, the reward estimates
approach the true reward values as shown by the RMS error between all reward
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a b c

Fig. 5 Learning progress for the common action space case following Singh and Cohn (1998).
(a) An agent is located on a 5 � 5 grid and searches to find three different food sources f1 to f3
and tries to avoid the predator p, which moves every other time step towards the agent. Simulations
were run in which three food sources from a set of 15 and one predator from a set of 5 were
selected. (b) Average reward collected using consumable rewards with different learning rates ˇ

in Eq. 16 and a randomly scheduled agent. (c) Root mean squared error between the true value
functions and the learned value functions of all behaviors over trials
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Fig. 6 Learning progress for the foraging task. (a) RMS error between the true rewards and the
reward estimates of all behaviors over trials. The three curves correspond to different learning
rates ˇ in Eq. 16. (b) Number of correctly chosen learners on each episode for different learning
rates ˇ. As they are chosen in groups of four, choosing the right four modules is the best possible
result

estimates and the true rewards. By contrast, a learner with a learning rate of ˇ D 0:5

does not converge on the correct reward model over the course of the simulations.
Accordingly, this learner does neither approach the correct value function nor
approach the average reward collected by the other learners as shown in Fig. 5. The
random learner’s reward estimates improve over time as shown in Fig. 6, because
the reward model can be learned using samples from the randomly selected states.
But the average reward obtained per iteration cannot approach the level of the other
learners, as inappropriate modules continue to be scheduled. Finally, Fig. 7 is a
graphical depiction of the active set of modules over the total number of episodes.
Black dots represent modules selected by the agent which are not appropriate for
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Fig. 7 Learning progress of module selection. Every 10,000 iterations the four modules selected
by the evaluation function are plotted using a key of Black D inappropriate, White D appropriate,
and Gray D not activated. As the computations progress, the reward values V .s/ become increas-
ingly accurate and cause the correct modules to be always selected

the respective episode’s task combination, while white dots represent correctly
selected modules and gray dots are inactive modules. The plot shows that the learner
improves selection of modules right from the first episode and has learnt to schedule
the correct subset of modules for the task at hand after 15,000 episodes.

6.3 Learning Walkway Navigation in a Virtual 3D
Environment

This problem uses a humanoid agent navigating in a realistic three-dimensional
virtual reality environment. The agent must use vision to extract features from
the environment that define each module’s state space. Also the agent’s discrete
state spaces must guide it successfully through the fine-grained environment. The
walkway navigation task was first considered by Sprague et al. (2007) where a
factorized solution was presented. However, that solution was obtained by delivering
each of the individual learners their respective reward; that is, the agent received
three separate rewards, one for the walkway following module, one for the obstacle
avoidance module, and one for the litter picking up module. This problem was
modified here with the additional constraint of only global reward being observed
by all modules in each task combination. The global reward was always the sum of
the rewards obtained by the individual modules according to Eq. (11).

The parameterization of the statespace is shown in Fig. 8. Each module represents
the states with a two-dimensional vector consisting of a distance and an angle. For
the picking up and the avoidance behaviors, these are the distance to the closest litter
object and obstacle, respectively, and the signed angle between the current heading
direction and the direction towards the object. The distance is scaled logarithmically
similarly to the original setup by Sprague et al. (2007) and the resulting distance di

is then discretized into n D 21 possible values between 0 and infinite distance.
The angles within the field of view, i.e. with a magnitude smaller than 50 degrees
are similarly discretized to 21 values. The exponential function was chosen such
that the edge of an obstacle or target coincides with the edge between the first and
second state and state 21 corresponds to all distances greater or equal to 4m.
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a b

Fig. 8 The walkway navigation tasks. (a): typical view from the agent while navigating in the
virtual environment. The three possible tasks are following the walkway, avoiding obstacles, which
are the dark cylinders, and picking up litter, corresponding to the light cylinders. (b): Schematic
representation of the statespace parameterization for the learners. See text for details

a b

Fig. 9 Modular Reward estimates across learning. (a) Reward calculations for the walkway
navigation task for the three component behaviors. Top row: Initial values. Bottom row: Final
reward estimates. (b) Time course of learning reward for each of the three component behaviors.
RMS error between true and calculated reward as a function of iteration number

The walkway statespace is also slightly different from Sprague et al. (2007) in
that it represents all positions of the agent relative to the walkway for all possible
walking directions. Finally, instead of three possible actions as in Sprague et al.
(2007) the current simulations use five actions corresponding to steering at one
of the five angles f�15;�7:5; 0; 7:5; 15g with additive Gaussian noise of variance

 D 1. The reward values displayed as a function of the state space locations are
shown in Fig. 9. Staring from random values and receiving only global reward
at each step, the agent’s modules are able to arrive at the true reward values.
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Fig. 10 Values and policies for navigation modules across learning. (a) Representations of value
functions in the walkway navigation task for the three component behaviors across learning. Top
row: initial value functions V .i/.s/ at iteration 1. Bottom row: value functions V .s/ after 20;000

episodes. (b) Representations of policies in the walkway navigation task for the three component
behaviors across learning. Top row: policies �.i/ in episode 1. Bottom row: policy estimates. Key:
For Value functions, light values are high numbers; for policies light numbers are left turns and
darker numbers are right turns

The accuracy of these estimates is shown in Fig. 9. Thus the individual learners
are able to learn their correct reward model for their respective tasks.

The value functions and policies of these simulations are shown in Fig. 10, at
both the first iteration with random initial values and after learning, when the agent
has walked the walkway for 1,000 episodes. As can be seen from the representation
of the reward estimates, the individual behaviors have learned the true rewards of
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their respective tasks, where not intersecting with an obstacle results in a reward of
one unit, intersecting a litter object gives four units of reward, and staying on the
walkway results in a reward of 0.8 units.

7 Discussion and Conclusions

Natural behavior consists of extended sequential perception and action with multiple
concurrent and changing goals. Solving such tasks can be accomplished by some
form of a decomposition such that elemental task solutions from a repertoire
of behaviors can be reused and used in combinations. Here a specific modular
architecture was considered in which separate independent state representations
are assumed to be available for each of a large number of behavioral modules.
These modules can be combined to solve tasks and task combinations but they
only observe a single global reward value. The goal of the system is to learn about
each individual component task’s rewards and values and to learn how to schedule
combinations of these elemental task solutions in order to achieve good performance
on the composite tasks.

The primary contribution of this chapter is to describe a way of learning to
activate learners with independent state representations so that they can jointly solve
a composite control task. The presented solution is based on a credit assignment
computation that enables individual modules to learn their correct reward functions
and correct value functions from executing different task combinations while
observing only global instead of individual reward. The key constraint, motivated
by the need for a system that would potentially scale to a large library of behaviors,
is to assume that the overall system can be structured such that it could achieve its
goals by using only a subset of its behavioral repertoire at any instant and that the
reward gained by this subset is the total of that earned by its component behaviors.
The use of modules allows the rewards obtained by reinforcement to be estimated
online.

By using an on-policy learning method, it is ensured that the learnt action-
value functions are correct estimates of the total discounted future reward of each
individual module so that the actions selected by an individual module involved
in solving only its respective tasks will be optimal. In task combinations, if the
summation of Q-values holds, then the composite tasks will be solvable by some
subset of the provided learners and these will learn their respective contributions
to the sum of rewards. As action selection is based on combining the estimated
action-values and not the action themselves, the selected actions will be optimal with
respect to the composite task. If additional learners are available, whose actions,
given their state representations, do not contribute to any reward, these will be
selected less over the time course of learning. Thus, the system can learn that
only a small subset of learners may actually contribute to reward in different task
combinations.
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The present work is related to other approaches that start out with compositional
solutions to individual problems and then devise methods in order to combine a
large number of such elemental solutions, e.g. Singh and Cohn (1998) and Meuleau
et al. (1998). Both approaches are concerned with learning solutions to large
MDPs by utilizing solutions or partial solutions to smaller component MDPs. In
Meuleau et al. (1998) the solutions to such components are heuristically combined
to find an approximate solution to the composite MDP by exploiting assumptions
on the structure of the joint action space. A way of learning a composite MDP
from individual component MDPs by merging has been described in Singh and
Cohn (1998). First the policies for elemental component MDPs are learned by
separate modules. In their formulation, when combined, the different modules
share a common action space, i.e. one single action is chosen in the composite
problem. This is often used as the criterion to distinguish between single agent
modular and multiagent problems. Because of this selection of a single action, each
individual action is not necessarily optimal for all the component MDPs. Given
that the component value function is not necessarily obtained as a linear sum of
the component policies, which are each representing different reward types without
a common currency, the authors propose a way of initializing the value iteration
process of the composite problem using bounds on the state values derived from
the state values of the individual component MDPs. In our venue small numbers
of behaviors that are appropriate for the current situation are selected in an online
fashion. In this situation it is essential to get the Q-values right. An algorithm that
models other modules’ contribution as pure noise (Chang et al. 2004) will compute
the correct policy when all the behaviors or agents are active but this result will not
extend to active subsets of modules and behaviors, as incorrect Q values, when used
in subsets, will cause suboptimal behavior.

Many open problems remain to be considered at the computational and algo-
rithmic levels but also in relating the proposed computations to biological systems.
It would be desirable to learn the separate state representations that are required
by the individual modules, i.e. to learn the underlying factorizations. Which state
variables are independent and how can sensory variables be learned for individual
modules? Here we considered having a large collection of individual learners with
different state representations from the start and presented a way of learning to
select the appropriate ones for episodes with the respective task combinations. But
the scheduling algorithm may quickly get overwhelmed if the number of available
modules is very large. Another central issue relates to the factorization assumption
itself. There may be problems that do not allow for such factorizations simply
because of the underlying interactions of state variables. Recently, Toutounji et al.
(2011) showed how the credit assignment algorithm used in this chapter can be
used also for the case of interacting modules. In this case, a hierarchy of modules
can learn, adjusting the contributions from low level modules that treat a problem
as factorizable although the state transitions interact. By learning to correctly divide
up the observed total reward, higher level modules adjust the contributions from the
lower level modules to achieve the overall task.
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Another central open problem in the context of multiple modules used in
the present chapter relates to the balancing of exploration and exploitation. As
individual modules have different state representations and may have different
interaction histories because they can be scheduled independently, a particular
action that may be exploiting for one module may be exploratory for another
module. In general, in a model-based RL framework, in which the uncertainties
about the rewards and transitions are made explicit, optimal balance between
exploration and exploitation can be achieved naturally by acting optimally with
respect to the expected total discounted future rewards, i.e. the current belief
over the underlying MDPs. Thus, as these modules may be reused during later
episodes, the trade-off between exploration and exploitation can be understood as
a balance between attaining the objectives in the current episode and the reduction
of uncertainties about the component tasks, as they may become valuable in later
episodes. Albeit computationally intractable in the general case, this is a principled
way of expressing the resulting tendency of an agent to carry out exploratory actions,
if these promise a higher reward in the long run, a behavior that can be equated with
curiosity.
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Modular, Multimodal Arm Control Models

Stephan Ehrenfeld, Oliver Herbort, and Martin V. Butz

Abstract Human and animal behavior can be amazingly flexible and adaptive.
Even when only considering the dexterity of human arm movements, a rather
complex control architecture appears necessary. This control architecture faces
three particular challenges, which we discuss in detail. First, sensory redundancy
requires the flexible consideration, combination, and integration of different sources
of information about the state of the arm and the surrounding environment. Second,
motor redundancy requires the flexible consideration and resolution of behavioral
alternatives. Third, the continuous uncertainty about body and environment requires
flexible control strategies that take these uncertainties into account. Research in
cognitive modeling as well as in psychology and neuroscience suggests that the
human control system effectively solves and even partially exploits these challenges
to generate the observable dexterity. Besides theoretical considerations from control
and cognitive modeling perspectives, we survey the capabilities and current draw-
backs of the sensorimotor redundancy resolving architecture (SURE REACH) of
human arm reaching. Moreover, we consider an even more modular model of human
motor control, which is currently being developed. Both architectures can yield
the dexterous behavioral control observable in humans, but only the latter scales
to many degrees of freedom. Thus, the architectures may provide insights on how
dexterous motor control is realized in humans and on how more adaptive and flexible
robot control systems may be developed in the future.
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1 Introduction

Humans surpass other species in various aspects, such as planning ahead,
communicating, creating art, and constructing and utilizing tools skillfully.
To accomplish this, the human cognitive and motor control system needs to be
highly flexible and adaptive. Bernstein called this human property dexterity (Latash
and Turvey 1996), that is, the capability of deciding and executing different goal-
directed behaviors in different circumstances, considering different priorities and
goals. All the dexterous skills that make humans unique, however, cannot be
realized without the seemingly mundane capability of controlling the own body.
For example, to communicate an idea—however abstract or philosophical—one
has to control the muscles of the vocal cords to speak the idea or one has to move
the hand and fingers to type it in a word processor. Even daily activities, such as
eating or transporting a glass of water to the mouth, require precise and dexterous
control of the human body. Thus, understanding human body control is crucial to
understanding human behavior.

In this chapter, we focus on three fundamental challenges that the brain faces
when deciding on and executing flexible, skillful, goal-directed movements. First,
since the sensory and motor systems encode information about body and environ-
ment in various frames of reference, sensory feedback as well as current goals and
other priorities are inevitably represented in different modalities. These need to be
integrated and exchanged to plan and control dexterous movements. We refer to this
problem as the sensory redundancy problem.

The second challenge results from the fact that goals can be reached in
various ways and with various motor actions. This problem is referred to as the
motor redundancy problem (Bernstein 1967). Motor redundancy has to be quickly,
effectively, and flexibly resolved on the fly to be able to achieve goals in a dexterous
way. Sensory and motor redundancy problems are somewhat complementary and
are often strongly interdependent.

The third challenge arises from the fact that uncertainty is ubiquitous. The body
changes continuously due to muscle fatigue, cloths, growth, injury, etc. Also the
environment is continuously in flux and only partially observable. Other agents and
physical influences may change the state of the environment at any time and these
changes are often overlooked, may be unobservable, or simply stay unnoticed. As a
consequence, the sensory and the motor system of any biological system cannot
represent the state of body and environment in an absolutely precise manner. Thus,
our brain faces an uncertainty problem.

Human everyday behavior shows that we do not only solve these problems—
mostly without even noticing them—but we are also able to adjust our behavior
flexibly to different situations and circumstances. To accomplish this, the brain
appears to use an adaptive, highly modular body schema (Hoffmann et al. 2010),
which integrates and exchanges body information context—dependently across
sensory—and motor-grounded frames of reference. The body schema not only
enables the flexible exchange of information as well as the combination of goals and
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other priorities, but it also constrains these exchanges and combinations by taking
the bodily architecture—such as kinematics, dynamics, and their body-dependent
interactions—into account. For example, the brain appears to exploit the fact that the
location and orientation of “outer” limbs, such as the hand, depends on respective
“inner” limbs, such as the shoulder and arm. These constraints are then taken
into account for (a) body schema maintenance and for (b) body-schema-dependent
decision making and control. Due to the body schema-based constraints, the brain
can perceive and avoid obstacles and also somewhat categorize the reachability of
regions surrounding the body (Caggiano et al. 2009).

The control system exploits the modular body schema representation for the
flexible integration and consideration of various sensory and motor sources of infor-
mation about body and environment. Depending on the task and the circumstances
at hand, one or the other source may dominate current behavioral decision making
and control. Moreover, the body schema allows accounting for noise in an effective
manner—integrating noisy information, ignoring false, and substituting missing
sensory information in an approximately optimal way based on statistical decision
theory (Herbort et al. 2007; Trommershäuser et al. 2003).

In this chapter, we first detail the computational problems due to the chal-
lenges of sensor redundancy, motor redundancy, and uncertainty. Next, we discuss
implications for a control architecture that can deal with or even exploit these
challenges. Finally, we detail our efforts in modeling human arm reaching with the
SURE REACH model and a more recent modular modality frame model, which
further modularizes SURE REACH (Butz et al. 2007; Ehrenfeld and Butz 2011;
Herbort et al. 2010). A final discussion concludes the chapter.

2 Computational Problems in Motor Control

Although motor acts such as reaching and grasping for objects appear introspec-
tively simple and usually do not require much thought or attention, computationally
a number of complex, ill-defined problems have to be solved each time an
interaction unfolds. This section describes three facets of motor control that need to
be addressed: sensory redundancy, motor redundancy, and uncertainty. Subjectively,
these aspects may not be considered “problems,” because humans cope with these
aspects with ease in many situations. Moreover, sensory and motor redundancy
are crucial for the flexible, dexterous, and robust control of one’s own body.
Nevertheless, to be able to benefit from redundancy and cope with uncertainty, rather
complex computational problems have to be solved.

2.1 Sensory Redundancy

Humans use different sensory modalities to gather information about the world and
their own body. For example, the arm can be perceived by means of proprioceptive



132 S. Ehrenfeld et al.

and visual as well as sometimes by auditory and tactile sensors. Grounded in the
different sensory modalities, the arm is thus co-represented in these modalities and
the information has to be exchanged and combined across modalities. Since the
sensory capabilities in each modality also determine particular frames of reference,
information transfer has to be realized by incorporating transfer functions. For
example, proprioceptive signals generally allow the determination of the visual
perception of arm orientation, given body schema knowledge. To integrate or
compare the information body-state dependently, the reliability of each sensor has
to be estimated, transfer functions need to be available, and state information as well
as reliability estimates have to be transferable.

Computationally, two challenges for motor behavior may be distinguished as
resulting from the multimodal, redundant, but highly interactive representations of
body and environment. First, the information of different modalities needs to be
effectively exchanged and suitably combined to facilitate motor control. Second,
goal representations may be embedded in different modalities or may focus on
particular modalities, so that goals and constraints in different modalities need to
be considered and properly combined to generate maximally dexterous behavior.

2.1.1 Multi-modal Information

For an effective interaction with the environment, the body state and the surrounding
environment have to be suitably estimated. For proper state estimations, typical
information-theoretic and control-theoretic techniques can be applied, such as
Kalman filtering or Bayesian information integration (Doya et al. 2007; Knill and
Pouget 2004; Welch and Bishop 1995; Wolpert and Ghahramani 2000). To do so, the
variances of different sources of sensory information need to be estimated and the
respective sensory information needs to be exchanged with respect to the variance
estimates. For example, in darkness the role of visual feedback for the estimation of
the body state will be reduced. However, since each sensory modality is encoded in
particular frames of reference, information integration and combination requires the
transfer of variance estimates across different frames of reference. Whether the brain
integrates the available information or only combines it for motor control decisions
is still under investigation (Serwe et al. 2009).

During action execution, the ongoing movement has to be monitored and
corrected if necessary. To be able to do so, an accurate representation of the state of
the body has to be maintained over time. In this case, delayed sensory information
needs to be integrated, thus requiring (a) the generation of expected bodily and
consequent sensory states for online control as well as (b) the maintenance of
expectations of the delayed sensory feedback for information integration, and,
particularly, for movement error monitoring. Transformations from sensory to motor
representations for control and vice versa for predicting sensory consequences have
to be available (Pouget and Snyder 2000). Since the feedback about body state and
body motion is again encoded in various modalities and is exposed to different delay
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durations, the most effective sensory information integration can be expected to
occur modality-respectively (Körding et al. 2004; Körding and Wolpert 2004).

While the above-mentioned aspects and facts pose challenges to a control
system, multi-modal, redundant sensory information can also be viewed as enabling
the integration of various information sources in the first place. The redundant
information allows the maintenance of a more faithful representation of the current
body state. As multiple channels provide comparable information, movements can
still be controlled if one modality is not available or if it sends faulty information.
Thus, a sensor-grounded, multimodal body schema representation may enable a
highly versatile body state encoding and facilitate dexterous goal-directed planning
and body control.

2.1.2 Multi-modal Goals

Motor control can be understood as the process of translating a desired perceptual
state (or goal) into a sequence of motor commands, which realize this state (Elsner
and Hommel 2001; Greenwald 1970; Hoffmann and Möller 2003; Hoffmann 1993).
In many cases, a goal may be defined in a single modality. For example, when
reaching out to press a light switch, the desired position of the hand is mostly defined
by the visually perceived position of the light switch.

However, frequently goals comprise elements that are represented in different
modalities. A simple example is pointing to a light switch (e.g., to instruct another
person to switch the light off). In this case, the arm has to be directed toward
the switch, which is perceived visually. At the same time, it is necessary to align
upper arm, forearm, hand, and the index finger in order to enable another person to
recognize the movement as a pointing gesture.

Another example is the execution of sequential actions, such as grasping and
rotating an object. In such cases, it is frequently observed that humans grasp
the object with a posture that enables ending the object rotation with a rather
comfortable neutral position (Herbort and Butz 2010, 2012; Rosenbaum et al. 1990,
1996). When the grasping segment of such a movement sequence is planned, two
constraints need to be integrated. First, the to-be-rotated object is visually defined
in extrinsic space. Second, the desired orientation of the forearm when grasping the
object is defined proprioceptively, based on intended future interactions with the
object. Likewise, the anticipatory adjustments of the arm postures that are assumed
in intermediate targets in two-step pointing sequences can then be understood as the
integration of visually and proprioceptively defined constraints (Fischer et al. 1997;
Herbort and Butz 2007). In sum, for dexterous interactions with the environment,
with people, and with objects, it is necessary to integrate desired body states across
modalities. As for the case of multi-modal information, this requires the ability
to effectively and accurately match sensory states that are encoded in different
modalities.

For decision making, also payoff needs to be considered and integrated.
This may be accomplished using Bayesian decision theory, which is approximated
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by the brain in various circumstances (Körding and Wolpert 2006; Trommershäuser
et al. 2003). Due to the multi-modal nature of information and goal representations,
however, decision making may need to be distributed across modalities, or an
internal, common modality may serve as the mediator for decision making. When
multi-modal goals are strived for, a lot of computational effort may be necessary
to exchange the respective priorities effectively for dexterous decision making and
motor control. However, again the multi-modal representation may be viewed as a
feature that actually facilitates dexterity, as long as the necessary information and
priority exchanges are handled properly.

2.2 Motor Redundancy

Many different movements lead to the same sensory change due to motor
redundancy. For example, a light switch can be pushed with various effectors,
different final arm postures, and different movement trajectories. On the one hand,
motor redundancy makes motor learning and planning more difficult because one-
to-many-mappings have to be acquired and redundancy has to be resolved during
motor planning. On the other hand, motor redundancy makes our actions flexible.
In the face of changing environments, altered joint characteristics or obstacles,
motor redundancy offers many movement options.

In many situations, our goals are encoded in a low-dimensional space whereas the
space of possible actions is high-dimensional. An example is moving the hand to a
particular location in 3D space. Even if we constrain possible actions by specifying
the to-be-used hand and by trying to only use the arm for the movement (while
keeping the rest of the body motionless), the postural redundancy due to the seven
degrees of freedom of the human arm enables reaching the goal with many different
end-postures and on many different trajectories to the respective end-postures. Thus,
in almost all cases, a goal does not specify all parameters of an action.

Even though many movements could be executed in many different ways,
humans rely on a small subset of movements in unconstrained tasks. This suggests
that free parameters of movements are not determined randomly but are selected
according to specific criteria, such as movement costs (Engelbrecht 2001; Flash
and Hogan 1985) and by habit and bodily-determined motor synergies (Herbort
and Butz 2011; Latash et al. 2007). The additional criteria can be derived from
integrating additional aspects of the (external) task in the motor plan and by applying
internal (“default”) planning criteria. For example, redundancy with respect to how
an object is grasped can be resolved by integrating forthcoming actions into the
movement plan (Herbort and Butz 2012). Intrinsic constraints can be imposed by,
for example, selecting a movement velocity profile that reduces end-point variance
(Harris and Wolpert 1998). Likewise, the postures assumed at the end of a movement
are selected to reduce movement costs (Rosenbaum et al. 1995; Soechting et al.
1995). Moreover, the selection of different effectors for the control of movement can
also be interpreted as a reduction of movement costs (Rosenbaum 2008; Rosenbaum
et al. 1991).
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In sum, again motor redundancy may seem like a burden from a computational
perspective, because it requires the selection of one particular movement out of
an infinite number of possibilities each time a movement is executed. However,
redundancy enables flexible and effective behavior and may be used to facilitate
or enable the execution of many actions in the first place. Thus, motor redundancy
enables highly dexterous behavior.

2.3 Uncertainty

A final key difficulty of movement planning and control is the uncertainty associated
with bodily motion as well as sensory feedback. Many attributes of a movement
task can change. On a short timescale, the goal or the external constraints can
change quickly. The movement goal can change, for example, when humans interact
with moving objects. Likewise, task constraints may change, for example, when
moving obstacles have to be avoided or when the weight of the hand changes when
temporarily carrying an object. On an intermediate timescale, environmental factors
may change. Such factors influence the mapping from motor action to movement
outcome, for example, when the nature of the ground on which humans are walking
changes, when joints become sore, or when muscles become tired. On an even
longer timescale, the body kinematics and dynamics themselves change (Wells et al.
2002), undergo injury, and continuously slowly change due to the amount of bodily
exercise, food intake, etc. (Shadmehr and Wise 2005).

These changes make it difficult to plan movements, because many factors that
influence how a planned movement unfolds cannot be fully determined before
movement onset. Even in a simple task with none of these difficulties, the movement
could still not be perfectly executed because movement execution is imprecise.
In fact, movement execution noise plays a significant role in motor variability
(van Beers et al. 2004). For example, the motor variability in reaching movements
increases with movement speed (Fitts 1954; Harris and Wolpert 1998). Thus, even
if we were able to perfectly perceive the goal and the external context, noise in
the transformation of the movement plan into actual movements results in the
association of some uncertainty to the outcome of any action.

The uncertainty generates the need for humans to monitor their own body and
their environment in almost any task—goals and obstacles have to be tracked, and
deviations due to unexpected external forces, noisy movement execution, or an
outdated body schema have to be observed. Besides movement control, environment
and body have to be observed and their actual states inferred to properly prepare
effective actions. The need to monitor body and environment, however, poses
another big challenge, as the processing of sensory input takes time and the sensory
feedback itself is delayed and noisy. The sensory information can consequently
resolve the uncertainty only in part, so that a finite uncertainty remains and internal
body and environmental state estimates will never be perfectly accurate. Thus,
optimal human motor control, planning, and decision making is a hard problem
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not only due to the continuous changes and fluctuations in goals, constraints, the
environment, and the body, but also due to uncertainty that is inherent in movement
execution, and noisy, often delayed sensory feedback. Humans can cope with these
difficulties and generalize or adapt their skills very well in most circumstances. This
is apparent, for example, in predictive reaching tasks (von Hofsten 1980), obstacle
avoidance (Van Hedel et al. 2002), changing environment tasks (Rieser et al. 1995),
and infant growth (Konczak and Dichgans 1997). In sum, uncertainty poses
additional difficulties to motor control and inevitably forces dexterous motor control
to flexibly account for varying amounts of uncertainty.

3 Modularity and Hierarchy in the Brain (and Beyond)

The previous sections have shown that the control of the human body is a
computational challenge. Here, we focus on how the brain as a control system
appears to be able to control the human body robustly and with high dexterity.
We survey studies on brain structures and anatomy that suggest how the brain is
organized hierarchically and modularly to reach the observable levels of robustness
and dexterity.

We use the term modularity to refer to structures where different parts (modules)
execute different computations largely independently from each other. Modular
structures enable robustness due to this partial independence and autonomy of
the modules. Additionally, modularity enables flexibility because different modules
may be invoked to enable task-dependent planning and adjustments of the control
process. Hierarchy refers to structures in which information that is generated at
“higher levels” is forwarded to “lower levels,” where additional computations may
be carried out. Hierarchical structures enable the organization of a broad behavioral
repertoire because they enable the division of a complex computation into smaller,
tractable parts. These two facets of behavioral organization are reflected in many
aspects of motor control in the brain. We now first focus on modular representations
for motor control in the brain and then on evidence for distributed, modular planning
and control.

3.1 Modular Representations

The brain is generally organized in a modular structure wherein many distinct areas
and networks cooperate to generate human movement. For example, body and envi-
ronment are encoded differently in different brain areas, where different sensory and
anticipatory information dominates the respective encodings (Schwartz et al. 2004).
Different components for human motor control were identified, separating state
estimation from sensorimotor prediction, payoff generation and estimation, and
interaction control, attributing these aspects to the parietal cortex, the cerebellum,
the basal ganglia, and motor cortical regions, respectively (Doya 1999; Shadmehr
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and Krakauer 2008). Graziano (2006) points out that the motor cortex itself is
structured highly modularly with different sub-structures being responsible for
particular, ethologically-relevant behaviors. Moreover, parietal and motor cortical
areas interact sub-modularly in that different interactive behaviors appear to be
controlled by respective pairs of sub-modules, such as defensive behaviors, which
are dominantly controlled and co-represented by the ventral intraparietal area (VIP)
and the polysensory zone in the precentral gyrus (PZ) (Graziano and Cooke 2006).
A different study points out that the learned sensorimotor transfer induced by
different, novel types of tools is modularly represented in the cerebellum (Imamizu
et al. 2003). Transfer studies on uni-manual and bi-manual actions within different
force fields suggest that learning and adaptation modularly separate respective skills
but also allow skill transfer, when seemingly appropriate (Nozaki et al. 2006; Tong
and Flanagan 2003). We believe that this structural modularity provides the neural
basis for robust and dexterous behavioral control.

The representation of the body state is also highly modular, because the state
of the body is encoded for individual body segments and for different modalities.
For example, body segments are separated in our awareness (de Vignemont et al.
2009) and are addressed modularly but synergistically by primary motor cortex
output (Gentner and Classen 2006; Latash et al. 2007). These representations
of body (and possibly movement targets) are encoded in different modalities
that can be, for example, retinal-, eye-, or hand-related, or proprioception-based
(Battaglia-Mayer et al. 2003; Bernier et al. 2007). Not only are they represented
in different modalities, but they can also be processed independently (Bernier
et al. 2007; Sarlegna 2007). Some of these modalities can even be body-relative
(Battaglia-Mayer et al. 2003; Buneo et al. 2002). These different representations
enable humans to perceive and control their own body with a manifold of different
variables, frames of reference, and modalities, thus enabling the pursuance of multi-
modal goals.

3.2 Modularity and Hierarchy for Planning and Control

It is generally assumed that motor planning is a hierarchically organized process,
in which higher-level intentions are transformed into lower-level motor control
signals (Butz et al. 2007; Hoffmann et al. 2007b; Rosenbaum et al. 1995). According
to several models, moving the hand to a desired position is realized by first mapping
the extrinsically encoded desired position of the hand onto corresponding body
postures. These body postures are then further transformed into a sequence of motor
commands (Butz et al. 2007; Rosenbaum et al. 1995). This notion is supported by
neurophysiological evidence, which shows that motor cortical neurons partly encode
final movement postures. Thus, reaching an extrinsically encoded goal requires
the re-encoding of that goal in different sensory modalities. Additionally, the
memory representation, planning and execution of sequential movements is orga-
nized hierarchically (Rosenbaum et al. 1984, 1983; Schack and Mechsner 2006).
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Multimodal coding of goals may also be helpful to control movements. As it has
become apparent above, the physical properties and the neural circuitry in the
spinal cord operate as feedback loops and thus may alleviate the central nervous
system from precisely monitoring and regulating the states of individual muscles.
This results in a cascade of nested feedback loops with different feedback delays
(Hoffmann et al. 2007a; Koechlin and Summerfield 2007), which control the
unfolding movement concurrently.

Besides the brain, spinal neurons and the properties of the muscles and the body
also facilitate movement control (Loeb et al. 1999; Shadmehr and Wise 2005).
The physical properties of muscles make human movements robust to external
perturbations and facilitate control (Birbaumer and Schmidt 1996; Hof 2003).
For example, it has been proposed that a joint settles in a unique posture, given
a specific combination of activation in the attached muscles (Bizzi et al. 1976;
Polit and Bizzi 1979). Finally, body geometry and joint function have evolved to
enable and facilitate ecologically crucial behavior, such as locomotion and visually
guided manual actions. While these geometrical and physical features stabilize
human movement, spinal networks may also partially compensate for external
perturbations and support the central nervous system computationally (Adamovich
et al. 1997; Feldman 1966; Feldman and Levin 1995; Mussa-Ivaldi and Bizzi
2000; Mussa-Ivaldi et al. 1994). Thus, modularity and hierarchy play crucial roles
in motor planning and control beyond the borders of the central nervous system
(Loeb et al. 1999).

4 Modular and Hierarchical Models

In the previous sections, we identified sensory redundancy, motor redundancy, and
uncertainty as factors that deem motor control a computationally daunting problem.
We argued that the modular and hierarchical organization of motor control structures
and motor behavior in the brain enables humans to deal with this complexity.
In this section, we review two computational models for arm reaching that dwell
heavily on hierarchical and modular organizations and thereby address these
problems. First, the sensorimotor unsupervised redundancy resolving architecture
(SURE REACH) is discussed, which employs a hierarchical structure to generate
dexterous arm reaching movements while coping with and exploiting sensory and
motor redundancy. Second, an even more modular architecture is introduced, which
modularly combines sensory, motor, and body schema knowledge for the generation
of accurate state representations and dexterous body control.

4.1 SURE REACH

SURE REACH is a hierarchical, modular neural network model of motor learning,
planning, and control (Butz et al. 2007; Herbort and Butz 2010). The model
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generally accounts for the relationship between behavioral flexibility, motor
planning, and unsupervised learning in human arm reaching movements. In this
chapter we focus on its hierarchical, modular structure and the resulting benefits.
For more details on the involved Hebbian-based learning algorithms and the detailed
implementation of its components, we refer the reader to previous descriptions
(Butz et al. 2007; Herbort and Butz 2010; Herbort et al. 2008).

In SURE REACH, two different sensory modalities are processed. The position
of the hand is encoded in a body-relative frame of reference system akin to visual
input. The posture of the arm is encoded in a proprioceptive frame of reference
system. Both modalities are represented by distinct populations of neurons, where
each neuron is tuned to a particular hand position or posture (Fig. 1). Both modalities
can be used to specify goals and to monitor ongoing movements. To plan and
execute movements, higher-level goal representations, such as visually encoded
goals, have to be translated into motor commands.

Two learned internal models achieve the necessary transformations to realize
dexterous motor control. A kinematic model maps hand positions onto postures
(in SURE REACH, this model is called posture memory, Fig. 1). The model
connects hand space with posture space, encoding the redundancy of the controlled
arm. Second, a sensorimotor model encodes how different actions (i.e. activations
of muscles) affect the arm state. This model is used to generate a movement plan,
which associates different arm postures with those motor commands that move the
arm closer to the goal. As this structure ultimately controls the movement of the arm,
this part of the model is referred to as motor controller. Both internal models are
realized by single-layered associative neural networks. They are trained by means of
Hebbian learning. As both internal models may encode one-to-many mappings, they
can encode motor redundancy, which is resolved explicitly during motor planning
or implicitly during action execution.

Consider the execution of an arm movement toward a desired hand position.
In this case, the desired hand position is encoded in hand space. Using the posture
memory, the hand position is transferred into a representation of all those arm
postures in which the end-effector of the arm (the hand) happens to reach the
desired position. Thus, the goal has been transformed from an extrinsic code to
a proprioceptive representation that conserves motor redundancy. Next, a motor
plan is generated by an adaptive planning mechanism (a form of neural dynamic
programming, see Butz et al. 2007 for details). Using the posture space representa-
tion of possible desired end-postures and the sensorimotor contingencies encoded
in the sensorimotor model, the planner generates a mapping which determines an
optimal motor command for each possible posture that the arm could assume.
Executing the successive motor commands moves the hand to the goal location on
an approximately optimal trajectory dependent on additional constraints. By default,
a movement is executed that reaches the goal as fast as possible.

To reach the goal, the arm posture is continuously forwarded to the neural
structures that support the motor plan (motor controller). These neural structures
then, in turn, provide updated motor commands.
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Fig. 1 The sensorimotor unsupervised redundancy resolving architecture SURE REACH is hier-
archically structured. The architecture enables the processing of multimodal goals (e.g., visual
and proprioceptive) and constraints (e.g., obstacles, posture constraints, and movement costs) and
can thus generate highly dexterous environmental interactions. Visual error feedback continuously
adjusts the internal goal state to minimize the final error. Proprioceptive feedback is used for
continuously updating the posture state estimate

As mentioned above, the modular structure of the model can also accommodate
additional goal constraints. Consider the example of pointing at something.
In this case, an extrinsically defined constraint (where to point) and a
proprioceptively defined constraint (align forearm and hand) have to be integrated.
The SURE REACH model can integrate multimodal constraints because the goal in
hand space is converted into a redundant goal representation in posture space. From
these potential goal postures, postures can be selected that match the additional,
proprioceptively-defined constraint. Given the resulting more restricted set of
potential end postures, further motor planning can proceed. Figure 1 illustrates
this process.
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Similarly, other constraints can be taken into account, such as the anticipated
requirements of subsequent movements (Herbort and Butz 2007). Due to the
redundancy encoded in the sensorimotor model, movement plans can be generated
that also avoid movements of specific joints (Butz et al. 2007). Additionally, visually
or proprioceptively encoded obstacles can be avoided by biasing the generation of
the motor plan (Butz et al. 2007). In all these examples, the encoding of redundant
sensory channels and the encoding of motor redundancy enable the integration of
goal constraints from multiple modalities, projected into the posture space modality.
The architecture essentially shows that a hierarchical, modular structure can account
for dexterity.

As in any motor controller, the motor commands generated by SURE REACH
may be incorrect, for example, due to insufficient training of the internal models
or due to motor noise. Also, goals may change during actions. Thus, mechanisms
to monitor the progress of the movement and adjust actions accordingly have to
be integrated. On the lowest level, the motor controllers map the continuously
updated arm posture onto suitable motor commands, thus causing the arm to
move until an acceptable end-state is reached. Additionally, visual feedback can
be used to regulate movements, consequently controlling the arm at multiple levels
(Herbort et al. 2008). In this case, the postural feedback loop is nested into a visual
feedback loop, which may adjust the internal visual hand goal representation when
an error is detected. For example, if the hand is to the left of its desired position,
the internal hand goal representation is shifted to the right. This altered internal
goal representation is then projected via the internal models as before, resulting in
an altered proprioceptive goal representation, which causes the adaptation of the
movement plan, which ultimately causes corrective movements. As corrections to
visual errors are recoded into proprioceptive representation, it is possible to maintain
postural constraints while adjusting the position of the arm.

In sum, SURE REACH is structured in a modular, hierarchical fashion, enabling
flexible and robust control. The modular organization of the sensory representations
enables the integration of multimodal goal representations for the generation of a
coherent motor plan. The hierarchical organization enables the usage of propriocep-
tive and visual feedback in parallel, without compromising goal constraints defined
in either modality. SURE REACH shows that a modular neural architecture enables
dexterous motor planning and control. The system was also successfully applied to
control a dynamic robot arm with underlying PD-based dynamics control (Herbort
and Butz 2010) and it was combined with a motivational architecture, confirming
that the coupling with an independent payoff module is possible (Butz and Pedersen
2009).

Nonetheless, there is a rather significant restriction to SURE REACH, which
is the population-encoded representation. Since posture space and location space
are encoded by distributed neural fields with local neurons, the granularity of
the neurons is inevitably restricted. Particularly in posture space more degrees
of freedom, such as the seven-dimensional human arm, yield huge populations
of neurons, even if each sub-space is covered with rather large receptive fields.
Computationally, the spatial requirements of a grid-based population code, as used
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in the original SURE REACH architecture, scale exponentially in the number of
degrees of freedom covered by the code given a constant number of neurons
per dimension. More suitably distributed encodings may alleviate some of the
computational burden, but cannot overcome the exponential scalability problem.
Thus, further modularizations of SURE REACH are inevitable. The following
subsection sketches-out an approach we are currently pursuing.

4.2 Modular Modality Frame Model

Since SURE REACH encodes the posture space with a single population of
neurons, the number of neurons necessary to cover the whole space with an
equal number of neurons per dimension grows exponentially with the number of
degrees of freedom. Thus, although this encoding provides a representation that
enables dexterous motor control, the representations used by SURE REACH are
computationally very expensive given higher degrees of freedom.

To cope with this scalability problem, we recently introduced the Modular
Modality Frame model (MMF)—a model that splits the posture space into inter-
acting modules and thus builds a modular hierarchical representation on several
levels. We term each module in the resulting architecture a modality frame,
denoting a spatial representation that is tied to a particular modality (e.g., vision
or proprioception) and a frame of reference (e.g., head-centered or limb-centered).
Further modularization applies because modality frames exist for each body part.
For example, the seven-dimensional posture space of a humanoid arm is split into
three two- and three-dimensional spaces.

This modularization overcomes the scalability problem and has additional
features, such as improved noise robustness and automatic detection of sensor
errors, as detailed below. Adaptability in movement planning, however, becomes
more challenging because of the model’s local nature of the posture space. For the
present, we use an explicit model of the arm and disregard the learning challenge.

4.2.1 Modular Modality Frames

While SURE REACH distinguishes only between a hand location space and an
arm posture space, MMF represents each limb and joint separately in four different
frames of reference and modalities. The model incorporates the forward and inverse
kinematic mappings of SURE REACH, but it applies them locally to the kinematic
chain of the represented arm. Moreover, the local constraints of the kinematic arm
chain are considered. Figure 2 illustrates the different modality frames considered
in MMF. Two sets of modality frames use a reference frame that is centered at
the shoulder (global location and global orientation), while the two other sets
use arm-relative frames of reference (local orientation and local angles). The first
frame encodes a “visual” frame by specifying the end-point of a limb segment in
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Fig. 2 Different frames of reference are encoded for each limb (Limb 1 in black, Limb 2 in dark
gray, and Limb 3 in light gray) in MMF. Joint locations (dotted arrows) and limb orientations
(dashed arrows at origin) are represented shoulder-centered. Moreover, limb orientations are also
represented relative to the previous limb (solid arrows on arm). Finally, joint angles are encoded
(curved arrows)

a shoulder-centered 3D-Cartesian frame of reference. Limb orientation, which is
composed of a direction and a vector perpendicular to the direction, is encoded in a
shoulder-centered frame of reference. Since only unit vectors are encoded and both
vectors of the orientation are perpendicular to each other, the orientation frame is
also three dimensional. The two other frames encode limb orientations relative to
the next upper limb (e.g., forearm orientation relative to the upper arm orientation)
and joint angles. The upper arm (black), forearm (dark gray), and hand (light gray)
are modeled as segments.

The body state is represented modularly with respect to both, different body
segments and different modality frames. Connections between these modular
modality frames form a graph that constitutes the forward and inverse kinematic
mappings as well as dependencies along the kinematic chain (cf. Fig. 3). The
mappings between the modality frame modules are shown in Fig. 3, where the
number of equally-colored incoming nodes determines the complexity of the
respective mapping. Note that the state of any arm segment in any frame depends
only on frames of the same or the previous segment at the moment. Across all
arm segments, the whole architecture implements a hierarchical modular arm state
representation, which can be used for both body state maintenance and planning.

4.2.2 Body State Maintenance

Current research in robotics stresses the importance of utilizing statistical methods
to deal with noise and to process information effectively (Vijayakumar et al. 2009).
In MMF, both mean and variance estimates from every module are transformed
to every other connected module. The transformed state and variance estimates
from the other modalities form multiple inputs, which are weighted based on
their variance estimates. This process is shown on the left-side of Fig. 4. Recently,
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Fig. 4 Data flow in the filter system. For each joint and time, the states and variances are first
transformed from each modality frame to all others. The movement is then added and the estimated
states and variances are finally combined with the current respective measurements

we have also added an online comparison mechanism, which estimates the plausi-
bilities of each sensory information in comparison with the other available sensors
using Bayesian principles (Ehrenfeld and Butz 2013). In result, the system is
able to identify unexpectedly noisy sensors as well as faulty sensors, effectively
downscaling the very noisy or approximately ignoring the faulty information,
respectively.
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Once the states of all modules are exchanged, the movement can be planned
by comparing the new estimated state to the goal in its respective modality frame.
Given a current movement command, a forward model predicts the expected sensory
consequences in each module. This prediction of the reafference (von Holst and
Mittelstaedt 1950) is then used to filter the consequent sensory information. This
process is displayed in the center and on the right side of Fig. 4. All three stages are
applied successively, effectively maintaining the body state over time in a highly
distributed fashion. At the moment, the filtering stages are realized with local
Kalman filters, but any other filtering technique may be applied.

4.2.3 Movement Planning

The presented model generally allows for the definition of goals in arbitrary
modality frames and separately for each body segment. In each modality frame, the
goal is compared with the estimated body state resulting in a difference vector. This
difference is then projected into the corresponding angular modality frame. A simple
kinematic, step-wise motor controller converts the desired angular change into step-
wise angular adjustments. The inclusion of more distributed planning processes for
the flexible avoidance of obstacles or for the incorporation of additional movement
or posture constraints is currently being pursued. In the following, we focus on
exemplary performance on the arm state estimation while moving the arm to a goal
location.

4.2.4 Exemplar Performances

To illustrate the current capabilities of MMF, we show performance in two setups
with faulty sensors. We averaged results over 150 runs. The controlled, simulated
arm had three limbs with a limb length of 0:5 units each. Each joint had three
degrees of freedom with unrestricted rotation options. Goal-directed movements
were executed with a maximum angular velocity of 0:05 � p3rad per iteration per
arm limb. The recorded results were gathered from exemplary motion trials where
the arm moved from a random start posture to a random goal posture.

Two forms of Gaussian noise were present: velocity-dependent motor noise and
sensor noise. Motor noise had a standard deviation equal to the velocity. In Setup
A, we set the orientation-sensor’s standard deviation to 0:1 and the angular-sensor’s
standard deviation to 0:1rad per dimension. Moreover, the global end-point sensor
was more accurate with a standard deviation of 0:01 in units of limb length.
To model sensor failure, an offset equal to 0:5 limb length units was applied to
the second dimension of all three global location modality frame sensors from time
step 10 until time step 50. In Setup B, we set the sensor noise standard deviations
to 
 D 0:1 in all modality frames (in units of limb length, dimensionless, or in rad).
While thus the sensor noise in the global location frames was even higher in Setup B,
we also increased the sensor failure in Setup B: besides adding an offset of 0:5 limb
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Fig. 5 Setup A: The plausibility estimates of the global location sensor (left-hand side) show that
MMF identifies the faulty sensor very well, consequently decreasing its state estimation influence.
In consequence, an arm state estimate with significantly lower error than without plausibility
estimate is maintained (right-hand side). Without sensor failure, the addition of the plausibility
estimate does hardly have any negative impact (right-hand side). Error bars show the estimated
standard deviation computed over 150 independent runs

length units to the second dimension of all three global location modality frame
sensors, we also added an offset of 0:5rad to the second dimension of all three
angular modality frame sensors. Again, these offsets were applied between time
step 10 and time step 50. Each modular modality frame of MMF was informed
about the noise settings in both setups but not about the offsets.

Figure 5 shows the resulting plausibility estimates and mean absolute errors of
the global location modality frame in Setup A. MMF can handle this case very well,
effectively ignoring the location sensor during its failure. An accurate arm state
estimate is consequently maintained over time. Albeit this estimate is worse than
when no sensor failure is encountered, it is still much less error prone than when
MMF does not compute sensor plausibilities.

In Setup B, noise was even stronger than in Setup A. Figure 6 shows that MMF
is still able to detect the sensor failure, consequently downscaling the plausibility
of the faulty location sensor (the plot for the angular sensor looks similar). Still,
the state estimate encounters a larger error due to the double sensor failure.
This failure is, however, lower than when plausibilities are not estimated. Note that
the large standard deviations are partially due to the random start and goal posture
selections in the conducted 150 independent experiments. When the sensor offsets
are not applied, MMF without plausibility estimates performs slightly better. This
was expected, because the plausibility estimates inevitably are prone to noise and
thus disrupt the sensory information slightly when it fits perfectly with the prior
sensor noise estimates given to the system.

The usage of probabilistic representations together with the combination of
multiple modalities both for sensors and state estimates yields many benefits. In the
results above, we have shown that sensor failures can be detected effectively. Also
highly noisy sensors can be identified with similar techniques (cf. Ehrenfeld and
Butz 2013). Moreover, high noise robustness and efficient integration of information
has been shown as well as the ability to avoid linearization errors (Ehrenfeld and
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Fig. 6 Setup B: Given the concurrent failure of the two sensors during iteration 10 and 50, the
plausibility estimates of the global location sensor (left-hand side) show that MMF identifies
the faulty location sensor still very well. Due to the double failure, the error of the end-point
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(right-hand side). Due to the increase in noise compared to Setup A, the computation of the
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Butz 2011). Knowledge can generally be exchanged interactively across modalities
and even across arm limbs. Goals or constraints that are defined partially in any
combination of modality frames can be easily implemented. The computational
complexity scales linearly with the number of joints. At the moment, we are working
on adding distributed population codes in each modality frame to enable more
distributed planning, and thus to achieve the dexterous motor control capabilities
of SURE REACH in bodies with even more degrees of freedom.

5 Discussion and Conclusion

Given the complexity of the task to control the human body, and the high accuracy
and flexibility that humans achieve, modeling human behavior is a daunting
challenge. We reviewed how the brain achieves this performance and conclude
that the problems can only be solved by a modular, hierarchical control structure.
Several computational models embrace this notion. Based on our work on modeling
human arm reaching, we showed that goal-directed movement execution can be
effectively controlled by a modular, body schema-based processing and control
architecture, which we called the modular modality frame model (MMF). In this
model different sources of information can be effectively exchanged or integrated,
flexible and highly complex planning can be accomplished, and uncertainties can be
resolved. While MMF is certainly an interesting achievement, we believe that it has
the potential to be combined and enhanced in various ways.

So far the forward and inverse kinematics in MMF are hard-coded and are
assumed to be exact. If the body kinematics were not exactly known, uncertainty
estimates may be added to the kinematic-based transformations in MMF. The
mappings could also be learned, as was done in the less modular SURE REACH
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architecture introduced above. On the other hand, so far the mappings only take
dependencies downwards the kinematic chain into account. For example, highly
accurate information about the location of the hand does not influence the elbow
location estimate at the moment. Such backwards estimations may make the model
even more robust and enforce even further consistency of the body state estimates.
Moreover, such capabilities seem mandatory to model bodily illusions, such as the
rubber-hand illusion (Botvinick and Cohen 1998).

Besides these mapping-related aspects, several other additions to MMF may
be considered. Sensory delays may need to be handled in an actual robotics
architecture. Also, system dynamics may need to be accounted for, and force control
as well as task-oriented compliances deserve further consideration. As sketched out
above, the brain clearly implements a hierarchical control architecture starting
with low-level, closed-loop muscle control to abstract, high-level planning.
SURE REACH and MMF currently only distinguish location, orientation, and
posture spaces for planning and control. Additional control levels may be added on
both sides of the spectrum. Further control particularizations are needed for coping
with system dynamics, such as forces and unexpected perturbations. On the other
hand, further abstractions and goal sequencing may allow the realization of more
complex and more dexterous object manipulations.

For the latter case, the encoding of more complex motion sequences and the goal-
oriented coordination of such sequences seem to be of vital importance. We believe
that MMF provides the framework to apply such motion sequences selectively to
task-relevant modality frame modules. Such a combination could, for example,
enable the system to use the elbow instead of the hand to push down a handle.
Besides, movement is not only our way to manipulate objects in our environment
but also our means of social communication. Body language, facial expressions, and
speech are all essentially motor actions. It has been proposed that abstract cognitive
processes, such as social interaction or object categorization, are grounded in motor
processes. For example, motor simulation could be used to understand the intentions
of other humans (e.g., Gallese and Goldman 1998), to predict events in the world
(e.g., Schubotz 2007), or even to form the basis for the evolution of cognition
(Cruse 2003). Even though such simulation accounts are most likely insufficient
as a general account for all cognitive capabilities, these approaches give hints as to
how abstract cognition may be grounded in basic motor processes (Barsalou et al.
2007; Jacob and Jeannerod 2005; Keysers and Gazzola 2007; Saxe 2005).

A computational model that links motor processes to more abstract processes is
the hierarchical MOSAIC (modular selection and identification for control) model
(Wolpert et al. 2003). The model assumes that multiple controllers for different
tasks exist in parallel in the brain. Each module can be an internal forward model
representing a specific context, or a motor action. A predictor is linked to each
module, and multiple predictions of the dynamics and behavior of the body are
generated and can be compared to sensory measurements. The distance (error)
of the predictions from the measurements give the probability that the simulated
modules coincide with the actual context or movement. Thus, each predictor is a
hypothesis tester for its module. For example, by picking up a glass and comparing
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the predicted with the actual sensory feedback, the amount of liquid in the glass
may be estimated (cf. also Roy et al. 2006, where an approximate object weight
was determined by that principle). Of course, the MOSAIC model can also be used
for movement adjustments. In that case, different actions serve as modules and the
difference of the predictions from the sensory feedback result in probabilities for
action activations.

It is even more interesting to model the state of other people and to understand
their actions. First, only a visual input is available in this task. Thus, it has to
be converted into a suitable representation, e.g. to joint angles. Second, multiple
modules, which may induce different actions, have to be simulated. Their outputs
serve as inputs to their respective predictors and the predictions are compared to the
converted sensory input. The errors give matching likelihoods back to the respective
modules. Modules with high likelihoods then can form a symbolic code of the
actor’s state. Thus, observing a continuous body trajectory can be converted into
a symbolic stream of module activities. The symbolic stream does not store the
entire trajectory as it has a lower dimension than the actual movement. But the
body models differ between different people, and the movement is represented in
the observer’s model. Both influences lead to errors in the estimates about the motor
commands the actor actually activated. Third, to be able to understand the actor,
the model activities may be sufficient to derive the actor’s intentions, since each
available module is tuned to accomplish a specific task. Thus, the goals of the task
may be deduced, depending on the current context and the derived module activities.
If the observer wants to not only understand the actor but also to imitate him,
he may actually invoke his own corresponding modules and replace or adapt his
usual sequence of module activations according to the observed one.

To allow for generalization and the ability to generate a large variety of desired
movements even under changing environments and contexts, the MOSAIC model
has to be embedded in or extended to a hierarchical structure. Haruno et al.
(2003) discuss a hierarchical MOSAIC model consisting of several MOSAIC layers.
Between these layers, information can flow bi-directional. Along the bottom-up
direction, lower levels provide a posterior probability that encodes which modules
are selected given the behavioral situation. This posterior probability serves,
together with an abstract symbolic desired trajectory, as an input for higher levels.
Along the top-down direction, higher levels can force prior probabilities on lower
levels. These prior probabilities are chosen by the motivation to achieve a desired
behavior. Higher levels can also learn to predict the posterior probability of lower
levels after the next time step. This provides a bi-directional interaction, both during
learning and during control.

As a next step towards dexterous environment manipulation and possibly even
social communication, we thus propose to combine the strengths of the hierarchical
MOSAIC architecture with the MMF detailed here. The MMF has the advantage
that multiple representations of interactions coexist and can be selectively recruited
for task-specific simulation, reproduction, and possibly even comprehension. The
recent work of Calinon and Billard (2009) shows that only a few trials may
be necessary to actually identify the frames of reference necessary to realize a
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particular imitation. Within the MMF, not only posture or location space may be
identified as relevant, but also potentially the selective responsibility of particular
limbs or joints, or even the exchangeability of them. Thus, future research promises
novel discoveries in cognitive modeling and the development and understanding of
abstract cognitive processes, grounded in highly modular and hierarchical dexterous
control architectures.
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Abstract Humans (and robots) interacting with the environment have to deal with
a continuous stream of sensory inputs in an incremental fashion. Such systems
face two fundamental issues: (1) they must acquire new skills in a cumulative
fashion, that is exploiting previous knowledge to learn new behaviors, and (2) they
must avoid the so-called catastrophic interference, where learning new knowledge
destroys existing memories. Here, we analyze the problem from the perspective of
biological motor control. We first review experimental results of consolidation of
procedural memories and the factors affecting it. Then the problem of generaliza-
tion and interference is examined together with some interpretations in terms of
computational models. Finally, we present some possible approaches to the issue
of learning multiple tasks while avoiding catastrophic interference in bio-inspired
learning architectures.
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1 Introduction

The aim of this chapter is to provide an overview of some insights on the issue
of consolidation, generalization, and interference of procedural memories provided
by recent studies in motor learning. Understanding the brain mechanisms involved
in consolidation of a newly acquired skill and how this is integrated with previous
knowledge represents a major challenge in neuroscience. Can we draw inspiration
from the consolidation processes implemented in biological brains for learning and
generalization to design computationally efficient learning algorithms? Multiple
research areas could benefit from investigating this issue: as an example, neuro-
rehabilitation could design more efficient training to maximize the effect of a
therapy on a patient; robotics can draw inspiration for the development of algorithms
with greater generalization capabilities to successfully cope with unstructured
environments, as is desirable for robots working in close contact with humans (e.g.,
humanoid robots). The results of these studies, together with the computational
models developed so far in the field of motor control, suggest some directions
for future work in the design of bio-inspired controllers that need to cope with
the problem of acquiring multiple motor skills, during interaction with a variable
environment. To this purpose, robotic platforms are going to provide a useful
benchmark to test neuroscientific theories (Rucci et al. 1999; Cheng et al. 2007).

The chapter is organized as follows: Sect. 2 reviews findings about consolidation
of procedural memories and the factors affecting it; Sect. 3 contains an overview
of motor learning studies addressing the issue of generalization and interference;
Sect. 4 concludes the chapter by describing the computational approaches proposed
in the computational neuroscience and robotics literature to face the problem of
learning multiple motor tasks and suggests some future research directions.

2 Consolidation of Procedural Memories

How the brain acquires and retains multiple motor skills is a major topic of research
in neuroscience that has been studied from a number of different viewpoints. It is
common evidence that we never forget how to drive a car or how to ride a bicycle.
Also, new skills can be acquired apparently without interfering with memories of
previously learned skills. This form of memory is defined as procedural memory, in
contrast to the memory for facts or events which is broadly defined as declarative.
While a complete description of the memory systems is beyond the scope of this
chapter, it is worth mentioning that the two forms of memory are thought to rely on
different neural structures. Indeed, patients with lesions of the medial temporal lobe
(e.g., the hippocampus) are able to acquire novel motor skills, despite being unable
to form any semantic or declarative memory. The case of patient HM is paradigmatic
for this result (Corkin 1968; Scoville and Milner 1957). Procedural memories are
instead thought to rely on the striatum and the cerebellum.
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Fig. 1 Experimental paradigms used to assay motor learning and consolidation of motor memo-
ries: (Left, top) In dynamic adaptation, reaching movements to a target (blue circle with a cross) are
perturbed by a force field generated by a robotic manipulandum (not shown), so that trajectories
are initially curved (blue dotted arrow). At the end of learning, subjects are able to compensate for
the force field imposed by the robot so that trajectories become straight as in unperturbed reaching
(red dotted arrow); (Left, bottom) in kinematic adaptation a visual shift between the position of
the hand and that of a displayed cursor is produced (for example through prism goggles), so that
subjects have to form a new map between motor commands and hand positions. (Right) Finger
tapping task used to assess consolidation of sequences. Subjects are required to press the keys
according to a specific sequence as quickly and accurately as possible. Reprinted by permission
from Macmillan Publishers Ltd: Nature Reviews Neuroscience (Robertson et al. 2004a), copyright
2004 and (Walker et al. 2003), copyright 2003

Despite the apparent ease in the acquisition of new abilities, studies on
consolidation of motor tasks have produced a wide range of results with sometimes
controversial interpretation, such that the neurobiological and computational
mechanisms underlying it are still far from being completely understood. Motor
learning is typically assayed through two experimental setups: one involves adaption
to a dynamic or kinematic perturbation produced by a robotic device (or by prism
goggles) during reaching movements to targets. Subjects will produce curved
movements in the first trials, but through practice they will form a new mapping
(i.e., an internal model) between sensory and motor commands so that they will
finally produce straight trajectories as in the unperturbed environment (Fig. 1, left).
The other paradigm used is the finger tapping task, where subjects learn to type a
sequence on a keypad as fast and accurately as possible (Fig. 1, right). Sometimes
this task is also referred to as the Serial Reaction Time (SRT) task, that includes the
association between a visual cue presented on a screen with each of the buttons of
the keypad (Robertson 2007).
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Consolidation is assessed by measuring savings for the newly acquired motor
task as well as its robustness to interference with another task. Savings represents a
reduction in fragility of a memory (memory stabilization) and can be measured as
an improved performance compared to naive subjects at the beginning as well as at
the end of a new practice session (Fig. 2, right). Also, the rate of relearning can be
higher compared to the rate of original learning. Savings are demonstrated also for
simple reflexes such as eyelid conditioning (EC) in which a conditioned stimulus
(CS, e.g. tone) is paired with an unconditioned stimulus (US, e.g. air puff) such that
after learning, the CS will produce a conditioned response (CR) before appearance
of the US. Extinction of the CR requires undergoing a few trials of the CS without
the US, but relearning the association is faster than the first time and thus shows
savings (Medina et al. 2001).

There is also ample evidence that sleep and time play an important role in
consolidation of some tasks. Performance on short sequences of finger movements
(finger tapping task) proved to increase, after a night of sleep, with respect to the
previous performance at the end of learning. In contrast, these improvements were
blocked when subjects learned a different sequence before sleep (Walker et al.
2003). This phenomenon is also known as off-line learning, that is the improvement
of a skill attained when the skill is not practiced (Fig. 2, left). Off-line learning is
not always sleep-dependent. In a rotary pursuit task, where subjects were required to
hold a stylus on a rotating target for as long as possible, improvements occurred after
a 15 min rest between two consecutive sessions. Such improvements are blocked if
subjects learned another version of the task before resting, which rules out effects
of fatigue as a possible cause of improvements (Eysenck 1965).

Consolidation seems to be sleep dependent in two cases: one is awareness of
the task, for example by introducing a cue to signal a specific sequence of finger
movements (Robertson et al. 2004b); another is integration of multidimensional
cues (Spencer et al. 2006). In contrast, studies on kinematic and dynamic adaptation
show no off-line learning at all. It has to be noted that one main difference with
respect to a finger tapping task is that subjects will not be exposed to the perturbation
anymore at the end of the experimental session, that is they will move in a non-
perturbed environment. Indeed, as detailed in the following section, these tasks have
been designed so far to assess stability of motor memories as well as generalization
of a novel visuomotor transformation.

Finally, stabilization of a memory trace is also measured in terms of resistance to
interference to a novel task or a variation of the original task. Typically subjects are
trained on a task A and then on a novel task B. After a specific time interval they are
re-tested on A to assess savings of initial learning. Performance on re-test on task A
can be impaired by two possible causes: one is retroactive interference, that means
learning of B has disrupted the initial learning of A; the other is a proactive source
that is learning of task B interferes with relearning of task A (Fig. 3). In other words,
proactive interference impairs the retrieval of memory of A because of learning B
and can be prevented by washout of the learning of B (i.e., executing trials in a
non-perturbed environment to cancel aftereffects of learning B) (Krakauer et al.
2005).
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Fig. 2 Procedural consolidation can be measured either as an improvement over time when
the skill is not practiced (Off-line improvement, left, blue line) or as a stabilization of the
memory for that skill, such that performance continues to improve in the second practice
session (memory stabilization, right, blue line). If memory for the task is disrupted, for example
by applying transcranial magnetic stimulation (TMS) at the end of a training session (curved
arrow), then the improvements are no longer observed (orange lines). Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature Reviews Neuroscience Robertson et al. 2004a,
copyright 2004

Proactive interference

Retroactive interference

A1 A2B

Fig. 3 Retroactive and Proactive Interference. Retroactive interference causes disruption of initial
memory of task A because of learning of task B. Proactive interference causes impairment on
the retrieval of memory of A induced by learning of B. Reprinted by permission from Macmillan
Publishers Ltd: Nature Reviews Neuroscience, Robertson et al. 2004a, copyright 2004

3 Interference and Generalization in Biological Systems

In the last two decades, studies on reaching tasks with robotic devices have offered
insights into the possible mechanisms underlying learning, generalization, and
consolidation of motor memories. Two main theories were proposed to explain
how the Central Nervous System (CNS) might generate fast reaching movements.
The equilibrium point hypothesis suggests that the CNS relies on the spring-like
properties of muscles and peripheral reflex loops that pull the joints back to an
equilibrium posture. Such posture is thus determined by the muscles co-contraction
level as well as by the reflex gain. By changing these parameters, a movement
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could be generated through a sequence of equilibrium positions (Bizzi et al. 1984;
Feldman 1966; Hogan 1984). In order to generate fast reaching movements as
the ones observed experimentally however, the mechanical stiffness of the arm
should remain quite high, which is not the case for the execution of well-practiced
movements (Gomi and Kawato 1996). The internal model hypothesis, on the other
hand, suggests that learning occurs via formation of an internal representation of
the kinematics and/or the dynamics of the body and/or the world. Internal models
allow the prediction of sensory consequences of motor commands (forward models)
as well as the computation of the required motor commands to execute a planned
trajectory (inverse models) (Kawato 1999). Internal models can be exploited by the
CNS in a number of ways, including compensation for delayed sensory feedback,
integration of noisy sensorimotor information and sensory cancellation mechanisms
(Shadmehr et al. 2010). Importantly, stiffness of the arm could remain low during
the execution of the movement, which resembles the experimental observations.

Such studies also highlighted how catastrophic interference can stem from
practice of multiple motor or visuomotor adaptation tasks. A summary of key
findings is given in Table 1. For instance, after an internal model of a force-field
(A) is learned, it can be recalled in the future. However, savings are prevented if,
after learning A, an opposite force-field B is presented to the subject, no matter
what the time interval between A and B (Caithness et al. 2004). However other
studies reported different results, showing that the presence of “catch trials,” i.e.
trials in which the force-field is unexpectedly turned off, produced savings of A
(Overduin et al. 2006). Interestingly, a unifying view has been recently proposed
that motor learning can be the result of multiple systems learning in parallel at
different timescales. Here, a fast process yields not only rapid learning but also rapid
decay; a slower process requires more trials for a given amount of adaption but it will
decay slowly (Huang and Shadmehr 2009; Smith et al. 2006). A possible motivation
is that the brain estimates how likely it is that the environment will change over
time. Such an estimate will influence memory decay for that context. Thus, the goal
of the learner is to estimate the most likely timescale which caused the observed
error. For example, a fast timescale disturbance can be related to muscle fatigue,
while a slow timescale disturbance can be due to illness or age-related growth
(Kording et al. 2007). Criscimagna-Hemminger and Shadmehr (2008) assayed
decay of motor memories when subjects learned a single force-field A, or when
they learned A followed by a brief exposure to an opposite force-field B. At the
end of training, memory of the task is measured through error-clamp trials, that is
the robot constrains the subject to move into a virtual channel while recording the
lateral forces she exerts. This prevents relearning of the force field and at the same
time allows to measure the amount of remaining memory, when subjects are re-
exposed to the task (reactivated memory). Results showed that memory of A and B
both exist and can be decomposed into a fast and a slow state: the fast state is highly
sensitive to errors but has poor retention, while the slow state has poor sensitivity to
errors but shows large retention. Additionally, fast states are gradually transformed
into more stable states and depending on whether the subjects are exposed (active
state) or not (inactive state) to the task, the memory will display different decay
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Fig. 4 Generative model of decay of motor memories made up of 2 states (fast and slow) and two
working conditions (Active and Inactive memory) (Criscimagna Hemminger and Shadmehr 2008).
Aa is the transition matrix for the active state (memory decay during reactivation, i.e. error-clamp
trial); Ai is the one for the inactive state (memory decay with time, i.e. subjects not engaged in the
task). Ai is non-diagonal to account for the result that an initially fast memory gains stability with
passage of time. The observation is the position of the hand in the perturbed environment

rates. They used a two state (fast and slow timescale) linear generative model for
each condition (active and inactive state) to fit decay of motor memories obtained
from experimental data (Fig. 4).

We must always expect some interaction between previous learning experiences
and learning a novel task. Generalization refers to transfer of knowledge from
previously acquired skills into a new context: sometimes learning one task makes it
easier to learn another, such as the ability to drive different cars after having learned
to drive one; on the other hand learning to play badminton might produce unwanted
generalization if we want to learn tennis. Bayesian models constitute a principled
way to update previous knowledge when new evidence is observed and can be used
to compute optimal decisions in the face of uncertainty. It has been proposed that the
brain performs Bayesian inference to estimate the sources of errors and thus update
internal models (Berniker and Kording 2008; Wei and Kording 2009). According to
the same framework, Krakauer and colleagues (Krakauer et al. 2006) tested whether
learning of a visuomotor rotation task with the arm will transfer to the wrist and
vice versa. They found that training with the arm will benefit subsequent training
on the wrist, but not the other way around. Secondly, opposite transformations (i.e.,
clockwise and counterclockwise) can be learned without interfering with each other
as far as they are learned by separate body parts (i.e., the arm and the wrist). They
conjecture that the limb segment is a contextual cue for the task and the learner is
affected by the history of how she has used different body parts. According to these
hypotheses, they propose a Bayesian model to explain experimental data.

Additionally, several psychology studies have focused on the issue of practice
scheduling and how it affects motor retention: it is well known that, when training,
presenting tasks in random order leads to a higher retention than presenting one
task at a time (contextual interference effect). In their pioneering study, Shea and
Morgan (1979) showed that subjects who learned three rapid arm movement patterns
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under a random presentation performed better at a retention test (at 10 min and
10 days) than subjects who learned each of the three tasks in a separate training
block. The improved performance of the random group at retention occurred even
if the blocked group improved faster than the random group during training.
Also, the random group performed better both when tested in the same training
condition (random) and in the opposite training condition (blocked). The benefits of
interleaved versus blocked practice on retention were observed on multiple learning
domains, including perceptual learning (Mitchell et al. 2008) and verbal learning
(Battig 1972). Of notice, Osu et al. (2004) found that people are able to acquire
two opposing force fields when they are presented in a random order together with
contextual cues. Despite the large number of studies addressing these results, the
learning mechanisms leading to it are still a matter of debate.

Recently, the idea of structural learning has been proposed as a possible strategy
exploited by the CNS to reduce the number of control parameters that have
to be learned when experiencing new environments that share some structure
with previously encountered ones (Braun et al. 2009). Specifically, two groups
of participants were tested on reaching movements toward four targets in a
three-dimensional virtual reality environment. Each group experienced either ver-
tical or horizontal rotations, where the rotation angle changed randomly every
four reaches between �60ı and C60ı. After learning, the participants experienced
four trials in a non-perturbed environment (to cancel aftereffects from previous
trials) and finally they learned a 45ı rotation both in the vertical and horizontal
direction. Had subjects acquired the structure of the rotation (i.e., horizontal
or vertical) interference would have been reduced only for trials of the same
structure. Indeed the results showed this effect as well as that the variance of
the movements for iso-structural trials (with same structure as the one previously
learned) is enhanced, that is each group explored preferentially in the direction
of the learned structure. Thus, an interesting suggestion is that random training
reduces interference only when the practiced tasks belong to the same structure.
Hierarchical Bayesian models can provide an interesting computational tool to
develop structure learning (Braun et al. 2010) and can also be tested with robotic
platforms.

4 Multi-task Learning

In this section we want to address the general issue of learning multiple tasks in
an artificial system while minimizing negative interference between them. We will
focus on two specific aspects: first we formalize the general problem in the context
of machine learning; second, we will review how some of these issues are addressed
within the reinforcement learning literature and by models of human motor control.
The aim is to provide a reference for the development of novel strategies for
cumulative learning based on biological findings.
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4.1 Decision Theory View

The problem of learning multiple tasks poses several interesting computational
challenges. The most fundamental of these is how to detect the existence of a
new task. The second is how to share knowledge between tasks. In both cases,
there are some prior beliefs that we must necessarily rely on in order to make an
appropriate decision with respect to task learning. It is easy to see that determining
the existence of a new task must necessarily depend on how likely we think
the appearance of a new task is. Also, we must somehow quantify how useful
knowledge of one task is when attempting to learn another task. As we shall see,
there are intrinsic connections between those two aspects of our belief which are
due to the structure of the complete set of tasks. While these concepts are further
explored in Dimitrakakis (2012), this section gives a brief overview.

We begin by describing a general setting, where the agent is given a sequence
of tasks. At the beginning of each stage in the sequence, the decision maker
is given a task c 2 C and must select a policy � from a set of policies P .
Execution of the policy results in an outcome x 2 X .1 The decision maker may
have different preferences for different outcomes and policies. These preferences
will depend on the task. We can formalize this through the definition of a function
U WC �X �P !R, such that we prefer policy � to some other policy � 0, given that
the task is c and we observe x, if and only if U.c; x; �/ � U.c; x; � 0/. In the general
setting, x may be selected by another agent, or it maybe sampled stochastically
from a distribution depending on � and c. Assuming the latter setting, we will be
interested in the expected utility:

E.U j c; �/ D
X

x2X

U.c; x; �/P.x j c; �/: (1)

In particular, we define ��
c as the policy that maximizes the expected utility for task

c, so that E.U j c; ��
c / � E.U j c; �/, 8� 2 P .

In general, there is no single policy that is optimal for all tasks. However, it could
be that a single policy is nearly-optimal for more than just one task, depending on
the structure of C and U . The first important consideration is the size of C . One
may assume that the number of tasks is finite, countably or uncountably infinite.2

Secondly, we must consider how the given tasks change from stage to stage. This is
necessary if we wish to differentiate between observing a subtly different task from
a previously known task, or a slight change in the previous task. In addition, while

1The policies and the outcomes may be complex. For example, the outcomes may actually
be sequences of elementary observations, while the policies may be made up of sequences of
elementary actions.
2A set is countable if every element of the set can be associated with a natural number. An example
of countable set is the set of natural numbers N D f0; 1; 2; 3; : : :g. The set R of real numbers is an
example of uncountable set.
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we are still learning a task, we shall need to differentiate between performing badly
because we have not yet learnt the task adequately, and performing badly because
the task is novel. The above considerations are closely linked to classical problems
in statistical learning, novelty detection and outlier detection. In fact, all algorithms
that attempt to learn new tasks on the fly are implicitly making some of the above
assumptions and performing some form of novelty detection.

The next consideration is whether there is some additional structure in the space
of tasks. Ideally, we would like the set of tasks C to be equipped with some metric
	, such that the distance between two tasks c; c0 2 C is 	.c; c0/. If tasks that are
close to each other also have close optimal decision functions, then it is much easier
to learn new tasks. In fact, one may make suitable assumptions such that, if two
tasks c; c0 are close to each other, then the utility of employing the same policy �

to either task is also close. Thus, a policy which is optimal for some task c will be
nearly optimal for another task c0. One way to express this mathematically is via a
Lipschitz property on the space of tasks. If there is no structure in the problem, for
example if 	.c; c0/ D 1 for all c ¤ c0, then the amount of knowledge that can be
transferred is limited.

For each possible class of task structures there is a different class of learning
mechanisms which is optimal. An important question is whether it is possible to
find learning mechanisms that are robust across a wide variety of multi-task learning
problems. Any such mechanisms will be required to include a computation for
representing the number of tasks present, as well as its uncertainty about the number
of tasks; structures that represent the relations between tasks and how they are
selected and finally a way to construct a policy given the current knowledge about
tasks. One would expect that in different settings, different approaches for gathering
information would be required.

The connection between the value of information gathering and multi-task
problems has been recognized at least as far as the seminal work of Lindley (1956)
in the context of experimental design. Therein, the problem of obtaining as much
as information as possible, when having no particular task to perform, is stated
in statistical terms. One simple idea that explicitly connects multi-task problems
and curiosity is given in (Dimitrakakis 2012), which introduces the setting of
sparse reward processes. There, the agent is playing a multi-stage game against
an unknown opponent. The agent is always in the same unknown environment,
at each stage of the game, he is given a different task to solve by the opponent.
The paper shows that in order for the agent to perform well when the opponent is
adversarial, he must try and obtain more information about its current environment,
rather than immediately trying to obtain the available reward. Then, the knowledge
gained while performing the current task will be potentially useful in performing
further tasks. However, it is also shown that when the sequence of tasks is very
random, then no additional gain is obtained by explicit curiosity, as the agent is
always forced to explore in order to achieve the current goal.

Similar ideas are directly applicable to tasks that can be hierarchically
decomposed. There, the task space C obtains structure directly through the existence
of the hierarchy. If tasks can be decomposed into sub-tasks, then learning a given
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sub-task is potentially useful for future tasks, even performing a particular sub-task
is currently of no value to the agent.

4.2 Multiple Tasks in Reinforcement Learning

The problem of a learning agent solving multiple tasks has been explored in a
large number of studies within the area of reinforcement learning (RL) (see, for
example, Bertsekas and Tsitsiklis 1996; Sutton and Barto 1998). In the most general
form, RL describes the problem of an agent interacting with a dynamic environment
by performing actions according to the sensed information (the state). The goal of
the agent is to maximize the rewards (or minimize the punishments) delivered by
the environment as a result of its actions. Importantly, the environment does not
provide the agent with the correct actions to be performed, which distinguish RL
from supervised learning approaches. In fact, the reinforcement learning problem
can be cast in the setting discussed in the previous section. Specifically, in fully-
observable RL problems, the observations correspond to sequences of the true state
of the world, i.e. x D s1; : : : ; st ; : : :, where each state st belongs to some state space
S . A policy � maps sequences of states to elementary actions at 2 A. After an
action at is taken at time t , the agent observes a new state stC1 and obtains a reward
rtC1 2 R.

Formally, the RL problem is closely related to a class of statistical models
called Markov Decision Processes (MDPs) (see, for example, Puterman 1994). The
constituents of an MDP M are the set of possible states S , and the set of possible
actions A, as well as a transition and a reward distribution. The first specifies the
transition probabilities PM .s0js; a/ of going to a new state s0 when being in state s

and carrying out action a, i.e. stC1 j st D s; at D a � PM .s0js; a/. The second
is the distribution of rewards RM .r js; a; s0/ that are obtained for being in state s,
carrying out action a, and going to the new state s0, i.e. rtC1 j stC1 D s0; st D s; at D
a � RM .r js; a; s0/. Finally, the utility is defined as the discounted sum of obtained
rewards

P1
tD0 � t rt , where � 2 Œ0; 1� is a discount factor. Consequently, the expected

utility is:

E.U jM; �/ D E

 1X

tD0

� t rt

ˇ̌
ˇ̌
ˇM; �

!
: (2)

In reinforcement learning problems, typically PM and RM are unknown and must
be discovered by interaction with the environment. However, the general solution
methods are largely the same. In fact, in a Bayesian setting, reinforcement learning
can be reduced to an MDP (DeGroot 1970).

By looking at each MDP M as a different task, one can see (2) as a function
that gives us the value of a particular policy � for each task. Thus, the MDP
formalism is very well suited for capturing task inter-dependencies. For that reason,
solving multiple tasks has been considered in various RL scenarios. Some authors



Generalization and Interference in Human Motor Control 167

have investigated problems in which an agent is exposed to a succession of tasks
with different reward functions between tasks, while the transition function remains
constant. Similarly, other authors have considered the case in which the tasks differ
only in the underlying transition function or cases in which both the reward and
transition function change (see Taylor and Stone 2009 for a comprehensive review).
In terms of motor control experiments, different types of perturbations to which
subjects are exposed can be expressed as different transition functions. While in one
task the applied perturbation may implement a rotation C60ı a second task may
apply a rotation of �60ı degrees. Similarly, changing the target of a reach in such
experiment can be modeled as having different reward functions where reward is
given out at the goal state of the reach. In the following we will give two examples
that exemplify approaches from this literature.

The case in which the reward function changed across different tasks was
considered by Atkeson and Santamaria (1997). The transition function was constant
across all task instances and the learning agent learned a locally weighted regression
of this transition function. Whenever the agent encountered a new task, it used new
observations of the rewards together with the learned transition function to plan an
optimal policy in order to maximize its reward. Accordingly, the agent could take
advantage of the learned system transition function and then performed better than
a learner that started without prior knowledge. This advantage in performance was
seen in the initial reward, the total cumulative reward, and also in the asymptotic
performance. The specific advantage in this case was obtained because the agent
learned an explicit model of the environment, in this case the dynamics, which could
be transferred across tasks.

A different approach to building up knowledge about the structure of the
transition dynamics was developed by Ferguson and Mahadevan (2006). Here the
idea is to use the so-called proto-value functions (Mahadevan and Maggioni 2007),
which are task independent basis functions for all possible value functions on a
particular state space and the dynamics governing the state transitions within that
state space. These proto-value functions are obtained by spectral decomposition
of random walks on the state space graph. As they encapsulate the geometrical
structure of the state transition graph, they lead to the ability to transfer knowledge
and representations between related tasks. Accordingly, learning of approximately
optimal policies for new tasks can take advantage of the knowledge about the state
space that is contained in these proto-value functions.

Many more problems can be formulated, including multiple tasks resulting from
differences in the start state, the goal state, the set of available actions, or the set of
state variables. A significant example is the option framework (Sutton et al. 1999)
which is based on the use of macro-actions, i.e. sequence of actions that can be
invoked in a certain state. Concisely, an option is defined by: the option policy �0,
an initiation set I0 which is the set of states under which the option can be executed,
and a termination condition ˇ0, giving the probability of terminating the action in a
given state. Options allow to simplify the control problem and constitute a natural
way of creating hierarchies across tasks (see also Barto and Mahadevan 2003).
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Furthermore, an important distinction between different solutions to multiple
task RL is the evaluation criterion. While it may be of interest to evaluate the success
of a multiple task method by the initial offset in performance when starting a new
task, it may also be the final performance, or the total reward accumulated while
carrying out a task, or the time required to reach a performance criterion.

Finally, it is worth mentioning the link that has been proposed between intrin-
sically motivated behavior and the acquisition of cumulative skills. Although the
meaning of intrinsic vs. extrinsic rewards is not uniquely defined, psychologists
consider a behavior being intrinsic when it is not directly aimed at an explicit
external goal, but is inherently enjoyable (e.g., exploration, play). Importantly, such
behaviors can be later used as building blocks to acquire new skills that produce an
extrinsic reward.

Barto et al. (2004) showed that the introduction of intrinsically motivated actions
in an artificial agent can lead to the development of hierarchical skills. They build the
notion of intrinsic rewards on top of the option framework. These intrinsic rewards
are generated by unexpected “salient” events that allow the agent to learn basic skills
(e.g., create options); some of these skills are needed to attain the overall task (e.g.,
the extrinsic reward). An intrinsic reward is proportional to the error in predicting
the corresponding event, according to the model learned for that option (see also
Schmidhuber 1991 for a similar idea). As a consequence, when the agent is “bored”
it will be less likely that it will perform the action. Indeed, this idea is inspired by the
role of the neuromodulator Dopamine in biological systems, which is released when
an unpredicted reward is delivered. As the event becomes more and more familiar,
the dopamine burst is extinguished (Dayan and Balleine 2002). They show that an
artificial agent endowed with such intrinsic rewards is likely to acquire simpler skills
first. Subsequently, the agent can exploit some of these skills to attain the extrinsic
reward (i.e., the overall task).

More recently, Singh et al. (2010) proposed the emergence of intrinsically moti-
vated behaviors as a result of an evolved reward function. In their framework, they
perform an evolutionary search across reward functions that maximize the cumula-
tive fitness of the agent across a distribution of environments. The optimal (evolved)
reward function can lead to the emergence of behaviors that are not directly related
to the fitness function. They demonstrate the idea in a simple grid world: here an
agent that is initially rewarded for opening boxes (intrinsically motivated behavior)
could exploit such ability later, if such boxes will contain food, which increase the
fitness of the agent. Thus, although the manipulation skill is not directly related to
the fitness initially, it will later allow the agent to increase its fitness.

4.3 Motor Control Models

From a neuro-computational perspective, the problem of motor control has typically
been formulated as the learning of a mapping from some sensory space x 2 X to a
motor command y 2 Y , with y D P

i wi gi .x/, where gi W X ! Y are fixed basis
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functions and wi 2 R are adjustable parameters of the mapping (Poggio and Bizzi
2004).

Such a scheme finds a biological foundation in the idea of motor synergies, that
are a combination of a small number of muscle activations to generate the variety of
motor behaviors (Thoroughman and Shadmehr 2000). One of the biological findings
that inspired such a theory has been provided by Mussa-Ivaldi et al. (1994) and
colleagues (d’Avella et al. 2003). They showed that simultaneous stimulation of
distinct sites of the frog’s spinal cord leads to a vectorial summation of the forces
generated at the frog’s ankle by stimulation of each site separately. The idea is
appealing both for the neurobiology and the robotics domain as a way of simplifying
the control of a system with a high number of degrees of freedom. However the
existence of such motor synergies is still a matter of debate, as other studies did not
find evidence for their existence (Valero-Cuevas et al. 2009).

As a matter of fact, many models of motor adaptation assume that learning
modifies the weights wi of the basis functions gi through gradient descent. However,
training such a model over multiple patterns (tasks) will produce dramatically
different results from biological evidence. For example, as seen for the struc-
tural learning framework, training a visuomotor mapping with random rotations
facilitates acquisition of a novel rotation of the same type (Braun et al. 2009).
In contrast, adaptation of the weights wi of the model with gradient descent will
produce the average mapping to be learned (i.e., the average over all rotation
angles experienced). This is a common issue of connectionist models, known as
Catastrophic Forgetting, that is learning of new information will destroy previously
acquired knowledge. Different solutions have been proposed to the problem of
catastrophic interference (for a review, see French 1999). Some propose the use
of dual-network models: one for new information and the other for long-term
storage. The exchange of information between the two networks is used to rehearse
patterns of already acquired information using the idea of pseudo-pattern transfer
(French 1997). Other authors proposed the idea of using different learning rates
for the two networks (Westermann and Mareschal 2008) or weights that are
updated at two different timescales (Hinton and Plaut 1987). These approaches
are thought to resemble the neurobiology of the memory systems inside the brain
as in the separation between the hippocampus and the neocortex (Norman and
O’Reilly 2003). It is worth noting that these solutions share again the idea of
multiple timescales as proposed for motor learning processes. While they have
been mostly proposed in the context of declarative memory or cognition models,
an extension of them to the domain of motor learning is still lacking and could
provide an interesting area of future research for learning multiple skills without
interference.

Modular architectures based on mixture of experts (MEX) (Gomi and Kawato
1993; Jacobs et al. 1991) or multiple internal models (Wolpert and Kawato 1998)
have been proposed in the context of motor control. In the MEX there are multiple
function approximators (experts) whose outputs are linearly combined by a classifier
(a gating module) that has the role of a centralized switch. Each expert fits the data
over a local region of the domain and the gating module determines the degree
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of contribution of each expert. The selection is centralized in the gating module and
thus is independent of the activity of the expert modules. The Modular Selection and
Identification for Control (MOSAIC) model (Haruno et al. 2001) has been proposed
on the idea that the brain prepares several modules each containing a forward
and an inverse model. Each module specializes in a given task (i.e., controlling
a specific object) and the individual outputs of the inverse models are mixed to
generate the motor command. The prediction error of each forward model is used
to compute the responsibility signal according to a soft-max function. The forward
model with the smallest error indicates that its paired inverse model is appropriate
for controlling the current context (Fig. 5). MOSAIC is an extension of the mixture
of experts model. Each expert contains a one-step predictor of the next system state
and module switching is related to the predictive performance of each module. Thus,
the switching function depends on each single expert prediction instead of being
centralized into a single gating module that splits the input space independently of
the single experts. Variations of MOSAIC have been proposed also in the context of
Reinforcement Learning (Doya et al. 2002), and hierarchical control (Emadi Andani
et al. 2009; Haruno et al. 2003), but most of them have been validated only in
simulated environments. Thus, an important benchmark for these approaches is
their implementation on robotic platforms for learning of multiple motor skills. To
do so, efficient methods that deal with high-dimensional data and online learning
must be addressed. Also, it has to be noted that an issue for these architectures is
that the number of modules has to be specified a priori: this poses the nontrivial
problem on how to choose these modules to cover all possible tasks and adequately
generalize over them. This issue is of utmost importance in an architecture that
needs to learn from a continuous stream of sensory data in an incremental
fashion.

Locally Weighted Learning (LWL) methods based on local linear regressions
and receptive fields, such as Locally Weighted Projection Regression (LWPR),
proved to be a feasible way to implement incremental learning of sensorimotor
mappings on robots (Vijayakumar et al. 2005). The core idea in this approach is
a piecewise approximation of a function with local regressions, each valid in a
region of the input domain defined by a Gaussian kernel (i.e., a receptive field). New
models are added whenever an input data point does not activate any of the existing
models above a given threshold, thus allowing for incremental learning without
pre-specifying the number of local models. Stochastic gradient descent is used to
adjust the weighting kernels by minimizing a cross-validation error independently
for each local model. Additionally input data is reduced through partial least squares
to reduce the computational burden of the algorithm so that it can be efficiently used
in real time robot learning. In contrast to global learning methods, one interesting
feature of LWPR is the use of a local learning strategy that is used to minimize
negative interference with previously acquired data. Such an architecture proved to
be a viable alternative to learn multiple motor tasks in an incremental way (Lonini
et al. 2009) without pre-specifying the number of internal models or the structure
of the learning system. Of notice, LWPR is one of the few architectures that have
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Fig. 5 MOSAIC model general architecture. Each module of the architecture is specialized on
a motor task. The control action is made up of a feedback and a feedforward component. The
inverse model of each module provides the feedforward component. The output of each module
is weighted using a soft-max function computed on the predictions of the forward models and the
responsibility predictors. Reprinted with permission from (Kawato 1999)

been tested on robotic platforms in contrast to other architectures which have been
validated only in simulated settings.

Finally, a notable work that integrates the notions of motor synergies with the
idea of timescales for learning multiple behaviors is the work done by Yamashita
and Tani (2008). Instead of representing explicitly a hierarchical structure with
local modules and a gating module, they proposed a fully continuous time recurrent
neural network (CTRNN) with two distinct types of neurons having two different
timescales (fast and slow). The network is trained to predict the proprioceptive and
visual input of a humanoid robot interacting with an object, using a supervised
learning algorithm (i.e., back-propagation through time). Training on different
sensorimotor patterns produces the interesting result that fast neurons encode
sensorimotor patterns (primitives) that are reused for different tasks, while slow
context neurons encode switching between these patterns. The network is ultimately
able to control the humanoid robot executing five different types of behavior, such
as moving an object into different positions and clapping its hands. Thus, encoding
of primitives and their switching emerges as a self-organization of the network,
instead of being pre-defined through a discrete set and a switching module, as
in previous approaches (e.g., MOSAIC) (Fig. 6). This idea is appealing since it
allows a dynamical creation and modification of the primitives during learning of
tasks.
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Fig. 6 (a) Local (modular) representation for multiple motor behaviors (motor synergies).
The combination of multiple synergies is used to produce a complex motor behavior (b)
Representation of the same synergies through two different timescales encoded in distributed
architectures (i.e. neural networks) that interacts and generates the same complex behavior.
Reprinted from Yamashita and Tani (2008)

5 Discussion

Motor learning is a cumulative process that requires efficient exploitation of
previously acquired skills (i.e., generalization) in face of the ability to minimize
negative interference between new and old skills. A number of studies in psychology
and neuroscience have addressed the issue of consolidation of motor memories
revealing that multiple processes at different timescales as well as sleep or passage
of time play a role in storing of new information. Artificial neural networks with
multiple timescales or novelty detection mechanisms have been used to solve
the problem of catastrophic interference when learning new patterns on top of
old ones. However most of them have been confined to the domain of cognitive
science. Regarding motor control, generation of movements through a combination
of a fixed number of primitives has been proposed both in neuroscience and
robotics as a biologically principled way to produce different motor behaviors and
generalize over them. According to this view, modular hierarchical architectures
were implemented in several models of biological motor control. Most of them
define a crisp segmentation of the primitives through a fixed number of modules
and a gating mechanism that learns to split data for each module according to an
explicitly defined rule. In contrast, architectures exploiting the idea of multiple
timescales without pre-specifying the number of primitives can be a promising
solution to be explored both in robotic systems and computational neuroscience.
Furthermore, Bayesian models are likely to play an important role as a way to
explain how the brain updates previous beliefs in light of new evidence.

Finally, we mention some open challenges, in the area of computational motor
control, that are relevant for the topics discussed in this chapter.

– Neurobiological correlates. Although many studies are elucidating the com-
putational mechanisms that could be used by the nervous system for motor



Generalization and Interference in Human Motor Control 173

learning, knowledge of the neurobiological underpinnings for such mechanisms
is still lacking. As an example, we mentioned the findings about the fast and
slow component of the motor memory. While some recent experimental studies
showed the existence of different timescales in the change of activity of neural
populations of neurons (Mandelblat-Cerf et al. 2011), the neuronal basis of the
fast and slow motor memory is still unclear. Future studies should address this
question by combining experimental and computational techniques.

– Relations between different memory systems. At the beginning of this chapter,
we have mentioned the separation between procedural and declarative memory.
Remarkably, a recent study showed that a declarative task could interfere with
the fast memory, but not with the slow memory, during execution of a motor
task (Keisler and Shadmehr 2010). This result points out the importance of
understanding the interactions between different memory systems, to shed light
on the mechanisms of generalization and interference.

– Learning of multiple motor tasks. Some experiments showed how generalization
across multiple tasks can be interpreted using the idea of structural learning.
Although an interesting hypothesis, the computational as well as the neural
underpinnings are still missing. Revealing the existence of motor synergies that
reflect structural learning could be an interesting benchmark for the hypothesis.
On the other hand, these studies could be linked to the curse of dimensionality
problem that arise in reinforcement learning applied to robot control. As a
matter of fact, hierarchical models appear as a natural solution to the problem
of structural learning.

– How rewards contribute to motor memory. Rewards are indeed a fundamental
component of learning in biological systems. While the effect of rewards on
learning has been extensively studied in classical conditioning or decision-
making tasks, there are only a few studies linking the effect of rewards on motor
learning and generalization. One of these studies (Pekny et al. 2011) described
the effect of withholding rewards in the retrieval of competing motor memories.
Thus, the role of reinforcers in the acquisition and retention of motor skills is a
topic of major importance.
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A Developmental Framework for Cumulative
Learning Robots

Mark Lee, James Law, and Martin Hülse

Abstract Developmental psychology is the study of human cognitive growth.
However there exists a huge gap between the psychologist’s theories and knowledge
of behaviour and our ability to implement developmental processes in autonomous
agents. In this chapter we describe an approach towards developmental growth
for robotics that utilises natural constraints in a general learning mechanism.
The method, summarised as Lift-Constraint, Act, Saturate (LCAS), is described
and illustrated with results from experiments. We discuss how this approach
is grounded in the topics of sensory-motor abstraction, intrinsic motivation (as
novelty), and staged learning, and our belief that robotics can learn much from infant
psychology.

1 Introduction

Research in Artificial Intelligence has produced some very impressive results over
recent years and many of these advances have been implemented in robotics
projects. But despite this success the realisation of truly autonomous robots has
proved elusive and remains a difficult and significant challenge.

Any really intelligent robot should be autonomous in the sense that it can operate
in the real world and can cope with new experiences and events by drawing on
its previous experiences and building up cognitive competences and skills similar
to those seen in humans and animals. This requires qualities such as adaptation,
learning and versatility. But robots, like humans and unlike other computational
systems, are embedded in the real world and have to experience noisy, chaotic,
unstructured environments. Hence, completely novel experiences are unavoidable
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and this demands more than simple adaptation or the learning of stable events;
indeed, new learning processes must emerge as conditions change and new events,
environments and relationships are experienced.

It seems that such cognitive flexibility, as readily seen in humans and other
altricial animal species, is dependent on a prolonged period of parental care, during
which occurs some remarkable processes of structured growth generally known as
“development”. Given the long history of research into learning, in both animals
and machines, it is surprising that only recently has any real attention been given
to the concept of development as an important factor for artificial autonomous
systems. This is remarkable because psychologists and other scientists have studied
development in great detail and the idea is not new or original. Indeed, the great
computer pioneer Alan Turing actually suggested this in 1950:

Instead of trying to produce a programme to simulate the adult mind, why not rather try
to produce one which simulates the child’s? If this were then subjected to an appropriate
course of education one would obtain the adult brain. . . . We have thus divided our problem
into two parts. The child programme and the education process. These two remain very
closely connected. (Turing 1950)

Turing did not give a starting age for the child program, (he said “Opinions may
vary as to the complexity which is suitable in the child machine”) and the “course
of education” can be taken in its broadest sense to include experience in general, but
it is clear that he is talking about cognitive development:

In the process of trying to imitate an adult human mind we are bound to think a good deal
about the process which has brought it to the state that it is in. (Turing 1950)

Most work in bio-inspired robotics has drawn on the burgeoning growth of
research in neuroscience and brain science generally. However, most brain science
is concerned with understanding structure and function, with less emphasis on how
those structures arise and how they are shaped by experience. But fortunately,
developmental aspects are now gaining attention and the field of developmental
robotics has now become established (Lungarella et al. 2003). This approach
assumes a developmental framework that allows the gradual consolidation of
coordination and competence, and emphasises the role of environmental and internal
factors in shaping adaptation and behaviour (Prince et al. 2005).

The challenge from this viewpoint is in finding effective algorithms for processes
that support the development of learning and adaptation. There exists a very
significant lacuna between our psychological theories of development and our
ability to implement working developmental algorithms in autonomous agents. In
this chapter we explore this area by first examining the role of staged growth,
constraints and infant learning (Sects. 2 and 3). In Sects. 4 and 5 we describe our
approach for building developmental algorithms, and in Sect. 6 illustrate them with
results from experiments. In Sects. 7 and 8 the role of novelty for motivating an
active learning architecture is examined. Finally, in Sects. 9–11, we discuss the
broader context and some key research challenges that emerge from this approach.
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2 Developmental Stages

The scientific study of human cognitive growth is known as developmental psychol-
ogy. Experiments on children and adults produce data which inform the production
of theories that could explain the growth of skill and competence over time.
Unlike neuroscience, psychology has no direct access to brain processes and instead
attempts to derive inferences about possible internal mechanisms and events through
observations of behaviour. Hence, patterns of behaviour and behavioural dynamics
become the currency of experimental investigations. This level of indirectness
allows much scope for interpretation and variety in theories of development in
psychology.

A key characteristic of animal development is the centrality of behavioural
sequences: no matter how individuals vary, all infants pass through sequences
of development where some competencies always precede others. This is seen
most strongly in early infancy as one pattern of behaviour appears before another:
looking; reaching; standing; walking, etc. These regularities are the basis of the
concept of behavioural stages—periods of growth and consolidation—followed by
transitions—phases where new behaviour patterns emerge. The most influential
theories of staged growth have been those of Jean Piaget who emphasised the impor-
tance of sensory-motor interaction, staged competence learning and a constructivist
approach (Piaget 1973). Very briefly, Piaget defined four periods in an individual’s
life: beginning with the sensory-motor period (up to 2 years) during which infants
are not fully capable of symbolic representation; then the Preoperational period (2–6
years) is characterised by egocentric behaviour; then follows the Concrete Opera-
tional period (6–12 years) in which abilities in classification and linear ordering are
seen; and finally, the Formal Operation period (from 12 years onwards) displays
capabilities in formal, deductive, and logical reasoning. Other psychologists, such
as Jerome Bruner, have further studied the plasticity seen in infant studies and
developed Piaget’s ideas further, suggesting mechanisms that could explain the
relation of symbols to motor acts, especially concerning the manipulation of objects
and interpretation of observations (Bruner 1990; Kalnins and Bruner 1973).

All developmental stages have vague boundaries, and overlap and merge with
other stages. They also show considerable temporal variation between individuals.
Consequently, there is a great deal of debate about the origin and drivers for
developmental change. At one extreme, Nativism argues that the machinery for
development is genetically determined and the processes of growth are largely
preprogrammed, with any apparently acquired cognitive competence being either
ignored or refuted. In stark opposition, Empiricism takes the view that experience is
a major factor in shaping the course of development and that any structures acquired
to support development are shaped by experience (Spelke 1998). This debate, also
known as the Constructivism versus Evolutionism argument, still continues after
many decades and has various implications for psychological theory. Nevertheless,
all viewpoints recognise the existence of stages as manifestations of development
and their role in the growth of cognition appears to be very significant.
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2.1 Early Infancy

We believe that research into developmental algorithms for robotics should be firmly
grounded in the sensory-motor period. This is for several reasons: (1) it is logical
and methodologically sound to begin at the earliest stages because early experiences
and structures are highly likely to determine the path and form of subsequent
growth in ways that may be crucial; (2) according to Piaget, the sensory-motor
period consists of six stages that include concepts such as motor effects, object
permanence, causality, imitation, and play—these are all issues of much relevance to
robotics; (3) sensory-motor adaptation is a vital process for autonomous robots; and
(4) it seems likely that sensory-motor coordination is a significant general principle
of cognition (Pfeifer and Scheier 1997).

Furthermore, although the sensory-motor period covers 2 years, we believe
it is essential to focus on the very beginnings of this period, before speech,
before locomotion, and before other competences have become established. We are
inspired by the first three months after birth, when control of the eyes, head and
limbs is just emerging and growing. To the casual observer the newborn human
infant may seem helpless and slow to change but, in fact, this is a period of the
most rapid and profound growth and adaptation. From spontaneous, uncoordinated,
apparently random movements of the limbs the infant cumulatively gains control
of the parameters and coordinates sensory and motor signals to produce purposive
acts in egocentric space (Gallahue 1982). We believe there is much for autonomous
robotics to learn from this scenario.

For further support for this view, that we must start developmental learning at
the very earliest stage possible, see Smith and Gasser (2005) where developmental
psychologists argue from “six lessons from babies” that initial prematurity is crucial
for the growth of embodied intelligence, in both babies and other agents.

3 The Importance of Constraints

All processes of adaptation and learning must have some form of underlying bias or
a priori assumptions. This is because choices have to be made in representations,
learning approach, possible actions, etc., even before learning begins. These biases
are treated in developmental psychology in terms of constraints and there are many
theories as to the origins, role and effects of such constraints on development. See
Keil (1990) for a review of constraints under different theories.

Any restriction on sensing, action or cognition effectively reduces the complexity
of the inputs and/or possible actions, thus reducing the task space and providing a
constraining framework which shapes learning (Bruner 1990; Rutkowska 1994).
In robotics, such constraints might be seen as sensory bandwidth reduction or
the restriction of some degrees of freedom in motor actuation. The reduced task
space can then be explored through active learning and its structure captured in the
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learned representation. When a high level of competence at the current task has
been reached then a new level of task or difficulty may be exposed by the lifting of
a constraint (Rutkowska 1994). The next stage then discovers the properties of the
newly scoped task and learns further competence by building on the accumulated
experience of the levels before.

Various examples of internal sensory and motor constraints are seen in the
newborn, for example the neonate has a very restricted visual system, with a kind
of tunnel vision (Hainline 1998) where the width of view grows from around
30 degrees at 2 weeks of age to 60 degrees at 10 weeks (Tronick 1972). Although
this may seem restricted, these initial constraints on focus and visual range are
“tuned” to just that region of space where the mother has the maximum chance
of being seen by the newborn. When “mother detection” has been established then
the constraint can be lifted and attention allowed to find other visual stimuli.

Many forms of constraint have been observed or postulated (Hendriks-Jensen
1996) and we can consider a range of different types:

Anatomical/Hardware: These are the physical limitations imposed by the mor-
phology of an embodied system. These include kinematic restrictions from struc-
tural (e.g. skeletal) joints and spatial configurations. Also mechanical constraints
may be relevant, such as motor limitations preventing freedom of movement.
See Pfeiffer and Bongard (2006) for expansion of this key topic. We notice that
the anatomy of an infant changes markedly from birth, when we observe narrow
shoulders and hips, large head as well as relatively short arms and legs.

Sensory-Motor: All sensors have their own limitations; usually these are specified
in terms of accuracy, resolution, response rates and bandwidth. Motor systems also
have similar characteristics with additional features for dynamic performance. Most
changes in such sensory-motor characteristics can be linked to maturational growth.

Cognitive/Computational: Constraints on cognition take many forms, not only
relating to speed but also relating to information content and structure. Many
constraints that affect artificial neural systems are now known, and similar effects
are being found in the brain (Casey et al. 2005). Sensory constraints can also affect
or limit the input to cognitive processes.

Maturational: These are the most difficult to enumerate but it is certain that
internal biological growth processes influence and maybe facilitate cognitive
growth (Johnson 1990). Both neural and endocrinal support systems will have
effects as they mature, for example neurogenesis is still under way for much of
early infancy.

External/Environmental: External constraints are those that restrict behaviour
or sensory input in some way but originate from the environment not from the
individual or agent. This is a very powerful source of constraint as they can
be applied at any time and are not related to the individual’s stage of growth. If the
constraints are carefully structured, especially by another agent to assist learning or
adaptation, this is known as scaffolding (Bodrova and Leong 2006). Examples of
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scaffolding are seen in parental care, education, and many other social situations,
where interactions or tools generate patterns in the environment in order to direct
attention or action towards a goal.

Much of the developmental literature concerns the role of constraints in higher
order cognitive tasks such as number, language and reasoning (Campbell and Bick-
hard 1992). These internal, cognitive constraints deal with issues like representation
and could be termed “soft” constraints. Because we are interested in the earlier
processes of sensory-motor adaptation we must also be concerned with the “hard”
constraints that emerge from the actual physical properties and features of the
system. These are known as Type 4 constraints by Campbell and Bickhard (1992)
and strongly influence the construction of the adaptive processes.

4 The LCAS Approach

It is important to state that we strive for general rather than task-specific mechanisms
of development. Consequently we emphasise explicit, abstract models and try to
avoid prestructured internal representations or assumptions about internal belief
states or internal causal knowledge. In particular we avoid the early adoption of
neural network models and other connectionist methods as these can be difficult to
analyse and interpret (Gasser and Smith 1998; Lee et al. 2006). Such methods also
often entail extensive training schedules which is counter to most of the empirical
evidence that indicates learning and adaptation can be very fast, and in some cases
require only one trial of experience (Angulo-Kinzler et al. 2002; Rochat and Striano
1999). Accordingly, we appreciate the “content-neutral” methodology of Thelen and
Whitmyer (2005) and we try to follow a similar approach.

We view “constraint lifting” as a key mechanism for progression towards
increasing competence. Transitions between developmental stages are related to the
lifting of constraints, although the nature of such transitions is not fully understood.
It seems that the enabling conditions for transitions must be related to internal
global states, not local events, because local activity cannot capture cumulative
experience. For example, assume novelty is a motivating driver, then if a novel
event occurs (a new stimulus or behaviour) this will raise some local attention or
excitation levels for that particular event. However, successive similar stimuli will
be less excitatory, both in time and space, and eventually similar stimuli may be
experienced for all spatiotemporal possibilities. At this point, such events are no
longer novel and do not raise excitation levels significantly. A global state indicator
(being the spatiotemporal sum of all local excitation) will thus reach a stable plateau
when no novel events have been seen for a long time. Thus, high competence at a
level is equivalent to all incoming experience matching expectations, with no novel
changes or unexpected events.

Thus, global states, such as global excitation, can act as indicators that can detect
qualitative aspects of behaviour, e.g. when growth changes have effectively ceased
or when experience has become saturated. They can then signal the need to enter a
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new level of learning by lifting a constraint (such as accessing a new sensory input).
In this way, further exploration may begin for another skill level, thus approximating
a form of Piagetian learning.

Our approach then consists of implementing the cycle: Lift-Constraint, Act,
Saturate (LCAS), at a suitable level of behaviour. First, the possible or available
constraints must be identified and a schedule or ordering for their removal decided.
Next, a range of primitive actions must be determined together with their sensory
associations. Also, mechanisms for sensory-motor learning or adaptation are incor-
porated at this point. A set of global measures need to be established to monitor
internal activity and some kind of intrinsic motivation must be provided to initiate
action. We use a simple novelty function as the motivational driver.

When this is implemented the initial behaviour may seem very primitive, but
this is because all, or nearly all, constraints have been applied and there is little
room for complex activity. The “Act” stage generates spontaneous and varying
patterns of action so that the scope for experience is thoroughly explored and all new
experiences are learned and consolidated. Eventually there are no new experiences
possible, or they are extremely rare, and this level becomes saturated. The global
indicators then reach a critical level and the next constraint in the schedule is lifted
and the cycle begins again.

This general description of LCAS above is not meant to be prescriptive in
detail. Constraint lifting should not be triggered by explicit mechanisms but should
be the emergent effect of the computational processes involved. Similarly, we do
not advocate the programming of the stages by following an explicit constraint
lifting schedule; such a method would defeat the very purpose of investigating
development. But it is necessary to study the role of constraints and their relation
to staged behaviour, and so constraint schedules need to be investigated in order to
further our understanding of their relationships and interaction, and also to support
the design of experiments.

Our approach to developmental robotics assumes that the robot’s task is to learn
as much as possible and we try to avoid pre-programmed competencies. This is
an experimental stance and does not represent a position on the empiricist/nativist
spectrum in developmental psychology (Spelke 1998). We note that nativists need
to explain the origins of any innate structures that they propose and any experiments
on learning may shed light on this, just as much as they may support an empiricist
stance.

4.1 Representations

In early infancy changes in behaviour can be discerned where initially spontaneous,
apparently random, limb movements gradually become coordinated and organised.
During this process the proprioceptive and kineasthetic space of the limbs becomes
calibrated and correlated with the motor space of the actuation system of the
muscles. The spontaneous movements would be primitive examples of active
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learning, observed as “motor babbling” which is seen at many levels of behaviour.
The very earliest examples of such proprioceptive behaviour probably occur in the
womb (Ververs et al. 1998) and could provide the first sensory-motor correlations.
We believe early correlation between proprioceptive space and motor space should
be the foundation for building internal models of local egocentric space and thus
form a substrate for future cross-modal skilled behaviours.

Interestingly, the same issue is found in robotics research where it is necessary
to coordinate the differing spatial frameworks of the various sensory and motor sys-
tems. For example, coordinating the spatial frame of an eye system with the spatial
structure of a hand/arm system requires cross-modal relations to be established and
understood; in this case, image-based information needs to be related to the spatial
coordinates accessible by a multi-degree-of-freedom mechanism. Even within a
single modality there are often various correlations that have to be established,
usually between sensors that relate to a particular motor system. For example, when
moving an eye or a camera to a new fixation target it is necessary to relate the
desired displacement on the image to the associated motor action that will achieve
the target.

These concerns reflect on the problem of representation; how should these coor-
dinations be implemented in a computer model so as to best capture the correlation
relationships, while allowing that these must be learned and not programmed? In
order to follow the methodology mentioned above, we have adopted a simple and
general model that permits wide variation without being committed to a particular
learning mechanism. Our model also has many neuromorphic features as it attempts
to be compatible with knowledge from neuroscience.

4.2 A Sensory-Motor Mapping Model

We now describe the general idea behind our topological mapping method for the
representation of sensory-motor events and coordinations. In particular, we show
how such structures can form the key substrate for a developmental style of learning
and can be fast, accurate and flexible.

In several previously reported experiments (Lee et al. 2006, 2007b), we have
used two-dimensional maps with explicit links between corresponding sensory or
motor values for the representation of sensory-motor spaces. Although three dimen-
sions might seem appropriate for representing spatial events, we take inspiration
from neuroscience, which shows that most areas of the brain are organised in
topographical two-dimensional layers (Braitenberg and Schüz 1991; Mallot et al.
1990). This remarkable structural consistency has inspired our explorations of the
potential and efficacy of two-dimensional structures. Also there is evidence to
believe that the human spatial system separates depth (distance from the body)
from lateral displacement (up-down, left-right). For example, when depth is an
object feature being detected (along with colour, intensity, orientation, etc.) then this
can be processed in parallel with a second feature; an unusual effect that does not
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Fig. 1 Field overlap on
regular triangular mesh,
10 � 10 fields, r D 0:6

apply to other features (Nakayama and Silverman 1986). This suggests that a 2.5D
architecture is appropriate, with lateral and vertical locations as the axes of a 2D
map, and depth values recorded at specific locations. A 2.5D structure is different
from a full 3D form in that only one depth value can exist for each location; but
this makes sense in an egocentric space where the nearest object occludes all those
behind it.

A typical mapping will consist of a 2D array representing two sensory or motor
variables, known as a map or surface, connected to another 2D array by a set of
links that join points or small regions, known as fields, in each array. The links
are bidirectional enabling access in both directions and are collectively known as a
mapping. Fields are local regions of equivalence and are defined by a boundary
function; we generally use simple circular fields. With circular fields it is not
possible to completely cover a surface without some overlap between fields, unlike
with pixels. For a uniform distribution of fields on a 2D grid, the most efficient
surface covering is given for an equilateral triangular grid, where the minimum radii
to ensure complete covering is 0.577 (with unity grid spacing), see Fig. 1. For this
case the area of overlap is only 21 %, (i.e. for any field 79 % of its area is not shared
with another field).

4.2.1 Field Distributions and Overlap

Overlapping structures may seem inefficient or inappropriate for computational
implementation but it is well known that overlap occurs in many neuronal and
sensing mechanisms in the brain (Carreira-Perpinan et al. 2005). For example, in
the eye the sensing receptors do not physically overlap, but they are connected
to ganglion cells that provide functional overlap (Sterling 1999). We believe this
property is responsible for some interesting and very useful effects. We note that
very large overlaps can have little purpose, because, in any given locality, many of
the fields will have almost identical coverage. Thus a stimulus would give the same
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effect over a wide area. Two possible functions for highly overlapped fields might
be redundancy and low pass filtering. However, lesser overlap, when the field radii
are below the grid spacing distance, appears much more promising.

Our mapping method consists of two processes: the creation of new fields on
a map surface; and the generation of explicit links between two fields on different
maps. A field captures a local region on a map such that all stimuli within the field
can be represented and transmitted to other surfaces through a single field reference
point. For circular fields the reference is the centre point. Links between maps are
established through correspondence; if a field in one map can be reliably observed
to become excited in temporal correlation with another field on another map, then
an explicit link is created between the fields’ centres. This is equivalent to finding
the strongest weights between elements in a fully connected 2-layer network after
training for temporal correspondence. Using this criteria gives very strong links for
just a few fields and no coordination at all for all the others.

This simple Hebbian learning system (Martinetz 1993) has proved very effective
in building maps in systems with strong and stable correlations. A generalisation
of this approach is to use probability density functions to represent the unknown
map linkages during learning. Variations of this include mechanisms based on radial
basis functions (Pouget and Snyder 2000). This mapping method, although simple in
concept, has several valuable properties. The number of links needed to effectively
map between two surfaces can be quite low and increases with desired accuracy.
This means that learning such maps can be very fast; we have grown mappings on
laboratory hand/eye robot systems and achieved complete mapping coverage of a
reach space of 3944 cm2 in real time in 5 h (Hülse et al. 2010b). This scheme can
also be adjusted so that links may be removed or changed when errors are detected
thus providing adaptation and placticity.

5 Building Maps from Experience

Questions now arise as to when fields should be created and how they should be
organised on a mapping surface. This concerns both the initial placement of the
fields on the map and methods for exploring the sensory-motor spaces so that fields
are populated with data from experience. In addition, we also need to consider
the possibilities for adaptation of developed maps to take account of external
changes.

5.1 Field Generation

There are essentially two main parameters for configuring the fields that comprise
a map: they could either be of varying or fixed size, and they could be generated
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generated from a polar grid

onto a grid (prior structure) or they could be placed at any stimulus location (free
format). This gives four possibilities in all, each of which we now consider in turn.

Assume that a learning process generates stimulus points, pi D .xi ; yi /, on a
two-dimensional surface, S , which is initially empty. If a stimulus point is already
covered by a field on S , i.e. is within the radius of some existing field, then no
action is required. But if pi is not covered, then a new field must be generated for
this location.

Uniform size fields on a regular grid For this case, over the map S we arrange
a grid of fields with uniform spacing of centre points. Initially all fields are
unassigned but an uncovered stimulus point will cause the nearest field to
be assigned to the map. Eventually all points will be covered by one or more
fields. If the grid of fields has low levels of overlap (r < the grid spacing),
for example as in Fig. 1, then there will always be places covered by only one
field and so eventually all fields in the grid will be used. Conversely, with large
overlap many of the possible fields will not need to be generated, as each point
on the surface only needs to be covered once. Figure 2 shows a retina design
with considerable overlap but, during learning, fields are only taken from the
grid as needed and the covering process stops when every possible stimulus
point has been covered. It may seem unprincipled to use a pre-structured grid
but topographic maps are widespread in the brain. There is evidence that this
topographic structure is determined during neurogenesis by many influences
and both genetic and experiential inputs have strong effects (Goodhill and Xu
2005). It is possible that genetically encoded neural growth patterns provide
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Fig. 3 A single map composed of three layers, each of different field sizes. (a) Large fields.
(b) Medium fields. (c) Small fields

regular arrays of neural sheets and then the interconnections are established
by a separate process of coordination. There is also evidence that neurons can
expand their receptive fields in order to adapt to a damaged area caused by a
lesion (Einarsdottir et al. 2007) and we note that such plasticity is better served
by a uniform grid structure rather than an irregular covering of fields.

Variable sized fields on a regular grid This case is the same as above except
that the field sizes are individually set according to the space available in their
local neighbourhood (Meng and Lee 2007). For experimental purposes we found
it more insightful to maintain several uniform maps, each with a different size
of field. Figure 3 shows three such surfaces from our experiments. When a new
stimulus point requires a new field we processed all the maps in parallel and
so the three maps are built up together. When later using the maps to select a
field, the large fields can be used for crude but fast coverage of the space, while
the smaller fields require more learning but give finer articulation. This provides
options for accuracy/speed trade-offs as and when needed. This effect was also
reported by Gomez et al. (2004).
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Fig. 4 Aligned neural fields of different sizes in the superior colliculus, from Wurtz and Goldberg
(1972)

It is interesting that similar layers of fields of different sizes all responding to the
same stimuli location have been found in the superior colliculus and elsewhere in
the brain (Wurtz and Goldberg 1972). Figure 4 is taken from Wurtz and Goldberg
(1972) and reveals increasingly larger field sizes at deeper layers of the superior
colliculus. Note how a stimulus point in field 1 is covered by all fields, with each
successive field usually overlapping all of the preceding field.

Uniform size fields with irregular locations In this case fields are simply cre-
ated with their centres located at the incoming stimulus points. This is generation-
upon-demand and so the shape of the final coverage will not only be irregular
but will also vary considerably depending upon the order in which the stimuli
arrive. It may not be appropriate to be driven by event order, as very idiosyncratic
mappings can develop which might not easily generalise over different tasks.
However, this objection can be overcome by allowing fields to be replaced by
some form of decay mechanism that removes infrequently used fields.
We have found this to be a simple and effective generation method for situations
where there are no topographical requirements or when the nature of the spaces
is unknown. For example, in correlating a robot arm with a motorised camera
system we found that a mapping of arm end-point with camera gaze point gave
a very effective coordination scheme (Hülse et al. 2010b). Figure 5 shows such
a mapping. This system was driven by an exploratory algorithm that looked for
unmapped areas and attempted to find new points equidistant from the nearest
existing fields.
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Fig. 5 Mapping between robot arm (left) and eye system (right). Fixed field size, free location.
Similar colours indicate linked fields

a b

Fig. 6 Variable field sizes and locations. (a) Coarse coverage. (b) Finer coverage

Variable sized fields with irregular locations Completely irregular field growth
is also possible. We have experimented with mechanisms where any uncovered
stimulus causes a new field to be created that is precisely centred on the stimulus,
with the size of the field determined to maximally fill the gap between the nearby
fields. Figure 6 shows some results from radial basis function experiments (Meng
and Lee 2007). The left diagram shows how only five fields initially developed
to cover a set of points; crudely but quickly. The right-hand diagram is after
further learning where more, and smaller, fields give a finer coverage with more
resolution. A similar reduction in cortical field areas relating to infant growth in
object recognition ability has been reported (Westermann and Mareschal 2004).

We notice that grid placement is useful for situations where some external
structure must be taken into account. This is seen in sensory maps that must reflect
the structure of the sensing system. For example, peripheral vision has a much lower
resolution than that of the foveal region and so we use increasingly larger sized fields
towards the periphery in retinal maps. By designing a grid before use, we can impose
desired constraints on field size and placement.
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5.2 Populating Fields Through Exploration

The next issue is how map building processes are to be driven and organised in
a learning or growth scenario. Consider the original problem at the point where no
known structure or patterns have been discovered. Hence, no links yet exist. Assume
we have two 2D surfaces, S and M , and we wish to establish how they are related.
The surfaces both have two variables: .xi ; yi / for S and .kj ; lj / for M ; and we can
perturb these in order to detect any correlations. However, it is generally not possible
to vary sensory inputs at will (at least not directly) and so only M is available for
exploration. This means we can vary M and observe any effect on S ; we cannot
operate in the other direction. Thus, starting from a condition of no prior knowledge,
some initial motor action must be performed, and the least specific action is simply
to start moving in some arbitrary direction. Such action will eventually terminate
when the physical or anatomical limits are reached for that particular system. If this
is followed by similar movements in other directions, then the effect is produced of
exercising M over its range of variables. This behaviour will explore the maximum
and minimum extent of M over its range limits. We note that this appears very
similar to the behaviour known as motor babbling in human infants (Piek 2002; Piek
and Carman 1994). If the two variables for M are independent, then a rectangular
plot will emerge for the boundary, showing the ranges of kj and lj along the axes.
Now, the values of xi and yi may vary in a complex way with M but if the motor
values are constrained to their extrema, then the S values will similarly describe
the limits of their range. The plots thus produced will display the boundaries of the
mapping for the operating regions of S and M . This assumption rests on the surfaces
being smooth and continuous and having planar topologies. Thus, no points can
exist external to the S boundary: otherwise, some regions of S would map into 2 or
more separate places in M ; which could not provide a mapping. Figure 7 shows the
(kinesthetic) sensory space produced for a two-limb jointed arm as the motors drive
the angles of the joints through their extremities. Arrows are shown on the figure to
illustrate the effect of sweeping one motor variable at a time. It is important to notice
that such a structured strategy is not necessary for discovery of the boundaries. It is
significant that any motor action that stops at an extrema for one of the variables
will find a boundary point and the corresponding point on S will be revealed.

It is noticeable that while the motor surface covers the full range of the variables,
as would be expected if the system is exercised over its extent, the sensory fields do
not cover all possible locations on their surface. This is a common effect as sensory
systems will often cover larger spaces than those of associated motor systems. For
example, a camera on a pan-and-tilt head may have a wider field of view than the
pan limits; and the human eye can see more than the eyeball can turn to. This means
that the off-boundary (internal) fields in the motor surface will be mapped across
to the internal region of the sensory map and the sensory fields must be effectively
distorted to fit within the boundary shape. Figure 8 shows three different sensory
examples for the motor pattern in the lower left. The motor system of the arm has
two independent motors each with limits on their extent. This gives a rectangular
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Fig. 7 Boundary fields can be established first

shape for the fields experienced at those limits (lower left in Fig. 8). The other three
plots show the corresponding fields for three different sensory configurations (using
different geometric configurations of the proprioceptive sensors).

A consequence of this kind of motor babbling behaviour is that the extremities of
the space will be explored before the fine detail of the internal regions. If we consider
using a regular grid for the fields, as in Sect. 5.1, then the boundary distortion can
be seen as a kind of warping of M to S . Consequently, we could warp the regular
grid to match the boundary and thus obtain a good first estimate of the locations of
the internal fields even before any such data points have been experienced. Standard
image warping methods are not useful here as they use parametric transformations
that do not handle local distortions well. Various kinds of local distortion methods do
exist but a far simpler computational approach is provided by the elastic membrane
concept. An elastic sheet can be pulled and stretched in various directions to fit both
local distortions and global warpings. The method uses the idea that elasticity is
a simple relation between distance and force whereby each molecule of material
moves to a position that minimises the total of the forces from its neighbours. So an
effective relaxation algorithm is easily implemented by minimising the sum of the
distances between each node in the grid and its immediate neighbours. This elastic
neighbourhood consists of the six nearest fields in a triangular array (or four or
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Fig. 8 Different boundaries for different arrangements of (muscle-based) sensor systems. Bottom
left: motor map, Top left: Cartesian space (ideal) as would be seen by overhead camera, Bottom
right: space of arm vector from hand to shoulder, Top right: space of vector from hand to
body-centre

eight for a rectangular system) and as a node is moved to a new position so the
local neighbours are pushed and pulled in the same direction but to lesser amounts
the further away they are. Figure 9 gives an example of a grid with both boundary
distortion and some internal node displacement. The algorithm calculates the error
in each node and relaxes over all nodes until the total error in the system falls below
a threshold. If we use the elastic sheet method to fit all the (originally rectangular)
edge nodes in S to the new boundary (matching corresponding fields), then we will
obtain a warp of the regular grid that suggests reasonable estimates for the locations
of the internal fields.

5.3 Adaptation and Plasticity

Although we expect mappings at the lower levels of sensory-motor experience to be
relatively stable, the possibility of error is always present and any mapping might be
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Fig. 9 Boundary and internal
distortions of elastic grid

required to adjust its structure in some way. This could be a local or a global effect:
either a relatively small number of fields may be found to be located in error and
need adjustment or the whole map might be in error and then a full scale remapping
is needed.

Local Adaptation

Errors in field placement may occur due to noise and tolerance effects in sensing
and/or motor structures. For example, an action may not be exactly repeatable due
to low muscle control or environmental disturbance. These conditions can give rise
to local error and the need for local adjustment.

The elastic sheet method, described in the last section, allows any point to be
adjusted at any time, with the neighbours also making compensatory adjustments.
This is idealy suited for the correction of local errors, where a field centre is found to
be incorrect and is to be moved. Thus, if a local variation is created by some sensory
or bodily change, then the discovered effects can be used to adapt the mapping
by either small movements of the fields concerned or reassignment of a few links
between the relevant maps.

Re-calibration and Realignment

In cases of major reconfiguration of sensory or motor systems the adaptation
required may be so severe that complete realignment of all of a mapping may
be required. This can happen when, for example, a camera in a hand/eye system
is shifted to a new position relative to the rest of the system. In humans, similar
disruptions are experienced in prism adaptation experiments where prisms applied
to the eyes cause major and total redistribution of the visual image (Redding and
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Wallace 2006). Such global changes will essentially involve all the links in a
mapping being reassigned to quite different (i.e. non-local) fields. This is a serious
disruption to any agent and presents a major re-learning challenge. Fortunately, such
situations are generally rare and dealing with these cases efficiently may not be so
important as ensuring good local adaptation.

The ability to change or remove links in error provides a degree of plasticity in
the mapping that covers these problems. We have experimented with a mechanism
for adaptation that allows links to be removed if they become unused (Hülse et al.
2010b). We gave every link an “age” value. When a link is first established and
whenever it is subsequently used successfully then its age is set to zero. Otherwise
the age of every link is increased at each application of the mapping. Any links
that are not found useful are deleted from the mapping and this allows space for
new links to be established. Thus, small local adaptations may occur continuously.
See Hülse et al. (2010b) for further details. We have found that a threshold for the
minimum age of links effectively controls the total number of links in a mapping
and is a very useful parameter in experimental explorations of map growth and
development.

6 Examples of Emergent Behavioural Stages
from LCAS Experiments

In this section we present a few examples of our method to illustrate the concepts
and mechanisms involved. As an experimental design we explored various sensory-
motor subsystems individually. This approach also fits well with the idea of
early constraints being quite severe and apparently limiting activity to one or
two modalities at a time. Consequently, we started with an empty system and
considered what sensory or motor components should or could be developed first.
The eye is particularly active after birth, followed by limb movements, and then
hand/eye interaction. Accordingly, we carried out separate implementations on eye
saccading (Chao et al. 2010) and arm reaching (Lee and Meng 2005), and then
combined these in hand/eye experiments (Chao 2009).

Consideration of the motor system shows that the kinaesthetic sense plays an
important role in motor control and in spatial cognition. For example, when a visual
stimulus is to be brought to the foveal region of the retina it is not just the sensed
image and the eyeball muscles that are involved: the proprioceptive sensors in the
muscle spindles provide very important data on eye position, or gaze. We found that
proprioception was very significant in all the systems we investigated.

Our first study on the eye implemented a simple mechanism for saccade learning.
We assumed that no calibration between image and eyeball position could be
achieved before images were available (i.e. before birth) and used the methods
described above to generate active exploratory behaviour and build mappings
between stimuli fields on the retina (image) and motor positions of the eyeball
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Fig. 10 Qualitatively different behaviours during learning. (a) Early stage trace. (b) Intermediate
stage. (c) Final stage trace

(camera gaze direction). The aim was to learn a mapping between image locations
and motor values so that a single direct movement (saccade) could be made to bring
any image point to the centre of the image (fovea).

At first, when no fields or links had been established, the eye movements
appeared as random walks, eventually finding the centre region. After a few fields
had been created, the random moves would often find one of these and then move
among the fields nearer the centre. Finally, single saccades would appear as the
map became fully populated. We were surprised to see that the results showed clear
qualitative differences in the behavior as the maps grew.

Figure 10 shows example traces clearly exhibiting different stages. The first trace
performs 15 movements before finding the target, the second trace required 6 moves,
and the last trace shows 6 different saccades (superimposed), all but one being
single motor acts. The results were classified into three types: no local field exists
near the stimulus; a neighbouring field is found and used; and a stimulus-covering
field exists. These were plotted in Fig. 11, which shows three runs for each type to
illustrate the variation. The labels correspond to those in Fig. 10. Type A is seen to
start first but reaches a plateau after about 60 moves, while type B starts later and
also plateaus later. The single move or fully learned saccades do not appear at all
during the first 18 moves but grow fast until they become the only type to exist.
Because fields are being generated for every movement the map builds quickly; in
fact, Fig. 2, on page 187, shows the retinal map for this experiment after 94 fields
have been entered. Already, much of the total space has been covered, after only
around 180 learning attempts.
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Fig. 11 The growth rates of three types of saccade behaviour

Fig. 12 Exploratory arm motions shown as vectors in arm joint space

Our next experiment imposed the constraint that the vision system would be
inactive while the arm was active. This is equivalent to limb movement out of sight
of the eye. Again we started with an empty map system. A rest position for the
(single) arm was provided, equivalent to a low-energy state, and spontaneous motor
values were set to drive the arm through the workspace. Eventually the arm comes to
a halt, an unexpected event, and fields are generated. The process is repeated and the
fields relating to the boundary of its workspace are soon discovered, as shown and
described in Sect. 5.2. Figure 12 shows traces of motor acts; the darker section in
the middle are movements from the rest position to the fully extended arm position
(these were the initial motor settings) and other traces can be seen as the arm makes
spontaneous moves and reaches various locations on its operating boundary.
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As the map becomes populated so the rate of field discovery saturates, as does
the opportunity to learn. To enable further learning, a constraint can be lifted, and
in this case, we activated a tactile sensor in the robot end-effector. This allowed
the arm to make contact with objects, interrupt the action, and record a new spatial
sensation. As the arm touched objects in different locations so the internal fields in
the map were created and eventually the map was completed. After this point any
target “felt” location could be reached by a single direct arm movement.

The final constraint to be lifted was to allow both arm and eye to operate together.
As both had near fully complete maps from the previous stages, this stage involved
the creation of new mappings that relate the visual space of the eye to the reach space
of the arm. We found the visual gaze space (i.e. the angles of eye fixation) to be the
most appropriate frame for the integration of the two subsystems (Chao 2009).

It is interesting to notice the kinds of behaviour produced from this series
of experiments. We observed a progression of qualitatively distinct behavioural
patterns:

Visual stimuli fixation - through three stages from eye wandering to direct sac-
cading, during the creation of the image map (constraints: eye only active)

“Blind groping” - actions mainly directed towards the body area (constraints: arm
only active)

Extended groping - directed towards the bounding limits of the agent’s egocentric
space, during the creation of the boundary space map through arm proprioception
(constraints: arm only active)

Unaware contact - seen as pushing or ejecting objects out of the local environ-
ment, due to a constraint on the tactile sense (constraints: arm only active)

Contact sensitivity - or “sensitive groping” where limb movements are interrupted
by tactile sensing events, and the non-boundary space map is constructed
(constraints: arm and tactile active)

Repeated cycles of contact - observed as repeated “touching” behaviours directed
at detected objects (constraints: arm and tactile active)

Hand regard - or hand fixation, when the eye sees the hand as an object but one
whose movement correlates with arm activity. The “object” is marked as a special
case (constraints: eye and arm active)

Arm follows eye fixations - when the location of a stimulus, found by the eye, is
mapped into the arm space and excites arm action to reach to the same place.
This is the basis of reaching and grasping of seen objects (constraints: eye and
arm active)

Eye follows tactile contact - the converse case, where the arm has touched a
stimulating object and its location is mapped to the eye system which then
saccades to fixate on the object (constraints: eye, arm and tactile active)

All these behaviours, including the various forms of motor babbling and the
sometimes rather ballistic motor actions, are widely reported in young infants (Piek
and Carman 1994).

Our choice of constraining visual development until after a kinaesthetic sense
has been established could be controversial but the results show that this is not an
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unreasonable developmental sequence. Much of the psychological literature tends
to assume that vision is the dominant sense and that visually guided reaching is
the earliest accurate reaching behaviour to occur. Infants spend time observing their
hands around 12 weeks and “visually guided” reaching begins between 15 and 20
weeks. Reaching after 22 weeks is visually triggered rather than guided. However,
Clifton et al. (1993) have performed infant reaching experiments in the dark and
shown that infants of around 15 weeks are able to use proprioception alone, without
vision, in successful reaching tasks. A form of “hand looking” behaviour can be
expected to occur when the hand first enters the visual field as an “unknown” object;
but the question is whether this stage is essential to, and therefore must occur
before, visually-guided behaviour or whether there could be other schedules. Our
study confirms the view of Clifton et al. by showing how proprioceptive learning
can occur prior to visual development, can be used to guide action, and does not
necessarily depend upon visual confirmation. A well-developed kinaesthetic sense
could be a great advantage in supporting visual-guidance and visual coordination
by providing a ready mapping of the local operating space. As Clifton et al. state:
“Prior accounts of early reaching have underemphasized the role of proprioception
in infants’ acquisition of prehension” (Clifton et al. 1993).

The integration of proprioception and tactile senses can produce a powerful
haptic system, but it is an open question as to which part should develop first. Our
speculation that tactile sensing could be delayed until after significant kinaesthetic
growth in the same modality appears to be supported by our results. At least, it is a
viable strategy to reduce the complexity of the learning input by discovering some of
the structure of local space before the structure of tactile sensing data is explored. Of
course, a very complex tactile system such as the hand with many types of receptors
sensing heat, vibration, pain and touch may well need a period of familiarisation to
establish the various functions, but this is distinct from object detection and could
take place in parallel with other activities. From these considerations it is clear that
both components of the haptic system could develop together or proprioception
could lead tactile and somatic sensing; but tactile cannot lead propreoception. On
reflection we see that this is a logical necessity because the tactile system must rely
on an existing spatial frame if its experiences are to have any spatial context or
meaning.

Regarding environmental constraints, we have only used the idea of scaffolding
to the extent that we could place objects in areas that were under-explored and thus
direct attention to gain developmental experience in those areas. This was only
possible after the tactile constraint had been lifted; before then objects would be
ignored and possibly ejected from the agent’s personal space. In later work we have
examined the effects of known objects being removed, and this leads on to object
permanence and the detection of moving objects and external agency.

The size of the fields is a useful constraint that is easily overlooked. If large
fields are generated initially, then a rapid but crude mapping of space can be
obtained. When this is no longer creating new experiences, then the field size can
be reduced thus refining the accuracy with new map entries. It is interesting that
the receptive field size of visual neurons in infants is reported to decrease with
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age and development, and this leads to more selective responses (Westermann and
Mareschal 2004).

7 Novelty as Motivation

Motivation is an essential function to drive autonomous development, with current
approaches often using externally driven processes (e.g. Bullock and Grossberg
1988; Caligiore et al. 2008; Gasser and Smith 1998). However, internal drives are
necessary for true autonomy and we employ novelty-based functions as intrinsic
motivators to drive autonomous development through increasing complexity. Exam-
ples of similar approaches and effective results are seen in Kaplan and Oudeyer
(2003, 2007) and Schmidhuber (1990).

In our work we have used a simple novelty indicator to motivate learning and
trigger the removal of constraints. When the robot encounters a novel stimulus it
will repeat the action that caused that stimulus to occur. As the action is repeated, the
novelty dissipates, and the robot has an increasing tendency to perform alternative
actions. Over time the robot finds and performs cumulatively more of the actions
available to it, and so the number of remaining novel actions diminishes (Lee and
Meng 2005). As fewer novel actions are found, the rate of learning in the robot
saturates. In order to enable learning to continue, a constraint can be lifted, as
described in Sect. 6. This opens up a new range of actions for the robot and provides
a new source of novel stimuli to investigate.

To implement this idea we allow the fields to store several variables; this is
equivalent to maintaining an interlayer for each variable in a map surface. These
variables can include stimulus-type quantities for the field location (e.g. depth,
colour, intensity), and also excitation, activity, and any other indicators that prove
useful as a substrate to support learning (e.g. object markers for short term memory).
We use an excitation value to record the current salience or importance of a field’s
contents and an activity value for the usage the field has received. Novel events at a
given spatial location bestow high excitation on the relevant field. Excitation levels
gradually decay with time and are also reduced by habituation following repeated
stimulations. Thus a few constants are required for habituation rate, recovery time,
excitatory decay and possibly other influences. This mechanism allows a simple
selection function; the field with the highest excitation provides the motivation for
the next action.

Notice that we do not record novelty as a value—rather novelty increases
excitation and in this way the meaning of novelty can change. Thus the effect
of different events on excitation will change with experience of those events.
Hence this approach covers a range of new events: new fields, new coordinations
(links), new action changes, new sensing stimuli, new cross-modal events, etc.
Global excitation (the normalised sum of all the individual excitation levels above
a threshold) is an indicator that can signal low attention and can trigger a return to
spontaneous motor action. Global activity (the normalised and inverted summation
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of the field activity levels) decreases with familiarity and can indicate saturation.
We have previously suggested that the degree of motor noise in an action is related
to muscle tone and that tone should increase with excitation. If this is implemented,
then highly focussed action (on targets of high interest or novelty) will have less
noise and better accuracy, while low excitation will accompany low tone and higher
motor noise resulting in more exploratory action.

8 Developmental Action Formation

In Sect. 2 we argued for the importance of grounding research in developmental
robotics in the sensory-motor period of human infant development. However,
developmental psychology supports the theory that early motor skills are related
to perceptive and cognitive development (Thelen 1995), which varies from child
to child. Although there is no single development sequence for all infants—they
develop in their own ways and at their own speeds with some variation—they do
generally conform to a common set of developmental stages. Through our research,
we have identified some of these common sequences, which provide the foundations
for our work on the developmental formation of actions.

From the literature on child development we have constructed a large, general
time-line chronicling the observable development in infant sensor and motor
behaviour over the first 12 months. The information is too extensive to cover here,
but brief summaries can be found in Law et al. (2011) and Hülse et al. (2010a).

Based on this time-line we have generated some general sequences of devel-
opment appropriate for implementation on humanoid robots. For example, Fig. 13
shows a partial development sequence for the upper body of a humanoid robot. Note
that this sequence only focuses on motor development; similar charts cover sensory
growth and attentional preference. Development of motor function is indicated by
shaded areas, which get progressively darker as control improves (note that the
termination of a shaded bar does not indicate the termination of that skill, but that
it has been sufficiently developed as to no longer appear in the literature). It is
interesting to note that the sequence for motor development begins with the eyes
and progressively moves down the body, through the neck and arms, with torso and
wrist control being refined last. The exception to this is the hands, which become
active in the first month, but continue to develop until the tenth month. This time-
line, along with its counterparts, begins to address the problem of how constraints
should be ordered in a robot. For other work on time-lines, see Metta et al. (2009).

The framework to support this emergence of skill is provided for in our systems
by an arrangement of constraints. Table 1 shows how, following our developmental
time-lines, a series of constraints can be assembled to support the emergence of
actions. In this case, we suggest a possible sequence for developing gaze-directed
reaching beginning with the learning of arm proprioception and eye saccades.

Activated abilities are represented by crosses in Table 1. This does not necessarily
mean that the corresponding function is completely unconstrained, but that it is
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Motor system
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Neck Roll, pitch, yaw

Torque

Shoulder Roll, pitch, yaw

Torque

Elbow Pitch
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Wrist Roll, pitch, yaw
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Fingers

Grasps Ulnar Palmar Radial Pincer
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yaw

torque Increasing torque

Increase torque

Increasing control
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Simulated age (months)

Parallel finger use

Increasing range of opposition

Thumb refinement

Individual finger refinement

Increasing control

Increasing torque

Increasing control

Increasing torque

Increasing control

Fig. 13 Partial motor development sequence for a humanoid robot. Shaded regions relate to
periods of development of each ability as observed in infants. Darker shading indicates more
advanced ability

available in some form for the system to use. For example, when sensor and motor
maps become available for use they may initially have additional constraints on
their resolutions. In this example, the robot would start out at the first stage with
access only to the eyeball proprioceptive sensors and motors, and low resolution
visual feedback. This constrains the robot and focuses its attention on learning to
saccade to simple stimuli. When sufficient learning has taken place development
moves onto the second stage, where additional functionality is enabled. A new round
of learning begins, this time reincorporating skills learnt in the previous stage. At
each stage, one or more constraints on functionality are removed, allowing the robot
to learn new skills. In this way, the robot progresses from being able only to make
uncoordinated motion with an eye or an arm to being able to reach to a seen object
in an integrated and goal directed behaviour.

It is important to note that the stages in Table 1 are not fixed in their order, nor
are they necessarily triggered in isolation. Some stages may be learnt in parallel,
and similar levels of development may appear in different orders. The robot is able
to influence the order of constraint removal, so we would expect initially identical
robots to develop in individual ways, much as human infants would. Importantly,
the constraints do not directly control the developmental stages, but simply release
more complexity to the learning processes. Thus stage transitions are emergent;
their ordering and timing are not easily predictable. Indeed, the system may regress
to earlier stages when an action cannot be successfully learned due to gaps in the
system’s previous experience.

This raises the question of how different sensory-motor systems can be com-
bined. Consider the example of three important maps: the image map from the retina
of the eye; the gaze map which maps the orientation of the eye fixation point; and
the reach map of an arm that records the places the hand or end-effector can occupy.
These are all spaces in the sense that each one models the structure of a particular
sensory-motor system and can relate an action to its effects. However they are quite
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Fig. 14 Combining image, gaze and arm maps

different and distinct, yet must cooperate during behaviour. For example, if the eye
notices a stimulus in a peripheral area of the retina, it must rotate the eyeball to
bring the gaze to focus on the object; this involves a mapping from image map to
gaze space. Next the arm can reach for the object but to do so the gaze location must
be mapped into the reach space of the arm.

We have investigated several methods for combining gaze and reach mappings,
such as those briefly mentioned in Sect. 6. In Hülse et al. (2009b) we used a robot
arm to place objects within a camera’s field of view, and the system correlated the
position of the object in the gaze space with the known positions of the arm joints.
By repeating the process with objects placed at different locations, the system built
up a mapping of gaze space to reach space. This system is outlined in Fig. 14.

Visual stimuli on the retina are mapped to eye motor movements in the mapping
labelled “mapping for eye-saccade”. Here, a motor movement is mapped to a
stimulated field in the retina map such that it will perform a saccade (as described in
Sect. 6). This saccade results in a specific absolute motor configuration p, and the
range of absolute motor configurations define the gaze space.

Points in the gaze space can be associated with physical locations in space by
mapping them to arm configurations. In our experiments, the arm placed a coloured
object within the field of view. The joint positions of the arm were then mapped to
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the visual field stimulated by the object. This “mapping between reach space and
gaze space” enables the robot to reach to a point of interest in the scene (Hülse et al.
2010b, 2009b).

Together these two mappings enable the robot to saccade to, and reach to, a target.
However, to prevent the robot repeatedly saccading and reaching to the same targets,
a visual memory is included, labeled VMGS (Visual Memory in Gaze Space). The
VMGS stores the absolute motor configurations, p, of the active vision system
resulting from a saccade. For each visual stimuli detected, the system is able to
predict the corresponding gaze space configuration by applying the mapping for
eye-saccade. By cross referencing these targets with those stored in the VMGS,
the system can inhibit visual stimuli that have already been saccaded to (LVMM).
The overlaid saliency map (OSM) contains the difference between the stimuli on the
retina and the previously examined ones, thus enabling the system to only perform
saccades to new stimuli (Hülse et al. 2009a).

9 Research Challenges

The work described above presents us with a number of challenges for the future.
Some of these, and hints at solutions, are summarised below:

What field sizes should be used to create the various mappings? We have
learned much about different field structures and how accuracy of representation
is dependent on field size. But there is much more to be understood about the
granularity and structure of human egocentric space. We suspect that further work
on this topic might reveal some general principles for developmental robotics.

What are the properties of overlapping arrays? The idea of overlap is rather
contrary to intuition and existing mathematical approaches. However, overlapping
neural and sensory structures are ubiquitous in the biological world. Although
overlap suggests engineering problems like signal crosstalk we believe it has con-
siderable beneficial properties, especially for spatially grounded systems. Further
theoretical work on models of topological maps is required, e.g. (Carreira-Perpinan
et al. 2005).

How can mappings between multiple sensory-motor systems be combined?
The work described here has focussed on creating mappings between one or two
sensory or motor systems. Although these provide foundation building blocks, more
complex activity requires the combination of multiple sensory-motor systems. Full
scale humanoid robots will need many mappings across many different subsystems.
This raises important organisational questions involving architectures such as
hierarchies and networks.

How should constraints be released? It is too simplistic to design a constraint
table and then follow the dictates of this structure. This amounts to simply
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programming the observed behaviour of an infant directly. But there are much more
subtle ways in which constraints may influence and modulate a learning system.
We have experimented with emergent constraints and investigated simultaneous
map generation and compared this with sequential generation and other schemes
(Hülse and Lee 2010), and we find that explicit triggers for constraint lifting are not
necessary (or even desirable). It is possible for constraints to be treated by these
systems in an emergent way and then behavioural stages emerge as a consequence
of the current state of the developing system. Further investigation is needed to
understand this phenomena in terms of the literature surrounding developmental
studies (Law et al. 2011).

How do the maps fit into a body-centric model of space? In our investigations,
mappings have used individual reference frames. Those incorporating arm move-
ments have been centred on the body centreline, whereas those incorporating visual
saccades have been grounded in the visual space. To achieve composite tasks, such
as visually guided reaching, we built mappings between these different reference
frames. This opens up major questions about the structure of egocentric space
and how an integrated sense of space can grow and be maintained. Such spaces
must include tactile, visual and other representations and so become a kind of
“ego-space”.

How can neural models of biological systems (e.g. the basal ganglia) be
integrated into the LCAS framework? As our system is expanded, we expect
situations to arise such as action selection, where a choice between alternative
actions must be made. Maintaining the biological inspiration of the project, we see
how neural models, such as those by Prescott et al. (2006) for action selection, can
be incorporated. Further investigation is required to establish how other such models
can be integrated into developmental approaches such as the LCAS architecture.

What is the role of novelty, and how does it relate to intrinsic motivation? We
have used a single idea for intrinsic motivation: novelty, and a very elementary
implementation of this. Research into novelty is not our main focus and this simple
technique was used as a minimum complexity driver to provoke autonomous action.
We appreciate that as competency increases more elaborate algorithms for novelty
detection will be required. For example, our architecture cannot currently detect
novelty in temporal events. We aim to integrate more sophisticated novelty detection
algorithms such as those by Neto and Nehmzow (2007) and Oudeyer et al. (2007) in
the future, but we also note that the whole question of intrinsic motivation is broader
than novelty and may include other drivers.

10 Relation to Other Work

While there is now growing research activity in the area of developmental robotics,
most related work deals with specific topics such as motivation, active vision, self-
awareness, interaction, and modelling issues. Much of this research has relevance
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for our approach, as seen in the citations given throughout this chapter, particularly
those that shed light on possible mechanisms and algorithms. But there is still a dis-
proportionate lack of research that takes account of the large body of experimental
work in psychology and attempts to extract algorithms that might capture some of
the infant’s impressive cognitive growth.

One of the most comprehensive efforts at computer-based modelling of early
development following a Piagetian approach has been that of Drescher (1991). This
used the concept of sensory-motor schemas drawn from Piaget’s conception of
schemas in human activity (Piaget 1973) and had similarities with early schema
experiments by Becker (1973). Unfortunately, Drescher’s implementation was a
simulation with very primitive sensory-motor apparatus and so many issues that
concern embodiment were not exposed. Maes showed how Drescher’s approach
can be improved by using focus of attention mechanisms, specifically using sensory
selection and cognitive constraints (Foner and Maes 1994).

A few models of infant grasping have been produced and some recent
ones (Oztop et al. 2004) hint that visual guidance may not be central for reaching;
however, none cover the growth of proprioception. There are many more models
of sensory-motor coordination, and the vast majority of these have been based on
connectionist architectures (Kalaska 1995). For example, Baraduc et al. (2001)
designed a neural architecture that computes motor commands from arm positions
and desired directions. Other models use basis functions (Pouget and Snyder 2000)
but all these involve weight training schedules that typically require in the region of
20,000 iterations (Baraduc et al. 2001). They also tend to use very large numbers of
neuronal elements. Interestingly, the model of Baraduc et al. is one of the few that
apply adaptation to the proprioception signals, and obtain good accuracy from very
few input examples. While our models could be cast into a connectionist framework
and, we believe, would give identical performance, we wish to formulate general
methods for constraint models and so favour more explicit algorithms.

11 Conclusions

The framework described in this chapter builds sensory-motor schemas in terms
of topological mappings of sensory-motor events, pays attention to novel or recent
stimuli, repeats successful behaviour, and detects when reasonable competence at a
level has been achieved.

Support for our approach comes from various data. For example, studies of the
order of cell activation in the foetus report that the first cells to be detected as
active are the somatosensory cells, then the auditory, then visual, and finally, the
multisensory cells become active (Meredith et al. 1987). This suggests what we
have found that there are advantages if proprioception leads before vision in sensory
development. Other work has also experimented with low resolution in sensors and
motor systems and then shown that increasing resolution leads to more effective
learning (Gomez et al. 2004). Reduction in degrees of freedom obtained by staged
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development is also reported to be an effective strategy (Lungarella and Berthouze
2002; Sporns and Edelman 1993), as is the concept of constraints being beneficial
to the emergence of stable patterns and helping to bootstrap later stages (Berthouze
and Lungarella 2004).

Regarding our sensory-motor coordination method, we have avoided the long
training times of connectionist methods and used a fast, incremental, and construc-
tive mechanism. This is in accord with several researchers who report that infant
learning and adaptation can be very fast (Angulo-Kinzler et al. 2002; Rochat and
Striano 1999) and in some cases only one trial or experience is needed to alter
behaviour.

Our experiments have shown how stages in growth and behaviour may emerge
from embodied agents through their exploration of the sensory-motor environment
under constraint. It is important that behaviour grows and changes without any
programming but through the shaping influence of experience on internal mecha-
nisms. As an early researcher stated:

Gradual removal of constraint could account for qualitative change in behaviour without
structural change (Tronick 1972)

We must continue to search for mechanisms and supporting substrates that allow
increasingly advanced behaviour to emerge from consolidated prior experience.
Studies of constraint relationships are part of this endeavour and the role of
constraints must be better understood.

We have argued that it is necessary to begin modelling development at the
earliest possible behavioural stages. We agree that “early infant life is . . . systematic
exploration” (Rochat 2003) and believe that robotics can learn much from infant
psychology. Although most psychological theories are not fully articulated enough
to allow testing via implementation, psychologists have built up considerable under-
standing and insights into cognitive development through experimental studies. We
should make more use of this in autonomous systems research so that we might
make steps towards the goal of “continuous development”. In the longer term, we
hope this will lead to new methodologies for building autonomous robot systems
and better understanding and insights into human behaviour and growth.
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The Hierarchical Accumulation of Knowledge
in the Distributed Adaptive Control Architecture

Encarni Marcos, Milanka Ringwald, Armin Duff,
Martı́ Sánchez-Fibla, and Paul F.M.J. Verschure

Abstract Animals acquire knowledge as they interact with the world. Several
authors define this acquisition as a chain of transformations: data is acquired and
converted into information that is converted into knowledge. Moreover, theories on
cumulative learning suggest that different cognitive layers accumulate this knowl-
edge, building highly complex skills from low complexity ones. The biologically,
based Distributed Adaptive Control cognitive architecture (DAC) has been proposed
as a cumulative learning system. DAC contains different layers of control: reactive,
adaptive and contextual. This hierarchical organization allows for acquisition
of knowledge in a bottom-up interaction, i.e. sampled data is transformed into
knowledge. DAC has already been used as a framework to investigate fundamental
problems encountered in biology. Here we describe the DAC architecture and
present some studies focused on its highest cognitive layer where knowledge is
constructed and used. We investigate the roles of reactive and contextual control
depending on the characteristics and complexity of the tasks. We also show how
multi-sensor information could be integrated in order to acquire and use knowledge
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Switzerland
e-mail: mila@ini.phys.ethz.ch

P.F.M.J. Verschure
SPECS, Technology Department, Universitat Pompeu Fabra, Carrer de Roc Boronat 138,
E-08018 Barcelona, Spain
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optimally. Finally, we discuss the possible problems of cumulative learning and the
adopted solutions in the context of DAC.

1 Introduction

Intended behavior is mostly learned and depends on a cognitive system that can
acquire the targets and the means necessary to achieve them in a given situation,
sculpted by experience (Abbott et al. 1985; Barsalou and Sewell 1985; Norman and
Shallice 1986). Animals accumulate knowledge and abilities that serve as building
blocks for subsequent plans and behavior making optimal use of the acquired
information in the context of their goals, i.e. rational decision making (Newell
1990). Such layered or sequential learning appears to be an essential mechanism,
both in acquiring useful abstractions that serve rational behavior and in producing
new foundations for further adaptation. The psychological theory of cumulative
learning (Gagné 1968) favors this view suggesting that learning is hierarchical: low
complexity skills are transformed into more complex ones achieving higher levels
of performance and knowledge. In general, humans and animals make optimal use
of this acquired knowledge (Gallistel 1990; Tversky et al. 2001). In foraging, for
example, animals are able to adapt to the novelty of the environment, acquiring new
strategies to optimize rewards while avoiding risks (Davis 1996; MacDonall et al.
2006; Roberts 1992). Foraging tasks are an example of a goal-oriented exploration
for resources, e.g. food or shelter. In this case exploration is firstly driven by
reactive behaviors that allow the acquisition of the representations of the space. This
representation might contain the integration of multi-modal information to acquire
knowledge. Hence, foraging tasks provide a suitable test case to study acquisition
of knowledge in artificial control systems.

A number of authors consider knowledge as a hierarchy and distinguish between
data, information, and knowledge (Alter 1995; Beckman 1997; Tobin 1996; Van
Der Spek and Spijkervet 1997). In this hierarchical structure data is defined as
facts, sounds, or images. The filtered, formatted and summarized data is called
information. Knowledge is defined as the ideas, rules, and procedures that guide
actions and decisions. Knowledge is acquired from information, it is generally
personal, subjective, and inherently local. Knowledge is internalized by the knower
and it is shaped based on previous perceptions and experiences (Hey 2004).
Therefore, data, information, and knowledge is seen as a chain of transitions
where data is transformed into information and information is transformed into
knowledge. The original meaning of the verb inform is “to give form to.” Therefore
the transformation of data into information is seen as a process of shaping data
in a useful way to make sense out of it. Useful is in this case defined in terms
of generating actions that allow the realization of goals. The transformation of
information into knowledge is explained as an accumulation of multiple pieces of
information providing structure to it (Hey 2004).



Hierarchical Accumulation of Knowledge 215

In biological systems the generation of internal representations from external
data is achieved through perceptual learning (Gibson and Gibson 1955). The
majority of perceptual learning models are based on statistical methods (Becker
and Plumbley 1996; Hopfield 1982; Rosenblatt 1958). Generally the sensory input
is compressed conserving the most relevant features. However, in most behavioral
models, perceptual learning is practically ignored (Duff et al. 2010). Behavioral
learning is reduced to associating actions, i.e. acquire policies, to predefined states or
sequences of states that describe the task domain. The acquisition of these states and
the adaptation of the action association to a changing state space are generally not
considered (Barraclough et al. 2004; Klopf 1988; Montague et al. 1995; Sutton and
Barto 1981). These models can develop policies for well-defined state spaces but do
not explain how the state space they are operating on is constructed or learned in the
first place. In a similar way, machine learning techniques based on Markov decision
processes (Burago et al. 1996; Kaelbling et al. 1998) require a predefined state space
on which behavioral learning can be performed. However, in a system that generates
the internal states through its interaction with the environment, perceptual and
behavioral learning have to be considered and treated as inter-dependent processes.
The robot-based cognitive architecture Distributed Adaptive Control architecture
(DAC) (Verschure and Althaus 2003; Verschure et al. 1993, 2003; Verschure 2012)
has been explicitly defined to address this problem of priors and it comprises both
perceptual and behavioral learning in a unified framework (Verschure and Coolen
1991; Verschure et al. 2003). DAC shows how in an incremental learning process
data is transformed into information and knowledge and subsequently integrated
into optimal policies for goal-oriented action through the continuous interaction
between and agent and its environment.

DAC is a robot-based neuronal model of classical and operant conditioning
(Verschure and Althaus 2003; Verschure and Coolen 1991). Classical conditioning
is a form of associative learning (Pavlov 1927) where the presentation of a
neutral stimulus (conditioned stimulus CS) together with a significant stimulus
(unconditioned stimulus, US) leads to an association of the initially neutral stimulus
to a, so-called, conditioned response (CR). In one interpretation the CS substitutes
the US because the behaviorally significant stimulus (US) triggers an unconditioned
response as an innate automatic response that forms a template for the CR. If CS
and US are repeatedly paired, the two stimuli become associated and the organism
begins to behavioral respond to the presence of CS alone. One typical paradigm is
eyelid conditioning where an air-puff (US), after which inevitably the animal reacts
with an eyelid closure, is paired with the presentation of a tone (CS). After a number
of trials the animal begins reacting to the CS with a CR similar to the UR, even if the
air-puff (US) is not present anymore (Mackintosh 1990). Operant, or instrumental,
conditioning is also a form of associative learning. However, the association is
not always as direct as in classical conditioning. Series of actions are needed to
reach a reward or punishment (Thorndike 1911). These actions are weighted with
different values depending on the US resulted from an action, i.e. with an appetitive
or aversive US, so the ones that leaded to a reward will occur with greater frequency
that the ones that were paired with punishment. DAC proposes that Classical and
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Operant Conditioning reveal a fundamental scaffolding of learning that advances
through three stages. First, sensor statistics based on perceptual learning provides a
“neutral” representation of the state space. Second, mechanisms underlying classical
conditioning provide for a biasing of this state space representation with respect to
its immediate survival value (construction of CS representations) and the shaping of
discrete actions (tuning of the amplitude time course of the UR to define the CR).
Subsequently operant conditioning builds on the representational building blocks
provided by the preceding two stages to construct plans for actions and provide a
foundation for cognition and problem solving.

DAC has been investigated using formal approaches (Verschure and Althaus
2003; Verschure and Coolen 1991) and robots (Verschure et al. 1993, 2003). In this
chapter, we review some of the studies done using the DAC architecture. We focus
the review on the ability of DAC to display cumulative learning from low reactive
control to high-level cognitive capacities. In particular, we show how reactive and
cognitive behaviors might complement each other and how they scale as task com-
plexity increases (Marcos et al. 2010). We also discuss the importance of integrating
multi-sensory information in memory and its implications in the acquisition of
information and construction of knowledge (Ringwald and Verschure 2007b).

2 Description of DAC

The DAC architecture is based on the assumption that learning consists of the
interaction of three different layers of control: reactive, adaptive, and contextual,
as illustrated in Fig. 1. The most basic behavior generated at the lowest reactive
layer allows interaction with the environment while acquiring information which
is converted into knowledge by the higher adaptive and contextual layers. We will
briefly describe the characteristics and dynamics of the three layers focusing on
how knowledge is obtained and used by the highest layer of the architecture, i.e. the
contextual layer.

2.1 Reactive and Adaptive Layers

The reactive layer provides pre-wired responses from stimuli to actions that allows
for a simple interaction with the environment (US! UR), e.g. aversive or appetitive
actions. This reactive behavior allows the sampling of data from the environment
which are learned and classified in terms of their valence and associated actions by
the adaptive layer. The adaptive layer creates internal representations of the data and
learns to associate these internal representations with actions (CS ! UR). In this
way, data sampled from the environment is converted first into information (internal
representations) and then into knowledge (association between CS and UR). Later
on, this knowledge is accumulated in the contextual layer.
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Fig. 1 Schematic representation of the DAC architecture. It is based on the assumption that
behavior results from three tightly coupled layers of control: reactive, adaptive, and contextual.
Squared boxes stand for neuronal groups. Arrows stand for static (solid) and adaptive (dashed)
synaptic connections between cell groups. Abbreviations mean: US, unconditioned stimulus;
CS, conditioned stimulus; IS , internal states; A, action group; UR, unconditioned response;
CR, conditioned response; STM, short-term memory; LTM, long-term memory
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Fig. 2 Reactive and adaptive layer. Squared boxes stand for cell (neuronal) groups. Arrows stand
for static (solid) and adaptive (dashed) synaptic connections between cell groups. Abbreviations
mean: US, unconditioned stimulus; CS, conditioned stimulus; IS, internal states; A, action; UR,
unconditioned response; CR, unconditioned response; W, V, and U are connection matrices

Following the abbreviations from Fig. 2, the actions generated by the reactive
(ar ) and adaptive (aa) layers are defined as:

ar D U TrH.r � �A/ (1)

aa D U TyH.y � �A/ (2)

where r stands for the contribution of the US to IS 2 R
K , y stands for the

contribution of the CS to IS 2 R
K , U is the weight matrix from the IS to the A cell

group, and H(.) is the Heaviside or step function.1 Their mathematical expression
is: r D V Ts and y D W Tx, where V is the weight matrix from US to IS cell
group 2 R

NxK and W is the weight matrix from CS to IS cell group 2 R
NxK .

1H.x � �A/ is 1 if x � �A and 0 if x < �A
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The weight matrix W changes following a, so-called, predictive Hebbian learning
rule (Verschure and Pfeifer 1992) as:

�W D �.x � �e/..1� /y C .1C /r/T (3)

where e will be referred as CS prototype and is the backwards projection of y to
the CS cell group described as e D Wy, � is the learning rate, ,  2 Œ�1; 1�,
balances the influence of the behavioral (xyT) and perceptual (xrT) learning and �

controls the influence of e assuring convergence. This learning rule directly captures
the Rescorla and Wagner laws of associative competition that essentially state that
animals only learn when events violate their expectations (Rescorla and Wagner
1972).

For further explanation about the dynamics of the reactive and adaptive layers,
see Duff et al. (2010); Duff and Verschure (2010).

2.2 Contextual Layer

The contextual layer provides the means for memorizing and recalling behavioral
sequences. It consists of two structures: short-term memory (STM) and long-term
memory (LTM).

The contextual control is based on the following assumptions:

– Memorize:

� STM stores sensory-motor events generated by the adaptive layer.
� When a goal state is reached the content of the STM is stored in the LTM and

the STM is initialized.

– Recall:

� The content of LTM is compared with ongoing sensory events.
� Matching elements contribute to action selection.

The STM is a ring buffer with fixed size NS . Every element of this memory is
called a segment. A series of consecutive segments is called sequence. The STM
is formed by one sequence of NS segments. At each moment the generated CS
prototype e and the action a executed by the robot are stored in the STM. When a
goal state is reached, the sequence stored in the STM is copied into the LTM and
the STM is reset. The LTM has an NL number of sequences. The size of the LTM
is, therefore, NLxNS . The sequences in the LTM are defined by their different goal
states, e.g. �1 for an aversive event such as a collision, C1 for an appetitive event
such as a reward (Fig.3).

Initially only the reactive and adaptive layers are active. The contextual layer
is enable when the predicted CS prototype (CS e) approximates the actual CS
(CS x) prototype. The quality of this matching is defined by an internally generated
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Fig. 3 Contextual layer. (1) The CS prototype e and the executed action a are stored in the STM
as a segment. (2) When a goal state is reached the content of the STM is copied in the LTM as a
sequence and the STM is reset. (3) The values of the generated CS prototype e are matched against
those stored in the LTM (4) The A population receives as an input the action response calculated
as a weighted sum over the memory segments. (5) The actions proposed by reactive, adaptive, and
contextual layers compete in a priority selection mechanism to control the robot

discrepancy measure (D) that is running an average distance between the prototypes
CS x and CS e.

D.t C 1/ D ˛DD.t/C .1 � ˛D/d.x; e/ (4)

where ˛D , ˛D 2 Œ0 1�, is an integration time constant and the distance d(x,e) is
calculated as:

d.x; e/ D 1

N

NX

j D1

ˇ̌
ˇ̌
ˇ

xj

max.x/
� ej

max.e/

ˇ̌
ˇ̌
ˇ (5)

The contextual layer is activated when D falls below a certain confidence threshold.
During the recall all the CS e prototypes stored in the LTM are matched against

the generated CS e prototype. The degree of matching of segment l in sequence q
determines the input to its, so-called, collector:

clq D .1 � d.e; elq//tlq (6)

The collector determines the contribution of the segment to the action selection.
Its activity depends on the distance d(.) of the generated CS e prototype to the CS e
prototype stored in the segment and on a, so-called, trigger value t. The trigger value
biases the sensory matching process of the segments and allows chaining through
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a sequence. Its default value is 1 and does not bias the collector value. When a
segment l-1 in sequence q is activated the trigger of segment l is set to a value
higher than 1. This means that a segment, following a previously effective one, will
be given higher priority in future decision making. The trigger decreases its value to
1 asymptotically according to:

tlq.t C 1/ D ˛t C .1 � ˛t /tlq.t/ (7)

where ˛t 2 Œ0 1�. The trigger of a selected segment resets its value to 1.
The collectors that will contribute to the action proposed are those that satisfy:

(1) its activity is above a certain threshold (�C ) and (2) its activity is inside
a predefined percentage range from the maximum collector’s activity, i.e. the
collectors compete in an E%-Max Winner Take All (%E-Max WTA) mechanism
(de Almeida et al. 2009). The actual action proposed from the contextual layer is
calculated as:

ac D
X

l;q2LTM

˙clqH.clq � �C /

ılq
alq (8)

where ılq is the distance measured in segments between the selected segment l and
the last segment in the sequence, i.e. the distance to the goal state. By doing this
division the segments closer to the goal have more impact on the contextual action.
The sign is plus if the segment belongs to an appetitive sequence and minus if it
belongs to an aversive sequence. If ac results in a negative action, it is filtered out to
avoid backwards actions.

The final action executed by the robot is either ar , aa or ac based on their priority:
reactive actions have the highest priority then contextual actions and then adaptive
actions.

We described above four main changes with respect to the contextual layer of
DAC5 (Verschure and Althaus 2003; Verschure and Voegtlin 1998; Verschure et al.
2003). These changes are: (1) the collector unit function (2) the WTA mechanism to
select the collectors contributing to the contextual action, (3) the filtering of negative
actions, and (4) the priority of actions.

3 Results

We investigate the acquisition of knowledge at the contextual layer of the DAC
architecture. First, we investigate the roles of the reactive and the contextual layers
and we show how the acquired knowledge at the contextual layer is fundamental for
resolving specific tasks (see Sect. 3.1). Then, we propose two methods for spatial
integration of information and we show how they improve memory performance as
well as influences the formation of knowledge (see Sect. 3.2).
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The two studies presented here were tested with a simulated agent. It was
implemented in CCC and wSim (Wyss et al. 2006) using the Open Graphics Library
approximating a Khepera robot2 widely used for behavioral modeling. The validity
of the simulated robot with respect to a real one has been demonstrated in several
studies (Wyss et al. 2006). The robot had a radius of 5.5 cm and it was equipped
with eight light sensors and eight proximity sensors. The sensors return a signal
based on an exponential decay function that depends on the distance to the light
sources or to the obstacles, respectively. The robot was also equipped with a color
camera pointing to the floor (with an angle of 45ı). The robot moves forward with
a speed of 0:1� robot radio and rotates with a speed of 10ı. The action group from
the architecture was connected to the motor group of the robot. Each cell of the
motor group mapped a direction of movement. A winner-take-all (WTA) took place
at the motor map level and selected the neuron with highest activity. The default
movement of the robot was to move forward.

3.1 The Complementary Roles of Reactive and Contextual
Control Systems

Reactive behavior is essential to explore and learn about novel environments. This
low cognitive behavior makes possible the interaction with the environment while
higher cognitive areas acquire knowledge to exploit it later on. In some situations,
reactive behavior is enough to fulfill the internal motivation of the agent, but as
the complexity of the environment increases higher cognitive behavior is necessary
to optimally exploit the environment. To understand the possible complementary
roles of high and low cognitive behavior during foraging tasks we studied the
scalability of the contextual and the reactive layers of DAC as task complexity
increases. To do so, we equipped the reactive layer with a self-regulatory process
that controls the behavior of the robot based on its internal motivation, e.g. food or
shelter. The reactive behavior allows the learning of the rules of the environments
by the contextual layer. Once this is done, the animal is able to use this knowledge
to reach desired positions in an environment.

The self-regulatory process of the robot’s internal motivation is based on the
concept of homeostasis (see Cannon 1929 for a review). It contains a set of
homeostatic subsystems (Fig. 4). Each of these subsystems is related to an internal
motivation and respond to a gradient placed in the environment. The robot senses
the gradient and performs reactive actions in order to place itself in the desired
position inside that gradient. Each homeostatic subsystem contains an actual (Va)
and desired (Vd) value in a specific gradient that corresponds to the goal state in that
gradient. The homeostatic subsystem tries to get close the actual and the desired
value by computing an action that reduces the difference between the two values.

2K-Team, Lausanne, Switzerland
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Fig. 4 Self-regulatory control in the reactive layer. Abbreviations mean: Vxd, desired value; Vxa,
actual value, with x ranging from 1 to N subsystems

In the contextual layer, sequences of perception-action are stored and labeled with
a number that indicates the internal motivation they relate to. The stored actions are
allocentric actions that contain the orientation needed to go from the current position
selected from memory to the following one.

The role of contextual and reactive systems was tested in three different foraging
tasks, each of them containing visual cues and rewards. The visual cues were patches
on the floor whereas the rewards were gradients. The internal motivation of the
robot was satisfied when the robot reached the highest point of a gradient. The
first task was an open field task with one reward and a direct path (no osbtacles)
from any position in the environment to the reward. The gradient of the reward
varied its size from 0 to a size that covered the whole space. The second and third
tasks were remotely inspired to the Tolman maze (Tolman and Honzik 1930) as in
Hartland et al. (2009). The second one had one reward whereas the third one had
three different kinds of reward. Every trial finished when the robot reached its goal
state and started from the same position but with a random orientation. In these two
tasks, obstacles were place in such a way that there was not a direct path between
the robot’s initial position and the rewards. In the three tasks, we restricted the size
of the memory to a maximum of 40 sequences of 120 segments each. We added 5 %
of noise to the motors of the robot to simulate real conditions. For every condition,
we ran ten experiments with 20,000 cycles each.

In the open field task we obtained a significantly higher performance in the
case of the contextual control system for low values of the gradient (Wilcoxon
rank sum test p < 0:001). However, as the weight of the gradient increased the
reactive control system performed better than the contextual control system. This
was not surprising since the direct vision from any position in the environment to
the reward allows an optimal calculation of the next action by the reactive control
system (Wilcoxon rank sum test p < 0:01).

The two last tasks showed the importance of the contextual control system since
obstacles do not allow direct path to the reward. With only reactive actions the robot
collided with the obstacles in many occasions. The contextual control system was
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Fig. 5 Trajectory plots when the goal position was indicated by the arrow. Colored crosses are
visual cues and colored stars are rewards. (a) Reactive control system. (b) Contextual control
system

Fig. 6 Count of stored patches. Number of times each patch is stored in memory for each of the
three rewards

able to pick up relevant information, convert it into knowledge, and decrease the
distance travelled by the robot to reach a goal position (Wilcoxon rank sum test
p < 0:001). The third task allowed us to generalize the results to more than one
reward. Moreover, we also showed that the performance of the robot decreased as
the distance to the reward increased. However, we observed that the slope of this
decrease in performance was lower in the case of the contextual control system
suggesting that the performance of the reactive control system was more affected by
the reward’s distance. Fig. 5 shows an example of trajectory plots in each layer for
this last task.

To better understand how the contextual control system stored information about
visual cues and used it to make rules about the different rewards, we looked at the
content of the memory in the third task. In Fig. 6 we show the number of times each
visual cue was stored in memory for each reward. We observed that the last two
patches were used only to reach the third reward whereas the rest of patches were
part of the sequences corresponding to all different rewards. Therefore, the memory
contained sequences that leaded the robot to the three rewards, but it only used them
when they leaded to a reward that fulfilled its internal motivation.
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This study allowed us to better understand how reactive and contextual control
systems might complement each other and how they might scale with task
complexity. Moreover, we proposed that these implications might be extended
to animals daily life situations, where same problems might appear in their
environments.

3.2 Integration of Spatial Information

Work on hippocampus, the neuronal substrate underlying self-localization and
navigation in organisms, suggests that egocentric sensory inputs are stored and
linked into behavioral episodes along with allocentric spatial representations (Bower
et al. 2005; Dragoi and Buzsaki 2006; Huxter et al. 2003; Lisman 1999; Papp et al.
2007), and that the recall of hippocampal behavioral sequences is accompanied
by two phenomena: anticipation of the subsequent location (Dragoi and Buzsaki
2006; Muller and Kubie 1989) and reward (Lansink et al. 2008; Lee et al. 2006;
Pennartz et al. 2004). However, it is currently not clear how these concepts are
integrated in order to generate structured goal-oriented behavior in the absence of
global frame of reference. To explore the local mechanisms of bimodal sensory
fusion that could facilitate the transformation of egocentric actions into allocentric
ones, we worked in the context of simulated robots performing a foraging task in
an open arena. We augmented DAC with spatial cues as a new sensory input, and,
designed and evaluated two approaches for bimodal sensor fusion: spatial attention
and spatial integration. In the context of the two integration approaches, we designed
and investigated the role of the anticipation of the subsequent location and reward
on the recall of behavioral sequences.

To integrate the spatial information in DAC, we modified the LTM augmenting
its segments to also hold allocentric spatial information, i.e., the position where an
event has occurred. We assumed that allocentric spatial information was provided
by the place cells of the hippocampus (de Almeida et al. 2009; Guanella and
Verschure 2007; Verschure et al. 2006; Wyss et al. 2003; Wyss and Verschure
2004). As an abstract version of the place fields of hippocampal place cells
we used perfect 2D-Gaussians, which is consistent with recent work (Wyss and
Verschure 2004). Moreover, we proposed two approaches for bimodal sensor fusion:
spatial attention and integration. Both methods use spatial information. The spatial
attention approach improves local awareness by selecting only those salient cues
that are consistent with the spatial information, i.e. segments that match current
visual cues go to a second process that compares current spatial information
with their stored spatial information. In contrast, the spatial integration approach
biases cues, i.e. both, visual cues and spatial information, are used to calculate the
likelihood of actions stored in the memory (see Fig. 7). In this case, the collector
unit is now given by:

cl
k D .1 � dl

k/.1 �ml
k/tl

k (9)
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used to calculate the likelihood of the selected action (ck

l )

where dl
k is the distance between stored and current prototypes and ml

k is the
Euclidean distance between the stored spatial information and the current position
of the robot.

As introduced in Sect. 2, DAC implements two mechanisms that bias the memory
selection to achieve anticipation of the subsequent location and reward: the trigger
unit and the distance to the goal, respectively. The trigger unit implements a
feedback mechanism that favors segments following the currently selected one
along the corresponding LTM sequence by temporarily increasing their weights.
The distance to the goal state is used to assign a higher weight to the segments
closer to the goal. We modified these two mechanisms and called them sequence
fidelity and goal fidelity, respectively.

We extended the original sequence fidelity (SF) to a mechanism for memory
smoothing, defined as follows:



226 E. Marcos et al.

SFl
k.t/ D 1 � exp

 
dsegmentkl

2

2
smoothing
2

!
(10)

If a segment is selected, its SF value is reset and it falls back over time to its
default value according to:

SFl
k.t C 1/ D ˛T C .1 � ˛T /SFl

k.t/ (11)

where ˛T 2 Œ0I 1�. The contribution of an LTM segment is provided by the value of
the collector unit cl

k for segment l of sequence k.
Originally in DAC, a goal fidelity (GF) was introduced by calculating the

distance to the goal measured in segments for each selected segment. This value
was C1 if the sequence leaded to a target, and it is �1 if the sequence leaded to a
collision. We introduced two changes in the way the goal fidelity was represented
in the system. Firstly, instead of using the distance to the goal state measured in
segments, we used the distance measured in number of actual steps that the robot
took in order to move between the activated segment and the end of its sequence.
In addition, we differentiated how we calculated the goal fidelity value based on
the type of the LTM sequence. If the sequence was appetitive, GF was equal to the
distance, for an aversive one it was defined as the reciprocal value of it, 1/distance.
By this, we biased the memory to follow the shortest way to a target, and the longest
way to an obstacle.

In Ringwald and Verschure (2007a) we evaluated the performance of the two
integration approaches compared to two control groups in which the recall of the
behavioral sequences is based on either the spatial signal or the visual cues stored
in LTM. The four set of experiments used solely sequence fidelity to bias the LTM.
We used a simulated robot in an open-arena foraging task, where two lights were
used as targets. These two targets were detectable by the light they emitted. Only
one target was active at a time. As soon as the robot reached the active target, it was
deactivated and the other one was activated. The size of the arena was 40 by 25
units, where the unit size equals to the size of a robot. We ran 150,000 cycles
for each experiment, measured in the last 50,000 cycles, and averaged over 30
experiments. The LTM memory was constrained to 100 sequences of 50 segments.
We showed that the maximum performance for a bimodal approach was seven times
better than the maximum performance for an unimodal approach. In addition to this,
the memory content of the two control groups showed significantly less information
about the environment compared to the bimodal groups.

We also evaluated the performance of the two integration approaches that use
both sequence fidelity and goal fidelity to bias the LTM. We performed two sets of
experiments in the same open arena as explained above. The first used the “spatial
attention” method, while the second assessed the impact of the “spatial integration”
method. In each experiment, we let the system run and learn with only the sequence
fidelity bias enabled for 100,000 cycles. After this period the learning was stopped,
and we let the system run 100,000 additional cycles. In the first half of this test
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Fig. 8 Performance and memory content. The performance is given in target rate, i. e. the slope of
the regression line of the accumulated targets averaged over all experiments. Results are given for
both integration scenarios in two cases: first when LTM sequences are biased using only sequence
fidelity mechanism, and second with the goal fidelity in addition. The quality of the memory
content is shown in the third column plots for both integration scenarios. To asses the quality
of the memory content we employed the mutual information method (Mackay 2003) to quantify
the amount of missing information in the LTM: 0 means no information was missed.

phase, only the sequence fidelity bias is enabled. In the second half of the test phase,
both biases influenced the LTM sequence recall.

In Fig. 8 we show the performance of the two integration approaches with respect
to two parameters: scale of spatial information and sequence fidelity. The scale of
the spatial information represents the standard deviation of the 2D Gaussian, with
the unit size equal to the size of the robot. It directly influences the spatial cue
fidelity. The other parameter is the scale of the memory smoothing (
smoothing in 10).
We observed that in the case of sequence fidelity bias mechanism, both factors,
scale of the memory smoothing and the sparseness of the spatial information, have
an impact on the performance. If the uncertainty of the spatial information and the
memory smoothing are in the lower range, the “integration” approach outperforms
the “spatial attention.” However, a low variance in memory content and performance
across the upper range of memory smoothing and spatial scale of the “spatial
attention” suggests the feasibility of a combined approach. In the case of the goal
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Fig. 9 Comparison of the
performance of the
DAC-based approaches using
egocentric actions and
Monte-Carlo Partially
Observable Markov Decision
Process (MC-POMDP), an
optimal Bayesian algorithm
using allocentric actions. All
approaches use a continuous
state space

fidelity mechanism and the “spatial attention” approach, the increase in performance
is observed on the whole parameter range. However, in the “integration” approach
there is an overall decrease in performance.

The spatial attention method resulted in a low variance in memory content and
performance across the given range of memory smoothing and spatial scale values.
As a result of the better exploration/exploitation strategy at the higher values,
it outperformed the integration method. While the weight of the action stored in
the LTM segment was determined solely by the similarity of the disambiguated
visual cue, these results further suggest that between the two sources of inputs,
spatial and vision driven, the latter had a dominant role. In summary, we showed
that the integration of the two sensory inputs not only reduces ambiguities of
the egocentric frame reference, however, at the same time, it improves both: an
exploratory behavior of the robot and its performance. In addition, we showed that
the two integration approaches are complementary, suggesting that spatial cognition
is a two-stage process in which the probabilistic integration precedes the spatial
attention mechanism.

To evaluate our approach in a broader context, we compare the results of the
four DAC-based groups with the performance of the two lower DAC layers and
with the MC-POMPD method (Thrun 2000), one well-known method that learns to
optimally act in an environment. This method approximates the belief state with a
set of particles and employs the value iteration method to learn the optimal policy
with allocentrically defined actions. MC-POMDP works over continuous action and
state spaces and it employs the value iteration technique for optimal action selection.
For the purpose of comparison with DAC, a discrete set of actions (NE, N, NW, W,
SW, S, SE, E) is used and distance to the next goal is provided directly as a reward.
Each so-called “belief” state is represented by a set of hundred samples, and up to
ten similar belief states are stored in a memory. As the performance of the four DAC
groups is comparable when spatial uncertainty is set to 0:5 and sequence fidelity is
set to 2:0, in all four DAC-based groups we use these two parameter values.
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The results in Fig. 9 show that the contextual layer achieves a performance three
times better than the one observed in the lower layers of DAC. If we take the
performance of the MC-POMDP algorithm as the empirical maximum, we see that
the spatial attention approach, which uses combination of sequence and goal fidelity
biases, achieves the 72 % of MC-POMDP performance. The performance gap
between the DAC-based spatial attention approach and the MC-POMDP algorithm
decreases to 10 % when we compare MC-POMDP with the best performing DAC
group.

In this study we investigated the influence of a sequence fidelity and goal
fidelity bias on the performance of two integration approaches, namely “spatial
attention” and “spatial integration,” with respect to two parameters: sparseness
of sensory input and memory smoothing. We showed that the organization of
behavioral sequences is supported by two anticipatory mechanisms: anticipation of
the future location and the anticipation of reward. In particular, our results show that
the approaches which use both the visual and spatial information perform better
than the unimodal ones. At the same time, the bimodal integration approaches
improve the robot’s exploratory behavior, which we conclude by inspecting the
memory contents. In the spatial attention method, the “sequence fidelity” and “goal
fidelity” biasing mechanisms facilitate the transformation of egocentrically defined
actions into allocentric behavior. In particular, spatial integration performs better
when we have precise spatial information and there is no additional goal fidelity
bias, whereas spatial attention performs better when we do not have precise spatial
information, and we employ both sequence fidelity and goal fidelity biases. These
results imply that the spatial integration approach is a good candidate for goal-
oriented tasks where spatially congruent stimuli are expected to drive the responses.
In contrast to spatial integration, the spatial attention approach is a good candidate
for goal-oriented tasks that require choice between alternative strategies. In addition,
we compared DAC performance with the performance of the MC-POMDP method.
We showed that the DAC of performance was only 10 % lower than the performance
of the MC-POMDP method. This result is outstanding since DAC does not require a
priori global information to solve a task, i.e. it uses egocentric actions vs. the
allocentric ones used by the MC-POMDP method.

4 Discussion

In this chapter we have described the hierarchical accumulation of knowledge in
DAC. We have mainly focused on the transformation from sampled data into filtered
and formatted data, i.e. information, and from there into rules and procedures that
guide actions and decisions, i.e. knowledge. We have specifically emphasized the
most recent studies carried out at the contextual level and how the acquisition
of knowledge at this level depends on sampled data and extracted information.
In concrete, we have also studied the complementary roles of reactive and contextual
layers in tasks in which by basic reactive behaviors goal states are reached and
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tasks where acquisition of knowledge at the contextual layer is fundamental for
obtaining a performance above chance level. In addition, we have also investigated
the importance of multi-modal integration in acquiring and recalling knowledge.
We have shown that integrating data from visual and spatial cues results in an
improvement of the exploratory behavior of the robot.

To study how reactive and contextual layers complement each other we added
homeostatic subsystems to the reactive layer to regulate and satisfy the different
internal motivations of the robot and extended the memory content of the contextual
layer to store and retrieve information related to these internal motivations, i.e. goal
states. Furthermore, we integrated both systems converting the egocentric actions
from the reactive behavior ones for the contextual control system. We tested this
model in a variety of robot foraging tasks. We showed that only reactive behavior
is necessary to fulfill the robot’s needs when there is a direct path between the
robot and the reward. However, when there is not a direct path to reach a reward
acquisition of knowledge at the contextual layer is fundamental.

By extending and integrating multiple sources of data to acquire first information
and then knowledge we have investigated the local mechanisms of bimodal sensory
fusion that could facilitate conversion of egocentric actions into allocentric ones.
We have proposed two different integration methods: spatial attention and spatial
integration which differ in the way they recall information from memory. We have
shown that variations in the scale of memory smoothing and the spatial information
have an impact on the performance of both models. A narrow spatial window helps
selecting the correct sequences and thus reduces the ambiguity of the information
stored in the memory. Widening of the spatial window degrades the performance
by introducing additional noise into the system leading to the inclusion of incorrect
sequences in the decision-making process. These two integration approaches have
shown to be complementary indicating that spatial cognition is a two-stage process
where the spatial attention mechanism preceded by the probabilistic integration.

Many different cognitive architectures have been proposed (see Vernon et al.
2007 for a review). DAC differs from them in that it is a self-contained learning
system that demonstrates how perceptual and behavioral control can be understood
as a bottom-up organization. The reactive layer provides prewired reflexes that
allow for an interaction with the environment while sampling sensory data from it.
These sensory data are processed and classified by the adaptive layer, which creates
representations of sensory stimuli, transforming data into information. In addition
to these created representations, the adaptive layer extracts knowledge from this
information associating between events and actions. At the level of the contextual
layer the information extracted by the adaptive layer is used to express relationships
between sensory events and motor actions over time and to extract rules to reach
specific targets, creating a representation of knowledge. This learning model is self-
contained in the sense that the specifications about an environment are acquired
through interaction with the world and are continuously updated in relation to the
experience of the agent, by changes in the adaptive layer classification of sensory
events or by changes in the formation of new sequences by the contextual layer.
A fundamental difference between DAC and traditional cognitive systems is that
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DAC knowledge is accumulated in the adaptive and contextual layers through
a continuous interaction with the world, as opposed to the traditional cognitive
systems where the knowledge is specified a priory. Hence, this difference leads to
a change in the boundaries, i.e. traditional models are bounded by their predefined
world in contrast to DAC which is bounded by the complexity of the real world
making the acquisition of knowledge wider and dynamically adapted to changing
environment.

One example of cumulative learning models are the classifier systems (Holland
1986; Holland and Reitman 1978; Wilson 1987) which are specialized applications
of genetic algorithms (Holland 1975). They have the ability to acquire knowledge
from the outside world and to retain it for future problem solving in dynamic
environments. However, one of their limitations is that they assume that changes in
the environment are smooth. Therefore, these systems cannot account for dramatic
changes. Moreover, the learned rules are acquired and expressed in a short-term
memory which leads to the problem of forgetting inactive information over time.
This problem is critical in cumulative learning. Therefore, cumulative learning
systems have to account for solutions to fundamental problems like the already
mentioned influence of intrinsic motivation in formation of knowledge, as well
as account for dynamic changes of an environment and forgetfulness of previous
acquired information, among others. As presented in this chapter, DAC has allowed
us to investigate some of these issues, but some of them, such as the forgetting
problem, is still a fundamental issue to be considered. When the memory is full
the first stored sequence is deleted so a new sequence can be stored, so newer
information automatically replaces old information. This can be a good strategy to
follow in static environment, but this might not be the case when the information in
the environment changes over time. To study this problem, in Mathews et al. (2010)
DAC was extended with an expectation reinforcement method to learn landmark
reliability in dynamic environments. The resulted behavior of the model closely
resembled real insect navigation.

In summary, we have shown that DAC is an example of a cognitive system
where the chaining transformation from data over information to knowledge is
fundamental. Different from other cumulative learning models, such as the classifier
systems, in DAC the acquisition of knowledge and the behavior are tightly coupled,
i.e. actions performed by the robot due to its current knowledge affects the later
sampling of data. Therefore, as a biological based architecture, DAC shows that the
accumulation of knowledge can be understood in a recurrent process of bottom-up
and top-down interaction where executed actions and acquired knowledge influence
each other.
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The Hierarchical Organisation of Cortical
and Basal-Ganglia Systems:
A Computationally-Informed Review
and Integrated Hypothesis

Gianluca Baldassarre, Daniele Caligiore, and Francesco Mannella

Abstract To suitably adapt to the challenges posed by reproduction and survival,
animals need to learn to select when to perform different behaviours, to have
internal criteria for guiding these learning processes, and to perform behaviours
efficiently once selected. To implement these processes, their brains must be
organised in a suitable hierarchical fashion. Here we briefly review two types of
neural/behavioural/computational literatures, focussed, respectively, on cortex and
on sub-cortical areas, and highlight their important limitations. Then we review two
computational modelling works of the authors that exemplify the problems, brain
areas, experiments, main concepts, and limitations of the two research threads.
Finally we propose a theoretical integration of the two views, showing how this
allows us to solve most of the problems found by the two accounts if taken in
isolation. The overall picture that emerges is that the cortical and the basal ganglia
systems form two highly-organised hierarchical systems working in close synergy
and jointly solving all the challenges of choice, selection, and implementation
needed to acquire and express adaptive behaviour.

1 Introduction

A distinctive feature of animal behaviour is that it supports multiple sensorimotor
activities directed to satisfy multiple survival and reproduction needs in variable
conditions. The point of departure of the analysis of this chapter is that hierarchical
behaviour in animals can be considered as the result of three pivotal classes of
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processes (cf. Alcock 1998; MacFarland 1993): (a) those leading to the acquisition
and expression of specific sensorimotor/cognitive transformations, or skills; (b)
those leading to the selection of such skills in different circumstances depending
on the needs and goals pursued by the animal; (c) and those guiding the learning
processes underlying the latter selection and the acquisition of skills based on moti-
vations. The implementation of these processes requires a strongly structured brain
architecture organised at multiple functional levels where the top ones exert control
over the lower ones but at the same time are influenced by them in their functioning
(Meunier et al. 2010). This architecture is inherently softly-modular: on the one
hand, it encodes in distinct neural populations different skills, goals, and other
elements that support behaviour so that they do not interfere with each other; on the
other hand, if such elements are similar, they are encoded in partially overlapping
neural populations so as to exploit generalisation. The brain architecture is also
hierarchical to allow the implementation of sensorimotor/cognitive transformations,
and selection of chunks of behaviour, at multiple levels of abstraction.

The psychological and neuroscientific literature investigating the hierarchical
organisation of brain and behaviour is currently basically split into two research
threads having strong characterising features in terms of topics, concepts and meth-
ods, and limited interactions. The first research thread, mainly involving the sub-
fields of cognitive neuroscience, primate neuro-physiology, and neuro-psychology,
focusses mainly on the study of cortical systems, runs behavioural/cognitive exper-
iments with human and non-human primates, investigates the non-human primate
brain with neurophysiology and the human brain on the basis of brain-imaging
techniques, natural brain impairments, or transcranial magnetic stimulation (e.g.,
Cisek and Kalaska 2010; Gazzaniga 2004; Rizzolatti and Craighero 2004; Walsh
and Cowey 2000). The second research thread, mainly involving the sub-fields of
bio-behavioural studies and comparative psychology, focusses mainly on the study
of sub-cortical brain structures, runs experiments with rats and sometimes non-
human primates, uses behavioural experiments, investigates the brain based on brain
lesions and sometimes physiological recordings (e.g., Cardinal et al. 2002; Yin and
Knowlton 2006).

The two research threads tend to focus on two critical but distinct classes
of phenomena and concepts related to the hierarchical organisation of brain and
behaviour. This leads the two threads to produce an incomplete account if taken in
isolation. The objective of this work is to show that the integration of the knowledge
coming from the two pieces of literature solves most of those problems, gives
a better explanation of the system-level organisation of the brain and behaviour
hierarchies, and offers a view that uncovers new challenges for empirical and
modelling research.

To achieve this objective we will first briefly present the view of the hierarchical
organisation of brain and behaviour offered by the two research threads and then we
will highlight their limitations and those of the computational models with which
they are supported (Sect. 2). Second, we will further characterise the two views
on the basis of a rather detailed review of two of our computational models, one
focused on the brain hierarchy involving cortical systems (Caligiore et al. 2010;
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Sect. 3) and one focussed on the brain hierarchy involving sub-cortical systems
(based on Mannella et al. 2010; Sect. 4). This review will allow us to specify
at a computational level the typical functions and mechanisms implemented by
the two cortical and sub-cortical systems in support of hierarchical behaviour.
Third, based on these analyses, and on other knowledge from the neuroscientific
literature, we will advance an integrated view of the system-level organisation of
the brain underlying hierarchical behaviour (Sect. 5; some ideas and problems
expanded here are introduced in Thill et al. 2013). This will allow us to overcome
the explanatory limitations of the two accounts and their related models when
considered in isolation, and at the same time will furnish the basis to identify new
problems that might be investigated empirically or with computational models.

2 Two Research Threads on Hierarchical Brain
and Behaviour: Features and Limitations

The cognitive neuroscience literature tends to explain the hierarchical organisation
of behaviour in terms of the underlying hierarchical organisation of cortical
pathways (Hamilton and Grafton 2007; Kilner 2011; Lestou et al. 2008; Thill
et al. 2013). For example, Fuster (2001) proposes that such organisation, sketched
in Fig. 1, is formed by cortical pathways implementing sensorimotor mappings
at increasing levels of abstraction. Within it, higher levels control lower ones by
performing more integrative computations by encompassing an increasing number
of information sources at an increasing level of abstraction. The literature on brain
system-level organisation has further specified the components of such hierar-
chy. The first sensorimotor pathway directly maps primary sensory cortex (e.g.,
somatosensory cortex encoding the current state of the musculoskeletal system) to
primary motor cortex (encoding motor commands to muscles) (Pavlides et al. 1993;
Tokimura et al. 2000). A second dorsal neural pathway goes from visual cortex to
associative visual/somatosensory parietal areas (encoding affordances; Evangeliou
et al. 2009; Fogassi et al. 2005), and then to premotor cortex (encoding action plans;
Rizzolatti and Craighero 2004; Rizzolatti et al. 1996) that exerts control on primary
motor cortex. This neural pathway is in turn formed by multiple streams (Jeannerod
1999) controlling different actuators, in particular the arm (e.g., for reaching), the
hand (e.g., for grasping), and the eye. A third ventral neural pathway goes from
visual cortex to temporal visual areas (encoding information on relevant aspects of
world, such as the identity of objects), and then to prefrontal cortex (integrating
various sources of information to form the agent’s goals) and, via supplementary
cortex, again to premotor/motor cortex (Fuster 2001; Miller and Cohen 2001; Thill
et al. 2013).

With respect to behaviour, this literature mainly focuses on the expression
of overt/motor behaviour (within the sensorimotor and dorsal pathways) and on
the higher-level control exerted on it by the brain executive functions (ventral
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Fig. 1 Sketch of the hierarchical organisation of cortex. Reprinted from Fuster (2001) (Copyright
2001, with permission from Elsevier)

pathway). The specific functions implemented in each pathway can be described
by referring to the research addressing the different transformations. So, the
direct sensorimotor pathway supports the encoding and expression of dynamic
sensorimotor transformations based on a closed loop between the somatosensory
and motor cortex (Graziano 2011; Todorov and Jordan 2002). In parallel, the
dorsal pathway integrates the sensory patterns collected from the external world
with the information on the musculoskeletal system to form affordances within the
parietal cortex (e.g., “the seen object can be grasped with a precision grip”) and
then contributes to form and control motor plans at the level of premotor cortex
(Cisek and Kalaska 2010; Rizzolatti and Craighero 2004). At the highest level, the
ventral pathway processes information on the identity/nature of the objects in the
environment (adaptively, these are relevant as they represent resources potentially
useful for the animal) based on temporal areas. This information reaches the
prefrontal cortex that suitably integrates such information with the one on the
agent’s goals and on this basis contributes to the selection of the possible plans of
actions prepared within the dorsal pathway (Fuster 2001; Koechlin and Summerfield
2007; Miller and Cohen 2001; Wallis et al. 2001).

The bio-behavioural literature, instead, tends to focus on the sub-cortical hier-
archy of the brain. This involves the basal-ganglia system and its rostro-caudal
organisation based on multiple cortical-striatal macro-loops (Fig. 2; the striatum
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Fig. 2 The parallel basal ganglia-cortical loops forming the subcortical hierarchy. Reprinted by
permission from Macmillan Publishers Ltd: Nature Review Neuroscience, Redgrave et al. (2010),
copyright 2010

is the input stage of basal ganglia) encompassing (Redgrave et al. 2010; Yin and
Knowlton 2006): the limbic loop (involving the ventral striatum, mainly formed
by the accumbens), the associative loop (involving the striatum portion called
dorsomedial striatum in rats and caudatum in primates), and the sensorimotor loop
(involving the striatum portion called dorsolateral striatum in rats and putamen in
primates). At the highest level, the hierarchy also involves the amygdala complex
(Mirolli et al. 2010; Pitkänen et al. 1997) and the hippocampal system (Bast 2007;
Lisman and Grace 2005; Voorn et al. 2004) as generators of motivations and as loci
of associations between objects/experiences and their subjective “value” (biological
relevance, novelty, etc.). Finally, they involve the dopaminergic systems (substantia
nigra pars compacta and ventral tegmental area) controlling dopamine, the most
important neuromodulator for the guidance of learning and for the energization of
behaviour (Berridge and Robinson 1998).

With respect to behaviour, this literature has a strong focus not only on its
expression but also on the learning processes that lead to its acquisition, in particular
within the context of the numerous classical and instrumental learning paradigms
(Cardinal et al. 2002), and on the role that value and motivations play in these pro-
cesses (e.g., supported by dopamine). Overall, the hierarchy contributes to generate
behaviour based on the following principles. At the highest levels, some sub-
cortical structures (e.g., the amygdala) interface the brain with the body homeostatic
regulations, and on this basis allow the assignment of value to environmental stimuli
and experiences. This allows the highest levels of the cortico-basal ganglia systems
communicating with such structures, the limbic cortico-striatal loop, to suitably
direct behaviour based on the activation of specific high-level goals (goal-directed
behaviour) (Balleine and Dickinson 1998). The limbic cortico-striatal loop is also
an important regulator of dopamine (via its connections to dopaminergic areas),
which in turn guides the learning processes leading to the acquisition of behaviour
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Table 1 Summary of limitations of the different literatures studying the hierarchical organisation
of brain at the cortical and sub-cortical level. “V” and “X,” respectively, indicate that the
literature, respectively, accounts or not for the classes of issues indicated at the top of the column
(“Motivation,” “Selection,” “Sensorimotor mapping”). “v” indicates a minor account of them

Literature focussing on Literature focussing on
cortical hierarchy sub-cortical hierarchy

Moti- Sensorimotor Moti- Sensorimotor
vation Selection mapping vation Selection mapping

Empirical v X V V V X
research

Computational X v V v V X
modelling

(Grace et al. 2007). The goals selected within the limbic loop then influence the
selections involving attention, affordances, and sensory processing taking place
within the associative loop, on the basis of a number of “cross-loop” mechanisms
(e.g., thalamo-cortical connections and “dopamine spirals” (Haber 2003; Haber
et al. 2000). Based on similar mechanisms, the associative loop in turn influences the
selections of the lower-level processes taking place within the sensorimotor loop.

In part forcing the distinction for the sake of clarity, it appears that the two
research threads tend to study the respective brain structures and processes quite in
isolation from each other. Indeed, they often present an account of the functioning
of hierarchical brain almost as if the studied cortical or sub-cortical systems taken
alone were not only necessary but also sufficient for the acquisition and expression
of the investigated behaviour. This is problematic as the cortical and sub-cortical
brain components play not only partially overlapping but also distinct functions.
In this respect, such accounts have important limitations with respect to the three
classes of processes supporting hierarchical behaviour illustrated at the beginning
of the chapter, namely the implementation of sensorimotor transformations, their
selection, and the guidance of the learning processes leading to the acquisition of
such transformations and selection capabilities.

These limitations, summarised in Table 1, are now illustrated. In this description
we distinguish between the empirical and the computational literatures supporting
each view as the two do not always coincide. The empirical literature focussing on
the cortical hierarchy (e.g., cognitive neuroscience) investigates to a large extent
the sensorimotor-mappings of the dorsal pathways affording and implementing
actions, and their control by the ventral-pathway/prefrontal cortex, but rarely tackles
the issue of the specific mechanisms that the brain used to select alternative
affordances and actions (e.g., Munakata et al. 2011). Moreover, when it investigates
the phenomena related to the ventral/prefrontal control of behaviour, it faces the
problem of how higher-level goals bias top-down selections (e.g., Miller and Cohen
2001) but it usually neglects the motivational aspects leading to the ultimate
formation and selection of goals, and to the guidance of the learning mechanisms
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leading to the acquisition of the selection capabilities at all levels (perception,
action, goals, etc.).

The computational literature focussed on the cortical hierarchy develops models
giving detailed accounts of the dorsal/ventral cortical pathways (e.g., Fagg and
Arbib 1998; Oztop and Arbib 2002; see also the example in Sect. 3) but generally
neglects the motivational processes at the origin of the overall guidance of behaviour
selection and learning processes. On the other side, those same models often
incorporate selection mechanisms based on lateral competition (e.g., Cisek 2007;
Erlhagen and Schoner 2002), probably because computational implementations
make evident the need of having some type of selection mechanism.

The empirical literature (e.g., bio-behavioural neuroscience) focussing on the
sub-cortical hierarchy gives a prominent importance to the study of the selection
mechanisms, of the learning mechanisms, and of the motivational processes driving
them (Cardinal et al. 2002, for a review). However, such literature tends to give
accounts of hierarchical behaviour assuming the existence of already acquired
whole actions (e.g., “pressing a lever”) readily available to be selected or associated
with stimuli (e.g., based on S-R associations). This is a limitation as, although
several Pavlovian actions are indeed innately encoded in brain, the same is not true
for most instrumental actions: in this case the sensorimotor mappings implementing
the actions are progressively acquired with learning processes.

The computational literature on the sub-cortical hierarchy relies upon one of
the most successful examples of synergies between empirical and computational
research, namely the one based on reinforcement learning models (Barto et al.
1983; Houk et al. 1995; Joel et al. 2002; Sutton and Barto 1998). These models
are focussed on the learning processes leading to acquire the capacity to select
actions by trial-and-error (Table 1) and have been also developed to capture the
hierarchical organisation of the brain (Botvinick et al. 2008; Daw et al. 2005;
Solway and Botvinick 2012). The models have also been developed to some extent
to capture the ultimate motivational sources of learning signals (primary rewards)
and behaviour drives (e.g., Barto et al. 2004; Mirolli et al. 2013; Venditti et al. 2009).
As for the related empirical literature, however, when used to account for empirical
phenomena these models tend to represent “primitive actions” at a rather high level
(e.g., “moving from one place to another”) that abstracts from the sensorimotor
mappings needed to implement them (Table 1). Other times, when they do not
assume high-level primitive actions but work on the basis of fine movements, these
computational models tend to give a view of striato-cortical loops as learning by
trial-and-error to implement fine sensorimotor/cognitive transformations that map
sensations to actions. As we shall see in Sect. 5, this view is in contrast to the
overall anatomical organisation of striato-cortical loops where cross-loop flows of
information tend to be top-down, from goals to actions, rather than bottom-up,
from sensations to actions, and to the evidence that fine sensorimotor/cognitive
transformations are implemented in cortico-cortical pathways rather than in striato-
cortical loops.



244 G. Baldassarre et al.

Fig. 3 Illustration of the brain cortical hierarchy addressed by the TRoPICALS model. The
processes of action specification (represented by dark blue arrows) begin in the visual cortex and
proceed rightward across the parietal lobe: these processes transform visual information into repre-
sentations of potential actions (affordances). Along the dorsal route, sensorimotor transformations
leading to produce different actions compete for further processing. This competition is biased by
the input from prefrontal cortical regions that collects information for action selection (red double-
line arrows). The final selected action is released into execution and causes overt feedback through
the environment (dotted blue arrow). Note that TRoPICALS, as most of the literature it refers to,
does not take into consideration the basal ganglia, the cerebellum, and the sources of the “payoff”
illustrated in the figure. Reprinted from Cisek and Kalaska (2010) (copyright 2010, permission
from Annual Reviews)

3 Cortical Hierarchies

This section will present a more detailed view of the organisation of the cortical
hierarchy and its functioning and learning mechanisms by reviewing in depth a
specific computational model by the authors (Caligiore et al. 2010, 2012). This will
allow us to exemplify more in detail the nature, and also the limitations, of the
accounts of the brain hierarchy given by the views focussed on cortex.

The model departs from two principles involving two cortical pathways con-
sidered in the previous section (see Fig. 3): (a) the dual route hypothesis (Milner
and Goodale 2008; Ungerleider and Mishkin 1982), according to which the cortical
brain responsible for visual processing is organized into the dorsal and ventral neural
pathways; (b) the role of the prefrontal cortex as a source of top-down biasing that
instructs the neural competitions between potential alternative actions at the level of
the premotor cortex (Cisek 2007; Cisek and Kalaska 2010; Miller and Cohen 2001).
The two principles are now illustrated in detail.
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In the original dual route proposal (Ungerleider and Mishkin 1982), the ventral
stream runs from early visual cortex areas to inferotemporal cortex and carries
information about the identity of the objects (“what” pathway). Instead, the dorsal
stream runs from visual cortex areas to the parietal cortex and processes spatial
information concerning the location of objects in the visual field (“where” pathway).
The scope of this theory was later extended (Milner and Goodale 2008) by
proposing that the ventral stream communicates visual information to support higher
cognitive processing taking place in prefrontal cortical regions (e.g., not only object
recognition but also decision making on actions to be executed and higher-level
reasoning). In contrast, the dorsal stream transfers visual information to support
on-line performance of actions in downstream motor cortex areas (e.g., not only
location of objects but also implementation of the sensorimotor transformations
needed to detect affordances and visually guide action).

The sensory system of primates and humans provides detailed information about
the external world and on this basis the motor system can perform a large repertoire
of actions. This introduces a great potential not only for flexibility but also for
interference. To effectively cope with the multitude of possible actions to perform,
the brain has acquired mechanisms that coordinate low-level sensory and motor
processes on the basis of goals, external context, and internal motivations (Fuster
2001). The prefrontal cortex plays a key role in these processes especially when
“top-down” control based on goals (and motivations) is needed (Fuster 2001; Miller
and Cohen 2001; Wallis et al. 2001). More in detail, within the ventral pathway the
prefrontal cortex can use information from the outer context and the agent’s needs
to form high-level goals. Based on this information, the prefrontal cortex can act on
the dorsal pathway by biasing the selection of affordances and actions. This biasing
activity is based on various features of the prefrontal cortex, including its capacity
to integrate multiple sources of information, to implement working memory, and to
form complex behavioural “rules” (Deco and Rolls 2003).

The computational model TRoPICALS (Fig. 4, Caligiore et al. 2010, 2012)
proposed to account for compatibility effects studied in cognitive psychology
(Ellis and Tucker 2001),1 integrates the key features of the cortical hierarchical
organization discussed above. More in detail, TRoPICALS incorporates in its
architecture the dorsal/ventral pathways organisation of cortical areas (Milner and
Goodale 2008); the guidance/biasing of action selection based on prefrontal cortex
“instructions” (Miller and Cohen 2001); and the selection of actions within premotor
cortex based on a competition between affordances and alternatives actions under a
bias from the prefrontal cortex (Cisek 2007; Cisek and Kalaska 2010). The acronym

1In a typical compatibility effect experiment participants are asked to produce actions which are
either in agreement (compatible) with the actions typically associated with the objects (e.g., a
precision grip with a small object) or in contrast (incompatible) to those actions (e.g., a precision
grip with a large object) in tasks where the objects size is irrelevant. If the participants exhibit
longer reaction times and higher error rates in incompatible trials than in compatible ones,
one can infer that seeing objects automatically elicits the representations of their affordances,
independently of the performance of the experimental task.
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Fig. 4 Architecture of the TRoPICALS model. The boxes indicate the components of the model.
The label inside each box indicates the type of information encoded by the component, whereas
the acronym at its top-left corner indicates the brain anatomical area putatively corresponding
to it. Light and dark grey arrows indicate respectively connections which were hardwired and
connections which were updated by learning processes based on a Hebb learning rule or a Kohonen
learning rule. Acronyms: AIP: the anterior intraparietal sulcus; PFC: the prefrontal cortex; PMCd:
premotor cortex dorsal division; PMCl: premotor cortex lateral division; PRR: parietal reach
region; SSC: somatosensory cortex; STC: superior temporal cortex; VC: visual cortex; VOT:
ventral occipito-temporal cortex. Reprinted with permission from Caligiore et al. (2010) (copyright
2010, APA publisher)

“TRoPICALS” summarises these principles: Two Route, Prefrontal Instruction,
Competition of Affordances, Language Simulation (the latter principle, less relevant
here, was introduced to account for compatibility effects involving language;
cf. Barsalou 2008).

TRoPICALS reproduces the main functions of several dorsal and ventral cortical
areas (see Fig. 4 for the acronyms). The model was tested within an embodied
system formed by a simulated eye (camera) and a simulated robotic arm/hand (see
Fig. 5). The input of the model is formed by three neural maps (VC), encoding
an RGB visual input, and a somatosensory map (SSC), encoding the arm angles.
The output of the model is the desired posture of the hand encoding different
grips (PMCl) or the desired posture of the arm encoding a reaching target (PMCd).
Downstream VC and SSC, the model divides into two main neural pathways: the
dorsal pathway, which implements suitable sensorimotor transformations needed to
perform actions on the basis of perception, and the ventral pathway, which allows
flexible control of behaviour, thanks to the biasing effects exerted by PFC on action
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Fig. 5 The robotic set-up used to test TRoPICALS. Left: The simulated arm, hand, and eye
interacting with a simulated apple. Right: The simulated arm, hand, and eye interacting with a
simulated doll. In both panels, the line passing through the object indicates the gaze direction
(eye control is hardwired), whereas the other four lines indicate the scope of the eye visual field.
Reprinted with permission from Caligiore et al. (2010) (copyright 2010, APA publisher)

selection. In turn, the dorsal pathway is formed by a stream controlling grasping and
a stream controlling reaching.

With respect to function and learning, the VC performs image edge extraction
based on Sobel filters (Sobel and Feldman 1968). Based on this, within the dorsal
pathway the AIP extracts the shape of objects, and within the ventral pathway the
VOT categorises objects using a self-organising map (SOM; Kohonen (2003)) (see
Fig. 6).

Within the dorsal pathway, the AIP-PMCl and PRR-PMCd streams (i.e., the
two dorsal neural streams transforming affordances into grasping and reaching
actions) are trained on the basis of a Hebbian learning process (Dayan and Abbott
2001; Hebb 1949) that allows the system to learn to associate suitable actions
(PMCl, PMCd) to available affordances (AIP, PRR). Importantly for this chapter,
the Hebbian process is based on a motor babbling of the hand/arm, and connections
are formed only when the hand/accomplish a successful grasp/reach: this means that
the system ultimately uses a trial-and-error mechanism to learn the association that
allows it to select the proper actions.

Within the ventral pathway, PFC uses a second SOM to form representations that
combine the seen objects (VOT) and the task to be accomplished (STC) to shape
the current high-level goals used to bias action selected within PMCl or PMCd
(Fig. 7). The premotor regions (PMCl and PMCd) integrate affordance information
from the parietal cortex (PC) (respectively, from AIP and PRR regions) and goal-
based information from PFC using a dynamic neural field (Erlhagen and Schoner
2002). The dynamic field is then used to select actions through neural competition
taking place within premotor areas. The dynamic nature of this competition allows
to account for compatibility effects: when the action suggested by affordances are
congruent with the PFC command, reaction times for triggering the action are faster
than when they are not congruent. Figure 8 illustrates the effect of this neural
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Fig. 6 Activation of the early cortical areas of TRoPICALS. The columns of the figure show:
(a) the object name, appearance, and handgrip of the objects used in the compatibility effect
experiment; (b) the activation of the neurons forming the visual cortex (three edge sensitive red-
green-blue maps) caused by the objects; (c) dorsal pathway: the activation of AIP encoding the
shape of objects; (d) ventral pathway: the activation of the VOT encoding the identity of objects.
AIP: anterior intraparietal cortex; VOT: ventral occipitotemporal cortex. Reprinted with permission
from Caligiore et al. (2010) (copyright 2010, APA publisher)

competition on the speed of the selection of actions (actions are encoded using
population codes (Pouget et al. 2000) as desired postures of hand, within PMCl,
and arm, within PMCd).

The presentation of the model highlighted the typical principles and topics
characterising the literature focused on cortical hierarchy and allows us to highlight
the two limitations of the approach presented at a theoretical level in Sect. 2.
TRoPICALS uses dynamic neural fields (Erlhagen and Schoner 2002) to abstract
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Fig. 7 The activation of the
PFC caused by the different
representations in VOT
(objects) and the two STCi
activations representing,
respectively, the ecological
condition experienced during
life, when affordances and
motor control capabilities are
acquired, and the condition
experienced during the
psychological experiment.
Notice the different
representations of the various
contexts and objects within
the PFC: the richness of such
representations is at the basis
of the potential of the PFC to
flexibly associate any
combination of the context
elements with any action.
PFC: prefrontal cortex; STCi:
superior temporal cortex for
instructions; VOT: ventral
occipitotemporal cortex.
Reprinted with permission
from Caligiore et al. (2010)
(copyright 2010, APA
publisher)

affordances and actions selection mechanisms that in brain are mainly implemented
by cortical basal ganglia loops (e.g., involving parietal and premotor areas; Alexan-
der and Crutcher 1990; Redgrave et al. 1999; Yin and Knowlton 2006). In a recent
extended version of TRoPICALS (Caligiore et al. 2012) developed to account for
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Fig. 8 The activation of the PMCl during the simulation of the compatibility effect experiments.
(a) Activation of the PMCl in an incongruent trial: the biases from PFC (goals) and PC
(affordances) cause two different clusters of neurons, encoding two different grasping actions, to
compete until the cluster caused by the PFC suppresses the cluster caused by the PC. (b) Activation
of the PMCl in a congruent trial: the biases from the PFC and the PC overlap and cause the
formation of only one cluster of neurons. The panels depict the activation of the PMC after 100,
300, and 1,000 ms. Notice how in the incongruent condition the stronger top-down bias from the
PFC wins. Also notice how in the congruent condition the action cluster forms more rapidly than
in the incongruent one so producing faster reaction times (compatibility effect). Reprinted with
permission from Caligiore et al. (2010) (copyright 2010, APA publisher)

compatibility effects in the presence of a distractor (Ellis et al. 2007), the biasing
effect of the PFC was augmented by adding inhibitory mechanisms which, as
explicitly recognised in the paper, abstract the inhibitory effects that PFC can exert
on motor cortex via the basal ganglia and the supplementary motor cortex (Nachev
et al. 2008). Moreover, the Hebbian-based reinforcement learning mechanism used
by TRoPICALS to acquire sensorimotor mappings abstracts the role of the sub-
cortical mechanisms producing the reward signals that guide the acquisition of such
selection capabilities, and the mechanisms within the basal ganglia implementing
such learning processes (Joel et al. 2002; Tang et al. 2007).

These assumptions are viable if one studies phenomena such as compatibility
effects, but we think that they give a limited/distorted image if one studies
the overall hierarchical organisation of the brain, as they cannot account for a
number of interesting phenomena and mechanisms whose study requires an explicit
representation of selection and learning guidance processes.
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4 Basal-Ganglia Hierarchies

This section reviews another model that focusses on the sub-cortical hierarchy of
the brain and that will allow us to highlight the typical features of research focussed
on such hierarchy. The review also highlights that this account has the opposite
limitations with respect to the approach reviewed in the previous section: it fails
to account for sensorimotor/cognitive transformations. The section first introduces
the brain features captured by the model and then explains and discusses the model
itself.

The basal ganglia are a group of sub-cortical nuclei comprehending the striatum
and the sub-thalamic nucleus (STN) as its main input gates, and the internal
globus pallidus (GPi) and the substantia nigra pars reticulata (SNpr) as its main
output components (Fig. 9). These structures represent fundamental functional
processing unit of the vertebrate brain that repeats at multiple functional levels and
forms multiple re-entrant loops with various frontal and associative cortical areas.
Different loops run in parallel and each loop starts from a cortical area, goes through
a subregion of the basal ganglia, and goes back to the cortical area of origin via
the thalamus (Alexander et al. 1986; Heimer et al. 1982; Humphries and Prescott
2010; Middleton and Strick 2000; Romanelli et al. 2005). Each loop is involved
in the selection of the content of the targeted cortical areas, such as a perceptual
representation, an action, or a goal (Alexander and Crutcher 1990; Redgrave et al.
1999). This selection takes place through a mechanisms that allows basal ganglia to
dishinibit the area of the thalamus, in turn in loop with the cortex, corresponding to
the cortical content to be selected (Chevalier and Deniau 1990; Gurney et al. 2001;
Mink 1996).

There is now a wide agreement on the fact that three distinct functional domains
can be distinguished within the basal ganglia corresponding to the dorsolateral
striatum (DLS), dorsomedial striatum (DMS), and ventral striatum (VS), the latter
mainly formed by the nucleus accumbens (Fig. 10; Yin and Knowlton 2006). Such
domains are identifiable in rats and mice and are homologue to, respectively, the
putamen, caudatum, and nucleus accumbens in primate striatum. These domains
form distinct loops interacting with distinct portions of cortex. These distinct loops
typically play different functional roles depending on the type of information
processed within the targeted cortex, and hence are also called limbic, associative,
and sensorimotor loops, respectively. The functions of the loops are now explain
more in detail.

The cortical areas that reciprocate connections with the VS are various sub-
regions of the prefrontal cortex (PFC), in particular the ventro-medial, orbitofrontal,
and dorsolateral portions, important for the processing of biologically salient states
and outcomes (Humphries and Prescott 2010; Voorn et al. 2004; Zahm 2000).
In general, the limbic loop is involved in the selection of final goals (e.g., the
achievement of a certain food), and means-to-end goals (e.g., opening a door
to access a lever activating a food dispenser), based on motivations. These are
important mechanisms underlying goal-directed behaviour (Cardinal et al. 2002;
Corbit et al. 2001; Yin et al. 2008). The limbic loop is also important for reward and
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Fig. 9 A schema of the micro architecture of a single cortical basal ganglia loop. White
arrowheads indicate glutamatergic projections whereas black arrowheads indicate GABAergic
projections. GPe: globus pallidus, external; GPi: globus pallidus, internal; SNpc: substantia nigra,
pars compacta; STN: subthalamic nucleus

Fig. 10 A scheme of the three main cortico-striatal regions and their interconnections. Standard
arrows indicate excitatory glutamate connections. Flat arrowheads indicate inhibitory GABA
connections. Dot arrowheads indicate dopaminergic connections (dashed arrows indicate the
cross-loop ones). Reprinted with permission from Macmillan Publishers Ltd: Nature Reviews
Neuroscience, Yin and Knowlton (2006), copyright 2006

motivation based on dopamine regulation (Berridge and Robinson 1998; Corbit and
Balleine 2011). For example, it plays an important role in the interaction between
instrumental and Pavlovian processes, e.g. it allows cues previously associated with
reward to energise the performance of instrumental behaviours (Corbit and Balleine
2011; Corbit et al. 2001; Hall et al. 2001).

The cortical areas that reciprocate connections with the DMS are the temporal
cortex (TE; Middleton and Strick 1996), the parietal cortex (PC), the frontal eye-
fields (FEF), and the dorsal regions of the PFC (Alexander et al. 1986; Voorn
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et al. 2004; Yeterian and Pandya 1995). The associative loop is implicated in
several high-level cognitive processes (Kimchi and Laubach 2009), in particular it
is involved in the formation of high-level visual representations (typically processed
in TE; Middleton and Strick 1996), in attention, spatial orientation, and affordance
selection (involving FEF and PC, Schrimsher et al. 2002; Volkow et al. 2007), and
in working memory tasks (involving various areas of PFC; Levy et al. 1997; Lewis
et al. 2004).

Finally, the DLS is in loop with motor cortex (MC), premotor cortex (PMC),
and supplementary motor cortex (SMC) (Romanelli et al. 2005; Tang et al. 2007).
There is clear evidence that the sensorimotor loop is associated with the control of
movement, in particular in the selection of final sensorimotor repertoires based on
the current context (Alexander et al. 1986; Haber et al. 2000; Romanelli et al. 2005;
Yin and Knowlton 2006).

Within each of the three main loops, several discrete parallel streams run
through relatively parallel pathways. For instance, the sensorimotor loop contains
a somatotopic motor map that repeats at the level of striatum, globus pallidus,
thalamus, and cortex, in particular in these regions separate areas can be found
encoding information about arms, legs, and face (Alexander and Crutcher 1990;
Romanelli et al. 2005). Moreover, within each one of these streams there is evidence
for the existence of relatively segregated channels capable of selecting particular
cortical restricted targets, for example encoding specific actions (Chevalier and
Deniau 1990; Gurney et al. 2001; Mink 1996). This idea is also a key assumption
of most models on basal ganglia (e.g., see Joel et al. 2002 for a review). Even if
no direct evidence can be given, many researchers assume that the same structure
made of separate channels is present also in the associative and limbic loops given
the uniformity of the striato-cortical micro-structure over the entire basal ganglia.

The three striato-cortical loops form a functional hierarchy. The decisions about
motor actions, supported by the sensorimotor loop, are at a lower level with respect
to the decisions about the part of the current context the animal should attend and
process, which relies on the associative loop. On their turn, the latter decisions are
at a lower level with respect to decisions about the motivationally salient outcomes
(the high level goals of the animal) processed by the limbic loop.

Importantly, this functional hierarchy seems to be in line with neural data
indicating that the cortico-striatal loops are anatomically organised in a hierarchical
manner from ventral to dorsal domains. In this respect, there is evidence that
cortices in different cortico-striatal loops are interconnected not only through direct
projections (see previous section) but also through the thalamus so to form a cortico-
thalamo-cortical pathway from higher more abstract levels to lower sensorimotor
levels of the cortico-striatal hierarchy (Haber 2003).

Even more important for the top-down diffusion of “value” (i.e., biological
relevance of stimuli) along the hierarchy, Haber (Haber 2003; Haber et al. 2000)
discusses anatomical and functional evidence ascribing the control expressed by
the ventral cortico-striatal loops to a dopaminergic modulation triggered via the so-
called striato-nigro-striatal spiral pathway. This pathway involves dopaminergic
populations in the ventral tegmental area (VTA) and those in the substantia nigra
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pars compacta (SNpc) forming loops that reciprocate various striatal regions with a
pattern moving from the ventral to the dorsomedial and dorsolateral regions. In par-
ticular, projections from ventral compartments of the striatum reach dopaminergic
neurons (in particular within the VTA) that target ventral and medial striatal regions,
and projections from medial regions contact dopaminergic neurons (in particular
within the SNpc) that target medial and lateral striatal regions. Functionally, these
projections diffuse the information on value of stimuli and goals from higher levels
of cognition (limbic loop) to lower ones (associative and sensorimotor loops).

The model proposed by Mannella et al. (2010) (see also Mannella et al. 2011)
captures the main processes illustrated above and specifies them in computational
terms. In particular, the model reproduces two of the three cortico-striatal loops, the
processing of value within amygdala, and some cortico-cortical connections (which
plays the role of carrying sensory and motor information to and from basal ganglia,
not of implementing sensorimotor transformations).

The model reproduces instrumental devaluation effects and also their absence
demonstrated in multiple experiments where different areas of the sub-cortical
systems reviewed above are lesioned. Figure 11 shows the simulated robotic rat used
to reproduce the devaluation effects. A typical devaluation experiment is formed by
three phases (Fig. 12; see Balleine and Dickinson 1998). In the first phase, a rat is
first instrumentally trained to work on a manipulandum A (e.g., a lever) to obtain
a reward A (e.g., food pellets), and on a manipulandum B (e.g., to pull a chain)
to obtain a different reward B (e.g., a sucrose solution). In the second phase, the
rat is satiated for one food (e.g., by giving free access to the pellets). In the third
phase, the rat is set in front of both manipulanda for the first time, and the number
of actions performed on them is recorded in extinction (i.e., without reward delivery
to avoid re-learning processes). The results of the experiment are that the rat acts
more often on the manipulandum that corresponds to the food for which it has not
been satiated. This experiment is considered a paradigmatic demonstration that the
rat behaviour in the third phase is goal-directed as it selects the action that leads to
obtain the valued outcome (goal) without the need of re-learning. Indeed, the action
is selected on the basis of the value of the two goals (two foods) and not on the basis
of the stimuli triggering actions (e.g., the sight of the lever and the chain) as in the
case of habitual action.

The architecture of the model is shown in Fig. 13 (Mannella et al. 2010). The
model is entirely formed by leaky neurons and uses localistic representations to
make its interpretation fully transparent. The model is based on two cortico-basal
ganglia loops, namely the limbic and the sensorimotor loops (the associative loop
was not represented for simplicity). The selection processes performed in the basal-
ganglia cortical loops are represented with a neural competition taking place within
premotor cortex. For simplicity, the model represents only the cortical area in loop
with dorsolateral striatum (PMC in this case), whereas it abstracts away the NAcc-
PFC and the PFC-PMC connections. The model also captures the reinforcement
learning processes, guided by phasic dopamine (i.e., dopamine produced in strong,
short-lasting bursts), that allow the two loops to acquire their selection capabilities.
Finally, and importantly, the VS (nucleus accumbens) communicates with the
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Fig. 11 A snapshot of the simulator used in the study of the devaluation experiment. The simulated
rat is at the centre of the experimental chamber, the food dispenser is behind the rat, the lever is at
the rat’s left-hand side, and the chain is at the rat’s right-hand side. Reprinted from Mannella et al.
(2010) (copyright 2010, with permission from Cambridge University Press)

Fig. 12 A simplified schema of the instrumental devaluation paradigm. On the top-left the training
phase: the animal learns to use two levers to obtain two different rewards. On the top-right
the devaluation phase: the animal is satiated of one of the two rewards. On the bottom-right
the test phase: the animal is presented with both manipulanda and actions toward each of them
are measured in absence of any reward presentation
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Fig. 13 The architecture of the model used to investigate the devaluation effect. Reprinted from
Mannella et al. (2010) (copyright 2010, with permission from Cambridge University Press)

amygdala (Amg) that informs it on the value of stimuli (e.g., the sight of a particular
lever is associated with the future appearance of a valuable food). Within Amg, the
value of anticipated stimuli (food A, food B) can be regulated by the internal states
of the system (e.g., in the model the satiation for one food inhibits the activation of
its representation).

In the simulations, during the first phase of the experiment three learning
processes take place: one leading to the formation of habits, one leading to the
assignment of value to previously neutral stimuli, and one assigning value to
outcomes. The first process leads the sensorimotor loop to learn habits based on
instrumental (i.e., trial-and-error/reinforcement learning) processes that allow the
formation of associations between stimuli (the sight of the lever or of the chain) and
responses (lever pressing or chain pulling) on the basis of phasic dopamine (produce
by the ventral tegmental area). For example, the sight of a lever is associated with the
action of pressing it as this leads to receive food A that in turn causes the production
of dopamine.

The second learning process, based on differential Hebbian learning rules,
leads the Amg to acquire Pavlovian associations between stimuli (the conditioned
stimuli corresponding to the sight of the lever or of the chain) and outcomes (the
unconditioned stimuli corresponding to the two foods). For example, within Amg
the representation of the sight of a lever gets associated with the representation
of food A as these two stimuli are observed one after the other. Once formed,
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these associations allow the rat to “assign a value” to previously neutral stimuli,
for example to recall the representation of the biologically valuable food A when
the lever is seen.

The third process leads the limbic loop to associate the representations of
valuable stimuli within Amg to possible outcomes (goals) encoded within VS.
For example, the representation of food A in Amg gets associated with the
representation of the goal of getting food A in VS. This association takes place
within the limbic loop, and the nucleus accumbens is the nexus that links goal
representations to their current value (i.e., their counterparts in Amg). “Current”
because the Amg is capable of changing the value assigned to different stimuli on
the basis of the animal current internal states, e.g. if it is hungry or satiated.

Once these associations are formed, the system can exploit them to act adaptively.
In particular, the goals encoded and selected within the limbic loop are associated
with the actions encoded in the sensorimotor loop. These connections rely on
cortico-cortical inter-loop pathways and also on sub-cortical pathways (dopaminer-
gic spirals). In real animals, these associations form with learning but for simplicity
in the model they are hand-coded. Once these links have been learned the sole
activation of goal representations in VS by the Amg (e.g., because a lever related to
a valuable goal is perceived) is sufficient to bias the selection of the action that leads
to accomplish the selected goal.

Figure 14 shows how the model reproduces the devaluation effect. The figure
reports the number of lever presses in rats with intact Amg (intact, or “sham”, rats)
and in rats where Amg has been lesioned (“BLA-lesioned” rats: the basolateral
amygdala—BLA—is a part of Amg very important for devaluation). The figure
shows that sham rats tend to press the lever more frequently when food B (previously
instrumentally associated with the chain) is devalued than when food A (previously
associated with the lever) is devalued. The causes of this behaviour are as follows.
During the training phase, the rat acquires two habits within the sensorimotor loop,
one that leads it to press the lever when it sees the lever, and one that leads it to pull
the chain when it sees the chain. After the devaluation of one food, the rat is tested
by setting it in front of both the lever and the chain at the same time. In this case
both habits are triggered and try to recall the action related to them (pressing the
lever and, at the same time, pulling the chain). If the Amg is intact, the sight of the
lever and the chain recall the food A and food B representations within it. However,
only one of these representations can actually manifest as the other is inhibited
by the satiation internal state (say for food B). Such active representation (say for
food A) can so activate the units of VS corresponding to the food A outcome and
then, via the connections to cortex, to bias the selection of one action (e.g., pressing
the lever). Instead, when Amg is lesioned then VS cannot preferentially select one
outcome and so unbalance the selection for one or the other available actions. As a
result the rat will select the two actions with a similar frequency.

This model highlights the typical features, and the limitations, of the research
that focusses on the sub-cortical hierarchy of brain. First, the model emphasises
the trial-and-error learning processes taking place within each cortico-striatal loop,
and its fundamental role for the acquisition of their capacity to select the cortical
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Fig. 14 Behaviour of the simulated rats in the devaluation experiment. The histogram bars show
the average and standard deviation of actions performed by Sham and BLA-lesioned rats on the
lever (previously instrumentally associated with food A) when either food A or food B has been
devalued. Reprinted from Mannella et al. (2010) (copyright 2010, with permission from Cambridge
University Press)

contents. Second, such learning processes are guided by the value systems, such
as the amygdala and the dopaminergic system, that lead the animal to learn to
select actions and goals that are valuable for survival and reproduction (e.g.,
to acquire food). Third, the model captures the hierarchy existing between the
different cortico-striatal loops: importantly for this review, the hierarchy captures in
particular the flow of control from the higher “limbic” levels, informed on the actual
needs of the animal, to the lower sensorimotor levels (notice how this contrasts
with reinforcement learning models that use trial-and-error processes to mainly
implement sensorimotor transformations linking the sensations from the outer world
to the actions to perform).

Aside these strengths, the model has also some important limitations with respect
to the explanation of brain hierarchy. The most important ones are that actions (e.g.
“pressing a lever” or “pulling a chain”) are considered as ready-available wholes
that the sensorimotor loop can select in correspondence to stimuli, affordances
are abstracted away, and goals are assumed to be already formed and ready to
be selected by the limbic loop. This means that the model does not account for
the processes involving the sensorimotor/cognitive transformations happening at
different levels of abstraction and accounted for by the literature focussing on the
cortical hierarchy of brain, e.g. considered in the model reviewed in the previous
section.
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5 Integrating the Cortical and Sub-cortical Hierarchies

Based on the reviews and the models presented in the previous sections, we can
now propose an integrated view of the cortical and sub-cortical hierarchies of brain.
This is summarised in Fig. 15. We first present this view by focussing on the role of
cortex and basal ganglia in the hierarchy, then we illustrate some detailed aspects of
the different functioning mechanisms of the two, and finally we highlight important
system-level open problems highlighted by the integrated view.

The general idea is as follows. Cortex implements sensorimotor/cognitive trans-
formations needed to perform and control action at different levels of abstraction.
The sensorimotor neural pathway (SSC-MC) implements the dynamic mapping
closely linking the proprioception to the control of muscles. The dorsal neural path-
way (PPC-PMC-MC) encodes affordances (PPC) and possible motor plans (PMC)
to be executed downstream (MC). The ventral neural pathway (ITC-dlPFC) detects
the resources available in the environment (ITC) and, based on this information
and higher level information from areas encoding value (OFC, vmPFC), biases the
selection of motor plans (SMC-PMC; note that there are also important connections
from PFC to PC, not reported here for simplicity, that allow PFC to contribute
to select affordances within PC). Overall, the various pathways perform different
mappings from sensation to action taking place at increasing levels of abstraction:
from proprioception to muscles (SSC–MC); from visual information needed to
interact with objects to motor plans (VC–PPC–PMC–MC); from visual information
on the nature of objects to high level goals (VC–ITC–dlPFC–SMC–PMC); from
visceral states to biologically charged goals (Amg/Hip/Hyp–OFC/vmPFC–dlPFC).

Each loop of the basal ganglia collects a rich set of information from various
areas of cortex and on this basis selects the contents processed in specific target
cortical areas. These selection processes involve the whole cortex with the exception
of primary cortical areas and have an increasing importance (e.g., in terms of
neural resources involved) going towards the higher levels of the hierarchy. So,
at the highest level of the hierarchy the VS, supplied with rich information on
value of stimuli by various sub-cortical areas (e.g., Amg, Hip, Hyp), contributes
to select biologically relevant goals encoded in OFC/vmPFC (e.g., in relation to
the achievement of a particular food). At a lower level, the DMS contributes to
selects more abstract goals (e.g., pressing a lever) encoded in dlPFC, affordances
encoded in PPC, and object identity encoded in ITC. At the lowest level, the
DLS selects motor plans, encoded in PMC, and action implementation processes,
encoded in MC. The hierarchy formed by basal ganglia also involve “inter-loop”
mechanisms, such as the dopaminergic spirals (VTA, SNpc), that carry informa-
tion on value, and cortico-thalamo-cortical connnections, not represented in the
figure.

The integrated view we just proposed, that assigns to cortex a special role in
performing sensorimotor/cognitive transformations and to basal ganglia a special
role in performing selection, in particular on the basis of value, is supported by four
general system-level features of the two systems. Some aspects of these features
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Fig. 15 An integrated view of the cortical and basal ganglia systems. Acronyms: Amg: amygdala;
BG: basal ganglia; DA: dopamine; DLS: dorsolateral striatum; DMS: dorsomedial striatum; Hip:
hippocampus; Hyp: hypothalamus; dlPFC: dorsolateral prefrontal cortex; ITC: inferotemporal cor-
tex; MC: motor cortex; OFC: orbitofrontal cortex; PMC: premotor cortex; PPC: posterior parietal
cortex; SMC: somatosensory cortex; SNpc: substantia nigra, pars compacta; SSC: somatosensory
cortex; VC: visual cortex; vmPFC: ventromedial prefrontal cortex; VTA: ventral tegmental area

are represented in Fig. 16. The first feature involves the input/output ratio of
each element of the two systems (e.g., PMC or DLS). This ratio is very high in
basal ganglia with respect to cortex. Striatal neurons have a very large input from
various cortical areas, whereas their output is focussed and concentrated on one
specific cortical area with which it forms a loop (Redgrave et al. 1999; Wilson
1995). This makes this funnel-like architecture of basal ganglia ideally suited
to perform the selection of whole neural assemblies at the level of the targeted
cortex. Instead, cortical areas usually reciprocate a similar amount of connections
to the areas from which they receive an input (Felleman and Van Essen 1991).
This architecture is ideal to perform complex mappings through which detailed
information (e.g., on perception) is transformed into other detailed information (e.g.,
on motor commands).

A second important feature is the realm of activity of the two systems. Cortex
covers all aspect of cognition, from primary sensory processing to primary motor
processing, from associative processing to the processing needed to implement
executive functions. Instead, basal ganglia play an increasingly important role,
measurable in terms of neural resources involved, going from sensory input to motor
output, and from lower to higher levels of “cognition” (Alexander and Crutcher
1990). Thus, basal ganglia do not project to primary sensory cortical areas, involved
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Fig. 16 Mechanisms of interaction involving cortex and basal ganglia (BG). The interactions are
explained in the graph with a focus on the BG-cortical loop involving DLS and PMC. With respect
to cortex, notice how: (a) PMC is part of a bottom-up information flow involving the VC-PPC-PMC
cortical pathway; (b) PMC activity is modulated by a top-down information flow involving the
SMC-PMC cortical pathway; (c) the VC-PPC-PMC-MC input–output pathway is “intercepted”,
at the level of PMC, by a cortico-basal ganglia loop involving DLS and supporting the selections
happening within the PMC itself. With respect to basal ganglia: (a) DLS forms a loop with the
target PMC cortical region; (b) DLS also receives information from all cortical areas that are linked
to PMC (and from other cortical areas not reported here): the ample information gathered through
these connections allows DLS to perform a well-informed selection of PMC contents. The graph
also schematically illustrates the neural processes happening within and between DLS and PMC:
(a) the cortical cell assemblies have comparable size (e.g., those of PPC and PMC in the graph)
and exchange all-to-all connections (e.g., the PPC-PMC ones): this allows cortical pathways to
perform fine mappings at all levels of cognition; (b) BG receive all-to-all afferent connections from
cortex, but exchange connections organised in separate channels with the target cortex (DLS-PMC
connections); (c) the BG cell assemblies are much smaller than those of cortex, so implementing a
notable funnelling of cortical-to-BG information, and an “abstract control” of BG over the targeted
cortex. See Fig. 15 for the acronyms

with sensory low-level cognition processes (Romanelli et al. 2005); the basal ganglia
regions involving DMS have some projections to sensory associative areas (PC, IT);
those involving DLS have important projections to the frontal cortex area where
the brain processes action preparation and execution (PMC, MC); finally those
involving DMS and VS have a major target in cortical areas implementing processes
related to high-level executive functions (respectively, dlPFC and OFC/vmPFC).
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These patterns allow cortex to perform detailed computations at all levels of
cognition, while assign to basal ganglia a special role in selecting information at
high levels of cognition and close to action preparation and performance.

A third feature is that the highest levels of the basal ganglia hierarchy (involving
VS) are also more strongly linked to the sub-cortical areas processing value (e.g.,
Amg and Hip) with respect to the highest levels of the cortical hierarchy (PFC)
(Graybiel and Kimura 1995). The ventral basal ganglia are also more strongly
involved in the regulation, and as targets, of dopamine than the related cortical areas
(Abercrombie et al. 1989; Berridge and Robinson 1998). These features pose basal
ganglia in an ideal position to be informed about the subjective relevance of stimuli,
i.e. value, so to perform at best the selection processes.

The last feature involves the learning processes usually ascribed to the two
systems. Cortex is usually seen as the locus of unsupervised or associative learning
(Doya 2000), as also indicated by the long-term potentiation (LTP) processes
happening in it (Iriki et al. 1989; Kirkwood et al. 1996). Basal ganglia, instead,
have a micro-architecture that makes it ideal for selection (Redgrave et al. 1999)
and for trial-and-error learning guided by dopamine learning signals (Houk et al.
1995; Joel et al. 2002).

We close this section by showing a last aspect of the integrated system-level
framework, in particular how it might aid the identification of the local micro
interactions of the cortical and basal-ganglia systems where they physically contact.
This is illustrated on the basis of Fig. 16. The cortical pathways implement
detailed and focussed sensorimotor/cognitive transformations that progressively
transform signals from sensory to motor areas (Cisek and Kalaska 2010; Miller and
Cohen 2001). Instead, basal ganglia collect a wide range of information, including
important information on value (Graybiel and Kimura 1995), and then perform a
targeted selection of spatially limited, cortical contents based on focussed output
channels involving the striatum-pallidal dishinibition mechanism (Chevalier and
Deniau 1990). This dishinibition mechanism acts on the cortico-thalamic loops by
freeing it from the tonic inhibition of GPi/SNpr so as to let the information flow
of the sensorimotor/cognitive transformations passing through the targeted cortical
pathway stage to pass without interruption (Mink 1996). In particular, information
that travels through the various stages of cortex is amplified/refined/preserved by
the close loops of such stages with thalamus. These cortico-thalamic loops are
by default interrupted (at the level of thalamus) by tonic inhibitory inputs from
basal-ganglia outputs. When basal-ganglia release from such inhibition specific
cortico-thalamic loops, information is free to be elaborated and flow through
the corresponding cortical area. The overall idea is thus that information travels from
cortical sensory areas to motor cortical areas via different sensorimotor/cognitive
transformation pathways: each of these is formed by various cortical stages within
which the various specific contents, part of the information flow, can be either
stopped or allowed to be elaborated and pass through by the specific channels of
the basal-ganglia loops targeting them.
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6 Conclusions

The hierarchical organisation of behaviour requires the implementation of three
key functions by the underlying brain hierarchy, namely the implementation of
sensorimotor/cognitive transformations at multiple levels of abstraction, the selec-
tion of various elements of such transformations, and the guidance of the learning
processes. Based on this conceptual grid, the chapter showed how current research
on the hierarchical organisation of brain is focussed either on the study of cortical
hierarchies, or on the study of sub-cortical hierarchies formed by basal ganglia
and other sub-cortical components processing value and motivations. When taken
in isolation, these two approaches have important limitations in accounting for brain
hierarchy. In particular, they either tend to ascribe to the systems they study all the
three processes needed by the hierarchical organisation of behaviour or overlook
some of those processes altogether. Thus, the cortical account often fails to specify
the selection mechanisms needed to direct the course of action, and in large part
the motivational mechanisms guiding learning processes. On the other side, in most
cases the sub-cortical account fails to explain how the detailed sensorimotor and
cognitive input–output mappings are learned and expressed.

The type of accounts of the hierarchical organisation of brain given by the
two literature threads have been exemplified here through the presentation of two
models, focussed, respectively, on the hierarchical processes implemented by the
cortex and on the processes implemented by basal ganglia and amygdala. The two
models made apparent how the two approaches mainly focus on, respectively, the
explanation of sensorimotor/cognitive transformations happening at different levels
of abstraction and on the explanation of selection based on value. The two models
also highlighted that the computational approaches that back up the cortical and
sub-cortical empirical study of brain hierarchy are affected by the same limitations
and biases of the related empirical literatures.

Given these limitations, this chapter has proposed a system-level framework
of the hierarchical brain within which the cortical and sub-cortical systems form
a whole integrated hierarchical system and play complementary distinct roles.
The principles of this integrated view can be summarised as follows:

– The Cortex is formed by multiple sensorimotor and cognitive pathways that
perform fine and detailed information elaborations and transformations from sen-
sations to actions. The capability to perform the elaborations and transformations
is acquired mainly through unsupervised and associative learning mechanisms.
The major pathways are: (a) a somatosensory-motor pathway to implement
learning and performance of motor skills (this mainly involves somatosensory
and motor cortex); (b) a dorsal pathway to build affordances and to prepare
actions (this mainly involves parietal and premotor cortex); (c) a ventral pathway
to identify the resources in the environment and to implement the highest level
cognitive processes such as the executive control of goals encoded at multiple
levels of abstraction (this mainly involves temporal and prefrontal cortex).
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– Basal-ganglia form multiple loops with cortex and select information at multiple
levels of abstraction. The ability to perform such selections is acquired on the
basis of trial-and-error learning processes. The major basal-ganglia cortical loops
are: (a) a sensorimotor loop, important for selecting motor acts (this involves
dorsolateral portions of the basal ganglia, and motor cortex); (b) an associative
loop, important to select perceptual and high-level cognition contents (this
involves medial portions of basal ganglia, and temporal, parietal, and prefrontal
cortex); (c) a limbic loop, important for selecting goals and contents with high
biological valence, and to regulate the dopamine system (this involves ventral
portions of basal ganglia, and orbital and medial prefrontal portions of cortex).

– The highest cortical levels and the ventral basal-ganglia levels have a strong inter-
action with limbic sub-systems of brain, and so are informed on the motivational
and biological value of stimuli, events, and experiences (this involves sub-
systems such as amygdala, hippocampus, hypothalamus, and the dopaminergic
centres). This information drives and guides the learning processes happening in
cortical and basal ganglia systems.

– Information flows and is finely elaborated within the cortical pathways, and
within the various stages of such pathways, especially close to the output and at
high-levels of cognition, basal ganglia select them by inhibiting them or letting
them pass through.

The integrated framework proposed here leads us to overcome the limitations
of the cortical and sub-cortical accounts of the hierarchical brain when taken in
isolation. Indeed, within the framework the limitations of the cortical theories
related to the selection and learning guidance functions are overcome by the
fact that such functions are mainly implemented by the sub-cortical systems. On
the other side, the limitation of the sub-cortical theories related to the lack of
explanation of the fine sensorimotor and cognitive transformations are overcome
by the implementation of such functions by cortical pathways.

Apart from these strengths, the hypothesis has still some open problems. We
mention a few of these. As explained in Sect. 2, cortical systems are usually assumed
to implement two forms of learning, namely unsupervised learning (especially
within the perceptual areas) and associative learning (especially within the frontal
areas). This raises a problem for the view proposed here when actions or other
chunks of knowledge have to be acquired by the cortex on the basis of trial-and-
error processes. The framework proposed here offers a solution to this problem.
The solution is based on the intriguing idea that, at least when learning happens
above a certain level of abstraction, basal-ganglia can acquire the mappings by trial-
and-error, and then the information so acquired is progressively transferred to the
cortex, which learns on the basis of associative processes under the “instruction”
(supervision) of basal ganglia. There is indeed empirical evidence (Carelli et al.
1997; Tang et al. 2007) that when behaviour is first acquired and then automatized
(i.e., it becomes “habitual”) the basal ganglia show a high initial activation that then
decreases with the progress of learning (see also Ashby et al. 2010, for a review
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and Ashby et al. 2007, for a model). This hypothesis, however, needs to be further
investigated in future work.

The second problem is a specification of the previous one when it is applied
to the cortical acquisition of fine and detailed somatosensory-motor cortical trans-
formations (e.g., the mapping implementing a skill). In this case, the mechanism
proposed above cannot be exploited because, as shown in Fig. 16, basal ganglia can
select cortical neural assemblies only at a gross level given their reduced number
of neurons with respect to those of the targeted cortical areas. So, how can such
mappings be acquired? This is a problem left open by the framework presented here,
and leads us to touch on an issue that can be only introduced here and that should
be tackled in future work. A possible solution to the problem might rely upon the
cerebellum.

The Cerebellum, hosting more than half of the neurons of the brain, plays
a critical role in the acquisition and expression of motor behaviour (Houk and
Wise 1995; Kawato 1999). The problem mentioned above could be solved by
a close interplay between the cortical somatosensory loop and the cerebellum.
A possible idea to explore would be that the cerebellum aids the cortex to acquire
fine sensorimotor mappings based on the supervised learning processes that it
implements (Doya 2000; Rolls and Treves 1998). In line with this, some authors
propose that the cerebellum plays a key role during learning but then progressively
passes the acquired information to the cortex (see Hua and Houk 1997, for a review
and a model). We think that the overall motor hierarchy involving the cerebellum
would see the basal ganglia, cortex, and cerebellum playing their major roles,
respectively, at the top, middle, and lower levels of the hierarchy, so we partially
disagree with this view. However, we recognise that it represents a solution to the
problem we are considering. These issues need further consideration in the future to
be reconciled within the framework proposed here.

The latter observation leads us naturally to highlight a further limitation of the
framework proposed here, namely the need to integrate the cerebellum within it.
Indeed, aside from the sheer quantitative importance that the cerebellum has within
the nervous system, there are strong indications that it forms important loops with
the cortex similarly to basal ganglia (Middleton and Strick 2000). Moreover, the
cerebellum plays important functions not only for motor behaviour but also for
cognitive processes (Ito 2008). These aspects should be accounted for by a system-
level framework of the brain hierarchy like the one presented here, a further issue to
be investigated in future work.

Although we recognise the existence of these and other open issues, we think
that the system-level framework presented here offers a better understanding of how
the brain actually implements the three key functions critical for the hierarchical
organisation of behaviour—sensorimotor/cognitive transformations, selection, and
learning guidance—than the cortical and sub-cortical theories of it. In this respect,
the framework is an important theoretical tool usable to formulate new specific
theories, to make new predictions and to design new experiments to test them, and
to design new computational models on brain hierarchy.
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Divide and Conquer: Hierarchical
Reinforcement Learning and Task
Decomposition in Humans

Carlos Diuk, Anna Schapiro, Natalia Córdova, José Ribas-Fernandes,
Yael Niv, and Matthew Botvinick

Abstract The field of computational reinforcement learning (RL) has proved
extremely useful in research on human and animal behavior and brain function.
However, the simple forms of RL considered in most empirical research do
not scale well, making their relevance to complex, real-world behavior unclear.
In computational RL, one strategy for addressing the scaling problem is to intro-
duce hierarchical structure, an approach that has intriguing parallels with human
behavior. We have begun to investigate the potential relevance of hierarchical RL
(HRL) to human and animal behavior and brain function. In the present chapter, we
first review two results that show the existence of neural correlates to key predictions
from HRL. Then, we focus on one aspect of this work, which deals with the question
of how action hierarchies are initially established. Work in HRL suggests that
hierarchy learning is accomplished by identifying useful subgoal states, and that
this might in turn be accomplished through a structural analysis of the given task
domain. We review results from a set of behavioral and neuroimaging experiments,
in which we have investigated the relevance of these ideas to human learning and
decision making.

1 Introduction

Many of the activities and tasks faced by humans and animals are hierarchical in
nature: they involve tackling a set of nested subtasks, each of varying temporal
extension. Problems like navigating involve devising high-level path plans, which
are then broken down into smaller sub-planning problems, that can further be
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decomposed all the way down to the level of motor primitives. For instance, the task
of commuting to work involves deciding whether to take a train, bus or drive, and
based on that decision others must be made: taking a train will require navigating
to the train station, driving might involve subtasks like filling up the gas tank or
checking the state of traffic on the planned route. A hierarchical structure of nested
tasks emerges, which will at some level share components like standing up, sitting
down, walking, and climbing stairs.

Work in cognitive and developmental psychology has recognized the hierarchical
structure of behavior at least since the early 1950s, with the inception of the
cognitive revolution. Prior to that watershed, the dominant schools of thought
had focused on understanding behavior as a simple chain of stimulus-response
associations. Lashley (1951) rejected this idea in favor of understanding behavioral
sequences as controlled through a central plan, rather than as simple reflex chains.
Following up on this perspective, further pioneering work by Miller et al. (1960)
and Schank and Abelson (1977) noted that naturalistic behavior displays a stratified
or layered organization, comprising nested subroutines.

In subsequent years, the hierarchical structure of behavior has been taken
for granted in psychology and neuroscience. Computational models have been
proposed to account for how hierarchically structured procedures are represented
and executed (Botvinick and Plaut 2004; Cooper and Shallice 2000; Schneider
and Logan 2006; Zacks et al. 2007), and how they are represented in the brain, in
particular within the prefrontal cortex (Badre 2008; Haruno and Kawato 2006; Ito
and Doya 2011; Koechlin et al. 2003). An important idea, coming primarily out of
developmental psychology, is that humans and other animals gradually expand their
competence by building up a repertoire of reusable skills or subroutines, which can
be flexibly assembled into increasingly powerful hierarchical programs of action
(Fischer 1980). The question of how this toolbox of skills is assembled represents
one of the toughest questions attaching to hierarchical behavior.

In recent work, we have adopted a novel perspective on the cognitive and
neural mechanisms underlying hierarchical behavior, leveraging tools from machine
learning research. In particular, we have examined the potential relevance to
human behavior and brain function of hierarchical reinforcement learning (HRL),
a computational framework that extends reinforcement learning mechanisms into
hierarchical domains. A number of intriguing parallels exist between HRL and
findings from human and animal neuroscience, which encourage the idea that
HRL may provide a useful framework for understanding the biological basis of
hierarchical behavior. In the following section, we briefly review the essentials
of HRL and summarize some of the potential neuroscientific parallels. We then
present results suggesting neural correlates to two key predictions arising from
computational HRL models. Next, we focus on a deep and open question: how is
hierarchical structure established? What constitutes a “good” task decomposition?
One appealing aspect of HRL is that it provides a context within which to consider
the “toolbox” question, the question of how useful skills or subroutines are initially
discovered or constructed. Following our brief introductory survey, we describe a
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set of behavioral and neuroimaging experiments in which we have leveraged ideas
from HRL to tackle this question.

2 Hierarchical Reinforcement Learning

Computational reinforcement learning (RL) has emerged as a key framework for
modeling and understanding decision-making in humans and animals. In part, this
is due to the fact that RL provides a normative computational model of behavior
accounting for a host of previous experimental results in classical and instrumental
conditioning. But most importantly, its impact has been felt through the discovery of
parallels between elements of RL and aspects of neural function. The most critical
parallel pertains to midbrain dopaminergic function, which has been proposed to
transmit signals comparable to the reward-prediction errors that lie at the heart
of RL (Houk et al. 1995; Montague et al. 1996; Schultz et al. 1997). However,
other broader parallels have also been proposed, in particular with the so-called
actor-critic RL architectures, which have inspired new interpretations of functional
divisions of labor within the basal ganglia and cerebral cortex (Joel et al. 2002).
Our research asks whether these connections between RL and neurobiology might
extend to the setting of hierarchical behavior. Based on the success of standard RL as
a framework for understanding the neural mechanisms underlying simple decision
making, we hypothesize that HRL may hold similar promise as a framework for
understanding the neural basis of hierarchical action.

Computational HRL was born, in part, out of the attempt to tackle the problem of
scaling in RL. As researchers in the field recognized early on, one of the problems of
basic RL methods is that they cannot cope well with large domains, that is, problems
that require learning about large numbers of world states or large sets of possible
actions. To make matters worse, RL suffers from what is known as the curse of
dimensionality, an exponential explosion in the number of states as we increase
the number of state variables, or features of the problem, that we want to consider.
The result is that any task that requires keeping tabs on more than a handful of
variables soon becomes intractable for standard RL algorithms.

A number of computational approaches have been proposed to address the
scaling issue. One of them is to reduce the size of the problem at hand by treating
subsets of states as behaviorally equivalent, known as state abstraction. Consider,
for example, that you are walking to the train station, on your way to work. For this
task, whether the shops along the way are open or closed is irrelevant, so two
states that only differ in the status of a store can be grouped together. On the
other hand, if later on you are navigating the same streets with the goal of buying
coffee, a different set of variables becomes relevant, and states should be abstracted
differently. For different state abstraction methods and aggregation criteria see, Li
et al. (2006).

Another approach to addressing the scaling problem—the one taken in HRL—
is based on temporal abstraction (Barto and Mahadevan 2003; Dayan and Hinton
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1993; Dietterich 2000; Parr and Russell 1998; Sutton et al. 1999). The general idea
is to expand the standard RL framework to include temporally-extended macro-
actions, grouping together sets of simpler actions to form more complex, higher-
level routines. Following the example mentioned earlier, the skill of getting to work
can be thought of as a representation for a set of lower-level sequences like walking
to the train station, taking the train and walking from the station to work. Moreover,
the same get to work skill can encompass more than one set. For example, this skill
might consist of not only a set of actions involving the train but also a different
set that consists of actions like walking to the car, starting it, driving to work, etc.
These multiple representations, abstracted away into the skill of getting to work,
enable learning and reasoning at a coarser, more tractable granularity.

One particularly influential implementation of HRL, the options framework, was
proposed by Sutton et al. (1999). The options framework supplements the set of
single-step, primitive actions from standard RL with a set of temporally-extended
“options”. An option is, in a sense, a temporary sub-policy, a mapping from states
to actions that does not have the goal of solving the complete problem at hand, but
rather some sub-task that is, ideally, a step towards a larger goal. In this formalism,
an option is defined by an initiation set, indicating the set of states from which the
option can be selected; a termination function, which specifies the set of states that
trigger termination of the option; and an option-specific policy (a mapping from
states to actions that is in effect while the option is active).

Importantly, in the options framework as in other versions of HRL (Dietterich
2000; Parr and Russell 1998), option-specific policies can map states not only into
primitive actions but also into other options, allowing hierarchies of options to be
assembled. In the previous example, it is clear that walking to a train station or to
the car are not “primitive” actions, but compound, temporally extended behaviors
that involve numerous more basic skills and can be achieved in a multiplicity of
ways. In an HRL setting, an option for getting to work would call other options for
walking to the train station or the car, these would call further options guiding the
action of walking, and so forth down to elementary motor commands.

3 Potential Neural Correlates

We see two reasons for considering the potential relevance of HRL to understanding
behavior and brain function in humans and other animals. First, if the brain does
indeed implement learning mechanisms related to those found in RL, then the RL
scaling problem must pertain in neuroscience just as it does in machine learning,
raising the question of how RL mechanisms in the brain cope with large-scale tasks.
As a computational technique for easing the scaling problem, HRL may furnish
clues concerning the brain’s ability to select adaptive behaviors in such settings.
The second motivation for considering HRL from a neuroscientific perspective is, of
course, the pervasively hierarchical structure of human behavior. HRL presents the
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possible opportunity to extend our understanding of neural mechanisms for RL so as
to engage the issue of hierarchy, significantly widening the scope of current theories.

As a first step toward evaluating the potential neural relevance of HRL, Botvinick
et al. (2009) derived a set of predictions from the framework, evaluating the extent
to which current scientific knowledge accorded with each of its elements.This work
leveraged the existence of proposed parallels between elements of the actor-critic
architecture for RL (see Sutton and Barto 1998) and specific brain structures.
Botvinick et al. considered what additions or alterations would be required in order
to extend the actor-critic architecture for HRL. It turns out that only a handful of
modifications are needed, and each of these appears to resonate with established
neuroscientific findings.

A key parallel pointed out by Botvinick et al. (2009) relates to the computational
requirement, within HRL, of maintaining a representation of the currently selected
option. This function seems very closely related to functions commonly ascribed to
the dorsolateral prefrontal cortex (DLPFC), and other frontal areas including pre-
supplementary motor area (pre-SMA). The DLPFC has been suggested to house
representations that guide temporally integrated, goal-directed behavior (Fuster
1997), and recent work has refined this idea by demonstrating that DLPFC neurons
play a role in representing task sets: a single pattern of DLPFC activation represents
an entire mapping from stimuli to responses (that is, a policy; see Miller and Cohen
2001). Moreover, neurons in several frontal areas (DLPFC, pre-SMA and SMA)
have been shown to code for particular sequences of low-level actions, just like
options do in HRL. Evidence also shows that areas in frontal cortex represent action
at multiple, nested levels of temporal structure (see Badre 2008; Koechlin et al.
2003), akin to the way HRL representations organize tasks into hierarchies, with
policies for one option calling other, lower-level options.

The role of options in HRL is to impose an option-specific policy. In translations
of RL into neuroscience, policy representations have been proposed to reside
at least partially within the dorsolateral striatum. From the point of view of
the HRL hypothesis, it is suggestive that DLPFC, SMA, and pre-SMA areas
all project heavily into this structure, potentially allowing modulation of policy
representations by representations of subtask context. Botvinick et al. (2009) review
neurophysiological findings consistent with this idea.

Another computational requirement of HRL is to maintain option-specific value
functions. As discussed in Botvinick et al. (2009), this is needed because the value
of a state relative to the goals of an option or subroutine may differ from the
value of that state relative to top-level goals (i.e., primary reward); option-specific
value functions are thus critical for driving the learning of subroutine policies.
In work drawing parallels between standard RL and neural structures, an area
often linked with state or state-action value representation is the ventral striatum.
If HRL mechanisms are relevant, then we might expect to find a neural structure
that connects to ventral striatum while at the same time receiving inputs from
areas of frontal cortex that carry option representations. An area that meets this
criterion is the orbitofrontal cortex (OFC), connecting heavily with both ventral
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striatum and DLPFC. As reviewed by Botvinick et al. (2009), research suggests that
representations of reward in OFC can be sensitive to shifts in response strategy or
task set (O’Doherty et al. 2003; Schoenbaum et al. 1999), linking precisely with the
idea that OFC might represent option-specific state values. The OFC also appears
to sustain reward-predictive activity over relatively extended periods (Schultz et al.
2000), a function necessary in HRL to support the calculation of reward-prediction
errors when options terminate.

As detailed in Botvinick et al. (2009), neural HRL would also impose specific
functional requirements on reward-prediction errors, widely believed to be signaled
in the brain by phasic fluctuations in dopamine release. Whereas in ordinary RL
prediction errors signal whether the selection of single actions turns out better or
worse than expected (see Sutton and Barto 1998), under HRL the scope of the
prediction error expands to embrace the intervals spanned by options. This resonates
with a theoretical analysis of dopamine signaling by Daw et al. (2003), interpreting
dopamine function in computational (semi-Markov) terms that also underlie the
options framework.

Two key neural predictions arise from HRL. First, in order to sustain learn-
ing of option-specific value functions at various levels of a hierarchical task
decomposition, multiple prediction error signals are required, sometimes occurring
concurrently. Second, HRL predicts that reward prediction errors should occur not
only in association with top-level goals (marked by primary reward), but also in
connection with subgoals. In both cases, previous research provides little to go
on. In the next two sub-sections we present work indicating the presence of neural
correlates to the two key predictions from HRL. First, we summarize results from
an fMRI experiment (Diuk et al. 2012b) which revealed striatal activity correlating
with two simultaneous prediction error signals, corresponding to two levels of a
hierarchical gambling task. Next, we review work by Ribas-Fernandes et al. (2011)
in which we used EEG and fMRI to assay for subgoal-linked reward prediction
errors and found activations consistent with these in multiple structures including
anterior cingulate cortex, insula, habenula, and amygdala.

Taken together, available neural data encourage the idea that HRL may be
relevant to understanding the neural substrates of hierarchical behavior in humans
and animals. Even if this turns out to be true, however, there are limits on what
present-day HRL research can tell us about brain function, given that computational
HRL is associated with its own open questions. Perhaps foremost among these is
the problem foreshadowed earlier: how an agent may initially build up a repertoire
of useful subroutines (options) from which hierarchical action programs may be
composed. This question, which in HRL research has sometimes been referred to as
the “option discovery problem”, is clearly of equal importance within psychology
and neuroscience, and we will dedicate the rest of the chapter to work in which we
have begun to address it.
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3.1 Two Simultaneous, but Separable, Reward Prediction
Errors

Under the HRL options framework, a situation can arise in which the outcome of an
action elicits learning at multiple hierarchical levels at the same time. For example,
the execution of a primitive action a that leads to a sub-goal state enables learning
both about the one-step transition produced by the action, and the temporally-
extended subtask that ended with the attainment of the sub-goal. This situation
prescribes the presence of two distinct reward prediction errors.

If the brain implements an HRL mechanism, we should be able to measure
activity correlating with at least two prediction errors at the same time. In order
to test this key HRL prediction, we designed a two-level gambling task (Diuk et al.
2012b), which constitutes a hierarchical extension of the classic bandit task used in
previous RL research. The task is summarized in Fig. 1. In each trial, participants
first chose between two doors, representing two casinos. Once a casino was chosen,
its door opened and a “target” was revealed a number of points (2–10, distributed
normally with means 5 and 6 in each of the two casinos) that must be accumulated in
order to gain a reward of 10 cents in the casino. Each casino also contained a unique
set of four slot machines, of which participants chose two to play. Each slot machine
granted 0–5 points, normally distributed, with an independent, slowly drifting mean.
If they did not succeed in meeting the target with their two plays, participants lost
10 cents.

This task was designed to elicit learning at two levels: at the slot-machine level
(to inform choices within a casino) and at the casino level (to inform choices
between the two casinos). In particular, two distinct and coincident prediction errors
should occur after playing the second slot machine, when the point outcome of that
machine is revealed simultaneously with the win/lose outcome of the casino as a
whole. Importantly, in this design these two prediction errors are uncorrelated: It is
possible to obtain fewer points than expected on the second slot machine (a negative
slot-level prediction error) while at the same time still win the casino as a whole (a
positive casino-level prediction error), and vice versa.

We asked 28 participants to play the Casino Task for 120 trials each while
undergoing functional Magnetic Resonance Imaging (fMRI) (Diuk et al. 2012b).
We modeled the participants’ learning under the options framework, where playing
the left or the right casino constituted two temporally-extended options and each
options’ policy consisted of choosing which slot machines to play. We verified that
the HRL model best fit the participants behavior when compared to some otherwise
plausible alternative models and used the prediction errors generated by this model
as regressors to correlate against the registered brain activity. We analyzed in
particular the activity in ventral striatum and found it correlated with all three
regressors generated by the model, corresponding to prediction errors for the first
slot machine (p < 0:004), second slot machine (p < 0:02), and the casino as a
whole (p < 5:5�10�5). Note that prediction errors for the second slot machine and
the casino occurred simultaneously.
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Fig. 1 Sample trial (from Diuk et al. (2012b): The participant chooses to play in the left casino, the
door opens and displays a target number of points (indicated by red bar). After a few seconds, the
four slot machines appear. The participant plays upper-left slot and after a few seconds, the points
obtained in that machine are shown inside the machine (as a green bar plus a Roman numeral).
Part of the target turns yellow, indicating the points accumulated with the first slot machine play.
The rest is still red, indicating the points still necessary to win the casino. The participant plays the
bottom right slot machine and obtains sufficient points to win the casino (10 cents). The target bar
turns green and a message appears indicating the casino win

These results have two major implications: The first is that the human brain can
calculate prediction errors that temporally span over several states and actions, as
is required in HRL (Botvinick et al. 2009). The second implication is that more
than one prediction error signal may be calculated and employed for learning in
the brain, in contrast to original studies which suggested that dopaminergic neurons
all report one unitary prediction error signal Schultz et al. (1997). This may not
be surprising from a theoretical point of view, as learning about two (or more)
separate reward predictions within any given scenario requires the calculation of two
separate prediction errors. Such a dual-task situation may be common in daily life.
However, reinforcement learning tasks previously examined in laboratory settings
did not directly test this prediction.

3.2 Neural Correlates of Pseudo-reward

A second prediction states that prediction errors should occur in connection with
task subgoals as well as with top level goals. HRL agents associate a special form of
reward with subgoals, dubbed pseudo-reward (Sutton et al. 1999). Distinguishing
pseudo-rewards from primary reward is crucial: If subgoals were confounded with
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Fig. 2 Task and predictions from HRL and RL (from Ribas-Fernandes et al. 2011). Left: Task
display and underlying geometry of the delivery task. Right: Prediction-error signals generated
by standard RL and by HRL in each category of jump event. Gray bars mark the time-step
immediately preceding a jump event. Dashed time-courses indicate the PPE generated in C and
D jumps that change the subgoal’s distance by a smaller amount

primary reward, the agent might get stuck “chasing” subgoals, even when irrelevant
to top-level goals. The distinction between pseudo and primary rewards results in
a distinction between two types of prediction errors: ordinary reward prediction
errors (RPEs) occur in response to differences in predicted outcomes in progress
towards primary goals. Pseudo-reward prediction errors (PPEs) occur in response to
outcomes in progress towards subgoals. PPEs are unique to HRL, they do not occur
in ordinary, “flat” RL. If HRL is relevant to neural activity, we should expect to see
neural correlates of PPEs. Ribas-Fernandes et al. (2011) designed a task to test this
prediction, using EEG and fMRI to assay for a neural analogue to the pseudo-reward
prediction error.

Figure 2 illustrates the task. Only the colored elements in the figure appear in
the task display. The overall objective of the game is to complete a “delivery” as
quickly as possible, using joystick movements to guide the truck first to the package
and from there to the house. It is self-evident how this task might be represented
hierarchically, with delivery serving as the (externally rewarded) top-level goal and
acquisition of the package as an obvious subgoal. For an HRL agent, delivery would
be associated with primary reward, and acquisition of the package with pseudo-
reward.

An additional twist was that on some trials, the package unexpectedly jumped to
a new location before the truck reached it. According to RL, a jump to point A in
the figure, or any location within the ellipse shown, should trigger a positive RPE,
because the total distance that must be covered in order to deliver the package has
decreased. (Note that we assume temporal discounting, which implies that attaining
the goal faster is more rewarding.) By the same token, a jump to point B or any other
exterior point should trigger a negative RPE. Cases C, D, and E are quite different.
Here, there is no change in the overall distance to the goal, and so no RPE should
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be triggered, either in standard RL or in HRL. However, in case C the distance to
the subgoal has decreased. According to HRL, a jump to this location should thus
trigger a positive PPE. Similarly, a jump to location D should trigger a negative PPE
(note that location E is special, being the only location that should trigger neither
an RPE nor a PPE). These points are illustrated in the right panel of Fig. 2, which
shows RPE and PPE time-courses from simulations of the delivery task based on
standard RL and HRL.

A group of 30 participants performed the delivery task while undergoing fMRI.
Here, one third of the trials included a jump of type D (see Fig. 2), predicted to elicit
a negative PPE. Neural correlates for such a jump were found in dorsal anterior
cingulate cortex and habenula, structures previously suggested to reflect or induce
reduced dopaminergic activity.

Because these PPEs are unique to HRL, not occurring in standard RL, Ribas-
Fernandes et al. (2011) interpreted these results as providing a neural signature of
HRL.

4 The Option Discovery Problem: Identifying Useful
Subgoals

In the field of computational HRL, research has focused on the problem of how
temporally-extended actions can be incorporated into the standard RL formalism.
Some success has been achieved in showing how skills that are provided to the
learner as input, or have somehow been previously acquired, can be exploited in
order to learn to solve new problems faster (Dietterich 2000; Sutton et al. 1999).
However, less work has been done, and less success has been achieved, on the very
difficult question of where skill representations come from. How does a learner
decide, while performing a task, what components of it are worth incorporating into
a collection of skills for future use? This question has added relevance because the
wrong set of skills can actually impair learning (Botvinick et al. 2009).

In computational work, option discovery has often been understood to involve the
heuristic identification of useful subgoal states. Once a useful subgoal is identified,
the learner can then build a strategy to achieve it, turning this strategy or policy
into a reusable skill. Note that these subgoal states are not necessarily extrinsically
rewarding, that is, the learner might not receive any reward for reaching them. A key
assumption of HRL is that the agent is motivated to reach an option’s subgoal, once
the option gains control of behavior. In HRL, as discussed in the previous section,
attaining the subgoal yields a special reward signal, referred to as pseudo-reward,
which serves to sculpt the option’s policy. However, for this machinery to come
into play, pseudo-reward must be assigned to specific outcomes, and therefore the
question persists: How are useful subgoal states initially identified?

A number of possible answers to this question can be drawn from both the
computational literature and from psychology and neuroscience. One class of
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proposals portrays options and subgoals as genetically specified, shaped by natural
selection across generations (Elfwing et al. 2007; Schembri et al. 2007a,b). Basic
motor behavior, for example, has often been characterized as building upon simple,
innate components (Bruner 1975). In a few cases, extended action sequences,
such as grooming in rodents, have also been thought of in the animal behavior
literature as genetically specified (Aldridge and Berridge 1998). While a role
for evolutionary programming seems inevitable, it clearly cannot be the whole
story, since both humans and animals obviously discover and incorporate useful
behavioral subroutines through learning (Conway and Christiansen 2001; Fischer
1980).

Another approach to explaining subgoal discovery leverages the notion of
intrinsic motivation (Baldassarre and Mirolli 2012). The idea here is that certain
events or stimuli are inherently interesting to the behaving animal or human.
These can be stimuli that display salient perceptual properties or that challenge
expectations, eliciting curiosity (Schmidhuber 1991a,b). In an HRL context such
states are proposed to be adopted as subgoals, triggering the construction of
associated skills or options (see Singh et al. 2005).

The intrinsic motivation perspective provides a compelling account of option
discovery. However, without greater specification, it leaves open the question of
which properties make particular states intrinsically motivating or interesting to the
agent. In order to set the scene for our own research in this area, we can consider
two general approaches, one based on frequency and the other on problem structure.

Frequency-based methods are based on observed trajectories (that is, sequences
of actions that are performed to solve a task). These methods are based on the idea
that an animal or human that has experienced a series of interrelated problems, or
has had repeated exposure to a problem, is able to extract either subsequences or
subgoal states based on their frequent occurrence in trajectories that lead to reward.
For example, consider a delivery person distributing packages inside a building.
After repeated deliveries, this person might construct some pre-defined ways of
traversing certain floors. Furthermore, he might realize that many trajectories
involve taking the elevator. He would thus identify reaching the elevator as a useful
sub-goal, and construct paths that lead from different offices in a floor to the closest
elevator, adding to his repertoire of actions what we could call the go to elevator
option. Proposals based on this idea can be found in the work of McGovern and
Barto (2001); Picket and Barto (2002); Thrun and Schwartz (1995); Yamada and
Tsuji (1989).

To introduce structure-based methods it is useful to consider why, in the
aforementioned delivery example, the elevator state emerged as special. In this
scenario, the elevator state occurs frequently because the elevator is a sort of
bottleneck: to reach any location on one floor from another floor, one must pass
through the elevator. The elevator is thus a location that gives access to an unusually
diverse set of other locations. A more formal way of capturing this property can
be drawn from graph theory. If we envision the various locations (say, cubicles
and offices in our courier’s building) as nodes in a graph, with edges connecting
immediately adjacent locations, then the elevator location would stand out as a node
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a b

Fig. 3 (a) One state of the Tower of Hanoi problem. Disks are moved one at a time between posts,
with the restriction that a disk may not be placed on top of a smaller disk. An initial state and goal
state define each specific problem. (b) Representation of the Tower of Hanoi problem as a graph.
Nodes correspond to states (disk configurations). Shades of gray indicate betweenness. Source:
Şimşek (2008)

with high graph centrality (see Opsahl et al. 2010). A particular way of quantifying
centrality is via a measure called betweenness, which counts the number of shortest
paths within the graph that pass through an index node. An illustration, from Şimşek
(2008), is shown in Fig. 3.

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002); Jonsson
and Barto (2006); Menache et al. (2002). They presented simulations showing that
an HRL agent designed to select subgoals (and corresponding options) in this way,
was capable of solving complex problems, such as the Tower of Hanoi problem in
Fig. 3, significantly faster than a non-hierarchical RL agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments, which
together support the idea that the notion of bottleneck identification may be useful
in understanding human subtask learning.

5 Experiments 1 & 2: Humans Identify and Exploit
Bottleneck States

In the first experiment we investigated whether humans can identify bottleneck
states, when doing so allows them to optimize their performance. We summarize
the experiment and its results here; full details are presented in Diuk et al. (2012a).
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Fig. 4 Interface of experiments 1 & 2. (a) At the top, the current location (Park) is identified
along with its three adjacent locations. Circled at the bottom is the target destination (School), and
on the upper right corner is the bus-stop location (Post office), reachable in one step from any other
location. (b) The square identifies the current location (School), and participants must click on its
three neighbors

Participants were asked to navigate through a small town, making an extended
series of deliveries between landmarks (e.g., school, post office, coffee shop). A new
start location and goal location were randomly selected at the beginning of each trial
(delivery). Participants were told that they would be paid for each delivery, but that
the amount would depend on how many steps they took to reach their goal: each
step would subtract a fixed amount from the “full pay.” The graphical interface,
illustrated in Fig. 4a, indicated the participant’s present location, the goal location,
and the set of landmarks immediately adjacent to it. Navigation was accomplished
by selecting among the latter. Also shown was a “bus stop” location to which the
participant could travel from any location using one step. After some experience
with the “town,” the participant was allowed to choose a new bus-stop location after
every five deliveries. Any landmark within the town could be chosen for the bus-
stop location. At any time during a delivery, the participant could elect to “jump” to
the bus stop, potentially saving costly steps toward the goal.

Underlying the adjacency relations among landmarks in the town was the graph
shown in Fig. 5a. Each node corresponds to a landmark, and each edge to an
adjacency relation. The graph contains an obvious bottleneck location, which has
high graph betweenness. This location represents the best choice for the bus-stop
location; given the definition of betweenness, this location lies on the largest number
of shortest paths within the graph, and therefore offers the best chance of saving the
participant steps toward a delivery to a yet-unknown destination.

Note that participants were never actually shown the graph in Fig. 5a, or any
other sort of bird’s-eye view of the town. The display only provided information
about local adjacencies. Nevertheless, we hypothesized that, with accumulating
experience, participants would identify the bottleneck location and exploit it by
selecting it as a bus-stop location. Figure 6 summarizes the results of the experiment.



284 C. Diuk et al.

Fig. 5 Graphs underlying the maps of the cities for the first version of the experiment (a) and the
second one (b). Node labels identify the betweenness of each node
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Fig. 6 (a) Average performance ratio, over all participants, as a function of trials of experience
with the “town.” The value on the y-axis in the figure represents the ratio of steps taken to the
minimum number of steps, taking into account the optimal bus-stop location. A ratio of 1 indicates
optimal performance, i.e., choice of the shortest path from start to goal, assuming an optimal
(bottleneck) choice of bus stop. The two dashed data series indicate minimum and maximum
score across participants. (b) Number of times, out of 16 five-trial blocks, that the bottleneck
state was chosen for the bus-stop location. Participants in the x-axis are sorted by performance.
The horizontal line indicates the expected performance if participants chose bus-stop locations
randomly

Panel a shows that, over the course of the experiment, participants increasingly
picked out the shortest path from start to goal. This simply provides evidence that
participants learned something about the layout of the town as they went along.
More important are the data in panel b, which show the number of blocks (out of a
total of 16) in which each participant chose to place the bus stop at the bottleneck
location. Although there was some variability across participants, the data clearly
confirm a general capacity to detect and exploit the presence of a bottleneck.

The results of this experiment do not, however, allow us to make conclusions
about how participants identified the bottleneck location. In particular, while we
were interested in the possibility that they leveraged structural or topological knowl-
edge, it is possible that participants instead used simple frequency information. Over
the course of multiple shortest-path deliveries, the bottleneck location would be
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expected to occur frequently, compared with other locations. In order to rule out
frequency as the full explanation for our initial findings, we repeated Experiment 1,
but with a twist. In this revised version (Experiment 2), participants learned about
adjacency relations, but did not ever traverse the town before choosing a bus-stop
location. This follow-up experiment was also intended to address a second limitation
of the first experiment. Note that in the graph used in the first experiment, not all
vertices had the same degree (i.e., the same number of immediate neighbors). While
vertices on the “outskirts” of the city had three neighbors, the bottleneck vertex
and those adjacent to it had four. In principle, this might have made the bottleneck
salient, providing a different explanation for its selection.

Experiment 2, reported in detail in Diuk et al. (2012a), removed the confound
between centrality and frequency and used a graph in which all vertices had the
same degree (Fig. 5b). Figure 4b illustrates the graphical interface for the task.
On each trial, an index location was highlighted, and participants were asked to
indicate its three immediate neighbors, receiving feedback concerning the accuracy
of their choices. After approximately 20 min on this training task, participants were
told they would have to make a delivery between two undisclosed locations, under
the same shortest-path conditions as in Experiment 1. Prior to receiving the delivery
assignment, participants were asked to choose a location for the bus stop. After
they had chosen a location, their knowledge of the underlying topology of the town
was tested by asking them to draw a map, indicating adjacency relations between
landmarks. Of forty participants tested, 23 drew an accurate map of the town, and of
these 23, 18 (78 %) chose one of the bottleneck locations as the bus-stop location, a
result far above the chance level of 20 %.

In a further experiment, which we only briefly summarize here, Diuk et al.
(2012a) showed that when participants were given a start and goal location, and
asked to verify whether a third location would fall on a shortest delivery path,
they were especially fast at responding the question when the probe location
corresponded to a domain bottleneck. The finding suggests participants formulated
delivery plans using bottleneck locations as subgoals.1

Together, the foregoing provide support for the idea that humans can identify
and exploit bottleneck states in a novel domain, based on an internal model of the
domain’s structure. Taken on their own, however, they leave open a second question.
The computational proposal from HRL was that bottleneck locations provide the
anchor for temporal abstractions, representations that treat temporally extended
behaviors as a unit. The experiments just reported do not speak to this aspect of
the theoretical proposal. However, we can glean some pertinent evidence from a
third experiment.

1This particular result provides preliminary evidence for “model-based” hierarchical planning in
the Diuk et al. (2012a) delivery task.
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6 Experiment 3: Bottleneck States and Temporal Abstraction

Our approach in Experiment 3 was based on previous work using event parsing.
A standard experimental paradigm in cognitive psychology involves showing an
action sequence, and asking participants to “parse” it by pressing a key when they
feel that one subsequence or subtask has ended and a new one has begun (Zacks et al.
2007). Consistent with earlier work, we assumed that such parsing responses mark
the boundaries of temporally abstract events, i.e., subsequences that the participant
views, on some level, as a unit. Based on this assumption, we predicted that if
participants were exposed to event sequences that involved bottlenecks, participants
would parse those sequences at moments in which a bottleneck was traversed.
Details of our experiment are reported in Schapiro et al. (2013); we summarize
the work here.

Participants were exposed to a sequence of images presented one at a time over
a period of 35 min. During this exposure period, participants were asked to judge
whether each image was presented in a canonical orientation, or rotated. The task
did not require them to attend to the sequential order of images at all. However,
unbeknownst to the participants, that order was highly structured. Specifically, the
sequence was generated by a random walk through the graph shown in Fig. 7a. Each
of the 15 possible images was assigned to a vertex, and when that vertex occurred in
the random walk, the associated image was presented. As is obvious from the figure,
the graph contains a subset of bottleneck vertices with high betweenness, namely the
vertices that link the three star-shaped clusters. Drawing on the complex network
literature, we refer to these clusters as “communities” (see Schapiro et al. 2013).

After performing the orientation judgment task, the sequence of images contin-
ued, but participants were asked to perform the standard parsing task, pressing a
key when “natural breakpoints” occurred, i.e., when one “subsequence” ended and
a new one began. No instruction other than this was given.

Results indicated that participants were significantly more likely to parse at
moments where the sequence moved from one star-shaped cluster into another (p <

0:05), points corresponding to the traversal of high-betweenness vertices. This result
held even when the analysis was limited to Hamiltonian cycles through the graph
(traversals of the graph without item repetitions), showing that parsing decisions
were not based entirely on item recency judgments or simple effects of priming.

We additionally hypothesized that stimuli grouped together as part of the same
event on the basis of community structure might come to be represented more
similarly in the brain. Participants in a new experiment were exposed to sequences
of stimuli generated from the graph in Fig. 7 in the fMRI scanner. To test the
hypothesis that items in the same community would be represented more similarly,
we analyzed the similarity of the patterns of voxel activation evoked by the stimuli in
searchlights throughout the brain. We found that the patterns of activation for items
within a community were more similar than those for items between communities
in left IFG, anterior temporal lobe (ATL), insula, and superior temporal gyrus (STG)
(see Fig. 8).
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Fig. 7 (a) Underlying graph of the task. Each node in the graph is linked to a stimulus used in
the sequence. (b) Proportion of times participants parsed sequence at cluster-changing points, as
opposed to other points in the sequence

Fig. 8 Pattern similarity effects in left IFG/insula, left ATL, and left STG. Each cluster showed
reliable community structure in the BOLD response in a whole-brain search. The similarity
structure within each area is visualized using multi-dimensional scaling, with items color-coded
in accordance with the graph nodes in Fig. 7
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The relation of this experiment to HRL-like action selection is necessarily indi-
rect, given that the task involved observation rather than production of sequences.
However, the results are in line with the idea that bottleneck states are not only
spontaneously identified by humans, but that bottlenecks provide a basis for the
formation of temporally abstract event representations. This is consistent with the
proposal that bottleneck states provide anchors for the construction of temporally
abstract action representations, i.e., options, although further experimentation will
be needed to validate this inference.

7 Discussion

The development of the field of computational RL, together with the discovery
of its neural implications, has proven extremely useful in the study of human
and animal behavior and brain function. A known limitation of standard RL,
however, is its poor scaling to large, real-world problems. Given this limitation,
it is unreasonable to expect basic RL principles to account for human learning and
decision making in their full complexity. However, the possibility arises of looking
at measures proposed by the computational community to deal with the scaling
problem, evaluating their possible relevance to the biological case. We reported
work that takes this approach, examining one aspect of complex behavior, namely its
hierarchical structure. In the work we have reported, the aim was to leverage existing
work in HRL, a sub-field developed precisely for tackling the scalability problem,
to shed light on how humans might learn to master hierarchically-structured tasks.
Our agenda was further reinforced by evidence of potential neural correlates that
map nicely with existing HRL frameworks.

One aspect of hierarchical learning, which has provided an important focus for
our work, involves the challenge of discovering useful subtask decompositions. On
the computational front, this problem has suggested a form of intrinsic motivation,
which leads learning agents to identify problem states as sub-goals, constructing the
necessary skills to achieve them. The work we have reviewed tested the relevance
of this idea to human learning and decision making. In particular, we explored one
approach to this problem, based on structural task analysis. We presented three
experiments whose results are consistent with the idea that humans are able to learn
the topological structure underlying a problem domain, to detect states associated
with high centrality (in the graph-theoretic sense), and to adopt them as useful
subgoals and as anchors for temporally abstract event representations.

One outstanding question is how subtasks are transferred, once learned. Even
though many hierarchical problems share exactly matching subtasks (boiling water
for the preparation of both tea and coffee), many other problems faced by humans
and animals have only partially overlapping states or actions. A richer understanding
of subtask learning should include a mechanism for such less constrained transfer.

Overall, the work we have reviewed, together with convergent evidence available
from previous studies, suggests that HRL may provide a useful set of tools for
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further investigating the computational and neural basis of hierarchically structured
behavior. In this sense, HRL may play the same catalytic role, in the context of
hierarchical behavior, that ordinary RL has so fruitfully played in the study of
performance in simpler tasks.
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Neural Network Modelling of Hierarchical
Motor Function in the Brain

Juan M. Galeazzi and Simon M. Stringer

Abstract This chapter discusses computer modelling of hierarchical motor func-
tion in the brain. The focus is on dynamical models that utilise biologically plausible
neural network architectures with local associative synaptic learning rules. The
chapter begins with a review of our own laboratory’s work in this area. We present
a series of hierarchical motor models and relate these to various areas of brain
function. This is followed by a discussion of the limitations of these models and
directions for future research.

1 Introduction

Motor function in humans and animals is organized hierarchically, with high
level motor programs able to recruit lower level motor primitives (Ghez and
Krakauer 2000; Hughlings Jackson 1878). For example, studies with humans have
shown that drawing a figure “8” appears to be comprised of a series of distinct
line segments, in each of which the angular motion initially increases and then
decreases (Lacquaniti et al. 1983). The hierarchical organization of motor function
leads to efficient and faster learning of new high level motor skills, which can
incorporate previously learned movement primitives. This hierarchical organization
may be broadly subdivided into a number of stages of processing within the brain
(Gazzaniga et al. 1998) as shown in Fig. 1. The lowest level of motor processing
is in the spinal cord, which encodes simple reflexes and rhythmic movements
such as walking in cats (Belanger et al. 1996; Pearson and Gordon 2000). The
spinal cord receives afferent projections from the motor areas of the cortex and the
brainstem. The brainstem is the intermediate stage of motor processing. This area
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Fig. 1 Hierarchical
organization of motor
function in the brain

mediates movements of the eyes and head, postural adjustments, and goal-directed
movements of the arm and hand. The brainstem receives projections from the motor
areas of the cortex, whose activity is modulated by the cerebellum and basal ganglia.
The cortical motor areas encode high level voluntary motor programs (Krakauer and
Ghez 2000; Passingham 1993). Projections from the motor areas of the cortex to the
brainstem and spinal cord are able to recruit elemental motor primitives encoded
in these lower stages in order to effect complex sequential motor programs. Each
level of the motor hierarchy receives sensory input appropriate to guiding the motor
operations at that level. Thus, descending projections from the motor areas of the
cortex are able to initiate sequences of motor primitives in the lower stages of
the motor hierarchy, which are guided by sensory feedback at those levels. This
reduces the complexity and amount of information that would otherwise need to be
transmitted from the motor areas of cortex to the lower stages of motor processing
(Ghez and Krakauer 2000).

This chapter will begin by reviewing a number of neural network models of
hierarchical motor function in the brain (Stringer and Rolls 2007; Stringer et al.
2007, 2003), which our laboratory has developed over several years. Our aim
throughout has been to develop time-continuous dynamical models that rely on
neural network architectures with local associative synaptic learning rules that are
as biologically plausible as possible. A basic model is introduced in Sect. 2, which
is built from multiple layers of neurons such as state cells, motor cells, movement
selector cells, and high level movement selector cells. High level motor programs
encoded in the higher layers of the model are able to recruit sequences of low
level motor primitives to effect a desired trajectory through the state space of the
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simulated agent. In Sect. 3 the model is extended to show how environmental
context, such as the presence of an obstacle, can be incorporated in order to
modulate the performance of a high level motor program. This can result in the
model generating novel motor sequences not previously performed during learning,
and thereby provides a potential mechanism that might contribute to the problem of
serial order in behaviour as discussed by Lashley (1951). In Sect. 4 it is shown how
some minor modifications to the basic model will allow sequential high level motor
programs to be learned with a delayed reward signal, which is only received after the
model has performed the motor sequence successfully during training. How can a
high level motor program learn a temporal sequence of low level motor primitives if
the reward signal that guides learning is only received after all the motor primitives
have been performed? Section 5 discusses some of the limitations of the models
reviewed in this chapter and directions for future research.

2 A Hierarchical Dynamical Model of Motor Function

Stringer et al. (2003) developed a time-continuous neural network model of motor
function that could learn arbitary motor sequences and perform these motor
sequences at varied speeds in the absence of sensory inputs. These are important
characteristics of biological motor function (Bizzi and Polit 1979; Laszlo 1966,
1967; Polit and Bizzi 1978; Schmidt 1987, 1988). This work has been extended
by Stringer and Rolls (2007) to include hierarchical motor function, in which high
level movement selector commands learned to drive motor programs composed of
temporal sequences of low level motor primitives.

The architecture of the model developed by Stringer and Rolls (2007) is shown
in Fig. 2.

The state cells represent the postural or positional state of the agent. For example,
if we consider the motor task of reaching to a visual target, the state might be the
position of the target with respect to the hand. This important spatial information
would be needed to guide reaching. Consistent with this, a number of areas of the
posterior parietal cortex and premotor areas have been found to contain neurons that
respond to the location of a visual target object in a hand-centred frame of reference
(Bremner and Andersen 2012; Buneo and Andersen 2006; Buneo et al. 2002; Chang
and Snyder 2010; Graziano et al. 1997; Graziano 1999). These neurons provide a
direct representation of the distance between the hand and the target object location
in a common reference frame, which is necessary to guide reaching to the visual
target.

The model architecture shown in Fig. 2 assumes that the state cells derive their
firing properties through visual or proprioceptive input. A biologically plausible
model of how neurons in the posterior parietal cortex could develop firing responses
in a hand-centred frame of reference by visually guided learning has been recently
proposed by Galeazzi et al. (2013).
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Fig. 2 Architecture of a neural network model of hierarchical motor function. Reproduced with
permission from Stringer and Rolls (2007)

Experimental studies have also shown that hand-centred cells in PRR and Area
5 can maintain and update their firing properties in the absence of visual input
(Bremner and Andersen 2012; Buneo and Andersen 2012; Chang and Snyder 2010).
Consistent with this, the state cells shown in Fig. 2 receive an efference copy signal
from the motor cells that permits the firing of the state cells to be updated in the
dark.

The motor cells in Fig. 2 are at the lowest level of the motor hierarchy. In the
model, the outputs from the motor cells send direct projections to the muscles that
effect movement of the arm. These cells correspond to the motor neurons in the
spinal cord. The next level of processing in the motor hierarchy shown in Fig. 2
contains movement selector cells. Individual movement selector cells represent the
command to perform a particular motor primitive, such as a small movement of
the arm. These cells might correspond to more intermediate levels of the motor
hierarchy in the brain, perhaps distributed across the spinal cord and the brainstem.
For example, neurophysiological studies have shown that the spinal cord encodes
simple reflexes and rhythmic movements such as walking in cats (Belanger et al.
1996; Pearson and Gordon 2000). However, Hart and Giszter (2004) have shown
that the brainstem can contribute to the performance of motor primitives in frogs by
improving the smoothness of movement.

The network architecture implements a forward model (Miall and Wolpert 1996;
Wolpert and Flanagan 2001) in the synaptic connections w2. The purpose of the
forward model is to continuously and rapidly update the internal representation
of the state of the agent from the current motor command. This is useful for
fast ballistic motor programs, where there is not enough time for visual feedback
to update the internal state representation. Recent neuroimaging studies have
demonstrated representations of the outcome of actions in the prefrontal cortex
(Hamilton and Grafton 2008). In the model shown in Fig. 2, the synaptic connections
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w2 update the representation in the state cells given the combined firing in the state
cells and motor cells.

The network incorporates an inverse model (Miall and Wolpert 1996) in the
synaptic connections w3. The function of the inverse model is to fire the correct
sequence of motor cells in order to perform a specified motor primitive, where the
firing of the motor cells is dependent on the state of the agent. That is, given a
specified motor primitive, the inverse model selects the correct sequence of motor
cell firing. In Fig. 2, the synaptic connections w3 drive the motor cells to perform
appropriate actions given combined firing in the state cells and movement selector
cells.

The highest level of the motor hierarchy shown in Fig. 2 contains the high level
movement selector cells. These cells drive the movement selector cells through
synapses w4. The high level movement selector cells represent high level motor
programs, which are composed of sequences of motor primitives. The synapses w4,
which drive the movement selector cells, are from combinations of state cells and
high level movement selector cells. Hence, the activation of movement selector cells
is dependent on the firing of both the state cells and the high level movement selector
cells.

The high level movement selector cells correspond to a number of different
cell types involved in the execution of higher level motor programs in the brain.
Planning, selection, and control of the appropriate motor sequences require the
involvement of a number of cortical areas and distributed systems such as the motor
cortex, premotor cortex, posterior parietal cortex, and subcortical areas like the basal
ganglia and cerebellum (Gazzaniga et al. 1998). For example, Georgopoulos (1995)
showed the existence of neurons in the motor cortex that encode the direction of
arm movements irrespective of the position of the arm. Moreover, these cells fired
before the movement was initiated. Similar cells have been found in other motor-
related areas such as the supplementary motor area, primary motor cortex, and
basal putamen (Alexander and Crutcher 1990). These authors reported that the cells
encoded the direction of arm movement independently of loading, suggesting that
the cells did not encode the low level dynamics and muscle movements required.
The cells thus appear to encode a high level command to move the arm along a
specific trajectory, which is independent of the dynamics and forces required to
move it.

The synaptic connections w2, w3, and w4 are known as Sigma-Pi synapses in
that each of these synapses combines two afferent inputs in a multiplicative manner.
For example, each w2

ijk synaptic connection onto a postsynaptic state cell i combines
an afferent input from a state cell j and another input from a motor cell k. The inputs
from the state cell j and motor cell k are combined in a multiplicative manner. This
means that both inputs need to be active (i.e. greater than zero) for the postsynaptic
state cell i to be activated.

The model architecture does not include an explicit dynamical model of the
motor plant. However, the model should be able to learn the dynamics of the motor
plant during training.
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2.1 Learning to Perform Low-Level Motor Primitives

The state cells operate as a continuous attractor neural network, which can use its
recurrent connections to maintain the firing of its cells in the absence of any external
input (Amari 1977; Taylor 1999). The activation hS

i of state cell i is governed by

�
dhS

i .t/

dt
D �hS

i .t/C �0

C S

X

j

.w1
ij � wINH/rS

j .t/C ei

C �1

C S�M

X

j;k

w2
ijkrS

j rM
k (1)

where rS
j is the firing rate of state cell j , w1

ij is the excitatory synaptic weight from
state cell j to state cell i , wINH is a constant modelling the effect of inhibitory
interneurons between state cells, rM

k is the firing rate of motor cell k, w2
ijk is the

excitatory synaptic weight from state cell j and motor cell k to state cell i , � is the
time constant of the system, and ei represents an external input to state cell i that
may be visual or proprioceptive. The parameters �0 and �1 are hand-tuned constants,
which are, respectively, scaled by the numbers of w1 and w2 synaptic connections
C S and C S�M.

The firing rate rS
i of state cell i is set by the sigmoid activation function

rS
i .t/ D 1

1C e�2ˇ.hS
i .t /�˛/

; (2)

where ˛ and ˇ are the sigmoid threshold and slope, respectively.
The motor cells represent the current motor output. The activation hM

i of motor
cell i is governed by

�
dhM

i .t/

dt
D �hM

i .t/C ti C �2

C S�MS

X

j;k

w3
ijkrS

j rMS
k (3)

where rS
j is the firing rate of state cell j , rMS

k is the firing rate of movement selector
cell k, w3

ijk is the excitatory synaptic weight from state cell j and movement selector
cell k to motor cell i , and ti is the motor signal used during training. The last term
of the equation driving the motor activity combines inputs from state cells rS

j and
movement selector cells rMS

k . The parameter �2 is a hand-tuned constant, which is
scaled by the number of w3 synaptic connections C S�MS.

The firing rate rM
i of motor cell i is determined using the sigmoid activation

function

rM
i .t/ D 1

1C e�2ˇ.hM
i .t /�˛/

: (4)
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During the learning phase, inputs ti drive the firing of motor cells, which causes
the agent to proceed through a set of postural states. This teaching signal implies a
form of supervised learning in the network. It remains a matter of speculation where
exactly the motor training signals ti might come from in the brain. Simultaneously,
the state cells are directly driven by the external visual or proprioceptive input ei .
During this, the synaptic connections are modified according to the learning rules
described next. All of the synaptic learning rules are local in the sense that the
biological factors used to modify a synaptic weight are related to either the pre- or
post-synaptic neurons. This is an important property for biological plausibility.

The recurrent synapses w1
ij are updated according to the Hebb rule

ıw1
ij D k1rS

i rS
j : (5)

Learning rule (5) enables the state cells to operate as a continuous attractor network.
The w2

ijk synapses are updated according to

ıw2
ijk D k2rS

i rS
j rM

k ; (6)

where rS
j is a memory trace of the firing rS

j and rM
k is a memory trace of the firing

of rM
k . The trace value r of the firing rate r of a cell is calculated according to

r.t C ıt/ D .1 � �/r.t C ıt/C �r.t/ (7)

where � is a parameter in the interval [0,1] which determines the relative contri-
butions of the current firing and the previous trace. Learning rule (6) allows recent
past activity within the state cells and motor cells to be associated with the current
activity of the state cells.

The ability of the network to update its internal representation of the state of
the agent directly from the motor signal is known as path integration. That is, the
network continuously integrates the motor velocity signal through time in order
to compute the continuous change in the agent’s state, and thereby tracks the
changing state of the agent through time. This can be done in the absence of external
visual signals or other kinds of sensory cue that might provide absolute positional
information.

The w3
ijk synapses are updated according to

ıw3
ijk D k3rM

i rS
j rMS

k : (8)

Learning rule (8) associates the combined activity of the state cells and movement
selector cells with the current motor cell activity.

As the agent performs a motor primitive during learning, the state cells are driven
by the visual or proprioceptive inputs ei , the motor cells are driven by the training
signal ti , and the synaptic weights w1

ij , w2
ijk and w3

ijk are updated according to the
learning rules described above. After learning, the motor primitive is performed by
activating only the relevant movement selector cells.
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Fig. 3 The network performing motor primitives 1, 2, and 3, which encode small movements of
the state of the agent in the positive x direction. Reproduced with permission from Stringer and
Rolls (2007)

Numerical simulations showing the performance of the model after learning six
low level motor primitives are presented in Figs. 3 and 4. Figure 3 shows motor
primitives 1, 2, and 3, which encode small movements of the state in the positive x

direction. Each column shows the network performing one of the motor primitives.
Within each column, we show the firing rate profiles within the movement selector
network, motor network and state network through time as the agent performs the
learned motor primitive in the absence of the motor training signals ti and external
(visual or proprioceptive) state inputs ei . In all plots, high cell firing rates are
indicated in black. Figure 4 shows the network performing motor primitives 4, 5,
and 6 in the negative x direction.
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Fig. 4 The network performing motor primitives 4, 5, and 6, which encode small movements of
the state of the agent in the negative x direction. Reproduced with permission from Stringer and
Rolls (2007)

Of course, the results shown in Figs. 3 and 4 are very elementary and idealised
examples of motor primitives. In principle, individual motor primitives could each
trace an arbitrary path through the state space of the agent. Moreover, the motor
primitives could overlap with each other as they traverse through the state space.

2.2 Learning to Perform High-Level Motor Programs

The movement selector cells are driven through synapses w4 by combined inputs
from state cells and high level movement selector cells. The high level movement
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selector cells are able to learn to drive a motor program which consists of a sequence
of motor primitives. The execution of each motor primitive in the sequence is gated
by the inputs from the state cells.

The equation governing the activation of the movement selector cells is

�
dhMS

i .t/

dt
D �hMS

i .t/C tMS
i C �3

C S�HMS

X

j;k

w4
ijkrS

j rHMS
k (9)

where tMS
i is the training signal present during learning for each movement selector

cell i . The last term is the input from couplings of the state cells and high level
movement selector cells, where rS

j is the firing rate of state cell j , rHMS
k is the firing

rate of high level movement selector cell k, and w4
ijk is the corresponding strength of

the connection from these cells. The parameter �3 is a hand-tuned constant, which
is scaled by the number of w4 synaptic connections C S�HMS.

The firing rate rMS
i of movement selector cell i is given by the sigmoid activation

function

rMS
i .t/ D 1

1C e�2ˇ.hMS
i .t /�˛/

; (10)

where ˛ and ˇ are the sigmoid threshold and slope, respectively.
During learning, the synaptic weights w4

ijk are updated according to

ıw4
ijk D k4rMS

i rS
j rHMS

k : (11)

Learning rule (11) associates the current firing patterns within the high level
movement selector cells and state cells with the subset of movement selector cells
representing the current motor primitive.

As the agent learns a new high level motor program, the movement selector cells
are driven by the training signal tMS

i to perform the required motor primitives in the
correct temporal order. However, as with the motor training signal ti , it is not clear
where the movement selector training signals tMS

i might come from in the brain.
At the same time, a new subset of high level movement selector cells is activated.
These high level movement selector cells learn to drive the movement selector cells,
which were activated during training, through the w4

ijk connections. After training,
activation of the relevant high level movement selector cells will cause the network
to perform the high level motor program in the absence of any training signals tMS

i .
Figure 5 shows the performance of the network after it has learned two different

high level motor programs. On the left are results for the first high level motor
program. Activating high level movement selector cells 1–10 drives the network
through the high level motor program composed of a temporal sequence of three
motor primitives 1, 2, and 3.

The high level motor program is performed without the training signal tMS
i

driving the movement selector cells which represent the selection of the motor
primitives, without the motor training signal ti , and without the external (visual or
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Fig. 5 The performance of the network after learning two high level motor programs. On the left
is the first high level motor program composed of a temporal sequence of motor primitives 1, 2,
and 3. On the right is the second high level motor program composed of motor primitives 4, 5, and
6. Reproduced with permission from Stringer and Rolls (2007)

proprioceptive) state input ei . On the right are results for the second high level motor
program. Activating high level movement selector cells 31–40 drives the network
through the high level motor program composed of a temporal sequence of three
motor primitives 4, 5, and 6.
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Further experiments have shown that the network can learn high level motor
programs in which a number of motor primitives are performed in parallel.
Moreover, high level movement selector cells can learn to be associated with
arbitrary subsets of movement selector cells that encode the motor primitives. Each
motor primitive is executed automatically when the agent is in the appropriate part
of the state space. Although, individual motor primitives may depend on a number of
different kinds of states simultaneously. For example, the movement of an arm might
depend on the positions of a number of obstacles in the environment. In this case,
high level movement selector cells can encode any sequence of motor primitives
where the primitives are physically consistent with each other along a defined space-
time trajectory. The model can thus learn any physically realizable path through the
state space, with complex sequences of motor primitives blended together through
time.

Two limitations of the model developed by Stringer and Rolls (2007) have been
recently addressed as follows.

Firstly, the synaptic connections w2, w3, and w4 are Sigma-Pi connections, which
combine inputs from presynaptic cells in a multiplicative manner. This may not be
biologically plausible. However, Stringer and Rolls (2006) have shown that the need
for Sigma-Pi connections can be eliminated by introducing additional competitive
layers of cells, which self-organize to represent combinations of the Sigma-Pi inputs
such as state and velocity.

Secondly, the speed of path integration within the layer of state cells, which is
driven by the w2 connections, does not completely self-organize during learning.
That is, the network could learn which direction to drive the state in, but could not
learn to do this at the correct speed that the network was trained on in the light. This
is because the constant �1 in (1) needed to be tuned by hand to set the speed of path
integration. However, this problem has now been addressed by Walters and Stringer
(2010), who have shown how the speed of path integration may be learned by
utilising natural time intervals present in the brain such as neuronal time constants or
axonal conduction delays. Specifically, if such a network incorporates long neuronal
time constants or long axonal delays of the order of 50–100 ms, then the network
is able to learn explicit associations over these finite time intervals between the
velocity signal and a change in the state.

The model presented above in Fig. 2 may be compared with models of hierar-
chical reinforcement learning (HRL) (Barto and Mahadevan 2003; Botvinick et al.
2009; Dietterich 2000; Parr and Russell 1998; Sutton et al. 1999). HRL models are
able to reduce the training time for task domains with a large set of possible states
and actions by incorporating a hierarchy of “abstract actions”, each defined by a
particular mapping from states to actions. Such hierarchies of abstract actions in
HRL models can be compared to the different levels of the motor hierarchy in the
model developed by Stringer and Rolls (2007) and shown in Fig. 2. A major aim of
Stringer and Rolls (2007) was to develop a model of hierarchical behaviour with
a biologically plausible neural network architecture, which relied on associative
Hebbian learning rules at the synaptic connections. These kinds of learning rules
are more biologically plausible than the error correction learning rules typically
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found in HRL models. However, a major weakness of the model of Stringer and
Rolls (2007) is that these authors did not explain where the training signals ti and
tMS
i might come from in the brain. These signals are used to guide the learning of

motor primitives and higher level motor programmes in the model. Nevertheless,
HRL models may suffer from a possibly corresponding weakness. Botvinick et al.
(2009) recognise that an important challenge for HRL modellers is to explain how
HRL models might discover useful action subgoals, which need to be learned and
incorporated into the hierarchy of abstract actions, in an automatic and efficient way.

3 The Modulation of High-Level Motor Programs
by Context Leads to Novel Movement Sequences

A key challenge in developing neural network models of animal behaviour is to
explain how novel sequences of actions can be generated. An influential paper by
Lashley (1951) referred to this as the problem of serial order in behaviour. One
potential mechanism that might be involved is that individual motor primitives are
learned in a way that is dependent on context. In this case, a high level motor
program composed of a sequence of such motor primitives can automatically adapt
to the environmental context resulting in a novel movement sequence.

Stringer and Rolls (2007) showed that the network architecture described in
Sect. 2 may be augmented to allow the motor primitives to be modulated by
environmental context. An example of environmental context would be the position
of an obstacle when reaching to a target location, which might require a different
sequence of motor activity to accomplish the task. Figure 6 shows the augmented
network architecture. There is an additional layer of context cells that send
projections to the motor cells through the w3 synapses. The context is thus able to
modulate the activation of the motor cells through these connections. Equation (3)
governing the activation of the motor cells is modified as follows

�
dhM

i .t/

dt
D �hM

i .t/C ti C �2

C S�MS�C

X

j;k;l

w3
ijkl r

S
j rMS

k rC
l (12)

where rS
j is the firing rate of state cell j , rMS

k is the firing rate of movement selector
cell k, and rC

l is the firing rate of a context cell l representing some environmental
context. w3

ijkl is the synaptic weight to motor cell i from a combination of state cell
j , movement selector cell k and context cell l . The parameter �2 is a hand-tuned
constant, which is scaled by the number of w3 synaptic connections C S�MS�C.

During learning the synaptic weights w3
ijkl are updated according to

ıw3
ijkl D k3rM

i rS
j rMS

k rC
l : (13)
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Fig. 6 Network architecture incorporating a postural or environmental context, which is able to
modulate how motor programs are performed. Reproduced with permission from Stringer and
Rolls (2007)

Each low level motor primitive must be learned for all possible contexts. However,
the network needs to learn each high level motor program in only a single context.
After learning, the network can automatically adapt its performance of a motor
program to the other contexts.

Figure 7 shows the performance of the model with additional context cells. First,
the network learned three low level motor primitives similar to those shown in Fig. 3
with the state of the agent moving in the positive x direction. However, this time
each motor primitive was learned for two different contexts, each of which required
different sequences of activity within the network of motor cells. Specifically, the
three motor primitives used motor cells 1–200 in the first context, and motor cells
201–400 in the second context. Next, the network was trained on a high level motor
program consisting of a temporal sequence of the three low level motor primitives.
However, the network was only trained on the motor program in the first context.
After training, the network was tested to see if it could generalise its performance
of the motor program across both contexts. The left and right columns in Fig. 7
show the network performing the high level motor program in the first and second
contexts, respectively. In each case, the motor program is initiated by activating
the relevant subset of high level movement selector cells 1–10. However, the motor
activity occurred in motor cells 1–200 in the first context, and motor cells 201–
400 for the second context. Therefore, the motor activity depended correctly on
the context. Thus, the model was able to generalise its performance across both
contexts even though the motor program had only been trained in the first context.
Furthermore, the performance of the motor program in the second context gave rise
to a new sequence of motor activity to accomplish the task that had never been
performed before.
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Fig. 7 Performance of the network architecture incorporating additional cells that represent an
environmental context. On the left is the high level motor program for the first context, and on the
right is the high level motor program for the second context. Reproduced with permission from
Stringer and Rolls (2007)
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The ability of the model to generate novel movement sequences demonstrates
how hierarchical motor systems incorporating context-dependent motor primitives
could shed some light on the problem of serial order in behaviour (Lashley 1951).

4 Learning Movement Sequences with a Delayed
Reward Signal

A major issue in reinforcement learning is how an agent can learn a correct sequence
of actions if the reward for correct performance is delayed until the sequence
has been completed. A leading computational approach to solving this problem is
temporal difference learning (Suri and Schultz 1998; Sutton 1988; Sutton and Barto
1998). However, the general form of neural network architecture underpinning this
approach suffers from a lack of biological plausibility because the synaptic learning
utilises an error between predictions of future reward at successive times. It is not
clear how such an error signal could be computed and used for synaptic weight
modification in the brain.

Stringer et al. (2007) developed an alternative approach that used a hierarchical
motor system to learn action sequences with delayed rewards. The task that their
model addressed was to learn a particular desired sequence of motor primitives using
a delayed reward signal that indicated the success of the model on the current trial.
For example, the sequence of motor primitives might be those required to bring a
hand to a target location. During training, the network made many random attempts
at performing the desired sequence of motor primitives. During this, the learning of
synaptic connections within the network was guided by a reward signal that reflected
whether the network had performed the desired sequence correctly. If the sequence
was performed correctly, then the reward signal was set to 1 and learning took place.
In particular, the model used simple associative learning when a reward signal was
received for correct completion of an action sequence during training. The effect of
training was to associate the currently active high level movement selector cells with
all of the movement selector cells representing the motor primitives that had been
active during a successful completion of the desired motor sequence. Of course, the
reward signal only became available at the end of the task, when it was possible to
assess whether the network had performed the correct sequence of motor primitives
or not. Nevertheless, the network architecture was able to cope with this delayed
reward signal during training. After training, the model was able to perform the
action sequence correctly. That is, when the relevant high level movement selector
cells are activated, the correct subset of motor primitives are performed. The motor
primitives are performed in the right temporal order because their activation is
modulated by the state of the agent.

The architecture of the network developed by Stringer et al. (2007) is shown in
Fig. 8. The architecture is similar to the model described in Sect. 2 and shown in
Fig. 2. However, there are two key modifications in the new model described in this
section.
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Reproduced with permission from Stringer et al. (2007)

Firstly, it is shown in Fig. 8 that the w4 synaptic connections onto the movement
selector cells originate purely from the high level movement selector cells. That
is, the w4 connections are not modulated by additional connections from the state
cells. Consequently, the high level movement selector cells simultaneously activate,
for the entire duration of the motor program, all those movement selector cells rMS

that are required during any part of the motor program. These active movement
selector cells then send constant driving signals to all of the motor primitives needed
to perform the entire movement sequence. However, the motor primitives are still
performed in the correct temporal order. This is because the each motor primitive
is only performed when the agent is in the correct state because the w3 connections
from the movement selector cells to the motor cells are gated by projections from
the state cells.

Secondly, the architecture shown in Fig. 8 incorporates a new reward signal that is
used to guide learning at the w4 synaptic connections from the high level movement
selector cells to the movement selector cells. The reward signal is received during
training each time the network has successfully completed the desired motor
program consisting of a particular temporal sequence of motor primitives. The
reward signal strengthens the connections from the relevant subset of high level
movement selector cells to all of the active movement selector cells that were
responsible for stimulating the correct sequence of motor primitives. In the primate
brain, neurons that represent the reward value of environmental states have been
found in the orbitofrontal cortex (Rolls 2004; Schultz et al. 2000).

The equations governing the dynamics of the new model are the same as those
described above in Sect. 2 except for the two Eqs. (9) and (11) that govern the
behaviour of the movement selector cells and modification of the w4 synaptic
weights.
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The activation of the movement selector cells is now governed by

�
dhMS

i .t/

dt
D �hMS

i .t/C tMS
i C �3

C HMS

X

j

w4
ij rHMS

j : (14)

The last term is the input from the high level movement selector cells, where rHMS
j

is the firing rate of high level movement selector cell j , and w4
ij is the corresponding

strength of the connection from these cells. The parameter �3 is a hand-tuned
constant, which is scaled by the number of w4 synaptic connections C HMS.

During training, each time the network completes the correct temporal sequence
of motor primitives it receives a reward. The w4

ij synaptic weights are updated
according to the associative (Hebb) rule

ıw4
ij D k4rMS

i rHMS
j rR (15)

where rR is 1 if a reward is obtained and 0 if a reward is not obtained.
During training, the high level command to perform a desired motor program

is represented by activating a subset of high level movement selector cells. The
network then makes repeated attempts at performing the correct sequence of motor
primitives needed for the motor program. For each attempt, a random subset of
movement selector cells representing different motor primitives is activated by
the training signals tMS

i . Each activated motor primitive will be performed only
within its relevant part of the state space. If the agent performs the correct temporal
sequence of motor primitives to complete the desired motor program, then a reward
signal is received and the w4 weights are updated according to (15). This associates
the currently active subset of high level movement selector cells with all of the
movement selector cells that represent motor primitives needed at some point by
the motor program. After training, the subset of high level movement selector cells
is able to drive the network through the correct sequence of motor primitives.
Even though the high level movement selector cells simultaneously drive all of
the movement selector cells that are needed at some point during the entire motor
program, each motor primitive is only performed during its relevant part of the
state space because the w3 connections from the movement selector cells to the
motor cells are gated by inputs from the state cells. Thus, the motor primitives are
performed in the correct temporal order.

In numerical simulations, the network was first taught the same six low level
motor primitives as shown in Figs. 3 and 4. Next, the network was trained to
perform two high level motor programs. The first motor program involved the state
of the agent moving in the positive x direction by performing motor primitives 1,
2, and 3 in that order. The second motor program involved the state of the agent
moving in the negative x direction by performing motor primitives 4, 5, and 6
in that order. On each learning trial, 3 of the 6 motor primitives were randomly
selected, and the related movement selector cells were then activated by applying a
constant training signal tMS

i throughout the trial. Each time the network performed
one of the two motor programs successfully, it received a reward signal and the
w4 weights were updated according to (15). Figure 9 shows the performance of the
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Fig. 9 The performance of the network after learning two high level motor programs with a
delayed reward signal. On the left are results for the first high level motor program composed of a
temporal sequence of the motor primitives 1, 2, and 3. On the right are results for the second high
level motor program composed of the motor primitives 4, 5, and 6. Reproduced with permission
from Stringer et al. (2007)
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network after it has learned the two different high level motor programs. It can be
seen that the network can be driven through either of the two motor programs by
activating the relevant subset of high level movement selector cells. Each motor
program simultaneously co-activates all of the required movement selector cells
throughout the performance of the motor program. However, the motor primitives
are still performed in the correct order because the w3 connections to the motor
cells from the movement selector cells are gated by inputs from the state cells. The
ability of the network to perform the two different high level motor programs after
training demonstrates how a hierarchical motor system can learn arbitary sequences
of motor primitives using a delayed reward signal.

5 Future Challenges in Modelling Hierarchical
Motor Function

In this chapter, we have described a series of generic models of hierarchical motor
function in the brain. These models could, in principle, implement a variety of
different kinds of motor activity, such as reaching for an object and picking it up.
Depending on the nature of the task, different neural substrates in the brain would
be involved. The models were specifically designed to utilise biologically plausible
neural network architectures with local associative learning rules at the synaptic
connections. These models are therefore a useful step towards understanding how
hierarchical motor function might be implemented in the brain.

However, a major limitation of the models described above is the lack of
explanation for the sources of the external signals, ei , ti and tMS

i , that are used
to drive the activation of cells in the models during training. For example, during
learning, the state cells were driven by the visual or proprioceptive signal ei , the
motor cells were driven by the training signal ti , and the movement selector cells
were driven by tMS

i . In future work, we will address more closely how these signals
might be generated in the brain.

Within the brain, there is a rich variety of neuronal representations of the state
of the animal and its environment. These are important for guiding motor function
and behaviour. Different kinds of state representation are localised in specific brain
areas and are relevant to specific types of motor task.

As an example, let us consider the task of reaching to a visual target object. A
number of areas of the posterior parietal cortex (PPC), including the Parietal Reach
Region (PRR) and adjacent Area 5, as well as premotor areas, have been found to
contain visually-driven neurons that respond to the location of a target object in a
hand-centred frame of reference (Bremner and Andersen 2012; Buneo and Andersen
2006; Buneo et al. 2002; Chang and Snyder 2010; Graziano et al. 1997; Graziano
1999). These neurons provide a direct representation of the distance between the
hand and the location of the target object in a common reference frame, which is
useful for generating the appropriate motor command to reach for a visual target.
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Fig. 10 The VisNet
architecture. The network is
comprised of a hierarchical
series of four competitive
networks with feed-forward
synaptic connections between
successive layers. There is
convergence of connections
through successive layers,
which provides the
fourth-layer neurons with
information from across the
entire input retina

Such hand-centred representations are thought to play a role in visually guiding
reaching. The neurons that support these representations in the posterior parietal
cortex may be regarded as one potential class of state cells that could be incorporated
into the models presented above. In this case, how might a visual signal ei guide
the development of the hand-centred response properties of these PPC cells during
training in the light?

Recently, Galeazzi et al. (2013) have proposed a biologically plausible model
of how neurons in the PPC might develop their hand-centred responses to visual
targets by visually guided learning. The model uses visually guided learning in
a biologically plausible neural network model, VisNet, of visual processing in
the primate brain (Rolls and Milward 2000; Wallis and Rolls 1997). The VisNet
model consists of a hierarchical architecture composed of four layers of competitive
networks as shown in Fig. 10. In VisNet, learning is unsupervised, that is, there is no
external teaching signal to tell the output cells how they should respond. The feed-
forward synaptic weights between layers are updated by a local associative trace
learning rule (Foldiak 1991; Rolls 1992). The trace rule incorporates a memory
trace of recent neuronal activity into the postsynaptic term. This encourages the
postsynaptic cell to learn to respond to input patterns that tend to occur close
together in time.

The form of trace learning rule used by Galeazzi et al. (2013) to update the
synaptic weights at each timestep � is

ıwij D kr��1
i r�

j (16)
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Fig. 11 Three image sequences presented to VisNet in the simulation study of Galeazzi et al.
(2013). Each row shows a separate image sequence of a hand and a circular object shifting across
the retina together due to (micro)saccades. For each image sequence, the hand and object remain in
a fixed spatial configuration that does not change. However, each of the three image sequences has
a unique spatial configuration of the hand and object as follows. Top row: visual object is shown
in the “Up” location with respect to the hand. Middle row: visual object is shown in the “Left”
location with respect to the hand. Bottom row: visual object is shown in the “Right” location with
respect to the hand

where wij is the synaptic weight from presynaptic cell j to postsynaptic cell i . The
trace term r�

i is updated according to

r�
i D .1 � �/r�

i C �r��1
i : (17)

The parameter � may be set in the interval Œ0; 1�. Typically, � is set to 0.8.
Galeazzi et al. (2013) hypothesised that during learning, the visual system

is exposed to image sequences similar to those shown in Fig. 11. Each image
sequence results from the eyes performing (micro)saccades around a visual scene
containing the hand and background object(s) in a fixed spatial arrangement. In
this case, images of the target object in a particular hand-centred position, although
in different retinal positions, will tend to be seen clustered together in time. A
trace learning rule may then cause individual output cells to learn to respond to
images of a particular spatial arrangement of the hand and the object across different
retinal positions. The feasibility of this proposal has been demonstrated in computer
simulations carried out by Galeazzi et al. (2013). After training VisNet on the image
sequences shown in Fig. 11, cells in the output (fourth) layer of the network had



Neural Network Modelling of Hierarchical Motor Function in the Brain 315

learned to respond selectively to the location of the visual target in a hand-centred
reference frame.

The simulation studies by Galeazzi et al. (2013) have shown one biologically
plausible way in which neurons in the brain might learn to represent the location
of a visual target with respect to the hand. This particular kind of state information,
which is represented in the posterior parietal cortex, is thought to be important for
the task of visually guided reaching.

It is perhaps more difficult to identify potential sources in the brain for the
training signals, ti and tMS

i , which are used to guide the firing of the motor cells and
movement selector cells in the models described above during training. The question
is how can the supervised teaching signals used in these models be replaced with
a form of unsupervised learning mechanism, which we assume must be present
in the brain? Nevertheless, hierarchical reinforcement learning (HRL) modellers
face a comparable challenge to explain how their models might be able to identify
and learn behaviourally useful action subgoals in an unsupervised and efficient way
(Botvinick et al. 2009).
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Restoring Purpose in Behavior

Henry H. Yin

Abstract The dominant paradigm in the study of behavior today is the linear
causation paradigm. This paradigm, inspired by classical physics, assumes that
causes precede effects, that the behavior of organisms is caused by antecedent
events inside and outside the organism, and that future states such as goals and
purposes cannot possibly cause behavior. It is the basis of the general linear model
in psychology and the input/output analysis in neuroscience. But linear causation
does not apply to any control system with negative feedback. Here I shall argue
that organisms are collections of such negative feedback systems that control their
perceptual inputs. The chief difference between the behavior of living organisms
and that of non-living things is the presence of control. Rather than the effect of
some prior cause, behavior is the observable manifestation of control in teleological
systems that act on the environment to make inputs match their internal reference
values. The previous rejection of control theory in the behavioral sciences was
largely based on a misunderstanding of the principles of negative feedback control.
I discuss the types of behavioral control enabled by the hierarchical organization
and the experimental method for testing the controlled variable.

1 Introduction

The fifth way begins from the guidedness of things. For we observe that some things which
lack knowledge, such as natural bodies, work towards an end. This is apparent from the fact
that they always or most usually work in the same way and move towards what is best. From
which it is clear that they reach their end not by chance or by intention. For those things
which do not have knowledge do not tend to an end, except under the direction of someone
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who knows and understands: the arrow, e.g., is shot by the archer. There is therefore an
intelligent personal being by whom everything in nature is ordered to this end, and this we
call God.

In the above passage, the fifth argument for the existence of God, Aquinas argues
that the “guidedness of things” is evidence for some omnipotent agent which directs
everything in nature to the appropriate end. For Aquinas, knowledge of ends is
needed for movement. Since “natural bodies” do not possess such knowledge, a
human-like agent is needed to move them, as the archer shoots the arrow. Galileo
and his followers, however, succeeded in explaining the movement of natural bodies,
from balls on inclined planes to planetary motion, and the laws of physics have since
demonstrated that neither a concept like purpose nor an all-knowing agent like God
is necessary to explain how things move. But a gap remains. A pigeon released into
the air does not fall like a rock of the same mass, as predicted by physical law. Its
flying, and indeed the behavior of any organism, remains a puzzle.

We now know that, at the level of atoms and molecules, there is no fundamental
distinction between living and non-living things. Many therefore assume that the
physical laws must also suffice to explain the behavior of organisms, which are just
collections of atoms like everything else in the universe. The rock falling can be
explained by gravitational force; it has no knowledge of the future state of lying on
the ground. It is manifestly a violation of the law of causation that a future state can
cause anything to happen in the present. There is no place in physics for purpose.

Although Aquinas and modern scientists differ on the question of what causes
movement, they all assume that there can only be one kind of “guidedness,”
for physical things and for living things. For Aquinas it is purpose. For modern
scientists it is physical law. Following the example of physics, modern psychology
attempted to purge all teleological concepts from its theories. Since Descartes
introduced the paradigm of physics into psychology, different schools have looked
for the cause of behavior in different places, either external to the organism, in
some stimulus, or internal to the organism, in some executive homunculus issuing
a command. Over the centuries, these approaches have evolved largely by changing
their labels, but little has changed in the underlying assumption that some antecedent
event prior to behavior is the cause of behavior. For example, observing someone
walking, we may say that the behavior of “walking” is caused by contraction of his
leg muscles, which is caused by the release of acetylcholine at the neuromuscular
junction, which is caused by firing of alpha motor neurons, and so on, tracing the
causal chain backwards until we reach the cause of walking. This view is deemed
so self-evident that hardly anyone has ever questioned it.

The dominant approach in the study of behavior is the “input/output” approach.
The experimenter manipulates input to the organism, in the form of stimuli, and
measures output, in the form of behavior. The input is the independent variable, and
the output the dependent variable. The goal is to identify a function that relates the
input to the output. So far, however, all attempts to find such a function have failed,
despite considerable progress in our understanding of the structure and physiology
of the brain. It is clear to the engineer attempting to build a behaving robot that the
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diagrams found in neuroscience textbooks do not actually produce viable behavior,
even the behavior of a worm or of a fly.

Students of behavior have resorted to two major strategies. In neuroscience,
researchers have often used “preparations” that yield high correlations between
stimulus and response. For example, when Sherrington, a pioneer of the input/output
analysis in neuroscience, used awake and intact animals as his experimental sub-
jects, the behavior he observed was simply too variable and the relationship between
brain stimulation and behavioral output too uncertain (Leyton and Sherrington
1917). Instead he often relied on the decerebrate preparation, which removes the
influence of the brain to yield behavioral data that more closely approximate
the predictions of the linear causation hypothesis (Sherrington 1906). Scientists
like Sherrington insist that the organism yield a high correlation between the
stimulus and the response, even if it involves removing the brain, keeping the animal
anesthetized, or whatever it takes to arrive at a “preparation” that will satisfy the
rigor of the physical sciences. In experimental psychology, on the other hand, the
strategy is to move beyond the individual as the basic unit of analysis, by averaging
across multiple individuals. The statistically average animal appears to show the
stimulus-response correlation that satisfies the experimenter, even if the individual
animal does not. Whereas neuroscience has focused on the “partial animal,” so that
whatever is left can “behave” according to the experimenter’s a priori assumptions
about what behavior should be, psychology studies the “average animal,” or the
“Gaussian animal,” a creature not found in the woods.

Consequently, students of behavior today often share a set of implicit assump-
tions about the study of behavior. Above all, the experimenter must be able to
manipulate input and measure output, so that some function can be found to describe
the output in terms of the input. When behavior is variable, the low correlation
between stimulus and response is attributed to noise, or changes in “conditions,”
“contexts,” or whatever the experimenter cannot explain. In addition, because more
subjects in a study means more statistical power, a study with many subjects is better
than a study with a few subjects, single-subject designs or self-experimentation
having been largely excluded from acceptable scientific practice. These assumptions
all stem from the most basic assumption: that behavior is the effect of some
antecedent cause. Something must act on the organism, or more exactly its nervous
system, resulting in a chain of transformations within that ultimately leads to
behavioral output. This something can come from within, in the form of reasons
or homunculus, or it may come from without, in the form of stimuli and contexts.

2 The Calculation Problem

In 1935, Nicholai Bernstein pointed out a problem with the assumption that the
output of the nervous system causes movement. Clearly some neural output leads
to behavior. That much is seen. What is not seen, however, is additional forces
acting on the muscles to generate what we observe as behavior. For example, in
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opening a door, the stiffness of the door handle, the wind outside, the weight of the
door, the oil in the hinge all these variables are independent of the neural activity,
yet they contribute to the observed behavior. Bernstein realized that, for natural
movements to be possible, there cannot be an unequivocal relationship between
neural output and behavior, because the environmental disturbances are always
present and unpredictable, and together with neural output they jointly determine the
behavior observed (Bernstein 1967). Just as the movement of a car is not determined
by the engine output alone, so the movement of the pedestrian is not a result of
his neural activity alone. It does matter whether there is a hill or how strong the
wind is, for the car or the pedestrian. Because disturbances can accumulate quickly,
the more complex the movements, the less correspondence there is between neural
output and actual behavior, as more disturbances are added to the neural outputs, at
each turn, to produce behavior as observed. Consequently, the sequence of neural
activity recorded while you walk home, if repeated, will not take you home a second
time. As Bernstein explained: “A trained athletes consecutive running steps are as
identical as coins of the same value, but this identity results, not from the brains
ability to send absolutely identical motor impulses to the muscles, but only from
the faultless work of sensory corrections. . . . even if the muscles received ten
absolutely identical motor impulses in a row, there would be, in the very best case,
10 ugly steps, each one different from the others and with a result quite different
from running” (Bernstein 1967 p. 180).

If behavior as observed is determined by both neural output and environmental
disturbances, then how can it be reproduced when only one of these is generated by
the brain? How do organisms generate output that is specifically calibrated to oppose
unknown and unpredictable disturbances? It is easy to overlook this “calculation
problem” because we are accustomed to observing living organisms “behave.” What
we observe is the achievement, in the Brunswikian sense (Hammond and Stewart
2001), but we do not see the hidden disturbances that also influence the behavior as
achieved.

3 The Nature of Control

The calculation problem, that of calculating inverse kinematics and dynamics of
behavior, is widely acknowledged, but there is no consensus on how it can be solved.
One possible solution, popular today, is to predict exactly what the disturbances will
be and to calculate exactly what is needed to overcome such disturbances (Franklin
and Wolpert 2011; Shadmehr et al. 2010). Some believe that, given unlimited
computational power, which is often attributed to the brain, the organism can predict
exactly what is needed to overcome the disturbances. But these models are based
on unwarranted assumptions and a misunderstanding of negative feedback systems.
Consequently, much effort is devoted to the solution of the calculation problem
using advanced mathematics. The “feedforward” solution to the calculation problem
may appear simple, but in practice even the most powerful computers have yet to
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succeed using this approach to solve the calculation problem. Calculating output
requires an understanding of the basic laws of physics, which are not known to
the organisms. To compute the right outputs, the brain needs information about
the masses and moments of inertia of the arm segments, the properties of muscle
contraction, the properties of nonlinear muscle springs, the variations in mechanical
advantage as the joint angles change, the physics of dynamic movements, the
trigonometry of spatial relationships, and the initial state of the effectors, among
other things. And all these elaborate computations must be performed in real time
(Powers 1978).

There is, however, a far simpler alternative that does not require the calculation
of inverse kinematics and dynamics (Powers 1973b). For the calculation problem is
not unique to the field of behavior. Engineers face it every time they try to design a
machine that can resist unexpected disturbances. Although they repeatedly stumbled
upon the solution, only in the twentieth century did they finally understand the
properties of a negative feedback control system (Black 1934). In their terminology,
the phenomenon of resistance to disturbances is called control, and the principles
that achieve control without calculating inverse kinematics are known as classical
control theory.

The key principle in classical control theory is closed loop negative feedback.
Although for engineers negative feedback is simply a convenient way of solving
practical problems, Rosenblueth and Wiener, the founders of cybernetics, realized
that it has important implications for psychology and the life sciences. Unfortu-
nately, because they were not familiar with how control systems actually operate,
the cybernetic models were fatally flawed (Rosenblueth et al. 1943; Wiener 1948).
They introduced the vocabulary of control theory, without explaining correctly how
it could be applied to the study of behavior. Partly for these reasons, classical
control theory was abandoned by students of behavior long before they even
understood it. Had they studied it carefully, they would have discovered that
the phenomenon of control creates insurmountable challenges for the standard
paradigm in neuroscience and psychology.

The major implication of negative feedback control is that linear causation is
always wrong in explaining the behavior of control systems. For example, the
thermostat is a simple negative feedback control system. If the room temperature
deviates from the set temperature, the thermostat will act to oppose the change. If
we apply the standard input/output analysis to the thermostat, we will obtain data
similar to what is shown in Fig. 1. The room temperature, the input to the thermostat,
is relatively stable, whereas the output, measured by the utility bill, varies a great
deal. It is impossible to find a function to describe the relationship between these
two sets of values. In fact, the major theories in the history of psychology all fail
when applied to the analysis of the humble thermostat, precisely because all such
theories attempt to find the function that relates the input to the output. The major
implication of classical control theory is that all such attempts are necessarily in
vain.

The thermostat senses input in the form of room temperature; it compares this
input with a reference signal specifying what the temperature should be; and it



324 H.H. Yin

Fig. 1 Hypothetical data set from the input and output measurements of a thermostat

generates some error signal, the difference between current temperature and desired
temperature, which is then converted into the output. The controlled variable is the
room temperature, and a working thermostat will keep this variable as close to the
set temperature as possible, despite fluctuations in the temperature outside. When
the current temperature is the same as the desired temperature, there is no error, and
the output is turned off. Because the output acts to keep the input close to the set
temperature, there is no consistent relationship between the input and the output.
Rather the output is correlated with the disturbances, i.e. outside fluctuations in
temperature. The thermostat does not sense the disturbances directly. It only senses
one input, current temperature, which is determined jointly by its own output and a
variety of disturbances.

The thermostat could have used a “feedforward” approach popular in the motor
control literature to predict disturbances to the temperature, calculating outputs
needed to maintain the desired temperature, based on an inspection of the visual
scene outside, the color of the leaves, the time of the year, and so on, and calculate
the exact amount of output needed at any given moment. But even if it was equipped
with a very powerful computer, it would not have been able to control room
temperature.

Closed loop negative feedback control system has special properties not found
in open loop systems. An example of an open loop system is the electric fan, which
controls its output rather than its input. The thermostat, by contrast, controls its
input—the sensed temperature in the room. It does not need to know anything about
the disturbance to the controlled variable. The fluctuations in temperature could be
caused by the fire in the bedroom or the snow on the roof. Whatever the sources,
the thermostat only has to sense the variable being controlled, namely the current
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Fig. 2 The basic
organization of a closed loop
control system (from Powers
1973)

temperature at its sensor, to bring the input variable close to the value specified by
the reference signal.

Although teleology has become a dirty word, the thermostat is a teleological
machine. If you set it at 25 degrees Celsius when it is currently 10 degrees, the room
temperature will eventually reach 25 degrees. The set temperature is a representation
of a future state, but it contains no information about how the system should
behave. We cannot predict the thermostat’s behavior if we only know the reference
signal. Nor can we predict its behavior if we only know the room temperature. To
predict its behavior we need to know both the current temperature and the reference
temperature, because the difference between the two generates the output.

3.1 The Organization of Control

A negative feedback control system, then, solves the calculation problem without
performing calculations of the actual disturbances. It merely adjusts its output
according to the difference between the present value of the controlled variable and
the desired value. Control is an emergent property of the negative feedback loop.
The linear cause and effect model breaks down in the analysis of such a system,
because the output is acting on the input at the same time that the input is acting on
the system. The closed loop is a loop of circular causation (Powers et al. 1960).

As illustrated in Fig. 2, a closed-loop control system has three main components:
input function, comparator, and output function. The input function represents
some variable to be controlled; the comparator computes the difference between
a reference signal that represents the desired value of the variable and the input
signal; the output function converts the error signal into an output that acts on
the environment. A successful control system will keep the value of the controlled
variable close to the value of the reference signal, by varying the output to counter
the effects the effects of disturbances on the controlled variable. In traditional open
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loop models of behavior, the input is not controlled; outputs are generated either by
transforming inputs, or spontaneously. In a negative feedback control system, only
the input is controlled.

The comparator receives two types of signals, reference signals and input signals.
Either could be positive or negative, but they should be opposite in sign. Thus, if the
reference is positive, then increasing the reference signal also increases error if the
input remains the same. The output will be generated continuously until that error
is reduced.

Reference signals are internal to the organism. This is the chief difference
between biological organisms and existing man-made control systems. In the
thermostat, the reference signal (desired temperature) is set by the user. This is
not possible in an organism, because its reference signals are its own. We can
only influence reference signals indirectly, e.g. by depriving the animal of what
is essential to it, or by manipulating their nervous system if we understand how the
comparator functions are implemented.

The concept of set point (Sollwert) in physiology comes closest to the refer-
ence signal. The maintenance of a stable internal environment (milieu interieur)
in various physiological systems was first noted by Claude Bernard. Indeed,
homeostasis, the popular term coined by Cannon, has become a core concept
of physiology. Through Cannon’s student Rosenblueth, it inspired the field of
cybernetics. Surprisingly, none of these concepts had a major impact on the study
of behavior, with the possible exception of the work on feeding systems (Staddon
1983). Homeostasis refers to a control system with a relatively fixed reference
signal. A common experiment in nineteenth century physiology was to study the
wiping reflex of frogs by leaving acid on the skin of frogs with transected spinal
cords. The wiping is easily elicited, presumably because the tolerance for acid
(reference signal) is close to zero. Whenever the reference signal is negative and
close to zero in magnitude, a small perceptual signal can generate an error signal,
thus generating an output. Influenced by the work on reflexes, many physiologists
implicitly assume a constant reference signal of zero. Freud, for example, often
assumed that the primary purpose of behavior is to remove sensory stimulation
altogether (Freud 1915). Such systems have the appearance of a simple input
causing a simple output. But the appropriate stimulus is simply a disturbance to a
controlled variable, creating an error signal from the constant reference signal. Thus
homeostasis is a particular type of control phenomenon, found in control systems
with relatively constant reference signals, e.g. body temperature in mammals. In
many behaviors, the reference signal can change quickly, though a similar negative
feedback organization is still found.

The comparator sends an error signal to the output function, which transforms
it into some output. There is not necessarily a one-to-one correspondence between
error signal and output. Even a simple operation like integration can make the output
appear very different from the error signal (Robinson 1989). The output of a control
system, however, should not be equated with the behavior per se. Most control
systems do not generate outputs that correspond to what we observe as the behavior
of the organism. Their output functions are located inside the organism, or more
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exactly in the nervous system, and do not affect motor neurons directly. In fact,
as we shall discuss below, they can act on other control systems in a hierarchical
arrangement.

The input function, output function, and comparator are all located inside the
control system, but the feedback, which describes the input as a function of the
output, is located outside, in the environment. The environment is everything that is
outside the control system. With feedback the loop is closed, so that the output will
ultimately reduce the error signal—the definition of negative feedback. A positive
feedback system, by contrast, will increase the error and moves input away from its
desired state. Such a system is not desirable for controlling any variable, as it will
only amplify the effects of disturbance rather than resist them (Powers 1978).

3.2 Wiener’s Error

Although words like feedback and control have become a part of the everyday
vocabulary, the principles outlined above are misunderstood. For by the time
engineers discovered the principles of control, the life sciences were already
entrenched in the paradigm of linear causation, imported by Descartes from physics.
Descartes himself understood the logical consequence of his position. On the one
hand, the explanation of the movement of natural bodies offered by physics can be
adopted to explain animal behavior, using the model of the reflex arc. On the other,
subjective experience convinced him that he was able to act voluntarily, independent
of environmental stimuli. These two possibilities being incompatible, Descartes was
forced into the dualism for which he is known. Where a clear antecedent is found,
the reflex arc is proposed to transform external energy into motor output; where no
stimulus can be identified as the cause of behavior, it is assumed that, somewhere
within the brain, a homunculus issues commands which are ultimately sent to the
muscles. The homunculus, on this account, cannot possibly be material, for that
would place it in the chain of linear causation. Behind dualism is the assumption
of linear causation. Descartes was therefore quite consistent. Only those who came
after him became confused. Instead of accepting his dualism, most chose either
the stimulus-driven reflex arc model or the command-driven model. These two
positions were eventually transformed into pairs of opposing schools: rationalism
and empiricism, vitalism and mechanism, associationism and idealism, and most
recently, behaviorism and cognitivism. As is common in intellectual history, the
opponents typically share key assumptions, in this case the linear causation model.

Today, many students of behavior would be surprised to hear that they are
following Descartes. It is therefore important to understand how they came to be
Cartesians without knowing it, by exposing their unquestioned assumptions. Both
the stimulus-driven and the command-driven models assume that behavior is open
loop. Even the founders of cybernetics, who introduced control theory to the general
public, could not free themselves from the grip of the linear causation paradigm
(Rosenblueth et al. 1943; Wiener 1948).
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Fig. 3 The wrong model of closed loop organization influenced by Wiener (after Camhi 1984). In
this model, the comparator function is located in the environment rather than in the organism

Wiener, in particular, was responsible for the widespread misunderstanding of
negative feedback in the life sciences. In Wiener’s model, the organism is not a
control system, but merely the output function of a control system (Wiener 1948).
He placed the comparator outside of the organism, in the environment (Fig. 3). The
organism simply receives the error signal and transforms it into output—a stimulus-
response device. Wiener’s error is not easy to discern, for his model contains exactly
the same components as a negative feedback control system. His mistake is in the
assignment of the components of the control system to the organism–environment
relationship. Instead of placing the collection of control systems inside the organism,
Wiener simply turned the organism into an output function (Fig. 3). In itself, of
course, the output function is not a control system, because control is an emergent
property of a collection of components in a particular arrangement.

Wiener was probably misled by man-made control systems, in which the
reference signal is specified by the human user. The engineers have made a control
system seem to act like any other input–output system. Although it has the negative
feedback control loop, it does not have its own reference signals. That is why one can
adjust the setting on thermostat, but the thermostat itself does not have a preferred
temperature. The preference belongs to the user. The reference signal in the man-
made control system is normally designed to be accessible to the human user.
Biological organisms do not serve any user. They serve their own essential variables,
and their reference signals belong to them alone. Environmental influences act as
disturbances to the controlled variable.

Unfortunately, Wiener’s error became his major legacy, resulting in nearly
universal confusion regarding the use of negative feedback in explaining behavior.
A good example is standard textbook explanation of the optomotor turning response
(Camhi 1984). In the typical experiment, a fly is placed on a platform inside a
cylinder with a striped pattern. If the cylinder is rotated, the fly will turn in the same
direction as the cylinder. The difference between the fly turning and the cylinder
turning is called “slip speed.” According to Camhi, the slip speed serves as the error
signal in this closed loop control system; it is needed for the fly to generate the
output of turning. In other words, slip speed is used as a stimulus which “causes”
the response.
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Moreover, Camhi assumes there are two inputs, one that is independent of self-
motion (exafference) and another that is self-induced (reafference). The turning of
the cylinder itself is the exafference, which is then compared with the reafference,
visual motion as a result of turning (Von Holst and Mittelstaedt 1950). But Camhi
fails to see that the slip speed, the difference between the cylinder rotation and the
self rotation, is the perceptual input—the actual visual motion sweeping across the
retina. The slip speed is not an error signal, but the input to the optomotor control
system, and the variable being controlled. What Camhi calls the input, the cylinder
rotation, is really the input from the perspective of the experimenter, not the actual
image velocity on the retina of the fly. The comparator is located somewhere in
the fly brain; and it compares the perceived visual motion with the reference signal,
which specifies how much “slipping” of the cylinder is permitted. If the latter is zero,
then any perceived slip speed will create an error signal (i.e. cylinder is moving too
quickly). The output ultimately generated is turning in the same direction as the
cylinder, which reduces the value of the controlled variable.

Camhi writes: “one surprising feature of the optomotor feedback loop is that it is
actually impossible for the fly to keep up perfectly with the cylinder’s rotation; for
to do so would . . . create a slip speed equal to zero. But a slip speed of zero would
produce zero behavior, so that fly’s turning would, of necessity, stop. Given this
circumstance, the best that the fly can do is to keep its turning speed very close, but
not equal, to the cylinder’s rotation speed. This it does, especially for slow cylinder
rotations of up to about 20 per second.” (Camhi 1984). Camhi assumes that closed
loop feedback control requires the animal to generate sufficient error in order to
generate behavior. This he considers a flaw in the system. But if we assume that
the reference signal is zero (no slipping allowed), then error and output will be
proportional to the input. Turning continues because additional error is created by
the disturbance introduced by the experimenter (i.e., cylinder rotation), not by the
fly. So long as the cylinder is rotating, the error is continuously generated.

4 External Causation and the Reflex Arc

The stimulus-response model is the modern day version of classical empiricism:
“sensory vibrations which are excited in the external organs, and ascend towards
the brain by agitating the small particles of the muscular fibers . . . excites
them to contraction” (Hartley 1749). This model still dominates psychology and
neuroscience. Even many models in cognitive psychology (e.g., connectionist neural
network models) are just stimulus-response models with intervening variables or
hidden layers (Hull 1943; Millerm and Cohen 2001). But few have asked whether
the stimulus-response model can explain any behavior in any organism.

By universal consensus, the reflex arc is the best example of a stimulus-response
mechanism in its purest and simplest form. According to Sherrington, the reflex
arc, comprising a receptor, a conductor, and an effector, is the fundamental unit
of integrative activity in the nervous system (Sherrington 1906). Such a model
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appears similar to the control system, the receptor resembling the input function
and the effector the output function. But there is no feedback in the reflex arc, and
the conductor does not receive reference signals for desired value of the input. It
assumes that nothing happens to the value of the stimulus, once the response is
initiated.

Sherrington did not hesitate to title his book “The Integrative Actions of the
Nervous System” even though it only describes his work on spinal reflexes using
the decerebrate preparation. In this preparation, the spinal cord is cut to remove
the influence of the brain. Sherrington focused on the scratch reflex in dogs. Since
the dog can no longer behave, it will not respond to the stimulation as it would
normally do (which might include attacking the experimenter). Having removed
the brain, Sherrington could better manipulate the input (e.g., drops of acid or
electrical stimulation) and measure output (a scratching of the hindleg). But even
in his reduced preparation, the relationship between input and output was far from
clear. The observed irregularities (e.g., variable latency and after-discharge) was
attributed to synaptic transmission. As a leading proponent of the neuron doctrine,
Sherrington was convinced of the existence of junctions between neurons. He
therefore concluded that his data on reflexes not only supports the reflex arc model
but also suggests the existence of synapses (Sherrington 1906).

4.1 The Stimulus-Response Illusion

What Sherrington neglected is the feedback acting on the controlled variable. The
“stimulus specificity” of reflexes provides a clue about the controlled variable,
which is always disturbed by the “effective” stimulus. For the scratch reflex, it is
the amount of irritation on the skin; for the pupillary light reflex, the amount of light
on the retina. The reference signal is negative for protective reflexes, determining
what is “excessive” activation of the relevant receptors. In the case of protective
reflexes, the output usually reduces the value of the controlled variable.

Sherrington’s input/output analysis only works for open loop systems. When
applied to control systems, it can produce a powerful illusion. The illusion of a
stimulus-response system emerges when the observer can identify a clear antecedent
stimulus event and a behavior that follows (Powers 1978). The antecedent event
appears to be the cause of behavior. The fire appears to cause withdrawal of the hand;
the acid on the skin appears to cause scratching; and the nervous system appears to
transform the sensory input into motor output. If there is any correlation between
the stimulus and the response, then the function defining this relationship appears to
be a function of the organism.

Appearance, however, can be deceiving. For stimuli to be effective, they must act
as disturbances to the input variable being controlled. Since the error signal from
the comparator can only be produced by variations in the input and the reference
signal, when the reference signal is constant and low (e.g., zero), the error signal is
largely determined by the disturbance. Thus with a fairly constant reference signal,
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we can observe a regular relationship between stimulus and response, thus creating
the illusion that stimuli cause responses.

Since the definition of control is systematic resistance to disturbance, the
disturbance and the output are highly correlated. Yet this correlation is not a function
of the organism. It is a result of disturbance and output simultaneously acting
on the same input variable, but in opposite directions, one pushing and the other
pulling. For example, if I am trying to hold my umbrella in the rain, the wind is
a disturbance to the position of my umbrella. My arm counters this disturbance
to keep my umbrella straight. Recording activity from my arm muscles and the
wind simultaneously, we can find a high correlation. The wind is transformed by my
nervous system into muscle contraction in my arm—so it appears. But there is no
such transfer function inside of me. For instead of a “wind to muscle” sensorimotor
transformation, there is the connection between the wind and the umbrella, which
is a feature of the environment, and there is the connection between the arm and
the umbrella, which is another feature of the environment. These two functions are
correlated, so that the latter cancels the effects of the former. Neither connection
belongs to the organism, and neither can be found inside the brain. Both the wind
disturbance and the neural output act on the same variable—umbrella position—
which is perceived by my nervous system. So long as the umbrella position is
being controlled, the wind input will be correlated with the arm activity, creating
the illusion of a stimulus-response system. But as soon as I stop controlling the
umbrella, the correlation disappears. This illusion is the chief source of spurious
sensorimotor transformations in many studies.

4.2 Fixed Action Patterns, Central Pattern Generators,
and the Cognitive Homunculus

Some might argue that more enlightened “cognitive” theories of behavior have
long ago replaced the simple reflex arc models. Most cognitive models are variants
of the command-driven model, which is on the other side of Cartesian dualism.
On this view, the cause of behavior is not found outside the organism, in some
environmental stimulus, but within the organism itself. Independence from sensory
inputs is considered the basis for cognition. Voluntary actions are produced by some
internal, spontaneously active process, a homunculus issuing commands to output
functions. This view has many branches, such as rationalism and its modern variants
in linguistics and cognitive science (Chomsky 1965; Miller et al. 1960).

In neuroscience, the command-driven model is based on the concept of central
pattern generators, which originated from the work of Graham Brown, one of
Sherrington’s students (Graham Brown 1911). Using the same spinal preparation,
Graham Brown showed that the removal of sensory afferents to the spinal cord did
not eliminate locomotion in the cat, suggesting the existence of intrinsic mecha-
nisms capable of generating rhythm independently of sensory afferents (Lashley
1951). That the nervous system, like the heart, can generate spontaneous behavior
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independent of inputs was not a novel idea. For the scratch reflex, there is no one-
to-one correspondence between stimulus and response; the rhythm of scratching,
at about four times per second, is independent of the rhythm of stimulation
(Sherrington 1906). Sherrington himself compared the fixed rhythm of the scratch
reflex to the beating of the heart. But Graham Brown argued that the independence of
such intrinsic rhythm from sensory afferents falsifies the reflex arc theory. We now
know of mechanisms which allow neurons themselves to act as pacemakers, even
in the absence of synaptic inputs (Llinas 1988), which appears to support the idea
that intrinsically generated patterns can generate behavior independent of sensory
inputs.

The command-driven model is intended to replace the reflex arc model. But
like Descartes’ homunculus, it shares the same underlying assumption of linear
causation. The cause is internal, and the effect or observed behavior is external—an
inside-out version of the stimulus-response reflex arc paradigm. And to explain the
unpredictability of behavior, what occurs inside the command-issuing center is often
assumed to be some random process (Glimcher 2005; Neuringer 2002; Neuringer
and Jensen 2010). But the conceptual confusion of linear causation remains. If the
behavioral patterns control specific variables, then the intrinsic rhythm may simply
reflect properties of the output function, which must still vary as a function of the
relevant error signal. If the spontaneously generated outputs do not control any input
variable, then the calculation problem cannot be solved at all.

5 Hierarchy of Control

As I write, my head position, body temperature, blood sugar, and direction of my
gaze are all being controlled. A single control system cannot possibly control all
these variables. The control system described above is therefore only the basic
building block out of which the organism is constructed.

The comparator in any control system must receive input signal from the input
function and reference signal from somewhere else, and its output must also go
somewhere else. Where does the reference signal come from? And where does the
output signal go? According to Powers, the level that supplies the reference signal
is another control system (Powers 1973b). As shown in Fig. 4, a control system can
send a reference signal to the comparator of another control system. The system that
sends the reference signal is hierarchically higher. In other words, the higher level
supplies the purpose for the lower level.

In traditional hierarchical models, “commands” are elaborated by lower levels
into more detailed commands (Fuster 1995). Each level is open loop (Millerm and
Cohen 2001). By contrast, descending signals in a control hierarchy do not specify
the output of the lower system (Marken 1993). Instead of telling lower systems
what to do, the higher systems tell lower systems what to sense. The lower output is
proportional to the difference between the top down reference signal and the input
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Fig. 4 Hierarchical
organization of control
systems. The key feature of
the hierarchy is that a higher
control system may send
outputs to the comparator of a
lower control system, thus
changing its reference signal

to the lower control system. Consequently there need not be any correlation between
the top-down reference signal and the output of the lower systems.

It is not possible to specify the output of lower systems by directly activating
their output functions. If the reference of the lower control system remains the same,
the direct command to the output function will change the input to the lower system,
which will produce an error signal, and an output from the lower system that cancels
the effect of the command. To use the lower system, the higher system must change
the reference signal, to produce the needed output to reduce its own error signal.
The lower system knows nothing about the variable being controlled by the higher
systems. But it will counter any disturbance to its controlled variable, the value of
which is determined by the top down reference signal. It just matches its input with
the reference signal it receives. The higher system does not sense the effect of such
disturbances to the lower controlled variable, if the inputs at the lower level are
already controlled.

5.1 Essential Variables and Homeostatic Control

As we ascend the control hierarchy, we ask why a certain output is produced,
which is a question about the reference signal and the variable being controlled
(Powers 1973a). Conversely, when we descend the hierarchy we ask how a variable
is controlled. If we keep asking the “why” question as we ascend the hierarchy, i.e.
look for the source of the reference signal for the present level, there must be a level
at which we cannot go any higher. This would be the top level, for the sake of which
other control systems operate. Ultimately, why do living organisms do what they
do? The concept of “survival” comes to mind. But survival is merely an abstraction,
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comprising a collection of variables, which Ashby called “essential variables.” They
are essential, because death results if these variables are not controlled (Ashby
1960). The traditional examples of homeostatic control, e.g. blood glucose, body
temperature, are all essential variables (Cannon 1932).

For any essential variable, there is some innately organized control system that
opposes the effects of disturbances. For example, blood pressure is sensed by
baroreceptors located in the carotid sinus. When blood pressure increases, activating
the baroreceptors, the signal is sent to the brainstem, where specialized neurons with
a built-in discharge rate serving as the reference signal are located. The difference
between the input and the desired rate is the error signal, which can change the heart
rate. Such autonomic functions are performed by many control systems specialized
for the control of specific variables. At any given moment, all of these specialized
control systems must function for the organism to survive. But here is a paradox. If
the essential variables are controlled by first order control systems, each associated
directly with the appropriate output functions that can act to control the value of the
variable, then why is a hierarchy needed at all?

Although all control systems within the organism must somehow serve the
essential variables, this organization is more complex than it appears at first glance.
Merely having the first order homeostatic control systems is not enough. The
new born infant is already equipped with functional control systems for essential
variables, yet it is quite helpless, its ability to resist perturbations to these variables
limited. For example, it can sweat when the body temperature increases, but it
cannot escape from a fire, or to extinguish the fire with water. It is instructive to
understand the limitations of first order control systems.

In simple negative feedback systems, the sensors sense the state of the essential
variable directly. For example, a body temperature control system does not get infor-
mation about the disturbance to the temperature until the disturbance has already
started to change the value of the controlled variable. Should a fire be started in the
room, it would know nothing about the fire. As far as the first order control system
is concerned, there is no such thing as fire. There is only the sensed temperature.
No other input is available to this control system—not the smoke or the flame. The
simple control system is therefore limited by the sensory variables it can detect. To
detect other variables, signals from various sensory receptors must be combined.
A hierarchical organization is required for the progressive transformation and
recombination of “primitive” sensory inputs (Konorski 1967). At the same time, the
outputs of the control systems for essential variables are also limited. The autonomic
outputs (e.g., sweating) are not general purpose output functions. One cannot use
them to walk. As we shall see, such limitations in the output function also requires
hierarchical organization and the development of a general purpose skeletomotor
system.
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5.2 Anticipatory Control

Facing a fire, most organisms will not wait for the flame to engulf them. They
will act as soon as they detect the fire. To many, the fact that organisms can
anticipate disturbances suggests that the nervous system makes predictions about
the future (Wolpert et al. 2011). But before jumping to this conclusion, we must first
understand exactly what “prediction” means, and how the anticipatory behavior is
produced.

Starting with Pavlov, anticipatory control has been studied extensively. In
Pavlovian conditioning, the unconditional stimulus (US) can be a drop of acid, and
the UR is salivation, which dilutes the acid. The controlled variable is irritation of
the mouth cavity. The US is merely a disturbance that changes the value of some
essential variable, and the action of the control system is the unconditional responses
(UR). The conditional stimulus (CS) is a neutral stimulus, such as the sound of a
metronome, which does not evoke any response. But after pairing with US, it will
reliably evoke a “conditional response” or (CR). The CR, then, is the anticipatory
action. In Pavlov’s original studies, the same output—salivation—simply occurs
earlier in time. As a result of conditioning, the body will react before the actual
disturbance or the US occurs. The CR is an anticipatory version of the UR and
prepares the animal for the US. Pavlov called this process stimulus substitution,
since the CS becomes a substitute for the US in its ability to elicit the same response
(Pavlov 1927).

If the US is a disturbance to some controlled variable, then the CS, as the
predictor of the disturbance, can act like the disturbance itself. For example, the
introduction of glucose into a rat’s stomach will cause a rise in blood sugar. This
increased blood glucose is not the UR. It is merely a consequence of the glucose
absorption. Repeated introduction of glucose following a CS will result in the
development of a hypoglycemic response to the CS. The reduction in blood sugar
will compensate for the glucose disturbance. The CR attenuates the impact of the
US (Dworkin 1993). This can be accomplished by redefining the input function,
so that US input function is now responsive to the CS input. The weight of the
existing connection may be negligible, which explains why the CS is originally
“neutral”, i.e. does not evoke any response. Pavlovian conditioning can therefore
strengthen this connection, adding a new source of signal to the input function of
the UR control system. This type of mechanism can explain some of the constraints
on learning. For example, the closer together the two input functions are, the
better will be the consequent conditioning. Obviously, if the CS is in the same
sensory modality as the US, the conditioning is easier because there may already
be existing weak connections between the CS input function and the motor neurons
producing the UR.

It is beyond the scope of this essay to discuss the mechanisms of learning
in any detail, but it is important to point out the critical role of the homeostatic
control systems in driving the reorganization. The error signals from the essential
variables can produce widespread random fluctuations in the parameters of other
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control systems (Powers 1973b). With the reflexive withdrawal of a hand from
the approaching fire, the controlled variable is sensed temperature, and the UR
reduces that temperature. When there is a burn, the error signal can randomly
change the weights of the system. And a reduction in the error signal can stop
this reorganization process. For example, if there is a CS that predicts the fire, the
weight connecting this signal to the same motor neurons that produce the UR will
sometimes be larger due to the random fluctuations, producing earlier withdrawal
from the heat source and a reduction of error, which in turn slows down the
reorganization process, retaining the increased weight.

But pure stimulus substitution of this type cannot be common for a number
of reasons. A predictor of the disturbance can be detected by sensors from many
modalities, which are not located in the local spinal circuitry critical for the
withdrawal UR. The projections from these detectors to the detector of the US are
not usually direct. Consider the noise of the crackling fire, the smell of the smoke,
or the sight of the fire—in all these cases the sensory signal cannot go directly
from the perceptual channels to the spinal motor neuron innervating the flexors. The
expansion of the input function in stimulus substitution is not sufficient. The input
function must now associate a high level perception, e.g. sight of fire, to the low
level perception of the US disturbance.

One possibility is that the output function of the higher-order system that
receives the CS can be modified, so that a projection is sent to the lower system
to alter its reference signal. This is supported by experimental evidence. In eyeblink
conditioning, an air puff to the eye elicits a reliable blink, but if the air puff is
predicted by an auditory stimulus, the blink will occur earlier in time, following
the CS. Although the CR and the UR are similar, pharmacologically blocking the
red nucleus prevents expression of the CR but not the UR (Thompson et al. 1998).
The CR circuitry can thus be dissociated from the UR circuitry, though they share
the final common path, using the motor neurons in the cranial motor nuclei. The
CR can be generated by a hierarchically higher level sending a reference signal
to the motor neuron generating the UR. The higher system, which involves the
interpositus nucleus of the cerebellum, generates an output that, via the red nucleus,
changes the reference signal for the motor neuron, which serves as a comparator. A
change in the reference signal can also produce the blink, in the same way that
a change in the perceptual signal does. The reference signal “simulates” actual
disturbance. The comparator takes the difference between the actual disturbance
to the controlled variable (proportional to US magnitude) and the reference signal
from the higher system, generating an error signal that produces the CR. The CR
reduces disturbance, and as a consequence there will be less error from the output
function when the US arrives. The UR is reduced, since the effect of US is already
resisted by the CR. This phenomenon is commonly called conditional diminution
of the UR, an example of US processing (Domjan 2005), but it is just due to the
disturbance resisting effect of the CR.

Traditionally, the term Pavlovian conditioning is simply used to describe what-
ever happens when some neutral stimulus is paired with some disturbance to an
essential variable. But this classification is not based on any common underlying
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mechanism. In some cases, whether by redefining the input function or by changing
the reference signal from the output of a higher level, the CR and the UR share
the final common path. This is true for salivation and eyeblink conditioning. But
in other cases, the CR and the UR are different. For example, in fear conditioning,
an auditory tone predicts electrical shock to the feet. The URs to shock include
jumping up and down. The CR is freezing, a stereotypical defense reaction to danger
in rodents. When the predator approaches and there is nowhere to escape, the animal
freezes. The sight of predator is a danger signal, not a pain signal, and the behavior
in response to danger and to pain can be quite different. Of course, when the predator
is attacking the prey, the prey does not freeze—it struggles to escape, much as the
shock elicits avoidance behavior. If the sight of the predator actually triggers the
unconditional response to pain, as in stimulus substitution, then the animal will
simply alert the predator.

Thus, it is not enough just to produce same output earlier in time, in response
to a predictor of the disturbance. A different type of output is required to affect the
disturbance in question. Instead of resisting the same variable as the UR does, the
CR controls a different perceptual variable. By controlling a different aspect of the
disturbance, it is able to reduce or prevent the error signal in the essential variables.
It is by not alerting the predator that the rat can avoid injury and death altogether.

As we have seen, anticipatory control, as revealed by Pavlovian conditioning,
can involve three possible mechanisms. First, conditioning can redefine the input
function within the same control system that generates the UR. The US is always a
disturbance to some essential variable under homeostatic control, and the additional
input from the CS detector to the UR motor neuron can become stronger. This
mechanism requires the CS input function to be at the same level as that of the
US. No hierarchical organization is needed, since the same system that controls for
the effect of the US can be modified to produce the anticipatory output. Second, a
higher system detecting the CS sends an output to the lower system which controls
the variable disturbed by the US. The CR and the UR share the final common path,
but the CR is generated by changing the reference of the US control system. To
the motor neuron, such a change in the reference signal is similar to a change in
perceptual input caused by the disturbance. The only difference is in the timing. The
CR is produced earlier and consequently reduces the impact of the US disturbance
when it actually arrives, thereby also reducing the UR. Finally, it is possible for
higher control systems to alter the reference of alternative control systems that can
control for different perceptual variables and generate different behavioral outputs.
As a result of controlling these other perceptual variables, the error signal in the US
control system is reduced or even prevented.

5.3 Instrumental Control

In Pavlovian conditioning, the animal is usually prevented from affecting the CS,
which is under the control of the experimenter. If it is free to behave as it normally
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would, without the interference of the experimenter, the animal will attempt to
control the CS. Imagine what would happen to a dog if acid is introduced into its
mouth. It is only under very artificial conditions that we can measure the anticipatory
salivation and repeat the acid treatment. The restrained animal simply cannot behave
freely. It would be a very unusual dog indeed if it simply accepts this state of affairs.
Had it not been restrained, it might not be so kind to the experimenter who is
injecting acid into its mouth. The way to avoid acid is not to dilute it with saliva,
but to attack the man in the lab coat. This type of behavior, acting on the source
of the disturbance and exerting control over it directly, is familiar to us. More than
the reflexes and simple anticipatory behaviors, it is the most common behavior in
humans. Such goal-directed, voluntary behavior requires yet another type of control,
which I shall call “instrumental control,” often studied in instrumental or operant
conditioning experiments.

To understand the distinction between instrumental control and anticipatory
control discussed above, consider the example of approach behavior. Animals will
often approach predictors of reward. In the well-known experiments on pigeons,
a key light was lit before food presentation—a basic Pavlovian experiment with
key light as the CS and food as the US (Brown and Jenkins 1968). Pigeons
learned to approach and peck the key light that predicted food delivery. The US
is not contingent upon the pecking: there is no feedback function between the
anticipatory behavioral output and the food delivery. Then the experimenter reversed
the contingency between the pecking and the food delivery. Now food was delivered
following the CS as before, but any pecking of the key light would cancel it.
Surprisingly, when this “omission” contingency was imposed, the pigeons did
not immediately reduce their pecking behavior. The CR persisted, even though it
canceled the reward.

Before calling the persistence of the CR maladaptive, it is worth noting that,
in the natural environment outside the laboratory, sign tracking is very effective.
Approaching the sound of the apple falling from the tree, e.g., usually gets you
closer to the apple. There is a stable relationship between the sign and the goal, so
that proximity to the sign means proximity to the goal itself. Of course, it is possible
to imagine a world with a different arrangement, but evolution does not operate on
imaginary worlds.

Once the animal has acquired the anticipatory tracking behavior, it cannot
withhold it even when doing so increases the error signal. This is trivially true for
first order control systems. One cannot refrain from sweating in order to cool the
body. If some mischievous experimenter arranged the contingency so that sweating
will increase room temperature, then the body will still continue to sweat, even
though it is increasing the error. The error signal that represents “too much heat” can
only be translated into sweating. It cannot be used by the same control system to stop
sweating. A first order control system cannot adapt to a reversal in the polarity of
the feedback function, though of course the error signal can engage different control
systems in a hierarchy that allows one to leave the heated room. More importantly,
the control hierarchy that produces anticipatory control also cannot cope with this
type of reversal, as revealed by the omission test. The ability to alter behavior
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following a reversal in feedback function is a distinctive feature of instrumental
control. A typical instrumental contingency could be “push the door to open it,” or
“pull the door to open it.” The same goal is reached with different actions. The same
error signal can be used to perform two opposite actions. Distinct lower level control
systems can be selected depending on the feedback.

What is the difference between instrumental control and anticipatory control? If
we hear the sound of an apple falling, we may approach the location of the sound.
The fact that we are closer to the apple when we approach the sound is due to
the environmental contingency. Apples normally stay close to where they fall—a
feature of the environment independent of any organism, though the efficacy of the
sign tracking behavior depends upon it. As a stable feature of the environment, it is
probably responsible for the evolution of the sign tracking behavior. Note, however,
that neither salivation nor approach changes the rate of the apple falling. These
behaviors control for variables related to the apple—proximity or ease of digestion,
but they do not cause the falling of the apple. They do not operate on the distal
environmental variable that is responsible for the apple falling. On the other hand,
instead of waiting for the apple to fall from a tree, we may shake the tree to make
more apples fall, or we can climb the tree to get the apples. We can even grow apple
trees. These are all examples of instrumental actions.

A key feature of instrumental control is the diversity of the means to achieve
the same end. Wittgenstein once observed that the category of games have nothing
in common, in the sense that there is no Platonic essence in which all games
partake. He described the relationship among members of this category as “family
resemblance” (Wittgenstein 1953). But Wittgenstein failed to consider the function
or the goal of the game. Similarly, Skinner has defined the “operant” as a family of
movements whose only common feature is that they effectively earn the reward. For
example, there are many ways to move the lever in order to produce food delivery.
One cannot even define a priori what these movements will be, just as one cannot
predict ahead of time all the members of the category of game. If we carefully
measure the physical attributes of each lever press in terms of the kinematics, or
the pattern of neural signals sent to the muscles, we will not find some essence that
all of them have in common, except their goal. But the goal is not a property to
be abstracted from the physical properties of the movements, just as the reference
signal is not something you can extract from the behavior of the thermostat.

Anticipatory behavior is based on a stable environmental contingency—approach
the location of the sound, you approach the apple itself. The CR is generated
by a control system controlling for a particular perceptual variable with a fixed
relationship with the essential variable controlled by the UR system. The only way
to reduce the CR is to change the relationship between the CS and the US. For
example, the organism does not affect the reliability of the key light in predicting
food presentation. One can degrade this relationship and reduce the CR (Schwartz
and Gamzu 1977). By contrast, the instrumental action is based on the contingency
between the action and the goal. The rate of the action can itself be a controlled
variable. The system that controls the rate of reward, e.g., can send a reference
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signal to the lower system that controls the rate of action, which in turn tells other
lower systems what to sense in completing the action.

During instrumental conditioning, by trial and error the animal identifies the
mechanism underlying this environmental contingency (that apple falls from the
tree), and acts on it by shaking the tree or climbing it. There is therefore learning
about the action-outcome or instrumental contingency (Balleine and Dickinson
1998). The goal is related to the error signal of some essential variable. A reduction
in blood sugar, e.g., may produce an error signal in the homeostatic control system,
triggering a number of autonomic responses, but at the same time such an error
signal may be transformed into higher level perceptual signals, related to hunger and
appetite, or to specific representations of goals like apples. Coupled to knowledge
of the instrumental contingency between actions and outcomes, the higher levels
may choose from multiple action systems, which are themselves hierarchically
organized, and use these as output functions to control a variable like the rate of
apples obtained.

5.4 Perception and Action

Hierarchically higher control systems can send reference signals to the homeostatic
control systems. Consider the behavior of withdrawing your hand from excessive
heat. Let us assume that the reference signal has a net inhibitory effect on the motor
neurons innervating the flexors. In the lower control system, the pain signal, which
exceeds the value allowed by the reference signal, can produce the withdrawal
reflex. The reference signal can be translated as “do not let the input exceed this
value” and the output reduces the input, by moving the hand away from the source of
pain. But we can hold a hot cup without dropping it. Thus changing the reference
signal can increase pain tolerance of the flexion withdrawal system. The reference
signal of the higher level might be “do not drop this cup”; and of a still higher one,
“do not embarrass yourself.”

When a higher control system sends a reference signal to a lower one, the lower
one essentially serves as an extension of the output function of the higher level.
Yet the higher systems can only have limited influence on the reference signals,
because the value of the essential variables must stay within a range before survival
is threatened (Mrosovsky 1990). Although the top down reference signals to the
homeostatic control system can change their outputs, the autonomic outputs are
not sufficient to serve as an extension of their output function. This may explain
the difficulty with operant conditioning of the autonomic outputs (Dworkin 1993).
Moreover, the homeostatic control systems can only have very limited effects on the
environment. To act on the environment, to extinguish the fire or to climb the tree
for apples, the skeletomotor system is needed, which has a parallel role in extending
the output function of higher control systems.

The skeletomotor system is itself a hierarchy of control systems. The last output
function of this hierarchy is the final common path, comprising the alpha motor
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neurons and the muscles they innervate. The force of the muscle contraction, a
function of the motor neuron output, is sensed by the Golgi tendon organs. The
reference signal for force control can come from multiple sources, such as the Ia
afferent and descending projections to the alpha motor neuron. The output produced
by the alpha motor neuron is sensed by the Golgi tendon organs, and the sensed
signal representing load in turn is compared to the sum of the force reference
signals. The alpha motor neuron can receive reference signals from multiple higher
sources. The brain cannot send a command to specify the tension of the muscle. It
can only specify how much tension is to be sensed. This does not determine how
tense the muscle will be, for if there is a disturbance, the muscle will adjust its
degree of contraction to compensate for the disturbance. If the sensors are activated
to the desired value artificially, e.g. by pulling the tendon organs, the muscle tension
will not increase because the reference signals merely specify the requisite level of
sensed tension.

Movement per se involves multiple levels controlling for multiple variables
such as muscle load, length, joint angle, and sequential activation of agonist and
antagonist. But distal senses like olfaction, audition, and vision are not necessary
for these types of control. The modality of the perceptual input is primarily
proprioceptive, which come from specialized sensors that report the current state
of the muscles, tendons, and joints. The distal senses play an auxiliary role in
movement. They are critical for goal-directed behavior, particularly for instrumental
control and anticipatory control, but they are not necessary for the very character
of movements themselves. The spinal cord, brainstem, and cerebellum are sufficient
for the control of the proprioceptive inputs, producing the needed output from motor
neurons. Thus, it is not surprising that anticipatory control and instrumental control
generally require the cerebral hemispheres. Decerebrate animals can still move, but
they can no longer control abstract variables such as proximity to predator or the rate
of food reward. Despite the enormous complexity in the skeletomotor system, it can
be viewed as an extension of the output function of higher order control systems,
which use the skeletomotor system to reach specific goals.

Likewise, the perceptual hierarchy for the distal senses like vision and audition
are also extensions of the input function for the essential variables. They permit the
perception of distal aspects of disturbances and predictors of disturbances. Whereas
first order control systems (simple reflexes) receive the first order inputs directly
from receptors in different sensory modalities, hierarchical control requires the
construction of new perceptual variables. From homeostatic to instrumental control,
there is a continuous spectrum of perceptual inputs. They permit the representation
of abstract variables like the rate of reward by combining lower level inputs. New
variables continue to be formed through experience, becoming capable of being con-
trolled by the skeletomotor outputs through the diverse and ever changing feedback
functions in the environment. Note that neither anticipatory nor instrumental control
is accomplished by a feedforward model making detailed calculations about the out-
puts needed ahead of time. In spite of the tremendous complexity in the hierarchical
organization, each control system still operates by negative feedback and control of
input.
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6 Test for the Controlled Variable

As mentioned above, traditionally the input is introduced and manipulated precisely,
while output is measured. No question is asked about what the impact of the
output is on the controlled variable, because the existence of negative feedback is
not recognized. Based on the linear causation paradigm, many experiments were
designed to turn organisms into open loop systems. For example, the cuttlefish
attacks prey by ejecting its tentacles. If the target is pulled away just after the
cuttlefish has begun to eject its tentacles, the direction of the strike is not adjusted,
and the tentacles miss their target (Camhi 1984). This type of manipulation is too
abrupt and tells us little about the behavior in question. Any control system can fail,
especially when the environment presents disturbances that exceed the capacity for
control. During a hurricane, the behavior of a pigeon may be indistinguishable from
that of a rock of similar mass; but that does not mean that the pigeon is an open
loop system. It could be an example of open loop control, but it could also be an
example of failed closed loop control. Manipulations that do not take into account
the timescale and the capacity for control just force the control systems to fail. It is
like killing an animal to show that it cannot control its body temperature.

The principles of negative feedback control, however, suggest a very different
way of studying behavior. To study any behavior, it is necessary first to identify the
controlled variables. This has been called the test for the controlled variable. Rather
than asking how an organism responds to a stimulus or generates intrinsic activity,
we ask which variable it is trying to control, i.e. what the purpose is.

Fatigue, e.g., can be a consequence of strenuous activity, but it is not usually the
purpose. If we hypothesize that fatigue is the purpose of someone moving a sofa
from a truck to his living room, we can introduce disturbances systematically and
measure resistance to the disturbances to the controlled variable. We can move the
sofa for him, thus preventing fatigue unless he insists on moving it himself. If the
controlled variable is fatigue, he will resist the attempt to reduce fatigue for him. On
the other hand, if the controlled variable is not fatigue but the position of the sofa, he
would gladly accept the offer. Introducing disturbance to the “sofa position” variable
would then encounter predictable resistance.

To test for the controlled variable, then, we can manipulate the disturbance
to a hypothetical variable or the feedback function (Marken 2001). Systematic
resistance to such manipulations is evidence for control. In the scratch reflex, to
terminate the irritation on the skin, it is necessary for the scratching movement to
target specifically the area being stimulated. To discover the controlled variable, we
can manipulate the relationship between the scratching and the sensory input. For
example, a frog with its brain disconnected from its spinal cord can still remove
a chemical stimulus from the skin of the forelimb by wiping with the ipsilateral
hindlimb (Fukson et al. 1980). When the experimenter moves the forelimb, the
coordinates of the stimulation site in relation to the hindlimb are altered. Since the
same receptors are stimulated, the reflex arc model predicts that the same output will
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Fig. 5 Control of reward rate in operant conditioning. We used a random ratio (RR) schedule in
which the ratio varies randomly around a mean specified ratio value. As we manipulated the
average ratio (RR5, RR10, and RR20), the rate lever pressing changed accordingly, while the rate
of pellet delivery remained relatively constant. Shown are the steady state values of the rate of lever
pressing and the rate of pellet delivery after at least two sessions of training on each ratio (n D 6,
error bars represent standard error of the mean). The rate of reward appears to be the controlled
variable

be elicited, though of course repetition of the same scratching movement would have
missed the target region. But in fact the spinal frog successfully moves the hindlimb
to the correct target region, the output compensating for the effect of the disturbance
(change in stimulation location). For example, wiping at the same site occurs not
only when the forelimb is parallel to the body but also when it is perpendicular to
the body. The outputs necessary for targeting these two locations are quite different,
but the end result is the same. In this study, therefore, the researchers simply
manipulated the feedback function, so that a very different output was required to
reach the same physical location.

Another illustration comes from our own work on operant conditioning. We
trained six hungry rats to press a lever for food pellets. We manipulated the
schedule of reinforcement, the feedback function that links the behavioral output
to food input. The ratio of a schedule defines how many lever presses must be
produced before a food pellet is delivered. As we increased the number of presses
required to earn a food pellet from 5 to 20, the rats increased their rate of pressing
accordingly, but the overall rate of reward remains relatively constant (Fig. 5).
Thus by varying the feedback function, we can show that the rate of reward is
the controlled variable. Of course, if the ratio is too high, then the rats will not
be able to press rapidly enough to defend their preferred rate of reward. The
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cost of lever pressing is assumed to be negligible so long as the ratio is not too
high, which appears to be the case when the average number of presses required
per reward (45 mg pellet) is less than 20. The controlled variable in this case is
therefore the rate of pellet delivery, and the output (rate of lever pressing) simply
varies in order to defend the preferred rate of reward. Such results cannot be
explained by traditional models based on the concept of reinforcement (Sutton
and Barto 1998). These models inevitably predict that decreasing the amount
of reinforcement will also reduce the behavior that is reinforced, whereas we
observed the opposite. Nor do reinforcement-based models predict a constant rate
of reward—the controlled variable being defended as a result of variable behavioral
output.

7 Conclusion

Behavior is not usually recognized as the manifestation of control. Although we can
easily observe the movements of animals and inanimate objects, we cannot just as
easily observe purpose. Folk psychology, though much maligned, is not so absurd
as to deny the existence of purpose.

Words like purpose and goal are of course used often, but the verbal acknowl-
edgment of such ideas is deceptive. Underneath these models we still find the same
linear causation paradigm. Many, e.g., argue that internal representations of the
goals can cause behavior. This type of “cognitive” or “purposive” model is meant to
replace the S-R model. But as we have seen, this is an inside-out S-R account. It is
incorrect to say that the purpose or representation of the goal causes behavior. In the
analysis of negative feedback control systems, there are two simultaneous equations
to be solved, because the output acts on the input at the same time that the input is
acting on the output. To account for purposive behavior, it is necessary to take into
account both equations.

In neuroscience, on the other hand, the function of the brain is often described as
a “sensorimotor transformation.” As the information from the peripheral receptors
travels to the brain, at each step some transformation occurs, ultimately resulting
in the commands from the brain to generate the behavior (Sherrington 1906).
Regardless of how complex the transformation is in the brain, this is also a linear
causation model.

Thus whether or not words like “purpose” or “goal” or “prediction” are used is
quite irrelevant. We can always find out exactly what the underlying assumptions
are by examining the experimental methodology. Does the experimenter attempt to
identify the controlled variable (purpose)? Or does he simply manipulate sensory
input while recording behavioral output?

Purpose must also be distinguished from equilibrium or consequence. The
equilibrium point is not a controlled variable. In a pendulum, the restoring force
can be predicted precisely given the disturbance. The displacement itself is solely
responsible for the corrective oscillation of the pendulum. In a control system,
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the resistance to disturbance cannot be predicted from the disturbance, because it
cancels the disturbance in relation to an internal reference condition. How much
resistance is offered depends on the reference signal as well as the disturbance.
All the energy used to correct a deviation of a variable from the equilibrium point
comes from the disturbance that caused the deviation. The loop gain is very low.
In a control system, the energy used to resist the disturbance does not come from
the disturbance itself. In animals, it comes from food. The closed loop system has a
high loop gain, which offers a lot of resistance in response to a little disturbance.

Descartes, impressed by the machines of his day, tried to apply the mechanistic
reasoning to explain the behavior of organisms. Unfortunately, he only knew about
open loop machines, and it was this narrow concept of mechanism, based on linear
causation, that has become synonymous with science. In physics, Galileo was right
to reject purpose—since natural bodies are not control systems. The success of
physics, however, has led to the erroneous conclusion that purpose does not exist.

Until the formal analysis of negative feedback control was properly introduced
into the study of behavior, no one understood exactly what a purpose is (James 1890;
Tolman 1932). Most conceptual confusions are created by the campaign to remove
teleological explanations of any biological phenomenon. After all, modern physics
owed its beginning to a victory—no easy victory—over teleological thinking. Yet
purpose is not a metaphysical fiction, though the reflex-arc increasingly appears
to be one. Nor is it an illusion created to satisfy our vanity, though the illusion
of a stimulus-response transformation can be demonstrated easily. And ironically
even the argument that the illusion of purpose is created in order to satisfy our
vanity is a teleological explanation. Not only is purpose an operationally defined and
experimentally testable concept, it is the only one that can make exact experiments
on behavior possible for the first time. A restoration of purpose is therefore a new
beginning for the sciences of behavior.
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