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Abstract. To investigate the adaptive behavior and the underlying neural 
mechanisms, we focused on the insect’s brain and developed the brain-machine 
hybrid system. The hybrid system is a mobile robot controlled by recorded 
neural signals related to steering motor pattern on the robot. We manipulated 
the motor output of the robot to introduce the rotational disturbances to the 
hybrid system and acquired the compensatory neural activities. Moreover, we 
manipulated the motor pattern of the robot during odor source orientation 
behavior. The moth on the robot maintained the angular velocity and succeeded 
in odor source localization by modifying the neural activities. 
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1 Introduction  

Recent years, along with the improvement of measurement techniques and the 
processing speed of CPU, the technology to control machines (such as robot arms, 
mobile robots and computers) using neural activities acquired from a brain (i.e. Brain-
machine interface) has been developed [1-4]. Brain-machine interfaces are expected 
to be used for supporting injured persons and used in rehabilitation for them. In 
addition to these uses, brain-machine interface can be a studying method to elucidate 
how the motor pattern is generated in the brain. We can investigate how the brain 
processes sensory information in response to the dynamic change of the motor outputs 
of the machine by arbitrarily controlling it working as the artificial body. 

In most cases, studies of the brain-machine interface have focused on generation 
mechanisms of plasticity in mammalian brains (such as rats, monkeys and humans). 
However, because the networks in the mammalian brains are highly wired, it is not so 
easy to extract neural signals responsible for the primary commands from mammalian 
brains and investigate this adaptability during executing behavioral tasks. 
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constants of the spike-behavior conversion rule and switched them between the 
normal angular velocity gain and the double angular velocity gain every 10 s during 
odor source localization experiments. Orientation experiments were held in a wind 
tunnel with its inside wind speed 0.65 m/s, and the odor source was set at 500 mm 
upwind from the starting point of the hybrid system (Fig. 11) [8]. We controlled the 
releasing frequency of the pheromone at 2 Hz by controlling an electric valve. Odor 
stimuli were delivered in the conventional way used in the previous study [11]. To 
simulate the visual condition in the wind tunnel, we put a 300 mm square 
checkerboard pattern on the ceiling and 120 mm width black and white sinusoidal 
stripes on the inside wall of the wind tunnel. We set a video camera (HDR-XR520V, 
SONY, Japan) to record movement of the robot to analyze its trajectories. 

 

Fig. 11. Experimental setup for odor source orientation 

Moths on the hybrid system inhibited neural responses in response to the change of 
the motor gain and succeeded in odor source orientation (Fig. 12). In Fig. 12, the 
upper graph indicates neural activities of the left and right 2nd CNbs, and the lower 
graph indicates the histogram of the left and right 2nd CNbs. The upward histogram 
indicates spiking rate of the left 2nd CNb, and the downward histogram indicates the 
right 2nd CNb. Activities in both of the 2nd CNbs were inhibited during the angular 
velocity double gain orientation (Wilcoxon signed-rank test, p < 0.05, N = 8)  
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5 Conclusion 

In this study, we investigated the modification of the insect’s command neural 
activities in response to the manipulation on the sensory feedbacks using the mobile 
robot controlled by the neural signals recorded from the directional selective neurons 
in the silkmoth cervical connective. We focused on the neck motor neurons 
corresponding to the deflection, lateral and sidewise translation movement in the fly’s 
neck motor system [24]. As a result, an insect showed the ability to compensate for 
the given disturbances of the angular velocity, and performed compensatory responses 
to the changes of the motor gains even in the odor source searching behavior. This 
indicates that insects have the appropriate angular velocity during odor source 
searching behavior and compensate for the disturbances using visual feedback caused 
by the self-movement. In a previous work, it was also reported that moths exhibited 
the ability to compensate for the extraordinary behavioral conditions [25]. There are 
several studies that flying insects control their odor source searching behavior using 
optomotor responses [26-27]. However, the neural mechanisms underlying the 
multimodal sensory processing is poorly understood. Our experimental platform can 
be the effective tool to elucidate the mechanisms. In addition to the investigation of 
the neural mechanisms, to validate the hypothesis that the moths have appropriate 
angular velocity, we are now analyzing the contribution of the angular velocity to the 
effective odor source searching behavior in simulation experiments and experiments 
using the robot with gaseous sensors available in real environments.  
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