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Abstract. In a series of papers, we have formalized a Bayesian per-
ception approach for robotics based on recent progress in understanding
animal perception. The main principle is to accumulate evidence for mul-
tiple perceptual alternatives until reaching a preset belief threshold, for-
mally related to sequential analysis methods for optimal decision making.
Here, we extend this approach to active perception, by moving the sen-
sor with a control strategy that depends on the posterior beliefs during
decision making. This method can be used to solve problems involving
Simultaneous Object Localization and IDentification (SOLID), or ‘where
and what’. Considering an example in robot touch, we find that active
perception gives an efficient, accurate solution to the SOLID problem
for uncertain object locations; in contrast, passive Bayesian perception,
which lacked sensorimotor feedback, then performed poorly. Thus, active
perception can enable robust sensing in unstructured environments.

Keywords: Active perception, tactile sensing, localization, robotics.

1 Introduction

Twenty five years after Bajcsy’s landmark paper on active perception [1], it re-
mains the case that most machine perception involves static analysis of passively
sampled data. Certainly, there has been progress on passive approaches to pat-
tern recognition in relation to machine learning and uncertainty, and there is
a diverse body of work on active vision; nevertheless, a search through recent
progress in robot vision, audition or touch reveals the majority of papers still
rely on wholly forward perceptual processes without any sensorimotor feedback.

Why this slow uptake, when early arguments for active control of perception
were compelling [1, 2] and, as Bajcsy said, it should be axiomatic that perception
is active? One factor might be the required complexity of the robot hardware,
which must involve actuated sensors and sensorimotor control loops. However,
this should not be a barrier, because the technology is readily available and
many standard robots have these capabilities, e.g. the iCub [3]. A more likely
explanation is that researchers have focussed on sensing problems, such as iden-
tification, that can be solved adequately in many scenarios without introducing
active methods for sensorimotor control. That being said, conventional robotics
is reaching an impasse with present methods, such as poor performance in un-
structured environments, which is preventing wider robot utilization beyond
traditional factory settings [4].
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Fig. 1. Experimental setup. (A) Schematic of tactile sensor tapping against a cylindri-
cal test object: the fingertip taps down and then back up again to press its pressure-
sensitive taxels (colored) against the test object; each tap is then followed by a small
horizontal move to sample object contacts over a range of positions. (B) Forward
view of the experiment showing the fingertip mounted on the arm of the Cartesian
robot. This experimental setup is ideal for systematic data collection to characterize the
properties of the sensor interacting with its environment.

In a series of papers [5–10], we have formalized an approach for robot
perception based on recent progress in understanding animal perception [11, 12].
The main principle is to accumulate evidence for multiple perceptual alternatives
until reaching a preset belief threshold that triggers a decision, formally related to
Bayesian sequential analysis methods for optimal decision making [13]. Here we
describe how this perception approach extends naturally from passive to active
perception and some implications of this theory of active Bayesian perception.

Our proposal for active Bayesian perception is tested with a simple but illus-
trative task of perceiving the location (horizontal position) and identity (diame-
ter) of a test rod using tapping movements of a biomimetic fingertip at unknown
contact location (Fig. 1; the colored regions are the pressure-sensitive taxels).
We demonstrate first that passive perception can solve this task, but the per-
ceptual acuity and reaction time depend strongly on the location of the fingertip
relative to the rod. We then show that an active ‘fixation point’ control strategy
can substantially improve the robustness, accuracy and speed of the percep-
tion, by moving the fingertip to locations with good perception independent of
the starting position. Thus we demonstrate that active perception can enable
appropriate perceptual decision making in an unstructured environment.

Related arguments have been presented in two other papers: the active percep-
tion method has been applied to texture identification under unknown contact
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Fig. 2. Passive and active Bayesian perception applied to simultaneous object local-
ization and identification. (A) Passive Bayesian perception has a recursive Bayesian
update to give the marginal ‘where’ and ‘what’ posterior beliefs, with decision termi-
nation at sufficient ‘what’ belief. (B) Active Bayesian perception has the same recursive
belief update, while also actively controlling the sensor location according to a strategy
based on those beliefs; furthermore, when the sensor moves, it is necessary to re-align
the ‘where’ component of the beliefs with the new sensor location. The two algorithms
differ only in the sensorimotor control loop for active Bayesian perception.

depth [9], and a more detailed, systematic treatment of SOLID is given in [10]
for a 2D (horizontal and vertical) ‘where’ and ‘what’ scenario.

2 Methods

The main goal of this work is to advance our understanding of the role of active
perception for situated agents that seek to determine the ‘where’ and ‘what’
properties of objects. We refer to the computational task that must then be
solved by Simultaneous Object Localization and IDentification (SOLID), to em-
phasize a similarity with SLAM of having two interdependent task aims, in that
knowledge of location aids the computation of identity (mapping) and similarly
that knowledge of object identity (mapping) aids localization.

Passive Bayesian perception accumulates belief for distinct ‘where’ and ‘what’
classes by making successive taps against a test object until at least one of the
marginal ‘what’ posterior beliefs crosses a belief threshold, when a ‘where’ and
‘what’ decision is made. The passive nature of the perception means that the
‘where’ position class is constant over this process (Fig. 2A).

Active Bayesian perception also accumulates belief for the ‘where’ and ‘what’
perceptual classes by successively tapping until reaching a predefined ‘what’
belief threshold. In addition, it utilizes a sensorimotor loop to move the sensor
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according to the online marginal posterior beliefs during the perceptual process
(Fig. 2B). For example, the sensor could be controlled with a ‘fixation point’
strategy, in which the marginal ‘where’ beliefs are used to infer a best estimate
for current location and thus a relative move towards a preset ‘good’ target
position on the object to improve the perceptual decision making.

2.1 Algorithms for Bayesian Perception

Our algorithm for active Bayesian perception is based on including a sensori-
motor feedback loop in an existing method for passive Bayesian perception [5].
Both methods assume that the sensor makes a discrete contact measurement
(here a tap) onto an object, from which the joint likelihoods of object location
and identity are used to update the prior to posterior beliefs for those perceptual
classes. In active perception, a control strategy repositions the sensor before each
contact, taking input from the updated beliefs and outputting the sensor move.

Because these methods are applicable to any simultaneous object localization
and identification task, this section is presented in a general ‘where’ and ‘what’
notation. A general SOLID task has Nloc distinct ‘where’ location classes xl and
Nid distinct ‘what’ identity classes wi, totalling N = NlocNid joint ‘where-what’
classes cn = (xl, wi). Each contact against a test object gives a multi-dimensional
time series of sensor values z = {sk(j) : 1 ≤ j ≤ Nsamples, 1 ≤ k ≤ Nchannels},
with indices j, k labeling the time samples and sensor channels. The tth contact
in a sequence is denoted by zt with z1:t−1 = {z1, · · · , zt−1} its contact history.

Measurement model and likelihood estimation: The likelihoods of all percep-
tual classes are found using a measurement model of the contact data, which we
find by applying a histogram method to training examples for each perceptual
class [5, 6]. First, the sensor values s for channel k are binned into Nbins = 100
intervals, with sampling distribution for each perceptual class cn given by the
normalized histogram over all training data in that class:

P (b|cn, k) = h(b, k)
∑Nbins

b=1 h(b, k)
, 1 ≤ k ≤ Nchannels, (1)

where h(b, k) is the histogram count for bin b (1 ≤ b ≤ Nbins) in sensor channel k.
Then, given a test tap z, we construct a measurement model from the mean log
likelihood over all samples in that tap

logP (z|cn) = 1

NsamplesNchannels

Nchannels∑

k=1

Nsamples∑

j=1

logP (bk(j)|cn, k), (2)

where bk(j) is the bin occupied by sample sk(j). Technically, this measurement
model becomes ill-defined if any histogram bin is empty, which is easily fixed by
regularizing the bin counts with a small constant (ε� 1), giving h(b, k) + ε.

Bayesian update: Bayes’ rule is used after each successive test contact zt to
recursively update the posterior beliefs P (cn|z1:t) for the perceptual classes with
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the estimated likelihoods P (zt|cn) of that contact data

P (cn|z1:t) = P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
, (3)

from background information given by the prior beliefs P (cn|z1:t−1). Themarginal
probabilities are also conditioned on the preceding contacts z1:t−1 and given by

P (zt|z1:t−1) =

N∑

n=1

P (zt|cn)P (cn|z1:t−1). (4)

Iterating (3,4), a sequence of contacts z1, · · · , zt results in a sequence of posteriors
P (cn|z1), · · · , P (cn|z1:t) initialized from uniform priors P (cn|z0) := P (cn) =

1
N .

Marginal ‘where’ and ‘what’ posteriors: For the following methods, we will
need the posterior beliefs for just location or identity, rather than the joint
beliefs considered so far. Because each class cn = (xl, wi) has a ‘where’ location
xl and ‘what’ identity wi component, these beliefs can be found by marginalizing

P (xl|z1:t) =
Nid∑

i=1

P (xl, wi|z1:t), (5)

P (wi|z1:t) =
Nloc∑

l=1

P (xl, wi|z1:t), (6)

with the ‘where’ location beliefs given from summing over all ‘what’ identity
classes wi and the ‘what’ identity beliefs over all ‘where’ location classes xl.

Final decision on the ‘what’ posteriors: Here we follow sequential analysis
methods for optimal decision making that recursively update beliefs up to a
threshold that triggers the final decision [13], as used in passive Bayesian per-
ception [5]. The update stops when the marginal ‘what’ identity belief passes a
threshold, giving a final decision from the maximal a posteriori (MAP) estimate

if any P (wi|z1:t) > θid then wid = argmax
wi

P (wi|z1:t). (7)

This belief threshold θid is a free parameter that adjusts the balance between
decision speed and accuracy. For N = 2, this speed-accuracy balance can be
proved optimal [13]; optimality is not known for the many perceptual choices
considered here, and so we make a reasonable assumption of near optimality [5].

Move decision on the ‘where’ posteriors: Analogously to the stop decision, a
sensor move requires a marginal ‘where’ location belief to cross its own decision
threshold, with the MAP estimate giving the ‘where’ location decision

if any P (xl|z1:t) > θloc then xloc = argmax
xl

P (xl|z1:t). (8)

Here we consider two particular cases (Figs 2A,B), termed:

(A) passive perception: θloc = 1 (never moves)

(B) active perception: θloc = 0 (always tries to move).
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Fig. 3. Example trajectories for passive and active perception. 100 trajectories were
selected randomly for each case. (A) Passive perception, with location (x-position)
constant over time. (B) Active perception, with trajectories converging rapidly on the
central fixation point (10mm location class) independent of starting position.

For simplicity, we consider a basic movement strategy in which the sensor move
Δ depends only on estimated location xloc, although more complex strategies
are encompassed by the formalism. Whatever the strategy, the marginal ‘where’
location belief should be kept aligned with the sensor by shifting the joint ‘where-
what’ posterior beliefs upon each move

P (xl, wi|z1:t)←
{
P (xl −Δ(xloc), wi|z1:t), 1 ≤ xl −Δ(xloc) ≤ Nloc,

p0, otherwise,
(9)

where we recalculate the beliefs p0 lying outside the original range by assuming
they are uniformly distributed and the shifted beliefs sum to unity. The left
arrow denotes that the quantity on the left is replaced with that on the right.

Active control strategy: The final component of the active perception algorithm
is to define the control strategy for moving the sensor based on the posterior
beliefs. For simplicity, here we consider a ‘fixation point’ strategy motivated by
orienting movements in animals: the sensor attempts to move to a predefined
fixation point xfix relative to the object assuming it is at the estimated location
xloc on the object, with each move resulting in

xsensor ← xsensor +Δ (xloc) , Δ(xloc) = xfix − xloc, (10)

where xsensor is the actual (unknown) location of the sensor. In practise, only the
move Δ need be found, to instruct the sensor how to change location. Example
trajectories resulting from this active control strategy are shown in Fig. 3B.

2.2 Data Collection and Analysis

The tactile sensors used in this study have a rounded shape that resembles a
human fingertip [14], of dimensions 14.5mm long by 13mm wide. They consist
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Fig. 4. Tactile dataset (for test rod of diameter 4mm). (A) Entire dataset, with 200
taps over positions spanning 20mm. Taps are every 0.1mm displacement. (B-D) Indi-
vidual tap data taken from panel A. (E) Taxel layout with color-code for plots A-D.

of an inner support wrapped with a flexible printed circuit board containing
Nchannels = 12 conductive patches for the touch sensor ‘taxels’. These are coated
with non-conductive foam and conductive silicone layers that together comprise a
capacitive touch sensor that detects pressure by compression. Data were collected
at 8 bit resolution and 50 cycles/sec then normalized and high-pass filtered [14].

The present experiments test the capabilities of the tactile fingertip mounted
on a Cartesian robot. This robot moves the sensor in a horizontal/vertical plane
in a precise and controlled way onto various test stimuli (∼20μm accuracy), and
has been used for testing various tactile sensors [15]. The fingertip was mounted
at an orientation appropriate for contacting axially symmetric shapes such as
cylinders aligned along an axis perpendicular to the plane of movement (Fig. 1).
Nid = 5 smooth steel rods with diameters 4,6,8,10,12mm were used as test
objects, mounted with their centers offset vertically (by 4,3,2,1,0mm) to align
their closest point of contact with the fingertip in the direction of tapping.

Touch data were collected while the fingertip tapped vertically onto and off
each test object, followed by a horizontal move Δx = 0.1mm across the closest
face of the object (Fig. 1A). The fingertip was oriented so that it initially con-
tacted the rod at its base and finally at its tip. A horizontal x-range of 20mm
was used, giving 200 taps for each of the Nid = 5 objects, or 1000 taps in total.
From each tap of the fingertip against the object, a 1 sec time series of pressure
readings (Nsamples = 50) was extracted for all Nchannels = 12 taxels (Fig. 4). All
data were collected twice to give distinct training and test sets.
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Fig. 5. Example ‘what’ belief update for perceptual decision making. Evidence from
successive taps is integrated to result in accumulating/depreciating marginal beliefs
for the Nid = 5 distinct identity ‘what’ percepts. The examples show: (A) one clear
winning percept and (B) two ambiguous percepts. Using a belief threshold to trigger
the decision results in the appropriate number of taps to have a clear winner.

For analysis, the data were separated into Nloc = 20 distinct location classes,
by collecting groups of 10 taps each spanning 1mm of the 20mm x-range (tick-
marks on Fig. 4A). In total, there were thus N = NlocNid = 100 distinct ‘where-
what’ perceptual classes. These were used to set up a ‘virtual environment’ in
which methods for perception could be compared off-line on identical data. A
Monte Carlo validation ensured good statistics, by averaging perceptual acuities
over many test runs with taps drawn randomly from the perceptual classes (typ-
ically 20000 runs per data point in results). Perceptual acuities eloc, eid were
quantified using the mean absolute error (MAE) between the actual xtest, wtest

and classified values xloc, wid of object location and identity over the test runs.

3 Results

3.1 Evidence Accumulation for Robot Perception

The ‘where’ and ‘what’ perceptual task is to find the location (x-position) of
a rod and its identity (diameter) using tactile fingertip data over a sequence
of test taps. Example ‘what’ perceptual beliefs P (wi|z1:t) for tap sequences z1:t
of clear and ambiguous data are shown above (Fig. 5). These beliefs begin at
equality corresponding to uniform prior beliefs and then evolve smoothly with
some rising gradually towards unity and others falling towards zero. In the first
example (Fig. 5A), the decision given by the largest perceptual belief remains
the same after applying 2 taps or more, while the second example (Fig. 5B) flips
between the two leading choices.

There are two common methods for making decisions from sequential data
of this type: (i) set in advance the number of taps that will be used, or (ii)
set in advance a belief threshold θ that will trigger the decision, so that the
decision (reaction) time is a dynamic quantity that depends on the data received.
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Fig. 6.Dependence of passive perception on sensor location and ‘what’ belief threshold.
The ‘where’ location errors are shown in (A) and the ‘what’ identity errors in (B), plot-
ted against sensor location xsensor. The gray-scale denotes the ‘what’ belief threshold.
Each data point corresponds to 1000 decision trials. Perceptual performance improves
in the center of the sensor location range and at greater belief thresholds.

Recent progress in perceptual neuroscience strongly supports that animals use a
belief threshold to make decisions [11], consistent with the brain implementing
sequential analysis for optimal decision making [13]. In accordance, a comparison
of these two methods on tactile robot data found that the belief threshold method
gave superior performance in perceptual acuity [5]. This can be seen intuitively
from Fig. 5: if, for example, a deadline of 10 taps was set in advance, then the
decision is unnecessarily slow in situations of clarity (Fig. 5A) and too quick in
situations of ambiguity (Fig. 5B). Instead, setting a belief threshold allows the
decision time to adjust dynamically to the uncertainty of the evidence.

Both the passive and active methods for perception considered here update
beliefs from successive test taps to threshold θid. They differ, though, in how the
sensor responds during the decision process: for passive perception its location
is fixed, whereas for active perception it can control changes in location.

3.2 Passive Perception of Location and Identity

This section considers the application of passive Bayesian perception to the
‘where’ and ‘what’ perceptual task of identifying rod location (x-position) and
identity (diameter). Results are generated with a Monte Carlo procedure using
test data as a virtual environment (Sec. 2.2), such that each contact tap passively
remains within its initial location class on the object (examples in Fig. 3A).

The ‘where’ and ‘what’ decisions for perceiving object location and identity
were evaluated over identity belief thresholds θid from 0.1 to 0.99999 (Fig. 6,
colorbar). Initial locations spanned all horizontal position classes xl. Mean per-
ceptual acuities over all objects improved with identity threshold and towards
the center (10mm) of the location range (Fig. 6), giving minimal errors near zero
for identity eid and location eloc. The number of taps to reach a decision also
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Fig. 7. Comparative perceptual acuity for active and passive Bayesian perception.
(A,B) Dependence of the mean absolute errors of location ēloc (x-position) and identity
ēid (rod diameter) upon the identity belief threshold θid. Passive perception is shown in
red and active perception in black. (C,D) Dependence of these perceptual errors upon
mean decision time (with threshold an implicit parameter). Active performs better
than passive perception, and both improve with increasing ‘what’ belief threshold.

varied, such that the mean tap number (reaction time) increased with identity
threshold and decreased towards the central location range (Figure not shown).

Here we consider situations in which the initial contact location is unknown,
with performance measure the mean perceptual errors over all such locations,
consistent with location being selected randomly. These mean errors reached
their best values ēloc ∼ 0.9mm and ēid ∼ 0.4mm at the largest belief thresholds
and reaction times (Fig. 7, red plots). Not unexpectedly, the perception is poorer
than when choosing just the central contact location (on Fig. 6 at xl =10mm),
emphasizing that passive perception performs poorly because it cannot control
contact location.

3.3 Active Perception of Location and Identity

This section considers active Bayesian perception in the same scenario as for
passive perception, with a ‘where’ and ‘what’ perceptual task of identifying rod
location and identity. Results are again generated using a Monte Carlo procedure
over a virtual environment (Sec. 2.2), now with an active control strategy that
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tries to re-locate the sensor to a fixation point in the center of the location range
(10mm) where the passive perception was best (example trajectories in Fig. 3B).

The ‘where’ and ‘what’ decisions for perceiving object location and identity
were evaluated over the same range of belief thresholds (θid from 0.1 to 0.99999)
and locations (xl from 0 to 20mm) as for passive perception, to permit direct
comparison of the active and passive approaches. We again considered the loca-
tion as uncertain, and thus measured performance by the mean perceptual errors
ēloc, ēid over all initial contact locations. These location-averaged errors reached
their best acuities for object location of ēloc ∼ 0.5mm and identity ēid ∼ 0.1mm
at the largest belief thresholds and reaction times (Fig. 7, black plots).

Comparing active perception with passive perception, the best mean percep-
tual errors improve from ēloc ∼ 0.9mm to 0.5mm for object location (over a
20mm x-position range) and ēid ∼ 0.4mm to 0.1mm for object identity (over a
4-12mm diameter range). Thus, active perception gives far finer perceptual acu-
ity than passive perception when compared under similar conditions of uncertain
object location and identity.

4 Discussion

In this paper, we compared active and passive Bayesian perception methods
for Simultaneous Object Localization and IDentification (SOLID), or perceiving
‘where’ and ‘what’. We considered a task in which a biomimetic fingertip taps
against a smooth steel rod to simultaneously perceive its location (horizontal
position) and identity (rod diameter). Active perception can control changes in
location of the sensor during the decision making process, whereas for passive
perception the location is fixed at where the sensor initially contacted the object.
We found that active perception gives far more accurate perception in situations
of uncertain object location and identity than passive perception. Thus, active
perception is appropriate for sensing in unstructured environments where loca-
tion is uncertain, and improves performance by compensating the uncertainty
in initial sensor placement to, in effect, structure an unstructured environment.

As in other work on active perception [1, 2], the inspiration for our approach
was from animal perception. The particular active perception strategy consid-
ered here was to fixate the sensor onto an object at a good contact location for
perception (here centering the fingertip over the middle of the object); this strat-
egy is analogous to orienting movements found in many perceptual modalities,
such as saccadic foveation in vision and head turning for audition. In addition, we
used an evidence accumulation method for Bayesian perception [5] that has close
relation to leading models of perceptual decision making in neuroscience [11] and
also relates to proposals for cortico-basal ganglia function [12]. Bayesian percep-
tion, where evidence is integrated to a belief threshold, leads to decision time
being a dynamic quantity that depends on the quality of data. Although rare in
contemporary approaches to machine learning, having this type of variation in
reaction times is ubiquitous in the natural world.

Related methods to those presented here have enabled the first demonstra-
tion of hyperacuity in robot touch [8], giving localization acuity finer than the



A SOLID Case for Active Bayesian Perception in Robot Touch 165

sensor resolution, as is common in animal perception including human touch [16].
Although our previous study also found that active perception helped attain hy-
peracuity, those methods now seem somewhat ad hoc in light of the present
study, by not making best use of the ‘where’ and ‘what’ aspects of the problem.
In the present work, we have developed a principled approach to active Bayesian
perception of applicability to simultaneous object localization and identification.
Given the taxel spacing is 4mm, our results verify that passive Bayesian per-
ception is capable of hyperacuity (mean localization error ∼ 1mm) and active
Bayesian perception of stronger hyperacuity (mean error ∼ 0.5mm).

In seminal work on active perception, Bajcsy said it is axiomatic that per-
ception (in animals) is active [1]. Robotics is currently in a state of transition
from rigidly controlled tasks in predictable structured environments like factory
assembly lines, to applications in unpredictable unstructured environments like
our homes, hospitals and workplaces. In our opinion, robots will need active
perception to accomplish these tasks in unstructured environments, and thus it
may also become axiomatic that future robot perception will be active too.

Acknowledgments. We thank Ben Mitchinson and Mat Evans for comments
on earlier drafts of this paper. This work was funded by the European Commis-
sion under the FP7 project grant EFAA (ICT-270490); UMH was supported by
the Mexican National Council of Science and Technology (CONACyT).

References

1. Bajcsy, R.: Active perception. Proceedings of the IEEE 76, 966–1005 (1988)

2. Ballard, D.: Animate vision. Artificial Intelligence 48(1), 57–86 (1991)
3. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The icub humanoid robot:

an open platform for research in embodied cognition. In: Proceedings of the 8th
Workshop on Performance Metrics for Intelligent Systems, pp. 50–56 (2008)

4. Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in
human environments (grand challenges of robotics). IEEE Robotics & Automation
Magazine 14(1), 20–29 (2007)

5. Lepora, N.F., Fox, C.W., Evans, M.H., Diamond, M.E., Gurney, K., Prescott, T.J.:
Optimal decision-making in mammals: insights from a robot study of rodent tex-
ture discrimination. Journal of the Royal Society Interface 9(72), 1517–1528 (2012)

6. Lepora, N.F., Evans, M., Fox, C.W., Diamond, M.E., Gurney, K., Prescott, T.J.:
Naive bayes texture classification applied to whisker data from a moving robot. In:
The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2010)

7. Lepora, N.F., Sullivan, J.C., Mitchinson, B., Pearson,M., Gurney,K., Prescott, T.J.:
Brain-inspired bayesian perception for biomimetic robot touch. In: 2012 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 5111–5116 (2012)

8. Lepora, N.F., Martinez-Hernandez, U., Barron-Gonzalez, H., Evans, M., Metta, G.,
Prescott, T.J.: Embodied hyperacuity from bayesian perception: Shape and posi-
tion discrimination with an icub fingertip sensor. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4638–4643 (2012)



166 N.F. Lepora, U. Martinez-Hernandez, and T.J. Prescott

9. Lepora, N.F., Martinez-Hernandez, U., Prescott, T.J.: Active touch for robust
perception under position uncertainty. In: 2013 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3005–3010 (2013)

10. Lepora, N.F., Martinez-Hernandez, U., Prescott, T.J.: Active bayesian perception
for simultaneous object localization and identification. In: Robotics: Science and
Systems (2013)

11. Gold, J.I., Shadlen, M.N.: The neural basis of decision making. Annual Reviews
Neuroscience 30, 535–574 (2007)

12. Lepora, N.F., Gurney, K.: The basal ganglia optimize decision making over general
perceptual hypotheses. Neural Computation 24(11), 2924–2945 (2012)

13. Wald, A.: Sequential analysis. John Wiley and Sons, NY (1947)
14. Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.:

Methods and technologies for the implementation of large-scale robot tactile
sensors. IEEE Transactions on Robotics 27(3), 389–400 (2011)

15. Evans, M., Fox, C., Lepora, N., Pearson, M., Sullivan, J., Prescott, T.: The effect
of whisker movement on radial distance estimation: a case study in comparative
robotics. Frontiers in Neurorobotics 6 (2013)

16. Loomis, J.M.: An investigation of tactile hyperacuity. Sensory Processes 3, 289–302
(1979)


	A SOLID Case for Active Bayesian Perception in Robot Touch
	1 Introduction
	2 Methods
	2.1 Algorithms for Bayesian Perception
	2.2 Data Collection and Analysis

	3 Results
	3.1 Evidence Accumulation for Robot Perception
	3.2 Passive Perception of Location and Identity
	3.3 Active Perception of Location and Identity

	4 Discussion
	References




