
M. Wang (Ed.): KSEM 2013, LNAI 8041, pp. 147–160, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards a Generic Hybrid Simulation Algorithm Based
on a Semantic Mapping and Rule Evaluation Approach

Christoph Prackwieser, Robert Buchmann,
Wilfried Grossmann, and Dimitris Karagiannis

University of Vienna, Research Group Knowledge Engineering
Währingerstrasse 29, 1090 Vienna, Austria

{prackw,rbuchmann,dk}@dke.univie.ac.at,
wilfried.grossmann@univie.ac.at

Abstract. In this paper we present a semantic lifting methodology for heteroge-
neous process models, depicted with various control flow-oriented notations,
aimed to enable their simulation on a generic level. This allows for an inte-
grated simulation of hybrid process models, such as end-to-end models or mul-
ti-layer models, in which different parts or subprocesses are modeled with
different notations. Process simulation outcome is not limited to determining
quantitative process measures as lead time, costs, or resource capacity, it can al-
so contribute greatly to a better understanding of the process structure, it helps
with identifying interface problems and process execution requirements, and
can support a multitude of areas that benefit from step by step process simula-
tion - process-oriented requirement analysis, user interface design, generation
of business-related test cases, compilation of handbooks and training material
derived from processes.

Keywords: business process modelling, simulation, hybrid process models,
semantic lifting.

1 Introduction

Process simulation is often seen as a method to determine such quantitative process
measures as lead time, costs, or resource capacity. However, simulating a process and
graphically animating or highlighting its relevant paths, also contributes to a better
understanding of the process, helps with identifying interface problems, and supports
communication of altered process implementations (possibly deriving from the
introduction of new software, underlying technology or from organizational changes).
Despite the fact that process simulation is a well-known analysis method, it is
surprisingly not very widely used in practice, on one hand due to quantity and quality
of input data, on the other hand due to the models themselves. This may be caused by
the diversity of business process modeling languages generating heterogeneity of the
process repository even within the same company, and thus requiring extensive
alignment in order to setup the input for simulation. Each language tries to find the
right level of abstraction, expressing concepts that are fit to different contexts, while

148 C. Prackwieser et al.

ignoring others. Some modelers may see shortcomings where others see strengths as a
recent argumentation of Prof. Reisig [1] proves.

With our approach, we aim to overcome the legacy of notation heterogeneity,
under the assumption that different individuals or units contribute with fragments
using different control flow-oriented process modeling notations to a hybrid model
encompassing a cross-organizational, cross-functional or multilayered process. Best
practices from supply chain management, such as SCOR [2] recommend a tight
integration and visibility of processes, from the customer’s customer to the supplier’s
supplier.

The presented approach allows for simulating such heterogeneous models, while
preserving their graphical representation, thus reducing additional re-modeling efforts
and increasing the original model creator’s identification with the simulation result.

With the rise of quite universally usable modeling notations like Business Process
Modeling Notation (BPMN) or Unified Modeling Language (UML) this problem may
be defused over time (under the assumption of universal acceptance) but there are still
a lot of legacy models in companies and not every modeling requirement is satisfied
with such standardized modeling notations [3]. Models that were created for special
project goals in another modeling notation could be linked and simulated together to
form, for example, a cross-functional end-to-end process, including business-focused
and IT-related process models. This also reduces the initial effort for model creation.

The structure of the paper is as follows: After this introduction we discuss related
literature and similar approaches in Section 2, where the problem is also formulated in
the context of hybrid process modeling. In Section 3, we describe our approach, both
conceptually and with a proof of concept, along with some implementation notes
regarding the model transformation required for running a simulation, and the
simulation itself. A conclusive SWOT analysis closes this paper.

2 Problem Statement and Background

2.1 Problem Positioning

In literature the term “hybrid” is used for a variety of model characteristics or simulation
functionalities [4]. In this paper, a process model is called a “hybrid process model”
when at least one of its process fragments or sub-processes is modeled in a different
modeling notation. The analysis of end-to-end processes concerns a variety of domains
and, therefore, involves different stakeholders. Although every domain has to contribute
to the overall enterprise goals, each one has its own circumstances and objectives that
lead to the application of specialized approaches and instruments to deal with each
domain’s requirements [5]. This general observation is also true for modeling
languages. Although there are standardized modeling methods like BPMN or UML,
special process-oriented application scenarios such as compliance management, risk
management, or platform-specific process automation are not sufficiently supported.
Hybrid process models can appear in a horizontal-oriented form as an end-to-end
process, a vertical-oriented multi-layer process, or a combination of both.

 Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping 149

Horizontal-oriented hybrid process models can come up when domain specific
process models of two or more departments/units are linked together subsequently to
form a cross-functional end-to-end process. Vertical hybrid models can be a result of
a classical functional decomposition method wherein different modeling notations are
used to depict various levels of granularity or stakeholder perspectives on the model.
A strict vertical orientation means that the whole model is built up by sub-process
models that are linked to form a hierarchy and are not aligned subsequently. The link
is established from a process step to a corresponding sub-process, which describes the
step in greater detail. Another application example described by Muehlen and Recker
as “emerging tendency in industry to separate business-focused process modeling
from implementation-oriented workflow implementation” [6] where workflow models
typically use implementation platform-specific modeling languages or special dialects
of standardized languages, such as BPMN. Also for classical, not workflow oriented
software implementation a business focused process model could have links to a user
interface flow model to show the software support of specific business-oriented tasks.
In this context, we state the problem through its following components:

Assumption: A manufacturing company coordinates a virtual enterprise with
multiple possible configurations of its supply chain. Open issues: The coordinating
company needs to evaluate end-to-end processes for specific virtual enterprise
instances. The participating business entities are willing to provide process visibility,
but they use different tools and languages to model their processes;

Assumption: A manufacturing company has its process map designed according to
a multi-layered framework such as SCOR. Open issues: The company aggregates
processes from its multiple SCOR layers to simulate their cost but uses different
notations for high level supply chain and low level workflows, as required by auditing
and documentation purposes.

Proposed solution: A methodology (enabled at meta-modeling level) of
annotating process elements represented with different notations but having
overlapping semantics, in order to enable the detection of work order along simulated
process paths (while preserving the original notations).

2.2 Literature and Related Work

A starting point for our research interest was the “Hybrid Method Engineering”
approach introduced by Karagiannis and Visic [3] as part of the “Next Generation
Modeling Framework” (NGMF). On a conceptual level the approach deals with the
merging of two or more modeling methods into a single hybrid metamodel, which is
described in more detailed [7] using an encapsulation mechanism. They also present a
corresponding technical realization platform and an organizational structure. Their
approach is based on Karagiannis and Kühn’s [8] proposed structure of modeling
method components. Therein, different modeling languages of a hybrid method form
together with modeling procedures a modeling technique. The modeling technique
and dedicated mechanism and algorithms are the main parts of a modeling method in
turn. These mechanism and algorithms are automated functionalities, which are
performed on the models in order to use or evaluate them. To define a hybrid

150 C. Prackwieser et al.

metamodel they suggest the usage of a metamodeling language which is defined by a
meta-metamodel. In this approach, a generic algorithm such as universal simulation,
which should work on all involved modeling languages, must be implemented on a
meta2-model whereof all language specific sub metamodels are instantiated.

Whereas there are several publications describing transformation from one
modeling language to another often motivated by Model Driven Architecture (MDA)
[9] approaches, quite few sources are concerned with the conceptualization of generic
(simulation) algorithms for hybrid models. A good overview of modeling language
transformations involving block-oriented languages, especially BPEL, is provided in
[10]. Other papers describe, for example, transformations from BPMN to BPEL [11],
from UML to BPEL [12], and from BPEL to EPC [13]. Because of the numerous
analysis methods and simulation algorithms applicable on Petri Nets, there are also
some publications concerning transformations from BPEL to Petri Nets [14]. To deal
with simulation tools that are merely capable of processing models in one specific
language, different modeling method transformation approaches are presented by
various authors. Rozinat, Wynn et al. [15] use a simulation tool that is based on
Colored Petri Nets (CPN) so they describe how to convert YAWL models by
preserving simulation relevant data into Petri Nets.

3 The Proposed Approach

3.1 The Simulation Core Concepts

As stated earlier, we strive to enable a generic simulation algorithm which has the
key requirement of being applicable on control flow oriented process models while
leaving the simulated model notations unchanged in order to improve the user’s
identification with (and understanding of) simulations results. To simulate different
process modeling languages using one generic algorithm there is a need for a
semantic mapping of specific modeling language object types to the metamodel on
which the simulation algorithm relies.

There are alternative realization options to fulfill the key requirement. One could
hardcode all possible object types of different predefined modeling languages into the
simulation algorithm. However, this alternative lacks flexibility, as with every newly
added domain-specific language program code of the simulation algorithm has to be
changed. Another possibility would be to transform the graphical modeled process
each time immediately before a simulation run takes place into a “super notation”
known by the simulation algorithm. The problem hereby is that the user has to depend
on this automatic transformation step and cannot check if the meaning of the process
model is translated correctly in the intermediate format. A token animation, for
example, to depict waiting queues is difficult to implement because the simulation
and animation algorithm are not executed on the basic models directly.

In our approach, the algorithm works directly on the graphical model, which is
enhanced by a layer of generic formulated information about the objects’ semantics,
flow control, and resource assignment. This information is generated during a
separate transformation step and stored in specific attributes of each modeling object

 Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping 151

(however this transformation is much less complex than a complete redesign of
models in another notation). Thus, an experienced user is able to alter the output of
the transformation step before the simulation takes place; the user therefore, has the
ability to formulate the input for the simulation specific to individual needs.

To identify necessary semantic core concepts of a generic simulation algorithm
which have influence on the control flow of a process, we analyzed various graphical
process modeling notations. To be sure to support both horizontal and vertical
oriented hybrid models, we selected modeling languages that are used for at least one
of the following domains: a) Strategic core processes; b) Business processes; and c)
IT-specification, process automation.

We compiled the list of the major business process modeling methods with
graphical notations out of a structured literature study [16-19]. Included notations are
Process Maps and Value Added Chain Diagrams (VACD), Business Process
Modeling Notation (BPMN), Event-Driven Process Chains (EPCs), UML Activity
Models, ADONIS Business Process Management Systems (BPMS) [20], Process
Schematics of the Integrated Definition Method 3 (IDEF3), Flow Chart Notation,
Task Flow User Interface Modeling and Business Process Execution Language for
Webservices (BPEL4WS).

Table 1. Semantic concepts of flow objects relevant for simulation

Table 2. Simulation-related semantic concepts

Notation

Activity
Sub

Process
Start End XOR AND Merge Event Neutral

Value Chain Models x x x x x
UML 2.0 Activity Diagrams x x x x x x
EPC x x x x x x x x x
ADONIS BPMS x x x x x x x x x
BPMN 2.0 x x x x x x x x
IDEF3 x x x x x
Flow Charts x x x x x x x
Mask Flow Diagrams x x x x x x
BPEL x x x x x x x x

Semantic Concepts of Flow Objects Relevant for Simulation

Semantic Concept Keyword

Activity ACT

 Sub Process SUB

Start STA

End END

XOR XOR

AND AND

Merge UNI

Event EVE

Neutral NTR

Depicts an exclusive or decision of different outgoing control flow branches
Depicts the possible parallel execution of the same process instance. Therefore
the token will be cloned at the AND object. Outgoing control flow branches can be
annoted with condition which leads to an OR functionality
All at the latest AND object cloned tokens are merged to one token. This
synchronisation can lead to waiting time.

Depicts an intermediate event which controls the flow of tokens regarding
predefined condtions. A flow interruption can lead to waiting times

It is within the controlflow but has no effekt on token flow or simulation result
itself. It can be used for example for cross-references between processes.

Description

Describes an executable task in a process. Each execution consumes execution
time of a resource such as a role or IT system and causes costs.

Is a placeholder for a linked process fragment. It is used for structuring of process
models or reuse of process fragments.

Depicts the arrival of new entities into the process model. The simulation
generates corresponding process token which are transfered through the model

Marks the end of a process path. Each arriving token will be consumed.

152 C. Prackwieser et al.

In this simulation approach, we consider the control flow only. Information flows
like message handling in BPEL4WS are not supported so far. Furthermore, the
simulation algorithm is currently applicable for event-based graphical modeling
notations only where transitions and connecting control flows are modeled explicitly.

To extract the semantic core pattern of simulation perspective, we analyzed each
modeling notation and extracted all of the simulation relevant patterns in regard to
flow control and influence on simulation results. As a result of this study we compiled
a list of nine core patterns, as we have illustrated in Table 1. In Table 2, all identified
simulation-related sematic concepts are explained. The listed keywords are used for
rules formulation. The mapping of object types to semantic simulation concepts is not
sufficient. To gain more flexibility and cover as much semantics as possible, we add a
rule mechanism to determine the next object in the control flow.

One of the preconditions of our approach is that each modeled object is mapped to
exactly one simulation core concept. The introduction of another semantic concept
would solve this problem, but we want to keep the number of semantic simulation
concepts as low as possible. Therefore we developed a rule language that enhances the
semantic meaning of an object with annotation indicating the next object in the control
flow, to be taken as input by the simulation algorithm. The basic syntax is the following:

_KEYWORD_RuleForDeterminationOfSubsequentObject

3.2 The Rules Syntax

We use the rules to identify the subsequent object in a process, as an input for the
simulation algorithm. However, the rules mechanism is not limited to the
representation of the control flow only, so we can also utilize it to express conditions
for the assignment of executing resources to an activity or to formulate a distribution
of entry arrival in start objects.

To represent a rule in our concept we use the OMG Production Rule Representation
as a basic syntax where a production rule is defined as a “statement of programming
logic that specifies the execution of one or more actions in the case that its conditions
are satisfied” [21]. A production rule consist of one or more conditions in the form of
logical formulas and one or more produced actions in the form of action expressions
[22]. A typical conditional rule is represented as:

IF condition THEN producedAction ELSE alternativeAction

This syntax is capable of expressing rules of the following types:
Flow rules. In control flow-oriented process models the chronological

subsequence of tasks is typically depicted by connecting arrows (directed edges) from
a predecessor to its immediate successor object. A flow rule that is annotated at the
preceding object reproduces the information about the successor given by the
outgoing arrow. The modeled arrows remain in the process model; although they are
not necessary for the simulation anymore, they are very important for a quick
understanding of the process structure and the simulation results. We are aware,
though, that this enhancement is redundant information, but by introducing an

 Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping 153

additional layer, we gain the flexibility to describe the control flow independent of the
modeling languages, to be used by the generic simulation algorithm. Therefore, the
evaluation of the flow rules has to lead to the designated successor regarding the
control flow of a process model. For the identification of the subsequent object a
unique identifier, we use the unique internal ID of an object provided by the meta-
modeling platform.

One of the most frequently used control flow structures in process management is a
sequential flow. To express this structure in a simple form, we introduce the following
short form syntax here in conjunction with a keyword (see Table 2):

_KEYWORD_IDOfSubsequentObject

This is the same as:

_KEYWORD_IF TRUE THEN IDOfSubsequentObject

In Fig. 1, there are two examples for sequential flows and the respective mapping
results shown. On the left side, a BPMN task with ID 101 has the semantic meaning
of an activity and a subsequent object ID 102. The right side shows a Value Chain
that has no connecting arrows at all, but the subsequence is given by the horizontal
position of the objects. Also, the process objects have a semantic meaning of
activities. The flow rule subsequence is derived from the object’s graphical position.

Fig. 1. Flow rule examples for a sequential control flow

Fig. 2. Flow rule examples for gateways and subprocesses

154 C. Prackwieser et al.

A typical example for the application of a flow rule is the occurrence of a XOR in a
process model. As depicted in Fig. 2 on the left side the Exclusive Gateway in BPMN
notation corresponds to an XOR and is expressed in Flow Rule notation as a
programmatic condition. The statement “random(1)” generates a randomly distributed
number which is used to decide on the subsequent object, according to the given branch
probability for each token at simulation runtime. On the right side, there is a sub-process
object in a BPMN process, which calls for a process in EPC notation. This is an
example of a hybrid process model. BPMN sub-process objects corresponds to the
semantic concept Sub Process “SUB”. The syntax ‘IDOfSubProcessObject |
IDOfSubsequentObject’ commands the simulation algorithm to simulate the sub-process
beginning with the object IDOfSubProcessObject first. After running through the sub-
process and returning to the calling process, the process will then proceed with the
object IDOfSubsequentObject. These IDs can also be the results of (nested) rules.

Resource rules. Some process modeling notations allow for the declaration of
activity executing resources (for example, EPCs and; ADONIS BPMS). Resources
are often concepts like roles, persons, organizations, tools, or IT-systems, such as
software applications or hardware. A simulation analysis that yields to quantitative
results like lead time, capacity consumption, or process costs should include these
resources. Therefore, every activity has to be evaluated with an average execution
time. Every time this activity is executed, the assigned resource is occupied for the
whole execution time. Rules can be used to assign resource IDs to activities.

Start rules. Objects that map to the semantic simulation concept “Start” are the
starting point for new process instances and depict the arrival of new entities in the
process model. The amount of arriving entities per period can follow a random
distribution, deterministic or conditional [23]. The result of the rule evaluation is the
quantity of tokens which have to be generated by the simulation algorithm in the
respective period or at a specific simulation event. The rule language supports the
access to global simulation variables, such as the simulation clock. This allows, for
example, a time-conditioned control of process starts.

IF (Period <= 20) THEN 1 ELSE 2

This rule commands the simulation algorithm to create one process instance in
each of the first 20 periods; afterwards, there have to be created two process instances
per period.

3.3 Transformation

To turn a hybrid process model into a simulate-able model, a mapping for each
modeling object to exact one semantic simulation core concept combined with a flow
rule formulation has to be accomplished and stored in a designated object attribute.
This task can be executed manually, but for often-used modeling languages, a
software-assisted algorithm is required.

Depending on the syntax and semantics of the initial modeling notation, the
transformation algorithm has to handle different situations. In case the semantics of

 Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping 155

the modeling notations matches the simulations core semantic, like in some flowchart
notations, only a 1:1 mapping of modeling object types to simulation concepts is
necessary. However, with increasing complexity and expressiveness of initial
modeling notations, the transformation algorithm has to not just recognize the object
type, but it must also interpret the context of an object. As an easily understandable
example is that an AND from the EPC notation could be of the semantic type AND if
it has more than one outgoing connectors, or the semantic concept of a merge if there
is just one outgoing connector.

In some cases, further user input is required. For example, in a value chain, a process
object might have more than one outgoing connectors; this could be interpreted as either
the start of a parallel or an alternative path. Besides the transformation of objects and
control flows, there might also be a need for transforming a resource assignment. In the
EPC notation, resources are modeled as separate objects connected by a relation to the
specific function. In ADONIS BPMS, there are object references linked from specified
attributes of activities to resource objects like roles. In BPMN, there is no standardized
resource assignment, but a user can decide to adopt the organizational object assigned to
the respective lane.

As there are no defined modeling standards, the formulation of start-rules has to be
made manually.

3.4 Simulation

Static modeling objects, like activities or events, are traversed by a temporary entity’s
act on them. The simulation algorithm’s main task is to control the time advance, to
manage the interaction of static and temporary objects, and to collect results. During a
simulation run, temporary objects handled by the algorithm are called tokens. The
algorithm provides data for the visualization component to visualize the token path
throughout the model, and updates the simulation log with collected data. The result
component relies on the log file to create reports on various aggregation levels.

Thus, validity of results is dependent on a) the correctness of the original models;
b) the availability and correctness of the data to be collected from the model (which
should be execution data stored in attributes of the modeling objects, like time, cost);
c) the successful transformation of the hybrid process model, as described in the
previous section. There has to be at least one object with a semantic meaning of
“Start” including a valid start rule. To execute the algorithm, the start model has to be
selected, and the number of intervals or process instances that should be simulated has
to be provided.

In this paper, we concentrate on the method of enabling a generic simulation via
the semantic mapping. Therefore, we will not describe the functional principles of the
algorithm in deep detail. As state changes in business processes happen at precise
time points, we use a Discrete Event Simulation Algorithm [24] as a basis for our
approach. To provide a suggestive token animation, we chose the time slicing method,
with fixed intervals to move the model forward in time. Roughly, for each time
interval, the following steps are executed by the algorithm:

156 C. Prackwieser et al.

─ At the beginning of each time interval, the algorithm identifies all objects that are
mapped to the semantic simulation concept “Start.” The algorithm evaluates in
cooperation with the rule engine each start-rule of these objects and creates a
corresponding number of new tokens, which represent process instances;

─ Afterwards, the algorithm traverses each active token in the model. The status of a
token can be “idle” or “ready.” A status of “idle” indicates that the corresponding
work order is still being executed by an activity or that the token has to wait due an
event, synchronization in hand, or occupied resource. A token with the “ready”
status will be moved by the algorithm to the subsequent object, according to the
flow rule of the token’s current object, until the token status changes to “idle” or
the token is terminated by an end object;

─ For report generation and further applications, every step is logged during the
simulation run;

─ All token movements are depicted by a visualization component.

3.5 Proof of Concept

Simulation results are not only useful for time, capacity, or cost based analysis. A
study of the dynamic behavior of a process model helps to understand the wanted and
unwanted interactions between process instances better and creates an additional
time-based and animated visualization on the otherwise static models.

One advantage of simulation in contrast to analytic methods is the possibility to
identify and investigate specific process paths throughout the end-to-end process
model. Each distinct chronological sequence of modeling objects that are traversed by
at least one process instance (case) is a process path.

As a first evaluation step of this approach we integrated different modeling notations
such as Value Chain, BPMN and EPC in a meta-modeling platform (the list from Table
2 should be supported with minimal additional effort once the transformation is in
place). Further on, we implemented the transformation, simulation and visualization
algorithms by using the scripting language of the platform.

Fig. 3 shows screenshots of this implementation. The different models are
connected, building a vertical hybrid model from subprocesses using different
notations. The application of the simulation algorithm results in a number of possible
paths, whereas three are depicted in the result list. Path 2 is highlighted throughout the
process models, and all traversed objects and the resulting execution, waiting and
cycle times are shown in the table.

In combination with these attributes, the path information could be used to
generate auxiliary value:

─ process-oriented handbooks or training material;
─ business-related test cases;
─ process-oriented requirement analysis;
─ analysis of IT systems used throughout specific process paths for business

continuity management;
─ user interface design, especially to present applications behavior regarding specific

processes.

 Towards a Generic Hybr

Fig. 3. H

rid Simulation Algorithm Based on a Semantic Mapping

Hybrid process model and simulation results

157

158 C. Prackwieser et al.

4 Conclusive SWOT Evaluation

In this paper, we presented a semantic mapping methodology acting as an alignment,
to enable generic simulation algorithms to run on different modeling notations
without altering the graphical representation of the models. A first evaluation of the
practicality of this approach was done by implementing it on the ADOxx meta-
modeling platform [25] and simulating some hybrid process models. A SWOT
evaluation generated the following conclusions:

Strengths: Semantic annotations of hybrid models can be enabled on meta-
modeling platforms to support the lifting of semantics for different languages to a
common ground, without affecting the familiarity of modelers with the concrete
syntax. Legacy models, or models that follow different notations due to requirements,
may be integrated in this way to provide common working ground for generic
algorithms performing model evaluation. The metamodeling approach builds up an
intermediate layer which allows unified access to all core semantic concepts
necessary for the simulation. This approach simplifies the mapping function from an
order of n2 to an order or n (where n is the number of languages to be mapped) and
offers a common semantic backbone for the simulation algorithm without having to
transform everything to a common syntax (“super notation”).

Weaknesses: State-based modeling languages such as Petri Nets are not currently
involved in our experimentation. Further evaluation, especially regarding the
completeness of the current list of core concepts, is necessary. This is planned by
integrating more control flow-oriented modeling notations and testing the semantic
core concepts of this approach with the simulation related concepts of the added
modeling notations.

Opportunities: Use cases that require handling hybrid process models can be
found particularly in collaborative supply or value chains. Frameworks such as
SCOR, as well as the paradigm of virtual enterprises, promote inter-organizational
process visibility and evaluation. While it is difficult to guarantee that processes in
ad-hoc virtual enterprise configurations are modeled with the same language, our
annotation approach potentially preserves heterogeneity and at the same time enables
sufficient homogeneity for certain simulation approaches. Other domains may also
benefit from the type of simulation enabled by our proposed approach. Some
examples are software engineering (requirements analysis driven by processes [26]
automatic business-oriented test case generation or prototyping in user interface
design) and e-learning (scenario-based training [27] or learning space simulations
[28]).

Threats: The problem approached in this paper can potentially be defused by
imposing a universal alignment to standard notations (BPMN). However, we consider
this assumption to be unrealistic in the near future. Simulation tools such as Arena
also support notations abstract enough to cover all control flow concepts in a unified
way, but our approach aims to preserve the original models and to provide the
semantic lifting in a more transparent manner (enabled on the metamodeling level, by
the annotating rule attributes).

 Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping 159

References

1. Reisig, W.: Remarks on EgonBörger: “Approaches to model business processes: a critical
analysis of BPMN, workflow patterns and YAWL, SOSYM 11: 305-318”. Software and
System Modeling 12(1), 5–9 (2013)

2. Supply Chain Council, The Supply Chain Operations Reference Model,
http://supply-chain.org/resources/scor

3. Karagiannis, D., Visic, N.: Next Generation of Modelling Platforms. In: Grabis, J.,
Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 19–28. Springer, Heidelberg (2011)

4. van Beek, D.A., Rooda, J.E.: Languages and applications in hybrid modelling and
simulation: Positioning of Chi. Control Engineering Practice 8, 81–91 (2000)

5. Clark, T., Sammut, P., Willans, J.: Applied metamodelling: a foundation for language
driven development, Ceteva, Sheffield (2008)

6. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and Practical
Use of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

7. Zivkovic, S., Kühn, H., Karagiannis, D.: Facilitate Modelling Using Method Integration:
An Approach Using Mappings and Integration Rules. In: Proceedings of the ECIS 2007,
vol. 122 (2007)

8. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M.,
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg
(2002)

9. OMG Model Driven Architecture, http://www.omg.org/mda/
10. Mendling, J., Lassen, K.B., Zdun, U.: Transformation Strategies between Block-Oriented

and Graph-Oriented Process Modelling Languages. Vienna University of Economics and
Business (2005)

11. Ouyang, C., Van Der Aalst, W.M.P., Dumas, M., Ter Hofstede, A.H.M.: From Business
Process Models to Process-oriented Software Systems: The BPMN to BPEL Way (2006)

12. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. In: Proceedings of the First European Workshop on Object Orientation and
Web Services at ECOOP (2003)

13. Mendling, J., Ziemann, J.: Transformation of BPEL processes to EPCs. In: 4th GI
Workshop on Event-Driven Process Chains (EPK 2005), CEUR Workshop Proceedings,
pp. 41–53 (2005)

14. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 220–235.
Springer, Heidelberg (2005)

15. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.:
Workflow simulation for operational decision support. Data & Knowledge Engineering 68,
834–850 (2009)

16. Wei, W., Hongwei, D., Jin, D., Changrui, R.: A Comparison of Business Process Modeling
Methods. In: IEEE International Conference on Service Operations and Logistics, and
Informatics, SOLI 2006, pp. 1136–1141 (2006)

17. Fu-Ren, L., Meng-Chyn, Y., Yu-Hua, P.: A generic structure for business process
modeling. Business Process Management Journal 8, 19–41 (2002)

18. Wenhong, L., Alex, Y.T.: A framework for selecting business process modeling methods.
Industrial Management & Data Systems 99, 312–319 (1999)

160 C. Prackwieser et al.

19. List, B., Korherr, B.: An evaluation of conceptual business process modelling languages.
In: Proceedings of the 2006 ACM Symposium on Applied Computing, Dijon, France,
pp. 1532–1539. ACM (2006)

20. BOC Information Technologies Consulting AG: Method - BPMS (Business Process
Management System), http://www.boc-group.com/products/adonis/
method-bpms/

21. Production Rule Representation (PRR). Version 1.0, vol. formal/2009-12-01 (2009)
22. Wagner, G.: Rule Modeling and Markup. In: Eisinger, N., Małuszyński, J. (eds.) Reason-

ing Web. LNCS, vol. 3564, pp. 251–274. Springer, Heidelberg (2005)
23. Tumay, K.: Business process simulation. In: Proceedings of the 1995 Winter Simulation

Conference, pp. 55–60 (1995)
24. Banks, J.: Introduction to simulation. In: 1999 Winter Simulation Conference Proceedings,

WSC 1999. ‘Simulation - A Bridge to the Future’ (Cat. No.99CH37038) (1999)
25. BOC Group, ADOxx product page, http://www.adoxx.org/live/
26. Li, G., Jin, Z., Xu, Y., Lu, Y.: An Engineerable Ontology Based Approach for Requirements

Elicitation in Process Centered Problem Domain. In: Xiong, H., Lee, W.B. (eds.)
KSEM 2011. LNCS, vol. 7091, pp. 208–220. Springer, Heidelberg (2011)

27. Liew, B.Y.T., Tsui, E., Fong, P.S.W., Lau, A.S.M.: Rapid Authoring Platform for
Instructional Design of Scenarios (RAPIDS). In: Proceedings of IEEE 12th International
Conference on Advanced Learning Technologies, Rome, Italy, pp. 473–475. IEEE (2012)

28. Gao, S., Zhang, Z., Hawryszkiewycz, I.: Supporting adaptive learning in hypertext
environments: a high level timed Petri net-based approach. International Journal of
Intelligent Systems Technologies and Applications 4(3/4), 341–354 (2008)

	Towards a Generic Hybrid Simulation Algorithm Based on a Semantic Mapping and Rule Evaluation Approach
	1 Introduction
	2 Problem Statement and Background
	2.1 Problem Positioning
	2.2 Literature and Related Work

	3 The Proposed Approach
	3.1 The Simulation Core Concepts
	3.2 The Rules Syntax
	3.3 Transformation
	3.4 Simulation
	3.5 Proof of Concept

	4 Conclusive SWOT Evaluation
	References

