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Abstract. Fodor and Pylyshyn in their 1988 paper denounced the
claims of the connectionists, claims that continue to percolate through
neuroscience. In they proposed that a physical symbol system was nec-
essary for open-ended cognition. What is a physical symbol system, and
how can one be implemented in the brain? A way to understand them
is by comparison of thought to chemistry. Both have systematicity, pro-
ductivity and compositionality, elements lacking in most computational
neuroscience models. To remedy this woeful situation, I examine cog-
nitive architectures capable of open-ended cognition, and think how to
implement them in a neuronal substrate. I motivate a cognitive architec-
ture that evolves physical symbol systems in the brain. In Part 2 of this
paper pair develops this architecture and proposes a possible neuronal
implementation.

1 Introduction

This is the first of a two-part paper showing that physical symbol system with
the properties defined by Fodor and Pylyshyn could plausibly exist in the brain.
I will explain what a physical symbol system is and what properties to expect
from it, by showing how biochemical systems in cells can be interpreted as phys-
ical symbol systems. Having described the substrate independent properties of
a physical symbol system, I will then describe two possible implementations of
physical symbol systems in the brain, one based on activity patterns, and the
other based on connectivity patterns. Finally I consider cognitive architectures
that are physical symbol systems, and discuss their current algorithmic limita-
tions, in order to motivate our own architecture described in Part 2.

The Hungarian chemist Tibor Ganti described the concept of fluid automata,
or chemical machines [1] that are made of molecules. Molecules are objects com-
posed of atoms that have specific structural relations to other atoms in the
molecule. A molecule is assembled according to a combinatorial syntax, i.e. a
set of chemical structural constraints such as valance, charge, etc that determine
how atoms can legally join to make a molecule. Combinatorial semantics deter-
mines how a molecule with a particular structure will react (behave) in a given
environment. Semantic content in terms of a chemical symbol system equates
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to its chemical function, i.e. its reactivity. The function of a molecule is a func-
tion of the semantic content of its parts, translated; the reactivity of a benzene
ring is modified by its side-groups such as methyl groups. In short, the chemical
symbols and their structural properties cause the system behaviour.

This physical symbol system composed of a vat of chemical molecules oper-
ates in parallel rather than in series. It is constrained by kinetics. Its function
(reactivity) is subjected to non-encoded influences such as temperature that in-
fluences the thermodynamic equilibrium position of chemical reactions. These
aspects do not tend to intrude in normal conversations about physical symbol
systems, but they are germane to processing taking place in physical symbol
systems made of chemicals. A pleasing example of a symbolically specified com-
putation in chemistry is a chemical clock. The two autocatalytic cycles of the
Belousov-Zhabotinsky (BZ) reaction constitute a fluid automaton that imple-
ments a chemical clock. Whilst it is the symbolic organisation of the molecules
that specifies the reaction network topology, it is at the level of the analog (dy-
namical systems) operations of the assembled reaction network that the clock
like phenomenon of the BZ reaction exists. Continuous behavior results from the
ensemble properties of a multitude of discrete symbolic chemical operations. The
tremendous success of chemistry is to have robustly linked the chemical system
level with the macroscopic level.

The fact the chemical molecules are physical symbol systems gives the macro-
scopic properties of chemistry the same abstract characteristics found in any
physical system system. These are now examined. For example, chemistry has
productivity. Productivity means that a system can encode indefinitely many
propositions, that there is recursive assembly of parts of the representation to
produce the proposition, and that an unbounded number of non-atomic repre-
sentations is entailed [2]. If we replace the term proposition with adaptation,
then in biological evolution, the number of possible adaptations is unlimited in
the same sense, being the developmental result of a symbolic genetic and epige-
netic encoding. Whether it is helpful to replace proposition with adaptation is
a moot point, but to me this seems natural because adaptations have a form of
truth-value in the sense that they are the entities to which fitness applies. Simi-
larly, the capacity for chemical reactivity is unlimited, i.e. there are many more
possible chemical reactions than could be implemented in any realistically sized
system. An unlimited number of molecules can be produced allowing an unlim-
ited many chemical reactions, and this is made possible with only a finite set of
distinct atom types. Therefore, an unbounded set of chemical structures must be
composite molecules. In physical symbol systems terms it is also the case that an
indefinite number of propositions can be entertained, or sentences spoken. This
is known as the productivity of thought and language. If neural symbol sys-
tems exist, they must have the capacity of being combined in unlimited ways.
The next section deals with how this could potentially work. Finally, there is
reason to believe that no non-human animal has the capacity for productive
thought [3].
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The second property of chemistry is that it is systematic, i.e. the capacity
for atoms to be combined in certain ways to produce some molecules is intrinsi-
cally connected to their ability to produce others. This is neatly shown by how
chemists learn chemistry. There are several heuristics that chemists can learn
to help predict properties of molecules and how they will react based on their
structure. Only a chemist lacking in insight will attempt to rote learn reactions.
Similarly with systematicity in language. The ability to produce and understand
a sentence is intrinsically connected with the ability to produce and understand
other sentences. Languages are not learned by learning a phrasebook, they have
syntax which allows the systematic combination of entities.

The third property of chemistry is that an atom of the same type makes
roughly the same contribution to each molecule in which it occurs. For example,
the contribution of a hydrogen atom to a water molecule influences many reac-
tivity properties of that molecule. Hydrogen atoms suck electrons and this is a
property of the hydrogen atom itself, whatever in most cases it binds to. This
means there is systematicity in reactivity (semantics) as well as in structure (syn-
tax). This is known as compositionality in physical symbol system speak. In the
same way, lexical items in sentences have approximately the same contribution
to each expression in which they occur. This approximate nature suggests that
there is a more fundamental set of atoms in language than words themselves,
e.g. linguistic constructions.

Why was the idea of a physical symbol system even entertained in chemistry?
Why did people come to believe in discrete atoms coming together systematically
to form molecules, instead of for example some strange distributed connection-
ist model of chemistry? Lavoisier discovered a systematic relationship between
chemical reactions, i.e. the conservation of mass. Proust discovered the law of
definite proportions, i.e. that compounds can be broken down to produce con-
stituents in fixed proportions. Dalton extended this law of multiple proportions
that explained that when two elements come together to form different com-
pounds (notably the oxides of metals), they would come together in different
small integer proportions. Are there any analogous reasons to believe in phys-
ical symbol systems in the brain, based on observation of human thought and
language?

Open-ended cognition appears to require the ability to learn a new symbol
system, not just to implement an already evolved one. Children can learn and
manipulate explicit rules [4] and this implies the existence of a neuronal sym-
bol system capable of forming structured representations and learning rules for
operating on those representations. For example, Gary Marcus has shown that
7 month old infants can distinguish between sound patterns of the form ABA
versus ABB, where A and B can consist of different sounds e.g. “foo”. “baa”
etc. Crucially, these children can generalize this discrimination capacity to new
sounds that they have never heard before, as long as they are of the form ABA
or ABB. Marcus claims that performance in this task requires that the child
must extract “abstract algebra-like rules that represent relationships between
placeholders (variables), such as the first item X is the same as the third item Y,
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or more generally that item I is the same as item J” Several attempts have been
made to explain the performance of these children without a PSS (e.g. using
connectionist models) but Marcus has criticised these as smuggling in symbolic
rules in one way or another by design. For Marcus it seems that the system
itself must discover the general rule. In summary, the problem with a large set
of connectionist learning devices is that a regularity learned in one component
of the solution representation is not applied/generalized effectively to another
part. Marcus calls this the problem of training independence, a solution to which
is one of the fundamental requirements for a learning system to be described as
symbolic or rule based.

Concerning the discussion on whether connectionist models without explicit
symbols nor rules could be sufficient for open-ended cognition it is informative
to quote the discussion of limitations of their own connectionist/computational
neuroscience model given by Rougier et al (2005) [5]. Their model was able to
form representations of categories of class in the Wisconsin Card Sorting Task.
The authors in the main paper claim to produce complex representations without
symbols. However, they moderate their claims in the Supplementary Material as
follows. "Our model does not directly address this capacity for generativity... it
was never asked to perform entirely new tasks... people can recombine familiar
behaviors in novel ways. Such recombination, when built upon a rich vocabulary
of primitives, may support a broad range of behavior and thus contribute to
generatively.". The paper acknowledges the simplicity of the algorithm imple-
mented, i.e. "random sampling + delayed replacement" and acknowledges the
need for mechanisms that can undertake more sophisticated forms of search.
"Generativity also highlights the centrality of search processes to find and acti-
vate the appropriate combination of representations for a given task, a point that
has long been recognized by symbolic models of cognition... Our model imple-
mented a relatively simple form of search based on stabilizing and destabilizing
PFC representations as a function of task performance, which amounts to ran-
dom sampling with delayed replacement... An important focus of future research
will be to identify neural mechanisms that implement more sophisticated forms
of search.".

Another paper of interest is that of Tani and Nolfi [6]. It self-organizes the
connections between neural module experts on the basis of minimising of pre-
diction error of the expert predictors at the lower levels. The higher level then
predicts the gate opening dynamics of the lower level predictors and propagates
this upwards. Two levels are modelled. It is claimed that such systems are an
alternative to explicit symbolic models of complex environments. However, the
system is very severely theoretically limited. The reason is that for a high di-
mensional space of models, there would be a combinatorial explosion of possible
higher-order models which could be composed from combinations of lower order
models. This problem has also been faced by Goran Gordon in a set of papers
about hierarchical curiosity loops [7]. A generative process for constructing novel
experts is needed. Each module effectively then becomes an atom in a physical
symbol system, with its inputs and outputs specifying its connections to other
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atoms, i.e. permitting arbitrary variable binding. Incidentally, the use of predic-
tion error also becomes infeasible for open-ended systems because the space of
trivial predictions is also too large. Therefore, neither of these two connectionist
papers propose how complex representations can emerge without explicit sym-
bols. The former because of reasons the authors admit themselves, and the later
due to its non-extensibility to high dimensional systems.

In summary, the following is a concise definition of a symbol system adapted
from Harnad to emphasise the chemical aspects [8]. A symbol system contains a
set of arbitrary atoms (or physical tokens) that are manipulated on the basis of
explicit rules that are likewise physical tokens or strings (or more complex struc-
tures, e.g. graphs or trees) consisting of such physical tokens. The explicit rules
of chemistry generate reactions from the structure of atoms and molecules (plus
some implicit effects, e.g. temperature). The rule-governed symbol-token manip-
ulation is based purely on the shape of the symbol tokens (not their meaning),
i.e., it is purely syntactic, and consists of rulefully combining and recombining
symbol tokens, in chemical reactions. There are primitive atomic symbol tokens
and composite symbol-token strings (molecules). The entire system and all its
parts – the atomic tokens, the composite tokens, the syntactic manipulations
both actual and possible and the rules - are all “semantically interpretable”. The
syntax can be systematically assigned a meaning e.g., as standing for objects or
as describing states of affairs. For example, semantic interpretation in chemistry
means that the chemical system exhibits chemical reactivity. In biochemistry
this is extended to a higher level. In the chemicals inside cells, it is fair to say
that properties of those chemicals, e.g. the concentration, or their configura-
tion, actually stands for states of affairs in the environment outside the cell, for
example the conformation of a signalling molecule may represent the glucose
concentration outside the cell. In the same way a neural symbol system exhibits
behavior such as the child’s capacity to distinguish ABA from ABB in grammar
learning tasks.

This analogy has helped me to understand what Fodor and Pylyshyn were
talking about in their famous paper denouncing connectionism [2]. From this
basis I developed what I believe may be two plausible candidates for a neuronal
symbol system. The first has been described in detail in two previous publica-
tions (Fernando 2011; Fernando 2011). In short it consists of arbitrary physical
tokens (spatiotemporal patterns of spikes) arranged into molecules or symbol
structures (groups of spatiotemporal patterns of spikes passing through the same
network). These tokens undergo explicit rule-governed symbol-token manipula-
tion (reactions involving transformation of the spike patterns), and a process
of stochastic optimization can learn the explicit rule sets. Thus the proposed
neural representation of an atomic symbol token is a spatiotemporal patterns
of spikes. Neurons detect a particular spatiotemporal spike pattern if the ax-
onal delays from the pre-synaptic neuron to the detector neuron are properly
matched to the spatiotemporal pattern such that depolarization reaches the de-
tector neuron body simultaneously. This implementation of neural symbol-tokens
(atoms) uses the concept of polychronous computing and a modification of the
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concept of wavefront computing [9] [10]. The construction of molecular symbol
structures from atomic symbol-tokens requires binding of atomic symbol-tokens
together such that they can be subsequently manipulated (reacted) as a function
of the structure of the molecule. In my framework, compositional neural sym-
bolic structures exist as temporally ordered sequences of symbols along chains
of neurons. A symbol-structure can be described as a sequential combination of
spike patterns, a feature that has been described in real neuronal networks as a
“cortical song” [11]. A great many such short chains of combined spatiotemporal
spike patterns may exist in the brain. Each chain being akin to a register in a
computer, blackboard or tape that can store symbol-tokens of the appropriate
size. A single symbol-token could be read by a detector neuron with the appro-
priate axonal delay pattern when interfacing with the chain. A parallel symbol
system in the brain consisting of a population of such chains, each capable of
storing a set of symbol token molecules and operating on these molecules in
parallel is conceivable. Interaction between (and within) such chains constitutes
the operations of symbol-manipulation. Returning to the chemical metaphor,
such interactions can be thought of as chemical reactions between molecules
contained on separate chains, and rearrangements within a molecule expressed
on the same chain. Whilst in a sense a chain can be thought of as a tape in a
Turing machine (due to the serial nature of the strings), it also can be thought
of as a single molecule in a chemical system (due to the existence of multiple
parallel chains). This constitutes the core representational substrate on which
symbol manipulation will act.

Receiving input from the chain and writing activity back into the chain is
done by a detector neuron with specific input and output delays in relation to the
chain. A detector neuron only fires when the correct pattern of input is detected.
In effect the neuron is a classifier. Where the classifier fails to fire, the same
pattern enters the chain as leaves the chain. This is because the spatiotemporal
organization of these patterns does not match the spatiotemporal tuning curve
of the detector neuron. Only when the spatiotemporal spike pattern matches
does the detector neuron fire. Once fired, the output of the detector neuron is
injected back to the neurons of the chain. If the output of the detector neuron
slightly precedes the normal passage of the untransformed pattern through the
chain, then the refractory period of the output neurons of the chain prevents
interference by the original untransformed pattern, which is thereby replaced by
the new pattern specified by the detector neuron. Such a detector neuron we will
now call a classifier neuron because it is a simple context free re-write rule with
a condition (detection) and an action pole of the type seen in Learning Classifier
Systems (LCS) [12] [13].

It can be seen that such classifier neurons are selective filters, i.e. the classifier
neuron is only activated if the spatiotemporal pattern is sufficiently matched with
the axonal delays afferent upon the neuron. The above classifier implements an
implicit rule. An implicit rule is a rule that operates on atomic or molecular
symbol structures without being specified (encoded/determined/controlled) by
a symbol structure itself. There is no way that a change in the symbol system,
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i.e. the set of symbols in the population of chains, could modify this implicit
matching rule. The implicit rule is specified external to the symbol system.
Whenever the symbol passes along this chain, it will be replaced by the new
symbol, irrespective of the presence of other symbols in the system.

In a symbol system (as in chemistry), symbols are manipulated (partly) on the
basis of explicit rules . This means that the operations or reactivity of symbols de-
pends on/is controlled by/is causally influenced by their syntactic and semantic
relationship to other symbols within the symbol-structure and between symbol
structures. If inhibitory gating neurons are combined with classifier neurons then
it becomes possible to implement explicit rules within our framework. If an in-
hibitory gating unit must receive a particular pattern of spikes in order for it to
become active, and if that unit disinhibits a classifier neuron that is sensitive to
another symbol token then it is possible to implement a context-sensitive re-write
rule. The rule is called context sensitive because the conversion of X to Y depends
on the relation of X to another contextual symbol T. A set of context-sensitive
re-write rules is capable of generating a grammar of spike-patterns. Consider
starting the system off with a single symbol-token S. Probabalistic application
of the rules to the initial symbol S would result in the systematic production of
spike patterns consisting of grammatically correct context-sensitive spike pattern
based sentences. A major implementation issue in real neuronal tissue would be
the fidelity of transmission of spatiotemporal spike patterns. The information
capacity of such a channel may fall off with decreasing fidelity of copying in that
channel in a manner analogous to Eigen’s error catastrophe in genetic evolution
[14]. Finally, we have shown how it is possible to undertake stochastic optimiza-
tion in the above system by copying with mutation of neuronal classifiers [15].
This mechanism depends on spike-time dependent plasiticity (STDP) by which
one neuron infers the re-write rule implemented by another neuron, with errors.
This permits a population of re-write rules to be evolved. The details of this
mechanism are beyond the scope of this paper but can be found elsewhere [15].

What kinds of behavior require a physical symbol system, if any? We have
understood something about how chemical and genetic systems generate reac-
tions and cellular behavior. But what about how neural representations produce
organismal behavior? Whilst a gene is a functional unit of evolution, we can ask,
what are the possible functional units of thought at the algorithmic level, i.e.
what are the entities in the brain that encode behavioral traits whose probability
of transmission during learning is correlated with reward (or value functions of
reward) [16] [17]. It may well be the case that there exist units of thought that do
not have compositionality, systematicity and productivity at all. For example,
a solitary feed-forward neural network that implements a forward model which
predicts the next state of the finger as a function of the previous joint angles
and the motor command given to the finger, does not satisfy the definition of a
symbol system discussed above. Such models of the world may be complex, e.g.
inverse models of the motor commands required to reach a desired goal state,
but may lack the properties of a physical symbol system, e.g. [6] and [5]. The
units may contribute to many domains from the linguistic to the sensorimotor,
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or occupy a level of specialized niches, e.g. units in the cerebellum, or units in
the primary visual cortex. By analogy with units of evolution [18] they may be
called units of thought, although their individuality may be more a convenience
for measurement and description than a strict reality, for example it is possible
that they are physically overlapping. I define them as the entities in the brain
whose survival depends upon value, whatever form such value takes, e.g. extrinsic
or intrinsic values [19]. How far can an animal get in cognition without physical
symbol systems? In short the mystery is this; what are the kinds of represen-
tation upon which search must act in order to produce cognition, and how do
certain classes of representation map to certain classes of cognition? A concrete
proposal is given in Part 2. The short answer is that it is open-ended generative
processes that require physical symbol systems, of the type for example that
Rougier et al say their connectionist model cannot do [5].

The second question is what kinds of learning algorithm are good for gen-
erative search? In answering this question I have found it important to notice
that both thought and evolution are intelligent, and undertake knowledge-based
search as defined by Newell [20]. I propose that both open-ended thought and
open-ended evolution share similar mechanisms and that a close examination of
these two processes in context is helpful. Traditionally thought has been con-
sidered to be directed and rational [21], whereas evolution by natural selection
has been considered random and blind [22]. Neither view in their extreme forms
is correct. A necessary feature of creative thought is stochastic search [23] [24]
and evolution by natural selection whilst it may be a blind watchmaker is not
a stupid one, it can learn to direct its guesses about what variants are likely
to be fit in the next generation [25]. Apparently a grandmaster, maybe Reti,
was once asked “How many moves do you look ahead in chess?” to which he an-
swered“One, the right one!” We now know that evolution makes moves (mutants)
in the same way, not by explicitly looking ahead, but by recognizing what kinds
of moves tended to be good in the past in certain situations and biasing mu-
tation accordingly [26] [27][28]. In fact, this principle has been exploited in the
most sophisticated black-box optimization algorithms such as covariance matrix
adaptation evolution strategies (CMA-ES) that rivals the most sophisticated
reinforcement learning algorithms [29]. How do the mechanisms of cognition dif-
fer from the mechanisms of genetics in discovering how to make new adaptive
ideas/organisms effectively? It seems that processes of systematic inference are
in place in both adaptive systems, e.g. bacterial genomes are organized into
Operons that through linkage disequilibrium tend to bias variability between
generations along certain dimensions, i.e. crossover is a structure sensitive oper-
ation, a notion that was coined to describe the Classical cognitive paradigm [2].
Structure sensitive operations are the symbolic equivalent of methods to bias
variation in continuous systems such as CMA-ES.

Both evolution and thought are generative processes with systematicity and
compositionality because both depend on structure sensitive operations on repre-
sentations [2] that far exceed the complexity of CMA-ES. We are able to generate
educated guesses about hidden causes, to make up explanations for which there
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is as yet insufficient data to use deduction. This is evidenced by children’s abil-
ity to learn language [30][31][32]. In fact there is considerable evidence much of
which I find convincing, that no non-human animal can entertain models of the
world that require the hypothesis of unlimited kinds of hidden causes [3]. Ge-
netic and epigenetic generative mechanisms seem rather inflexible in comparison
to those of thought. From close examination of these abilities can we have some
idea what units of thought must be capable of representing about the world, i.e.
how they limit the kinds of concept we can entertain? Perhaps we have a chance
by looking at an example of constrained creativity from Gestalt psychology in
the form of insight problems [33]. The 9-dot problem is a task in which you must
cover each dot in a 3 x 3 matrix of dots with just 4 straight lines without remov-
ing your pen from the paper. Through the application of introspection we seem
to solve this problem by generating a set of possible solutions, inventing some
kind of fitness function for the solutions such as how many dots they cover, and
mutating the better solutions preferentially in a systematic way. We may not
be able to verbalize the scoring function nor how the initial set of solutions was
chosen or varied. Often we will reach an impasse, a kind of sub-optimal equilib-
rium in thinking about this problem. The impasse may be diffused by suddenly
discovering the correct solution that arises in a punctuated event called the Ah-
ha moment. How are the solutions to the above problem represented, how many
distinct solutions are represented at once in the brain, how are they varied over
time, how do solutions interact with each other, how does a population of solu-
tions determine behavior, and how are the scoring functions represented in the
brain, and how many there are? We have proposed elsewhere that the solution
of such problems involves a Darwinian search in the brain [34]. It may be the
case that careful modelling of the above kinds of thinking process can uncover
the kinds of representation and the search algorithm used to search in the space
of such representations.

In cognitive science it is useful to put your money where your mouth is and ac-
tually try to build a robot to do something. Part 2 shows how we propose to build
a robot that has open-ended creativity and curiosity that exhibits productivity,
compositionality, and systematicity of thought. The most advanced attempts to
build robots capable of open-ended creativity are briefly discussed. The general
principle in all that work has been to learn predictive models of self and world.
These are typically implemented as supervised learning devices such as neural
networks. The networks are not physical symbol systems. However, some ap-
proaches attempt to combine predictors compositionally. The approach that I
have decided to take in the remainder of Part 1 is to examine the limitations of
these approaches in producing productive behavior in robots.

The approach taken by most groups in trying to achieve open-ended cogni-
tion is to learn predictive models of the world that become as rich as possible,
and to guide action selection on the basis of how well certain models are being
learned. The idea is that as we grow up we try to model the world in greater and
greater richness and depth. An early and beautiful approach to this problem was
by A.M. Uttley who invented a conditional probability computer and connected



80 C. Fernando

it to a Meccano robot that was controlled with a hard-wired Braitenberg type
controller [35][36] . This computer learned to associate sensory states with motor
actions when this external controller was controlling the robot, and could learn
the sensorimotor rules, e.g. turn left if left sensor dark and right sensor light, and
eventually substitute this hard-wired controller. Note that this was an entirely
associationist form of model and would fall under what Fodor and Pylyshyn call
Connectionism. More recent approaches learn state(t)-motor(t)-next state(t+1)
triplets through experience, generating a network of anticipations [37]. Once such
a cognitive map is learned it can be used for model-based reinforcement learning
(dynamic programming) to backpropogate rewards associated with goal sensory
states to earlier states and thus to permit planning of high-value trajectories.
The capacity to simulate sense-action trajectories is a critical function of a cog-
nitive map. The sophistication of mental simulation is a significant constraint on
intelligence and creativity. Note that there is no physical symbol system involved
in the above algorithm for cognitive map building. How then might a physical
symbol system help in learning models of the world?

An obvious limitation of the above kind of cognitive map formation is that
it may fail when there are unobserved causes. One solution is the generation of
classifiers that infer the existence of hidden-causes [38] and then utilize this in
further modelling of the world. By this means an unlimited conceptual world
opens. This is where physical symbol systems may well enter the picture. Once
a space of higher-level classifiers exists, the combinatorial explosion of possible
conditions and predictions requires an effective method for sparse search in this
higher-order space. The space of higher-order predictions is also highly struc-
tured. In summary, the units of thought in TGNG are s(t)-m(t)-s(t+1) triplets
that store transition probabilities. There is no need for compositionality and sys-
tematicity of such units because they can be entirely instructed by supervised
learning methods (at least in low dimensional sensorimotor systems). Efficient
sparse search algorithms would however be needed when hypothesising hidden
states for which there is insufficient sensory evidence to undertake supervised
learning. So, by thinking about the problem from this robotic perspective, I
have identified a domain in which stochastic processes and representations with
compositionality and systematicity would be expected to bring efficiency, i.e.
during search in a structured space of hidden causes.

Interestingly, a modification of the simple cognitive maps above that poten-
tially adds compositionality and systematicity has been proposed in order to
scale reinforcement learning to “domains involving a large space of possible world
states or a large set of possible actions” [39]. The solution has been to chunk ac-
tions into higher-level actions consisting of sequences of primitive actions, called
“options” [40]. Options can be hierarchically organized policies. Each abstract
action specifies a policy (a map from states to actions) that once started from
in initiation state, executes a sequence of actions (which may also be options)
until a termination state is reached. They work by reducing the size of the ef-
fective search space by allowing structuring of search by modular recombination
(concatenation) of options. The critical question is how the correct set of useful
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options can be chosen in the first place. Typically options are hand-designed,
with options specifying sub-goals to be achieved. In none of the models are op-
tions stochastically explored. The options framework is an admirable first step
towards achieving a truly systematic and compositional physical symbol system
for describing actions. It is related to the notion of action grammar developed by
Patricia Greenfield (Greenfield 1991) which also seeks to identify the behavioural
correlates of neural symbol systems.

To conclude, for any reasonable sized sensory and motor dimensionality, and
for reasonable time-periods, exhaustive search in predictive model space is not
possible. The computation is exponential in time and space. To solve this prob-
lem, units of thought (e.g. predictors and actors) should exhibit compositionality
and systematicity, of the kind for example that we see in the options framework.
The system should have the ability to form hierarchical descriptions of action
and hierarchical predictive models. Part 2 presents our fluid option framework
or fluid action grammar in which option-like symbol structures are co-evolved in
the brain along with their fitness functions.
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