
M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 78–91, 2013.
© Springer-Verlag Berlin Heidelberg 2013

GPU Ray Tracing – Comparative Study on Ray-Triangle
Intersection Algorithms

Vladimir Shumskiy

Moscow Institute of Physics and Technology
Air Graphics

v.a.shumskiy@gmail.com

Abstract. I present a comparative study on GPU ray tracing implemented for
two different types of ray-triangle intersection algorithms used with BVH
(Bounding Volume Hierarchy) spatial data structure evaluated for performance
on three static scenes. I study how number of triangles placed in a BVH leaf
node affects rendering performance. I propose GPU-optimized SIMD ray-
triangle intersection method evaluated on GPU for path-tracing and compare
it’s performance with plain Moller-Trumbore and Unit Triangle intersection
methods.

Keywords: ray-triangle intersection, GPU programming, Direct3D, Direct-
Compute, performance study, ray tracing, bounding volume hierarches.

1 Introduction

While modern graphics cards (GPUs) allow for general computation in a parallel
manner, one of the most prominent applications for a GPU is image synthesis. This is
thanks to the inherent parallel nature of ray tracing and other global illumination algo-
rithms – the decomposition of images into pixels provides a natural way of creating
individual tasks for many parallel processors. Unlike the GPUs a few years ago, mod-
ern ones allow us full programmability similar to general CPUs, while the streaming
computation model has its own specific issues. This has to be taken into account when
adopting the data structures, traversal algorithms and intersection test routines for ray
tracing on GPU architecture.

Testing framework for this paper is based on formerly published papers that im-
plement ray-tracing with spatial data structures in GPU. We use bounding volume
hierarchies as described in [5] and few different ray-triangle intersection methods,
especially Moller-Trumbore [8] and Unit Triangle [14] routine. While performance of
each of those algorithms was successfully studied separately, little attention was paid
to how triangle-intersection method can affect spatial data structure traversal perfor-
mance and vice versa. Furthermore, the performance has not been carefully compared
on a current programmable GPU architecture, especially using a cross-vendor APIs
like OpenCL, DirectCompute or C++ AMP. In this paper we first present such a com-
parison study dealing with efficiency of two different types of ray-triangle intersec-
tion algorithms for ray tracing on GPU.

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 79

This paper is further structured as follows. Section 2 summarizes the previous
work of ray-triangle intersection on both CPU and GPU and performance comparison
on those algorithms. Section 3 describes our choices for implementation. Section 4
shows the result from measurements on two GPUs for a set of scenes. Further it dis-
cusses the bottlenecks of a contemporary GPU architecture for ray tracing algorithms.
Section 5 concludes the paper with possible perspectives for future work.

2 Previous Work

Due to important role in computer graphics plenty of research has been done in the
field of intersection testing algorithms. Algorithms proposed by Snyder and Barr [11],
Badouel [3], Moller-Trumbore [8], Woop [14], Wald and Shevtsov et al. [10], have
been successfully compared and studied [9], [2], [3], [8]. In our research we divide
algorithms on those which use precomputed data and on those which do not. Based on
previous work we decided to use Moller-Trubmore algorithm as a minimal storage,
fast non-precomputed type and Swen Woop’s Unit Triangle Test as the precomputed
one as it requires only 48 bytes per triangle and doesn’t need to store vertex list. In
this section we describe chosen algorithms along with BVH spatial data structure.

We omit ray-packet algorithms in our work, because the coherence of the rays
within the packet is very important since the vector instructions are fully used only if
all rays go through the same branch of computation. In situations like physical simu-
lation, collision detection or ray-tracing in scenes, where rays bounces into multiple
directions (spherical or bumpmapped surfaces), coherent ray packets break down very
quickly to single rays or do not exist at all. Ray-packets have proven [1], [6] to be
ineffective in the above mentioned tasks.

2.1 Moller-Trumbore’s Algorithm

The algorithm proposed by Moller and Trumbore does not test intersection with the
triangle’s embedding plane and therefore does not require the plane equation parame-
ters. This is a big advantage mainly in terms of memory consumption especially on
the GPU execution performance. The algorithm goes as follows [8]:

1. In a series of transformations the triangle is first translated into the origin and
then transformed to a right-aligned unit triangle in the y-z plane, with the ray direction
aligned with x. This can be expressed by a linear equation

(1)

Where E1 = V1 – V0, E2 = V2 – V0, T = O – V0, P = D × E2 and Q = T × E1.

2. This linear equation can now be solved to find the barycentric coordinates of the
intersection point (u,v) and its distance t from the ray origin.

80 V. Shumskiy

2.2 Unit Triangle Algorithm

The so called Unit Triangle intersection algorithm performs ray transformations and
consists of two stages [14]. First the ray is transformed, using a triangle specific affine
triangle transformation, to a coordinate system, in which the triangle looks like the
unit triangle ∆unit with the edge points (1, 0, 0), (0, 1, 0) and (0, 0, 0). In the second
stage, a simple intersection test of the transformed ray with the unit triangle is done.
The affine triangle transformation to a triangle ∆ = (a, b, c) is an affine transformation

T∆(x) = m · x + n with m ∈ MatR(3 × 3) and n ∈ R3 that maps the triangle ∆ to the
unit triangle ∆unit.

2.3 Bounding Volume Hierarchies

Bounding volume hierarchies were successfully implemented on GPU. Thrane and
Simonsen [12] in fact compare kd-trees, uniform grids, and bounding volume hierar-
chies implemented on a GPU (2005-year hardware). They conclude the performance
of BVHs is low, however higher than the performance of other two data structures
when no ray packets are used. Carr et al. [4] implemented a variant of BVHs in com-
bination with geometry images. Günther et al. [5] use ray packets and yield interactive
performance comparable or exceeding CPU-based implementation, but only for pri-
mary and shadow rays. Recently, Lauterbach et al. [7] present an algorithm for fast
BVH construction on a GPU, where they report performance comparable to kdtrees
[16] only for one scene. Torres et al. [13] published an algorithm for stack-less BVH
traversal, where the use of stack is replaced by ropes connecting the nodes of a BVH
in a sibling order.

3 Implementation

Fig. 1. Testing scenes: Stanford Buddha, Bunny and Dragon

We have implemented a standalone compact program called RenderBro, that does not
need the support of other 3rd party libraries along with Autodesk 3DS Max Plugin
(both can be obtained at http://renderbro.com). Standalone program is capable of
loading 3D scene form OBJ file format along with MTL materials files. 3DS Max
plugin is capable to work with any kind of geometry loaded into editor in question.
While the data structures are built offline on a CPU, the created data structures and
scene geometry are transferred to a GPU and used for ray tracing algorithm entirely
on the GPU. This methodology is sufficient to study the efficiency of shooting rays

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 81

with different intersection algorithms. The traversal and intersection algorithms were
implemented using Microsoft DirectX DirectCompute (Compute Shaders). Although
this implementation limits target platforms to Microsoft Windows, it gives freedom to
choose any GPU vendor to run GPU ray tracing, such as ATI/AMD, NVIDIA, Intel.
DirectCompute code can be translated to C++ AMP version, which can be executed
on any OS. We designed our solution to support as many hardware as possible,
though only DirectX 10 compatible or newer hardware is supported. All shaders were
compiled using latest Windows SDK 8.0 D3DCompiler_45.

In Moller-Trumbore setting the geometry of a scene consisting solely of triangles is
represented by a list Lv of vertices and list of materials Lm, where each triangle has a
list of three indices to Lv plus an index to the Lm. In the Unit Triangle Test each tri-
angle is represented directly by the affine transformation matrix. For our tests we
implemented path-trace setting with physically-based importance sampled shading
including Phong, Blinn-Phong, Lambertian Diffuse, Oren-Nayar Diffuse, Ashikhmin-
Shirley, Glass and Perfect Mirror BSDFs.

The BVHs were built in top-down fashion with surface area heuristics using the
centroids of bounding boxes for scene triangles, following the paper by Günther et al.
[5]. Each BVH node consists of AABB extents and indices to child nodes. If it’s a
leaf node, child indices are replaced with triangle offset along with triangle count.
Those parameters are packed in 32 byte BVH node structure. As a BVH does not
need to store the min and max intersection distances along the ray, only the node ad-
dress is saved to the stack. Stack does not need to be shortened to only several entries,
which minimizes the number of traversal steps. Serialization of write operation may
occur as threads record their information. Each BVH node can contain any number of
triangles. This hypothetically reduces the number of nodes of a hierarchy along with
GPU memory needed and gives space for GPU traversal optimization. Traversal is
done with “while-if” method and listed in appendix 8.3.

3.1 GPU Optimized Intersections

Moller-Trumbore and Unit triangle intersection tests are pretty straight-forward to
implement and require a little knowledge of GPU architecture (see appendix, section
8.1). Such methods can experience poor register usage in architectures like VLIW
which is used in many AMD GPUs.

In this work we introduce a method that strongly benefit from denser GPU register
usage. The main idea is to exploit the wide vector width SIMD (Single Instruction
Multiple Data) by testing intersection with one ray and four triangles at a time.

Firstly, at precompute time we need to try to fill BVH with four triangles per node,
so each node will contain four pointers to triangle list. If this is not possible we would
have one triangle per node at worst. Secondly, we need to align GPU scene data ac-
cording to BVH node structure. So if particular node has only one triangle, we need to
place three degenerate triangles in a triangle list to fulfill the alignment. Of course,
this will result in a GPU memory footprint by the means of performance. Thirdly,
when performing BVH traverse we will be able to linearly fetch four triangles. Here
we will need to construct additional vectors, like:

82 V. Shumskiy

// fetch triangle vertices
float3 v01, v11, v21;
float3 v02, v12, v22;
float3 v03, v13, v23;
float3 v04, v14, v24;
...
// construct per-component dir & orig vectors
float4 dir4x = ray.dir.xxxx;
float4 dir4y = ray.dir.yyyy;
float4 dir4z = ray.dir.zzzz;
float4 orig4x = ray.orig.xxxx;
float4 orig4y = ray.orig.yyyy;
float4 orig4z = ray.orig.zzzz;

This allows us to compute temporary values on per-component SIMD basis, so all
non SIMD operations like scalar addition and multiplication can be performed on
each triangle simultaneously. For example, when performing scalar multiplication on
GPU we use only one computing block while using new approach we will perform
four multiplication operations by the same cost (see appendix 8.2 for full listing):

// one triangle per pass
float divisor = dot(pvec, e1);

// four triangles per pass
float4 divisor4 = pvecx*e1x + pvecy*e1y + pvecz*e1z;

Table 1. Test scene properties, number of triangles per BVH leaf node, rendering times for
different ray-triangle intersection method for Path Trace setting with 500 samples and max ray
depth of 16. GPU NVIDIA GeForce GT 240M. Image resolution: 800x600.

Scene
Triangles
per BVH
node

GPU
Scene
Size,
MB

Moller-
Trumbore,
seconds
(average)

Unit
Triangle,
seconds
(average)

Quad Mol-
ler-
Trumbore,
seconds
(average)

Quad
Unit
Triangle,
seconds
(average)

Buddha,
100.006
triangles

1 9,35 103,33 103,94 - -
2 7,26 95,13 95,44 - -
3 6,38 92,72 93,07 - -
4 5,89 90,91 91,17 89,67 85,36
8 5,15 92,57 94,01 - -
16 4,73 104,53 108,83 - -

Bunny,
69.678
triangles

1 6,51 72,18 73,52 - -
2 4,87 65,48 66,67 - -
3 4,45 62,07 63,94 - -
4 3,99 60,98 62,17 57,35 52,84
8 3,45 62,1 63,29 - -
16 3,14 69,67 70,61 - -

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 83

Table 1. (continued)

Dragon,
100.012
triangles

1 9,35 210,89 211,67 - -
2 7,26 210,71 211,61 - -
3 6,35 210,68 211,44 - -
4 5,86 210,52 211,21 173,37 168,85
8 5,11 210,69 211,37 - -
16 4,65 210,91 211,66 - -

Table 2. Test scene properties, number of triangles per BVH leaf node, rendering times for
different ray-triangle intersection methods for Path Trace setting with 500 samples and max ray
depth of 16. GPU AMD Radeon HD 6870. Image resolution: 800x600.

Scene
Triangles
per BVH
node

GPU
Scene
Size,
MB

Moller-
Trumbore,
seconds
(average)

Unit
Triangle,
seconds
(average)

Quad Mol-
ler-
Trumbore,
seconds
(average)

Quad
Unit
Triangle,
seconds
(average)

Buddha,
100.006
triangles

1 9,35 49,27 49,43 - -

2 7,26 49,78 50,31 - -

3 6,38 51,94 52,18 - -

4 5,89 54,15 55,16 34,3 31,37

8 5,15 66,3 68,64 - -

16 4,73 95,22 98,38 - -

Bunny,
69.678
triangles

1 6,51 33,27 33,79 - -

2 4,87 33,57 34,41 - -

3 4,45 34,68 35,55 - -

4 3,99 38,05 39,06 23,9 20,64

8 3,45 46,57 47,86 - -

16 3,14 60,26 62,56 - -

Dragon,
100.012
triangles

1 9,35 99,27 99,75 - -
2 7,26 99,41 100,96 - -
3 6,35 104,6 105,61 - -
4 5,86 108,35 111,5 57,99 54,91
8 5,11 132,57 138,06 - -
16 4,65 188,55 198,07 - -

84 V. Shumskiy

Table 3. Test scene properties, number of triangles per BVH leaf node, rendering times for
different ray-triangle intersection methods for Path Trace setting with 1000 samples and max
ray depth of 16. GPU NVIDIA GeForce GTX 560. Image resolution: 800x600.

Scene
Triangles
per BVH
node

GPU
Scene
Size,
MB

Moller-
Trumbore,
seconds
(average)

Unit
Triangle,
seconds
(average)

Quad Mol-
ler-
Trumbore,
seconds
(average)

Quad
Unit
Triangle,
seconds
(average)

Buddha 4 5,89 66,59 67,07 63,87 62,13

Bunny 4 3,99 56,82 57,52 53,18 51,17

Dragon 4 5,86 84,76 85,94 80,37 78,64

Table 4. Test scene properties, number of triangles per BVH leaf node, rendering times for
different ray-triangle intersection methods for Path Trace setting with 1000 samples and max
ray depth of 16. GPU AMD HD7850. Image resolution: 800x600.

Scene

Trian-
gles per
BVH
node

GPU
Scene
Size,
MB

Moller-
Trumbore,
seconds
(average)

Unit
Triangle,
seconds
(average)

Quad Mol-
ler-
Trumbore,
seconds
(average)

Quad
Unit
Triangle,
seconds
(average)

Buddha 4 5,89 38,03 39,41 33,43 31,35

Bunny 4 3,99 36,48 37,97 31,64 29,85

Dragon 4 5,86 65,56 67,09 56,72 54,92

4 Results

In this section we describe the results for measurement on three different scenes. We
used scenes from individual objects courtesy of Stanford scene repository. These
scenes are frequently used to test the performance of ray tracing and global illumina-
tion algorithms. Images were rendered in 800x600 pixels resolution. All performance
results in this paper were measured on 4 different GPUs:

1. NVIDIA GeForce GT 240M (2009), 48 CUDA cores on 1210MHz, 1 GByte of
memory with bandwidth of 54.4 GB/sec.

2. AMD HD 6870 (2010), 2 TFLOPs, 1120 Stream Processors on 900MHz, 1GByte
of memory with bandwidth of 134.4 GB/sec.

3. NVIDIA GeForce GTX 560 (2011), 2.1 TFLOPs, 336 CUDA cores on 1620-
1900MHz, 1 GByte of memory with bandwidth of 128 GB/s.

4. AMD HD 7850 (2012), 1.76 TFLOPs, 1024 Stream Processors on 860MHz,
2GByte of memory with bandwidth of 153.6 GB/s.

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 85

The static properties of data structures for all three scenes along with average compu-
tation time for path-tracing are shown in Tables 1 and 2. Performance results for
BVHs build with different count of triangles per leaf node are shown in columns 4
and 5. Those results demonstrate that both the number of triangles per leaf node and
the selected intersection method remarkably affect the performance. Results lead us to
assumption that 4 triangles per leaf node is the optimal number for BVH traversal.

Moller-Trumbore kernel had proven to be up to 5% faster than Unit Triangle in all
tests while Quad Unit Triangle kernel shown to be up to 14% faster than Quad Mol-
ler-Trumbore.

Our proposed Quad Unit-Triangle method brings moderate improvements of 5% to
11% on different generations of NVIDIA hardware except for Dragon scene setup on
GT 240M GPU where it gain about 18% (tables 1 and 3). The situation is better on
VLIW AMD/ATi hardware where it had shown to be up to 2x times faster than Mol-
ler-Trumbore (table 2). Furthermore we managed to analyze performance of the latest
GPU generation AMD HD 7850 (table 4). As we expected, it showed consistent re-
sults in spite of new architecture and showed that Quad Unit-Triangle is approximate-
ly 20% faster than Moller-Trumbore method.

Good results are gained for VLIW architecture used in AMD GPUs where more
functional units are available and may be scheduled by the compiler or hardware si-
multaneously. According to description of VLIW architecture, it’s possible to perform
compute operations along with memory access. We assume that this result is mainly
achieved by performing more linear memory access to GPU global memory, avoiding
branching by unrolling triangle-intersection loop and taking advantage of denser GPU
register usage.

Things are bit different for NVIDIA GPUs like Fermi which internally operate in a
SIMD manner by ganging multiple (32) scalar threads together into SIMD warps. If a
warp’s threads diverge, the warp serially executes both branches, temporarily disabl-
ing threads that are not on that path. Thus, ray tracing performance certainly can ben-
efit from loop unrolling and more linear memory access. But the true cause of per-
formance improvement lies much deeper in the GPU architecture and goes beyond the
scope of this article.

5 Conclusion and Future Work

We have shown that triangle intersection routines that tend to have good performance
when used separately can behave badly when used together with acceleration struc-
tures like BVH’s due to incoherent memory access, lack of registers, and so on. So we
focus our work on finding the robust combination of triangle intersection method and
spatial data structure. For now it’s the Quad Triangle intersection method used along
with BVH.

As future work, the implementation could be extended by several other data struc-
tures, such as Kd-Trees, Uniform Grids along with few different ray-triangle intersec-
tion methods that can be efficiently mapped to GPUs and are likely to show
unexpected results when used together.

86 V. Shumskiy

Furthermore, shown results can hardly be called ambiguous as they are pretty
much view dependent. Dragon scene showed 18% performance improvement on
NVIDIA GT 240M for one angle of view. For different angles performance may vary,
showing both improvement and deterioration. So, a part of our future work will be
devoted to analysis of more complex and dynamic scenes where view dependency is
not that great.

Unfortunately, we didn’t manage to make in-depth performance study on latest
discreet NVIDIA and integrated Intel GPUs. We would like to complete out research
by taking this GPUs into account as a part of future work.

References

1. Aila, T., Laine, S.: Understanding the Efficiency of Ray Traversal on GPUs. In: Proceed-
ings of High-Performance Graphics 2009, pp. 145–150. ACM, New York (2009)

2. Arenberg, J.: Ray-Triangle Intersection with Barycentric Coordinates. In: Haines, E. (ed.)
Ray Tracing News, November 4, vol. 1(11) (1988)

3. Badouel, F.: An efficient Ray-Polygon intersection, Graphic Gems, pp. 390–393. Academ-
ic Press (1990)

4. Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast GPU ray tracing of dynamic meshes
using geometry images. In: GI 2006: Proceedings of Graphics Interface 2006, pp. 203–
209. Canadian Information Processing Society, Toronto (2006)

5. Günther, J., Popov, S., Seidel, H.-P., Slusallek, P.: Realtime Ray Tracing on GPU with
BVH-based Packet Traversal. In: Proceedings of the IEEE/Eurographics Symposium on
Interactive Ray Tracing 2007, pp. 113–118 (September 2007)

6. Havel, J., Herout, A.: Yet Faster Ray-Triangle Intersection (Using SSE4). IEEE Transac-
tions on Visualization and Computer Graphics 16(3), 434–438 (2010),
doi:10.1109/TVCG.2009.73

7. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha, D.: Fast BVH Construc-
tion on GPUs. Computer Graphics Forum 28(2), 375–384 (2009) (Proceedings of Euro-
graphics 2007)

8. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. Journal on
Graphic Tools 2(1), 21–28 (1997)

9. Segura, R.J., Feito, F.R.: Algorithms to Test RayTriangle Intersection. Comparative Study.
In: Skala, V. (ed.) WSCG 2001 Conference Proceedings (February 2001)

10. Shevtsov, M., Soupikov, A., Kapustin, A.: Ray-Triangle Intersection Algorithm for Mod-
ern CPU Architectures. In: Proceedings of GraphiCon 2007, pp. 33–39 (2007)

11. Snyder, M., Barr, A.H.: Raytracing complex models containing surface tesselations. In:
Proceedings of the 14th Annual Conference on Computer Graphics, vol. 21(4), pp. 119–
128 (1987)

12. Thrane, N., Simonsen, L.O.: A comparison of acceleration structures for GPU assisted ray
tracing. M.Sc. Thesis, University of Aarhus, Denmark (2005)

13. Torres, R., Martin, P.J., Gavilanes, A.: Ray Casting using a Roped BVH with CUDA. In:
25th Spring Conference on Computer Graphics (SCCG 2009), Budmerice, Slovakia, pp.
107–114 (April 2009)

14. Woop, S., Schmittler, J., Slusallek, P.: RPU: A Programmable Ray Processing Unit for
Realtime Ray Tracing. ACM Transactions Graphics 24(3), 434–444 (2005)

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 87

15. Wald, I.: Realtime ray tracing and interactive global illumination. PhD thesis, Saarland
University (2004)

16. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time KD-tree construction on graphics hard-
ware. In: SIGGRAPH Asia 2008: ACM SIGGRAPH Asia 2008 Papers, New York, pp. 1–
11 (2008)

A Appendix

A.1 Casual Moller-Trumbore GPU Ray-Triangle Intersection Routine (HLSL
code)

float intersect(float3 orig, float3 dir, float3 v0,
float3 v1, float3 v2)
{
 float3 e1 = v1 - v0;
 float3 e2 = v2 - v0;

 float3 normal = normalize(cross(e1, e2));
 float b = dot(normal, ray.dir);

 float3 w0 = ray.orig - v0;
 float a = -dot(normal, w0);
 float t = a / b;

 float3 p = ray.orig + t * ray.dir;
 float uu, uv, vv, wu, wv, inverseD;
 uu = dot(e1, e1);
 uv = dot(e1, e2);
 vv = dot(e2, e2);

 float3 w = p - v0;
 wu = dot(w, e1);
 wv = dot(w, e2);
 inverseD = uv * uv - uu * vv;
 inverseD = 1.0f / inverseD;

 float u = (uv * wv - vv * wu) * inverseD;
 if (u < 0.0f || u > 1.0f)
 return -1.0f;

 float v = (uv * wu - uu * wv) * inverseD;
 if (v < 0.0f || (u + v) > 1.0f)
 return -1.0f;

 UV = float2(u,v);
 return t;
}

88 V. Shumskiy

A.2 Quad Moller-Trumbore GPU Triangle-Ray Intersection Routine (HLSL
code)

float intersect(float3 orig, float3 dir, float3 v01,
float3 v11, float3 v21, float3 v02, float3 v12, float3
v22, float3 v03, float3 v13, float3 v23, float3 v04,
float3 v14, float3 v24)
{
 float3 e11 = v11 - v01;
 float3 e21 = v21 - v01;
 float3 e12 = v12 - v02;
 float3 e22 = v22 - v02;
 float3 e13 = v13 - v03;
 float3 e23 = v23 - v03;
 float3 e14 = v14 – v04;
 float3 e24 = v24 - v04;
 float4 v0x = float4(v01.x, v02.x, v03.x, v04.x);
 float4 v0y = float4(v01.y, v02.y, v03.y, v04.y);
 float4 v0z = float4(v01.z, v02.z, v03.z, v04.z);
 float4 e1x = float4(e11.x, e12.x, e13.x, e14.x);
 float4 e1y = float4(e11.y, e12.y, e13.y, e14.y);
 float4 e1z = float4(e11.z, e12.z, e13.z, e14.z);
 float4 e2x = float4(e21.x, e22.x, e23.x, e24.x);
 float4 e2y = float4(e21.y, e22.y, e23.y, e24.y);
 float4 e2z = float4(e21.z, e22.z, e23.z, e24.z);
 float4 dir4x = ray.dir.xxxx;
 float4 dir4y = ray.dir.yyyy;
 float4 dir4z = ray.dir.zzzz;
 float4 pvecx = dir4y*e2z - dir4z*e2y;
 float4 pvecy = dir4z*e2x - dir4x*e2z;
 float4 pvecz = dir4x*e2y - dir4y*e2x;
 float4 divisor = pvecx*e1x + pvecy*e1y + pvecz*e1z;
 float4 invDivisor = float4(1, 1, 1, 1) / divisor;
 float4 orig4x = ray.orig.xxxx;
 float4 orig4y = ray.orig.yyyy;
 float4 orig4z = ray.orig.zzzz;
 float4 tvecx = orig4x - v0x;
 float4 tvecy = orig4y - v0y;
 float4 tvecz = orig4z - v0z;
 float4 u4;
 u4 = tvecx*pvecx + tvecy*pvecy + tvecz*pvecz;
 u4 = u4 * invDivisor;
 float4 qvecx = tvecy*e1z - tvecz*e1y;
 float4 qvecy = tvecz*e1x - tvecx*e1z;
 float4 qvecz = tvecx*e1y - tvecy*e1x;
 float4 v4;
 v4 = dir4x*qvecx + dir4y*qvecy + dir4z*qvecz;
 v4 = v4 * invDivisor;
 float4 t4;
 t4 = e2x*qvecx + e2y*qvecy + e2z*qvecz;

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 89

 t4 = t4 * invDivisor;
 float t = -1.0f;

 if(t4.x < t && t4.x > 0)
 if(u4.x >= 0 && v4.x >= 0 && u4.x + v4.x <= 1)
 t = t4.x;

 if(t4.y < t && t4.y > 0)
 if(u4.y >= 0 && v4.y >= 0 && u4.y + v4.y <= 1)
 t = t4.y;

 if(t4.z < t && t4.z > 0)
 if(u4.z >= 0 && v4.z >= 0 && u4.z + v4.z <= 1)
 t = t4.z;

 if(t4.w < t && t4.w > 0)
 if(u4.w >= 0 && v4.w >= 0 && u4.w + v4.w <= 1)
 t = t4.w;

 return t;
}

A.3 BVH Traversal Routine (HLSL code)

struct BvhCell
{
 float4 vmin; //float3 min + uint children
 float4 vmax; //float3 max + uint count
};
bool RayIntersectScene(Ray ray)
{
 uint stack[64], stackPos = 0, node = 0;
 float t = FLT_MAX;
 bool intersect = false;
 BvhCell cellLeft, cellRight;
 BvhCell current = GetNode(node);

 while(1)
 {
 uint count = GetNodeTriangleCount(current);
 if(count > 0)
 { // Leaf Node
 uint offset = GetNodeTriangleOffset(current);
 intersect = RayTrisTest(ray, t, offset, count);
 if(stackPos > 0)
 {
 node = stack[--stackPos];

90 V. Shumskiy

 current = LoadNode(node);
 }
 else return intersected;
 }
 else
 {
 uint leftNode = GetLeftChildID(node);
 uint rightNode = GetRightChildID(node);
 float lMin, rMin;
 cellLeft = GetNode(leftNode);
 cellRight = GetNode(rightNode);
 bool wantLeft = RayAABBTest(ray, cellLeft, lMin);
 bool wantRight = RayAABBTest(ray, cellRight,
 rMin);
 if(wantLeft && wantRight)
 {
 bool firstLeft = leftMin < rightMin;
 if(firstLeft)
 {
 current = cellLeft;
 node = leftNode;
 stack[stackPos++] = rightNode;
 }
 else
 {
 current = cellRight;
 node = rightNode;
 stack[stackPos++] = leftNode;
 }
 }
 else if(wantRight)
 {
 current = cellRight;
 node = rightNode;
 }
 else if(wantLeft)
 {
 current = cellLeft;
 node = leftNode;
 }
 else
 {
 if(stackPos > 0)
 {
 node = stack[--stackPos];
 current = GetNode(node);
 } else return intersected;

 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 91

 }
 }
 }
 return intersected;
}

A.4 BVH Data Layout

	GPU Ray Tracing – Comparative Study on Ray-Triangle
Intersection Algorithms
	1 Introduction
	2 Previous Work
	2.1 Moller-Trumbore’s Algorithm
	2.2 Unit Triangle Algorithm
	2.3 Bounding Volume Hierarchies

	3 Implementation
	3.1 GPU Optimized Intersections

	4 Results
	5 Conclusion and Future Work
	References

