
JBernstein: A Validity Checker for Generalized
Polynomial Constraints

Chih-Hong Cheng1, Harald Ruess1, and Natarajan Shankar2

1 fortiss GmbH, Guerickestr. 25, 80805 München, Germany
{cheng,ruess}@fortiss.org

2 SRI International, 333 Ravenswood, Menlo Park, CA 94025, United States
shankar@csl.sri.com

1 Overview

Efficient and scalable verification of nonlinear real arithmetic constraints is essential
in many automated verification and synthesis tasks for hybrid systems, control algo-
rithms, digital signal processors, and mixed analog/digital circuits. Despite substantial
advances in verification technology, complexity issues with classical decision proce-
dures for nonlinear real arithmetic are still a major obstacle for formal verification of
real-world applications.

Recently, Muñoz and Narkawicz [3] proposed a procedure for deciding the valid-
ity of quantifier-free nonlinear real arithmetic based on the well-known transformation
to Bernstein polynomials. Their Kodiak system outperforms tools based on cylindric
algebraic decomposition, including QEPCAD [1] and REDLOG [2], in many cases.

Starting from the algorithms by Muñoz and Narkawicz [3] we extended the approach
and implemented the (little) verification engine JBernstein, which checks the validity
of finite conjunctions of nonlinear constraints of the form

∀x0 ∈ [l0, u0], . . . , xm ∈ [lm, um] :
(
∧n

j=1 Pj(x0, . . . , xm) ≺j cj) → Q(x0, . . . , xm) ≺ d

Pj and Q are real polynomials over the variables x0 through xm, each xi is interpreted
over closed intervals [li, ui] with real-valued lower and upper bounds, cj and d are real-
valued constants, and the symbols≺j and≺ are arithmetic inequalities in {>,≥, <,≤}.
These constraints support assume-guarantee style of reasoning about open systems,
with Pi the assumptions on the environment and Q the corresponding guarantee of the
system under consideration.

The Java implementation JBernstein includes a number of algorithmic optimiza-
tions as described in Section 2, for example, for avoiding unnecessary case splits. In par-
ticular, JBernstein uses double-precision floating-point arithmetic of Java in a sound
way via constraint strengthening (Section 3).

The resulting runtimes of JBernstein are compared with those reported by Muñoz
and Narkawicz [3] for their Kodiak implementation, QEPCAD, and REDLOG. This
comparison uses the PVS test suite as compiled by Muñoz and Narkawicz [3]. The
experimental evaluation of these optimizations indicates that for complex problems,
JBernstein is usually an order of magnitude faster than earlier results by Muñoz and

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 656–661, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

JBernstein: Checking Polynomial Constraints 657

Table 1. Performance of JBernstein and other tools. Results from other tools are taken from [3].
The measured unit for execution time is in milliseconds.

Problem JBernstein Kodiak [3] REDLOGrlqe [3] REDLOGrlcad [3] QEPCAD [3] Metit [3]

Schwefel (∀) 159 940 490 > 300000 840 110
Schwefel (∃) 126 280 138900 > 300000 910 (n/a)
Reaction Diffusion (∀) 7 < 10 340 370 10 90
Reaction Diffusion (∃) 3 < 10 340 350 10 (n/a)
Caprasse (∀) 23 290 1750 > 300000 6540 160
Caprasse (∃) 8 310 15060 > 300000 6540 (n/a)
Lotka-Volterra (∀) 5 100 360 450 10 100
Lotka-Volterra (∃) 4 < 10 350 400 10 (n/a)
Butcher (∀) 19 200 420 > 300000 (abort) (abort)
Butcher (∃) 65 200 360 > 300000 (abort) (n/a)
Magnetism (∀) 125 73540 670 360 180 540
Magnetism (∃) 115 320 420 360 350 (n/a)
Heart Dipole (∀) 460 7360 > 300000 > 300000 > 300000 > 300000
Heart Dipole (∃) 405 3700 > 300000 > 300000 > 300000 (n/a)

§ For this example, we only ask > −0.0001, as precision can not be maintained for the original property.
‡ For this example, we only ask > 0.0001.

Narkawicz or our un-optimized implementation, and it is two orders of magnitude faster
than QEPCAD or REDLOG. For the experimental evaluation we use a similar hardware
setting (Intel Core Duo 2.4 Ghz, MacOS, 8 GB RAM) as reported in [3]. The optimiza-
tion power comes with harder problems, as with these problems refinements are used
heavily, and the accumulative effect of optimization comes. These initial experimental
results are indeed promising, but, clearly, an extended and improved set of benchmarks
is needed to obtain an indication about the asymptotic behavior of these solvers.

JBernstein is implemented in Java without further dependencies. It is freely avail-
able under the LGPL version 3 license at

http://sourceforge.net/projects/jbernstein/

2 Algorithmic Optimizations

We outline the algorithm of Muñoz and Narkawicz in [3] and the optimizations thereof
in JBernstein using simplified constraints of the form

∀x0 ∈ [l0, u0], . . . , xm ∈ [lm, um] : φ(x0, . . . , xm) > c .

The Bernstein approach first performs a range-preserving transformation from [a, b] to
[0, 1] to obtain a constraint of the form

∀y0 ∈ [0, 1], . . . , ym ∈ [0, 1] : φ′(y0, . . . ym) > c ,

such that xi = li + yi(ui − li) for all i ∈ {1, . . . ,m} and φ(x1, . . . , xm) = φ′(y1, . . . ,
ym). The polynomial φ′ is then translated from polynomial basis into Bernstein basis.
For example, φ′(y) = 4y2 − 4y + 1 has polynomial basis {y2, y, 1}. It is rewritten as
1(02)(1 − y)2-2(12)y(1 − y) + 1(22)(y)

2, with {(k2)yk(1 − y)2−k|k = 0, 1, 2} being the
Bernstein basis. If all coefficients of the polynomial represented in Bernstein basis are
greater than c, then the original constraint holds (true). Otherwise one checks if there
exists a coefficient of an endindex (Bernstein basis vector where every term is either 0

http://sourceforge.net/projects/jbernstein/

658 C.-H. Cheng, H. Ruess and N. Shankar

0

0 1

Array index

0 1 2 3 0 1 2 3

1

0 1

0 1 2 3 0 1 2 3

2

0 1

0 1 2 3 0 1 2 3

4 20

Variable index

0

1

2
offset[2] = 1

offset[1] = 1× (3 + 1) = 4

offset[0] = 4× (1 + 1) = 8

20 = 4 + (2− 0)offset[0]

Fig. 1. Index shifting by table look-up

or of highest degree) that is smaller or equal to c. For example, for ∀y ∈ [0, 1] : φ′(y) >
−3, as all Bernstein coefficients 1,−2, 1 are greater than −3, and the property holds.
If the property is ∀y ∈ [0, 1] : φ′(y) > 2, as for the first and the last coefficient (in
{(n2)yk(1 − y)2−n|n = 0, 1, 2}, n = 0, 2 are endindices), we have 1 �> 2, and the
property fails to hold at y = 0 and y = 1 (false).

Lazy refinement. The checking process returns unknown if neither of these two condi-
tions holds, i.e., there exists some non-endindex coefficients less or equal to c. In these
cases, the algorithm does range splitting on some chosen variable from [0, 1] to [0, 1

2]
and [12 , 1], it generates Bernstein polynomials for each subspace, and it checks if the
property does indeed hold for both polynomials. The Bernstein polynomial checker re-
fines a subspace only when a decisive proof has not been found for values within this
subspace.

Inputs of the form ρ > d → ϕ > e are not considered within the paper by Muñoz
and Narkawicz. In JBernstein, such an input is rewritten to its disjunctive form ρ ≤
d ∨ ϕ > e. The checker returns true if one of them is valid, and it returns false if
there exists an endindex of both polynomials whose coefficients violate the constraint
separately.

Recursive variable exploration. The refinement process involves recursive calls of vari-
able selection and domain partitioning to generate new Bernstein polynomials. For ef-
ficiency it is important to avoid variable selections which lead to the generating of an
excessive number of polynomials for which the checker returns unknown. As the al-
gorithm is recursive, a naı̈ve deterministic implementation can, given a fixed recursion
depth, try to refine the first variable continuously until the end of the recursion depth.
It turns out that this strategy often leads to a generation of numerous useless Bernstein
polynomials without providing definite proofs. The reason is explained using the fol-
lowing extreme case. Continuously refine only one variable, say y0, then eventually the
generated Bernstein polynomial will have y0 with its domain converged from [0, 1] to
one single point α ∈ [0, 1]. This means that in the original polynomial, the refinement
tries to analyze the polynomial by setting x0 to l0 +α(u0 − l0), whose proving process
is, intuitively, nearly as hard as working on the original polynomial. Given a certain
budget for maximum allowed recursion, first trying deep recursion over one particular
variable is therefore, unlikely to succeed in most cases. Therefore, the implementation
of JBernstein uses a round-robin selection strategy on the variables during recursion
to avoid worst case scenarios.

Avoiding superfluous computations. The third aspect concerning efficiency focuses on
reducing the unit cost for generating every new Bernstein polynomial and checking the
property. Generating a new Bernstein polynomial (domain partition) entails generating

JBernstein: Checking Polynomial Constraints 659

all of its coefficients, which themselves are derived from the coefficients of the original
Bernstein polynomial (without domain partition). The new coefficients bLk for the left
partitioned polynomial (for the right polynomial, the formula is similar), where yj is
chosen for partition, is achieved using the following formula [3].

bLk =

kj∑

r=0

1

2kj

(
kj
r

)

bk with [j:=r] (1)

In Eq. 1, for an m-variate polynomial, k is a vector of m tuples of positive integers or 0,
where each term is smaller than the cardinality (i.e., every k is the unique signature of
each Bernstein basis vector). kj is the j-th value of k, and bk with [j:=r] is the coefficient
of the original Bernstein polynomial, where ”k with [j := r]” is an m-tuple that
is equal to k on every index, except in index j where it has value r. The following
optimizations are used by JBernstein:

1. Factor out the constant 1

2kj
from summation.

2. Replace the computation of
(
kj

r

)
by table look-up.

3. Compute bk with [j:=r] in an optimized way as follows:
• Statically store k linearly in an array (prior to the range transformation). Fig-

ure 1 indicates how vectors are arranged. E.g., when k = (0, 1, 0), it is located
in index 4. Store each bk linearly in an array following the above order, for
every Bernstein polynomial.

• When the solver iterates the array to create bLk , the index of k is known.
• To find bk with [j:=r], it amounts to finding the index of ”k with [j := r]”.

Due to our formulation, it can now be translated to an index offset problem:
given the index of k, what is the offset when replacing the j-th index with
value r? The offset is (r − kj)offset[j], where offset[j] = (Degj+1 + 1) ×
. . .×(Degm−1+1), where Degs is the highest degree that appears for variable
vs in the polynomial. The array offset can also be computed statically prior to
the range-preserving transformation. Figure 1 illustrates the computation of the
index of of (2, 1, 0) from k = (0, 1, 0).

• Therefore, for bk with [j:=r] the solver uses three table look-ups (for offset[j],
kj and the final value), one substraction, multiplication and addition.

4. Integrate the coefficient generation and the checking process. In each Bernstein
polynomial, create an internal Boolean variable field isUnknown that is initially
set to false. During the construction, check if a particular coefficient satisfies the
property only when it belongs to the endindex or isUnknown equals false. Once
if the polynomial is diagnosed as unknown, then there is no need to check for
coefficients from non-endindices. Deciding whether a certain index is an endindex
is also done statically once and is replaced by table look-up in later computations.

3 Sound Usage of double

We now justify the use of double (double-precision 64-bit IEEE 754 floating point) for
data representation. In JBernstein, potential errors due to imprecision of double are
handled by the following methodology (for the ease of explanation, we again set the
property to be ∀x0 ∈ [l0, u0], . . . , xm ∈ [lm, um] : φ(x0, . . . , xm) > c):

660 C.-H. Cheng, H. Ruess and N. Shankar

• Select a positive error-estimate ε such as 10−5.
• To return true, in property checking all coefficients shall be greater than c+ ε.
• To return false, in property checking the solver needs to find a coefficient bk from

an endindex such that bk ≤ c− ε.
• If neither of the above two cases holds, the solver either proceeds with domain

refinement (when recursion is still allowed) or returns unknown.

The correctness relies on a crucial requirement that the accumulated error for each
computed coefficient should never exceed ε. Instead of keeping track of the error during
the computation, we apply static analysis on the algorithm to generate a safe error-
estimate that holds for each computed coefficient, based on the polynomial constraint
itself and the number of maximum refinement attempts. Due to space limits, we only
review the key feature in refining a subspace to generate new Bernstein polynomials (a
full text concerning the sound usage of double can be found in the technical report).

For each refinement, recall in Eq. 1 where we have bLk =
∑kj

r=0
1

2kj

(
kj

r

)
bk with [j:=r].

E.g., when kj = 4, 1

2kj

(
kj

r

)
equals 1

16 ,
4
16 ,

6
16 ,

4
16 ,

1
16 (the sum of these values is 1) for

r = 0, 1, 2, 3, 4. This means that each new coefficient is a weighted sum from old
coefficients. If each original coefficient bk with [j:=r] has an error-estimate bounded by
κ, in an idealized computation, the generated bLk also has an error-estimate bounded by
κ. This gives an intuition that the growth of error should be very slow (nearly linear
to the number of refinement attempts) within the refinement process. The behavior of
linear growth is the key ingredient that makes our methodology applicable1, which is
one of the nice properties for Bernstein polynomials.

4 Example

For example, assume-guarantee-style constraints such as

∀x0 ∈ [0, 1] : (6x0 − 1 > 0 ∧ 3x0 − 1 < 0) → 125x3
0 − 175x2

0 + 70x0 − 8 > 0

are handled by the textual interface of JBernstein as described in Figure 4:
• The statement VAR 1 in Figure 4 indicates that the constraint has one variable of

name x0, and statements such as "BOUND x0 [0,1]" are used to specify that
x0 is interpreted over the closed interval [0, 1].

• CONJUNCTION 1 specifies the use of one assume-guarantee rule.
• ASSUMP 0 2 indicates that the first assume-guarantee rule (indexed 0) has two

assumptions 6x0 − 1 > 0 and 3x0 − 1 < 0.
• For the first assumption (indexed 0) of the first assume-guarantee rule (6x0 − 1 >
0), use ”COEF A0_0 (1) 6”, ”COEF A0_0 (0) -1”, ”SIGN A0_0 GT”,
and ”VALUE A0_0 0” to specify the polynomial.

1 If every refinement computation brings κ twice as large, in static analysis, applying recursive
expansion for small steps like 100 will make an initially small error-estimate prohibitively
huge in the lastly generated Bernstein polynomial. It is also important to observe from this
example that the division of 16 actually only involves the decrease of exponent by 4 in double
without precision loss.

JBernstein: Checking Polynomial Constraints 661

FORALL x\in[0,1]: (6x-1>0 && 3x-1<0) -> (5x-1)(5x-2)(5x-4)>0

Specify to use one variables x0
VAR 1

Specify the NUMBER of conjunctions
Usage: "CONJUNCTION NUMBER"
CONJUNCTION 1

Specify the NUMBER of assumptions in the INDEX-th conjunction element
Usage: "ASSUMP INDEX NUMBER"
ASSUMP 0 2
Specify the coefficient of the polynomial (assumption) 5x+0>0 as
E.g., A1_0 means the 1st assumption (indexed 0) in the 2nd conjunction (indexed 1)
First assumption
COEF A0_0 (1) 6
COEF A0_0 (0) -1
SIGN A0_0 GT
VALUE A0_0 0

Second assumption
COEF A0_1 (1) 3
COEF A0_1 (0) -1
SIGN A0_1 LT
VALUE A0_1 0

Specify the coefficient of the polynomial (guarantee)
(5x-1)(5x-2)(5x-4) = 125xˆ3-175xˆ2+70x-8
COEF G0 (3) 125
COEF G0 (2) -175
COEF G0 (1) 70
COEF G0 (0) -8
SIGN G0 GT
VALUE G0 0

Specify the bound for each variable
BOUND x0 [0, 1]
Result: FALSE

Fig. 2. Assume-guarantee-style constraints in JBernstein

Acknowledgements. We thank Dr. César Muñoz (NASA Langley) for his support and
helpful suggestions.

References

1. Brown, C.W.: QEPCAD-B: a program for computing with semi-algebraic sets using CADs.
SIGSAM Bull. 37(4), 97–108 (2003)

2. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. SIGSAM
Bull. 31(2), 2–9 (1997)

3. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and
applications to global optimization. Journal of Automated Reasoning (2012)

	JBernstein: A Validity Checker for Generalized Polynomial Constraints

	1 Overview
	2 Algorithmic Optimizations
	3 Sound Usage of
	4 Example
	References

