
Chapter 3

DNA Repair Polymerases

Robert W. Sobol

Abstract The nuclear and mitochondrial genomes are under constant attack from

endogenous (metabolic) and exogenous genotoxins. The resulting genomic insults

include damaged bases and nucleotides, deoxyribo- and ribonucleotide misincorporation,

intra-strand and interstrand DNA cross-links, and single-strand and double-strand DNA

breaks. As expected, efficient recognition and removal of these genotoxic lesions is

critical to begin the repair process and restore genome integrity. With the exception of

direct reversal mechanisms, repair of both the nuclear and mitochondrial genomes

requires DNA synthesis to replace the nucleotides or DNA strands removed during the

repair process.Whereas someDNA repair pathways co-opt replicativeDNApolymerases

to synthesize the DNA in the “repair patch,” other DNA repair pathways have dedicated

DNA polymerase enzymes. This chapter will detail the DNA polymerases central to the

major mammalian DNA repair pathways and, where applicable, highlight the unique

roles these DNA polymerases may play in protecting normal cells from mutagenic or

genotoxic agents and in providing resistance to genotoxic chemotherapeutic treatments.
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Abbreviations

50dRP 50-deoxyribose phosphate
8-oxodG 8-oxo-7,8-dihydro-20-deoxyguanosine
AP Apurinic/apyrimidinic

APE1 Apurinic/apyrimidinic endonuclease

BER Base excision repair

dsDNA Double-stranded DNA

FEN1 Structure-specific flap endonuclease 1

HR Homologous recombination

KO Knockout

LigI DNA ligase I

LigIII DNA ligase III

MEF Mouse embryonic fibroblast

MGMT O6-methylguanine-DNA methyltransferase

MMR Mismatch repair

NER Nucleotide excision repair

NHEJ Nonhomologous end joining

PARP1 Poly(ADP-ribose)polymerase-1

PARP2 Poly(ADP-ribose)polymerase-2

PCNA Proliferating cell nuclear antigen

Polκ DNA polymerase kappa

Polλ DNA polymerase lambda

Polβ DNA polymerase beta

Polα DNA polymerase alpha

Polγ DNA polymerase gamma

Polδ DNA polymerase delta

Polη DNA polymerase eta

Polθ DNA polymerase theta

Polι DNA polymerase iota

Polκ DNA polymerase kappa

Polμ DNA polymerase mu

RFC Replication factor C

RNS Reactive nitrogen species

ROS Reactive oxygen species

SSBs Single-strand breaks

ssDNA Single-stranded DNA

TdT Terminal deoxynucleotidyltransferase

UV Ultraviolet

WRN Werner syndrome protein helicase
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3.1 Introduction

Human cells repair thousands of DNA lesions per day to prevent the accumulation

of DNA mutations or genome aberrations that can impact cellular survival and

genomic integrity (Lindahl 1993). These lesions manifest as base (e.g., deamination

of cytosine to uracil) or nucleotide modifications (e.g., thymine–thymine dimers),

deoxyribo- and ribonucleotide misincorporation (mismatches), intra-strand or inter-

strand DNA cross-links, and single-strand or double-strand DNA breaks. These

numerous and diverse types of DNA lesions derive from both endogenous and

exogenous sources. Base damage can be induced by a variety of reactive oxygen

species (ROS), reactive nitrogen species (RNS), and sources of DNA alkylation

(Svilar et al. 2011). Such molecules stem from endogenous sources via cellular

metabolism and exogenous sources mediated by environmental exposure. Addi-

tional modifications include simple and complex DNA adducts (Marnett et al. 2003;

Marnett 2000; Knutson et al. 2007, 2009; Otteneder et al. 2006), ultraviolet light-

induced pyrimidine dimers (Setlow and Setlow 1962), replication errors that give

rise to mutations, deletions, or insertions (Kunkel and Erie 2005), as well as gross

modifications such as DNA cross-links (Deans and West 2011) and DNA double-

strand breaks (DSBs) from environmental, genetic, and endogenous sources

(Friedberg et al. 2006).

To facilitate the repair of these lesions, cells have multiple DNA damage

response and DNA repair mechanisms that signal the presence of lesions and

promote DNA repair (Jackson and Bartek 2009; Friedberg et al. 2006; Wood

et al. 2001, 2005; Hoeijmakers 2001). A general overview of mammalian DNA

repair pathways and the lesions each repairs is depicted in Fig. 3.1. With the

exception of direct reversal (DR) repair processes, each pathway utilizes one or

more DNA polymerases as an integral part of the overall DNA repair pathway. The

major DR pathway proteins include O6-methylguanine DNA methyltransferase

(MGMT) and the α-ketoglutarate-dependent dioxygenase enzymes: AlkB

homologues 1, 2, and 3 (ALKBH1, ALKHB2, ALKBH3). These proteins directly

reverse the damage to the DNA base without the requirement of new DNA

synthesis (Fu et al. 2012; Yi and He 2013), each with unique lesion specificity.

Further detail on this mode of direct reversal DNA repair can be found elsewhere

(Fu et al. 2012; Yi and He 2013).

The remaining DNA repair pathways depicted in Fig. 3.1 utilize DNA

polymerases to replace the excised lesion-containing nucleotides. Base lesions

and DNA SSBs are primarily repaired by the base excision repair (BER) pathway

(Almeida and Sobol 2005, 2007; Svilar et al. 2011). As shown and as will be

discussed, BER utilizes specific DNA polymerases depending on the initiating

lesion, the subcellular location (nuclear vs. mitochondria), and the BER

sub-pathway. Similarly, nonhomologous end joining (NHEJ), a pathway for repair

of DNA DSBs, also utilizes specialized DNA polymerases (Lieber 2008; Lange

et al. 2011; Ramsden 2011; Ramsden and Asagoshi 2012). Another class of

specialized DNA polymerases, translesion DNA polymerases, are discussed in
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Chap. 4. The nucleotide excision repair (NER) pathway is a multi-protein, highly

complex DNA repair pathway that plays an important role in the repair of DNA

lesions induced by many genotoxins and facilitates the removal of bulky DNA

adducts that grossly distort the DNA double helix and those that cause a block to

transcription (Hoeijmakers 2001; de Laat et al. 1999; Wood 1996; Shuck

et al. 2008). As depicted in Fig. 3.1, NER utilizes primarily replicative DNA

polymerases but also uses DNA polymerase kappa (Polκ) separate from its role in

lesion bypass or translesion DNA synthesis (Ogi et al. 2010). The remaining

pathways for the repair of DNA mismatches (MMR), DNA DSBs via homologous

recombination (HR), or DNA intra-strand cross-links via the FANC pathway either

co-opt replicative DNA polymerases or use specialized polymerases to synthesize

DNA after lesion removal or to replicate DNA from the homologous template. The

following sections will provide an overview of these DNA repair pathways,

emphasizing the role of the DNA polymerases specific to each pathway. Where

appropriate, each section will also include relevant discussion on the alterations in

these DNA polymerases in cancer since defects in these DNA repair pathways can

promote tumorigenesis and are common in human cancers (Hanahan and Weinberg

2011; Harper and Elledge 2007; Curtin 2012; O’Driscoll 2012; Hoeijmakers 2009).
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Fig. 3.1 Schematic representation of the mammalian DNA repair pathways. This figure depicts

the mammalian DNA repair pathways, the major proteins within each pathway and highlights

(black lettering) the DNA polymerases involved in each pathway. Adapted from Vens and Sobol

(2013)
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3.2 DNA Polymerases in Base Excision Repair

The proteins of the base excision repair (BER) pathway participate in the repair of

dozens of base modifications that result from alkylating agents, reactive nitrogen

species, and reactive oxygen species (oxidative DNA damage), among others

(Svilar et al. 2011; Almeida and Sobol 2005, 2007). Such damage can arise from

numerous exogenous and endogenous sources, resulting in a multitude of detrimen-

tal cellular effects, including mutations, genome rearrangements, altered gene

expression, and the onset of cell death or senescence (Hoeijmakers 2001; Baute

and Depicker 2008; Hegde et al. 2011). The BER pathway model shown in Fig. 3.2

is initiated by a DNA glycosylase such as MYH, a unique glycosylase with

specificity for a normal base (adenine) when paired opposite the ROS modified

form of deoxyguanosine, 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG) (Svilar
et al. 2011; David et al. 2007). The remaining ten DNA glycosylases are specific for

many types of base lesions, as reviewed elsewhere (Almeida and Sobol 2007; Svilar

et al. 2011; Fu et al. 2012). Once the base lesion is removed, the product, an abasic

or apurinic/apyrimidinic (AP) site, is a substrate for an endonuclease specific for AP

sites, the AP endonucleases APE1 or APE2 (although the majority activity results

from APE1) (Almeida and Sobol 2007). There is general consensus that the

resulting DNA single-strand break after APE1 (or APE2) cleavage forms a nucle-

ation site for scaffold proteins such as PARP1 and XRCC1 followed by recruitment

of the proteins needed to complete repair (not shown in this figure) (Almeida and

Sobol 2007). Either DNA polymerase β (Polβ) or DNA polymerase lambda (Polλ)
can be recruited to conduct end-trimming and DNA synthesis. Polβ is considered

the major end-trimming (50dRP lyase activity) and DNA polymerase enzyme in

BER although, as will be detailed below, Polλ plays a significant role in oxidative

damage repair. Alternate DNA polymerases have also been suggested to participate

in BER, depending on the base lesion and the subcellular location (nuclear

vs. mitochondrial), as will be discussed below. The short-patch BER pathway

(Fig. 3.2, left panel) likely contributes 90 % of the repair mediated by BER, but

if the 50 end of the gap is blocked such that end-trimming (50dRP lyase activity) is

attenuated, both Polβ and DNA polymerase δ (Polδ) or DNA polymerase ε (Polε)
can extend the repair patch to 2–12 bases, completing a form of BER known as

long-patch BER (Fig. 3.2, right panel). Finally, the repair gap is sealed or ligated by

either DNA ligase III (LigIII) or DNA ligase I (LigI). Recently, it was suggested

that LigI functions as the primary BER DNA ligase in the nucleus with LigIII

playing a predominant role in the mitochondria (Gao et al. 2011; Simsek

et al. 2011).
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3.2.1 DNA Polβ as the Primary BER Polymerase

DNA polymerase β (Polβ) is a member of the X-family of DNA polymerases

(Burgers et al. 2001; Bebenek and Kunkel 2004) and is an essential BER protein,

considered the major or primary BER DNA polymerase. At 335 amino acids

(39 kDa), Polβ is the smallest of the human DNA polymerases (Beard and Wilson

2006; Lange et al. 2011; Sobol et al. 1996). Polβ has two active sites. The 50dRP
lyase activity is restricted to the 8 kDa N-terminal domain and requires the active

site residue K72, whereas the nucleotidyl transferase or DNA polymerase activity

resides within the C-terminal domain and requires the aspartate triad D190, D192,

and D256, as depicted in Fig. 3.3a. Structurally, the enzyme contains four domains

(8K, Fingers, Palm, and Thumb), with the 8K and Fingers domain comprising the

dRP lyase activity and the Palm and Thumb domains comprising the majority of the

nucleotidyl transferase activity. As depicted in the diagram and structural represen-

tation (Fig. 3.3b), the single-stranded DNA (ssDNA) and double-stranded DNA

(dsDNA) binding domains reside mostly in the N-terminus, with the enzyme

inducing a bend in the DNA upon binding and nucleotide incorporation (Batra

et al. 2006).

Since its initial discovery (Weissbach 1977; Weissbach et al. 1975a, b), Polβwas
found to be unique in its enzymatic properties (Ono et al. 1979; Tanabe et al. 1979;

Yoshida et al. 1979) as compared to the other newly characterized mammalian

DNA polymerases alpha (Polα), gamma (Polγ), and delta (Polδ) (Byrnes
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Fig. 3.2 Schematic for short-patch and long-patch BER. Simplified diagram depicting the two

sub-pathways for BER: short-patch and long-patch. In short-patch BER, the cleaved AP site can be

further processed by the 50dRP lyase activity of Polβ or Polλ, followed by DNA synthesis and

ligation. However, if the 50 end of the downstream DNA is blocked and cannot be processed,

strand-displacement DNA synthesis can proceed. Processing requires FEN1 to remove the 2–12

base flap, followed by DNA ligation
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et al. 1976; Weissbach 1977). Of the four eukaryotic DNA polymerases identified

by 1977, Polβ was considered to be “the” DNA repair polymerase (Hubscher

et al. 1979; Siedlecki et al. 1980; Waser et al. 1979; Wawra and Dolejs 1979).

These early studies defined a role for Polβ in repair using isolated nuclei or nuclear
extracts, monitoring the incorporation of radioactive nucleosides following DNA

damage (Hubscher et al. 1979; Siedlecki et al. 1980; Waser et al. 1979; Wawra and

Dolejs 1979; Mosbaugh and Linn 1983). Although it was subsequently shown that

Polα can also carry out gap-filling DNA synthesis in a base excision repair (BER)

reaction (Mosbaugh and Linn 1984), the evidence continued to mount in support of

Polβ acting as “the” DNA repair polymerase in the nucleus. Studies continued to

identify a role for Polβ in the repair of damage induced by many different DNA

damaging agents, including bleomycin (Seki and Oda 1986; DiGiuseppe and

Dresler 1989), cigarette smoke (Cui et al. 2012), arsenic (Lai et al. 2011),

UV-radiation (Orlando et al. 1988), benzo[a]pyrene (Ishiguro et al. 1987),

methylmethane sulfonate (Park et al. 1991), ionizing radiation (Price 1993), G-T

mis-pairs (Wiebauer and Jiricny 1990), and uracil (Dianov et al. 1992; Nealon

et al. 1996; Singhal et al. 1995; Singhal andWilson 1993). Interestingly, a truncated
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Fig. 3.3 Structural and functional details for DNA Polβ. (a) Cartoon depiction of DNA

polymerases μ, λ, β, and TdT. For each, the amino acid length is indicated, as well as the domains

for protein binding (BRCT), lyase activity (8 kDa lyase), and DNA polymerase activity

(nucleotidyl transferase). The amino acid residues spanning each domain are also indicated. A

linear depiction of the amino acid residues (1–335) of Polβ is shown, indicating the structural

sub-domains as determined by crystallographic analysis (8K, fingers, palm, and thumb), the

functional domains (dRP lyase and nucleotidyl transferase), and the essential active site residues

(K72 and D190/192/256). (b) Ternary structure of DNA Polβ with DNA substrate and incoming

nucleotide—structure (pdb2fms) depicting DNA Polymerase β (Polβ) with a gapped DNA sub-

strate and dUMPNPP with magnesium in the catalytic site (Batra et al. 2006). The fingers, palm,

and thumb domains of Polβ are indicated. The 8K domain is at the back of the structure facing

away from the plane of the image and is shown behind the DNA in this orientation. Amino acids

altered by germline or somatic mutations are colored red (Sobol 2012b; Donigan et al. 2012)
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version of Polβ expressed in MEFs mediates a dependence of the cells on homolo-

gous recombination (HR) and sensitizes cells to radiation (Neijenhuis et al. 2009,

2010). Several groups reported complete BER in vitro with Polβ and additional

purified proteins (Singhal et al. 1995; Nealon et al. 1996; Kubota et al. 1996). Like

many DNA repair proteins, Polβ has been reported to be modified by and/or

regulated by posttranslational modification, including phosphorylation (Tokui

et al. 1991; Guo et al. 2008; Phosphosite 2010), acetylation (Hasan et al. 2002),

methylation (El-Andaloussi et al. 2006, 2007), as well ubiquitinylation (Parsons

et al. 2008, 2009; Sobol 2008). It is not yet clear how these modifications impact

overall BER or the role of Polβ in BER as in many cases these observations have

been limited to in vitro studies (Sobol 2008; Goellner et al. 2012).

Although it was demonstrated in heterologous systems (Escherichia coli and
Saccharomyces cerevisiae) that Polβ can conduct DNA replication and repair

in vivo (Blank et al. 1994; Ohnishi et al. 1990), it was not until a mouse gene

knockout (KO) (Gu et al. 1994) was made that the specificity of the repair

conducted by Polβ was defined (Sobol et al. 1996).

Characterization of the Polβ KO mouse (Gu et al. 1994; Sugo et al. 2000) and

mouse embryonic fibroblasts (MEFs) deficient in Polβ (Sobol et al. 1996) clearly

demonstrated a requirement for Polβ in repair of alkylation and oxidative DNA

damage (Sobol et al. 1996; Horton et al. 2002) and provided a valuable resource to

explore additional functions of Polβ (Esposito et al. 2000; Gonda et al. 2001), to

evaluate the impact of Polβ on mutagenesis (Niimi et al. 2005; Cabelof et al. 2003;

Sobol et al. 2002; Bennett et al. 2001; Poltoratsky et al. 2005) and mechanisms of

genotoxin-induced cell death (Ochs et al. 1999, 2002; Horton et al. 2003, 2005; Le

Page et al. 2003; Sobol et al. 2003; Trivedi et al. 2005; Cabelof et al. 2004; Tomicic

et al. 2001), to investigate alternate or compensatory repair pathways in the absence

of Polβ (Biade et al. 1998; Fortini et al. 1998, 1999; Stucki et al. 1998; Dianov

et al. 1999; Braithwaite et al. 2005b), to address structure–function relationships or

protein partners of Polβ in vivo (Kedar et al. 2002; Niimi et al. 2005; Sobol

et al. 2000) and most recently to evaluate changes of gene expression in response

to Polβ depletion (Li et al. 2012a). The most definitive and reproducible endpoint

that has been used to evaluate Polβ participation in repair in vivo is survival

following DNA damage such as exposure to alkylating agents (Sobol et al. 1996,

2000). Unfortunately, the Polβ mouse knockout is lethal just after birth (neonatal

lethality) (Sugo et al. 2000; Gu et al. 1994), complicating efforts to evaluate the role

of Polβ in an animal model. Surprisingly, it is the 50dRP lyase function of Polβ
(Matsumoto and Kim 1995) that appears to be essential and sufficient for alkylating

agent resistance (Sobol et al. 2000). In the absence of Polβ (in MEFs), cells are

unable to efficiently repair the highly toxic 50dRP moiety and therefore are hyper-

sensitive to different types of alkylating agents such as methylmethane sulfonate,

N-methyl-N-nitrosourea, and N-methyl-N0-nitro-N-nitrosoguanidine (Sobol

et al. 1996, 2000, 2002, 2003; Trivedi et al. 2005), the thymidine analog

5-hydroxymethyl-20-deoxyuridine (Horton et al. 2003), as well as the therapeutic

agent temozolomide (Trivedi et al. 2005; Horton et al. 2003) and radiation

(Neijenhuis et al. 2005, 2009, 2010; Vens and Begg 2010). In human cells, Polβ
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is suggested to play a role in the cellular response to cisplatin (Kothandapani

et al. 2011) but plays a significant role in the repair of the DNA lesions induced

by the clinical alkylating agent temozolomide (Trivedi et al. 2008; Tang et al. 2010,

2011; Goellner et al. 2011; Stachelek et al. 2010), prompting a robust series of

investigations to identify specific Polβ inhibitors (Goellner et al. 2012; Wilson

et al. 2010; Barakat et al. 2012; Jaiswal et al. 2009).

In mice, an intact 50dRP lyase domain appears to rescue the neonatal lethality of

the Polβ mouse knockout yet does not appear to be sufficient to rescue all of the

defects associated with the loss of Polβ in the mouse (Senejani et al. 2012). By

expression of a mutant of Polβ deficient in polymerase activity (Y265C) in a Polβ
KO background, it was demonstrated that the mice (homozygous for the Y265C

mutant Polβ) were born at the expected Mendelian ratios, but loss of the polymerase

function in vivo led to the accumulation of repair intermediates and less than 40 %

survived 24 h after birth, remaining smaller than the WT littermates even 3 weeks

after birth (Senejani et al. 2012).

Dozens of somatic or germline mutations of Polβ have been identified and

characterized (Sobol 2012b; Nemec et al. 2012; Donigan et al. 2012), prompting

the suggestion that Polβ may be mutated in as much as 30 % of human tumors

(Starcevic et al. 2004; Sweasy et al. 2006; An et al. 2011). As depicted in Fig. 3.3b,

these mutations are not limited to a single domain or active site and are found

throughout the Polβ open reading frame (note the red-shaded regions in the cartoon

depicting locations of somatic and germline mutations in the structure of Polβ). In
many cases, these mutations show little or no effect but several mutations have

significant impact on DNA polymerase activity or 50dRP lyase activity. For exam-

ple, the E295K mutant, first identified in gastric cancer (Iwanaga et al. 1999), is

defective in nucleotidyl transferase activity, and the resulting protein is defective in

BER, inducing cellular transformation when over-expressed (Lang et al. 2007; Li

et al. 2012b). Conversely, the L22P cancer mutant is reported to be defective only in

50dRP lyase activity (Dalal et al. 2008). It has been suggested that tumor-specific

defects in BER such as a defect in Polβ may be exploited for selective therapeutic

options (Neijenhuis et al. 2010), and so it remains to be determined if the presence

of these Polβ mutants can be exploited clinically.

3.2.2 Emerging Role of Polλ in BER of Oxidative Damage

DNA polymerase lambda (Polλ) was first isolated and characterized as a beta-like

(Polβ-like) polymerase (Aoufouchi et al. 2000; Garcia-Diaz et al. 2000; Nagasawa

et al. 2000). Overall, Polλ is a 575 amino acid enzyme that participates in both BER

and nonhomologous end joining (NHEJ). Unique to Polλ is an N-terminal BRCT

domain that is essential for its role in NHEJ (see Sect. 3.2 below). Similar to Polβ,
Polλ is an X-family polymerase with multiple domains, including both the

nucleotidyl transferase activity domain and an 8K domain that contributes the

50dRP lyase activity important for complete BER (Garcia-Diaz et al. 2001)
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(Fig. 3.3a). Although its primary role is likely in NHEJ, the presence of the 50dRP
lyase activity (Garcia-Diaz et al. 2001) has prompted continued investigation into

the role of Polλ in BER, even suggesting that in some cases, both Polβ and Polλ
compete for repair of the same lesions but may have nonredundant roles in vivo

depending on cellular state (Garcia-Diaz et al. 2002). However, it is clear that

whether it is a backup or competing player in BER, Polλ has a significant role in

BER (Lebedeva et al. 2005; Braithwaite et al. 2005a, b).

Both Polβ and Polλ participate in BER in DT40 cells (Tano et al. 2007) and have

redundant as well as independent BER roles in MEFs (Braithwaite et al. 2010).

Further, Polλ-deficient cells are sensitive to radiation (Vermeulen et al. 2007a),

similar to that found by the same group for Polβ (Vermeulen et al. 2007b). How-

ever, the most prominent role for Polλ in BER appears to be in MYH-initiated BER,

as depicted in the short-patch BER model shown in Fig. 3.2a. This unique BER

process requires the removal of the normal adenine base when opposite the ROS

lesion 8-oxodG and insertion of a cytidine opposite 8-oxodG to allow a second

round of BER initiated by OGG1 (Sobol 2012a; David et al. 2007). Interestingly,

both Polβ and Polλ can fill the gap opposite the 8-oxodG lesion (Brown et al. 2007)

although Polλ may be more error prone (Brown et al. 2011). A role for Polλ in

MYH-mediated repair has been shown in cells and with purified proteins (van Loon

and Hubscher 2009).

Multiple structural studies have been completed for Polλ, specific for the lyase
domain (DeRose et al. 2003) or the catalytic core (Garcia-Diaz et al. 2004),

providing significant insight with regard to structure and function (Garcia-Diaz

et al. 2005). The enzyme is phosphorylated by cdk2 (Frouin et al. 2005; Wimmer

et al. 2008) and its stability is regulated by ubiquitylation (Markkanen et al. 2011).

Further, the involvement of Polλ in BER of oxidative lesions is regulated by both

cdk2-mediated phosphorylation and MULE-mediated ubiquitylation (Markkanen

et al. 2012). Most interestingly, there is functional cross talk between these two

PTMs in that phosphorylation of Thr553 on Polλ prevents ubiquitylation and

proteasome-mediated degradation (Wimmer et al. 2008). More recently, it is

suggested that long-patch DNA repair synthesis mediated by Polλ is enhanced by

binding to the Werner syndrome protein helicase (WRN) (Kanagaraj et al. 2012).

Only one cancer mutant of Polλ has been characterized, but it appears to have a

defect in NHEJ as opposed to BER (Terrados et al. 2009). Polλ inhibitors have also
been developed and are suggested to have tenfold greater specificity to Polλ as

compared to Polβ (Strittmatter et al. 2011). It remains to be determined if these

novel tools can advance our understanding on the role of Polλ in BER.

3.2.3 Alternate or Backup Polymerases in BER

The most relevant or obvious backup DNA polymerases that function in BER

(besides Polλ) are those that have been found to participate in the long-patch

sub-pathway of BER (Fig. 3.2b). Long-patch BER is initiated similarly to
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short-patch BER to produce a nicked DNA intermediate but appears to have

different DNA polymerase requirements. Repair completion requires a 30OH moi-

ety for proper nucleotidyl transfer and chain elongation. In cases where the 50

moiety within the gap is refractory to Polβ lyase activity (Gary et al. 1999), Polδ,
Polε, or Polβ, coupled with proliferating cell nuclear antigen (PCNA) and a variety

of other proteins including the flap structure-specific endonuclease 1 (FEN1), poly

(ADP-ribose)polymerase 1 (PARP1), and LigI, synthesizes DNA to fill the gap,

resulting in a displaced DNA flap of 2–12 bases in length (Fortini et al. 1998; Stucki

et al. 1998; Gary et al. 1999; Parlanti et al. 2002; Pascucci et al. 1999; Podlutsky

et al. 2001; Matsumoto et al. 1999). DNA synthesis and strand displacement by

Polβ is stimulated by the combined presence of FEN1 and PARP1 (Prasad

et al. 2000, 2001) or RPA (DeMott et al. 1998). WRN is also observed to stimulate

strand-displacement activities of Polβ (Harrigan et al. 2003) to facilitate long-patch
BER (Harrigan et al. 2006). FEN1 then catalyzes the removal of the ensuing DNA

flap, leaving a nick that has been transferred 2–12 nucleotides downstream of the

original damage site. Finally, the intact DNA strand is restored by ligation mediated

by LigI (Fig. 3.2b).

Recent studies with purified proteins or in cells (DT40 KO cells, MEF KO cells,

or human cells following RNA interference) have implicated additional DNA

polymerases that may participate in nuclear BER. DNA polymerase iota (Polι) is
a Y-family polymerase and encodes a 50dRP lyase activity (Bebenek et al. 2001)

located in the 40-kDa domain spanning residues M79 to M445 (Prasad et al. 2003).

Although Polι is shown to protect cells from oxidative stress suggesting a more

prominent role in BER of oxidative damage (Petta et al. 2008), Polι appears to play
little or no role in the repair of alkylation damage (Poltoratsky et al. 2008; Sobol

2007). Efforts are continuing to uncover the most significant biological role for Polι
(Vidal and Woodgate 2009).

DNA polymerase theta (Polθ), an A-family polymerase, has also been suggested

to be involved in BER (Ukai et al. 2006). As with the other BER DNA polymerases,

Polθ contains a 50dRP lyase domain (Prasad et al. 2009) and Polθ KO cells are

sensitive to oxidative damage (Goff et al. 2009; Yousefzadeh and Wood 2013), all

supportive for a role for Polθ in BER, as well as a role in the response to radiation

(Higgins et al. 2010b). Interestingly, Polθ is known to be upregulated in breast

cancers and, when over-expressed, correlates with poor prognosis (Higgins

et al. 2010a; Lemee et al. 2010; Begg 2010).

3.2.4 Mitochondrial BER

BER has a well-defined role in repair of the mitochondrial genome (Bogenhagen

et al. 2001), although recently it has been suggested that other repair pathways

function in mitochondria (Kazak et al. 2012). Several nuclear BER enzymes also

encode mitochondrial isoforms, i.e., UNG1 (Slupphaug et al. 1993). Additional

mitochondrial BER enzymes have been summarized elsewhere (Svilar et al. 2011;
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Liu and Demple 2010). The sole polymerase in mitochondria is DNA polymerase γ
(Polγ), an A-family DNA polymerase essential for mitochondrial replication (Liu

and Demple 2010) and implicated in mitochondrial BER (Stuart et al. 2005;

Bogenhagen et al. 2001). The enzyme is comprised of the catalytic subunit (Polγ)
and an accessory subunit (POLG2 or POLGB), reported to enhance the BER

capacity of Polγ (Pinz and Bogenhagen 2006). As with the other BER DNA

polymerases mentioned above, Polγ encodes a 50dRP lyase activity domain

(Longley et al. 1998), supporting its role in the short-patch sub-pathway of BER.

Similar to that observed for nuclear BER, Polγ also supports a long-patch BER

sub-pathway in mitochondria via both a FEN1-dependent (Liu et al. 2008) and a

FEN1-independent (Szczesny et al. 2008) reaction, the latter possibly involving

either DNA2 (Zheng et al. 2008) or EXOG (Tann et al. 2011). Interestingly, over

40 disease mutations have been identified in the gene for Polγ (POLG), many of

which lead to mitochondrial disorders (Longley et al. 2005). It has yet to be

determined if these mutations impact the role of Polγ in BER.

3.3 Unique and Specialized DNA Polymerases

in Nonhomologous End Joining

The majority of DNA DSBs are repaired in mammalian cells by the nonhomolo-

gous end joining (NHEJ) pathway (Fig. 3.4a) (Lieber 2008; Downs et al. 2007).

Primarily, the requisite DNA synthesis associated with NHEJ-mediated repair is via

X-family DNA polymerases (Fig. 3.3a). As will be described below, repair of DSBs

in the G2-phase of the cell cycle or during the latter part of the S-phase of the cell

cycle is primarily handled by the homologous recombination (HR) pathway

(Fig. 3.4b). It is suggested that in G2-phase and late S-phase, there are numerous

factors that contribute to DSB repair pathway choice between HR and NHEJ

(Brandsma and Gent 2012). However, in G0-phase, G1-phase and in the early part

of S-phase, DSBs are repaired primarily by the NHEJ pathway. As depicted in

Fig. 3.4a, the DNA ends are recognized by the KU heterodimer (KU70/KU80), a

large DNA-binding protein with significant binding affinity to DNA ends (Doherty

and Jackson 2001). Bound and activated KU undergoes a conformational change,

increasing its affinity (hence recruitment) to the other critical factors required for

NHEJ (Lieber 2008), including the nuclease complex Artemis/DNA-PKcs (Gell

and Jackson 1999; Rivera-Calzada et al. 2007), the DNA polymerases (primarily

Polμ and Polλ) (Ramsden 2011; Ramsden and Asagoshi 2012), and the ligase

complex XLF/XRCC4/LigIV (Costantini et al. 2007; Gell and Jackson 1999).

This large protein complex subsequently processes the broken, modified DNA

ends, resulting in relegation/joining to repair the DSB. The overall process has

been extensively reviewed elsewhere (Lieber 2008; Brandsma and Gent 2012;

Murray et al. 2012; Boboila et al. 2012; Chapman et al. 2012; Kass and Jasin

2010; Malu et al. 2012; Pawelczak et al. 2011). Note that the recruitment of the
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essential polymerases for NHEJ primarily occurs via the BRCT domain of the

polymerases (Fig. 3.3a) (DeRose et al. 2007; Matsumoto et al. 2012; Mueller

et al. 2008; Gell and Jackson 1999). Details for each of the polymerases involved

in mammalian NHEJ are described below.
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Nuclease Activity

DNA Pol Mu
DNA Pol lambda
(DNA Pol ß)
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Nonhomologous 
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Fig. 3.4 DNA polymerases involved in double-strand break repair. (a) Schematic depicting the

mechanism of NHEJ functioning in all phases of the cell cycle, showing KU binding to the broken

ends of a DNA DSB, followed by nuclease activity to trim the ends, DNA polymerase activity for

end processing, and DNA ligase activity to seal the DSB. (b) Classical scheme for HR-mediated

repair of a DSB, showing DNA synthesis by either Polδ or Polη extending from the D-loop

intermediate and followed by second-end capture and coordinated DNA synthesis of the opposite

strand
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3.3.1 DNA Polymerase Mu

DNA polymerase μ (Polμ) is an X-family DNA polymerase (Nick McElhinny and

Ramsden 2003) with homology to TdT (Dominguez et al. 2000; Ruiz et al. 2001)

containing both a BRCT domain in the N-terminus and the nucleotidyl transferase

activity in the C-terminus (Fig. 3.3a). A role for Polμ in NHEJ was suggested

following the discovery that Polμ interacts with KU and LigIV (Mahajan

et al. 2002; Paull 2005). There are known NHEJ-related functional differences

between Polμ and the other X-family polymerases (Bertocci et al. 2006). For

example, mice deficient for Polμ are defective for immunoglobulin kappa chain

rearrangement (Bertocci et al. 2003) but not Ig gene hypermutation (Bertocci

et al. 2002). Further, over-expression of Polμ can impact the rate of somatic

hypermutation (Ruiz et al. 2004). In addition, Polμ-deficient mice have a defect

in hematopoiesis (Lucas et al. 2009). Structural studies have contributed to an

in-depth understanding for the role of Polμ in NHEJ, highlighting slight but

important differences with other X-family DNA polymerase members that might

explain some of the substrate specificity for Polμ as compared to Polλ and Polβ
(Moon et al. 2007).

Analysis of Polμ KOMEFs clearly establishes a role for Polμ in DSB repair of a

variety of NHEJ substrates (Chayot et al. 2010, 2012; Capp et al. 2007). Similar to

that seen for Polλ (see below), gap-filling activities in the NHEJ process mediated

by Polμ are dependent on XLF (Akopiants et al. 2009), likely via interaction with

the BRCT domain of Polμ (Mueller et al. 2008; DeRose et al. 2007). Polμ is also

known to conduct translesion DNA synthesis, as will be discussed elsewhere in this

series (Chap. 4). Defects in Polμ with regard to NHEJ can give rise to an increase in
genomic abnormalities (e.g., chromosome aberrations) and should be associated

with an increase in cancer.

3.3.2 DNA Polymerase Lambda

As described in Sect. 3.1.2, Polλ has a high degree of similarity to Polβ (Garcia-

Diaz et al. 2000) and has a significant role in BER, particularly for oxidative

damage (Lebedeva et al. 2005; Braithwaite et al. 2005a, b; Markkanen

et al. 2012; Kanagaraj et al. 2012). The enzymatic properties of Polλ also suggested
a role for this polymerase in NHEJ (Fan and Wu 2004; Lee et al. 2004; Bebenek

et al. 2003). As was described above and as shown in Fig. 3.3a, Polλ has an

N-terminal BRCT domain that promotes its role in NHEJ (Mueller et al. 2008).

Polλ interacts with the XRCC4/LigIV complex via residue R57 in the BRCT

domain (Mueller et al. 2008). Polλ-mediated gap filling during NHEJ also requires

XLF, a core protein in the NHEJ pathway (Ahnesorg et al. 2006; Buck et al. 2006;

Cavero et al. 2007; Revy et al. 2006). By characterizing whole-cell extracts from

XLF-deficient human cells, it was determined that XLF is essential for gap filling
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by both Polλ and Polμ (Akopiants et al. 2009). It is suggested that XLF may align

the DNA ends in the repair reaction, in concert with XRCC4 (Andres et al. 2012),

DNA ligase IV (Ropars et al. 2011), KU (Yano et al. 2008, 2011), and APLF

(Grundy et al. 2013). Proper polymerase fidelity is also required for Polλ with

regard to NHEJ-mediated DNA synthesis, as was discovered by characterizing the

single-nucleotide polymorphism (SNP) mutant at codon 438 (R438W) (Terrados

et al. 2009). This point mutant of Polλ retains nucleotidyl transferase activity and

50dRP lyase activity but has a reduction in base substitution fidelity (Terrados

et al. 2009). Interestingly, this mutant negatively impacts the role of Polλ in

NHEJ, leading to an increase in chromosomal aberrations (Terrados et al. 2009).

3.3.3 TdT

Terminal deoxynucleotidyltransferase (TdT) participates in a very restricted capac-

ity in NHEJ. Expression of TdT is limited to cells productive for V(D)J recombina-

tion (Benedict et al. 2000), suggesting that a role for TdT is limited to NHEJ during

V(D)J recombination. This unique X-family polymerase catalyzes the addition of

nucleotides by a template-independent mechanism, for example, at the junction of

rearranged Ig heavy chain and T-cell receptor gene segments during B-cell and

T-cell maturation. This activity, even with purified protein, is consistent with a role

in NHEJ (Ma et al. 2004). Recently, it has also been shown that TdT can carry out

non-template-mediated nucleotide addition at a DSB junction but only in the

presence of KU80 and XRCC4 (Boubakour-Azzouz et al. 2012). TdT binds to the

essential NHEJ protein KU (Mahajan et al. 1999) as well as the DSB repair protein

hPso4 (Mahajan and Mitchell 2003), and its role in V(D)J recombination is

suppressed by binding to PCNA (Ibe et al. 2001). As with other X-family

polymerases involved in NHEJ, the N-terminal BRCT domain of TdT (Mueller

et al. 2008) does have a positive effect on nucleotide addition activity (Repasky

et al. 2004). Although TdT shares significant sequence homology with the other

X-family polymerase members (Fig. 3.3a), there does not appear to be any signifi-

cant overlapping function of TdT with Polλ or Polμ (Bertocci et al. 2006). Further

activities of TdT are discussed in Chap. 5.

3.3.4 DNA Polymerase Beta

DNA polymerase β (Polβ) is genetically similar to TdT (Anderson et al. 1987) and

exhibits strong similarity to Polμ (Ruiz et al. 2001) as well as structural (DeRose

et al. 2003) and functional (Ramadan et al. 2003) similarity to Polλ (Fig. 3.3a). In

this light, Polβ has long been suggested to have a role, albeit minor, in NHEJ.

Although there is evidence of a genetic interaction between Polβ and the NHEJ

protein DNA-PKs (Niimi et al. 2005), this by itself does not implicate Polβ in
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NHEJ. Mice with a reconstituted lymphoid system using Polβ KO fetal liver cells

showed normal patterns of somatic hypermutation, suggesting little role for Polβ in
this process (Esposito et al. 2000). Further, the lack of a BRCT domain in Polβ
(Fig. 3.3a) would negatively impact its role in NHEJ since this protein–protein

interaction domain (Woods et al. 2012) in Polλ, Polμ, and TdT is important for

interacting with NHEJ protein partners (Mueller et al. 2008). However, it is possible

that Polβ may play a limited role in microhomology-mediated end joining (MMEJ)

(Crespan et al. 2012), a sub-pathway of NHEJ that is independent from KU and

DNA ligase 4/XRCC4 (McVey and Lee 2008).

3.4 DNA Polymerases Critical to Homologous

Recombination Repair of DNA Double-Strand Breaks

The homologous recombination (HR) pathway participates in several critical

biological processes, including DNA repair, the rescue of stalled/collapsed DNA

replication forks, meiotic chromosome segregation, and telomere maintenance

(Sung and Klein 2006; Friedberg et al. 2006; Hoeijmakers 2001). As with NER

andMMR, much of the effort in recent years to characterize the proteins involved in

HR has focused on the early steps in this pathway including lesion (DSB) recogni-

tion, HR protein regulation, DSB repair pathway choice (HR vs. NHEJ), strand

exchange processes, as well as the proteins involved in the resolution of holiday

junctions (Barzel and Kupiec 2008; Bordeianu et al. 2011; Krejci et al. 2012; Sung

and Klein 2006; Symington and Gautier 2011). A classical schematic for the HR

pathway is depicted in Fig. 3.4b. Upon recognition of the DSB, the ends are

processed through an end resection step, allowing strand invasion of the homolo-

gous strand of the sister chromatid, providing the template for HR-directed DNA

synthesis from the D-loop and subsequently after second-end capture. Defining the

DNA polymerase in this process was first shown in yeast where it was demonstrated

that Polδ is preferentially recruited to complete DNA synthesis for HR (Maloisel

et al. 2008). There are in fact numerous genetic examples demonstrating that yeast

Polδ is involved in HR (Giot et al. 1997; Lydeard et al. 2007; Maloisel et al. 2004,

2008; Wang et al. 2004; Fabre et al. 1991). More recently, using purified proteins, it

was shown that yeast Polδ, together with PCNA, is essential for DNA synthesis

from the D-loop during HR (Li et al. 2009). In a more recent study, both yeast Polδ
and yeast polymerase eta (Polη) contributed equally to DNA synthesis to extend the

D-loop (Sebesta et al. 2011).

However, in chicken DT40 cells it was demonstrated that Polη participates in

both HR and TLS (Kawamoto et al. 2005). Simultaneously, using purified human

proteins and cell lysates, it was shown that human Polη promoted DNA synthesis

from the D-loop intermediate (Fig. 3.4b) but this DNA synthesis step could not be

conducted by human Polδ or by human polymerase iota (Polι) (McIlwraith

et al. 2005). Human Polη, but not human Polδ or human Polι, was also able to
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mediate the capture and annealing of the second end of the resected DSB, in concert

with RAD52. This was subsequently followed by DNA synthesis from the captured

“second” DNA end (McIlwraith and West 2008) (Fig. 3.4b). Of course, some

aspects of HR may require a TLS step. This will be discussed elsewhere in this

series (Chap. 4).

3.5 DNA Polymerases as Essential Components

in Nucleotide Excision Repair

The nucleotide excision repair (NER) pathway plays an important role in the repair

of DNA lesions (Kuper and Kisker 2012) induced by many genotoxins and

chemotherapeutics including DNA cross-linking agents such as chloroethylating

agents, cisplatin, carboplatin, and lesions induced by a host of environmental agents

including cigarette smoke (Friedberg et al. 2006) and ultraviolet (UV) light (Wood

1996; de Vries et al. 1995; Yeh et al. 2012). Put simply, NER facilitates the removal

of bulky DNA adducts that grossly distort the DNA double helix and those that

cause a block to transcription. Overall, the pathway consists of two complementary

sub-pathways that have some overlap. These two sub-pathways are referred to as

global genome repair (GGR–NER) and transcription-coupled repair (TCR–NER)

and facilitate lesion recognition/confirmation and the assembly of the pre-incision

complex. Molecular details on the proteins involved in NER can be found in several

excellent reviews (Hoeijmakers 2001; de Laat et al. 1999; Wood 1996; Shuck

et al. 2008; Hanawalt and Spivak 2008; Gillet and Scharer 2006). The two

sub-pathways are distinct regarding the lesion recognition step but converge and

utilize the same proteins to remove the ~22–28 base oligonucleotide containing the

lesion. Until recently, the molecular details of the later steps in the pathway, the

DNA synthesis steps, were not fully characterized (Kunkel and Van Houten 2006).

Although much has yet to be worked out, recent studies have provided compelling

evidence that the DNA synthesis step of NER involves three DNA polymerases

(Fig. 3.5), the replicative DNA polymerases delta (Polδ) and epsilon (Polε) as well
as the Y-family DNA polymerase kappa (Polκ) (Kunkel and Van Houten 2006; Ogi
et al. 2010; Ogi and Lehmann 2006).

3.5.1 Replicative Polymerases Delta and Epsilon in NER

DNA polymerases δ (Polδ) and ε (Polε) are both B-family DNA polymerases with

primary roles in DNA replication (Kunkel and Burgers 2008). The involvement of

replicative DNA polymerases in DNA synthesis in human NER evolved from

earlier studies with human cell extracts that implicated a requirement for the

replication cofactor PCNA (Shivji et al. 1992). Subsequent studies demonstrated
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that DNA synthesis during NER was not affected by neutralizing antibodies to

polymerase α (Polα) but was blocked by aphidicolin, suggesting a possible role for

Polδ and/or Polε (Coverley et al. 1992). Subsequent elegant studies with purified

human proteins clearly established the requirement for Polδ and/or Polε in DNA

synthesis during NER (Shivji et al. 1995; Aboussekhra et al. 1995), ultimately

defining a core set of proteins required for the repair of a cisplatin DNA adduct

(Araujo et al. 2000). Replication factor C (RFC) was observed to be required for

recruitment of Polδ (Overmeer et al. 2010).

As suggested above, the latest models suggest that Polδ, Polε, and Polκ (see

below) are all involved in DNA synthesis during NER (Fig. 3.5) (Lehmann 2011;

Ogi and Lehmann 2006; Ogi et al. 2010). Although it is not yet fully resolved as to

the conditions or parameters that dictate polymerase choice in NER, several clues

have emerged from biochemical studies (Fig. 3.5). Polδ is recruited by RFC1/p66

and loaded onto PCNA. The recruitment of Polκ does not require RFC1 but in fact

is mediated by XRCC1 and is loaded onto ubiquitylated PCNA (see below).

Conversely, Polε appears to be the polymerase of choice in cycling (dividing)

cells in which CHTF18-RFC recruits Polε to load onto PCNA. Recruitment of

Polε appears to favor dividing cells with high dNTPs and after dual incision by
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Fig. 3.5 DNA synthesis in NER by Polδ, Polε, and Polκ. Schematic depicting a role for Polδ,
Polε, and Polκ in the DNA synthesis step of NER. The diagram shows the NER DNA polymerases

in cycling and resting cells (Polδ, Polε, and Polκ) as well as the clamp loaders required for each

polymerase (Ogi et al. 2010)
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XPF/ERCC1 and XPG, whereas Polδ requires RFC and PCNA for recruitment and

likely favors nondividing cells (Lehmann 2011).

3.5.2 A Role for DNA Polymerase Kappa in NER
Unrelated to Translesion Synthesis

DNA polymerase kappa (Polκ) is a Y-family DNA polymerase with a high error

rate typical for this family of polymerases (Ohashi et al. 2000). Like other Y-family

polymerases, Polκ can participate in DNA synthesis past bulky DNA lesions

(translesion DNA synthesis, TLS) (Chap. 4) (Lange et al. 2011; Ziv et al. 2009)

and would not be expected to participate in the DNA synthesis step of NER (Kunkel

and Van Houten 2006). The low processivity and fidelity of Y-family polymerases

(McCulloch and Kunkel 2008) (e.g., synthesis and incorporation of only one to five

nucleotides before dissociation from the primer-template) would likely preclude

Polκ from participation in NER to fill the gap of 22–28 nucleotides (Friedberg

et al. 2006). However, in vitro studies have demonstrated that Polκ polymerizes up

to 25 nucleotides before dissociation (Ohashi et al. 2000), supporting a possible role

for Polκ in NER gap-filling DNA synthesis.

The first clue that Polκ may participate in NER gap-filling DNA synthesis was

the demonstration that Polκ localized to repair foci with PCNA in a pattern that was

unlike the other Y-family TLS polymerases eta (Polη) and iota (Polι) (Ogi

et al. 2005). In a surprising finding using Polκ-KO MEFs, it was demonstrated

that loss of Polκ reduced the level of NER following UV damage. Repair was not

completely absent but was significantly reduced and clearly established a novel role

for Polκ in NER (Ogi and Lehmann 2006). The same group followed this with a

more detailed report implicating Polδ, Polε, and Polκ in NER (Ogi et al. 2010). As

described above for Polδ and Polε and in Fig. 3.5, Polκ (in a complex with XRCC1)

is recruited to complete DNA repair synthesis by ubiquitylated PCNA following

repair DNA synthesis initiated by Polδ (Fig. 3.5, right side). Once repair is

completed, the polymerase dissociates (Polκ) and XPG facilitates the 30 incision
to release the flap. This latter step is consistent with the observation that the 50

incision by XPF/ERCC1 precedes the 30 incision by XPG and that repair synthesis

can proceed in the absence of XPG catalytic activity (Staresincic et al. 2009). Based

on this recent model and available biochemical analysis (Fig. 3.5), recruitment and

involvement of Polκ in NER requires XRCC1 and ubiquitylated PCNA for recruit-

ment and likely favors low dNTPs and synthesis after 50 incision by XPF/ERCC1

(Lehmann 2011).
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3.6 The Mismatch Repair Pathway as a Replicative

Polymerase Fidelity Factor

The DNA mismatch repair (MMR) pathway is involved in numerous processes

involving DNA metabolism including repair of damage due to environmental or

chemotherapeutic exposures, meiotic recombination, DNA damage signaling, and

the correction or repair of numerous base–base mismatches and insertion/deletion

loops (Fu et al. 2012; Li 2008; Wyatt and Pittman 2006; Modrich 2006; Jiricny

2006). The latter role of the MMR pathway functions to significantly improve DNA

replication fidelity, as much as 1,000-fold, repairing errors made by Polα (Liberti

et al. 2013; Nick McElhinny et al. 2010; Niimi et al. 2004), Polδ (Nick McElhinny

et al. 2010; Lujan et al. 2012), and Polε (Lujan et al. 2012). Loss of MMR therefore

promotes a mutator/genome instability phenotype that can predispose to an increase

in mutations and cancer in eukaryotic model systems and humans (Arana and

Kunkel 2010; Hubscher 2009; Kunkel 2009; Preston et al. 2010; Reha-Krantz

2010; Albertson et al. 2009).

3.6.1 A Reconstituted Human Mismatch Repair Pathway
Utilizes DNA Polymerase Delta

A functional human MMR system has been reconstituted using recombinant

proteins and artificial (plasmid) substrates (Modrich 2006). As depicted in the

significantly simplified model shown in Fig. 3.6, mismatch recognition is primarily

mediated by the heterodimers MUTSα (comprised of the proteins MSH2/MSH6 or

MSH2/MSH3) and MUTLα (comprised of the proteins MLH1/PMS1) (Friedberg

et al. 2006). Further details on mismatch recognition and MMR can be found in

numerous reviews (Fu et al. 2012; Li 2008; Wyatt and Pittman 2006; Modrich

2006; Jiricny 2006). In an elegant series of biochemical studies, a completely

reconstituted system was developed that was capable of supporting directional

MMR (30 � 50 or 50 � 30) that exploits a previously undiscovered latent endonu-

clease activity of MUTLα that is both ATP and mismatch dependent (Kadyrov

et al. 2006). Together with EXO1, this in vitro system yields the proper substrate for

DNA polymerase loading onto PCNA to allow DNA synthesis of the repair patch

for MMR, estimated at 1,000 bases (Thomas et al. 1991) but can range from 200 to

>2,000 base pairs, depending on the location of the mismatch and the cellular state

(Modrich 2006). In this system, purified Polδ was utilized and found to be fully

capable of supporting MMR DNA synthesis (Fig. 3.6).

62 R.W. Sobol



3.6.2 Replicative Polymerases Delta and Epsilon
in Eukaryotic MMR

Functional (in vivo) studies of eukaryotic MMR and the DNA polymerase

requirements for MMR have been limited to S. cerevisiae or mouse model systems.

As might be expected from the reconstituted system, both replicative polymerases

(Polδ and Polε) likely play a role in MMR DNA synthesis. In this model system it is

suggested that Polδ, together with Polα, uses the lagging strand as the template for

DNA replication whereas Polε uses the leading strand as template (Larrea

et al. 2010; Nick McElhinny et al. 2008). It is not yet established if the polymerase

used in MMR is also strand specific. Although leading strand (Polε) and lagging

strand (Polδ and Polα) fidelity differs, evidence is clear that MMR balances fidelity

across both DNA strands (Lujan et al. 2012).

3.7 DNA Polymerase Involved in DNA Cross-link Repair

Characterizing the mechanism or mechanisms that mediate the repair of DNA

interstrand cross-links (ICLs) has been a significantly challenging task,

complicating the identification of DNA polymerases that may be involved in the

repair process. Models have been proposed that depend on replication (Raschle

et al. 2008) as well as those that are replication independent (Williams et al. 2012)

and involve NER-related transcription-coupled repair or global genome repair and

both models (replication dependent and replication independent) involve DNA
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translesion synthesis (Enoiu et al. 2012). It is generally accepted that complete

repair of an ICL involves proteins from several pathways, including the FANC

proteins for ICL recognition and signaling (Kim and D’Andrea 2012), HR and NER

proteins for lesion processing (Hinz 2010; Wood 2010), as well as TLS

polymerases to synthesize DNA across from the unhooked lesion (Enoiu

et al. 2012; Ho et al. 2011; Ho and Scharer 2010; Klug et al. 2012; McHugh and

Sarkar 2006; Nojima et al. 2005; Sharma and Canman 2012; Shen et al. 2006). One

plausible model for the repair of ICLs is shown in Fig. 3.7. In this model, repair can

be achieved by a replication-dependent (right panel) or replication-independent

(left panel) process. In the left panel, the replication-independent process utilizes

NER proteins to “unhook” the cross-link followed by a translesion DNA polymer-

ase to synthesize DNA across the “lesion.” This is followed by a second round of

NER-mediated repair and DNA synthesis. The NER proteins involved in ICL repair

may vary with the lesion. It was recently reported that cisplatin lesions are repaired

in a replication-independent fashion utilizing TCR–NER proteins (Enoiu

et al. 2012) whereas MMC and psoralen cross-links are suggested to utilize

GGR–NER proteins for ICL repair (Hlavin et al. 2010; Wang et al. 2001; Muniandy

et al. 2009). In some cases, BER proteins appear to play a role in ICL repair

(Kothandapani et al. 2011; Kothandapani and Patrick 2013). The replication-

dependent process utilizes FANC proteins to recognize the ICL and mediate

unhooking and induce ICL-associated DSBs, in preparation for HR-mediated

repair. Both processes rely heavily on translesion DNA polymerases to synthesize

DNA opposite the “unhooked” DNA cross-link (Lange et al. 2011; Sharma and

Canman 2012). A separate chapter in this series will discuss translesion DNA

polymerases (Chap. 4).

3.8 Summary and Concluding Remarks

There are as many as 15 human DNA polymerases to facilitate DNA replication,

DNA repair, and DNA lesion bypass (tolerance) in the nucleus and mitochondrial

genomes (Burgers et al. 2001; Bebenek and Kunkel 2004). These are characterized

by family or class based upon phylogenetic relationships, as described by Burgers

et al. (2001). In most cases, the role of some human DNA polymerases in specific

DNA repair pathways is expected, based either on data from E. coli or S. cerevisiae
or on biochemical parameters. The high-processivity, high-fidelity replicative DNA

polymerases (Polδ and Polε) are a likely option for synthesis of the longer repair

patches needed for NER, MMR, and even long-patch BER, whereas the biochemi-

cal parameters of the X-family polymerases suggest they are well suited for DNA

synthesis required for the short-patch or minimal DNA synthesis observed in BER

and NHEJ. Yet, as the field advances, surprises still abound. For example, the

Y-family human DNA polymerase Polκ participates in NER and human Polη but

not Polδ or Polι is involved in HR-mediated DNA synthesis from the D-loop
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intermediate nor involved in second-end capture and the subsequent DNA

synthesis step.

Considerable effort is still required to identify and characterize the DNA

polymerases involved in many aspects of DNA repair and DNA metabolism.

Mutations or defects in DNA polymerases affect response to DNA damaging agents

(Sobol et al. 1996, 2000; Trivedi et al. 2005), antibody diversity (Seki et al. 2005),

organism survival (Friedberg and Meira 2006), and overall genome maintenance

(Prindle and Loeb 2012). The interrelationship between DNA synthesis fidelity and

DNA repair is most evident by the cancer predisposition observed when replicative

DNA polymerases are mutated in their proofreading domain (Palles et al. 2013). As

more details emerge regarding the role of each DNA polymerase in DNA repair, it

is expected that we will begin to understand the need for so many different DNA

polymerases to maintain genome integrity as well as the multiple roles they may

play in the diverse yet interrelated pathways for DNA repair.

Repair by 
homologous 
recombination

ICL
Induction

Release or ‘unhooking’ 
of the DNA crosslink

DNA Pol zeta
Rev1
DNA Pol kappa

Translesion
DNA Polymerase
Activity

XPF
ERCC1 Late S or G2

ICL duplex

Sister chromatid

DSB formation

Strand invasion and 
Translesion DNA synthesis
HR dependent DNA synthesis

Release of DNA crosslink 
followed by

 

gap-filling 
DNA synthesis, 

ligation and resolution

NER-mediated 
lesion repair and
DNA synthesis

Replication-dependent ICL repairReplication-independent ICL repair

Fig. 3.7 Proposed mechanisms for repair of DNA cross-links. Schematic depicting a current

model for the repair of DNA cross-links for cells in the G0/G1 phase of the cell cycle (left). Here,
repair is mediated by a replication-independent mechanism. Following release or “unhooking” of

the lesion (ICL), translesion DNA polymerases can fill the gap across from the lesion, followed by

a second lesion removal step and DNA synthesis as in classical NER. On the right is a scheme for

replication-dependent ICL repair. Here, the repair of DNA cross-links for cells in the late S-phase

or G2 phase of the cell cycle would have the availability of the HR pathway to encode the

information opposite the unhooked cross-link followed by a second round of DNA synthesis

once the lesion (an unhooked cross-link) is removed
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