
Sebastian Rudolph
Georg Gottlob
Ian Horrocks
Frank van Harmelen (Eds.)

Tu
to

ria
l

LN
CS

 8
06

7

9th International Summer School 2013
Mannheim, Germany, July/August 2013
Proceedings

Reasoning Web
Semantic Technologies
for Intelligent Data Access

 123

CQ q

ontology T

UCQ qtw

T -mapping
mapping M

dependencies Σ

SQL

data D

ABox A

+
tw-rewriting

+
unfolding

+
ABox virtualisation

+
ABox virtualisation

+
ABox completion

+
completion

SQO SQ
O

Lecture Notes in Computer Science 8067
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sebastian Rudolph Georg Gottlob
Ian Horrocks Frank van Harmelen (Eds.)

Reasoning Web
Semantic Technologies
for Intelligent Data Access

9th International Summer School 2013
Mannheim, Germany, July 30 – August 2, 2013
Proceedings

13

Volume Editors

Sebastian Rudolph
Technische Universität Dresden, Fakultät Informatik
Nöthnitzer Str. 46, 01062 Dresden, Germany
E-mail: sebastian.rudolph@tu-dresden.de

Georg Gottlob
University of Oxford, Department of Computer Science
Wolfson Building, Parks Road, Oxford, OX1 3 QD, UK
E-mail: georg.gottlob@cs.ox.ac.uk

Ian Horrocks
University of Oxford, Department of Computer Science
Wolfson Building, Parks Road, Oxford, OX1 3 QD, UK
E-mail: ian.horrocks@cs.ox.ac.uk

Frank van Harmelen
Vrije Universiteit Amsterdam, Department of Computer Science
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
E-mail: frank.van.harmelen@cs.vu.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39783-7 e-ISBN 978-3-642-39784-4
DOI 10.1007/978-3-642-39784-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943284

CR Subject Classification (1998): I.2, H.2, F.4, H.3, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the lecture notes of the 9th Reasoning Web Summer School
2013, held from July 30 to August 2, 2013, in Mannheim, Germany.

Over the years, the Reasoning Web Summer School series has become the
premier educational event for the active field of reasoning methods for the Web,
attracting both young and well-established researchers. Previous editions of the
school were held in Malta (2005), Lisbon (2006), Dresden (2007 and 2010), Venice
(2008), Bressanone-Brixen (2009), Galway (2011), and Vienna (2012).

The 2013 edition was hosted by the Data and Web Science Research Group
at the University of Mannheim (http://dws.informatik.uni-mannheim.de). The
group, co-headed by Heiner Stuckenschmidt and Chris Bizer, currently consists
of four professors, five post-doctoral researchers and 15 PhD students. Covering
the whole life cycle of Web Data including information extraction and integra-
tion, data management, reasoning and mining as well as user interaction with
data, the group is the perfect host for the summer school. It is well known for
related community efforts such as DBpedia and the ontology alignment evalua-
tion initiative and has a strong background in Web reasoning, working mainly
on non-standard reasoning for information integration and information retrieval,
scalable reasoning by parallelization and the combination of logical and proba-
bilistic inference.

Following the tradition of the two previous years, the summer school has
been co-located with the International Conference on Web Reasoning and Rule
Systems (RR). Moreover, these two events were directly preceded by the Second
OWL Reasoner Evaluation Workshop (ORE 2013) on July 22 and the 26th
International Workshop on Description Logics (DL 2013) July 23–26, both held
close by in Ulm, Germany.

The 2013 summer school program covered diverse aspects of Web reasoning,
ranging from scalable lightweight formalisms such as RDF to more expressive on-
tology languages based on description logics. It also featured foundational reason-
ing techniques used in answer set programming and ontology-based data access
as well as emerging topics like geo-spatial information handling and reasoning-
driven information extraction and integration.

The tutorial articles were prepared as accompanying material for the students
of the summer school, to deepen the understanding and to provide pointers to
the relevant literature in the field. However, we expect these lecture notes to be of
use beyond that for colleagues and interested readers with sufficient background
in computer science.

The accompanying lecture slides and teaching material of all tutorials are
made available on the summer school website at http://reasoningweb.org/2013/.

We would like to thank everybody who helped make this event possible.
Above all, we would like to thank all the lecturers and their co-authors, whose

VI Preface

hard work and devoted commitment created the solid foundation for this event.
We are grateful to all the reviewers: your timely feedback on the submitted arti-
cles helped the authors to further increase the quality of their excellent tutorials.

Furthermore, we express our gratitude to the local organization team led by
Heiner Stuckenschmidt for putting great organizational and administrative effort
into making the summer school both a pleasant and a insightful experience.

Last but not least, we thank all sponsors of this event, who provided sup-
port financially or in terms of resources: Fluid Operations, Semafora, Associ-
ation for Logic Programming, NSF, LOD2, Artificial Intelligence Journal, IOS
Press, SOFTPLANT, the University of Mannheim, Siemens AG Österreich, and
Springer. We particularly thank Marco Maratea, who – once again – did an ex-
cellent job in acquiring sponsors, which allowed us to keep the registration fees
on a moderate level and support students with travel grants.

July 2013 Sebastian Rudolph
Georg Gottlob
Ian Horrocks

Frank van Harmelen

Organization

General Chair

Sebastian Rudolph Technische Universität Dresden, Germany

Scientific Advisory Board

Georg Gottlob University of Oxford, UK
Ian Horrocks University of Oxford, UK
Frank van Harmelen Vrije Universiteit Amsterdam, The Netherlands

Local Chair

Heiner Stuckenschmidt University of Mannheim, Germany

Local Organization

Stephanie Keil University of Mannheim, Germany
Nicole Nowak University of Mannheim, Germany
Sebastian Kotthoff University of Mannheim, Germany

Sponsorship Chair

Marco Maratea Università di Genova, Italy

Additional Reviewers

Michael Morak
Rafael Peñaloza-Nyssen
Andreas Pieris
Linda van den Brink

VIII Organization

Sponsors

Platinum Sponsors

Association for Logic Programming Semafora

Fluid Operations National Science Foundation

Gold Sponsors

Artificial Intelligence Journal LOD2

Silver Sponsors

IOS Press SOFTPLANT

Invited Partners

Siemens AG Österreich Springer
DERI Galway

Table of Contents

Introduction to Linked Data and Its Lifecycle on the Web 1
Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and
Amrapali Zaveri

RDFS and OWL Reasoning for Linked Data . 91
Axel Polleres, Aidan Hogan, Renaud Delbru, and Jürgen Umbrich

Introductions to Description Logics – A Guided Tour 150
Anni-Yasmin Turhan

Answer Set Programming . 162
Wolfgang Faber

Ontology-Based Data Access with Databases: A Short Course 194
Roman Kontchakov, Mariano Rodŕıguez-Muro, and Michael
Zakharyaschev

A Geo-semantics Flyby . 230
Krzysztof Janowicz, Simon Scheider, and Benjamin Adams

Statistical Relational Data Integration for Information Extraction 251
Mathias Niepert

Author Index . 285

Introduction to Linked Data
and Its Lifecycle on the Web

Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Amrapali Zaveri

AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig
lastname@informatik.uni-leipzig.de

http://aksw.org

Abstract. With Linked Data, a very pragmatic approach towards achieving the
vision of the Semantic Web has gained some traction in the last years. The term
Linked Data refers to a set of best practices for publishing and interlinking struc-
tured data on the Web. While many standards, methods and technologies devel-
oped within by the Semantic Web community are applicable for Linked Data,
there are also a number of specific characteristics of Linked Data, which have
to be considered. In this article we introduce the main concepts of Linked Data.
We present an overview of the Linked Data lifecycle and discuss individual ap-
proaches as well as the state-of-the-art with regard to extraction, authoring, link-
ing, enrichment as well as quality of Linked Data. We conclude the chapter with a
discussion of issues, limitations and further research and development challenges
of Linked Data. This article is an updated version of a similar lecture given at
Reasoning Web Summer School 2011.

1 Introduction

One of the biggest challenges in the area of intelligent information management is the
exploitation of the Web as a platform for data and information integration as well as for
search and querying. Just as we publish unstructured textual information on the Web as
HTML pages and search such information by using keyword-based search engines, we
are already able to easily publish structured information, reliably interlink this informa-
tion with other data published on the Web and search the resulting data space by using
more expressive querying beyond simple keyword searches.

The Linked Data paradigm has evolved as a powerful enabler for the transition of the
current document-oriented Web into a Web of interlinked Data and, ultimately, into the
Semantic Web. The term Linked Data here refers to a set of best practices for publishing
and connecting structured data on the Web. These best practices have been adopted by
an increasing number of data providers over the past three years, leading to the creation
of a global data space that contains many billions of assertions – the Web of Linked
Data (cf. Figure 1).

In this chapter we give an overview of recent development in the area of Linked
Data management. The different stages in the linked data life-cycle [11,7] are depicted
in Figure 2.

Information represented in unstructured form or adhering to other structured or semi-
structured representation formalisms must be mapped to the RDF data model (Extrac-
tion). Once there is a critical mass of RDF data, mechanisms have to be in place to

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 1–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://aksw.org

2 S. Auer et al.

Fig. 1. Overview of some of the main Linked Data knowledge bases and their interlinks available
on the Web. (This overview is published regularly at http://lod-cloud.net and generated
from the Linked Data packages described at the dataset metadata repository ckan.net.)

store, index and query this RDF data efficiently (Storage& Querying). Users must have
the opportunity to create new structured information or to correct and extend existing
ones (Authoring). If different data publishers provide information about the same or
related entities, links between those different information assets have to be established
(Linking). Since Linked Data primarily comprises instance data we observe a lack of
classification, structure and schema information. This deficiency can be tackled by ap-
proaches for enriching data with higher-level structures in order to be able to aggregate
and query the data more efficiently (Enrichment). As with the Document Web, the Data
Web contains a variety of information of different quality. Hence, it is important to
devise strategies for assessing the quality of data published on the Data Web (Quality
Analysis). Once problems are detected, strategies for repairing these problems and sup-
porting the evolution of Linked Data are required (Evolution & Repair). Last but not
least, users have to be empowered to browse, search and explore the structure informa-
tion available on the Data Web in a fast and user friendly manner (Search, Browsing &
Exploration).

These different stages of the linked data life-cycle do not exist in isolation or are
passed in a strict sequence, but mutually fertilize themselves. Examples include the
following:

– The detection of mappings on the schema level, will directly affect instance level
matching and vice versa.

Introduction to Linked Data and Its Lifecycle on the Web 3

Fig. 2. The Linked Data life-cycle

– Ontology schema mismatches between knowledge bases can be compensated for
by learning which concepts of one are equivalent to which concepts of the other
knowledge base.

– Feedback and input from end users can be taken as training input (i.e. as positive or
negative examples) for machine learning techniques in order to perform inductive
reasoning on larger knowledge bases, whose results can again be assessed by end
users for iterative refinement.

– Semantically-enriched knowledge bases improve the detection of inconsistencies
and modelling problems, which in turn results in benefits for interlinking, fusion,
and classification.

– The querying performance of the RDF data management directly affects all other
components and the nature of queries issued by the components affects the RDF
data management.

As a result of such interdependence, we envision the Web of Linked Data to realize an
improvement cycle for knowledge bases, in which an improvement of a knowledge base
with regard to one aspect (e.g. a new alignment with another interlinking hub) triggers
a number of possible further improvements (e.g. additional instance matches).

The use of Linked Data offers a number of significant benefits:

– Uniformity. All datasets published as Linked Data share a uniform data model, the
RDF statement data model. With this data model all information is represented in
facts expressed as triples consisting of a subject, predicate and object. The elements
used in subject, predicate or object positions are mainly globally unique IRI/URI
entity identifiers. At the object position also literals, i.e. typed data values can be
used.

4 S. Auer et al.

Table 1. Juxtaposition of the concepts Linked Data, Linked Open Data and Open Data

Representation \ degree of openness Possibly closed Open (cf. opendefinition.org)
Structured data model Data Open Data
(i.e. XML, CSV, SQL etc.)
RDF data model Linked Data (LD) Linked Open Data (LOD)
(published as Linked Data)

– De-referencability. URIs are not just used for identifying entities, but since they can
be used in the same way as URLs they also enable locating and retrieving resources
describing and representing these entities on the Web.

– Coherence. When an RDF triple contains URIs from different namespaces in sub-
ject and object position, this triple basically establishes a link between the entity
identified by the subject (and described in the source dataset using namspace A)
with the entity identified by the object (described in the target dataset using names-
pace B). Through the typed RDF links, data items are effectively interlinked.

– Integrability. Since all Linked Data sources share the RDF data model, which is
based on a single mechanism for representing information, it is very easy to at-
tain a syntactic and simple semantic integration of different Linked Data sets. A
higher level semantic integration can be achieved by employing schema and in-
stance matching techniques and expressing found matches again as alignments of
RDF vocabularies and ontologies in terms of additional triple facts.

– Timeliness. Publishing and updating Linked Data is relatively simple thus facili-
tating a timely availability. In addition, once a Linked Data source is updated it is
straightforward to access and use the updated data source, since time consuming
and error prune extraction, transformation and loading is not required.

The development of research approaches, standards, technology and tools for support-
ing the Linked Data lifecycle data is one of the main challenges. Developing adequate
and pragmatic solutions to these problems can have a substantial impact on science,
economy, culture and society in general. The publishing, integration and aggregation
of statistical and economic data, for example, can help to obtain a more precise and
timely picture of the state of our economy. In the domain of health care and life sci-
ences making sense of the wealth of structured information already available on the
Web can help to improve medical information systems and thus make health care
more adequate and efficient. For the media and news industry, using structured back-
ground information from the Data Web for enriching and repurposing the quality con-
tent can facilitate the creation of new publishing products and services. Linked Data
technologies can help to increase the flexibility, adaptability and efficiency of infor-
mation management in organizations, be it companies, governments and public admin-
istrations or online communities. For end-users and society in general, the Data Web
will help to obtain and integrate required information more efficiently and thus success-
fully manage the transition towards a knowledge-based economy and an information
society.

opendefinition.org

Introduction to Linked Data and Its Lifecycle on the Web 5

Structure of this chapter. This chapter aims to explain the foundations of Linked Data
and introducing the different aspects of the Linked Data lifecycle by highlighting a par-
ticular approach and providing references to related work and further reading. We start
by briefly explaining the principles underlying the Linked Data paradigm in Section 2.
The first aspect of the Linked Data lifecycle is the extraction of information from un-
structured, semi-structured and structured sources and their representation according to
the RDF data model (Section 3). We present the user friendly authoring and manual
revision aspect of Linked Data with the example of Semantic Wikis in Section 4. The
interlinking aspect is tackled in Section 5 and gives an overview on the LIMES frame-
work. We describe how the instance data published and commonly found on the Data
Web can be enriched with higher level structures in Section 6. We present an overview
of the various data quality dimensions and metrics along with currently existing tools
for data quality assessment of Linked Data in Section 7. Due to space limitations we
omit a detailed discussion of the evolution as well as search, browsing and exploration
aspects of the Linked Data lifecycle in this chapter. The chapter is concluded by sev-
eral sections on promising applications of Linked Data and semantic technologies, in
particular Open Governmental Data, Semantic Business Intelligence and Statistical and
Economic Data.

Overall, this is an updated version of a similar lecture given at Reasoning Web Sum-
mer School 2011 [13].

2 The Linked Data Paradigm

In this section we introduce the basic principles of Linked Data. The section is partially
based on the Section 2 from [54]. The term Linked Data refers to a set of best practices
for publishing and interlinking structured data on the Web. These best practices were
introduced by Tim Berners-Lee in his Web architecture note Linked Data1 and have
become known as the Linked Data principles. These principles are:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.
– When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).
– Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the World Wide
Web [71] to the task of sharing structured data on global scale. The Document Web
is built on the idea of setting hyperlinks between Web documents that may reside on
different Web servers. It is built on a small set of simple standards: Uniform Resource
Identifiers (URIs) and their extension Internationalized Resource Identifiers (IRIs) as
globally unique identification mechanism [21], the Hypertext Transfer Protocol (HTTP)
as universal access mechanism [44], and the Hypertext Markup Language (HTML) as
a widely used content format [65]. Linked Data builds directly on Web architecture and
applies this architecture to the task of sharing data on global scale.

1 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

6 S. Auer et al.

2.1 Resource Identification with IRIs

To publish data on the Web, the data items in a domain of interest must first be identified.
These are the things whose properties and relationships will be described in the data,
and may include Web documents as well as real-world entities and abstract concepts.
As Linked Data builds directly on Web architecture, the Web architecture term resource
is used to refer to these things of interest, which are in turn identified by HTTP URIs.
Linked Data uses only HTTP URIs, avoiding other URI schemes such as URNs [101]
and DOIs2. The structure of HTTP URIs looks as follows:

[scheme:][//authority][path][?query][#fragment]

A URI for identifying Shakespeare’s ‘Othello’, for example, could look as follows:

http://de.wikipedia.org/wiki/Othello#id

HTTP URIs make good names for two reasons:

1. They provide a simple way to create globally unique names in a decentralized fash-
ion, as every owner of a domain name or delegate of the domain name owner may
create new URI references.

2. They serve not just as a name but also as a means of accessing information describ-
ing the identified entity.

2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look up the
URI using the HTTP protocol and retrieve a description of the resource that is identified
by the URI. This applies to URIs that are used to identify classic HTML documents,
as well as URIs that are used in the Linked Data context to identify real-world objects
and abstract concepts. Descriptions of resources are embodied in the form of Web doc-
uments. Descriptions that are intended to be read by humans are often represented as
HTML. Descriptions that are intended for consumption by machines are represented
as RDF data. Where URIs identify real-world objects, it is essential to not confuse the
objects themselves with the Web documents that describe them. It is therefore common
practice to use different URIs to identify the real-world object and the document that
describes it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For example, the
creation year of a painting may be rather different to the creation year of an article about
this painting. Being able to distinguish the two through use of different URIs is critical
to the consistency of the Web of Data.

The Web is intended to be an information space that may be used by humans as
well as by machines. Both should be able to retrieve representations of resources in a
form that meets their needs, such as HTML for humans and RDF for machines. This
can be achieved using an HTTP mechanism called content negotiation [44]. The basic

2 http://www.doi.org/hb.html

http://www.doi.org/hb.html

Introduction to Linked Data and Its Lifecycle on the Web 7

idea of content negotiation is that HTTP clients send HTTP headers with each request
to indicate what kinds of documents they prefer. Servers can inspect these headers and
select an appropriate response. If the headers indicate that the client prefers HTML then
the server will respond by sending an HTML document If the client prefers RDF, then
the server will send the client an RDF document.

There are two different strategies to make URIs that identify real-world objects de-
referencable [137]. Both strategies ensure that objects and the documents that describe
them are not confused and that humans as well as machines can retrieve appropriate
representations.

303 URIs. Real-world objects can not be transmitted over the wire using the HTTP
protocol. Thus, it is also not possible to directly de-reference URIs that identify real-
world objects. Therefore, in the 303 URI strategy, instead of sending the object itself
over the network, the server responds to the client with the HTTP response code 303
See Other and the URI of a Web document which describes the real-world object.
This is called a 303 redirect. In a second step, the client de-references this new URI and
retrieves a Web document describing the real-world object.

Hash URIs. A widespread criticism of the 303 URI strategy is that it requires two HTTP
requests to retrieve a single description of a real-world object. One option for avoiding
these two requests is provided by the hash URI strategy. The hash URI strategy builds
on the characteristic that URIs may contain a special part that is separated from the base
part of the URI by a hash symbol (#). This special part is called the fragment identifier.
When a client wants to retrieve a hash URI the HTTP protocol requires the fragment
part to be stripped off before requesting the URI from the server. This means a URI that
includes a hash cannot be retrieved directly, and therefore does not necessarily identify
a Web document. This enables such URIs to be used to identify real-world objects and
abstract concepts, without creating ambiguity [137].

Both approaches have their advantages and disadvantages. Section 4.4. of the
W3C Interest Group Note Cool URIs for the Semantic Web compares the two ap-
proaches [137]: Hash URIs have the advantage of reducing the number of necessary
HTTP round-trips, which in turn reduces access latency. The downside of the hash URI
approach is that the descriptions of all resources that share the same non-fragment URI
part are always returned to the client together, irrespective of whether the client is inter-
ested in only one URI or all. If these descriptions consist of a large number of triples,
the hash URI approach can lead to large amounts of data being unnecessarily transmit-
ted to the client. 303 URIs, on the other hand, are very flexible because the redirection
target can be configured separately for each resource. There could be one describing
document for each resource, or one large document for all of them, or any combination
in between. It is also possible to change the policy later on.

2.3 RDF Data Model

The RDF data model [1] represents information as sets of statements, which can be
visualized as node-and-arc-labeled directed graphs. The data model is designed for the

8 S. Auer et al.

integrated representation of information that originates from multiple sources, is hetero-
geneously structured, and is represented using different schemata. RDF can be viewed
as a lingua franca, capable of moderating between other data models that are used on
the Web.

In RDF, information is represented in statements, called RDF triples. The three parts
of each triple are called its subject, predicate, and object. A triple mimics the basic
structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)

The following is the formal definition of RDF triples as it can be found in the W3C
RDF standard [1].

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I, B, and
L representing IRIs, blank nodes, and RDF literals, respectively. A triple (v1, v2, v3) ∈
(I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In this tuple, v1 is the subject, v2 the
predicate and v3 the object. We denote the union I ∪ B ∪ L by T called RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate and object
positions in a triple. Data values can be represented in the object position as literals.
Furthermore, the RDF data model also allows in subject and object positions the use of
identifiers for unnamed entities (called blank nodes), which are not globally unique and
can thus only be referenced locally. However, the use of blank nodes is discouraged in
the Linked Data context as we discuss below. Our example fact sentence about Leipzig’s
mayor would now look as follows:

<http://leipzig.de/id>
<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .
(subject) (predicate) (object)

This example shows, that IRIs used within a triple can originate from different names-
paces thus effectively facilitating the mixing and mashing of different RDF vocabular-
ies and entities from different Linked Data knowledge bases. A triple having identifiers
from different knowledge bases at subject and object position can be also viewed as
an typed link between the entities identified by subject and object. The predicate then
identifies the type of link. If we combine different triples we obtain an RDF graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph. The RDF
graph itself represents an resource, which is located at a certain location on the Web
and thus has an associated IRI, the graph IRI.

An example of an RDF graph is depicted in Figure 3. Each unique subject or object
contained in the graph is visualized as a node (i.e. oval for resources and rectangle
for literals). Predicates are visualized as labeled arcs connecting the respective nodes.
There are a number of synonyms being used for RDF graphs, all meaning essentially
the same but stressing different aspects of an RDF graph, such as RDF document (file
perspective), knowledge base (collection of facts), vocabulary (shared terminology),
ontology (shared logical conceptualization).

Introduction to Linked Data and Its Lifecycle on the Web 9

Fig. 3. Example RDF graph containing 9 triples describing the city of Leipzig and its mayor

Problematic RDF features in the Linked Data Context. Besides the features mentioned
above, the RDF Recommendation [1] also specifies some other features. In order to
make it easier for clients to consume data only the subset of the RDF data model de-
scribed above should be used. In particular, the following features are problematic when
publishing RDF as Linked Data:

– RDF reification (for making statements about statements) should be avoided if pos-
sible, as reified statements are rather cumbersome to query with the SPARQL query
language. In many cases using reification to publish metadata about individual RDF
statements can be avoided by attaching the respective metadata to the RDF docu-
ment containing the relevant triples.

– RDF collections and RDF containers are also problematic if the data needs to be
queried with SPARQL. Therefore, in cases where the relative ordering of items
in a set is not significant, the use of multiple triples with the same predicate is
recommended.

– The scope of blank nodes is limited to the document in which they appear, meaning
it is not possible to create links to them from external documents. In addition, it
is more difficult to merge data from different sources when blank nodes are used,
as there is no URI to serve as a common key. Therefore, all resources in a data set
should be named using IRI references.

2.4 RDF Serializations

The initial official W3C RDF standard [1] comprised a serialization of the RDF data
model in XML called RDF/XML. Its rationale was to integrate RDF with the existing
XML standard, so it could be used smoothly in conjunction with the existing XML
technology landscape. Unfortunately, RDF/XML turned out to be rather difficult to un-
derstand for the majority of potential users, since it requires to be familiar with two
data models (i.e. the tree-oriented XML data model as well as the statement oriented
RDF datamodel) and interactions between them, since RDF statements are represented
in XML. As a consequence, with N-Triples, Turtle and N3 a family of alternative

10 S. Auer et al.

Fig. 4. Various textual RDF serializations as subsets of N3 (from [20])

text-based RDF serializations was developed, whose members have the same origin,
but balance differently between readability for humans and machines. Later in 2009,
RDFa (RDF Annotations, [2]) was standardized by the W3C in order to simplify the
integration of HTML and RDF and to allow the joint representation of structured and
unstructured content within a single source HTML document. Another RDF serializa-
tion, which is particularly beneficial in the context of JavaScript web applications and
mashups is the serialization of RDF in JSON. In the sequel we present each of these
RDF serializations in some more detail. Figure 5 presents an example serialized in the
most popular serializations.

N-Triples. This serialization format was developed specifically for RDF graphs. The
goal was to create a serialization format which is very simple. N-Triples are easy to
parse and generate by software. An N-Triples document consists of a set of triples,
which are separated ‘.’ (lines 1-2, 3-4 and 5-6 in Figure 5 contain one triple each). URI
components of a triple are written in full and enclosed by ‘<’ and ‘>’. Literals are
enclosed in quotes, datatypes can be appended to a literal using ‘g (line 6), language
tags using ‘@’ (line 4). They are a subset of Notation 3 and Turtle but lack, for example,
shortcuts such as CURIEs. This makes them less readable and more difficult to create
manually. Another disadvantage is that N-triples use only the 7-bit US-ASCII character
encoding instead of UTF-8.

Introduction to Linked Data and Its Lifecycle on the Web 11

Turtle. Turtle (Terse RDF Triple Language) is a subset of, and compatible with, Nota-
tion 3 and a superset of the minimal N-Triples format (cf. Figure 4). The goal was to use
the essential parts of Notation 3 for the serialization of RDF models and omit everything
else. Turtle became part of the SPARQL query language for expressing graph patterns.
Compared to N-Triples, Turtle introduces a number of shortcuts, such as namespace
definitions (lines 1-5 in Figure 5), the semicolon as a separator between triples sharing
the same subject (which then does not have to be repeated in subsequent triples) and
the comma as a separator between triples sharing the same subject and predicate. Tur-
tle, just like Notation 3, is human-readable, and can handle the "%" character in URIs
(required for encoding special characters) as well as IRIs due to its UTF-8 encoding.

Notation 3. N3 (Notation 3) was devised by Tim Berners-Lee and developed for the
purpose of serializing RDF. The main aim was to create a very human-readable serial-
ization. Hence, an RDF model serialized in N3 is much more compact than the same
model in RDF/XML but still allows a great deal of expressiveness even going beyond
the RDF data model in some aspects. Since, the encoding for N3 files is UTF-8 the use
of IRIs does not pose a problem.

RDF/XML. The RDF/XML syntax [98] is standardized by the W3C and is widely used
to publish Linked Data on the Web. However, the syntax is also viewed as difficult
for humans to read and write, and therefore consideration should be given to using
other serializations in data management and curation workflows that involve human
intervention, and to the provision of alternative serializations for consumers who may
wish to eyeball the data. The MIME type that should be used for RDF/XML within
HTTP content negotiation is application/rdf+xml.

RDFa. RDF in Attributes (RDFa, [2]) was developed for embedding RDF into XHTML
pages. Since it is an extension to the XML based XHTML, UTF-8 and UTF-16 are
used for encoding. The "%" character for URIs in triples can be used because RDFa
tags are not used for a part of a RDF statement. Thus IRIs are usable, too. Because
RDFa is embedded in XHTML, the overhead is higher compared to other serialization
technologies and also reduces the readability. The basic idea of RDFa is enable an RDFa
processor to extract RDF statements from an RDFa enriched HTML document. This is
achieved by defining the scope of a certain resource description, for example, using the
‘about’ attribute (cf. line 10 in Figure 5). Within this scope, triples can now be extracted
from links having an additional ‘rel’ attribute (line 13) or other tags having a ‘property
attribute’ (lines 11 and 14).

JSON-LD. JavaScript Object Notation (JSON) was developed for easy data interchange
between applications. JSON, although carrying JavaScript in its name and being a
subset of JavaScript, meanwhile became a language independent format which can be
used for exchanging all kinds of data structures and is widely supported in different pro-
gramming languages. Compared to XML, JSON-LD requires less overhead with regard
to parsing and serializing. JSON-LD has been developed by the JSON for Linking Data
Community Group and been transferred to the RDF Working Group for review, im-
provement, and publication along the Recommendation track. JSON-LD’s design goals

12 S. Auer et al.

N-Triples
1 <http://dbpedia.org/resource/Leipzig> <http://dbpedia.org/property/hasMayor>
2 <http://dbpedia.org/resource/Burkhard_Jung > .
3 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2000/01/rdf-schema#label>
4 "Leipzig"@de .
5 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2003/01/geo/wgs84_pos#lat>
6 "51.333332"^^<http://www.w3.org/2001/XMLSchema#float> .

Turtle
1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs="http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dbp="http://dbpedia.org/resource/> .
4 @prefix dbpp="http://dbpedia.org/property/> .
5 @prefix geo="http://www.w3.org/2003/01/geo/wgs84_pos#> .
6

7 dbp:Leipzig dbpp:hasMayor dbp:Burkhard_Jung ;
8 rdfs:label "Leipzig"@de ;
9 geo:lat "51.333332"^^xsd:float .

RDF/XML
1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4 xmlns:dbpp="http://dbpedia.org/property/"
5 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
6 <rdf:Description rdf:about="http://dbpedia.org/resource/Leipzig">
7 <property:hasMayor rdf:resource="http://dbpedia.org/resource/Burkhard_Jung" />
8 <rdfs:label xml:lang="de">Leipzig </rdfs:label>
9 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">51.3333</geo:lat>

10 </rdf:Description >
11 </rdf:RDF>

RDFa
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
3 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
4 <html version="XHTML+RDFa 1.0" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml"
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
7 xmlns:dbpp="http://dbpedia.org/property/"
8 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
9 <head><title>Leipzig </title></head>

10 <body about="http://dbpedia.org/resource/Leipzig">
11 <h1 property="rdfs:label" xml:lang="de">Leipzig </h1>
12 <p>Leipzig is a city in Germany. Leipzig’s mayor is
13 Burkhard Jung. It is located
14 at latitude 51.3333.</p>
15 </body>
16 </html>

JSON-LD
1 {
2 "@context": {
3 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
4 "hasMayor": { "@id": "http://dbpedia.org/property/hasMayor", "@type": "@id" },
5 "Person": "http://xmlns.com/foaf/0.1/Person",
6 "lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat"
7 },
8 "@id": "http://dbpedia.org/resource/Leipzig",
9 "rdfs:label": "Leipzig",

10 "hasMayor": "http://dbpedia.org/resource/Burkhard_Jung",
11 "lat": { "@value": "51.3333", "@type": "http://www.w3.org/2001/XMLSchema#float"
12 }

Fig. 5. Different RDF serializations of three triples from Figure 3

Introduction to Linked Data and Its Lifecycle on the Web 13

are simplicity, compatibility, expressiveness, terseness, zero edits and one-pass pro-
cessing. As a result, JSON-LD documents are basically standard attribute-value JSON
documents with an additional context section (lines 2-7 in Figure 5) establishing map-
pings to RDF vocabularies. Text in JSON and, thus, also RDF resource identifiers are
encoded in Unicode and hence can contain IRIs.

3 Extraction

Information represented in unstructured form or adhering to a different structured repre-
sentation formalism must be mapped to the RDF data model in order to be used within
the Linked Data life-cycle. In this section, we give an overview on some relevant ap-
proaches for extracting RDF from unstructured and structured sources.

3.1 From Unstructured Sources

The extraction of structured information from unstructured data sources (especially
text) has been a central pillar of natural language processing (NLP) and Informa-
tion Extraction (IE) for several decades. With respect to the extraction of RDF data
from unstructured data, three sub-disciplines of NLP play a central role: Named En-
tity Recognition (NER) for the extraction of entity labels from text, Keyword/Keyphrase
Extraction (KE) for the recognition of central topics and Relationship Extraction (RE,
also called relation mining) for mining the properties which link the entities and key-
words described in the data source. A noticeable additional task during the migration
of these techniques to Linked Data is the extraction of suitable IRIs for the discov-
ered entities and relations, a requirement that was not needed before. In this section,
we give a short overview of approaches that implement the required NLP functionality.
Then we present a framework that applies machine learning to boost the quality of the
RDF extraction from unstructured data by merging the results of NLP tools. As an or-
thogonal activity, we want to mention the NLP2RDF project [58], which provides RDF
serialisation for NLP tools solving the above mentioned tasks.

Named Entity Recognition. The goal of NER is to discover instances of a prede-
fined classes of entities (e.g., persons, locations, organizations) in text. NER tools and
frameworks implement a broad spectrum of approaches, which can be subdivided into
three main categories: dictionary-based, rule-based, and machine-learning approaches.
The first systems for NER implemented dictionary-based approaches, which relied on
a list of NEs and tried to identify these in text [157,5]. Following work that showed that
these approaches did not perform well for NER tasks such as recognizing proper names
[136], rule-based approaches were introduced. These approaches rely on hand-crafted
rules [32,146] to recognize NEs. Most rule-based approaches combine dictionary and
rule-based algorithms to extend the list of known entities. Nowadays, handcrafted rules
for recognizing NEs are usually implemented when no training examples are available
for the domain or language to process [106].

14 S. Auer et al.

When training examples are available, the methods of choice are borrowed from
supervised machine learning. Approaches such as Hidden Markov Models [168], Max-
imum Entropy Models [35] and Conditional Random Fields [45] have been applied
to the NER task. Due to scarcity of large training corpora as necessitated by machine
learning approaches, semi-supervised [125,105] and unsupervised machine learning ap-
proaches [107,41] have also been used for extracting NER from text. [105] gives an
exhaustive overview of approaches for NER.

Keyphrase Extraction. Keyphrases/Keywords are multi-word units (MWUs) which
capture the main topics of a document. The automatic detection of such MWUs has
been an important task of NLP for decades but due to the very ambiguous defini-
tion of what an appropriate keyword should be, current approaches to the extraction
of keyphrases still display low F-scores [75]. From the point of view of the Semantic
Web, the extraction of keyphrases is a very similar task to that of finding tags for a given
document. Several categories of approaches have been adapted to enable KE, of which
some originate from research areas such as summarization and information retrieval
(IR). Still, according to [74], the majority of the approaches to KE implement combina-
tions of statistical, rule-based or heuristic methods [48,120] on mostly document [97],
keyphrase [149] or term cohesion features [124]. [75] gives a overview of current tools
for KE.

Relation Extraction. The extraction of relations from unstructured data builds upon
work for NER and KE to determine the entities between which relations might exist.
Most tools for RE rely on pattern-based approaches. Some early work on pattern extrac-
tion relied on supervised machine learning [51]. Yet, such approaches demanded large
amount of training data, making them difficult to adapt to new relations. The subse-
quent generation of approaches to RE aimed at bootstrapping patterns based on a small
number of input patterns and instances. For example, [28] presents the Dual Iterative
Pattern Relation Expansion (DIPRE) and applies it to the detection of relations between
authors and titles of books. This approach relies on a small set of seed patterns to max-
imize the precision of the patterns for a given relation while minimizing their error rate
of the same patterns. Snowball [3] extends DIPRE by a new approach to the generation
of seed tuples. Newer approaches aim to either collect redundancy information from the
whole Web [123] or Wikipedia [158,164] in an unsupervised manner or to use linguistic
analysis [53,119] to harvest generic patterns for relations.

URI Disambiguation. One important problem for the integration of NER tools for
Linked Data is the retrieval of IRIs for the entities to be manipulated. In most cases,
the URIs can be extracted from generic knowledge bases such as DBpedia [104,83]
by comparing the label found in the input data with the rdfs:label or dc:title of
the entities found in the knowledge base. Furthermore, information such as the type of
NEs can be used to filter the retrieved IRIs via a comparison of the rdfs:label of
the rdf:type of the URIs with the name of class of the NEs. Still in many cases (e.g.,
Leipzig, Paris), several entities might bear the same label.

Introduction to Linked Data and Its Lifecycle on the Web 15

Machine Learning

Controller

Tools

Prediction

Training

Named Entity
Recognition

Keyphrase
Extraction

Relation
Extraction

URI Lookup

Fig. 6. FOX Architecture

Unsupervised Extraction Example: The FOX Framework

Several frameworks have been developed to implement the functionality above for the
Data Web including OpenCalais3 and Alchemy4. Yet, these tools rely mostly on one
approach to perform the different tasks at hand. In this section, we present the FOX
(Federated knOwledge eXtraction) framework5, which makes use of the diversity of
the algorithms available for NER, KE and RE to generate high-quality RDF.

The architecture of FOX consists of three main layers as shown in Figure 6. The
machine learning layer implements interfaces for accommodating ensemble learning
techniques such as simple veto algorithms but also neural networks. It consists of two
main modules. The training module allows to load training data so as to enable FOX
to learn the best combination of tools and categories for achieving superior recall and
precision on the input training data. Depending on the training algorithm used, the user
can choose to tune the system for either precision or recall. When using neural networks
for example, the user can decide to apply a higher threshold for the output neurons,
thus improving the precision but potentially limiting the recall. The prediction module
allows to run FOX by loading the result of a training session and processing the input
data according to the tool-category combination learned during the training phase. Note
that the same learning approach can by applied to NER, KE, RE and URI lookup as
they call all be modelled as classification tasks.

3 http://www.opencalais.com
4 http://www.alchemyapi.com
5 http://aksw.org/projects/fox

http://www.opencalais.com
http://www.alchemyapi.com
http://aksw.org/projects/fox

16 S. Auer et al.

The second layer of FOX is the controller, which coordinates the access to the mod-
ules that carry out the language processing. The controller is aware of each of the
modules in its backend and carries out the initialisation of these modules once FOX
is started. Furthermore, it collects the results from the backend modules and invokes
the results of a training instance to merge the results of these tools.

The final layer of FOX is the tool layer, wherein all NLP tools and services integrated
in FOX can be found. It is important to notice that the tools per se are not trained during
the learning phase of FOX. Rather, we learn of the models already loaded in the tools
to allow for the best prediction of named entities in a given domain.

The ensemble learning implemented by FOX was evaluated in the task of NER by
integrating three NER tools (Stanford NER, Illinois NER and a commercial tool) and
shown to lead to an improvement of more than 13% in F-Score (see Figure 7) when
combining three tools, therewith even outperforming commercial systems.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Precision Recall F-Score

Stanford NER

Illinois NER

Commecial Tool

FOX

Fig. 7. Comparison of precision, recall and F-score of the best runs of FOX and its components
on NER

3.2 From Structured Sources

Structured knowledge, e.g. relational databases and XML, is the backbone of many
(web) applications. Extracting or converting this knowledge to RDF is a long-standing
research goal in the Semantic Web community. A conversion to RDF allows to integrate
the data with other sources and perform queries over it. In this lecture, we focus on the
conversion of relational databases to RDF (see Figure 8). In the first part, we summarize
material from a recent relational database to RDF (RDB2RDF) project report. After
that, we describe the mapping language R2RML, which is a language for expressing
database to RDF conversion mappings. While we focus on relational date, we also want
to note that extraction from CSV files is also highly important as illustrated in use cases
in the financial [96] and health sector [165,166].

Triplify and RDB2RDF Survey Report. The table displayed in Figure 9 is taken from
the Triplify WWW paper [8]. The survey report [135] furthermore contained a chart(see
Figure 10) showing the reference framework for classifying the approaches and an ex-
tensive table classifying the approaches (see Figure 11). Another recent survey is [144].

Introduction to Linked Data and Its Lifecycle on the Web 17

Fig. 8. Illustration of RDB to RDF conversion.
Source: http://www.w3.org/2001/sw/rdb2rdf/use-cases/ .

The following criteria can be extracted:

Automation Degree. Degree of mapping creation automation.
Values: Manual, Automatic, Semi-Automatic.

Domain or Database Semantics Driven. Some approaches are tailored to model a do-
main, sometimes with the help of existing ontologies, while others attempt to extract
domain information primarily from the given database schema with few other resources
used (domain or database semantics-driven). The latter often results in a table-to-class,
column-to-predicate mapping.Some approaches also use a (semi) automatic approach
based on the database, but allow manual customization to model domain semantics.

Fig. 9. Table comparing relevant approaches from [8]

http://www.w3.org/2001/sw/rdb2rdf/use-cases/

18 S. Auer et al.

Fig. 10. Reference framework by [135]

Values: Domain, DB (database), DB+M (database and later manual customisation),
Both (Domain and DB)

Access Paradigm. Resulting access paradigm (ETL [extract transform load], Linked
Data, SPARQL access). Note that the access paradigm also determines whether the
resulting RDF model updates automatically. ETL means a one time conversion, while
Linked Data and SPARQL always process queries versus the original database.
Values: SPARQL, ETL, LD

Mapping Language. The used mapping language as an important factor for reusability
and initial learning cost.
Values: Visual Tool, intern (internal self-designed language), FOL, n/a (no information
available), R2O, XSLT, D2RQ, proprietary, SQL

Domain reliance. Domain reliance (general or domain-dependent): requiring a pre-
defined ontology is a clear indicator of domain dependency.
Values: Dependent, General

Type. Although not used in the table the paper discusses four different classes:
Values: Alignment, Database Mining, Integration, Languages/Servers

R2RML - RDB to RDF Mapping Language. The R2RML W3C recommendation6

specifies an RDF notation for mapping relational tables, views or queries into RDF.
The primary area of applicability of this is extracting RDF from relational databases,
but in special cases R2RML could lend itself to on-the-fly translation of SPARQL into
SQL or to converting RDF data to a relational form. The latter application is not the

6 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/

Introduction to Linked Data and Its Lifecycle on the Web 19

Fig. 11. Comparison of approaches from [135]

20 S. Auer et al.

primary intended use of R2RML but may be desirable for importing linked data into re-
lational stores. This is possible if the constituent mappings and underlying SQL objects
constitute updateable views in the SQL sense.

Data integration is often mentioned as a motivating use case for the adoption of RDF.
This integration will very often be between relational databases which have logical en-
tities in common, each with its local schema and identifiers.Thus, we expect to see
relational to RDF mapping use cases involving the possibility of a triple coming from
multiple sources. This does not present any problem if RDF is being extracted but does
lead to complications if SPARQL queries are mapped into SQL. In specific, one will
end up with potentially very long queries consisting of joins of unions. Most of the joins
between terms of the unions will often be provably empty and can thus be optimized
away. This capability however requires the mapping language to be able to express
metadata about mappings, i.e. that IRIs coming from one place are always disjoint from
IRIs coming from another place. Without such metadata optimizing SPARQL to SQL
translation is not possible, which will significantly limit the possibility of querying col-
lections of SQL databases through a SPARQL end point without ETL-ing the mapped
RDF into an RDF store.

RDF is emerging as a format for interoperable data publishing. This does not entail
that RDF were preferable as a data warehousing model. Besides, for large warehouses,
RDF is not cost competitive with relational technology, even though projects such as
LOD2 and LDBC expect to narrow this gap (see, e.g., [102,103] for recent SPARQL
benchmarks). Thus it follows that on the fly mapping of SPARQL to SQL will be im-
portant. Regardless of the relative cost or performance of relational or RDF technology,
it is not a feasible proposition to convert relational warehouses to RDF in general, rather
existing investments must be protected and reused. Due to these reasons, R2RML will
have to evolve in the direction of facilitating querying of federated relational resources.

Supervised Extraction Example: Sparqlify. The challenges encountered with large
scale relational data sources LinkedGeoData [12,145] indicate that ETL style ap-
proaches based on the conversion of all underlying data to RDF have severe deficien-
cies. For instance, the RDF conversion process is very time consuming for large-scale,
crowdsourced data. Furthermore, changes in data modelling require many changes in
the extracted RDF data or the creation of a completely new dump. In summary, the
ETL approach is not sufficiently flexible for very large and frequently changing data. It
seems preferable to establish virtual RDF views over the existing relational database. In
contrast to other tools, such as D2R and Virtuoso RDF views, Sparqlify converts each
SPARQL query to a single SQL query. This allows all optimisations of the underlying
database to be applied and can lead to better scalability.

Figure 12 shows the query rewriting workflow in Sparqlify. The rationale of Spar-
qlify is to leave the schema of the underlying relational database schema unmodified
and define RDF views over it. SPARQL queries can then be written against those views,
which are expressed in the Sparqlify-ML (mapping language). Sparqlify-ML is easy to
learn for users, who are experienced in SPARQL and SQL and more compact than other
syntactic variants such as R2RML. The left part of Figure 12 shows all steps, which are
performed to answer a query. First, the query is converted into an algebra expression.

Introduction to Linked Data and Its Lifecycle on the Web 21

Fig. 12. The Sparqlify concepts and query rewriting workflow

This expression is subsequently converted to a normal form. Given the query patterns,
relevant Sparqlify-ML views need to be detected. After this is done, the algebra expres-
sion is rewritten to include those relevant views. In a next step, optimisations on the
algebra expression are performed to improve efficiency. Finally, this algebra expression
can be transformed to an SQL algebra expression. For accomplishing this, we define
a general relational algebra for RDB-to-RDF mappings. The SQL query, which was
obtained, is executed against the relational database. Using the defined mappings, the
SQL result set returned by the relational database can be converted to a SPARQL result
set.

All of the above steps are explained in detail throughout the next sections.The main
contribution of the Sparqlify project is a formalization, which goes beyond previous
work by being capable to push the complete query execution using a single SQL query
into the DBMS.

4 Authoring with Semantic Wikis

Semantic Wikis are an extension to conventional, text-based Wikis. While in conven-
tional Wikis pages are stored as blocks of text using a special Wiki markup for structur-
ing the display of the text and adding links to other pages, semantic Wikis aim at adding
rich structure to the information itself. To this end, two initially orthogonal approaches
have been used: a) extending the markup language to allow semantic annotations and
links with meaning or b) building the Wiki software directly with structured information
in mind. Nowadays, both approaches have somewhat converged, for instance Seman-
tic MediaWiki [77] also provides forms for entering structured data (see Figure 13).
Characteristics of both approaches are summarized in Table 2 for the two prototypical
representatives of both approaches, i.e. Semantic MediaWiki and OntoWiki.

22 S. Auer et al.

Categorial
navigation

Form-based
editing

Graph
navigation

History Search
Free text
editing

Fig. 13. Comparison of Semantic MediaWiki and OntoWiki GUI building blocks

Introduction to Linked Data and Its Lifecycle on the Web 23

Table 2. Conceptual differences between Semantic MediaWiki and OntoWiki

Semantic MediaWiki OntoWiki

Managed entities Articles Resources
Editing Wiki markup Forms
Atomic element Text blob Statement

Extending Wikis with Semantic Markup. The benefit of a Wiki system comes from
the amount of interlinking between Wiki pages. Those links clearly state a relationship
between the linked-to and the linking page. However, in conventional Wiki systems this
relationship cannot be made explicit. Semantic Wiki systems therefore add a means to
specify typed relations by extending the Wiki markup with semantic (i.e. typed) links.
Once in place, those links form a knowledge base underlying the Wiki which can be
used to improve search, browsing or automatically generated lists and category pages.
Examples of approaches for extending Wikis with semantic markup can be found in
[77,138,14,122,143]. They represent a straightforward combination of existing Wiki
systems and the Semantic Web knowledge representation paradigms. Yet, we see the
following obstacles:

Usability: The main advantage of Wiki systems is their unbeatable usability. Adding
more and more syntactic possibilities counteracts ease of use for editors.

Redundancy: To allow the answering of real-time queries to the knowledge base, state-
ments have to be additionally kept in a triple store. This introduces a redundancy,
which complicates the implementation.

Evolution: As a result of storing information in both Wiki texts and triple store, sup-
porting evolution of knowledge is difficult.

Wikis for Editing Structured Data. In contrast to text-based systems, Wikis for struc-
tured data – also called Data Wikis – are built on a structured model of the data being
edited. The Wiki software can be used to add instances according to the schema or (in
some systems) edit the schema itself. One of those systems is OntoWiki7 [9] which
bases its data model on RDF. This way, both schema and instance data are represented
using the same low-level model (i.e. statements) and can therefore be handled identi-
cally by the Wiki.

4.1 OntoWiki - A Semantic Data Wiki

OntoWiki started as an RDF-based data wiki with emphasis on collaboration but has
meanwhile evolved into a comprehensive framework for developing Semantic Web ap-
plications [55]. This involved not only the development of a sophisticated extension
interface allowing for a wide range of customizations but also the addition of several ac-
cess and consumption interfaces allowing OntoWiki installations to play both a provider
and a consumer role in the emerging Web of Data.

7 Available at: http://ontowiki.net

http://ontowiki.net

24 S. Auer et al.

Application Layer

OntoWiki API,
Access Interfaces

Zend Framework

Persistence Layer

RDF Store

S
to

re
 A

da
pt

er

Authentication, ACL,
Versioning, …

User Interface Layer

CSS
Framework

OntoWiki UI
API

RDFauthor Templates

Extensions
(Evolution,

Multimedia, …)

Fig. 14. Overview of OntoWiki’s architecture with extension API and Zend web framework
(modified according to [55])

OntoWiki is inspired by classical Wiki systems, its design, however, (as men-
tioned above) is independent and complementary to conventional Wiki technologies. In
contrast to other semantic Wiki approaches, in OntoWiki text editing and knowledge
engineering (i. e. working with structured knowledge bases) are not mixed. Instead, On-
toWiki directly applies the Wiki paradigm of “making it easy to correct mistakes, rather
than making it hard to make them” [90] to collaborative management of structured
knowledge. This paradigm is achieved by interpreting knowledge bases as information
maps where every node is represented visually and interlinked to related resources.
Furthermore, it is possible to enhance the knowledge schema gradually as well as the
related instance data agreeing on it. As a result, the following requirements and corre-
sponding features characterize OntoWiki:

Intuitive display and editing of instance data should be provided in generic ways, yet
enabling domain-specific presentation of knowledge.

Semantic views allow the generation of different views and aggregations of the knowl-
edge base.

Versioning and evolution provides the opportunity to track, review and roll-back
changes selectively.

Semantic search facilitates easy-to-use full-text searches on all literal data, search re-
sults can be filtered and sorted (using semantic relations).

Community support enables discussions about small information chunks. Users are
encouraged to vote about distinct facts or prospective changes.

Online statistics interactively measures the popularity of content and activity of users.
Semantic syndication supports the distribution of information and their integration

into desktop applications.

Introduction to Linked Data and Its Lifecycle on the Web 25

OntoWiki enables the easy creation of highly structured content by distributed commu-
nities. The following points summarize some limitations and weaknesses of OntoWiki
and thus characterize the application domain:

Environment: OntoWiki is a Web application and presumes all collaborators to work
in a Web environment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge engineering projects where a single,
precise usage scenario is either initially (yet) unknown or not (easily) definable.

Reasoning: Application of reasoning services was (initially) not the primary focus.

4.2 Generic and Domain-Specific Views

OntoWiki can be used as a tool for presenting, authoring and managing knowledge
bases adhering to the RDF data model. As such, it provides generic methods and views,
independent of the domain concerned. Two generic views included in OntoWiki are the
resource view and the list view. While the former is generally used for displaying all
known information about a resource, the latter can present a set of resources, typically
instances of a certain concept. That concept must not necessarily be explicitly defined as
rdfs:Class or owl:Class in the knowledge base. Via its faceted browsing, OntoWiki
allows the construction of complex concept definitions, with a pre-defined class as a
starting point by means of property value restrictions. These two views are sufficient for
browsing and editing all information contained in a knowledge base in a generic way.
For domain-specific use cases, OntoWiki provides an easy-to-use extension interface
that enables the integration of custom components. By providing such a custom view, it
is even possible to hide completely the fact that an RDF knowledge base is worked on.
This permits OntoWiki to be used as a data-entry frontend for users with a less profound
knowledge of Semantic Web technologies.

4.3 Workflow

With the use of RDFS [27] and OWL [126] as ontology languages, resource defini-
tion is divisible into different layers: a terminology box for conceptual information
(i. e. classes and properties) and an assertion box for entities using the concepts defined
(i. e. instances). There are characteristics of RDF which, for end users, are not easy to
comprehend (e. g. classes can be defined as instances of owl:Class). OntoWiki’s user
interface, therefore, provides elements for these two layers, simultaneously increasing
usability and improving a user’s comprehension for the structure of the data. After start-
ing and logging in into OntoWiki with registered user credentials, it is possible to select
one of the existing ontologies. The user is then presented with general information about
the ontology (i. e. all statements expressed about the knowledge base as a resource) and
a list of defined classes, as part of the conceptual layer.

After starting and logging in into OntoWiki with registered user credentials, it is
possible to select one of the existing knowledge bases. The user is then presented with
general information about the ontology (i. e. all statements expressed about the knowl-
edge base as a resource) and a list of defined classes, as part of the conceptual layer. By
selecting one of these classes, the user obtains a list of the class’ instances. OntoWiki

26 S. Auer et al.

applies basic rdfs:subClassOf reasoning automatically. After selecting an instance
from the list – or alternatively creating a new one – it is possible to manage (i. e. insert,
edit and update) information in the details view.OntoWiki focuses primarily on the as-
sertion layer, but also provides ways to manage resources on the conceptual layer. By
enabling the visualization of schema elements, called System Classes in the OntoWiki
nomenclature, conceptional resources can be managed in a similar fashion as instance
data.

4.4 Authoring

Semantic content in OntoWiki is represented as resource descriptions. Following the
RDF data model representing one of the foundations of the Semantic Web vision, re-
source descriptions are represented (at the lowest level) in the form of statements. Each
of these statements (or triples) consist of a subject which identifies a resource as well as
a predicate and an object which together represent data about said resource in a fashion
reminiscent of key-value pairs. By means of RDFa [2], these statements are retained in
the HTML view (i.e. user interface) part and are thus accessible to client-side techniques
like JavaScript.

Authoring of such content is based on said client-side representation by employ-
ing the RDFauthor approach [148]: views are declared in terms of the model language
(RDF) which allows the underlying model be restored. Based on this model, a user
interface can be generated with the model being providing all the domain knowledge
required to do so. The RDFauthor system provides an extensible set of authoring wid-
gets specialized for certain editing tasks. RDFauthor was also extended by adding ca-
pabilities for automatically translating literal object values between different languages.
Since the semantic context is known to the system, these translation functionality can
be bound to arbitrary characteristics of the data (e. g. to a certain property or a missing
language).

Versioning& Evolution. As outlined in the wiki principles, keeping track of all changes
is an important task in order to encourage user participation. OntoWiki applies this
concept to RDF-based knowledge engineering in that all changes are tracked on the
statement level [10]. These low-level changes can be grouped to reflect application-
and domain-specific tasks involving modifications to several statements as a single ver-
sioned item. Provenance information as well as other metadata (such as time, user or
context) of a particular changeset can be attached to each individual changeset. All
changes on the knowledge base can be easily reviewed and rolled-back if needed. The
loosely typed data model of RDF encourages continuous evolution and refinement of
knowledge bases. With EvoPat, OntoWiki supports this in a declarative, pattern-based
manner (cf.[132]).

4.5 Access Interfaces

In addition to human-targeted graphical user interfaces, OntoWiki supports a number
of machine-accessible data interfaces. These are based on established Semantic Web
standards like SPARQL or accepted best practices like publication and consumption of
Linked Data.

Introduction to Linked Data and Its Lifecycle on the Web 27

Fig. 15. OntoWiki views: (background) A tabular list view, which contains a filtered list of re-
sources highlighting some specific properties of those resources and (foreground) a resource view
which allows to tag and comment a specific resource as well as editing all property values

SPARQL Endpoint. The SPARQL recommendation not only defines a query language
for RDF but also a protocol for sending queries to and receiving results from remote
endpoints8. OntoWiki implements this specification, allowing all resources managed in
an OntoWiki be queried over the Web. In fact, the aforementioned RDFauthor authoring
interface makes use of SPARQL to query for additional schema-related information,
treating OntoWiki as a remote endpoint in that case.

Linked Data. Each OntoWiki installation can be part of the emerging Linked Data Web.
According to the Linked Data publication principles (cf. section 2), OntoWiki makes all
resources accessible by its IRI (provided, the resource’s IRI is in the same namespace
as the OntoWiki instance). Furthermore, for each resource used in OntoWiki additional
triples can be fetches if the resource is de-referenceable.

Semantic Pingback. Pingback is an established notification system that gained wide
popularity in the blogsphere. With Semantic Pingback [147], OntoWiki adapts this
idea to Linked Data providing a notification mechanism for resource usage. If a

8 http://www.w3.org/TR/rdf-sparql-protocol/

http://www.w3.org/TR/rdf-sparql-protocol/

28 S. Auer et al.

Pingback-enabled resource is mentioned (i. e. linked to) by another party, its pingback
server is notified of the usage. Provided, the Semantic Pingback extension is enabled
all resources used in OntoWiki are pinged automatically and all resources defined in
OntoWiki are Pingback-enabled.

4.6 Exploration Interfaces

For exploring semantic content, OntoWiki provides several exploration interfaces that
range from generic views over search interfaces to sophisticated querying capabilities
for more RDF-knowledgable users. The subsequent paragraphs give an overview of
each of them.

Knowledge base as an information map. The compromise between, on the one hand,
providing a generic user interface for arbitrary RDF knowledge bases and, on the other
hand, aiming at being as intuitive as possible is tackled by regarding knowledge bases
as information maps. Each node at the information map, i. e. RDF resource, is repre-
sented as a Web accessible page and interlinked to related digital resources. These Web
pages representing nodes in the information map are divided into three parts: a left side-
bar, a main content section and a right sidebar. The left sidebar offers the selection of
content to display in the main content section. Selection opportunities include the set of
available knowledge bases, a hierarchical browser and a full-text search.

Full-text search. The full-text search makes use of special indexes (mapped to propri-
etary extensions to the SPARQL syntax) if the underlying knowledge store provides
this feature, else, plain SPARQL string matching is used. In both cases, the resulting
SPARQL query is stored as an object which can later be modified (e. g. have its filter
clauses refined). Thus, full-text search is seamlessly integrated with faceted browsing
(see below).

Content specific browsing interfaces. For domain-specific use cases, OntoWiki pro-
vides an easy-to-use extension interface that enables the integration of custom compo-
nents. By providing such a custom view, it is even possible to hide completely the fact
that an RDF knowledge base is worked on. This permits OntoWiki to be used as a data-
entry frontend for users with a less profound knowledge of Semantic Web technologies.

Faceted-browsing. Via its faceted browsing, OntoWiki allows the construction of
complex concept definitions, with a pre-defined class as a starting point by means of
property value restrictions. These two views are sufficient for browsing and editing all
information contained in a knowledge base in a generic way.

Query-builder. OntoWiki serves as a SPARQL endpoint, however, it quickly turned out
that formulating SPARQL queries is too tedious for end users. In order to simplify the
creation of queries, we developed the Visual Query Builder9 (VQB) as an OntoWiki
extension, which is implemented in JavaScript and communicates with the triple store

9 http://aksw.org/Projects/OntoWiki/Extension/VQB

http://aksw.org/Projects/OntoWiki/Extension/VQB

Introduction to Linked Data and Its Lifecycle on the Web 29

using the SPARQL language and protocol. VQB allows to visually create queries to the
stored knowledge base and supports domain experts with an intuitive visual representa-
tion of query and data. Developed queries can be stored and added via drag-and-drop to
the current query. This enables the reuse of existing queries as building blocks for more
complex ones.

4.7 Applications

Catalogous Professorum. The World Wide Web, as an ubiquitous medium for pub-
lication and exchange, already significantly influenced the way historians work: the
online availability of catalogs and bibliographies allows to efficiently search for content
relevant for a certain investigation; the increasing digitization of works from histori-
cal archives and libraries, in addition, enables historians to directly access historical
sources remotely. The capabilities of the Web as a medium for collaboration, however,
are only starting to be explored. Many, historical questions can only be answered by
combining information from different sources, from different researchers and organiza-
tions. Also, after original sources are analyzed, the derived information is often much
richer, than can be captured by simple keyword indexing. These factors pave the way for
the successful application of knowledge engineering techniques in historical research
communities.

In [131] we report about the application of an adaptive, semantics-based knowl-
edge engineering approach using OntoWiki for the development of a prosopographical
knowledge base. In prosopographical research, historians analyze common character-
istics of historical groups by studying statistically relevant quantities of individual bi-
ographies. Untraceable periods of biographies can be determined on the basis of such
accomplished analyses in combination with statistically examinations as well as pat-
terns of relationships between individuals and their activities.

In our case, researchers from the historical seminar at Universität Leipzig aimed
at creating a prosopographical knowledge base about the life and work of professors
in the 600 years history of Universität Leipzig ranging from the year 1409 till 2009
- the Catalogus Professorum Lipsiensis (CPL). In order to enable historians to collect,
structure and publish this prosopographical knowledge an ontological knowledge model
was developed and incrementally refined over a period of three years. The community
of historians working on the project was enabled to add information to the knowledge
base using an adapted version of OntoWiki. For the general public, a simplified user
interface10 is dynamically generated based on the content of the knowledge base. For
access and exploration of the knowledge base by other historians a number of access
interfaces was developed and deployed, such as a graphical SPARQL query builder, a
relationship finder and plain RDF and Linked Data interfaces. As a result, a group of
10 historians supported by a much larger group of volunteers and external contributors
collected information about 1,300 professors, 10,000 associated periods of life, 400
institutions and many more related entities.

The benefits of the developed knowledge engineering platform for historians are
twofold: Firstly, the collaboration between the participating historians has significantly

10 Available at: http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

30 S. Auer et al.

improved: The ontological structuring helped to quickly establish a common under-
standing of the domain. Collaborators within the project, peers in the historic commu-
nity as well as the general public were enabled to directly observe the progress, thus
facilitating peer-review, feedback and giving direct benefits to the contributors. Sec-
ondly, the ontological representation of the knowledge facilitated original historical in-
vestigations, such as historical social network analysis, professor appointment analysis
(e.g. with regard to the influence of cousin-hood or political influence) or the relation
between religion and university. The use of the developed model and knowledge en-
gineering techniques is easily transferable to other prosopographical research projects
and with adaptations to the ontology model to other historical research in general. In
the long term, the use of collaborative knowledge engineering in historian research
communities can facilitate the transition from largely individual-driven research (where
one historian investigates a certain research question solitarily) to more community-
oriented research (where many participants contribute pieces of information in order
to enlighten a larger research question). Also, this will improve the reusability of the
results of historic research, since knowledge represented in structured ways can be used
for previously not anticipated research questions.

OntoWiki Mobile. As comparatively powerful mobile computing devices are becom-
ing more common, mobile web applications have started gaining in popularity. An im-
portant feature of these applications is their ability to provide offline functionality with
local updates for later synchronization with a web server. The key problem here is the
reconciliation, i. e. the problem of potentially conflicting updates from disconnected
clients. Another problem current mobile application developers face is the plethora
of mobile application development platforms as well as the incompatibilities between
them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS (HP/Palm), Sym-
bian (Nokia) are popular and currently widely deployed platforms, with many more
proprietary ones being available as well. As a consequence of this fragmentation, real-
izing a special purpose application, which works with many or all of these platforms
is extremely time consuming and inefficient due to the large amount of duplicate work
required.

The W3C addressed this problem, by enriching HTML in its 5th revision with ac-
cess interfaces to local storage (beyond simple cookies) as well as a number of devices
and sensors commonly found on mobile devices (e. g. GPS, camera, compass etc.). We
argue, that in combination with semantic technologies these features can be used to re-
alize a general purpose, mobile collaboration platform, which can support the long tail
of mobile special interest applications, for which the development of individual tools
would not be (economically) feasible.

In [39] we present the OntoWiki Mobile approach realizing a mobile semantic col-
laboration platform based on the OntoWiki. It comprises specifically adopted user in-
terfaces for browsing, faceted navigation as well as authoring of knowledge bases. It al-
lows users to collect instance data and refine the structured knowledge bases on-the-go.
OntoWiki Mobile is implemented as an HTML5 web application, thus being completely
mobile device platform independent. In order to allow offline use in cases with restricted
network coverage (or in order to avoid roaming charges) it uses the novel HTML5 local

Introduction to Linked Data and Its Lifecycle on the Web 31

storage feature for replicating parts of the knowledge base on the mobile device. Hence,
a crucial part of OntoWiki Mobile is the advanced conflict resolution for RDF stores.
The approach is based on a combination of the EvoPat [132] method for data evolution
and ontology refactoring along with a versioning system inspired by distributed version
control systems like Git. OntoWiki Mobile is a generic, application domain agnostic
tool, which can be utilized in a wide range of very different usage scenarios ranging
from instance acquisition to browsing of semantic data on the go. Typical OntoWiki
Mobile usage scenarios are settings where users need to author and access semantically
structured information on the go or in settings where users are away from regular power
supply and restricted to light-weight equipment (e. g. scientific expeditions).

Semantics-Based Requirements Engineering. Semantic interoperability, linked data,
and a shared conceptual foundation become increasingly important prerequisites in soft-
ware development projects that are characterized by spatial dispersion, large numbers
of stakeholders, and heterogeneous development tools. The SoftWiki OntoWiki exten-
sion [93] focuses specifically on semantic collaboration with respect to requirements
engineering. Potentially very large and spatially distributed groups of stakeholders, in-
cluding developers, experts, managers, and average users, shall be enabled to collect,
semantically enrich, classify, and aggregate software requirements. OntoWiki is used
to support collaboration as well as interlinking and exchange of requirements data. To
ensure a shared conceptual foundation and semantic interoperability, we developed the
SoftWiki Ontology for Requirements Engineering (SWORE) that defines core concepts
of requirement engineering and the way they are interrelated. For instance, the ontol-
ogy defines frequent relation types to describe requirements interdependencies such as
details, conflicts, related to, depends on, etc. The flexible SWORE design allows for
easy extension. Moreover, the requirements can be linked to external resources, such as
publicly available domain knowledge or company-specific policies. The whole process
is called semantification of requirements. It is envisioned as an evolutionary process:
The requirements are successively linked to each other and to further concepts in a
collaborative way, jointly by all stakeholders. Whenever a requirement is formulated,
reformulated, analyzed, or exchanged, it might be semantically enriched by the respec-
tive participant.

5 Linking

The fourth Linked Data Principle, i.e., “Include links to other URIs, so that they can
discover more things” (cf. section 2) is the most important Linked Data principle as it
enables the paradigm change from data silos to interoperable data distributed across the
Web. Furthermore, it plays a key role in important tasks such as cross-ontology ques-
tion answering [22,94], large-scale inferences [151,99] and data integration [95,19].
Yet, while the number of triples in Linked Data sources increases steadily and has sur-
passed 31 billions11, links between knowledge bases still constitute less than 5% of
these triples. The goal of linking is to tackle this sparseness so as to transform the Web
into a platform for data and information integration as well as for search and querying.

11 http://lod-cloud.net/

http://lod-cloud.net/

32 S. Auer et al.

5.1 Link Discovery

Linking can be generally defined as connecting things that are somehow related. In the
context of Linked Data, the idea of linking is especially concerned with establishing
typed links between entities (i.e., classes, properties or instances) contained in knowl-
edge bases. Over the last years, several frameworks have been developed to address
the lack of typed links between the different knowledge bases on the Linked Data web.
Overall, two main categories of frameworks that aim to achieve this goal can be dif-
ferentiated. The first category implements ontology matching techniques and aims to
establish links between the ontologies underlying two data sources. The second and
more prominent category of approaches, dubbed instance matching approaches (also
called linking or link discovery approaches), aims to discover links between instances
contained in two data sources. It is important to notice that while ontology and instance
matching are similar to schema matching [128,127] and record linkage [162,38,25] re-
spectively (as known in the research area of databases), linking on the Web of Data is
a more generic and thus more complex task, as it is not limited to finding equivalent
entities in two knowledge bases. Rather, it aims at finding semantically related entities
and establishing typed links between them, most of these links being imbued with for-
mal properties (e.g., transitivity, symmetry, etc.) that can be used by reasoners and other
application to infer novel knowledge. In this section, we will focus on the discovery of
links between instances and use the term link discovery as name for this process. An
overview of ontology matching techniques is given in [42].

Formally, link discovery can be defined as follows:

Definition 3 (Link Discovery). Given two sets S (source) and T (target) of instances,
a (complex) semantic similarity measure σ : S × T → [0, 1] and a threshold θ ∈ [0, 1],
the goal of link discovery task is to compute the set M = {(s, t), σ(s, t) ≥ θ}.
In general, the similarity function used to carry out a link discovery task is described by
using a link specification (sometimes called linkage decision rule [68]).

5.2 Challenges

Two key challenges arise when trying to discover links between two sets of instances:
the computational complexity of the matching task per se and the selection of an appro-
priate link specification. The first challenge is intrinsically related to the link discovery
process. The time complexity of a matching task can be measured by the number of
comparisons necessary to complete this task. When comparing a source knowledge
base S with a target knowledge base T , the completion of a matching task requires
a-priori O(|S ||T |) comparisons, an impractical proposition as soon as the source and
target knowledge bases become large. For example, discovering duplicate cities in DB-
pedia [6] alone would necessitate approximately 0.15 × 109 similarity computations.
Hence, the provision of time-efficient approaches for the reduction of the time com-
plexity of link discovery is a key requirement to instance linking frameworks for Linked
Data.

The second challenge of the link discovery process lies in the selection of an ap-
propriate link specification. The configuration of link discovery frameworks is usually

Introduction to Linked Data and Its Lifecycle on the Web 33

carried out manually, in most cases simply by guessing. Yet, the choice of a suitable link
specification measure is central for the discovery of satisfactory links. The large num-
ber of properties of instances and the large spectrum of measures available in literature
underline the complexity of choosing the right specification manually12. Supporting the
user during the process of finding the appropriate similarity measure and the right prop-
erties for each mapping task is a problem that still needs to be addressed by the Linked
Data community. Methods such as supervised and active learning can be used to guide
the user in need of mapping to a suitable linking configuration for his matching task. In
the following, we give a short overview of existing frameworks for Link Discovery on
the Web of Data. Subsequently, we present a time-efficient framework for link discovery
in more detail and show how it can detect link specifications using active learning.

5.3 Approaches to Link Discovery

Current frameworks for link discovery can be subdivided into two main categories:
domain-specific and universal frameworks. Domain-specific link discovery frameworks
aim at discovering links between knowledge bases from a particular domain. One of
the first domain-specific approaches to carry out instance linking for Linked Data was
implemented in the RKBExplorer13 [50] with the aim of discovering links between en-
tities from the domain of academics. Due to the lack of data available as Linked Data,
the RKBExplorer had to extract RDF from heterogeneous data source so as to popu-
late its knowledge bases with instances according to the AKT ontology14. Especially,
instances of persons, publications and institutions were retrieved from several major
metadata websites such as ACM and DBLP. The linking was implemented by the so-
called Consistent Reference Service (CRS) which linked equivalent entities by com-
paring properties including their type and label. So far, the CRS is limited to linking
objects in the knowledge bases underlying the RKBExplorer and cannot be used for
other tasks without further implementation.

Another domain-specific tool is GNAT [129], which was developed for the music
domain. It implements several instance matching algorithms of which the most sophis-
ticated, the online graph matching algorithm (OGMA), applies a similarity propagation
approach to discover equivalent resources. The basic approach implemented by OGMA
starts with a single resource s ∈ S . Then, it retrieves candidate matching resources
t ∈ T by comparing properties such as foaf:name for artists and dc:title for al-
bums. If σ(s, t) ≥ θ, then the algorithm terminates. In case a disambiguation is needed,
the resourced related to s and t in their respective knowledge bases are compared and
their similarity value is cumulated to recompute σ(s, t). This process is iterated until a
mapping resource for s is found in T or no resource matches.

Universal link discovery frameworks are designed to carry out mapping tasks in-
dependently from the domain of the source and target knowledge bases. For exam-
ple, RDF-AI [139], a framework for the integration of RDF data sets, implements a

12 The SimMetrics project (http://simmetrics.sf.net) provides an overview of strings sim-
ilarity measures.

13 http://www.rkbexplorer.com
14 http://www.aktors.org/publications/ontology/

http://simmetrics.sf.net
http://www.rkbexplorer.com
 http://www.aktors.org/publications/ontology/

34 S. Auer et al.

five-step approach that comprises the preprocessing, matching, fusion, interlinking and
post-processing of data sets. RDF-AI contains a series of modules that allow for com-
puting instances matches by comparing their properties. Especially, it contains trans-
lation modules that allow to process the information contained in data sources before
mapping. By these means, it can boost the precision of the mapping process. These
modules can be configured by means of XML-files. RDF-AI does not comprise means
for querying distributed data sets via SPARQL15. In addition, it suffers from not being
time-optimized. Thus, mapping by using this tool can be very time-consuming.

A time-optimized approach to link discovery is implemented by the LIMES frame-
work [112,111,116] (Link Discovery Framework for metric spaces) .16 The idea behind
the LIMES framework is to use the mathematical characteristics of similarity and dis-
tance measures to reduce the number of computations that have to be carried out by
the system without losing any link. For example, LIMES can make use of the fact that
the edit distance is a distance metric to approximate distances without having to com-
pute them [112]. Moreover, it implements the reductio-ratio-optimal space tiling algo-
rithmHR3 to compute similarities in affine spaces with Minkowski measures [110]. In
contrast to other frameworks (of which most rely on blocking), LIMES relies on time-
efficient set operators to combine the results of these algorithms efficiently and has
been shown to outperform the state of the art by these means [111]. Moreover, LIMES
implements unsupervised and supervised machine learning approaches for detecting
high-quality link specifications [116,117].

Another link discovery framework is SILK [156]. SILK implements several ap-
proaches to minimize the time necessary for mapping instances from knowledge bases.
In addition to implementing rough index pre-matching to reach a quasi-linear time-
complexity, SILK also implements a lossless blocking algorithm called MultiBlock [69]
to reduce its overall runtime. The approach relies on generating overlapping blocks of
instances and only comparing pairs of instances that are located in the same block. More-
over, SILK provides supervised machine learning approaches for link discovery [70].

It is important to notice that the task of discovering links between knowledge bases is
related with record linkage [162,38] and de-duplication [25]. The database community
has produced a vast amount of literature on efficient algorithms for solving these prob-
lems. Different blocking techniques such as standard blocking, sorted-neighborhood,
bigram indexing, canopy clustering and adaptive blocking [18,23,76] have been devel-
oped to address the problem of the quadratic time complexity of brute force comparison
methods. The idea is to filter out obvious non-matches efficiently before executing the
more detailed and time-consuming comparisons. In the following, we present a state-of-
the-art framework that implements lossless instance matching based on a similar idea
in detail.

5.4 The LIMES Algorithm

The original LIMES algorithm described in [112] addresses the scalability problem
of link discovery by utilizing the triangle inequality in metric spaces to compute

15 http://www.w3.org/TR/rdf-sparql-query/
16 http://limes.sf.net. A graphical user interface can be found at
http://saim.aksw.org.

http://www.w3.org/TR/rdf-sparql-query/
http://limes.sf.net
http://saim.aksw.org

Introduction to Linked Data and Its Lifecycle on the Web 35

pessimistic estimates of instance similarities. Based on these approximations, LIMES
can filter out a large number of instance pairs that cannot suffice the matching condition
set by the user. The real similarities of the remaining instances pairs are then computed
and the matching instances are returned.

Mathematical Framework. In the remainder of this section, we use the following
notations:

1. A is an affine space,
2. m, m1, m2, m3 symbolize metrics on A,
3. x, y and z represent points from A and
4. α, β, γ and δ are scalars, i.e., elements of R.

Definition 4 (Metric space). A metric space is a pair (A,m) such that A is an affine
space and m : A × A→ R is a function such that for all x, y and z ∈ A

1. m(x, y) ≥ 0 (M1) (non-negativity),
2. m(x, y) = 0⇔ x = y (M2) (identity of indiscernibles),
3. m(x, y) = m(y, x) (M3) (symmetry) and
4. m(x, z) ≤ m(x, y) + m(y, z) (M4) (triangle inequality).

Note that the definition of a matching based on a similarity function σ can be rewritten
for metrics m as follows:

Definition 5 (Instance Matching in Metric Spaces). Given two sets S (source) and T
(target) of instances, a metric m : S × T → [0,∞[and a threshold θ ∈ [0,∞[, the goal
of instance matching task is to compute the set M = {(s, t)|m(s, t) ≤ θ}.
Example of metrics on strings include the Levenshtein distance and the block distance.
However, some popular measures such as JaroWinkler [161] do not satisfy the triangle
inequality and are consequently not metrics. The rationale behind the LIMES frame-
work is to make use of the boundary conditions entailed by the triangle inequality (TI)
to reduce the number of comparisons (and thus the time complexity) necessary to com-
plete a matching task. Given a metric space (A,m) and three points x, y and z in A, the
TI entails that

m(x, y) ≤ m(x, z) + m(z, y). (1)

Without restriction of generality, the TI also entails that

m(x, z) ≤ m(x, y) + m(y, z), (2)

thus leading to the following boundary conditions in metric spaces:

m(x, y) − m(y, z) ≤ m(x, z) ≤ m(x, y) + m(y, z). (3)

Inequality 3 has two major implications. The first is that the distance from a point x
to any point z in a metric space can be approximated given the distance from x to a
reference point y and the distance from the reference point y to z. Such a reference point
is called an exemplar following [49]. The role of an exemplar is to be used as a sample

36 S. Auer et al.

of a portion of the metric space A. Given an input point x, knowing the distance from
x to an exemplar y allows to compute lower and upper bounds of the distance from x
to any other point z at a known distance from y. An example of such an approximation
is shown in Figure 21. In this figure, all the points on the circle are subject to the
same distance approximation. The distance from x to z is close to the lower bound of
inequality 3, while the distance from x to z′ is close to the upper bound of the same
inequality.

z'

x

y

z

known distances
distances to approximate

Fig. 16. Approximation of distances via exemplars. The lower bound of the distance from x to z
can be approximated by m(x, y) − m(y, z).

The second implication of inequality 3 is that the distance from x to z can only be
smaller than θ if the lower bound of the approximation of the distance from x to z via
any exemplar y is also smaller than θ. Thus, if the lower bound of the approximation of
the distance m(x, z) is larger than θ, then m(x, z) itself must be larger than θ. Formally,

m(x, y) − m(y, z) > θ ⇒ m(x, z) > θ. (4)

Supposing that all distances from instances t ∈ T to exemplars are known, reducing the
number of comparisons simply consists of using inequality 4 to compute an approxi-
mation of the distance from all s ∈ S to all t ∈ T and computing the real distance only
for the (s, t) pairs for which the first term of inequality 4 does not hold. This is the core
of the approach implemented by LIMES.

Computation of Exemplars. The core idea underlying the computation of exemplars
in LIMES is to select a set of exemplars in the metric space underlying the matching
task in such a way that they are distributed uniformly in the metric space. One way
to achieve this goal is by ensuring that the exemplars display a high dissimilarity. The
approach used by LIMES to generate exemplars with this characteristic is shown in
Algorithm 1.

Introduction to Linked Data and Its Lifecycle on the Web 37

Algorithm 1. Computation of Exemplars
Require: Number of exemplars n
Require: Target knowledge base T

1. Pick random point e1 ∈ T
2. Set E = E ∪ {e1};
3. Compute the distance from e1 to all t ∈ T
while |E| < n do

4. Get a random point e′ such that e′ ∈ argmaxt
∑

t∈T
∑

e∈E
m(t, e)

5. E = E ∪ {e′};
6. Compute the distance from e′ to all t ∈ T

end while
7. Map each point in t ∈ T to one of the exemplars e ∈ E such that m(t, e) is minimal
return E

Let n be the desired number of exemplars and E the set of all exemplars. In step 1
and 2, LIMES initializes E by picking a random point e1 in the metric space (T,m) and
setting E = {e1}. Then, it computes the similarity from the exemplar e1 to every other
point in T (step 3). As long as the size of E has not reached n, LIMES repeats steps 4 to
6: In step 4, a point e′ ∈ T such that the sum of the distances from e′ to the exemplars
e ∈ E is maximal (there can be many of these points) is chosen randomly. This point is
chosen as new exemplar and consequently added to E (step 5). Then, the distance from
e′ to all other points in T is computed (step 6). Once E has reached the size n, LIMES
terminates the iteration. Finally, each point is mapped to the exemplar to which it is
most similar (step 7) and the exemplar computation terminates (step 8). This algorithm
has a constant time complexity of O(|E||T |).

An example of the results of the exemplar computation algorithm (|E| = 3) is shown
in Figure 17. The initial exemplar was the leftmost exemplar in the figure.

Fig. 17. Mapping of points to three exemplars in a metric space. The exemplars are displayed as
gray disks.

38 S. Auer et al.

Matching Based on Exemplars. The instances associated with an exemplar e ∈ E in
step 7 of Algorithm 1 are stored in a list Le sorted in descending order with respect to
the distance to e. Let λe

1...λ
e
m be the elements of the list Le. The goal of matching an

instance s from a source knowledge base to a target knowledge base w.r.t. a metric m is
to find all instances t of the target knowledge source such that m(s, t) ≤ θ, where θ is
a given threshold. LIMES achieves this goal by using the matching algorithm based on
exemplars shown in Algorithm 2.

Algorithm 2. LIMES’ Matching algorithm
Require: Set of exemplars E
Require: Instance s ∈ S
Require: Metric m
Require: threshold θ

1. M = ∅
for e ∈ |E| do

if m(s, e) ≤ θ then
2. M = M ∪ {e}
for i = 1...|Le| do

if (m(s, e) − m(e, λe
i)) ≤ θ then

if m(s, λe
i) ≤ θ then

3. M = M ∪ {(s, λe
i })

end if
else

break
end if

end for
end if

end for
return M

LIMES only carries out a comparison when the approximation of the distance is less
than the threshold. Moreover, it terminates the similarity computation for an exemplar e
as soon as the first λe is found such that the lower bound of the distance is larger than θ.
This break can be carried out because the list Le is sorted, i.e., if m(s, e) − m(e, λe

i) > θ
holds for the ith element of Le, then the same inequality holds for all λe

j ∈ Le with
j > i. In the worst case, LIMES’ matching algorithm has the time complexity O(|S ||T |),
leading to a total worst time complexity of O((|E|+ |S |)|T |), which is larger than that of
brute force approaches. However, as the results displayed in Figure 18 show, a correct
parameterization of LIMES leads to significantly smaller numbers of comparisons and
runtimes.

5.5 TheHR3 Algorithm

Let S resp. T be the source and target of a Link Discovery task. One of the key
ideas behind time-efficient Link Discovery algorithms A is to reduce the number of

Introduction to Linked Data and Its Lifecycle on the Web 39

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(a) Size = 2000

0

50

100

150

200

250

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(b) Size = 5000

0

100

200

300

400

500

600

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(c) Size = 7500

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(d) Size = 10000

Fig. 18. Comparisons required by LIMES for different numbers of exemplars on knowledge bases
of different sizes. The x-axis shows the number of exemplars, the y-axis the number of compar-
isons in multiples of 105.

comparisons that are effectively carried out to a number C(A) < |S ||T |. The reduction
ratio RR of an algorithmA is given by

RR(A) = 1 − C(A)
|S ||T | . (5)

RR(A) captures how much of the Cartesian product |S ||T | was not explored before the
output of A was reached. It is obvious that even an optimal lossless solution which
performs only the necessary comparisons cannot achieve a RR of 1. Let Cmin be the
minimal number of comparisons necessary to complete the Link Discovery task without
losing recall, i.e., Cmin = |M|. The relative reduction ratio RRR(A) is defined as the
portion of the minimal number of comparisons that was carried out by the algorithmA
before it terminated. Formally

RRR(A) =
1 − Cmin

|S ||T |
1 − C(A)

|S ||T |
=
|S ||T | −Cmin

|S ||T | −C(A)
. (6)

RRR(A) indicates how closeA is to the optimal solution with respect to the number of
candidates it tests. Given that C(A) ≥ Cmin, RRR(A) ≥ 1. Note that the larger the value
of RRR(A), the poorer the performance ofA with respect to the task at hand.

The main observation that led HR3 is that while most algorithms aim to optimize
their RR (and consequently their RRR), most approaches do not provide any guarantee

40 S. Auer et al.

(a) α = 1 (b) α = 2 (c) α = 4

Fig. 19. Space tiling for different values of α. The colored squares show the set of elements that
must be compared with the instance located at the black dot. The points within the circle lie
within the distance θ of the black dot. Note that higher values of α lead to a better approximation
of the hypersphere but also to more hypercubes.

with respect to the RR (and consequently the RRR) that they can achieve. The approach
is the first mathematically optimal algorithm w.r.t the reduction ratio that it can achieve,
i.e., the first approach such that given any relative reduction ratio r, there is always a
setting that leads HR3 achieving a relative reduction ratio r′ with r′ ≤ r. To achieve
this goalHR3 relies on space tiling as introduced by the HYPPO algorithm [109].

Space Tiling for Link Discovery. HYPPO addresses the problem of efficiently map-
ping instance pairs (s, t) ∈ S × T described by using exclusively numeric values in
a n-dimensional metric space and has been shown to outperform the state of the art in
previous work [109]. The observation behind space tiling is that in spaces (Ω, δ) with or-
thogonal, (i.e., uncorrelated) dimensions17, common metrics for Link Discovery can be
decomposed into the combination of functionsφi,i∈{1...n} which operate on exactly one di-
mension ofΩ : δ = f (φ1, ..., φn). For Minkowski distances of order p, φi(x, ω) = |xi−ωi|
for all values of i and δ(x, ω) = p

√
n∑

i=1
φ

p
i (x, ω)p. A direct consequence of this observa-

tion is the inequality φi(x, ω) ≤ δ(x, ω). The basic insight that results this observation
is that the hypersphere H(ω, θ) = {x ∈ Ω : δ(x, ω) ≤ θ} is a subset of the hypercube V
defined as V(ω, θ) = {x ∈ Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ}. Consequently, one can reduce
the number of comparisons necessary to detect all elements of H(ω, θ) by discarding
all elements which are not in V(ω, θ) as non-matches. Let Δ = θ/α, where α ∈ N is
the granularity parameter that controls how fine-grained the space tiling should be (see
Figure 19 for an example). We first tile Ω into the adjacent hypercubes (short: cubes) C
that contain all the points ω such that

∀i ∈ {1...n}, ciΔ ≤ ωi < (ci + 1)Δ with (c1, ..., cn) ∈ Nn. (7)

17 Note that in all cases, a space transformation exists that can map a space with correlated di-
mensions to a space with uncorrelated dimensions.

Introduction to Linked Data and Its Lifecycle on the Web 41

0

2 1 1

1 0 0

1 0

1 2

0 1

0 1

1 0 0

2 1 1

0 1

1 2

0

2 1 0

1 0 0

0 0

1 2

0 1

0 0

1 0 0

2 1 0

0 1

1 2

(a) α = 2

0

25 18

20 13

17

16

10

9

0

16

0

9

17

20

10

13

25

32

18

25

13

8

10

5

5

4

2

1

0

4

0

1

5

8

2

5

13

20

10

17

9

4

0

0

1

0

0

0

0

0 0

1

4

0

0

9

16

0

0

9

4

10

5

1

0

2

1

0

0

0

1

1

4

2

5

9

16

10

17

18 13

8 13

5

4

10

9

0

4

0

9

5

8

10

13

18

20 25

13

(b) α = 4

Fig. 20. Space tiling and resulting index for a two-dimensional example. Note that the index in
both subfigures was generated for exactly the same portion of space. The black dot stands for the
position of ω.

We call the vector (c1, ..., cn) the coordinates of the cube C. Each pointω ∈ Ω lies in the
cube C(ω) with coordinates (�ωi/Δ�)i=1...n. Given such a space tiling, it is obvious that
V(ω, θ) consists of the union of the cubes such that ∀i ∈ {1...n} : |ci − c(ω)i| ≤ α.

HR3’s Indexing Scheme. Let ω ∈ Ω = S ∪ T be an arbitrary reference point. Fur-
thermore, let δ be the Minkowski distance of order p. The index function is defined as
follows:

index(C, ω) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ∃i : |ci − c(ω)i| ≤ 1 with i ∈ {1, ..., n},
n∑

i=1
(|ci − c(ω)i| − 1)p else,

(8)

where C is a hypercube resulting from a space tiling and ω ∈ Ω. Figure 20 shows an
example of such indexes for p = 2 with α = 2 (Figure 20a) and α = 4 (Figure 20b).
Note that the blue square with index 0 contains the reference pointω. All elements of C
must only be compared with the elements of cubes C′ such that index(C,C′) ≤ αp. The
authors of [110] prove formally that given this approach to space tiling, the following
theorem holds:

Theorem 1. lim
α→∞RRR(HR3, α) = 1.

This conclusion is illustrated by Figure 21, which shows the space tiling computed by
HR3 for different values of α with p = 2 and n = 2. The higher α, the closer the
approximation is to a circle. Note that these results allow to conclude that for any RRR-
value r larger than 1, there is a setting of HR3 that can compute links with a RRR
smaller or equal to r.

42 S. Auer et al.

(a) α = 4 (b) α = 8 (c) α = 10

(d) α = 25 (e) α = 50 (f) α = 100

Fig. 21. Space tilings generated by HR3 for different values of α. The white squares are selected
for comparisons with the elements of the square in the middle of the figure whilst the colored
ones are discarded.

Evaluation. HR3 was evaluated against HYPPO w.r.t. to the number of comparisons
that it has to carry out in several settings. In the first and second experiments, the goal
was to deduplicate DBpedia places by comparing their names (rdfs:label), minimum
elevation, elevation and maximum elevation. 2988 entities possessed all four properties.
The Euclidean metric was applied to the last three values with the thresholds 49 meters
resp. 99 meters for the first resp. second experiment. The third and fourth experiments
aimed to discover links between Geonames and LinkedGeoData. This experiment was
of considerably larger scale than the first one, as we compared 74458 entities in Geon-
ames with 50031 entities from LinkedGeoData. Again, the number of comparisons nec-
essary to complete the task by using the Euclidean metric was measured. The distance
thresholds were set to 1 resp. 9◦ in experiment 3 resp. 4. We ran all experiments on
the same Windows 7 Enterprise 64-bit computer with a 2.8GHz i7 processor with 8GB
RAM. The JVM was allocated 7GB RAM to ensure that the runtimes were not influ-
enced by swapping. Only one of the kernels of the processors was used.

The results (see Figure 22) show that HR3 can reduce the overhead in comparisons
(i.e., the number of unnecessary comparisons divided by the number of necessary com-
parisons) from approximately 24% for HYPPO to approximately 6% (granularity= 32).
In experiment 2, the overhead is reduced from 4.1% to 2%. This difference in overhead
reduction is mainly due to the data clustering around certain values and the clusters

Introduction to Linked Data and Its Lifecycle on the Web 43

� � � �� ��

���������	

�
	��
���

���
�
���
�
���
�
���
�
���
�
���
�
���
	
���
	
���
�
���

�
��
��
��
	

��
	�
�
���
	�
�

���
���
�������

(a) Experiment 1

� � � �� ��

���������	

�����

�����

�����

�����

�����

�
��
��
��
	

��
	�
�
���
	�
�

���
���
�������

(b) Experiment 2

� � � �� ��

���������	

�

���

�����

�����

�����

�����

�
��
��
��
	

��
	�
�
���
	�
�

���
���
�������

(c) Experiment 3

� � � �� ��

���������	

�

	
���

��
���

�	
���

��
���

�	
���

��
���

�	
���

��
���

�
��
��
��
	

��
	�
�
���
	�
�

���
���
�������

(d) Experiment 4

Fig. 22. Number of comparisons forHR3 and HYPPO

having a radius between 49 meters and 99 meters. Thus, running the algorithms with
a threshold of 99 meters led to only a small a-priori overhead and HYPPO performing
remarkably well. Still, even on such data distributions, HR3 was able to discard even
more data and to reduce the number of unnecessary computations by more than 50%
relative. In the best case (Exp. 4, α = 32, see Figure 22d),HR3 required approximately
4.13 × 106 less comparisons than HYPPO for α = 32. Even for the smallest setting
(Exp. 1, see Figure 22a),HR3 still required 0.64 × 106 less comparisons.

5.6 Active Learning of Link Specifications

The second challenge of Link Discovery is the time-efficient discovery of link specifi-
cations for a particular linking task. Several approaches have been proposed to achieve
this goal, of which most rely on genetic programming [70,117,115]. The COALA
(Correlation-Aware Active Learning) approach was implemented on top of the genetic
programming approach EAGLE [116] with the aim of improving the selection of posi-
tive and negative examples during active learning. In the following, we give an overview
of COALA.

Intuition. Let N be the set of most informative negative and P the set of most
informative negative examples w.r.t. an informativeness function ifm (e.g., the dis-
tance from the decision boundary).used by a curious classifier [141] The basic insight

44 S. Auer et al.

(a) Intra-correlation (b) Inter-correlation

Fig. 23. Examples of correlations within classes and between classes. In each subfigure, the gray
surface represent N while the white surface stands for P. The oblique line is C’s boundary.

behind COALA is that the correlation between the features of the elements ofN and P
should play a role when computing the sets I+ and I− of positive resp. negative queries
for the oracle. In particular, two main factors affect the information content of a link
candidate: its similarity to elements of its presumed class and to elements of the other
class. For the sake of simplicity, we will assume that the presumed class of the link
candidate of interest is +1, i.e., that the link candidate was classified as positive by the
current curious classifier. Our insights yet hold symmetrically for link candidates whose
presumed class is −1.

Let A = (sA, tA), B = (sB, tB) ∈ P to be two link candidates which are equidistant
from C’s boundary. Consider Figure 23a, where P = {A, B,C} and N = {D}. The link
candidate B is on on average most distant from any other elements of P. Thus, it is
more likely to be a statistical outlier than A. Hence, making a classification error on
B should not have the same impact as an erroneous classification of link candidate A,
which is close to another presumably positive link candidate, C. Consequently, B should
be considered less informative than A. Approaches that make use of this information are
said to exploit the intra-class correlation. Now, consider Figure 23b, where P = {A, B}
and N = {C,D}. While the probability of A being an outlier is the same as B’s, A
is still to be considered more informative than B as it is located closer to elements
of N and can thus provide more information on where to set the classifier boundary.
This information is dubbed inter-class correlation. Several approaches that make use
of these two types of correlations can be envisaged. In the following, we present two
approaches for these purposes. The first makes use of intra-class correlations and relies
on graph clustering. The second approach relies on the spreading activation principle
in combination with weight decay. We assume that the complex similarity function σ
underlying C is computed by combining n atomic similarity functions σ1, . . . , σn. This
combination is most commonly carried out by using metric operators such as min, max
or linear combinations.18 Consequently, each link candidate (s, t) can be described by
a vector (σ1(s, t), . . . , σn(s, t)) ∈ [0, 1]n. We define the similarity of link candidates
sim : (S ×T)2 → [0, 1] to be the inverse of the Euclidean distance in the space spawned
by the similarities σ1 to σn. Hence, the similarity of two link candidates (s, t) and (s′, t′)
is given by:

18 See [111] for a more complete description of a grammar for link specifications.

Introduction to Linked Data and Its Lifecycle on the Web 45

���

����

���

��

�	

���

����

���

��
�

��
�

���

���

���

���

��
�
�

�

�

�

�

� �

�

�

�

�

Fig. 24. Example of clustering. One of the most informative single link candidate is selected from
each cluster. For example, d is selected from the cluster {d, e}.

sim((s, t), (s′, t′)) =
1

1 +

√
n∑

i=1
(σi(s, t) − σi(s′, t′))2

. (9)

Note that we added 1 to the denominator to prevent divisions by 0.

Graph Clustering. The basic intuition behind using clustering for COALA is that
groups of very similar link candidates can be represented by a single link candidate.
Consequently, once a representative of a group has been chosen, all other elements of
the group become less informative. An example that illustrates this intuition is given in
Figure 24. We implemented COALA based on clustering as follows: In each iteration,
we begin by first selecting two sets S+ ⊆ P resp. S− ⊆ N that contain the positive resp.
negative link candidates that are most informative for the classifier at hand. Formally,
S+ fulfills

∀x ∈ S+ ∀y ∈ P, y � S+ → ifm(y) ≤ ifm(x). (10)

The analogous equation holds for S−. In the following, we will explain the further steps
of the algorithm for S+. The same steps are carried out for S−.

First, we compute the similarity of all elements of S+ by using the similarity func-
tion shown in Equation 9. In the resulting similarity matrix, we set all elements of the
diagonal to 0. Then, for each x ∈ S+, we only retain a fixed number ec of highest sim-
ilarity values and set all others to 0. The resulting similarity matrix is regarded as the
adjacency matrix of an undirected weighted graph G = (V, E, sim). G’s set of nodes V
is equal to S+. The set of edges E is a set of 2-sets19 of link candidates. Finally, the
weighted function is the similarity function sim. Note that ec is the minimal degree of
nodes in G.

In a second step, we use the graph G as input for a graph clustering approach. The
resulting clustering is assumed to be a partition V of the set V of vertices of G. The
informativeness of partition Vi ∈ V is set to max

x∈Vi

ifm(x). The final step of our approach

19 A n-set is a set of magnitude n.

46 S. Auer et al.

consists of selecting the most informative node from each of the k most informative
partitions. These are merged to generate I+, which is sent as query to the oracle. The
computation of I−is carried out analogously. Note that this approach is generic in the
sense that it can be combined with any graph clustering algorithm that can process
weighted graphs as well as with any informativeness function ifm. Here, we use Border-
Flow [118] as clustering algorithm because (1) it has been used successfully in several
other applications such as the creation of SPARQL benchmarks [102] and the analysis
of protein-protein interactions [108]. and (2) it is parameter-free and does not require
any tuning.

Spreading Activation with Weight Decay. The idea behind spreading activation with
weight decay (WD) is to combine the intra- and inter-class correlation to determine
the informativeness of each link candidate. Here, we begin by computing the set S =
S+∪S−, whereS+ andS− are described as above. Let si and s j be the ith and jth elements
of S. We then compute the quadratic similarity matrixM with entries mi j = sim(si, s j)
for i � j and 0 else. Note that both negative and positive link candidates belong to S.
Thus,M encodes both inter- and intra-class correlation. In addition toM, we compute
the activation vector A by setting its entries to ai =ifm(si). In the following, A is
considered to be a column vector.

In a first step, we normalize the activation vector A to ensure that the values con-
tained therein do not grow indefinitely. Then, in a second step, we setA = A+M×A.
This has the effect of propagating the activation of each s to all its neighbors according
to the weights of the edges between s and its neighbors. Note that elements of S+ that
are close to elements of S− get a higher activation than elements of S+ that are further
away from S− and vice-versa. Moreover, elements at the center of node clusters (i.e.,
elements that are probably no statistical outliers) also get a higher activation than ele-
ments that are probably outliers. The idea behind the weight decay step is to update the
matrix by setting each mi j to mr

i j, where r > 1 is a fix exponent. This is the third step of
the algorithm. Given that ∀i∀ j mi j ≤ 1, the entries in the matrix get smaller with time.
By these means, the amount of activation transferred across long paths is reduced. We
run this three-step procedure iteratively until all non-1 entries of the matrix are less or
equal to a threshold ε = 10−2. The k elements of S+ resp. S− with maximal activation
are returned as I+ resp. I−. In the example shown in Figure 25, while all nodes from S+
and S− start with the same activation, two nodes get the highest activation after only 3
iterations.

Evaluation. COALA was evaluated by running weight decay and clustering in combi-
nation with EAGLE, an active genetic programming approach for learning link specifi-
cations. Throughout the following experiments, EAGLE’s mutation and crossover rates
were set to 0.6. Individuals were given a 70% chance to get selected for reproduction.
The population sizes were set to 20 and 100. We set k = 5 and ran our experiments
for 10 iterations. Between each iteration we evolved the populations for 50 generations.
We ran our experiments on two real-world datasets and three synthetic datasets. The
synthetic datasets consisted of the Persons1, Person2 and Restaurants datasets from the

Introduction to Linked Data and Its Lifecycle on the Web 47

���������	
� �������

���

����

����
���������

�����������

���������

�������

�� ��

���

�����

��
����

��� �������

����

���

�� ��

Fig. 25. Example of weight decay. Here r was set to 2. The left picture shows the initial activations
and similarity scores while the right picture shows the results after 3 iterations. Note that for the
sake of completeness the weights of the edges were not set to 0 when they reached ε.

�� �� �� �� �� �� 	�
� �� ���
��������������

���

���

���

��	

��

���

�

��
��
��
�

�

���

���

���

��

����

��
��
��
��
��
��

�� !"� # ��$�# ��%&#
�� !"� # ��$�# ��%&#

(a) Population = 20 individuals.

�� �� �� �� �� �� 	�
� �� ���
��������������

���

���

���

��	

��

���

�
��
��
��
�

�

����

����

����

����

����

��
��
��
��
��
��

�� !"� # ��$�# ��%&#
�� !"� # ��$�# ��%&#

(b) Population = 100 individuals.

Fig. 26. F-score and runtime on the ACM-DBLP dataset. f(X) stands for the F-score achieved by
algorithm X, while d(X) stands for the total duration required by the algorithm.

OAEI 2010 benchmark20. The real-world datasets consisted of the ACM-DBLP and
Abt-Buy datasets, which were extracted from websites or databases [76] 21. Given that
genetic programming is non-deterministic, all results presented below are the means
of 5 runs. Each experiment was ran on a single thread of a server running JDK1.7
on Ubuntu 10.0.4 and was allocated maximally 2GB of RAM. The processors were
2.0GHz Quadcore AMD Opterons. An excerpt of the results is shown in Figure 26.
While the results show that COALA outperform EAGLE, it remains unclear whether
WD or CL is the best approach to achieving a faster convergence towards the optimal
solution.

20 http://oaei.ontologymatching.org/2010/
21 http://dbs.uni-leipzig.de/en/research/projects/object_matching/
fever/benchmark_datasets_for_entity_resolution

http://oaei.ontologymatching.org/2010/
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution

48 S. Auer et al.

5.7 Conclusion

We presented and discussed linking approaches for Linked Data and the challenges they
face. In addition, we gave an overview of several state-of-the-art approaches for instance
matching for Linked Data. We then presented time-efficient approaches for link discov-
ery. Finally, we presented a state-of-the-art approach for the active learning of link spec-
ifications. This approach can be easily extended to learn specifications automatically. 22

Novel challenges that need to be addressed include the automatic management of re-
sources for link specifications. First works on running link discovery in parallel have
shown that using massively parallel hardware such as GPUs can lead to better results
that using cloud implementations even on considerably large datasets [114]. Detecting
the right resources for linking automatically given a hardware landscape is yet still a
dream to achieve.

6 Enrichment

The term enrichment in this chapter refers to the (semi-)automatic extension of a knowl-
edge base schema. It describes the process of increasing the expressiveness and se-
mantic richness of a knowledge base. Usually, this is achieved by adding or refining
terminological axioms.

Enrichment methods can typically be applied in a grass-roots approach to knowl-
edge base creation. In such an approach, the whole ontological structure is not created
upfront, but evolves with the data in a knowledge base. Ideally, this enables a more ag-
ile development of knowledge bases. In particular, in the context of the Web of Linked
Data such an approach appears to be an interesting alternative to more traditional on-
tology engineering methods. Amongst others, Tim Berners-Lee advocates to get “raw
data now”23 and worry about the more complex issues later.

Knowledge base enrichment can be seen as a sub-discipline of ontology learning.
Ontology learning is more general in that it can rely on external sources, e.g. written
text, to create an ontology. The term knowledge base enrichment is typically used when
already existing data in the knowledge base is analysed to improve its schema.

Enrichment methods span several research areas like knowledge representation and
reasoning, machine learning, statistics, natural language processing, formal concept
analysis and game playing. Considering the variety of methods, we structure this sec-
tion as follows: First, we give an overview of different types of enrichment and list some
typical methods and give pointers to references, which allow the reader to obtain more
information on a topic. In the second part, we describe a specific software – the ORE
tool – in more detail.

6.1 State of the Art and Types of Enrichment

Ontology enrichment usually involves applying heuristics or machine learning tech-
niques to find axioms, which can be added to an existing ontology. Naturally, different
techniques have been applied depending on the specific type of axiom.

22 Such an extension is the basis of the self-configuration algorithm of the SAIM framework.
23 http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

Introduction to Linked Data and Its Lifecycle on the Web 49

One of the most complex tasks in ontology enrichment is to find definitions of
classes. This is strongly related to Inductive Logic Programming (ILP) [121] and more
specifically supervised learning in description logics. Research in those fields has many
applications apart from being applied to enrich ontologies. For instance, it is used in
the life sciences to detect whether drugs are likely to be efficient for particular dis-
eases. Work on learning in description logics goes back to e.g. [33,34], which used so-
called least common subsumers to solve the learning problem (a modified variant of the
problem defined in this article). Later, [17] invented a refinement operator for ALER
and proposed to solve the problem by using a top-down approach. [40,66,67] combine
both techniques and implement them in the YINYANG tool. However, those algorithms
tend to produce very long and hard-to-understand class expressions. The algorithms
implemented in DL-Learner [86,87,78,88,80] overcome this problem and investigate
the learning problem and the use of top down refinement in detail. DL-FOIL [43] is
a similar approach, which is based on a mixture of upward and downward refinement
of class expressions. They use alternative measures in their evaluation, which take the
open world assumption into account, which was not done in ILP previously. Most re-
cently, [82] implements appropriate heuristics and adaptations for learning definitions
in ontologies. The focus in this work is efficiency and practical application of learning
methods. The article presents plugins for two ontology editors (Protégé and OntoWiki)
as well stochastic methods, which improve previous methods by an order of magnitude.
For this reason, we will analyse it in more detail in the next subsection. The algorithms
presented in the article can also learn super class axioms.

A different approach to learning the definition of a named class is to compute the
so called most specific concept (msc) for all instances of the class. The most specific
concept of an individual is the most specific class expression, such that the individual is
instance of the expression. One can then compute the least common subsumer (lcs) [16]
of those expressions to obtain a description of the named class. However, in expressive
description logics, an msc does not need to exist and the lcs is simply the disjunction
of all expressions. For light-weight logics, such as EL, the approach appears to be
promising.

Other approaches, e.g. [91] focus on learning in hybrid knowledge bases combining
ontologies and rules. Ontology evolution [92] has been discussed in this context. Usu-
ally, hybrid approaches are a generalisation of concept learning methods, which enable
powerful rules at the cost of efficiency (because of the larger search space). Similar as
in knowledge representation, the tradeoff between expressiveness of the target language
and efficiency of learning algorithms is a critical choice in symbolic machine learning.

Another enrichment task is knowlege base completion. The goal of such a task is to
make the knowledge base complete in a particular well-defined sense. For instance, a
goal could be to ensure that all subclass relationships between named classes can be
inferred. The line of work starting in [133] and further pursued in e.g. [15] investigates
the use of formal concept analysis for completing knowledge bases. It is promising,
although it may not be able to handle noise as well as a machine learning technique. A
Protégé plugin [140] is available. [154] proposes to improve knowledge bases through
relational exploration and implemented it in the RELExO framework24. It focuses on

24 http://code.google.com/p/relexo/

http://code.google.com/p/relexo/

50 S. Auer et al.

simple relationships and the knowledge engineer is asked a series of questions. The
knowledge engineer either must positively answer the question or provide a counterex-
ample.

[155] focuses on learning disjointness between classes in an ontology to allow for
more powerful reasoning and consistency checking. To achieve this, it can use the ontol-
ogy itself, but also texts, e.g. Wikipedia articles corresponding to a concept. The article
includes an extensive study, which shows that proper modelling disjointness is actually
a difficult task, which can be simplified via this ontology enrichment method.

Another type of ontology enrichment is schema mapping. This task has been widely
studied and will not be discussed in depth within this chapter. Instead, we refer to [31]
for a survey on ontology mapping.

There are further more light-weight ontology enrichment methods. For instance, tax-
onomies can be learned from simple tag structures via heuristics [29,153]. Similarly,
“properties of properties” can be derived via simple statistical analysis. This includes
the detection whether a particular property might be symmetric, function, reflexive, in-
verse functional etc. Similarly, domains and ranges of properties can be determined
from existing data. Enriching the schema with domain and range axioms allows to find
cases, where properties are misused via OWL reasoning.

Table 3. Work in ontology enrichment grouped by type or aim of learned structures

Type/Aim References
Taxonomies [163,29,153]
Definitions often done via ILP approaches such as [86,87,88,82,43,40,66,67,17],

genetic approaches [78] have also been used
Super Class Axioms [82,153,29]
Rules in Ontologies [91,92]
Disjointness [155]
Properties of properties [29,46]
Alignment challenges: [142], recent survey: [31]
Completion formal concept analysis and relational exploration [15,154,140]

In the following subsection, we describe an enrichment approach for learning defini-
tions and super class axioms in more detail. The algorithm was recently developed by
the first authors and is described in full detail in [82].

6.2 Class Expression Learning in DL-Learner

The Semantic Web has recently seen a rise in the availability and usage of knowledge
bases, as can be observed within the Linking Open Data Initiative, the TONES and
Protégé ontology repositories, or the Watson search engine. Despite this growth, there
is still a lack of knowledge bases that consist of sophisticated schema information and
instance data adhering to this schema. Several knowledge bases, e.g. in the life sciences,
only consist of schema information, while others are, to a large extent, a collection
of facts without a clear structure, e.g. information extracted from data bases or texts.

Introduction to Linked Data and Its Lifecycle on the Web 51

The combination of sophisticated schema and instance data allows powerful reasoning,
consistency checking, and improved querying possibilities. We argue that being able to
learn OWL class expressions25 is a step towards achieving this goal.

Example 1. As an example, consider a knowledge base containing a class Capital
and instances of this class, e.g. London, Paris, Washington, Canberra etc. A machine
learning algorithm could, then, suggest that the class Capital may be equivalent to
one of the following OWL class expressions in Manchester OWL syntax26:

City and isCapitalOf at least one GeopoliticalRegion
City and isCapitalOf at least one Country

Both suggestions could be plausible: The first one is more general and includes cities
that are capitals of states, whereas the latter one is stricter and limits the instances to
capitals of countries. A knowledge engineer can decide which one is more appropriate,
i.e. a semi-automatic approach is used, and the machine learning algorithm should guide
her by pointing out which one fits the existing instances better. Assuming the knowledge
engineer decides for the latter, an algorithm can show her whether there are instances
of the class Capital which are neither instances of City nor related via the property
isCapitalOf to an instance of Country.27 The knowledge engineer can then continue
to look at those instances and assign them to a different class as well as provide more
complete information; thus improving the quality of the knowledge base. After adding
the definition of Capital, an OWL reasoner can compute further instances of the class
which have not been explicitly assigned before.

Using machine learning for the generation of suggestions instead of entering them
manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance barrier
for knowledge engineers is significantly lower, since understanding an OWL class ex-
pression is easier than analysing the structure of the knowledge base and creating a
class expression manually. Disadvantages of the approach are the dependency on the
availability of instance data in the knowledge base and requirements on the quality of
the ontology, i.e. modelling errors in the ontology can reduce the quality of results.

Overall, we describe the following in this chapter:

– extension of an existing learning algorithm for learning class expressions to the
ontology engineering scenario,

– presentation and evaluation of different heuristics,
– showcase how the enhanced ontology engineering process can be supported with

plugins for Protégé and OntoWiki,
– evaluation of the presented algorithm with several real ontologies from various do-

mains.

25 http://www.w3.org/TR/owl2-syntax/#Class_Expressions
26 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see [63].
27 This is not an inconsistency under the standard OWL open world assumption, but rather a hint

towards a potential modelling error.

http://www.w3.org/TR/owl2-syntax/#Class_Expressions

52 S. Auer et al.

The adapted algorithm for solving the learning problems, which occur in the ontology
engineering process, is called CELOE (Class Expression Learning for Ontology En-
gineering). It was implemented within the open-source framework DL-Learner.28 DL-
Learner [79,80] leverages a modular architecture, which allows to define different types
of components: knowledge sources (e.g. OWL files), reasoners (e.g. DIG29 or OWL
API based), learning problems, and learning algorithms. In this overview, we focus on
the latter two component types, i.e. we define the class expression learning problem in
ontology engineering and provide an algorithm for solving it.

Learning Problem. The process of learning in logics, i.e. trying to find high-level ex-
planations for given data, is also called inductive reasoning as opposed to inference or
deductive reasoning. The main difference is that in deductive reasoning it is formally
shown whether a statement follows from a knowledge base, whereas in inductive learn-
ing new statements are invented. Learning problems, which are similar to the one we
will analyse, have been investigated in Inductive Logic Programming [121] and, in fact,
the method presented here can be used to solve a variety of machine learning tasks apart
from ontology engineering.

In the ontology learning problem we consider, we want to learn a formal description
of a class A, which has (inferred or asserted) instances in the considered ontology. In the
case that A is already described by a class expression C via axioms of the form A � C
or A ≡ C, those can be either refined, i.e. specialised/generalised, or relearned from
scratch by the learning algorithm. To define the class learning problem, we need the
notion of a retrieval reasoner operation RK (C). RK (C) returns the set of all instances of
C in a knowledge base K . If K is clear from the context, the subscript can be omitted.

Definition 6 (class learning problem). Let an existing named class A in a knowl-
edge base K be given. The class learning problem is to find an expression C such that
RK (C) = RK (A).

Clearly, the learned expression C is a description of (the instances of) A. Such an ex-
pression is a candidate for adding an axiom of the form A ≡ C or A � C to the
knowledge base K . If a solution of the learning problem exists, then the used base
learning algorithm (as presented in the following subsection) is complete, i.e. guar-
anteed to find a correct solution if one exists in the target language and there are
no time and memory constraints (see [87,88] for the proof). In most cases, we will
not find a solution to the learning problem, but rather an approximation. This is nat-
ural, since a knowledge base may contain false class assignments or some objects
in the knowledge base are described at different levels of detail. For instance, in
Example 1, the city “Apia” might be typed as “Capital” in a knowledge base, but
not related to the country “Samoa”. However, if most of the other cities are related
to countries via a role isCapitalOf, then the learning algorithm may still suggest
City and isCapitalOf at least one Country since this describes the majority
of capitals in the knowledge base well. If the knowledge engineer agrees with such a
definition, then a tool can assist him in completing missing information about some
capitals.

28 http://dl-learner.org
29 http://dl.kr.org/dig/

http://dl-learner.org
http://dl.kr.org/dig/

Introduction to Linked Data and Its Lifecycle on the Web 53

Fig. 27. Outline of the gen-
eral learning approach in
CELOE: One part of the
algorithm is the generation
of promising class expres-
sions taking the available
background knowledge into
account. Another part is a
heuristic measure of how
close an expression is to be-
ing a solution of the learn-
ing problem. Figure adapted
from [56].

According to Occam’s razor [26] simple solutions of the learning problem are to
be preferred over more complex ones, because they are more readable. This is even
more important in the ontology engineering context, where it is essential to suggest
simple expressions to the knowledge engineer. We measure simplicity as the length of
an expression, which is defined in a straightforward way, namely as the sum of the
numbers of concept, role, quantifier, and connective symbols occurring in the expres-
sion. The algorithm is biased towards shorter expressions. Also note that, for simplicity
the definition of the learning problem itself does enforce coverage, but not prediction,
i.e. correct classification of objects which are added to the knowledge base in the future.
Concepts with high coverage and poor prediction are said to overfit the data. However,
due to the strong bias towards short expressions this problem occurs empirically rarely
in description logics [88].

Base Learning Algorithm. Figure 27 gives a brief overview of the CELOE algorithm,
which follows the common “generate and test“ approach in ILP. This means that learn-
ing is seen as a search process and several class expressions are generated and tested
against a background knowledge base. Each of those class expressions is evaluated us-
ing a heuristic, which is described in the next section. A challenging part of a learning
algorithm is to decide which expressions to test. In particular, such a decision should
take the computed heuristic values and the structure of the background knowledge into
account. For CELOE, we use the approach described in [87,88] as base, where this
problem has already been analysed, implemented, and evaluated in depth. It is based on
the idea of refinement operators:

Definition 7 (refinement operator). A quasi-ordering is a reflexive and transitive re-
lation. In a quasi-ordered space (S ,�) a downward (upward) refinement operator ρ is a
mapping from S to 2S , such that for any C ∈ S we have that C′ ∈ ρ(C) implies C′ � C
(C � C′). C′ is called a specialisation (generalisation) of C.

54 S. Auer et al.

Refinement operators can be used for searching in the space of expressions. As order-
ing we can use subsumption. (Note that the subsumption relation � is a quasi-ordering.)
If an expression C subsumes an expression D (D � C), then C will cover all exam-
ples which are covered by D. This makes subsumption a suitable order for searching
in expressions as it allows to prune parts of the search space without losing possible
solutions.

Fig. 28. Illustration of a search tree in a top down refinement approach

The approach we used is a top-down algorithm based on refinement operators as
illustrated in Figure 28 (more detailed schemata can be found in the slides30 of the on-
tology learning lecture of Reasoning Web 2010 [81]). This means that the first class ex-
pression, which will be tested is the most general expression (�), which is then mapped
to a set of more specific expressions by means of a downward refinement operator. Nat-
urally, the refinement operator can be applied to the obtained expressions again, thereby
spanning a search tree. The search tree can be pruned when an expression does not cover
sufficiently many instances of the class A we want to describe. One example for a path
in a search tree spanned up by a downward refinement operator is the following (�
denotes a refinement step):

�� Person� Person � takesPartinIn.�
� Person � takesPartIn.Meeting

The heart of such a learning strategy is to define a suitable refinement operator and
an appropriate search heuristics for deciding which nodes in the search tree should be
expanded. The refinement operator in the considered algorithm is defined in [88]. It
is based on earlier work in [87] which in turn is built on the theoretical foundations
of [86]. It has been shown to be the best achievable operator with respect to a set of
properties (not further described here), which are used to assess the performance of

30 http://reasoningweb.org/2010/teaching-material/lehmann.pdf

http://reasoningweb.org/2010/teaching-material/lehmann.pdf

Introduction to Linked Data and Its Lifecycle on the Web 55

refinement operators. The learning algorithm supports conjunction, disjunction, nega-
tion, existential and universal quantifiers, cardinality restrictions, hasValue restrictions
as well as boolean and double datatypes.

6.3 Finding a Suitable Heuristic

A heuristic measures how well a given class expression fits a learning problem and is
used to guide the search in a learning process. To define a suitable heuristic, we first
need to address the question of how to measure the accuracy of a class expression. We
introduce several heuristics, which can be used for CELOE and later evaluate them.

We cannot simply use supervised learning from examples directly, since we do not
have positive and negative examples available. We can try to tackle this problem by us-
ing the existing instances of the class as positive examples and the remaining instances
as negative examples. This is illustrated in Figure 29, where K stands for the knowl-
edge base and A for the class to describe. We can then measure accuracy as the number
of correctly classified examples divided by the number of all examples. This can be
computed as follows for a class expression C and is known as predictive accuracy in
Machine Learning:

predacc(C) = 1 − |R(A) \ R(C)| + |R(C) \ R(A)|
n

n = |Ind(K)|
Here, Ind(K) stands for the set of individuals occurring in the knowledge base. R(A)\

R(C) are the false negatives whereas R(C) \ R(A) are false positives. n is the number of
all examples, which is equal to the number of individuals in the knowledge base in this
case. Apart from learning definitions, we also want to be able to learn super class axioms
(A � C). Naturally, in this scenario R(C) should be a superset of R(A). However, we
still do want R(C) to be as small as possible, otherwise � would always be a solution.
To reflect this in our accuracy computation, we penalise false negatives more than false
positives by a factor of t (t > 1) and map the result to the interval [0, 1]:

predacc(C, t) = 1 − 2 · t · |R(A) \ R(C)| + |R(C) \ R(A)|
(t + 1) · n n = |Ind(K)|

While being straightforward, the outlined approach of casting class learning into a stan-
dard learning problem with positive and negative examples has the disadvantage that
the number of negative examples will usually be much higher than the number of posi-
tive examples. As shown in Table 4, this may lead to overly optimistic estimates. More
importantly, this accuracy measure has the drawback of having a dependency on the
number of instances in the knowledge base.

Therefore, we investigated further heuristics, which overcome this problem, in par-
ticular by transferring common heuristics from information retrieval to the class learn-
ing problem:

1. F-Measure: Fβ-Measure is based on precision and recall weighted by β. They can
be computed for the class learning problem without having negative examples. In-
stead, we perform a retrieval for the expression C, which we want to evaluate.

56 S. Auer et al.

We can then define precision as the percentage of instances of C, which are also in-
stances of A and recall as percentage of instances of A, which are also instances of
C. This is visualised in Figure 29. F-Measure is defined as harmonic mean of pre-
cision and recall. For learning super classes, we use F3 measure by default, which
gives recall a higher weight than precision.

2. A-Measure: We denote the arithmetic mean of precision and recall as A-Measure.
Super class learning is achieved by assigning a higher weight to recall. Using the
arithmetic mean of precision and recall is uncommon in Machine Learning, since
it results in too optimistic estimates. However, we found that it is useful in super
class learning, where Fn is often too pessimistic even for higher n.

3. Generalised F-Measure: Generalised F-Measure has been published in [36] and
extends the idea of F-measure by taking the three valued nature of classification
in OWL/DLs into account: An individual can either belong to a class, the negation
of a class or none of both cases can be proven. This differs from common binary
classification tasks and, therefore, appropriate measures have been introduced (see
[36] for details). Adaption for super class learning can be done in a similar fashion
as for F-Measure itself.

4. Jaccard Distance: Since R(A) and R(C) are sets, we can use the well-known Jaccard
coefficient to measure the similarity between both sets.

Fig. 29. Visualisation of different accuracy measurement approaches. K is the knowledge base,
A the class to describe and C a class expression to be tested. Left side: Standard supervised
approach based on using positive (instances of A) and negative (remaining instances) examples.
Here, the accuracy of C depends on the number of individuals in the knowledge base. Right side:
Evaluation based on two criteria: recall (Which fraction of R(A) is in R(C)?) and precision (Which
fraction of R(C) is in R(A)?).

We argue that those four measures are more appropriate than predictive accuracy when
applying standard learning algorithms to the ontology engineering use case. Table 4
provides some example calculations, which allow the reader to compare the different
heuristics.

Efficient Heuristic Computation. Several optimisations for computing the heuristics are
described in [82]. In particular, adapted approximate reasoning and stochastic approxi-
mations are discussed. Those improvements have shown to lead to order of magnitude
gains in efficiency for many ontologies. We refrain from describing those methods in
this chapter.

Introduction to Linked Data and Its Lifecycle on the Web 57

Table 4. Example accuracies for selected cases (eq = equivalence class axiom, sc = super class
axiom). The images on the left represent an imaginary knowledge base K with 1000 individuals,
where we want to describe the class A by using expression C. It is apparent that using predictive
accuracy leads to impractical accuracies, e.g. in the first row C cannot possibly be a good descrip-
tion of A, but we still get 80% accuracy, since all the negative examples outside of A and C are
correctly classified.

illustration pred. acc. F-Measure A-Measure Jaccard
eq sc eq sc eq sc

80% 67% 0% 0% 0% 0% 0%

90% 92% 67% 73% 75% 88% 50%

70% 75% 40% 48% 63% 82% 25%

98% 97% 90% 90% 90% 90% 82%

95% 88% 67% 61% 75% 63% 50%

The Protégé Plugin. After implementing and testing the described learning algorithm,
we integrated it into Protégé and OntoWiki. Together with the Protégé developers, we
extended the Protégé 4 plugin mechanism to be able to seamlessly integrate the DL-
Learner plugin as an additional method to create class expressions. This means that
the knowledge engineer can use the algorithm exactly where it is needed without any
additional configuration steps. The plugin has also become part of the official Protégé 4
repository, i.e. it can be directly installed from within Protégé.

A screenshot of the plugin is shown in Figure 30. To use the plugin, the knowledge
engineer is only required to press a button, which then starts a new thread in the back-
ground. This thread executes the learning algorithm. The used algorithm is an anytime
algorithm, i.e. at each point in time we can always see the currently best suggestions.
The GUI updates the suggestion list each second until the maximum runtime – 10 sec-
onds by default – is reached. This means that the perceived runtime, i.e. the time after
which only minor updates occur in the suggestion list, is often only one or two seconds
for small ontologies. For each suggestion, the plugin displays its accuracy.

58 S. Auer et al.

Fig. 30. A screenshot of the
DL-Learner Protégé plugin. It
is integrated as additional tab
to create class expressions in
Protégé. The user is only re-
quired to press the “suggest
equivalent class expressions”
button and within a few sec-
onds they will be displayed or-
dered by accuracy. If desired,
the knowledge engineer can
visualize the instances of the
expression to detect potential
problems. At the bottom, op-
tional expert configuration set-
tings can be adopted.

When clicking on a suggestion, it is visualized by displaying two circles: One stands
for the instances of the class to describe and another circle for the instances of the
suggested class expression. Ideally, both circles overlap completely, but in practice this
will often not be the case. Clicking on the plus symbol in each circle shows its list of
individuals. Those individuals are also presented as points in the circles and moving
the mouse over such a point shows information about the respective individual. Red
points show potential problems detected by the plugin. Please note that we use closed
world reasoning to detect those problems. For instance, in our initial example, a capital
which is not related via the property isCapitalOf to an instance of Country is marked
red. If there is not only a potential problem, but adding the expression would render the
ontology inconsistent, the suggestion is marked red and a warning message is displayed.
Accepting such a suggestion can still be a good choice, because the problem often lies
elsewhere in the knowledge base, but was not obvious before, since the ontology was
not sufficiently expressive for reasoners to detect it. This is illustrated by a screencast
available from the plugin homepage,31 where the ontology becomes inconsistent after
adding the axiom, and the real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and set-
tings related to the desired target language, e.g. the knowledge engineer can choose
to stay within the OWL 2 EL profile or enable/disable certain class expression con-
structors. The learning algorithm is designed to be able to handle noisy data and the
visualisation of the suggestions will reveal false class assignments so that they can be
fixed afterwards.

31 http://dl-learner.org/wiki/ProtegePlugin

http://dl-learner.org/wiki/ProtegePlugin

Introduction to Linked Data and Its Lifecycle on the Web 59

Fig. 31. The DL-Learner plugin can be invoked from the context menu of a class in OntoWiki

The OntoWiki Plugin. Analogous to Protégé, we created a similar plugin for On-
toWiki (cf. section 4). OntoWiki is a lightweight ontology editor, which allows dis-
tributed and collaborative editing of knowledge bases. It focuses on wiki-like, simple
and intuitive authoring of semantic content, e.g. through inline editing of RDF content,
and provides different views on instance data.

Recently, a fine-grained plugin mechanism and extensions architecture was added to
OntoWiki. The DL-Learner plugin is technically realised by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the
UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes as shown in Figure 31.

The plugin accesses DL-Learner functionality through its WSDL-based web service
interface. Jar files containing all necessary libraries are provided by the plugin. If a user
invokes the plugin, it scans whether the web service is online at its default address. If
not, it is started automatically.

Fig. 32. Extraction with three starting instances. The circles represent different recursion depths.
The circles around the starting instances signify recursion depth 0. The larger inner circle rep-
resents the fragment with recursion depth 1 and the largest outer circle with recursion depth 2.
Figure taken from [56].

60 S. Auer et al.

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object. As
a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described in
[56,57,30]. Starting from a set of instances, the mechanism extracts a relevant fragment
from the underlying knowledge base up to some specified recursion depth. Figure 32
provides an overview of the fragment selection process. The fragment has the property
that learning results on it are similar to those on the complete knowledge base. For a
detailed description we refer the reader to the full article.

The fragment selection is only performed for medium to large-sized knowledge
bases. Small knowledge bases are retrieved completely and loaded into the reasoner.
While the fragment selection can cause a delay of several seconds before the learning
algorithm starts, it also offers flexibility and scalability. For instance, we can learn class
expressions in large knowledge bases such as DBpedia in OntoWiki.32

Fig. 33. Screenshot of the result table of the DL-Learner plugin in OntoWiki

Figure 33 shows a screenshot of the OntoWiki plugin applied to the SWORE [130]
ontology. Suggestions for learning the class “customer requirement” are shown in
Manchester OWL Syntax. Similar to the Protégé plugin, the user is presented a table
of suggestions along with their accuracy value. Additional details about the instances
of “customer requirement”, covered by a suggested class expressions and additionally
contained instances can be viewed via a toggle button. The modular design of OntoWiki
allows rich user interaction: Each resource, e.g. a class, property, or individual, can be
viewed and subsequently modified directly from the result table as shown for “design

32 OntoWiki is undergoing an extensive development, aiming to support handling such large
knowledge bases. A release supporting this is expected for the first half of 2012.

Introduction to Linked Data and Its Lifecycle on the Web 61

Table 5. Statistics about test ontologies

Ontology #l
og

ic
al

ax
io

m
s

#c
la

ss
es

#o
bj

ec
tp

ro
pe

rt
ie

s

#d
at

a
pr

op
er

ti
es

#i
nd

iv
id

ua
ls

DL expressivity
SC Ontology33 20081 28 8 5 3542 AL(D)
Adhesome34 12043 40 33 37 2032 ALCHN(D)
GeoSkills35 14966 613 23 21 2620 ALCHOIN(D)
Eukariotic36 38 11 1 0 11 ALCON
Breast Cancer37 878 196 22 3 113 ALCROF (D)
Economy38 1625 339 45 8 482 ALCH(D)
Resist39 239 349 134 38 75 ALUF (D)
Finance40 16014 323 247 74 2466 ALCROIQ(D)
Earthrealm41 931 2364 215 36 171 ALCHO(D)

requirement” in the screenshot. For instance, a knowledge engineer could decide to
import additional information available as Linked Data and run the CELOE algorithm
again to see whether different suggestions are provided with additional background
knowledge.

Evaluation. To evaluate the suggestions made by our learning algorithm, we tested it
on a variety of real-world ontologies of different sizes and domains. Please note that we
intentionally do not perform an evaluation of the machine learning technique as such on
existing benchmarks, since we build on the base algorithm already evaluated in detail in
[88]. It was shown that this algorithm is superior to other supervised learning algorithms
for OWL and at least competitive with the state of the art in ILP. Instead, we focus on
its use within the ontology engineering scenario. The goals of the evaluation are to
1. determine the influence of reasoning and heuristics on suggestions, 2. to evaluate
whether the method is sufficiently efficient to work on large real-world ontologies.

To perform the evaluation, we wrote a dedicated plugin for the Protégé ontology
editor. This allows the evaluators to browse the ontology while deciding whether the
suggestions made are reasonable. The plugin works as follows: First, all classes with
at least 5 inferred instances are determined. For each such class, we run CELOE with
different settings to generate suggestions for definitions. Specifically, we tested two

33 http://www.mindswap.org/ontologies/SC.owl
34 http://www.sbcny.org/datasets/adhesome.owl
35 http://i2geo.net/ontologies/current/GeoSkills.owl
36 http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
37 http://acl.icnet.uk/%7Emw/MDM0.73.owl
38 http://reliant.teknowledge.com/DAML/Economy.owl
39 http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
40 http://www.fadyart.com/Finance.owl
41 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl

http://www.mindswap.org/ontologies/SC.owl
http://www.sbcny.org/datasets/adhesome.owl
http://i2geo.net/ontologies/current/GeoSkills.owl
http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
http://acl.icnet.uk/%7Emw/MDM0.73.owl
http://reliant.teknowledge.com/DAML/Economy.owl
http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
http://www.fadyart.com/Finance.owl
http://sweet.jpl.nasa.gov/1.1/earthrealm.owl

62 S. Auer et al.

reasoners and five different heuristics. The two reasoners are standard Pellet and Pellet
combined with approximate reasoning (not described in detail here). The five heuristics
are those described in Section 6.3. For each configuration of CELOE, we generate at
most 10 suggestions exceeding a heuristic threshold of 90%. Overall, this means that
there can be at most 2 * 5 * 10 = 100 suggestions per class – usually less, because
different settings of CELOE will still result in similar suggestions. This list is shuffled
and presented to the evaluators. For each suggestion, the evaluators can choose between
6 options (see Table 6):

1 the suggestion improves the ontology (improvement)
2 the suggestion is no improvement and should not be included (not acceptable) and
3 adding the suggestion would be a modelling error (error)

In the case of existing definitions for class A, we removed them prior to learning. In this
case, the evaluator could choose between three further options:

4 the learned definition is equal to the previous one and both are good (equal +)
5 the learned definition is equal to the previous one and both are bad (equal -) and
6 the learned definition is inferior to the previous one (inferior).

We used the default settings of CELOE, e.g. a maximum execution time of 10 seconds
for the algorithm. The knowledge engineers were five experienced members of our re-
search group, who made themselves familiar with the domain of the test ontologies.
Each researcher worked independently and had to make 998 decisions for 92 classes
between one of the options. The time required to make those decisions was approxi-
mately 40 working hours per researcher. The raw agreement value of all evaluators is
0.535 (see e.g. [4] for details) with 4 out of 5 evaluators in strong pairwise agreement
(90%). The evaluation machine was a notebook with a 2 GHz CPU and 3 GB RAM.

Table 6 shows the evaluation results. All ontologies were taken from the Protégé
OWL42 and TONES43 repositories. We randomly selected 5 ontologies comprising in-
stance data from these two repositories, specifically the Earthrealm, Finance, Resist,
Economy and Breast Cancer ontologies (see Table 5).

The results in Table 6 show which options were selected by the evaluators. It clearly
indicates that the usage of approximate reasoning is sensible. The results are, however,
more difficult to interpret with regard to the different employed heuristics. Using predic-
tive accuracy did not yield good results and, surprisingly, generalised F-Measure also
had a lower percentage of cases where option 1 was selected. The other three heuris-
tics generated very similar results. One reason is that those heuristics are all based on
precision and recall, but in addition the low quality of some of the randomly selected
test ontologies posed a problem. In cases of too many very severe modelling errors,
e.g. conjunctions and disjunctions mixed up in an ontology or inappropriate domain and
range restrictions, the quality of suggestions decreases for each of the heuristics. This is
the main reason why the results for the different heuristics are very close. Particularly,
generalised F-Measure can show its strengths mainly for properly designed ontologies.
For instance, column 2 of Table 6 shows that it missed 7% of possible improvements.

42 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
43 http://owl.cs.manchester.ac.uk/repository/

http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/

Introduction to Linked Data and Its Lifecycle on the Web 63

Table 6. Options chosen by evaluators aggregated by class. FIC stands for the fast instance
checker, which is an approximate reasoning procedure.

reasoner/heuristic im
pr

ov
em

en
t

eq
ua

lq
ua

li
ty

(+
)

eq
ua

lq
ua

li
ty

(-
)

in
fe

ri
or

no
ta

cc
ep

ta
bl

e

er
ro

r

m
is

se
d

im
pr

ov
em

en
ts

in
%

se
le

ct
ed

po
si

ti
on

on
su

gg
es

ti
on

li
st

(i
nc

l.
st

d.
de

vi
at

io
n)

av
g.

ac
cu

ra
cy

of
se

le
ct

ed
su

gg
es

ti
on

in
%

Pellet/F-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.82 ± 2.93 96.91
Pellet/Gen. F-Measure 15.24 0.44 0.66 0.11 66.60 16.95 16.30 2.78 ± 3.01 92.76
Pellet/A-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.84 ± 2.93 98.59
Pellet/pred. acc. 16.59 0.44 0.66 0.00 64.83 17.48 15.22 2.69 ± 2.82 98.05
Pellet/Jaccard 16.81 0.44 0.66 0.00 64.66 17.43 14.67 2.80 ± 2.91 95.26
Pellet FIC/F-Measure 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 95.01
Pellet FIC/Gen. F-M. 33.41 0.44 0.66 0.00 53.41 12.09 7.07 1.77 ± 2.69 89.42
Pellet FIC/A-Measure 36.19 0.55 0.55 0.00 52.84 9.87 1.63 2.21 ± 2.71 98.65
Pellet FIC/pred. acc. 32.99 0.55 0.55 0.11 55.58 10.22 4.35 2.17 ± 2.55 98.92
Pellet FIC/Jaccard 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 94.07

This means that for 7% of all classes, one of the other four heuristics was able to
find an appropriate definition, which was not suggested when employing generalised
F-Measure. The last column in this table shows that the average value of generalised F-
Measure is quite low. As explained previously, it distinguishes between cases when an
individual is instance of the observed class expression, its negation, or none of both. In
many cases, the reasoner could not detect that an individual is instance of the negation
of a class expression, because of the absence of disjointness axioms and negation in
the knowledge base, which explains the low average values of generalised F-Measure.
Column 4 of Table 6 shows that many selected expressions are amongst the top 5 (out
of 10) in the suggestion list, i.e. providing 10 suggestions appears to be a reasonable
choice.

In general, the improvement rate is only at about 35% according to Table 6 whereas it
usually exceeded 50% in preliminary experiments with other real-world ontologies with
fewer or less severe modelling errors. Since CELOE is based on OWL reasoning, it is
clear that schema modelling errors will have an impact on the quality of suggestions.
As a consequence, we believe that the CELOE algorithm should be combined with
ontology debugging techniques. We have obtained first positive results in this direction
and plan to pursue it in future work. However, the evaluation also showed that CELOE
does still work in ontologies, which probably were never verified by an OWL reasoner.

Summary. We presented the CELOE learning method specifically designed for extend-
ing OWL ontologies. Five heuristics were implemented and analysed in conjunction
with CELOE along with several performance improvements. A method for approxi-
mating heuristic values has been introduced, which is useful beyond the ontology en-
gineering scenario to solve the challenge of dealing with a large number of examples

64 S. Auer et al.

in ILP [160]. Furthermore, we biased the algorithm towards short solutions and im-
plemented optimisations to increase readability of the suggestions made. The resulting
algorithm was implemented in the open source DL-Learner framework. We argue that
CELOE is the first ILP based algorithm, which turns the idea of learning class expres-
sions for extending ontologies into practice. CELOE is integrated into two plugins for
the ontology editors Protégé and OntoWiki and can be invoked using just a few mouse
clicks.

7 Linked Data Quality

Linked Open Data (LOD) has provided, over the past several years, an unprecedented
volume of structured data currently amount to 50 billion facts, represented as RDF
triples. Although publishing large amounts of data on the Web is certainly a step in the
right direction, the published data is only as useful as its quality. On the Data Web we
have very varying quality of information covering various domains since data is merged
together from different autonomous evolving data sources on the Web. For example,
data extracted from semi-structured or even unstructured sources, such as DBpedia,
often contains inconsistencies as well as mis-represented and incomplete information.
Despite data quality in LOD being an essential concept, the autonomy and openness of
the information providers makes the web vulnerable to missing, inaccurate, incomplete,
inconsistent or outdated information.

Data quality is commonly conceived as fitness for use [72,159] for a certain appli-
cation or use case. However, even datasets with quality problems might be useful for
certain applications, as long as the quality is in the required range. For example, in the
case of DBpedia the data quality is perfectly sufficient for enriching Web search with
facts or suggestions about common sense information, such as entertainment topics. In
such a scenario, DBpedia can be used to show related movies and personal information,
when a user searches for an actor. In this case, it is rather neglectable, when in relatively
few cases, a related movie or some personal fact is missing. For developing a medical
application, on the other hand, the quality of DBpedia is probably completely insuffi-
cient. It should be noted that even the traditional, document-oriented Web has content
of varying quality and is still perceived to be extremely useful by most people.

Consequently, one of the key challenges is to determine the quality of datasets pub-
lished on the Web and making this quality information explicitly available. Assuring
data quality is particularly a challenge in LOD as it involves a set of autonomously
evolving data sources. Other than on the document Web, where information quality
can be only indirectly (e.g. via page rank) or vaguely defined, there are much more
concrete and measurable data quality metrics available for structured information such
as accuracy of facts, completeness, adequacy of semantic representation or degree of
understandability.

In this chapter, we first define the basic concepts of data quality, then report the
formal definitions of a set of 26 different dimensions along with their respective metrics
identified in [167].

Thereafter, we describe a set of currently available tools specially designed to assess
the quality of Linked Data.

Introduction to Linked Data and Its Lifecycle on the Web 65

7.1 Data Quality Concepts

In this section, we introduce the basic concepts of data quality to help the readers un-
derstand these terminologies in their consequent usage.

Data Quality. The term data quality is commonly conceived as a multi-dimensional
construct with a popular definition as the "fitness for use" [72]. In case of the Semantic
Web, there are varying concepts of data quality such as the semantic metadata on the
one hand and the notion of link quality on the other. There are several characteristics of
data quality that should be considered i.e. the completeness, accuracy, consistency and
validity on the one hand and the representational consistency, conciseness as well as the
timeliness, understandability, availability and verifiability on the other hand.

Data Quality Problems. A set of issues that can affect the potentiality of the appli-
cations that use the data are termed as data quality problems. The problems may vary
from the incompleteness of data, inconsistency in representation, invalid syntax or in-
accuracy.

Data Quality Dimensions and Metrics. Data quality assessment involves the measure-
ment of quality dimensions (or criteria) that are relevant to the user. A data quality
assessment metric (or measure) is a procedure for measuring an information quality di-
mension [24]. The metrics are basically heuristics designed to fit a specific assessment
situation [89]. Since the dimensions are rather abstract concepts, the assessment metrics
rely on quality indicators that can be used for the assessment of the quality of a data
source w.r.t the criteria [47].

Data Quality Assessment Method. A data quality assessment methodology is the pro-
cess of evaluating if a piece of data meets the information consumers need for a specific
use case [24]. The process involves measuring the quality dimensions that are relevant
to the user and comparing the assessment results with the users quality requirements.

7.2 Linked Data Quality Dimensions

In [167], a core set of 26 different data quality dimensions were reported that can be
applied to assess the quality of Linked Data. These dimensions are divided into the
following groups:

– Contextual dimensions
– Trust dimensions
– Intrinsic dimensions
– Accessibility dimensions
– Representational dimensions
– Dataset dynamicity

Figure 34 shows the classification of the dimensions into these 6 different groups as
well as the relations between them.

66 S. Auer et al.

Completeness

Relevancy
Amount of

data

Verifiability Reputation

Believability

Licensing*

Objectivity

Accuracy

Validity of
documents*

Consistency

Timeliness

Currency
Volatility

Interlinking*

Rep.
Conciseness

Rep.
Consistency

Conciseness

Interpretability

Understandibility

Versatility*

Availability

Performance*
Response Time

Security

RepresentationContextual

Trust*

Intrinsic

Accessibility

Dataset Dynamicity

overlaps

Provenance

overlaps

Two dimensions
are related

Fig. 34. Linked data quality dimensions and the relations between them [Source: [167]]

Use Case Scenario. Since data quality is described as "fitness to use", we introduce a
specific use case that will allow us to illustrate the importance of each dimension with
the help of an example. Our use case is about an intelligent flight search engine, which
relies on acquiring (aggregating) data from several datasets. It obtains information about
airports and airlines from an airline dataset (e.g., OurAirports44, OpenFlights45). In-
formation about the location of countries, cities and particular addresses is obtained
from a spatial dataset (e.g., LinkedGeoData46). Additionally, aggregators in RDF pull
all the information related to airlines from different data sources (e.g., Expedia47, Tri-
padvisor48, Skyscanner49 etc.) that allows a user to query the integrated dataset for a
flight from any start and end destination for any time period. We will use this scenario
throughout this section as an example of how data quality influences fitness to use.

44 http://thedatahub.org/dataset/ourairports
45 http://thedatahub.org/dataset/open-flights
46 linkedgeodata.org
47 http://www.expedia.com/
48 http://www.tripadvisor.com/
49 http://www.skyscanner.de/

http://thedatahub.org/dataset/ourairports
http://thedatahub.org/dataset/open-flights
linkedgeodata.org
http://www.expedia.com/
http://www.tripadvisor.com/
http://www.skyscanner.de/

Introduction to Linked Data and Its Lifecycle on the Web 67

Contextual Dimensions. Contextual dimensions are those that highly depend on the
context of the task at hand as well as on the subjective preferences of the data consumer.
There are three dimensions completeness, amount-of-data and relevancy that are part
of this group.

Definition 8 (Completeness). Completeness refers to the degree to which all required
information is present in a particular dataset. In general, completeness is the extent to
which data is of sufficient depth, breadth and scope for the task at hand. In terms of
Linked Data, we classify completeness as follows:

– Schema completeness, the degree to which the classes and properties of an ontology
are represented, thus can be called "ontology completeness",

– Property completeness, measure of the missing values for a specific property,
– Population completeness, the percentage of all real-world objects of a particular

type that are represented in the datasets and
– Interlinking completeness, which has to be considered especially in Linked Data

and refers to the degree to which instances in the dataset are interlinked.

Metrics. Completeness can be measured by detecting the number of classes, properties,
values and interlinks that are present in the dataset by comparing it to the original dataset
(or gold standard dataset). It should be noted that in this case, users should assume a
closed-world-assumption where a gold standard dataset is available and can be used to
compare against.

Example. In the use case, the flight search engine should contain complete information
so that it includes all offers for flights (population completeness). For example, a user
residing in Germany wants to visit her friend in America. Since the user is a student, low
price is of high importance. But, looking for flights individually on the airlines websites
shows her flights with very expensive fares. However, using our flight search engine she
finds all offers, even the less expensive ones and is also able to compare fares from dif-
ferent airlines and choose the most affordable one. The more complete the information
for flights is, including cheap flights, the more visitors the site attracts. Moreover, suffi-
cient interlinks between the datasets will allow her to query the integrated dataset so as
to find an optimal route from the start to the end destination (interlinking completeness)
in cases when there is no direct flight.

Definition 9 (Amount-of-data). Amount-of-data refers to the quantity and volume of
data that is appropriate for a particular task.

Metrics. The amount-of-data can be measured in terms of bytes (most coarse-grained),
triples, instances, and/or links present in the dataset. This amount should represent an
appropriate volume of data for a particular task, that is, appropriate scope and level of
detail.

Example. In the use case, the flight search engine acquires enough amount of data so
as to cover all, even small, airports. In addition, the data also covers alternative means
of transportation. This helps to provide the user with better travel plans, which includes
smaller cities (airports). For example, when a user wants to travel from Connecticut
to Santa Barbara, she might not find direct or indirect flights by searching individual

68 S. Auer et al.

flights websites. But, using our example search engine, she is suggested convenient
flight connections between the two destinations, because it contains a large amount of
data so as to cover all the airports. She is also offered convenient combinations of planes,
trains and buses. The provision of such information also necessitates the presence of a
large amount of internal as well as externals links between the datasets so as to provide
a fine grained search for flights between specific places.

Definition 10 (Relevancy). Relevancy refers to the provision of information which is
in accordance with the task at hand and important to the users’ query.

Metrics. Relevancy is highly context dependent and can be measured by using meta-
information attributes for assessing whether the content is relevant for a particular task.
Additionally, retrieval of relevant documents can be performed using a combination of
hyperlink analysis and information retrieval methods.

Example. When a user is looking for flights between any two cities, only relevant in-
formation i.e. start and end times, duration and cost per person should be provided. If a
lot of irrelevant data is included in the spatial data, e.g. post offices, trees etc. (present
in LinkedGeoData), query performance can decrease. The user may thus get lost in the
silos of information and may not be able to browse through it efficiently to get only
what she requires.

Trust Dimensions. Trust dimensions are those that focus on the trustworthiness of
the dataset. There are five dimensions that are part of this group, namely, provenance,
verifiability, believability, reputation and licensing.

Definition 11 (Provenance). Provenance refers to the contextual metadata that fo-
cuses on how to represent, manage and use information about the origin of the source.
Provenance helps to describe entities to enable trust, assess authenticity and allow re-
producibility.

Metrics. Provenance can be measured by analyzing the metadata associated with the
source. This provenance information can in turn be used to assess the trustworthiness,
reliability and credibility of a data source, an entity, a publishers or even individual
RDF statements. There exists an inter-dependancy between the data provider and the
data itself. On the one hand, data is likely to be accepted as true if it is provided by a
trustworthy provider. On the other hand, the data provider is trustworthy if it provides
true data. Thus, both can be checked to measure the trustworthiness.

Example. The example flight search engine constitutes information from several air-
line providers. In order to verify the reliability of these different airline data providers,
provenance information from the aggregators can be analyzed and re-used so as enable
users of the flight search engine to trust the authenticity of the data provided to them.

Definition 12 (Verifiability). Verifiability refers to the degree by which a data con-
sumer can assess the correctness of a dataset and as a consequence its trustworthiness.

Metrics. Verifiability can be measured either by an unbiased third party, if the dataset
itself points to the source or by the presence of a digital signature.

Introduction to Linked Data and Its Lifecycle on the Web 69

Example. In the use case, if we assume that the flight search engine crawls information
from arbitrary airline websites, which publish flight information according to a standard
vocabulary, there is a risk for receiving incorrect information from malicious websites.
For instance, such a website publishes cheap flights just to attract a large number of
visitors. In that case, the use of digital signatures for published RDF data allows to
restrict crawling only to verified datasets.

Definition 13 (Reputation). Reputation is a judgement made by a user to determine
the integrity of a source. It is mainly associated with a data publisher, a person, organ-
isation, group of people or community of practice rather than being a characteristic of
a dataset. The data publisher should be identifiable for a certain (part of a) dataset.

Metrics. Reputation is usually a score, for example, a real value between 0 (low) and
1 (high). There are different possibilities to determine reputation and can be classified
into manual or (semi-)automated approaches. The manual approach is via a survey in a
community or by questioning other members who can help to determine the reputation
of a source or by the person who published a dataset. The (semi-)automated approach
can be performed by the use of external links or page ranks.

Example. The provision of information on the reputation of data sources allows conflict
resolution. For instance, several data sources report conflicting prices (or times) for a
particular flight number. In that case, the search engine can decide to trust only the
source with a higher reputation.

Definition 14 (Believability). Believability is defined as the degree to which the infor-
mation is accepted to be correct, true, real and credible.

Metrics. Believability is measured by checking whether the contributor is contained in
a list of trusted providers. In Linked Data, believability can be subjectively measured
by analyzing the provenance information of the dataset.

Example. In the flight search engine use case, if the flight information is provided by
trusted and well-known flights companies such as Lufthansa, British Airways, etc. then
the user believes the information provided by their websites. She does not need to verify
their credibility since these are well-known international flight companies. On the other
hand, if the user retrieves information about an airline previously unknown, she can
decide whether to believe this information by checking whether the airline is well-
known or if it is contained in a list of trusted providers. Moreover, she will need to
check the source website from which this information was obtained.

Definition 15 (Licensing). Licensing is defined as a granting of the permission for a
consumer to re-use a dataset under defined conditions.

Metrics. Licensing can be checked by the indication of machine and human readable
information associated with the dataset clearly indicating the permissions of data re-use.

Example. Since the example flight search engine aggregates data from several data
sources, a clear indication of the license allows the search engine to re-use the data
from the airlines websites. For example, the LinkedGeoData dataset is licensed under
the Open Database License50, which allows others to copy, distribute and use the data
50 http://opendatacommons.org/licenses/odbl/

http://opendatacommons.org/licenses/odbl/

70 S. Auer et al.

and produce work from the data allowing modifications and transformations. Due to the
presence of this specific license, the flight search engine is able to re-use this dataset to
pull geo-spatial information and feed it to the search engine.

Intrinsic Dimensions. Intrinsic dimensions are those that are independent of the user’s
context. These dimensions focus on whether information correctly represents the real
world and whether information is logically consistent in itself. There are five dimen-
sions that are part of this group, namely, accuracy, objectivity, validity-of-documents,
interlinking, consistency and conciseness.

Definition 16 (Accuracy). Accuracy can be defined as the extent to which data is cor-
rect, that is, the degree to which it correctly represents the real world facts and is also
free of error. In particular, we associate accuracy mainly to semantic accuracy which
relates to the correctness of a value to the actual real world value, that is, accuracy of
the meaning.

Metrics. Accuracy can be measured by checking the correctness of the data in a data
source. That is, the detection of outliers or identification of semantically incorrect val-
ues through the violation of functional dependency rules. Accuracy is one of the dimen-
sions, which is affected by assuming a closed or open world. When assuming an open
world, it is more challenging to assess accuracy, since more logical constraints need to
be specified for inferring logical contradictions.

Example. In the use case, let us suppose that a user is looking for flights between Paris
and New York. Instead of returning flights starting from Paris, France, the search returns
flights between Paris in Texas and New York. This kind of semantic inaccuracy in terms
of labelling as well as classification can lead to erroneous results.

Definition 17 (Objectivity). Objectivity is defined as the degree to which the interpre-
tation and usage of data is unbiased, unprejudiced and impartial. This dimension highly
depends on the type of information and therefore is classified as a subjective dimension.

Metrics. Objectivity can not be measured qualitatively but indirectly by checking the
authenticity of the source responsible for the information, whether the dataset is neutral
or the publisher has a personal influence on the data provided. Additionally, it can be
measured by checking whether independent sources can confirm a single fact.

Example. In the example flight search engine, consider the reviews available for each
airline regarding the safety, comfort and prices. It may happen that an airline belonging
to a particular alliance is ranked higher than others when in reality it is not so. This could
be an indication of a bias where the review is falsified due to the providers preference
or intentions. This kind of bias or partiality affects the user as she might be provided
with incorrect information from expensive flights or from malicious websites.

Definition 18 (Validity-of-documents). Validity-of-documents refers to the valid us-
age of the underlying vocabularies and the valid syntax of the documents (syntactic
accuracy).

Metrics. A syntax validator can be employed to assess the validity of a document, i.e. its
syntactic correctness. The syntactic accuracy of entities can be measured by detecting

Introduction to Linked Data and Its Lifecycle on the Web 71

the erroneous or inaccurate annotations, classifications or representations. An RDF val-
idator can be used to parse the RDF document and ensure that it is syntactically valid,
that is, to check whether the document is in accordance with the RDF specification.

Example. Let us assume that the user is looking for flights between two specific lo-
cations, for instance Paris (France) and New York (United States) using the example
flight search engine. However, the user is returned with no results. A possible reason
for this is that one of the data sources incorrectly uses the property geo:lon to specify
the longitude of "Paris" instead of using geo:long. This causes a query to retrieve no
data when querying for flights starting near to a particular location.

Definition 19 (Interlinking). Interlinking refers to the degree to which entities that
represent the same concept are linked to each other.

Metrics. Interlinking can be measured by using network measures that calculate the in-
terlinking degree, cluster coefficient, sameAs chains, centrality and description richness
through sameAs links.

Example. In the example flight search engine, the instance of the country "United
States" in the airline dataset should be interlinked with the instance "America" in the
spatial dataset. This interlinking can help when a user queries for a flight as the search
engine can display the correct route from the start destination to the end destination
by correctly combining information for the same country from both the datasets. Since
names of various entities can have different URIs in different datasets, their interlinking
can help in disambiguation.

Definition 20 (Consistency). Consistency means that a knowledge base is free of (log-
ical/formal) contradictions with respect to particular knowledge representation and in-
ference mechanisms.

Metrics. On the Linked Data Web, semantic knowledge representation techniques are
employed, which come with certain inference and reasoning strategies for revealing im-
plicit knowledge, which then might render a contradiction. Consistency is relative to a
particular logic (set of inference rules) for identifying contradictions. A consequence
of our definition of consistency is that a dataset can be consistent wrt. the RDF infer-
ence rules, but inconsistent when taking the OWL2-QL reasoning profile into account.
For assessing consistency, we can employ an inference engine or a reasoner, which sup-
ports the respective expressivity of the underlying knowledge representation formalism.
Additionally, we can detect functional dependency violations such as domain/range vi-
olations. In practice, RDF-Schema inference and reasoning with regard to the different
OWL profiles can be used to measure consistency in a dataset. For domain specific ap-
plications, consistency rules can be defined, for example, according to the SWRL [64]
or RIF standards [73] and processed using a rule engine.

Example. Let us assume a user is looking for flights between Paris and New York on
the 21st of December, 2012. Her query returns the following results:

Flight From To Arrival Departure
A123 Paris NewYork 14:50 22:35
A123 Paris Singapore 14:50 22:35

72 S. Auer et al.

The results show that the flight number A123 has two different destinations at the same
date and same time of arrival and departure, which is inconsistent with the ontology
definition that one flight can only have one destination at a specific time and date. This
contradiction arises due to inconsistency in data representation, which can be detected
by using inference and reasoning.

Definition 21 (Conciseness). Conciseness refers to the redundancy of entities, be it at
the schema or the data level. Thus, conciseness can be classified into:

– intensional conciseness (schema level) which refers to the redundant attributes and
– extensional conciseness (data level) which refers to the redundant objects.

Metrics. As conciseness is classified in two categories, it can be measured by as the
ratio between the number of unique attributes (properties) or unique objects (instances)
compared to the overall number of attributes or objects respectively present in a dataset.

Example. In the example flight search engine, since data is fused from different
datasets, an example of intensional conciseness would be a particular flight, say
A123, being represented by two different identifiers in different datasets, such as
http://airlines.org/A123 and http://flights.org/A123. This redundancy
can ideally be solved by fusing the two and keeping only one unique identifier. On the
other hand, an example of extensional conciseness is when both these different iden-
tifiers of the same flight have the same information associated with them in both the
datasets, thus duplicating the information.

Accessibility Dimensions. The dimensions belonging to this category involve aspects
related to the way data can be accessed and retrieved. There are four dimensions part of
this group, which are availability, performance, security and response-time.

Definition 22 (Availability). Availability of a dataset is the extent to which information
is present, obtainable and ready for use.

Metrics. Availability of a dataset can be measured in terms of accessibility of the server,
SPARQL endpoints or RDF dumps and also by the dereferencability of the URIs.

Example. Let us consider the case in which the user looks up a flight in the example
flight search engine. However, instead of retrieving the results, she is presented with an
error response code such as 4xx client error. This is an indication that a requested
resource is unavailable. In particular, when the returned error code is 404 Not Found
code, she may assume that either there is no information present at that specified URI or
the information is unavailable. Naturally, an apparently unreliable system is less likely
to be used, in which case the user may not book flights after encountering such issues.

Definition 23 (Performance). Performance refers to the efficiency of a system that
binds to a large dataset, that is, the more performant a data source the more efficiently
a system can process data.

Metrics. Performance is measured based on the scalability of the data source, that is a
query should be answered in a reasonable amount of time. Also, detection of the usage

Introduction to Linked Data and Its Lifecycle on the Web 73

of prolix RDF features or usage of slash-URIs can help determine the performance of a
dataset. Additional metrics are low latency and high throughput of the services provided
for the dataset.

Example. In the use case example, the target performance may depend on the number
of users, i.e. it may be required to be able to server 100 simultaneous users. Our flight
search engine will not be scalable if the time required to answer to all queries is sim-
ilar to the time required when querying the individual datasets. In that case, satisfying
performance needs requires caching mechanisms.

Definition 24 (Security). Security can be defined as the extent to which access to data
can be restricted and hence protected against its illegal alteration and misuse. It refers
to the degree to which information is passed securely from users to the information
source and back.

Metrics. Security can be measured based on whether the data has a proprietor or requires
web security techniques (e.g. SSL or SSH) for users to access, acquire or re-use the
data. The importance of security depends on whether the data needs to be protected and
whether there is a cost of data becoming unintentionally available. For open data the
protection aspect of security can be often neglected but the non-repudiation of the data
is still an important issue. Digital signatures based on private-public key infrastructures
can be employed to guarantee the authenticity of the data.

Example. In the example scenario, let us consider a user who wants to book a flight from
a city A to a city B. The search engine should ensure a secure environment to the user
during the payment transaction since her personal data is highly sensitive. If there is
enough identifiable public information of the user, then she can be potentially targeted
by private businesses, insurance companies etc. which she is unlikely to want. Thus, the
use of SSL can be used to keep the information safe.

Definition 25 (Response-time). Response-time measures the delay, usually in seconds,
between submission of a query by the user and reception of the complete response from
the dataset.

Metrics. Response-time can be assessed by measuring the delay between submission of
a request by the user and reception of the response from the dataset.

Example. A user is looking for a flight which includes multiple destinations using the
example flight search engine. She wants to fly from Milan to Boston, Boston to New
York and New York to Milan. In spite of the complexity of the query the search engine
should respond quickly with all the flight details (including connections) for all the
destinations.

Representational Dimensions. Representational dimensions capture aspects related
to the design of the data such as the representational-conciseness, representational-
consistency, understandability, versatility as well as the interpretability of the data.

Definition 26 (Representational-conciseness). Representational-conciseness refers
to the representation of the data which is compact and well formatted on the one hand
but also clear and complete on the other hand.

74 S. Auer et al.

Metrics. Representational-conciseness is measured by qualitatively verifying whether
the RDF model that is used to represent the data is concise enough in order to be self-
descriptive and unambiguous.

Example. A user, after booking her flight, is interested in additional information about
the destination airport such as its location. Our flight search engine should provide only
that information related to the location rather than returning a chain of other properties.

Definition 27 (Representational-consistency). Representational-consistency is the
degree to which the format and structure of the information conform to previously
returned information. Since Linked Data involves aggregation of data from multiple
sources, we extend this definition to not only imply compatibility with previous data but
also with data from other sources.

Metrics. Representational-consistency can be assessed by detecting whether the dataset
re-uses existing vocabularies or terms from existing established vocabularies to repre-
sent its entities.

Example. In the use case, consider different airlines companies using different notation
for representing their data, e.g. some use RDF data and some others use turtle. In order
to avoid interoperability issue, we provide data based on the Linked Data principle
which is designed to support heterogeneous description models, which is necessary to
handle different format of data. The exchange of information in different formats will
not be a big deal in our search engine since strong links are created between datasets.

Definition 28 (Understandability). Understandability refers to the ease with which
data can be comprehended, without ambiguity, and used by a human consumer. Thus,
this dimension can also be referred to as the comprehensibility of the information where
the data should be of sufficient clarity in order to be used.

Metrics. Understandability can be measured by detecting whether human-readable la-
bels for classes, properties and entities are provided. Provision of the metadata of a
dataset can also contribute towards assessing its understandability. The dataset should
also clearly provide exemplary URIs and SPARQL queries along with the vocabularies
used so that can users can understand how it can be used.

Example. Let us assume that the example flight search engine allows a user to enter a
start and destination address. In that case, strings entered by the user need to be matched
to entities in the spatial dataset4, probably via string similarity. Understandable labels
for cities, places etc. improve search performance in that case. For instance, when a user
looks for a flight to U.S (label), then the search engine should return the flights to the
United States or America.

Definition 29 (Interpretability). Interpretability refers to technical aspects of the
data, that is whether information is represented using an appropriate notation and
whether it conforms to the technical ability of the consumer.

Metrics. Interpretability can be measured by the use of globally unique identifiers for
objects and terms or by the use of appropriate language, symbols, units and clear defi-
nitions.

Introduction to Linked Data and Its Lifecycle on the Web 75

Example. Consider the example flight search engine wherein a user that is looking for
a flight from Milan to Boston. Data related to Boston in the integrated data, for the
required flight, contains the following entities:

– http://rdf.freebase.com/ns/m.049jnng
– http://rdf.freebase.com/ns/m.043j22x
– Boston Logan Airport

For the first two items no human-readable label is available, therefore the URI is dis-
played, which does not represent anything meaningful to the user besides the informa-
tion that Freebase contains information about Boston Logan Airport. The third, how-
ever, contains a human-readable label, which the user can easily interpret.

Definition 30 (Versatility). Versatility mainly refers to the alternative representations
of data and its subsequent handling. Additionally, versatility also corresponds to the
provision of alternative access methods for a dataset.

Metrics. Versatility can be measured by the availability of the dataset in different seri-
alisation formats, different languages as well as different access methods.

Example. Consider a user from a non-English speaking country who wants to use the
example flight search engine. In order to cater to the needs of such users, our flight
search engine should be available in different languages so that any user has the capa-
bility to understand it.

Dataset Dynamicity. An important aspect of data is its update or change over time.
The main dimensions related to the dynamicity of a dataset proposed in the literature
are currency, volatility, and timeliness.

Definition 31 (Currency). Currency refers to the speed with which the information
(state) is updated after the real-world information changes.

Metrics. The measurement of currency relies on two components: (i) delivery time (the
time when the data was last modified) and (ii) the current time, both possibly present in
the data models.

Example. Consider a user who is looking for the price of a flight from Milan to Boston
using the example search engine and she receives the updates via email. The currency
of the price information is measured with respect to the last update of the price informa-
tion. The email service sends the email with a delay of about 1 hour with respect to the
time interval in which the information is determined to hold. In this way, if the currency
value exceeds the time interval of the validity of the information, the result is said to be
not current. If we suppose validity of the price information (the frequency of change of
the price information) to be 2 hours, the price list that is not changed within this time
is considered to be out-dated. To determine whether the information is out-dated or not
we need to have temporal metadata available and represented by one of the data models
proposed in the literature [134].

Definition 32 (Volatility). Volatility can be defined as the length of time during which
the data remains valid.

http://rdf.freebase.com/ns/m.049jnng
http://rdf.freebase.com/ns/m.043j22x

76 S. Auer et al.

Metrics. Volatility can be measured by two components: (i) the expiry time (the time
when the data becomes invalid) and (ii) the input time (the time when the data was
first published on the Web). Both these metrics are combined together to measure the
distance between the expiry time and the input time of the published data.

Example. Let us consider the aforementioned use case where a user wants to book a
flight from Milan to Boston and she is interested in the price information. The price is
considered as volatile information as it changes frequently, for instance it is estimated
that the flight price changes each minute (data remains valid for one minute). In order
to have an updated price list, the price should be updated within the time interval pre-
defined by the system (one minute). In case the user observes that the value is not
re-calculated by the system within the last few minutes, the values are considered to be
out-dated. Notice that volatility is estimated based on changes that are observed related
to a specific data value.

Definition 33 (Timeliness). Timeliness refers to the time point at which the data is
actually used. This can be interpreted as whether the information is available in time
to be useful.

Metrics. Timeliness is measured by combining the two dimensions: currency and
volatility. Additionally timeliness states the recency and frequency of data validation
and does not include outdated data.

Example. A user wants to book a flight from Milan to Boston and the example flight
search engine will return a list of different flight connections. She picks one of them
and follows all the steps to book her flight. The data contained in the airline dataset
shows a flight company that is available according to the user requirements. In terms
of time-related quality dimension, the information related to the flight is recorded and
reported to the user every two minutes which fulfils the requirement decided by our
search engine that corresponds to the volatility of a flight information. Although the
flight values are updated on time, the information received to the user about the flight’s
availability is not on time. In other words, the user did not perceive that the availability
of the flight was depleted because the change was provided to the system a moment
after her search.

7.3 Data Quality Assessment Frameworks

There are several efforts in developing data quality assessment frameworks (method-
ologies) in order to assess the data quality of LOD. These efforts are either semi-
automated [47], automated [52] or manual [24,100,152]. Moreover, there is a lot of
research performed extensively to assess the quality of LOD [61,62] and report com-
monly occurring problems that plague the existing datasets. In this section, we describe
the various existing data quality assessment tools in terms of their usability, level of
user interaction and applicability in terms of data quality assessment, also discussing
their pros and cons.

Semi-automated. Flemming’s data quality assessment tool [47], a semi-automated
framework, is a simple user interface51. The tool presents an evaluation system to the
51 Available in German only at:
http://linkeddata.informatik.hu-berlin.de/LDSrcAss/datenquelle.php

http://linkeddata.informatik.hu-berlin.de/LDSrcAss/datenquelle.php

Introduction to Linked Data and Its Lifecycle on the Web 77

user where she needs to only enter the SPARQL endpoint and a few example resources
from a dataset. After specifying dataset details (endpoint, graphs, example URIs), the
user is given an option for assigning weights to each of the pre-defined data quality
metrics. Two options are available for assigning weights: (a) assigning a weight of 1
to all the metrics or (b) choosing the pre-defined exemplary weight of the metrics de-
fined for a semantic data source. In the next step, the user is asked to answer a series
of questions regarding the datasets, which are important indicators of the data quality
for Linked Datasets and those which cannot be quantified. These include, for example,
questions about the use of stable URIs, the number of obsolete classes and properties,
and whether the dataset provides a mailing list. Next, the user is presented with a list of
dimensions and metrics, for each of which weights can be specified again. Each metric
is provided with two input fields: one showing the assigned weights and another with
the calculated value.

Fig. 35. Excerpt of the Flemmings Data Quality Assessment tool showing the result of assessing
the quality of LinkedCT with a score of 15 out of 100

In the end, the user is presented with a score ranging from 0 to 100, where 100
represents the best quality, representing the final data quality score. Additionally, the
rating of each dimension and the total weight (based on 11 dimensions) is calculated
using the user input from the previous steps. Figure 35 shows an excerpt of the tool
showing the result of assessing the quality of LinkedCT with a score of 15 out of 100.

On one hand, the tool is easy to use with the form-based questions and adequate
explanation for each step. Also, the assigning of the weights for each metric and the
calculation of the score is straightforward and easy to adjust for each of the metrics.
However, this tool has a few drawbacks: (1) the user needs to have adequate knowledge
about the dataset in order to correctly assign weights for each of the metrics; (2) it
does not drill down to the root cause of the data quality problem and (3) some of the
main quality dimensions are missing from the analysis such as accuracy, completeness,

78 S. Auer et al.

provenance, consistency, conciseness and relevancy as some could not be quantified
and were not perceived to be true quality indicators.

Automated. The LINK-QA framework [52] takes a set of resources, SPARQL endpoints
and/or dereferencable resources and a set of triples as input to automatically perform
quality assessment and generates an HTML report. However, using this tool, the user
cannot choose the dataset that she is interested in assessing.

Manual. The WIQA [24] and Sieve [100] frameworks also assess the quality of datasets
but require a considerable amount of user involvement and are therefore considered
manual tools. For instance, WIQA provides the user a wide range of policies to filter
information and a set of quality criteria to assess the quality of the information.

Sieve, on the other hand, assists not only in the assessment of the quality of datasets
but also in their fusion. It aims to use the data integration task as a means to increase
completeness, conciseness and consistency in any chosen dataset. Sieve is a component
of the Linked Data Integration Framework (LDIF)52 used first to assess the quality
between two or more data sources and second to fuse (integrate) the data from the data
sources based on their quality assessment.

In order to use this tool, a user needs to be conversant with programming. The input
of Sieve is an LDIF provenance metadata graph generated from a data source. Based
on this information the user needs to set the configuration property in an XML file
known as integration properties. The quality assessment procedure relies on the
measurement of metrics chosen by the user where each metric applies a scoring function
having a value from 0 to 1.

Sieve implements only a few scoring functions such as TimeCloseness,
Preference, SetMembership, Threshold and Interval Membership which are
calculated based on the metadata provided as input along with the original data source.
The configuration file is in XML format which should be modified based on the use
case, as shown in Listing 1.1. The output scores are then used to fuse the data sources by
applying one of the fusion functions, which are: Filter, Average, Max, Min, First,
KeepSingleValue ByQualityScore, Last, Random, PickMostFrequent.

Listing 1.1. A configuration of Sieve: a data quality assessment and data fusion tool

1 <Sieve>
2 <QualityAssessment>
3 <AssessmentMetric id="sieve:recency">
4 <ScoringFunction class="TimeCloseness">
5 <Param name="timeSpan" value="7"/>
6 <Input path="?GRAPH/provenance:lasUpdated"/>
7 </ScoringFunction>
8 </AssessmentMetric>
9 <AssessmentMetric id="sieve:reputation">

10 <ScoringFunction class="ScoredList">
11 <Param name="priority" value="http://pt.wikipedia.org http://en.wikipedia.org"/>
12 <Input path="?GRAPH/provenance:lasUpdated"/>
13 </ScoringFunction>
14 </AssessmentMetric>
15 </Sieve>

52 http://ldif.wbsg.de/

http://ldif.wbsg.de/

Introduction to Linked Data and Its Lifecycle on the Web 79

In addition, users should specify the DataSource folder, the homepage element that
refers to the data source from which the entities are going to be fused. Second, the XML
file of the ImportJobs that downloads the data to the server should also be modified.
In particular, the user should set up the dumpLocation element as the location of the
dump file.

Although the tool is very useful overall, there are some drawbacks that decreases its
usability: (1) the tool is not mainly used to assess data quality for a source, but instead
to perform data fusion (integration) based on quality assessment. Therefore, the quality
assessment can be considered as an accessory that leverages the process of data fusion
through evaluation of few quality indicators; (2) it does not provide a user interface,
ultimately limiting its usage to end-users with programming skills; (3) its usage is limited
to domains providing provenance metadata associated with the data source.

LODGRefine53 [152], a LOD-enabled version of Google Refine, is an open-source
tool for refining messy data. Although this tool is not focused on data quality assess-
ment per se, it is powerful in performing preliminary cleaning or refining of raw data.
Using this tool, one is able to import several different file types of data (CSV, Ex-
cel, XML, RDF/XML, N-Triples or even JSON) and then perform cleaning action via
a browser-based interface. By using a diverse set of filters and facets on individual
columns, LODGRefine can help a user to semi-automate the cleaning of her data.

For example, this tool can help to detect duplicates, discover patterns (e.g. alternative
forms of an abbreviation), spot inconsistencies (e.g. trailing white spaces) or find and
replace blank cells. Additionally, this tool allows users to reconcile data, that is to con-
nect a dataset to existing vocabularies such that it gives meaning to the values. Recon-
ciliations to Freebase54 helps mapping ambiguous textual values to precisely identified
Freebase entities. Reconciling using Sindice or based on standard SPARQL or SPARQL
with full-text search is also possible55 using this tool. Moreover, it is also possible to
extend the reconciled data with DBpedia as well as export the data as RDF, which adds
to the uniformity and usability of the dataset.

These feature thus assists in assessing as well as improving the data quality of a
dataset. Moreover, by providing external links, the interlinking of the dataset is consid-
erably improved. LODGRefine is easy to download and install as well as to upload and
perform basic cleansing steps on raw data. The features of reconciliation, extending the
data with DBpedia, transforming and exporting the data as RDF are added advantages.
However, this tool has a few drawbacks: (1) the user is not able to perform detailed
high level data quality analysis utilizing the various quality dimensions using this tool;
(2) performing cleansing over a large dataset is time consuming as the tool follows a
column data model and thus the user must perform transformations per column.

8 Outlook and Future Challenges

Although the different approaches for aspects of the Linked Data life-cycle as pre-
sented in this chapter are already working together, more effort must be done to further

53 http://code.zemanta.com/sparkica/
54 http://www.freebase.com/
55 http://refine.deri.ie/reconciliationDocs

http://code.zemanta.com/sparkica/
http://www.freebase.com/
http://refine.deri.ie/reconciliationDocs

80 S. Auer et al.

integrate them in ways that they mutually fertilize themselves. The discovery of new
links or the authoring of new resource descriptions, for example, should automatically
trigger the enrichment of the linked knowledge bases. The enrichment in turn can trig-
ger the application of inconsistency detection and repair techniques. This leads to rec-
ognizing data quality problems and their consequent assessment and improvement. The
browsing and exploration paths followed by end-users can be taken into account for ma-
chine learning techniques to refine the knowledge bases etc. Ultimately, when the dif-
ferent aspects of Linked Data management are fully integrated we envision the Web of
Data becoming a washing machine for knowledge. A progress in one particular aspect
will automatically trigger improvements in many other ones as well. In the following
we outline some research challenges and promising research directions regarding some
of the Linked Data management aspects.

Extraction. One promising research direction with regard to the extraction from un-
structured sources is the development of standardized, LOD enabled integration inter-
faces between existing NLP tools. An open question is whether and how efficient bi-
directional synchronization between extraction source and target knowledge base can
be established. With regard to the extraction from structured sources (e.g. relational,
XML) we need a declarative syntax and semantics for data model transformations.
Some orthogonal challenges include the use of LOD as background knowledge and
the representation and tracing of provenance information.

Authoring. Current Semantic Wikis still suffer from a lack of scalability. Hence, an
important research and development target are large-scale Semantic Wikis, which in-
clude functionality for access control and provenance. In order to further flexibilize and
simplify the authoring an adaptive choreography of editing widgets based on underly-
ing data structures is needed. Also, the joint authoring of unstructured and structured
sources (i.e. HTML/RDFa authoring) and better support for the integrated semantic an-
notation of other modalities such as images, audio, video is of paramount importance.

Natural Language Queries. One of the future challenges for Linked Data is to create
user interfaces, which are able to hide the complexity of the underlying systems. A
possible path towards this goal is question answering, e.g. converting natural language
queries to SPARQL [150,85]. In order to allow users to interact with such systems,
there is ongoing work on converting the created SPARQL queries back to natural lan-
guage [113] and employ feedback mechanisms [84,59]. Ultimately, a goal is to provide
users enhanced functionality without the need to adapt to different kinds of interface.

Automatic Management of Resources for Linking. With the growth of the Cloud and of
the datasets that need to be interlinked, the use of parallel hardware has been studied
over the last few years [60,114]. The comparative study of parallel hardware for link
discovery yet shows surprising results and suggests that the use of massively parallel
yet local hardware can lead to tremendous runtime improvements. Still, when result
sets go beyond sizes of 1010, the higher amount of resources available on remote de-
vices in the Cloud is still to be used. Devising automatic solutions for selecting the right
hardware to run a linking task is one of the most interesting research areas pertaining

Introduction to Linked Data and Its Lifecycle on the Web 81

to the efficient execution of link specifications. In addition, developing reduction-ratio
optimal algorithms for spaces other than Minkowski spaces promises to ensure the best
possible use of available hardware. Finally, devising more efficient means to combine
single algorithms is the third open area of research in this domain. The challenges faces
with regard to learning link specifications are also manifold and include devising ap-
proaches that can efficiently detected most informative positive and negative examples
as well even running in a fully unsupervised manner on properties that are not one-to-
one relations.

Linked Data Visualization. The potential of the vast amount of Linked Data on the
Web is enormous but in most cases it is very difficult and cumbersome for users to
visualize, explore and use this data, especially for lay-users [37] without experience
with Semantic Web technologies. Visualizations are useful for obtaining an overview
of the datasets, their main types, properties and the relationships between them. Com-
pared to prior information visualization strategies, we have a unique opportunity on the
Data Web. The unified RDF data model being prevalent on the Data Web enables us
to bind data to visualizations in an unforeseen and dynamic way. An information visu-
alization technique requires certain data structures to be present. When we can derive
and generate these data structures automatically from reused vocabularies or semantic
representations, we are able to realize a largely automatic visualization workflow. Ulti-
mately, various visualizations techniques can develop an ecosystem of data extractions
and visualizations, which can be bound together in a dynamic and unforeseen way. This
will enable users to explore datasets even if the publisher of the data does not provide
any exploration or visualization means. Yet, most existing work related to visualizing
RDF is focused on concrete domains and concrete datatypes.

Acknowledgments. We would like to thank our colleagues from the AKSW research
group in Leipzig as well as the LOD2 and GeoKnow project consortia, without whom
writing this chapter would not have been possible. In particular, we would like to thank
Christian Bizer and Tom Heath, whose Chaper 2 of the book ‘Linked Data – Evolving
the Web into a Global Data Space’ [54] served as a blueprint for Section 2; Sebastian
Hellmann, Claus Stadler, Jörg Unbehauen for their contributions to Section 3, Sebastian
Tramp, Michael Martin, Norman Heino, Phillip Frischmuth and Thomas Riechert for
their contributions to the development of OntoWiki as described in Section 4. This
work was supported by a grant from the European Union’s 7th Framework Programme
provided for the projects LOD2 (GA no. 257943), GeoKnow (GA no. 318159) and the
Eureka project SCMS.

References

1. Resource description framework (RDF): Concepts and abstract syntax. Technical report,
W3C 2 (2004)

2. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax and pro-
cessing – a collection of attributes and processing rules for extending XHTML to support
RDF. W3C Recommendation (October 2008), http://www.w3.org/TR/rdfa-syntax/

http://www.w3.org/TR/rdfa-syntax/

82 S. Auer et al.

3. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: ACM DL, pp. 85–94 (2000)

4. Agresti, A.: An Introduction to Categorical Data Analysis, 2nd edn. Wiley-Interscience
(1997)

5. Amsler, R.: Research towards the development of a lexical knowledge base for natural lan-
guage processing. SIGIR Forum 23, 1–2 (1989)

6. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus
for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825,
pp. 722–735. Springer, Heidelberg (2007)

7. Auer, S., et al.: Managing the life-cycle of linked data with the lod2 stack. In: Cudré-
Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X.,
Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS,
vol. 7650, pp. 1–16. Springer, Heidelberg (2012)

8. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-weight
linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S.,
Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM (2009)

9. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic Collabora-
tion. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg
(2006)

10. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases. In:
Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 55–69. Springer, Hei-
delberg (2007)

11. Auer, S., Lehmann, J.: Making the web a data washing machine - creating knowledge out
of interlinked data. Semantic Web Journal (2010)

12. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData - adding a spatial dimension to the
web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidel-
berg (2009)

13. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C.: Introduction to linked data and its lifecycle
on the web. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski,
S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 1–75. Springer,
Heidelberg (2011)

14. Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In: Demo Ses-
sion at the Second European Semantic Web Conference, ESWC 2005 (May 2005),
http://wiksar.sf.net

15. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge
bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)

16. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a
background terminology. J. Applied Logic 5(3), 392–420 (2007)

17. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer,
Heidelberg (2000)

18. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record
linkage. In: KDD 2003 Workshop on Data Cleaning, Record Linkage, and Object Consoli-
dation (2003)

19. Ben-David, D., Domany, T., Tarem, A.: Enterprise data classification using semantic web
technologies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 66–81. Springer,
Heidelberg (2010)

http://wiksar.sf.net

Introduction to Linked Data and Its Lifecycle on the Web 83

20. Berners-Lee, T.: Notation 3 (1998),
http://www.w3.org/DesignIssues/Notation3.html

21. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI): Generic
syntax. Internet RFC 2396 (August 1998)

22. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: Ef-
fectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer,
Heidelberg (2008)

23. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record
linkage. In: ICDM 2006, pp. 87–96. IEEE (2006)

24. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the wiqa policy frame-
work. Web Semantics 7(1), 1–10 (2009)

25. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)
26. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Readings in

Machine Learning, pp. 201–204. Morgan Kaufmann (1990)
27. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C

recommendation, W3C (February 2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

28. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendel-
zon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Hei-
delberg (1999)

29. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases.
In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov,
A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71.
Springer, Heidelberg (2012)

30. Cherix, D., Hellmann, S., Lehmann, J.: Improving the performance of a sparql component
for semantic web applications. In: JIST (2012)

31. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3),
34–41 (2006)

32. Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of
free text. Computers and the Humanities 26, 441–456 (1992), doi:10.1007/BF00136985

33. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description
logics. In: AAAI 1992, pp. 754–760 (1992)

34. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experi-
mental results. In: KR 1994, pp. 121–133. Morgan Kaufmann (1994)

35. Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In:
Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003, vol. 4, pp. 164–167. Association for Computational Linguistics, Morristown (2003)

36. d’Amato, C., Fanizzi, N., Esposito, F.: A note on the evaluation of inductive concept clas-
sification procedures. In: Gangemi, A., Keizer, J., Presutti, V., Stoermer, H. (eds.) SWAP
2008. CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)

37. Dadzie, A.-S., Rowe, M.: Approaches to visualising Linked Data. Semantic Web 2(2), 89–
124 (2011)

38. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)

39. Ermilov, T., Heino, N., Tramp, S., Auer, S.: OntoWiki Mobile – Knowledge Management
in your Pocket. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 185–199. Springer,
Heidelberg (2011)

http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

84 S. Auer et al.

40. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive in-
duction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen,
F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

41. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld,
D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study.
Artif. Intell. 165, 91–134 (2005)

42. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
43. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In:

Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer,
Heidelberg (2008)

44. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol – http/1.1 (rfc 2616). Request For Comments (1999)
http://www.ietf.org/rfc/rfc2616.txt (accessed July 7, 2006)

45. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into informa-
tion extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for
Computational Linguistics, Morristown (2005)

46. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms.
In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 718–735. Springer,
Heidelberg (2012)

47. Flemming, A.: Quality characteristics of linked data publishing datasources. Master’s the-
sis, Humboldt-Universität zu Berlin (2010)

48. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific
keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann Publishers Inc., San
Francisco (1999)

49. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

50. Glaser, H., Millard, I.C., Sung, W.-K., Lee, S., Kim, P., You, B.-J.: Research on linked data
and co-reference resolution. Technical report, University of Southampton (2009)

51. Grishman, R., Yangarber, R.: Nyu: Description of the Proteus/Pet system as used for MUC-
7 ST. In: MUC-7. Morgan Kaufmann (1998)

52. Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using net-
work measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012)

53. Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In:
IJCAI, pp. 1061–1066 (2005)

54. Heath, T., Bizer, C.: Linked Data - Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web:Theory and Technology, vol. 1. Morgan & Claypool (2011)

55. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applications with
the ontowiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.)
Networked Knowledge - Networked Media. SCI, vol. 221, pp. 61–77. Springer, Heidelberg
(2009)

56. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large
knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)

57. Hellmann, S., Lehmann, J., Auer, S.: Learning of owl class expressions on very large knowl-
edge bases and its applications. In: Interoperability Semantic Services and Web Applica-
tions: Emerging Concepts (ed.) Learning of OWL Class Expressions on Very Large Knowl-
edge Bases and its Applications, ch. 5, pp. 104–130. IGI Global (2011)

http://www.ietf.org/rfc/rfc2616.txt

Introduction to Linked Data and Its Lifecycle on the Web 85

58. Hellmann, S., Lehmann, J., Auer, S.: Linked-data aware URI schemes for referencing text
fragments. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp.
175–184. Springer, Heidelberg (2012)

59. Hellmann, S., Lehmann, J., Unbehauen, J., Stadler, C., Lam, T.N., Strohmaier, M.:
Navigation-induced knowledge engineering by example. In: Takeda, H., Qu, Y., Mizoguchi,
R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 207–222. Springer, Heidelberg
(2013)

60. Hillner, S., Ngonga Ngomo, A.-C.: Parallelizing limes for large-scale link discovery. In:
I’Semantics (2011)

61. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In:
LDOW (2010)

62. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An empirical
survey of linked data conformance. Journal of Web Semantics (2012)

63. Horridge, M., Patel-Schneider, P.F.: Manchester syntax for OWL 1.1. In: OWLED 2008
(2008)

64. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A
semantic web rule language combining owl and ruleml. Technical report, W3C (May 2004)

65. HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft
(August 2009) http://www.w3.org/TR/2009/WD-html5-20090825/

66. Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept learning in
the semantic web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533,
pp. 370–379. Springer, Heidelberg (2005)

67. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept
learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

68. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private
record linkage. In: ICDE, pp. 496–505 (2008)

69. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery
without losing recall. In: WebDB (2011)

70. Isele, R., Jentzsch, A., Bizer, C.: Active learning of expressive linkage rules for the web of
data. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp.
411–418. Springer, Heidelberg (2012)

71. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. World Wide Web
Consortium, Recommendation REC-webarch-20041215 (December 2004)

72. Juran, J.: The Quality Control Handbook. McGraw-Hill, New York (1974)
73. Kifer, M., Boley, H.: Rif overview. Technical report, W3C (June 2010),
http://www.w3.org/TR/2012/NOTE-rif-overview-20121211/

74. Kim, S.N., Kan, M.-Y.: Re-examining automatic keyphrase extraction approaches in sci-
entific articles. In: Proceedings of the Workshop on Multiword Expressions: Identification,
Interpretation, Disambiguation and Applications, MWE 2009, pp. 9–16. Association for
Computational Linguistics, Stroudsburg (2009)

75. Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic
keyphrase extraction from scientific articles. In: Proceedings of the 5th International Work-
shop on Semantic Evaluation, SemEval 2010, pp. 21–26. Association for Computational
Linguistics, Stroudsburg (2010)

76. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches
with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)

77. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia. Journal
of Web Semantics 5, 251–261 (2007)

78. Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS
(LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.w3.org/TR/2012/NOTE-rif-overview-20121211/

86 S. Auer et al.

79. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine
Learning Research (JMLR) 10, 2639–2642 (2009)

80. Lehmann, J.: Learning OWL Class Expressions. PhD thesis, University of Leipzig. PhD in
Computer Science (2010)

81. Lehmann, J.: Ontology learning. In: Proceedings of Reasoning Web Summer School (2010)
82. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology

engineering. Journal of Web Semantics 9, 71–81 (2011)
83. Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:

DBpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–
165 (2009)

84. Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: An-
toniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)

85. Lehmann, J., et al.: deqa: Deep web extraction for question answering. In: Cudré-Mauroux,
P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650,
pp. 131–147. Springer, Heidelberg (2012)

86. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In:
Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894,
pp. 161–174. Springer, Heidelberg (2008)

87. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC de-
scription logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS
(LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

88. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators.
Machine Learning Journal 78(1-2), 203–250 (2010)

89. Pipino, D.K.L., Wang, R., Rybold, W.: Developing Measurement Scales for Data-Quality
Dimensions, vol. 1. M.E. Sharpe, New York (2005)

90. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet.
Addison-Wesley Professional (2001)

91. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic
programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)

92. Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008.
CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)

93. Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying requirements en-
gineering – the softwiki approach. In: Proceedings of the 4th International Conference on
Semantic Technologies (I-SEMANTICS 2008), pp. 182–185. J.UCS (2008)

94. Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on the se-
mantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New York (2009)

95. Ma, L., Sun, X., Cao, F., Wang, C., Wang, X., Kanellos, N., Wolfson, D., Pan, Y.: Seman-
tic enhancement for enterprise data management. In: Bernstein, A., Karger, D.R., Heath,
T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 876–892. Springer, Heidelberg (2009)

96. Martin, M., Stadler, C., Frischmuth, P., Lehmann, J.: Increasing the financial transparency
of european commission project funding. Semantic Web Journal, Special Call for Linked
Dataset descriptions (2013)

97. Matsuo, Y., Ishizuka, M.: Keyword Extraction From A Single Document Using Word
Co-Occurrence Statistical Information. International Journal on Artificial Intelligence
Tools 13(1), 157–169 (2004)

98. McBride, B., Beckett, D.: Rdf/xml syntax specification. W3C Recommendation (February
2004)

Introduction to Linked Data and Its Lifecycle on the Web 87

99. McCusker, J., McGuinness, D.: Towards identity in linked data. In: Proceedings of OWL
Experiences and Directions Seventh Annual Workshop (2010)

100. Mendes, P., Mühleisen, H., Bizer, C.: Sieve: Linked data quality assessment and fusion. In:
LWDM (March 2012)

101. Moats, R.: Urn syntax. Internet RFC 2141 (May 1997)
102. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark

– Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani,
H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I.
LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

103. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: Usage-Centric Benchmarking of
RDF Triple Stores. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI 2012) (2012)

104. Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: DBpedia and the Live Ex-
traction of Structured Data from Wikipedia. Program: Electronic Library and Information
Systems 46, 27 (2012)

105. Nadeau, D.: Semi-Supervised Named Entity Recognition: Learning to Recognize 100 En-
tity Types with Little Supervision. PhD thesis, University of Ottawa (2007)

106. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisti-
cae Investigationes 30(1), 3–26 (2007)

107. Nadeau, D., Turney, P., Matwin, S.: Unsupervised named-entity recognition: Generating
gazetteers and resolving ambiguity, pp. 266–277 (2006)

108. Ngonga Ngomo, A.-C.: Parameter-free clustering of protein-protein interaction graphs. In:
Proceedings of Symposium on Machine Learning in Systems Biology 2010 (2010)

109. Ngonga Ngomo, A.-C.: A time-efficient hybrid approach to link discovery. In: Proceedings
of OM@ISWC (2011)

110. Ngonga Ngomo, A.-C.: Link discovery with guaranteed reduction ratio in affine spaces
with minkowski measures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS,
vol. 7649, pp. 378–393. Springer, Heidelberg (2012)

111. Ngonga Ngomo, A.-C.: On link discovery using a hybrid approach. Journal on Data Se-
mantics 1, 203–217 (2012)

112. Ngonga Ngomo, A.-C., Auer, S.: Limes - a time-efficient approach for large-scale link dis-
covery on the web of data. In: Proceedings of IJCAI (2011)

113. Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, i don‘t
speak sparql – translating sparql queries into natural language. In: Proceedings of WWW
(2013)

114. Ngonga Ngomo, A.-C., Kolb, L., Heino, N., Hartung, M., Auer, S., Rahm, E.: When to
reach for the cloud: Using parallel hardware for link discovery. In: Cimiano, P., Corcho, O.,
Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 275–289.
Springer, Heidelberg (2013)

115. Ngonga Ngomo, A.-C., Lehmann, J., Auer, S., Höffner, K.: Raven – active learning of link
specifications. In: Proceedings of OM@ISWC (2011)

116. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: Efficient active learning of link specifications
using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti,
V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Heidelberg (2012)

117. Ngonga Ngomo, A.-C., Lyko, K., Christen, V.: COALA – correlation-aware active learning
of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S.
(eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidelberg (2013)

118. Ngonga Ngomo, A.-C., Schumacher, F.: Border flow – a local graph clustering algorithm
for natural language processing. In: Proceedings of the 10th International Conference on
Intelligent Text Processing and Computational Linguistics (CICLING 2009), pp. 547–558.
Best Presentation Award (2009)

88 S. Auer et al.

119. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree
mining. In: AAAI, pp. 1414–1420 (2007)

120. Nguyen, T., Kan, M.-Y.: Keyphrase Extraction in Scientific Publications, pp. 317–326
(2007)

121. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS,
vol. 1228. Springer, Heidelberg (1997)

122. Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, S., Park, J., Quan, D.,
Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland,
November 6, vol. 175 (2005)

123. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically har-
vesting semantic relations. In: ACL, pp. 113–120. ACL Press (2006)

124. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond terminol-
ogy identification. In: Proceedings of the 19th International Conference on Computational
Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics,
Stroudsburg (2002)

125. Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world
wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of
the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press
(2006)

126. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language - Semantics
and Abstract Syntax. W3c:rec, W3C (February 10, 2004),
http://www.w3.org/TR/owl-semantics/

127. Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)
128. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal 10, 334–350 (2001)
129. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the se-

mantic web. In: 1st Workshop about Linked Data on the Web (2008)
130. Riechert, T., Lauenroth, K., Lehmann, J., Auer, S.: Towards semantic based requirements

engineering. In: Proceedings of the 7th International Conference on Knowledge Manage-
ment (I-KNOW) (2007)

131. Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engineering for
historians on the example of the catalogus professorum lipsiensis. In: Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part II. LNCS, vol. 6497, pp. 225–240. Springer, Heidelberg (2010)

132. Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat – Pattern-Based Evolution and Refactoring
of RDF Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 647–662.
Springer, Heidelberg (2010)

133. Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delu-
gach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg
(2004)

134. Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the diversity and avail-
ability of temporal information in linked open data. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012)

135. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ez-
zat, A.: A survey of current approaches for mapping of relational databases to rdf (January
2009)

136. Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and
Linguistic Computing 4(1) (1989)

137. Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3C Interest Group Note
(December 2008)

http://www.w3.org/TR/owl-semantics/

Introduction to Linked Data and Its Lifecycle on the Web 89

138. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: Pro-
ceedings of the 1st International Workshop on Semantic Technologies in Collaborative Ap-
plications (STICA) (2006)

139. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and
interlink. In: Proc. IJCAI 2009 IR-KR Workshop (2009)

140. Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler,
U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009),
Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)

141. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers (2012)

142. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical report (August
01, 2008)

143. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91 (2005)
144. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web:

A survey. Semantic Web 3(2), 169–209 (2012)
145. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial

open data. Semantic Web Journal 3(4), 333–354 (2012)
146. Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL

1995 SIGDAT Workshop (1995)
147. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a Social Data Web with Semantic

Pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp.
135–149. Springer, Heidelberg (2010)

148. Tramp, S., Heino, N., Auer, S., Frischmuth, P.: RDFauthor: Employing RDFa for collab-
orative Knowledge Engineering. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS
(LNAI), vol. 6317, pp. 90–104. Springer, Heidelberg (2010)

149. Turney, P.D.: Coherent keyphrase extraction via web mining. In: Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pp. 434–439. Morgan Kaufmann
Publishers Inc., San Francisco (2003)

150. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano, P.:
Sparql template-based question answering. In: Proceedings of WWW (2012)

151. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with
webPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvö-
nen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

152. Verlic, M.: Lodgrefine - lod-enabled google refine in action. In: I-SEMANTICS 2012
Posters and Demonstrations Track, pp. 31–27 (2012)

153. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Sim-
perl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I.
LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

154. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology re-
finement. In: Web Intelligence, pp. 454–460. IEEE (2008)

155. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer,
M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg
(2007)

156. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web
of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg
(2009)

157. Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis.
Analysing Language in Restricted Domains (1986)

90 S. Auer et al.

158. Wang, G., Yu, Y., Zhu, H.: PORE: Positive-only relation extraction from wikipedia text.
In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 580–594. Springer,
Heidelberg (2007)

159. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers.
Journal of Management Information Systems 12(4), 5–33 (1996)

160. Watanabe, H., Muggleton, S.: Can ILP be applied to large datasets? In: De Raedt, L. (ed.)
ILP 2009. LNCS, vol. 5989, pp. 249–256. Springer, Heidelberg (2010)

161. Winkler, W.: The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Bureau of the Census (1999)

162. Winkler, W.: Overview of record linkage and current research directions. Technical report,
Bureau of the Census - Research Report Series (2006)

163. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceed-
ings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp.
111–114. ACM, New York (2006)

164. Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation extraction
by mining wikipedia texts using information from the web. In: ACL 2009, pp. 1021–1029
(2009)

165. Zaveri, A., Lehmann, J., Auer, S., Hassan, M.M., Sherif, M.A., Martin, M.: Publishing and
interlinking the global health observatory dataset. Semantic Web Journal, Special Call for
Linked Dataset descriptions (2013)

166. Zaveri, A., Pietrobon, R., Auer, S., Lehmann, J., Martin, M., Ermilov, T.: Redd-observatory:
Using the web of data for evaluating the research-disease disparity. In: Proc. of the
IEEE/WIC/ACM International Conference on Web Intelligence (2011)

167. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment
methodologies for linked open data. Under review,
http://www.semantic-web-journal.net/content/
quality-assessment-methodologies-linked-open-data

168. Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceed-
ings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002,
pp. 473–480. Association for Computational Linguistics, Morristown (2002)

http://www.semantic-web-journal.net/content/quality-assessment-methodologies-linked-open-data
http://www.semantic-web-journal.net/content/quality-assessment-methodologies-linked-open-data

RDFS and OWL Reasoning for Linked Data

Axel Polleres1, Aidan Hogan2, Renaud Delbru2, and Jürgen Umbrich2,3

1 Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
2 Digital Enterprise Research Institute, National University of Ireland, Galway

3 Fujitsu (Ireland) Limited, Swords, Co. Dublin, Ireland

Abstract. Linked Data promises that a large portion of Web Data will
be usable as one big interlinked RDF database against which structured
queries can be answered. In this lecture we will show how reasoning –
using RDF Schema (RDFS) and the Web Ontology Language (OWL) –
can help to obtain more complete answers for such queries over Linked
Data. We first look at the extent to which RDFS and OWL features are
being adopted on the Web. We then introduce two high-level architec-
tures for query answering over Linked Data and outline how these can
be enriched by (lightweight) RDFS and OWL reasoning, enumerating
the main challenges faced and discussing reasoning methods that make
practical and theoretical trade-offs to address these challenges. In the
end, we also ask whether or not RDFS and OWL are enough and discuss
numeric reasoning methods that are beyond the scope of these standards
but that are often important when integrating Linked Data from several,
heterogeneous sources.

1 Introduction

Linked Data [36,2] denotes the emerging trend of publishing structured data on
the Web as interlinked RDF graphs [49] following a number of simple principles:
use HTTP URIs to name things, return RDF about those things when their
URIs are looked up, and include links to related RDF documents elsewhere on
the Web. These trends – and related trends with respect to embedding metadata
into HTML pages (such as promoted by schema.org) – have lead to a huge
volume of RDF data being made openly available online, contributing to what
is often called the “Web of Data”.

The Semantic Web provides the necessary tools to query this data, (i) firstly
by defining RDF [49,35] as a universal data format; (ii) secondly by defining
SPARQL [60,30], a standard query language for RDF; and (iii) lastly by provid-
ing schema languages such as RDF Schema (RDFS) [13] and OWL [37], which
allow for adding rich semantics to the data.

It is the aim of this lecture to emphasise that all three components, and in
particular the reasoning capabilities enabled by RDFS and OWL, are essential to
enable usage of the Web of Data as “one huge database” as originally envisioned
by Tim Berners-Lee [9].

As opposed to standard reasoning and query answering in OWL, for instance
as described in the present volume in the chapter on Ontology-based Data Ac-
cess [47], reasoning over Linked Data poses several unique challenges:

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 91–149, 2013.
© Springer-Verlag Berlin Heidelberg 2013

schema.org

92 A. Polleres et al.

C1 Linked Data is huge, that is, it needs highly scalable or modular reasoning
techniques;

C2 Linked Data is not “pure” OWL, that is, a lot of RDF Data published as
Linked Data violates the strict syntactic corset of OWL (2) DL, and thus is
not directly interpretable under OWL Direct Semantics;

C3 Linked Data is inconsistent, that is, if you take the Web of Data in its
entirety, it is quite normal to encounter inconsistencies – not only from ac-
cidental or malicious datasets – but also because publishers may express
contradicting views;

C4 Linked Data is evolving, that is, RDF Graphs on the Web evolve, they
change, information is added and removed;

C5 Linked Data needs more than RDFS and OWL, that is, there is more implicit
data hidden in Linked Data than can be captured with the semantics of
RDFS and OWL alone.

In this lecture, we will introduce and discuss robust and scalable reasoning tech-
niques that are specifically tailored to deal with these challenges in diverse and
large-scale Linked Data settings. We first recapitulate the basic concepts of RDF,
Linked Data, RDFS, OWL and SPARQL, and, with reference to a practical real-
world scenario, we exemplify the use of query-rewriting techniques and rule-based
approaches for reasoning over Linked Data (Section 2). We then will reflect in
more detail on challenges C1–C5 above and discuss basic architectures, namely
data-warehousing and on-the-fly-traversal based approaches, to reason about
and query over Linked Data (Section 3).

While the W3C has defined two standard OWL fragments tailored for both
rule-based (OWL 2 RL) and query-rewriting (OWL 2 QL) techniques, as we
will see, standard reasoning within these fragments may not be a perfect fit for
the Linked Data use-case; we will thus discuss which OWL features are actually
predominantly used in current Linked Data and how these features relate to
various standard and non-standard OWL fragments (Section 4).

The remaining chapters will then introduce specific approaches to Linked Data
reasoning, each of which addresses some of the above-named challenges:

Section 5 introduces two rule-based approaches for Linked Data warehouses,
both of which apply a cautious form of materialisation that considers where
the axioms in question were found on the Web:
– Context-Dependent Reasoning [17], which is deployed within the Sindice

semantic web engine [54].
– Authoritative Reasoning [41,12], which is deployed within the Scalable

Authoritative OWL Reasoner (SAOR) as part of the Semantic Web
Search Engine (SWSE) [40].

Section 6 presents an alternative approach to enrich on-the-fly-traversal based
approaches for Linked Data query processing with lightweight OWL Rea-
soning [67].

Section 7 presents a technique for reasoning with “attribute equations” [10]
that models interdependencies between numerical properties expressible in
terms of simple mathematical equations, which we argue is complementary

RDFS and OWL Reasoning for Linked Data 93

to RDFS/OWL techniques in that it allows for integrating numerical infor-
mation embedded in Linked Data in a manner that RDFS and OWL do
not.

We then briefly recap and conclude the lecture material in Section 8.

2 Preliminaries

As mentioned in the introduction, more and more Web sources provide readily
accessible and interlinked RDF data. In the context of this paper, when speaking
about structured data on the Web, we focus on data represented and published in
the Resource Description Framework (RDF) according to the Linked Data prin-
ciples. Hundreds of such datasets have been published in this manner, and have
been collectively illustrated by Cyganiak and Jentzsch in the so-called “Linked
Data Cloud”.1 Among these DBpedia2 plays a central role as an RDF extract
of structured data from Wikipedia. As a further example, the New York Times3

provide RDF metadata about entities occurring in their articles as well as API
access to the latest articles about these entities.

In terms of reasoning, our main considerations revolve around deductive infer-
ences that enrich this RDF data with implicit information by means of exploit-
ing (parts of) the formal semantics of RDFS and OWL. In particular, we aim
at motivating how such additional inferences can contribute to query answering
using SPARQL queries over the whole body of Web-accessible Linked Data (per
Berners-Lee’s “one big database” vision [9]).

We begin by introducing the basic concepts of the relevant Web standards
along with a running example from real-world Linked Data. As a sort of dis-
claimer upfront, we emphasise that these preliminaries are not intended to re-
place a fully-fledged introduction to RDF, SPARQL, OWL or Description Logics;
we refer the interested reader to excellent introductory chapters published within
the earlier editions of the Reasoning Web summer school or to the official current
W3C standard specifications in the references for further details.

2.1 The Resource Description Framework – RDF

Informally, all RDF data can be understood as a set of subject–predicate–object
triples, where all subjects and predicates are URIs, and in the object position
both URIs and literal values (such as numbers, strings, etc.) are allowed. Fur-
thermore, blank nodes can be used in the subject or object resource to denote
an unnamed resource with local scope. Some sample RDF data in the popular
Turtle syntax [5,6] are shown in Fig. 1.

1 http://lod-cloud.net
2 http://dbpedia.org
3 http://data.nytimes.org

http://lod-cloud.net
http://dbpedia.org
http://data.nytimes.org

94 A. Polleres et al.

More formally, given the set of URI references U, the set of blank nodes B,
and the set of literals L, the set of RDF constants is denoted by C := UBL.4. A
triple t := (s, p, o) ∈ UB×U×C is called an RDF triple, where s is called subject,
p predicate, and o object. A triple t := (s, p, o) ∈ Tr,Tr := C × C × C is called
a generalised triple [25], which allows any RDF constant in any triple position:
henceforth, we assume generalised triples unless explicitly stated otherwise. We
call a finite set of triples G ⊂ Tr a graph.5

In the Turtle syntax, which we use for examples (see Fig. 1), URIs are of-
ten denoted either in full form using strings delimited by angle brackets (e.g.
<http://dbpedia.org/resource/Werner_von_Siemens>) or as shorthand pre-
fixed names (e.g. dbr:Werner_von_Siemens), where prefixes are as defined in
Fig. 1. Literals are delimited by double quotes (e.g. "SAP AG") with an optional
trailing language tag (e.g. @en, @de) or a datatype which itself is again iden-
tified by a URI (e.g. 8sd:dateTime). Blank nodes are (typically) scoped to a
local document [35,48] and are denoted in Turtle either by the “prefix” _: or
alternatively using square brackets []. Furthermore, Turtle allows use of ‘a’ as
a shortcut for rdf:type (denoting class membership) [5]. Finally, as shown in
Fig. 1, RDF triples in Turtle notation are delimited by a trailing ‘.’, where
predicate-object-pairs that share the same subject can be grouped using ‘;’ and
several objects for the same subject–predicate pair can be grouped using ‘,’.

The data provided in Fig. 1 reflects real-world Linked Data available on the
Web at the time of writing. However, we cheat slightly: in reality, revenue is not
given in DBpedia using a dedicated property that includes the currency name
(like dbo:revenueUSD or dbo:revenueEUR), but instead, e.g., the revenue data
for IBM mentioned in Fig. 1(b) rather appears as follows:

dbr:IBM dbp:revenue "US$ 106.916 billion";

dbo:revenue "1.06916E11"^^dbdt:usDollar .

The use of different units (currencies in this case) and the fact that these units
are often ill-defined for current Linked Data is a separate problem that we discuss
later in Section 7.

2.2 Linked Data Principles and Provenance

In order to cope with the unique challenges of handling diverse and unverified
RDF data spread over RDF graphs published at different URIs across the Web,
many algorithms require inclusion of a notion of provenance, i.e., the considera-
tion of the source of RDF data found on the Web. To this end, we provide some

4 Herein, we sometimes use the convention of concatenating set names to represent
unions; e.g. UBL = U∪B∪L. Also, though blank nodes are not constants by standard,
we consider them as such for convenience. For more details on blank nodes and
Skolemisation, we refer the interested reader to [48]

5 Note that we use ⊂ instead of ⊆ here since we consider RDF graphs as finite subsets
of the infinite set of triples Tr. We will also often use sans-serif (e.g., U) to denote
an infinite set and use normal math font (e.g., U) to denote a finite proper subset.

<http://dbpedia.org/resource/Werner_von_Siemens>
dbr:Werner_von_Siemens
@en
@de
8sd:dateTime
_:
[]
.
;
,
dbo:revenueUSD
dbo:revenueEUR

RDFS and OWL Reasoning for Linked Data 95

@prefix nytimes: <http://data.nytimes.com/element/> .
@prefix nyt: <http://data.nytimes.com/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

nyt:75293219995342479362
owl:sameAs dbr:SAP_AG ;
nytimes:associated_article_count 10 ;
nytimes:first_use "2007-03-23"^^xsd:dateTime ;
nytimes:latest_use "2010-05-13"^^xsd:dateTime ;
skos:prefLabel "SAP AP"@en ;
skos:inScheme nytimes:nytd_org ;
rdf:type skos:Concept .

nyt:N82918236209763785922
owl:sameAs dbr:Siemens ;
nytimes:associated_article_count 4 ;
nytimes:first_use "2008-12-21"^^xsd:dateTime ;
nytimes:latest_use "2009-11-06"^^xsd:dateTime ;
skos:inScheme nytimes:nytd_org ;
skos:prefLabel "Siemens A.G"@en ;
rdf:type skos:Concept .

nyt:49586210195898795812
owl:sameAs dbr:IBM ;
nytimes:associated_article_count 196 ;
nytimes:first_use "2004-09-01"^^xsd:dateTime ;
nytimes:latest_use "2010-04-27"^^xsd:dateTime ;
skos:inScheme nytimes:nytd_org ;
skos:prefLabel "International Business Machines

Corporation"@en
rdf:type skos:Concept .

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dbr:SAP_AG dbo:revenueEUR 1.622E10
rdfs:label "SAP AG"@en,

"SAP"@de ;
foaf:name "SAP AG"@en ;
dbo:foundedBy dbr:Claus_Wellenreuther,

dbr:Hasso_Plattner ,
dbr:Dietmar_Hopp ,
dbr:Klaus_Tschira ,
dbr:Hans-Werner_Hector ,
dbr:Rajkumar_Asokan;

rdf:type dbo:Company, dbo:Organisation,
dbo:Agent, owl:Thing.

dbr:Siemens dbo:revenueEUR 7.829E10 ;
rdfs:label "Siemens AG"@en ,

"Siemens"@de ;
foaf:name "Siemens AG"@en ;
dbo:foundedBy dbr:Werner_von_Siemens ;
rdf:type dbo:Company, dbo:Organisation,

dbo:Agent, owl:Thing.

dbr:IBM dbo:revenueUSD 1.06916E11 ;
rdfs:label "IBM"@en,
rdfs:label "IBM"@de ;
foaf:name "International Business Machines

Corporation"@en ;
rdf:type dbo:Company, dbo:Organisation,

dbo:Agent, owl:Thing;
dbo:foundedBy dbr:Thomas_J._Watson ;

(a) (b)

Fig. 1. Sample Data from DBpedia and NYT in Turtle Syntax (retrieved 10 March
2013)

formal preliminaries for the Linked Data principles, and HTTP mechanisms for
retrieving RDF data from dereferenceable URIs (i.e., URIs that return content
when looked up over HTTP).

Linked Data Principles Herein, we will refer to the four best practices of Linked
Data publishing as follows [7]:

LDP1: use URIs as names for things;
LDP2: use HTTP URIs so those names can be dereferenced;
LDP3: return useful – herein we assume RDF – information upon dereferencing

of those URIs; and
LDP4: include links using externally dereferenceable URIs.6

Data Source. We define the http-download function get : U→ 2Tr as the mapping
from a URI to an RDF graph it provides by means of a given HTTP lookup [19]
which directly returns status code 200 OK and data in a suitable RDF format, or
to the empty set in the case of failure; this function also performs a rewriting of

6 That is, within your published RDF graph, use HTTP URIs pointing to other deref-
erenceable documents, that possibly contain further RDF graphs.

96 A. Polleres et al.

blank-node labels (based on the input URI) to ensure uniqueness when merging
RDF graphs [35]. We define the set of data sources S ⊂ U as the set of URIs
S := {s ∈ U | get(s) �= ∅}.7

RDF Triple in Context/RDF Quadruple. An ordered pair (t, c) with a triple
t := (s, p, o), and with a context c ∈ S and t ∈ get(c) is called a triple in
context c. We may also refer to (s, p, o, c) as an RDF quadruple or quad q with
context c. In Fig. 2 we illustrate the RDF data from Fig. 1 as dereferenceable
RDF graphs. Note that Fig. 2 contains more data than Fig. 1, where we include
triples obtained from dereferencing the founders of organisations mentioned in
Fig. 1, as well as data obtained from dereferencing class and property URIs.

HTTP Dereferencing/Redirects. We now give some notation relating to a “Linked
Dataset”, which is inspired by the notion of named graphs in SPARQL, but where
the dataset reflects the get(·) function that maps graph names to RDF graphs
obtained from dereferencing URIs.

Definition 1 (Data Source and Linked Dataset)
We define a Linked Dataset as Γ ⊂ get; i.e., a finite set of pairs (s, get(s)) such
that s ∈ S.8 The “global” RDF graph presented by a Linked Dataset is denoted as

merge(Γ) :=
⊎

(u,G)∈Γ
G

where the operator ‘�’ denotes the RDF merge of RDF graphs: a set union
where blank nodes are rewritten to ensure that no two input graphs contain the
same blank node label [35]. (From the perspective of a SPARQL dataset, one
may consider merge(Γ) as the “default graph” and all such (s, get(s)) as named
graph pairs.)

A URI may provide a HTTP redirect to another URI using a 30x response
code [19]; we denote this function as redir : U → U which first removes any
fragment identifier from the URI (a hash string suffix) and then follows a single
redirect, mapping a URI to itself in the case of failure (e.g., where no redirect
exists). We denote the fixpoint of redir as redirs, denoting traversal of a number
of redirects (a limit may be set on this traversal to avoid cycles and artificially
long redirect paths). We define dereferencing as the function deref := get ◦ redirs
which maps a URI to an RDF graph retrieved with status code 200 OK after
following redirects, or which maps a URI to the empty set in the case of failure.

We denote the set of dereferenceable URIs as D := {d ∈ U : deref(d) �= ∅}; note
that S ⊂ D and we place no expectations on what deref(d) returns, other than

returning some valid RDF.9 As a shortcut, we denote by derefs : 2U → 2U×2
Tr

;

7 Note again that we use ⊂ instead of ⊆ to emphasise that obviously not all URIs
point to non-empty RDF graphs.

8 Γ is finite thus – again – we use ⊂ instead of ⊆.
9 The URIs within D that are not in S are those that return (non-empty) RDF graphs
by means of (an) intermediate redirect(s) and/or after having a fragment identifier
stripped.

RDFS and OWL Reasoning for Linked Data 97

...

n
yt

:7
52

93
21

99
95

34
24

79
36

2

10

ow
l:s

am
eA

s

ny
tim

es
:a

ss
oc

_a
rt

ic
le

_c
nt

ny
tim

es
:fi

rs
t_

us
e

ny
tim

es
:la

te
st

_u
se

sk
os

:p
re

fL
ab

el

rd
f:t

yp
e

sk
os

:in
S

ch
em

e ny
tim

es
:n

yt
d_

or
g

20
07

-0
3-

23

20
10

-0
5-

13
S

A
P

 A
G

sk
os

:C
on

ce
pt

n
yt

:N
82

91
82

36
20

97
63

78
59

22

4

ow
l:s

am
eA

s

ny
tim

es
:a

ss
oc

_a
rt

ic
le

_c
nt

ny
tim

es
:fi

rs
t_

us
e

ny
tim

es
:la

te
st

_u
se

sk
os

:p
re

fL
ab

el

rd
f:t

yp
e

sk
os

:in
S

ch
em

e

20
08

-1
2-

21

20
09

-1
1-

06
S

ie
m

en
s

A
.G

...

n
yt

:4
95

86
21

01
95

89
87

95
81

2

19
6

ow
l:s

am
eA

s

ny
tim

es
:a

ss
oc

_a
rt

ic
le

_c
nt

ny
tim

es
:fi

rs
t_

us
e

ny
tim

es
:la

te
st

_u
se

sk
os

:p
re

fL
ab

el

rd
f:t

yp
e

sk
os

:in
S

ch
em

e

20
04

-0
9-

01

20
10

-0
4-

27
In

te
rn

at
io

na
l B

us
in

es
s

M
ac

hi
ne

s
C

or
po

ra
tio

n

d
b

r:
S

ie
m

en
s

d
b

r:
IB

M

rd
fs

:la
be

l

S
ie

m
en

s
A

G

rd
fs

:la
be

l

IB
M

fo
af

:n
am

e

In
te

rn
at

io
na

l B
us

in
es

s
M

ac
hi

ne
s

C
or

po
ra

tio
n

db
o:

C
om

pa
ny

db
o:

O
rg

an
is

at
io

n

db
o:

A
ge

nt

rd
fs

:s
ub

C
la

ss
O

f

rd
fs

:s
ub

C
la

ss
O

f

rd
f:t

yp
e

rd
f:t

yp
e

fo
af

:n
am

e

S
ie

m
en

s
A

G

d
b

r:
S

A
P

_A
G

rd
fs

:la
be

l

S
A

P
 A

G

fo
af

:n
am

e

S
A

P
 A

G

rd
f:t

yp
e

db
r:

C
la

us
_W

el
le

nr
eu

th
er

db
r:

H
as

so
_P

la
ttn

er

db
r:

D
ie

tm
ar

_H
op

p

db
r:

K
la

us
_T

sc
hi

ra

db
r:

H
an

s-
W

er
ne

r_
H

ec
to

r

db
r:

R
aj

ku
m

ar
_A

so
ka

n

db
o:

fo
un

de
dB

y

db
o:

fo
un

de
dB

y

db
r:

W
er

ne
r_

vo
n_

S
ie

m
en

s

db
o:

fo
un

de
dB

y
 d

br
:T

ho
m

as
_J

._
W

at
so

n

db
o:

re
ve

nu
eE

U
R

1.
62

2E
10

db
o:

re
ve

nu
eE

U
R

7.
82

9E
10

db
o:

re
ve

nu
eU

S
D

1.
06

91
6E

11

...

...

...

...
...

...

...

Le
ge

nd
:

…
 d

er
ef

er
en

ca
bl

e
da

ta
 c

on
te

xt
.

…
 d

er
ef

er
en

ca
bl

e
S

ch
em

a/
O

nt
ol

og
y

…
 d

at
as

et
 in

 o
ne

 P
LD

h
tt
p
:/
/d
at
a.
n
yt
im
es
.c
o
m
/

h
tt
p
:/
/d
b
p
ed
ia
.o
rg
/

n
yt

:S
ie

m
en

s

ow
l:s

am
eA

s

n
yt

:S
A

P

ow
l:s

am
eA

s

n
yt

:I
B

M

ow
l:s

am
eA

s

…
 r

ed
ire

ct

fo
af

:O
rg

an
iz

at
io

n

fo
af

:A
ge

nt

rd
fs

:s
ub

C
la

ss
O

f

db
o:

P
er

so
n

rd
fs

:s
ub

C
la

ss
O

f

rd
f:t

yp
e

rd
f:t

yp
e

fo
af

:P
er

so
n

rd
fs

:s
ub

C
la

ss
O

f

ow
l:e

qu
iv

al
en

tC
la

ss fo
af

:n
am

e

rd
fs

:la
be

l

rd
fs

:s
ub

P
ro

pe
rt

yO
f

db
o:

fo
un

de
dB

y

rd
fs

:r
an

ge

ow
l:d

is
jo

in
tW

ith

fo
af

:m
ad

e

rd
fs

:d
om

ai
n

F
ig
.
2
.
S
a
m
p
le

D
a
ta

fr
o
m

D
B
p
ed

ia
a
n
d
N
Y
T

a
s
L
in
k
ed

D
a
ta

98 A. Polleres et al.

U 	→ {(redirs(u), deref(u)) | u ∈ U ∩ D)} the mapping from a set of URIs to the
Linked Dataset it represents by dereferencing all URIs (only including those in
D which return some RDF).

Example 1

Taking Fig. 2, dashed arrows indicate redirects: NYT provides some “read-
able” URIs that redirect to its internal identifiers for entities, including
redirs(nyt:Siemens) = nyt:N82918236209763785922. Dereferencing the URI
nyt:Siemens yields the RDF graph for the source nyt:N82918236209763785922
(symbolised by the gray box in Fig. 2); in other words deref(nyt:Siemens) =
get

(
redirs(nyt:Siemens)

)
= get(nyt:N82918236209763785922). Conversely, we

see deref(nytimes:nytd org) = ∅; the URI is not dereferenceable. Thus we
say that nyt:N82918236209763785922 ∈ D (and ∈ S) and nyt:Siemens ∈ D,
whereas nytimes:nytd org /∈ D. ♦

2.3 SPARQL, Conjunctive Queries and Rules

We now introduce some concepts relating to the query language SPARQL, where
details can be found in [60,57,30]. We herein focus on evaluating simple, conjunc-
tive, basic graph patterns (BGPs), we do not formally consider more complex
patterns (e.g., UNION, FILTER, etc.) of the SPARQL language, which can be lay-
ered on top [57]. In addition, we consider URIs and not IRIs for convenience and
to stay consistent with the RDF preliminaries.

Definition 2 (Variables, Triple Patterns & BGPs)
Let V be the set of variables ranging over UBL; we denote RDF variables as
alphanumeric strings with a ‘?’ prefix (e.g. ?X). A triple pattern tp := (s, p, o) is
an element of the set Q := VUL×VU×VUL.10 For simplicity, we do not consider
blank-nodes in triple patterns (they could be roughly emulated by an injective
mapping from B to V). A finite (herein, non-empty) set of triple patterns Q ⊂ Q
is called a Basic Graph Pattern (BGP), or herein, simply a conjunctive query.
We use vars(Q) ⊂ V to denote the finite set of variables in Q and terms(Q) to
denote the set of all terms VUL in Q.

The solutions of a BGP for a dataset Γ are defined accordingly as follows.

Definition 3 (SPARQL solutions)
Call the partial function μ : dom(μ)∪UL→ UBL a solution mapping with a do-
main dom(μ) ⊆ V. A solution mapping binds variables in dom(μ) to UBL and is
the identify function for UL. Overloading notation, let μ : Q→ Tr and μ : 2Q →
2Tr also resp. denote a solution mapping from triple patterns to RDF triples,

10 Though academic, SPARQL does allow for literals in the subject position.

?X

RDFS and OWL Reasoning for Linked Data 99

and basic graph patterns to RDF graphs such that μ(tp) := (μ(s), μ(p), μ(o)) and
μ(Q) := {μ(tp) | tp ∈ Q}. We now define the set of SPARQL solutions for a
query Q over a (Linked) Dataset Γ as

[[Q]]Γ :={μ | μ(Q)⊆merge(Γ) ∧ dom(μ) = vars(Q)} .

For brevity, and unlike SPARQL as according to the official W3C specification,
solutions are herein given as sets (not multi-sets), implying a default DISTINCT

semantics for queries, and we assume that answers are given over the default
graph consisting of the merge of RDF graphs in the dataset.

Note that in the database literature, conjunctive queries are often rather mod-
elled as conjunctions of (first-order) atoms, inspired by languages such as Dat-
alog; let us introduce some basic concepts from Datalog to relate the notions of
BGPs, conjunctive queries, and rules:

Definition 4 (Atom)
An atomic formula or atom is a formula of the form p(e1, . . . , en), where all such
e1, . . . , en are terms (i.e. in our case constants from C or variables from V) and
where p is a predicate of arity n – we denote the set of all such atoms by Atoms.
Atoms that to not contain variables are called ground. As such, this notation can
be thought of as generalising that of RDF triples (or quadruples, resp.), where we
use a standard RDF ternary predicate T to represent RDF triples in the form
T (s, p, o) – for example, T (Siemens, foundedby, Werner von Siemens) – where
we will typically leave T implicit; analogously, we use the predicate Q(s, p, o, c)
synonymously for an RDF quadruple, again optionally leaving Q implicit.

In Logic Programming, atoms not containing variables are called ground atoms.
The set of all possible ground atoms – denoted as the set Facts – can be viewed
in our context as a generalisation of Tr. A finite set of ground atoms I ⊆ Facts
(often simply called “facts”) – which in our context again can be viewed as a
generalisation of a graph G – in Logic Programming is typically synonymous to
a (Herbrand) interpretation.

Letting A and B be two atoms, we say that A subsumes B—denoted A�B—if
there exists a substitution θ ∈ Θ of variables such that Aθ = B (applying θ to
the variables of A yields B); we may also say that B is an instance of A; if B is
ground, we say that it is a ground instance. Similarly, if we have a substitution
θ ∈ Θ such that Aθ = Bθ, we say that θ is a unifier of A and B; we denote by
mgu(A,B) the most general unifier of A and B which provides the “minimal”
variable substitution (up to variable renaming) required to unify A and B.

Definition 5 (Rule, Program). A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0) ,

100 A. Polleres et al.

where H,B1, . . . , Bn are atoms, H is called the head (conclusion/consequent)
and B1, . . . , Bn the body (premise/antecedent). We use Head(R) to denote the
head H of R and Body(R) to denote the body B1, . . . , Bn of R.11 The variables
of our rules are range restricted, also known as safe [66]: like Datalog, the vari-
ables appearing in the head of each rule must also appear in the body whereby a
substitution that grounds the body must also ground the head. We denote the set
of all such rules by Rules. A rule with an empty body can be considered a fact; a
rule with a non-empty body is called a proper-rule. We call a finite set of such
rules a program P .

Like before, a ground rule is one without variables. We denote with Ground(R)
the set of ground instantiations of a rule R and with Ground(P) the ground
instantiations of all rules occurring in a program P . Again, an RDF rule is a
specialisation of the above rule, where atoms strictly have the ternary predicate
T and contain RDF terms; an RDF program is one containing RDF rules, etc.

Definition 6 (Immediate Consequence Operator). We give the immediate
consequence operator TP of a program P under interpretation I as:12

TP : 2Facts → 2Facts

I 	→
{
Head(R)θ | R ∈ P ∧ ∃I ′ ⊆ I s.t. θ = mgu

(
Body(R), I ′

)}

The immediate consequence operator maps from a set of facts I to the set of
facts it directly entails with respect to the program P – note that TP (I) will
retain the facts in P since facts are rules with empty bodies and thus unify with
any interpretation, and note that TP is monotonic – the addition of facts and
rules to a program can only lead to the same or additional consequences. We
may refer to the application of a single rule T{R} as a rule application.

Since our rules are a syntactic subset of Datalog, TP has a least fixpoint,
denoted lfp(TP), which can be calculated in a bottom-up fashion, starting from
the empty interpretation Δ and applying iteratively TP [73] (here, convention
assumes that P contains the set of input facts as well as proper rules). Define
the iterations of TP as follows: TP ↑ 0 = Δ; for all ordinals α, TP ↑ (α+ 1) =
TP (TP ↑ α); since our rules are Datalog, there exists an α such that lfp(TP) =
TP ↑ α for α < ω, where ω denotes the least infinite ordinal. In other words,
the immediate consequence operator will reach a fixpoint in countable steps [66].
Thus, TP is also continuous.

Definition 7 (least model, closure). We call lfp(TP) the least model, or the
closure of P , which is given the more succinct notation lm(P).

11 Such a rule can be represented as a definite Horn clause.
12 Recall again that in Herbrand semantics, an interpretation I can be thought of as

simply a set of facts.

RDFS and OWL Reasoning for Linked Data 101

Obviously, using the notation of rules, any BGP can be straightforwardly seen
as a conjunctive query (CQ) in the classical sense, and the more general concept
of a union of conjunctive queries (UCQs) can be defined as follows.

Definition 8 (Union of Conjunctive Queries (classical notion)). A con-
junctive query (CQ) is a special rule of the form

q(x)← Body(x, 	y)

where 	x is a sequence of variables called distinguished variables, 	y is a sequence
of variables called non-distinguished variables, and Body(x, 	y) is a conjunction of
body atoms over these variables. A program Pq (where we just write q when P is
implicit form the context) that consists of only rules with the same head q(x) (such
that q does not appear in any body) is a union of conjunctive queries (UCQ).

Given a (Linked) Dataset Γ and a SPARQL BGP query Q, the definition of
solutions from Definition 3 thus corresponds to the notion of entailed answers
for the corresponding classical conjunctive query q, written Ans(q,merge(Γ))
(and used in the literature, cf. for instance [14]).13 That is, in our context we can
equate Ans(q,merge(Γ)) with the set of tuples 	a such that q(a) ∈ TPq (merge(Γ)).
Note that as for SPARQL, all variables are considered to be distinguished, since
there is no “real” projection in the sense of classical conjunctive queries: any
BGP occurring inside a SPARQL query is evaluated as a conjunctive query
without non-distinguished variables, whereupon the SPARQL algebra evaluates
more complex patterns, such as SELECT clauses and so forth [30,21].

Example 2

The following SPARQL query asks for the labels and revenues (in EUR) of
organisations:

Query 1
SELECT ?X ?L ?R

WHERE { ?X a dbo:Organisation ; rdfs:label ?L ; dbo:revenueEUR ?R .}

This query asks to evaluating the basic graph pattern:

{(?X, a, dbo:Organisation), (?X, rdfs:label, ?L), (?X, dbo:revenueEUR, ?R)}

which, respectively, in the classical notation corresponds to the following
conjunctive query:

q(?X, ?L, ?R)← (?X, a, dbo:Organisation), (?X, rdfs:label, ?L), (?X, dbo:revenueEUR, ?R).

13 We use merge(Γ) here synonymously with the knowledge base consisting of the facts
corresponding to the triples in merge(Γ).

102 A. Polleres et al.

Given the data in Fig. 2, this pattern (and thus the query) would obtain
the following solutions (writing solution mappings μ in tabular form):

?X ?L ?R

dbr:SAP AG "SAP AG"@en 1.622E10

dbr:Siemens "Siemens"@de 7.829E10

Notably, the revenue for IBM is not returned (although it could be calcu-
lated from the EUR–USD exchange rate).

The next query, on the contrary, asks for the date of the latest article
published about each element in the SKOS scheme nytimes:nytd_org (i.e.,
a different way of asking for “organisations”, but using the NYT RDF
vocabulary):

Query 2
SELECT ?X ?D

WHERE { ?X skos:inScheme nytimes:nytd_org. ?X nytimes:latest_use ?D .}

with the following solutions:

?X ?D

nyt:75293219995342479362 2010-05-13

nyt:N82918236209763785922 2009-11-06

nyt:49586210195898795812 2010-04-27

Query 1 and Query 2 could each be answered by staying within a single
site (that is, Query 1 only would obtain answers from data at dbpedia.org,
whereas Query 2 would only produce answers with the data at data.nytimes.o
respectively) and – at least for our sample – answers for either query can
be obtained from the individual dataset. However, the real power of Linked
Data lies in combining data from multiple datasets to obtain answers over
their combined content. For example Query 3 combines knowledge from
both sites and asks for the latest NYT article dates of IBM (using its NYT
identifier) and its revenue in USD:

Query 3
SELECT ?X ?D ?R

WHERE { nyt:49586210195898795812 nytimes:latest_use ?D .

nyt:49586210195898795812 owl:sameAs ?X .

?X dbo:revenueUSD ?R .}

Again assuming the entire graph of Fig. 2 as input, this query would obtain
the single result

?X ?D ?R
dbr:IBM 2010-04-27 1.06916E11

As a further example, let Query 4 ask for all foaf:Agents.

nytimes:nytd_org
dbpedia.org
data.nytimes.org
foaf:Agent

RDFS and OWL Reasoning for Linked Data 103

Query 4
SELECT ?X

WHERE { ?X a foaf:Agent .}

Clearly, for the RDF data in Fig. 2, this query would not return any solu-
tions (despite many implicit instances of the class being available), whereas:

Query 5
SELECT ?X

WHERE { ?X a foaf:Person .}

would return all the company founders listed in DBpedia, since these are
explicitly typed as foaf:Persons. ♦

We emphasise that these queries miss (implicit) results that would be intuitively
expected as an answer and that could be achieved through reasoning. In the
following we will substantiate this intuition referring to some of the challenges
(C1–C5) mentioned in the introduction; before that, however, we need to clarify
the importance of schema information and its semantics in RDF.

2.4 Inferring Additional Triples by Schema Information and Rules

In order to model schema information, which also allows to infer additional
implicit information in RDF, the Semantic Web offers two ontology languages:
the lightweight RDF Schema (RDFS) [13] and the expressive Web Ontology
Language (OWL) [37]. Within this section, we will briefly cover an overview of
the essential features of these languages in a Linked Data setting.

RDFS RDF itself already provides means to express class membership
(rdf:type); RDF Schema (RDFS) additionally provides a special vocabulary,
consisting primarily of RDF properties with a predefined semantics to
model class hierarchies (rdfs:subClassOf), and property hierarchies
(rdfs:subPropertyOf), as well as means to define domains and ranges that
respectively allow for associating a class to the subject and object of a relation
with a given property (rdfs:domain, rdfs:range). These core RDFS properties
allow for describing and embedding the semantics of user-defined vocabularies
in RDF itself.

OWL The Web Ontology Language (OWL) extends RDFS and allows for ex-
pressing further schema definitions in RDF, e.g., allowing to express equal-
ity of individuals (owl:sameAs), equivalence or disjointness of properties and
classes (owl:equivalentClass, owl:equivalentProperty, owl:disjointWith,
owl:propertyDisjointWith), or complex class definitions; while a full account
is beyond our scope, more details on additional OWL features will be discussed
in Section 4 below.

foaf:Person
rdf:type
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain
rdfs:range
owl:sameAs
owl:equivalentClass
owl:equivalentProperty
owl:disjointWith
owl:propertyDisjointWith

104 A. Polleres et al.

Some RDFS and OWL information expressed in RDF is shown in the light-
gray boxes of Fig. 2: for instance, the classes and properties used on DBpedia
are described using, amongst others, the dbo: and foaf: vocabularies (i.e., sets
of terms described in their respective ontologies) which include the “schema”
triples (aka. terminological triples) shown in Fig. 3.

@prefix dbo: <http://dbpedia.org/ontology/> .

dbo:foundedBy rdfs:range dbo:Agent .

dbo:Company rdfs:subClassOf dbo:Organisation.
dbo:Organisation rdfs:subClassOf dbo:Agent.
dbo:Person rdfs:subClassOf dbo:Agent.

dbo:Person owl:equivalentClass foaf:Person.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

foaf:name rdfs:subPropertyOf rdfs:label .
foaf:made rdfs:domain foaf:Agent .

foaf:Person rdfs:subClassOf foaf:Agent ,
geo:SpatialThing ;

owl:disjointWith foaf:Organization .
foaf:Organization rdfs:subClassOf foaf:Agent .

(a) (b)

Fig. 3. Sample schema triples from the DBpedia ontology and from FOAF (retrieved
10 March 2013)

Themeaning of theseOWLdefinitions are given by two alternative (but related)
semantics. The RDF-Based Semantics [64] can interpret arbitrary RDF graphs
without restriction, but where common reasoning tasks are undecidable as a result.
The Direct Semantics [52] is based on Description Logic (DL) theory [3,63], where
a subset of RDF graphs following certain syntactic restrictions can be mapped to
a set of DL axioms. A full translation from the OWL 2 DL language to the DL
SROIQ is implicit in [56], where we list a small snippet of constructs used for our
examples in Table 1. As such, according to Table 1, the RDF triples in Fig. 3 can
be viewed as DL ontologies containing the axioms listed in Fig. 4.

Typical reasoning tasks over an expressive DL like SROIQ (e.g., using tableau
methods to perform consistency checking, instance checking, satisfiability check-
ing, etc.; see [3,63]) are in the worst case doubly-exponential even for a non-
deterministic machine, and in practice are often likewise very expensive, espe-
cially at the types of scales encountered in a Linked Data setting. Furthermore,

Table 1. Mapping DL axioms to RDF using the RDFS and OWL vocabularies

DL RDFS

1 A1 � A2 A1 rdfs:subClassOf A2

2 P1 � P2 P1 rdfs:subPropertyOf P2

3 ∃P � A P rdfs:domain A
4 ∃P− � A P rdfs:range A
5 A1 ≡ A2 A1 owl:equivalentClass A2

6 A1 � A2 ⊆ ⊥ A1 owl:disjointWith A2

7 A(x) x rdf:type A
8 R(x, y) x R y
9 x = y x owl:sameAs y

dbo:
foaf:
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain
rdfs:range
owl:equivalentClass
owl:disjointWith

RDFS and OWL Reasoning for Linked Data 105

∃dbo:fundedby− � dbo:Agent foaf:name � rdfs:label

dbo:Company � dbo:Organisation ∃foaf:made � foaf:Agent

dbo:Organisation � dbo:Agent foaf:Person � foaf:Agent

dbo:Person � dbo:Agent foaf:Person � geo:SpatialThing

dbo:Person ≡ foaf:Person foaf:Person � foaf:Organisation � ⊥
foaf:Organization � foaf:Agent

(a) (b)

Fig. 4. DL axioms corresponding to the DBpedia and FOAF ontology snippets from
Fig. 3

the decidability of conjunctive query answering for SROIQ is still open [25].14

Thus, the W3C has identified three tractable profiles of OWL that are particu-
larly relevant for query answering [25], where we will focus upon two such profiles
in this lecture:

OWL 2 QL is designed as a language for which efficient (with respect to data
complexity), sound and complete query answering can be achieved by rewrit-
ing techniques – i.e., extending conjunctive queries (such as SPARQL BGPs)
to capture the semantics of the ontology.

OWL 2 RL is designed as a language for which sound and complete (with
respect to assertional knowledge) reasoning can be applied by means of
Datalog-style techniques – e.g., bottom-up or top-down rule-based inferenc-
ing. A standard OWL 2 RL ruleset, called OWL 2 RL/RDF, encodes part
of the RDF-Based Semantics of OWL 2. The assertional entailments given
by rule-based reasoning using OWL 2 RL/RDF over an OWL 2 RL ontology
correspond with the assertional entailments under the Direct Semantics for
that ontology [25, Theorem PR1]. The OWL 2 RL/RDF ruleset can also be
applied over arbitrary RDF graphs but beyond OWL 2 RL ontologies, the
aforementioned correspondence with the Direct Semantics no longer holds.

Query Rewriting. The OWL 2 QL fragment [25, Section 3] contains a com-
bination of features that are tailored for efficient processing by query rewriting
techniques. That is, given an OWL (or, respectively, its DL counterpart) on-
tology O in this fragment, one can answer conjunctive queries Q correctly by
rewriting Q based on the axioms in O into a union of conjunctive queries (a
UCQ), where we denote this process by rewrite(Q,O).

To give the reader an idea, Algorithm 1 illustrates a very rudimentary version
of a rewriting algorithm that implements rewrite(Q,O) just for the basic RDFS
axioms (axioms of the forms 1–4 from Table 1). We note that this algorithm can
be viewed as a very downstripped version of the PerfectRef algorithm [14] which
covers a much larger set of DL axioms; there have been a number of extensions
and alternative query rewriting techniques proposed recently [58,62,61,46,24].

14 In this context, we note here that the case of SPARQL is decidable, since SPARQL’s
BGP matching treats all variables as distinguished, see above; for further details, we
refer to the SPARQL 1.1 Entailment Regimes specification [23] and a more detailed
book chapter in an earlier edition of the Reasoning Web summer school [21].

dbo:fundedby
dbo:Agent
foaf:name
rdfs:label
dbo:Company
dbo:Organisation
foaf:made
foaf:Agent
dbo:Organisation
dbo:Agent
foaf:Person
foaf:Agent
dbo:Person
dbo:Agent
foaf:Person
geo:SpatialThing
dbo:Person
foaf:Person
foaf:Person
foaf:Organisation
foaf:Organization
foaf:Agent

106 A. Polleres et al.

Algorithm 1. Basic Query Rewriting algorithm

Input: Conjunctive query q, DL ontology O
Output: Union (set) of conjunctive queries

1 P := Pq

2 repeat
3 P ′ := P
4 foreach q ∈ P ′ do
5 foreach g in q do // expansion
6 foreach axiom i of one of the forms 1–4 from Table 1 in O do
7 if i is applicable to g then
8 P := P ∪

{
q[g/ gr(g, i)]

}
// see Table 2

9 until P ′ = P
10 return P

Table 2. Semantics of gr(g, i) of Algorithm 1 (‘ ’ stands for a “fresh” variable)

g i gr(g/i)

(x, rdf:type, A) B � A (x, rdf:type, B)
∃P � A P (x,)
∃P− � A P (, x)

(x, P1, y) P2 � P1 (x,P2, y)

Example 3
Taking Query 4 again, the BGP {(?X, a, foaf:Agent)} corresponds to the
conjunctive query:

q(?X) ← (?X, rdf:type, foaf:Agent)

which expanded by Algorithm 1 with respect to the ontology in Fig. 4(b)
results in the following UCQ:

q(?X) ← (?X, a, foaf:Agent)

q(?X) ← (?X, a, foaf:Person)

q(?X) ← (?X, a, foaf:Organization)

q(?X) ← (?X, foaf:made, ?Y)

The resulting UCQ can again (using the UNION pattern) be translated
back to SPARQL:

RDFS and OWL Reasoning for Linked Data 107

Query 4′

SELECT ?X

WHERE { { ?X a foaf:Agent } UNION

{ ?X a foaf:Person } UNION

{ ?X a foaf:Organization } UNION

{ ?X foaf:made ?Y } }

♦

With this small example, we have shown that the rewriting technique for
OWL 2 QL can be partially applied to SPARQL queries. However, note that
OWL 2 QL (and likewise the respective query rewriting algorithms from the
DL literature) omit important OWL features for Linked Data (discussed later
in Section 4), such as inferences from owl:sameAs, where rule-based inference
as mentioned in the following section might be more suitable.

Rule-Based Reasoning. As an alternative to query rewriting based on the
OWL 2 QL profile, another fragment of OWL – OWL 2 RL [25, Section 4] –
has a normative set of rules called OWL 2 RL/RDF, which encode a subset of
the semantics of RDFS and OWL 2 and can be directly used for (Datalog-style)
reasoning (see also the informal RDFS entailment rules in [35, Section 7], which
were later extended by OWL features in [65,53]).

Some sample OWL 2 RL/RDF rules are given in Table 3 implementing the
basic features of RDFS and additionally supporting the semantics of equality
for owl:sameAs missed by OWL 2 QL. A more detailed discussion on which
OWL features (and respective rules encoding these) are particularly relevant for
Linked Data Reasoning will be discussed in Section 4.

Table 3. Core RDFS and owl:sameAs rules

ID Head Body

R
D
F
S

prp-spo1 (?s, ?p2, ?o) ← (?p1, rdfs:subPropertyOf , ?p2) , (?s, ?p1, ?o)
prp-dom (?p, rdf:type, ?c) ← (?p, rdfs:domain, ?c) , (?s, ?p, ?o)
prp-rng (?o, rdf:type, ?c) ← (?p, rdfs:range, ?c) , (?s, ?p, ?o)
cax-sco (?s, rdf:type, ?c2) ← (?c1, rdfs:subClassOf , ?c2) , (?s, rdf:type, ?c1)

S
a
m
e-
A
s

eq-sym (?y, owl:sameAs, ?x) ← (?x, owl:sameAs, ?y)
eq-trans (?x, owl:sameAs, ?z) ← (?x, owl:sameAs, ?y) , (?y, owl:sameAs, ?z)
eq-rep-s (?s′, ?p, ?o) ← (?s, owl:sameAs, ?s′) , (?s, ?p, ?o)
eq-rep-p (?s, ?p′, ?o) ← (?p, owl:sameAs, ?p′) , (?s, ?p, ?o)
eq-rep-o (?s, ?p, ?o′) ← (?o, owl:sameAs, ?o′) , (?s, ?p, ?o)

As opposed to query-rewriting (top-down evaluation), OWL 2 RL/RDF rules
can also be applied in a bottom-up fashion for the purposes of a priori materiali-
sation: given a linked dataset Γ and a set of such inference rules R, pre-compute

owl:sameAs
owl:sameAs

108 A. Polleres et al.

and store the closure lm(merge(Γ) ∪R),15, issuing queries as they are input di-
rectly against the closure. Caching the full closure thus mitigates the expense of
reasoning during query-time, but may conversely incur huge pre-runtime costs,
storage overheads, as well as the cost of truth maintenance in dynamic scenarios.

Example 4
As an example, let us consider the following variant of Query 3: (i) in-
stead of explicitly following the owl:sameAs link, we assume the necessary
inferences are supplied by reasoning; (ii) we ask for all rdfs:labels of the
company (as opposed to just skos:prefLabel).

Query 3′

SELECT ?D ?R ?L

WHERE { nyt:49586210195898795812 nytimes:latest_use ?D ;

dbo:revenueUSD ?R ;

rdfs:label ?L }

while the first triple pattern is matched by explicitly stated data, the subse-
quent query-relevant triples must be obtained from the closure with respect
to, e.g., the rules in Table 3, which contains (amongst other triples):

nyt:49586210195898795812 nytimes:latest_use "2010-04-27"^^xsd:date ;

dbo:revenueUSD 1.06916E11 ;

rdfs:label "IBM"@en ,

"International Business Machines Corporation"@en .

leading to the following solutions:

?D ?R ?L

2010-04-27 1.06916E11 "IBM"@en
2010-04-27 1.06916E11 "International Business Machines Corporation"@en

♦

3 Overall Approaches and Challenges to Reason over and
Query Linked Data

We identify two main approaches to reason and query over Linked Data:

1. Data-warehousing approaches for querying linked data are typically deployed
for RDF search engines such as Sindice [54] or SWSE [40]. These engines pro-
vide query interfaces over a local centralised index of Linked Data harvested

15 That is, all RDF triples entailed by the RDF graph obtained from Γ (read as facts)
and R.

owl:sameAs
rdfs:label
skos:prefLabel

RDFS and OWL Reasoning for Linked Data 109

from the Web and typically use rule-based materialisation (as presented in
Section 10) to cautiously infer additional RDF triples; Section 5 will discuss
such cautious reasoning techniques that are tailored to not infer too much
information in this setting.

2. Rather than relying on a centralised index, Linked Data itself can be viewed
as a database that can be queried directly and dynamically [33]. That is,
starting from the URIs appearing in the query, or from a set of seed URIs,
query-relevant data is navigated following Linked Data principles and re-
trieved dynamically. The main advantage of this approach is that results
are much fresher and all query-relevant data do not need to be known lo-
cally. However, the main weaknesses of this approach are that performing
remote lookups at query-time is costly, potentially a lot intermediate data
are transferred, and the recall depends significantly on the seed URIs and
conformance of the query-relevant sources with Linked Data principles. In
Section 6, we will present such an approach and discuss how reasoning can
be incorporated.

Getting back to the challenges enumerated in the introduction, let us now briefly
discuss how these affect the architectural choice for a particular reasoning and
querying infrastructure.

C1 Linked Data is huge. Our example contains only sample data from two ex-
ample datasets in the Linked Data Web. The most recent incarnation of the
Linking Open Data cloud (from September 2011), is claimed to represent
over 31 billion triples spread across 295 datasets.16 It is obvious that staying
aware of and gathering this dynamically evolving data for query process-
ing is an issue in terms of scale, but also in terms of deciding what parts
of which datasets are relevant for the query at hand. For example, broad
queries like Query 5, without further scope, are notoriously hard to answer,
since instances of foaf:Person are spread over various datasets and individ-
ual RDF files spread right across the Web: while data-warehouses probably
do not provide complete results on such queries, on-the-fly-traversal based
approaches in the worst case can’t answer such queries at all, or depending
on the seed URIs, cause prohibitively many lookups during query processing.

C2 Linked Data is not “pure” OWL. When all usage of the rdfs: and owl:

vocabulary is within the “mappable” fragment for OWL (see, e.g., Table 1),
the RDF graph in question is interpretable under the OWL Direct Seman-
tics. However, arbitrary RDF published on the Web does not necessarily fall
within these bounds. For example, the FOAF vocabulary defines inverse-
functional datatype properties such as foaf:mbox_sha1sum, which is disal-
lowed by the restrictions under which the Direct Semantics is defined. Even
worse, one may find “harmful” RDF published online that makes reason-

16 While the LOD cloud was not updated since then, the source it is based on –
http://datahub.io/group/lodcloud – listed 337 LOD datasets at the time of
writing.

foaf:Person
rdfs:
owl:
foaf:mbox_sha1sum
http://datahub.io/group/lodcloud

110 A. Polleres et al.

ing impossible or potentially uncontrollable, if done naively; for example,
consider the triples:17

rdfs:subPropertyOf rdfs:subPropertyOf owl:sameAs .

rdf:type rdfs:subPropertyOf owl:sameAs .

that could have dramatic effects when fed into a rule-based reasoner (which
the reader can easily convince herself when considering our example data
along with the rules from Table 3). The improper use of URIs from the
special rdf:, rdfs:, and owl: vocabularies, i.e., the use of properties and
classes from these vocabularies in assertional “non-property” or “non-class”
positions is also referred to as non-standard vocabulary use in the literature.18

Any reasoning approach for Linked Data has to ensure that harmful triples
(be they erroneous or malicious) in published RDF are dealt with, either by
being ignored or otherwise by keeping inferences “confined”.

C3 Linked Data is inconsistent. While we have not explicitly mentioned incon-
sistent data in our examples – similar to non-standard use – inconsistencies
often occur in published RDF data [12]. Indeed a single additional triple
such as

dbr:Hasso_Plattner rdf:type foaf:Organization .

would render the example data from Fig. 2 inconsistent under OWL seman-
tics, due to the fact that dbr:Hasso_Plattner is also an asserted member of
the class foaf:Person which is declared disjoint with foaf:Organization

in the FOAF ontology. Again, reasoning techniques need to be robust in the
presence of such inconsistencies, trying to “isolate” them rather than falling
for ex falso quod libet (anything follows from a contradiction).

C4 Linked Data is evolving. As per the Web itself, Linked Data is inherently
dynamic [45]. For instance, our example data is not necessarily up-to-date
with Linked Data currently published by NYT: for example, an article about
IBM’s “Watson” project was published in 2012 after the “Jeopardy” show,19

making the nytimes:latest_use date of for IBM from Query 3′ above stale.
In fact, if NYT was about to update its Linked Data interface regularly with
the most current articles, a query like Query 3′ would become significantly
more challenging to deal with, particularly for data-warehousing approaches
that do not guarantee fresh results. We discuss these issues further in Sec-
tion Section 6 below.

17 A self-fulfilling prophecy: http://axel.deri.ie/~axepol/nasty.rdf.
18 That is, a property from these vocabularies may only be used as a predicate, and

likewise classes (such as e.g. rdfs:Resource) may only be used as the object of
rdf:type triples; see details within [16,38] where non-standard vocabulary use is
formally defined. Though potentially very “dangerous”, non-standard triples are not
always “bad”: e.g., many axiomatic triples for RDFS are non-standard.

19 Article available online at https://www.nytimes.com/2012/01/08/jobs/
building-the-watson-team-of-scientists.html(retrieved 10 March 2013)

rdf:
rdfs:
owl:
dbr:Hasso_Plattner
foaf:Person
foaf:Organization
nytimes:latest_use
http://axel.deri.ie/~axepol/nasty.rdf
rdfs:Resource
rdf:type
https://www.nytimes.com/2012/01/08/jobs/building-the-watson-team-of-scientists.html
https://www.nytimes.com/2012/01/08/jobs/building-the-watson-team-of-scientists.html

RDFS and OWL Reasoning for Linked Data 111

C5 Linked Data needs more than RDFS and OWL. There is more implicit knowl-
edge hidden in Linked Data than can be captured with the semantics of
RDFS and OWL alone; in fact, it may be considered quite unintuitive that
Query 1 from p. 101 does not return IBM’s revenue: the exchange rate be-
tween USD and EUR is itself available as data on the Web, so why shouldn’t
the Web of Data be able to make use of this knowledge? However, ontology
languages like OWL and RDFS do not provide means to express mathemati-
cal conversions as necessary in this example. While not solvable with current
Linked Data standards and techniques, we discuss a possible approach to
tackle this problem in Section 7.

4 How Much OWL Is Needed for Linked Data?

Given the variety of combinations of techniques and RDFS/OWL profiles that
can be applied for reasoning over Linked Data, an obvious question to ask is
which features of RDFS and OWL are most prominently used on the current
Web of Data?

Knowing which features are frequently used and which are infrequently used
provides insights into how appropriate the coverage of various OWL profiles
might be for the Linked Data use-case, and in particular, the relative costs
of supporting or not supporting the semantics of a certain language primitive
depending on its adoption in Web data for the setting of a given architectural
choice. For example, a language feature that is costly to support or that otherwise
adds complexity to a reasoning algorithm could potentially be “turned off”, with
minimal practical effect, if it is found to be very infrequently used in real-world
data.

In this section, we thus look at the features of RDFS and OWL that are
most/least widely adopted on the Web of Data. For the purposes of this study,
we take the Billion Triple Challenge 2011 corpus, which consists of 2.145 billion
quadruples crawled from 7.411 million RDF/XML documents through an open
crawl ran in May/June 2011 spanning 791 pay-level domains.20 This corpus
represents a broad sample of the Web of Data. We then look into the levels of
adoption of individual RDFS and OWL features within this broad corpus.

4.1 Measures Used

In order to adequately characterise the uptake of various RDF(S) and OWL
features used in this corpus, we present different measures to quantify their
prevalence and prominence.

First, we look at the prevalence of use of different features, i.e., how often
they are used. Here, we must take into account the diversity of the data under
analysis, where few domains account for many documents and many domains
account for few documents, and so forth [38]. We thus present two simple metrics:

20 A pay-level domain is a direct sub-domain of a top-level domain (TLD) or a second-
level country domain (ccSLD), e.g., dbpedia.org, bbc.co.uk. This gives us our no-
tion of “domain”.

112 A. Polleres et al.

Doc: number of documents using the language feature
Dom: number of pay-level-domains (i.e., sites) using the language feature.

However, raw counts do not reflect the reality that the use of an OWL fea-
ture in one important ontology or vocabulary may often have greater practical
impact than use in a thousand obscure documents. Thus, we also look at the
prominence of use of different features. We use PageRank to quantify our notion
of prominence: PageRank calculates a variant of the Eigenvector centrality of
nodes (e.g., documents) in a graph, where taking the intuition of directed links
as “positive votes”, the resulting scores help characterise the relative prominence
(i.e., centrality) of particular documents on the Web [55,31].

In particular, we first rank documents in the corpus. To construct the graph,
we follow Linked Data principles and consider sources as nodes, where a directed
edge (s1, s2) ∈ S × S is extended from source s1 to s2 iff get(s1) contains (in
any triple position) a URI that dereferences to document s2 (i.e., there exists
a u ∈ terms(get(s1)) such that redirs(u) = s2). We also prune edges to only
consider (s1, s2) when s1 and s2 are non-empty sources in our corpus. We then
apply a standard PageRank analysis over the resulting directed graph, using
the power iteration method with ten iterations. For reasons of space, we refer
the interested reader to [55] for more detail on PageRank, and to the following
thesis [38] for more details on the particular algorithms used for this paper.

With PageRank scores computed for all documents in the corpus, for each
RDFS and OWL language feature, we then present:∑

Rank the sum of PageRank scores for documents in which the language
feature is used.

With respect to
∑

Rank, under the random surfer model of PageRank [55],
given an agent starting from a random location and traversing documents on
(our sample of) the Web of Data through randomly selected dereferenceable
URIs, the

∑
Rank value for a feature approximates the probability with which

that agent will be at a document using that feature after traversing ten links.
In other words, the score indicates the likelihood of an agent, operating over the
Web of Data based on dereferenceable principles, to encounter a given feature
during a random walk.

The graph extracted from the corpus consists of 7.411 million nodes and 198.6
million edges. Table 4 presents the top-10 ranked documents in our corpus, which
are dominated by core meta-vocabularies, documents linked therefrom, and other
popular vocabularies.21

4.2 Survey of RDF(S)/OWL Features

Table 5 presents the results of the survey of RDF(S) and OWL usage in our
corpus, where for features with non-trivial semantics, we present the measures

21 We ran another similar analysis with links to and from core RDF(S) and OWL
vocabularies disabled. The results for the feature analysis remained similar. Mainly
owl:sameAs dropped several positions in terms of the sum of PageRank.

RDFS and OWL Reasoning for Linked Data 113

Table 4. Top ten ranked documents

№ Document URI Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 0.121
2 http://www.w3.org/2000/01/rdf-schema 0.110
3 http://dublincore.org/2010/10/11/dcelements.rdf 0.096
4 http://www.w3.org/2002/07/owl 0.078
5 http://www.w3.org/2000/01/rdf-schema-more 0.049
6 http://dublincore.org/2010/10/11/dcterms.rdf 0.036
7 http://www.w3.org/2009/08/skos-reference/skos.rdf 0.026
8 http://xmlns.com/foaf/spec/ 0.023
9 http://dublincore.org/DCMI.rdf 0.021

10 http://www.w3.org/2003/g/data-view 0.017

mentioned in the previous section, as well as support for the features in various
RDFS/OWL profiles. Those titled EL, QL and RL refer intuitively to the standard
OWL 2 profiles [25]. The RDFS standard is titled RDFS. All other profiles are
non-standard proposals made in the literature. The profile titled RDFS+ refers
to RDFS-Plus as proposed by Allemang and Hendler [1], which extends RDFS
with lightweight OWL features. The profile titled L2 refers to a similar proposal
by Fisher et al. [20] to extend RDFS with some lightweight OWL features.
Description Logic Programs (DLP) was proposed by Grosof et al. [26] in order
to support incomplete OWL reasoning using rules; this proposal was later built
upon in Horst’s pD* profile [65]. The AL profile refers to features that can be
supported with rules that do not requires A-Box (i.e., assertional joins), which
are expensive to compute at scale; the AL profile is used later in Section 5.

In column ‘ST’, we indicate which features have expressions that can be rep-
resented as a single triple in RDF, i.e., which features do not require auxiliary
blank nodes of the form :x or the SEQ production in Table 1 of the OWL 2
Mapping to RDF document [56]. This distinction is motivated by our initial
observations that such features are typically the most widely used in Web data.

From the list of language features, we exclude rdf:type, which trivially ap-
peared in 90.3% of documents. We present the table ordered by the sum of
PageRank measure [

∑
Rank].

Regarding prevalence, we see from Table 5 that owl:sameAs is the most widely
used axiom in terms of documents (1.778 million; 24%) and domains (117;
14.8%). Surprisingly (to us), RDF container membership properties (rdf: *)
are also heavily used (likely attributable to RSS 1.0 documents). Regarding
prominence, we make the following observations:

1. The top six features are those that form the core of RDFS [53].
2. The RDF(S) declaration classes rdfs:Class, rdf:Property are used in

fewer, but more prominent documents than OWL’s versions owl:Class,
owl:DatatypeProperty, owl:ObjectProperty.

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://dublincore.org/2010/10/11/dcelements.rdf
http://www.w3.org/2002/07/owl
http://www.w3.org/2000/01/rdf-schema-more
http://dublincore.org/2010/10/11/dcterms.rdf
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://xmlns.com/foaf/spec/
http://dublincore.org/DCMI.rdf
http://www.w3.org/2003/g/data-view

114 A. Polleres et al.

Table 5. Survey of RDFS/OWL primitives used on the Web of Data and support in
different tractable profiles. ‘∼’ denotes partial support.

№ Primitive
∑

Rank Doc Dom R
D
F
S

L
2

R
D
F
S
+

D
L
P

p
D
*

E
L

Q
L

R
L

A
L

ST

1 rdf:Property 5.74E-01 8,049 48 � X X X � X X X � �
2 rdfs:range 4.67E-01 44,492 89 � � � � � � � � � �
3 rdfs:domain 4.62E-01 43,247 89 � � � � � � � � � �
4 rdfs:subClassOf 4.60E-01 115,608 109 � � � � � � � � � �
5 rdfs:Class 4.45E-01 19,904 43 � X X � � X X X � �
6 rdfs:subPropertyOf 2.35E-01 6,080 80 � � � � � � � � � �
7 owl:Class 1.74E-01 302,701 111 X X � � � � � � � �
8 owl:ObjectProperty 1.68E-01 285,412 92 X X � � X � � � � �
9 rdfs:Datatype 1.68E-01 23 9 ∼ X X ∼ ∼ ∼ ∼ ∼ ∼ ∼

10 owl:DatatypeProperty 1.65E-01 234,483 82 X X � � X � � � � �
11 owl:AnnotationProperty 1.60E-01 172,290 55 X X X � X � � � � �
12 owl:FunctionalProperty 9.18E-02 298 34 X X � � � X X � X �
13 owl:equivalentProperty 8.54E-02 141 23 X � � � � � � � � �
14 owl:inverseOf 7.91E-02 366 43 X � � � � X � � � �
15 owl:disjointWith 7.65E-02 230 27 X X X � X � � � X �
16 owl:sameAs 7.29E-02 1,778,208 117 X � � � � � X � ∼ �
17 owl:equivalentClass 5.24E-02 22,291 39 X � � � � � � � � �
18 owl:InverseFunctionalProperty 4.79E-02 111 24 X X � ∼ � X X � � X
19 owl:unionOf 3.15E-02 15,162 30 X X X ∼ X X X ∼ ∼ X
20 owl:SymmetricProperty 3.13E-02 120 23 X � � � � X � � � �
21 owl:TransitiveProperty 2.98E-02 150 30 X � � � � � X � X �
22 owl:someValuesFrom 2.13E-02 1,753 15 X X X ∼ ∼ � ∼ ∼ ∼ X
23 rdf: * 1.42E-02 293,022 62 � X X X � X X X � �
24 owl:allValuesFrom 2.98E-03 29,084 20 X X X ∼ ∼ X X ∼ X X
25 owl:minCardinality 2.43E-03 33,309 19 X X X ∼ X X X X X X
26 owl:maxCardinality 2.14E-03 10,413 24 X X X ∼ X X X ∼ X X
27 owl:cardinality 1.75E-03 3,170 24 X X X ∼ X X X X X X
28 owl:oneOf 4.13E-04 74 11 X X X ∼ X ∼ X ∼ ∼ X
29 owl:hasValue 3.91E-04 55 14 X X X ∼ � � X � � X
30 owl:intersectionOf 3.37E-04 186 13 X X X � X � ∼ � ∼ X

31 owl:NamedIndividual (2) 1.63E-04 3 2 X X X X X � � � � �
32 owl:AllDifferent 1.55E-04 21 8 X X X X X � X � X X

33 owl:propertyChainAxiom (2) 1.23E-04 14 6 X X X X X � X � X X
34 owl:onDataRange 8.41E-05 3 1 X X X X X X X X X X

35 owl:minQualifiedCardinality (2) 8.40E-05 2 1 X X X X X X X X X X

36 owl:qualifiedCardinality (2) 4.02E-05 2 1 X X X X X X X X X X

37 owl:AllDisjointClasses (2) 4.01E-05 2 2 X X X X X � � � X X

38 owl:maxQualifiedCardinality (2) 4.01E-05 1 1 X X X X X X X ∼ X X

39 owl:ReflexiveProperty (2) 1.30E-05 2 1 X X X X X � � X � �
40 owl:complementOf 1.96E-06 75 4 X X X ∼ X X ∼ ∼ X X
41 owl:differentFrom 7.18E-07 25 7 X X X � X � X � � �
42 owl:onDatatype 2.72E-07 1 1 X X X X X X X X X X
43 owl:disjointUnionOf 6.31E-08 2 2 X X X X X X X X X X

44 owl:hasKey (2) 3.67E-08 1 1 X X X X X � X � X X

45 owl:propertyDisjointWith (2) 2.43E-08 1 1 X X X X X X � � X �
Not Used: rdfs:ContainerMembershipProperty, owl:AllDisjointProperties (2), owl:Annotation (2),

owl:AsymmetricProperty (2), owl:Axiom (2), owl:IrreflexiveProperty (2),

owl:NegativePropertyAssertion (2), owl:datatypeComplementOf (2), owl:hasSelf (2)

3. owl:complementOf and owl:differentFrom are the least prominently used
original OWL features.

4. Of the features new to OWL 2, owl:NamedIndividual is the most promi-
nently used in thirty-first position. Our crawl was conducted nineteen months

RDFS and OWL Reasoning for Linked Data 115

after OWL 2 became a W3C Recommendation (Oct. 2009), where we note
that new OWL 2 features have had little penetration in prominent Web vo-
cabularies during that interim. Further, several OWL 2 features were not
used at all in our corpus.

5. The top eighteen features are expressible with a single RDF triple. The
highest ranked primitive for which this is not the case is owl:unionOf in
nineteenth position, which requires use of RDF collections (i.e., lists). Union
classes are often specified as the domain or range of a given property: the
most prominent such example is the SKOS vocabulary (the seventh highest-
ranked document) which specifies the range of the skos:member property as
the union of skos:Concept and skos:Container.

In terms of profile support, we observe that RDFS has good catchment for a
few of the most prominent features, but otherwise has poor coverage. Aside
from syntactic/declaration features, from the top-20 features (which cover 98%
of the total cumulative rank), L2 misses functional properties(pos=12), disjoint
classes(15), inverse-functional properties(18) and union classes(19). RDFS-Plus
omits support for disjoint(15) and union classes(19). DLP, as defined by Volz [70,
§A], has coverage of all such features, but does not support inverse-functional(18)
datatype properties. pD* does not support disjoint(15) or union classes(19).

Regarding the standard OWL 2 profiles, OWL 2 EL and OWL 2 QL both omit
support for important top-20 features. Neither include functional(12) or inverse-
functional properties(18), or union classes(19). OWL 2 EL further omits support
for inverse(14) and symmetric properties(20). OWL 2 QL does not support the
prevalent same-as(16) feature. Conversely, OWL 2 RL has much better coverage,
albeit having only partial support for union classes(19).

Summing up, we acknowledge that such a survey cannot give a universal or
definitive indication of the most important OWL features for Linked Data. First,
we only survey a limited sample of the Web of Data. Second, the future may (or
may not) see radical changes in how OWL is used on the Web; e.g., OWL 2 terms
may soon enjoy more adoption. Still, Table 5 offers useful anecdotal insights into
the extant trends of adoption of RDFS and OWL on the Web, and what features
are the most crucial to support in a current Linked Data setting.

4.3 Survey of Datatype Use

Implementing the full range of RDF, XSD and OWL datatypes is often costly [18],
with custom code (or an external library) required to support each one. We are
thus interested to see which ones are most important to support.

Aside from plain literals, the RDF semantics defines a single datatype sup-
ported under RDF-entailment: rdf:XMLLiteral [35]. However, the RDF seman-
tics also defines D-entailment, which provides interpretations over a datatypemap
that gives amapping from lexical datatype strings into a value space. The datatype
map may also impose disjointness constraints within its value space. These in-
terpretations allow for determining which lexical strings are valid for a datatype,
which different lexical strings refer to the same value and which to different values,

116 A. Polleres et al.

Table 6. Survey of standard datatypes used on the Web of Data

№ Primitive
∑

Rank Lit Doc Dom D O2

1 xsd:dateTime 4.18E-2 2,919,518 1,092,048 68 � �
2 xsd:boolean 2.37E-2 75,215 41,680 22 � �
3 xsd:integer 1.97E-2 1,015,235 716,904 41 � �
4 xsd:string 1.90E-2 1,629,224 475,397 76 � �
5 xsd:date 1.82E-2 965,647 550,257 39 � X
6 xsd:long 1.63E-2 1,143,351 357,723 6 � �
7 xsd:anyURI 1.61E-2 1,407,283 339,731 16 � �
8 xsd:int 1.52E-2 2,061,837 400,448 31 � �
9 xsd:float 9.09E-3 671,613 341,156 21 � �

10 xsd:gYear 4.63E-3 212,887 159,510 12 � X
11 xsd:nonNegativeInteger 3.35E-3 9,230 10,926 26 � �
12 xsd:double 2.00E-3 137,908 68,682 31 � �
13 xsd:decimal 1.11E-3 43,747 13,179 9 � �
14 xsd:duration 6.99E-4 28,541 28,299 4 X X
15 xsd:gMonthDay 5.98E-4 34,492 20,886 3 � X
16 xsd:short 5.71E-4 18,064 11,643 2 � �
17 rdf:XMLLiteral 4.97E-4 1,580 791 11 � �
18 xsd:gMonth 2.50E-4 2,250 1,132 3 � X
19 rdf:PlainLiteral 1.34E-4 109 19 2 X �
20 xsd:gYearMonth 8.49E-5 6,763 3,080 5 � X
21 xsd:positiveInteger 5.11E-5 1,423 1,890 2 � �
22 xsd:gDay 4.26E-5 2,234 1,117 1 � X
23 xsd:token 3.56E-5 2,900 1,450 1 � �
24 xsd:unsignedByte 2.62E-7 66 11 1 � �
25 xsd:byte 2.60E-7 58 11 1 � �
26 xsd:time 8.88E-8 23 4 3 � X
27 xsd:unsignedLong 6.71E-8 6 1 1 � �
– other xsd/owl dts. not used — — — — — —

and which sets of datatype values are disjoint from each other. An XSD-datatype
map is then defined that extends the set of supported datatypes into those de-
fined for XML Schema, including types for boolean, numeric, temporal, string and
other forms of literals. Datatypes that are deemed to be ambiguously defined (viz.
xsd:duration) or specific to XML (e.g., xsd:QName), etc. are omitted.

The original OWL specification recommends use of a similar set of datatypes
to that for D-entailment, where compliant reasoners are required to support
xsd:string and xsd:integer. Furthermore, OWL allows for defining enumer-
ated datatypes.

With the standardisation of OWL 2 came two new datatypes: owl:real

and owl:rational, along with novel support for xsd:dateTimeStamp. How-
ever, XSD datatypes relating to date, time and Gregorian calendar values are
not supported. OWL 2 also introduced mechanisms for defining new datatypes
by restricting facets of legacy datatypes; however, from Table 5 we note that
owl:onDatatype (used for facet restrictions) has only very few occurrences in
our corpus.

Given this broad collection of datatypes, it is interesting to see which ones are
most commonly used on the Web of Data, and which ones are thus a priority to
support, where we use a similar methodology as presented before. In our corpus,
we found 278 different datatype URIs assigned to literals. Of these, 158 came
from the DBpedia exporter which models SI units, currencies, etc., as datatypes.
Using analogous measures as before, Table 6 lists the top standard RDF(S), OWL

RDFS and OWL Reasoning for Linked Data 117

and XSD datatypes as used to type literals in our corpus. We omit plain literals
which were used in 6.609 million documents (89%). The Lit column indicates
the number of literals with that datatype. D indicates the datatypes supported
by D-entailment with the recommended XSD datatype map. O2 indicates the
datatypes supported by OWL 2.

We make the following observations based on Table 6:

1. The top four standard datatypes are supported by both the traditional XSD
datatype map and by OWL 2.

2. OWL 2 does not support xsd:date(5), xsd:time(26), or the various Grego-
rian datatypes(10,15,18,20,22).

3. Despite not being supported by any standard entailment, xsd:duration(14)
was used in 28 thousand documents across four different domains.

4. Various standard datatypes are not used at all in the data. For example,
xsd:dateTimeStamp, the “new” OWL datatypes, binary datatypes and var-
ious normalised-string/token datatypes did not appear at all.22

4.4 A Profile of OWL for Linked Data?

Our analysis of the adoption of RDFS and OWL has shown that while some
features are broadly adopted on the Web of Data, others are barely adopted at
all. Thus, it would seem possible, for example, to only support some fraction
of the standard OWL features while capturing support for the broad majority
of axioms present on the Web of Data. In Table 5, we already saw that the
most frequently used features corresponds with the ability to represent their
respective axioms in RDF as a single triple (and thus without blank nodes if
being interpreted under the Direct Semantics).

In previous work, we thus proposed the OWL LD (Linked Data) profile, which
is a proper subset of OWL 2 RL supporting only those features that are express-
ible with a single RDF triple [22]. The RDF-Based Semantics of the OWL LD
profile can be (partly) supported by means of a subset of the OWL 2 RL/RDF
rules relating to the supported features. We also provide a grammar under which
the Direct Semantics of the profile can be supported, making (optionally) confor-
mant documents compatible with the OWL Direct Semantics. We propose that
OWL LD – as a practical, terse profile – facilitates greater ease of implementa-
tion for Linked Data reasoning applications, while maintaining high coverage of
commonly used features.

5 Rule-Based Inference for Linked Data: Authoritative
vs. Context-Dependent Reasoning

A common strategy for reasoning over multiple sources is to simply merge them
together and compute the deductive closure over the resulting monolithic RDF

22 In fact, owl:real does not have a lexical space, and thus cannot be written down;
irrational numbers are difficult to write down.

owl:real

118 A. Polleres et al.

graph. However, when dealing with arbitrary sources from the Web, one cannot
expect the data to always adhere to strict rules or to be universally infallible.
Web data is highly heterogeneous and unexpected usage of data and data schema
is common. For example, data can be erroneous or crafted for malicious purposes.
As a consequence, there are risks for a reasoner to infer undesirable logical as-
sertions, which can be harmful for the system. These assertions increase the
noise in the data collection and decrease the precision of the querying system.
In addition, such inferences add an unnecessary computational overhead, which
augments the demand of computational resources and limits the performance of
the system. Therefore, a requirement of inference engines for Web data is the
ability to cope with disparate data quality, where, in fact, incompleteness (with
respect to standard RDFS/OWL profiles) is thus a desirable feature.

In this section, we present two cautious approaches for applying rule-based
inferencing over diverse Linked Data in a robust manner: Context-Dependent
reasoning [17] and Authoritative Reasoning [12]. Both have been designed to
cope with disparate data quality and to work at large scale. However, each ap-
proach has been optimised for different scenarios. Context-Dependent reasoning
is optimised for reasoning over a large number of small graphs, whereas Author-
itative Reasoning is optimised for reasoning over a large single graph.

5.1 Context-Dependent Reasoning

Context-Dependent reasoning has been developed to meet the requirements of
the Sindice search engine project [54]. The Sindice search engine indexes a large
number of Linked Data documents, each of which contains a small RDF graph.
Reasoning over these graphs enables to make explicit what would otherwise be
implicit knowledge, adding value to Sindice’s search engine results to ultimately
be more competitive in terms of precision and recall [50].

The Context-Dependent reasoning approach has been designed to work on a
multitude of small graphs in a distributed manner. Each computing node will
perform the deductive closure of one graph. A data source is divided into small
sub-graphs, e.g., on a per-entity basis or on a per-document basis such as in
the Sindice search engine. Each of these graphs represents a contextual graph.
Larger contextual graphs can be constructed from smaller ones depending on the
needs. For example, one can aggregate all documents that are connected with
owl:sameAs links into a single contextual graph if one needs to reason across
owl:sameAs links.

A fundamental requirement in the design of the Context-Dependent reason-
ing approach has been to confine T-Box claims (aka., terminological claims, aka.
schema claims, as per Table 3) and reasoning tasks into “contexts” in order to
track the provenance of inference results. By tracking the provenance of each
individual T-Box claim, we are able to prevent one ontology to alter the seman-
tics of other ontologies on a global scale. In addition, such a context-dependent
approach provides an efficient distributed computing model which scales linearly
with the amount of data [17].

RDFS and OWL Reasoning for Linked Data 119

To reason over contexts, we assume that the ontologies that these contexts
refer to are either included explicitly with owl:imports declarations or implicitly
by using property and class URIs that dereference directly to the data describing
the ontology itself. This later case should be the standard if the W3C best
practices for publishing ontologies [51] and the Linked Data principles [7] are
followed by data publishers. As ontologies might refer to other ontologies, the
import process then needs to be recursively iterated as explained in the next
section.

A naive approach would be to execute such a recursive fetching for each con-
textual graph and to create an aggregate context [28], i.e., the RDF merge of
the contextual graph and of the imported ontologies. At this point the deductive
closure of the aggregate context can be computed. Such a naive procedure is
however obviously inefficient since a lot of processing time will be used to re-
calculate the T-Box deductions which could be instead reused for possibly large
numbers of other contextual graphs. Thus an ontology base is used to store and
reuse such deductions and is described next.

Reasoning with Contexts. The notions of context and lifting rules presented
in the following are based on Guha’s context mechanism [28]. Its aim is to control
the integration of data and ultimately avoid the aggregation of data that may
result in undesirable inferred assertions.

Within his framework, a Context is a first class resource and denotes the scope
of validity of a statement. The contents of the context are said to be true in that
context. This scope is defined by the symbol ist (“is true in context”), introduced
by Guha in [27]. The notation ist(c, ϕ) states that a proposition ϕ is true in the
context c. Since contexts are first class objects, it becomes possible to define
expressive formulae whose domains and ranges are contexts. An example is the
so called Lifting Rule that enables to lift axioms from one context to another.

An Aggregate Context is a subclass of Context. Its content is composed by the
contents lifted from other contexts. An aggregate context must contain the full
specification of what it imports. In our case, each contextual graph is considered
an Aggregate Context, since it always contains the specification of what it imports
through explicit or implicit import declarations, as explained next.

Import Closure of RDF Models. On the Semantic Web, ontologies are
published in order to be easily reused by third parties. OWL provides the
owl:imports primitive to indicate the inclusion of a target ontology inside an
RDF model. Conceptually, importing an ontology brings the content of that
ontology into the RDF model.

The owl:imports primitive is transitive. That is, an import declaration states
that, when reasoning with an ontology O, one should consider not only the
axioms ofO, but the entire import closure ofO. The import closure of an ontology
O is the smallest set containing the axioms of O and all of the axioms from the
ontologies that O (transitively) imports. For example, if ontology OA imports
OB, and OB imports OC , then OA imports both OB and OC .

120 A. Polleres et al.

Implicit Import Declaration. Most RDF models published on the Web do not
contain explicit owl:imports declarations. For example, among the 228 million
documents in Sindice, only 704 thousand declare at least one owl:imports link;
also the example dbo: and foaf: ontologies23 in our examples do not contain
any explicit owl:imports links. Instead, many RDF models generally refer to
existing ontologies by their classes or property URIs. For example, most FOAF
profile documents do not explicitly import the FOAF ontology, but instead just
directly use the classes and properties of the FOAF vocabulary, which deref-
erence to the FOAF ontology. Following Linked Data principles, the URIs of
the classes and properties defined in an ontology should be dereferenceable and
should provide the machine-processable definition of the vocabulary (presumably
given in RDFS/OWL).

That is, in the presence of dereferenceable class or property URIs, we perform
what we call an implicit import. By dereferencing the URI, we attempt to retrieve
a graph containing the description of the ontological entity identified by this URI
and to include its content inside the source RDF model. The implicit import is
also considered transitive.

Example 5
In Fig. 2, if a RDF model such as dbr:Werner_von_Siemens refers to an
ontological entity such as dbo:Person from the ontology dbo, and if dbo

refers to an ontological entity foaf:Person in an ontology foaf, then the
model imports the two ontologies given by dbo and foaf. ♦

Import Lifting Rules. Guha’s context mechanism defines the importsFrom lifting
rule [28] which corresponds to the inclusion of one context into another. The
owl:imports primitive and the implicit import declaration are easily mapped to
the importsFrom rule.

A particular case is when import relations are cyclic. Importing an ontology
into itself is considered a null action, so if ontology OA imports OB and OB

imports OA, then the two ontologies are considered to be equivalent [4]. Based
on this definition, we extend Guha’s definition to allow cycles in a graph of
importsFrom. We introduce a new symbol eq, and the notation eq(c1, c2) states
that c1 is equivalent to c2, i.e., that the set of propositions true in c1 is identical
to the set of propositions true in c2.

Definition 9 (Cyclic Import Rule). Let c1 and c2 be two contexts. If c1
contains the proposition importsFrom(c1, c2) and c2 the proposition imports-
From(c2, c1), then the two contexts are considered equivalent:

ist(c2, importsFrom(c2, c1)) ∧ ist(c1, importsFrom(c1, c2))→ eq(c1, c2)

23 In reality, the ontology defining the vocabulary in the dbo namespace is split over
many documents: one per class and property term; however, this is not important
for the current discussion.

dbo:
foaf:
dbr:Werner_von_Siemens
dbo:Person
foaf:Person

RDFS and OWL Reasoning for Linked Data 121

Deductive Closure of RDF Models. In Context-Dependent reasoning, the
deductive closure of a graph is the set of assertions that are entailed in the
aggregate context, composed of the graph itself and its ontology import closure.
We now explain how the deductive closure of an aggregate context is performed.
Given two contexts c1 and c2, for example a Linked Data document and an
ontology, their axioms are lifted into an aggregate context labelled c1 ∧ c2. The
deductive closure of the aggregate context is then computed using the rule-based
inference engine.

It is to be noticed that the deductive closure of an aggregate context can lead
to inferred statements that are not true in any of the source contexts alone.

Example 6
In Fig. 2, if a context c1 contains an instance dbr:Werner_von_Siemens of
the class dbo:Person, and a context c2 contains a proposition stating that
dbo:Person is equivalent to foaf:Person, then the entailed conclusion that
dbr:Werner_von_Siemens is a foaf:Person is only true in the aggregate
context c1 ∧ c2:

ist(c1, dbo:Person(x)) ∧
ist(c2, equivalentClass(dbo:Person, foaf:Person))→

ist(c1 ∧ c2, foaf:Person(x))

♦

The set of inferred statements that are not true in any of the source contexts
alone are called aggregate entailments :

Definition 10 (Aggregate Entailment). Let c1 and c2 be two contexts with
respectively two propositions ϕ1 and ϕ2, ist(c1, ϕ1) and ist(c2, ϕ2), and ϕ1∧ϕ2 |=
ϕ3, such that ϕ2 �|= ϕ3, ϕ1 �|= ϕ3; then we call ϕ3 a newly entailed proposition
in the aggregate context c1 ∧ c2. We call the set of all newly defined propositions
an aggregate entailment and denote it as Δc1,c2 :

Δc1,c2 = {ist(c1, ϕ1) ∧ ist(c2, ϕ2) |= ist(c1 ∧ c2, ϕ3)

and ¬(ist(c1, ϕ3) ∨ ist(c2, ϕ3))}

The aggregate entailment property enables the reasoning engine to confine in-
ference results to specific contexts and therefore protects other contexts from
unexpected data usage. Unexpected data usage in one context will not alter the
intended semantics of other contexts if and only if no direct or indirect import
relation exists between them.

dbr:Werner_von_Siemens
dbo:Person
dbo:Person
foaf:Person
dbr:Werner_von_Siemens
foaf:Person

122 A. Polleres et al.

When considering (in our case (Horn) rule-based) RDFS/OWL inferences
only, aggregate contexts enjoy the following monotonicity property24: if the ag-
gregate context c1 ⊆ c2 then ist(c2, φ) implies ist(c1, φ), or respectively, for
overlapping contexts, if ist(c1 ∩ c2, φ) implies both ist(c1, φ) and ist(c2, φ). This
property is exploited in the implementation of the ontology base, which is de-
scribed next, to avoid storing duplicate inferred statements.

Context-Dependent Ontology Base. A problem when reasoning over a large
number of contextual graphs independently is that the process of computing the
ontology import closure and its deductive closure has to be repeated for each
contextual graph. This is inefficient since the computation of the import clo-
sure and the deductive closure is resource demanding and can in fact be reused
for other contextual graphs. The import closure necessitates executing multiple
Web requests that place load on the network and take time, whereas the com-
putation of the deductive closure is CPU bound. In addition, the computation
of the T-Box closure is more CPU intensive than the computation of the A-Box
closure [17]. This observation suggests to focus on the optimisation of the T-Box
closure computation. Thanks to the smaller scale of the T-Box with respect to
the A-Box, we can store the computed ontology import closure as well as the
deductive closure in an ontology base in order to reuse them in later computation.

The ontology base, which can be seen as a persistent context-dependent T-
Box, is in charge of storing any ontology discovered on the Web along with their
import relations. The ontology base also stores the inference results that has been
performed in order to reuse them later. The ontology base serves the inference
engine by providing the appropriate and pre-computed T-Box for reasoning over
a given contextual graph.

Details on the formalisation of the ontology base and of an optimised strategy
to update the ontology base can be found in [17].

Implementation and Scalability. The ontology base is implemented using an RDF
database to store the ontology statements in their context. A secondary index is
used to store the import relations between the contexts. A caching mechanism
is used on top of the ontology base to cache frequent requests. The caching
mechanism is especially useful when processing multiple contextual graphs from
a single data source. Since contextual graphs from a same data source are likely
to be described with the same ontologies, the requests to the ontology base are
identical and the cache hit rate increases.

The reasoning engine that is used by the ontology base is specifically designed
and optimised to compute entailments in memory using a standard bottom-
up semi-naive evaluation approach. Each RDF term in a statement is mapped
to a unique identifier (integer). Statements are indexed using in-memory data
structures, similar to triple tables, in order to lookup any kind of statement
patterns. Rules are then checked against the index in an iterative manner, with

24 We remark here that under the addition of possibly non-monotonic rules to the
Semantic Web architecture, this context monotonicity only holds under certain cir-
cumstances [59].

RDFS and OWL Reasoning for Linked Data 123

one rule being applied at a given iteration. The result of the rule is then added
to the index before proceeding to the next iteration. Iterations continue until
a fixpoint is reached. For rules that requires joins between multiple statements,
since we are working with a small amount of data and a small number of elements,
we rely on an efficient merge-join algorithm where both relations are sorted on
the join attribute using bit arrays. The bit arrays are then intersected using
bitwise operations.

The A-Box reasoning process is distributed by dividing up the large A-Box on
a per-context basis. Each context provides a chunk of data that is distributed to
different computing nodes. A computing node acts independently as an A-Box
reasoner and has its own ontology base. The A-Box rule engine is based on the
same rule engine used by the ontology base.

Since each chunk of data is relatively small, the deductive closure of the A-
Box can be entirely performed in memory without relying on disk accesses. With
respect to other distributed approaches that perform reasoning on the global
model, we avoid reading and writing multiple times the data directly from the
disk, and therefore we obtain better performance. Importantly, the distributed
model scales linearly with the number of available nodes in the cluster since
replicating the ontology base on each machine allows for embarrassingly parallel
execution during A-Box reasoning.25

The Context-Dependent reasoning implementation has been in use by the
Sindice search engine since 2008. The reasoner supports the pD* profile [65],
though the Context-Dependent approach generalises straightforwardly to any
materialisation mechanism. It is running on a Hadoop cluster of 150 computing
nodes as part of the indexing pipeline of Sindice. It has enabled Sindice to reason
over more than 700 million documents, which represents a total of more than 50
billion triples.

5.2 Authoritative Reasoning

The Authoritative reasoning algorithm was developed to provide RDFS and
OWL materialisation support in the context of the Semantic Web Search En-
gine (SWSE) project [40], with similar proposals made in the context of reason-
ing over class hierarchies for the Falcons search engine [15]. As opposed to the
Context-Dependent method, which partitions the problem of reasoning into a
large collection of (relatively) small contexts, the Authoritative reasoning algo-
rithm rather considers a single large RDF graph (in line with its SWSE use-case).
Tackling the fallibility of Web data, Authoritative reasoning builds a single global
T-Box that only includes axioms from “trusted sources”. The core intuition of
authoritative reasoning is that the T-Box axioms extracted from an ontology on
the Web should only be able to affect reasoning over data that instantiates the
terms in that ontology’s namespace.

25 That is, no communication is required between machines, where each can thus pro-
cess their own content independently

124 A. Polleres et al.

Example 7
In the data we merge from various Web sources, assume we find the follow-
ing two triples, both of which we consider to be T-Box axioms and neither
of which we initially know whether to trust or not:

foaf:Person rdfs:subClassOf geo:SpatialThing .

foaf:Person rdfs:subClassOf ex:EvilEntity .

Let’s take three triples instantiating the classes involved:

ex:Fred a foaf:Person .

ex:Jill a geo:SpatialThing .

ex:Tim a ex:EvilEntity .

Under RDFS semantics, these triples have the following corresponding en-
tailments:

ex:Fred a geo:SpatialThing .

ex:Fred a ex:EvilEntity .

According to the semantics of rdfs:subClassOf, the original T-Box axioms
only affect the inferences possible over data instantiating the foaf:Person
class. As to whether these T-Box axioms can be trusted, we thus ask:
are either of these T-Box axioms given in the document dereferenced by
foaf:Person? The first one is indeed in the FOAF ontology, and hence can
be trusted (and is considered “authoritative” along with its inferences). The
second one is not, and will not be considered by the authoritative reasoning
process. ♦

This intuitive notion of which sources to trust for individual T-Box axioms
then relies on two prerequisites:

T-Box distinguishable from A-Box: We assume that T-Box triples in the
data (and triple patterns in the rules) can be distinguished from A-Box
triples.

Authoritative relation: We assume an authoritative relation that maps from
an RDF document to a set of RDF terms it can speak authoritatively about.

We now discuss these general prerequisites in more detail for the setting of
applying RDFS/OWL reasoning over Linked Data.

T-Box distinguishable from A-Box. We discussed previously that T-Box data
intuitively refers to ontological/schema definitions using the RDFS and OWL
standards to define the semantics of classes and properties in a vocabulary. This
intuition is sufficient for our purposes, where more precise definitions of T-Box
and A-Box in the context of Authoritative reasoning are provided, e.g., in [12].

RDFS and OWL Reasoning for Linked Data 125

Loosely related to the notion of meta-modelling in OWL, our A-Box also
contains the T-Box data (but not vice-versa). Thus, we can reason over schema
triples analogous to if they were assertions. We also split the body of rules into
a (possibly empty) A-Box and (possibly empty) T-Box graph pattern, where we
define a T-Box triple pattern as any pattern that can only unify with a T-Box
triple, and we define an A-Box triple pattern as the complement.

Example 8
Take the following OWL rule (cax-eqc1 in OWL 2 RL/RDF):

(?X, a, ?C2)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C1)

The first (underlined) triple pattern in the body is considered T-Box since
it can only be matched by T-Box triples. The second triple pattern in the
body is considered A-Box because it is not a T-Box pattern. We do not
need to categorise the head of the rule in this manner. Of course, the A-Box
pattern in the body may also match a T-Box triple, as per the previous
meta-modelling discussion. ♦

Authoritative reasoning then involves checking the source of T-Box knowl-
edge. Incorrect or malicious T-Box triples are the most “dangerous” in a rea-
soning context, where, for example, if a dataset contains millions of instances of
foaf:Person, a single T-Box triple stated in an arbitrary location – such as one
of the following

foaf:Person rdfs:subClassOf ex:EvilEntity .

foaf:Person rdfs:subClassOf owl:Nothing .

can affect inferences computed for all the millions of instances of foaf:Person
defined in Linked Data.

Authoritative Relation. Next, we need to establish a relationship between RDF
sources and the set of RDF terms they speak authoritatively for. In the Linked
Data setting, we can establish this authoritative relation by directly using the
notion of dereferencing.

Definition 11 (Authoritative sources for terms). We denote a mapping
from a source URI to the set of terms it speaks authoritatively for as follows:

auth : S→ 2C

s 	→ {c ∈ U | redirs(c) = s} ∪
(
terms(get(s)) ∩ B

)
A source is thus authoritative for all URIs that dereference to it and all blank
nodes it mentions. This formalises, for example, the intuitive relationship that
exists between the FOAF ontology and the set of terms in the foaf:* namespace

126 A. Polleres et al.

that dereference to it.26 No document is considered authoritative for literals,
though this has little effect on the reasoning process.

Authoritative reasoning is applied over a Linked Dataset as given in Defini-
tion 1, which tracks the source associated with each RDF graph. Furthermore,
the algorithm requires knowledge about redirects to establish the authoritative
function. In practice, these data are replicated locally for the reasoning engine
to access; the reasoner does not perform live lookups.

Authoritative Reasoning. The primary goal of the authoritative reasoning pro-
cess is to safe-guard widely used vocabularies from redefinition in arbitrary lo-
cations. Precise definitions and guarantees for authoritative reasoning are given
elsewhere in [38,12]. Here sketching the main intuition, given an ontology O
providing a set of T-Box axioms and G an arbitrary RDF graph (e.g., a Web
document or a merge of documents), if G does not mention any term for which
O is authoritative, and O is not an implicit import of such a document, then we
do not want the T-Box axioms provided by O to affect materialisation over G.

Thus, for example, ifG instantiates vocabulary terms from the FOAF ontology
but not from the DBpedia ontology, then the T-Box extracted from DBpedia
should not affect inferencing over the A-Box of G. The implicit imports of the
FOAF ontology can, however, affect inferencing over the T-Box of G, even if their
terms are not explicitly mentioned. For example, the FOAF ontology states that
foaf:Person is a sub-class of geo:SpatialThing; if G contains instances of
foaf:Person, they will be inferred to be instances of geo:SpatialThing and it
will then be the prerogative of the corresponding WGS84 Geo Ontology to define
what inferences are possible over the latter class, even though the corresponding
class is not explicitly referenced by G.

Whether or not a T-Box axiom is considered authoritative then directly de-
pends on the rules being applied in the reasoning process. In fact, a T-Box axiom
may be authoritative with respect to one rule and not another.

Example 9
Take the following T-Box triple from Fig. 1:

dbo:Person owl:equivalentClass foaf:Person .

This triple is given by the document that dbo:Person dereferences to. If
we then take OWL 2 RL/RDF rule cax-eqc1 mentioned in Example 8:

(?X, a, ?C2)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C1)

the T-Box triple is authoritative for this rule since it translates data about
dbo:Person instances into foaf:Person instances.

26 The source URI will often not share the namespace of the URIs it is authoritative
for since redirects (esp. PURLS) are commonly used for dereferencing schemes.

RDFS and OWL Reasoning for Linked Data 127

Now, if we take the same T-Box triple but instead take OWL 2 RL/RDF
rule cax-eqc2:

(?X, a, ?C1)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C2)

the T-Box triple is no longer authoritative since it translates instance data
about foaf:Person into dbo:Person instances, and as justified before, we
do not want the DBpedia ontology document to be able to affect inferences
over (FOAF) data that do not contain any DBpedia terms for which the
document is authoritative. ♦

Thus, we see that T-Box axioms are only authoritative with respect to the
rule(set) under consideration. When applying rules over the data, we can then
apply a relatively straightforward (and slightly stricter) condition to ensure that
the T-Box axiom matched in the body of the rule will lead to an authoritative
inference. Recall that the document serving the T-Box axiom should be authori-
tative for at least one term mentioned in the A-Box being reasoned over. We thus
look at the terms bound to variables that appear in both the T-Box and A-Box
part of the rule body. For a given rule application, if the document providing
the T-Box axiom is authoritative for at least one such term, we deem the rule
application to be authoritative; otherwise we consider it to be non-authoritative.

Example 10
From the previous example, if we look at rule cax-eqc1, the only variable
common to the T-Box and A-Box segments of the rule body is ?C1. Taking
the given T-Box axiom, ?C1 is bound to dbo:Person for which the T-Box
source is authoritative. Hence, for any triple of the form (?X, a, dbo:Person)
in our A-Box data, we can authoritatively infer the corresponding triple of
the form (?X, a, foaf:Person).

Instead taking rule cax-eqc2, the only variable common to the T-Box and
A-Box segments of the rule body is ?C2. For the given T-Box axiom, ?C2 is
bound to foaf:Person for which the DBpedia ontology is not authoritative.
Hence, for any A-Box triple of the form (?X, a, foaf:Person) in our data,
authoritative reasoning will block the inference of (?X, a, dbo:Person) (unless
the T-Box axiom is also given in the FOAF ontology, which in reality it is
not). ♦

If a rule contains only T-Box or only A-Box patterns in its body, authoritative
reasoning does not block the inferences. Any inferences from T-Box level rea-
soning are assigned to the context of the source from which all of the premises
originate; if a T-Box level inference involves premises from multiple documents,

128 A. Polleres et al.

it is not considered to have any fixed source and can never be authoritative.27

Standard Authoritative reasoning does not affect rules consisting of only A-
Box patterns, which includes rules that provide owl:sameAs entailments over
instances (see Table 3).

Implementation and Scalability Unlike the Context-Dependent reasoning algo-
rithm, Authoritative reasoning does not partition the problem of reasoning into
small contexts. Instead, Authoritative reasoning requires applying inference over
the entire dataset in “one go”. Thus, the methods of inference applied must scale
to the entire dataset (and not just individual contexts). We implement such
methods in the Scalable Authoritative OWL Reasoner (SAOR) [41], designed to
apply lightweight OWL reasoning over large collections of diverse Linked Data.
The reasoning process is divided into two distinct phases, as follows:

Compute T-Box. The T-Box is extracted from the main body of data and
axioms are analysed for authoritativeness with respect to the given ruleset.
If required, T-Box level reasoning is applied.

Reason over A-Box. The A-Box is reasoned over with respect to the global
authoritative T-Box built in the previous phase.

In terms of scalability, when dealing with large collections of Linked Data, we ob-
serve that the T-Box is generally quite small (e.g., typically < 0.1% of the total
triple count [41]) and is frequently accessed during the reasoning process; hence
we load the T-Box into memory such that it can be accessed efficiently. Further-
more, a variety of papers have demonstrated that splitting the T-Box from the
main body of data allows for effective distributed computation of materialised
inferences [72,69,41,68], where (similar to Context-Dependent reasoning) the T-
Box is replicated to each machine performing inference. Indeed, if the ruleset
does not contain any rules with more than one A-Box pattern in the body (as
is the case for, e.g., the RDFS inference rules [cf. Table 3] and for rules cax-sco,
cax-eqc1 and cax-eqc2 introduced previously in the examples), then this form
of distributed materialisation can reason over the A-Box in an embarrassingly
parallel fashion for any arbitrary distributed partitioning of the A-Box data.
Rules with multiple A-Box patterns in the body require joins over the very large
A-Box (typically between machines), and in many cases, such rules can produce
huge volumes of materialisations; for example, transitive-property reasoning is
quadratic with respect to the extension of that property in the A-Box.

An important practical question then is how much is lost by not consider-
ing rules that have multiple A-Box patterns in the body? In Table 5, the AL

profile lists the features that can be supporting using “A-Linear rules”: rules
with only one assertional pattern [41]. In SAOR, we implement A-Linear OWL

27 In any case, informally, we can conjecture that terminology-specific reasoning in rule-
sets such as OWL 2 RL/RDF is (often) redundant with respect to assertional infer-
encing applied recursively; for example, performing the transitive closure of sub-class
relations is only necessary to infer sub-class relations, where recursive application of
cax-sco will infer all assertions without it.

RDFS and OWL Reasoning for Linked Data 129

2 RL/RDF rules: the intersection of AL and RL. One of the most prominent fea-
tures we lose is the ability to reason over owl:sameAs relations; both to infer
such relations through, e.g., functional properties and inverse-functional proper-
ties, and to support the semantics of equality as per the rules in Table 3 (only
eq-sym is A-Linear).

In terms of completeness with respect to standard bottom-up rule-evaluation
(i.e., without any distinction between T-Box or A-Box), the main limitation of
considering a separate static T-Box while reasoning over the A-Box is that it
can lead to incompleteness if new T-Box triples are found while reasoning over
the A-Box [41] (these triples will not be reflected in the T-Box). Inference of
T-Box triples during A-Box reasoning can occur due to non-standard use of the
core RDFS or OWL vocabulary (see Section 3). Workarounds for this problem
are possible: for example to recursively identify and reason over non-standard
triples in a pre-processing step, etc. However, non-standard use of the RDF(S)
and OWL vocabulary is not found often in Linked Data, with notable exceptions
being, e.g., the RDFS axiomatic triples and the documents dereferenced by the
RDF, RDFS and OWL terms themselves.

In the SAOR system, following previous papers [72,69], we also perform A-Box
reasoning in a distributed setting. We have evaluated the applicability of SAOR
over 1 billion Linked Data triples taken from 4 million Linked Data documents.
Using a variety of optimisations for our A-Linear profile of OWL 2 RL/RDF, on
a cluster of nine machines with 4GB of RAM and 2.2 GHz single-core processors,
we computed 1 billion unique and authoritative inferences in about 3.5 hours [41],
roughly doubling the input size. Without considering the authority of inferences,
we estimated that the volume of materialisation would increase by 55×, even for
the lightweight reasoning profile being considered [12].

5.3 Comparison and Open Issues

Meeting the Challenges Tackling C1 (scalability) in the list of challenges enumer-
ated in Section 3, both Context-Dependent reasoning and Authoritative reason-
ing use distributed computing and partitioning techniques and various rule-based
optimisations to enable high levels of scale.

Tackling C2 (impure and fallible OWL), both approaches analyse the source
of input axioms and apply cautious materialisation, where incompleteness with
respect to standard OWL profiles is thus a feature, not a “bug”.28 Both ap-
proaches can use rule-based inferencing to support an incomplete RDF-Based
semantics, which does not require input graphs to conform to OWL 2 DL re-
strictions enforced by OWL’s Direct Semantics.

Regarding C3 (inconsistencies), both approaches use monotonic rule-based
reasoning techniques that do not reduce the deductive reasoning process to un-
satisfiability checking, and thus do not fall into “ex falso quod libet”. Inconsis-
tencies can be ignored. However, in the case of SAOR, we have also looked at
resolving the contradictions presented by inconsistencies: we investigated using

28 Importantly, a non-standard version of completeness can be rigorously defined in
both cases. See, e.g., [41] for details in the SAOR case.

130 A. Polleres et al.

an annotated logic program framework to rank assertions under a PageRank
model, where the marginal assertion in a contradiction is defeated [12].

With respect to C4 (dynamic Linked Data), Context-Dependent reasoning
allows entailments to be updated on a context-by-context basis, where changes
to the ontology base can also be efficiently supported (see [17]); Authoritative
reasoning does not directly support incremental updates, where truth mainte-
nance techniques would be required. (The following section presents an approach
that better handles reasoning and querying over Linked Data in highly dynamic
scenarios.)

With respect to C5 (more than RDFS/OWL required), both approaches gen-
eralise to the application of arbitrary rule-based reasoning, where the Context-
Dependent framework – a means to manage contexts – generalises further to any
form of deductive (or even inductive) reasoning process, as required.

Comparison of Both Approaches. In terms of the differences between both ap-
proaches, the Context-Dependent approach is designed to run over small con-
texts, typically involving one “assertional” document and its recursive ontology
imports. Although the framework can handle aggregate contexts, the larger these
aggregate contexts become, the closer Context-Dependent reasoning resembles
the näıve case of standard reasoning over a monolithic graph. Thus, Context-
Dependent reasoning is not well-suited to deriving entailments across assertional
documents. The T-Box generated during Authoritative reasoning can be used to
cautiously derive entailments across assertional documents (effectively reflecting
a common consensus for a T-Box across all contexts); however, in practice, to
achieve scalability, the A-Linear profile disables such inferences.

Conversely, Context-Dependent reasoning trusts all axioms in a local context,
whereas Authoritative reasoning does not. In other words, Context-Dependent
reasoning allows non-authoritative reasoning within contexts, which Authorita-
tive reasoning never allows. With reference to Example 9, if a document imports
the DBpedia ontology involved, Context-Dependent reasoning will permit trans-
lating foaf:Person instances into dbo:Person instances, whereas Authoritative
reasoning will not.

Support for same-as? A primary limitation common to both approaches is the
inability to effectively reason over owl:sameAs relations. Context-Dependent rea-
soning can only process such relations with a single context, which will miss the
bulk of equivalence relations between assertional documents. In theory, Author-
itative reasoning can support owl:sameAs inferences, but for scalability reasons,
rules with A-Box joins are disabled in the SAOR implementation. However, in
other more focussed works, we have looked at specialised methods for authori-
tative reasoning of owl:sameAs relations in a Linked Data setting [42].

Indeed, owl:sameAs can produce huge volumes of inferences: in previous
work [42], we found 33,052 equivalent terms within a single (correct) owl:sameAs
clique, which would require 33, 0522 = 1, 092, 434, 704 triples just to materi-
alise the pair-wise and reflexive owl:sameAs relations between terms in this one
group, even before applying any of the eq-rep-* rules for replacement. Given the
importance of owl:sameAs reasoning for aligning entities in Linked Data, the

foaf:Person
dbo:Person

RDFS and OWL Reasoning for Linked Data 131

potential expense of such reasoning, and given that equivalence relations cannot
be universally trusted on the Web [29], a number of works have tackled this is-
sue with specialised techniques and optimisations [42,44,68]. For example, most
systems supporting owl:sameAs reasoning at large scale use a single canonical
identifier to represent each set of equivalent identifiers, avoiding the explosion
of data that could otherwise occur [39,42,68,11]. In previous work, we applied
authoritative reasoning to compute owl:sameAs relations from functional and
inverse-functional properties and cardinality restrictions [42].

Interestingly, Hu et al. [42] investigate a notion of authority for owl:sameAs
inferencing, assigning a level of trust to such a relation based on whether the
given document is authoritative for the subject or object or both of a same-as
relation (here applying authority on an A-Box level). In any case, we note that
owl:sameAs is an important reasoning feature in the context of Linked Data,
but similarly requires specialised techniques – that go beyond a generic reasoning
framework – to handle effectively in scalable, real-world settings.

6 Enriching Link-Traversal Based Querying of Linked
Data by Reasoning

As discussed previously, data-warehousing approaches – such as those introduced
in the previous section – are not well suited for reasoning and querying over
highly dynamic Linked Data. Content replicated in local indexes will quickly
become out-of-date with respect to the current version of the respective sources
on the Web. However, we referred in the introduction to the vision of the Web of
Data itself as being a giant database spanning the Web, where certain types of
queries can be posed and executed directly over the sources it contains. Such an
approach for executing SPARQL queries directly over the Web of Data – called
Link Traversal Based Query Execution (LTBQE) – was first proposed by Hartig
et al. [33] (§ 6.1). However, the original approach did not offer any reasoning
capabilities; indeed, no existing reasoning approaches at the time would seem
suitable for such a scenario.

In this section, we first describe the LTBQE algorithm (a comprehensive study
of the semantics and computability of LTBQE has been covered in [32]), complete
with formal definitions and illustrative examples, motivate why RDFS/OWL
reasoning is useful in such a setting, and then discuss methods we have ourselves
since proposed to support such reasoning features.

6.1 Overview of Baseline LTBQE

Given a SPARQL query, the core operation of LTBQE is to identify and retrieve
a focused set of query-relevant RDF documents from the Web of Data from
which answers can be extracted. The approach begins by dereferencing URIs
found in the query itself. The documents that are returned are parsed, and
triples matching patterns of the query are processed; the URIs in these triples
are also dereferenced to look for further information, and so forth. The process
is recursive up to a fixpoint wherein no new query-relevant sources are found.

132 A. Polleres et al.

New answers for the query can be computed on-the-fly as new sources arrive. We
now formally define the key notion of query-relevant documents in the context
of LTBQE, and give an indication as to how these documents are derived. 29

Definition 12 (Query Relevant Sources & Answers). First let uris(μ) :=
{u ∈ U | ∃v s.t. (v, u) ∈ μ} denote the set of URIs in a solution mapping μ.
Given a query Q and an intermediate dataset Γ , we define the function qrel,
which extracts from Γ a set of URIs that can (potentially) be dereferenced to
find further sources deemed relevant for Q:

qrel(Q,Γ) :=
⋃

tp∈Q

⋃
μ∈[[{tp}]]Γ

uris(μ)

To begin the recursive process of finding query-relevant sources, LTBQE takes
URIs in the query—denoted with UQ := terms(Q)∩U—as “seeds”, and builds an

initial dataset by dereferencing these URIs: ΓQ
0 := derefs(UQ). Thereafter, for

i ∈ N, define:30

ΓQ
i+1 := derefs

(
qrel(Q,ΓQ

i)
)
∪ ΓQ

i

The set of LTBQE query relevant sources for Q is given as the least n such
that ΓQ

n = ΓQ
n+1, denoted simply ΓQ. The set of LTBQE query answers for Q

is given as [[Q]]ΓQ , or simply denoted ��Q��.

Example 11
We illustrate this core concept of LTBQE query-relevant sources with a
simple example based on Fig. 2. Let us consider our example Query 3.

First, the process extracts all raw query URIs:

UQ = {nyt:4958--, nytimes:latest use, owl:sameAs, dbo:revenueUSD}

and the engine dereferences these URIs. Second, LTBQE looks to extract
additional query relevant URIs by seeing if any query patterns are matched
in the current dataset. LTBQE repeats the above process until no new
sources are found. When no other query-relevant URIs are found, a fix-
point is reached and the process terminates with the results given over the
retrieved “query-relevant documents”. ♦

6.2 (In)Completeness of LTBQE

An open question is the decidability of collecting query-relevant sources: does
it always terminate? This is dependent on whether one considers the Web of

29 This is similar in principle to the generic notion of reachability introduced previ-
ously [34,32], but relies here on concrete HTTP specific operations.

30 In practice, URIs need only be dereferenced once; i.e., only URIs in qrel(Q,ΓQ
i) \

(qrel(Q,ΓQ
i−1) ∪ UQ) need be dereferenced at each stage.

RDFS and OWL Reasoning for Linked Data 133

Data to be infinite or finite. For an infinite Web of Data, this process is indeed
undecidable [32]. To illustrate this case, Hartig [32] uses the example of a Linked
Data server describing all natural numbers31, where each n ∈ N is given a deref-
erenceable URI, each n has a link to n + 1 with the predicate ex:next, and a
query with the pattern “?n ex:next ?np1 .” is given. In this case, the traver-
sal of query-relevant sources will span the set of all natural numbers. However,
if the (potential) Web of Data is finite, then LTBQE is decidable; in theory, it
will terminate after processing all sources. The question of whether the Web (of
Data) is infinite or not comes down to whether the set of URIs is infinite or not:
though they may be infinite in theory [8] (individual URIs have no upper bound
for length), they are finite in practice (machines can only process URIs up to
some fixed length).32

Of course, this is a somewhat academic distinction. In practice, the Web of
Data is sufficiently large that LTBQE may end up traversing an infeasibly large
number of documents before terminating. A simple worst case would be a query
with an “open pattern” consisting of three variables.

Example 12
The following query asks for data on the founders of dbr:SAP AG:

SELECT ?s ?p ?o WHERE {

dbr:SAP_AG dbo:foundedBy ?s .

?s ?p ?o .

}

The first query-relevant sources will be identified as the documents deref-
erenced from dbr:SAP AG and dbo:foundedBy. Thereafter, all triples in
these documents will match the open pattern, and thus all URIs in these
documents will be considered as potential query-relevant links. This will
continue recursively, crawling the entire Web of Data. Of course, this prob-
lem does not occur only for open patterns. One could also consider the
following query which asks for the friends of the founders of dbr:SAP AG:

SELECT ?o WHERE {

dbr:SAP_AG dbo:foundedBy ?s .

?s foaf:knows ?o .

}

This would end up crawling the connected Web of FOAF documents, as
are linked together by dereferenceable foaf:knows links. ♦

31 Such a server has been made available by Vrandeč́ıc et al. [71], but unfortunately
stops just shy of a billion. See, e.g.,
http://km.aifb.kit.edu/projects/numbers/web/n42 .

32 It is not clear if URIs are (theoretically) finite strings. If so, they are countable [32].

http://km.aifb.kit.edu/projects/numbers/web/n42

134 A. Polleres et al.

Partly addressing this problem, Hartig et al. [33] defined an iterator-based
execution model for LTBQE, which rather approximates the answers provided
by Definition 12. This execution model defines an ordering of triple patterns in
the query, similar to standard nested-loop join evaluation. The most selective
patterns (those expected to return the fewest bindings) are executed first and
initial bindings are propagated to bindings further up the tree. Crucially, later
triple patterns are partially bound when looking for query-relevant sources. Thus,
taking the previous example, the pattern “?s foaf:knows ?o .” will never be
used to find query-relevant sources, but rather partially-bound patterns like
“dbr:Werner Von Siemens foaf:knows ?o .” will be used. As such, instead
of retrieving all possible query-relevant sources, the iterator-based execution
model uses interim results to apply a more focused traversal of the Web of Data.
This also makes the iterator-based implementation order-dependent: results may
vary depending on which patterns are executed first and thus answers may be
missed. However, it does solve the problem of traversing too many sources when
low-selectivity patterns are present in the query.

Whether defined in an order-dependent or order-independent fashion, LTBQE
will often not return complete answers with respect to the Web of Data [32]. We
now enumerate some of the potential reasons LTBQE can miss answers.

Example 13

No dereferenceable query URIs: The LTBQE approach cannot return re-
sults in cases where the query does not contain dereferenceable URIs. For
example, consider posing the following query against Fig. 2:

SELECT ?s ?p WHERE {

?s ?p nytimes:nytd_org .

}

As previously explained, the URI nytimes:nytd org is not dereferenceable
(deref(nytimes:nytd org) = ∅) and thus, the query processor cannot com-
pute and select relevant sources from interim results. ♦

Example 14

Unconnected query-relevant documents: Similar to the previous case of
reachability, the number of results might be affected if query relevant doc-
uments cannot be reached. This is the case if answers are “connected” by
literals, blank-nodes or non-dereferenceable URIs. In such situations, the
query engine cannot discover and dereference further query relevant data.
The following query illustrates such a case:

RDFS and OWL Reasoning for Linked Data 135

SELECT ?comp ?name WHERE {

dbr:SAP_AG foaf:name ?name .

?comp skos:prefLabel ?name .

}

Answers (other than dbr:SAP AG) cannot be reached from the starting URI
dbr:SAP AG because the relevant documents are connected together by the
literal "SAP AG", which cannot be traversed as a HTTP link. ♦

Example 15

Dereferencing partial information: In the general case, the effectiveness
of LTBQE is heavily dependent on the amount of data returned by the
deref(u) function. In an ideal case, dereferencing a URI u would return all
triples mentioning u on the Web of Data. However, this is not always the
case; for example:

SELECT ?s WHERE {

?s owl:sameAs dbr:SAP_AG .

}

This quite simple query cannot be answered by link-traversal techniques
since the triple “nyt:75293219995342479362 owl:sameAs dbr:SAP AG .”
is not accessible by dereferencing dbr:SAP AG or owl:sameAs. ♦

The assumption that all RDF available on the Web of Data about a URI u
can be collected by dereferencing u is clearly idealised; hence, later in Section 6.4
we will empirically analyse how much the assumption holds in practice, giving
insights into the potential recall of LTBQE on an infrastructural level.

6.3 LiDaQ: Extending LTBQE with Reasoning

Partly addressing some of the shortcomings of the LTBQE approach in terms of
completeness (or, perhaps more fittingly, recall), Hartig et al. [33] proposed an
extension of the set of query relevant sources to consider rdfs:seeAlso links,
which sometimes overcomes the issue of URIs not being dereferenceable (as per
nytimes:nytd org in our example).

On top of this extension, we previously proposed a system called “LiDaQ”
that extends the baseline LTBQE approach with components that leverage
lightweight RDFS and owl:sameAs reasoning in order to improve recall. Formal

136 A. Polleres et al.

definitions of the extensions we propose are available in our paper describing
LiDaQ [67]. Here we rather sketch our proposals and provide intuitive examples.

Considering owl:sameAs Links and Inferences. First, we propose following
owl:sameAs links, which, in a Linked Data environment, are used to state that
more information about the given resource can be found elsewhere under the
target URI. Thus, to fully leverage owl:sameAs information, we first propose
to follow relevant owl:sameAs links when gathering query-relevant sources and
subsequently apply owl:sameAs reasoning, which supports the semantics of re-
placement for equality, meaning that information about equivalent resources is
mapped to all available identifiers and made available for query answering. We
illustrate the need for such an extension with the following example:

Example 16
Consider the following query asking for the revenue(s) of the company
identified by the URI nyt:75293219995342479362.

SELECT ?rev WHERE {

nyt:75293219995342479362 dbo:revenueEUR ?rev .

}

When applying this query over the data in Fig. 2, the owl:sameAs rela-
tionship between nyt:75293219995342479362 and dbr:SAP AG states that
both URIs are equivalent and referring to the same real world entity, and
hence that the information for one applies to the other. Hence, the revenue
associated with dbr:SAP AG should be returned as an answer according to
OWL semantics. However, the baseline LTBQE approach will not return
any answers since such equality relations are not considered. In summary,
to answer this query, LTBQE must be extended to follow owl:sameAs links
and apply reasoning to materialise inferences with respect to the semantics
of replacement. ♦

To return answers for such examples, LTBQE needs to be extended to follow
owl:sameAs links and apply reasoning. Thus, the set of query-relevant sources is
extended to also consider documents dereferenced by looking up URIs that are
equivalent to query-relevant URIs (such as dbr:SAP AG in the previous example)
and subsequently applying the Same-As subset of OWL 2 RL/RDF rules given
in Table 3 over the merge of data, which performs replacement for equivalent
terms related through owl:sameAs.

Considering RDFS Inferences. Second, we can extend LTBQE to consider
some lightweight RDFS reasoning, which takes schema-level information from
pertinent vocabularies and ontologies that describe the semantics of class and

RDFS and OWL Reasoning for Linked Data 137

property terms used in the query-relevant data and uses it to infer new knowl-
edge. We motivate the need for RDFS reasoning with another straightforward
example:

Example 17
Consider the following query asking for the label(s) of the company identi-
fied by the URI dbr:IBM.

SELECT ?label WHERE {

dbr:IBM rdfs:label ?label .

}

When applying this query over the data in Fig. 2, baseline LTBQE will
return the answer “IBM”. However, from the schema data (right-hand side
of the example), we can see that the foaf:name property is defined in
RDFS as a sub-property of rdfs:label. Hence, under RDFS semantics,
we should also get “International Business Machines Corporation”
as an additional answer. As such, considering RDFS inferencing can help
find more answers under the LTBQE approach. ♦

Thus we can extend LTBQE to apply further reasoning and generate more
answers. Although our LiDaQ proposal only considers the RDFS rules enumer-
ated in Table 3, the approach can be generalised to other more comprehensive
rule-sets, such as OWL 2 RL/RDF.

As a first step, we must make (RDF) schema data available to the query
engine, where we propose three mechanisms:

1. a static collection of schema data are made available as input to the engine
(e.g., the schema data from Fig. 2 are made available offline to the engine);

2. the properties and classes mentioned in the query-relevant sources are deref-
erenced to dynamically build a direct collection of schema data (e.g., since
mentioned in the dbr:IBM query-relevant document, foaf:name is derefer-
enced to get the schema data at runtime); and

3. the direct collection of dynamic schema data is expanded by recursively
following links on a schema level (e.g., not only is foaf:name dereferenced,
but rdfs:label is also recursively dereferenced from that document).

The first approach follows the proposals for Authoritative reasoning laid out
in the previous section, whereas the latter two approaches follow a “live” ver-
sion of proposals for Context-Dependent reasoning, where the second mechanism
includes direct implicit imports and the third mechanism includes recursive im-
plicit imports (as argued in that section, since owl:imports is quite rare within
a Linked Data setting, we omit its support for brevity).

138 A. Polleres et al.

Using the schema data collected by one of these methods, in the second step,
we apply rule-based RDFS reasoning to materialise inferences and make them
available for query-answering. Thus we can achieve the types of answers missing
from the example.

6.4 Benefit of LTBQE Reasoning Extensions

Taken together, the two proposed reasoning extensions for LTBQE allow any
client with a Web connection to answer queries, such as given in Example 4, and
retrieve a full set of answers fresh from the original sources, potentially spanning
multiple domains. The client does not need to index the sources in question.

With respect to generalising the benefits of reasoning, we now briefly sum-
marise results of an empirical study we conducted to examine how LTBQE and
its extensions can be expected to perform in practice; details can be found in [67].
The study took a large crawl of the Web of Data (the BTC’11 corpus) as a sample
and surveyed the ratio of all triples mentioning a URI in our corpus against those
returned in the dereferenceable document of that URI; this is done for different
triple positions. In addition, the study also looks at the comparative amount of
raw data about individual resources considering (1) explicit, dereferenceable in-
formation; (2) including rdfs:seeAlso links [33]; (3) including owl:sameAs links
and inferences; (4) including RDFS inferences with respect to a static schema.

The study reports that, in the general case, LTBQE works best when a subject
URI is provided in a query-pattern, works adequately when only (non-class)
object URIs are provided, but works poorly when it must rely on property URIs
bound to the predicate position or class URIs bound to the object position.
Furthermore, we found that rdfs:seeAlso links are not so common (found
in 2% of cases) and do not significantly extend the raw data made available
to LTBQE for query-answering. Conversely, owl:sameAs links are a bit more
common (found in 16% of cases) and can increase the raw data made available
for answering queries significantly (2.5×). Furthermore, RDFS reasoning often
(81% of the time) increases the amount of available raw data by a significant
amount (1.8×).

We also tested the effect of these extensions for running queries live over
Linked Data. We generated a large set of queries intended to be answerable us-
ing LTBQE by means of random walks across dereferenceable URIs available
in our crawl. We then enabled and disabled the various configurations of the
extensions proposed and ran the queries live over Linked Data sources on the
Web. Summarising the results, we found that adding reasoning support to LT-
BQE allows for finding additional answers when directly querying Linked Data,
but also introduces significant overhead. In particular, proposals to dynamically
traverse implicit imports at runtime generate a huge overhead. Our conclusions
were that reasoning was possible in such a setting, but is only practicable for
simple queries involving few documents. Again, an excellent example of the type
of query well-supported by such an approach is Query 3′ listed earlier.

RDFS and OWL Reasoning for Linked Data 139

7 Extending Query Rewriting Techniques by Attribute
Equations for Linked Data

In this section, we are getting back to challenge C5 from the Introduction, that
is, the claim that Linked Data needs more than RDFS and OWL. To justify this
position, we return to our running example.

Example 18
We already pointed to the example of Query 1 from p. 101, where it may be
considered quite unintuitive that IBM’s revenue is not returned. Given the
exchange rate between EUR and USD (1 EUR = 1.30 USD as of 25 March,
2013), the value for dbo:revenueEUR should be computable from a value
for dbo:revenueUSD and vice versa. In general, many numerical properties
are related, not by rdfs:subPropertyOf relations or anything expressible
in RDFS/OWL, but rather by the simple mathematical equations such as,
for instance:

revenueUSD = revenueEUR ∗ 1.3 (1)

profitEUR = revenueEUR − totalExpensesEUR (2)

♦

While such equations are not expressible in RDFS or OWL itself, lots of
emerging Linked Data is composed of interdependent numerical properties as-
signed to resources. Lots of implicit information would be expressible in the form
of such simple mathematical equations modelling these interdependencies. These
dependencies include simple conversions, e.g., between currencies as in (1), or
functional dependencies between multiple properties, such as exemplified in (2).

In this section we present an approach to extend RDFS and OWL by so-
called attribute equations as part of the terminological knowledge in order to
enable inclusion of additional numerical knowledge in the reasoning processes for
integrating Linked Data. While an exhaustive discussion of the idea of attribute
equations in all depth is beyond the scope of this paper, we refer the interested
reader to [10] for more details.

7.1 Extending Ontologies by Attribute Equations

Attribute equations in [10] allow a very restricted form of simple numerical
equations in multiple variables as follows.

Definition 13. Let {x1, . . . , xn} be a set of variables. A simple equation E
is an algebraic equation of the form x1 = f(x2, . . . , xn) such that f(x2, . . . , xn)

dbo:revenueEUR
dbo:revenueUSD
rdfs:subPropertyOf

140 A. Polleres et al.

is an arithmetic expression over numerical constants and variables x2, . . . , xn

where f uses the elementary algebraic operators +, −, ·, ÷ and contains each xi

exactly once. vars(E) is the set of variables {x1, . . . , xn} appearing in E.

That is, we allow non-polynomials for f – since divisions are permitted – but
do not allow exponents (different from ±1) for any variable; the idea here
is that such equations can be solved uniquely for each xi by only applying
elementary transformations, assuming that all xj for j �= i are known: i.e.,
for each xi, such that 2 ≤ i ≤ n, an equivalent equation E′ of the form
xi = f ′(x1, . . . , xi−1, xi+1, . . . , xn) is uniquely determined. Note that since each
variable occurs only once and standard procedure for solving single variable
equations can be used, we write solve(x1 = f(x2, . . . , xn), xi) to denote E′.33

In order to enable semantic support within OWL and RDFS for such sim-
ple equations where attribute URIs will be used as variable names, we need
a syntactic representation. To this end, in addition to DL axioms encoded in
the rdfs: and owl: vocabularies, we propose a new property (e.g., extending
the rdfs: vocabulary) rdfs:definedByEquation to encode so called equation
axioms. That is, we extend axioms as in Table 1 as follows:

Table 7. Mapping equation axioms to RDF

DL RDFS

P0 = f(P1, . . . , Pn) P0 rdfs:definedByEquation “f(P1,. . . ,Pn)”

Here, P1, . . . , Pn are URIs of numerical properties (which we also call at-
tributes); we write the respective arithmetic expressions f(P1, . . . , Pn) as plain
literals in this terse encoding (instead of, e.g., breaking down the arithmetic
expressions into RDF triples).

Example 19
The RDF encodings of (1) and (2) are

dbo:revenueUSD rdfs:definedByEquation "dbo:revenueEUR * 1.3" .

dbo:profitEUR rdfs:definedByEquation

"dbo:revenueEUR - dbo:totalExpensesEUR" .

♦

33 ... with analogy to notation used by computer algebra systems (such
as Mathematica, cf. http://www.wolfram.com/mathematica/ , or Maxima, cf.
http://maxima.sourceforge.net).

rdfs:
owl:
rdfs:
rdfs:definedByEquation
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net

RDFS and OWL Reasoning for Linked Data 141

As mentioned before in the context of Definition 13, we consider equations that
result from just applying elementary transformations as equivalent. In order to
define the semantics of equation axioms accordingly, we will make use of the
following definition.

Definition 14. Let E : P0 = f(P1, . . . , Pn) be an equation axiom then, for any
Pi with 0 ≤ i ≤ n we call the equation axiom solve(E,Pi) the Pi−variant of E.

As for the details on the formal semantics of attribute equations we refer the
reader again to [10] and directly jump to two potential ways to implement rea-
soning and querying with such equations.

In principle, there are the same two potential ways to implement reasoning
with property equations as already discussed in the context of RDFS and OWL
in Section 2.4: rule-based inference and query rewriting. As we will see, the main
problem in the context of attribute equations is that both of these approaches,
when extended straightforwardly, would potentially not terminate. In the fol-
lowing, we present both of these implementation approaches and discuss their
pros and cons.

7.2 Implementing Attribute Equations within Rules

Many rule-based approaches such as SWRL [43] offer additional support for
mathematical built-ins.

Example 20
Using SWRL, (1) could be encoded as follows:

(?X, dbo:revenueUSD, ?USD) ← (?X, dbo:revenueEUR, ?EUR), ?USD =?EUR ∗ 1.3 (3)

(?X, dbo:profitEUR, ?PEUR) ← (?X, dbo:revenueEUR, ?REUR),

(?X, dbo:totalExpensesEUR, ?TEUR), (4)

?PEUR =?REUR−?TEUR

♦

However, note that rules as exemplified above are not sufficient: (i) rule (3)
is in the “wrong direction” for inferring additional results necessary for Query
1, that is, we would need different variants of the rule for converting from EUR
to USD and vice versa; (ii) the above rules are not DL safe (i.e., we want to
go beyond binding values only to explicitly named individuals where we also
want to compute new values) which potentially leads to termination problems
in rule-based approaches (and it actually does in existing systems).

Problem (i) could be solved in some cases by simply adding additional rules
for each variant of each equation axiom, but the extended ruleset will, in turn,
often give rise to Problem (ii), as shown.

142 A. Polleres et al.

Example 21
For the previous example, we can add more SWRL rules as follows:

(?X, dbo:revenueEUR, ?EUR) ← (?X, dbo:revenueUSD, ?USD), (5)

?EUR =?USD/1.3

(?X, dbo:revenueEUR, ?REUR) ← (?X, dbo:profitEUR, ?PEUR),

(?X, dbo:totalExpensesEUR, ?TEUR), (6)

?REUR =?PEUR+?TEUR

(?X, dbo:totalExpensesEUR, ?TEUR) ← (?X, dbo:revenueEUR, ?REUR),

(?X, dbo:profitEUR, ?PEUR), (7)

?TEUR =?REUR−?PEUR

However, here problem (ii) comes into play, as it is easy to see that these
rules potentially produce infinite results, which we leave as an exercise to
the reader. As a hint, consider the following example data:

:company1 dbo:profitEUR 1;

dbo:revenueEUR 1;

dbo:totalExpensesEUR 1;

Obviously, this data is not coherent with the equation, in the sense that
it is ambiguous and a rule-engine that tries to compute the closure would
not terminate (such example could occur in reality due to, e.g., rounding
errors). ♦

Certain rule engines provide special built-ins to avoid running into
non-termination problems as exemplified above. For instance, Jena provides a
special built-in noValue, which returns sound but incomplete results whereby it
only fires a rule if no value exists for a certain attribute on the inferences thus
far or in the data – not unlike negation-as-failure.

Example 22
Using the noValue built-in, rule (4) (and analogously the other rule vari-
ants) could be encoded in Jena’s rule syntax as follows:

[(?X dbo:revenueEUR ?REUR) (?X dbo:totalExpensesEUR ?TEUR)

difference(?REUR, ?TEUR, ?PEUR) noValue(?X, dbo:profitEUR)

-> (?X dbo:profitEUR ?PEUR)]

Values for ?PEUR will only be computed from the given equations if no such
value for dbo:profitEUR already exists on the resource bound to ?X. ♦

RDFS and OWL Reasoning for Linked Data 143

7.3 Implementing Attribute Equations by Query Rewriting

An alternative implementation approach for reasoning with attribute equations
(which according to initial experiments in [10] seems to work better than rules-
based materialisation) is based on query rewriting – essentially extending Algo-
rithm 1 from p. 106.

The idea here is that the expansion step in line 8 of Algorithm 1 is extended
to also work with equation axioms as per Table 7. That is, informally, we extend
the expansion function gr(g, i) from Table 2 as follows:

g i gr(g/i)

(x,P0, y) P0 =;f(P1, . . . , Pn) (x,P1, ?VP1),. . . ,(x, Pn, ?VPn), A = f(?VP1 , . . . , ?VPn)

where we consider any equation axiom that has a P0-variant. Similar to the
rule-based approach, special care has to be taken such that equation axioms are
not expanded infinitely; to this end, a simple blocking condition in the variant
of Algorithm 1 presented in [10] avoids that the same equation axiom is used
twice to compute the same value.

Example 23
To illustrate the approach, let us take a variation of Query 1 as an example,
which only asks for the revenues of organisations, i.e., the SPARQL Query:

SELECT ?X ?R

WHERE { ?X a dbo:Organisation; dbo:revenueEUR ?R . }

We start with its formulation as a conjunctive query

q(?X, ?R)←(?X, a, dbo:Organisation), (?X, dbo:revenueEUR, ?R) (8)

which is expanded as follows:

q(?X, ?R) ←(?X, a, dbo:Organisation), (?X, dbo:revenueEUR, ?R) (9)

q(?X, ?R) ←(?X, a, dbo:Company), (?X, dbo:revenueEUR, ?R) (10)

q(?X, ?R) ←(?X, a, dbo:Organisation), (?X, dbo:revenueUSD, ?VrevenueUSD), (11)

?R =?VrevenueUSD/1.3

q(?X, ?R) ←(?X, a, dbo:Company), (?X, dbo:revenueUSD, ?VrevenueUSD), (12)

?R =?VrevenueUSD/1.3

♦

We note that translation back to SPARQL is not as straightforward here as it
was without attribute equations, due to the fact that, as opposed to UCQs over
only RDF triple predicates, we now are dealing with UCQs that also involve
equality predicates and arithmetic operations such as ?R =?VrevenueUSD/1.3 in
(11) and (12). Unions are again (like in Example 3) translated back to UNION

144 A. Polleres et al.

patterns in SPARQL, whereas equalities in query bodies are translated – depend-
ing on whether the left-hand side of these equalities is a variable or a constant
– to either a BIND pattern34, or a FILTER pattern.

Example 24
Following the previous example, this rewritten SPARQL 1.1 query will
return the revenues of all three companies in our example data in EUR:

SELECT ?X ?R

WHERE { { ?X a dbo:Organisation; dbo:revenueEUR ?R .}

UNION { ?X a dbo:Company; dbo:revenueEUR ?R .}

UNION { ?X a dbo:Organisation; dbo:revenueUSD ?V_revenueUSD .

BIND (?V_revenueUSD / 1.3 AS ?R) }

UNION { ?X a dbo:Company; dbo:revenueUSD ?V_revenueUSD .

BIND (?V_revenueUSD / 1.3 AS ?R) } }

♦

What we would like to emphasise here then, is that RDFS and OWL may not
be enough for the reasoning requirements of Linked Data, where we show how
(and why), e.g., numerical data can also be axiomatised for reasoning.

8 Summary

In this lecture we have illustrated particular challenges, opportunities and obsta-
cles for applying OWL and RDFS reasoning in the context of querying Linked
Data. We discussed the use of the RDFS and OWL standards in the area of
Linked Data publishing, showing the degree to which individual features have
been adopted on the Web. Though our results fall well short of indicating univer-
sal adoption, encouragingly, we find that many “lightweight” features of OWL
and in particular RDFS have been widely adopted. We also provided practical
examples as to how these RDFS and OWL axioms embedded in Linked Data
can help for querying diverse sources, and how reasoning can thus help to further
realise the vision of the Web of Data as one giant database.

However, while reasoning helps to obtain additional useful results in many
cases, caution is required and specifically tailored reasoning algorithms need
to be applied. In Sections 5–6 we have presented such tailored reasoning ap-
proaches and discussed their pros and cons; none of these approaches provides
a panacea for reasoning “in the wild”, the right approach depends a lot on
the use case, particularly on the datasets considered and the query at hand.
Still, the presented approaches have demonstrated that lightweight reasoning in

34 BIND patterns are a new feature in SPARQL1.1 to assign values from an expression
to a variable, see [30].

RDFS and OWL Reasoning for Linked Data 145

diverse Linked Data setting is not only useful, but possible in practice, despite
the enumerated challenges relating to scale, fallible data, inconsistencies, etc.

On the other hand, for modelling certain integration scenarios in Linked Data,
we have shown that OWL and RDFS alone do not suffice to model a lot of implicit
information and have briefly discussed attribute equations as an extension of
OWL; given the increasing amount of published numerical data in RDF on the
emerging Web of data, we believe that this topic deserves increased attention
within the Semantic Web reasoning community. Generalising, though we have
shown RDFS and OWL reasoning to be useful for querying Linked Data, these
standards only provide a basis – not a solution – for capturing the semantics of
Linked Data and still fall far short of that required to properly realise the vision
of the Web of Data as a global, integrated database.

Acknowledgements. The work presented herein has been funded in part by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2), by an
IRCSET Scholarship. We thank our co-authors on joint works that flowed into
this article, namely, Stefan Bischof, Piero Bonatti, Stefan Decker, Birte Glimm,
Andreas Harth, Markus Krötzsch, Jeff Z. Pan, Luigi Sauro and Giovanni Tum-
marello.

References

1. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist: Effective
Modeling in RDFS and OWL. Morgan Kaufmann/Elsevier (2008)

2. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to Linked
Data and its Lifecycle on the Web. In: Rudolph, S., Gottlob, G., Horrocks, I., van
Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 1–90. Springer,
Heidelberg (2013)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Application. Cambridge
University Press (2002)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Rec-
ommendation, W3C (February 2004)

5. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team
Submission (January 2008), http://www.w3.org/TeamSubmission/turtle/

6. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: Turtle –
Terse RDF Triple Language. W3C Candidate Recommendation (February 2013),
http://www.w3.org/TR/2013/CR-turtle-20130219/

7. Berners-Lee, T.: Linked Data. W3C Design Issues (July 2006),
http://www.w3.org/DesignIssues/LinkedData.html (retr. October 27, 2010)

8. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (January 2005),
http://tools.ietf.org/html/rfc3986

9. Berners-Lee, T., Fischetti, M.: Weaving theWeb: The Original Design and Ultimate
Destiny of the World Wide Web by its Inventor. Harper (1999)

10. Bischof, S., Polleres, A.: RDFS with attribute equations via SPARQL rewriting.
In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC
2013. LNCS, vol. 7882, pp. 335–350. Springer, Heidelberg (2013)

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/2013/CR-turtle-20130219/
http://www.w3.org/DesignIssues/LinkedData.html
http://tools.ietf.org/html/rfc3986

146 A. Polleres et al.

11. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: A family of scalable semantic repositories. Semantic Web 2(1), 33–42
(2011)

12. Bonatti, P.A., Hogan, A., Polleres, A., Sauro, L.: Robust and scalable Linked Data
reasoning incorporating provenance and trust annotations. J. Web Sem. 9(2), 165–
201 (2011)

13. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation (February 2004), http://www.w3.org/TR/rdf-schema/

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

15. Cheng, G., Qu, Y.: Integrating lightweight reasoning into class-based query refine-
ment for object search. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS,
vol. 5367, pp. 449–463. Springer, Heidelberg (2008)

16. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and
reasoning. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp.
86–99. Springer, Heidelberg (2007)

17. Delbru, R., Tummarello, G., Polleres, A.: Context-dependent OWL reasoning in
Sindice – experiences and lessons learnt. In: Rudolph, S., Gutierrez, C. (eds.) RR
2011. LNCS, vol. 6902, pp. 46–60. Springer, Heidelberg (2011)

18. Emmons, I., Collier, S., Garlapati, M., Dean, M.: RDF literal data types in practice.
In: Proceedings of Workshop on Scalable Semantic Web Systems (SSWS). LNCS,
vol. 5947, Springer (2011)

19. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P.J.,
Berners-Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (June 1999),
http://www.ietf.org/rfc/rfc2616.txt

20. Fischer, F., Unel, G., Bishop, B., Fensel, D.: Towards a scalable, pragmatic knowl-
edge representation language for the Web. In: Pnueli, A., Virbitskaite, I., Voronkov,
A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 124–134. Springer, Heidelberg (2010)

21. Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Polleres, A.,
d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider,
P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 137–201. Springer, Heidelberg
(2011)

22. Glimm, B., Hogan, A., Krötzsch, M., Polleres, A.: OWL: Yet to arrive on the Web
of Data? In: LDOW, vol. 937. CEUR-WS.org (2012)

23. Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. W3C Recommendation
(March 2013), http://www.w3.org/TR/sparql11-entailment/

24. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: 13th Int’l Conf. on Principles of Knowledge Representation
and Reasoning (KR 2012), Rome, Italy. AAAI Press (2012)

25. Grau, B.C., Motik, B., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Lan-
guage: Profiles. W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-profiles/

26. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

27. Guha, R.V.: Contexts: a formalization and some applications. PhD thesis, Stanford
University, Stanford, CA, USA (1992)

28. Guha, R., McCool, R., Fikes, R.: Contexts for the Semantic Web. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
32–46. Springer, Heidelberg (2004)

http://www.w3.org/TR/rdf-schema/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/owl2-profiles/

RDFS and OWL Reasoning for Linked Data 147

29. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When
owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer,
Heidelberg (2010)

30. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation
(March 2013), http://www.w3.org/TR/sparql11-query/

31. Harth, A., Kinsella, S., Decker, S.: Using Naming Authority to Rank Data and
Ontologies for Web Search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 277–292. Springer, Heidelberg (2009)

32. Hartig, O.: SPARQL for a Web of Linked Data: Semantics and computability. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 8–23. Springer, Heidelberg (2012)

33. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the Web of
Linked Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

34. Hartig, O., Freytag, J.-C.: Foundations of traversal based query execution over
linked data. In: HT, pp. 43–52. ACM (2012)

35. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-mt/

36. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space,
1st edn. Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1.
Morgan & Claypool (2011), http://linkeddatabook.com/editions/1.0/

37. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2
Web Ontology Language Primer. W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-primer/

38. Hogan, A.: Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scale,
Linked Data Corpora. PhD thesis, Digital Enterprise Research Institute, National
University of Ireland, Galway (2011), http://aidanhogan.com/docs/thesis/

39. Hogan, A., Harth, A., Decker, S.: Performing Object Consolidation on the Se-
mantic Web Data Graph. In: 1st I3 Workshop: Identity, Identifiers, Identification
Workshop. CEUR Workshop Proceedings, vol. 249. CEUR-WS.org (2007)

40. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching
and browsing Linked Data with SWSE: The Semantic Web Search Engine. J. Web
Sem. 9(4), 365–401 (2011)

41. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations
for Distributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm,
B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg
(2010)

42. Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and
distributed methods for entity matching, consolidation and disambiguation over
linked data corpora. J. Web Sem. 10, 76–110 (2012)

43. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C member
submission, W3C (2004)

44. Hu, W., Qu, Y., Sun, X.: Bootstrapping object coreferencing on the Semantic Web.
J. Comput. Sci. Technol. 26(4), 663–675 (2011)

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-mt/
http://linkeddatabook.com/editions/1.0/
http://www.w3.org/TR/owl2-primer/
http://aidanhogan.com/docs/thesis/

148 A. Polleres et al.

45. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing
Linked Data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg
(2013)

46. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: 22nd Int’l Joint Conf. on Ar-
tificial Intelligence (IJCAI 2011), Barcelona, Catalonia, Spain, pp. 2656–2661. IJ-
CAI/AAAI (2011)

47. Kontchakov, R., Rodŕıguez-Muro, M., Zakharyaschev, M.: Ontology-based data
access with databases: A short course. In: Rudolph, S., Gottlob, G., Horrocks,
I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 194–229.
Springer, Heidelberg (2013)

48. Mallea, A., Arenas, M., Hogan, A., Polleres, A.: On Blank Nodes. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 421–437. Springer, Heidelberg
(2011)

49. Manola, F., Miller, E., McBride, B.: RDF Primer. W3C Recommendation (Febru-
ary 2004), http://www.w3.org/TR/rdf-primer/

50. Mayfield, J., Finin, T.: Information retrieval on the Semantic Web: Integrating
inference and retrieval. In: Proceedings of the SIGIR Workshop on the Semantic
Web (August 2003)

51. Miles, A., Baker, T., Swick, R.: Best Practice Recipes for Publishing RDF Vocab-
ularies. W3C working group note, W3C (2008)

52. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 Web Ontology Language
Direct Semantics. W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-direct-semantics/

53. Muñoz, S., Pérez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. J. Web
Sem. 7(3), 220–234 (2009)

54. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1),
37–52 (2008)

55. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to theWeb. Technical report, Stanford Digital Library Technologies
Project (1998)

56. Patel-Schneider, P.F., Motik, B., Cuenca Grau, B., Horrocks, I., Parsia, B., Rut-
tenberg, A., Schneider, M.: OWL 2 Web Ontology Language: Mapping to RDF
Graphs. W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-mapping-to-rdf/

57. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems 34(3):Article 16 (45 pages) (2009)

58. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. Journal of Applied Logic 8(2), 186–209 (2010)

59. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,
Heidelberg (2006)

60. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

61. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/rdf-sparql-query/

RDFS and OWL Reasoning for Linked Data 149

62. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
12th Int’l Conf. on Principles of Knowledge Representation and Reasoning (KR
2010). AAAI Press (2010)

63. Rudolph, S.: Foundations of Description Logics. In: Polleres, A., d’Amato, C.,
Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011)

64. Schneider, M.: OWL 2 Web Ontology Language RDF-Based Semantics. W3C Rec-
ommendation (October 2009),
http://www.w3.org/TR/owl2-rdf-based-semantics/

65. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics 3(2-3), 79–115 (2005)

66. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer
Science Press (1989)

67. Umbrich, J., Hogan, A., Polleres, A., Decker, S.: Improving the recall of live linked
data querying through reasoning. In: Krötzsch, M., Straccia, U. (eds.) RR 2012.
LNCS, vol. 7497, pp. 188–204. Springer, Heidelberg (2012)

68. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: WebPIE: A
Web-scale Parallel Inference Engine using MapReduce. J. Web Sem. 10, 59–75
(2012)

69. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning
using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

70. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, Karl-
sruhe, Germany (2004)

71. Vrandeč́ıc, D., Krötzsch, M., Rudolph, S., Lösch, U.: Leveraging Non-Lexical
Knowledge for the Linked Open Data Web. Review of Fool’s day Transactions
(RAFT) 5, 18–27 (2010)

72. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure
for Hundreds of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)

73. Yardeni, E., Shapiro, E.Y.: A Type System for Logic Programs. J. Log. Program.
10(1/2/3&4), 125–153 (1991)

http://www.w3.org/TR/owl2-rdf-based-semantics/

Introductions to Description Logics – A Guided Tour

Anni-Yasmin Turhan

Theoretical Computer Science,
TU Dresden, Germany

turhan@tcs.inf.tu-dresden.de

Abstract. Description Logics (DLs) are the logical formalism underlying the
standard web ontology language OWL 2. DLs have formal semantics which are
the basis for many powerful reasoning services. This paper provides an overview
of basic topics in the field of Description Logics by surveying the introductory lit-
erature and course material with a focus on DL reasoning services. The resulting
compilation also gives a historical perspective on DLs as a research area.

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that
have formal semantics. This family of logics is designed towards representing ter-
minological knowledge of an application domain in a structured and formally well-
understood way. DLs allow users to define important notions, such as classes or
relations of their application domain in terms of concepts and roles. Concepts corre-
spond to unary predicates and roles correspond to binary predicates in First Order Logic
(FOL). They restrict the interpretations of the classes and relations, respectively.

Starting from a set of concept names and role names, complex concept descriptions
can be built by means of concept constructors. For instance, expressive DLs offer the
Boolean connectors as concept constructors. Concept descriptions are the main building
blocks for capturing information in the knowledge base (or ontology). Typically, a DL
knowledge base consists of two parts:

– the TBox, which contains the terminological knowledge, i.e., the knowledge on the
categories and relations relevant in the application domain and

– the ABox, which contains the assertional knowledge, i.e., the knowledge on indi-
vidual facts.

Knowledge that is captured only implicitly in the ontology can be inferred from the
given descriptions of concepts and roles and also from the information on the individu-
als in the ABox, as for instance, sub-class or instance relationships.

DLs have been investigated and used since the late eighties. Of main interest are the
reasoning problems defined for DLs and the corresponding reasoning algorithms. Many
courses and tutorials have been given on the subject since. Here, instead of providing
yet another standard introduction on this branch of logics, we rather survey existing
course material. Mostly, these courses were designed and held by people, who are ac-
tive in research on the subjects covered in those courses. The set of papers, tutorials

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 150–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Introductions to Description Logics – A Guided Tour 151

and courses covered here is certainly only a part of the existing material. We focus on
material that is available on-line at the time of writing.

This paper is structured as follows. In the next section we give an overview of in-
troductory literature and tutorials on Description Logics in general. In Section 3 we
give short historic overview, followed by a commented list of course material on basic
reasoning and newer reasoning services in DLs in Section 4. The last section provides
references to material on application areas of DLs.

2 Introductory Material to DLs in General

Introductory readings. The standard reference for DLs is certainly the DL handbook
[5]. For the DL novice with a bit of a background in logics, the two introductory chap-
ters [22] and [10] are a good starting point to get a detailed and slow paced introduction
to the basic notions of DLs. For a short reference of basic DL terms see [1].

The chapters on DLs in the Handbook of Modal Logic [9] and in the Handbook on
Ontologies [8] provide also detailed and self-contained introductions. While the first
emphasizes more the theoretical aspects of DLs, the latter rather highlights practical
aspects of using DLs. A more recent and comprehensive introduction is given in [2].
For readers who are more interested in what current DL systems can do and how to
employ them (and not so much in the theoretical foundations) [50] is a good reference.
The most up-to-date ’all purpose’ beginner’s introduction is the DL primer [64].

Introductory courses. Probably the most detailed on-line course on DLs are the slides
from Enrico Franconi’s course [40] from 2002. This course lays the foundations by giv-
ing an introduction to Computational Logics in general in Module 1 and provides an
introduction to simple, i.e., rather inexpressive DLs (with only a few concept construc-
tors) in the Modules 2, 3 and 4. Other classic courses on introductions to DLs that are
rather suitable for the reader with a little knowledge on logics, are [67,90].

2.1 Relation to Other Logics

DL are logics and as such closely related to other formal logics. In particular, most DLs
are a fragment of First Order Logic. Concepts are simply FOL formulas with one free
variable. Some DLs are simply syntactic variants of Hybrid Logics or Modal Logics,
see [87]. The correspondences between DLs and other logics are explained in detail in
the DL handbook chapter dedicated to this topic [86] and in the already mentioned on-
line course by Franconi [40](Module 5). Most introductory tutorials provide translation
functions from DL knowledge bases into FOL, such as [2].

3 A Short Historical Overview

In this section we give an overview over the main developments of the DL research.
The papers cited here are mainly the original research papers (and rather of interest for
readers with DL background). Typically, the following historical phases of DL research
are distinguished:

152 A.-Y. Turhan

Early knowledge representation systems. Historically, DLs originate from knowledge
representation systems such as semantic networks [82,93] or frame systems [72]. De-
spite the fact that these systems lacked formal semantics, they offered methods to com-
pute inheritance relations between the specified notions.

Early DL systems. In the late eighties, reasoning algorithms for DL systems were
mostly sound, but incomplete, i.e., they would compute correct answers, but not neces-
sarily all correct answers. At this time the belief was held that terminological reason-
ing is inherently intractable [76,77], and thus completeness was traded for tractability.
These reasoning algorithms have been implemented in systems such as Back [76,78]
and Classic [19,18,21].

DLs in the nineties. During the nineties, sound and complete reasoning methods were
investigated for the core inferences of DL systems: consistency and subsumption. Con-
sistency assures that the specification of the concepts, roles and individuals are free of
contradictions. For subsumption one computes super- and sub-concept relations from
the given specifications of concepts (and roles).

The underlying technique for computing the basic DL inferences is the tableau
method [39,89]. The core idea of the tableau method is to construct a model, which
then gives evidence that a particular knowledge base has a model. The tableau method
was extended to more and more expressive DLs ([12,31]). The gain in expressiveness
came at the cost of higher complexity for the reasoning procedures—reasoning for the
DLs investigated is PSpace-complete or even ExpTime-complete [31]).

Despite the high complexity, highly optimized DL reasoning systems—most promi-
nently the FACT system [48]—were implemented based on the tableau method [74]. In
fact, it turned out that these highly optimized implementations of the reasoning methods
do perform surprisingly well on DL knowledge bases from practical applications.

DLs in the new millennium. The quest for more expressive DLs with decidable reason-
ing procedures for standard reasoning continued–allowing for more information that
can be stated on roles, such as inverse of roles, for instance, see [55,56,52,57]. Around
that time first initiatives emerged for standardizing DLs (such as DAML+OIL, see [33])
and the reasoner interfaces (such as the on from the DL implementers group [16,98]).
Based on these initiatives, the development of a variety of ontology tools started. Early
ontology editors such as OilEd [15], OntoTrack [65] PROTÉGÉ [41,61] or Swoop [59]
were developed and user communities of DL systems started to grow.

In the last decade there were two main trends in DL research. First, the investigation
of so-called ‘light-weight’ DLs, i.e., DL that are of fairly low expressivity, but have
good computational complexity for reasoning. There are two ‘families’ of lightweight
DLs: the EL family [23,3,4], for which the subsumption and the instance problem are
polynomial, and the DL Lite family [27,29], for which the instance problem and the
answering of (unions of) conjunctive queries are polynomial1. A member of each of

1 If measured in the size of the data alone the complexity is even LogSpace.

Introductions to Description Logics – A Guided Tour 153

these two families is the DL corresponding to one of the profiles of the OWL 2 stan-
dard [99]. The second trend is, that various new, so-called non-standard inferences are
investigated for DLs. For instance,

– the generation of explanations of unexpected consequences that the DL reasoner
detected [88,81,11,58,46],

– answering of conjunctive queries as a means to access the instance data of an on-
tology, [75,28,29,43,79,38,66],

– support for building ontologies by computing generalizations [24,13,37,101], and
– computing modularizations of ontologies to facilitate their reuse [42,69,35,71,62].

4 DL Reasoning

4.1 Standard DL Reasoning

The standard reasoning problems for DLs, such as satisfiability or subsumption are dis-
cussed in the introductions to DLs mentioned in Section 2. A rather detailed discussion
of the model theoretic properties of basic DLs (such as the moderately expressive DL
ALC) were recently given in [68,90].

Solutions to DL reasoning problems are computed by different reasoning procedures.
As mentioned earlier, for expressive DLs tableaux-based procedures are common, see
[31,12,67]. Reasoning in the EL-family underlying the OWL 2 EL profile is realized by
completion-based or consequence-driven approaches, which are covered in the courses
[96,63].

Another approach to obtain decision procedures for DL reasoning problems is the
automata-based approach. Automata-based approaches are often more convenient for
showing ExpTime complexity upper-bounds than tableau-based approaches. This ap-
proach is described in detail in [6,67,2].

The computational complexity of deciding standard reasoning problems is discussed
in [36] and more recently in [67,2,90].

The reader interested in the implementations of DL systems is referred to [74] for an
early—by now almost historic—overview. Fairly recent accounts on this ever changing
subject can be found in [73,51].

4.2 On Non-standard Reasoning Tasks

Building DL ontologies. The subject of ontology engineering is addressed, for exam-
ple, in [60]. However, reasoning based approaches that either employ standard reason-
ing [73] or inferences that compute generalizations of either collections of (complex)
concept descriptions or of an individual are described in [9,95].

Explanation and Repair. When a reasoner computes a consequence of information
represented in the ontology, the result might be un-intuitive to the user. Thus computing
explanations of (or even plans how to repair) such unexpected consequences are helpful.
Both tasks have been discussed in the tutorial [47]. The first task is described for the
EL-family in [14] and the course [96]. Implementations for this task are described in
[47,51].

154 A.-Y. Turhan

Modularity. Re-using a part of an ontology requires to identify that part of the ontology
that does not ‘interact’ with the rest of the ontology when computing a given reasoning
task. Furthermore, it should be ensured that the importing ontology does not entail un-
wanted consequences w.r.t. the given reasoning task when importing the new ontology
module. These tasks are topics of the course material provided in [47] (with an emphasis
on tool support) and in [68,91] with an emphasis on the theoretical background.

Answering Conjunctive Queries. As mentioned earlier, answering conjunctive queries
allows for a much more expressive query language than concept-based querying, i.e.,
instance queries. This reasoning task is currently a very active research area of DLs.
The DL Lite family of DLs is designed such that conjunctive query answering can be
performed efficiently. Query answering in DL Lite is covered in [26]. Methods for query
answering for both families of light-weight DLs is described in the course slides [32].
In addition to query answering for the light-weight DLs, [80] explains also the methods
for expressive DLs.

5 Application Areas of DLs

This section gives pointers introductory reading and course material on prominent ap-
plication areas for DLs.

Data integration. Since DLs can represent information on different levels of detail they
are a good candidate for data integration. The core of the data integration approach
via DLs is their ability to capture other modeling languages frequently used to specify
database schemas—such as entity relationship diagrams (ER), see [40], module 2 or
UML, see [25].

Biomedical ontologies. An account on the early use of DLs in the medical field is given
in [83]. In [100] an application in protein classifications described.

As a matter of FACT, the medical ontology GALEN [84] was the prime motivation
for the development of highly optimized reasoners [49]. Since then large biomedical
ontologies [94,34,85,92] have been valuable benchmarks for DL reasoners. More recent
overviews on medical ontologies written in DLs is given in [70,50].

Semantic Web. The semantic web was early spotted as a potential application area of
DLs, since they allow to write ontologies in order to annotate web resources, see [7,45].
More importantly, the reasoning services defined and investigated for DLs support the
querying of these ontologies. From the plethora of course material on DLs and the
semantic web, we recommend to the reader [7,45] for early views on the subject and
[54,53] for more recent and technical ones.

The potential application of the semantic web facilitated the standardization of DLs.
An introduction to the original OWL standard can be found in [54] and OWL 2 and its
profiles is covered in [63,44,97].

Introductions to Description Logics – A Guided Tour 155

Ontology-based data access. Ontology-based data access (ODBA) exploits DLs to en-
rich the data in a database by information from the DL ontology. The initial ideas were
described in [17]. The key idea is to employ query answering for this task. In the last
years the topic received more attention due to low complexity for DL Lite for this task.
An early course on this subject is [30], which includes descriptions of first tools. Re-
cent courses on the topic [26,32] focus more on the algorithms behind ODBA. The most
up-to-date resource for a course on ODBA is the one in this Reasoning Web summer
School.

References

1. Baader, F.: Description logic terminology. In: [5], pp. 485–495. Cambridge University Press
(2003)

2. Baader, F.: Description logics. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Hand-
schuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 1–39.
Springer, Heidelberg (2009)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2005). Morgan-Kaufmann Publishers, Edinburgh
(2005)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K., Patel-
Schneider, P.F. (eds.) Proc. of the OWLED Workshop (2008)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press (2003)

6. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics.
In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 1–32. Springer,
Heidelberg (2003), Slides of the talk are available from
http://lat.inf.tu-dresden.de/˜baader/Talks/LPAR03.pdf

7. Baader, F., Horrocks, I., Sattler, U.: Description logics for the semantic web. KI 16(4), 57–
59 (2002)

8. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.)
Handbook on Ontologies. International Handbooks on Information Systems, pp. 3–28.
Springer (2004),
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/
download/2004/BaHS04a.pdf

9. Baader, F., Lutz, C.: Description logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
The Handbook of Modal Logic, pp. 757–820. Elsevier (2006)

10. Baader, F., Nutt, W.: Basic description logics. In: [5], ch. 2, pp. 43–96. Cambridge Univer-
sity Press (2003)

11. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic EL. In:
Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Tessaris, S., Turhan, A.-Y.
(eds.) Proc. of the 2007 Description Logic Workshop (DL 2007), CEUR-WS (2007)

12. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia
Logica 69, 5–40 (2001)

13. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a
background terminology. Journal of Applied Logics (2007)

14. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In: Proceedings of the International Conference on Representing
and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix, Arizona (2008)

http://lat.inf.tu-dresden.de/~baader/Talks/LPAR03.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2004/BaHS04a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2004/BaHS04a.pdf

156 A.-Y. Turhan

15. Bechhofer, S., Horrocks, I., Goble, C.A., Stevens, R.: OilEd: a Reason-able Ontology Ed-
itor for the Semantic Web. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS
(LNAI), vol. 2174, pp. 396–408. Springer, Heidelberg (2001), OilEd download page
http://oiled.man.ac.uk

16. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic Interface. In: Proc. of
the 2003 Description Logic Workshop (DL 2003), Rome, Italy (2003)

17. Borgida, A., Lenzerini, M., Rosati, R.: Description logics for databases. In: [5], pp. 462–
484. Cambridge University Press (2003)

18. Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for subsumption
in the CLASSIC description logic. Journal of Artificial Intelligence Research 1, 277–308
(1994)

19. Brachman, R.J., Borgida, A., McGuinness, D.L., Alperin Resnick, L.: The CLASSIC
knowledge representation system, or, KL-ONE: the next generation. Preprints of the Work-
shop on Formal Aspects of Semantic Networks, Two Harbors, Cal. (1989)

20. Brachman, R.J., Levesque, H.J.: Readings in Knowledge Representation. Morgan Kauf-
mann, Los Altos (1985)

21. Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Liv-
ing with classic: When and how to use a kl-one-like language. In: Principles of Semantic
Networks, pp. 401–456. Morgan Kaufmann (1991)

22. Brachman, R.J., Nardi, D.: An introduction to description logics. In: [5], ch. 1, pp. 1–40.
Cambridge University Press (2003)

23. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and—what else? In: de Mantáras, R.L., Saitta, L. (eds.) Proc. of the 16th
European Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press (2004)

24. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics.
In: Fensel, D., McGuinness, D., Williams, M.-A. (eds.) Proc. of the 8th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2002). Morgan Kaufmann
Publishers, San Francisco (2002)

25. Calvanese, D., De Giacomo, G.: Description logics for conceptual data modeling in uml.
Course held at ESSLLI 2003 (2003), http://www.inf.unibz.it/˜calvanese/
teaching/2003-08-ESSLLI-UML

26. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,
M., Rosati, R.: Ontologies and databases: The DL-lite approach. In: Tessaris, S., Fran-
coni, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.)
Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009), Course
slides available from http://www.inf.unibz.it/ calvanese/teaching/
2009-09-ReasoningWeb-school-ontologies-dbs/
ReasoningWeb-2009-ontologies-dbs.pdf

27. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of the
20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607. AAAI Press/The MIT
Press (2005)

28. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)

29. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385–429 (2007)

http://oiled.man.ac.uk
http://www.inf.unibz.it/~calvanese/teaching/2003-08-ESSLLI-UML
http://www.inf.unibz.it/~calvanese/teaching/2003-08-ESSLLI-UML
http://www.inf.unibz.it/~calvanese/teaching/2009-09-ReasoningWeb-school-ontologies-dbs/ReasoningWeb-2009-ontologies-dbs.pdf
http://www.inf.unibz.it/~calvanese/teaching/2009-09-ReasoningWeb-school-ontologies-dbs/ReasoningWeb-2009-ontologies-dbs.pdf
http://www.inf.unibz.it/~calvanese/teaching/2009-09-ReasoningWeb-school-ontologies-dbs/ReasoningWeb-2009-ontologies-dbs.pdf

Introductions to Description Logics – A Guided Tour 157

30. Calvanese, D., De Giacomo, G., Rodriguez-Muro, M.: Integrating data into ontologies.
Part of the ISWC 2008 tutorial ’Reasoning for Ontology Engineering and Usage’ (2008),
http://www.inf.unibz.it/ calvanese/teaching/
2008-10-ISWC-tutorial-tones/TonesTutorial08-4.pdf

31. Calvanese, D., Giacomo, G.D.: Expressive description logics. In: [5], ch. 5, pp. 178–218.
Cambridge University Press (2003)

32. Calvanese, D., Zakharyaschev, M.: Answering queries in description logics: Theory and
applications to data management. Course held at ESSLLI 2010 (2010),
http://www.inf.unibz.it/ calvanese/teaching/
2010-08-ESSLLI-DL-QA/

33. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.,
Stein, L.A.: DAML+OIL reference description. W3C Note (March 2001),
http://www.w3.org/TR/daml+oil-reference

34. Consortium, T.G.O.: Gene Ontology: Tool for the unification of biology. Nature Genet-
ics 25, 25–29 (2000)

35. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. Journal of Artificial Intelligence Research 31, 273–318 (2008)

36. Donini, F.M.: Complexity of reasoning. In: [5], ch. 3, pp. 96–136. Cambridge University
Press (2003)

37. Donini, F.M., Colucci, S., Di Noia, T., Di Sciascio, E.: A tableaux-based method for com-
puting least common subsumers for expressive description logics. In: Proc. of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 739–745.
AAAI (July 2009)

38. Eiter, T., Lutz, C., Ortiz, M., Simkus, M.: Query answering in description logics with tran-
sitive roles. In: Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI 2009). AAAI Press (2009)

39. Fitting, M.: Basic modal logic. In: Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 1, pp. 365–448. Oxford Science Publications (1993)

40. Franconi, E.: Description logics – tutorial course information (2002),
http://www.inf.unibz.it/˜franconi/dl/course

41. Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu,
S.: The evolution of PROTÉGÉ-2000: An environment for knowledge-based system devel-
opment. International Journal of Human-Computer Studies 58, 89–123 (2003)

42. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? a case for conservative ex-
tensions in description logics. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proc. of the
10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006),
pp. 187–197. AAAI Press (2006)

43. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the descrip-
tion logic SHIQ. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 399–404 (2007)

44. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontol-
ogy Language: Primer (October 27, 2009),
http://www.w3.org/TR/owl2-primer/

45. Horrcks, I., Sattler, U.: Logical foundations for the semantic web. Slides of the ESSLI 2003
tutorial (2003), http://www.cs.man.ac.uk/˜horrocks/ESSLLI2003

46. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)

http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-4.pdf
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-4.pdf
http://www.inf.unibz.it/~calvanese/teaching/2010-08-ESSLLI-DL-QA/
http://www.inf.unibz.it/~calvanese/teaching/2010-08-ESSLLI-DL-QA/
http://www.w3.org/TR/daml+oil-reference
http://www.inf.unibz.it/~franconi/dl/course
http://www.w3.org/TR/owl2-primer/
http://www.cs.man.ac.uk/~horrocks/ESSLLI2003

158 A.-Y. Turhan

47. Horridge, M., Sattler, U.: Understanding and repairing inferences (includes mod-
ularisation). Part of the ISWC 2008 tutorial ’Reasoning for Ontology Engineer-
ing and Usage’ (2008), http://www.inf.unibz.it/ calvanese/teaching/
2008-10-ISWC-tutorial-tones/TonesTutorial08-3.pdf

48. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Cohn, A., Schubert,
L., Shapiro, S. (eds.) Proc. of the 6th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR 1998), pp. 636–647 (1998)

49. Horrocks, I.: Ontology engineering: Tools and methodologies. Slides from the tutorial at
the Norwegian Semantic Days (April 2007),
http://www.cs.ox.ac.uk/people/ian.horrocks/Seminars/
download/SemanticDays07-tutorial.ppt

50. Horrocks, I.: Description logic: a formal foundation for languages and tools. Slides from
the tutorial at the Semantic Technology Conference (SemTech) (2010),
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/
download/2010/HoPa10a.pdf

51. Horrocks, I.: Tool support for ontology engineering. In: Fensel, D. (ed.) Foundations for the
Web of Information and Services, pp. 103–112. Springer (2011)

52. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P.,
Mylopoulos, J., Welty, C. (eds.) Proc. of the 10th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)

53. Horrocks, I., Patel-Schneider, P.F.: KR and reasoning on the semantic web: OWL. In:
Domingue, J., Fensel, D., Hendler, J.A. (eds.) Handbook of Semantic Web Technologies,
ch. 9, pp. 365–398. Springer (2011),
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/
download/2010/HoPa10a.pdf

54. Horrocks, I., Patel-Schneider, P.F., McGuinness, D.L., Welty, C.A.: OWL: a Descrip-
tion Logic Based Ontology Language for the Semantic Web. In: Baader, F., Cal-
vanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.) The Description
Logic Handbook: Theory, Implementation, and Applications, ch. 14, 2nd edn., Cambridge
University Press (2007), http://www.cs.ox.ac.uk/people/ian.horrocks/
Publications/download/2003/HPMW07.pdf

55. Horrocks, I., Sattler, U.: Optimised reasoning for SHIQ. In: Proc. of the 15th European
Conference on Artificial Intelligence (2002)

56. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). Morgan Kaufmann (January 2005)

57. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. of Automated Rea-
soning 39(3), 249–276 (2007)

58. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ISWC/ASWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)

59. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.: Swoop: A web ontology
editing browser. J. Web Sem. 4(2), 144–153 (2006)

60. Keet, M.: Introduction to ontology engineering, with emphasis on semantic web
technologies. Meraka Institute, South Africa. Course in the Masters Ontology
Winter School 2010 (2010), http://www.meteck.org/teaching/SA/MOWS10
OntoEngCouse.html

61. Knublauch, H., Horridge, M., Musen, M.A., Rector, A.L., Stevens, R., Drummond, N.,
Lord, P.W., Noy, N.F., Seidenberg, J., Wang, H.: The protege owl experience. In: Grau, B.C.,
Horrocks, I., Parsia, B., Patel-Schneider, P.F. (eds.) Proceedings of the OWLED Workshop.
CEUR Workshop Proceedings, vol. 188, CEUR-WS.org. (2005)

http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-3.pdf
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-3.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt
http://www.cs.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2003/HPMW07.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2003/HPMW07.pdf
http://www.meteck.org/teaching/SA/MOWS10OntoEngCouse.html
http://www.meteck.org/teaching/SA/MOWS10OntoEngCouse.html

Introductions to Description Logics – A Guided Tour 159

62. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the lightweight
description logic EL. J. Artif. Intell. Res. (JAIR) 44, 633–708 (2012)

63. Krötzsch, M.: OWL 2 Profiles: An introduction to lightweight ontology languages. In: Eiter,
T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 112–183. Springer,
Heidelberg (2012), Course slides available from
http://korrekt.org/talks/2012/OWL 2 Profiles
Reasoning-Web-2012.pdf

64. Krötzsch, M., Simančı́k, F., Horrocks, I.: A description logic primer. CoRR, abs/1201.4089
(2012), http://arxiv.org/abs/1201.4089

65. Liebig, T., Noppens, O.: ONTOTRACK: Combining browsing and editing with reasoning
and explaining for OWL lite ontologies. In: McIlraith, S.A., Plexousakis, D., van Harme-
len, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 244–258. Springer, Heidelberg (2004),
OntoTrack download page
http://www.informatik.uni-ulm.de/ki/ontotrack/

66. Lutz, C.: The complexity of conjunctive query answering in expressive description logics.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 179–193. Springer, Heidelberg (2008)

67. Lutz, C., Sattler, U.: Description logics (2005), Slides are available from
http://www.computational-logic.org/content/events/
iccl-ss-2005/lectures/lutz/index.php?id=24

68. Lutz, C., Sattler, U., Wolter, F.: Modularity in logical theories and ontologies. Slides of the
ESSLI 2008 tutorial (2008),
http://cgi.csc.liv.ac.uk/˜frank/publ/esslli08.html

69. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics.
In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press
(2007)

70. Lutz, C., Wolter, F.: Mathematical logic for life science ontologies. In: Ono, H., Kanazawa,
M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 37–47. Springer, Heidelberg
(2009)

71. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description
logic EL. Journal of Symbolic Computation 45(2), 194–228 (2010)

72. Minsky, M.: A framework for representing knowledge. Technical report, MIT-AI Labora-
tory, Cambridge, MA, USA (1974)

73. Möller, R.: Introduction to standard reasoning. Part of the ISWC 2008 tutorial ’Reasoning
for Ontology Engineering and Usage’ (2008),
http://www.inf.unibz.it/ calvanese/teaching/
2008-10-ISWC-tutorial-tones/TonesTutorial08-1.pdf

74. Möller, R., Haarslev, V.: Description logic systems. In: [5], pp. 282–305. Cambridge Uni-
versity Press (2003)

75. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg (2006), KAON2 download page
http://kaon2.semanticweb.org/

76. Nebel, B.: Computational complexity of terminological reasoning in BACK. Artificial In-
telligence Journal 34(3), 371–383 (1988)

77. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence Jour-
nal 43, 235–249 (1990)

78. Nebel, B., von Luck, K.: Hybrid reasoning in BACK. In: Proc. of the 3rd Int. Sym. on
Methodologies for Intelligent Systems (ISMIS 1988), pp. 260–269. North-Holland Publ.
Co., Amsterdam (1988)

http://korrekt.org/talks/2012/OWL_2_Profiles_Reasoning-Web-2012.pdf
http://korrekt.org/talks/2012/OWL_2_Profiles_Reasoning-Web-2012.pdf
http://arxiv.org/abs/1201.4089
http://www.informatik.uni-ulm.de/ki/ontotrack/
http://www.computational-logic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
http://www.computational-logic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
http://cgi.csc.liv.ac.uk/~frank/publ/esslli08.html
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-1.pdf
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-1.pdf
http://kaon2.semanticweb.org/

160 A.-Y. Turhan

79. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive de-
scription logics via tableaux. Journal of Automated Reasoning 41(1), 61–98 (2008)

80. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter,
T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer,
Heidelberg (2012), Course slides available from
http://www.kr.tuwien.ac.at/events/rw2012/teaching-material/
RW12-Tutorial-Ortiz-Simkus-1p.pdf

81. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL Ontologies. In: Ellis, A., Hagino, T.
(eds.) Proc. of the 14th Int. World Wide Web Conference (WWW 2005), Chiba, Japan, pp.
633–640 (May 2005)

82. Quillian, M.R.: Word concepts: A theory and simulation of some basic capabilities. Behav-
ioral Science 12, 410–430 (1967), Republished in [20]

83. Rector, A.: Medical informatics. In: [5], pp. 406–426. Cambridge University Press (2003)
84. Rector, A.L., Rogers, J.: Ontological and practical issues in using a description logic to

represent medical concept systems: Experience from GALEN. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 197–
231. Springer, Heidelberg (2006)

85. Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the founda-
tional model of anatomy. Journal of Biomedical Informatics 36, 478–500 (2003)

86. Sattler, U., Calvanese, D., Molitor, R.: Relationships with other formalisms. In: [5], ch. 4,
pp. 137–177. Cambridge University Press (2003)

87. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: My-
lopoulos, J., Reiter, R. (eds.) Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI 1991), Sydney, Australia (1991)

88. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 355–362. Morgan Kaufmann,
Los Altos (2003)

89. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with unions and com-
plements. Technical Report SR-88-21, Deutsches Forschungszentrum für Künstliche Intel-
ligenz (DFKI), Kaiserslautern, Germany (1988)

90. Schneider, T., Sattler, U.: Description logics: an introductory course on a nice family of
logics. Course held at ESSLLI 2012 (August 2012),
http://www.informatik.uni-bremen.de/˜ts/teaching/2012_dl

91. Schneider, T., Walther, D.: Modularity in ontologies. Course held at ESSLLI 2011
(August 2011), http://www.informatik.uni-bremen.de/˜ts/teaching/
2011 modularity

92. Sioutos, N., de Coronado, S., Haber, M.W., Hartel, F.W., Shaiu, W.-L., Wright, L.W.: NCI
thesaurus: A semantic model integrating cancer-related clinical and molecular information.
J. of Biomedical Informatics 40(1), 30–43 (2007)

93. Sowa, J.F. (ed.): Principles of Semantic Networks. Morgan Kaufmann, Los Altos (1991)
94. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of

subsumption: Experience with SNOMED-RT. Journal of the American Medical Informatics
Assoc. (2000) (Fall Symposium Special Issue)

95. Turhan, A.-Y.: Bottom-up contruction of ontologies. Part of the ISWC 2008 tutorial
’Reasoning for Ontology Engineering and Usage’ (2008),
http://www.inf.unibz.it/ calvanese/teaching/2008-10-ISWC-
tutorial-tones/TonesTutorial08-2.pdf

96. Turhan, A.-Y.: Reasoning and explanation in EL and in expressive description logics. In:
Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web. LNCS, vol. 6325, pp. 1–27.
Springer, Heidelberg (2010)

http://www.kr.tuwien.ac.at/events/rw2012/teaching-material/RW12-Tutorial-Ortiz-Simkus-1p.pdf
http://www.kr.tuwien.ac.at/events/rw2012/teaching-material/RW12-Tutorial-Ortiz-Simkus-1p.pdf
http://www.informatik.uni-bremen.de/~ts/teaching/2012_dl
http://www.informatik.uni-bremen.de/~ts/teaching/2011_modularity
http://www.informatik.uni-bremen.de/~ts/teaching/2011_modularity
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-2.pdf
http://www.inf.unibz.it/~calvanese/teaching/2008-10-ISWC-tutorial-tones/TonesTutorial08-2.pdf

Introductions to Description Logics – A Guided Tour 161

97. Turhan, A.-Y.: Description logic reasoning for semantic web ontologies. In: Akerkar, R.
(ed.) Proc. of the International Conference on Web Intelligence, Mining and Semantics,
WIMS 2011, p. 6. ACM (2011)

98. Turhan, A.-Y., Bechhofer, S., Kaplunova, A., Liebig, T., Luther, M., Möller, R., Noppens,
O., Patel-Schneider, P., Suntisrivaraporn, B., Weithöner, T.: DIG 2.0 – Towards a flexible
interface for description logic reasoners. In: Cuenca Grau, B., Hitzler, P., Shankey, C., Wal-
lace, E. (eds.) Proceedings of the Second International Workshop OWL: Experiences and
Directions (November 2006)

99. W3C OWL Working Group. OWL 2 web ontology language document overview. W3C
Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

100. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler, U., Turi, D., Stevens, R.: A little
semantic web goes a long way in biology. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800. Springer, Heidelberg (2005)

101. Zarrieß, B., Turhan, A.-Y.: Most specific generalizations w.r.t. general EL-TBoxes. In: Pro-
ceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013).
AAAI Press, Beijing (to appear, 2013)

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Answer Set Programming

Wolfgang Faber

Department of Mathematics
University of Calabria

87030 Rende (CS), Italy
wf@wfaber.com

Abstract. Answer Set Programming (ASP) evolved from various fields such as
Logic Programming, Deductive Databases, Knowledge Representation, and Non-
monotonic Reasoning, and serves as a flexible language for declarative problem
solving. There are two main tasks in problem solving, representation and rea-
soning, which are clearly separated in the declarative paradigm. In ASP, rep-
resentation is done using a rule-based language, while reasoning is performed
using implementations of general-purpose algorithms, referred to as ASP solvers.
Rules in ASP are interpreted according to common sense principles, including a
variant of the closed-world-assumption (CWA) and the unique-name-assumption
(UNA). Collections of ASP rules are referred to as ASP programs, which repre-
sent the modelled knowledge. To each ASP program a collection of answer sets,
or intended models, is associated, which stand for the solutions to the modelled
problem; this collection can also be empty, meaning that the modelled problem
does not admit a solution. Several reasoning tasks exist: the classical ASP task
is enumerating all answer sets or determining whether an answer set exists, but
ASP also allows for query answering in brave or cautious modes. This article pro-
vides an introduction to the field, starting with historical perspectives, followed
by a definition of the core language, a guideline to knowledge representation, an
overview of existing ASP solvers, and a panorama of current research topics in
the field.

1 Introduction

Traditional software engineering is focussed on an imperative, algorithmic approach, in
which a computer is basically being told what steps should be followed in order to solve
a given problem. Finding good algorithms for hard problems is often not obvious and
requires substantial skill and knowledge. Despite these efforts, solutions provided in
this way typically lack flexibility: when the specification of the given problem changes
only slightly, for example because additional information on the nature of the prob-
lem becomes available, major re-engineering is often necessary, in the worst case from
scratch. The main problem with this approach is that the knowledge about the prob-
lem and its solutions is not represented explicitly, but only implicitly, hidden inside the
algorithm. Especially in Artificial Intelligence, it does not seem like the best idea to
solve problems in this way, as that would yield inflexible, and hence arguably unintel-
ligent agents. John McCarthy has coined the term elaboration tolerance in the 1980s
for the ease of modifying problem representations to take into account new phenomena.

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 162–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Answer Set Programming 163

He argues that natural languages fare well regarding elaboration tolerance in “human”
use; clearly, algorithmic representations are not very elaboration tolerant.

Declarative programming is an alternative, which suits elaboration tolerance much
better. In this approach, the problem and its solutions are specified explicitly. That is,
the features of the problem and its solution are represented, rather than a method for
how solutions are to be obtained. Methods like this actually come natural in science,
but also in everyday life. Before we try to work out how to solve a problem, we usually
first try to understand it and figure out how a solution would like, before trying to find
a method to obtain a solution. One of the first to put this approach into perspective in
computer science was the same John McCarthy mentioned earlier in the 1950s [1]. He
also postulated that the most natural language for specifying problems and solutions
would be logic, and in particular predicate logic.

In fact, logic is an excellent candidate for declarative programming: It provides a
simple and abstract formalism, and in addition, it has the potential for automation. Sim-
ilar to an abstract or electronic machine which can execute an algorithm, computa-
tional logic has produced tools that allow for automatically obtaining solutions, given a
declarative specification in logic. Indeed, many people nowadays use this way of solv-
ing problems: Queries to relational databases together with the database schemata are
examples of declarative specifications that allow for obtaining answers to the queries.
Indeed, the probably most widely used database query language, SQL, essentially is
predicate logic written in a particular way [2].

However, in many cases one wants to go beyond databases as they are used today. It
has been shown that relational databases and query languages like SQL can only repre-
sent fairly simple problems. For instance, problems like finding the cheapest tour of a
number of cities, or filling a container with items of different size, such that the value
transported in the container is maximized, are typical problems that can probably not be
solved using SQL. It might seem unusual to use the word “probably” here, but underly-
ing this conjecture is one of the most famous open problems in computer science—the
question whether P equals NP. These are complexity classes; basically every problem
has some intrinsic complexity, indicating how many resources are required to solve it
on a standard machine model, in terms of the size of the problem input. P is the class
of problems that require at most polynomial amount of time in the input size (which is
variable). NP is just a slight alteration, in which one also gets a polynomial-size certifi-
cate that can be verified in time polynomial in the input. The crucial question is how to
obtain this certificate for a given input, and indeed so far nobody has succeeded to prove
convincingly either that this can always be done in polynomial time or that it cannot be
done in polynomial time. In other words, it is unknown whether P and NP are different
or equal, see for example [3,4].

Logic Programming is an attempt to use declarative programming with logic that
goes beyond SQL, and often beyond P. The main construct in logic programming
is a rule, a expression that looks like Head ← Body, where Body is a logic con-
junction possibly involving negation, and Head is either an atomic formula or a logic
disjunction. This can be seen as a logic formula (← denoting implication, and univer-
sal quantification being implicit), with the special meaning that Head is defined by
that rule. In the beginning of the field (as described in the following section), logic

164 W. Faber

programming actually attempted to become a full-scale programming language. Its
most famous language, Prolog [5], aimed at this, but had to renounce to full declar-
ativity in order to achieve that goal. For instance, in Prolog rules the order inside Body
matters, as does the order among rules (most notably for termination). Moreover, Prolog
also has a number of non-logical constructs.

Answer Set Programming (ASP) is a branch of logic programming, which does not
aspire to create a full general-purpose language. In this respect, it is influenced by
database languages, as also these are not general-purpose languages, but suffice for a
particular class of problems. ASP does however attempt to enlarge the class of problems
which can be expressed by the language. While, as mentioned earlier, SQL probably
cannot express hard problems in NP, ASP definitely can. Actually, ASP can uniformly
express all problems in the complexity class ΣP

2 and its complement ΠP
2 , which are

similar to NP and co-NP, respectively, with an NP-hard oracle, that is, at each step of
the computation a problem in NP might have to be solved. If it turns out that P = NP,
then all of these classes coincide. For details on these complexity classes, see [3,4], for
a survey of expressivity and complexity in ASP, see [6].

In ASP, the rule construct Head← Body (where Head can be a disjunction) is read
like a formula in nonmonotonic logics, rather than classical logic. Nonmonotonic log-
ics are an effort to formulate a logic of common sense that is adapting the semantics of
logic such that it corresponds better to our everyday reasoning, which is characterized
by the presence of incomplete knowledge, hypothetical reasoning and default assump-
tions. It can be argued that nonmonotonic logics are much better suited in such a setting
than classical logic. One salient feature in ASP is that the truth of elements needs justi-
fications, that is, for an atom to be true there must be a rule in the program that supports
its truth. In this respect, the formula is related to intuitionistic or constructive logic, and
indeed ASP has been characterized by means of an intermediate logic that is situated
between classical and intuitionistic logic.

Summarizing, ASP is a formalism that has emerged syntactically from logic pro-
gramming, with strong influences from database theory, nonmonotonic logics, knowl-
edge representation, symbolic artificial intelligence, and more. Its main representation
feature is the rule, which is interpreted according to common sense principles. It allows
for declarative specifications of a rich class of programs, generalizing the declarative
approach of databases. In ASP, one writes a program (a collection of rules), which rep-
resents a problem to be solved. This program, together with some input, which is also
expressed by a collection of factual rules, possesses a collection of solutions (possibly
also no solution), which correspond to the solutions of the modelled problem. Since
these solutions are usually sets, the term Answer Set has been coined.

Concerning terminology, ASP is sometimes used in a somewhat broader sense, re-
ferring to any declarative formalism representing a solution as a set. However, the more
frequent understanding is the narrower reading adopted in this article, which has been
coined in [7]. Moreover, since ASP is the most prominent branch of logic programming
in which rule heads may be disjunctive, sometimes the term Disjunctive Logic Program-
ming can be found referring explicitly to ASP. Yet other terms for ASP are A-Prolog,
AnsProlog, and Stable Logic Programming. For complementary introductory material
on ASP, we refer to [8] and [9].

Answer Set Programming 165

2 History of ASP from a Logic Programming Perspective

The roots of Answer Set Programming lie predominantly in Logic Programming, Non-
monotonic Reasoning and Databases. In this section we give an overview on the history
of Logic Programming from the perspective of Answer Set Programming. It therefore
does not cover several important subfields of Logic Programming, such as Constraint
Logic Programming [10] or Abductive Logic Programming [11].

As mentioned in the introduction, one of the first to suggest logic, and in particular
predicate logic, as a programming language was John McCarthy in the 1950s [1]. Mc-
Carthy’s motivating example was set in Artificial Intelligence, and involved planning as
its main task, an agenda that was continuously elaborated, see for instance [12].

Developments in Computational Logic, most notably the specification of the Res-
olution principle and unification as a computational method by J. Alan Robinson in
1965 [13], acted as a catalyst for the rise of Logic Programming, which eventually
got really started, when Prolog, a working system developed by a group around Alain
Colmerauer in Marseilles, became available [5]. A few other, somewhat more restricted
systems had been available before, but Prolog was to make the breakthrough for Logic
Programming.

One of the prime advocates of what would become known as the Logic Programming
paradigm has been Robert Kowalski, who provided the philosophical basis and con-
cretizations of the Logic programming paradigm, for instance in [14] and [15]. Kowal-
ski also collaborated with Colmerauer on Prolog, and within his group in Edinburgh,
alternative implementations of Prolog were created. There has also been a standard-
ization effort for the language, which would become known as Edinburgh Prolog and
served as the de facto specification of Prolog for many years until the definition of ISO
Prolog in 1995 [16].

However, Logic Programming, and Prolog in particular, was inspired by, but not the
same as classical first-order logic. Initially the differences were not entirely clear. The
first effort to provide a formal definition for the semantics of Logic Programming is also
due to Kowalski, who together with Maarten van Emden gave a semantics based on fix-
points of operators for a restricted class of logic programs (Horn programs, also called
positive programs) in [17]. This fixpoint semantics essentially coincided with minimal
Herbrand models and with resolution-based query answering on Horn programs. The
major feature missing in Horn programs is negation—however Prolog did have a nega-
tion operator.

Indeed, the quest for finding a suitable semantics in the spirit of minimal models for
programs containing negation turned out to be far from straightforward. A first attempt
was made by Keith Clark in [18] by defining a transformation of the programs to for-
mulas in classical logic, which are then interpreted using the classical model semantics.
However, the approach gave arguably unintuitive results for programs with positive re-
cursion. In particular, the obtained semantics does not coincide with the minimal model
semantics on positive programs.

At about the same time, Raymond Reiter formulated the Closed World Assumption
in [19], which can be seen as the philosophical basis of the treatment of negation. A
further milestone in the research on the intended semantics for programs with nega-
tion has been the definition of what later became known uniformly as perfect model

166 W. Faber

semantics for programs that can be stratified on negation, in [20] and [21]. The basic
idea of stratification is that programs can be partitioned into subprograms (strata) such
that the rules of each stratum contain negative predicates only if they are are defined in
lower strata. In this way, it is possible to evaluate the program by separately evaluating
its partitions in such a way that a given “stratum” is processed whenever the ones from
which it (negatively) depends have already been processed.

While an important step forward, it is obvious that not all logic programs are strat-
ified. In particular, programs which are recursive through negation are never stratified,
and the problem of assigning a semantics to non-stratified programs still remained open.
There were basically two approaches for finding suitable definitions.

The first approach was giving up the classical setting of models which assign two
truth values, and introduce a third value, intuitively representing unknown. This ap-
proach required a somewhat different definition, because in the two-valued approach
one would give a definition only for positive values, implicitly stating that all other
constructs are considered to be negative. For instance, for minimal models, one mini-
mizes the true elements, implicitly stating that all elements not contained in the minimal
model will be false. With three truth values this strategy is no longer applicable, as ele-
ments which are not true can be either false or undefined. In order to resolve this issue,
Allen Van Gelder, Kenneth Ross, and John Schlipf introduced the notion of unfounded
sets in [22], in order to define which elements of the program should be considered false
given some partial valuation. Combining existing techniques for defining the minimal
model with unfounded sets, they defined the notion of a well-founded model. In this
way, any program would still be guaranteed to have a single model, just like there is a
unique minimal model for positive programs and a unique perfect model for stratified
programs.

The second approach consisted of viewing logic programs as formulas in nonmono-
tonic logics (see for instance [23] for an overview) rather than formulas of classical logic
(with an additional minimality criterion), and as a corollary, abandoning the unique
model property. Among the first to concretize this were Michael Gelfond in [24], who
proposed to view logic programs as formulas of autoepistemic logic, and Nicole Bidoit
and Christine Froidevaux in [25], who proposed to view logic programs as formulas of
default logic. Both of these developments have been picked up by Michael Gelfond and
Vladimir Lifschitz, who in [26] defined the notion of stable models, which is inspired
by nonmonotonic logics, however does not refer explicitly to these, but rather relies on
a reduct which effectively emulates nonmonotonic inference. It was this surprisingly
simple formulation, which did not require previous knowledge on non-classical logics
that has become well-known, and forms the basis of ASP. While any program admits
exactly one well-founded model, programs may admit no, one or many stable models.
However, well-founded and stable models are closely related, for instance the well-
founded model of a program is contained in each stable model, cf. [27]. Moreover, both
approaches coincide with perfect models on stratified programs.

Yet another, somewhat orthogonal line of research concerned the use of disjunction
in rule heads. This construct is appealing, because it allows for direct nondeterministic
definitions. Prolog and many other logic programming languages traditionally do not
provide such a feature, being restricted to so-called definite rules. Jack Minker has been

Answer Set Programming 167

a pioneer and advocate of having disjunctions in programs. In [28] he formulated the
Generalized Closed World Assumption (GCWA), which gave a simple and intuitive
semantics for disjunctive logic programs. This concept has been elaborated on over the
years, most notably by the Extended GCWA defined in [29]. Eventually, also the stable
model semantics has been extended to disjunctive programs in [30] by just minimally
altering the definition of [26]. On the other hand, defining an extension of well-founded
models for disjunctive programs remains a controversial matter to this date with various
rivalling definitions, cf. [31].

The final step towards Answer Set Programming in the traditional sense has been the
addition of a second kind of negation, which has a more classical reading than negation
as failure. This second negation is often known as true, strong, or classical negation.
Combining this feature with disjunctive stable models of [30] led to the definition of
answer sets in [7].

3 ASP Language

In what follows, we provide a formal definition of the syntax and semantics of the core
Answer Set Programming language in the sense of [7], that is, disjunctive logic pro-
gramming involving two kinds of negation (referred to as strong negation and negation
as failure), under the answer sets semantics.

3.1 Core ASP

Syntax. Following a convention dating back to Prolog, strings starting with uppercase
letters denote logical variables, while strings starting with lower case letters denote
constants. A term is either a variable or a constant. Note that, as common in ASP,
function symbols are not considered.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity n and t1,. . . ,tn
are terms. A classical literal l is either an atom p (in this case, it is positive), or a negated
atom ¬p (in this case, it is negative). A negation as failure (NAF) literal � is of the form
l or not l, where l is a classical literal; in the former case � is positive, and in the latter
case negative. Unless stated otherwise, by literal we mean a classical literal.

Given a classical literal l, its complementary literal ¬l is defined as ¬p if l = p and
p if l = ¬p. A set L of literals is said to be consistent if, for every literal l ∈ L, its
complementary literal is not contained in L.

A disjunctive rule (rule, for short) r is a construct

a1 ∨ · · · ∨ an ← b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are classical literals and n ≥ 0, m ≥ k ≥ 0. The dis-
junction a1 ∨ · · · ∨ an is called the head of r, while the conjunction b1, . . . , bk,
not bk+1, ..., not bm is referred to as the body of r. A rule without head literals (i.e.,
n = 0) is usually referred to as an integrity constraint. A rule having precisely one head
literal (i.e., n = 1) is called a normal rule. If the body is empty (i.e., k = m = 0), it is
called a fact, and in this case the “←” sign is usually omitted.

168 W. Faber

The following notation will be useful for further discussion. If r is a rule of form (1),
then H(r) = {a1, . . ., an} is the set of literals in the head and B(r) = B+(r)∪B−(r)
is the set of the body literals, where B+(r) (the positive body) is {b1,. . . , bk} andB−(r)
(the negative body) is {bk+1, . . . , bm}.

An ASP program P is a finite set of rules. A not-free program P (i.e., such that
∀r ∈ P : B−(r) = ∅) is called positive or Horn,1 and a ∨-free program P (i.e., such
that ∀r ∈ P : |H(r)| ≤ 1) is called normal logic program.

In ASP, rules in programs are usually required to be safe. The motivation of safety
comes from the field of databases, where safety has been introduced as a means to
guarantee that queries (programs in the case of ASP) do not depend on the universe (the
set of constants) considered. As an example, a fact p(X). gives rise to the truth of p(a)
when the universe {a} is considered, while it gives rise to the truth of p(a) and p(b)
when the universe {a, b} is considered. Safe programs do not suffer from this problem
when at least the constants occurring in the program are considered. For a detailed
discussion, we refer to [2].

A rule is safe if each variable in that rule also appears in at least one positive literal
in the body of that rule. An ASP program is safe, if each of its rules is safe, and in the
following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground, if no variable appears in
it. Sometimes a ground program is also called propositional program.

Example 1. Consider the following program:
r1: a(X) ∨ b(X)← c(X,Y), d(Y), not e(X).
r2:← c(X,Y), k(Y), e(X), not b(X)
r3: m← n, o, a(1).
r4: c(1,2).

r1 is a disjunctive rule with H(r1) = {a(X), b(X)}, B+(r1) = {c(X,Y), d(Y)},
and B−(r1) = {e(X)}. r2 is an integrity constraint with B+(r2) = {c(X,Y), k(Y),
e(X)}, and B−(r2) = {b(X)}. r3 is a ground, positive, and non-disjunctive rule with
H(r3) = {m}, B+(r3) = {n, o, a(1)}, and B−(r3) = ∅. r4, finally, is a fact (note that
← is omitted). Moreover, all of the rules are safe. �

Semantics. We next describe the semantics of ASP programs, which is based on the
answer set semantics originally defined in [7]. However, different to [7] only consistent
answer sets are considered, as it is now standard practice.

We note that in ASP the availability of some pre-interpreted predicates is assumed,
such as =, <, >. However, it would also be possible to define them explicitly as facts,
so they are not treated in a special way here.

Herbrand Universe and Literal Base For any program P , the Herbrand universe, de-
noted by UP , is the set of all constants occurring in P . If no constant occurs in P , UP

1 In positive programs negation as failure (not) does not occur, while strong negation (¬) may
be present.

Answer Set Programming 169

consists of one arbitrary constant2. The Herbrand literal base BP is the set of all ground
(classical) literals constructable from predicate symbols appearing in P and constants
in UP (note that, for each atom p, BP contains also the strongly negated literal ¬p).

Example 2. Consider the following program:
P0 = {

r1: a(X) ∨ b(X)← c(X,Y).
r2: e(X)← c(X,Y), not b(X).
r4: c(1,2).
}

then, the universe is UP0 = {1, 2}, and the base is BP0 = {a(1), a(2), b(1), b(2), e(1),
e(2), c(1,1), c(1,2), c(2,1), c(2,2), ¬a(1), ¬a(2), ¬b(1), ¬b(2), ¬e(1), ¬e(2), ¬c(1,1),
¬c(1,2), ¬c(2,1), ¬c(2,2)}. �

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained by
replacing each variable in r by constants in UP in all possible ways. For any program
P , its ground instantiation is the set Ground(P) =

⋃
r∈P Ground(r). Note that for

propositional programs, P = Ground(P) holds.

Example 3. Consider again program P0 of Example 2. Its ground instantiation is:

Ground(P0) = {
g1: a(1) ∨ b(1)← c(1,1). g2: a(1) ∨ b(1)← c(1,2).
g3: a(2) ∨ b(2)← c(2,1). g4: a(2) ∨ b(2)← c(2,2).
g5: e(1)← c(1,1), not b(1). g6: e(1)← c(1,2), not b(1).
g7: e(2)← c(2,1), not b(2). g8: e(2)← c(2,2), not b(2).
g9: c(1,2).
}

Note that, the the atom c(1, 2) was already ground in P0, while the rules g1, . . . , g4
(resp. g5, . . . , g8) are obtained by replacing the variables in r1 (resp. r2) with constants
in UP0 . �

Answer Sets. For every program P , its answer sets are defined using its ground instan-
tiation Ground(P) in two steps: First the answer sets of positive disjunctive programs
are defined, then the answer sets of general programs are defined by a reduction to
positive disjunctive programs and a stability condition.

An interpretation I is a consistent3 set of ground classical literals I ⊆ BP w.r.t. a
program P . A consistent interpretation X ⊆ BP is called closed under P (where P is
a positive disjunctive Datalog program), if, for every r ∈ Ground(P), H(r) ∩X �= ∅
whenever B(r) ⊆ X . An interpretation which is closed under P is also called model of
P . An interpretation X ⊆ BP is an answer set for a positive disjunctive program P , if

2 Actually, since the language does not contain function symbols and since rules are required to
be safe, this extra constant is not needed. However, we have kept the classic definition in order
to avoid confusion.

3 A set I ⊆ BP is consistent if for each positive classical literal such that l ∈ I it holds that
¬l /∈ I .

170 W. Faber

it is minimal (under set inclusion) among all (consistent) interpretations that are closed
under P .

Example 4. The positive program P1 = {a ∨ ¬b ∨ c.} has the answer sets {a}, {¬b},
and {c}; note that they are minimal and correspond to the multiple ways of satisfying
the disjunction. Its extensionP2 = P1∪{← a.} has the answer sets {¬b} and {c}, since
the additional constraint is not satisfied by interpretation {a}. Moreover, the positive
program P3 = P2 ∪ {¬b← c. ; c← ¬b.} has the single answer set {¬b, c} (indeed,
the remaining consistent closed interpretation {a,¬b, c} is not minimal). while, it is
easy to see that, P4 = P3 ∪ {← c} has no answer set. �

The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set X ⊆ BP
is the positive ground program PX , obtained from P by

– deleting all rules r ∈ P for which B−(r) ∩X �= ∅ holds;
– deleting the negative body from the remaining rules.

An answer set of a program P is a set X ⊆ BP such that X is an answer set of
Ground(P)X .

Example 5. For the negative ground program P5 = {a← not b.}, A = {a} is the only
answer set, as PA

5 = {a.}. For example for B = {b}, PB
5 = ∅, and so B is not an

answer set. �

Example 6. Consider again program P0 of Example 2, whose ground instantiation
Ground(P0) has been reported in Example 3. A naı̈ve way to compute the answer
sets of P0 is to consider all possible interpretations, checking whether they are answer
sets of Ground(P0).

For instance, consider the interpretation I0 = {c(1, 2), a(1), e(1)}. The correspond-
ing reduct Ground(P0)

I0 contains the rules g1, g2, g3, g4, g9, plus e(1) ← c(1, 1),
e(1)← c(1, 2), e(2)← c(2, 1) and e(2)← c(2, 2), obtained by canceling the negative
literals from g5, g6, g7 and g8, respectively. We can thus verify that I0 is an answer set
for Ground(P0)

I0 and therefore also an answer set for Ground(P0) and P0.
Let us now consider the interpretation I1 = {c(1, 2), b(1), e(1)}, which is a model

of Ground(P0). The reduct Ground(P0)
I1 contains the rules g1, g2, g3, g4, g9 plus

both e(2) ← c(2, 1) and e(2)← c(2, 2) (note that both g5 and g6 are deleted because
b(1) ∈ I1). I1 is not an answer set of Ground(P0)

I1 because {c(1, 2), b(1)} ⊂ I1 is.
As a consequence I1 is not an answer set of P0.

It can be verified that P0 has two answer sets, I0 and {c(1, 2), b(1)}. �

Example 7. Given the ASP program P5 = {a ∨ ¬b← c. ; ¬b← not a, not c. ; a ∨
c← not ¬b.} and I = {¬b}, the reduct PI

5 is {a ∨ ¬b← c. ; ¬b.}. It is easy to see
that I is an answer set of PI

5 , and for this reason it is also an answer set of P5.
Now consider J = {a}. The reduct PJ

5 is {a ∨ ¬b ← c. ; a ∨ c.} and it can be
easily verified that J is an answer set of PJ

5 , so it is also an answer set of P5.
If, on the other hand, we take K = {c}, the reduct PK

5 is equal to PJ
5 , but K is not

an answer set of PK
5 : for the rule r : a ∨ ¬b← c, B(r) ⊆ K holds, but H(r)∩K �= ∅

does not. Indeed, it can be verified that I and J are the only answer sets of P5.

Answer Set Programming 171

In some cases, it is possible to emulate disjunction by unstratified normal rules by “shift-
ing” the disjunction to the body [32,33,34], as shown in the following example. Con-
sider P5 = {a ∨ b. } and its “shifted version” P ′5 = {a← not b. ; b ← not a. }.
Both programs have the same answer sets, namely {a } and {b }.

However, this is not possible in general. For example, consider P6 = {a ∨ b. ;
a← b. ; b ← a. }. It has {a, b } as its single answer set, while its “shifted version”
P ′6={a← not b. ; b← not a. ; a← b. ; b← a. } has no answer set at all.

Note that these considerations prove that P5 and P ′5 are not strongly equivalent [35].
However, there is no deep relationship between “shifted” programs and strong equiv-
alence: They can be strongly equivalent (e.g. P5 ∪ {← a, b.} and P ′5 ∪ {← a, b.}),
equivalent (e.g. P5 and P ′5), or not equivalent at all (e.g. P6 and P ′6).

ASP inherits its main two reasoning tasks from nonmonotonic reasoning: brave rea-
soning (also called credulous reasoning) and cautious reasoning (also called skeptical
reasoning). Given a program P and a formula φ without variables, P |=b φ if φ is true
in some answer set of P , P |=c φ if φ is true in all answer sets of P . While these
definitions work for any formula, in ASP φ is often restricted to an atom, a literal, or a
conjunction of literals. When φ contains variables, one is asking for those substitutions
σ for which P |=b φσ (or P |=c φσ).

3.2 Semantic Characterizations

While the semantic definition given in the previous section is the one originally given
in [7], several other definitions have been shown to be equivalent to it.

For instance, Pearce showed in [36] how to link stable models and answer sets to the
intermediate logic HT (“Here and There”) proposed by Heyting [37] (corresponding
also to the three-valued Gödel Logic G3) by essentially adding an equilibrium criterion.

Another characterization has been provided by means of a simplified reduct that
became known as the FLP reduct [38,39]. The FLP reduct of a ground programP w.r.t.
a set X ⊆ BP is the positive ground program PX , obtained from P by

– deleting all rules r ∈ P for which the body is false (i.e., B+(r) �⊆ X or B−(r) ∩
X �= ∅ holds).

The definition of an answer set then remains equal modulo the replacement of Gelfond-
Lifschitz reduct by FLP reduct. The motivation for this reduct was a language extension
by aggregates (cf. the next section), but it also significantly simplifies the handling of
core programs, as rules that are not deleted by the reduct remain intact.

Further characterizations have been provided in [40].

3.3 Language Extensions

The work on ASP started with standard rules, but fairly soon implementations extend-
ing the basic language started to emerge. The most important extensions to the ASP
language can be grouped in three main classes:

– Optimization Constructs
– Aggregates and External Atoms

172 W. Faber

– Function Symbols and Existential Quantifiers
– Arbitrary Formulas as Programs
– Preference Handling

Optimization Constructs. The basic ASP language can be used to solve complex search
problems, but does not natively provide constructs for specifying optimization problems
(i.e., problems where some goal function must be minimized or maximized). Two exten-
sion of ASP have been conceived for solving optimization problems: Weak Constraints
[41,42] and Optimize Statements [43].

In the basic language, constraints are rules with empty head, and represent a condi-
tion that must be satisfied, and for this reason they are also called strong constraints.
Contrary to strong constraints, weak constraints allow us to express desiderata, that is,
conditions that should be satisfied. Thus, they may be violated, and their semantics in-
volves minimizing the number of violated instances of weak constraints. In other words,
the presence of strong constraints modifies the semantics of a program by discarding
all models which do not satisfy some of them; while weak constraints identify an ap-
proximate solution, that is, one in which (weak) constraints are satisfied as much as
possible.

From a syntactic point of view, a weak constraint is like a strong one where the
implication symbol← is replaced by �. The informal meaning of a weak constraint
�B is “try to falsify B,” or “B should preferably be false.” Additionally, a weight and

a priority level for the weak constraint may be specified after the constraint enclosed
in brackets (by means of positive integers or variables). When not specified, the weak
constraint is assumed to have weight 1 and priority level 1, respectively.

In this case, we are interested in the answer sets which minimize the sum of weights
of the violated (unsatisfied) weak constraints in the highest priority level and, among
them, those which minimize the sum of weights of the violated weak constraints in
the next lower level, and so on. In other words, the answer sets are considered along
a lexicographic ordering along the priority levels over the sum of weights of violated
weak constraints. Therefore, higher values for weights and priority levels allow for
marking weak constraints of higher importance (e.g., the most important constraints
are those having the highest weight among those with the highest priority level).

As an example consider the Traveling Salesman Problem (TSP). TSP is a variant of
the Hamiltonian Cycle problem, which amounts to finding the shortest (minimal cost)
Hamiltonian cycle (that is, a cycle including all vertices of the graph) in a directed
numerically labeled graph. This problem can be solved by adapting the encoding of the
Hamiltonian Path problem given in Section 4 (and discussed in detail there) in order to
deal with labels, by adding only one weak constraint.

Suppose that the graph G is specified by predicates node (unary) and arc (ternary),
and that one starting node is specified by the predicate start (unary).

The ASP program with weak constraints solving the TSP problem is thus as follows:

r1: inPath(X,Y) ∨ outPath(X,Y)← arc(X,Y).
r2: reached(X)← start(X).
r3: reached(X)← reached(Y), inPath(Y,X).
r4:← inPath(X,Y,), inPath(X,Y1,), Y <> Y1.

Answer Set Programming 173

r5:← inPath(X,Y,), inPath(X1, Y,), X <> X1.
r6:← node(X), not reached(X).
r7:← start(X), not inPath(Y,X).
r8: �inPath(X,Y,C)[C, 1].

The only differences with respect to the Hamiltonian Path program of Section 4 are the
constraint r7, which ensures cyclicity of the path, and the weak constraint r8, which
states the preference to avoid taking arcs with high cost in the path, and has the effect of
selecting those answer sets for which the total cost of arcs selected by inPath (which
coincides with the length of the path) is the minimum (i.e., the path is the shortest) .

The TSP encoding provided above is an example of the “guess, check and optimize”
programming pattern [42], which extends the original “guess and check” (see Section
4) by adding an additional “optimization part” which mainly contains weak constraints.
In the example above, the optimization part contains only the weak constraint r8.

Optimize Statements are syntactically somewhat simpler. They assign numeric values
to a set of ground literals, and thereby select those answer sets for which the sum of the
values assigned to literals which are true in the respective answer sets are maximal or
minimal. It is not hard to see that Weak Constraints can emulate Optimize Statements,
but not vice versa.

Aggregates and External Atoms. There are some simple properties, often arising in real-
world applications, which cannot be encoded in a simple and natural manner using ASP.
Especially properties that require the use of arithmetic operators on a set of elements
satisfying some conditions (like sum, count, or maximum) require rather cumbersome
encodings (often requiring an “external” ordering relation over terms), if one is con-
fined to classic ASP. On an abstract level, this can be viewed like having an “external
atom,” which use some external evaluator to determine truth or falsity. The best-known
type of programs with such external atoms are HEX programs, which evolved from dl-
programs that use description logics as external evaluators [44]. In the following, we
will stick with the more traditional numeric aggregates for simplicity.

Similar observations have also been made in related domains, notably database sys-
tems, which led to the definition of aggregate functions. Especially in database systems
this concept is by now both theoretically and practically fully integrated. When ASP
systems became used in real applications, it became apparent that aggregates are needed
also here. First, cardinality and weight constraints [43], which are special cases of ag-
gregates, have been introduced. However, in general one might want to use also other
aggregates (like minimum, maximum, or average), and it is not clear how to generalize
the framework of cardinality and weight constraints to allow for arbitrary aggregates. To
overcome this deficiency, ASP has been extended with special atoms handling aggre-
gate functions [45,46,47,48,38,49,50]. Intuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets of constants to a constant.

An aggregate function is of the form f(S), where S is a set term of the form {Vars :
Conj }, where Vars is a list of variables and Conj is a conjunction of standard atoms,
and f is an aggregate function symbol.

The most common aggregate functions compute the number of terms, the sum of
non-negative integers, and minimum/maximum term in a set.

174 W. Faber

Aggregates are especially useful when real-world problems have to be dealt with.
Consider the following example application:4 A project team has to be built from a set
of employees according to the following specifications:

1. At least a given number of different skills must be present in the team.
2. The sum of the salaries of the employees working in the team must not exceed the

given budget.

Suppose that our employees are provided by a number of facts of the form emp(EmpId,
Skill, Salary); the minimum number of different skills and the budget are specified
by the facts nSkill(N) and budget(B). We then encode each property stated above by
an aggregate atom, and enforce it by an integrity constraint:

r1: in(I) ∨ out(I)← emp(I, Sk, Sa).
r3:← nSkill(M), not #count{Sk : emp(I, Sk, Sa), in(I)} >= M.
r4:← budget(B), not #sum{Sa, I : emp(I, Sk, Sa), in(I)} <= B.

Intuitively, the disjunctive rule “guesses” whether an employee is included in the team
or not, while the two constraints correspond one-to-one to the requirements. Indeed, the
function #count counts the number of employees in the team, while #sum sums the
salaries of the employees which are part of the team.

Note that thanks to the aggregates the translation of the specifications is straightfor-
ward.

Function Symbols and Existential Quantifiers. Since ASP evolved from Datalog, tra-
ditional ASP languages do not allow for function symbols or existential quantification.
However, often it is convenient to use function symbols for simple reasons like group-
ing arguments together; they are also needed for creating and managing more complex
data structures like lists, as available in standard logic programming languages like Pro-
log. Also in applications concerning ontologies or the Semantic Web, often existential
quantifications in rule heads would be required in order to model unknown entities. Of
course, the two approaches are related, as usually it is possible to eliminate existential
quantifiers by introducing Skolem functions.

A major difficulty is that extensions either by function symbols or existential quan-
tifiers immediately lead to undecidability of the respective computational problems. A
major quest is therefore the identification of significant decidable subclasses of the lan-
guage.

Concerning extensions with (uninterpreted) function symbols, there are essentially
two groups of proposals:

Syntactically restricted fragments, such as ω-restricted programs [51], λ-restricted
programs [52], finite-domain programs [53], argument-restricted programs [54], FDNC
programs [55], bidirectional programs [56], and the proposal of [57]; these approaches
introduce syntactic constraints (which can be easily checked at small computational

4 In the example, we adopted the syntax of the DLV system, the same aggregate functions can
be specified also by exploiting other ASP dialects.

Answer Set Programming 175

cost) or explicit domain restrictions, thus allowing computability of answer sets and/or
decidability of querying.

Semantically restricted fragments, such as finitely ground programs [53], finitary
programs [58,59], disjunctive finitely-recursive programs [60] and queries [61,62]; with
respect to syntactically restricted fragments, these approaches aim at identifying broader
classes of programs for which computational tasks such as querying are decidable.
However, deciding the membership of a given program in these fragments is unde-
cidable in general.

There have been a few other proposals that treat function symbols not in the tradi-
tional logic programming sense, but as in classical logic, where most prominently the
unique names assumption does not hold. We refer to [63] for an overview.

Concerning existential quantifiers in rule heads, most proposals are confined to posi-
tive, non-disjunctive programs, often referred to as Datalog±. The decidable subclasses
in this case rely on four main syntactic paradigms, called guardedness [64], weak-
acyclicity [65], stickiness [66,67], and shyness [68]. Extensions of these decidable
classes to positive, but disjunctive programs have been proposed in [69], [70], and [71].
A condition which combines weak acyclicity and guardedness has been proposed in
[72]. Guardedness has been extended to stratified negation in [73].

Arbitrary Formulas as Programs. There have been several attempts at generalizing the
input language to arbitrary formulas, rather than rules, with the intention of identifying
the “ASP logic.” Pearce had provided equilibrium logic in the 1990s [36], but it was
confined to propositional logic and had only one kind of negation (negation as failure).
This logic has more recently been extended to quantified equilibrium logic in [74].
Moreover, there were attempts at defining semantics of arbitrary formulas by means
of a second-order sentence reminiscent of circumscription. This had first been done
for propositional formulas [75], and was later extended to first-order formulas [76]. In
contrast to the languages discussed in the previous sections, the goal here is to define
an ASP semantics for languages that are as general as possible. Reasoning tasks for
first-order theories clearly suffer from undecidability issues.

Preference Handling. ASP programs usually follow a “guess and check” programming
pattern (see Section 4), where a set of rules (the guessing part) is used to guess a solution
(or equivalently, to generate answer set candidates); while another set of rules, called
checking part, is added to discard solutions which are not admissible. This methodology
allows the programmer to distinguish between solutions and non-solutions. However,
in many realistic applications the possibility to make more fine grained distinctions is
required; and, in particular, distinctions between more and less preferred solutions are
needed (see [77] for a discussion). For this reason, there has been a substantial amount
of work on extending ASP programs with preferences, and in particular, the major fo-
cus has been on qualitative approaches. This stems from the fact that for a variety of
applications numerical information is hard to obtain (preference elicitation is rather
difficult) and often turns out to be unnecessary (see [77]). Still, language extensions
based on quantitative information, such as weak constraints mentioned above, emulate
qualitative preferences under certain conditions, and vice versa.

176 W. Faber

There are two basic possibilities for representing qualitative preferences. In one ap-
proach, the preference is specified among rules, mirroring the fact that some rules may
be more reliable than others, and striving to use a set of rules that is as preferred as
possible for giving reason to an answer. In the second approach, the preferences are
specified among literals, reflecting information on either the likelihood or the desirabil-
ity of the affirmations represented by the literals.

In the first kind of formalisms, preferences are specified by means of an ordering
among rules. Formally, an ordered logic program is a pair (Π,<) where Π is a logic
program and <⊆ (Π × Π) is a strict partial order. Given, r1, r2 ∈ Π , the relation
r1 < r2 expresses that r2 has higher priority than r1. For example, consider the follow-
ing program:

r1: ¬a. r2: b← ¬a, not c. r3: c← not b.

This program has two answer sets, one given by {¬a, b} and the other given by {¬a, c}.
For the first answer set, rules r1 and r2 are applied; for the second, r1 and r3. However,
assume that we have reason to prefer r2 to r3, expressed by r3 < r2. In this case we
would want to obtain just the first answer set. In this case we say that the first is a
preferred answer set.

In general, defining which answer sets should be the preferred ones in this setting
is not always as obvious as in the example above, and indeed several approaches have
been proposed. A comprehensive comparison of three major semantics, defined by Del-
grande, Schaub, Tompits [78], by Brewka and Eiter [79], and by Wang, Zhou, Lin [80],
has been presented in [81].

In the second representational approach, preferences are represented among atoms,
literals or formulas.

One way of specifying this has been proposed in [82] is the use of ordered disjunction
in rule heads. In particular, the operator× in rule heads acts as a disjunction specifying
also preferences. The meaning of a rule a1 × . . .× an ← body. is that if the body is
satisfied then some ai must be in the answer set, most preferably a1, if this is impossible
then a2, and so on. The formal semantics is defined by means of answer sets of split
programs and of rule satisfaction degrees. There are some degrees of freedom when
aggregating the satisfaction degrees of several rules, leading to different semantics, the
main ones being cardinality-based, set-inclusion-based, and Pareto-based.

In the ordered disjunction approach the construction of answer sets is amalgamated
with the expression of preferences. Optimization programs [83], on the other hand,
strictly separate these two aspects. An optimization program is a pair (Pgen, Ppref).
Here, Pgen is an arbitrary logic program used to generate answer sets. All we require
is that it produces sets of literals as its answer sets. Ppref is a preference program.
Preference programs consist of preference rules of the form c1 > . . . > cn ← body,
where the ci are Boolean combinations of literals built from ∨,∧,¬ and not. As in the
case of ordered disjunction, the semantics of these programs is based on the degree of
satisfaction of preference rules, and as in the case of ordered disjunctions, there are
several options for aggregating these satisfaction degrees for defining semantics.

Answer Set Programming 177

Another ASP extension suitable for preference handling has been presented in [84].
There, standard ASP has been enriched by introducing consistency-restoring rules (cr-
rules) and preferences, leading to the CR-Prolog language. Basically, in this language,
besides standard ASP rules one may specify CR-rules, that are expressions of the form:
r:a1 ∨ . . . ∨ an ←+ body (n ≥ 1). The intuitive meaning of CR-ruler is: if body
is true then one of a1, . . . , an is “possibly” believed to be true. Importantly, the name
of CR-prolog rules can be directly exploited to specify preferences among them. In
particular, if the fact prefer(r1, r2) is added to a CR-program, then rule r1 is preferred
over rule r2. This allows one to encode partial orderings among preferred answer sets
by explicitly writing preferences among CR-rules.

Other Extensions. ASP has been extended in other directions in order to meet require-
ments of different application domains, hence there is a number of interesting languages
having the roots on ASP. For instance, ASP has been exploited for defining and im-
plementing action languages (i.e., languages conceived for dealing with actions and
change) K [85], and E [86]; while, in [87] a framework for abduction with penaliza-
tion has been proposed and implemented as a front-end for the ASP system DLV. A
logic language called ID-Logic [88] has been introduced to deal with classical logic
with inductive definitions (which correspond semantically to logic rules). Other ASP
extensions have been conceived to deal with Ontologies (i.e., abstract models of a com-
plex domain). In particular, in [89] an ASP-based language for ontology specification
and reasoning has been proposed, which extends ASP in order to deal with complex
real-world entities, like classes, objects, compound objects, axioms, and taxonomies.
In [90] an open world semantics for ASP programs has been proposed. Moreover, in
[91] an extension of ASP, called HEX-Programs, which supports higher-order atoms
as well as external atoms has been proposed. External atoms allows for embedding
external sources of computation in a logic program. Thus, HEX-programs are useful
for various tasks, including meta-reasoning, data type manipulations, and reasoning on
top of Description Logic (DL) [92] ontologies. Template predicates have been intro-
duced in [93]. Template predicates are special intensional predicates defined by means
of generic reusable subprograms, which have been conceived for easing coding and im-
proving readability and compactness of programs. Finally, nested programs, allowing
for nested logical expressions to occur in rules have also been studied [94,95].

4 Knowledge Representation and Reasoning in ASP

ASP has been used in several domains, ranging from artificial intelligence over tradi-
tional databases to semantic web applications. ASP can be used to encode problems
in a declarative fashion; indeed, the power of disjunctive rules allows for expressing
problems which are more complex than NP, and the (optional) separation of a fixed,
non-ground program from an input database allows one to obtain uniform solutions
over varying instances.

More in detail, many problems of comparatively high computational complexity can
be solved in a natural manner by following a “Guess&Check” programming method-
ology, originally introduced in [96] and refined in [42]. The idea behind this method

178 W. Faber

can be summarized as follows: a database of facts is used to specify an instance of the
problem, while a set of (usually disjunctive5) rules, called “guessing part”, is used to
define the search space; solutions are then identified in the search space by another (op-
tional) set of rules, called “checking part”, which impose some admissibility constraint.
Basically, the answer sets of the program, which combines the input database with the
guessing part, represent “solution candidates”; those candidates are then filtered, by
adding the checking part, which guarantee that the answer sets of the resulting program
represent precisely the admissible solutions for the input instance. To grasp the intu-
ition behind the role of both the guessing and checking parts, consider the following
example.

Example 8. Suppose that we want to partition a set of persons in two groups, while
avoiding that father and children belong to the same group. Following the guess&check
methodology, we use a disjunctive rule to “guess” all the possible assignments of per-
sons to groups as follows:

group(P, 1) ∨ group(P, 2)← person(P).

To understand what this rule does, consider a simple instance of the problem, in which
there are two persons: joe and his father john. This instance is represented by four facts

person(john). person(joe). father(john, joe).

We can verify that the answer sets of the resulting program (facts plus disjunctive rule)
correspond to all possible assignments of the three persons to two groups:

{person(john), person(joe), father(john,joe), group(john,1), group(joe,1)}
{person(john), person(joe), father(john,joe), group(john,1), group(joe,2)}
{person(john), person(joe), father(john,joe), group(john,2), group(joe,1)}
{person(john), person(joe), father(john,joe), group(john,2), group(joe,2)}

However, we want to discard assignments in which father and children belong to the
same group. To this end, we add the checking part by writing the following constraint:

← group(P1, G), group(P2, G), father(P1, P2).

The answer sets of the augmented program are then the intending ones, where the check-
ing part has acted as a sort of filter:

{person(john), person(joe), father(john,joe), group(john,1), group(joe,2)}
{person(john), person(joe), father(john,joe), group(john,2), group(joe,1)}

�

5 Some ASP variants use choice rules as guessing part (see [97,98,43]), Moreover, in some
cases, it is possible to emulate disjunction by unstratified normal rules by “shifting” the dis-
junction to the body [32,33,34], but this is not possible in general.

Answer Set Programming 179

In the following, we illustrate the usage of ASP as a tool for knowledge represen-
tation and reasoning by example. In particular, we first deal with a problem motivated
by classical deductive database applications; then we exploit the “Guess&Check” pro-
gramming style to show how a number of well-known harder problems can be encoded
in ASP.

Reachability. Given a finite directed graph G = (V,A), we want to compute all pairs of
nodes (a, b) ∈ V × V such that b is reachable from a through a nonempty sequence of
arcs in A. In different terms, the problem amounts to computing the transitive closure
of the relation A.

The input graph is encoded by assuming that A is represented by the binary relation
arc(X,Y), where a fact arc(a, b) means that G contains an arc from a to b, i.e., (a, b) ∈
A; while, the set of nodes V is not explicitly represented, since the nodes appearing in
the transitive closure are implicitly given by these facts.

The following program then defines a relation reachable(X,Y) containing all facts
reachable(a, b) such that b is reachable from a through the arcs of the input graph G:

r1: reachable(X,Y)← arc(X,Y).
r2: reachable(X,Y)← arc(X,U), reachable(U, Y).

The first rule states that that node Y is reachable from node X if there is an arc in the
graph from X to Y , while the second rule represents the transitive closure by stating
that node Y is reachable from node X if there exists a node U such that U is directly
reachable from X (there is an arc from X to U) and Y is reachable from U .

As an example, consider a graph represented by the following facts:

arc(1, 2). arc(2, 3). arc(3, 4).

The single answer set of the program reported above together with these three facts
program is
{reachable(1, 2), reachable(2, 3), reachable(3, 4), reachable(1, 3), reachable

(2, 4), reachable(1, 4), arc(1, 2), arc(2, 3), arc(3, 4)}. The first three reported literals
are justified by the rule r1, while the other literals containing the predicate reachable
are justified by rule r2.

In the following, we describe the usage of the “Guess&Check” methodology.

Hamiltonian Path. Given a finite directed graph G = (V,A) and a node a ∈ V of this
graph, does there exist a path in G starting at a and passing through each node in V
exactly once?

This is a classical NP-complete problem in graph theory. Suppose that the graph G is
specified by using facts over predicates node (unary) and arc (binary), and the starting
node a is specified by the predicate start (unary). Then, the following program Php

solves the Hamiltonian Path problem:

r1: inPath(X,Y) ∨ outPath(X,Y)← arc(X,Y).
r2: reached(X)← start(X).

180 W. Faber

r3: reached(X)← reached(Y), inPath(Y,X).
r4:← inPath(X,Y), inPath(X,Y1), Y <> Y1.
r5:← inPath(X,Y), inPath(X1, Y), X <> X1.
r6:← node(X), not reached(X), not start(X).

The disjunctive rule (r1) guesses a subset S of the arcs to be in the path, while the rest
of the program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary
predicate reached is defined, which specifies the set of nodes which are reached from
the starting node. Doing this is very similar to reachability, but the transitivity is defined
over the guessed predicate inPath using rule r3. Note that reached is completely de-
termined by the guess for inPath, no further guessing is needed.

In the checking part, the first two constraints (namely, r4 and r5) ensure that the set
of arcs S selected by inPathmeets the following requirements, which any Hamiltonian
Path must satisfy: (i) there must not be two arcs starting at the same node, and (ii) there
must not be two arcs ending in the same node. The third constraint enforces that all
nodes in the graph are reached from the starting node in the subgraph induced by S.

Let us next consider an alternative program P ′hp, which also solves the Hamiltonian
Path problem, but intertwines the reachability with the guess:

r1: inPath(X,Y) ∨ outPath(X,Y)← reached(X), arc(X,Y).
r2: inPath(X,Y) ∨ outPath(X,Y)← start(X), arc(X,Y).
r3: reached(X)← inPath(Y,X).
r4:← inPath(X,Y), inPath(X,Y1), Y <> Y1.
r5:← inPath(X,Y), inPath(X1, Y), X <> X1.
r6:← node(X), not reached(X), not start(X).

Here, the two disjunctive rules (r1 and r2), together with the auxiliary rule r3, guess
a subset S of the arcs to be in the path, while the rest of the program checks whether
S constitutes a Hamiltonian Path. Here, reached is defined in a different way. In fact,
inPath is already defined in a way that only arcs reachable from the starting node will
be guessed. The remainder of the checking part is the same as in Php.

Ramsey Numbers. In the previous example, we have seen how a search problem can
be encoded in an ASP program whose answer sets correspond to the problem solutions.
We now build a program whose answer sets witness that a property does not hold, i.e.,
the property at hand holds if and only if the program has no answer set. We next apply
the above programming scheme to a well-known problem of number and graph theory.

The Ramsey number R(k,m) is the smallest integer n such that, no matter how we
color the arcs of the complete undirected graph (clique) with n nodes using two colors,
say red and blue, there is a red clique with k nodes (a red k-clique) or a blue clique with
m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [99]. We next show a
programPra that allows us to decide whether a given integer n is not the Ramsey Num-
ber R(3, 4). By varying the input number n, we can determine R(3, 4), as described

Answer Set Programming 181

below. Let Fra be the collection of facts for input predicates node and arc encoding a
complete graph with n nodes. Pra is the following program:

r1: blue(X,Y) ∨ red(X,Y)← arc(X,Y).
r2:← red(X,Y), red(X,Z), red(Y, Z).
r3:← blue(X,Y), blue(X,Z), blue(Y, Z), blue(X,W),

blue(Y,W), blue(Z,W).

Intuitively, the disjunctive rule r1 guesses a color for each edge. The first constraint (r2)
eliminates the colorings containing a red clique (i.e., a complete graph) with 3 nodes,
and the second constraint (r3) eliminates the colorings containing a blue clique with
4 nodes. The program Pra ∪ Fra has an answer set if and only if there is a coloring
of the edges of the complete graph on n nodes containing no red clique of size 3 and
no blue clique of size 4. Thus, if there is an answer set for a particular n, then n is
not R(3, 4), that is, n < R(3, 4). On the other hand, if Pra ∪ Fra has no answer set,
then n ≥ R(3, 4). Thus, the smallest n such that no answer set is found is the Ramsey
number R(3, 4).

Strategic Companies. In the examples considered so far, the complexity of the problems
is located at most on the first level of the Polynomial Hierarchy [100] (in NP or co-NP).
We next demonstrate that also more complex problems, located at the second level of
the Polynomial Hierarchy, can be encoded in ASP. To this end, we now consider a
knowledge representation problem, inspired by a common business situation, which is
known under the name Strategic Companies [101].

Suppose there is a collectionC = {c1, . . . , cm} of companies ci owned by a holding,
a set G = {g1, . . . , gn} of goods, and for each ci we have a set Gi ⊆ G of goods
produced by ci and a set Oi ⊆ C of companies controlling (owning) ci. Oi is referred
to as the controlling set of ci. This control can be thought of as a majority in shares;
companies not in C, which we do not model here, might have shares in companies as
well. Note that, in general, a company might have more than one controlling set. Let
the holding produce all goods in G, i.e., G =

⋃
ci∈C Gi.

A subset of the companies C′ ⊆ C is a production-preserving set if the following
conditions hold: (1) The companies in C′ produce all goods in G, i.e.,

⋃
ci∈C′ Gi = G.

(2) The companies in C′ are closed under the controlling relation, i.e., if Oi ⊆ C′ for
some i = 1, . . . ,m then ci ∈ C′ must hold.

A subset-minimal set C′, which is production-preserving, is called a strategic set. A
company ci ∈ C is called strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold. Indeed, intuitively, selling
any non-strategic company does not reduce the economic power of the holding. Com-
puting strategic companies is on the second level of the Polynomial Hierarchy [101].

In the following, we consider a simplified setting as considered in [101], where each
product is produced by at most two companies (for each g ∈ G |{ci | g ∈ Gi}| ≤ 2) and
each company is jointly controlled by at most three other companies, i.e., |Oi| ≤ 3 for
i = 1, . . . ,m. Assume that for a given instance of Strategic Companies, Fst contains
the following facts:

182 W. Faber

– company(c) for each c ∈ C,
– prod by(g, cj, ck), if {ci | g ∈ Gi} = {cj, ck}, where cj and ck may possibly

coincide,
– contr by(ci, ck, cm, cn), if ci ∈ C and Oi = {ck, cm, cn}, where ck, cm, and cn

are not necessarily distinct.

We next present a program Pst, which characterizes this hard problem using only two
rules:

r1: strat(Y) ∨ strat(Z)← prod by(X,Y, Z).
r2: strat(W)← contr by(W,X, Y, Z), strat(X), strat(Y), strat(Z).

Here strat(X) means that company X is a strategic company. The guessing part of the
program consists of the disjunctive rule r1, and the checking part consists of the normal
rule r2. The program Pst is surprisingly succinct, given that Strategic Companies is a
hard problem.

The program Pst exploits the minimization which is inherent to the semantics of
answer sets for the check whether a candidate set C′ of companies that produces all
goods and obeys company control is also minimal with respect to this property.

The guessing rule r1 intuitively selects one of the companies c1 and c2 that produce
some item g, which is described by prod by(g, c1, c2). If there was no company con-
trol information, minimality of answer sets would naturally ensure that the answer sets
of Fst ∪ {r1} correspond to the strategic sets; no further checking would be needed.
However, in case control information is available, the rule r2 checks that no company
is sold that would be controlled by other companies in the strategic set, by simply re-
questing that this company must be strategic as well. The minimality of the strategic
sets is automatically ensured by the minimality of answer sets.

The answer sets ofFst∪Pst correspond one-to-one to the strategic sets of the holding
described in Fst; a company c is thus strategic iff strat(c) is in some answer set of
Fst ∪ Pst.

An important note here is that the checking “constraint” r2 interferes with the guess-
ing rule r1: applying r2 may “spoil” the minimal answer set generated by r1. For ex-
ample, suppose the guessing part gives rise to a ground rule

r3: strat(c1) ∨ strat(c2)← prod by(g, c1, c2)

and the fact prod by(g, c1, c2) is given in Fst. Now suppose the rule is satisfied in the
guessing part by making strat(c1) true. If, however, in the checking part an instance of
rule r2 is applied which derives strat(c2), then the application of the rule r3 to derive
strat(c1) is invalidated, as the minimality of answer sets implies that rule r3 cannot
justify the truth of strat(c1), if another atom in its head is true.

Answer Set Programming 183

Fig. 1. General architecture of an ASP system

5 Implementations and Applications

In this section we consider some additional topics that allow the reader to have a broader
picture of ASP. In particular, we introduce the general architecture of ASP systems, and
we briefly describe several applications of ASP.

5.1 System Algorithms

Initially somewhat impeded by complexity considerations, reasonable algorithms and
systems supporting ASP became available in the second half of the 1990s. The first
widely used ones were Smodels [102,43], supporting non-disjunctive ASP, and DLV
[42], supporting ASP (with disjunction) as defined in [7]. These two systems have been
improved over the years and are still in widespread use. Later-on, more systems for
non-disjunctive ASP, like ASSAT [103,104], Cmodels [105], and Clasp [106] became
available, and also more disjunctive ASP systems became available with the advent of
GnT [107], cmodels-3 [108], and ClaspD [109].

While, as discussed below, the systems do not use the same techniques, they basically
agree on the general architecture depicted in Figure 1.

The evaluation flow of the computation is outlined in detail. Upon startup, the input
specified by the user is parsed and transformed into the internal data structures of the
system.6

In general, an input program P contains variables, and the first step of a computa-
tion of an ASP system is to eliminate these variables, generating a ground instantiation
ground(P) of P . This variable-elimination process is called instantiation of the pro-
gram (or grounding), and is performed by the Instantiator module (see Figure 1).

A naı̈ve Instantiator would produce the full ground instantiation Ground(P) of the
input, which is, however, undesirable from a computational point of view, as in general
many useless ground rules would be generated. All of the systems therefore employ
different procedures, which are geared towards keeping the instantiated program as
small as possible. A necessary condition is, of course, that the instantiated program
must have the same answer sets as the original program. However, it should be noted
that the Instantiator solves a problem, which is in general EXPTIME-hard, the produced

6 The input is usually read from text files, but some systems also interface to relational databases
for retrieving facts stored in relational tables.

184 W. Faber

ground program being potentially of exponential size with respect to the input program.
Optimizations in the Instantiator therefore often have a big impact, as its output is the
input for the following modules, which implement computationally hard algorithms.
Moreover, if the input program is normal and stratified, the Instantiator module is, in
some cases, able to directly compute its stable model (if it exists).

The subsequent computations, which constitute the non-deterministic part of an ASP
system, are then performed on ground(P) by both the Ground Reasoner and the Model
Checker. Roughly, the former produces some “candidate” answer set, whose stability is
subsequently verified by the latter.

The existing ASP systems mainly differ in the technique employed for implement-
ing the Ground Reasoner . There are basically two approaches, that we will refer to
as search-based and rewriting-based. In the search-based approach, the Ground Rea-
soner implements a backtracking search algorithm, which works directly on the ground
instantiation of the input program. Search-based systems, like e.g. DLV and Smodels,
are often referred to as “native” ASP systems, because the employed algorithms di-
rectly manipulate logic programs and are optimized for those. In the rewriting-based
approach, the Ground Reasoner transforms the ground program into a propositional
formula and then invokes a Boolean satisfiability solver for finding answer set candi-
dates.

As previously pointed out, the Model Checker verifies whether an answer set candi-
date at hand is an answer set for the input program. This task is as hard as the problem
solved by the Ground Reasoner for disjunctive programs, while it is trivial for non-
disjunctive programs. However, there is also a class of disjunctive programs, called
Head-Cycle-Free programs [32], for which the task solved by the Model Checker is
provably simpler, which is exploited in the system algorithms.

Finally, once an answer set has been found, ASP systems typically print it in text
format, and possibly the Ground Reasoner resumes in order to look for further answer
sets.

In order to implement query answering, an important technique is a generaliza-
tion of the Magic Set algorithm, originally proposed for Datalog programs. It has
been extended to ASP without negation and integrity constraints in [110] and [111],
and extended to certain classes of programs containing negation but no disjunction in
[112,113]. In [114] the technique is described for programs with both disjunction and
negation (but in a limited form, also integrity constraints are not permitted), and in [115]
a large fragment of programs has been identified, for which this technique is correct.
It has been implemented in the ASP system DLV, and also inside the system KAON2
[116,117].

5.2 Applications

Answer Set Programming has been successfully applied to many areas including:

– Information integration. ASP has been exploited for supporting consistent query
answering, in information integration systems under the so-called Global-as-View
approach [118,119,120], also in presence of data inconsistencies and data incom-
pleteness.

Answer Set Programming 185

– Configuration and Verification management. In product configuration [121], ASP
has been used as a declarative semantics providing formal definitions for main con-
cepts in product configuration, including configuration models, requirements, and
valid configurations. And, in particular, in the field of software configuration, a
prototype configurator for the complete Debian Linux system distribution has been
implemented by using ASP [122].

– Knowledge Management. ASP has a strong potential for exploitation in the area of
knowledge management and semantic technologies.
An ASP-based system for ontology representation and reasoning, called OntoDLV
[89], is employed in many real-world applications, ranging from e-learning to en-
terprise ontologies and agent-based applications. In [123] an ASP-based approach
to the problem of recognizing and extracting information from unstructured docu-
ments has been presented. While, in [124,125] a system for content classification,
called OLEX, is presented, which exploits ASP to extract concepts and semantic
metadata from documents.

– Security engineering. In [126] it is shown how security protocols can be specified
and verified efficiently and effectively by embedding reasoning about actions into
logic programming. In particular, two significant case studies in protocol verifica-
tion have been modeled: the classical Needham-Schroeder public-key protocol, and
the Aziz-Diffie key agreement protocol for mobile communication.

Moreover, applications from various areas can be found in the literature, including auc-
tions [127], scheduling [128], policy description [129], workflow management [130],
outlier detection [131], linguistics [132], multi agent systems [133,134,135], and E-
learning [135].

Concluding, ASP is an appealing tool for knowledge representation and reasoning,
and thanks to the applicability the implementations of ASP solvers to real-world prob-
lems, it is tackling many industrially-relevant applications.

It is worth noting that, ASP systems are currently away from comfortably enabling
the development of industry-level applications; and, like any other programming lan-
guage, ASP needs tools and development methodologies to facilitate and improve the
coding process. At the time of this writing, the field of software engineering for ASP
has been already settled by the ASP community [136], and it is currently evolving. In-
deed, both methodologies (see Section 4) and prototype tools are already available (see
[137,93,136,138,139,89]).

Acknowledgements. The author thanks all his co-authors over the years, for the discus-
sions and the work that laid the foundation to this overview; in particular Nicola Leone
and Francesco Ricca, with whom I co-authored a description, on which the present work
has been based.

References

1. McCarthy, J.: Programs with Common Sense. In: Proceedings of the Teddington Con-
ference on the Mechanization of Thought Processes, Her Majesty’s Stationery Office,
pp. 75–91 (1959)

186 W. Faber

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
3. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge Univer-

sity Press (2008)
4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press (2009)
5. Colmerauer, A., Roussel, P.: The Birth of Prolog. ACM, New York (1996)
6. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys 33(3), 374–425 (2001)
7. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 365–385 (1991)
8. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
9. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog

perspective. Artificial Intelligence 138(1-2), 3–38 (2002)
10. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT Press

(1998)
11. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic

and Computation 2(6), 719–770 (1992)
12. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial

Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edin-
burgh University Press (1969) reprinted in [140]

13. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of
the ACM 12(1), 23–41 (1965)

14. Kowalski, R.A.: Predicate Logic as Programming Language. In: IFIP Congress,
pp. 569–574 (1974)

15. Kowalski, R.A.: Algorithm = Logic + Control. Communications of the ACM 22(7),
424–436 (1979)

16. International Organization for Standardization: ISO/IEC 13211-1:1995: Information tech-
nology — Programming languages — Prolog — Part 1: General core. International Orga-
nization for Standardization, Geneva, Switzerland (1995)

17. van Emden, M.H., Kowalski, R.A.: The Semantics of Predicate Logic as a Programming
Language. Journal of the ACM 23(4), 733–742 (1976)

18. Clark, K.L.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases,
pp. 293–322. Plenum Press, New York (1978)

19. Reiter, R.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 55–76. Plenum Press, New York (1978)

20. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In: [141],
pp. 89–148

21. Van Gelder, A.: Negation as Failure Using Tight Derivations for General Logic Programs.
In: [141], pp. 1149–1176

22. Van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded Sets and Well-Founded Semantics
for General Logic Programs. In: Proceedings of the Seventh Symposium on Principles of
Database Systems (PODS 1988), pp. 221–230 (1988)

23. Marek, V.W., Truszczyński, M.: Nonmonotonic Logics – Context-Dependent Reasoning.
Springer (1993)

24. Gelfond, M.: On Stratified Autoepistemic Theories. In: Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI 1987), pp. 207–211 (1987)

25. Bidoit, N., Froidevaux, C.: Minimalism subsumes Default Logic and Circumscription in
Stratified Logic Programming. In: Proceedings of the Symposium on Logic in Computer
Science (LICS 1987), pp. 89–97. IEEE (June 1987)

Answer Set Programming 187

26. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic
Programming: Proceedings Fifth Intl Conference and Symposium, pp. 1070–1080. MIT
Press, Cambridge (1988)

27. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. Journal of the ACM 38(3), 620–650 (1991)

28. Minker, J.: On Indefinite Data Bases and the Closed World Assumption. In: Loveland, D.W.
(ed.) CADE 1982. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg (1982)

29. Yahya, A.H., Henschen, L.J.: Deduction in Non-Horn Databases. Journal of Automated
Reasoning 1(2), 141–160 (1985)

30. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation Comput-
ing 9, 401–424 (1991)

31. Wang, K., Zhou, L.: Comparisons and Computation of Well-founded Semantics for Dis-
junctive Logic Programs. ACM Transactions on Computational Logic 6(2) (April 2005)

32. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligence 12, 53–87 (1994)

33. Dix, J., Gottlob, G., Marek, V.W.: Reducing Disjunctive to Non-Disjunctive Semantics by
Shift-Operations. Fundamenta Informaticae 28, 87–100 (1996) (This is a full version of
[142])

34. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation 135(2), 69–112 (1997)

35. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic 2(4), 526–541 (2001)

36. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2),
3–41 (2006)

37. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, 42–56
(1930)

38. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

39. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278–298 (2011); Special Issue: John
McCarthy’s Legacy

40. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)

41. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

42. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV Sys-
tem for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

43. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Se-
mantics. Artificial Intelligence 138, 181–234 (2002)

44. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In: Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Ninth International Conference (KR 2004),
Whistler, Canada, pp. 141–151 (2004); Extended Report RR-1843-03-13, Institut für Infor-
mationssysteme, TU Wien (2003)

45. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: Nineteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI 2005), pp. 406–411 (August 2005)

188 W. Faber

46. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Dis-
junctive Logic Programming: Semantics, Complexity, and Implementation in DLV. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
Acapulco, Mexico, pp. 847–852. Morgan Kaufmann Publishers (August 2003)

47. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Model Se-
mantics for Logic Programs with Aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 212–226. Springer, Heidelberg (2001)

48. Faber, W., Leone, N.: On the Complexity of Answer Set Programming with Aggregates.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 97–109. Springer, Heidelberg (2007)

49. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. Journal of
the ACM 48(4), 880–907 (2001)

50. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic
Programs with Aggregates. Theory and Practice of Logic Programming 7(3), 301–353
(2007)

51. Syrjänen, T.: Omega-Restricted Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M.
(eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279. Springer, Heidelberg (2001)

52. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
266–271. Springer, Heidelberg (2007)

53. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and Im-
plementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 407–424. Springer, Heidelberg (2008)

54. Lierler, Y., Lifschitz, V.: One More Decidable Class of Finitely Ground Programs. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer, Heidelberg
(2009)

55. Šimkus, M., Eiter, T.: FDNC: Decidable Non-monotonic Disjunctive Logic Programs with
Function Symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

56. Eiter, T., Simkus, M.: Bidirectional Answer Set Programs with Function Symbols. In:
Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI 2009), Pasadena, CA, USA, pp. 765–771 (July 2009)

57. Lin, F., Wang, Y.: Answer Set Programming with Functions. In: Proceedings of Eleventh
International Conference on Principles of Knowledge Representation and Reasoning (KR
2008), Sydney, Australia, pp. 454–465. AAAI Press (September 2008)

58. Bonatti, P.A.: Reasoning with infinite stable models II: Disjunctive programs. In: Stuckey,
P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 333–346. Springer, Heidelberg (2002)

59. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111
(2004)

60. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. Theory and Prac-
tice of Logic Programming 9(2), 213–238 (2009)

61. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Magic Sets for the Bottom-Up Evaluation of
Finitely Recursive Programs. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 71–86. Springer, Heidelberg (2009)

62. Alviano, M., Faber, W., Leone, N.: Disjunctive asp with functions: Decidable queries and
effective computation. In: Theory and Practice of Logic Programming, 26th Int’l. Confer-
ence on Logic Programming (ICLP 2010) (2010); Special Issue 10(4-6), 497–512 (2010)

63. Cabalar, P.: Partial Functions and Equality in Answer Set Programming. In: Garcia de la
Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 392–406. Springer, Heidel-
berg (2008)

Answer Set Programming 189

64. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under ex-
pressive relational constraints. In: Brewka, G., Lang, J. (eds.) Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation and Reasoning (KR
2008), pp. 70–80. AAAI Press (2008)

65. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query an-
swering. Theoretical Computer Science 336(1), 89–124 (2005)

66. Calı̀, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proceedings
of the VLDB Endowment 3(1), 554–565 (2010)

67. Calı̀, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence 193, 87–128 (2012)

68. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable datalog∃ programs.
In: Brewka, G., Eiter, T., McIlraith, S. (eds.) Proceedings of the 13th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press
(2012)

69. Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive datalog with existential quan-
tifiers: Semantics, decidability, and complexity issues. In: Theory and Practice of Logic
Programming, 28th Int’l. Conference on Logic Programming (ICLP 2012) (2012); Special
Issue 12(4-5), 701–718 (July 2012)

70. Gottlob, G., Manna, M., Morak, M., Pieris, A.: On the complexity of ontological reasoning
under disjunctive existential rules. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS
2012. LNCS, vol. 7464, pp. 1–18. Springer, Heidelberg (2012)

71. Pierre Bourhis, M.M., Pieris, A.: The impact of disjunction on ontological query answer-
ing under guarded-based existential rules. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013) (2013)

72. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and
guardedness. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 963–968 (2011)

73. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable
query answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)

74. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set
programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 546–560. Springer, Heidelberg (2008)

75. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer,
Heidelberg (2005)

76. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Twentieth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 372–379 (January
2007)

77. Brewka, G.: Answer Sets: From Constraint Programming Towards Qualitative Optimiza-
tion. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 34–46.
Springer, Heidelberg (2003)

78. Delgrande, J.P., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic
Programs. Theory and Practice of Logic Programming 3(2), 129–187 (2003)

79. Brewka, G., Eiter, T.: Preferred Answer Sets for Extended Logic Programs. Artificial Intel-
ligence 109(1-2), 297–356 (1999)

80. Wang, K., Zhou, L., Lin, F.: Alternating Fixpoint Theory for Logic Programs with Priority.
In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau,
K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 164–178.
Springer, Heidelberg (2000)

190 W. Faber

81. Schaub, T., Wang, K.: A Comparative Study of Logic Programs with Preference. In: Pro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI
2001), Seattle, WA, USA, pp. 597–602. Morgan Kaufmann Publishers (August 2001)

82. Brewka, G.: Logic Programming with Ordered Disjunction. In: Proceedings of the 9th In-
ternational Workshop on Non-Monotonic Reasoning (NMR 2002), pp. 67–76 (April 2002)

83. Brewka, G., Niemelä, I., Truszczyński, M.: Answer Set Optimization. In: Gottlob, G.,
Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 867–872. Morgan Kaufmann (August
2003)

84. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Do-
herty, P., McCarthy, J., Williams, M. (eds.) International Symposium on Logical Formaliza-
tion of Commonsense Reasoning, AAAI 2003 Spring Symposium Series (2003)

85. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach
to Knowledge-State Planning: Semantics and Complexity. ACM Transactions on Compu-
tational Logic 5(2), 206–263 (2004)

86. Dimopoulos, Y., Kakas, A.C., Michael, L.: Reasoning About Actions and Change in An-
swer Set Programming Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS
(LNAI), vol. 2923, pp. 61–73. Springer, Heidelberg (2003)

87. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Programs with Penalization: Seman-
tics, Complexity and Implementation. Theory and Practice of Logic Programming 5(1-2),
123–159 (2005)

88. Mariën, M., Gilis, D., Denecker, M.: On the Relation Between ID-Logic and Answer Set
Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp.
108–120. Springer, Heidelberg (2004)

89. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The DLV+

System. Journal of Applied Logics 5(3), 545–573 (2007)
90. Heymans, S., Van Nieuwenborgh, D., Hadavandi, E.: Semantic web reasoning with con-

ceptual logic programs. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323,
pp. 113–127. Springer, Heidelberg (2004)

91. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: International Joint
Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, pp. 90–96 (August
2005)

92. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press (2003)

93. Calimeri, F., Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: A system with template
answer set programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 693–697. Springer, Heidelberg (2004)

94. Pearce, D., Tompits, H., Woltran, S.: Encodings for Equilibrium Logic and Logic Programs
with Nested Expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 306–320. Springer, Heidelberg (2001)

95. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary
Report. In: Proceedings of the 9th International Workshop on Non-Monotonic Reasoning
(NMR 2002) (2002)

96. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV
System. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Aca-
demic Publishers (2000)

Answer Set Programming 191

97. Niemelä, I., Simons, P.: Smodels – An Implementation of the Stable Model and Well-
founded Semantics for Normal Logic Programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.)
LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

98. Syrjänen, T.: Lparse 1.0 User’s Manual (2002),
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

99. Radziszowski, S.P.: Small Ramsey Numbers. The Electronic Journal of Combinatorics 1
(1994) (revision 9: July 15, 2002)

100. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
101. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE Transactions

on Knowledge and Data Engineering 9(3), 448–463 (1997)
102. Simons, P.: Smodels Homepage (since 1996),

http://www.tcs.hut.fi/Software/smodels/
103. Zhao, Y.: ASSAT homepage (since 2002), http://assat.cs.ust.hk/
104. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:

Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002),
Edmonton, Alberta, Canada. AAAI Press/MIT Press (2002)

105. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight
programs (2003), http://www.cs.utexas.edu/users/tag/cmodels.html

106. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solv-
ing. In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007),
pp. 386–392. Morgan Kaufmann Publishers (January 2007)

107. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. Technical Report cs.AI/0303009, arXiv.org (March
2003)

108. Lierler, Y.: CMODELS – SAT-Based Disjunctive Answer Set Solver. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

109. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang, J. (eds.) Proceed-
ings of the Eleventh International Conference on Principles of Knowledge Representation
and Reasoning (KR 2008), Sydney, Australia, pp. 422–432. AAAI Press (2008)

110. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE Transactions on Knowledge and Data Engineering 15(2), 368–385 (2003)

111. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method for disjunc-
tive datalog programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 371–385. Springer, Heidelberg (2004)

112. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 306–320. Springer, Heidelberg
(2005)

113. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.
Journal of Computer and System Sciences 73(4), 584–609 (2007)

114. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs.
Artificial Intelligence 187-187, 156–192 (2012)

115. Alviano, M., Faber, W.: Dynamic magic sets and super-coherent answer set programs. AI
Communications – The European Journal on Artificial Intelligence 24(2), 125–145 (2011)

116. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog
programs. In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR 2004), Whistler, Canada, pp. 152–162 (2004)

117. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to dis-
junctive datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/
http://assat.cs.ust.hk/
http://www.cs.utexas.edu/users/tag/cmodels.html

192 W. Faber

118. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina,
G.: The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data.
In: Proceedings of the 24th ACM SIGMOD International Conference on Management of
Data (SIGMOD 2005), Baltimore, Maryland, USA, pp. 915–917. ACM Press (June 2005)

119. Lembo, D., Lenzerini, M., Rosati, R.: Source Inconsistency and Incompleteness in Data In-
tegration. In: Proceedings of the Knowledge Representation meets Databases International
Workshop (KRDB 2002), Toulouse France, CEUR Electronic Workshop Proceedings
(2002), http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-54/

120. Lembo, D., Lenzerini, M., Rosati, R.: Integrating Inconsistent and Incomplete Data
Sources. In: Proceedings of SEBD 2002, Portoferraio, Isola d’Elba, pp. 299–308 (2002)

121. Soininen, T., Niemelä, I.: Developing a Declarative Rule Language for Applications in
Product Configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319.
Springer, Heidelberg (1999)

122. A Rule-Based Formal Model for Software Configuration. Technical Report A55, Digital
Systems Laboratory, Department of Computer Science, Helsinki University of Technology,
Espoo, Finland (1999)

123. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: de Vos, M., Provetti, A. (eds.) Proceedings ASP 2005 - Answer
Set Programming: Advances in Theory and Implementation, Bath, UK, pp. 248–262 (July
2005)

124. Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-Based Knowledge Extraction for Text Classi-
fication. In: Proceedings of Discovery Science, 7th International Conference, Padova, Italy,
pp. 380–387 (October 2004)

125. Curia, R., Ettorre, M., Gallucci, L., Iiritano, S., Rullo, P.: Textual Document Pre-Processing
and Feature Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Greece
(2005)

126. Aiello, L.C., Massacci, F.: Verifying security protocols as planning in logic programming.
ACM Transactions on Computational Logic 2(4), 542–580 (2001)

127. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auctions Us-
ing Logic Programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001.
LNCS (LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

128. Faber, W., Leone, N., Pfeifer, G.: Representing School Timetabling in a Disjunctive Logic
Programming Language. In: Egly, U., Tompits, H. (eds.) Proceedings of the 13th Workshop
on Logic Programming (WLP 1998), Vienna, Austria, pp. 43–52 (October 1998)

129. Bertino, E., Mileo, A., Provetti, A.: User Preferences VS Minimality in PPDL. In: Bucca-
furri, F. (ed.): Proceedings of the Joint Conference on Declarative Programming APPIA-
GULP-PRODE 2003, pp. 110–122 (September 2003)

130. Greco, G., Guzzo, A., Saccà, D.: A Logic Programming Approach for Planning Workflows
Evolutions. In: Buccafurri, F. (ed.): Proceedings of the Joint Conference on Declarative
Programming APPIA-GULP-PRODE 2003, pp. 75–85 (September 2003)

131. Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Repairing
Inconsistent Databases. IEEE Transactions on Knowledge and Data Engineering 15(6),
1389–1408 (2003)

132. Erdem, E., Lifschitz, V., Nakhleh, L., Ringe, D.: Reconstructing the Evolutionary History of
Indo-European Languages Using Answer Set Programming. In: Dahl, V. (ed.) PADL 2003.
LNCS, vol. 2562, pp. 160–176. Springer, Heidelberg (2002)

133. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 317–329. Springer, Heidelberg (2005)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-54/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-54/

Answer Set Programming 193

134. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688. Springer,
Heidelberg (2004)

135. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills management
context. AI Communications – The European Journal on Artificial Intelligence 19(2),
137–154 (2006)

136. De Vos, M., Schaub, T. (eds.): SEA 2007: Software Engineering for Answer Set Program-
ming, vol. 281. CEUR (2007), http://CEUR-WS.org/Vol-281/

137. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In: de
Vos, M., Provetti, A. (eds.) Proceedings ASP 2005 - Answer Set Programming: Advances
in Theory and Implementation, Bath, UK (July 2005)

138. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set programs in
ASP. In: Jeffery, C., Choi, J.D., Lencevicius, R. (eds.) Proceedings of the Sixth International
Workshop on Automated Debugging, California, USA, ACM (September 2005)

139. Ricca, F.: The DLV Java Wrapper. In: de Vos, M., Provetti, A. (eds.) Proceedings ASP
2003 - Answer Set Programming: Advances in Theory and Implementation, Messina, Italy,
pp. 305–316 (September 2003), http://CEUR-WS.org/Vol-78/

140. McCarthy, J.: Formalization of Common Sense, papers by John McCarthy, edited by V.
Lifschitz. Ablex (1990)

141. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers, Inc., Washington, DC (1988)

142. Dix, J., Gottlob, G., Marek, V.W.: Causal Models for Disjunctive Logic Programs. In: Van
Hentenryck, P. (ed.) Proceedings of the 11th International Conference on Logic Program-
ming (ICLP 1994), Santa Margherita Ligure, Italy, pp. 290–302. MIT Press (June 1994)

http://CEUR-WS.org/Vol-281/
http://CEUR-WS.org/Vol-78/

Ontology-Based Data Access with Databases:

A Short Course

Roman Kontchakov1, Mariano Rodŕıguez-Muro2, and Michael Zakharyaschev1

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, U.K.

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract. Ontology-based data access (OBDA) is regarded as a key
ingredient of the new generation of information systems. In the OBDA
paradigm, an ontology defines a high-level global schema of (already
existing) data sources and provides a vocabulary for user queries. An
OBDA system rewrites such queries and ontologies into the vocabulary
of the data sources and then delegates the actual query evaluation to a
suitable query answering system such as a relational database manage-
ment system or a datalog engine. In this chapter, we mainly focus on
OBDA with the ontology language OWL2QL, one of the three profiles
of the W3C standard Web Ontology Language OWL2, and relational
databases, although other possible languages will also be discussed. We
consider different types of conjunctive query rewriting and their succinct-
ness, different architectures of OBDA systems, and give an overview of
the OBDA system Ontop.

1 Introduction

Do you like movies? Do you want to know more about stars, directors, writers,
casts, etc.? Then you should probably query IMDb, the Internet Movie Database
available at www.imdb.com. You do not know how to use databases. But you have
already taken the ‘Introduction to Description Logics’ course. Then what you
need is ontology-based data access (OBDA, for short). There is a simple movie
ontology MO at www.movieontology.org describing the application domain in
terms of concepts (classes), such as mo:Movie and mo:Person, and roles and
attributes (object and datatype properties), such as mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie � ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− � mo:Person, etc.

And you can query the IMDb data in terms of concepts and roles of the MO
ontology; for example,

q(t, y) = ∃m
(
mo:Movie(m) ∧mo:title(m, t) ∧mo:year(m, y) ∧ (y > 2010)

)
is a conjunctive query asking for the titles (the variable t) of recent movies
with their production year (the variable y). An OBDA system such as Ontop

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 194–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.imdb.com
www.movieontology.org

Ontology-Based Data Access with Databases: A Short Course 195

available at ontop.inf.unibz.it will automatically rewrite your query into
the language of IMDb, optimise the rewriting and use a conventional relational
database management system (RDBMS) to find the answers. (We will return to
the IMDb example in Section 6.)

The idea of OBDA was explicitly formulated in 2008 [16,26,54], though query
answering over description logic knowledge bases has been investigated since at
least 2005. Nowadays, OBDA is often deemed to be an important ingredient of
the new generation of information systems as it (i) gives a high-level conceptual
view of the data, (ii) provides the user with a convenient vocabulary for queries,
(iii) allows the system to enrich incomplete data with background knowledge,
and (iv) supports queries to multiple and possibly heterogeneous data sources.

One can distinguish between several types of OBDA depending on the expres-
sive power of description logics (DLs).

OBDA with databases: some DLs, such as the logics of the DL-Lite family
(and OWL2QL), allow a reduction of conjunctive queries over ontologies to
first-order queries over standard relational databases [11,54,4,36];

OBDA with datalog engines: other DLs encompassing logics in the EL fam-
ily (OWL2EL), Horn-SHIQ and Horn-SROIQ, support a datalog reduc-
tion and can be used with datalog engines [63,44,50,17];

OBDA with expressive DLs such as ALC or SHIQ require some special
techniques for answering conjunctive queries; see [27,45,49,21,18,13,33] and
references therein for details.

In this chapter, we give a brief and easy introduction to the theory and practice
of OBDA with relational databases, assuming that the reader has some basic
knowledge of description logic. Our plan is as follows. In Section 2, we introduce
and discuss the DLs supporting first-order rewritability of conjunctive queries.
Then, in Section 3, we show how to compute first-order and nonrecursive dat-
alog rewritings of conjunctive queries over OWL2QL ontologies. The size of
rewritings is discussed in Section 4. In Section 5, we introduce the basics of the
combined approach to OBDA. Finally, in Section 6, we present the OBDA sys-
tem Ontop, which is available as a plugin for the Protégé 4 ontology editor as
well as OWLAPI and Sesame libraries and a SPARQL end-point.

2 Description Logics for OBDA with Databases

The key notion of OBDA with databases is query rewriting. The user formu-
lates a query q in the vocabulary of a given ontology T . (Such a pair (T , q) is
sometimes called an ontology-mediated query.) The task of an OBDA system is
to ‘rewrite’ q and T into a new query q′ in the vocabulary of the data such that,
for any possible data A (in this vocabulary), the answers to q over (T ,A) are
precisely the same as the answers to q′ over A. Thus, the problem of querying
data A (the structure of which is not known to the user) in terms of the ontology
T (accessible to the user) is reduced to the problem of querying A directly. As
witnessed by the 40 years history of relational databases, RDBMSs are usually

ontop.inf.unibz.it

196 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

very efficient in query evaluation. Other query answering systems, for example
datalog engines can also be employed. In this section, we consider the ontology
languages supporting query rewriting. To be more focused, we concentrate on
description logics (DLs) as ontology formalisms and only provide the reader with
references to languages of other types. We also assume in this section that A
is simply a DL ABox stored in a relational database (proper databases will be
considered in Section 6).

Example 1. Consider the query q(x) = ∃y
(
R(x, y) ∧ A(y)

)
that asks for the

individuals x in the ABox such that R(x, y) and A(y), for some y (which does
not have to be an ABox individual). Suppose also that we are given the DL
ontology (or TBox)

T = { B � A, C � ∃S, ∃S− � A, ∃R− � ∃R, S � R },

where A and B are concept names and R and S are role names (thus, the second
axiom says that C is a subset of the domain of S, and the third that the range of
S is a subset of A). It takes a moment’s thought to see that we obtain R(x, y),
for some y, if we have one of R(x, y), S(x, y) or C(x) (in the last case y may not
even exist among the ABox individuals). It follows from T that, in the second
case, A(y) also holds, and, in the third case, there exists some y such that R(x, y)
and A(y). Similarly, we obtain A(y) if we have one of A(y), B(y) or S(z, y), for
some z. These observations give the following first-order rewriting of q and T :

q′(x) = ∃y
[
R(x, y) ∧

(
A(y) ∨B(y) ∨ ∃z S(z, y)

)]
∨ ∃y S(x, y) ∨C(x).

Now, suppose A = {R(a, b), B(b), R(b, c), C(c) }. It is easy to compute the an-
swers to q′(x) over A: these are x = a and x = c. What about the answers
to q over (T ,A)? We can compute them by first applying the axioms of T to
A, always creating fresh witnesses for the existential quantifiers ∃R and ∃S if
they do not already exist, and then evaluating q(x) over the resulting (possibly
infinite) structure known as the canonical model of (T ,A). The canonical model
is illustrated in the picture below (where the fresh witnesses are shown as ◦).
Taking into consideration that we only need answers from the data (the individ-
uals from A), we see again that they are x = a and x = c.

A b

B,A
a

R C

c

R

A

S,R

AR AR

Formulas such as q(x) in Example 1 are called conjunctive queries (CQs, for
short). CQs are the most basic type of database queries, also known as Select-
Project-Join SQL queries. More precisely, in the context of OBDA over DL
ontologies, a CQ q(x) is a first-order formula ∃y ϕ(x,y), where ϕ is a conjunction
of atoms of the form A(t1) or P (t1, t2), and each ti is a term (an individual or

Ontology-Based Data Access with Databases: A Short Course 197

a variable in x or y). The variables in x are called answer variables and those
in y existentially quantified variables. Formulas such as q′(x) in Example 1 can
also use disjunctions and are called positive existential queries (PE-queries).
If all Boolean connectives (conjunction, disjunction and negation) as well as
both quantifiers, ∀ and ∃, are allowed then we call the queries first-order (FO-
queries). FO-queries (more precisely, domain-independent FO-queries) roughly
correspond to the class of queries expressible in SQL. A query q(x) is called
Boolean if x = ∅.

A tuple a of individuals in A (of the same length as x) is a certain answer
to q(x) over (T ,A) if I |= q(a) for all models I of (T ,A); in this case we write
(T ,A) |= q(a). In other words, a is a certain answer to q(x) over (T ,A) if q(a)
follows logically from A and T . For a Boolean q, the certain answer is ‘yes’ if
q holds in all models of (T ,A), and ‘no’ otherwise. Finally, an FO-rewriting of
q(x) and T is an FO-query q′(x) such that (T ,A) |= q(a) iff A |= q′(a), for
any ABox A and any tuple a ⊆ ind(A), where ind(A) is the set of individuals
in A.

For the purposes of OBDA we are naturally interested in maximal ontol-
ogy languages that ensure FO-rewritability of CQs. To distinguish between DLs
with and without FO-rewritability, we require a few facts from the computa-
tional complexity theory. For details, the reader is referred to [3,28,38,42]. The
hierarchy of the complexity classes we use in this chapter is shown below:

AC0 � NLogSpace ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime.

It is also known that P � ExpTime and NLogSpace � PSpace (whether the
remaining inclusions are proper is a major open problem in computer science).
Consider, for example, the problem of evaluating a (Boolean) FO-query over
relational databases: given an ABox A and a query q, decide whether A |= q.
If both A and q are taken as an input, then the problem is PSpace-complete
for FO-queries (due to alternation of quantifiers), and NP-complete for CQs and
PE-queries. In this case, we refer to the combined complexity of query answering.
If only the ABox is an input (and the query is fixed), the problem is in AC0 in
data complexity (this is regarded as an appropriate measure in databases because
the database instance is much smaller than the query).

Returning to FO-rewritability of CQs q and DL TBoxes T , we observe that
if the problem ‘(T ,A) |= q?’ is at least NLogSpace-hard for data complexity
(that is, with fixed T and q), then q and T cannot be FO-rewritable. Indeed,
if there was an FO-rewriting then this problem could be solved in AC0. This
observation allows us to delimit the DL constructs that ruin FO-rewritability.

Example 2. A typical example of anNLogSpace-complete problem is the reach-
ability problem for directed graphs: given a directed graph G = (V,R) with ver-
tices V and arcs R and two distinguished vertices s, t ∈ V , decide whether there
is a directed path from s to t in G. We represent the input by means of the ABox

AG,s,t = {R(v1, v2) | (v1, v2) ∈ R } ∪ {A(s), B(t)}.

198 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

Consider now the following TBox and Boolean CQ

T = { ∃R.B � B }, q = ∃y (A(y) ∧B(y)).

It is readily seen that (T ,AG,s,t) |= q iff there is a path from s to t in G. As T and
q do not depend on G, s and t, the problem ‘(T ,AG,s,t) |= q?’ is NLogSpace-
hard for data complexity, and so q and T cannot be FO-rewritable.

In other words, TBoxes capable of computing the transitive closure of some
relations in ABoxes do not allow FO-rewritability.

Example 3. The path system accessibility problem is an example of a P-complete
problem [20]: given a finite set V of vertices and a relation E ⊆ V × V × V with
a set of source vertices S ⊆ V and a terminal vertex t ∈ V , decide whether t
is accessible, where all v ∈ S are accessible, and if (v1, v2, v) ∈ E, for accessible
inputs v1 and v2, then v is also accessible. The path system can be encoded by
an ABox A in the following way:

{A(v) | v ∈ S} ∪ { P1(e, v1), P2(e, v2), R(v, e) | e = (v1, v2, v) ∈ E }.

Consider now the TBox T and Boolean CQ q given by

T = { ∃P1.A � ∃P2.A � B, ∃R.B � A }, q = A(t).

It should be clear that (T ,A) |= A(v) iff v is accessible (and that (T ,A) |= B(e)
iff both inputs of e are accessible, that is, both belong to A). Therefore, the
answer to q is ‘yes’ iff t is accessible. Thus, the problem ‘(T ,A) |= q’ is P-hard
for data complexity, and so q and T cannot be FO-rewritable.

Note that the TBox T in Example 3 is formulated in the DL EL.

Example 4. A good example of an NP-complete problem is graph 3-colouring:
given an (undirected) graph G = (V,E), decide whether each of its vertices can
be painted in one of three given colours in such a way that no adjacent vertices
have the same colour. We represent the input graph G by means of the ABox

AG = {R(v1, v2) | {v1, v2} ∈ E }.

Consider now the Boolean CQ q = ∃y N(y) and the following TBox

T = {� � C1 � C2 � C3 } ∪ {Ci �Cj � N | 1 ≤ i < j ≤ 3 } ∪
{Ci � ∃R.Ci � N | 1 ≤ i ≤ 3 },

where the Ci are concept names representing the given three colours. It is not
hard to see that the answer to q over (T ,AG) is ‘no’ iff G is 3-colourable. It
follows that the problem ‘(T ,AG) |= q?’ is coNP-hard for data complexity, and
so q and T are not FO-rewritable.

Ontology-Based Data Access with Databases: A Short Course 199

The moral of this example is that to allow FO-rewritability, TBoxes should not
contain axioms with disjunctive information (which can be satisfied in essentially
different ways when applied to ABoxes). The TBox in Example 4 is formulated
in the DL ALC.

The data complexity of answering CQs over ontologies formulated in various
DLs has been intensively investigated since 2005; see, e.g., [12,39,11,49,4]. Thus,
answering CQs over EL ontologies is P-complete for data complexity, while for
ALC it is coNP-hard. One of the results of this research was the inclusion in the
current W3C standard Web Ontology Language OWL2 of a special sublanguage
(or profile) that is suitable for OBDA with databases and called OWL2QL. The
DLs underlying OWL2QL belong to the so-called DL-Lite family [11,4]. Below,
we present OWL2QL in the DL parlance rather than the OWL2 syntax.

The language of OWL2QL contains individual names ai, concept names Ai,
and role names Pi (i = 1, 2, . . .). Roles R, basic concepts B and concepts C are
defined by the grammar:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ∃R,

C ::= B | ∃R.B

(here P−i is the inverse of Pi and ∃R is regarded as an abbreviation for ∃R.�).
An OWL2QL TBox, T , is a finite set of concept and role inclusions of the form

B � C, R1 � R2

and concept and role disjointness constraints of the form

B1 �B2 � ⊥, R1 �R2 � ⊥.

Apart from this, T may contain assertions stating that certain roles Pi are
reflexive and irreflexive. Note that symmetry and asymmetry of a role R can be
expressed in OWL2QL as, respectively,

R � R− and R �R− � ⊥.

An OWL2QL ABox, A, is a finite set of assertions of the form Ak(ai) and
Pk(ai, aj) and inequality constraints ai �= aj for i �= j. T and A together consti-
tute the knowledge base (KB) K = (T ,A).

It is to be noted that concepts of the form ∃R.B can only occur in the right-
hand side of concept inclusions in OWL2QL. An inclusion B′ � ∃R.B can be
regarded as an abbreviation for three inclusions:

B′ � ∃RB , ∃R−B � B and RB � R,

where RB is a fresh role name. Thus, inclusions of the form B′ � ∃R.B are
just convenient syntactic sugar. To simplify presentation, in the remainder of
this chapter we consider the sugar-free OWL2QL, assuming that every concept
inclusion is of the form B1 � B2, where both B1 and B2 are basic concepts.

200 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

Unlike standard DLs, OWL2 does not adopt the unique name assumption
(UNA, for short) according to which, for any interpretation I = (ΔI , ·I) and
any distinct individual names ai and aj , we must have aIi �= aIj . That is why
OWL2QL has inequality constraints ai �= aj in its syntax.

Theorem 1 ([11,4]). (i) The satisfiability problem for OWL2QL knowledge
bases is NLogSpace-complete for combined complexity and in AC0 for data
complexity.

(ii) CQs and OWL2QL TBoxes are FO-rewritable, and so CQ answering
over OWL2QL TBoxes is in AC0 for data complexity.

We will explain how one can compute FO-rewritings for CQs over OWL2QL
TBoxes in the next section. Meanwhile, we are going to illustrate the expressive
power of the language and discuss whether it can be extended without losing
FO-rewritability. The following example shows what can and what cannot be
represented in OWL2QL TBoxes. As the primary aim of OWL2QL is to facili-
tate OBDA with relational databases, our example is from the area of conceptual
data modelling.

��������	
�����
�������	
�����

��������

	

	
	

	
�
��

	
	
��
	
�
��

	
	
���	
�
��

����

����

����

	
������������	�����

������
����

����

����

������

�
�
���

����

����������	���������

Example 5. Consider the UML class diagram in the picture above representing
(part of) a company information system. According to the diagram, all managers
are employees and are partitioned into area managers and top managers. In
OWL2QL, we can write

Manager � Employee ,

AreaManager � Manager , TopManager � Manager ,

AreaManager � TopManager � ⊥.

However, the covering constraint Manager � AreaManager � TopManager uses
union �, which is not allowed in OWL2QL. Each employee has two attributes,
empCode and salary, with integer values. Unlike OWL, here we do not distinguish
between abstract objects and data values (there are, however, approaches based
on concrete domains [5,64]). Hence we model a datatype, such as Integer , by a
concept, and an attribute, such as employee’s salary, by a role:

Employee � ∃salary , ∃salary− � Integer .

Ontology-Based Data Access with Databases: A Short Course 201

However, the constraint ≥ 2salary � ⊥ (saying that the attribute salary is
functional) is not allowed. The attribute empCode with values in Integer is
represented in the same way. The binary relation worksOn has Employee as its
domain and Project as its range:

∃worksOn � Employee , ∃worksOn− � Project .

The relation boss with domain Employee and rangeManager is treated similarly.
Of the constraints that each employee works on a project and has exactly one
boss, and a project must involve at least three employees, we can only capture
the following:

Employee � ∃worksOn, Employee � ∃boss .

Both cardinality constraints ≥ 2 boss � ⊥ and Project �≥ 3worksOn− require
a more powerful language. Finally, we have to say that a top manager manages
exactly one project and also works on that project, while a project is managed
by exactly one top manager. In OWL2QL, we can only write:

∃manages � TopManager , ∃manages− � Project ,

TopManager � ∃manages , Project � ∃manages−,

manages � worksOn ,

but not ≥ 2manages � ⊥ and ≥ 2manages− � ⊥. We cannot, obviously, repre-
sent constraints such as CEO � (≥ 5 worksOn) � ∃manages � ⊥ (no CEO may
work on five projects and be a manager of one of them) either.

As we saw in the example above, some constructs that are important for con-
ceptual modelling are not available in OWL2QL. Can we add these constructs
to the language without destroying FO-rewritability?

Let us recall from Example 2 that we cannot extend OWL2QL with the
construct ∃R.B in the left-hand side of concept inclusions or with transitivity
constraints (stating that certain roles are interpreted by transitive relations).
Example 4 shows that � in the right-hand side can be dangerous. On the other
hand, we can safely use concept and role inclusions with � in the left-hand side:

B1 � · · · �Bn � B, R1 � · · · �Rm � R, for m,n ≥ 1.

Unqualified number restrictions ≥ kR, for k ≥ 2, are a bit trickier. As OWL2QL
does not adopt the UNA, an axiom such as (≥ 3R � ⊥) over an ABox containing
the atoms R(a, bi), for i ≥ 3, means that some of the bi must coincide, and
there are various ways to make it so by identifying some of the bi. In fact,
unqualified number restrictions added to OWL2QLmake it coNP-hard for data
complexity; and even role functionality makes it P-hard for data complexity [4].

One can argue, however, that in the context of OBDA it is more natural and
important to adopt the UNA. Indeed, after all, databases do respect the UNA.
It turns out that if we stipulate that the UNA is respected in OWL2QL, then

202 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

unqualified number restrictions are ‘harmless’ provided that we do not use both
axioms (≥ kR � B), for k ≥ 2, and R′ � R in the same TBox (consult [4] for a
more precise condition).

The results discussed so far guarantee that if our ontology is formulated in a
DL with the help of such and such constructs then it can safely be used for OBDA
with databases. A different approach to understanding the phenomenon of FO-
rewritability has recently been suggested [47]: it attempts to classify all TBoxes
T in some master DL, say ALCI, according to the complexity of answering CQs
over T .

Finally, we note that another family of ontology languages suitable for OBDA
with databases has been designed by the datalog community. We refer the reader
to the recent papers [10,9] for a survey. Connections of query answering via DL
ontologies with disjunctive datalog and constraint satisfaction problems have
been established in [7].

In the next section, we shall see how one can construct FO-rewritings of CQs
and OWL2QL TBoxes.

3 Tree-Witness Rewriting

A standard architecture of an OBDA system over relational data sources can be
represented as follows:

CQ q

TBox T

FO q′

mapping

SQL

data DABox A

+

rewriting

+

unfolding

+

ABox virtualisation

The user is given an OWL2QL TBox T and can formulate CQs q(x) in the
signature of T . The system rewrites q(x) and T into an FO-query q′(x) such
that (T ,A) |= q(a) iff A |= q′(a), for any ABox A and any tuple a of individuals
in A. The rewriting q′ is called a PE-rewriting if it is a PE-query and an NDL-
rewriting if it is an NDL-query.

The rewriting q′(x) is formulated in the signature of T and has to be further
transformed into the vocabulary of the data source D before being evaluated.
For instance, q′(x) can be unfolded into an SQL query by means of a mapping
M relating the signature of T to the vocabulary of D. We consider unfolding in
Section 6, but before that we assume the data to be given as an ABox (say, as
a universal table in a database or as a triple store) with a trivial mapping.

A number of different rewriting techniques have been proposed and imple-
mented for OWL2QL (PerfectRef [54], Presto/Prexto [62,61], Rapid [15]) and
its extensions ([35], Nyaya [22], Requiem/Blackout [52,53], Clipper [17]). In this
section, we discuss the tree-witness rewriting [32].

Ontology-Based Data Access with Databases: A Short Course 203

3.1 Canonical Model

All types of FO-rewritings are based on the fact that, if an OWL2QL KB
K = (T ,A) is consistent, then there is a special model of K, called a canonical
model and denoted CK, such that K |= q(a) iff CK |= q(a), for any CQ q(x)
and any a ⊆ ind(A). We have already seen one canonical model in Example 1.
Intuitively, the construction of CK is pretty straightforward: we start with A
and then apply to it recursively the axioms of T wherever possible. The only
nontrivial case is when we apply an axiom of the form B � ∃R to some w ∈ B.
Then either we already have an R-arrow starting from w, in which case we do
not have to do anything, or such an R-arrow does not exist, and then we create a
fresh individual, say wR, in the model under construction and draw an R-arrow
from w to wR.

Formally, let

[R] = { S | T |= R � S and T |= S � R }.

We write [R] ≤T [S] if T |= R � S; thus, ≤T is a partial order on the set of
equivalence classes [R], for roles R in T . For each [R], we introduce a witness
w[R] and define a generating relation �K on the set of these witnesses together
with ind(A) by taking:

a �K w[R] if a ∈ ind(A) and [R] is ≤T -minimal such that K |= ∃R(a) and
K �|= R(a, b) for any b ∈ ind(A);

w[S] �K w[R] if [R] is ≤T -minimal with T |= ∃S− � ∃R and [S−] �= [R].

A K-path is a finite sequence aw[R1] · · ·w[Rn], n ≥ 0, such that a ∈ ind(A) and,
if n > 0, then a �K w[R1] and w[Ri] �K w[Ri+1], for i < n. Denote by tail(σ) the

last element in the path σ. The canonical model CK = (ΔCK , ·CK) is defined by
taking ΔCK to be the set of all K-paths and setting:

aCK = a, for all a ∈ ind(A),
ACK = {a ∈ ind(A) | K |= A(a)} ∪

{σ · w[R] | T |= ∃R− � A}, for all concept names A,

P CK = {(a, b) ∈ ind(A)× ind(A) | R(a, b) ∈ A with [R] ≤T [P]} ∪
{(σ, σ · w[R]) | tail(σ) �K w[R], [R] ≤T [P]} ∪
{(σ · w[R], σ) | tail(σ) �K w[R], [R] ≤T [P−]}, for all role names P.

We call ind(A) the ABox part of CK, and ΔCK \ ind(A) the anonymous part.

Example 6. Consider the KB K = (T ,A), where

T = { A � ∃Q, ∃Q− � B, Q � S, ∃S− � ∃R, ∃R− � ∃R, B � ∃P },
A = { A(a), B(b), P (b, a), S(d, b) }.

204 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

The canonical model CK for K is depicted below:

A

b

B
d

S bw[R]

R

bw[R]w[R]

R

bw[R]w[R]w[R]

R

A
a

P

aw[Q]

Q,S

aw[Q]w[R]

R

aw[Q]w[P]

P

aw[Q]w[R]w[R]

R

Theorem 2. For any consistent OWL2QL KB K = (T ,A), any CQ q(x) and
any a ⊆ ind(A), we have K |= q(a) iff CK |= q(a).

Thus, to compute certain answers to q(x) over K = (T ,A), it is enough to find
answers to q(x) in the canonical model CK. To do this, we have to check all
possible homomorphisms from q to CK that map the answer variables x to the
ABox part of CK. More precisely, let us regard q(x) = ∃y ϕ(x,y) as simply the
set of atoms in ϕ, so we can write A(x) ∈ q, P (x, y) ∈ q, etc. If P (x, y) ∈ q
then we also write P−(y, x) ∈ q. By a homomorphism (or a match) from q(x)
to CK we understand any map h : x∪ y ∪ ind(A)→ ΔCK such that the following
conditions hold:

– h(a) = aCK , for every a ∈ ind(A),
– h(x) ∈ ind(A), for every x in x,
– if A(z) ∈ q then h(z) ∈ ACK ,
– if P (z, z′) ∈ q then (h(z), h(z′)) ∈ P CK .

In this case we write h : q → CK (a homomorphism is easily extended from
terms to the set of atoms of q). It is readily seen that CK |= q(a) iff there is a
homomorphism h : q → CK such that h(x) = a. We are now fully equipped to
introduce the tree-witness rewriting of a CQ q(x) and an OWL2QL TBox T .

3.2 PE-Rewritings

Following the divide and conquer strategy, we first define our rewriting in two
simplified cases.

Flat TBoxes. To begin with, let us assume that the given TBox T is flat in
the sense that it contains no axioms of the form B � ∃R. This means that the
anonymous part of the canonical model CK, for any K = (T ,A), is empty, and
so we have to look for homomorphisms into to the ABox part of the canonical
model. Recall that the canonical model CK is constructed by extending A with
all the consequences of A with respect to T . For example, if P (a, b) ∈ A and
T contains ∃P � A, then A is extended with the atom A(a). So, to obtain
an FO-rewriting of q and T , it is enough to replace every atom α in q with a

Ontology-Based Data Access with Databases: A Short Course 205

disjunction of all atoms that imply α over T . More precisely, for any concept
name A and role name P , we take the formulas:

extA(u) =
∨

T |=A′�A

A′(u) ∨
∨

T |=∃R�A
∃v R(u, v), (1)

extP (u, v) =
∨

T |=R�P
R(u, v). (2)

We define a PE-query qext(x) as the result of replacing every atom A(u) in q
with extA(u) and every atom P (u, v) in q with extP (u, v). It is not hard to see
that, for any ABox A and any a ⊆ ind(A), we have CK |= q(a) iff A |= qext(a).
Thus, we arrive at the following:

Proposition 1. For any CQ q(x) and any flat OWL2QL TBox T , qext(x) is
a PE-rewriting of q and T .

Thus, in the flat case, it is really easy to compute PE-rewritings.

Example 7. Consider the CQ q(x) = ∃y
(
A(x) ∧ P (x, y)

)
and the flat TBox T

with the axioms

A′ � A, ∃P � A, ∃R′ � A′,

R− � P, R′ � P, S � R.

Then

extA(x) = A(x) ∨ A′(x) ∨ ∃z P (x, z) ∨ ∃z R′(x, z) ∨ ∃z R(z, x) ∨ ∃z S(z, x),
extP (x, y) = P (x, y) ∨R(y, x) ∨R′(x, y) ∨ S(y, x).

Therefore, the PE-rewriting is as follows:

qext(x) = ∃y
[(
A(x)∨A′(x)∨∃z P (x, z)∨∃z R′(x, z)∨∃z R(z, x)∨∃z S(z, x)

)
∧(

P (x, y) ∨R(y, x) ∨R′(x, y) ∨ S(y, x)
)]
.

H-complete ABoxes. In the second simplified case, we assume that all the ABoxes
for which we have to construct an FO-rewriting of q(x) and (not necessarily flat)
T are H-complete with respect to T in the sense that

A(a) ∈ A if A′(a) ∈ A and T |= A′ � A,

A(a) ∈ A if R(a, b) ∈ A and T |= ∃R � A,

P (a, b) ∈ A if R(a, b) ∈ A and T |= R � P,

for all concept names A,A′, roles R and role names P . An FO-query q′(x) is an
FO-rewriting of q and T over H-complete ABoxes if, for any H-complete (with
respect to T) ABox A and any a ⊆ ind(A), we have (T ,A) |= q(a) iff A |= q′(a).
Note that if T is flat then q itself can clearly serve as a rewriting of q and T
over H-complete ABoxes. The following example illustrates the notions we need
in order to introduce the tree-witness rewriting over H-complete ABoxes.

206 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

Example 8. Consider an ontology T with the axioms

RA � ∃worksOn.Project, (3)

Project � ∃isManagedBy.Prof, (4)

worksOn− � involves, (5)

isManagedBy � involves (6)

and the CQ asking to find those who work with professors:

q(x) = ∃y, z
(
worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)

)
,

or graphically:

q(x)
x y

Prof
zworksOn involves

Observe that if the canonical model CK ofK = (T ,A), for some ABoxA, contains
individuals a ∈ RACK and b ∈ ProjectCK , then CK must also contain the following
fragments:

a

RA Project

u

Prof

vworksOn

involves−

isManagedBy

involves

b

Project Prof

wisManagedBy

involves

Here the vertices ◦ are either named individuals from the ABox or anonymous
witnesses for the existential quantifiers (generated by the axioms (3) and (4)).
It follows then that a is an answer to q(x) if a ∈ RACK because we have the
following homomorphism from q to CK:

q(x)
x y

Prof
zworksOn involves

a
RA Project

u
Prof

v

worksOn

involves− isManagedBy

involves

Alternatively, if a is in both RACK and Prof CK , then we obtain the following
homomorphism:

q(x)
x

y
Prof

z

worksOn

involves

a
RA Project

u
Prof

vworksOn

involves− isManagedBy

involves

Another option is to map x and y to ABox individuals, a and b, and if b is in
ProjectCK , then the last two atoms of q can be mapped to the anonymous part:

q(x)
x y

Prof
zworksOn involves

b
Project

Prof
wisManagedBy

involves

Ontology-Based Data Access with Databases: A Short Course 207

Finally, all the atoms of q can be mapped to ABox individuals. The possible
ways of mapping parts of q to the anonymous part of the canonical model are
called tree witnesses. The tree-witnesses for q found above give the following
tree-witness rewriting qtw of q and T over H-complete ABoxes:

qtw(x) = ∃y, z
[(
worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)

)
∨

RA(x) ∨
(
RA(x) ∧ Prof(x)

)
∨
(
worksOn(x, y) ∧ Project(y)

)]
.

We now give a general definition of tree-witness rewriting over H-complete
ABoxes. For every role name R in T , we take two fresh concept names AR,
AR− and add to T the axioms AR ≡ ∃R and AR− ≡ ∃R−. We say that the
resulting TBox is in normal form and assume, without loss of generality, that
every TBox in this section is in normal form.

Let K = (T ,A). Every individual a ∈ ind(A) with K |= AR(a) is a root of a
(possibly infinite) subtree CRT (a) of CK, which may intersect another such tree
only on their common root a. Every CRT (a) is isomorphic to the canonical model
of (T , {AR(a)}).

a1 : AR1 a2 : AR1 , AR2
a3

CR1
T (a1) CR1

T (a2) CR2
T (a2)

P1, P
−
2 P2

Suppose now that there is a homomorphism h : q → CK. Then h splits q into
the subquery mapped by h to the ABox part and the subquery mapped to the
anonymous part of CK, which is a union of the trees CRT (a). We can think of a
rewriting of q and T as listing possible splits of q into such subqueries.

Suppose q′ ⊆ q and there is a homomorphism h : q′ → CRT (a), for some a,
such that h maps all answer variables in q′ to a. Let tr = h−1(a) and let ti be
the remaining set of (existentially quantified) variables in q′. Suppose ti �= ∅. We
call the pair t = (tr, ti) a tree witness for q and T generated by R if the query q′

is a minimal subset of q such that, for any y ∈ ti, every atom in q containing y
belongs to q′. In this case, we denote q′ by qt. By definition, we have

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z �⊆ tr

}
.

Note that the same tree witness t = (tr, ti) can be generated by different roles
R. We denote the set of all such roles by Ωt and define the formula

twt =
∨

R∈Ωt

∃z
(
AR(z) ∧

∧
x∈tr

(x = z)
)
. (7)

(From a practical point of view, it is enough to take only AR for ≤T -maximal
roles R.)

Tree witnesses t and t′ are called consistent if qt ∩ qt′ = ∅. Each consistent
set Θ of tree witnesses (in which any pair of distinct tree witnesses is consistent)

208 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

determines a subquery qΘ of q that comprises all atoms of the qt, for t ∈ Θ.
The subquery qΘ is to be mapped to the CRT (a), whereas the remainder, q \ qΘ,
obtained by removing the atoms of qΘ from q, is mapped to ind(A). The following
PE-query qtw is called the tree-witness rewriting of q and T over H-complete
ABoxes :

qtw(x) =
∨

Θ consistent

∃y
(
(q \ qΘ) ∧

∧
t∈Θ

twt

)
. (8)

Example 9. Consider the KB K = (T , {A(a)}), where

T =
{
A � ∃R, A � ∃R−, AR ≡ ∃R, AR− ≡ ∃R−

}
,

and the CQ q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4) } shown in the picture
below alongside the canonical model CK (with AR and AR− omitted).

t1

t2
x1

y2

y3

x4

R R R

A
a

R−R

CK

There are two tree witnesses for q and T : t1 = (t1r , t
1
i) generated by R, and

t2 = (t2r , t
2
i) generated by R−, with

t1r = {x1, y3}, t1i = {y2}, twt1 = ∃z (AR(z) ∧ (x1 = z) ∧ (y3 = z)),

t2r = {y2, x4}, t2i = {y3}, twt2 = ∃z (AR− (z) ∧ (x4 = z) ∧ (y2 = z)).

We have qt1 = {R(x1, y2), R(y3, y2)} and qt2 = {R(y3, y2), R(y3, x4)}, so t1 and
t2 are inconsistent. Thus, we obtain the following tree-witness rewriting over
H-complete ABoxes:

qtw(x1, x4) = ∃y2, y3
[
(R(x1, y2) ∧R(y3, y2) ∧R(y3, x4)) ∨

(R(y3, x4) ∧ twt1) ∨ (R(x1, y2) ∧ twt2)
]
.

Theorem 3 ([32]). For any ABox A that is H-complete with respect to T and
any a ⊆ ind(A), we have C(T ,A) |= q(a) iff A |= qtw(a).

Tree-witness rewriting. Finally, to obtain an FO-rewriting of q(x) and T over
arbitrary ABoxes, it is enough to take the tree-witness rewriting qtw over H-
complete ABoxes and replace every atom α(u) in it with extα(u).

3.3 NDL-Rewritings

Next, we show how the tree-witness rewriting can be represented as an NDL-
query. We remind the reader that a datalog program, Π , is a finite set of Horn
clauses (or rules) of the form

∀x (γ1 ∧ · · · ∧ γm → γ0),

Ontology-Based Data Access with Databases: A Short Course 209

where each γi is an atom P (x1, . . . , xl) with xi ∈ x (see e.g., [1]). The atom γ0 is
called the head of the clause, and γ1, . . . , γm its body. In the datalog literature, a
standard agreement is to omit the universal quantifiers, replace ∧ with a comma,
and put the head before the body; thus, the rule above is written as

γ0 ← γ1, . . . , γm.

All variables occurring in the head must also occur in the body. We will also
assume that the heads do not contain constant symbols. A predicate P depends
on a predicate Q in Π if Π contains a clause whose head is P and whose body
contains Q. Π is called nonrecursive if this dependence relation for Π is acyclic.
For example, we can define the ext predicates (1) and (2) by a nonrecursive
datalog program with the following rules:

extA(x)← A′(x), for a concept name A with T |= A′ � A, (9)

extA(x)← R(x, y), for a concept name A with T |= ∃R � A, (10)

extP (x, y)← R(x, y), for a role name P with T |= R � P. (11)

(Note that ∀x, y (R(x, y)→ extA(x)) is equivalent to ∀x (∃y R(x, y)→ extA(x)).)
Let q(x) be a CQ and T an OWL2QL TBox. For a nonrecursive datalog

program Π and an atom q′(x), we say that (Π, q′) is an NDL-rewriting of q(x)
and T (over H-complete ABoxes) in case (T ,A) |= q(a) iff Π,A |= q′(a), for any
(H-complete) ABox A and any a ⊆ ind(A). An NDL-rewriting over arbitrary
ABoxes can clearly be obtained from an NDL-rewriting over H-complete ABoxes
by plugging in the ext rules above (at the price of a polynomial blowup).

Let us see how the tree-witness PE-rewriting (8) will look like if we represent
it as an NDL-rewriting over H-complete ABoxes. Suppose t = (tr, ti) is a tree
witness for q and T with tr = {t1, . . . , tk}, k ≥ 0. We associate with t a k-ary
predicate twt defined by the following set of rules:

twt(x, . . . , x)← AR(x), for R ∈ Ωt. (12)

If tr �= ∅ then (12) makes all the arguments of twt equal; otherwise, tr = ∅ and
twt is a propositional variable, with x being existentially quantified in the body
of (12). As the arguments of twt play identical roles, we can write twt(tr) without
specifying any order on the set tr. We obtain an NDL-rewriting (Π, qtw(x)) of
q(x) and T over H-complete ABoxes by taking Π to be the nonrecursive datalog
program containing the rules of the form (12) together with the rules

qtw(x)← (q \ qΘ), twt1(t
1
r), . . . , twtk(t

k
r), for consistent Θ = {t1r , . . . , tkr }. (13)

Example 10. Let q and T be the same as in Example 9. Denote byΠ the datalog
program given below:

qtw(x1, x4) ← R(x1, y2), R(y3, y2), R(y3, x4),

qtw(x1, x4) ← R(y3, x4), twt1(x1, y3),

qtw(x1, x4) ← R(x1, y2), twt2(y2, x4),

twt1(x, x) ← AR(x),

twt2(x, x) ← AR−(x).

210 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

Then (Π, qtw(x1, x4)) is an NDL-rewriting of q and T over H-complete ABoxes.
To obtain an NDL-rewriting over arbitrary ABoxes, we replace all predicates
in the rules above with their ext counterparts and add the appropriate set of
rules (9)–(11).

4 Long Rewritings, Short Rewritings

The attractive idea of OBDA with databases relies upon the empirical fact that
answering CQs in RDBMSs is usually very efficient in practice. A complexity-
theoretic justification for this fact is as follows. In general, to evaluate a Boolean
CQ q with existentially quantified variables y over a database instance D, we
require—in the worst case—time O(|q| · |D||y|), where |q| is the number of atoms
in q. The problem of CQ evaluation is W [1]-complete [51], and so can be really
hard for RDBMSs if the input queries are large. However, if q is tree-shaped (of
bounded treewidth, to be more precise)—which is often the case in practice—it
can be evaluated in polynomial time, poly(|q|, |D|) in symbols [25].

In the context of OBDA, an RDBMS is evaluating not the original CQ q
but an FO-rewriting of q and the given OWL2QL TBox T . All standard FO-
rewritings are of size O((|q| · |T |)|q|) in the worst case. For example, the size of
the tree-witness rewriting (8) is |qtw| = O(|Ξ| · |q| · |T |), where Ξ is the collection
of all consistent sets of tree witnesses for q and T (the |T | factor comes from
the twt-formulas and multiple roles that may generate a tree witness). Thus,
in principle, if there are many consistent sets of tree witnesses for q and T ,
the rewriting qtw may become prohibitively large for RDBMSs. Recall also that
qtw is a rewriting over H-complete ABoxes; to obtain a rewriting over arbitrary
ABoxes, we have to replace each atom α in qtw with the respective extα. This
will add another factor |T | to the size of qtw. RDBMSs are known to be most
efficient for evaluating CQs and unions of CQs (UCQs for short) of reasonable
size. But transforming a PE-rewriting to the UCQ form can cause an exponential
blowup in the size of the query (consider, for example, the PE-rewriting qext(x)
in Example 7 and imagine that the original CQ q contains many atoms). These
observations put forward the followings questions:

– What is the overhead of answering CQs via OWL2QL ontologies compared
to standard database query answering in the worst case?

– What is the size of FO-rewritings of CQs and OWL2QL ontologies in the
worst case?

– Can rewritings of one type (say, FO) be substantially shorter than rewritings
of another type (say, PE)?

– Are there interesting and useful sufficient conditions on CQs and ontologies
under which rewritings are short?

In this section, we give an overview of the answers to the above questions ob-
tained so far [31,34,32,23,30].

In general, succinctness problems such as the second and third questions above
can be very hard to solve. Perhaps one of the most interesting and important

Ontology-Based Data Access with Databases: A Short Course 211

examples is succinctness of various formalisms for computing Boolean functions
such as propositional formulas, branching programs and circuits, which has been
investigated since Shannon’s seminal work of 1949 [65], where he suggested the
size of the smallest circuit computing a Boolean function as a measure of the
complexity of that function.

We remind the reader (see, e.g., [3,29] for more details) that an n-ary Boolean
function, for n ≥ 1, is a function f : {0, 1}n → {0, 1}. An n-input Boolean circuit,
C, for n ≥ 1, is a directed acyclic graph with n sources (inputs) and one sink
(output). Every non-source vertex of C is called a gate; it is labelled with either
∧ or ∨, in which case it has two incoming edges, or with ¬, in which case there
is one incoming edge. The number of vertices in C will be denoted by |C|. We
think of a Boolean formula as a circuit in which every gate has at most one
outgoing edge. If x ∈ {0, 1}n, then C(x) is the output of C on input x. We say
that C computes a Boolean function f if C(x) = f(x), for every x ∈ {0, 1}n.

In the circuit complexity theory, we are interested in families of Boolean func-
tions, that is, sequences f1, f2, . . . , where each fn is an n-ary Boolean function.
For example, we can consider the family Cliquen,k(e) of Boolean functions of
n(n−1)/2 variables ejj′ , 1 ≤ j < j′ ≤ n, that return 1 iff the graph with vertices
{1, . . . , n} and edges {{j, j′} | ejj′ = 1} contains a k-clique, for some fixed k.

Given a function T : N→ N, by a T -size family of circuits we mean a sequence
C1,C2, . . . , where each Cn is an n-input Boolean circuits of size |Cn| ≤ T (n).
Every family fn of Boolean functions can clearly be computed by circuits of size
n ·2n (take disjunctive normal forms representing the fn). The class of languages
that are decidable by families of polynomial-size circuits is denoted by P/poly.
It is known that P � P/poly. Thus, one might hope to prove that P �= NP by
showing that NP �⊆ P/poly. In other words, to crack one of the most important
problems in computer science and mathematics,1 it is enough to find a family of
Boolean functions in NP that cannot be computed by a polynomial-size family
of circuits. This does not look like a particularly hard problem! After all, it
has been known since 1949 that the majority of Boolean functions can only be
computed by exponential-size circuits. Yet, so far no one has managed to find a
concrete family of functions in NP that need circuits with more than 4.5n−o(n)
gates [40].

Investigating restricted classes of Boolean circuits has proved to be much more
successful. The class that is relevant in the context of PE-rewritings consists of
monotone Boolean functions, that is, those computable by monotone circuits
with only ∧- and ∨-gates. For example, the function Cliquen,k(e) is mono-
tone. As Cliquen,k is NP-complete, the question whether Cliquen,k can be
computed by polynomial-size circuits is equivalent to the open NP ⊆ P/poly
problem. A series of papers, started by Razborov’s [57], gave an exponential

lower bound for the size of monotone circuits computing Cliquen,k: 2
Ω(
√
k) for

k ≤ 1
4 (n/ logn)

2/3 [2]. For monotone formulas, an even better lower bound was

obtained: 2Ω(k) for k = 2n/3 [56]. It follows that, if we assume NP �⊆ P/poly,

1 It is actually one of the seven Millennium Prize Problems worth of $1 000 000 each;
consult www.claymath.org/millennium.

www.claymath.org/millennium

212 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

then no polynomial-size family of (not necessarily monotone) circuits can com-
pute Cliquen,k.

A few other interesting examples of monotone functions have also been found.
Thus, [55] gave a family of monotone Boolean functions that can be computed
by polynomial-size monotone circuits, but any monotone formulas computing
this family are of size 2n

ε

, for some ε > 0. Or there is a family of monotone
functions [56,8] showing that non-monotone Boolean circuits are in general su-
perpolynomially more succinct than monotone circuits.

Boolean circuits

monotone Boolean circuits

monotone Boolean formulas

superpolynomially
more succinct

exponentially
more succinct

Let us now return to rewritings of CQs and OWL2QL TBoxes. As we shall
see later on in this section, there is a close correspondence between (arbitrary)
Boolean formulas and FO-rewritings, monotone Boolean formulas and
PE-rewritings, and between monotone Boolean circuits and NDL-rewritings:

Boolean formulas ≈ FO-rewritings
monotone Boolean circuits ≈ NDL-rewritings

monotone Boolean formulas ≈ PE-rewritings

To begin with, we associate with the tree-witness (PE- or NDL-) rewritings qtw

certain monotone Boolean functions that will be called hypergraph functions.
A hypergraph H = (V,E) is given by its vertices v ∈ V and hyperedges e ∈ E,

where E ⊆ 2V . We call a subset X ⊆ E independent if e∩e′ = ∅, for any distinct
e, e′ ∈ X . The set of vertices that occur in the hyperedges ofX is denoted by VX .
With each vertex v ∈ V and each hyperedge e ∈ E we associate propositional
variables pv and pe, respectively. The hypergraph function fH for a hypergraph
H is computed by the Boolean formula

fH =
∨

X independent

(∧
v∈V \VX

pv ∧
∧
e∈X

pe

)
. (14)

This definition is clearly inspired by (8). The PE-rewriting qtw of q and T defines
a hypergraph whose vertices are the atoms of q and hyperedges are the sets qt, for
tree witnesses t for q and T . We denote this hypergraph byHq

T . The formula (14)
defining fHq

T
is basically the same as the rewriting (8) with the atoms S(z) in

q and tree witness formulas twt treated as propositional variables. We denote
these variables by pS(z) and pt (rather than pv and pe), respectively.

Example 11. Consider again the CQ q and TBox T from Example 9. The hy-
pergraph Hq

T and its hypergraph function fHq
T
are shown below:

Ontology-Based Data Access with Databases: A Short Course 213

R(x1, y2)

R(y3, y2)

R(y3, x4)

t1 t2

fHq
T
= (pR(x1,y2) ∧ pR(y3,y2) ∧ pR(y3,x4)) ∨

(pR(y3,x4) ∧ pt1) ∨ (pR(x1,y2) ∧ pt2).

Suppose now that the hypergraph function fHq
T

is computed by some Boolean
formula χHq

T
. Consider the FO-formula χ̂Hq

T
obtained by replacing each pS(z) in

χHq
T
with S(z), each pt with twt, and adding the prefix ∃y. By comparing (14)

and (8), we see that the resulting FO-formula is a rewriting of q and T over
H-complete ABoxes. A monotone circuit computing fHq

T
can be converted to an

NDL-rewriting of q and T over H-complete ABoxes. This gives us the following:

Theorem 4. (i) If the function fHq
T

is computed by a Boolean formula χHq
T
,

then χ̂Hq
T

is an FO-rewriting of q and T over H-complete ABoxes.

(ii) If fHq
T

is computed by a monotone Boolean circuit C, then there is an

NDL-rewriting of q and T over H-complete ABoxes of size O(|C | · (|q|+ |T |)).

Thus, the problem of constructing short rewritings is reducible to the problem of
finding short Boolean formulas or circuits computing the hypergraph functions.
We call a hypergraph H representable if there are a CQ q and an OWL2QL
TBox T such that H is isomorphic to Hq

T .
Let us consider first hypergraphs of degree ≤ 2, in which every vertex belongs

to at most two hyperedges. There is a striking correspondence between such
hypergraphs and OWL2QL TBoxes T of depth one, which cannot have chains
of more than 1 point in the anonymous part of their canonical models (more
precisely, whenever aw[R1] · · ·w[Rn] is an element of some canonical model for T
then n ≤ 1). As observed above, PE-rewritings of CQs and flat TBoxes (that is,
TBoxes of depth 0) can always be made of polynomial size.

Theorem 5 ([30]). (i) If q is a CQ and T a TBox of depth one, then the
hypergraph Hq

T is of degree ≤ 2.
(ii) The number of distinct tree witnesses for q and T does not exceed the

number of variables in q.
(iii) Any hypergraph H of degree ≤ 2 is representable by means of some CQ

and TBox of depth one.

Here we only consider (iii). Suppose that H = (V,E) is a hypergraph of de-
gree ≤ 2. To simplify notation, we assume that any vertex in H belongs to
exactly 2 hyperedges, so H comes with two fixed maps i1, i2 : V → E such that
i1(v) �= i2(v), v ∈ i1(v) and v ∈ i2(v), for any v ∈ V . For every e ∈ E, we take
an individual variable ze and denote by z the vector of all such variables. For
every v ∈ V , we take a role name Rv and define a Boolean CQ qH by taking:

qH = ∃z
∧
v∈V

Rv(zi1(v), zi2(v)).

214 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

For every hyperedge e ∈ E, let Ae be a concept name and Se a role name.
Consider the TBox TH with the following inclusions, for e ∈ E:

Ae ≡ ∃Se,

Se � R−v , for v ∈ V with i1(v) = e,

Se � Rv, for v ∈ V with i2(v) = e.

We claim that the hypergraph H is isomorphic to H
qH

TH and illustrate the proof
by an example.

Example 12. Let H = (V,E) with V = {v1, v2, v3, v4} and E = {e1, e2, e3},
where e1 = {v1, v2, v3}, e2 = {v3, v4}, e3 = {v1, v2, v4}. Suppose also that

i1 : v1 	→ e1, v2 	→ e3, v3 	→ e1, v4 	→ e2,

i2 : v1 	→ e3, v2 	→ e1, v3 	→ e2, v4 	→ e3.

The hypergraph H is shown below, where each vertex vi is represented by an
edge, i1(vi) is indicated by the circle-shaped end of the edge and i2(vi) by the
diamond-shaped one; the hyperedges ej are shown as large grey squares:

e2

e1

e3

v1
v2

v4

v3

hy
pe
rg
ra
ph

H

tree witness te1

ze1

ze2 , ze3

Ae1

Se1R
− v
3

R
v
2

R
− v
1

Then

qH = ∃ze1ze2ze3
(
Rv1(ze1 , ze3) ∧Rv2(ze3 , ze1) ∧Rv3(ze1 , ze2) ∧Rv4(ze2 , ze3)

)
and the TBox TH contains the following inclusions:

Ae1 ≡ ∃Se1 , Se1 � R−v1 , Se1 � Rv2 , Se1 � R−v3 ,

Ae2 ≡ ∃Se2 , Se2 � Rv3 , Se2 � R−v4 ,

Ae3 ≡ ∃Se3 , Se3 � Rv1 , Se3 � R−v2 , Se3 � Rv4 .

The canonical model CSe1

TH (a) is shown on the right-hand side of the picture above.
We observe now that each variable ze uniquely determines the tree witness te

with qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; qte and qte′ are consistent iff e∩ e′ �= ∅. It
follows that H is isomorphic to H

qH

TH .

Ontology-Based Data Access with Databases: A Short Course 215

It turns out that answering the CQ qH over TH and certain single-individual
ABoxes amounts to computing the Boolean function fH . Let H = (V,E) be a
hypergraph of degree 2 with V = {v1, . . . , vn} and E = {e1, . . . , em}. We denote
by α(vi) the i-th component of α ∈ {0, 1}n and by β(ej) the j-th component of
β ∈ {0, 1}m. Define an ABox Aα,β with a single individual a by taking

Aα,β = {Rvi(a, a) | α(vi) = 1} ∪ {Aej (a) | β(ej) = 1}.

Theorem 6 ([30]). Let H = (V,E) be a hypergraph of degree 2. Then, for any
tuples α ∈ {0, 1}|V | and β ∈ {0, 1}|E|,

(TH ,Aα,β) |= qH iff fH(α,β) = 1.

What is so special about hypergraphs of degree ≤ 2? First, one can show that all
hypergraph functions of degree ≤ 2 can be computed by polynomial-size mono-
tone Boolean circuits—in fact, by polynomial-size monotone nondeterministic
branching programs (NBPs), also known as switching-and-rectifier networks [29].
Moreover, the converse also holds: if a family of Boolean functions is computable
by polynomial-size NBPs then it can be represented by a family of polynomial-
size hypergraphs of degree≤ 2. As a consequence of this fact, we obtain a positive
result on the size of NDL-rewritings:

Theorem 7 ([30]). For any CQ q and any TBox T of depth one, there is an
NDL-rewriting of q and T of polynomial size.

On the ‘negative’ side, there are families of Boolean functions fn that are com-
putable by polynomial-size monotone NBPs, but any monotone Boolean formu-
las computing fn are of superpolynomial size, at least 2Ω(log2 n), to be more
precise. For example, Grigni and Sipser [24] consider functions that take the ad-
jacency matrix of a directed graph of n vertices with a distinguished vertex s as
input and return 1 iff there is a directed path from s to some vertex of outdegree
at least two. Can we use this lower bound to establish a corresponding super-
polynomial lower bound for the size of PE-rewritings? The answer naturally
depends on what syntactical means we can use in our rewritings.

Let us assume first that the FO- and NDL-rewritings of CQs q and OWL2QL
TBoxes T can contain equality (=), any non-predifined predicates and only
those constant symbols that occur in q. Thus, we do not allow new constants
and various built-in predicates in our rewritings. Such rewritings are sometimes
called pure.

As any NBP corresponds to a polynomial-size hypergraph of degree ≤ 2, we
obtain a sequence Hn of polynomial hypergraphs of degree 2 such that fn = fHn .
We take the sequence of CQs qn and TBoxes Tn associated with the hypergraphs
of degree ≤ 2 for the sequence fn of Boolean functions chosen above. We show
that any pure PE-rewriting q′n of qn and Tn can be transformed into a monotone
Boolean formula χn computing fn and having size ≤ |q′n|.

To define χn, we eliminate the quantifiers in q′n in the following way: take a
constant a and replace every subformula of the form ∃xψ(x) in q′n with ψ(a),

216 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

repeating this operation as long as possible. The resulting formula q′′n is built
from atoms of the form Ae(a), Rv(a, a) and Se(a, a) using ∧ and ∨. For every
ABox A with a single individual a, we have (Tn,A) |= qn iff A |= q′′n. Let χn be
the result of replacing Se(a, a) in q′′n with ⊥, Ae(a) with pe and Rv(a, a) with
pv. Clearly, |χn| ≤ |q′n|.

By the definition of Aα,β and Theorem 6, we then obtain:

χn(α,β) = 1 iff Aα,β |= q′′n iff Aα,β |= q′n iff

(Tn,Aα,β) |= qn iff fHn(α,β).

It remains to recall that |q′n| ≥ |χn| ≥ 2Ω(log2 n). This gives us the first super-
polynomial lower bound for the size of pure PE-rewritings.

Theorem 8 ([30]). There is a sequence of CQs qn and TBoxes Tn of depth
one such that any pure PE-rewriting of qn and Tn (over H-complete ABoxes) is

of size ≥ 2Ω(log2 n).

Why are the PE-rewritings in Theorem 8 so large? Let us have another look
at the tree-witness rewriting (8) of q and T . Its size depends on the number of
distinct consistent sets of tree witnesses for q and T . In view of Theorem 5 (ii),
qn and Tn in Theorem 8 have a polynomial number of tree witnesses. However,
many of them are not consistent with each other (see Example 12), which makes
it impossible to simplify (8) to a polynomial-size PE-rewriting.

For TBoxes of depth two, we can obtain an even stronger ‘negative’ result:

Theorem 9 ([30]). There exists a sequence of CQs qn and TBoxes Tn of depth
two, such that any pure PE- and NDL-rewriting of qn and Tn is of exponential
size, while any FO-rewriting of qn and Tn is of superpolynomial size (unless
NP ⊆ P/poly).

This theorem can be proved by showing that the hypergraphs Hn,k computing

Cliquen,k are representable as subgraphs of H
qn,k

Tn,k
for suitable qn,k and Tn,k,

and then applying quantifier elimination over single-individual ABoxes as above.
Using TBoxes of unbounded depth, one can show that pure FO-rewritings can

be superpolynomially more succinct than pure PE-rewritings:

Theorem 10 ([34]). There is a sequence of CQs qn of size O(n) and TBoxes Tn
of size O(n) that has polynomial-size FO-rewritings, but its pure PE-rewritings

are of size ≥ 2Ω(2log
1/2 n).

We can also use the machinery developed above to understand the overhead of
answering CQs via OWL2QL ontologies compared to standard database query
answering:

Theorem 11 ([31]). There is a sequence of CQs qn and OWL2QL TBoxes
Tn such that the problem ‘A |= qn?’ is in P, while the problem ‘(Tn,A) |= qn?’
is NP-hard (for combined complexity).

Ontology-Based Data Access with Databases: A Short Course 217

On the other hand, answering tree-shaped CQs (or CQs of bounded treewidth)
over TBoxes without role inclusions can be done in polynomial time [6]. On the
other hand, a sufficient condition on CQs and OWL2QL TBoxes that guarantees
the existence of polynomial-size pure PE-rewritings can be found in [32].

We conclude this section with a few remarks on ‘impure’ rewritings that can
use new constant symbols not occurring in the given CQ. To prove the superpoly-
nomial and exponential lower bounds on the size of pure rewritings above, we
established a connection between monotone circuits for Boolean functions and
rewritings for certain CQs and OWL2QL TBoxes. In fact, this connection also
suggests a way of making rewritings substantially shorter. Indeed, recall that al-
though no monotone Boolean circuit of polynomial size can compute Cliquen,k,
we can construct such a circuit if we are allowed to use advice inputs. Indeed,
for any family f1, f2, . . . of Boolean functions in NP, there exist polynomials p
and q and, for each n ≥ 1, a Boolean circuit Cn with n+ p(n) inputs such that
|Cn| ≤ q(n) and, for any α ∈ {0, 1}n, we have

fn(α) = 1 iff Cn(α,β) = 1, for some β ∈ {0, 1}p(n).

The additional p(n) inputs for β in the Cn are called advice inputs. These advice
inputs make Boolean circuits nondeterministic (in the sense that β is a guess)
and, as a result, exponentially more succinct—in the same way as nondetermin-
istic automata are exponentially more succinct than deterministic ones [48]. To
introduce corresponding nondeterministic guesses into query rewritings, we can
use additional existentially quantified variables—provided that the domain of
quantification contains at least two elements. For this purpose, we can assume
that all relevant ABoxes contain two fixed individuals (among others).

Theorem 12 ([23,34]). For any CQ q and OWL2QL TBox T , there are im-
pure polynomial-size PE- and NDL-rewritings of q and T over ABoxes contain-
ing two fixed constants; the rewritings use O(|q|) additional existential quanti-
fiers.

This polynomial-size impure rewriting hides the superpolynomial and exponen-
tial blowups in the case of pure rewritings behind the additional existential
quantification over the newly introduced constants.

5 The Combined Approach

A different approach to OBDA has been suggested in [44,36,37]. It is known
as the combined approach and aims at scenarios where one can manipulate the
database. Suppose we are given a CQ q and a TBox T , and we want to query
an ABox A. So far, we have first constructed an FO-rewriting q′ of q and T ,
independently of A, and then used an RDBMS to evaluate q′ over A. The ad-
vantage of this ‘classical’ approach is that it works even when we cannot modify
the data in the data source. However, as we saw above, the rewriting q′ can be
too large for RDBMSs to cope.

218 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

But let us assume that we can manipulate the given ABox A. In this case, a
natural question would be: why cannot we first apply T to A and then evaluate
q over the resulting canonical model? However, many OWL2QL TBoxes are of
infinite depth, and so the canonical model of K = (T ,A) can be infinite; even if
T is of bounded depth, the canonical model of K can be of exponential size.

Example 13. Consider the OWL2QL TBox

T = { A � ∃T, ∃T− � B, B � ∃R, ∃R− � A }.

The infinite canonical model of CK, for K = (T , {A(a)}), looks as follows:

CK
A

a

B

aw[T]

T A

aw[P]w[R]

R B

aw[T]w[R]w[T]

T

But what if we fold the infinite chain of alternating R- and T -arrows in a simple
cycle such as in the picture below?

GK
A

a

B

w[T]T

A

w[R]
R

T

Note that GK is still a model of K. Now, consider the CQ

q(x) = ∃y, z (T (x, y) ∧R(y, z) ∧ T (z, y)).

Clearly, we have GK |= q(a), but CK �|= q(a). Observe, however, that to get rid
of this spurious answer a, it is enough to slightly modify q by adding to it the
‘filtering conditions’ (z �= w[R]), (y �= w[R−]), (y �= w[T]) and (z �= w[T−]) as
conjuncts (in the scope of ∃y, z). Indeed, it is not hard to see that q and T have
no tree witnesses, and so the variables y and z cannot be mapped anywhere in
the anonymous part of the canonical model.

It turns out that this idea works perfectly well at least for the case when
OWL2QL TBoxes do not contain role inclusions. Suppose T is such a TBox
and A an arbitrary ABox. We define the generating model GK of K = (T ,A) by
taking:

ΔGK = {tail(σ) | σ ∈ ΔCK},
aGK = a, for all a ∈ ind(A),
AGK = {tail(σ) | σ ∈ ACK}, for all concept names A,

PGK = {(tail(σ), tail(σ′)) | (σ, σ′) ∈ P CK}, for all role names P,

where CK is the standard canonical model of K. It is not hard to see that the
map tail : ΔCK → ΔGK is a homomorphism from CK onto GK, and CK can be
viewed as the ‘unraveling’ of GK. The generating model GK can be constructed
in polynomial time in |K|. As positive existential queries are preserved under
homomorphisms, we obtain:

Ontology-Based Data Access with Databases: A Short Course 219

Theorem 13 ([36]). For any consistent OWL2QL KB K = (T ,A), which does
not contain role inclusion axioms, any CQ q(x) and any tuple a ⊆ ind(A), if
CK |= q(a) then GK |= q(a) (but not the other way round).

Suppose now that we are given a CQ q(x) = ∃y ϕ(x,y). Our aim is to rewrite
q to an FO-query q†(x) in such a way that CK |= q(a) iff GK |= q†(a), for any
tuple a ⊆ ind(A), and the size of q† is polynomial in the size of q and T . (Note
that the rewriting given in [36,37] does not depend on T because of a different
definition of tree witness.) We define the rewriting q† as a conjunction

q†(x) = ∃y (ϕ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3),

where ϕ1, ϕ2 and ϕ3 are Boolean combinations of equalities t1 = t2, and each
of the ti is either a term in q or a constant of the form w[R]. The purpose of the
conjunct

ϕ1 =
∧
x∈x

∧
R a role in T

(x �= w[R])

is to ensure that the answer variables x receive their values from ind(A) only.
The conjunct ϕ2 implements the matching dictated by the tree witnesses.

Suppose t = (tr, ti) is a tree witness for q and T generated by R. If R(t, t′) ∈ q
and t′ is mapped to w[R], then all the variables in tr are to be mapped to the
same point as t:

ϕ2 =
∧

R(t,t′)∈q
there is a tree witness t with R ∈ Ωt

(
(t′ = w[R])→

∧
s∈tr

(s = t)
)
.

If there is no tree witness t generated by R and such that R(t, t′) ∈ qt, then t′

cannot be mapped to the witness w[R] at all. This is ensured by the conjunct

ϕ3 =
∧

R(t,t′)∈q
no tree witness t with R ∈ Ωt exists

(
t′ �= w[R]

)
.

Theorem 14 ([36]). For any consistent OWL2QL KB K = (T ,A) containing
no role inclusion axioms, any CQ q(x) and any tuple a ⊆ ind(A), we have
CK |= q(a) iff GK |= q†(a).

The rewriting q† can be computed in polynomial time in q and T and is of size
O(|q| · |T |).

A slightly different idea was proposed in [46] to extend the combined approach
to unrestricted OWL2QL TBoxes. As before, given a CQ q(x), an OWL2QL
TBox T and an ABox A, we first construct a polynomial-size interpretation
G′K representing the (possibly infinite) canonical model CK (in fact, G′K is more
involved than GK). Then we use an RDBMS to compute the answers to the
original CQ q(x) over G′K stored in the RDBMS. As we saw above, some of
the answers can be spurious. To eliminate them, instead of ϕ1, ϕ2 and ϕ3, one
can use a ‘filtering procedure’ that is installed as a user-defined function in the

220 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

RDBMS. This procedure takes as input a match of the query in G′K and returns
‘false’ if this match is spurious (that is, cannot be realised in the real canonical
model CK) and ‘true’ otherwise. The filtering procedure runs in polynomial time,
although it may have to run exponentially many times (to check exponentially
many matches for the same answer tuple) in the worst case.

6 OBDA with Ontop

In this final section, we consider the architecture of the OBDA system Ontop
(ontop.inf.unibz.it) implemented at the Free University of Bozen-Bolzano
and available as a plugin for the ontology editor Protégé 4, a SPARQL end-
point and OWLAPI and Sesame libraries.

In OBDA with databases, the data comes from a relational database rather
than an ABox. From a logical point of view, a database schema [1] contains
predicate symbols (with their arity) for both stored database relations (also
known as tables) and views (with their definitions in terms of stored relations)
as well as a set Σ of integrity constraints (in the form of functional and inclusion
dependencies; for example, primary and foreign keys). Any instance I of the
database schema must satisfy its integrity constraints Σ.

The vocabularies of the database schema and the given TBox are linked
together by means of mappings produced by a domain expert or extracted
(semi)automatically. There are different known types of mappings: LAV (local-
as-views), GAV (global-as-views), GLAV, etc.; consult, e.g., [41] for an overview.
Here we concentrate on GAV mappings because they guarantee low complexity
of query answering (in what follows we call them simply mappings). A mapping,
M, is a set of rules of the form

S(x)← ϕ(x, z),

where S is a concept or role name in the ontology and ϕ(x, z) a conjunction
of atoms with database relations (both stored and views) and a filter, that is,
a Boolean combination of built-in predicates such as = and <. (Note that, by
including views in the schema, we can express any SQL query in mappings, which
is important from the practical point of view.)

Given a mappingM from a database schema to an OWL2QL TBox T and
an instance I of this schema, the ground atoms

S(a), for S(x)← ϕ(x, z) inM and I |= ∃z ϕ(a, z),

comprise the ABox, AI,M, which is called the virtual ABox for M over I [59]
(this ABox is just a convenient presentational tool and does not have to be
materialised by the system). We can now define certain answers to a CQ q over
T linked byM to I as certain answers to q over (T ,AI,M).

As an illustration, we consider a (simplified) database IMDb (www.imdb.com/
interfaces), whose schema contains relations title[m, t, y] with information
about movies (ID, title, production year), and castinfo[p,m, r] with information

ontop.inf.unibz.it

Ontology-Based Data Access with Databases: A Short Course 221

about movie casts (person ID, movie ID, person role). Thus, a data instance I
of this schema may contain the tables

title

m t y

728 ‘Django Unchained’ 2012

castinfo

p m r

n37 728 1
n38 728 1

The users are not supposed to know the structure of the database. Instead, they
are given an ontology, say MO (www.movieontology.org), describing the appli-
cation domain in terms of, for example, concepts mo:Movie and mo:Person, and
roles mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie � ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− � mo:Person.

A mappingM that relates the ontology terms to the database schema contains,
for example, the following rules:

mo:Movie(m)← title(m, t, y), (15)

mo:title(m, t)← title(m, t, y), (16)

mo:year(m, y)← title(m, t, y), (17)

mo:cast(m, p)← castinfo(p,m, r), (18)

mo:Person(p)← castinfo(p,m, r). (19)

Then the virtual ABox AI,M forM over I consists of the ground atoms

mo:Movie(728), mo:title(728, ‘Django Unchained’),mo:year(728, 2012),

mo:Person(n37), mo:cast(728, n37),

mo:Person(n38), mo:cast(728, n38).

Given a CQ q and an ontology T , one could first construct a rewriting q′ of
q and T over arbitrary ABoxes. The rewriting q′ could then be unfolded into
an SQL query by using partial evaluation [43], which exhaustively applies SLD-
resolution to q′ and the mappingM and returns those rules whose bodies contain
only database atoms. Consider the simple CQ q(x) = mo:Movie(x). An obvious
rewiring of q and the TBox above (over arbitrary ABoxes) contains the following
three rules:

q′(x)← mo:Movie(x), (20)

q′(x)← mo:title(x, y), (21)

q′(x)← mo:cast(x, y). (22)

The unfolding applies the SLD-resolution procedure to these three rules and the
mappingM and produces the rules:

q′(x)← title(x, t, y), (20+15)

q′(x)← title(x, t, y), (21+16)

q′(x)← castinfo(p, x, r). (22+18)

www.movieontology.org

222 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

The resulting union of Select-Project-Join queries could then be forwarded
for execution to an RDBMS.

One can achieve the same result by using the tree-witness rewriting qtw of
q and T over H-complete ABoxes introduced in Section 3. An obvious way to
construct H-complete ABoxes is to take the composition ofM and the inclusions
in T , that is, a mappingMT given by

A(x)← ϕ(x, z), if A′(x)← ϕ(x, z) ∈M and T |= A′ � A,

A(x)← ϕ(x, y, z), if R(x, y)← ϕ(x, y, z) ∈M and T |= ∃R � A,

P (x, y)← ϕ(x, y, z), if R(x, y)← ϕ(x, y, z) ∈M and T |= R � P.

(Recall that we do not distinguish between P−(y, x) and P (x, y).) Thus, for any
I and any tuple a of individuals in AI,M, we have:

(T ,AI,M) |= q(a) iff AI,MT |= qtw(a). (23)

So, to compute the answers to q over T linked by M to I, one can unfold the
tree-witness rewriting qtw over H-complete ABoxes with the help of the compo-
sitionMT . However, the resulting query will produce duplicating answers if the
ontology axioms express the same properties of the application domain as the in-
tegrity constraints of the database [58]. For example, the IMDb schema contains
a foreign key: movie ID in castinfo references movie ID in title, and therefore the
unfolded rewriting above will return the same movie many times—once from
title and once for each of the cast members of the movie in castinfo. Such a
duplication is clearly an undesirable feature of this straightforward approach.

For this reason, before applying MT to unfold the tree-witness rewriting,
Ontop optimises the mapping using the database integrity constraints Σ. This
allows us to (a) reduce redundancy in answers, and (b) substantially shorten
the SQL queries, which makes the OBDA system more efficient. The process of
query rewriting and unfolding in Ontop with all optimisations is shown in the
picture below (the dashed lines illustrate processes that do not take place):

CQ q

ontology T

UCQ qtw

T -mapping
mappingM

dependencies Σ

SQL

data D

ABox A

H-complete ABox A

+

tw-rewriting ➊

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

ABox completion

+

completion ➋
SQO ➌ SQ

O

➍

Ontology-Based Data Access with Databases: A Short Course 223

The key ingredients of the architecture of Ontop are as follows:

➊ the tree-witness rewriting qtw assumes the virtual ABoxes to be H-complete;
it separates the topology of q from the taxonomy defined by T , is fast in
practice and produces short UCQs as demonstrated for real-world ontologies
and queries [60];

➋ the T -mapping combines the system mapping M with the taxonomy of T
to ensure H-completeness of virtual ABoxes;

➌ the T -mapping is simplified using the Semantic Query Optimisation (SQO)
technique and SQL features; the T -mapping is constructed and optimised
for the given T and Σ only once, and is used for unfolding all rewritings qtw;

➍ the unfolding algorithm uses SQO to produce small and efficient SQL queries.

We illustrate the last three items in the remainder of this section.

6.1 T -Mappings

We say that a mapping M is a T -mapping over dependencies Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
The compositionMT defined above is trivially a T -mapping over any Σ. Ontop
starts withMT and then applies a series of optimisations to construct a simpler
T -mapping.

Inclusion Dependencies. SupposeM∪ {S(x)← ψ1(x, z)} is a T -mapping over
Σ. If there is a more specific rule than S(x) ← ψ1(x, z) in M, then M itself
will also be a T -mapping. To discover such ‘more specific’ rules, we run the
standard query containment check (see, e.g., [1]) taking account of the inclusion
dependencies. For example, since T |= ∃mo:cast � mo:Movie in our running
example, the compositionMMO of the mappingM given above and MO contains
the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

The latter rule is redundant since IMDb contains the foreign key (an inclusion
dependency)

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters with respect to
constant values. This optimisation deals with the rules introduced due to the so-
called type (discriminating) attributes [19] in database schemas. For example, the
mappingM for IMDb and MO contains six rules for sub-concepts of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),

· · ·
mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

224 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

Then the compositionMMO contains six rules for mo:Person that differ only in
the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a single rule:

mo:Person(p)← castinfo(c, p,m, r), (r = 1) ∨ · · · ∨ (r = 6).

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with proper
relational data sources, Ontop also supports ABox storage in the form of struc-
tureless universal tables : a binary relation CA[id, concept-id] and a ternary re-
lation RA[id1, id2, role-id] represent concept and role assertions. The universal
tables give rise to trivial mappings, and Ontop implements a technique, the se-
mantic index [59], that takes advantage of SQL features in T -mappings for this
scenario. The key observation is that, since the IDs in the universal tables CA
and RA can be chosen by the system, each concept and role in the TBox T
can be assigned a numeric index and a set of numerical intervals in such a way
that the resulting T -mapping contains simple SQL queries with interval filter
conditions. For example, in IMDb, we have

mo:Actor � mo:Artist,

mo:Artist � mo:Person,

mo:Director � mo:Person,

so we can choose indexes and intervals for these concepts as in the table below:

concept index interval
mo:Actor 1 [1,1]
mo:Artist 2 [1,2]
mo:Director 3 [3,3]
mo:Person 4 [1,4]

mo:Person (4) [1,4]

mo:Director (3) [3,3] mo:Artist (2)[1,2]

mo:Actor (1)[1,1]

It can be seen that these intervals respect the concept inclusions of the TBox:
e.g., [1,1] for mo:Actor is a subset of [1,2] for mo:Artist. This will generate a
T -mapping with

mo:Actor(p)← CA(p, concept-id), (concept-id = 1),

mo:Artist(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 2),

mo:Director(p)← CA(p, concept-id), (concept-id = 3),

mo:Person(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 4).

Thus, by choosing appropriate concept and role IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of derived assertions). On the other hand, the se-
mantic index T -mappings are based on range expressions that can be evaluated
efficiently by RDBMSs using standard B-tree indexes [19].

Ontology-Based Data Access with Databases: A Short Course 225

6.2 Unfolding with Semantic Query Optimisation

Ontop applies the Semantic Query Optimisation (SQO) [14] to rules obtained
at the intermediate steps of unfolding. In particular, this eliminates redundant
Join operations caused by reification of database relations by means of concepts
and roles. Consider, for example, the CQ

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw = q. By straightforwardly applying the
unfolding to qtw and the T -mappingM above, we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
the primary key m of title:

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(a functional dependency with determinant m), we reduce two Join operations
in the first three atoms of q′tw to a single atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations.

6.3 Why Does It Work?

The techniques above prove to be very efficient in practice. Moreover, they of-
ten automatically produce queries that are similar to those written by human
experts. To understand why, we briefly review the process of designing database
applications [19]. It starts with conceptual modelling which describes the appli-
cation domain in such formalisms as ER, UML or ORM. The conceptual model
gives the vocabulary of the database and defines its semantics by means of hi-
erarchies, cardinality restrictions, etc. The conceptual model is turned into a
relational database by applying a series of standard procedures that encode the
semantics of the model into a relational schema. These procedures include:

226 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

– amalgamating many-to-one and one-to-one attributes of an entity to a sin-
gle n-ary relation with a primary key identifying the entity (e.g., title with
mo:title and mo:year);

– using foreign keys over attribute columns when a column refers to the entity
(e.g., title and castinfo);

– using type (discriminating) attributes to encode hierarchical information
(e.g., castinfo).

As this process is universal, the T -mappings created for the resulting databases
are dramatically simplified by the Ontop optimisations, and the resulting UCQs
are usually of acceptable size and can be executed efficiently by RDBMSs.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions.
Combinatorica 7(1), 1–22 (1987)

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, New York (2009)

4. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

5. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes.
In: Proc. of the 20th European Conf. on Artificial Intelligence (ECAI 2012). Fron-
tiers in Artificial Intelligence and Applications, vol. 242, pp. 61–66. IOS Press
(2012)

6. Bienvenu, M., Ortiz, M., Šimkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proc. of the 23 Int. Joint Conf. on Artificial Intelligence
(IJCAI 2013) (2013)

7. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access:
A study through disjunctive Datalog, CSP and MMSNP. In: Proc. of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS 2013). ACM (2013)

8. Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and gcd com-
putations. In: Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS 1982), pp. 65–71 (1982)

9. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. Journal of Web Semantics 14, 57–83
(2012)

10. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The
query answering problem. Artificial Intelligence 193, 87–128 (2012)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270
(2006)

13. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: View-based query an-
swering in description logics: Semantics and complexity. Journal of Computer and
System Sciences 78(1), 26–46 (2012)

Ontology-Based Data Access with Databases: A Short Course 227

14. Chakravarthy, U.S., Fishman, D.H., Minker, J.: Semantic query optimization in
expert systems and database systems. Benjamin-Cummings Publishing Co., Inc.
(1986)

15. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
192–206. Springer, Heidelberg (2011)

16. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer,
Heidelberg (2008)

17. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.-K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI
2012). AAAI Press (2012)

18. Eiter, T., Ortiz, M., Šimkus, M.: Conjunctive query answering in the description
logic SH using knots. Journal of Computer and System Sciences 78(1), 47–85 (2012)

19. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 6th edn. Addison-
Wesley (2010)

20. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

21. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for
the description logic SHIQ. Journal of Artificial Intelligence Research (JAIR) 31,
157–204 (2008)

22. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Proc. of the 27th Int. Conf. on Data Engineering (ICDE 2011), pp. 2–13. IEEE
Computer Society (2011)

23. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: Proc. of the 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2012). AAAI Press (2012)

24. Grigni, M., Sipser, M.: Monotone separation of logarithmic space from logarithmic
depth. Journal of Computer and System Sciences 50(3), 433–437 (1995)

25. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive
queries tractable? In: Proc. of the 33rd Annual ACM Symposium on Theory of
Computing (STOC 2001), pp. 657–666. ACM (2001)

26. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue,
A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench,
G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories.
In: Ontology Management, Semantic Web, Semantic Web Services, and Business
Applications. Semantic Web And Beyond Computing for Human Experience, vol. 7,
pp. 89–128. Springer (2008)

27. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction
to disjunctive datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

28. Immerman, N.: Descriptive Complexity. Springer (1999)
29. Jukna, S.: Boolean Function Complexity — Advances and Frontiers. Algorithms

and combinatorics, vol. 27. Springer (2012)
30. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Query rewriting over

shallow ontologies. In: Proc. of the 2013 International Workshop on Description
Logics (DL 2013) (2013)

31. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (In)Tractability of OBDA with
OWL 2 QL. In: Proc. of the 2011 International Workshop on Description Logics
(DL 2011). CEUR-WS, vol. 745 (2011)

228 R. Kontchakov, M. Rodŕıguez-Muro, and M. Zakharyaschev

32. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR 2012). AAAI Press (2012)

33. Kikot, S., Tsarkov, D., Zakharyaschev, M., Zolin, E.: Query answering via modal
definability with FaCT++: First blood. In: Proc. of the 2013 International Work-
shop on Description Logics (DL 2013) (2013)

34. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274.
Springer, Heidelberg (2012)

35. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: A sound and complete
backward chaining algorithm for existential rules. In: Krötzsch, M., Straccia, U.
(eds.) RR 2012. LNCS, vol. 7497, pp. 122–138. Springer, Heidelberg (2012)

36. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press
(2010)

37. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2011), pp. 2656–2661. AAAI Press (2011)

38. Kozen, D.: Theory of Computation. Springer (2006)

39. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics.
In: Proc. of the 2007 International Workshop on Description Logics (DL 2007).
CEUR-WS, vol. 250, pp. 88–99 (2007)

40. Lachish, O., Raz, R.: Explicit lower bound of 4.5n − o(n) for Boolean circuits.
In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC
2001), pp. 399–408. ACM (2001)

41. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2002), pp. 233–246. ACM (2002)

42. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

43. Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. The
Journal of Logic Programming 11(3-4), 217–242 (1991)

44. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI 2009), pp. 2070–2075 (2009)

45. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

46. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: Proc. of the Joint Workshop on Scalable
and High-Performance Semantic Web Systems (SSWS+HPCSW 2012). CEUR-
WS, vol. 943, pp. 16–31 (2012)

47. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR 2012). AAAI Press (2012)

48. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proc. of the 12th Annual Symposium on Switching and Au-
tomata Theory (SWAT 1971), pp. 188–191 (1971)

Ontology-Based Data Access with Databases: A Short Course 229

49. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. Journal of Automated Reasoning 41(1), 61–98
(2008)

50. Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the
description logics SHOIQ and SROIQ. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2011), pp. 1039–1044. AAAI Press (2011)

51. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. In:
Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 1997), pp. 12–19. ACM Press (1997)

52. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting tech-
niques for DL-Lite. In: Proc. of the 2009 International Workshop on Description
Logics (DL 2007). CEUR-WS, vol. 477 (2009)

53. Pérez-Urbina, H., Rodŕıguez-Dı́az, E., Grove, M., Konstantinidis, G., Sirin, E.:
Evaluation of query rewriting approaches for OWL 2. In: Proc. of the Joint Work-
shop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW
2012). CEUR-WS, vol. 943, pp. 32–44 (2012)

54. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics
X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)

55. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. In: Proc. of the
38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp.
234–243 (1997)

56. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Jour-
nal of the ACM 39(3), 736–744 (1992)

57. Razborov, A.: Lower bounds for the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)

58. Rodŕıguez-Muro, M.: Tools and Techniques for Ontology Based Data Access in
Lightweight Description Logics. PhD thesis, KRDB Research Centre for Knowledge
and Data, Free University of Bozen-Bolzano (2010)

59. Rodŕıguez-Muro, M., Calvanese, D.: Dependencies: Making ontology based data
access work. In: Proc. of the 5th A. Mendelzon Int. Workshop on Foundations of
Data Management (AMW 2011). CEUR-WS, vol. 749 (2011)

60. Rodŕıguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontop at work. In: Proc.
of the 10th OWL: Experiences and Directions Workshop (OWLED 2013) (2013)

61. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)

62. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proc. of the 12th Int. Conf. on Principles of Knowledge Representation and Rea-
soning (KR 2010). AAAI Press (2010)

63. Rosati, R.: On conjunctive query answering in EL. In: Proc. of the 2007 Interna-
tional Workshop on Description Logics (DL 2007). CEUR-WS, vol. 250 (2011)

64. Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proc. of the
20th European Conf. on Artificial Intelligence (ECAI 2012). Frontiers in Artificial
Intelligence and Applications, vol. 242, pp. 720–725. IOS Press (2012)

65. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Systems Tech-
nical Journal 28, 59–98 (1949)

A Geo-semantics Flyby

Krzysztof Janowicz1, Simon Scheider2, and Benjamin Adams3

1 Department of Geography, University of California, Santa Barbara, CA, USA
2 Institute for Geoinformatics, University of Münster, Germany

3 National Center for Ecological Analysis and Synthesis (NCEAS)
University of California, Santa Barbara, CA, USA

Abstract. Geospatial semantics as a research field studies how to pub-
lish, retrieve, reuse, and integrate geo-data, how to describe geo-data by
conceptual models, and how to develop formal specifications on top of
data structures to reduce the risk of incompatibilities. Geo-data is highly
heterogeneous and ranges from qualitative interviews and thematic maps
to satellite imagery and complex simulations. This makes ontologies, se-
mantic annotations, and reasoning support essential ingredients towards
a Geospatial Semantic Web. In this paper, we present an overview of
major research questions, recent findings, and core literature.

1 Introduction and Motivation

A flyby is a flight maneuver to celebrate an important event, to demonstrate air-
craft, or to showcase flying skills. Independent of the particular purpose, the au-
dience will see the aircraft approaching from afar, catch a more detailed glimpse
of certain parts when the aircraft passes by, and then see the tail disappear in the
sky. Using the flyby as a metaphor, we will give a broader overview of the general
field of geo-semantics first, later highlight some selected topics in more detail, and
also touch upon a few topics of emerging interest. The selection of these topics is
biased, and, as with the flyby, depends on the viewer’s vantage point. We will as-
sume that the reader is familiar with the core concepts of the Semantic Web, but
not with geo-semantics, the broader Geosciences, or Geographic Information Sci-
ence. Consequently, we will focus on intuitive examples that do not require domain
knowledge but nonetheless illustrate the research challenges. For those interested
in a detailed introduction to the Semantic Web and related core technologies, we
refer the reader to the recent textbook by Hitzler et al. [42].

Before we dive into the discussion, it is worth clarifying some of the terminol-
ogy we will use. Much like Bioinformatics combines Computer and Information
Science with Biology to improve handling and analyzing biological data, Geoin-
formatics is an interdisciplinary research field concerned with geo-data in their
broadest definition. Geo, in this context, refers to the Earth Sciences, Geography,
Ecology, and related research fields. Geographic Information Science (GIScience)
puts more emphasis on geographic aspects and qualitative as well as quantita-
tive data. It is closely related to geographic information systems (GIS), which
are software and services to manage and analyze geographic data. These sys-
tems are used, for example, to reason about crime densities, optimize location

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 230–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Geo-semantics Flyby 231

choices, visualize land use dynamics, and so forth.1 GIS and spatial statistics
play an important role in many domains such as economics, health research,
and archaeology. In fact, it is often claimed that most data has some sort of
spatial reference. Sometimes the name Spatial Informatics is used to emphasize
the integrative role and omnipresence of spatial aspects in many datasets and
to broaden the research beyond the geo-realm. The term geospatial is used to
explicitly restrict the scale to between 10−2 - 107 meters. That is, everything
smaller than a grain of sand and larger than the Earth is usually not considered
to be part of the geo-domain. Finally, as the Geosciences are largely concerned
with processes, the temporal dimension is implicit, and thus geo-data is typically
spatiotemporal.

In order to illustrate some of the complexities and interesting challenges of
geo-semantics we would like to start with what on the surface might appear to be
a trivial task. That is, we want to describe the semantics of the term mountain.
Mountain is one of many geographic feature types, including river, lake, forest,
and city, that we are accustomed to using in everyday language and for which
we have developed internal notions through our social and physical experiences.
This knowledge, which has been described as Naive Geography by Egenhofer
and Mark [25], is used by people every day to reason about the surrounding
geographic world. Given our familiarity with these terms, we are often quick to
jump to conclusions and assume a shared understanding, while, in fact, most of
these terms have dozens, domain-specific, and often incompatible meanings. The
fact that we want to formalize the semantics of terms for which almost everyone
has common-sense understandings makes this a challenging task.

One method to formalize the notion ofmountain is to define a minimum height
for the mountain as a necessary property. This technique has been adopted in the
United Kingdom and was used to humorous effect in the movie The Englishman
Who Went Up a Hill But Came Down a Mountain. In that movie, the members
of a fictional Welsh community are dismayed to learn that their local mountain is
not, in fact, a mountain at all but rather a hill, because it is a couple feet under
the threshold of 1000 feet. They, however, successfully get the mountain classified
as a mountain by adding a small pile of earth on the top. This story illustrates
an important point about the semantics of geographic features. The definitions
of feature types are a product of human perception, cognition, current state of
knowledge, and social agreement. There is no human-independent true definition
of mountain (or forest, river, city, etc.). Consequently, the definitions will vary
between places and cultures, and it is important to represent local definitions
appropriately. The importance of the local geographic context to understand
the meaning of geographic terms is further illustrated by the map shown in
Figure 1. This schematic map from 1846 was designed to represent the principal
mountains and rivers of the Earth. The set of principal rivers and mountains are
determined by length and height, respectively, but within context of the part
of the Earth in which the feature is found. As a result, the principal mountains

1 The distinction between Geoinformatics and GIScience is not crisp and mainly an
artifact of their parallel evolution in Europe and United States.

232 K. Janowicz, S. Scheider, and B. Adams

Fig. 1. Schematic map (1846) showing principal mountains and rivers of the world [73]

of England, such as Scafell Pike, the tallest mountain in England at a relative
height of 912 meters, would barely be hills in the Himalayas.

Apart from the notion of context based on local jurisdictions and communities,
since geospatial terms likemountain are based on perception, their meanings can
be highly situation-dependent. For example, imagine a geo-semantics informed
location-based service that is designed to give wayfinding instructions. A hu-
man that gives a route description might say, “take a right and walk toward
the mountain,” where the mountain in question is a clearly identifiable higher-
elevation landmark feature. The meaning of mountain in this case is not based
on any canonical definition but entirely on the situated context of the given
route [13,6].

How does this impact searching and integrating geo-data in the Linked Data
Cloud and the SemanticWeb? Let us assume you are interested in studying the role
of the forest industry in rural economics. For instance, you may be interested in
migration and depopulation, government policies, or the changing role of forestry
in the context of ecological and amenity services. While we will use a simplified
example here, this use case is real and was, for instance, addressed by Elands and
Wiersum [26]. Suppose terms such as forest, town, farm, and countryside are used

A Geo-semantics Flyby 233

without making their intended meaning explicit. Suppose further that you would
like to query for towns near forests such as in the SPARQL query shown below,
and you plan to use the retrieved towns to conduct your analysis.2

[...]

SELECT distinct ?town ?forest

WHERE {

?town

geo-pos:lat ?lat ;

geo-pos:long ?long ;

a dbp-ont:Town .

?forest

omgeo:nearby(?lat ?long "25mi") ;

a dbp-ont:Forest .

}[...]

No matter what the query will return and how you will process and analyze
the data from those thousands of towns, your results will be misleading at best.
Most likely you will have overlooked that among all those small populated places,
your dataset will also contain Los Angeles, Stuttgart,3 and other metropolises.
The reason for this apparently odd result is that the class city and town are
defined to be equivalent by Californian law. In fact, most of US states have their
own legal definition of these terms. While some rely on maximum population
as a criterion, others do not [47]. The situation for forests is even more com-
plicated. Lund [66], for instance, lists over 900 different definitions for forest,
afforestation, and related terms. These definitions are not without consequences
but often legally binding. In the past, loop holes in these definitions have been
used for massive deforestation.4 Finally, the alert reader may be wondering why
a radius of 25 miles is used in the example above to define nearby. First, as with
many other terms, the semantics of nearby is context-dependent. Second, unfor-
tunately, most of today’s Linked Data represents geographic features by their
centroids (geometric center points) instead of polygons. Thus, even if a GIS
would represent a particular town and forest by two adjacent polygons, their
centroids may still be miles apart; see [8] for more details on spatial queries over
Linked Data.

As these examples show, understanding what the authors of a scientific study
or data providers in general mean by apparently obvious terms is a difficult task.
Without better geo-ontologies, semantically annotated (meta) data, and more
complex ontology alignment services that can map between local ontologies,

2 This query will fail as the class Forest (or similar classes) are not defined in DBpedia.
However, querying for Mountains, for instance, would work.

3 Stuttgart is described as the ’sixth-largest city in Germany’ in DBpedia but
classifieds as a town via dbpedia:Stuttgart rdf:type dbpedia-owl:Town; see
http://live.dbpedia.org/page/Stuttgart .

4 Readers interested in deforestation and in combining SPARQL with spatial statistics
in R may want to check the new Linked Brazilian Amazon Rainforest Dataset[52].

http://live.dbpedia.org/page/Stuttgart

234 K. Janowicz, S. Scheider, and B. Adams

reusing and integrating data from heterogeneous sources is merely a distant
dream.

Geospatial terms are often taken for granted, but they pose interesting chal-
lenges once we want to formally describe their semantics in information systems
and share them in an environment such as the Linked Data. Interestingly, the
problem is not that machines cannot communicate, but that humans misun-
derstand each other when communicating via machines [86]. It is worth noting
that geo-semantics research is therefore not interested in overcoming or resolv-
ing semantic heterogeneity. Local definitions exist for good reasons. If one could
just standardize meaning globally, there would be no need for Semantic Web
research. Instead, geo-semantics tries to restrict the interpretation of domain-
vocabulary towards their intended meanings, map and translate between local
conceptualizations, and try to reduce the risk of combining incompatible data
[60,44].

2 Using Geospatial Referents on the Semantic Web

Geospatial and spatiotemporal phenomena, such as places (Florida), geographic
objects (the Eiffel tower), and events (Hurricane Katrina), serve as central ref-
erents on the Semantic Web. Spatial relations between these phenomena, like
above, below, in front, north of, overlaps, contains, serve to localize them relative
to each other. Geospatial information maps these phenomena to points or re-
gions in spatial reference systems and temporal reference systems to ensure their
interpretation. This makes them amenable not only for cartographic mapping,
but also for locational querying and comparison. It is therefore not surprising
that many linked datasets either contain spatiotemporal identifiers themselves
or link out to such datasets, making them central hubs of the Linked Data cloud.

Figure 2 depicts point-like features classified as places extracted from a repre-
sentative fraction of the Linked Data cloud using SPARQL endpoints and their
geoindexing capabilities. It is remarkable that the figure does not contain a base
map, but is entirely composed of millions of extracted points. In other words,
the coverage of places on the Linked Data cloud is very high. On the downside,
the map also shows massive (and often systematic) errors; e.g., the huge cross in
the middle of the map. For lack of space we do not discussed these errors here.5

Prominent examples of geo-specific, yet general purpose Linked Data in-
clude Geonames.org as well as the Linked Geo Data project, which pro-
vides a RDF serialization of Points Of Interest from Open Street Map
[91]. Besides such voluntary geographic information (VGI), governments and
governmental agencies started to develop geo-ontologies and publish Linked Spa-
tiotemporal Data [33,48]; see Table 1. Examples include the US Geological Survey
[95] and the UK Ordnance Survey [35]. Furthermore, many other Linked Data
sources contain location-based references as well. To give a concrete example,
data from the digital humanities may interlink information about particular ex-
hibits to places and their historic names [69]. By following these outgoing links,

5 See http://stko.geog.ucsb.edu/location_linked_data for more details.

http://stko.geog.ucsb.edu/location_linked_data

A Geo-semantics Flyby 235

Fig. 2. A representative fraction of places in Linked Data (EPSG:4326, Plate Carrée)

researchers can explore those places and learn about events which took occurred
there. The historic events data may in turn link to repositories about objects
and actors that were involved in the described events [36].

Table 1. Selected Linked Data repositories and ontologies for geo-data

Linked Data repositories
LinkedGeoData.org http://linkedgeodata.org/About
GeoLinkedData.es http://geo.linkeddata.es/web/
Geo.Data.gov http://geo.data.gov/geoportal/catalog/main/home.page
Ordnance Survey http://data.ordnancesurvey.co.uk/.html
TaxonConcept http://lsd.taxonconcept.org/sparql
USGS The National Map http://cegis.usgs.gov/ontology.html
Linked Amazon Rainforest Data http://linkedscience.org/data/linked-brazilian-amazon-rainforest/

Ontologies
The Geonames Ontology http://www.geonames.org/ontology/documentation.html
GAZ Ontology http://gensc.org/gc_wiki/index.php/GAZ_Project
W3C Geospatial Ontologies http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
TaxonConcept Ontologies http://www.taxonconcept.org/ontologies/
GeoLinkedData.es Ontologies http://geo.linkeddata.es/web/guest/modelos
Darwin Core http://rs.tdwg.org/dwc/
GeoSPARQL Schemas http://www.opengeospatial.org/standards/geosparql
U.S. Geological Survey Ontologies http://cegis.usgs.gov/ontology.html
European INSPIRE Models http://inspire.ec.europa.eu/index.cfm/pageid/2/list/datamodels

Arriving at such a network of interlinked repositories, however, is not trivial
as geospatial phenomena come with a large degree of semantic ambiguity. This
makes them challenging to use as semantic referents. Consider the problem of
retrieving objects on a sports ground, such as the one depicted on the areal
photograph in Figure 3, for the purpose of noise abatement planning [39]. For
example, the goal may be to find objects that serve as referents for localizing
sources of noise.

http://linkedgeodata.org/About
http://geo.linkeddata.es/web/
http://geo.data.gov/geoportal/catalog/main/home.page
http://data.ordnancesurvey.co.uk/.html
http://lsd.taxonconcept.org/sparql
http://cegis.usgs.gov/ontology.html
http://linkedscience.org/data/linked-brazilian-amazon-rainforest/
http://www.geonames.org/ontology/documentation.html
http://gensc.org/gc_wiki/index.php/GAZ_Project
http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
http://www.taxonconcept.org/ontologies/
http://geo.linkeddata.es/web/guest/modelos
http://rs.tdwg.org/dwc/
http://www.opengeospatial.org/standards/geosparql
http://cegis.usgs.gov/ontology.html
http://inspire.ec.europa.eu/index.cfm/pageid/2/list/datamodels

236 K. Janowicz, S. Scheider, and B. Adams

Fig. 3. Sportsground Roxel near Münster
in an aereal photograph; taken from [39]

Fig. 4. The sportsground on Google maps

There are different kinds of maps (and datasets used to render them) of the
same sports ground, showing different kinds of objects (Figures 5 and 6). Starting
with the cadastral map in Figure 5, one can see that the most prominent feature,
the track and soccer field area, is not depicted on the map. Similarly, the tennis
courts are left out. This can be explained if we recall that a cadastral map depicts
land parcels and ownerships and that the distinction between a soccer field and
its surrounding area is not one of ownership. Thus, the German cadastre does
not store this information, and, consequently, they are not rendered on the map.
Google maps shares a similar but slightly different perspective as shown in Figure
4 and often reduces areal features to points.

Fig. 5. Cadastral map (ALK) of the
Sportsground Roxel [39]

Fig. 6. Topographic map (DGK) of the
Sportsground Roxel [39]

In contrast, the sports ground as such is represented in the cadastral map,
since it can be distinguished from its surroundings precisely based on ownership.

A Geo-semantics Flyby 237

The topographic map in Figure 6 shows the track area and the tennis courts but
leaves out the soccer field. This can be explained if we recall that a topographic
map is a map of ground surface features. There is a distinction in surface texture
between the elliptic track area or the tennis courts on one hand and the lawn
on the other hand. However, since our goal is to identify sources of noise, we are
interested in identifying the soccer field as well. Surface texture does not allow
to distinguish it from its embedding lawn. Soccer fields are not just physical ob-
jects, they are actual dispositions to play a game, indicated by linear signs on the
lawn.6 Consequently, their identification requires yet a different perspective on
the sports ground, and, thus, an additional data source. There are many differ-
ent sources that could be used in addition such as yellow pages, human activity
surveys, geo-social check-ins from location-based services and their semantic tra-
jectories [98], just to name a few. Establishing identity between features from
all those sources, i.e., declaring that the sports ground in dataset A is the same
entity in the physical world as the sports ground in dataset B, is a major re-
search challenges [37,38]. Once this relation is established and made explicit,
e.g., by using owl:sameAs, the attribute spaces of the involved data sources can
be conflated.

As this example illustrates, there is large variability in mapping a single area,
and many geospatial concepts have an intrinsic multi-perspectival nature. They
are situated, i.e., their interpretation depends on space and time, and sometimes
on a group of researchers [13]. This frequently causes interoperability problems.
However, if we make the inherent geospatial semantic perspectives explicit, we
are able to distinguish them, understand their advantages and limitations, com-
bine them, and to a certain degree also translate between them. Geo-semantics
develops methods and tools for disambiguating and describing these spatial per-
spectives, and, thus, provides reliable referents for the Semantic Web, together
with useful spatial relations between them. Both can be used to improve retrieval,
re-usage, and interlinkage of data.

In this section, we discussed how geo-spatial phenomena are important refer-
ents that enable semantic linking between datasets and addressed complexities
in representing these referents and establishing identities of geographic features
due to semantic ambiguity. In the next section, we give an overview on the
geo-semantics research field before discussing how it serves to address the afore-
mentioned challenges.

3 Geo-semantics from 30.000 Feet

The research field of geo-semantics builds on GIScience/geoinformatics, spatial
databases, cognitive science, Artificial Intelligence (AI), the Semantic Web, and
other related research areas [59]. It focuses on the meaning of digital referents
at a geographic scale, such as places, locations, events, and geographic objects
in digital maps, geodatabases, and earth models. Geo-semantics applies and
investigates a variety of methods ranging from top-down knowledge engineering

6 Similar to traffic locomotion infrastructure [85].

238 K. Janowicz, S. Scheider, and B. Adams

and logical deduction to bottom-up data mining and induction. It combines
knowledge engineering with methods specific to GIScience, e.g., spatial reference
systems, spatial reasoning, and geographic information analysis. Geo-semantics
also extends work which originated in related disciplines. For example, it uses
semantic similarity and analogy reasoning, which have a long research tradition
in cognitive science, to enable semantics-based geographic information retrieval
[45], and it combines geo-ontologies with spatial statistics, e.g., to study land
cover change [4].

What are major research challenges that are addressed by the field of geo-
semantics? One early challenge was to describe the semantics of Web services
that provide measurements from spatially distributed sensors. For example, in
order to simulate the spread of a potentially toxic gas plume, two services may
be queried for wind direction observations. Both services may seem compatible
as they return a string called wind direction as output together with an inte-
ger ranging from 0 - 360◦. However, they can have contradicting interpretations
of what the returned values actually mean: wind blows to or wind blows from.
Thus, sending observation values from both services to an evacuation simula-
tion running on a Web Processing Service (WPS) will yield misleading results
[78]. Besides such challenges that arise from integrating heterogeneous data and
combining services [29], an important future task is to semantically describe spa-
tial prediction models in order to enable data-model inter-comparison [75]. For
example, spatial statistics and simulation models are an essential part of geospa-
tial information technology, posing their own set of interoperability challenges.
Another challenge for geo-semantics is concept drift. Most geospatial concepts
are not static, they evolve over time and may even change abruptly. This leads
to research challenges such as how to handle semantic aging [87]; i.e., how to
preservation and maintenance of geo-data and ontologies over long periods of
time to make them reusable for future generations. To give a concrete example,
geo-referenced data about the distribution of species, temperature, and other
ecological variables collected in the 1960s are used in recent studies as base line
to study species turnover [14]. The interpretation of these datasets is difficult
and time consuming as different spatial and semantic reference systems have
been used and scientific workflows have evolved over the years.

Two major strands of scientific thought in geo-semantics can be differenti-
ated, by analogy with Kuhn’s [62] distinction between modeling vs. encoding
on the Semantic Web. One is studying the design task of semantic modeling.
How should geo-data be modeled in an information ontology? Which classes and
relations are required to describe the meaning of spatiotemporal phenomena
and to discover, capture, and query geospatial referents? Examples include work
on geo-ontology engineering [30,54,12] and the formalization of spatial reasoning
[19]. These spatial relations support localizing complex geometrical objects, such
as cities or forests, relative to other referents, such as roads and countries [49].
These queries need to deal with indeterminate boundaries of geographic objects
[15], a scientific strand which goes back to a tradition of research on spatial

A Geo-semantics Flyby 239

representations and operations in Geographic Information Systems [17] and on
integrity constraints for spatial databases.

Another strand is interested in the retrieval, re-usage, integration, and in-
teroperation of geo-referenced information. How can geographic referents be se-
mantically linked to other kinds of information with related meaning? Due to
the broad thematic coverage of geo-data spanning fields such as human and
cognitive Geography, Transportation Research, Economics, Ecology, Climatol-
ogy, Geology, and Oceanography, data integration and sharing require methods
that reduce the risk of semantic incompatibilities [39]. Recent work has devel-
oped technology for enabling spatial queries on Linked Data. This work includes
GeoSPARQL as a common query language for the Geospatial Semantic Web
as well as RDF triple stores which can effectively store and index Linked Spa-
tiotemporal Data [8]. Similar work addressed the role of semantic similarity for
spatial scene queries [76,64]. Current research challenges investigate how geo-
data can be represented on different levels of abstraction, scale, and granularity
[28], and how to semantically account for its uncertainty [11]. Another challenge
is that geospatial referents, such as places and events, are often only implicitly
contained in a data set, and thus need to be automatically discovered in data
repositories which are not yet linked or geo-referenced.

In this section we gave an overview of the field of geo-semantics and current
research challenges, and highlighted two main threads of geo-semantics research:
1) representing geographic data models in ontologies and 2) semantically linking
geographic data with information coming from other domains.

4 Research Questions and Major Findings

In the following, we will use seven research questions to introduce major areas
of research and discuss findings used to provide reliable geospatial referents for
the Semantic Web.

What Kinds of Geospatial Classes Should Be Distinguished?

Even though geographic referents are rooted in diverse domains, they share
certain common characteristics and principles that can be exploited in the design
of geo-ontologies. Kuhn [61] proposed the core concepts location, neighborhood,
field, object, network, event as well as the information concepts of granularity
and accuracy as a common core that can be used to spatialize information.
Geo-ontologies need to support access to phenomena on flexible resolution levels
and scales in order to allow systems to query and reason on scale dependent
representations [7]. For this purpose, scale dependency of representations needs
to be formally expressed, as recently shown by Carral Mart́ınez et al. [16]. Geo-
ontologies also have to deal with the various natures of spatial boundaries, as
distinguished in [90]. Examples for top-level geo-ontologies that incorporate the
principle of spatial granularity include the work of Bittner et al. [12]. Usually,
such foundational ontologies are extended by domain ontologies, such as the
SWEET ontology for Earth and environmental science [80].

240 K. Janowicz, S. Scheider, and B. Adams

As we argued in Section 2, geospatial concepts are situated and context-
dependent [13] and can be described from different, equally valid points of view
[47,86]. This makes standard comprehensive approaches towards ontology en-
gineering unrealistic. Semantic engineering, however, can be slightly redefined,
namely as a method of communicating possible interpretations of terms by con-
straining them towards the intended ones [60,47], without prescribing a huge
amount of abstract ontological commitments. Ontology design patterns can pro-
vide reusable building blocks or strategies to support knowledge engineers and
scholars in defining local, data-centric, and purpose-driven ontologies [32]. Vague
terms may be grounded multiple interpretations [10]. Ontologies may also be
built up in a layered fashion Frank2003,Couclelis.2010. In such cases, one can
start with observation procedures on the bottom level and then arrive at more ab-
stract but reproducible ontological categories by deductive and inductive meth-
ods [2,47,21].

How to Refer to Geospatial Phenomena?

Geographic information technology relies, to large extent, on the availability of
reference systems for the precise semantic interpretation of its spatial, temporal,
and thematic components [17]. Spatial reference systems provide the formal vo-
cabulary to calculate with precise locations, e.g., in the form of coordinates on
a mathematical ellipsoid, and to perform a multitude of operations such as dis-
tance measurement. Geodetic datums, i.e., standard directions and positions of
the ellipsoid, enable the interpretation of locations as results of repeatable mea-
surements on the earth’s surface. Both are required to understand spatial data.
Temporal reference systems, e.g., calendars, manage the representation of time,
and allow one to translate between different calendars. The thematic (sometimes
also called attributive) component of geo-information requires reference systems
as well [17,58]. Examples are measurement scales for qualities such as tempera-
ture or air pressure. As a consequence, Kuhn introduced the generalized notion
of Semantic Reference Systems (SRS) [58]. They are supposed to enable a precise
interpretation of all components of geospatial data in terms of semantic datums,
which provide for their grounding in terms of measurement scales or observa-
tion procedures [86]. For example, attribute values such as the wind directions
discussed before can be interpreted in terms of reference systems for cardinal
wind directions and anemometers. Establishing these SRS, their standard op-
erations, as well as their formal vocabularies, is an ongoing research area [60].
It has has been mentioned among the most pressing and challenging projects
of GIScience/Geoinformatics [70]. Recent research results include methodologies
and formalisms for grounding reference systems [86,79], as well as technologies
for translation of attribute values based on reference systems [84].

How to Perform Geo-reasoning and Querying over the Semantic
Web?

There are several research traditions of geospatial reasoning, ranging from
more computational to more conceptual approaches. One is based on geometric

A Geo-semantics Flyby 241

operators in a spatial database, i.e., on explicitly represented spatial geometry.
These include point-in-polygon tests, R-tree search algorithms, quadtree com-
pression, and geometric and set-theoretic operators for vector data. Another
form is based on graph-based computational methods, which, for instance, allow
reasoning about road networks [17]. Spatial reasoning, i.e., reasoning with qual-
itative spatial relations, includes topological reasoning, such as about overlap,
meet, and disjoint relations, and reasoning with directions. Prominent spatial
calculi are mereotopological calculi, Frank’s cardinal direction calculus, Freksa’s
double cross calculus, Egenhofer and Franzosa’s 4- and 9-intersection calculi,
Ligozat’s flip-flop calculus, Cohn’s region connection calculi (RCC), and the
Oriented Point Relation Algebra [82]. The latter kind of reasoning is based on
deductive inference in first-order predicate logic [19], as well as on finite com-
position tables and constraint reasoning, in which all possible relations are enu-
merated exhaustively [82].

In comparison, most Semantic Web reasoning is rather narrowly defined. It is
concerned with particular decidable subsets of first-order predicate logic, namely
description logics and Horn rules, which often lack the expressivity needed to rea-
son with spatial relations [92]. Furthermore, other forms of geospatial reasoning,
such as geometrical computation or approximate reasoning, are only rudimen-
tary supported by the Semantic Web [41]. The integration of such reasoning
paradigms into the Semantic Web requires further consideration of their RDF
representation and computability, as well as a broadening of the existing reason-
ing paradigm itself. It has been argued that in the past, the reasoning paradigm
of the Semantic Web might have been too narrowly occupied by soundness, com-
pleteness, and decidability constraints. Thus, in the context of geo-semantics, it
might be useful to loosen soundness and completeness demands of proof proce-
dures in order to allow for scalable approximate reasoning [41].

How can geospatial reasoning be integrated with Semantic Web technologies
in a tractable way? Many spatial qualitative decision problems are NP-hard,
however, tractable subsets can be identified [82]. There are several recent efforts
to integrate qualitative spatial reasoning into RDF reasoners, such as Racer [97]
and Pellet [92]. A promising direction of research is to combine qualitative rea-
soners with geometric computation. In the Semantic Web, this may be realized
in terms of spatial extensions to RDF and SPARQL, such as stSPARQL or
GeoSPARQL [57,8].

How to Discover Events and How to Account for Geographic
Change?

Geographic assertions, such as partonomic relations between administrative re-
gions, trajectories of moving objects and their relations to the places they cross,
and membership in organizations, are valid only over a certain period of time
[53]. Consequently, research investigates how this temporal dimension can be
accounted for. There is a multitude of research on spatiotemporal modeling,
temporal GIS [18], and simple temporal gazetteer models [40]. There is also
related ontological work on the formal relationship between objects, processes,

242 K. Janowicz, S. Scheider, and B. Adams

and events [31]. Research also addressed event ontology design patterns [36].
However, a particular challenge remains the automated detection of events from
observation data on a geographic scale [9], such as blizzards, rainstorms, or floods
[23]. Examples of research on the detection of geographic event as well as identi-
fication algorithms include the work by Agouris and Stefanidis [3]. Nevertheless,
many questions regarding general formal and computational procedures of ge-
ographic event detection remain unsolved. This is especially the case for work
concerning the tight coupling of geospatial ontologies with detected events, as
well as the triggering of data and ontology updates by automatically detected
events [65].

How to Handle Places and Moving Object Trajectories?

Humans communicate using places in order to refer to space. These references to
places go well beyond geographic coordinates. Locations as simple coordinates
are point-like, ubiquitous, and precise. Contrarily, places are not point-like and
have fuzzy boundaries determined by physical, cultural, and cognitive processes
[94,74]. Additionally, places, e.g., downtown, can change their locations over time,
just like physical objects do [53]. Therefore, mere positioning data insufficiently
captures the identity and meaning of places.

GIScience and geo-semantics has generated useful results in handling places
in a number of different ways, for example, by the specification of place data
models [40] and place ontologies [1], which can be used to improve geographic
information retrieval [68,50,45]. A interesting direction for future work along
these lines are affordance-based approaches toward place [51] as they allow one
to associate places with the activities that can be performed at them. Another
important development are technologies that can be used to handle place by
automated discovery, in order to enrich data with geo-references. A typical di-
rection of work is geoparsing, the discovery of places in texts by natural language
processing techniques. Such research can also be applied which to identify place-
related activities [5]. Recently, research has started to address the discovery of
places and user activities by mining (semantic) trajectories [98]. Researchers also
investigated how to reconstruct spatial footprints of places based on geotags in
social media, e.g., Flickr [43]. Future research may address the design of place-
based information systems [34], in which traditional operations of GIS have to be
redesigned to handle places as referents. Geo-ontologies are considered a central
part of this vision.

How to Compare, Align, and Translate Geospatial Classes?

Comparing geographic feature types across heterogeneous resources requires
methods to compute conceptual similarity. Geo-semantics provides unique ap-
proaches to do this based on reference systems or conceptual spaces. Thus, over
the past years, semantic translation [39,59,24,77], semantic similarity measure-
ment [83,81,64,88,76,45], and geo-ontology alignment [22] have been major re-
search directions. While semantic translation maps between geo-ontologies and

A Geo-semantics Flyby 243

Table 2. Seven exemplary research questions in the field of geo-semantics

What Kinds of Geospatial Classes Should be Distinguished?

How to Refer to Geospatial Phenomena?

How to Perform Geo-Reasoning & Querying over the Semantic Web?

How to Discover Events and how to Account for Geographic Change?

How to Handle Places and Moving Object Trajectories?

How to Compare, Align, and Translate Geospatial Classes?

How to Process, Publish and Retrieve Geodata?

can be thought of as the analogy to datum transformation, similarity measures
the proximity between classes in a semantic space as an analogy to distance in
space (and time). Geo-ontology alignment is concerned with the combination
of multiple ontologies to foster data reuse and integration. The fact that most
types of geographic information analysis, e.g. kernel methods, interpolation, or
point pattern analysis, are based on spatial auto-correlation and distance in
space, shows why semantic similarity is regarded crucial for making ontologies
and geo-semantics first class citizens of geographic information systems. The no-
tion of similarity also plays a key role in many cognitive approaches. Semantic
similarity and analogy reasoning also enable new types of interaction paradigms
and user interfaces which may ease browsing and navigating through (unfamil-
iar) geo-data and ontologies [45]. On the downside, similarity is highly sensitive
to context. Therefore, researchers have analyzed the influence of contextual in-
formation and proposed different techniques to account for such effects [55].

How to Process, Publish and Retrieve Geodata?

Standardized means for publishing, querying, retrieving, and accessing geodata
via Web services are provided by Spatial Data Infrastructures (SDI) as part of
the framework developed by the Open Geospatial Consortium (OGC). These
SDIs also support a variety of notification and processing services and, thereby,
go beyond simple data stores. Data and processing services can be combined
to model complex scientific workflows and be integrated as core elements in
cyberinfrastructures. To ensure a meaningful combination of services, however,
relies on formal specifications of the service inputs, outputs, side effects, and
parameters. Therefore, semantic markups for Web services have been actively
researched for years [71,27,93]. Examples of SDI specific proposals include the
work of Lemmens et al. [63], Vaccari et al. [96], and Lutz [67].

SDI services use their own markup languages (e.g., the Geographic Markup
language GML) and protocols, which differ considerably from the Semantic Web
technology stack. This prevents interoperability and makes a combination of the
Semantic Web and the Geo-Web challenging. Consequently, researchers have
proposed and implemented different approaches for a semantic enablement of
the Geo-Web. Janowicz et al. [46], for instance, specified transparent and bi-
directional proxies which enable users of both infrastructures to share data and

244 K. Janowicz, S. Scheider, and B. Adams

combine services. Semantic annotations have been proposed to lift existing geo-
data to a semantic level [56,72]. In context of digital humanities research, anno-
tations have been applied to create Linked Spatiotemporal Data, e.g., to enrich
old maps with interlinked information from the global graph [89]. With respect
to OGC’s family of Sensor Web Enablement standards (SWE), researchers have
developed sensor and observation ontologies, semantically-enabled versions of
OGC services such as the Sensor Observation Service (SOS), or RESTful trans-
parent proxies that serve Linked Sensor Data [20].

In this section, we identified and described seven important research questions
being asked in the field of geo-semantics (listed in Table 2).

5 Conclusion

We have argued that the relevance of geospatial information lies in the useful-
ness of geospatial referents, such as places, events, and geographic objects, and
their spatiotemporal relations, which allow systems to indirectly localize and in-
terlink numerous other resources in the Semantic Web. In part, this importance
of geospatial information is reflected by the fact that the few already existing
geo-data repositories, e.g., Geonames, have become central hubs on the Web of
Linked Data. In addition, other key repositories, such as DBpedia, Freebase,
and so forth, contain substantial collections of geo-data. However, we have also
illustrated that even though geospatial information has reference systems, which
allow one to precisely map and index the extent of geospatial referents, concep-
tualizing and formalizing these referents is an unsolved challenge. This challenge
is mainly due to the situated and multi-perspectival nature of geospatial phe-
nomena. It calls for semantic strategies that allow highlighting, distinguishing,
and linking of the different perspectives to the localities that are inherent in
geo-data.

Geospatial semantics addresses this need with semantic modeling of geospatial
classes as well as semantic technology for access, comparison, and interlinking
of geo-data. Specific semantic modeling challenges include the notions of reso-
lution and scale in geo-ontologies, ontological perspectivity, semantic reference
systems, place reference, trajectories, event discovery, the formalization of spa-
tial relations, and the computation of spatial reasoning. Semantic technology for
access and retrieval include semantically enabled spatial data infrastructures and
Linked Spatiotemporal Data, as well as cognitively plausible similarity measures,
analogy-based reasoning, and translation tools for geo-ontologies.

References

1. Abdelmoty, A.I., Smart, P., Jones, C.B.: Building place ontologies for the seman-
tic web: Issues and approaches. In: Proceedings of the 4th ACM Workshop on
Geographical Information Retrieval, GIR 2007, pp. 7–12. ACM, New York (2007)

A Geo-semantics Flyby 245

2. Adams, B., Janowicz, K.: Constructing geo-ontologies by reification of observation
data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS 2011, pp. 309–318. ACM, New
York (2011)

3. Agouris, P., Stefanidis, A.: Efficient summarization of spatiotemporal events. Com-
mun. ACM 46(1), 65–66 (2003)

4. Ahlqvist, O., Shortridge, A.: Characterizing land cover structure with semantic
variograms. In: Riedl, A., Kainz, W., Elmes, G. (eds.) Progress in Spatial Data
Handling -12th International Symposium on Spatial Data Handling, pp. 401–415
(Springer 2006)

5. Alazzawi, A., Abdelmoty, A., Jones, C.: What can I do there? Towards the au-
tomatic discovery of place-related services and activities. International Journal of
Geographical Information Science 26(2), 345–364 (2012)

6. Barsalou, L.: Situated simulation in the human conceptual system. Language and
Cognitive Processes 5(6), 513–562 (2003)

7. Bateman, J.: Towards a generic foundation for spatial ontology. In: Varzi, A., Vieu,
L. (eds.) Proceedings of the 3rd International Conference on Formal Ontology in
Information Systems (FOIS 2004), pp. 237–248. IOS Press, Amsterdam (2004)

8. Battle, R., Kolas, D.: Enabling the Geospatial Semantic Web with Parliament and
GeoSPARQL. Semantic Web Journal 3(4) (2012)

9. Beard, K.: Modeling change in space and time: An event based approach. In: Billen,
R., Joao, E., Forrest, D. (eds.) Dynamic and Mobile GIS: Investigating Changes
in Space and Time, pp. 55–74. CRC Press (2007)

10. Bennett, B., Mallenby, D., Third, A.: An ontology for grounding vague geographic
terms. In: Eschenbach, C., Gruninger, M. (eds.) Proc. 5th Intern. Conf. on For-
mal Ontology in Information Systems, pp. 280–293. IOS-Press [u.a.], Saarbrücken
(2008)

11. Bennett, B.: Spatial vagueness. In: Jeansoulin, R., Papini, O., Prade, H., Schock-
aert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ,
vol. 256, pp. 15–47. Springer, Heidelberg (2010)

12. Bittner, T., Donnelly, M., Smith, B.: A spatio-temporal ontology for geographic
information integration. International Journal of Geographical Information Sci-
ence 23(6), 765–798 (2009)

13. Brodaric, B., Gahegan, M.: Experiments to examine the situated nature of geosci-
entific concepts. Spatial Cognition & Computation 7(1), 61–95 (2007)

14. Buckley, L.B., Jetz, W.: Linking global turnover of species and environments. Pro-
ceedings of the National Academy of Sciences 105(46), 17836–17841 (2008)

15. Burrough, P., Frank, A.U. (eds.): Geographic Objects with Indeterminate Bound-
aries. Taylor and Francis (1996)

16. Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A.A., Hitzler, P.:
An ontology design pattern for cartographic map scaling. In: Cimiano, P., Corcho,
O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882,
pp. 76–93. Springer, Heidelberg (2013)

17. Chrisman, N.: Exploring geographic information systems. Wiley (2001)
18. Christakos, G., Bogaert, P., Serre, M.: Temporal GIS: Advanced Functions for

Field-Based Applications. Springer (2002)
19. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an

overview. Fundamenta Informaticae 46, 1–29 (2001)

246 K. Janowicz, S. Scheider, and B. Adams

20. Compton, M., Barnaghi, P.M., Bermudez, L., Garcia-Castro, R., Corcho, Ó., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C.A., Herzog, A., Huang, V.A., Janowicz,
K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A.,
Page, K.R., Passant, A., Sheth, A.P., Taylor, K.: The ssn ontology of the w3c
semantic sensor network incubator group. Journal of Web Semantics 17, 25–32
(2012)

21. Couclelis, H.: Ontologies of geographic information. International Journal of Geo-
graphical Information Science 24(12), 1785–1809 (2010)

22. Cruz, I., Sunna, W.: Structural alignment methods with applications to geospatial
ontologies. Transactions in GIS, special issue on Semantic Similarity Measurement
and Geospatial Applications 12(6), 683–711 (2008)

23. Devaraju, A.: Representing and reasoning about geographic occurrences in the
sensor web. Ph.D. thesis, University of Münster (2012)

24. Dou, D., McDermott, D.V., Qi, P.: Ontology translation on the semantic web.
Journal of Data Semantics 2, 35–57 (2005)

25. Egenhofer, M.J., Mark, D.M.: Naive geography. In: Kuhn, W., Frank, A.U. (eds.)
COSIT 1995. LNCS, vol. 988, pp. 1–15. Springer, Heidelberg (1995)

26. Elands, B., Wiersum, K.F.: Forestry and rural development in europe: an explo-
ration of socio-political discourses. Forest Policy and Economics 3(1), 5–16 (2001)

27. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications 1(2), 113–137 (2002)

28. Fonseca, F., Egenhofer, M., Davis, C., Câmara, G.: Semantic granularity in
ontology-driven geographic information systems. Annals of Mathematics and Ar-
tificial Intelligence 36(1-2), 121–151 (2002)

29. Fox, P., McGuinness, D., Raskin, R., Sinha, K.: A volcano erupts: semantically me-
diated integration of heterogeneous volcanic and atmospheric data. In: Proceedings
of the ACM First Workshop on CyberInfrastructure: Information Management in
eScience, CIMS 2007, pp. 1–6. ACM (2007)

30. Frank, A.U.: Chapter 2: Ontology for spatio-temporal databases. In: Sellis, T.K.,
et al. (eds.) Spatio-Temporal Databases. LNCS, vol. 2520, pp. 9–77. Springer,
Heidelberg (2003)

31. Galton, A., Mizoguchi, R.: The water falls but the waterfall does not fall: New per-
spectives on objects, processes and events. Applied Ontology 4(2), 71–107 (2009)

32. Gangemi, A., Presutti, V.: Towards a pattern science for the semantic web. Se-
mantic Web 1(1-2), 61–68 (2010)

33. Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJour-
nal 69(4), 211–221 (2007)

34. Goodchild, M.: Formalizing place in geographic information systems. In: Burton,
L., et al. (eds.) Communities, Neighborhoods, and Health: Expanding the Bound-
aries of Place, vol. 1, pp. 21–34. Springer, Berlin (2011)

35. Goodwin, J., Dolbear, C., Hart, G.: Geographical linked data: The administrative
geography of great britain on the semantic web. Transactions in GIS 12, 19–30
(2008)

36. van Hage, W., Malaise, V., Segers, R., Hollink, L., Schreiber, G.: Design and use
of the Simple Event Model (SEM). Web Semantics: Science, Services and Agents
on the World Wide Web 9(2) (2011)

37. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When
owl: sameas isn’t the same: An analysis of identity in linked data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer,
Heidelberg (2010)

A Geo-semantics Flyby 247

38. Halpin, H., Presutti, V.: The identity of resources on the web: An ontology for web
architecture. Applied Ontology 6(3), 263–293 (2011)

39. Harvey, F., Kuhn, W., Pundt, H., Bishr, Y., Riedemann, C.: Semantic interoper-
ability: A central issue for sharing geographic information. The Annals of Regional
Science 2(33), 213–232 (1999)

40. Hill, L.: Georeferencing. The geographic associations of information. MIT Press,
Cambridge (2006)

41. Hitzler, P., van Harmelen, F.: A reasonable semantic web. Semantic Web 1(1-2),
39–44 (2010)

42. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

43. Hollenstein, L., Purves, R.: Exploring place through user-generated content: Using
flickr tags to describe city cores. J. Spatial Information Science, 21–48 (2010)

44. Janowicz, K., Hitzler, P.: The digital earth as knowledge engine. Semantic Web
Journal 3(3) (2012)

45. Janowicz, K., Raubal, M., Kuhn, W.: The semantics of similarity in geographic
information retrieval. Journal of Spatial Information Science (2), 29–57 (2011)

46. Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maue, P., Stasch, C.: Semantic
enablement for spatial data infrastructures. Transactions in GIS 14(2), 111–129
(2010)

47. Janowicz, K.: Observation-driven geo-ontology engineering. Transaction in
GIS 16(3), 351–374 (2012)

48. Janowicz, K., Scheider, S., Pehle, T., Hart, G.: Geospatial semantics and linked
spatiotemporal data - past, present, and future. Semantic Web 3(4), 321–332 (2012)

49. Jones, C.B., Abdelmoty, A.I., Finch, D., Fu, G., Vaid, S.: The spirit spatial search
engine: Architecture, ontologies and spatial indexing. In: Egenhofer, M., Freksa,
C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 125–139. Springer,
Heidelberg (2004)

50. Jones, C.B., Alani, H., Tudhope, D.: Geographical information retrieval with
ontologies of place. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205,
pp. 322–335. Springer, Heidelberg (2001)

51. Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.J.: An Affordance-Based Model
of Place in GIS. In: Poiker, T., Chrisman, N. (eds.) 8th Int. Symposium on Spatial
Data Handling (SDH 1998), pp. 98–109. IUG, Vancouver (1998)

52. Kauppinen, T., de Espindola, G.M., Jones, J., Sánchez, A., Gräler, B., Bartoschek,
T.: Linked brazilian amazon rainforest data. Semantic Web Journal (forthcoming,
2013)

53. Kauppinen, T., Hyvönen, E.: Modeling and Reasoning about Changes in Ontology
Time Series, pp. 319–338. Springer, New York (2007)

54. Kavouras, M., Kokla, M.: Theories of Geographic Concepts: Ontological Ap-
proaches to Semantic Integration. Taylor & Francis (2007)

55. Keßler, C.: What is the difference? A cognitive dissimilarity measure for informa-
tion retrieval result sets. Knowl. Inf. Syst. 30(2), 319–340 (2012)

56. Klien, E.: A rule-based strategy for the semantic annotation of geodata. Transac-
tions in GIS 11(3), 437–452 (2007)

57. Koubarakis, M., Kyzirakos, K., Karpathiotakis, M., Nikolaou, C., Sioutis, M., Vas-
sos, S., Michail, D., Herekakis, T., Kontoes, C., Papoutsis, I.: Challenges for Qual-
itative Spatial Reasoning in Linked Geospatial Data. In: IJCAI 2011 Workshop
on Benchmarks and Applications of Spatial Reasoning (BASR 2011), pp. 33–38
(2011)

248 K. Janowicz, S. Scheider, and B. Adams

58. Kuhn, W.: Semantic reference systems (guest editorial). International Journal of
Geographical Information Science 17(5), 405–409 (2003)

59. Kuhn, W.: Geospatial semantics: Why, of what, and how? In: Spaccapietra, S.,
Zimányi, E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, pp. 1–24.
Springer, Heidelberg (2005)

60. Kuhn, W.: Semantic engineering. In: Navratil, G. (ed.) Research Trends in Geo-
graphic Information Science. Lecture Notes in Geoinformation and Cartography,
vol. 12, pp. 63–76. Springer, Berlin (2009)

61. Kuhn, W.: Core concepts of spatial information for transdisciplinary research. In-
ternational Journal of Geographical Information Science 26(12), 2267–2276 (2012)

62. Kuhn, W.: Modeling vs encoding for the semantic web. Semantic Web Journal
1(1-2) (2010)

63. Lemmens, R., Wytzisk, A., de By, R., Granell, C., Gould, M., van Oosterom, P.:
Integrating semantic and syntactic descriptions to chain geographic services. IEEE
Internet Computing 10(5), 42–52 (2006)

64. Li, B., Fonseca, F.: TDD - A Comprehensive Model for Qualitative Spatial Simi-
larity Assessment. Spatial Cognition and Computation 6(1), 31–62 (2006)

65. Llaves, A., Michels, H., Maue, P., Roth, M.: Semantic event processing in envision.
In: Proceedings of the International Conference on Web Intelligence, Mining and
Semantics (WIMS 2012), pp. 29:1–29:2. ACM, New York (2012) (forthcoming)

66. Lund, G.: Definitions of forest, deforestation, afforestation, and reforestation. Tech.
rep. (2012), gainesville, va: Forest information services, available from the world
wide web: http://home.comcast.net/~gyde/DEFpaper.htm

67. Lutz, M.: Ontology-based descriptions for semantic discovery and composition of
geoprocessing services. GeoInformatica 11, 1–36 (2007)

68. Lutz, M., Klien, E.: Ontology-based retrieval of geographic information. Interna-
tional Journal of Geographical Information Science 20(3), 233–260 (2006)

69. Mäkelä, E., Hyvönen, E., Ruotsalo, T.: How to deal with massively heteroge-
neous cultural heritage data - lessons learned in culturesampo. Semantic Web 3(1),
85–109 (2012)

70. Mark, D.M., Smith, B., Egenhofer, M., Stephen Hirtle, S.C.: Ontological founda-
tions for geographic information science. In: McMaster, R., Usery, L. (eds.) Re-
search Challenges in Geographic Information Science, pp. 335–350. CRC Press
(2004)

71. Martin, D., Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services (November 2004),
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

72. Maue, P., Michels, H., Roth, M.: Injecting semantic annotations into (geospatial)
web service descriptions. Semantic Web Journal 3(4) (2012)

73. Mitchell, S.A.: Heights of the principal mountains in the world (1846),
http://www.davidrumsey.com

74. Montello, D., Goodchild, M., Gottsegen, J., Fohl, P.: Where’s downtown? Behav-
ioral methods for determining referents of vague spatial queries. Spatial Cognition
& Computation 2(3), 185–204 (2003)

75. NASA: A.40 computational modeling algorithms and cyberinfrastructure (Decem-
ber 19, 2011). Tech. rep., National Aeronautics and Space Administration (NASA)
(2012)

76. Nedas, K., Egenhofer, M.: Spatial-scene similarity queries. Transactions in
GIS 12(6), 661–681 (2008)

http://home.comcast.net/~gyde/DEFpaper.htm
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.davidrumsey.com

A Geo-semantics Flyby 249

77. Noy, N.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33, 65–70 (2004)

78. Probst, F., Lutz, M.: Giving Meaning to GI Web Service Descriptions. In: Inter-
national Workshop on Web Services: Modeling, Architecture and Infrastructure
(WSMAI 2004) (2004)

79. Probst, F.: Observations, measurements and semantic reference spaces. Appl. On-
tol. 3(1-2), 63–89 (2008)

80. Raskin, R., Pan, M.: Knowledge representation in the semantic web for earth and
environmental terminology (sweet). Computers & Geosciences 31(9), 1119–1125
(2005)

81. Raubal, M.: Formalizing conceptual spaces. In: Varzi, A., Vieu, L. (eds.) Pro-
ceedings of the Third International Conference on Formal Ontology in Information
Systems (FOIS 2004). Frontiers in Artificial Intelligence and Applications, vol. 114,
pp. 153–164. IOS Press, Torino (2004)

82. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In:
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics,
pp. 161–215. Springer (2007)

83. Rodŕıguez, A., Egenhofer, M.: Comparing geospatial entity classes: an asymmetric
and context-dependent similarity measure. International Journal of Geographical
Information Science 18(3), 229–256 (2004)

84. Schade, S.: Ontology-driven translation of geospatial data. Ph.D. thesis (2010)
85. Scheider, S., Kuhn, W.: Affordance-based categorization of road network data us-

ing a grounded theory of channel networks. International Journal of Geographical
Information Science 24(8), 1249–1267 (2010)

86. Scheider, S.: Grounding Geographic Information in Perceptual Operations. Fron-
tiers in Artificial Intelligence and Applications, vol. 244. IOS Press (2012)

87. Schlieder, C.: Digital heritage: Semantic challenges of long-term preservation. Se-
mantic Web 1(1-2), 143–147 (2010)

88. Schwering, A., Raubal, M.: Measuring semantic similarity between geospatial con-
ceptual regions. In: Rodŕıguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.)
GeoS 2005. LNCS, vol. 3799, pp. 90–106. Springer, Heidelberg (2005)

89. Simon, R., Sadilek, C., Korb, J., Baldauf, M., Haslhofer, B.: Tag clouds and old
maps: Annotations as linked spatiotemporal data in the cultural heritage domain.
In: Workshop On Linked Spatiotemporal Data 2010, held in conjunction with the
6th International Conference on Geographic Information Science (GIScience 2010),
vol. 691. CEUR-WS, Zurich, Switzerland (2010)

90. Smith, B., Mark, D.M.: Ontology and geographic kinds. In: Proceedings Inter-
national Symposium on Spatial Data Handling, Vancouver, Canada, July 12-15
(1998)

91. Stadler, C., Lehmann, J., Höffner, K.: LinkedGeoData: A core for a web of spatial
open data

92. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning
and Query Engine. In: Proceedings of the 5th International Workshop on OWL:
Experiences and Directions (OWLED) (2009)

93. Szekely, P., Knoblock, C.A., Gupta, S., Taheriyan, M., Wu, B.: Exploiting seman-
tics of web services for geospatial data fusion. In: Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Spatial Semantics and Ontologies, SSO
2011, pp. 32–39. ACM (2011)

94. Tuan, Y.: Space and place: humanistic perspective. Theory and decision library.
D. Reidel Pub. Co. (1979)

250 K. Janowicz, S. Scheider, and B. Adams

95. Usery, E.L., Varanka, D.: Design and development of linked data from the national
map. Semantic Web Journal 3(4) (2012)

96. Vaccari, L., Shvaiko, P., Marchese, M.: A geo-service semantic integration in
Spatial Data Infrastructures. International Journal of Spatial Data Infrastruc-
tures Research 4 (2009), http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/
article/viewFile/107/113

97. Wessel, M., Möller, R.: Flexible software architectures for ontology-based informa-
tion systems. Journal of Applied Logic 7(1), 75–99 (2009)

98. Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: Cruz, I.F., Agrawal, D., Jensen, C.S., Ofek, E., Tanin, E.
(eds.) Proceedings of the 19th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, ACM-GIS 2011, pp. 34–43. ACM
(2011)

http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/viewFile/107/113
http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/viewFile/107/113

Statistical Relational Data Integration

for Information Extraction�

Mathias Niepert

Department of Computer Science & Engineering
University of Washington, Seattle, WA, USA

mniepert@cs.washington.edu

Abstract. These lecture notes provide a brief overview of some state of
the art large scale information extraction projects. Consequently, these
projects are related to current research activities in the semantic web
community. The majority of the learning algorithms developed for these
information extraction projects are based on the lexical and syntactical
processing of Wikipedia and large web corpora. Due to the size of the
processed data and the resulting intractability of the associated inference
problems existing knowledge representation formalism are often inade-
quate for the task. We will present recent advances in combining tractable
logical and probabilistic models that bring statistical language process-
ing and rule-based approaches closer together. With these lecture notes
we hope to convince the attendees that there are numerous synergies
and research agendas that can arise when uncertainty-based data-driven
research meets rule-based schema-driven research. We also describe cer-
tain theoretical and practical advances in making probabilistic inference
scale to very large problems.

1 Introduction

Historically, semantic web research has focused on problems concerned with the
logical form of the schema, that is, the meta-level descriptions of classes and
roles that comprise the structure of the knowledge base. It comes at no surprise,
therefore, that the highly popular research areas of ontology learning, ontology
matching, and knowledge engineering have mostly concentrated on the termino-
logical structure, that is, the set of axioms involving class and role descriptions.
While meaningful progress has been made and the logical, computational, and
empirical understanding of these problems is deeper than ever before, this has
come at the cost of largely ignoring the data, that is, assertions of the aforemen-
tioned classes and roles. Instead of building knowledge representations around
existing data, more often than not, ontologies were designed and constructed in
a data vacuum. It is probably not far-fetched to assume that this is the main
reason for the skepticism (if not outright rejection) other research communities
have demonstrated towards the semantic web endeavor.
� These lecture notes are based on several previous publications of the author and his
colleagues in conference proceedings such as AAAI, UAI, IJCAI, and ESWC.

S. Rudolph et al. (Eds.): Reasoning Web 2013, LNCS 8067, pp. 251–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

252 M. Niepert

This skepticism manifests itself in a recent surge of information extraction
projects such as the open information extraction [23] (OIE) and the never ending
language learning [13] (NELL) projects. Indeed, the OIE project explicitly defines
itself as open, meaning that it does not leverage ontologies or relational schemas.
The major argument supporting this position is that a relational schema or on-
tology unnecessarily constrains what can be extracted from large web corpora.
The NELL project leverages a type system and a fixed set of relations, even
though recent work has moved towards (semi-)automatically extending the set
of relations. However, insight and expertise accumulated in the semantic web
community over the last 10 years is largely ignored. For instance, the project
does not employ canonical labels for its entities (‘Argentina’ refers to both, the
national soccer team and the country itself) and makes no use of existing knowl-
edge representation formalisms even though it actually uses notions such as
range and domain restrictions implicitly. While this could be explained with the
specific applications the creators have in mind (improved keyword search and
natural language question answering, for instance) there are some reasonable
arguments in favor of not completely ignoring the existing body of work and ex-
perience of the semantic web community. Other information extraction projects
such as DBpedia [4,59] and YAGO [87,36] are more in line with semantic web
technologies as they use unique canonical identifiers for entities (derived from
the URIs of the corresponding Wikipedia articles) and notions such as range
and domain restrictions that closely resemble the RDF standard. The advantage
of using these standardized RDF formalisms is that they enable the creation
of links across heterogeneous data sets and a unifying syntactic and semantic
framework for knowledge bases. DBpedia, for instance, has established itself as a
linking hub for the linked open data cloud. The existence of a relational schema
or ontology also facilitates relational query processing and the use of statistical
relational approaches such as Markov logic [80].

The present lecture notes provide a brief overview of existing information
extraction projects ranging from those with a predetermined ontology, that is,
a relational schema, high precision extractions, and limited coverage, to those
without any kind of schema, low precision extractions, and broader coverage.
We do not take sides and instead focus on possible synergies that arise when we
consider each of the projects as disparate and heterogeneous knowledge bases
whose integration would not only broaden the amount of extracted knowledge
but also increase the extraction quality and provide relational schemas for facts
that were previously schema-less. We provide an overview of the problem areas
ontology matching and object reconciliation from a semantic web perspective.
We then show how both the relational schema and the data can be jointly
modeled with statistical relational formalisms.

Ontology matching, or ontology alignment, is the problem of determining
correspondences between concepts, properties, and individuals of two or more
different formal ontologies [26]. The alignment of ontologies allows semantic ap-
plications to exchange and enrich the data expressed in the respective ontolo-
gies. An important results of the yearly ontology alignment evaluation initiative

Statistical Relational Information Extraction and Integration 253

(OAEI) [25,27] is that there is no single best approach to all existing matching
problems. The factors influencing the quality of alignments range from differences
in lexical similarity measures to variations in alignment extraction approaches.
This insight provides justification not only for the OAEI itself but also for the
development of a framework that facilitates the comparison of different strate-
gies with a flexible and declarative formalism. We argue that Markov logic [80]
provides and excellent framework for ontology matching. Markov logic (ML) of-
fers several advantages over existing matching approaches. Its main strength is
rooted in the ability to combine soft and hard first-order formulas. This allows
the inclusion of both known logical and uncertain statements modeling potential
correspondences and structural properties of the ontologies. For instance, hard
formulas can help to reduce incoherence during the alignment process while soft
formulas can factor in lexical similarity values computed for each correspon-
dence. An additional advantage of ML is joint inference, that is, the inference
of two or more interdependent hidden predicates. Several results show that joint
inference is superior in accuracy when applied to a wide range of problems such
as ontology refinement [92] and multilingual semantic role labeling [60].

Identifying different representations of the same data item is called object
reconciliation. The problem of object reconciliation has been a topic of research
for more than 50 years. It is also known as record linkage [29], entity resolu-
tion [7], and instance matching [30]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches
focus mostly on graph-based data representations such as the resource descrip-
tion framework (RDF). Using the proposed Markov logic based framework for
data integration, we leverage schema information to exclude logically inconsis-
tent correspondences between objects improving the overall accuracy of instance
alignments. In particular, we use logical reasoning and linear optimization tech-
niques to compute the overlap of derivable types of objects. This information is
combined with the classical similarity-based approach, resulting in a novel ap-
proach to object reconciliation that is more flexible than state-of-the-art align-
ment systems. We demonstrate how description logic axioms are modeled within
the framework and show that alignment problems can be posed as linear opti-
mization problems. These problems can be efficiently solved with integer linear
programming methods also leveraging recent meta-algorithms such as cutting
plane inference [81] and delayed column generation [64] first proposed in the
context of Markov logic.

The chapter is organized as follows. First, we briefly introduce some basic
formalism such as description logics andMarkov logic. Second, we define ontology
matching and object reconciliation and introduce detailed running examples
that we use throughout the chapter to facilitate a deeper understanding of the
ideas and methods. We also introduce the syntax and semantics of the ML
framework and show that it can represent numerous different matching scenarios.
We describe probabilistic reasoning in the framework of Markov logic and show
that a solution to a given matching problem can be obtained by solving the
maximum a-posteriori (MAP) problem of a ground Markov logic network using

254 M. Niepert

integer linear programming. Finally, we discuss some recent advances in the
development of efficient algorithms for probabilistic inference.

2 Information Extraction – The State of the Art

There are numerous information extraction projects each with foci on particular
subproblems of information extraction and knowledge base construction. We
selected several representative projects without making a claim of completeness.
Other IE projects we are aware of and that we are not able to cover here due to
space considerations are Freebase [10] and DeepDive [72].

The following descriptions of the information extraction projects demonstrate
that all use a combination of statistical and logical formalism to extract facts
and to improve the quality of the derived knowledge. Hence, information extrac-
tion projects are prime examples where statistical relational learning and joint
inference proves tremendously useful and is naturally applicable. It is also inter-
esting to observe that many of these projects have strong commonalities despite
their different objectives and premises. The main motivation for presenting the
various approaches to knowledge base extraction is to demonstrate the impor-
tance of methods that combine probability and logic and to excite the reader
with a semantic web background about the data that these projects continu-
ously aggregate. There are numerous research directions for young researchers
to pursue.

2.1 YAGO

YAGO was introduced with the publication [87]. Each entity in YAGO corre-
sponds to an article in Wikipedia. Whenever Wikipedia’s volunteer editors deem
an entity worthy of a Wikipedia article, YAGO will create the corresponding en-
tity in its knowledge base. The taxonomic backbone of YAGO is based on a
hierarchy of user-created Wikipedia categories. YAGO establishes links between
Wikipedia categories and synsets in WordNet [28].

YAGO has roughly 100 manually defined relations, such as locatedIn and
hasPopulation. YAGO extracts instances of these relations from Wikipedia in-
foboxes (meta-data boxes). These instances are commonly denoted as facts:
triples of an entity (the subject), a relation (the predicate), and another en-
tity (the object). YAGO utilizes a set of manually created patterns that map
categories and infobox attributes to fact templates. YAGO contains more than
80 million facts involving more than 9 million entities [36].

The YAGO knowledge base also utilizes a set of deterministic and probabilistic
rules. These declarative rules are used to ensure that facts do not contradict each
other in certain ways. For instance, some of these declarative rules specify the
domains and ranges of the relations and the definition of the classes of the YAGO
concept hierarchy. The rules can, for instance, be used to enforce that instances

Statistical Relational Information Extraction and Integration 255

of relations adhere to the domain and range restrictions, essentially filtering out
incorrect triples.

So-called implication rules are used to infer novel facts from a set of existing
ones. For instance, knowing that Baden-Wuerrtemberg is locatedIn Germany and
Heidelberg is locatedIn Baden-Wuerttemberg one could infer that Heidelberg is
also locatedIn Germany.

There are several other classes of rules such as replacement rules for inter-
preting microformats, cleaning up HTML tags, and normalizing numbers and
extraction rules which detect particular patterns in the Wikipedia infoboxes to
extract facts.

With the second generation of YAGO, spatial and temporal information was
included in the knowledge base [36]. For instance, geographical locations are
stored with their geographical coordinates and relation instances with a duration
if they have a known start and/or end date.

2.2 DBpedia

DBpedia [4,59] is a project that is in many ways similar to the YAGO project.
Both projects operate on Wikipedia pages and use page URIs as canonical labels
of entities. Both maintain a set of linkage and extraction rules for Wikipedia info-
boxes. While YAGO’s rules are maintained by its creators, DBpedia’s rules are
created and maintained with the help of a sizable user community. In addition,
the two projects can be distinguished based on their ontology. Both projects
have a fixed set of classes and relations. However, the DBpedia ontology was
manually created and not learned based on the Wikipedia categories as in the
case of YAGO. Moreover, the DBpedia ontology is with more than 1000 different
relations much broader than the YAGO ontology with respect to the relation-
ships it currently models. The developers of the DBpedia knowledge base also
emphasize and support it as a multi-lingual knowledge base [59] in the original
spirit of Wikipedia as an encyclopedia in numerous different languages.

Dbpedia represent its data in accordance with the best-practices of publishing
linked open data. The term linked data describes an assortment of best practices
for publishing, sharing, and connecting structured data and knowledge over the
web [8]. These standards include the assignment of URIs to each datum, the
use of the HTTP protocol, RDF data model (Resource Description Framework),
and hyperlinks to other URIs [6]. Whereas the traditional World Wide Web is a
collection of documents and hyperlinks between these documents, the data web
extends this to a collection of arbitrary objects (resources) and their properties
and relations. DBpedias relations are modeled using the resource description
framework (RDF)[52], a generic graph-based data model for describing objects
and their relationships with each other. There are many different representation
formats, known as serializations, for RDF data. Examples of RDF serializations
include RDF/XML, Notation-3 (N3), Turtle, N-Triples, RDFa, and RDF/JSON.
For numerous of DBpedia’s relations a domain and range restriction is specified.

256 M. Niepert

�����
��	
�
���

�������

��

��������

���
����
���

�����	

��
���
����

 !�
������

��"�� ����
�������

�������
��
�

�����$�

��
��
�����
�	�
�

����
������

����%
���

��

 ������	

��
�
�	�

Fig. 1. A small fragment of the web of data. DBpedia is a de-facto hub of the linked
open data could.

2.3 NELL

The never ending language learning [62,13] (NELL) project’s objective is the
creation and maintenance of a large-scale machine learning system that learns
to extract structured information from unstructured web pages. NELL distin-
guishes itself from YAGO and DBpedia in that its extraction algorithms operate
on a large corpus of more than 500 million web pages1 and not solely on the set
of Wikipedia articles. The NELL system was bootstrapped with a small set of
classes and relations and, for each of those, 10-15 positive and negative instances.
The guiding principle of NELL is to build several semi-supervised machine learn-
ing [14] components that accumulate instances of the classes and relations, re-
train the machine learning algorithms with these instances as training data, and
re-apply the machine learning algorithms to extract novel instances. This pro-
cess is repeated indefinitely with each re-training and extraction phase called
an iteration. Since numerous extraction components work in parallel, extracting
facts with different degrees of confidence in their correctness, one of the most
important aspects of NELL is its ability to combine these different extraction
algorithms into one coherent model. This is also accomplished with relatively
simple linear machine learning algorithms that weigh the different components
based on their past accuracy.

NELL’s algorithm have been running since 2010, initially fully automated and
without any human supervision. Since it has experienced concepts drift for some
of its relations and classes, that is, a increasingly worse extraction performance
over time NELL now is given some corrections by humans to avoid this long-term
behavior.

1 http://lemurproject.org/clueweb09/

http://lemurproject.org/clueweb09/

Statistical Relational Information Extraction and Integration 257

Interestingly, even though NELL does not adhere to any of the semantic web
standards such as RDF or description logics numerous of the same notions are
implicitly used. For instance, NELL types the domain and range of its relations.

2.4 Open Information Extraction

Open information extraction [23,24] (OEI) is an umbrella term coined by re-
searchers at the University of Washington to denote information extraction ap-
proaches that are not constrained to a predefined set of relations and human-
annotated data. On the schema expressivity spectrum of information extraction
projects it is one the opposite end of DBpedia and YAGO as it does not lever-
age or learn an explicit relational schema. In contrast to DBpedia and YAGO
which leverage human-created, supervised rules to build their knowledge base
and NELL which follows a semi-supervised machine learning approach to infor-
mation extraction, the open information extraction paradigm is unsupervised
and operates solely on large text collections. To avoid low quality extractions,
a problem that open IE projects without relational schema are more prone to,
several of the open IE extractors apply syntactical and lexical meta-constraints
to the extractions. For instance, ReVerb [24] uses a syntactic constraint that
requires extracted relation phrases to match a particular part of speech pattern.
This pattern limits relation phrases to be either a simple verb phrase, a verb
phrase followed immediately by a preposition or particle (e.g., located in), or a
verb phrase followed by a simple noun phrase and ending in a preposition or
particle (e.g., has atomic weight of) [24]. A lexical constraint enforces a particu-
lar relation phrase to occur several times with different arguments (i.e., subjects
and objects) in a large text corpus. This is a method that works well in reducing
erroneous extractions.

More recent advances within open information extraction is the learning of
logical rules of inference from web text [83]. One of the insights coming out of
this line of research is that extracting and using inference rules leads to three
times more extracted facts than approaches that merely extract explicitly stated
facts from text. Again, even within the framework of open information extraction
the combination of logical rules and statistical processing of large text corpora
emerges as an approach that it has in common with the more structured, schema-
driven approaches.

3 Statistical Relational Data Integration

The integration of distributed information sources is a key challenge in data
and knowledge management applications. Instances of this problem range from
mapping schemas of heterogeneous databases to object reconciliation in linked
open data repositories. Both problems are crucial to the integration of hetero-
geneous knowledge bases learned thourgh information extraction algorithms. In
the following, we discuss two instances of the data integration problem: ontology
matching and object reconciliation. Both problems have been in the focus of the

258 M. Niepert

semantic web community in recent years. We investigate and assess the applica-
bility and performance of our probabilistic-logical approach to data integration
using these two prominent problems. In order to make the article comprehensive,
however, we first briefly cover description logics and ontologies as these logical
concepts are needed in later parts of the document.

3.1 Ontologies and Description Logics

An Ontology usually groups objects of the world that have certain properties
in common (e.g. cities or countries) into concepts. A specification of the shared
properties that characterize a set of objects is called a concept definition. Con-
cepts can be arranged into a subclass–superclass relation in order to further
discriminate objects into subgroups (e.g. capitals or European countries). Con-
cepts can be defined in two ways, by enumeration of its members or by a concept
expression. The specific logical operators that can be used to formulate concept
expressions can vary between ontology languages.

Description logics are decidable fragments of first order logic that are de-
signed to describe concepts in terms of complex logical expressions2 The basic
modeling elements in description logics are concepts (classes of objects), roles
(binary relations between objects) and individuals (named objects). Based on
these modeling elements, description logics contain operators for specifying so-
called concept expressions that can be used to specify necessary and sufficient
conditions for membership in the concept they describe. These modeling ele-
ments are provided with a formal semantics in terms of an abstract domain
interpretation mapping I mapping each instance onto an element of an abstract
domain ΔI . Instances can be connected by binary relations defined as subsets
of ΔI × ΔI . Concepts are interpreted as a subset of the abstract domain Δ.
Intuitively, a concept is a set of instances that share certain properties. These
properties are defined in terms of concept expressions. Typical operators are
the Boolean operators as well as universal and existential quantification over
relations to instances in other concepts.

A description logic knowledge base consists of two parts. The A-Box contains
information about objects, their type and relations between them, the so-called
T-Box consists of a set of axioms about concepts (potentially defined in terms of
complex concept expressions and relations. The first type of axioms can be used
to describe instances. In particular, axioms can be used to state that an instance
belongs to a concept or that two instances are in a certain relation. It is easy to
see, that these axioms can be used to capture case descriptions as labeled graphs.
The other types of axioms describe relations between concepts and instances. It
can be stated that one concept is a subconcept of the other (all its instances are
also instances of this other concept). Further, we can define a relation to be a
subrelation or the inverse of another relation. The formal semantics of concepts
and relations as defined by the interpretation into the abstract domain ΔI can

2 Details about the relation between description logics and first-order logic can be
found in [11] and [88].

Statistical Relational Information Extraction and Integration 259

Table 1. Axiom patterns for representing description logic ontologies

DL Axiom Semantics Intuition

A-Box

C(x) xI ∈ CI x is of type C

r(x, y) (xI , yI) ∈ rI x is related to y by r

T-Box

C � D CI ⊆ DI C is more specific than D

C �D � ⊥ CI ∩DI = ∅ C and D are disjoint

r � s rI ⊆ sI r is more specific than s

r ≡ s− rI = {(x, y)|(y, x) ∈ sI} r is the inverse of s

∃r.� � C (xI , yI) ∈ rI ⇒ xI ∈ CI the domain of r is restricted to C

∃r−1.� � C (xI , yI) ∈ rI ⇒ yI ∈ CI the range of r is restricted to C

be used to automatically infer new axioms from existing definitions. Table 1 lists
a few examples of DL axioms, their semantics, and the intuition behind them.

Encoding ontologies in description logics is beneficial, because it enables in-
ference engines to reason about ontological definitions. In this context, deciding
subsumption between two concept expressions, i.e. deciding whether one expres-
sion is more general than the other one is one of the most important reasoning
tasks as it has been used to support various tasks.

3.2 Ontology Matching

Ontology matching is the process of detecting links between entities in heteroge-
neous ontologies. Based on a definition by Euzenat and Shvaiko [26], we formally
introduce the notion of correspondence and alignment to refer to these links.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and
O2, let q be a function that defines sets of matchable entities q (O1) and q (O2). A
correspondence between O1 and O2 is a triple 〈3, e1, e2〉 r such that e1 ∈ q (O1),
e2 ∈ q (O2), and r is a semantic relation. An alignment between O1 and O2 is a
set of correspondences between O1 and O2.

The generic form of Definition 1 captures a wide range of correspondences by
varying what is admissible as matchable element and semantic relation. In the
context of ontology matching, we are only interested in equivalence correspon-
dences between concepts and properties. In the first step of the alignment process
most matching systems compute a-priori similarities between matching candi-
dates. These values are typically refined in later phases of the matching process.
The underlying assumption is that the degree of similarity is indicative of the
likelihood that two entities are equivalent. Given two matchable entities e1 and
e2 we write σ(e1, e2) to refer to this kind of a-priori similarity. Before presenting
the formal matching framework, we motivate the approach by a simple instance
of an ontology matching problem which we use as a running example.

260 M. Niepert

1

O2

Reviewer PaperReview Submission

hasWritten

Person Document

Author Paper Review

writtenBy

Agent Documents

O concept

property

subsumption

disjointness

a1 b1

c1 d1 e1

a2 b2

c2 d2 e2

p
1

p
2

Fig. 2. Example ontology fragments

Example 1. Figure 2 depicts fragments of two ontologies describing the domain
of scientific conferences. The following axioms are part of ontology O1 and O2,
respectively. If we apply a similarity measure σ based on the Levenshtein dis-
tance [50] there are four pairs of entities such that σ(e1, e2) > 0.5.

σ(Document,Documents) = 0.88 (1)

σ(Reviewer,Review) = 0.75 (2)

σ(hasWritten, writtenBy) = 0.7 (3)

σ(PaperReview,Review) = 0.54 (4)

The alignment consisting of these four correspondences contains two correct (1
& 4) and two incorrect (2 & 3) correspondences resulting in a precision of 50%.

3.3 Object Reconciliation

The problem of object reconciliation has been a topic of research for more than
50 years. It is also known as the problem of record linkage [29], entity resolu-
tion [7], and instance matching [30]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches fo-
cus mostly on graph-based data representations extended by additional schema
information. We discuss the problem of object reconciliation using the notion
of instance matching. This allows us to describe it within the well-established
ontology matching framework [26]. Ontology matching is the process of detect-
ing links between entities in different ontologies. These links are annotated by a
confidence value and a label describing the type of link. Such a link is referred

Statistical Relational Information Extraction and Integration 261

Table 2. Discription logics axioms in the ontology of Figure 2

Ontology O1 Ontology O2

∃hasWritten � Reviewer ∃writtenBy � Paper

PaperReview � Document Review � Documents

Reviewer � Person Paper � Documents

Submission � Document Author � Agent

Document � ¬Person Paper � ¬Review

to as a correspondence and a set of such correspondences is referred to as an
alignment.

In the following we refer to an alignment that contains correspondences be-
tween concepts and properties as terminological alignment and to an alignment
that contains correspondences between individuals as instance alignment. Since
instance matching is the task of detecting pairs of instances that refer to the same
real world object [30], the semantic relation expressed by an instance correspon-
dence is that of identity. The confidence value of a correspondence quantifies
the degree of trust in the correctness of the statement. If a correspondence is
automatically generated by a matching system this value will be computed by
aggregating scores from multiple sources of evidence.

Example 2. An A-Box is a set of membership statements of the following form:
C(a), P (a, b) where a,b are individuals, C is a concept name and P is a property
name. Further, we extend the notion of an A-Box by also allowing membership
statements of the form ¬C(a) and ¬P (a, b) stating that object a is not a member
of concept C and that the objects a and b are not an instance of the object
property R, respectively. We illustrate the problem of object reconciliation using
the following example A-Boxes and their corresponding graphs. A-Boxes can be
regarded as labeled directed multi-graphs, where individuals are represented by
nodes and object properties are represented by links labeled with the name of
the corresponding object property. Object reconciliation is the task of finding
the ’right’ mapping between the nodes in different A-Box graphs. The basis
for finding the right mapping between different objects is typically based on
a measure of similarity between the nodes that is determined on the local or
global structures in the corresponding graph. Typical features for determining
the similarity of two objects are:

– the similarity of their labels
– the similarity of the classes the objects belong to
– the similarity of object properties and related objects

Based on these features, we would generate a priori similarities. For the exam-
ple depicted in Figure 2 we would compute high a-priori similarities σ(a5, b4),
σ(a1, b1), σ(a3, b3), σ(a3, b2), σ(a2, b5) and σ(a4, b6). Besides the similarity be-
tween objects, in the case where the A-Box is based on an ontology, the logical

262 M. Niepert

(a) Graph for A-Box A1

(b) Graph for A-Box A2

Fig. 3. Examples of two different A-Boxes representing triples in RDF. Dashed arrows
indicate object properties that occur in both A-Boxes.

constraints from the ontologies should be taken into account in the matching
process. In particular, objects should not be maps on each other if they have
incompatible types. In the example this means that assuming the underlying
ontology contains a statement student⊥pupil declaring the classes ’student’ and
’pupil’ as disjoint, the objects a3 and b3 should not be mapped on each other,
despite the high a priori similarity.

4 Statistical Relational Learning

Data integration for heterogeneous knowledge bases typically involves both
purely logical and uncertain data. For instance, the description logic axioms
of the ontologies are known to be true and, therefore, should be modeled as
logical rules – the alignment system should not alter the logical structure of the
input ontologies. Conversely, matching systems usually rely on degrees of confi-
dence that have been derived through the application of lexical similarity, data

Statistical Relational Information Extraction and Integration 263

mining, and machine learning algorithms. The presence of both known logical
rules and degrees of uncertainty requires formalism that allow the representa-
tion of both deterministic and uncertain aspects of the problem. In the following,
we introduce such a probabilistic-logical framework based on Markov logic and
show how description logic ontologies are represented in the language. Moreover,
we describe the application of an efficient probabilistic inference algorithm that
uses integer linear programming. The main reason for focusing on Markov logic
is its declarative and easy to understand syntax as well as its rather expres-
sive nature – numerous other statistical relational formalism can be represented
with Markov logic networks. However, depending on the application and the
intended users, other statistical relational learning (SRL) formalisms might be
more appropriate and we make no claim of Markov logic being superior to other
languages.

4.1 Markov Logic

A Markov logic network (MLN) is a set of first-order formulas with weights.
Intuitively, the more evidence we have that a formula is true the higher the weight
of this formula. To simplify the presentation of the technical parts we do not
include functions. Moreover, Markov logic makes several assumptions such as (a)
different constants refer to different objects (the unique names assumption) and
(b) the only objects in the domain are those representable using the constants
(the closed domain assumption) [80]. In addition, we assume that all (ground)
formulas of a Markov logic network are in clausal form and use the terms formula
and clause interchangeably.

Syntax. A signature is a triple S = (O,H,C) with O a finite set of observable
predicate symbols, H a finite set of hidden predicate symbols, and C a finite set
of constants. A Markov logic network (MLN) is a set of pairs {(Fi, wi)} with each
Fi being a function-free first-order formula built using predicates from O ∪H
and each wi ∈ R a real-valued weight associated with formula Fi. For most appli-
cation of Markov logic, one also wants to include so-called hard formulas. Hard
formulas are constraints on the possible word. Intuitively speaking, whenever a
possible world violates a constraint its the probability of said world is either zero
or close to zero. There are different to define Markov logic networks depending
on whether one wants to model hard formulas with large weights (resulting in
a probability close to zero of a possible world violating it) or with constraint
(resulting in a zero probability of possible worlds violating it). For the sake of
simplicity, we will use the standard definition with weights only. Later, when we
cover some inference methods, we will also introduce the alternative definition.

Semantics. Let M = {(Fi, wi)} be a Markov logic network with signature
S = (O,H,C). A grounding of a first-order formula F is generated by substi-
tuting each occurrence of every variable in F with constants in C. Existentially
quantified formulas are substituted by the disjunctions of their groundings over
the finite set of constants. A formula that does not contain any variables is

264 M. Niepert

ground. A formula that consists of a single predicate is an atom. Note again that
Markov logic makes several assumptions such as (a) different constants refer to
different objects and (b) the only objects in the domain are those representable
using the constants [80]. A set of ground atoms is a possible world. We say that
a possible world W satisfies a formula F , and write W |= F , if F is true in W .
Let GCF be the set of all possible groundings of formula F with respect to C. We
say that W satisfies GCF , and write W |= GCF , if F satisfies every formula in GCF .
Let W be the set of all possible worlds with respect to S. Then, the probability
of a possible world W is given by

p(W) =
1

Z
exp

⎛
⎜⎝ ∑

(Fi,wi)

∑
G∈GC

Fi
: W |=G

wi

⎞
⎟⎠ .

Here, Z is a normalization constant. The score sW of a possible world W is the
sum of the weights of the ground formulas implied by W

sW =
∑

(Fi,wi)

∑
G∈GC

Fi
: W |=G

wi. (5)

We will see later that, in the data integration context, possible worlds corre-
spond to possible alignments. Hence, the problem of deriving the most probably
alignment given the evidence can be interpreted as finding the possible world W
with highest score.

4.2 Representing Ontologies and Alignments in Markov Logic

Our approach for data integration based on logics and probability is now based
on the idea of representing description logic ontologies as Markov logic networks
and utilizing the weights to incorporate similarity scores into the integration pro-
cess [67,73,69]. The most obvious way to represent a description logic ontology in
Markov logic would be to directly use the first-order translation of the ontology.
For instance, the axiom C � D would be written as ∀x C(x) ⇒ D(x). In other
words, the representation would simply map between concepts and unary pred-
icates and roles and binary predicates. However, we take a different approach
by mapping axioms to predicates and use constants to represent the classes and
relations in the ontology. Some typical axioms with their respective predicates
are the following:

C � D 	→ sub(c, d)
C �D � ⊥ 	→ dis(c, d)
∃r.T � C 	→ dom(r, c)
∃r−1.T � C 	→ range(r, c)

This way of representing description logic ontologies has the advantage that we
can model some basic inference rules and directly use them in the probabilistic
reasoning process. For example, we can model the transitivity of the subsumption
relation as

sub(x, y) ∧ sub(y, z)⇒ sub(x, z)

Statistical Relational Information Extraction and Integration 265

Table 3. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential ∃r.C {x ∈ ΔI |∃y ∈ ΔI :
restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C � D CI ⊆ DI

RI r1 ◦ ... ◦ rk � r rI1 ◦ ... ◦ rIk ⊆ rI

and the intuition that two classes that subsume each other should not be disjoint
at the same time3

¬sub(x, y) ∨ ¬dis(x, y)

While the use of such axioms in a Markov logic network does not guarantee
consistency and coherence of the results, they often cover the vast majority of
conflicts that can exist in an ontology, especially in cases where the ontology is
rather simple and does not contain a complex axiomatization.

For certain description logics, it is possible to completely capture the model
using the kind of translation described above. In particular, if an ontology can
be reduced to a normal form with a limited number of axiom types, we can
provide a complete translation based on this normal form. An example for such
a description logic is EL++, a light weight description logic that supports poly-
nomial time reasoning. Table 3 shows the types of axioms an EL++ Model can
be reduced to.

We can completely translation any EL++ model into a Markov Logic repre-
sentation using the following translation rules:

C1 � D 	→ sub(c1, d)
C1 � C2 � D 	→ int(c1, c2, d)
C1 � ∃r.C2 	→ rsup(c1, r, c2)
∃r.C1 � D 	→ rsub(c1, r, d)
r � s 	→ psub(r, s)
r1 ◦ r2 � r3 	→ pcom(r1, r2, r3)

In principle, such a complete translation is possible whenever there is a normal
form representation of a description logic that reduces the original model to a
finite number of axiom types that can be captured by a respective predicate in
the Markov logic network.

3 Please note that two classes can be disjoint and subsume each other whenever one
of the classes is empty. However, these are exactly the situation we want to avoid
when we integrate two or more ontologies.

266 M. Niepert

Finally, being interested in data integration, we often treat correspondences
between elements from different models separately although in principle they
could be represented by ordinary DL axioms. In particular, we often use the
following translation of correspondences to weighted ground predicates of the
Markov logic network

(e1, e2, R, c) 	→ 〈mapR(e1, e2), c〉

where c is a a-priori confidence values.

5 Markov Logic and Ontology Matching

We provide a formalization of the ontology matching problem within the
probabilistic-logical framework. The presented approach has several advantages
over existing methods such as ease of experimentation, incoherence mitigation
during the alignment process, and the incorporation of a-priori confidence val-
ues. We show empirically that the approach is efficient and more accurate than
existing matchers on an established ontology alignment benchmark dataset.

5.1 Problem Representation

Given two ontologies O1 and O2 and an initial a-priori similarity σ we apply the
following formalization. First, we introduce observable predicates O to model
the structure of O1 and O2 with respect to both concepts and properties. For
the sake of simplicity we use uppercase letters D,E,R to refer to individual
concepts and properties in the ontologies and lowercase letters d, e, r to refer
to the corresponding constants in C. In particular, we add ground atoms of
observable predicates to the set of hard formulas for i ∈ {1, 2} according to the
following rules:

Oi |= D � E 	→ subi(d, e)

Oi |= D � ¬E 	→ disi(d, e)

Oi |= ∃R.� � D 	→ subdi (r, d)

Oi |= ∃R−1.� � D 	→ subri (r, d)

Oi |= ∃R.� ! D 	→ supdi (r, d)

Oi |= ∃R−1.� ! D 	→ supri (r, d)

Oi |= ∃R.� � ¬D 	→ disdi (r, d)

Oi |= ∃R−1.� � ¬D 	→ disri (r, d)

The knowledge encoded in the ontologies is assumed to be true. Hence, the
ground atoms of observable predicates are added to the set of hard formulas,
making them hold in every computed alignment. The hidden predicates mapc

Statistical Relational Information Extraction and Integration 267

and mapp, on the other hand, model the sought-after concept and property
correspondences, respectively. Given the state of the observable predicates, we
are interested in determining the state of the hidden predicates that maximize
the a-posteriori probability of the corresponding possible world. The ground
atoms of these hidden predicates are assigned the weights specified by the a-
priori similarity σ. The higher this value for a correspondence the more likely
the correspondence is correct a-priori. Hence, the following ground formulas are
added to the set of formulas:

(mapc(c, d), σ(C,D)) if C and D are concepts

(mapp(p, r), σ(P,R)) if P and R are properties

Notice that the distinction between mc and mp is required since we use typed
predicates and distinguish between the concept and property type.

Cardinality Constraints. A method often applied in real-world scenarios is
the selection of a functional one-to-one alignment [17]. Within the ML frame-
work, we can include a set of hard cardinality constraints, restricting the align-
ment to be functional and one-to-one. In the following we write x, y, z to refer to
variables ranging over the appropriately typed constants and omit the universal
quantifiers.

mapc(x, y) ∧mapc(x, z)⇒ y = z

mapc(x, y) ∧mapc(z, y)⇒ x = z

Analogously, the same formulas can be included with hidden predicates mapp,
restricting the property alignment to be one-to-one and functional.

Coherence Constraints. Incoherence occurs when axioms in ontologies lead
to logical contradictions. Clearly, it is desirable to avoid incoherence during the
alignment process. Some methods of incoherence removal for ontology align-
ments were introduced in [57]. All existing approaches, however, remove corre-
spondences after the computation of the alignment. Within the ML framework
we can incorporate incoherence reducing constraints during the alignment pro-
cess for the first time. This is accomplished by adding formulas of the following
type to set of hard formulas.

dis1(x, x
′) ∧ sub2(x, x

′)⇒ ¬(mapc(x, y) ∧mapc(x
′, y′))

disd1(x, x
′) ∧ subd2(y, y

′)⇒ ¬(mapp(x, y) ∧mapc(x
′, y′))

The second formula, for example, has the following purpose. Given properties
X,Y and concepts X ′, Y ′. Suppose that O1 |= ∃X.� � ¬X ′ and O2 |= ∃Y.� �
Y ′. Now, if 〈X,Y,≡〉 and 〈X ′, Y ′,≡〉 were both part of an alignment the merged
ontology would entail both ∃X.� � X ′ and ∃X.� � ¬X ′ and, therefore, ∃X.� �
⊥. The specified formula prevents this type of incoherence. It is known that such
constraints, if carefully chosen, can avoid a majority of possible incoherences [56].

268 M. Niepert

Stability Constraints. Several existing approaches to schema and ontology
matching propagate alignment evidence derived from structural relationships
between concepts and properties. These methods leverage the fact that existing
evidence for the equivalence of concepts C and D also makes it more likely that,
for example, child concepts of C and child concepts of D are equivalent. One
such approach to evidence propagation is similarity flooding [58]. As a reciprocal
idea, the general notion of stability was introduced, expressing that an alignment
should not introduce new structural knowledge [55]. The soft formula below, for
instance, decreases the probability of alignments that map concepts X to Y and
X ′ to Y ′ if X ′ subsumes X but Y ′ does not subsume Y .

〈sub1(x, x′) ∧ ¬sub2(y, y′)⇒ mapc(x, y) ∧mapc(x
′, y′), w1〉

〈subd1(x, x′) ∧ ¬subd2(y, y′)⇒ mapp(x, y) ∧mapc(x
′, y′), w2〉

Here, w1 and w2 are negative real-valued weights, rendering alignments that
satisfy the formulas possible but less likely.

The presented list of cardinality, coherence, and stability constraints is by
no means meant to be exhaustive. Other constraints could, for example, model
known correct correspondences or generalize the one-to-one alignment to m-
to-n alignments. Moreover, a novel hidden predicate could be added modeling
correspondences between instances of the ontologies. To keep the discussion of
the approach simple, however, we leave these considerations to future research.

Example 3. We apply the previous formalization to Example 1. To keep it
simple, we only use a-priori values, cardinality, and coherence constraints. Given
the two ontologies O1 and O2 in Figure 2, and the matching hypotheses (1)
to (4) from Example 1, the ground MLN would include the following relevant
ground formulas. We use the concept and property labels from Figure 2 and
omit ground atoms of observable predicates.

A-priori similarity:

〈mapc(b1, b2), 0.88〉, 〈mapc(c1, e2), 0.75〉, 〈mapp(p1, p2), 0.7〉, 〈mapc(d1, e2), 0.54〉

Cardinality constraints:

mapc(c1, e2) ∧mapc(d1, e2)⇒ c1 = d1 (6)

Coherence constraints:

disd1(p1, b1) ∧ subd2(p2, b2)⇒ ¬(mapp(p1, p2) ∧mapc(b1, b2)) (7)

dis1(b1, c1) ∧ sub2(b2, e2)⇒ ¬(mapc(b1, b2) ∧mapc(c1, e2)) (8)

subd1(p1, c1) ∧ disd2(p2, e2)⇒ ¬(mapp(p1, p2) ∧mapc(c1, e2)) (9)

Let the binary ILP variables x1, x2, x3, and x4 model the ground atoms
mapc(b1, b2),mapc(c1, e2),mapp(p1, p2), and mapc(d1, e2), respectively. The set
of ground formulas is then encoded in the following integer linear program:

Statistical Relational Information Extraction and Integration 269

Maximize: 0.88x1 + 0.75x2 + 0.7x3 + 0.54x4

Subject to:

x2 + x4 ≤ 1 (10)

x1 + x3 ≤ 1 (11)

x1 + x2 ≤ 1 (12)

x2 + x3 ≤ 1 (13)

The a-priori confidence values of the potential correspondences are factored in
as coefficients of the objective function. Here, the ILP constraint (9) corresponds
to ground formula (5), and ILP constraints (10),(11), and (12) correspond
to the coherence ground formulas (6), (7), and (8), respectively. An optimal
solution to the ILP consists of the variables x1 and x4 corresponding to the
correct alignment {mc(b1, b2),mc(d1, e2)}. Compare this with the alignment
{mapc(b1, b2),mapc(c1, e2),mapp(p1, p2)} which would be the outcome without
coherence constraints.

6 Markov Logic and Object Reconciliation

We are primarily concerned with the scenario where both A-Boxes are described
in terms of the same T-Box. This is a reasonable assumption if we want to
integrate information extraction projects with a limited set of classes and re-
lations. In this case, it is often straight-forward to align the ontologies of the
involved knowledge bases and to exploit these links for improving the alignment
between individuals. However, for open information extraction projects, where
the number of relations is not bounded and essentially every surface form could
correspond to a particular relation, this approach is not feasible and has to be
substituted with one that aligns relations and indidivduals jointly. We will not
discuss this scenario here.

Instead, we present an approach that does not rely on specific types of axioms
or a set of predefined rules but computes the alignment by maximizing the
similarity of the two knowledge bases given the alignment subject to a set of
constraints. Our method factors in a-priori confidence values that quantify the
degree of trust one has in the correctness of the object correspondences based
on lexical properties. The resulting similarity measure is used to determine an
instance alignment that induces the highest agreement of object assertions in
A1 and A2 with respect to T .

6.1 Problem Representation

The current instance matching configuration leverages terminological structure
and combines it with lexical similarity measures. The approach is presented in
more detail in [75]. The alignment system uses one T-Box T but two different
A-Boxes A1 ∈ O1 and A2 ∈ O2. In cases with two different T-Boxes the T-Box

270 M. Niepert

matching approach is applied as a preprocessing step to merge the two aligned
T-Boxes first. The approach offers complete conflict elimination meaning that
the resulting alignment is always consistent for OWL DL ontologies. To enforce
consistency, we need to add constraints to model conflicts, that is, we have to
prevent an equivalence correspondence between two individuals if there exists
a positive class assertion for the first individual and a negative for the second
for the same class. These constraints are incorporated for both property and
concept assertions. Analogous to the concept and property alignment before,
we introduce the hidden predicate mapi representing instance correspondences.
Let C be a concept and P be a property of T-Box T . Further, let A ∈ A1 and
B ∈ A2 be individuals in the respective A-Boxes. Then, using a reasoner such as
Pellet, ground atoms are added to the set of hard constraints according to the
following rules:

T ∪ A1 |= C(A) ∧ T ∪ A2 |= ¬C(B) �→ ¬mapi(a, b)

T ∪ A1 |= ¬C(A) ∧ T ∪ A2 |= C(B) �→ ¬mapi(a, b)

T ∪ A1 |= P (A,A′) ∧ T ∪ A2 |= ¬P (B,B′) �→ ¬mapi(a, b) ∨ ¬mapi(a
′, b′)

T ∪ A1 |= ¬P (A,A′) ∧ T ∪ A2 |= P (B,B′) �→ ¬mapi(a, b) ∨ ¬mapi(a
′, b′)

In addition to these formulas we included cardinality constraints analogous to
those used in the previous concept and property alignment problem. In the
instance matching formulation, the a-priori similarity σc and σp measures the
normalized overlap of concept and property assertions, respectively. For more
details on these measures, we refer the reader to [75]. The following formulas are
added to the set of formulas:

〈mapi(a, b), σc(A,B)〉 if A and B are instances

〈mapi(a, b) ∧mapi(c, d), σp(A,B,C,D)〉 if A, B, C, and D are instances

7 Efficient Probabilistic Inference

Many successful applications of artificial intelligence research are based on large
probabilistic models. Examples include Markov logic networks [80], conditional
random fields [48] and, more recently, deep learning architectures [35,5,79]. The
statistical relational models resulting from common data integration problems
are usually very large and in many cases intractable. Indeed, probabilistic in-
ference in general graphical models is known to be NP-hard [46]. Hence, the
problem of probabilistic inference in large statistical relational models seems
daunting considering the size and complexity of the resulting probabilistic graph-
ical models. For numerous of these models, however, scalable approximate and,
to a lesser extend, exact inference algorithms do exist. Most notably, there has
been a strong focus on lifted inference algorithms, that is, algorithms that group
indistinguishable variables and features during inference. For an overview we re-
fer the reader to [44]. Lifted algorithms facilitate efficient inference in numerous
large probabilistic models for which inference is NP-hard in principle. We refer

Statistical Relational Information Extraction and Integration 271

the reader to the related work section for some lifted inference algorithms related
to our work.

The computation of a maximum a-posterior (MAP) state in statistical rela-
tional models for data integration corresponds to computing the most probable
alignment between relations, classes, and individuals, respectively. Hence, we
more closely describe the state-of-the-art MAP inference engine RockIt[74].

7.1 Cutting Plane Aggregation

Each MAP query corresponds to an optimization problem with linear constraints
and a linear objective function and, hence, we can formulate the problem as an
instance of integer linear programming. The novel cutting plane aggregation ap-
proach is tightly integrated with cutting plane inference (CPI) a meta-algorithm
operating between the grounding algorithm and the ILP solver [81]. Instead of
immediately adding one constraint for each ground formula to the ILP formula-
tion, the ILP is initially formulated so as to enforce the given evidence to hold
in any solution. Based on the solution of this more compact ILP one determines
the violated constraints, adds these to the ILP, and resolves. This process is
repeated until no constraints are violated by an intermediate solution.

We begin by introducing a novel ILP formulation of MAP queries for Markov
logic networks. In contrast to existing approaches [81,39], the formulation re-
quires only one linear constraint per ground clause irrespective of the ground
clause being weighted or unweighted. Moreover, we introduce the notion of
context-specific exchangeability and describe the novel cutting plane aggrega-
tion (CPA) algorithm that exploits this type of local symmetry. Contrary to
most symmetry-aware and lifted inference algorithms that assume no or only a
limited amount of evidence, the presented approach specifically exploits model
symmetries induced by the given evidence.

7.2 General ILP Formulation

In order to transform the MAP problem to an ILP we have to first ground, that is,
instantiate, the first-order theory specified by the Markov logic network. Since we
are employing cutting plane inference, RockIt runs in each iteration several join
queries in a relational database system to retrieve the ground clauses violated by
the current solution. Hence, in each iteration of the algorithm,RockItmaintains
a set of ground clauses G that have to be translated to an ILP instance.

Given such a set of ground clauses G, we associate one binary ILP variable x�

with each ground atom � occurring in some g ∈ G. For the sake of simplicity, we
will often denote ground atoms and ILP variables with identical names. For a
ground clause g ∈ G let L+(g) be the set of ground atoms occurring unnegated in
g and L−(g) be the set of ground atoms occurring negated in g. Now, we encode
the given evidence by introducing linear constraints of the form x� ≤ 0 or x� ≥ 1
depending on whether the evidence sets the corresponding ground atom � to

272 M. Niepert

Table 4. An example of the ILP formulation

weight ground clause

1.1 x1 ∨ ¬x2 ∨ x3

−0.5 ¬x1 ∨ x2

∞ ¬x1 ∨ x2

�

max 1.1z1 − 0.5z2
subject to
x1 + (1− x2) + x3 ≥ z1
(1− x1) + x2 ≤ 2 · z2
(1− x1) + x2 ≥ 1

false or true. For every ground clause g ∈ G with weight w > 0, w ∈ R, we add
a novel binary variable zg and the following constraint to the ILP:∑

�∈L+(g)

x� +
∑

�∈L−(g)

(1− x�) ≥ zg.

Please note that if any of the ground atoms � in the ground clause is set to false
(true) by the given evidence, we do not include it in the linear constraint.

For every g with weight wg < 0, w ∈ R, we add a novel binary variable zg
and the following constraint to the ILP:∑

�∈L+(g)

x� +
∑

�∈L−(g)

(1− x�) ≤ (|L+(g)|+ |L−(g)|)zg.

For every g with weight wg = ∞, that is, a hard clause, we add the following
linear constraint to the ILP:∑

�∈L+(g)

x� +
∑

�∈L−(g)

(1− x�) ≥ 1

If a ground clause has zero weight we do not have to add the corresponding
constraint.

Finally, the objective of the ILP is:

max
∑
g∈G

wgzg,

where we sum over weighted ground clauses only, wg is the weight of g, and
zg ∈ {0, 1} is the binary variable previously associated with ground clause g. We
compute a MAP state by solving the ILP whose solution corresponds one-to-one
to a MAP state x where xi = true if the corresponding ILP variable is 1 and
xi = false otherwise.

For example, Table 4 depicts three clauses with w > 0, w < 0, and w = ∞,
and the respective ILP formulations.

7.3 Constraint Aggregation

In this section we optimize the compilation of sets of weighted ground clauses
to sets of linear constraints. More concretely, we introduce a novel approach

Statistical Relational Information Extraction and Integration 273

Table 5. A set of ground clauses that can be aggregated

g �i c w

g1 x1∨ ¬y1 ∨ y2 1.0

g2 x2∨ ¬y1 ∨ y2 1.0

g3 ¬x3∨ ¬y1 ∨ y2 1.0

g4 ¬x4∨ ¬y1 ∨ y3 1.0

g5 x5∨ ¬y1 0.5

�

�i c w

x1∨
¬y1 ∨ y2 1.0x2∨

¬x3∨
¬x4∨ ¬y1 ∨ y3 1.0

x5∨ ¬y1 0.5

that aggregates sets of ground clauses so as to make the resulting ILP have (a)
fewer variables (b) fewer constraints and (c) its context-specific symmetries more
exposed to the ILP solver’s symmetry detection heuristics.

We first demonstrate that evidence often introduces symmetries in the result-
ing sets of ground clauses and, therefore, at the level of ILP constraints. The
proposed approach aggregates ground clauses, resulting in smaller constraint ma-
trices and aiding symmetry detection algorithms of the ILP solvers. The solvers
apply heuristics to test whether the ILP’s constraint matrix exhibits symmetries
in form of permutations of its columns and rows. For a comprehensive overview
of existing principles and algorithms for detecting and exploiting symmetries in
integer linear programs we refer the reader to [54,53,76,9]. We describe cutting
plane aggregation in two steps. First, we explain the aggregation of ground for-
mulas and, second, we describe the compilation of aggregated formulas to ILP
constraints.

Definition 2. Let G ⊆ G be a set of n weighted ground clauses and let c be a
ground clause. We say that G can be aggregated with respect to c if (a) all ground
clauses in G have the same weight and (b) for every gi ∈ G, 1 ≤ i ≤ |G|, we have
that gi = �i∨c where �i is a (unnegated or negated) literal for each i, 1 ≤ i ≤ |G|.

Example 4. Table 5 lists a set of 5 ground clauses. The set of clauses {g1, g2, g3}
can be aggregated with respect to ¬y1 ∨ y2 since we can write each of these
ground clauses as �i ∨ ¬y1 ∨ y2 with �1 := x1, �2 := x2, and �3 := ¬x3.

Before we describe the advantages of determining ground clauses that can be
aggregated and the corresponding ILP formulation encoding these sets of clauses,
we provide a typical instance of a Markov logic network resulting in a large
number of clauses that can be aggregated.

Example 5. Let us consider the clause ¬smokes(x) ∨ cancer(x) and let us as-
sume that there are 100 constants C1, ..., C100 for which we have evidence
smokes(Ci), 1 ≤ i ≤ 100. For 1 ≤ i ≤ 100, let yi be the ILP variable corre-
sponding to the ground atom cancer(Ci). The naive formulation would contain
100 constraints yi ≥ zi and the objective of the ILP with respect to these clauses
would be max 1.5z1 + ...+1.5z100. Instead, we can aggregate the ground clauses
cancer(Ci), 1 ≤ i ≤ 100, for c = false and �i = cancer(Ci), 1 ≤ i ≤ 100.

Let G ⊆ G be a set of ground clauses with weight w and let c be a ground clause.
Moreover, let us assume that G can be aggregated with respect to c, that is, that

274 M. Niepert

Table 6. Illustration of the constraint aggregation formulation. For the sake of sim-
plicity, we denote the ground atoms and ILP variables with identical names.

�i c w

x1∨
¬y1 0.5x2∨

x3∨
¬x1∨

y1 ∨ ¬y2 -1.5x2∨
¬x3∨

�

max 0.5z1 − 1.5z2
subject to

x1 + x2 + x3 + 3(1− y1) ≥ z1
z1 ≤ 3

(1− x1) + x2 + (1− x3) ≤ z2
3 · y1 ≤ z2
3 · (1− y2) ≤ z2

each g ∈ G can be written as �i ∨ c. The aggregated feature fG for the clauses G
with weight w maps each interpretation I to an integer value as follows

fG(I) =

{
|G| if I |= c

|{�i ∨ c ∈ G | I |= �i}| otherwise

}
.

The feature resulting from the aggregation, therefore, counts the number of lit-
erals �i that are satisfied if the ground clause c is not satisfied and returns
the number of aggregated clauses otherwise. Please note that an encoding of
this feature in a factor graph would require space exponential in the number
of ground atoms even though the feature only has a linear number of possible
values. The feature, therefore, is highly symmetric – each assignment to the
random variables corresponding to the unnegated (negated) literals that has the
same Hamming weight results in the same feature weight contribution. This con-
stitutes a feature-specific local form of finite exchangeability [31,20] of random
variables induced by the evidence. Therefore, we denote this form of finite ex-
changeability as context-specific exchangeability. Please note that the concept is
related to counting formulas used in some lifted inference algorithms [61]. While
standard models such as factor graphs cannot represent such symmetric fea-
tures compactly, one can encode these counting features directly with a constant
number of ILP constraints. We now describe this translation in more detail.

As before, for any ground clause c, let L+(c) (L−(c)) be the set of ground
atoms occurring unnegated (negated) in c. We first show the formulation for
clauses with positive weights. Let G ⊆ G be a set of n ground clauses with
weight w > 0 that can be aggregated with respect to c, that is, for each g ∈ G
we have that g = xi ∨ c or g = ¬xi ∨ c for some ground atom xi and a fixed
clause c. We now add the following two linear constraints to the ILP:∑

(xi∨c)∈G
xi +

∑
(¬xi∨c)∈G

(1 − xi) +
∑

�∈L+(c)

nx� +
∑

�∈L−(c)

n(1 − x�) ≥ zg (14)

and
zg ≤ n (15)

Linear constraint (2) introduces the novel integer variable zg for each aggrega-
tion. Whenever a solution satisfies the ground clause c this variable has the value

Statistical Relational Information Extraction and Integration 275

n and otherwise it is equal to the number of literals �i satisfied by the solution.
Since constraint (2) alone might lead to values of zg that are greater than n, the
linear constraint (3) ensures that the value of zg is at most n. However, linear
constraint (3) only needs to be added if clause c is not the constant false.

We describe the aggregation of clauses with negative weight. Let G ⊆ G be a
set of n ground clauses with weight w < 0 that can be aggregated with respect
to c, that is, for each g ∈ G we have that g = xi ∨ c or g = ¬xi ∨ c for a ground
atom xi and a fixed clause c. We now add the following linear constraints to the
ILP: ∑

(xi∨c)∈G
xi +

∑
(¬xi∨c)∈G

(1− xi) ≤ zg (16)

and
nx� ≤ zg for every � ∈ L+(c) (17)

and
n(1− x�) ≤ zg for every � ∈ L−(c). (18)

Linear constraint (4) introduces an integer variable zg that counts the number
of ground clauses in G that are satisfied. For each of the integer variables zg
representing an aggregated set of clauses we add the term wgzg to the objective
function where wg is the weight of each of the aggregated clauses. Table 6 shows
a set of aggregated ground clauses and the corresponding ILP formulation. It is
not difficult to verify that each solution of the novel formulation corresponds to
a MAP state of the MLN it was constructed from.

Example 6. In Example 5 we aggregate the ground clauses cancer(Ci), 1 ≤ i ≤
100, for c = false and �i = cancer(Ci), 1 ≤ i ≤ 100. Now, instead of 100
linear constraints and 100 summands in the objective function the aggregated
formulation only adds the linear constraint y1 + ... + y100 ≤ zg and the term
1.5zg to the objective.

In addition to the project code, RockIt is made available as a web-service
where users can upload MLNs. Furthermore, programmers can integrate the
MLN query engine in their own applications via a REST interface.

8 Related Work

There have been a number of approaches for extending description logics with
probabilistic information in the earlier days of description logics. Heinsohn [34]
was one of the first to propose a probabilistic notion of subsumption for the
logic ALC. Jaeger [40] investigated some general problems connected with the
extension of T-Boxes and ABoxes with objective and subjective probabilities and
proposed a general method for reasoning with probabilistic information in terms
of probability intervals attached to description logic axioms. Recently, Giugno
and Lukasiewicz proposed a probabilistic extension of the logic SHOQ along the
lines sketched by Jaeger [32]. A major advantage of this approach is the inte-
grated treatment of probabilistic information about Conceptual and Instance

276 M. Niepert

knowledge based on the use of nominals in terminological axioms that can be
used to model uncertain information about instances and relations. An alterna-
tive way of combining description logics with probabilistic information has been
proposed by Koller et al. [47]. In contrast to the approaches mentioned above,
the P-CLASSIC approach is not based on probability intervals. Instead it uses a
complete specification of the probability distribution in terms of a Bayesian net-
work which nodes correspond to concept expressions in the CLASSIC description
logic. Bayesian networks have also been used in connection with less expressive
logics such as TDL [94]. The approaches for encoding probabilities in concept
hierarchies using Bayesian networks described in the section preliminaries and
background can be seen as a simple special case of these approaches.

More recently proposals for combining the web ontology language OWL with
probabilistic information have been proposed. The first kind of approach imple-
ments a loose coupling of the underlying semantics of OWL and probabilistic
models. In particular these approaches use OWL as a language for talking about
probabilistic models. An example of this approach is the work of Yang and Cal-
met that propose a minimal OWL ontology for representing random variables
and dependencies between random variables with the corresponding conditional
probabilities [93]. This allows the user to write down probabilistic models that
correspond to Bayesian networks as instances of the OntoBayes Ontology. The
encoding of the model in OWL makes it possible to explicitly link random vari-
ables to elements of an OWL ontology, a tighter integration on the formal level,
however, is missing. A similar approach is proposed by Costa and Laskey. They
propose the PR-OWL model which is an OWL ontology for describing first order
probabilistic models [15]. More specifically, the corresponding ontology models
Multi-Entity Bayesian networks [49] that define probability distributions over
first-order theories in a modular way. Similar to OntoBayes, there is no formal
integration of the two representation paradigms as OWL is used for encoding
the general structure of Multi-entity Bayesian networks on the meta-level. The
second kind of approaches actually aims at enriching OWL ontologies with proba-
bilistic information to support uncertain reasoning inside OWL ontologies. These
approaches are comparable with the work on probabilistic extensions of descrip-
tion logics also presented in this section. A survey of the existing work reveals,
however, that approaches that directly address OWL as an ontology language
are less ambitious with respect to combining logical and probabilistic semantics
that the work in the DL area. An example is the work of Holi and Hyvonnen [37]
that describe a framework for representing uncertainty in simple classification
hierarchies using Bayesian networks. A slightly more expressive approach called
BayesOWL is proposed by Ding and others [21]. They also consider Boolean
operators as well as disjointness and equivalence of OWL classes and present
an approach for constructing a Bayesian network from class expressions over
these constructs. An interesting feature of BayesOWL is some existing work on
learning and representing uncertain alignments between different BayesOWL
ontologies reported in [77]. An additional family of probabilistic logics are

Statistical Relational Information Extraction and Integration 277

log-linear description logics [70] which integrate lightweight description logics
and probabilistic log-linear models.

Probabilistic approaches to ontology matching based on undirected probabilis-
tic graphical models have recently produced competitive matching results [1].
There are numerous other non-probabilistic approaches to ontology matching
and to mention all of them would be beyond the scope of this chapter. We refer
the reader to the systems participating in the OAEI [27] which are described in
the respective papers. More prominent systems with a long history of OAEI par-
ticipation are Falcon [38], Aroma [18], ASMOV [41], and AgreementMaker [16].
In the linked open data context, the Silk framework[91] is a suite of tools for
finding and creating mappings between entities within different data sources.
Silk facilitates a declarative language for specifying which types of RDF links
are to be found between data sets. The OAEI [27] also organizes a track for
instance matching and we refer the reader to the track’s report for an overview
of existing linked open data integration algorithms.

The commonly applied methods for object reconciliation include structure-
based strategies as well as strategies to compute and aggregate value similarities.
Under the notion of instance matching, similarities between instance labels and
datatype properties are mostly used to compute confidence values for instance
correspondences. Examples of this are realized in the systems RiMOM [95] and
OKKAM [86]. Both systems particpated in the instance matching track of the
Ontology Alignment Evaluation in 2009. Additional refinements are related to
a distinction between different types of properties. The developers of RiMOM
manually distinguish between necessary and sufficient datatype properties. The
FBEM algorithm of the OKKAM project assigns higher weights to certain prop-
erties like names and IDs. In both cases, the employed methods focus on appropri-
ate techniques to interpret and aggregate similarity scores based on a comparison
of datatype property values. Another important source of evidence is the knowl-
edge encoded in the T-Box. RiMOM, for example, first generates a terminological
alignment between the T-Boxes T1 and T2 describing the A-BoxesA1 and A2, re-
spectively. This alignment is then used as a filter and only correspondences that
link instances of equivalent concepts are considered valid [95]. An object recon-
ciliation method applicable to our setting was proposed in [82] where the authors
combine logical with numerical methods. For logical reasons it is in some cases
possible to preclude that two instances refer to the same object while in other
cases the acceptance of one correspondence directly entails the acceptance of an-
other. The authors extend this approach by modeling some of these dependencies
into a similarity propagation framework. However, their approach requires a rich
schema and assumes that properties are defined to be functional and/or inverse
functional. Hence, the approach cannot be used effectively to exploit type infor-
mation based on a concept hierarchy and is therefore not applicable in many web
of data scenarios.

MaxWalkSAT (MWS), a random walk algorithm for solving weighted SAT
problems [42], is the standard inference algorithm for MAP queries in the Markov
logic engine Alchemy [22]. The system Tuffy [71] employs relational database

278 M. Niepert

management systems to ground Markov logic networks more efficiently. Tuffy
also runs MWS on the ground model which it initially attempts to partition into
disconnected components.

MAP queries in SRL models can be formulated as integer linear programs
(ILPs). In this context, cutting plane inference (CPI) solving multiple smaller
ILPs in several iterations has shown remarkable performance [81]. In each CPI
iteration, only the ground formulas violated by the current intermediate solution
are added to the ILP formulation until no violated ground formulas remain.
Since CPI ignores ground formulas satisfied by the evidence, it can be seen as a
generalization of pre-processing approaches that count the formulas satisfied by
the evidence [84]. In the context of max-margin weight learning for MLNs [39]
the MAP query was formulated as a linear relaxation of an ILP and a rounding
procedure was applied to extract an approximate MAP state.

There is a large class of symmetry-aware algorithms for SRL models. Exam-
ples of such lifted inference algorithms include first-order variable elimination
(FOVE) [78] and some of its extensions [61,45] making use of counting and
aggregation parfactors. FOVE has also been adapted to solve MAP problems
(FOVE-P) [19]. [2] introduced an approach for MAP inference that takes ad-
vantage of uniform assignments which are groups of random variables that have
identical assignments in some MAP solution. Automorphism groups of graphical
models were used to lift variational approximations of MAP inference [12]. [63]
computed solutions to linear programs by reducing the LP problem to a pairwise
MRF over Gaussians and applying lifted Gaussian belief propagation. Similar
to the approach of [12] lifted linear programming can be used to compress LP
relaxations [3] of the MAP ILP.

There are several lifted marginal inference approaches such as lifted mes-
sage passing [85,43], variants of lifted knowledge compilation and theorem
proving [89,33], and lifted MCMC and related symmetry-aware sampling ap-
proaches [65,68,90,66]. There are some generic parallel machine learning archi-
tectures such as GraphLab [51] which could in principle be used for parallel
MAP inference.

References

1. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontol-
ogy matching. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1884–1889 (2009)

2. Apsel, U., Brafman, R.: Exploiting uniform assignments in first-order mpe. In:
Proceedings of UAI, pp. 74–83 (2012)

3. Asano, T.: An improved analysis of goemans and williamson’s lp-relaxation for
max sat. Theoretical Computer Science 354(3), 339–353 (2006)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

5. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Large Scale
Kernel Machines. MIT Press (2007)

Statistical Relational Information Extraction and Integration 279

6. Berners-Lee, T.: Linked data – design issues (2006),
http://www.w3.org/DesignIssues/LinkedData.html

7. Bhattacharya, I., Getoor, L.: Entity resolution in graphs. In: Mining Graph Data.
Wiley & Sons (2006)

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. International
Journal on Semantic Web and Information Systems (2012)

9. Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer
programs. Mathematical Programming 137(1-2), 65–90 (2013)

10. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data,
pp. 1247–1250 (2008)

11. Borgida, A.: On the relative expressiveness of description logics and predicate log-
ics. Artificial Intelligence 82(1-2), 353–367 (1996)

12. Bui, H.H., Huynh, T.N., Riedel, S.: Automorphism groups of graphical models and
lifted variational inference. CoRR, abs/1207.4814 (2012)

13. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: Proceed-
ings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010),
pp. 1306–1313 (2010)

14. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

15. Costa, P.C.G., Laskey, K.B.: Pr-owl: A framework for probabilistic ontologies. In:
Bennett, B., Fellbaum, C. (eds.) Proceedings of the International Conference on
Formal Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence
and Applications, pp. 237–249. IOS Press (2006)

16. Cruz, I.F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F.P., Keles,
U.C.: Using AgreementMaker to Align Ontologies for OAEI 2010. In: Proceedings
of the 5th Workshop on Ontology Matching (2010)

17. Cruz, I., Antonelli, F.P., Stroe, C.: Efficient selection of mappings and automatic
quality-driven combination of matching methods. In: Proceedings of the ISWC
2009 Workshop on Ontology Matching (2009)

18. David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with
AROMA. In: Proceedings of the 15th Conference on Information and Knowledge
Management (2006)

19. de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted proba-
bilistic variable elimination. In: Proceedings of AAAI, pp. 1123–1130 (2006)

20. Diaconis, P.: Finite forms of de finetti’s theorem on exchangeability. Synthese 36(2),
271–281 (1977)

21. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Bayesowl: Uncertainty modeling in se-
mantic web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic
Web. Springer (2006)

22. Domingos, P., Jain, D., Kok, S., Lowd, D., Poon, H., Richardson, M.: Alchemy
website (2012), http://alchemy.cs.washington.edu/ (last visit: November 22,
2012)

23. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction
from the web. Communications of the ACM 51(12), 68–74 (2008)

24. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open infor-
mation extraction: the second generation. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, pp. 3–10 (2011)

http://www.w3.org/DesignIssues/LinkedData.html
http://alchemy.cs.washington.edu/

280 M. Niepert

25. Euzenat, J., Hollink, A.F.L., Joslyn, C., Malaisé, V., Meilicke, C., Pane, A.N.J.,
Scharffe, F., Shvaiko, P., Spiliopoulos, V., Stuckenschmidt, H., Sváb-Zamazal, O.,
Svátek, V., dos Santos, C.T., Vouros, G.: Results of the ontology alignment eval-
uation initiative 2009. In: Proceedings of the ISWC 2009 workshop on Ontology
Matching (2009)

26. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
27. Euzenat, J., et al.: First Results of the Ontology Alignment Evaluation Initiative

2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)
28. Fellbaum, C.: WordNet. Springer (2010)
29. Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statis-

tical Association 64(328), 1183–1210 (1969)
30. Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a Benchmark for

Instance Matching. In: The 7th International Semantic Web Conference (2008)
31. Finetti, B.D.: Probability, induction and statistics: the art of guessing. Probability

and mathematical statistics. Wiley (1972)
32. Giugno, R., Lukasiewicz, T.: P-shoq(d): A probabilistic extension of shoq(d) for

probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone,
N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer,
Heidelberg (2002)

33. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: Proceedings of UAI,
pp. 256–265 (2011)

34. Heinsohn, J.: A hybrid approach for modeling uncertainty in terminological logics.
In: Kruse, R., Siegel, P. (eds.) ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548,
pp. 198–205. Springer, Heidelberg (1991)

35. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computation 18(7), 1527–1554 (2006)

36. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and
temporally enhanced knowledge base from wikipedia. Artificial Intelligence 194,
28–61 (2013)

37. Holi, M., Hyvönen, E.: Modeling uncertainty in semantic web taxonomies. In:
Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web. Springer (2006)

38. Hu, W., Chen, J., Cheng, G., Qu, Y.: ObjectCoref & Falcon-AO: Results for OAEI
2010. In: Proceedings of the 5th International Ontology Matching Workshop (2010)

39. Huynh, T.N., Mooney, R.J.: Max-margin weight learning for markov logic networks.
In: Proceedings of EMCL PKDD, pp. 564–579 (2009)

40. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Doyle, J., Sande-
wall, E., Torasso, P. (eds.) Proceedings of the 4th international Conference on Prin-
ciples of Knowledge Representation and Reasoning, pp. 305–316. Morgan Kauf-
mann (1994)

41. Jean-Marya, Y.R., Patrick Shironoshitaa, E., Kabuka, M.R.: Ontology matching
with semantic verification. Web Semantics 7(3) (2009)

42. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems
with hard and soft constraints. Satisfiability Problem: Theory and Applications 17
(1997)

43. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Proceed-
ings of UAI, pp. 277–284 (2009)

44. Kersting, K.: Lifted probabilistic inference. In: Proceedings of the 20th European
Conference on Artificial Intelligence, pp. 33–38 (2012)

45. Kisynski, J., Poole, D.: Lifted aggregation in directed first-order probabilistic mod-
els. In: Proceedings of IJCAI, pp. 1922–1929 (2009)

Statistical Relational Information Extraction and Integration 281

46. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

47. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description
logic. In: Proceedings of the 14th AAAI Conference on Artificial Intelligence (AAAI
1997), pp. 390–397 (1997)

48. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 282–289 (2001)

49. Laskey, K.B., Costa, P.C.G.: Of klingons and starships: Bayesian logic for the
23rd century. In: Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence, pp. 346–353. AUAI Press (2005)

50. Levenshtein, V.I.: Binary codes capable of correcting deletions and insertions and
reversals. In: Doklady Akademii Nauk SSSR, pp. 845–848 (1965)

51. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: A new framework for parallel machine learning. In: Proceedings of UAI,
pp. 340–349 (2010)

52. Manola, F., Miller, E.: RDF primer. Technical report, WWW Consortium (Febru-
ary 2004), http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

53. Margot, F.: Exploiting orbits in symmetric ilp. Math. Program. 98(1-3), 3–21
(2003)

54. Margot, F.: Symmetry in integer linear programming. In: 50 Years of Integer Pro-
gramming 1958-2008, pp. 647–686. Springer, Heidelberg (2010)

55. Meilicke, C., Stuckenschmidt, H.: Analyzing mapping extraction approaches. In:
Proceedings of the Workshop on Ontology Matching, Busan, Korea (2007)

56. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing align-
ment diagnoses. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837,
pp. 182–196. Springer, Heidelberg (2009)

57. Meilicke, C., Tamilin, A., Stuckenschmidt, H.: Repairing ontology mappings.
In: Proceedings of the Conference on Artificial Intelligence, Vancouver, Canada,
pp. 1408–1413 (2007)

58. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
ICDE, pp. 117–128 (2002)

59. Mendes, P.N., Jakob, M., Bizer, C.: Dbpedia: A multilingual cross-domain knowl-
edge base. In: Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC), pp. 1813–1817 (2012)

60. Meza-Ruiz, I., Riedel, S.: Multilingual semantic role labelling with markov logic.
In: Proceedings of the Conference on Computational Natural Language Learning,
pp. 85–90 (2009)

61. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.:
Lifted probabilistic inference with counting formulas. In: Proceedings of AAAI,
pp. 1062–1068 (2008)

62. Mitchell, T.M., Betteridge, J., Carlson, A., Hruschka, E., Wang, R.: Populating
the semantic web by macro-reading internet text. In: Bernstein, A., Karger, D.R.,
Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC
2009. LNCS, vol. 5823, pp. 998–1002. Springer, Heidelberg (2009)

63. Mladenov, M., Ahmadi, B., Kersting, K.: Lifted linear programming. Journal of
Machine Learning Research 22, 788–797 (2012)

64. Niepert, M.: A Delayed Column Generation Strategy for Exact k-Bounded MAP
Inference in Markov Logic Networks. In: Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (2010)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

282 M. Niepert

65. Niepert, M.: Markov chains on orbits of permutation groups. In: Proceedings of
the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 624–633 (2012)

66. Niepert, M.: Symmetry-aware maginal density estimation. In: Proceedings of the
Conference on Artificial Intelligence (AAAI) (2013)

67. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A Probabilistic-Logical Framework
for Ontology Matching. In: Proceedings of the 24th AAAI Conference on Artificial
Intelligence (2010)

68. Niepert, M., Meilicke, C., Stuckenschmidt, H.: Towards distributed mcmc infer-
ence in probabilistic knowledge bases. In: Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and Web-scale Knowledge Extraction,
pp. 1–6 (2012)

69. Niepert, M., Noessner, J., Meilicke, C., Stuckenschmidt, H.: Probabilistic-logical
web data integration. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S.,
Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS,
vol. 6848, pp. 504–533. Springer, Heidelberg (2011)

70. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-Linear Description Logics. In:
Proceedings of the International Joint Conference on Artificial Intelligence (2011)

71. Niu, F., Ré, C., Doan, A.H., Shavlik, J.: Tuffy: Scaling up statistical inference in
markov logic networks using an rdbms. Proceedings of the VLDB Endowment 4(6),
373–384 (2011)

72. Niu, F., Zhang, C., Ré, C., Shavlik, J.: Deepdive: Web-scale knowledge-base con-
struction using statistical learning and inference. In: Second Int.l Workshop on
Searching and Integrating New Web Data Sources (2012)

73. Noessner, J., Niepert, M., Stuckenschmidt, H.: Coherent top-k ontology alignment
for OWL EL. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929,
pp. 415–427. Springer, Heidelberg (2011)

74. Noessner, J., Niepert, M., Stuckenschmidt, H.: RockIt: Exploiting Parallelism and
Symmetry for MAP Inference in Statistical Relational Models. In: Proceedings of
the Conference on Artificial Intelligence (AAAI) (2013)

75. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging Termino-
logical Structure for Object Reconciliation. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part II. LNCS, vol. 6089, pp. 334–348. Springer, Heidelberg (2010)

76. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126(1), 147–178 (2011)

77. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology
mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)

78. Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, pp. 985–991
(2003)

79. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In:
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence,
pp. 337–346 (2011)

80. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2)
(2006)

81. Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic.
In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2008)

82. Säıs, F., Pernelle, N., Rousset, M.-C.: Combining a logical and a numerical method
for data reconciliation. In: Spaccapietra, S. (ed.) Journal on Data Semantics XII.
LNCS, vol. 5480, pp. 66–94. Springer, Heidelberg (2009)

Statistical Relational Information Extraction and Integration 283

83. Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order horn
clauses from web text. In: Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1088–1098 (2010)

84. Shavlik, J., Natarajan, S.: Speeding up inference in markov logic networks by
preprocessing to reduce the size of the resulting grounded network. In: Proceedings
of the 21st International Joint Conference on Artifical intelligence, pp. 1951–1956
(2009)

85. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of
AAAI, pp. 1094–1099 (2008)

86. Stoermer, H., Rassadko, N.: Results of OKKAM feature based entity matching
algorithm for instance matching contest of OAEI 2009. In: Proceedings of the
ISWC 2009 Workshop on Ontology Matching (2009)

87. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the 16th International Conference on World Wide Web, pp. 697–706
(2007)

88. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using vampire to reason
with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)

89. Van den Broeck, G.: On the completeness of first-order knowledge compilation for
lifted probabilistic inference. In: Proceedings of NIPS, pp. 1386–1394 (2011)

90. Venugopal, D., Gogate, V.: On lifting the gibbs sampling algorithm. In: Proceedings
of Neural Information Processing Systems (NIPS), pp. 1664–1672 (2012)

91. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework
for the web of data. In: Proceedings of the WWW 2009 Workshop on Linked Data
on the Web (LDOW) (2009)

92. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
Proceeding of the International World Wide Web Conference, pp. 635–644 (2008)

93. Yang, Y., Calmet, J.: Ontobayes: An ontology-driven uncertainty model. In: Pro-
ceedings of the International Conference on Computational Intelligence for Mod-
elling, Control and Automation and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMCA-IAWTIC 2005), pp. 457–463
(2005)

94. Yelland, P.M.: An alternative combination of bayesian networks and description
logics. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proceedings of of the 7th
International Conference on Knowledge Representation (KR 2000), pp. 225–234.
Morgan Kaufman (2000)

95. Zhang, X., Zhong, Q., Shi, F., Li, J., Tang, J.: RiMOM results for OAEI 2009. In:
Proceedings of the ISWC 2009 Workshop on Ontology Matching (2009)

Author Index

Adams, Benjamin 230
Auer, Sören 1

Delbru, Renaud 91

Faber, Wolfgang 162

Hogan, Aidan 91

Janowicz, Krzysztof 230

Kontchakov, Roman 194

Lehmann, Jens 1

Ngonga Ngomo, Axel-Cyrille 1
Niepert, Mathias 251

Polleres, Axel 91

Rodŕıguez-Muro, Mariano 194

Scheider, Simon 230

Turhan, Anni-Yasmin 150

Umbrich, Jürgen 91

Zakharyaschev, Michael 194
Zaveri, Amrapali 1

	Preface
	Organization
	Table of Contents
	Introduction to Linked Dataand Its Lifecycle on the Web
	1 Introduction
	2 The Linked Data Paradigm
	2.1 Resource Identification with IRIs
	2.2 De-referencability
	2.3 RDF DataModel
	2.4 RDF Serializations

	3 Extraction
	3.1 From Unstructured Sources
	3.2 From Structured Sources

	4 Authoring with Semantic Wikis
	4.1 OntoWiki - A Semantic DataWiki
	4.2 Generic and Domain-Specific Views
	4.3 Workflow
	4.4 Authoring
	4.5 Access Interfaces
	4.6 Exploration Interfaces
	4.7 Applications

	5 Linking
	5.1 Link Discovery
	5.2 Challenges
	5.3 Approaches to Link Discovery
	5.4 The LIMES Algorithm
	5.5 The HR3 Algorithm
	5.6 Active Learning of Link Specifications
	5.7 Conclusion

	6 Enrichment
	6.1 State of the Art and Types of Enrichment
	6.2 Class Expression Learning in DL-Learner
	6.3 Finding a Suitable Heuristic

	7 Linked Data Quality
	7.1 Data Quality Concepts
	7.2 Linked Data Quality Dimensions
	7.3 Data Quality Assessment Frameworks

	8 Outlook and Future Challenges
	References

	RDFS and OWL Reasoning for Linked Data
	1 Introduction
	2 Preliminaries
	2.1 The Resource Description Framework – RDF
	2.2 Linked Data Principles and Provenance
	2.3 SPARQL, Conjunctive Queries and Rules
	2.4 Inferring Additional Triples by Schema Information and Rules

	3 Overall Approaches and Challenges to Reason over and Query Linked Data
	4 How Much OWL Is Needed for Linked Data?
	4.1 Measures Used
	4.2 Survey of RDF(S)/OWL Features
	4.3 Survey of Datatype Use
	4.4 A Profile of OWL for Linked Data?

	5 Rule-Based Inference for Linked Data: Authoritative vs. Context-Dependent Reasoning
	5.1 Context-Dependent Reasoning
	5.2 Authoritative Reasoning
	5.3 Comparison and Open Issues

	6 Enriching Link-Traversal Based Querying of Linked Data by Reasoning
	6.1 Overview of Baseline LTBQE
	6.2 (In)Completeness of LTBQE
	6.3 LiDaQ: Extending LTBQE with Reasoning
	6.4 Benefit of LTBQE Reasoning Extensions

	7 Extending Query Rewriting Techniques by Attribute Equations for Linked Data
	7.1 Extending Ontologies by Attribute Equations
	7.2 Implementing Attribute Equations within Rules
	7.3 Implementing Attribute Equations by Query Rewriting

	8 Summary
	References

	Introductions to Description Logics – A Guided Tour
	1 Introduction
	2 Introductory Material to DLs in General
	2.1 Relation to Other Logics

	3 A Short Historical Overview
	4 DL Reasoning
	4.1 Standard DL Reasoning
	4.2 On Non-standard Reasoning Tasks

	5 Application Areas of DLs
	References

	Answer Set Programming
	1 Introduction
	2 History of ASP from a Logic Programming Perspective
	3 ASP Language
	3.1 Core ASP
	3.2 Semantic Characterizations
	3.3 Language Extensions

	4 Knowledge Representation and Reasoning in ASP
	5 Implementations and Applications
	5.1 System Algorithms
	5.2 Applications

	References

	Ontology-Based Data Access with Databases:A Short Course
	1 Introduction
	2 Description Logics for OBDA with Databases
	3 Tree-Witness Rewriting
	3.1 Canonical Model
	3.2 PE-Rewritings
	3.3 NDL-Rewritings

	4 Long Rewritings, Short Rewritings
	5 The Combined Approach
	6 OBDAwithOntop
	6.1 T-Mappings
	6.2 Unfolding with Semantic Query Optimisation
	6.3 Why Does It Work?

	References

	A Geo-semantics Flyby
	1 Introduction and Motivation
	2 Using Geospatial Referents on the Semantic Web
	3 Geo-semantics from 30.000 Feet
	4 Research Questions and Major Findings
	5 Conclusion
	References

	Statistical Relational Data Integrationfor Information Extraction
	1 Introduction
	2 Information Extraction – The State of the Art
	2.1 YAGO
	2.2 DBpedia
	2.3 NELL
	2.4 Open Information Extraction

	3 Statistical Relational Data Integration
	3.1 Ontologies and Description Logics
	3.2 Ontology Matching
	3.3 Object Reconciliation

	4 Statistical Relational Learning
	4.1 Markov Logic
	4.2 Representing Ontologies and Alignments in Markov Logic

	5 Markov Logic and Ontology Matching
	5.1 Problem Representation

	6 Markov Logic and Object Reconciliation
	6.1 Problem Representation

	7 Efficient Probabilistic Inference
	7.1 Cutting Plane Aggregation
	7.2 General ILP Formulation
	7.3 Constraint Aggregation

	8 Related Work
	References

	Author Index

