Abstraction Based Model-Checking
of Stability of Hybrid Systems

Pavithra Prabhakar and Miriam Garcia Soto

IMDEA Software Institute

Abstract. In this paper, we present a novel abstraction technique and a
model-checking algorithm for verifying Lyapunov and asymptotic stabil-
ity of a class of hybrid systems called piecewise constant derivatives. We
propose a new abstract data structure, namely, finite weighted graphs,
and a modification of the predicate abstraction based on the faces in the
system description. The weights on the edges trace the distance of the
executions from the origin, and are computed by using linear program-
ming. Model-checking consists of analyzing the finite weighted graph for
the absence of certain kinds of cycles which can be solved by dynamic
programming. We show that the abstraction is sound in that a positive
result on the analysis of the graph implies that the original system is
stable. Finally, we present our experiments with a prototype implemen-
tation of the abstraction and verification procedures which demonstrate
the feasibility of the approach.

1 Introduction

With the ubiquitous use of embedded control systems, particularly in safety crit-
ical application areas such as avionics and automotive, there is an ever increas-
ing need for scalable automated verification of embedded programs. A unique
feature of these programs is their interaction with a physical world which is typ-
ically continuous, and hence the behavior of the system as a whole consists of
mixed discrete-continuous components. The verification of hybrid systems has
remained a stubbornly challenging problem due to the complex behavior exhib-
ited by these systems. It is a well known fact that the problem of verifying even
simple properties such as safety is undecidable for a class of hybrid systems with
relatively simple dynamics [I3]. Hence, much effort has been invested in inves-
tigating approximate analysis methods, which can be broadly grouped into the
following categories.

One direction involves methods for approzimate post analysis. Computing
the post of a set of states is a crucial step in state-space exploration based
model-checking algorithms. The exact post computation is feasible for only a
small subclass of hybrid systems; and hence the focus has been on computing
approximations of the post sets. Various efficient methods and representations for
the post set have been proposed including zonotopes, polytopes, ellipsoids and
support functions [T0J11124]. Bounded error approximations of the entire hybrid

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 280-E95] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Abstraction Based Model-Checking of Stability of Hybrid Systems 281

systems have also been explored, and include methods such as hybridization and
polynomial approximations [27[2I2TI[5].

The other set of results concern abstraction based analysis, where a simplified
model of the system is computed and analysed to infer correctness properties
about the original model. Various methods for computing abstract models in-
clude predicate abstraction, hybrid abstractions [8I22I1I6]. These methods in
general do not provide any bound on the error of the abstraction; hence, they
are usually accompanied by an abstraction-refinement loop based on, for exam-
ple, counter-example analysis. Most of the above techniques can be classified as
model-checking algorithms and mainly focus on safety verification. There have
also been deductive verification techniques for safety verification [26J19].

In this paper, we focus on a different class of properties, namely, stability.
Stability properties capture the notion that small perturbations to the initial
state or input to the system result in only small changes to the future behaviors
of the system. Stability is an important property expected out of every control
system so much so that a system which is not stable is deemed useless. The study
of stability analysis of purely continuous systems is a mature field and there exist
characterizations and automatically verifiable methods for their analysis [15].
Most of these methods can be classified under deductive verification, where the
proof of stability is established by exhibiting a Lyapunov function [I8/I7], which
represents an “energy” function which decreases over the trajectories of the
system. There also exist extensions of Lyapunov function based analysis methods
for hybrid systems [T6U7I4IT2], which either exhibit a common Lyapunov function
for the entire hybrid system or combine the analysis of a Lyapunov function for
each mode of the hybrid system. However, constructing Lyapunov functions in an
extremely arduous task; and often requires the ingenuity of the designer. Hence,
the state-of-the-art technique for proving stability of hybrid systems relies on
automating the search for Lyapunov functions. Complete results in this direction
only exist for certain subclasses of systems such as purely continuous linear
dynamical systems, where it is known that a quadratic function always exists
and can be found by solving linear matrix inequalities.

In contrast to the traditional approach to stability analysis, the focus of this
paper is in exploring model-checking as an alternate method for stability analy-
sis. The standard methods of abstraction such as predicate abstraction [1I6] do
not suffice for this purpose, since as pointed out in [23], the notion of simula-
tion does not suffice to preserve stability and instead needs a stronger notion of
simulation strengthened with continuity requirements.

The main contribution of this paper is an abstraction procedure and a model-
checking algorithm for verifying stability of a class of hybrid systems called
piecewise constant derivatives studied in [3]. Our abstraction procedure can be
interpreted as a modified predicate abstraction procedure. The abstract model
is a finite weighted graph whose nodes correspond to the faces of the regions
defined by the predicates. The edges correspond to the existence of an execution
from one face to the other, similar to the predicate abstraction; however, in
addition, it is also annotated with a weight which measures the closeness of the

282 P. Prabhakar and M.G. Soto

execution to the origin between its end-points. The finite weighted graph is then
analysed for the absence of cycles in which the product of the weights on the
edges exceeds 1, and the absence of such cycles implies stability of the system.
We consider two classical notions of stability, namely, Lyapunov and asymptotic
stability. Our analysis procedure is conservative in general, however, for the two
dimensional case, it coincides with the decidability algorithm in [25]. The paper
[25] explores the decidability boundary for Lyapunov and asymptotic stability
and shows the decidability in 2 dimensions for a class of hybrid systems slightly
more general than PCDs and undecidability for PCDs with 5 dimensions.

There has been some work on predicate abstraction based analysis for cer-
tain weaker notions of stability, such as, region stability, which require that all
trajectories of the system reach a region in a finite time [20J9].

Though we focus on a simple class of systems, we believe that the technique of
face based abstraction into finite weighted graph and its analysis can be carried
over to more complex classes of hybrid systems. Below we summarize the main
features and contributions of the paper.

1. A face based abstraction procedure to reduce the verification of Lyapunov
and asymptotic stability in a sound manner to the analysis on a finite
weighted graph.

2. A model-checking algorithm for analyzing the abstract finite weighted graph.

3. The model-checking algorithm returns an “abstract counter-example” which
is crucial in developing an abstraction refinement framework.

4. A prototype implementation of the abstraction and verification procedure,
which demonstrates the feasibility of the technique.

In contrast to the previous works on deductive verification based analysis for
Lyapunov and asymptotic stability, our method has the flavor of an algorithmic
verification technique based on state-space exploration. Additional details can
be found at the following url:
http://software.imdea.org/people/pavithra.prabhakar /Details /home.html

2 Overview of the Abstraction and Model-Checking
Algorithm

In this section, we will illustrate with examples the main ideas behind the ab-
straction based model-checking algorithm.

A piecewise constant derivative system (PCD) [3] is a hybrid system which
partitions the state-space into some finite number of polyhedral regions and
associates a flow vector with each region specifying the direction in which the
state evolves while in the region. For example, shown in Figure @] is a two-
dimensional PCD which has four regions corresponding to the four quadrants,
r1 with flow (—1,1), ro with flow (=1, —1), rs3 with flow (1, —1) and r4 with flow
(1,1). A sample run of the PCD is the trajectory o which starts as (1,0) and
moves along a straight line to (0,1), then to (—1,0), (0, —1) and back to (1,0).

Abstraction Based Model-Checking of Stability of Hybrid Systems 283

This is a finite execution of the system. Repeating ¢ an infinite number of times
gives a complete execution, an execution in which the time diverges to infinity.

Intuitively, Lyapunov stability captures the notion that every execution start-
ing close to the origin remains close to the origin. More precisely, it says that
given any € > 0, we can find a 6 > 0, such that all trajectories starting within
distance § from the origin remain with in distance € of the origin at all times.
Note that starting at any point in any d-unit square around the origin, the ex-
ecutions of the system remain with in a /28 unit square around the origin.
Hence, the system is stable. On the other hand, if the flow associated with ry
were (2,1) instead of (1,1), then for every 4, there exist trajectories which start
within distance ¢ but diverge from the origin.

The other canonical notion of stability is asymptotic stability which requires
along with Lyapunov stability that all complete executions converge to the origin.
The 2 dimensional system in Figure [2] is not asymptotically stable because the
complete execution corresponding to repeating the execution o, which moves
along the rhombus, infinitely many times does not converge to the origin.

Fig. 1. 2 dimensional system and its abstraction

The main idea behind the analysis is to construct a finite weighted graph
which contains information about the distance from origin of the executions of
the system. More precisely, the nodes of the graph correspond to the faces of
the regions. And there is an edge between two faces if there exists an execution
which starts at some point on the first face and reaches some point on the
other face while remaining in the common region. This part is similar in some
sense to predicate abstraction except that we consider the faces instead of the
regions. The additional element is the weights on the edges of the graph. The
weight corresponds to the maximum scaling in the distance to the origin between
any point in the first face and the points reachable from it on the second face.
Abstract graph for the 2 dimensional example in shown on the right in Figure
2 It consists of four faces fi2, fos, f34 and fa1, where f;; corresponds to the
common set of points between region 7 and region j. The weight on all the edges
is 1. For example, starting at distance 0 on f41, that is, (J,0), the unique point
on fi2 reachable is (0, d). Hence the ratio of the distance of (0,d) from the origin
to the distance of (4, 0) from the origin is §/6 = 1.

284 P. Prabhakar and M.G. Soto

The abstract graph has the property that corresponding to every execution of
the original system, there is a path in the graph where each edge corresponds to
the part of the execution which remains within a particular region. More over,
the weight on the edge is an upper bound on the weight of the scaling associated
with executions corresponding to the edge. The main theorem of the paper states
that if the abstract graph does not contain a cycle such that the product of the
weights is > 1 and the flow associated with all the regions is such that there
exist no trajectories which diverge while remaining within the region, then the
system is Lyapunov stable. Further, it is asymptotically stable if there are no
cycles such that the product of the weights is 1. The theorem essentially states
that the abstraction is sound with respect to stability analysis. It turns out that
the theorem is in fact a necessary and sufficient condition for the 2 dimensional
case as shown in [25]. However, the same is not true in higher dimensions as
shown below.

: (o)
VD VEY.

/ G

Fig. 2. 3 dimensional system and its abstraction

&/

In the Figure Bl 7o is the region given by —2 <z < 2,—2 <y < 2,2 > 0.
Similarly, 7o, r1,73 are obtained by replacing the constraint on = by z < —3z,
-3z < x < zand z < x < 3z, respectively. 74 is given by z < x < 32,z <
y,z > 0. The flow vectors of r1,r2 and r3 are given by (2,1.5,0),(2,1,0) and
(2,2,0), respectively. A part of the abstract graph corresponding to the faces
fo1, fi2, fo3 and fs34 are shown in Figure Pl We use the infinity norm for the
distance, that is, distance between two points (z1,y1, 21) and (2, y2, 23) is given
by maz{|z1 — x2],|y1 — y2|, |21 — 2z3|}. The ratios on the edges are computed as
before. For example consider the edge from fy; to fi2. Since the flow vectors
are parallel to the zy-plane, it suffices to consider any particular value of z to
compute the ratios. Let us fix z = 1. All the points on fy; are at distance 3.
The points reached on fi5 from points on fy; are at distance at most 1. In fact,

Abstraction Based Model-Checking of Stability of Hybrid Systems 285

the point (—1,0.75,1) at distance 1 from the origin is reachable from the point
(—3,0.25,1) on fo1, hence the ratio is 1/3.

Note that there does not exist an execution corresponding to the path fo1 f12 fo3,
that is, a point on fy; such that there exists an execution from it which reaches
f12 and continues to reach fo3. Though there exists an execution corresponding
to the path fi2fo3f34, there does not exist one in which the part of the execution
corresponding to fio fo3 has a scaling of 1 and the part corresponding to fasf34
has value 3. Hence, in general, the abstract graph is conservative.

3 Preliminaries

Notations. Let R, R>¢, Q and N denote the set of reals, non-negative reals,
rationals and natural numbers, respectively. We use [n] to denote the set of
natural numbers {1,--- ,n}. Given a function F', we use Dom(F’) to denote the
domain of F. Given a function F': A — B and a set A’ C A, F(A’) will denote
the set {F'(a)|a € A’}. Given a finite set A, |A|, denotes the number of elements
of A.

Euclidean space. Let X denote the n-dimensional Euclidean space R"™, for some
n. Given x = (21, -+ ,x,) € X and 1 < i < n, we use (x); to denote the i-
th component of x, namely, z;. Given x,y € X, we use the standard notation
x -y to denote the dot product of the vectors x and y and |x| to denote the
norm of x. Most of our results are independent of the particular norm used,
however, in some parts we will focus on the infinity norm, which is defined as
|x| = mazi<i<n(x);. We use B¢(x) to denote an open ball of radius € around x,
that is, the set {y ||x —y| < €}.

Sequences. Let SeqgDom denote the set of all subsets of N which are prefix closed,
where a set S C N is prefix closed if for every m,n € N such that n € S and
m <mn,m € S. A sequence over a set A is a mapping from an element of SeqgDom
to A. Given a sequence 7 : S — A, we also denote the sequence by enumerating
its elements in the order, that is, 7(0),7(1),---.

Linear Constraints and Convex Polyhedral Sets. A linear expression is an ex-
pression of the form a - x + b, where x is a vector of n variables and a,b € X.
A linear constraint or predicate is a term e ~ 0, where e is a linear expression
and ~ is a relational operator in {<, <,=}. A linear constraint a-x+ b is called
homogenous if b = 0. Given a linear constraint C' given by a-x+ b ~ 0, we use
[C] to denote the set of all values v € R™ such that a-v+b ~ 0. Given a set of
linear constraints C, we use [C] to denote the convex set defined by C, namely,
Noccld.

A half-space in X is a set which can be expressed as the set of all points x € X
satisfying a linear constraint, a-x+b ~ 0, where ~€ {<, <}. A convez polyhedral
set is an intersection of finitely many half-spaces. We will use ConvPolyhed(X)
to denote the set of all convex polyhedral subsets of X.

286 P. Prabhakar and M.G. Soto

Given a convex polyhedral set P defined by the constraints {e; ~1 0,--- , ex
~ 0}, a face of P is a non-empty polyhedral set defined by constraints of the
form {e; ~} 0,---,ex ~} 0}, where each ~/} is either ~; or =, and at least
one of the ~/ is =. We denote the set of faces of a convex polyhedral set P by
Faces(P).

Given a convex polyhedral set P defined by the constraints {e; ~1 0,- - ,eg
~, 0}, the closure of P, denoted Closure(P), is the set defined by the constraints
{e1 <0, -+ ,e; < 0}. Essentially, every e; < 0 is replaced by e; < 0. Note that
Closure(P) contains all the limit points of P.

Given a convex polyhedral set S and a point s € S, we call the cone of § at s,
the set of all vectors v # 0 such that there exists a ¢t > 0, for which s + vt € S.
We denote this set by Cone(S,s).

A partition P of R™ into convex polyhedral sets is a finite set of convex
polyhedral sets { Py, -+ , Py} such that UF_; P, = R"™ and for each i # j, P,NP; =
(. We will call the P;s as regions.

Graphs. A graph G is a pair (V, E), where Vs a finite set of nodesand EC Vx V
is a finite set of edges. A path w of a graph G = (V, E) is a finite sequence of
nodes vp, - - - ,vg such that (v;,v;41) € F for 0 < i < k. The length of a path
m, denoted ||, is the number of edges occurring in it. A path 7 is simple if all
the nodes occurring in the path are distinct. A cycle in a graph G = (V, E) is a
path m = vg, - - - , vx such that the first and the last nodes are the same, that is,
vg = vg. A cycle is simple if all the nodes except the last one are distinct.

A node v is reachable from a node u if there exists a path whose first element
is u and the last element is v, that is, there exists a 7 such that 7(0) = v and
w(|Dom(m)| — 1) = v.

We associate weights with the edges of a graph using weighting functions. A
weighted graph is a triple G = (V, E, W), where (V, E) is a graph and W: F —
R>o U {oo} is a weighting function. We extend the weight function to a path as
follows. Weight of a path 7 of G, denoted W(r), is Ilo<;<|pom(r)|—1w((7 (i), m(i
+1)).

4 Piecewise Constant Derivative System (PCD)

In this section, we introduce a formal model for a subclass of hybrid systems
called piecewise constant derivative systems [3]. Hybrid automata [14] are a
popular formal model for systems with mixed discrete-continuous behaviors. A
hybrid automaton combines the finite automaton model for discrete systems and
the differential equation formalism for continuous dynamics. Here we consider
a class of systems in which the statespace is partitioned into a finite number of
regions with each region corresponding to a discrete mode; and the continuous
dynamics is provided by a differential equation of the form x = a, where x is a
vector of variables and a is a constant vector. Hence, in each region the variables
evolve at a constant rate given by the vector associated with the region and is
allowed to switch to a neighboring region at the common boundary. Next, we
define the system formally.

Abstraction Based Model-Checking of Stability of Hybrid Systems 287

Definition 1. An n-dimensional PCD H = (P,), where P is a partition of
R™ into convex polyhedral sets and ¢ : P — R™ is the flow function.

The semantics of a PCD H is given by the set of executions exhibited by the
system. An execution of a PCD starting from a point x € R™ follows the flow
associated with the region in which x lies until it reaches the boundary of a
neighboring region upon which it switches to the flow of the new region.

We need some definitions. An ezecution interval is either [0,T] representing
the set {t € R|0 <t < T}, [0,T) representing the set {t € R|0 <t < T}
or [0,00) representing the set {¢ € R|0 < t}. We denote the set of execution
intervals by IntEzec. Given an execution interval I € IntEzec, we define its size,
denoted Size(I), to be T if I = [0,T] or [0,T) and co otherwise.

Definition 2. An execution o of H = (P,p) is a function ¢ : I — R,
where I € IntExec, such that there exists a finite or infinite sequence n =
(P1,01)(Pa,d2) - -+ satisfying for every 1 <i < Dom(n):

— P, € P and ifi < Dom(n), P; # P11,

— 6; in R>o/0 for i < Dom(n) and if Dom(n) is finite, then O|pomey) in
(Rs0/0) U {o0}.

= I = [0,tpom(y)] if Dom(n) is finite and I = [0,Lpom(y)) otherwise, where
to =0 and for 1 < j < Dom(n), Y.1_, & =t;, and

— for every t € I, o(t) = o(t;) + p(P;)(t — t;), where i is the smallest integer
such that t; <t <t;41.

We denote the set of all executions of H by Ezec(H). We call an execution o
with domain [0,7] for some T' € R>g a finite execution and one with domain
[0,00) a complete execution.

Definition 3. Given a finite execution o, we define the scaling of o, denoted
Scaling(o), to be |o(Size(Dom(0)))|/|o(0)].

Representation of a PCD. We represent the PCD by specifying a common set, of
linear predicates such that each of the regions is the conjunction of the predicates
in either the positive or the negative form. More precisely, an n-dimensional PCD
is represented by H# = (C, F), where C is a set of linear predicates and F : 2¢ — R”
is the flow function. The regions of H, denoted Regions(C) or Regions(H), are
the non-empty sets R C R™ such that R = Ncea[C] N NcgaR™\[C] for some
A C C. We call R the region generated by A. H consists of at most 2/°! polyhedral
sets. The flow associated with a region R generated by A C C is F(A). From now
on, we use the both the notations for representing a PCD, and the particular
notation will be clear from the context.

Notation. We will assume that the constants in the linear predicates and flows
are all rational numbers.

288 P. Prabhakar and M.G. Soto
5 Stability: Lyapunov and Asymptotic

In this section, we define two classical notions of stability in control theory, and
state some general results about stability of PCD. We consider stability of the
system with respect to an equilibrium point, which in our setting will be the
origin.

Definition 4. 0 is an equilibrium point of a PCD H if every execution of H
starting at O remains at 0, that is, every execution o € Exec(H) with 0(0) =0
satisfies o(t) = 0 for every t € Dom(o).

Intuitively, Lyapunov stability captures the notion that an execution starting
close to the equilibrium point remains close to it, and asymptotic stability, in
addition, requires that executions starting in a small neighborhood around the
equilibrium point converge to it.

Definition 5. A PCD H is said to be Lyapunov stable, if for every e > 0, there
exists a § > 0 such that for every execution o € Erec(H) with (0) € Bs(0),
o(t) € Be(0) for every t € Dom(o).

We use Lyap(H,e€,d) to denote the fact that for every execution o € Ezxec(H)
with o(0) € Bs(0), o(t) € B.(0) for every t € Dom(o). In fact, we do not need
to consider all possible values for € in the definition of Lyapunov stability but
only values in a small neighborhood around 0.

Proposition 1. A PCD H is Lyapunov stable if and only if there exists an
€ > 0 such that for every 0 < € < €, there exists a 6 > 0 for which Lyap(H, ¢, 0)
holds.

Definition 6. A PCD H is said to be asymptotically stable, if it is Lyapunov
stable and there exists a § > 0 such that every complete execution o € Exec(H)
with o(0) € Bs(0) converges to 0, that is, for every € > 0, there exists a T €
Dom(o), such that o(t) € B¢(0) for everyt > T.

We use Asymp(H,d) to denote the fact that every complete execution o €
Ezec(H) with 0(0) € Bs(0) converges to 0.

6 Abstraction Based Model-Checking

In this section, we describe the abstraction based model-checking procedure for
Lyapunov and asymptotic stability. The main steps in the procedure are as
follows:

1. Preprocessing: We convert a PCD to a normal form in which all the con-
straints are homogenous.

2. Abstraction: We construct an abstract finite weighted graph using face based
abstraction which is a sound abstraction for analyzing Lyapunov and asymp-
totic stability. The construction of the graph involves solving satisfiability of
a set of linear constraints and linear programming problems.

Abstraction Based Model-Checking of Stability of Hybrid Systems 289

3. Model-Checking: This involves analyzing the abstract graph for the absence
of cycles with weight greater than 1 (or greater than or equal to 1) and
analyzing the regions of the PCD for “non-explosion”.

Next, we explain each of the steps in detail.

6.1 Normal Form for PCD

In this section, we present a reduction of a general PCD to one in a normal
form. We say that a PCD is in normal form if each of the predicates defining the
regions is homogeneous.

Definition 7. A PCD H = (C, F) is said to be in normal form if each of the
predicates in C is homogenous.

Next, we define a transformation of a PCD H to a normal form NF(#) such that
‘H and NF(H) are equivalent with respect to Lyapunov and asymptotic stability.

Definition 8. Given H = (C,F), NF(H) = (C', F'), where C' C C is the set
of homogenous predicates in C, and F (A) = F(A"), where A’ = AU{C|C €
C\C',0 € [C]}.

NF(H) is in normal form by definition. Note that all the region of NF(H) contain
0 on their boundary.

Proposition 1. Let H = (C, F) be a PCD. Then NF(H) = (C', F') is a normal
PCD such that:

1. H is Lyapunov stable if and only zf7:l is Lyapunov stable.
2. H is asymptotically stable if and only if H is asymptotically stable.

6.2 Abstraction: Construction of the Weighted Graph

In this section, we present the abstraction of a PCD to a finite weighted graph.
The abstraction consists of the faces of the regions of the PCD as the vertices,
and an edge corresponds to the fact that there exists an execution from one face
to the other. In addition, we also track how much “closer” the execution moves
towards the origin between the starting and ending points of executions from
one face to the other. This “scaling” in the distance to the origin appears as
a weight on the corresponding edge. The finite graph is then be analysed for
deducing the stability of the original PCD.
First, we need the definition of a region execution.

Definition 9. Given a region R of H, an R-execution of H is an execution o
of H such that o(t) € R for every t € (0, Size(Dom(0))). An R-execution o of
H is said to be extreme if it is finite and o(0) € fi1 and o(Size(Dom(c))) € fo
for some f1, fa € Faces(R). A region execution of H is an R-execution of H for
some region R of H.

Remark 1. Note that every region execution is either a finite execution or a
complete execution.

290 P. Prabhakar and M.G. Soto

Abstract Graph G(#) and Its Correctness. Let H = (C,F) be an n-
dimensional PCD. The weighted graph G(H) = (V, E, W) is defined as follows.

1. The set of vertices V is the set of faces of the regions of H, that is, f €
Faces(R), where R € Regions(C).

2. The set of edges F consists of pairs (f1, f2) such that fi, fo € Faces(R) for
some R € Regions(C) and there exists a finite R-execution o € Ezec(H) with
o(0) € f1, o(Size(Dom(0))) € fa.

3. The weight associated with the edge e = (f1, f2) € E is given by sup{|o(Size
(Dom(0)))|/|o(0)] : o is a finite region execution of H,o(0) € f1,0(0) #
0,0(Size(Dom(c))) € fa}.

Note that the weight on all the edges is greater than or equal to 0. The next
proposition states that the weight on an edge is an upper bound on the scaling
of all the executions corresponding to it.

Proposition 2. A finite R-execution o of H witho(0) € fi and o(Size(Dom(o)))
€ fa for some f1, fa € Faces(R) is such that Scaling(c) < W((f1, f2))-

The next theorem states a sufficient condition on the graph G(#) for the PCD
‘H to be Lyapunov stable. We need the definition of an exploding region.

Definition 10. An execution o of H is said to be diverging if for every e > 0,
there exists at € Dom(o) such that o(t) € B(0).

Definition 11. A region R of a PCD H is said to be exploding if there exists
an R-execution o such that o diverges.

Proposition 3. A region R of a PCD H is exploding if and only if p(R) €
Cone(R,0).

Theorem 1. A PCD H is Lyapunov stable if the following hold:

1. Every simple cycle m of G(H) satisfies W(m) < 1.
2. No region of H is exploding.

The above theorem says that the abstraction using the finite weighted graph is
sound. In fact, for the two dimensional case the theorem provides a necessary
and sufficient condition (see [25]). However, the same is not true for higher
dimensions.

Theorem 2. A PCD H is asymptotically stable if the following hold:
1. BEvery simple cycle m of G(H) satisfies W(m) < 1.
2. No region of H is exploding.

Computing the Graph. Next, we explain the algorithm for computing the
edges and the weights associated with them.

Abstraction Based Model-Checking of Stability of Hybrid Systems 291

Given aregion R € Regions(H) and faces f1, fo € Faces(R), let Wgeg(f1, f2, R)
denote sup{|o(Size(Dom(c)))|/|o(0)] | o is afinite R-executionof H, o (0) € f1,0(0)
0,0(Size(Dom(0))) € fa}. Note that W((f1, f2)) = maz{ Wgey(f1, f2, R)|R €
Regions(H), f1, f2 € Faces(R)}. Next we show how to compute Wgey(f1, f2, R) by
using linear programming.

Let us fix aregion R and faces f1, fo € Faces(R). First, observe that Wgeo(f1, fo,
R) is equal to

supq{|va|/|v1]|3t > 0,v1 € f1,v1 # 0,v3 € fo,va =vi + @(R)t} (1)

Let ’(b(fl,fg,R) = dt > 0,vy € fl,Vl 7£ 0,vy € f2,v2 = V1 + @(R)t If
¥(f1, f2, R) is feasible, then Equation [[lis equivalent to the following:

sup |val|/|v1|s.t. (2)
t > 0,vy € Closure(f1),v1 # 0,va € Closure(fs),va = v1 + @(R)t
Further, we observe that it suffices to consider vy such that |vi| = 1, due to

the fact that the constraints corresponding to the faces and the regions are
homogenous linear constraints. Hence Equation [2] is equivalent to:
sup |vals.t. (3)
t > 0,vy € Closure(f1),ve € Closure(fz),ve = vi + p(R)t,|vi| =1

Note that Equation [3is not a linear program in general. However, observe that
the results in the paper do not depend on the norm. Hence, we can choose
the infinity norm for our analysis, which is defined as, |x| = max;(x);. Then
we can computing Equation Bl by solving O(n?) linear programs, where n is the
dimension of H, as follows. Define a linear program P (3, j, a, §), where 1 < 4,5 <
n and «, 8 € {—1,+1} as follows:

maz a(y);s.t. (4)
t > 0,x € Closure(f1),y € Closure(fa2),y = x+ @(R)t
Ck<y>2 Z 0> <X>J = Ba

and for every 1 < k <mn,k#j

-1 S Xk S 1
Note that for a fixed i, j, @ and 8, P(i, j, a, 8) is a linear programming problem.
Further, Equation [lis equivalent to maz; ;. P (3, j, @, B).

The following lemma summarizes the computation of the weights on the edges,

and show that solving Equation [Blis equivalent to solving 4n? linear programming
problems.

Lemma 1. If ¥(f1, fa, R) holds, then
Wreg(f1, fo, R) = mati<; j<n.apef-1,+1} P, J, @, B).

6.3 Model-Checking

In this section, we discuss the algorithm for verifying the conditions in Theorem
@ and Theorem 21

292 P. Prabhakar and M.G. Soto

First, note that in order to check if a region R is exploding, using Proposition
B it suffices to check if ¢(R) € Cone(R,0). This condition is equivalent to
checking if t > 0 A ¢(R)t € R is satisfiable, which can be verified using an SMT
solver for linear real arithmetic.

Next, we describe a dynamic programming solution for analyzing the graph
for cycles with weight greater than or equal to 1. It is similar to the the dynamic
programming solution to the shortest path algorithm. However, the operation
of addition is replaced by multiplication here. We compute iteratively g*(f1, f2)
for each 1 < k < s, where s is number of vertices in the graph and g*(f1, f2) is
the maximum weighted path among all paths from f; to f2 in G(H) = (V, E, W)
of length at most k. The iterative computation is as follows:

g (f1, f2) = W(fl,fz) if (f1, f2) € Eand —1 otherwise
9" (f1, f2) = maz{g"~ 1 (f1, f2), maz gy, 1,)e (9" (f1, f3) x W(fs, f2))}, for

1<k <s.

The next lemma states that the maximum weight of the paths in the graph can
be used to analyse for existence of cycles of weight greater than or equal to 1.

Lemma 2. Let g be the function computed above, and s be the number of vertices

in G(H). Then:

1. ¢°(f, f) < 1 for every f € V if and only if G(H) does not contain simple
cycles with weight > 1.

2. ¢°(f, f) < 1 for every f € Vif and only if G(H) does not contain simple
cycles with weight > 1.

The above lemma relies on the fact that if there exists a cycle of weight > 1, then
at least one of the cycles in its simple cycle decomposition has weight > 1. The
above algorithm takes time polynomial in the number of vertices or equivalently
faces. One can in fact trace the cycles which violates the condition of Theorem [I]
or Theorem Pl Such a cycle is a counter-ezample in the abstract weighted graph
which shows a potential violation of stability.

7 Experiments

Our abstraction and refinement algorithms have been implement in Python 2.7
and the experiments are run on Mac OS X 10.5.8 with a 2 GHz Inter Core 2
Duo processor and a 4GB 1067 MHz DDR3 memory. We use the SMT solver
Z3 version 4.3.2 to solve satisfiability of linear real arithmetic formulas which
are required for determining the existence of edges and checking if a region is
exploding. We use the linear programming package GLPK version 4.8 for solving
the linear optimization problem required in constructing the weights on the
edges. There are no standard benchmarks for evaluating the stability of hybrid
systems, especially, for the class that we consider. Hence, most of the experiments
are performed on hand constructed examples. Many of them are generalizations
of the three dimensional example considered in Section Pl by starting with an n-
dimensional grid and transforming it systematically into an example in a normal

Abstraction Based Model-Checking of Stability of Hybrid Systems 293

form of n + 1-dimensions. We believe that by extending the approach to more
complex hybrid systems, we can experiment on examples from real applications.

Our results are tabulated in Table [l In the table, the column with heading
Var corresponds to the number of variables in the PCD, Pred corresponds to
the number of predicates, Reg to the number of regions, Faces to the number of
faces, F'T, GT, VT and Total are the time in seconds for constructing the faces,
the weighted graph, the verification (graph analysis for cycles) and the total
time, Lyap states whether the system is Lyapunov stable or not, Asymp states
whether the system is asymptotically stable or not, and GL and GA report the
result of the abstraction based analysis stating whether the abstract system is
Lyapunov stable and asymptotically stable respectively.

Table 1. Experiments

Var Pred Reg Faces FT(sec) GT (sec) VT (sec) Total (sec) Lyap GL Asymp GA

2 1 8 9 2.3 1.8 <1 5 Y Y Y Y
2 2 12 13 5.7 2.6 <1 9 Y Y Y

2 3 16 17 10.2 3.8 <1 15 Y Y Y Y
2 4 20 21 15.2 4.5 <1 21 Y Y Y Y
2 5 24 25 21.7 5.6 <1 28 Y Y Y Y
3 1 32 75 36.7 62.4 <1 100 Y N N N
3 2 72 179 1041 156.9 38 299 Y N N N
3 3 128 331 130.7 306.7 575 1013 Y N N N

We consider a two dimensional and a three dimensional example, and exper-
iment with an increasing set of predicates. The face construction and the graph
construction time increase almost linearly in the number of faces. The graph
analysis time is at most cubic in the size of the graph. However, the number of
faces can increase quickly with the increase in the number of predicates. Hence,
it is crucial to choose the predicates carefully. Also, observe that there are cases
where the system is stable, but the graph construction is too coarse and hence
concludes that the system is unstable. Adding more predicates might prove that
the system is stable. In this paper, we do not focus on the problem of choosing
the right predicates. The future work will focus on this problem by incorporating
an abstraction refinement loop to the algorithm.

8 Conclusions

In this paper, we explored model-checking as an alternate approach to stability
verification. We proposed a modification of predicate abstraction based on faces
in the system to abstract into a finite weighted graph, where the weights track
the increase or decrease in the distance of the state along the executions, which
can be efficiently constructed using linear programming. The graph was then
verified for the absence of simple cycles whose weight is less than or equal to

294 P. Prabhakar and M.G. Soto

1 for Lyapunov stability and less than 1 for asymptotic stability, which can be
efficiently solved using dynamic programming. Our experimental results show
that the method has the potential to scale.

Our model-checking algorithm returns an abstract counter-example which is
a simple cycle with weight greater than 1 for Lyapunov stability and weight
greater than or equal to 1 for asymptotic stability. One interesting future direc-
tion is to develop a counter-example guided abstraction refinement framework
using the abstract counter-example returned in the model-checking phase. An-
other research direction is to extend the results to more complex dynamics. The
extension of our results to the case of hybrid systems with polyhedral constraints
(not necessarily non-overlapping invariants) and constant or rectangular flows
should be straightforward. More complex classes might require additional work
given that the exact post computation is not feasible in general.

Acknowledgements. We would like to thank Mahesh Viswanathan for discus-
sions on the topic.

References

1. Alur, R., Dang, T, Ivanvcié, F.: Counter-Example Guided Predicate Abstraction of
Hybrid Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208-223. Springer, Heidelberg (2003)

2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Informatica 43(7), 451-476 (2007)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138(1), 35-65 (1995)

4. Branicky, M.S.: Stability of hybrid systems. In: Unbehauen, H. (ed.) Encylopedia of
Life Support Systems. Control Sytems, Robotics and Automation, volume Theme
6.43, chapter Article 6.43.28.3. UNESCO Publishing (2004)

5. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of the IEEE Real-Time Systems
Symposium (2012)

6. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model
Checking of Hybrid Systems. International Journal on Foundations of Computer
Science 14(4), 583-604 (2003)

7. Davrazos, G., Koussoulas, N.T.: A review of stability results for switched and
hybrid systems. In: Proceedings of the Mediterranean Conference on Control (2001)

8. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement
for Timed Automata. In: Proceedings of Formal Modeling and Analysis of Timed
Systems, pp. 114-129 (2007)

9. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid sys-
tems. In: Proceedings of the International Conference on Hybrid Systems: Compu-
tation and Control, pp. 115-124 (2012)

10. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hytech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258-273. Springer,
Heidelberg (2005)

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Abstraction Based Model-Checking of Stability of Hybrid Systems 295

Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291-305. Springer, Heidel-
berg (2005)

Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Sys-
tems, Control Systems Magazine 29, 28-93 (2009)

Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proceedings of the ACM Symposium on Theory of Computation,
pp. 373-382 (1995)

Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the IEEE
Symposium on Logic in Computer Science, pp. 278-292 (1996)

Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)
Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)
Oehlerking, J., Burchardt, H., Theel, O.: Fully automated stability verification for
piecewise affine systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 741-745. Springer, Heidelberg (2007)

Parrilo, P.A.: Structure Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization. PhD thesis, California Institute of Technol-
ogy, Pasadena, CA (May 2000)

Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJICAR
2008. LNCS (LNAI), vol. 5195, pp. 171-178. Springer, Heidelberg (2008)
Podelski, A., Wagner, S.: Model checking of hybrid systems: From reachability to-
wards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 507-521. Springer, Heidelberg (2006)

Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.E.: Verifying toler-
ant systems using polynomial approximations. In: Proceedings of the IEEE Real-
Time Systems Symposium, pp. 181-190 (2009)

Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48-67. Springer, Heidelberg
(2013)

Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about
stability. In: Proceedings of the International Conference on Hybrid Systems: Com-
putation and Control, pp. 197-206 (2012)

Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: Proceedings of the International Conference on Hybrid Systems:
Computation and Control, pp. 133-143 (2010)

Prabhakar, P., Viswanathan, M.: On the decidability of stability of hybrid systems.
In: Proceedings of the International Conference on Hybrid Systems: Computation
and Control (2013)

Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477-492.
Springer, Heidelberg (2004)

Puri, A., Borkar, V.S., Varaiya, P.: e-approximation of differential inclusions. In:
Proceedings of the International Conference on Hybrid Systems: Computation and
Control, pp. 362-376 (1995)

	Abstraction Based Model-Checking of Stability of Hybrid Systems

	1 Introduction
	2 Overview of the Abstraction and Model-Checking Algorithm
	3 Preliminaries
	4 Piecewise Constant Derivative System (
	5 Stability: Lyapunov and Asymptotic
	6 Abstraction Based Model-Checking
	6.1 Normal Form for
	6.2 Abstraction: Construction of the Weighted Graph
	6.3 Model-Checking

	7 Experiments
	8 Conclusions
	References

