
Transactions on 
Computational
Science XIX

Special Issue on Computer Graphics

LN
CS

 7
87

0

Marina L.Gavrilova · C. J. Kenneth Tan
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

 123

Anton Konushin
Guest Editor



Lecture Notes in Computer Science 7870
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Marina L. Gavrilova C.J. Kenneth Tan
Anton Konushin (Eds.)

Transactions on
Computational
Science XIX

Special Issue on Computer Graphics

13



Editors-in-Chief

Marina L. Gavrilova
University of Calgary, Department of Computer Science
2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
E-mail: mgavrilo@ucalgary.ca

C.J. Kenneth Tan
CloudFabriQ Ltd.
Warnford Court, 29 Throgmorton Street, London EC2N 2AT, UK
E-mail: cjtan@CloudFabriQ.com

Guest Editor

Anton Konushin
Lomonosov Moscow State University
Faculty of Computational Mathematics and Cybernetics
Leninskiye Gory, 1-52, MSU, Moscow, 119991, Russia
E-mail: ktosh@graphics.cs.msu.ru

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1866-4733 (TCOMPSCIE) e-ISSN 1866-4741 (TCOMPSCIE)
ISBN 978-3-642-39758-5 e-ISBN 978-3-642-39759-2
DOI 10.1007/978-3-642-39759-2
Springer Heidelberg Dordrecht London New York

CR Subject Classification (1998): I.4, I.3, I.2, H.5

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive re-
search to biochemistry, electronics, geosciences, mathematics, and physics. Com-
puter systems research and the exploitation of applied research naturally comple-
ment each other. The increased complexity of many challenges in computational
science demands the use of supercomputing, parallel processing, sophisticated
algorithms, and advanced system software and architecture. It is therefore in-
valuable to have input by systems research experts in applied computational
science research.

Transactions on Computational Science focuses on original high-quality re-
search in the realm of computational science in parallel and distributed en-
vironments, also encompassing the underlying theoretical foundations and the
applications of large-scale computation. The journal offers practitioners and re-
searchers the opportunity to share computational techniques and solutions in
this area, to identify new issues, and to shape future directions for research, and
it enables industrial users to apply leading-edge, large-scale, high-performance
computational methods.

In addition to addressing various research and application issues, the journal
aims to present material that is validated – crucial to the application and ad-
vancement of the research conducted in academic and industrial settings. In this
spirit, the journal focuses on publications that present results and computational
techniques that are verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computa-
tional methods and applications:

• Aeronautics and Aerospace
• Astrophysics
• Bioinformatics
• Climate and Weather Modeling
• Communication and Data Networks
• Compilers and Operating Systems
• Computer Graphics
• Computational Biology
• Computational Chemistry
• Computational Finance and Econometrics
• Computational Fluid Dynamics
• Computational Geometry



VI LNCS Transactions on Computational Science

• Computational Number Theory
• Computational Physics
• Data Storage
• Data Mining and Data Warehousing
• Geology and Geophysics
• Grid Computing
• Hardware/Software Co-design
• High-Energy Physics
• High-Performance Computing
• Information Retrieval
• Modeling and Simulations
• Numerical and Scientific Computing
• Parallel and Distributed Computing
• Reconfigurable Hardware
• Supercomputing
• System-on-Chip Design and Engineering
• Virtual Reality
• Visualization



Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to the gamut of computa-
tional science issues, from theoretical aspects to application-dependent studies
and the validation of emerging technologies.

The journal focuses on original high-quality research in the realm of com-
putational science in parallel and distributed environments, encompassing the
facilitating theoretical foundations and the applications of large-scale computa-
tions and massive data processing. Practitioners and researchers share computa-
tional techniques and solutions in the area, identify new issues, and shape future
directions for research, as well as enable industrial users to apply the techniques
presented.

The current volume is devoted to the topic of computer graphics and is edited
by Anton Konushin. It is comprised of 12 excellent papers selected from over 100
submissions to GRAPHICON 2012, held at LomonosovMoscow State University,
Moscow, Russia, in October 2012.

We would like to extend our sincere appreciation to the special issue guest
editor Anton Konushin for his effort on this special issue. We would also like to
thank all of the authors for submitting their papers to the special issue and the
associate editors and referees for their valuable work. We would like to express
our gratitude to the LNCS editorial staff of Springer, in particular Alfred Hof-
mann, Ursula Barth and Anna Kramer, who supported us at every stage of the
project.

It is our hope that the fine collection of papers presented in this special issue
will be a valuable resource for Transactions on Computational Science readers
and will stimulate further research into the vibrant area of computer graphics.

April 2013 Marina L. Gavrilova
C.J. Kenneth Tan



Special Issue on Computer Graphics

Guest Editor’s Preface

While computer graphics can be regarded as a mature discipline, computer vision
and image processing continue to be among the most rapidly evolving areas
of computer science. Both computer graphics and vision have enabled a lot of
applications, ranging from medical visualization to interactive videogames and
gesture-based interfaces.

The international conference GraphiCon 2012 addressed a wide range of re-
search and development topics in the field of computer graphics and vision. Out
of 77 registered papers a final selection of 3 invited, 47 full, and 11 short papers
comprised the GraphiCon 2012 program. All papers were subjected to a double
blind review and were sent to three members of the program committee. The 12
articles appearing in this special issue are revised and extended versions of a se-
lection of papers presented at GraphiCon 2012. The papers were selected based
on several criteria, including reviewers’ comments, quality of presentation, and
feedback of conference participants.

Nowadays computer tomography (CT) is a common medical analysis tool,
but each scanning involves radiation. Lowering radiation doses leads to increased
noise in CT images, which in turn can make processing erroneous. New methods,
described in the paper “2.5D Extension of Neighborhood Filters for Noise Re-
duction in 3D Medical CT Images”, are a step forward in solving this important
problem.

Real-time photorealistic rendering with global illumination is a long-term goal
of computer graphics. The improvement of Graphics Processing Units (GPUs)
during the last decade has resulted in a great advancement of this topic. How-
ever, most papers on ray tracing and global illumination with GPU acceleration
focus on interactive frame rates and do not pay enough attention to the qual-
ity. “Implementing Irradiance Cache in a GPU Realistic Renderer” provides a
balanced approach to implementing widely used irradiance cache techniques in
a GPU. We have a second paper in our selection dedicated to implementation
of ray tracing techniques in a GPU – “GPU Ray Tracing – Comparative Study
on Ray-Triangle Intersection Algorithms”, with a title that speaks for itself.

3D images and 3D cinema are a booming and highly-marketed technology.
“Adaptive Generation of Color Anaglyph” deals with problems arising during
anaglyph-image preparations on consumer printing hardware for education and
entertainment.

“Audio-adaptive Animation from Still Image” is devoted to another consumer
application – creating animated images from still photos, which is a fun way to
improve the visual quality of a presentation. Three effects – Flashing Light, Soap
Bubbles, and Sunlight Spot – are described in details.



X Guest Editor’s Preface

“Auto-calibration for Image Mosaicing and Stereo Vision” explores the prob-
lem of camera calibration, which is a necessary step during panoramic image
stitching or 3D reconstruction. Existing algorithms are extended to get a robust
method that computes internal camera parameters given a series of distant-
object images. Experiments show that accurate calibration without patterns is
possible if the quality of input images is sufficient.

Spectral methods constitute a popular technique for image segmentation and
matting. However, careful parameter selection is required to obtain optimal per-
formance. In “Learning Graph Laplacian for Image Segmentation” a new method
is presented, which allows for unsupervised learning of graph Laplacian param-
eters individually for each image without using any prior information.

Virtual Reality is a very popular subject in science fiction, figuring mainly as
a feature of entertainment systems. However, currently it is still too expensive,
has significant limitations, and is used mainly for research, e.g., psychological
studies. “Virtual Reality Technology for the Visual Perception Study” assesses
effects of 2D vs. 3D displays on lightness perception using the CAVE system.

Machine vision industrial applications usually require a special setup, includ-
ing digital camera and lighting system, e.g., several LEDs as point light sources.
In “Locally Adapted Detection and Correction of Unnatural Purple Colors in
Images of Refractive Objects Taken by Digital Still Camera” one particular setup
is examined. It was observed that images captured with a digital still camera
occasionally exhibit bright purple (almost pink) colors, which do not correspond
to any monochromatic color. A set of algorithms is proposed to identify image
areas to be corrected and to map all unnatural colors to the natural ones in
those areas.

Personal robotics will greatly improve quality of life for many people. A
lot of problems still should be solved in order to create a robot that will be
fully capable of performing such mundane duties as washing plates and dishes.
One particular problem is the detection and relative 3D location estimation of
transparent objects, like glass bottles and cups. “Pose Refinement of Transparent
Rigid Objects with a Stereo Camera” explores this problem and proposes a new
method for it.

Finally, two papers in our selection are both devoted to scientific visualiza-
tion. In “Some Theoretical Issues of Scientific Visualization as a Method of Data
Analysis” characteristics of scientific visualization as a modern computer-based
method of scientific data analysis are given as observed by the authors from
the generalization of practical experience. “Analysis of Space-Time Flow Struc-
tures by Optimization and Visualization Methods” considers a specific problem
of space-time structures analysis for unsteady problems in CFD (computational
fluid dynamics). A new approximate approach is proposed, based on the solution
of optimization problems combined with methods of data visual presentation.

Thanks and appreciation go to the authors, the reviewers, and the staff work-
ing on the Transactions of Computational Science.

March 2013 Anton Konushin



LNCS Transactions on Computational

Science – Editorial Board

Marina L. Gavrilova, Editor-in-chief University of Calgary, Canada
Chih Jeng Kenneth Tan, Editor-in-chief OptimaNumerics, UK
Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, Korea
Danny Crookes Queen’s University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
Osvaldo Gervasi Università degli Studi di Perugia, Italy
Christopher Gold University of Glamorgan, UK
Rodolfo Haber Council for Scientific Research, Spain
Andres Iglesias University of Cantabria, Spain
Deok-Soo Kim Hanyang University, Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Vipin Kumar Army High Performance Computing Research Center, USA
Antonio Lagana Università degli Studi di Perugia, Italy
D.T. Lee Institute of Information Science, Academia Sinica, Taiwan
Laurence Liew Platform Computing, Singapore
Nikolai Medvedev Novosibirsk Russian Academy of Sciences, Russia
Graham M. Megson University of Reading, UK
Edward D. Moreno UEA – University of Amazonas state, Brazil
Youngsong Mun Soongsil University, Korea
Dimitri Plemenos Université de Limoges, France
Viktor K. Prasanna University of Southern California, USA
Muhammad Sarfraz KFUPM, Saudi Arabia
Dale Shires Army Research Lab, USA
Masha Sosonkina Ames Laboratory, USA
Alexei Sourin Nanyang Technological University, Singapore
David Taniar Monash University, Australia
Athanasios Vasilakos University of Western Macedonia, Greece
Chee Yap New York University, USA
Igor Zacharov SGI Europe, Switzerland
Zahari Zlatev National Environmental Research Institute, Denmark



Table of Contents

2.5D Extension of Neighborhood Filters for Noise Reduction in 3D
Medical CT Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Maria Storozhilova, Alexey Lukin, Dmitry Yurin, and
Valentin Sinitsyn

Implementing Irradiance Cache in a GPU Realistic Renderer . . . . . . . . . . 17
Vladimir Frolov, Konstantin Vostryakov, Alexander Kharlamov, and
Vladimir Galaktionov

Adaptive Generation of Color Anaglyph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Elena Patana, Ilia Safonov, and Michael Rychagov

Audio-Adaptive Animation from Still Image . . . . . . . . . . . . . . . . . . . . . . . . . 48
Konstantin Kryzhanovsky, Aleksey Vil’kin, Ilia Safonov, and
Zoya Pushchina

Auto-calibration for Image Mosaicing and Stereo Vision . . . . . . . . . . . . . . . 63
Alexey Spizhevoy and Victor Eruhimov

GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Vladimir Shumskiy

Learning Graph Laplacian for Image Segmentation . . . . . . . . . . . . . . . . . . . 92
Sergey Milyaev and Olga Barinova

Virtual Reality Technology for the Visual Perception Study . . . . . . . . . . . 107
Galina Menshikova, Yuriy Bayakovski,
Elizaveta Luniakova, Maxim Pestun, and
Denis Zakharkin

Locally Adapted Detection and Correction of Unnatural Purple Colors
in Images of Refractive Objects Taken by Digital Still Camera . . . . . . . . . 117

Mikhail Matrosov, Alexey Ignatenko, and Sergey Sivovolenko

Some Theoretical Issues of Scientific Visualization as a Method of Data
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Victor Pilyugin, Eugeniya Malikova, Valery Adzhiev, and
Alexander Pasko



XIV Table of Contents

Pose Refinement of Transparent Rigid Objects with a Stereo Camera . . . 143
Ilya Lysenkov and Victor Eruhimov

Analysis of Space-Time Flow Structures by Optimization and
Visualization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Alexander Bondarev

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



2.5D Extension of Neighborhood Filters

for Noise Reduction in 3D Medical CT Images�

Maria Storozhilova1, Alexey Lukin1, Dmitry Yurin1, and Valentin Sinitsyn2

1 Laboratory of Mathematical Methods of Image Processing,
Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, Russia

http://imaging.cs.msu.ru
2 Radiology Department at Federal Center of Medicine and Rehabilitation,

Moscow, Russia

Abstract. Noise in 3D computer tomography (CT) images is close to
white and becomes large when patient radiation doses are reduced. We
propose two methods for noise reduction in CT images: 3D extension of
fast rank algorithms (Rank-2.5D) and 3D extension of a non-local means
algorithm (NLM-2.5D). We call both our algorithms “2.5D” because the
extended NLM algorithm is slightly asymmetric by slice axes, while our
Rank algorithms, being fully symmetric mathematically and by results,
have some implementation asymmetry. A comparison of the methods is
presented. It is shown that NLM-2.5D method has the best quality, but
is computationally expensive: its complexity quickly rises as a function
of the neighborhood size, while Rank-2.5D only shows linear growth.
Another contribution of this paper is a modified multiscale histogram
representation in memory with a tree-like structure. This dramatically
reduces memory requirements and makes it possible to process 16-bit
DICOM data with full accuracy. Artificial test sequences are used for
signal-to-noise performance measurements, while real CT scans are used
for visual assessment of results. We also propose two new measures for
no-reference denoising quality assessment based on the autocorrelation
coefficient and entropy: both measures analyze randomness of the differ-
ence between noisy and filtered images.

Keywords: medical imaging, CT, DICOM, filtering, enhancement, noise
reduction, denoising, 3D image processing, image quality assessment.

1 Introduction

The problem of noise reduction in digital images has a long history. The first
algorithms were linear filters [1], such as convolutions with a low-pass window
function (rectangular or Gaussian), frequency-domain filtering, Wiener filtering.
The problem with linear methods is inevitable loss of image quality: loss of
sharpness, blurring of edges, ringing effects.

� The research is done under support of the Russian Foundation for Basic Research,
project no. 13-07-00584 a.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Storozhilova et al.

The next wide class of image filtering methods has been introduced in [2], they
are called rank algorithms. The most well-known of these methods is the median
filter, which has fast computational algorithms [3], [4], [5]. Median filter preserves
sharp edges, but rounds the corners in the image. Recently we have proposed fast
algorithms for other types of range filters [6], [7]. Before their existence, practical
applications of such filters were limited. Unlike median filtering and linear meth-
ods, many rank algorithms, such as averaging with εV or KNV neighborhood, re-
duce the contrast of edges without blurring or changing their shape. A well-known
bilateral filtering algorithm [8] can be roughly considered as being a rank filter too.
If the existing Gaussian spatial and range kernels in [8] are replaced with rectan-
gular kernels, a so-called εV averaging algorithm is produced [2]. The only fast
algorithms known for the bilateral filter are approximating algorithms.

Most recent works in noise reduction show the advantage of methods which
average pixels depending on their neighborhood statistics, not just pixel val-
ues [9], [10]. The first method, known as non-local means, calculates averaging
weights using similarity of pixel neighborhoods (patches). The second one is more
complex and consists of two stages. On the first stage a rough frequency-domain
filtering is performed to facilitate the search of similar patches. The second stage
is the joint filtering of groups of similar patches from the source image. In [10]
there are comparisons of the proposed method with 5 other algorithms.

This paper focuses on noise reduction in computer tomography (CT) scans.
CT images capture the density of a sequence of slices of a human body. These
slices are obtained with a small fixed stride, which is perpendicular to the slice
plane and is comparable with the pixel size in each slice. Together they represent
a 3D set of data, so traditional 2D methods of image denoising are less than
optimal because they fail to exploit a high degree of data correlation between
slices. Independent noise reduction in each slice may cause difference in color and
position of edges of objects between slices. Our main objective is to reduce noise
and avoid the loss of small low-contrast image areas. Such areas may contain
symptoms of an illness and it is important to maintain sharp edges and prevent
the loss of information for them. This requirement limits the use of median
filtering and other algorithms based on the image blurring as they can shift the
edges or make them indistinguishable.

Noise is always present in CT images. Interestingly, as the noise reductionmeth-
ods advance over time, one can expect even noisier raw data to be coming from
the scanner, because it means lower radiation dose for the patient. Specialized al-
gorithms for denoising of CT images are an area of active research [11], [12].

The noise spectrum in our images is close to white: slightly low-pass, but
without evident directionality (Fig. 1c). The amplitude p.d.f. is close to Gaussian
(Fig. 1b). This justifies the application of standard noise reduction methods,
most of which have been formulated for additive white Gaussian noise. Another
study of noise in CT images is given in [13], [14].

This paper proposes two approaches to noise reduction. A higher-quality al-
gorithm is based on a non-local means [9] adapted to a 3D image data. We are
using a fast, but not quite symmetric variant (we call it NLM-2.5D) developed in



2.5D Extension of Neighborhood Filters 3

(a)

(b)

(c)

Fig. 1. Analysis of noise in our CT images: (a) Collected noise patches; (b) Noise
histogram; (c) Noise spectrum

our previous work for video processing [15]. The second approach (Rank-2.5D)
is using the adaptation of fast rank filters which do not blur or shift the edges of
the image [6], [7]. The proposed algorithm is fully symmetric in three dimensions
and comprises the direct extension of εV averaging [2] on a 3D space, with an
adaptive choice of ε in every point of the image. This ε is calculated using an-
other rank algorithm. Every slice is processed using information from a collection
of adjacent slices. The implementation of the algorithm is not symmetric: it is
based on sequential processing of 2D slices and 1D filtering across slices. This
allows considerable savings in memory, but slows down the computation. The
processing time becomes proportional to the number of slices in the collection
(neighborhood).

In our previous works we used array-like histogram representation [16] (and
recently [6], [7]) and 8-bit images, while full accuracy DICOM images are 16-bit.
Direct extension of our fast rank algorithms to 16-bit medical imaging results in
unacceptable memory consumption (more than 4 Gb), so in this work we switch
to tree-like structures and significantly renew the algorithms.

A comparison of speed and PSNR quality is carried out on phantom images
with an artificially generated noise. Visual results on real medical images are
also provided.

When using any denoising methods we face the problem of the algorithm qual-
ity assessment. According to the availability of the reference image, the image
quality assessment (IQA) methods can be classified into three kinds: Full Ref-
erence (FR), No Reference (NR) and Reduced Reference (RR). Medical images
can be referred to NR group as we have no ability to receive an ideal CT image



4 M. Storozhilova et al.

in real-world conditions. In this paper we also propose a new autocorrelation-
based measure of IQA for medical images that were denoised with 2.5D Rank
and 2.5D NLM algorithms.

We compare original noisy and filtered images and analyze their difference.
The proposed measure based on the autocorrelation coefficient estimates ran-
domness of the difference image. Thus if filtering procedure removes or changes
some significant image details together with noise, some regular structures, like
small spots and lines appear on difference image, and autocorrelation coefficient
increases, signaling about excessive filtering.

2 εV Filtering

We start with some necessary definitions, following [2]. Consider the current
v0 and some neighborhood S of pixel v0 that contains N pixels. Frequently
S-neighborhood has a square, round or octagonal shape [2], [5].

Definition 1. A rank series {v(r)} is a one-dimensional sequence of N pixels
from S whose elements are sorted in an ascending order with respect to their
values: {v(r) ≤ v(r + 1), r = 0..N − 1}.
Definition 2. Pixel’s vR rank R is the position of the vR element in the rank
series. R = rank(vR).

Let’s consider some selected pixel vc ∈ S; for example we can consider vc = v0,
vc = med{v(r)}, or vc = mean{v(r)} as a pivot. It should be noted that under
such definition the pivot pixel do not always satisfy conditions vc ∈ S or vc ∈
{v(r)}. Then
Definition 3. εV (or EV) neighborhood is a subset of pixels set {v(r)} whose
values deviate from the value of the pivot pixel at most by a predetermined
quantity ε:

εV (vc) = {v(r) : |v(r) − vc| ≤ ε} (1)

As it can be seen from the definition, εV neighborhood average can be treated
as a simplified bilateral filter [8], where bilateral filter parts that depend both
on distance and on pixel brightness, are represented by rectangular functions
instead of Gaussians. For this reason εV filtering should keep the edges of the
objects sharp, assuming the parameter ε is properly chosen.

3 2.5D Rank Filtering Algorithm

It is proposed to use a three-dimensional εV filtering algorithm with an adaptive
search of parameter ε for denoising of CT images. Fast rank algorithms [6] are
based on multiscale histogram approach. Either fast rank algorithms or a lazy
calculations technique remain the same in a 3D case, though some difficulties
occur with column histogram maintaining [5], [7]. Thus if a two-dimensional



2.5D Extension of Neighborhood Filters 5

image with the size of 512× 512 pixels requires maintaining of 512+1 multiscale
histograms, then in a three-dimensional case we will have to maintain 512 ×
512 + 1 = 262145 multiscale histograms for a sequence of images with the same
size. Taking into account the large size of multiscale histograms with the specific
additional information [6], we may see that the number above is at the limit
of memory size of 32-bit computers. We propose to use a separable approach
for reduction of complexity by processing 2D images. At first, εV neighborhood
average will be calculated separately with the same pivot for all N slices that are
used for denoising of the current image. Then the 1D variant of εV filtering will be
applied to the result. Really, if the inequality (1) is true for a number of subsets
it is true for the union of these subsets too. εV -averaging means calculation of
the ratio of sum of values to number of elements, so it is sufficient to sum up
the sums for each subsets and the number elements in each subsets and than
calculate their ration once.

For the correct choice of the ε parameter we propose to calculate the intensity
variance in a square neighborhood of small radius Rdisp for each pixel of the
image. This step allows determining the uniformity of an area of a specified
radius around the pixel. For a flat area with insignificantly varying color the
intensity variance value will provide the noise variance.

The choice of Rdisp is based on the fact that the noise in CT images is almost
non-correlated (white). So the neighborhood can have an arbitrary radius. Since
our main goal is to preserve small low-contrast objects, it is essential to choose
Rdisp in accordance with the size of the object that needs to be preserved. Since
the variance will be high on the boundaries of areas with different colors, it is
proposed to apply a some kind of minimum filter to the variance image, using
the neighborhood of a larger radius. This allows propagating correct values of
noise variation to regions with excessive variance.

So the next step is the min-filtering of variance by averaging pixels with the
smallest rank of the neighborhood of a larger radius. To completely suppress
high-variance values on boundaries it is proposed to use the neighborhood of a
higher radius 3Rdisp. Let us consider possible cases for location of a boundary
within the neighborhood. Since the radius of the neighborhood is small enough,
we assume that the boundary between the objects inside the sliding window is
a straight line.

In the easiest case Fig. 2a the amount of pixels that represent variance outside
the edge area is about 30% of the bigger neighborhood. In the worst case Fig. 2b
the amount of pixels for the variance of the outside-edge area is about 10%.
These values can be easily proved by simple geometrical calculations.

Variance minimized in such a way corresponds to adaptive ε value. In order to
control the degree of noise reduction it is proposed to use a multiplier parameter
M . In general the coefficient M is user-defined, but it is essential to use the
range of [2 . . . 4] in order to simultaneously suppress the majority of noise pixels
and to avoid blurring of the edges.

Then εV algorithm with the ε value that was obtained on the previous step
and the Reps = Rdisp + 1 neighborhood radius is performed for each slice. It is



6 M. Storozhilova et al.

Fig. 2. The area with high variance value for (a) the vertical edge; (b) the diagonal
edge

important to emphasize that we take not the central intensity value of the current
slice but the intensity value of a source image with corresponding coordinates as a
central pixel for εV neighborhood average algorithm. This condition is important
because we apply the algorithm not to a 2D neighborhood, but to the volume
region.

To extend the algorithm to a 3D space, it is proposed to calculate the total
sum and the total number of elements involved in the averaging for the current
pixel of the current slice. As a result, for each pixel of each slice we receive the
structure that contains the total sum and the amount of the εV neighborhood
elements.

The last step is εV filtering for slices. It is proposed to use the minimized
variance for the source image multiplied by M as the value of ε for each pixel of
the source image. The averaging is performed with only one structure from each
slice (i.e. if we use N slices, only N elements will take part in averaging). For the
pixel I(x, y) of the source image the necessary structures will be located at the
same coordinates in the corresponding slice. The number of slices for processing
is defined automatically in accordance with the distance between slices.

Let N be the number of images (slices) for denoising of one image, Isrc be
the source image, Ii be the i-th image from the array of image slices, Rdisp be
the radius of the variance calculation window, D(Ii) be the variance of the i-th
image, M be the variance multiplier, Reps be the radius for a 2D spatial εV
filtering. The following algorithm is proposed for CT image denoising.

Algorithm 1. 2.5D rank denoising algorithm.

1. for i := 0, i < N do
2. for each pixel Ii(x, y) of Ii do
3. Compute the variance of Ii(x, y) with the window radius Rdisp;
4. Minimize variance D(Ii(x, y)) for Ii by averaging K elements with

the smallest rank using the window radius of 3 · Rdips;
5. Perform εV filtering around the current pixel’s Ii(x, y) neighbor-

hood to obtain the total sum and total count of elements for Ii(x, y). ε(x, y) =
M ·D(Ii(x, y)) , the window radius is Reps and Isrc(x, y) is taken as the cen-
tral pixel of the neighborhood;

6. endfor
7. endfor
8. for each pixel Isrc(x, y) of Isrc do



2.5D Extension of Neighborhood Filters 7

9. Perform 1D εV filtering with ε(x, y) = M · D(Isrc(x, y)) for N corre-
sponding elements Ii(x, y), i = 1..N ;

10. endfor

4 16-bit Extension of Rank Algorithm

The previous algorithm was mainly designed for 8-bit grayscale images. But
medical DICOM images originally consist of 16-bit grayscale data. For this case
multiscale histogram approach should be slightly modified. In case of 8-bit image
we store w+1 histograms of 256 elements. Using this approach for a 16-bit image
we will need to store w+1 histograms of 65536 elements each, which means that
the total memory usage will be around 4 GB for a single image denoising. And
rather big amount of these elements will have 0 counts.

To avoid the inefficient use of memory and time for zero filling it is proposed
to use a tree representation of multiscale histograms instead of an array. Tree
nodes are allocated from the previously reserved pool. The maximal number of
elements for level L of a multiscale histogram can be counted as a minimum
from the neighborhood area and the total number of elements on each level.
The total number of elements n for one multiscale histogram for a L = 16-bit
image is:

n =

L∑
i=0

ni, ni = min{2i, (2r + 1)2} (2)

5 2.5D Non-local Means Filtering

Bilateral filtering algorithm is well known in image processing for its simplicity
and edge-preserving properties [8]. The output pixel value Iout(x, y) is formed
as a weighted sum of pixel values from the neighborhood Ω:

Iout(x, y) =
1∑

i,j∈Ω W
·
∑
i,j∈Ω

W (x, y, j, i) · I(x+ j, y + i) (3)

The weightsW depend on geometric distance and color difference between pixels
(x, y) and (x+j, y+i) in order to facilitate averaging of pixels with similar values:

W (x, y, j, i) = exp

{
− j2 + i2

2σ2

}
· exp

{
− (I(x+ j, y + i)− I(x, y))2

2ρ2

}
(4)

Non-local means is a relatively novel method of image filtering that builds upon a
bilateral algorithm. Formula (4) for pixel similarity in bilateral filtering considers
colors and spatial coordinates of two pixels. In the non-local means algorithm,
this formula instead considers the context of two pixels [9]. Specifically, instead
of comparing values of two pixels, the algorithm compares the content of image
patches v around two pixels:



8 M. Storozhilova et al.

W (x, y, j, i) = exp

{
−||v(x+ j, y + i)− v(x, y)||22

2ρ2

}
(5)

The squared norm of pixel-wise patch differences in formula (5) ensures that
only pixels with a similar surrounding content are averaged together.

The extension of this method on a three-dimensional space is straightforward.
For the standard 2D image processing, the neighborhood Ω from formula (3) is
a circle or a square around the central pixel. For the 3D filtering, we extend the
neighborhood to be a sphere or cube in the 3D image space: it includes several
image slices that are adjacent to the processed pixel. A two-dimensional sum-
mation in formula (3) turns into a three-dimensional summation and calculation
of weights in formula (5) is adjusted accordingly: similar patches are searched
among the array of several adjacent slices. Since the compared patches are still
two-dimensional, we call this method NLM-2.5D.

For improved speed of calculations we employ an optimization from [15] for
sparse update of weights W .

6 Synthetic Phantom Generation

For testing the noise reduction capability of our algorithms we have generated
a synthetic phantom image. We do not use real phantom images because they
always contain noise due to CT image generation process. An attempt to shoot a
phantom without noise results in high-dose shooting which is radically different
from real medical imaging conditions. Our synthetic phantom construction (see
Fig. 3) is described below. The phantom body is cylindrical. It has two cylindrical
“organs” with different radioparency. These two “organs” are connected by two
thin truncated cones (“processes” or “ligaments”), with radioparency smoothly
changing from one organ to another. Each “organ” has one truncated conic
“vessel” with different radioparency. These truncated cone shapes are used for
thin objects in order to detect the extent of damage to the phantom along the
slice axis in the process of filtering (if any).

We model all “body”, “organs”, “ligaments”, and “vessels” with color cj and
density function

ρ(r) = exp

{
−
(
r − r0
R

)2n
}
, r = (x, y) (6)

which is used smooth object boundaries, mainly to avoid pixelated (aliased)
shapes. The center of small objects (“ligaments” and “vessels”) depends on a
slice position z: r0, R(z), so density function depends on all 3 coordinates ρ(r) =
ρ(x, y, z). The resulting slice image set is obtained recursively as

I0(x, y, z) = ρbody(r) · cbody (7)

Ij(x, y, z) = ρj(r) · cj + (1− ρj(r)) · Ij−1(x, y, z) (8)

where large objects are added first. Typical simulated phantom images are pre-
sented in Fig. 3.



2.5D Extension of Neighborhood Filters 9

Fig. 3. Simulated noise-free phantom images

7 Analysis of Residual Images

It absence of the noise-free ground truth data, it is common to evaluate the
results of noise reduction algorithms by informal analysis of the residual image.
The residual image is formed as a difference between the original noisy image
and the image after noise reduction, i.e. it shows the change happening during
noise reduction.

Ir(x, y) = Inoisy(x, y) − Ifiltered(x, y) (9)

Several examples of residual images can be found in [9]. The desirable feature of
the residual image is randomness: lack of apparent correlation with the original
image. Simple methods, like linear filtering, suppress high-frequency image de-
tails, which becomes apparent in the residual image. More complex algorithms,
like non-local means, are more successful in separating random noise from image
features (Fig. 7b).

7.1 Correlation Measure

Here we propose a formal measure of randomness of the residual image and
show that it can be used for automatic selection of noise reduction algorithm
parameters. A simple measure of signal randomness is the autocorrelation coef-
ficient, defined as autocorrelation function of a zero-mean signal normalized by
the signal variance. While it is possible to compute autocorrelation function for
the whole image, we are more interested in a local behavior of autocorrelation,
because it reveals information about local image features. So, we compute au-
tocorrelation in overlapping image blocks. The block size is chosen according to
the size of features that we are interested in. For our 512 × 512 CT scans, we
choose the block size of 32 × 32 pixels, with an overlap factor of 75% in each



10 M. Storozhilova et al.

dimension. Blocks of the difference image are windowed by the Hann window
and the autocorrelation function Rxx(i, j) is computed via FFT. The values of
autocorrelation are then divided by the signal variance Rxx(0, 0). The resulting
autocorrelation coefficients are within [−1, 1].

To analyze the presence of structure in the residual image, we propose search-
ing for the maximal autocorrelation coefficient with a nonzero lag: Rmax =
maxi,j∈Ω Rxx(i, j), where Ω contains all lags satisfying: i2 + j2 ≥ 22. This ex-
cludes lags smaller than 2 pixels to prevent snapping to the global maximum
near lag 0, which may have a nonzero width due to a low-pass nature of CT
reconstruction filters. When Rmax is close to 0, the residual image is close to
white noise, i.e. has no correlation. When Rmax is high, there is a significant
correlation, which indicates the presence of unwanted structure in the residual
image. Thus the proposed coefficient can be used as a measure of image quality
degradation.

The resulting correlation coefficients Rmax
k from each block k are averaged

over all image blocks to form the overall measure R:

R =

∑
k wkR

max
k∑

k wk
, (10)

where blocks with higher variance are assigned higher weights: wk = 4
√
Rxx(0, 0).

The resulting measure R indicates whether the residual image is “contami-
nated” with structures (such as edges) from the original image. If the residual
image is a synthetic white noise, our simulations show thatR ≈ 0.14. In practice,
R on real-world CT image residuals is higher than 0.14 because the CT noise
is slightly correlated (see Fig. 1c) and because no noise reduction algorithm is
perfect.

To evaluate the proposed correlation measure, we have studied the dependence
of R on parameters of noise reduction algorithms for real-world CT scans. The
parameter of NLM-2.5D algorithm that directly affects filtering strength is ρ: it
affects pixel averaging weights (Eq. 5). For Rank-2.5D this is M : it affects the
number of averaged pixels. The results are summarized in Fig. 4.

The graph for NLM-2.5D algorithm (Fig. 4a,b) exhibits bending points near
log ρ = 8 and 13. Below these points the correlation measure R rises slowly.
But above these points it rises faster, indicating that the noise reduction algo-
rithm starts to blur essential image details. The change in the derivative can be
explained by the fact that noise in CT images has a Gaussian distribution of con-
trast and low variance, while important image structures have higher variance,
but more compact spatial distribution.

Above log ρ = 20 the graph starts to flatten out, indicating that the NLM-2.5D
algorithm is degenerating toward a linear blur operator. Our visual assessment
indicates that the best value of log ρ for the tested images is between 10 and
12. This trade-off between amounts of noise reduction and blurring of details
corresponds to R ≈ 0.28 . . .0.29.

The graph for Rank-2.5D algorithm (Fig. 4c,d) does not exhibit this bending
point: it steadily rises throughout the usable range of M , indicating that the loss



2.5D Extension of Neighborhood Filters 11

5 10 15 20 25 30
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
or

re
la

tio
n 

m
ea

su
re

log p

 NLM-2.5D

5 10 15 20 25 30

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

D
er

iv
at

iv
e 

of
 c

or
re

la
tio

n 
m

ea
su

re

log p

 NLM-2.5D

(a) (b)

0 2 4 6 8 10
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

C
or

re
la

tio
n 

m
ea

su
re

m

 Rank-2.5D

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08
D

er
iv

at
iv

e 
of

 c
or

re
la

tio
n 

m
ea

su
re

m

 Rank-2.5D

(c) (d)

Fig. 4. Dependence of the correlation measure R and its derivative on filtering strength
parameters ρ and M

of structural details happens gradually. Visually best values of M are between
3.5 and 4.5. This corresponds to R ≈ 0.29 . . .0.30, which is a good match to the
“sweet spot” of NLM-2.5D algorithm.

7.2 Entropy Measure

Another possible approach to image filtering quality assessment can be con-
structed based on entropy as a measure of randomness. Let us consider the
residual image Ir(x, y) again. We normalize and quantize Ir(x, y) image (9) as
follows:

IN (x, y) = � 8
π
· arctan

(
Ir(x, y)−m

ασ

)
� (11)

where m and σ are image Ir(x, y) mean intensity and standard deviation re-
spectively and α is a parameter (we use α = 1.2 in our experiments). So, the



12 M. Storozhilova et al.

output image IN (x, y) consists of no more than 9 different values: IN (x, y) =
−4,−3, ...,+4. For low-amplitude residual images there can be less than 9 values,
but for large residuals such images can only differ by statistical properties, inde-
pendently of the residual amplitude. Taking into account that CT images have
a typical correlation radius of about 1.5 . . . 2 pixels we consider the following
directional differences:

D0◦(x, y) = IN (x, y)− IN (x, y + 2)
D45◦(x, y) = IN (x, y) − IN (x+ 1, y + 1)
D90◦(x, y) = IN (x, y) − IN (x+ 2, y)
D135◦(x, y) = IN (x, y)− IN (x− 1, y + 1)

(12)

If the residual image Ir(x, y) consists of pure Gaussian white noise (Fig. 1),
the probability distribution of differences in (12) is close to uniform and has a
range between −8 and 8 (see (11)). But when important details appear in the
residual image, such as vessels or organ boundaries, small difference values will
appear more frequently in (12). To derive a measure reflecting these properties we
consider a joint histogram HN (ν) of differences (12) normalized as a probability
distribution function and calculate the entropy with a formula:

E = −
∑
ν

HN (ν) log2 HN (ν) (13)

Since entropy is a measure of chaos, we can expect that when the residual image
is low-amplitude the entropy (13) is small too; when more noise gets suppressed,
the entropy grows; and finally, when structural details appear in the residual
image, the entropy decreases again because correlation of adjacent pixels results
in dominance of small difference values in (12).

The results of application of this approach to CT images (Fig. 7) are shown in
Fig. 5. The curves for both Rank-2.5D and NLM-2.5D algorithms have a distinct
maximum which can be considered as the algorithm parameter value related to
the optimal amount of noise reduction. In our experiments the noise reduction
strength estimated as maximum of E was very close to subjectively good values
of parameters.

Comparing with the autocorrelation-based approach the advantages of the
entropy-based method are:

– similar graph behavior for both algorithms (compare Fig. 4 and Fig. 5);
– visible effect without block-wise weighted averaging (10);

the drawback of the entropy-based approach, in our view, is that the maximal
value differs from the surrounding values by only 5% (see Fig. 5) while for the
correlation-based approach these differences are more substantial (Fig. 4).

8 Results

Fig. 6a shows the results of a phantom CT image denoising. The Gaussian noise
which corresponds to the real noise distribution on CT images was added to the



2.5D Extension of Neighborhood Filters 13

0 2 4 6 8 10
2.32

2.34

2.36

2.38

2.40

2.42

2.44

2.46
E

nt
ro

py
 m

ea
su

re

M

Rank-2.5D

4 6 8 10 12 14 16
2.10

2.15

2.20

2.25

2.30

2.35

2.40

E
nt

ro
py

 m
ea

su
re

log p

NLM-2.5D

Fig. 5. Dependence of entropy-based measure E on filtering strength parameters
ρ and M

3 5 7 9 11 13

9.0

9.5

10.0

10.5

11.0

Im
pr

ov
em

en
t o

f P
SN

R
,  

dB

Number of slices

 Rank-2.5D
 NLM-2.5D

1 3 5 7 9 11 13 15 17 19 21 23

0.01

0.1

1

Fr
am

es
 p

er
 s

ec
on

d

Number of slices

 Rank-2.5D
 NLM-2.5D

(a) (b)

Fig. 6. (a) Improvement of PSNR for the phantom image filtered by different algo-
rithms, depending on the neighborhood size N; (b) Speed of our C++ implementation
of the proposed algorithms on a 2.8-GHz desktop

synthesized phantom slices. The measured value is the improvement of PSNR in
decibels between processed images and the ground-truth noise-free image. Each
algorithm has been run with optimal parameters which maximize PSNR for each
size of the neighborhood. The optimized parameter for Rank-2.5D was M , while
the optimized parameter for NLM-2.5D was ρ. The patch size in NLM has been
set to 8× 8 pixels, while the “pixel” size has been set to 2× 2 pixels.

The maximum in the curve for Rank-2.5D algorithm occurs when the neigh-
borhood size is of order of smallest significant object size (“ligaments” and “ves-
sels”). When the neighborhood becomes larger, small objects are suppressed as
noise.

It can be seen that the algorithms are able to exploit high degree of correlation
between image slices, which is reflected in PSNR and visual quality.



14 M. Storozhilova et al.

Fig. 6b compares the speed of the proposed algorithms on a CT scan with
515× 512-pixel slices. It shows that the Rank-2.5D algorithm has a linear com-
plexity growth depending on the neighborhood size, which makes it suitable
for future high-resolution CT scanners. The complexity of NLM-2.5D algorithm
grows much faster.

Fig. 7 shows the result of real CT image denoising with Rank-2.5D and NLM-
2.5D algorithms operating on a neighborhood of 7 × 7 × 5 pixels (the last ‘5’
being the number of slices). The value of parameter M in Rank-2.5D method
has been set to 3.5 for good visual results. This is lower than the value of M = 5
which optimized PSNR in our experiments.

(a) (b)

(c) (d)

Fig. 7. (a) Original noisy CT image; (b) Residual image for NLM-2.5D algorithm;
(c) Result of Rank-2.5D algorithm; (d) Result of NLM-2.5D algorithm



2.5D Extension of Neighborhood Filters 15

Subjectively, NLM-2.5D approach provides more accurate and clear image
while Rank-2.5D leaves some blurred patches in high-contrast areas.

9 Conclusion

Two methods for three-dimensional noise reduction in CT images have been
presented. The evaluation shows that they are able to effectively exploit the
existing correlation between CT slices for improvement of the resulting image
quality. The presented Rank-2.5D shows only moderate growth in computational
complexity depending on the size of neighborhood. It is easy to see from Fig. 6b
that when the neighborhood size in slices is larger than 6, Rank-2.5D becomes
faster than NLM-2.5D. The maximum quality of Rank-2.5D is achieved when
the neighborhood size is approximately equal to the minimal useful object size
in the image.

Two new methods for no-reference quality analysis of denoised images are
proposed and tested on a set of real DICOM images. The first method is based on
weighted block-wise autocorrelation coefficient (10). The second one is based on
entropy of directional differences (13). Both measures enable automatic selection
of algorithm parameters that balance the amount of noise reduction and loss of
image details.

References

1. Pratt, W.: Digital Image Processing: PIKS Scientific Inside. Wiley (2007)
2. Yaroslavsky, L., Kim, V.: Rank algorithms for picture processing. ACM Transac-

tions on Graphics (TOG) 35, 234–258 (1986)
3. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm.

IEEE Trans. Acoust., Speech, Signal Proc. 27(1), 13–18 (1979)
4. Weiss, B.: Fast median and bilateral filtering. ACM Transactions on Graphics

(TOG) 25(3), 519–526 (2006)
5. Perreault, S., Hebert, P.: Median filtering in constant time. IEEE Transactions on

Image Processing 16, 2389–2394 (2007)
6. Storozhilova, M., Yurin, D.: Fast rank algorithms based on multiscale histograms.

In: 21st International Conference on Computer Graphics GraphiCon 2011, Moscow,
Russia, pp. 132–135 (September 2011)

7. Storozhilova, M., Yurin, D.: Fast rank algorithms with multiscale histograms lazy
updating. In: 8th Open German-Russian Workshop “Pattern Recognition and Im-
age Understanding” (OGRW-8-2011), Lobachevsky State University of Nizhny
Novgorod, pp. 380–383 (November 2011)

8. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Pro-
ceedings of the IEEE Sixth International Conference on Computer Vision (ICCV
1998), pp. 839–846 (1998)

9. Buades, A., Morel, J.: A non-local algorithm for image denoising. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp.
60–65 (2005)

10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D
transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–
2095 (2007)



16 M. Storozhilova et al.

11. Reiter, M., Zauner, G.: Denoising of computed tomography images using multireso-
lution based methods. In: European Conference on Non-Destructive Testing poster
(2006)

12. Trinh, D., Luong, M., Rocchisani, J.M., Pham, C., Pham, H., Dibos, F.: An op-
timal weight method for CT image denoising. Journal of Electronic Science and
Technology 10(2), 124–129 (2012)

13. Kijewski, M., Judy, P.: The noise power spectrum of CT images. Phys. Med.
Biol. 32(5), 565–575 (1987)

14. Newton, T., Potts, D.: Radiology of the Skull and Brain: Technical Aspects of
Computed Tomography. Radiology of the Skull and Brain. Mosby (1981)

15. Putilin, S., Lukin, A.: Non-local means method modification for noise suppression
in video. In: 17th International Conference on Computer Graphics, GraphiCon
2007, pp. 257–259 (June 2007) (in Russian)

16. Storozhilova, M., Lukin, A., Yurin, D., Sinitsyn, V.: Two approaches for noise
filtering in 3D medical CT-images. In: 22nd International Conference on Computer
Graphics, GraphiCon 2012, Moscow, Russia, pp. 68–72 (October 2012)



 

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 17–32, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Implementing Irradiance Cache  
in a GPU Realistic Renderer 

Vladimir Frolov1,2, Konstantin Vostryakov2,  
Alexander Kharlamov2, and Vladimir Galaktionov1 

1 Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), Moscow, Russia 
2 Nvidia 

Abstract. This work presents an approach to integrating irradiance caching (IC) 
technique in a complete GPU photorealistic renderer. This work proposes a 
GPU friendly IC solution, where performance critical parts of an irradiance 
cache algorithm are done completely on the GPU.  The modified algorithm for 
the GPU is different from a traditional implementation in 2 ways. The first dis-
tinction is a predictive nature of our algorithm that allows us to insert a large 
record set at once instead of inserting records one by one, as in traditional  
approaches. The second distinction is a new heuristic for validity radius compu-
tations. We also consider some low-level details and provide performance  
analysis of our solution.  

Keywords: Ray Tracing, GPU Global illumination, Irradiance cache, realistic 
rendering. 

1 Introduction  

For the last decade Graphics Processing Units (GPUs) have made a great advance in 
performance and have become fully programmable processors. Several commercial 
GPU photorealistic renderers are available today. Most of them use unbiased path 
tracing methods due to its simplicity for GPU implementation and scalability. This 
results in tracing up to ten times more rays than biased alternatives. Moreover, path 
tracing of complex scenes suffers from highly irregular workload and memory access 
tends to be random. These issues lead to inefficient hardware utilization. On the other 
hand, although biased approaches have lower complexity they are more difficult to 
implement on the GPU.  

Our paper illustrates the research that we have performed for GPU accelerated bi-
ased rendering via irradiance caching and path tracing techniques. The key results of 
this research are: 

A new GPU friendly IC generation algorithm, performed before final render pass. 
Introduction of a new validity radius computation heuristic while inserting records 
into octree for fast irradiance interpolation on the GPU.  

Our main contribution is a high quality IC solution that provides from 4 to 14 times 
acceleration (with an average PSNR of 40-45 compared to a GPU accelerated path 
tracing. 



18 V. Frolov et al. 

 

2 Related Work 

The majority of modern papers on ray tracing and global illumination and either irra-
diance caching are focused on interactive frame rates and fast computations and are 
not paying enough attention to the quality of their solution. We discuss some of mod-
ern papers in the related field further but we would like to underline that we can’t 
provide a quantity comparison of these papers to our work because most of them does 
not provide a numerical error analysis in contrast to our solution. So, we provide only 
quantity comparison between proposed IC approach and our own optimized path trac-
ing implementation. 

2.1 GPU Ray-Tracing 

Although fast GPU ray tracing for complex scenes is still a challenge we do not focus 
on ray tracing acceleration in this paper. Aila and Laine work [1] provides compre-
hensive performance analysis of ray tracing on the GPU. Our ray tracing implementa-
tion has approximately the same performance on diffuse rays although it’s of 1.5x 
factor slower for coherent frustum tracing. For “Conference Room”, “Sibenik” and 
other commonly used test scenes our ray tracer achieves ~130M rays per sec for pri-
mary rays and ~60M rays per sec for diffuse rays on average (measured on a GTX 
560 HW). However we found that depending on the scene, path tracing rays after 
several bounces path tracing rays can be a factor of 2x-4x slower than diffuse rays – 
this is the case of poor HW utilization due to random memory access and non-
uniform workload. 

2.2 Irradiance Cache 

Irradiance caching decreases the overall cost of indirect illumination computation by 
performing full hemisphere sampling (or final gathering) only at selected points in the 
scene, caching the results, and reusing the cached indirect illumination values be-
tween those points through interpolation. It was introduced in [2]. The algorithm can 
be summarized as follows: 

if interpolation is possible then 
  reuse cached values through interpolation; 
else 
  compute new value; 
  store it in the cache; 
end if 

 

The number of irradiance cache points is usually of 1 or 2 magnitude order less than 
the number of pixels – so the irradiance cache is quite efficient and it can greatly 
speed up the whole rendering. However, irradiance cache is a challenging algorithm, 
even on a CPU. It has a lot of issues and heuristic approaches that suppress its  



 Implementing Irradiance Cache in a GPU Realistic Renderer 19 

 

artifacts [3]. A well-known irradiance cache algorithm [2,3] cannot be implemented 
on a GPU in a straightforward way because of its serial nature: 

• Trace one ray 
• Evaluate and insert one record at given “transaction”.  

2.3 Parallel Irradiance Cache 

It is difficult to parallelize irradiance cache on multi-core CPUs. To understand what 
the problem is, consider a situation when we have several rendering threads in the 
simple algorithm discussed above. In this case, each insertion operation will block a 
part of cache for other threads until the hemisphere sampling is finished. The compre-
hensive analysis of parallel IC solutions are described at [4] and [5] and a 2 different 
approaches were introduced.  

Mainly, previous researches in parallel IC were focused on the problem of access-
ing shared memory on SMP systems (or distributed memory on clusters) and achiev-
ing efficiency on all processors. Besides the fact that the problem of effective data 
access and high processors utilization is very important, this is not the only problem 
when implementing parallel IC. Another challenge is that the IC construction algo-
rithm is based on a variety of heuristics (neighbor clamping and etc) which were used 
with a serial IC records inserting [3]. When doing parallel implementation and insert-
ing records in batches we have redundant amount of records with strong overlapping 
of validity areas and because of that poor IC look-up performance. This problem be-
came critical for GPU with the massive number of threads. 

PBRT 2.0 [6] also has multithreaded implementation of IC. It does the first pass to 
compute the cache and the second one to render final image. This approach needs to 
be refined for the case of massive parallelism. We discuss it further in our paper. 

2.4 GPU Irradiance Cache  

GPU irradiance caching was introduced in [7] and described in details in [3]. These 
papers mainly focus on replacing irradiance interpolation via octree lookups with 
splatting to avoid traversing hierarchical structures on GPUs. The approach used in 
[7] can be used for primary rays or interactive visualization in computer games, how-
ever, it has one serious limitation: only one light bounce can be evaluated either for 
hemisphere sampling or for final rendering. Thus, it will be hard to have precise pho-
torealistic result with this approach. Besides, it was done mainly for rasterization 
based engines and cannot be combined directly with a GPU path tracer.  

Wang et al. [8] presents an efficient approach for global illumination using photon 
mapping on the GPU. The key aspect of this work is to use irradiance cache with 
photon mapping and final gathering [9] to quickly compute smooth indirect illumina-
tion. Direct lighting is computed using ray tracing and supports hard shadows from 
point light sources. In this paper irradiance cache point positions are predicted from 
the geometry discontinuities. Wang’s approach to build IC was combined with path 
tracing in [10] to focus on rendering images with glossy reflections and shadows  



20 V. Frolov et al. 

 

offline. However, both of these approaches work with geometry term and they use 
predictive nature without further refinement.  

The radiance hints method introduces in [11] is a stable (for animation) and a fast 
solution for diffuse global illumination. The method is based on grid based radiance 
caching with reflective shadow maps and can handle multiple light bounces. This 
method works for interactive rendering with view-independent algorithm so it can’t 
control image error that is required for photorealistic rendering. Besides, using regular 
grid will not allow one to have high precision with reasonable memory consumption. 

3 Suggested Approach 

Similar to PBRT 2.0 our algorithm consists of 2 main phases. The first phase is “irra-
diance cache creation” and the second phase – “final rendering”. The goal of the first 
phase is to generate a set of irradiance cache points that will completely cover the 
space where future samples can occur. This separates computing irradiance cache 
from using it and thus we compute the only part of 3D irradiance signal (via compu-
ting IC) that is essential for the final image.  

The key novelty points of our IC construction are: 

1. Usage of 2 different algorithms for directly and indirectly visible surfaces. 
2. Image processing algorithms to predict where more IC records should be placed 

and where we can have only several of them. 
3. Z-curve clusterization of irradiance evaluation queries. 
4. Adjusting IC records validity radiuses using a new clamping heuristic to get an 

faster irradiance interpolation. 

3.1 Creation of Irradiance Cache 

IC creation process consists of multiple passes (10-20 passes, the maximum number is 
user controlled). It can be summarized in the following pseudo code: 

procedure Create_IC(ic : out Irradiance_Cache) is 
 
  geomDiscMap  : Image; 
  irradDiscMap : Image; 
  temp         : Image; 
  discMap      : Texture2D; 
  candidates   : array of IC_Record; 
  smallGroup   : array of IC_Record; 
  candGroups   : array of (array of IC_Record); 
  iterNum      : Integer; 
 
  -- user controlled 
  MAX_PASS_NUMBER   : Integer := 20;  
  MIN_CAND_TRESHOLD : Integer := 100;  



 Implementing Irradiance Cache in a GPU Realistic Renderer 21 

 

begin 
 
  -- the very first pass 
  -- 
  geomDiscMap := CreateGeometryDiscMap(); 
  discMap     := Build2DMipMapChain(geomDiscMap); 
  candidates  := Dithering(discMap); 
   
  ic.Insert(candidates); 
  iterNum := 0; 
  candidates.resize(MIN_CAND_TRESHOLD+1); 
   
  -- multipass construction 
  -- 
 
  while(candidates.size() >= MIN_CAND_TRESHOLD and 
        iterNum < MAX_PASS_NUMBER): 
 
    -- screen space stage   
    --   
    temp       := CreateIrradianceDiscMap(); 
    discMap    := Build2DMipMap(temp); 
    candidates := Dithering(discMap); 
     
    -- insert candidates except for pixels 
    -- for which we already have records 
    -- 
    ic.Insert({candidates} \ {ic.records});  
 
    -- world space stage 
    -- 
    candidates := SelectIfInterpErrorIsLarge(); 
    candidates := SortWithZCurve(candidates); 
    candGroups := GroupRecords(candidates); 
     
    candidates := [] 
    for group in candGroups: 
      smallGroup := SelectSeveralCands(group); 
      candidates.append(smallGroup); 
    end for; 
 
    ic.Insert(candidates); 
    iterNum := iterNum + 1; 
  end while; 
end Create_IC; 



22 V. Frolov et al. 

 

The ‘Insert’ procedure also evaluates irradiance for each records. We will discuss its 
implementation later. Each pass consists of 2 independent stages. The first stage 
works only for visible points. The second stage works for visible and for points that 
are not directly visible from the eye. During each pass and within each stage new 
irradiance cache records are inserted into the cache. The very first pass is different 
from the others and works with geometry discontinuity like [8] and [10] do. The im-
portant aspect of the irradiance cache generation process is that a large set of points 
(several hundred or even thousand points) are selected at once, irradiance for these 
points are computed on the GPU and these points are added to the cache structure in 
one transaction. 

3.2 The Very First Pass (Coarse Screen Space Pass) 

In the very beginning of the process of irradiance cache creation we have no informa-
tion about the scene at all. Owing to this fact, the goal of this pass is to create first 
approximation of irradiance cache that will be used as a starting point for further 
passes.  Our algorithm tries to predict complexity of different screen parts, using 
geometry discontinuity maps and image processing. It attempts to place more records 
in areas where more of them are required.  

First, we trace rays from the eye position and store hit positions and normals in 
separate full screen textures. A mip-map pyramid for each of these textures is built. 
Then, for each mip-level a surface discontinuity texture map is evaluated according to 
this formula: 

         surfDisc := k*normDiff + worldPosDiff; 

Where worldPosDiff and normDiff is a maximum difference between positions (and 
normals accordingly) within neighboring pixels (in an appropriate mip-level). And k 
is a parameter that depends on the world scale. Having a discontinuity map, we blend 
all of up-scaled mip levels and perform the dithering algorithm on the resulting image 
with a binary quantization (i.e. each pixel in resulting image can have a value equal to 
1 or 0). The result of this dithering is a binary image - a set of initial points; this initial 
set is our first approximation of irradiance cache.   

The main idea behind that binary dithering is that it allows us to represent disconti-
nuity maps (both geometry and irradiance) in terms of sparse point set – potential IC 
records.  

Dithering Implementation.  
Here is our dithering implementation in pseudo code:  

-- in parallel for each screen pixel 
-- 
d0 := tex2DLod(discontinuty, x, y, 0); 
d1 := tex2DLod(discontinuty, x, y, 1); 
 



 Implementing Irradiance Cache in a GPU Realistic Renderer 23 

 

d2 := tex2DLod(discontinuty, x, y, 2); 
... 
deterministicSelect := F1(d0,d1,d2,...,x,y);     
stochasticSelect    := F2(d0,d1,d2,...,x,y); 
 
if deterministicSelect or stochasticSelect then 
  PutRecordInThisPixel(x,y); 
end if;    

 

For each pixel we read discontinuity value from each mip level of the discontinuity 
map - (call these values d0,d1,d2,d3,...) and then rely on some functions (F1 and F2) - 
we decide whether we put record in the target screen pixel or not. We believe the F1 
and F2 implementation could be different. We used a set of thresholds for F1 and a 
stochastic selection with fixed threshold for F2.  

Screen Space Stage (1).  
The same operation but for irradiance discontinuity is performed in subsequent 
passes– calculate irradiance by fetching it from the cache, build difference image, 
create mip-map pyramid, perform dithering and insert newly obtained points into 
irradiance cache. This procedure is repeated several times.  

World Space Stage (2).  
The presented screen space algorithm works on primary visible smooth surfaces. 
However it cannot be used for indirectly visible surfaces and it tends to miss tiny 
geometric details. The red triangle in Fig. 1 represents viewers’ frustum. Red points 
are not visible from the camera, yet secondary rays can still reach such regions. 

 

Fig. 1. Rays that are traced from the eye may reach points that are not visible directly 



24 V. Frolov et al. 

 

Our goal is, to generate a set of irradiance cache points that completely cover the 
space where rays can hit a surface during path tracing process. We used an idea simi-
lar to the clustering approach that had been used in [12].  

Rays are traced from the eye and all hit points are saved on each bounce if interpo-
lation has unacceptable error estimation from geometric considerations. All such 
points are stored in separate buffer during ray tracing using CUDA ‘atomicAdd’.  

However, a very large set of points is produced and we have to select a subset of 
the best candidates from it. We believe several approaches can be applied to form 
clusters, we used a simple technique that can be easily ported to GPU. At first, we sort 
candidates according to 3D Z-Curve [13]. After that, we start inserting points into a 
cluster (around the first point in the sorted array). However we want to keep the 
bounding box of the current cluster within certain limits. If after inserting a point the 
bounding box of the current cluster exceeds the maximum bounding box size, we 
create a new cluster and continue inserting candidates into it. Our motivation to use 
clustering was to select candidates with maximal interpolation error and this way IC 
records will be more regularly distributed. 

Once all the points are clustered, it is possible to select a single point from each 
cluster with maximum error however it is not the best approach. Let us consider a 
cluster that was formed around the corner of the Cornell Box. The corner consists of 3 
walls and if our cluster contains points on every wall, we have to select at least one 
point on each wall, otherwise we lose useful candidates, because we know that ra-
diance difference usually corresponds to rapid changes of the normal field. So, from 
each cluster we select several candidates with unique normals and thus, deal with 
corner cases.   

We terminate the creation process when the maximum number of passes is reached 
or when ‘candidates.size()’ becomes small enough (this parameter is user defined). 
Due to the stochastic nature of our IC creation process (world space stage uses ran-
dom ‘path tracing style’ rays) on some complex scenes there can be a regions that 
were not covered by IC records and candidates are still produced. However, if we stop 
IC creation process in that case, it will not introduce a significant error in the final 
image because the probability that rays hit such regions tends to be zero.   

3.3 Final Rendering 

After we have irradiance cache computed we do adaptive path tracing as described in 
[10] with fetching indirect smooth lighting from the irradiance cache. Thus, for fast 
and smooth indirect lighting we use irradiance caching technique and we use path 
tracing for other effects, such as soft shadows, glossy reflections and refractions, 
depth of field and motion blur.  

3.4 Implementation and Results 

Our implementation is done using CUDA and C++. All performance critical parts of 
the algorithm are done in CUDA. However, such things as tree construction and some 
other algorithms are implemented in C++ on the host. 



 Implementing Irradiance Cache in a GPU Realistic Renderer 25 

 

3.5 Hemisphere Sampling 

For irradiance computations we use the progressive evaluation algorithm with Monte 
Carlo path tracing. All irradiance cache records are placed in ‘active records list’. For 
each active record we use a sequence of randomly distributed (but coherent) hemis-
phere samples – 1024, 4096, 16384, 65536 and etc. At first we use 1024 rays for all 
records in the list. If estimated error for a record is small enough we discard that 
record from ‘list of active records’ and process remaining records with 16384 rays 
(the next value in the sequence). We repeat this process until all records are evaluated 
or the maximum number of samples per irradiance record is achieved. Using the se-
quence of pre-generated samples instead of simple random rays is important because 
we can save rays coherency at least for the first bounce and have valuable speed-up (~ 
2-4 times) for ray tracing on GPUs.  

To evaluate convergence for a record we use the approach described in [14] accu-
mulating odd and even partial sums of lighting integral. We used ‘Hammersley’ sam-
pling technique described in [15] to cover hemisphere with samples.  To have more 
coherent groups of rays we used stratification (subdivide the hemisphere into sectors 
and generate 32*k rays for each sector where k >= 1). We group ‘Hammersley’ points 
in groups of size 32*k. We do that once on the CPU in tangent space. On the GPU we 
transform directions from tangent to object space to get correct hemisphere sampling. 
During the hemisphere sampling, we also calculate initial validity radius for each 
irradiance cache point using harmonic mean distance [Ward et all 88]. 

3.6 Insertion Records in Octree 

The insertion process is done on the CPU. Our implementation inserts a set of records 
in one transaction, and we modified the original insertion algorithm, described in [3] 
and [6]. 

procedure Insert ( self    : inout Irradiance_Cache; 
                   records : in array of IC_Record ) is  
begin 
  EvaluateIrradiance(records); 
  self.auxOctree.Insert(records);  
  ValidityRadiusClamping(records, self.auxOctree);    
  NeighbourClamping(records, self.auxOctree);  
  self.mainOctree.Insert(records); 
end Insert; 

The problem with inserting multiple records is that in several cases, we can find a 
large set of closely-located records, with overlapping validity radiuses. This is a prob-
lem, because in those regions octree leafs will contain a large list of points and inter-
polation becomes slow. This motivated us to develop a special algorithm for decreas-
ing validity radiuses during insertion. Our insertion consists of 3 phases. First, we 
consider irradiance cache records as points (not as spheres!) and insert them into an 
auxiliary octree. This octree will be used to speed-up location of k-nearest points 
(irradiance cache records). 



26 V. Frolov et al. 

 

We call the second step ‘validity radius clamping’. It treats irradiance cache 
records as spheres. The goal of this step is to decrease validity radius for each point. 
For each irradiance cache record it locates k nearest neighbors (k is 4-7) in ‘different 
directions’ and if the validity radius of the current point is greater than the distance to 
the farthest point, the validity radius is clamped to this distance. 

 

 

Fig. 2. Angular criterion of filtering nearest neighbors 

By ‘different directions’ we mean that while we look for neighboring points we 
calculate the angle between a new candidate and all the points that we have already 
found (Fig. 2). If the angle between the direction to a new point and any direction to a 
point we already found is too small, we do not consider this point, i.e. we do not add 
it into the nearest neighbors list. 

At last we also consider irradiance cache records as spheres. But validity radiuses 
of these records were clamped by the previous step. The goal of the last step is to 
insert all points into the final octree that will be used for fetching irradiance from the 
cache on the GPU. Validity radius clamping is an important part of the algorithm. 
Table 1 shows performance improvements gained by introducing our validity clamp-
ing approach.  

Table 1. The column marked IC1 time presents time (in milliseconds) required to perform one 
million look-up operations when validity radius clamping is disabled. The column marked IC2 
time presents time, required to perform one million look-up operations with enabled validity 
radius clamping. The last column represents acceleration factor. All measurements were done 
with GTX560 HW. The original Krivánek’s Neighbor Clamping was performed in all cases - 
both for IC1 and IC2 columns. 

Scene IC1 time (ms) IC2 time (ms) Look-up acceleration 
Teapot 30.0 ms 5.8  ms 5.1 
Sponza1 59.0 ms 13.0 ms 4.4 
Sponza2 44.0 ms 9.1  ms 4.9 
Reneissance 20.0 ms 9.6  ms 2.1 
Arch-class 53.0 ms 12.0 ms 4.3 
Cry-Sponza 45.0 ms 13.0 ms 3.3 



 Implementing Irradiance Cache in a GPU Realistic Renderer 27 

 

Thus, inspired by Krivánek’s Neighbor Clamping, we introduce a new validity 
clamping radius criterion in order to accelerate look-up operation by means of density 
control. To avoid light leaks near tiny geometry details we use original Neighbor 
Clamping heuristic, extended to the case of simultaneous multiple record insertion. 

3.7 Fast Octree Look-Up 

We use interpolation formula proposed by Tabellion and Lamorlette in [16] and 
stackless octree look-up as described in [3]. We have found that the stackless ap-
proach is very efficient on GPUs if only several irradiance cache records are stored in 
octree leaves (the timings are presented in table 1).  

3.8 Results Overview 

The results of our renderer are presented in Table 2. We target high quality images at 
1920x1200 resolution and we used world space irradiance interpolation. We perform 
gamma-correction for the final images and a Tone Mapping for several of them 
(marked in table). 

Table 2. Test setup. All scenes were rendered in 1920x1200 on GTX560 HW. Image difference 
and square error were computed with ‘The Compressonator’ tool [17]. The path tracing 
accuracy was always set to 5%. Note that path tracing accuracy should not correlate to the IC 
accuracy except for the cases where the lighting is pure diffuse indirect (i.e. interreflected from 
diffuse surfaces). The naive path tracing accuracy (as reference method) was set to 5%. 
Maximum diffuse bounces of path tracing was limited to 2.We used accuracy = 10% for IC 
records evaluation. The column named 'Rays per sec/Samples per sec' show the number of rays 
per second and samples per second that our renderer performs for naive path tracing. ** Our 
renderer shoots 4 shadow rays per each hit point if only one area light is present in the scene. 
So the difference between number of rays per second and number of samples per second is 
higher for this scene. 

Scene Triangles 

number 

Rays per sec / 

Samples per 

sec; 

IC records IC time Render pass time 

Teapot 25 612 82M / 5.8M**  16994 9.0s    133.7s 

Sponza1 66 454 62M / 5.4M 213435 157s    20s 

Sponza2 66 454 64M / 5.4M 97789 109s    11s 

Reneissance 871 786 64M / 4.3M 306326 167s    10s 

Arch-Class 1 010 724 45M / 4.1M 302992 285s    20s 

Cry-Sponza 262 267 30M / 2.8M 442332 501s    40s 

 
Scene Total time  

(with IC) 

Naive path tracing

time 

Accelerati-on 

(times) 

Square error  

(hdr) / (png) 

PSNR (png) 

Teapot 142.7s 510s  3.6 2.3 / 2.1 46.5 

Sponza1 177s 1554s  8.8 1.3 / 2.1 46.4 



28 V. Frolov et al. 

 

Table 2. (Continued) 

Sponza2 120s 1695s  14.1 1.6 / 3.6 41.6 

Reneissance 177s 1830s 10.3 1.7 / 2.9 43.5 

Arch-Class 305s 2001s 6.6 2.1 / 4.3 40.2 

Cry-Sponza 541s 3347s  6.2 2.9 / 2.5 45.0 
 

Scene Avg samples per pixel for 
Naive Path Tracing 

Avg samples per IC 
record 

CPU overhead 
(octree build) 

Tone  

Mapping 

Teapot 1242 5069 7% No 

Sponza1 3644 4840 19% No 

Sponza2 3972 5398 5.6% Yes 

Reneissance 3416 3156 16% No 

Arch-Class 3562 6432 8% No 

Cry-Sponza 4068 5328 9% Yes 

We also provide zoomed-in side by side comparisons of our IC and path tracing so-
lutions by taking the time we compute image with IC and see what image we will get 
with path tracing. 

3.9 Bottleneck Analysis 

For our current implementation we used Monte-Carlo path tracing to evaluate irra-
diance. We limit number of diffuse light bounces to 2 in naive path tracing and IC. 
We start from 1024 hemisphere samples and continue to increase the number of sam-
ples with our progressive evaluation algorithm. The average saples per IC record is 
presented in table 2. 

We have measured that during irradiance cache construction ~80% of the time is 
spent on evaluating records (i.e. hemisphere sampling with Monte-Carlo path tracing) 
and it takes ~50-90% of the total rendering time. One way to reduce this time is to use 
fewer samples with one bounce. This will work much faster because on the first bounce 
we have coherent sets of rays (and the noise is less than for 2 or more bounces). How-
ever this will prevent us from computing indirect lighting from multiple diffuse 
bounces. Another choice is to use photon mapping with final gathering [3] instead of 
Monte-Carlo path tracing. We believe this idea should give us a performance benefit 
and we’ll investigate this in our future research. We also think that using recursive irra-
diance cache [3] is a promising idea; it allows tracing only coherent set of rays to trans-
port light from one level of the cache to another (or even use rasterization).  

We perform interpolation in the world space and as a result the IC generation algo-
rithm places a lot of records near tiny geometry details. We suppose screen space IC 
should be used for primary visible points.  

The octree construction (insertion of records) is not a bottleneck in our implemen-
tation; it usually takes 7-15% of irradiance cache construction time. The remaining 
5% of the time was spent on ray tracing during IC construction, building of disconti-
nuity maps (both geometry and irradiance), data transfers between GPU and CPU. 



 Implementing Irradiance Cache in a GPU Realistic Renderer 29 

 

 

 

 

 

 

Fig. 3. Zoomed in comparison (256x128 pixels) of the path tracing and irradiance caching 
within the same time limit 



30 V. Frolov et al. 

 

  

Fig. 4. Test setup. The difference is magnified 16 times 



 Implementing Irradiance Cache in a GPU Realistic Renderer 31 

 

 

Fig. 5. IC record positions. Image was rendered in 1024x768 

Regarding the final rendering, the irradiance cache look-up operation on average 
takes less than 15% of the total rendering time. The ray tracing (incoherent rays) takes 
65-75% of this time and the rest is taken by shading and pipeline overhead. 

3.10 Conclusion 

In this work we provided an IC solution for a realistic GPU renderers. We achieved 
from 4 to 14 times acceleration over our own GPU optimized path tracing with an 
average PSNR 40-45. Instead of inserting records one by one like in traditional IC 
approach, we used image processing algorithms to predict IC records distribution and 
thus inserted large sets of IC records in parallel. We used clustering approach to dis-
tribute IC records more regularly and put records in places with maximum error. Also, 
we introduced clamping heuristic for validity radii in order to solve the problem of 
overlapping validity areas of IC records. Solving that problem was critical for effi-
cient implementation on massive parallel machines like GPUs when records were 
inserted in large sets. That way we achieved fast IC look-up. 



32 V. Frolov et al. 

 

Acknowledgements. This work was sponsored by the RFFI (Russian Foundation for 
Fundamental Investigations), grants “MOL_A 12-01 31027” and 12-01-00560. 

References 

1. Aila, T., Laine, S.: Understanding the efficiency of ray traversal on GPUs. In: Proceedings 
of the Conference on High Performance Graphics 2009, New Orleans, Louisiana, August 
1-3. S.N. (2009) 

2. Ward, G., Rubinstein, F., Clear, R.: A ray tracing solution for diffuse interreflection. In: 
SIGGRAPH 1988. Computer Graphics Proceedings (1988) 

3. Křivánek, J., Gautron, P., Ward, G., Jensen, H.W., Christensen, P.H., Tabellion, E.: Prac-
tical global illumination with irradiance caching. In: ACM SIGGRAPH 2008 Classes, Los 
Angeles, California, August 11-15, pp. 1–20. ACM, New York (2008),  
http://doi.acm.org/10.1145/1401132.1401213 

4. Debattista, K., Santos, L.P., Chalmers, A.: Accelerating the irradiance cache through paral-
lel component-based rendering. In: EGPGV 2006 - 6th Eurographics Symposium on Paral-
lel Graphics Visualization. Eurographics, pp. 27–34 (May 2006) 

5. Dubla, P., Debattista, K., Santos, L.P., Chalmers, A.: A wait-free shared-memory irradiance 
caching. IEEE Computer Graphics and Applications (2010) (accepted for publication) 

6. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. 
Morgan Kaufmann (2010) 

7. Gautron, P., Křivánek, J., Bouatouch, K., Pattanaik, S.: Radiance cache splatting: A GPU-
friendly global illumination algorithm. In: Proceedings of Eurographics Symposium on 
Rendering (June 2005) 

8. Wang, R., Zhou, K., Pan, M., Bao, H.: An efficient GPU-based approach for interactive 
global illumination. ACM Trans. Graph. 28(3), 1–8 (2009) 

9. Jensen, H.W., Suykens, F., Christensen, P.H., Kato, T.: A Practical Guide to Global Illu-
mination using Photon Mapping. In: SIGGRAPH 2002 Course Note #43, San Antonio, 
USA, July 21-26. ACM (2002) 

10. Papaioannou, G.: To be presented at High Performance Graphics 2011, Vancouver,  
Canada (August 2011) 

11. Frolov, V., Kharlamov, A., Ignatenko, A.: Biased solution of integral illumination via irra-
diance caching and path tracing on GPUs. Programming and Computer Software 37(5), 
252–259 (2011), doi:10.1134/S0361768811050021 

12. Gassenbauer, V., Křivánek, J., Bouatouch, K., Bouville, C., Ribardière, M.: Improving 
Performance and Accuracy of Local PCA (November 4, 2011), doi:10.1111/j.1467-
8659.2011.02047.x 

13. Morton, G.M.: A computer Oriented Geodetic Data Base; and a New Technique in File 
Sequencing. Technical Report. IBM Ltd., Ottawa (1966) 

14. Krivánek, J., Bouatouch, K., Pattanaik, S., Žára, J.: Making Radiance and Irradiance Cach-
ing Practical: Adaptive Caching and Neighbor Clamping 

15. Suffern, K.: Ray Tracing from the Ground Up. A. K. Peters, Ltd., Natick (2007) 
16. Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer-

generated films. In: Proceedings of SIGGRAPH (2004), doi:10.1145/1186562.1015748 
17. The Compressonator. A tool for compressing textures and creating mip-map levels.  

Can visualize image difference and calculate square error,  
http://developer.amd.com/tools/compressonator/pages/ 
default.aspx 



 

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 33–47, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Adaptive Generation of Color Anaglyph 

Elena Patana, Ilia Safonov, and Michael Rychagov 

Samsung Moscow Research Center, 12, bldg. 1, Dvintsev str., Moscow, Russia 
{e.patana,ilia.safonov,michael.rychagov}at.samsung.dot.com 

Abstract. Nowadays stereophotography is rapidly developing, providing a 
plenty of sources for stereoimages. The goal of current technology – to provide 
users with possibility to get high quality 3D anaglyph prints for education and 
entertainment. To do so it is necessary to agree color characteristics of glasses 
and printed colors, since errors in color transmission lead to cross-talk interfe-
rence and ghosting effects. There is no easy way for user to adjust colors of 
anaglyph in order to coordinate characteristics of glasses and printer. 

We propose a technique that allows generating anaglyphs with colors 
adapted to given glasses and printer colors by means of special color pattern 
analysis. In addition, our approach takes into account the size of the printed 
anaglyph image. Resulting printed images have a good quality that is confirmed 
by user opinion survey. The images contain fewer artifacts and look better in 
comparison to anaglyphs without adaptation, which are generated in existing 
software applications. The technique utilizes a low amount of memory and has 
low computational complexity. 

Keywords: Anaglyph, stereo printing, crosstalk noise, ghosting reduction. 

1 Introduction 

At present time, there are a lot of sources of stereo images: 3D cameras, 3D movies, 
stereo-pairs can be created from two frames captured by conventional 2D camera, 
several software technologies allow to catch different views of the same 3D object, 
for example, Google Earth and parallax effect in HTML 5. Examples of stereoimage 
sources are shown in figure 1. 

Presentation of three-dimensional views by anaglyphs is one of the simplest and 
the most economic methods. However this method has some disadvantages such as 
loss of color and discomfort for prolonged viewing. In spite of the drawbacks, some-
times consumers want to print 3D color anaglyph pictures for education and enter-
tainment. 3D anaglyph books have been known for several decades, they are viewed 
through glasses with different color filters, for example blue and red. Recently a fam-
ous magazine SLINK (Issue 7, Sep. 2012) has printed all photos as anaglyph images. 
There are various user groups in Web like Flickr and others [10], where the process of 
3D color anaglyphs generation is discussed [5].  



34 E. Patana, I. Safonov, and M. Rychagov 

 

There are several PC and mobile software applications for generation of anaglyphs, 
for example StereoPhoto Maker, Anaglyph Maker, Anaglyph, Anaglyph Workshop, 
Z-Anaglyph. They have some disadvantages: settings for ghosting effect reduction do 
not take into account size of the printed anaglyph; there is no adaptation for given 
glasses and colors of printer ink/toner.  

 
 

 

Fig. 1. Examples of stereoimage sources 

Usually it is assumed that viewing anaglyph on a display and adjusting of printer 
color profile is enough to get similarly looking printed anaglyph. However, our expe-
riments show that it is impossible to get similar color perception while looking at a 
display and color hardcopy produced by a laser or ink-jet printer. From a theoretical 
point of view it can be easily explained, because gamut of a display and gamut of 
printing devices are rather different [3]. That is why printing devices manufacturers 
are interested in rising of printing quality of anaglyph [11]. 

After performing the measurements of transmission coefficient for several glasses 
(  for right filter and  for left filter) as well as reflection spectrum of printed 
colors, i.e. magenta  and cyan , by spectrometer, and analyzing estimated 
reflection and transmission coefficients, it was concluded that full elimination of 
cross-talk effect is impossible. Nevertheless, it is possible to reduce cross-talk interfe-
rence by correct color setting of a printed anaglyph. As it is evident by experiment, 
the primary printed colors (cyan and magenta) aren’t transmitted well; but our estima-
tions show that colors selection according to given glasses allows to decrease ghost-
ing artifacts significantly. 

In the paper we propose an adaptive to transmission characteristics of glasses and 
printed colors algorithm for anaglyph generation and printing. 



 Adaptive Generation of Color Anaglyph 35 

 

2 Related Works 

Anaglyph generation is a difficult problem. It isn’t enough to put one color channel in 
a left image and another in a right image. Contradictory problems should be solved in 
anaglyph generation process, because it is needed to code two images on a single 
view by colors for stereo effect making and to reproduce colors with maximum natu-
ralness. Due to stereo and color conflicts it appears to be impossible to develop an 
algorithm for anaglyph creation which always produces good color representation, 
good details, and is permanently free from typical artifacts, such as ghosting, and 
region merging. 

Well-grounded techniques for color anaglyph generation for display is described in 
[2,4,6,9]. Several techniques have been proposed for the production of anaglyphs for 
viewing on displays. In [9] three approaches are discussed: Photoshop algorithm (PS) 
and its variants, the least squares algorithm (LS)  proposed by Eric Dubois, that opti-
mizes colors in the CIE space, and the midpoint algorithm (MID) that minimizes the 
sum of the distances between the anaglyph color and the left and right eye colors in 
CIE L*a*b*. Linear anaglyph algorithms will always map several different left/right 
eye colors to the same RGB color. The results show that the MID method produces 
excellent color and detail for color images but may suffer severe ghosting. Anaglyphs 
produced by the LS method are normally darker with less detail and require brighten-
ing or gamma correction but appear to have no ghosting. The PS method is easy to 
implement and works well for grayscale images but may also suffer from ghosting 
and poor color representation.  

In [4] several methods for anaglyph enhancement are proposed that rely on stereo 
image registration, defocusing and nonlinear operations on synthesized depth maps. 
These enhancements substantially reduce unwanted ghosting artifacts, improve the 
visual quality of the images, and make comfortable viewing of the same sequence 
possible in three-dimensional as well as the two-dimensional mode. 

The method for computing pixel colors in anaglyph images presented in [6] de-
pends upon knowing the RGB spectral distributions of the display device and the 
transmission functions of the filters in the viewing glasses. It requires the solving of a 
nonlinear least-squares problem for each pixel in a stereo pair and is based on mini-
mizing color distances in the CIEL*a*b* uniform color space. 

The method proposed in [2] is adapted to the spectral absorption curves of the left 
and right filters of the anaglyph glasses. A projection technique is used to compute the 
anaglyph image that yields an image pair (after the glasses) as close as possible to the 
desired stereo pair. In order to generate anaglyph it is necessary to move into the XYZ 
space by transition matrix: , 
where  - color-matching function,  - spectrum of standard illuminant, 1,2,3 – indexes for each color component (red, green, blue), 1,2,3 – indexes 
for each color component (red, green, blue), λ – wave length. Reflection light from an 



36 E. Patana, I. Safonov, and M. Rychagov 

 

image passes through color filters of an anaglyph glasses and is transformed by two 
transition matrixes: 

 (for left eye filter) and  

  (for right eye filter), where  and  - 
transmission function of left and right filter. 

An anaglyph is generated by the following formula:  , 

where      ,  

where     – left image of stereo pair in RGB,     – right image of stereo pair in RGB, N is normalizing ma-
trixes for condition 0,1 , ⁄ , 1,2,3 – indexes for each 
color component (red, green, blue),  - possible anaglyph vector with maximum 
values which is needed for normalizing of , 1 1 1 , W , W - is weighted matrix, which allows weighting of the Y 
component more heavily than X and Z to favor reproduction of the correct luminance,  ,  00 .  

3 Adaptive Anaglyph Generation 

3.1 General workflow 

In general we generate anaglyphs by means of the method described in [2], but we 
propose new approach for adaptation to spectral characteristics of stereo glasses and 
colors of ink/toner. In additional we propose several procedures to reduce ghosting 
effect to minimum. 

General scheme of an adaptive anaglyph generation is presented on figure 2. Be-
fore anaglyph generation a process of transmission function estimation is performed. 
For this purpose firstly we print the color pattern (figure 2) on a target printer, then we 
estimate transmission coefficients of given glasses. Detailed description of test color 
pattern is present in section 3.3; and a sequence of actions for evaluation of transmis-
sion function of glasses filters by user is described in section 3.4. 

Then it is needed to prepare a stereo pair. Preparation includes geometrical align-
ing, color correction and enhancement. Stereo pair color correction is performed by 
well-known method of histogram matching [5]. After that the stereo pair is enhanced 
to reduce unwanted artifacts.  

There are two main ideas for anaglyph enhancement: decreasing of disparity range 
of a stereo pair and color component defocusing. Detailed description of these ideas is 
present in section 3.2. Then anaglyph generation is performed by method [2] with 
adapted transmission functions.  



 Adaptive Generation of Color Anaglyph 37 

 

 

Fig. 2. General scheme of an adaptive anaglyph generation 

Also we propose a method of disparity correction for keeping 3D effect and reduc-
tion of ghosting effect appearance on an anaglyph hardcopy, because anaglyph size 
can be different on display and hardcopy. It is presented in section 3.5. 

3.2 Anaglyph Enhancement 

Decreasing of disparity range of a stereo pair includes estimation of average disparity 
value on a stereo pair by the following method: ∑ | , , |, , 

where  - disparity with minimal value of SAD (Sum of Absolute Differences) [7] in 
some region on left and right images. We compute average disparity  after estima-
tion of the disparity map. Decreasing of disparity is produced by horizontal shifting of 
stereo pair proportionally to . If average disparity is less than 4 pixels, stereo pair is 
not changed.  

 

Fig. 3. Dependence of the regularization coefficient from size and disparity of a stereo pair 

The main idea is that disparity should not be too large relatively to image size. 
Therefore, horizontal shift is computed as Shift Q · d, where Q is regularization 
coefficient which depends on ratio of average disparity and image width W in pixels, 
as presented on figure 3. If the value of the ratio d/W is greater than 0.03 it might 



38 E. Patana, I. Safonov, and M. Rychagov 

 

inform about erroneous average disparity estimation; and shifting of a stereo pair 
should be made with a smaller value. All constants of the empirical approach were 
found during a plenty of visual experiments. 

Figure 4a shows the anaglyph without disparity correction. On its hardcopy ghost-
ing effect is present. Figure 4b demonstrates the anaglyph with decreased disparity. 
For its generation stereo pair was shifted by several pixels. Ghosting effect for this 
anaglyph hardcopy is almost invisible. 

 
 

 
a) Without disparity correction. b) With corrected disparity. 

Fig. 4. Effect of disparity correction for anaglyphs 

Simple and effective way for decreasing of crosstalk noise is defocusing one color 
channel for both images of stereo-pair [4]. We carry out red or blue channel or both 
the channels smoothing by means of low-pass box-filter: , ∑ ∑ , , 

where 2 1,2 1 are kernel size. Effective algorithm for Box filter calculation 
is based on summed area table (also well-known as integral image) [1]. The value at 
any point (x, y) in the integral image is just the sum of all the pixels above and to the 
left of (x, y), inclusive: , ∑ , . Integral image I can be computed 

efficiently in a single pass over the image i, using the fact that the value in the 
summed area table at (x, y) is:  , , 1, , 11, 1  Sum of the darkest box shown in figure 5 can be calculated from 
integral image as: 

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ),
A x x C x
A y y C y

i x y I A I C I B I D
′< ≤
′< ≤

′ ′ = + − −  

Such way provides identical processing time for any box size. There is no necessity 
to precalculate and store whole integral image. Integral image can be calculated for 
relatively small band jointly with Box filter.  



 

 

Fig. 5. Illustr

3.3 Transmission Func

For achievement of good 
propose to estimate transmi
ter colors. It allows to redu
printed 3D color anaglyph i
color components and refle
color components RGB and

For evaluation of  
printer. This pattern is a co
pattern reveals a dependen
these colors. Hue correspon
mum and minimum values
minimum) value to lightne
(step is 0.2), columns are co

For estimation of transm
amine the pattern through 
visibility level of color sam
luated and afterwards is app
ble, it fully passes through 
location. 

Let’s left filter is red and
with maximal saturation thr
100 corresponds to red colo

Adaptive Generation of Color Anaglyph 

 

ration of Box-filter calculation via integral image 

ctions Estimation by User  

correspondence between glasses and printed colors, 
ission functions f λ  and f λ  for given glasses and p
uce ghosting effect significantly and to improve quality
image. In this case we need to know dependence of dig

ection spectrum of these colors that is dependence of th
d wave length λ.  

and  we print the color pattern (figure 6) on tar
olor table including all printable colors in HSL space. T
ce of digital color components and reflection spectrum
nds to wavelength, lightness is an average between ma
s of spectrum; saturation is distance from maximum 
ess. Rows of the table are colors with various saturat
olors with various hue (step is 10º).  

 

Fig. 6. Test color pattern 

mission function of color filters of glasses user should 
left and right filters of anaglyph glasses separately. 

mple through the filter, the transmission function is e
plied for anaglyph generation. If the color sample is inv
the filter and maximum of transmission function is at t

d right filter is cyan. Firstly user should examine first r
rough red filter. We suppose that a color with hue = 10
or of 700 nm ± 27.50 nm wave length range. If any co

39 

we 
rin-
y of 
gital 
hree 

rget 
This 
m of 
axi-
(or 

tion 

ex-
By 

eva-
visi-
that 

row 
00 ± 
olor 



40 E. Patana, I. Safonov, and M. Rychagov 

 

from the band 100 ± 100 is invisible, the maximum of transmission function is in the 
700 nm ± 27.50 nm range. If the color is visible, user should choose the row with less 
saturation (one of the lower rows) and look at corresponding color sample once more. 
If the color yet is visible, user should choose the row with the least saturation for 
analysis. Value of maximum of transmission function depends on saturation that can 
be extracted from the Table 1. 

Table 1. Dependence of maximum of transmission value from saturation 

Row of color 
pattern 

Saturation Maximum of transmission 
(MaxTrans) 

1 1 0.90    (90%) 
2 0.8 0.85    (85%) 
3 0.6 0.65    (65%) 
4 0.4 0.50    (50%) 
5 0.2 0.45    (45%) 

For cyan filter construction of the transmission function is similar. We use cyan fil-
ter of glasses and suppose cyan color has hue = 1800 ±100 that corresponds to 495 nm 
± 3.75 nm range. User should examine the test pattern and define visibility level of 
each color by grade (0…5) which corresponds to transmission. For each clearly visi-
ble point we give a 0 grade. Values of transmission function depend on maximum of 
transmission associated with row of color pattern and grade evaluated by observer 
(table 2).  

Table 2. Dependence of transmission value from grade 

Transmission Grade Transmission Grade 
 5 0.45 2 .  4 0.20 1 .  3 0 0 

 
User should mark only invisible or semitransparent colors. In this way we obtain 

rough approximation of transmission functions for particular glasses. Examples of 
such functions are shown on figure 7.  

This approach for transmission estimation can be used for another type of glasses 
(green, orange and etc.). We suppose orange color as hue = 400 ±100 that corresponds 
609 nm ± 11.25 nm, green color as hue = 1200 ±100 that corresponds 530 nm  ± 5.0 nm. 

3.4 Algorithm for selection of transmission function of existing filter  

Usage of the transmission functions in such “pure” form lead to anaglyph image with 
wrong colors. We propose to use known transmission functions of Roscolux filters 
and calculate functions of given glasses by selecting the nearest function to our rough 
approximation. Roscolux filters are used in professional photography. We’ve chosen 



 Adaptive Generation of Color Anaglyph 41 

 

10 filters which have spectrum similar to spectrum of a commercial anaglyph glasses 
and transmission values of glasses computed by spectrometer.  

 

Fig. 7. Example of transmission function evaluated by user 

In order to choose appropriate filter or glasses with transmission function  most 
similar to our computed transmission function, we note position of maximum of func-
tion and its value. Then, we choose  as estimation position of the maximum:  

  min                                                    (1) 

Then for the maximums with equal wavelength we apply the following condition:  max max .                                            (2) 

For example, compare f (users’ evaluation for red filter) on figure 8 and  (real 
transmission functions of Roscolux filters) on figure 9. On the top of the figure the 
transmission functions are presented; in the bottom the enlarged part of the graph with 
transmission function maximums area is shown. By analyzing wave lengths which 
correspond to maximums of transmission functions and according to decision rule (1) 
we select one of the most appropriate filters. 

 

Fig. 8. A part of graph of f 

 620;    730;    660;    680;    700;    730;    660. According to (1) we choose 0.88; 



42 E. Patana, I. Safonov, and M. Rychagov 

 

0.89;    660 . Then for maximums with equal wave-
length we apply the condition of the nearest transmission (2) and choose a Roscolux 
filter “Fire” with 0.88. 

 

Fig. 9.  Choosing transmission function of Roscolux filters 

An anaglyph on figure 10a is generated with transmission functions of some com-
mon stereo glasses. Its hardcopy printed on Samsung CLP-6240 printer has percepti-
ble ghosting effect for given glasses. An anaglyph on figure 10b is generated with 
transmission functions adapted for given glasses and printer colors. Ghosting effect 
on this anaglyph hardcopy is significantly reduced. 

 
 

 

a) An anaglyph example for transmission 
functions of some common stereo glasses. 

b) An anaglyph example with 
adaptation for given glasses. 

Fig. 10. Anaglyphs examples 



 

 

3.5 Adaptation to Size 

Anaglyph upsizing while p
ghosting effect. Downsizin
stereo effect. We propose 
relative to each other before

In case of upsizing ∆x
for whole images of stereo
each other for disparity dec
result of large number of eAvrgDisp is a shift for dispa

 

 
 

 Shift
gions ∆
Fig. 11.

 Shiftin∆  0.3
Fig. 12. D

4 Results and Disc

All mentioned algorithms w
the application is shown on
dows Presentation Foundati
on C programming languag

Adaptive Generation of Color Anaglyph 

of Hardcopy 

printing leads to large disparity increase and emerging
ng leads to large disparity decrease and disappearance
to decrease disparity value by shifting stereo pair ima
e enlarging process.   0.3 d, where d is average disparity value compu

o pair, ∆x is value of shift of stereo pair images relative
crease (figure 11). The value of constant 0.3 is chosen a
experiments. Vice versa in case of downsizing ∆x 0
arity increase (figure 12). 

 

 

 

ting (Remove re-∆  0.3 ) 
 An anaglyph with 

smaller disparity and 
ghosting effect 

. Disparity modification in case of upsizing 

 
 

ng (Remove regions 3 ) 
 An anagly

with preserved 
reo effect 

Disparity modification in case of downsizing 

cussions 

were implemented in software application. User interface
n figure 13. For creation of user interface we applied W
ion API. Mathematical parts of algorithms were develo

ge in separate DLL. The software application allows:  

43 

g of 
e of 
ages 

uted 
e to 
as a .3

yph 
ste-

e of 
Win-

ped 



44 E. Patana, I. Safonov, and M. Rychagov 

 

• make calibration procedure: 

1. print color pattern; 
2. create new calibration scheme for given glasses; 
3. choose and edit existing calibration scheme; 

• make alignment of stereo pair in manual and automatic mode; 
• resize and placement an anaglyph on the printed page; 
• save and print an anaglyph. 

 

 

Fig. 13. Main window of the application for anaglyph generation and printing 

Proposed technique utilizes low amount of memory and has relatively low compu-
tational complexity. Figure 15 demonstrates plot of processing time for anaglyph 
generation procedure depending on size of stereo-pair images. The computational 
time data were obtained on PC with dual-core 3 GHz CPU. It is already quite accept-
able. Some additional platform-dependent optimizations are possible. 

In order to perform benchmarking we used 5 mentioned above solutions for anag-
lyph generation and our software application. Evaluation was done by 14 observers 
with the same viewing conditions and glasses. We screened the subjects for normal 
color vision by Ishihara test plates. In our survey we used test set of 6 stereo pairs. 
Generated anaglyphs were printed on Samsung CLP-6240 printer.  We propose to 
calculate quality factor of anaglyph generation as weighted sum of two subjective 
estimations:  

, 



 Adaptive Generation of Color Anaglyph 45 

 

where V1 is subjective quality of 3D visualization, V2 is subjective level of color 
naturalness,  α 0.8,  α 0.2. V  and V  are changed from 0 to 1 with step of 0.2; 
lower V  and V  are  better. We prioritized weights α  and α  by using Analytic Hie-
rarchy Process [8]. Table 3 contains comparison of the solutions for anaglyph genera-
tion obtained during our survey. 

 
 

 

Fig. 14. Dialog for transmission function estimation 

 

Fig. 15. Processing time for anaglyph generation procedure 



46 E. Patana, I. Safonov, and M. Rychagov 

 

Table 3. Comparison of applications for anaglyph generation 

 Average E Maximum E 

StereoPhoto Maker 0.33 0.52 
Anaglyph Maker 0.57 0.72 
Anaglyph 0.45 0.56 
Anaglyph Workshop 0.58 0.76 
Z-Anaglyph 0.55 0.74 
Proposed technique 0.30 0.58 

 
In general our algorithm outperforms all tested solutions. The anaglyph generated 

by StereoPhoto Maker is presented on figure 16a. The anaglyph on hardcopy has well 
noticeable cross-talk noise. The anaglyph generated by proposed method is presented 
on figure 16b. The picture looks better due to enhancements.  

 

 

a) The anaglyph generated by Ste-
reoPhoto Maker 

b) The anaglyph generated by pro-
posed method. 

Fig. 16. Generated anaglyph examples 

Acknowledgment. Authors would like to thank Konstantin Kryzhanovsky for help 
with algorithm implementation and discussions about the paper.  

References 

1. Franklin, C.: Summed-area Tables for Texture Mapping. In: 11th Annual Conference on 
Computer Graphics and Interactive Techniques SIGGRAPH 1984, New York, pp.  
207–212 (1984) 

2. Dubois, E.: A Projection Method to Generate Anaglyph Stereo Images. In: IEEE Interna-
tional Conference on Acoustic, Speech, and Signal Processing, vol. 3, pp. 1661–1664. 
IEEE Press, Salt Lake City (2001) 

3. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics. Principles and 
Practice, 2nd edn. (1990) 



 Adaptive Generation of Color Anaglyph 47 

 

4. Ideses, I., Yaroslavsky, L.: Three Methods That Improve the Visual Quality of Colour 
Anaglyphs. J. Opt. A: Pure Appl. Opt. 7, 755–762 (2005) 

5. Lo, W.-Y., van Baar, J., Knaus, C., Zwicker, M., Gross, M.: Stereoscopic 3D Copy & 
Paste. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 
2010 29(6) (2010) 

6. McAllister, D.F., Zhoub, Y., Sullivan, S.: Methods for Computing Color Anaglyphs. In: 
Stereoscopic Displays and Application XXI, SPIE Electronic Imaging, San Jose, vol. 7524 
(2010) 

7. Rziza, M., Aboutajdine, D.: Dense Disparity Map Estimation Using CUMULANTS. In: 
18th IEEE International Conference on Image Processing, p. 984. IEEE Press, Brussels 
(2011) 

8. Saaty, T.L.: Decision Making for Leaders: The Analytic Hierarchy Process for Decisions 
in a Complex World, New Edition. Analytic Hierarchy Process Series, vol. 2 (2001) 

9. Sanders, W., McAllister, D.F.: Producing Anaglyphs from Synthetic Images. In: Electronic 
Imaging Conference, San Francisco, pp. 348–358 (2003) 

10. Yun, Z., Pingping, X., Hui, L.: Data Fusion for Multi-scale Colour 3D Satellite Image 
Generation and Global 3D Visualization. In: ISPRS Commission VII Midterm Symposium 
on Remote Sensing: From Pixels to Processes, Enschede (2006) 

11. Zeng, R., Zeng, H.: Printing Anaglyph Maps Optimized for Display. In: XVI Conference 
on Color Imaging: Displaying, Processing, Hardcopy, and Applications - Proceedings of 
SPIE, 0277-786X, v.7874, San Francisco, vol. 7866-63 (2011) 

 
 



 

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 48–62, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Audio-Adaptive Animation from Still Image 

Konstantin Kryzhanovsky, Aleksey Vil’kin, Ilia Safonov, and Zoya Pushchina 

Samsung Moscow Research Center, Dvintsev str., 12 bldg. 1, Moscow, Russia 
{k.kryzhanovs,a.vilkin,ilia.safonov,p.zoya}@samsung.com 

Abstract. In this paper we propose new approach of automatic generating real 
time content adaptive animation effects from the still images adapted for the 
low-powerful embedded HW platforms. Displayed animation behaves uniquely 
each time it’s played back, and does not repeat itself during playback duration, 
creating vivid and lively impression for the viewer. Adaptation of the effect pa-
rameters according to background audio greatly increases aesthetic impression 
of the viewer. Three animation effects such as Flashing Light, Soap Bubbles 
and Sunlight Spot are described in details. We propose several ways of control-
ling the effect parameters by music. User opinion survey demonstrates that ma-
jority of users are excited by such effects and wants to see them in their devices 
with multimedia capability. 

Keywords: animation from photo, audio-adaptive effect, multimedia slide-
show, attention zones detection. 

1 Introduction 

Creation and sharing of multimedia presentations and slideshows has become a perva-
sive activity. The development of tools for automated creation of exciting, entertain-
ing and eye-catching photo transitions and animation effects, accompanied by back-
ground music and/or voice comments, has become a modern trend [1]. One of the 
most impressive effects is the animation of still photo, for example, grass swaying in 
the wind or rain drop ripples in the water, etc.  

Special interactive authoring tools, such as Adobe After Effects and Ulead Video 
Studio, are used to create animation from an image. Development of fast and realistic 
animation effects is hard task itself; and it is a topical problem of modern computer 
graphics. For example, paper [2] discusses algorithm for generation of plausible motions 
animation. In authoring tools the effects are selected and adjusted manually, which may 
require considerable effort from a user. Resulting animation is saved as video clip, thus 
requiring noticeable amount of space for storage. During playback, such movie will 
always be the same, thus leading to repetitiveness feeling of the viewer. 

For the multimedia presentations and slideshows it’s preferable to generate ani-
mated effects on-the-fly with a high frame rate. Very fast and efficient algorithms are 
necessary to provide required performance. It’s especially difficult for low-powerful 
embedded HW platforms. 

Our research was defined as development and implementation of automatically 
generated animated effects of Full HD images on ARM Cortex A8 and A9 – based 



 Audio-Adaptive Animation from Still Image 49 

 

embedded platforms, with the CPU frequency 800 - 1000 MHz and without use of 
GPU – based APIs, such as OpenGL. Only ARM commands were available to use, 
including SIMD instructions of ARM NEON co-processor. Creation of realistic and 
complex animated effects in such limited conditions is a challenging task itself, par-
ticularly for the well experienced in computer games on powerful PCs and play sta-
tions users. 

We have developed several algorithms for generation of content-based animation ef-
fects from still images, such as Flashing Light, Soap Bubbles, Sunlight Spot, Magnifier 
Effect, Rainbow, Portrait Morphing Transition Effect, Snow, Rain, Fog, etc. For those 
effects we propose a new approach of automatic audio-aware animation generation. 

In the paper we demonstrate our concept, i.e. adaptation of effect parameters ac-
cording to background audio, for three effects: Flashing Light, Soap Bubbles and 
Sunlight Spot. Obviously the concept can be extended to other animated effects. 

 
Fig. 1. Detected beats affect size of flashing light 

2 Related Works 

Recently, some content-adaptive automatic techniques for generation of animation 
from static photo were proposed. Paper [3] describes Animated Thumbnail which is a 
short looped movie demonstrating main objects of the scene in sequence. Animation 
simulates camera tracking-in, tracking-out and panning between detected visual atten-
tion zones and whole scene. 

Music plays an important role in multimedia presentations. There are some me-
thods towards to aesthetical audiovisual composition in slideshow. Tiling Slideshow 
[4] describes two methods for analysis of background audio in order to select timing 
for photos and frames switching. First one is beats detection. Second one is energy 
dynamics, calculated using root mean square values of adjacent audio frames. 

Beat detected 

Star size 



50 K. Kryzhanovsky et al. 

 

Also there are other concepts of combining audio and visual information with the 
automatic generation of multimedia presentations exists. For example, paper [5] sug-
gests approach that focuses on an automatic sound track selection. The process at-
tempts to comprehend what the photos depict and try to choose music accordingly. 

3 Animation Effects from Single Image 

3.1 General Workflow 

In general, the procedure of creation of animation effect from single still image con-
sists of the following major stages: effect initialization and effect execution.  

During effect initialization certain calculations which has to be made only once for 
entire effect span, are performed. Such operations may include source image format 
conversion, pre-processing, analysis, segmentation, creation of some visual objects 
and elements displayed during effect duration, etc. On execution stage for each sub-
sequent frame the background audio analysis is performed, visual objects and their 
parameters are modified depending on time elapsed and calculated audio features, and 
entire modified scene is visualized. The generalized animation effect processing flow 
chart is displayed on fig. 2. 

3.2 Flashing Light 

The Flashing Light effect displays several flashing and rotating colored light stars 
over the bright spots on the image. In this effect, size, position and color of flashing 
light stars are defined by detected position, size and color of the bright areas on the 
source still image. 

Algorithm performs the following steps to detect small bright areas on the image: 

• calculating the histogram of luma channel of the source image  
• calculating segmentation threshold as luma level corresponding to specified frac-

tion of brightest pixels of the image using the luma histogram; 
• segmenting source image by thresholding; while thresholding, the majority mor-

phological filter is used to filter out localized bright pixel groups; 
• calculation of the following features for each connected region of interest (ROI): 

a. Mean color meanC  

b. Centroid ),( cc yx  
c. Image fraction F – fraction of the image area, occupied by ROI; 
d. Roundness – relation of the diameter of the circle with same area as ROI to 

maximum dimension of the ROI: 

, 

where S is the area of the ROI and W, H are ROI bounding box dimensions; 
 

),max(

2

HW

S
Kr

π
=



 Audio-Adaptive Animation from Still Image 51 

 

 
 
 

 
Fig. 2. Animation effect processing flow chart 

 
 

Effect 
Execution 

Effect 
Initialization Obtain still image 

Detect regions of interest 

Detect ROI features 

Create visual objects 

Animation 
stopped?

Obtain audio fragment 

Detect audio features 

Update visual objects parameters 

Generate animation frame 

Display animation frame 

Yes 

No 



52 K. Kryzhanovsky et al. 

 

e. Quality – integral parameter, characterizing the possibility of to ROI to be a 
light source and calculated as following: 

FFrRmeanYmeanYL KwKwYwYwQ ⋅+⋅+⋅+⋅= maxmax ; 

where maxY  - maximum luma of the ROI, 

meanY - mean luma of the ROI,  

FK - coefficient of ROI size, 





>
≤

=
00

00

,/

,/

FFifFF

FFifFF
KF

, where 0F - image fraction normalizing coeffi-

cient for an optimal lightspot size; 

maxYw , Ymeanw , Rw , Fw  - weighting coefficients. 

Weighting coefficients w  and optimal lightspot size normalization coefficient 

0F
 are obtained by minimizing differences between automatic and manual 

light sources segmentation results. 

• selection of regions with appropriate features. 

All bright spots, with image fraction falling within appropriate range (Fmin, 
Fmax), and roundness Kr is larger than certain threshold value 0

rK  are considered 

as potential light sources. Potential light sources are sorted by their quality value 

LQ . Specified number of light sources with the largest quality is selected as final 

positions of “light stars” objects. 

Centroids of selected light regions are used as star positions. Star size is determined 
by dimensions of appropriate light region. Mean color of the region determines the 
color of the light star. Fig. 3. shows an image with bright spots and corresponding 
light stars.  

 
 

a) 
 

b) 

Fig. 3. a) Bright spots on the image and b) corresponding light stars 



 

 

Every light star is compo
shape elements: halo shape
maps scaled independently
rendering, the alpha map o
buffer, and then the star i
extracted from star alpha m

During animation, light 
domly to make an expressio

 

a) 

Fig. 4. Light star

3.3 Soap Bubbles 

The effect displays soa
posed from color map, alph
the different highlight orien
depends on lighting directio
calculated using downscale

Fig. 5 shows Soap Bub
map, selected according av
bined with source image us

 

a

Fig. 5. Soap B

During animation, soap 
to top or vice versa while 
pression of real soap bubble

Audio-Adaptive Animation from Still Image 

osed from bitmap templates of two types, representing 
e and star ray (or spike) shape. These templates are al
y. Examples of templates are shown on fig. 4. Dur

of complete star of appropriate size is prepared in separ
s painted with appropriate color with transparency va

map. 
star sizes and intensities are changed gradually and r

on of flashing lights. 

b) 

r shape templates: a) Halo template; b) Ray template 

ap bubbles moving over the image. Each bubble is co
ha map and highlight map. The set of highlight maps w
ntation is precalculated for each bubble. Highlight posit
on in corresponding area of the image. Lighting gradien
d brightness channel of the image.  

bble components. Color map is modulated with highli
verage lighting direction around the bubble, and then co
ing alpha blending with bubble alpha map. 

a) b) 

Bubble components: a) Alpha map b) Color map 

bubbles are moved smoothly over the image from bott
oscillating slightly in horizontal direction to make an 
es floating in the air. 

53 

star 
lpha 
ring  
rate 
alue 

ran-

om-
with 
tion 
nt is 

ight 
om-

tom 
im-



54 K. Kryzhanovsky et al. 

 

3.4 Sunlight Spot 

The effect displays bright spot moving over the image. Prior starting effect, the image 
is dimmed according to its initial average brightness. Fig. 6 shows an image with 
sunlight spot effect. The spotlight trajectory and size are defined by attention zones on 
the photo. 

 

 
a) 

 
b) 

Fig. 6. a) Frame of Sunlight Spot effect; b) selected attention zones 

Similar to many existing publication we find human faces and salient regions using 
pre-attentive vision model. Basing on these regions we form attention zones. In addi-
tion we consider text inscriptions as attention zones too. For example it can be the 
name of hotel or town on the background of which the photo was made. Or, in case of 
the newspaper, it will be headlines. 

Well-known OpenCV software library contains implementation of face detection 
for front and profile faces. In general the technique that is based on state-of-the-art 
Viola-Jones face detector [6] provides good results. However it gets a lot of false 
positives. The number of false positives can be decreased with additional skin tone 
segmentation and processing of downsampled image [7]. We have ported OpenCV 
2.3 to our embedded platform. Time of face detection for 480x320 images is  
about 0.8s. 

So far the universal model of human vision does not exist, but pre-attentive vision 
model based on feature integration theory is well-known. Since in this case, the ob-
server is on attentive stage while viewing photo, a model of human pre-attentive vi-
sion is not strictly required. However existing approaches for the detection of regions 
of interest are based on saliency map and they often provide reasonable outcomes, 
whereas the use of attentive vision model requires too much prior information about 
the scene and it is not generally applicable. Classical saliency map building algo-
rithms like [9] have a very high computational complexity. That is why researchers 
recently devote a lot of efforts to develop fast saliency map creation techniques.  
Paper [10] compares several modern algorithms for salient regions detection.  



 Audio-Adaptive Animation from Still Image 55 

 

We implemented on our embedded platform Histogram- based Contrast (HC) method. 
The time of salient regions detection for 480x320 images is about 0.1 s. 

While developing the algorithm for detection of areas with text, we take into ac-
count the fact that text components are ordered the same way and are similar in tex-
ture features, color. Firstly, we apply LoG edge detector and restore missing parts 
using combination of morphological operations. After edge detection we end up with 
many circuits, which can be ordered as connected tree of objects and voids 

Then we filter resulting connected components based on the analysis of the texture 
features. We use the following features [8], selected with the help of AdaBoost tool-
box [15]: 

- average block brightness Bi : 2
1 1

),(

N

crB

B

N

r

N

c
i

i


= ==  

- average difference of average brightnesses of the blocks Bk in 4-connected neigh-

borhood of the block  Bi: 4

||
4

1


=
−

= k
ki

i

BB

dB   

- average of vertical  i
ydB   and horizontal i

xdB   block derivative: 

 
)1(2

),(),(
1

1 11

1

1
, −

+
=

 
−

= ==

−

=

NN

crdBcrdB

Bd

N

r

N

c

i
y

N

r

N

c

i
x

iyx  

- block homogeneity Bi:  −+
=

ji

d

ji

jiN
H

, ||1

),(
, 

where Nd is a normalized co-occurrence matrix, d defines the spatial relationship.  
 - the percentage of pixels with the gradient greater than the threshold: 

2

),(

/}),(|1{ NTcrBP
Bicr

ig 
∈∀

>∇= ,  

where ),( crBi∇  is calculated as square root of the sum of the squares of horizon-

tal and vertical derivatives.  
- the percentage of pixel value changes after morphological operation of opening  

o
iB   on a binary image  b

iB , obtained by binarization with a threshold of 128: 
2

),(

/)},(),(|1{ NcrBcrBP
Bicr

b
i

o
im 

∈∀
≠= . 

Also, an analysis of geometric dimensions and relations is performed. We merge 
closely located connected components, arranged the same order and similar in color, 
texture features, in groups. Then we classify resulting groups.  We form final zones 
with the text on the basis of groups that are classified as text. Time of text regions 
detection for 480x320 images is about 0.5 s. 

Fig. 5 shows detected attention zones. Red rectangle depicts face detected; green 
rectangles denote text regions; yellow is bounding box of the most salient area ac-
cording to HC method. 



56 K. Kryzhanovsky et al. 

 

4 Adaptation to Audio   

What animation parameters may depend on characteristics of background audio sig-
nal?  Firstly it is size and intensity of animated objects, also speed of their movement 
and rotation can be adjusted. In addition, we investigated the question: How can we 
change color of animate objects, depending on music? Attempts to establish a connec-
tion between music and color are known for long time. French mathematician Louis 
Bertrand Castel is considered as a pioneer in this area. In 1724 in his work Traité de 
physique sur la pesanteur universelle des corps he described an approach to direct 
“translation” of music to color on “specter – octave” basis. To illustrate his ideas, 
Castel even constructed Clavecin pour les yeux (Ocular Harpsichord, 1725). Famous 
Russian composer and pianist Alexander Scriabin about 100 years ago also proposed 
a theory of connection between music and color. Colors corresponding to notes are 
shown on fig. 7. This theory connects major and minor tonality of the same name. 

 

 

Fig. 7. Accords with the circle of fifths corresponding to Scriabin’s theory 

Scriabin’s theory was embodied in clavier à lumières (keyboard with lights), 
which he invented for use in his work Prometheus: Poem of Fire. The instrument was 
supposed to be a keyboard (fig. 8), with notes corresponding to colors as given by 
Scriabin's synesthetic system. 

 

 

Fig. 8. Tone-to-color mapping on Scriabin’s clavier à lumières 

On our platform we work with stereo audio signal on frequency 44 kHz. We con-
sider 4 approaches to connect animation of 3 effects mentioned above with back-
ground audio. In all approaches we analyze the average of two signal channels in 



 Audio-Adaptive Animation from Still Image 57 

 

frequency domain. The spectrum is built 10 times per second for 4096 samples. Spec-
trum is divided into several bands as in conventional graphic equalizer. The number 
of bands depends on approach selected. 

For fast Fourier transform computing with fixed point arithmetic we use kiss_fft li-
brary. It is open source library distributed under BSD license. This library does not 
use platform-specific commands and is easily ported to ARM. On our platform 
processing time for one buffer is about 0.004 s.   

Our first approach of visualizing music by colors was inspired by Luke Nimitz 
demonstration of “Frequency spectrograph – Primary Harmonic Music Visualizer”. It 
is similar to Scriabin idea. It can be considered as a specific visualization of the 
graphic equalizer. In this demonstration music octaves are associated with HSL color 
wheel as shown in fig. 9 using statement:  

),(log2 2 c

f
Angle π=  

where f  is frequency, c is origin on frequency axis. Angle defines hue of current  
frequency.  

 

 

Fig. 9. Color circle corresponding to each octave 

Depending on value of current note we define brightness of selected hue and draw 
it on color circle. We use three different approaches to display color on the color 
wheel: paint sectors, paint along radius or use different geometric primitives inscribed 
into the circle. 

 
 

 

Fig. 10. Generated color distribution of soap bubbles depending on music 



58 K. Kryzhanovsky et al. 

 

In Soap Bubbles effect, depending on generated color circle, we determine color of 
bubble texture. On fig. 10 there is an example of soap bubbles with color distribution 
depending on music. In Sunlight Spot effect generated color circle determines distri-
bution of colors on highlighted spot (fig. 11). 

 

 

Fig. 11. Generated color distribution of sunlight spot depending on music 

In second approach we detect beats or rhythm of the music. We tried several tech-
niques for beats detection in time and frequency domains [11, 12, 13, 14]. We faced 
constraints due to real-time performance limitation and we were dissatisfied with the 
outcomes for some music genres. Finally we assume that the beat is present if there 
are significant changes of values in several bands. This method meets performance 
requirements with acceptable quality of beats finding. Fig. 1 illustrates how detected 
beats affect size of flashing light. If the beat is detected we instantly maximize size 
and brightness of lights and then they gradually return to their normal state until next 
beat happens. Also it is possible to change flashing lights when beat happens (turn on 
and off light sources). In the Soap Bubbles effect we maximize saturation of the soap 
bubble color when the beat takes place. We also change the direction of moving soap 
bubbles as beat happened. In Sunlight Spot effect if the beat is detected we maximize 
brightness and size of spot and then they gradually returned to their normal state. 

In third approach we analyze presence of low, middle and high frequencies in au-
dio signal. This principle is used in color music installations. In Soap Bubbles effect 
we assign frequency range for each soap bubble and define its saturation according 
value of corresponding frequency range. In Flashing Light effect we assign each light 
star to its own frequency range and define its size and brightness depending on value 
of the frequency range.  On fig. 12 you can see how presence of low, middle and high 
frequencies affect on flashing lights. 

Another approach is not to divide spectrum to low, middle and high frequencies 
but rather to assign it to different tones inside octaves. So, we work with equalizer 
containing large amount of bands, where each octave have enough corresponding 
bands. We accumulate values of each equalizer band to buffer cell, where correspond-
ing cell number is calculated using the following statement: 



 Audio-Adaptive Animation from Still Image 59 

 

,1
360

360mod)360)((log2

+
×

=

length

c

f

num

 
where f is frequency, c is origin on frequency axis, length is number of cells.  

 

 

Fig. 12. Low, middle and high frequencies affect on brightness and saturation of corresponding 
flashing lights 

Each cell controls behavior of selected objects. In Soap Bubbles effect we assign 
each soap bubble to corresponding cell and define its saturation depending on the 
value of the cell. In Flashing Light effect we assign each light to corresponding cell 
and define its size and brightness depending on the value of the cell.   

5 Results and Discussion 

The major issue is how can we implement the functions in modern multimedia devic-
es for real-time animation? The algorithms were optimized for ARM Cortex A8 and 
A9 – based platforms with CPU frequency 800 - 1000 MHz. Limited computational 
resources of the target platform combined with absence of graphics hardware accele-
ration is serious challenge for implementation of visually rich animation effects. 
Therefore comprehensive optimization is required to obtain smooth framerates. Total 
performance win is 8.4 times in comparison to initial implementation. The most valu-
able optimization approaches are listed in table 1.  

Table 2 contains performance data for described effects. Such figures provide 
smooth and visually pleasant animation. 

As objective evaluation of the proposed audiovisual presentation is difficult, we 
evaluate the advantage of our technique through subjective user opinion survey. 
Flashing Light, Soap Bubbles and Sunlight Spot effects with octave based audio  
 



60 K. Kryzhanovsky et al. 

 

adaptation were used for demonstration. Two questions were asked for three audio-
visual effects: 1. Are you excited by the effect? 2.  Would you like to see that effect 
in your multimedia device? 

Table 1. Optimization approaches  

Approach Speeding-up, times 

Fixed-point arithmetic 4.5 

SIMD CPU instructions (NEON) 3 

Effective cache usage 1.5 

Re-implementing of key glibc functions 1.25 

Table 2. Performance of proposed effects for HD photo 

Effect Initialization time, s FPS 

Flashing Light 0.15 20 
Soap Bubbles 0.08 45 

Sunlight Spot 1.4 50 

 

 

Fig. 13. Survey results 

23 observers participated in the survey. Diagram on fig. 13 reflects survey results. 
In general, absolute majority of the interviewees rates effects positively. Only two 
people said that they do not like not only demonstrated effects, but any multimedia 
effects. Some observers stated: it’s entertaining, but I cannot say “I’m excited”, be-
cause such expression would be too strong. Several participants of the survey said that 
they do not like photos or background music used for demonstration. It is also worth 
to notice that 8 of the respondents were women and, on average, they rated the effects 
much higher than men.  

So we can claim that the outcomes of subjective evaluation demonstrate the satis-
faction of the observers with this new type of audiovisual presentation, because audio-
aware animation behaves uniquely each time it is played back, and does not repeat 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Are you excited by the 
effect?

Do you want to see that 
effect in your device?

Flashing light

Soap bubbles

Sunligth Spot



 Audio-Adaptive Animation from Still Image 61 

 

itself during playback duration, thus creating vivid and lively impression for the ob-
server. A lot of observers were excited by the effects; and they want to see such fea-
tures in their devices with multimedia capabilities. 

6 Future Works 

Several other animation effects have been considered from audio-awareness point of 
view. Fig. 14 shows screenshots of several audio-aware effect prototypes.  

 

a) b) 

c) d) 

Fig. 14. Audio-aware animation effect prototypes: a) Rainbow effect, b) Confetti effect, c) 
Magnifier effect, d) Lightning effect 

In “Rainbow” effect (fig. 14a), color distribution of the rainbow changes accord-
ing to background audio specter. Movement direction, speed and color distribution of 
confetti and serpentines are adjusted with music rhythm in “Confetti” effect  
(fig. 14b). Magnifier glass movement speed and magnification is affected by back-
ground music temp (fig. 14c). In “Lightning” effect (fig. 14d), the moments of 
lightning bolt strikes are matched to accents in background audio. 

Obviously, other approaches to adapt behavior of animation to the background au-
dio are also possible. In particular, it is possible to analyze the left and right audio 



62 K. Kryzhanovsky et al. 

 

channels separately and apply the different behavior to the left and right sides of the 
screen, respectively. Other effects friendlier for music adaption can be created. 

The upcoming generation of target platform is equipped with Mali 6xx GPU, 
which supports graphics acceleration through OpenGL ES 2.1 API and general pur-
pose calculations acceleration using OpenCL 1.1 framework. So, the most computa-
tion intensive routines, which, by the nature of used processing methods, can be effec-
tively parallelized and moved to GPU allowing to reach even better effects perfor-
mance and detail level. 

References 

1. Chen, J., Xiao, J., Gao, Y.: iSlideshow: a Content-Aware Slideshow System. In: ACM In-
telligent User Interface Conf., Hong Kong, pp. 293–296 (2010) 

2. Sakaino, H.: The photodynamic tool: generation of animation from a single texture image. 
In: IEEE ICME, Amsterdam (2005) 

3. Safonov, I., Bucha, V.: Animated thumbnail for still image. In: GRAPHICON 2010, St. 
Petersburg, pp. 79–86 (2010) 

4. Chen, J.C., Chu, W.T., Kuo, J.H., Weng, C.Y., Wu, J.L.: Tiling slideshow. In: ACM Mul-
timedia 2006, Santa Barbara, pp. 25–35 (2006) 

5. Dunker, P., Popp, P., Cook, R.: Content-aware auto-soundtracks for personal photo music 
slideshows. In: IEEE ICME 2011, Barcelona, pp. 1–5 (2011) 

6. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: 
Proc. of Conference Computer Vision and Pattern Recognition, Kauai, pp. 511–518 (2001) 

7. Egorova, M.A., Murynin, A.B., Safonov, I.V.: An Improvement of face detection algo-
rithm for color photos. Pattern Recognition and Image Analysis 19(4), 634–640 (2009) 

8. Vil’kin, A.M., Safonov, I.V., Egorova, M.A.: Bottom-up Document Segmentation Method 
Based on Textural Features. Pattern Recognition and Image Analysis 21(3), 565–568 
(2011) 

9. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene 
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11),  
1254–1259 (1998) 

10. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global Contrast based Sa-
lient Region Detection. In: IEEE CVPR 2011, Colorado, pp. 409–416 (Springs 2011) 

11. Goto, M.: Real-time music-scene-description system: predominant-F0 estimation for de-
tecting melody and bass lines in real-world audio signals. Speech Communication 43(4), 
311–329 (2004) 

12. Dixon, S.: Audio Beat Tracking Evaluation: BeatRoot. In: MIREX at 7th International 
ISMIR 2006 Conference, Victoria (2006) 

13. Scheirer, E.D.: Tempo and beat analysis of acoustic musical signals. J. Acoust. Soc. 
Amer. 103(1), 588–601 (1998) 

14. McKinney, M.F., Moelants, D., Davies, M.E.P., Klapuri, A.: Evaluation of Audio Beat 
Tracking and Music Tempo Extraction Algorithms. Journal of New Music Research 36(1), 
1–16 (2007) 

15. Vezhnevets, A., Vezhnevets, V.: Modest AdaBoost – teaching AdaBoost to generalize bet-
ter. In: Proc. of Graphicon Conf., Moscow, pp. 322–325 (2005) 

 



Auto-calibration for Image Mosaicing

and Stereo Vision

Alexey Spizhevoy and Victor Eruhimov

Itseez Ltd. and Lobachevsky State University of Nizhni Novogord, Russia
{alexey.spizhevoy,victor.eruhimov}@itseez.com

Abstract. The paper investigates the auto-calibration problem for mo-
bile device cameras. We extend existing algorithms to get a robust
method that computes internal camera parameters given a series of dis-
tant objects images. The algorithm is tested on real images generated
by several different cameras. We estimate the impact of errors in cam-
era calibration parameters in image mosaicing and 3D reconstruction
problems.

Keywords: auto-calibration, camera parameters, errors effect, real
datasets, image mosaicing, stereo.

1 Introduction

The goal of calibration is to determine internal camera parameters within the
given projection model. The problem arises in a number of emerging computer
vision applications such as augmented reality, 3D reconstruction, and image mo-
saicing (or stitching). As academy and industry becomes gradually more inter-
ested in using mobile devices for computer vision, the importance of phone/tablet
cameras calibration is clear.

Nowadays the problem of camera calibration is usually solved by using spe-
cial calibration patterns (see [3], [4]). While pattern-based methods are quite
accurate, it can be difficult to use them due to necessity of taking shots of a
special calibration object like a chessboard. Also, manual calibration harms user
experience that is considered crucial for mobile applications. As a result software
developers and researchers are very interested in auto-calibration methods.

Auto-calibration is the process of estimating internal camera parameters di-
rectly from multiple uncalibrated images. This area of computer vision is in
active research stage. From one hand there are papers describing successful at-
tempts of using auto-calibration methods in practical tasks (e.g. augmented real-
ity, 3D reconstruction, image mosaics, see [6], [7], [8], [10], [11]). As the topics of
these papers aren’t camera auto-calibration itself, they don’t contain thorough
investigations of the used methods with numerical evaluation, tested on challeng-
ing dataset. As a consequence, when one faces a computer vision problem that
requires camera parameters, it’s very difficult to select a robust auto-calibration
method and reuse previous results. There is research that is directly devoted to

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 63–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



64 A. Spizhevoy and V. Eruhimov

the auto-calibration problem (see [9], [12]). Unfortunately, these papers either
don’t compare with state-of-the-art pattern-based calibration methods or pro-
vide evaluation for synthetic datasets only. Some of these papers describe results
for real datasets, but obtained under almost ideal conditions like no noise, no
hand shaking, see [12]. So to the best of our knowledge we are not aware of a
research paper that describes an auto-calibration method and provides sufficient
experimental evidence showing robustness for practical applications.

While classical calibration methods are well studied, they suffer from some
drawbacks, which follow from the fact that these methods use some extra in-
formation. For instance, there are calibration methods (see [1]) which require
location of vanishing points (i.e. points where infinite lines are terminated under
projective transformation) as input, but finding of these points automatically is
a difficult problem.

This paper shows that under moderate assumptions an auto-calibration al-
gorithm for rotational cameras presented in [1] can be used for practical appli-
cations with a necessary pre-processing step. We evaluate an implementation of
the method for both simulated datasets and real image sequences generated by
mobile phone cameras.

2 Rotational Camera Auto-calibration

2.1 Problem Statement

We use the following camera model which describes how a 3D scene point
(X,Y, Z)T is projected into an image pixel with coordinates (u, v)T :

⎛
⎝u
v
1

⎞
⎠ � K(R|T )

⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠ (1)

K =

⎛
⎝fx 0 cx

0 fy cy
0 0 1

⎞
⎠ (2)

where K is camera intrinsic parameters matrix (fx, fy are focal lengths in pixels,
cx, cy are principal point coordinates); R, T are camera rotation 3×3 matrix and
translation 3D vector; the sign � here denotes similarity up to scale.

The class of auto-calibration methods that we will consider requires an ex-
istence of homography mapping between all input images. The easiest way of
generating a sequence of images with homography relationship using a mobile
camera is to take shots of distance objects. Hence, within the scope of this pa-
per we will make an assumption that camera translation T is negligibly small
compared to the distance to the objects. We will call a device with T = 0 a
“rotational camera”.



Auto-calibration for Image Mosaicing and Stereo Vision 65

We formulate the auto-calibration problem in the following way: given key-
points in input images taken by a rotational camera, and the keypoint corre-
spondences between images, find the camera matrix K.

2.2 Intrinsic Parameters Error Effect

The estimation of K is never the final goal of a computer vision application. So,
in order to understand how precise an auto-calibration method has to be, we
need to consider a specific application. This section contains a theoretical and
experimental analysis for the image mosaicing problem and provides experimen-
tal evaluation on the stitching module of OpenCV library [17]. Throughout this
section we make an assumption that fx equals to fy for the sake of simplicity
and without loss of generality, as images always can be scaled to achieve of unit
pixel aspect ratio.

It is possible to stitch images without involving camera matrix. In that case
a user wouldn’t be able to select another surface for projection except for plane,
that can be inappropriate for big panoramas because of big deformations. A plane
projection surface generates deformations in the panorama image are visible
when the vector of camera orientation differs a lot from the projection plane
normal. The most convenient projection surface for the case of rotational cameras
is a sphere.

Below we analyze warping errors when the projection surface is a sphere. To
compute the error for each image we do the following:

1. For each pixel q = (x, y, 1)T of the source image we find a ray, passing
through the corresponding scene point from camera center, as r = K−1q,
where K is the camera matrix.

2. We find the intersection point (X,Y, Z)T of the ray with the unit sphere
centered at the origin. This point spherical coordinates u, v after scaling by
constant s are point coordinates on the final panorama (s is usually selected
being roughly close to the focal length in pixels):

u = s · tan−1(
X

Z
) (3)

v = s · (π − cos−1(
Y√

X2 + Y 2 + Z2
)) (4)

3. To calculate per pixel error we project points using the ground truth camera
matrix

K(gt) =

⎛
⎜⎝
f (gt) 0 c

(gt)
x

0 f (gt) c
(gt)
y

0 0 1

⎞
⎟⎠ (5)



66 A. Spizhevoy and V. Eruhimov

and its estimation

K(est) =

⎛
⎜⎝
f (gt)f (rel) 0 c

(gt)
x c

(rel)
x

0 f (gt)f (rel) c
(gt)
y c

(rel)
y

0 0 1

⎞
⎟⎠ (6)

where f (rel), c
(rel)
x , c

(rel)
y are estimated camera parameters relative to the

ground truth. The distance between two points obtained using K(gt) and
K(est) is the warping error in the pixel p.

According to the presented algorithm we first get two ray directions:

r(gt) =

⎛
⎝X(gt)

Y (gt)

Z(gt)

⎞
⎠ = (K(gt))

−1

⎛
⎝x
y
1

⎞
⎠ (7)

r(est) =

⎛
⎝X(est)

Y (est)

Z(est)

⎞
⎠ = (K(est))

−1

⎛
⎝x
y
1

⎞
⎠ (8)

Thenwe use (3) and (4) to get pixels coordinates (u(gt), v(gt))T and (u(est), v(est))T .
The final pixelwarp error equals to

√
(ugt − uest)2 + (vgt − vest)2.We assesswarp-

ing errors for the case of 2048×1536 images and using the following cameramatrix
as a reference:

K(gt) =

⎛
⎝W +H 0 W

2

0 W +H H
2

0 0 1

⎞
⎠ (9)

where W and H are image width and height respectively.
The warping error function charts for 5% relative errors in camera intrinsic

parameters are shown in figures 1 and 2. We can see from charts, that when
relative error in camera parameters is 5% warp error reaches 60 pixels, that
seems to be high enough for leading to visible artifacts.

In order to evaluate the artifacts, we stitched 1536×2048 images using camera
matrixK(pt) as ground truth K(gt), whereK(pt) was the camera matrix obtained
via a pattern based calibration method. Also we did experiments using camera
matrix K(est), where each parameter was modified (one at a time) to get 10%
error (relative to K(pt)). We got panoramas without visible artifacts, see figure 3.
Small artifacts are highlighted with red color, but the quality of the panoramas
is much higher that we could expect from theoretical analysis.

Such results are obtained because current stitching applications (including
the one used for testing) use seam estimation methods to minimize visible ar-
tifacts, see [13]. After estimating seams special blending methods are used to
hide discrepancies between images, see [14]. So even if the image registration
step introduces moderate errors, a combination of modern seam estimation and
blending methods can remove a lot of possible artifacts. But if errors in camera



Auto-calibration for Image Mosaicing and Stereo Vision 67

Fig. 1. Pixel warp error for f (rel) = 1.05

Fig. 2. Pixel warp error for a) c
(rel)
x = 1.05, b) c

(rel)
y = 1.05

parameters is too high then it’s almost impossible to hide stretches and other
artifacts, see figure 4 with results for f (rel) = 0.7 (i.e. 30% relative error).

Also it should be mentioned that motions between images are estimated to
minimize overall re-projection error (that is minimizing visible mis-registration
error) according to the current camera matrix. This step is very important as
minimizing re-projection errors leads to minimizing visible artifacts even if the
camera matrix was estimated inaccurately.

From these results it follows that if one has a high quality stitching algorithm
then the effect of errors in camera matrix isn’t very high, and methods less
accurate than pattern based calibration can be used for camera parameters esti-
mation. This is a good application for auto-calibration that is not as precise as
pattern-based calibration but still generates a reasonable estimation of camera
intrinsic parameters.

2.3 Proposed Algorithm

A robust auto-calibration algorithm faces many challenges coming from data
generated by a mobile device. Some input images can be noisy, can differ in
illumination, and undesired objects such as user fingers can be present in the
camera field of view. All these issues can affect the quality of extracted features,
and can lead to mis-registration. Hence, let alone the core auto-calibration prob-
lem, we have to address these issues. This is why we start with a description of
our registration algorithm.

The outputs of the registration algorithm is the images graph, where vertices
are images from the input image sequence, and two images are connected with



68 A. Spizhevoy and V. Eruhimov

Fig. 3. Panoramas for f (rel) = 1.1, c
(rel)
x = 1.1, and c

(rel)
y = 1.1 respectively

Fig. 4. Panorama for f (rel) = 0.7 with visible artifacts and stretches

the edge iff we were able to register them with a homography transformation.
Here is the description of the registration pipeline:

1. Find keypoints and their descriptors of each image. We use SURF detector
and descriptor implemented in OpenCV library, see [15].

2. For each image pair find matches between keypoints.We use FLANNmatcher
integrated into OpenCV library, see [16].

3. For each image pair estimate 2D homography and compute number of inlier
matches, see 2.3.

4. For each image pair determine whether matches between these images are
trustworthy, see section 2.3. The decision is made for image pair, not for each
match. So if we’re confident then we add an edge between two corresponding
vertices into images graph.

5. Retain the biggest connected component from the images graph. Also re-
tain only matches for confident image pairs and continue working with this
connected component.

Computing Match Confidence. We follow the method proposed in [2], where
it is applied to extract a subset of images from the original raw set for subsequent
stitching.



Auto-calibration for Image Mosaicing and Stereo Vision 69

Suppose we have nf feature matches. The correctness of an image match is
represented by the binary variable m ∈ {0, 1}. The event that the ith feature
match f (i) ∈ {0, 1} is an inlier/outlier is assumed to be independent Bernoulli
event, so the total number of inliers ni is Binomial. If m = 1 then ni has the
B(ni;nf , p1) distribution function, and B(ni;nf , p0) otherwise, where p1 is the
probability that a feature is an inlier given a correct image match, and p0 is the
probability a feature is an inlier given a false image match.

Here is the final criterion used by the authors to accept an image match

B(ni;nf , p1)P (m = 1)

B(ni;nf , p0)P (m = 0)
≥ pmin

1− pmin
(10)

Choosing the values for p1 = 0.6, p0 = 0.1, P (m = 1) = 10−6 and pmin = 0.999
gives the condition

ni > α+ βnf (11)

for a correct image match, where α = 8.0 and β = 0.3. We decide whether a
feature match is an inlier or an outlier by comparing reprojection error with a
fixed threshold. We used the same value of 3 pixels for all datasets and that
value worked good enough in practice, while for each particular dataset another
threshold value can be better.

The value ni

α+βnf
is used as the measure of confidence that it makes sense to

use matches between an image pair. If it’s greater than 1 then an image match
is correct, false otherwise. In some practical cases it could be useful to increase
this threshold as was found in experiments.

Figure 5 shows how reprojection error threshold affects on average camera
parameters estimation relative error Q for one of real datasets.

Q =
1

4
(|f (rel)

x − 1|+ |f (rel)
y − 1|+ |c(rel)x − 1|+ |c(rel)y − 1|) (12)

Proposed Algorithm Details. For auto-calibration we use the algorithm for
the rotation only cameras case proposed in [1]. Here is the brief description of
that algorithm:

1. Normalize the homographies Hi,j between views i and j such that
detHi,j = 1.

2. Compute ω = (KKT )−1 from the equations

ω = HT
j,iωHj,i

for all image pairs i, j.

3. Compute K solving ω = (KKT )
−1

with the Cholesky decomposition.

4. Refine K by minimizing the re-projection error function

err(K,R1, ..., Rn) =
∑

i,j,k ‖x(k)
j −Hi,jx

(k)
i ‖



70 A. Spizhevoy and V. Eruhimov

Fig. 5. Reprojection error threshold effect on camera parameters estimation errors.
When the threshold is too low the algorithm is too sensitive to noise, while in the case
of too high threshold even incorrect matches can be classified as inliers.

using parametrization of Hi,j = KRjR
T
i K

−1 over camera rotations Ri, Rj

and camera matrix K, where n is the number of images and x
(k)
i , x

(k)
j are

the position of k-th point measured in the i-th and j-th images respectively.
We parametrize a rotation with a 3-dimensional vector directed parallel to
the rotation axis and with the length equal to the rotation angle.

2.4 Experiments

We performed experiments on real datasets taken with Nokia 6303C mobile
phone (1536 × 2048 resolution) and Logitech QuickCam Pro 900 (1600 × 1200
resolution).

Results for Nokia 6303C. Table 1 presents results we got using Nokia 6303C
camera. We compare the auto-calibration results with pattern-based calibration:

f
(err)
x = f

(rel)
x −1 =

f(est)
x

f
(pt)
x

−1. The auto-calibration algorithm gives relative errors

less than 10% on 3 out of 5 datasets. We have showed before that a relative error
of less than 10% in camera parameters is enough for getting visually acceptable
panoramas.

There are two factors affecting calibration quality. The first factor is the num-
ber of images in input dataset, because if the input dataset is too small then
it doesn’t provide enough information for camera auto-calibration. The second
factor is non-zero translation presence, as the auto-calibration method we use
was designed under the rotational camera assumption. This assumption is eas-
ily violated in practice as a user tends to rotate camera not around its optical
center, but around device center (or itself), which is not the same.



Auto-calibration for Image Mosaicing and Stereo Vision 71

Table 1. Relative errors in intrinsic camera parameters

Number of
Images

Distance
(m)

Relative Error (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y

6 2 8.5 11.1 4.7 4.6
7 0.5 -3.8 -2.6 -12.4 -6.2
9 2 -3.4 0.1 2.5 5.4
13 2 2.6 7.6 1.5 8.9
14 30 5.6 6.5 -1.9 4.2

Results for Logitech QuickCam Pro 900. Table 2 presents result we got
using Logitech QuickCam Pro 900 camera. For this camera we achieved the
relative error less than 9% in comparison with OpenCV pattern based calibration
results.

Table 2. Relative errors in intrinsic camera parameters

Number of
images

Distance
(m)

Relative Error (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y

10 2 0.5 5.3 3.6 -0.3
30 2 1.2 4.4 0.7 2
57 2 0.3 3.1 1.5 3.2
10 2 -1.8 0.7 -2.5 1.3
30 2 1.9 6 -0.3 8.6
74 2 0.1 4.3 0.2 7.6

3 Stereo Rig Auto-calibration

3.1 Problem Statement

Stereo camera (or stereo rig) is a rigid couple of two mono cameras described
by the model (1). The mapping between a scene 3D point (X,Y, Z)T and the
corresponding pixels (u1, v1)

T , (u2, v2)
T on two images obtained by the stereo

rig looks as follows: ⎛
⎝u1

v1
1

⎞
⎠ � K(R|T )

⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠ (13)

⎛
⎝u2

v2
1

⎞
⎠ � K(RrelR|RrelT + Trel)

⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠ (14)



72 A. Spizhevoy and V. Eruhimov

where K is camera intrinsic parameters matrix defined in (2) and it’s assumed
to be same for the both cameras; R, T are stereo rig rotation 3 × 3 matrix and
translation 3D vector; Rrel, Trel are rotation 3 × 3 matrix and translation 3D
vector between the cameras in the stereo rig.

Given pixel coordinates in a monocular image we can reconstruct only a 3D
ray that contains the corresponding 3D point. But in the case of a stereo rig
two cameras are available, so it’s possible to reconstruct 3D scene points. To
reconstruct a scene we must know rotation Rrel and translation Trel between
the cameras in the rig.

We formulate the problem of stereo rig auto-calibration in a way similar to
rotation auto-calibration. Input data of the method are keypoints in image pairs
taken by a stereo rig, which may undergo arbitrary Eucliden motion, and the
correspondences between these keypoints. The final goal is to find camera in-
trinsic parameters matrix K, cameras relative rotation and translation, i.e. Rrel

and Trel respectively. Cameras relative rotation and translation are attributed
as stereo rig parameters because the cameras are coupled rigidly, as consequence
Rrel and Trel remain constant over time.

3.2 Camera Intrinsic Parameters Error Effect

A typical task for a stereo rig is 3D reconstruction, i.e. inferring of 3D structure
of a scene that is visible on input image pairs. In this section we estimate how
errors in camera intrinsic parameters affect reconstruction precision. We make a
thought experiment where we vary estimated camera intrinsic parameters while
Rrel and Trel remain constant and correct.

Suppose we have a 3D point (X,Y, Z)T and a stereo rig with two cameras lo-
cated at points c1 = (0, 0, 0)T and c2 = (0, 0, 1)T respectively, so Trel = (0, 0, 1)T .
We assume Rrel = I: that means both cameras in the stereo rig are oriented the
same way. It should be mentioned that the measure unit isn’t specified, so an
estimation of Trel is defined up to a scale. Regarding the cameras intrinsic pa-
rameters we make the same assumptions, as in section 2.2, equation (5). After
all the assumptions we’ve made the stereo rig model looks like this:

⎛
⎝u1

v1
1

⎞
⎠ � K(gt)

⎛
⎝X
Y
Z

⎞
⎠ (15)

⎛
⎝u2

v2
1

⎞
⎠ � K(gt)

⎛
⎝
⎛
⎝X
Y
Z

⎞
⎠− c2

⎞
⎠ (16)

where K(gt) is defined by (6). Given a 3D point images (u1, v1)
T , (u2, v2)

T ,
and camera intrinsic parameters estimation Kest we can reconstruct the point
coordinates, they are as follows:



Auto-calibration for Image Mosaicing and Stereo Vision 73

⎛
⎝X(est)

Y (est)

Z(est)

⎞
⎠ =

⎛
⎜⎜⎝
X +

c(gt)x (1−c(rel)x )

f(gt) Z

Y +
c(gt)y (1−c(rel)y )

f(gt) Z

f (rel)Z

⎞
⎟⎟⎠ (17)

We can build an error function which, obviously, doesn’t depend on X and Y :

err(K(gt),K(est), Z) =

∣∣∣∣∣∣

⎛
⎝X(est)

Y (est)

Z(est)

⎞
⎠−

⎛
⎝X
Y
Z

⎞
⎠
∣∣∣∣∣∣ = |Z|

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

c(gt)x (1−c(rel)x )

f(gt)

c(gt)y (1−c(rel)y )

f(gt)

f (rel) − 1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
(18)

Making the same assumption about view of the matrix K(gt) as in section 2.2,
we present the reconstruction error function plots on figure 6.

Fig. 6. Reconstruction error plots for Z = 10, a) f (rel) = 1, b) f (rel) = 1.05

Since the estimation of Trel we get is defined up to a scale, we may assume
without loss of generality, that the measure unit is 10 cm, so stereo rig baseline
is 10 cm and point Z coordinate is 1 m. Then in figure 6, b we see that the recon-

struction error achieves about a few centimeters when f (rel) = c
(rel)
x = c

(rel)
y =

1.05, i.e. when there is 5% relative error in all intrinsic camera parameters.

3.3 Proposed Algorithm

In this section a stereo rig auto-calibration algorithm we built is described. The
input of the algorithm are a set of image pairs, with keypoints and correspon-
dences between them, and an initial guess for camera intrinsic parameters. The
output of the method is refined camera intrinsic parameters K, rotation matrix
Rrel and translation vector Trel between cameras in the stereo rig. Here is a brief
description of the algorithm:

1. For all input stereo pairs compute a fundamental matrix FL,R for points of
left and right images of the pairs.

2. Select high quality subset of image pairs for future processing, see
section 2.3.



74 A. Spizhevoy and V. Eruhimov

(a) Build a graph G = (V,E), where vertices V are stereo pairs and E are
edges. (i, j) ∈ E iff matches between the left images from the i-th and
j-th stereo pairs satisfy to the estimated fundamental matrix F i,j

L,L with
error less than a threshold.

(b) Leave only the biggest connected component in the graph G.

3. For each edge (i, j) ∈ E:

(a) Compute projective reconstructions for the pairs i and j.

(b) Find homography Hi,j mapping i-th point cloud to j-th point cloud.

(c) Upgrade the reconstructions from projective to Eucliden using camera
intrinsic parameters initial guess and the homography Hi,j.

4. Refine camera intrinsic parameters matrix K, relative rotation matrix Rrel

and relative translation vector Trel.

For details on how to find a fundamental matrix, obtain projective reconstruction
and other projective geometry related steps we refer to [1].

3.4 Experiments

We performed experiments on real datasets taken by a LG-P920 mobile phone
stereo camera (1600×1200 resolution), and a stereo camera Videre STH-DCSG-
9cm with resolution 640× 480.

Results for LG-P920. To get ground truth stereo rig parameters we calibrated
it using OpenCV. We conducted a few dozens of experiments, where intrinsic
camera parameters initial relative error was selected from the [−30%, 30%] range
uniformly.

From table 3 we can see that on the first dataset we achieve less than 10%
relative error in intrinsic camera parameters. Standard deviation of the relative
error computed over the experiments is less than 8%. On the second dataset
relative error in intrinsic camera parameters is less than 11%, while its standard
deviation is less than 4%.

We also computed errors for relative rotation matrix Rrel and relative trans-
lation vector Trel estimations. The ground truth values were computed using
OpenCV calibration functionality. Instead of comparing rotation matrices di-
rectly, we first convert matrices to rotation vectors and then compare them.
Also it should be mentioned that as reconstruction is built up to scale, so the
relative translation vector is define up to scale too. That’s why we work with
translation vectors scaled in such way that its X component equals to 1. The ta-
ble 4 contains relative rotation and translation vectors obtained using OpenCV
calibration.

The results obtained for Rrel and Trel using the proposed auto-calibration
method are shown in tables 5 and 6.



Auto-calibration for Image Mosaicing and Stereo Vision 75

Table 3. Camera intrinsic parameters relative errors

Dataset
ID

Number of
Images

Distance
(cm)

Mean Relative
Error (%)

Relative Error
Std. Dev. (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y f

(err)
x f

(err)
y c

(err)
x c

(err)
y

1 6 30 1.8 2.5 -9.6 4.9 5.2 4.8 5.3 7.6

2 26 30 2.3 2.9 -10.9 1.1 1.1 1.1 1.7 3.9

Table 4. Ground truth rotation and translation vectors

Rotation Vector Translation Vector

x y z x y z

0 0.04 0 1 -0.04 -0.12

Table 5. Estimated relative rotation and translation vectors means

Dataset
ID

Mean Rotation Vector Mean Translation Vector
x y z x y z

1 0 0.003 -0.003 1 -0.005 -0.17

2 0.001 0.002 -0.003 1 -0.015 -0.13

Table 6. Estimated relative rotation and translation vector standard deviations

Dataset
ID

Rotation Vector Std. Dev. Translation Vector Std. Dev.
x y z x y z

1 10−4 6 · 10−5 8 · 10−5 0 0.002 0.017

2 1.9 · 10−5 2.3 · 10−4 1.8 · 10−5 0 0.002 0.002

Results for Videre STH-DCSG-9cm. To get ground truth stereo rig param-
eters we used the camera API. We conducted a few dozens of experiments, where
intrinsic camera parameters initial relive error was selected from the [−50%, 50%]
range uniformly.

From table 7 we can see that on the first dataset we achieve less than 4%
relative error in intrinsic camera parameters. Standard deviation of the relative
error computed over the experiments is less than 2%. On the second dataset
relative error in intrinsic camera parameters is less than 6%, while its standard
deviation is less than 2%.

Table 7. Camera intrinsic parameters relative errors

Dataset
ID

Number of
Images

Distance
(cm)

Mean Relative
Error (%)

Relative Error
Std. Dev. (%)

f
(err)
x f

(err)
y c

(err)
x c

(err)
y f

(err)
x f

(err)
y c

(err)
x c

(err)
y

1 5 30 2.6 3.6 -1 0.2 1 0.3 1.6 0.9
2 5 30 0.5 -2.4 -5.4 -7.2 0.8 0.9 1.1 2



76 A. Spizhevoy and V. Eruhimov

Table 8. Ground truth rotation and translation vectors

Rotation Vector Translation Vector
x y z x y z
-0.005 −2 ·10−4 0.001 1 -0.004 -0.012

Table 9. Estimated relative rotation and translation vectors means

Dataset
ID

Mean Rotation Vector Mean Translation Vector
x y z x y z

1 0.018 0.01 0.008 1 0.027 -0.024
2 0.026 0.03 0.001 1 0.007 -0.046

Table 10. Estimated relative rotation and translation vector standard deviations

Dataset
ID

Rotation Vector Std. Dev. Translation Vector Std. Dev.
x y z x y z

1 1.8−4 5.8 · 10−4 1.7 · 10−4 0 0.001 0.001
2 3.7 · 10−5 0.001 4 · 10−4 0 0.001 0.002

We also computed errors for relative rotation matrix Rrel and relative trans-
lation vector Trel estimations. The table 8 contains relative rotation and trans-
lation vectors obtained using the camera API.

The results obtained for Rrel and Trel using the proposed auto-calibration
method are shown in tables 9 and 10.

4 Conclusion

We investigated the problem of auto-calibration for the case of rotational camera
and stereo rig. We built a robust auto-calibration pipeline for both cases, that
showed good results on real datasets.

We analyzed impact of errors in camera parameters on final results in such
computer vision problem as image mosaicing. While errors in camera parameters
can lead to big warping errors, we showed that using modern stitching algorithms
relaxes requirements on camera parameters accuracy.

In one specific case we studied how errors in camera intrinsic parameters may
affect reconstruction precision in the case of stereo rig auto-calibration.

We showed that it is possible to calibrate cameras without patterns, but the
quality of input data is important for achieving accurate auto-calibration.



Auto-calibration for Image Mosaicing and Stereo Vision 77

References

1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn.
Cambridge University Press (2004) ISBN: 0521540518

2. Brown, M., Lowe, D.G.: Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision 74(1), 59–73 (2007)

3. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)

4. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media (2008)

5. Szeliski, R.: Image Alignment and Stitching: A Tutorial. Microsoft Research,
TechReport, MSR-TR-2004-92 (2004)

6. Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and texture-
mapped models. In: Computer Graphics, SIGGRAPH Proceedings. Association for
Computing Machinery, Inc. (1997)

7. Eden, A., Uyttendaele, M., Szeliski, R.: Seamless Image Stitching of Scenes with
Large Motions and Exposure Differences. In: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2006)

8. Pollefeys, M.: Visual 3D Modeling from Images. Tutorial Notes (2000),
http://www.cs.unc.edu/~marc/tutorial/

9. Nister, D.: Untwisting a projective reconstruction. International Journal of Com-
puter Vision (2004)

10. Gibson, S., Cook, J., Howard, T., Hubbold, R., Oram, D.: Accurate Camera Cal-
ibration for Off-line, Video-Based Augmented Reality. In: ISMAR Proceedings of
the 1st International Symposium on Mixed and Augmented Reality (2002)

11. Chen, J., Yuan, B.: Metric 3D reconstruction from uncalibrated unordered im-
ages with hierarchical merging. In: IEEE 10th International Conference on Signal
Processing (2010)

12. Chandraker, M.K., Agarwal, S., Kriegman, D.J., Belongie, S.: Globally Optimal
Algorithms for Stratified Autocalibration. IJCV 90(2), 236–254 (2010)

13. Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut Textures: Image
and Video Synthesis Using Graph Cuts. To appear in Proc. ACM Transactions on
Graphics, SIGGRAPH (2003)

14. Adelson, E.H., Burt, P.J.: Multi-resolution Splining Using a Pyramid Image Rep-
resentation. In: SPIE Applications of Digital Image Processing IV, pp. 204–210
(1983)

15. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

16. FLANN - Fast Library for Approximate Nearest Neighbors (2011),
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

17. OpenCV stitching module documentation (2012),
http://opencv.itseez.com/modules/stitching/doc/stitching.html

18. Ji, Q., Dai, S.: Self-Calibration of a Rotating Camera with a Translational Offset.
IEEE Trans. on Robotics and Automation 20(1) (February 2004)

19. Junejo, I., Foroosh, H.: Practical PTZ Camera Calibration using Givens Rotations.
In: IEEE ICIP (2008)

20. Spizhevoy, A., Eruhimov, V.: Problem of auto-calibration in image mosaicing. In:
International Conference on Computer Graphics and Vision, GraphiCon, Confer-
ence Proceedings, pp. 27–32 (2012)

http://www.cs.unc.edu/~marc/tutorial/
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://opencv.itseez.com/modules/stitching/doc/stitching.html


M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 78–91, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

GPU Ray Tracing – Comparative Study on Ray-Triangle 
Intersection Algorithms 

Vladimir Shumskiy 

Moscow Institute of Physics and Technology 
Air Graphics 

v.a.shumskiy@gmail.com 

Abstract. I present a comparative study on GPU ray tracing implemented for 
two different types of ray-triangle intersection algorithms used with BVH 
(Bounding Volume Hierarchy) spatial data structure evaluated for performance 
on three static scenes. I study how number of triangles placed in a BVH leaf 
node affects rendering performance. I propose GPU-optimized SIMD ray-
triangle intersection method evaluated on GPU for path-tracing and compare 
it’s performance with plain Moller-Trumbore and Unit Triangle intersection 
methods.  

Keywords: ray-triangle intersection, GPU programming, Direct3D, Direct-
Compute, performance study, ray tracing, bounding volume hierarches. 

1 Introduction 

While modern graphics cards (GPUs) allow for general computation in a parallel 
manner, one of the most prominent applications for a GPU is image synthesis. This is 
thanks to the inherent parallel nature of ray tracing and other global illumination algo-
rithms – the decomposition of images into pixels provides a natural way of creating 
individual tasks for many parallel processors. Unlike the GPUs a few years ago, mod-
ern ones allow us full programmability similar to general CPUs, while the streaming 
computation model has its own specific issues. This has to be taken into account when 
adopting the data structures, traversal algorithms and intersection test routines for ray 
tracing on GPU architecture. 

Testing framework for this paper is based on formerly published papers that im-
plement ray-tracing with spatial data structures in GPU. We use bounding volume 
hierarchies as described in [5] and few different ray-triangle intersection methods, 
especially Moller-Trumbore [8] and Unit Triangle [14] routine. While performance of 
each of those algorithms was successfully studied separately, little attention was paid 
to how triangle-intersection method can affect spatial data structure traversal perfor-
mance and vice versa. Furthermore, the performance has not been carefully compared 
on a current programmable GPU architecture, especially using a cross-vendor APIs 
like OpenCL, DirectCompute or C++ AMP. In this paper we first present such a com-
parison study dealing with efficiency of two different types of ray-triangle intersec-
tion algorithms for ray tracing on GPU. 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 79 

This paper is further structured as follows. Section 2 summarizes the previous 
work of ray-triangle intersection on both CPU and GPU and performance comparison 
on those algorithms. Section 3 describes our choices for implementation. Section 4 
shows the result from measurements on two GPUs for a set of scenes. Further it dis-
cusses the bottlenecks of a contemporary GPU architecture for ray tracing algorithms. 
Section 5 concludes the paper with possible perspectives for future work. 

2 Previous Work 

Due to important role in computer graphics plenty of research has been done in the 
field of intersection testing algorithms. Algorithms proposed by Snyder and Barr [11], 
Badouel [3], Moller-Trumbore [8], Woop [14], Wald and Shevtsov et al. [10], have 
been successfully compared and studied [9], [2], [3], [8]. In our research we divide 
algorithms on those which use precomputed data and on those which do not. Based on 
previous work we decided to use Moller-Trubmore algorithm as a minimal storage, 
fast non-precomputed type and Swen Woop’s Unit Triangle Test as the precomputed 
one as it requires only 48 bytes per triangle and doesn’t need to store vertex list. In 
this section we describe chosen algorithms along with BVH spatial data structure. 

We omit ray-packet algorithms in our work, because the coherence of the rays 
within the packet is very important since the vector instructions are fully used only if 
all rays go through the same branch of computation. In situations like physical simu-
lation, collision detection or ray-tracing in scenes, where rays bounces into multiple 
directions (spherical or bumpmapped surfaces), coherent ray packets break down very 
quickly to single rays or do not exist at all. Ray-packets have proven [1], [6] to be 
ineffective in the above mentioned tasks. 

2.1 Moller-Trumbore’s Algorithm 

The algorithm proposed by Moller and Trumbore does not test intersection with the 
triangle’s embedding plane and therefore does not require the plane equation parame-
ters. This is a big advantage mainly in terms of memory consumption especially on 
the GPU execution performance. The algorithm goes as follows [8]: 

1. In a series of transformations the triangle is first translated into the origin and 
then transformed to a right-aligned unit triangle in the y-z plane, with the ray direction 
aligned with x. This can be expressed by a linear equation 

 
 

(1) 

 
Where E1 = V1 – V0, E2 = V2 – V0, T = O – V0, P = D × E2 and Q = T × E1.  

2. This linear equation can now be solved to find the barycentric coordinates of the 
intersection point (u,v) and its distance t from the ray origin. 



80 V. Shumskiy 

2.2 Unit Triangle Algorithm 

The so called Unit Triangle intersection algorithm performs ray transformations and 
consists of two stages [14]. First the ray is transformed, using a triangle specific affine 
triangle transformation, to a coordinate system, in which the triangle looks like the 
unit triangle ∆unit with the edge points (1, 0, 0), (0, 1, 0) and (0, 0, 0). In the second 
stage, a simple intersection test of the transformed ray with the unit triangle is done. 
The affine triangle transformation to a triangle ∆ = (a, b, c) is an affine transformation 

T∆(x) = m · x + n with m ∈ MatR(3 × 3) and n ∈ R3 that maps the triangle ∆ to the 
unit triangle ∆unit. 

2.3 Bounding Volume Hierarchies 

Bounding volume hierarchies were successfully implemented on GPU. Thrane and 
Simonsen [12] in fact compare kd-trees, uniform grids, and bounding volume hierar-
chies implemented on a GPU (2005-year hardware). They conclude the performance 
of BVHs is low, however higher than the performance of other two data structures 
when no ray packets are used. Carr et al. [4] implemented a variant of BVHs in com-
bination with geometry images. Günther et al. [5] use ray packets and yield interactive 
performance comparable or exceeding CPU-based implementation, but only for pri-
mary and shadow rays. Recently, Lauterbach et al. [7] present an algorithm for fast 
BVH construction on a GPU, where they report performance comparable to kdtrees 
[16] only for one scene. Torres et al. [13] published an algorithm for stack-less BVH 
traversal, where the use of stack is replaced by ropes connecting the nodes of a BVH 
in a sibling order. 

3 Implementation 

 

Fig. 1. Testing scenes: Stanford Buddha, Bunny and Dragon 

We have implemented a standalone compact program called RenderBro, that does not 
need the support of other 3rd party libraries along with Autodesk 3DS Max Plugin 
(both can be obtained at http://renderbro.com). Standalone program is capable of 
loading 3D scene form OBJ file format along with MTL materials files. 3DS Max 
plugin is capable to work with any kind of geometry loaded into editor in question. 
While the data structures are built offline on a CPU, the created data structures and 
scene geometry are transferred to a GPU and used for ray tracing algorithm entirely 
on the GPU. This methodology is sufficient to study the efficiency of shooting rays 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 81 

with different intersection algorithms. The traversal and intersection algorithms were 
implemented using Microsoft DirectX DirectCompute (Compute Shaders). Although 
this implementation limits target platforms to Microsoft Windows, it gives freedom to 
choose any GPU vendor to run GPU ray tracing, such as ATI/AMD, NVIDIA, Intel. 
DirectCompute code can be translated to C++ AMP version, which can be executed 
on any OS. We designed our solution to support as many hardware as possible, 
though only DirectX 10 compatible or newer hardware is supported. All shaders were 
compiled using latest Windows SDK 8.0 D3DCompiler_45. 

In Moller-Trumbore setting the geometry of a scene consisting solely of triangles is 
represented by a list Lv of vertices and list of materials Lm, where each triangle has a 
list of three indices to Lv plus an index to the Lm. In the Unit Triangle Test each tri-
angle is represented directly by the affine transformation matrix. For our tests we 
implemented path-trace setting with physically-based importance sampled shading 
including Phong, Blinn-Phong, Lambertian Diffuse, Oren-Nayar Diffuse, Ashikhmin-
Shirley, Glass and Perfect Mirror BSDFs. 

The BVHs were built in top-down fashion with surface area heuristics using the 
centroids of bounding boxes for scene triangles, following the paper by Günther et al. 
[5]. Each BVH node consists of AABB extents and indices to child nodes. If it’s a 
leaf node, child indices are replaced with triangle offset along with triangle count. 
Those parameters are packed in 32 byte BVH node structure. As a BVH does not 
need to store the min and max intersection distances along the ray, only the node ad-
dress is saved to the stack. Stack does not need to be shortened to only several entries, 
which minimizes the number of traversal steps. Serialization of write operation may 
occur as threads record their information. Each BVH node can contain any number of 
triangles. This hypothetically reduces the number of nodes of a hierarchy along with 
GPU memory needed and gives space for GPU traversal optimization. Traversal is 
done with “while-if” method and listed in appendix 8.3.  

3.1 GPU Optimized Intersections 

Moller-Trumbore and Unit triangle intersection tests are pretty straight-forward to 
implement and require a little knowledge of GPU architecture (see appendix, section 
8.1). Such methods can experience poor register usage in architectures like VLIW 
which is used in many AMD GPUs. 

In this work we introduce a method that strongly benefit from denser GPU register 
usage. The main idea is to exploit the wide vector width SIMD (Single Instruction 
Multiple Data) by testing intersection with one ray and four triangles at a time. 

Firstly, at precompute time we need to try to fill BVH with four triangles per node, 
so each node will contain four pointers to triangle list. If this is not possible we would 
have one triangle per node at worst. Secondly, we need to align GPU scene data ac-
cording to BVH node structure. So if particular node has only one triangle, we need to 
place three degenerate triangles in a triangle list to fulfill the alignment. Of course, 
this will result in a GPU memory footprint by the means of performance. Thirdly, 
when performing BVH traverse we will be able to linearly fetch four triangles. Here 
we will need to construct additional vectors, like: 



82 V. Shumskiy 

// fetch triangle vertices 
float3 v01, v11, v21; 
float3 v02, v12, v22; 
float3 v03, v13, v23; 
float3 v04, v14, v24;  
... 
// construct per-component dir & orig vectors 
float4 dir4x = ray.dir.xxxx; 
float4 dir4y = ray.dir.yyyy; 
float4 dir4z = ray.dir.zzzz; 
float4 orig4x = ray.orig.xxxx; 
float4 orig4y = ray.orig.yyyy; 
float4 orig4z = ray.orig.zzzz; 

This allows us to compute temporary values on per-component SIMD basis, so all 
non SIMD operations like scalar addition and multiplication can be performed on 
each triangle simultaneously. For example, when performing scalar multiplication on 
GPU we use only one computing block while using new approach we will perform 
four multiplication operations by the same cost (see appendix 8.2 for full listing): 

// one triangle per pass 
float divisor = dot(pvec, e1); 
 
// four triangles per pass 
float4 divisor4 = pvecx*e1x + pvecy*e1y + pvecz*e1z; 

Table 1. Test scene properties, number of triangles per BVH leaf node, rendering times for 
different ray-triangle intersection method for Path Trace setting with 500 samples and max ray 
depth of 16. GPU NVIDIA GeForce GT 240M. Image resolution: 800x600. 

Scene 
Triangles 
per BVH 
node 

GPU 
Scene 
Size, 
MB 

Moller-
Trumbore, 
seconds 
(average) 

Unit 
Triangle, 
seconds 
(average) 

Quad Mol-
ler-
Trumbore, 
seconds 
(average) 

Quad 
Unit 
Triangle, 
seconds 
(average) 

Buddha, 
100.006 
triangles 

1 9,35 103,33 103,94 - - 
2 7,26 95,13 95,44 - - 
3 6,38 92,72 93,07 - - 
4 5,89 90,91 91,17 89,67 85,36 
8 5,15 92,57 94,01 - - 
16 4,73 104,53 108,83 - - 

Bunny, 
69.678 
triangles 

1 6,51 72,18 73,52 - - 
2 4,87 65,48 66,67 - - 
3 4,45 62,07 63,94 - - 
4 3,99 60,98 62,17 57,35 52,84 
8 3,45 62,1 63,29 - - 
16 3,14 69,67 70,61 - - 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 83 

Table 1. (continued) 

Dragon, 
100.012 
triangles 

1 9,35 210,89 211,67 - - 
2 7,26 210,71 211,61 - - 
3 6,35 210,68 211,44 - - 
4 5,86 210,52 211,21 173,37 168,85 
8 5,11 210,69 211,37 - - 
16 4,65 210,91 211,66 - - 

Table 2. Test scene properties, number of triangles per BVH leaf node, rendering times for 
different ray-triangle intersection methods for Path Trace setting with 500 samples and max ray 
depth of 16. GPU AMD Radeon HD 6870. Image resolution: 800x600. 

Scene 
Triangles 
per BVH 
node 

GPU 
Scene 
Size, 
MB 

Moller-
Trumbore, 
seconds 
(average) 

Unit 
Triangle, 
seconds 
(average) 

Quad Mol-
ler-
Trumbore, 
seconds 
(average) 

Quad 
Unit 
Triangle, 
seconds 
(average) 

Buddha, 
100.006 
triangles 

1 9,35 49,27 49,43 - - 

2 7,26 49,78 50,31 - - 

3 6,38 51,94 52,18 - - 

4 5,89 54,15 55,16 34,3 31,37 

8 5,15 66,3 68,64 - - 

16 4,73 95,22 98,38 - - 

Bunny, 
69.678 
triangles 

1 6,51 33,27 33,79 - - 

2 4,87 33,57 34,41 - - 

3 4,45 34,68 35,55 - - 

4 3,99 38,05 39,06 23,9 20,64 

8 3,45 46,57 47,86 - - 

16 3,14 60,26 62,56 - - 

Dragon, 
100.012 
triangles 

1 9,35 99,27 99,75 - - 
2 7,26 99,41 100,96 - - 
3 6,35 104,6 105,61 - - 
4 5,86 108,35 111,5 57,99 54,91 
8 5,11 132,57 138,06 - - 
16 4,65 188,55 198,07 - - 

 
 
 
 
 



84 V. Shumskiy 

Table 3. Test scene properties, number of triangles per BVH leaf node, rendering times for 
different ray-triangle intersection methods for Path Trace setting with 1000 samples and max 
ray depth of 16. GPU NVIDIA GeForce GTX 560. Image resolution: 800x600. 

Scene 
Triangles 
per BVH 
node 

GPU 
Scene 
Size, 
MB 

Moller-
Trumbore, 
seconds 
(average) 

Unit 
Triangle, 
seconds 
(average) 

Quad Mol-
ler-
Trumbore, 
seconds 
(average) 

Quad 
Unit 
Triangle, 
seconds 
(average) 

Buddha 4 5,89 66,59 67,07 63,87 62,13 

Bunny 4 3,99 56,82 57,52 53,18 51,17 

Dragon 4 5,86 84,76 85,94 80,37 78,64 
 

Table 4. Test scene properties, number of triangles per BVH leaf node, rendering times for 
different ray-triangle intersection methods for Path Trace setting with 1000 samples and max 
ray depth of 16. GPU AMD HD7850. Image resolution: 800x600. 

Scene 

# Trian-
gles per 
BVH 
node 

GPU 
Scene 
Size, 
MB 

Moller-
Trumbore, 
seconds 
(average) 

Unit 
Triangle, 
seconds 
(average) 

Quad Mol-
ler-
Trumbore, 
seconds 
(average) 

Quad 
Unit 
Triangle, 
seconds 
(average) 

Buddha 4 5,89 38,03 39,41 33,43 31,35 

Bunny 4 3,99 36,48 37,97 31,64 29,85 

Dragon 4 5,86 65,56 67,09 56,72 54,92 

4 Results 

In this section we describe the results for measurement on three different scenes. We 
used scenes from individual objects courtesy of Stanford scene repository. These 
scenes are frequently used to test the performance of ray tracing and global illumina-
tion algorithms. Images were rendered in 800x600 pixels resolution. All performance 
results in this paper were measured on 4 different GPUs: 

1. NVIDIA GeForce GT 240M (2009), 48 CUDA cores on 1210MHz, 1 GByte of 
memory with bandwidth of 54.4 GB/sec. 

2. AMD HD 6870 (2010), 2 TFLOPs, 1120 Stream Processors on 900MHz, 1GByte 
of memory with bandwidth of 134.4 GB/sec. 

3. NVIDIA GeForce GTX 560 (2011), 2.1 TFLOPs, 336 CUDA cores on 1620-
1900MHz, 1 GByte of memory with bandwidth of 128 GB/s. 

4. AMD HD 7850 (2012), 1.76 TFLOPs, 1024 Stream Processors on 860MHz, 
2GByte of memory with bandwidth of 153.6 GB/s. 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 85 

The static properties of data structures for all three scenes along with average compu-
tation time for path-tracing are shown in Tables 1 and 2. Performance results for 
BVHs build with different count of triangles per leaf node are shown in columns 4 
and 5. Those results demonstrate that both the number of triangles per leaf node and 
the selected intersection method remarkably affect the performance. Results lead us to 
assumption that 4 triangles per leaf node is the optimal number for BVH traversal. 

Moller-Trumbore kernel had proven to be up to 5% faster than Unit Triangle in all 
tests while Quad Unit Triangle kernel shown to be up to 14% faster than Quad Mol-
ler-Trumbore. 

Our proposed Quad Unit-Triangle method brings moderate improvements of 5% to 
11% on different generations of NVIDIA hardware except for Dragon scene setup on 
GT 240M GPU where it gain about 18% (tables 1 and 3). The situation is better on 
VLIW AMD/ATi hardware where it had shown to be up to 2x times faster than Mol-
ler-Trumbore (table 2). Furthermore we managed to analyze performance of the latest 
GPU generation AMD HD 7850 (table 4). As we expected, it showed consistent re-
sults in spite of new architecture and showed that Quad Unit-Triangle is approximate-
ly 20% faster than Moller-Trumbore method. 

Good results are gained for VLIW architecture used in AMD GPUs where more 
functional units are available and may be scheduled by the compiler or hardware si-
multaneously. According to description of VLIW architecture, it’s possible to perform 
compute operations along with memory access. We assume that this result is mainly 
achieved by performing more linear memory access to GPU global memory, avoiding 
branching by unrolling triangle-intersection loop and taking advantage of denser GPU 
register usage. 

Things are bit different for NVIDIA GPUs like Fermi which internally operate in a 
SIMD manner by ganging multiple (32) scalar threads together into SIMD warps. If a 
warp’s threads diverge, the warp serially executes both branches, temporarily disabl-
ing threads that are not on that path. Thus, ray tracing performance certainly can ben-
efit from loop unrolling and more linear memory access. But the true cause of per-
formance improvement lies much deeper in the GPU architecture and goes beyond the 
scope of this article.  

5 Conclusion and Future Work 

We have shown that triangle intersection routines that tend to have good performance 
when used separately can behave badly when used together with acceleration struc-
tures like BVH’s due to incoherent memory access, lack of registers, and so on. So we 
focus our work on finding the robust combination of triangle intersection method and 
spatial data structure. For now it’s the Quad Triangle intersection method used along 
with BVH.  

As future work, the implementation could be extended by several other data struc-
tures, such as Kd-Trees, Uniform Grids along with few different ray-triangle intersec-
tion methods that can be efficiently mapped to GPUs and are likely to show  
unexpected results when used together. 



86 V. Shumskiy 

Furthermore, shown results can hardly be called ambiguous as they are pretty 
much view dependent. Dragon scene showed 18% performance improvement on 
NVIDIA GT 240M for one angle of view. For different angles performance may vary, 
showing both improvement and deterioration. So, a part of our future work will be 
devoted to analysis of more complex and dynamic scenes where view dependency is 
not that great. 

Unfortunately, we didn’t manage to make in-depth performance study on latest 
discreet NVIDIA and integrated Intel GPUs. We would like to complete out research 
by taking this GPUs into account as a part of future work. 

References 

1. Aila, T., Laine, S.: Understanding the Efficiency of Ray Traversal on GPUs. In: Proceed-
ings of High-Performance Graphics 2009, pp. 145–150. ACM, New York (2009) 

2. Arenberg, J.: Ray-Triangle Intersection with Barycentric Coordinates. In: Haines, E. (ed.) 
Ray Tracing News, November 4, vol. 1(11) (1988) 

3. Badouel, F.: An efficient Ray-Polygon intersection, Graphic Gems, pp. 390–393. Academ-
ic Press (1990) 

4. Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast GPU ray tracing of dynamic meshes 
using geometry images. In: GI 2006: Proceedings of Graphics Interface 2006, pp. 203–
209. Canadian Information Processing Society, Toronto (2006) 

5. Günther, J., Popov, S., Seidel, H.-P., Slusallek, P.: Realtime Ray Tracing on GPU with 
BVH-based Packet Traversal. In: Proceedings of the IEEE/Eurographics Symposium on 
Interactive Ray Tracing 2007, pp. 113–118 (September 2007) 

6. Havel, J., Herout, A.: Yet Faster Ray-Triangle Intersection (Using SSE4). IEEE Transac-
tions on Visualization and Computer Graphics 16(3), 434–438 (2010), 
doi:10.1109/TVCG.2009.73 

7. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha, D.: Fast BVH Construc-
tion on GPUs. Computer Graphics Forum 28(2), 375–384 (2009) (Proceedings of Euro-
graphics 2007) 

8. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. Journal on 
Graphic Tools 2(1), 21–28 (1997) 

9. Segura, R.J., Feito, F.R.: Algorithms to Test RayTriangle Intersection. Comparative Study. 
In: Skala, V. (ed.) WSCG 2001 Conference Proceedings (February 2001) 

10. Shevtsov, M., Soupikov, A., Kapustin, A.: Ray-Triangle Intersection Algorithm for Mod-
ern CPU Architectures. In: Proceedings of GraphiCon 2007, pp. 33–39 (2007) 

11. Snyder, M., Barr, A.H.: Raytracing complex models containing surface tesselations. In: 
Proceedings of the 14th Annual Conference on Computer Graphics, vol. 21(4), pp. 119–
128 (1987) 

12. Thrane, N., Simonsen, L.O.: A comparison of acceleration structures for GPU assisted ray 
tracing. M.Sc. Thesis, University of Aarhus, Denmark (2005) 

13. Torres, R., Martin, P.J., Gavilanes, A.: Ray Casting using a Roped BVH with CUDA. In: 
25th Spring Conference on Computer Graphics (SCCG 2009), Budmerice, Slovakia, pp. 
107–114 (April 2009) 

14. Woop, S., Schmittler, J., Slusallek, P.: RPU: A Programmable Ray Processing Unit for 
Realtime Ray Tracing. ACM Transactions Graphics 24(3), 434–444 (2005) 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 87 

15. Wald, I.: Realtime ray tracing and interactive global illumination. PhD thesis, Saarland 
University (2004) 

16. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time KD-tree construction on graphics hard-
ware. In: SIGGRAPH Asia 2008: ACM SIGGRAPH Asia 2008 Papers, New York, pp. 1–
11 (2008) 

A Appendix 

A.1 Casual Moller-Trumbore GPU Ray-Triangle Intersection Routine (HLSL 
code) 

float intersect(float3 orig, float3 dir, float3 v0, 
float3 v1, float3 v2) 
{ 
  float3 e1 = v1 - v0; 
  float3 e2 = v2 - v0; 
 
  float3 normal = normalize(cross(e1, e2)); 
  float b = dot(normal, ray.dir); 
 
  float3 w0 = ray.orig - v0; 
  float a = -dot(normal, w0); 
  float t = a / b; 
 
  float3 p = ray.orig + t * ray.dir; 
  float uu, uv, vv, wu, wv, inverseD; 
  uu = dot(e1, e1); 
  uv = dot(e1, e2); 
  vv = dot(e2, e2); 
 
  float3 w = p - v0; 
  wu = dot(w, e1); 
  wv = dot(w, e2); 
  inverseD = uv * uv - uu * vv; 
  inverseD = 1.0f / inverseD; 
 
  float u = (uv * wv - vv * wu) * inverseD; 
  if (u < 0.0f || u > 1.0f) 
    return -1.0f; 
 
  float v = (uv * wu - uu * wv) * inverseD; 
  if (v < 0.0f || (u + v) > 1.0f) 
    return -1.0f; 
 
  UV = float2(u,v); 
  return t; 
} 



88 V. Shumskiy 

A.2 Quad Moller-Trumbore GPU Triangle-Ray Intersection Routine (HLSL 
code) 

float intersect(float3 orig, float3 dir, float3 v01,             
float3 v11, float3 v21, float3 v02, float3 v12, float3 
v22, float3 v03, float3 v13, float3 v23, float3 v04, 
float3 v14, float3 v24) 
{ 
  float3 e11 = v11 - v01; 
  float3 e21 = v21 - v01; 
  float3 e12 = v12 - v02; 
  float3 e22 = v22 - v02; 
  float3 e13 = v13 - v03; 
  float3 e23 = v23 - v03; 
  float3 e14 = v14 – v04; 
  float3 e24 = v24 - v04; 
  float4 v0x = float4(v01.x, v02.x, v03.x, v04.x); 
  float4 v0y = float4(v01.y, v02.y, v03.y, v04.y); 
  float4 v0z = float4(v01.z, v02.z, v03.z, v04.z); 
  float4 e1x = float4(e11.x, e12.x, e13.x, e14.x); 
  float4 e1y = float4(e11.y, e12.y, e13.y, e14.y); 
  float4 e1z = float4(e11.z, e12.z, e13.z, e14.z); 
  float4 e2x = float4(e21.x, e22.x, e23.x, e24.x); 
  float4 e2y = float4(e21.y, e22.y, e23.y, e24.y); 
  float4 e2z = float4(e21.z, e22.z, e23.z, e24.z); 
  float4 dir4x = ray.dir.xxxx; 
  float4 dir4y = ray.dir.yyyy; 
  float4 dir4z = ray.dir.zzzz; 
  float4 pvecx = dir4y*e2z - dir4z*e2y; 
  float4 pvecy = dir4z*e2x - dir4x*e2z; 
  float4 pvecz = dir4x*e2y - dir4y*e2x; 
  float4 divisor = pvecx*e1x + pvecy*e1y + pvecz*e1z; 
  float4 invDivisor = float4(1, 1, 1, 1) / divisor; 
  float4 orig4x = ray.orig.xxxx; 
  float4 orig4y = ray.orig.yyyy; 
  float4 orig4z = ray.orig.zzzz; 
  float4 tvecx = orig4x - v0x; 
  float4 tvecy = orig4y - v0y; 
  float4 tvecz = orig4z - v0z; 
  float4 u4; 
  u4 = tvecx*pvecx + tvecy*pvecy + tvecz*pvecz; 
  u4 = u4 * invDivisor; 
  float4 qvecx = tvecy*e1z - tvecz*e1y; 
  float4 qvecy = tvecz*e1x - tvecx*e1z; 
  float4 qvecz = tvecx*e1y - tvecy*e1x; 
  float4 v4; 
  v4 = dir4x*qvecx + dir4y*qvecy + dir4z*qvecz; 
  v4 = v4 * invDivisor; 
  float4 t4; 
  t4 = e2x*qvecx + e2y*qvecy + e2z*qvecz; 
 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 89 

  t4 = t4 * invDivisor; 
  float t = -1.0f; 
 
  if(t4.x < t && t4.x > 0) 
    if(u4.x >= 0 && v4.x >= 0 && u4.x + v4.x <= 1)           
      t = t4.x; 
 
  if(t4.y < t && t4.y > 0) 
    if(u4.y >= 0 && v4.y >= 0 && u4.y + v4.y <= 1) 
      t = t4.y; 
     
  if(t4.z < t && t4.z > 0) 
    if(u4.z >= 0 && v4.z >= 0 && u4.z + v4.z <= 1) 
      t = t4.z; 
 
  if(t4.w < t && t4.w > 0) 
    if(u4.w >= 0 && v4.w >= 0 && u4.w + v4.w <= 1) 
      t = t4.w; 
     
  return t; 
} 

A.3 BVH Traversal Routine (HLSL code) 

struct BvhCell 
{ 
  float4 vmin; //float3 min + uint children 
  float4 vmax; //float3 max + uint count 
}; 
bool RayIntersectScene(Ray ray) 
{  
  uint stack[64], stackPos = 0, node = 0; 
  float t  = FLT_MAX; 
  bool intersect = false; 
  BvhCell cellLeft, cellRight; 
  BvhCell current = GetNode(node); 
 
  while(1) 
  {  
    uint count  = GetNodeTriangleCount(current); 
    if(count > 0) 
    { // Leaf Node  
      uint offset = GetNodeTriangleOffset(current); 
      intersect = RayTrisTest(ray, t, offset, count); 
      if(stackPos > 0) 
      { 
        node = stack[--stackPos]; 
 
 



90 V. Shumskiy 

        current  = LoadNode(node); 
      } 
      else return intersected; 
    } 
    else 
    { 
      uint  leftNode  = GetLeftChildID(node); 
      uint  rightNode = GetRightChildID(node); 
      float lMin, rMin; 
      cellLeft  = GetNode(leftNode); 
      cellRight = GetNode(rightNode); 
      bool wantLeft = RayAABBTest(ray, cellLeft, lMin); 
      bool wantRight = RayAABBTest(ray, cellRight, 
                                   rMin); 
      if(wantLeft && wantRight) 
      { 
        bool firstLeft = leftMin < rightMin; 
        if(firstLeft) 
        { 
          current = cellLeft; 
          node    = leftNode; 
          stack[stackPos++] = rightNode; 
        } 
        else 
        { 
          current = cellRight; 
          node    = rightNode; 
          stack[stackPos++] = leftNode; 
        } 
      } 
      else if(wantRight) 
      { 
        current = cellRight; 
        node    = rightNode; 
      } 
      else if(wantLeft) 
      { 
        current = cellLeft; 
        node    = leftNode; 
      } 
      else 
      { 
        if(stackPos > 0) 
        { 
          node = stack[--stackPos]; 
          current = GetNode(node); 
        } else return intersected; 



 GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms 91 

      } 
    } 
  } 
  return intersected; 
} 

A.4 BVH Data Layout 

 
 
 



Learning Graph Laplacian for Image Segmentation

Sergey Milyaev1 and Olga Barinova2

1 Radiophysics Department, Voronezh State University, Voronezh, Russia
2 Department of Computational Mathematics and Cybernetics Lomonosov Moscow State

University, Moscow, Russia

Abstract. In this paper we formulate the task of semantic image segmentation
as a manifold embedding problem and solve it using graph Laplacian approx-
imation. This allows for unsupervised learning of graph Laplacian parameters
individually for each image without using any prior information. We perform ex-
periments on GrabCut, Graz and Pascal datasets. At a low computational cost
proposed learning method shows comparable performance to choosing the pa-
rameters on the test set. Our framework for semantic image segmentation shows
better performance than the standard discrete CRF with graph-cut inference.

1 Introduction

We consider the task of semantic image segmentation that implies assigning a label
from a given set to each image pixel. Various discrete CRF models have been proposed
for this task [1] [2], [3]. It was shown that learning the parameters of CRF improves its
performance [4], [5]. In this work we propose an alternative view on semantic image
segmentation.

Methods based on graph Laplacians show state-of-the-art results for interactive im-
age segmentation [6] and image matting [7]. They require just a few local computations
and solving one sparse linear system, which can be done very efficiently. In this work
we propose a formulation of image segmentation task in terms of manifold embedding
and discretize the problem using graph Laplacian approximation.

Graph Laplacian methods have the parameters very similar to those of discrete CRFs.
While a remarkable progress has been done in the direction of learning the parameters
of discrete CRFs (see e.g. [4], [5]). However the methods for learning parameters of dis-
crete CRF are not applicable to graph Laplacian. Thus the parameters of graph Lapla-
cian are usually chosen by validation on hold-out dataset. The use of validation limits
the potential number of parameters used. Moreover, the optimal values of parameters
can vary significantly from one image to another, therefore choosing the parameters
individually for each image is desirable.

Our formulation of image segmentation problem leads to a novel method for unsu-
pervised learning of graph Laplacian parameters, which is the main contribution of this
paper. Our method is designed specifically for the task of semantic image segmentation
and provides the values of parameters individually for each test image without using
any kind of supervision. Proposed method is computationally efficient and achieves
performance comparable to choosing the parameters on the test set, which eliminates
the need of using hold-out set or cross-validation. In experimental comparison on Graz

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 92–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Learning Graph Laplacian for Image Segmentation 93

Fig. 1. We formulate semantic image segmentation task as one-dimensional manifold embedding
problem. This allows for unsupervised learning of graph Laplacian parameters individually for
each image.

and Pascal datasets shows proposed method shows better performance than the standard
discrete CRF with graph-cut inference.

The remainder of the paper if organized as follows. We start by discussing related
work. In section 3 we describe the image segmentation framework proposed in this
paper. In section 4 we present our method for unsupervised learning of graph Laplacian
parameters. We proceed to the experimental evaluation of the proposed method.

2 Related Work

The task of semantic image segmentation implies assigning a label from a given set to
each image pixel. Various discrete CRF models have been proposed for this task [1]
[2], [3]. Learning the parameters of CRF can improve performance of semantic image
segmentation [4], [5]. In this work we use an alternative formulation of semantic image
segmentation problem that leads to using graph Laplacian instead of discrete CRF.

Methods based on graph Laplacians have emerged recently and proved very efficient
for interactive image segmentation [6] and image matting [7]. Graph Laplacian methods
allow interpretation in terms of MAP estimation in real-valued CRF [8]. A few other
interpretations of graph Laplacian methods have been suggested in the literature.

In [6] Grady suggested explanation of using Laplacians for interactive segmentation
in terms of random walks. In [9] the use of graph Laplacian for interactive image seg-
mentation was explained in terms of transductive inference. Hein et al. [10] showed
that graph Laplacian provides a good approximation for s-weighted Laplace operator.
Therefore, graph Laplacians propose a discrete alternative to the problem of finding a
smooth function such that it’s values in seed pixels are close to the associated labels and
it is allowed to vary only on low-density regions of the input space.



94 S. Milyaev and O. Barinova

In contrast to these works we derive the graph Laplacian by viewing image segmen-
tation as a manifold embedding task. In contrast to [11] we use manifold embedding
for semantic image segmentation and not the unsupervised image segmentation. This
formulation of semantic image segmentation allows for unsupervised learning of graph
Laplacian parameters.

The idea of our learning method is based on the properties of graph Laplacian ap-
proximation of Laplace-Beltrami operator studied in [12]. Coifman at al. in [13] pro-
posed a method for automatic selection the kernel bandwidth of graph Laplacian for
the problem of optimal manifold embedding. In contrast to [13] we design the method
specifically for the task of semantic image segmentation. While the method proposed
in [13] aims at choosing one parameter (kernel bandwidth), our method can handle
multiple parameters.

3 One-Dimensional Manifold Embedding for Semantic Image
Segmentation

First we discuss the task of manifold embedding and then explain our formulation of
image segmentation problem.

3.1 Manifold Embedding

Suppose we have a set of input points x1, ...,xN ∈ R
l. Let d : Rl × R

l → R be a
symmetrical function giving the distance in R

l. The optimal manifold embedding task is
to find a smooth differentiable function f that maps the input space Rl on the embedded
Riemanian manifold M of dimensionality m (m < l) (see Figure 1, left column). The
function f should preserve distances between the points, such that if d(xi,xj) is small,
then ‖f(xi)− f(xj)‖ should be small.

Let us focus on the case when the dimension of manifold M equals one (M = R).
Consider two points x,y ∈ R

l. They are mapped to f(x), f(y) ∈ R respectively. It can
be shown [12] that

|f(x)− f(y)| ≤ d(x,y)‖�f(x)‖ + o(d(x,y)) , (1)

where �f(x) is the gradient of function f(x). Thus we see that �f(x) provides us with
the measure of how far apart f maps nearby points.

We consider the problem of initialized one-dimensional manifold embedding when
1) M = R and 2) initial estimates y1, ..., yN of f(x1), ..., f(xN) in R are given. Sup-
pose we know confidences ci ≥ 0, i = 1, ..., N that reflect our belief in initial estimates
of f(xi), i = 1, ..., N . Using (1) the problem of initialized one-dimensional manifold
embedding can be formulated as minimization the following energy with respect to f

E(f) =
∑
i

ci (yi − f(xi))
2
+

∫
M

||�f ||2dV , (2)

where the integral is taken with respect to a standard measure on a Riemanian manifold.
The first term in (2) guarantees that corresponding one-dimensional vectors f(xi) are



Learning Graph Laplacian for Image Segmentation 95

close to their initial estimates yi. The second term guarantees that if the points xi,xj

are close in the input space then their images f(xi) and f(xj) are close in M .
It follows from the Stokes’ theorem that

∫
M ||�f ||2dV =

∫
M �M (f)fdV , where

�M (f) is the Laplace-Beltrami operator. It is a second order differential operator de-
fined as the divergence of the gradient of a function defined on M .

In many cases finding the mapping f explicitly is not required. The goal then is to
find a set of points f(x1), ..., f(xN ) ∈ M such that represent x1, ...,xN .

3.2 Image Segmentation as the Manifold Embedding Problem

For the sake of clarity first we consider the task of object/background image segmen-
tation. We aim to find real-valued alpha-matting coefficients for each image pixel, the
segmentation is then done by thresholding the result. Below we formulate image seg-
mentation problem as the problem of initialized one-dimensional manifold embedding.

Suppose each image pixel is mapped in a feature space x1, ...,xN ∈ R
l. For example

the features can include the spatial coordinates and color of the pixels. Suppose we have
defined a distance function between two pixels d : Rl ×R

l → R that tells how likely it
is that both pixels belong to object/background.

Suppose that for each image pixel we know the output of some local model 0 ≤ yi ≤
1, i = 1, ..., N that tells how likely it is that the pixel is a part of the object. Suppose
also that we know confidences ci ≥ 0, i = 1, ..., N that indicate how much belief we
put in the local model.

Our goal is to find real-valued f1, ..., fN that refine the outputs of local model
y1, ..., yN . We require that f1, ..., fN lie in the optimally embedded one-dimensional
manifold M and each fi corresponds to xi. Therefore the problem of image segmenta-
tion reduces to minimization of energy (2).

3.3 Approximation of Laplace-Beltrami Operator

We will now define a graph Laplacian that is an approximation of Laplace-Beltrami

operator. Denote weight matrix by W : Wij = exp
(
−d (xi,xj))

2
)

(in this work we

consider only Gaussian kernel). Let gi =
∑

j wij stand for a sum of W along the i-
th row. Denote diagonal matrix with values gi on diagonal by D. Graph Laplacian is
defined as a matrix L = W −D.

Belkin et al. [14] showed that graph Laplacian L converges to Laplace-Beltrami op-
erator in the limit N → ∞. In this sense, the graph Laplacian is a numerical machinery
for approximating a specific operator on the underlying manifold, by using a finite sub-
set of points.

3.4 Discretization of the Problem with Graph Laplacian

Using approximation of Laplace-Beltrami operator by graph Laplacian the problem
(2) reduces to minimization of the following energy function with respect to vector
f = (f1, ..., fN ):

E(f) =
∑
i

ci (fi − yi)
2 +

∑
i,j

wij (fi − fj)
2 . (3)



96 S. Milyaev and O. Barinova

The first term in (3) repeats the first term in (2) and the second term in (3) is a dicrete
approximation of the second term in (2) according to [14]. Minimization of the energy
E(f) can also be interpreted as MAP inference in a real-valued CRF, which are given
by the real-valued outputs f1, ..., fN .

In the matrix form (3) takes the following form:

E(f) = (f − y)
T
C (f − y) + fTLf , (4)

where C denotes a square diagonal matrix with ci on diagonal and y denotes an N -
dimensional vector of initial likelihood scores yi. This optimization problem reduces to
solving a sparse linear system:

(L + C)f = Cy. (5)

The object/background segmentation algorithm then consists in: 1) computing graph
Laplacian matrix L; 2) solving the sparse linear system (5); 3) thresholding the output.

Described formulation fits both in interactive segmentation scenario and in semantic
image segmentation scenario. In case of interactive segmentation confidence values ci
are infinite for pre-labelled seed points, and 0 for a test points, yi = 1 for seeds marked
as object and equals 0 for background seeds. For semantic segmentation we assume that
initial estimates yi and confidences ci are provided by local models (e.g. appearance
model of a specific category).

We notice that instead of pixels we can use image superpixels without making any
changes in the algorithm. These superpixels may be represented by overlapping image
segments produced by multiple over-segmentations. All possibly overlapping superpix-
els can be combined in one graph Laplacian, therefore solving a single linear system is
required. This allows accounting for similarities between superpixels produced by dif-
ferent over-segmentations. After solving linear system one can get a pixel-wise output
by averaging at each pixel real-valued outputs of the method for all superpixels

This framework can be extended to a multi-class segmentation. Let K denote the
number of labels corresponding to object categories. If we solve (5) for each label l
vs all other labels 1, · · · , l − 1, l + 1, · · · ,K and obtain the values y(l)i for all image
pixels; at the end, an i-th image pixel is assigned to the label lmax, where lmax =

argmaxl=1,··· ,K y
(l)
i .

4 Unsuperivised Learning of Graph Laplacian Parameters

Suppose that the distance function d is represented as a weighted sum of metrics di :
R× R → R+; i = 1, ...,K:

d(xi,xj)
2 =

1

ε

K∑
k=1

αkdk(xi,xj)
2 , (6)

with fixed α1 = 1. Therefore the parameters of graph Laplacian αi, i = 2, ..., l are the
weights of features xk, i = 2, ..., l and the kernel bandwidth ε. Below we show that
optimal value of ε is determined by the values of αi, i = 2, ..., l.



Learning Graph Laplacian for Image Segmentation 97

4.1 Kernel Bandwidth ε Selection with Fixed α

We start by fixing the parameters αi, i = 2, ..., l. As shown in [13], if we assume
that L provides a good approximation of Laplace-Belrami operator then the following
condition holds:

log
∑
i,j

wij(ε) ≈ m/2 log(ε) + log

(
N2(2π)m/2

vol(M)

)
, (7)

where m is a dimensionality of corresponding manifold M and wij are the elements of
the weight matrix W .

Consider the logarithmic plot of log
∑

i,j wij with respect to log ε. Figure 2 shows
the plot of log

∑
ij wij with respect to log ε and logα for one image from GrabCut

dataset. According to (7) if the approximation is good then the slope of this plot ε
should be about the half dimensionality of corresponding manifold. In the limit ε → ∞,
wij → 1, so

∑
ij wij → N2. On the other hand, as ε → 0, wij → δij , so

∑
ij wij →

N . These two limiting values set two asymptotes of the plot and assert that logarithmic
plot cannot be linear for all values of ε.

Fig. 2. Top: segmentation errors for the ”fullmoon” image from GrabCut database with respect to
log ε (α is fixed). Bottom: Dashed line - logarithmic plot for the ”fullmoon” image with respect
to log ε (α is fixed). The optimal value of ε is chosen in the point of maximum derivative of the
logarithmic plot; Solid line - sigmoid fit of the logarithmic plot.

Therefore in order to get better approximation of Laplace-Beltrami operator with
α1, ..., αK fixed we have to choose the value of ε from the linear region of logarithmic
plot. We use the point of maximum derivative as the point of maximum linearity.

4.2 Implementation Details

We use the distance function from [9]:

d̃2(xi,xj) =
‖ri − rj‖2

σ2
r

+
‖xi − xj‖2

σ2
g

, (8)



98 S. Milyaev and O. Barinova

where r encodes mean RGB color in the superpixel, x encodes coordinates of the center
of the superpixel, parameters of the method σr > 0 and σg > 0 are the scales of
chromatic and geometric neighbourhoods respectively.

This distance function (8) can be rewritten in the form of (6) as:

d̃2(xi,xj) =
1

ε

(
‖ri − rj‖2 + α ‖xi − xj‖2

)
, (9)

where ε = 0.5σ2
r and α = σ2

r/σ
2
g . Therefore, the distance function has two parameters

ε and α.
As follows from (7) the slope of the logarithmic curve near optimal value of ε has

to be close to m/2, where m is the dimensionality of manifold M . In our case m = 1,
therefore the slope of the logarithmic plot has to be 0.5. If the plot has different slope
in the linear region, this indicates that the second term in (7) is large.

So in the first step of our learning method we should find such α that the slope of
logarithmic plot of log

∑
ij wij(ε) from ε is equal to 0.5. In the second step we use the

sigmoid fit of the logarithmic plot. The shape of logarithmic plot can be approximated
with a sigmoid function: T (x) = A/(B + exp(Cx +D)) + E. Since the asymptotes
of the sigmoid are set by (7) and the slope in the linear region of the sigmoid should be
0.5 the sigmoid has only one free parameter that controls the shift of the sigmoid along
horizontal axis. Figure 2 illustrates the choice of ε according to sigmoid approximation.
In our experiments the values of ε take values as degrees of 10 and the values of α take
values as degrees of 2.

We found empirically that usually the slope of the logarithmic plot is greater than 0.5
for large α and is less than 0.5 for small α. In most cases the slope of the logarithmic
plot S(α) is monotonic function of α. One of the possible explanations of this fact can
be the following. Small α correspond to using only spatial information. This implies
that the dimension of manifold where the data lives is 2 and it is difficult to reduce di-
mensionality further. By decreasing α we decrease the weight of spatial information in
the distance function therefore it gets easier to find the corresponding one-dimensional
manifold. On the other hand large α corresponds to increased weight of color informa-
tion. Infinite α corresponds to using color information alone. As long as the color space
is three-dimensional and the color distribution of object and background is complex
it is difficult to embed one-dimensional manifold in the input points. Example of the
logarithmic plot with respect to both ε and α is shown in Fig. 3.

5 Experiments

For the experiments we used GrabCut, Graz and Pascal 2007 datasets. In all experi-
ments graph Laplacian operated with superpixels produced by image over-segmentation
methods. Each superpixel was linked with a fixed number of it’s nearest neighbours,
and the distances to other superpixels were assumed infinite. For all experiments we
used confidences that are a linear function of the outputs of local appearance models
ci = 0.5(1− |pi − 0.5|).



Learning Graph Laplacian for Image Segmentation 99

Fig. 3. The plot of log
∑

ij wij with respect to log ε and logα. The plot shown is shown in (2,
bottom) corresponds to the 2-d slice of this 3-d plot for fixed α. Note that the slope of linear
region are not constant for all values of α. We seek for α such that the slope in the linear region
equals 0.5.

5.1 GrabCut Image Dataset

GrabCut image dataset contains 50 images of different objects 1. Each image has a
binary mask which indicates pixels belonging to the object. In the experiments we used
the set of superpixels which is the union of oversergmentations provided by Colour
Structure Code and Watershed segmentation methods.

GrabCut image database considers interactive image segmentation scenario, when
we have user-provided seeds for objects on image. Initial labellingfor each pixel is pro-
vided, every pixel is labelled asobject, background or unknown. We used the following
strategy to get the seed labels for superpixels. The superpixel was marked as object seed
if it contains pixels marked as object and it doesnt contain any background pixels. Sim-
ilarly the superpixel was marked as background if any of the pixels inside is marked as
background and no pixels are marked as object. Otherwise the superpixel is marked as
unknown and the labels for all its pixels are inferred by graph Laplacian method.

Figure 4 (d) shows the error on 3 different images from GrabCut database with re-
spect to log ε (α is fixed). Depending on the choice of ε one can get different values of
errors and for each image, and the optimal values of ε are different for different images.

In all the experiments we report the errors obtained on the whole GrabCut image
database. We did not split the dataset into training/ validation/test sets.

We measured performance on GrabCut dataset according to standard metric [1]. In
the first experiment we compared results of using single over-segmentation to using
multiple over-segmentations. Parameters α and ε of the method were validated on the
whole image database and thus correspond to the peak performance of the framework
with constant parameters α and ε. The results are presented in Table 1. Using two dif-
ferent over-segmentations leads to significant improvement of performance compared

1 available at http://research.microsoft.com/˜en-us/um/cambridge/
projects/visionimagevideoediting/segmentation/grabcut.htm



100 S. Milyaev and O. Barinova

(a) ”flower” (b) ”fullmoon” (c) ”vase”

(d) error rates

Fig. 4. Segmentation errors depending on graph Laplacian parameter ε on three images from
GrabCut dataset. Note that minimal error is achieved on different values of ε for different images.

to using only one of the over-segmentations, either Watershed or CSC. The results of
segmented images using different oversegmentations are shown on Fig. 5.

Table 1. Errors on GrabCut dataset. Watershed - using only watershed over-segmentation, pa-
rameters of graph Laplacian framework chosen on the whole GrabCut image database; CSC -
using only Color Structure Code over-segmentation, parameters chosen on the whole GrabCut
image database; Watershed+CSC1 - using both over-segmentations with parameters validated on
the same GrabCut dataset; Watershed+CSC2 - using both over-segmentations, parameters chosen
by proposed self-tuning method individually for each image. Note that self-tuning shows almost
identical performance as the peak performance with parameters validated on the same dataset,
and the standard deviation of errors of self-tuned graph Laplacian is even smaller than of Lapla-
cian with fixed parameters.

Error
Watershed 13.61 ± 5.14%
CSC 11.02 ± 7.59%
Watershed+CSC1 9.86 ± 4.31%
Watershed+CSC2 10.25 ± 4.01%

In our second experiment we compared three versions of graph Laplacian with mul-
tiple oversegmentations. First, we chose single set of parameters for the whole dataset
by validation on the test dataset from the previous experiment. This corresponds to up-
per bound on performance of the method with fixed parameters. The resulting error rate



Learning Graph Laplacian for Image Segmentation 101

(a) (b) (c) (d)

Fig. 5. Comparison of using multiple over-segmentations to using one over-segmentation. (a) -
input image; (b) - result of using CSC over-segmentation; (c) - result of using watershed over-
segmentation; (d) - result of using both over-segmentations as superpixels.

is 9.9 ± 4.3%. Then we evaluated the performance of graph Laplacian with the parame-
ters learnt individually for each image by our method. The resulting error rate is 10.2 ±
4.0%. Finally, we chose the best parameters for each image individually by validation
on the same image in order to obtain the top bound on performance of graph Laplacian.
The resulting error rate is 8.7%. The results of graph Laplacian with learnt parameters is
very close to the upper bound of performance of graph Laplacian with fixed parameters.
Notably, the standard deviation of errors obtained with the parameters learnt individu-
ally for each image is smaller than of Laplacian with fixed parameters. The results are
presented in Table 1.

The learning phase took from 0.5 seconds to 3 seconds, solving linear system 5 took
from 0.05 second to 0.5 seconds depending on the number of superpixels in the image
(the total number of superpixels varied from 500 to 30000).

5.2 Graz Image Dataset

Graz dataset 2 contains 1096 images of three classes: ”person”, ”bike” and ”car”. In our
experiments we solved a separate binary segmentation problem for each category. To
measure the quality of segmentation we used a standard metric - percent of incorrectly
classified pixels in the image.

In our experiments we used an open-source VlBlocks toolbox 3, which implements
the method described in [15]. We chose it for comparison for the following reasons.
First, it allows using different local appearance models. The method has a parameter N
meaning number of neighbouring superpixels which features are used for classification
of each particular superpixel. So we report performance metrics for different values of
N to illustrate the performance of proposed graph Laplacian framework applied to dif-
ferent local models. Second, the toolbox includes implementation of discrete CRF with

2 available at http://www.emt.tugraz.at
3 code available at http://vlblocks.org/index.html



102 S. Milyaev and O. Barinova

graph-cut inference, which we use for comparison. Note, this CRF model uses similar
types of features (color and spatial coordinates of superpixels) to those used in our graph
Laplacian. We used the same over-segmentation and the same local appearance model
based on SVM as [15]. To obtain initial estimates yi for graph Laplacian framework we
scaled SVM outputs to [0, 1] interval for each image.

In the first experiment the parameters ε and α were validated on the GrabCut dataset.
In the second experiment we validated the parameters on the test set. In the third ex-
periment we used our unsupervised learning method for choosing the parameters in-
dividually for each image. We also compared with Vlblocks implementation of CRF
with graph-cut inference. The strategy for choosing internal parameters of CRF was the
same as in [15].

Table 2 contains results of the comparison. Our unsupervised learning gives results
comparable to upper bound on performance of graph Laplacian with fixed parameters
from the second experiment. The value of performance gain compared to local appear-
ance model differs for different values of parameter N . The smaller N is the smaller
neighborhood is considered by low-level model, and the more significant is the gain in
performance attained by both CRF and graph Laplacian. The gain in performance of
graph Laplacian is almost uniformly higher than the performance gain obtained by dis-
crete CRF. Note that the gain achieved by graph Laplacian is several times higher than
the one achieved by discrete CRF for N = 0. Figure 6 shows precision-recall curves
for local appearance models and for our method to illustrate the gain in performance
due to graph Laplacian.

Table 2. Performance on Graz dataset at equal precision and recall rates for ”cars”, ”bike” and
”person” classes. First row: local appearance model (from VlBlocks toolbox). Second row: result
of applying discrete CRF with graph cut inference (from VlBlocks toolbox). Third row: graph
Laplacian with parameters validated on GrabCut dataset. Fourth row: graph Laplacian with pa-
rameters validated on the test set. Fifth row: graph Laplacian with parameters learnt individually
for each image. For each appearance model used in our experiments (we varied the number of
neighboring regions as in [15]) the best result is shown in bold font. Underlined are the best
overall results.

N=0 N=1 N=2 N=3 N=4
cars bike pers cars bike pers cars bike pers cars bike pers cars bike pers

SVM 41.9 56.5 49.4 59.6 66.9 63.6 68.0 69.2 66.6 69.4 70.7 65.2 66.5 71.9 63.6
+CRF 43.0 57.7 49.3 60.2 67.1 63.9 70.1 70.2 66.9 70.7 71.0 65.4 68.8 72.2 64.2
+Laplacian
(valid.GrabCut)

50.0 60.1 56.0 65.5 68.7 68.5 71.6 70.8 70.8 72.2 72.0 69.5 70.0 73.2 67.3

+Laplacian
(valid.test set)

56.6 63.3 59.1 66.3 68.4 68.8 71.9 70.4 70.4 72.6 71.2 69.4 70.8 72.2 68.0

+Laplacian
(learnt)

54.2 60.9 58.5 65.1 66.8 69.4 72.0 69.5 71.3 73.3 70.3 70.2 71.4 71.5 68.9

Figure 7 shows results provided by local appearance model (SVM) and correspond-
ing results of using graph Laplacian with learnt parameters. Figure 8 shows how the
results vary for different local models.



Learning Graph Laplacian for Image Segmentation 103

(a) ”bike” class (b) ”person” class (c) ”car” class

Fig. 6. Precision-recall curves for ”bike”, ”person” and ”car” classes of Graz dataset. Blue curves
- local appearance model (N=0); Green curves - graph Laplacian with learnt parameters.

(a) input image (b) local model (c) thresholded (b)

d Laplacian (e) thresholded (d)

Fig. 7. Results of SVM and graph Laplacian method for images from Graz dataset. (a) - input
image ”person” class; (b) - real-valued output from local SVM model; (c) - results of thresholding
the SVM outputs; (d) - real-valued output of graph Laplacian using SVM as a local model with
the parameters learnt by our method; (e) - thresholded output of our method. Note how graph
Laplacian refines the output from SVM. It doesn’t oversmooth the result and preserves fine details
and the small figure of the person.

The running time on Graz dataset is the following: learning phase takes about 0.2
seconds on average, solving of linear system 5 takes about 0.02 seconds on average.

5.3 Pascal 2007 Image Dataset

Pascal 2007 dataset 4 contains 21 classes. Again in this experiment we use local mod-
els from VlBlocks toolbox trained with parameters as in [15]. We compare our graph

4 available at http://pascallin.ecs.soton.ac.uk/˜challenges/VOC/
voc2007/



104 S. Milyaev and O. Barinova

(a) (b) (c) (d)

Fig. 8. Results on Graz dataset. Odd rows show real-valued outputs of SVM, even rows show
results of Graph Laplacian framework with self-tuning for different number of neighbouring su-
perpixels used for feature computation: (b)N=0; (c)N=2; (d)N=4. Note that while looking very
reasonable the result of presented framework for bike image is a failure case according to ground
truth labelling in Graz since inside part of the wheel should be classified as ”bike”. This is a
typical error of presented framework on ”bike” class which leads to higher error rate.



Learning Graph Laplacian for Image Segmentation 105

Laplacian method with unsupervised learning to the discrete CRF implemented in Vl-
Blocks toolbox. The training and testing split is defined in the challenge. We train local
model on the train set and choose the parameters of discrete CRF on the validation set.
We do not use the validation set in the experiment with our graph Laplacian method
and use our unsupervised learning method for choosing Laplacian parameters for each
particular image.

Table 3 shows the results of comparison to using local model alone, discrete CRF
and our graph Laplacian method with unsupervised learning. For comparison we also
reproduce results from [16], [17] and [15]. On this dataset, adding graph Laplacian
improves the results significantly compared to using local model alone, and provides a
consistent boost for the accuracy as well.

Table 3. Results on Pascal 2007 dataset. Best result for each category is shown in bold.

ba
ck

gr
ou

nd
ae

ro
pl

an
e

bi
cy

cl
e

bi
rd

bo
at

bo
tt

le
bu

s
ca

r
ca

t
ch

ai
r

co
w

di
nn

in
gt

ab
le

do
g

ho
rs

e
m

ot
or

bi
ke

pe
rs

on

po
tt

ed
pl

an
t

sh
ee

p
so

fa
tr

ai
n

tv
m

on
it

or
A

ve
ra

ge

P
ix

el
s

%

Pantofaru et al. [17] 59 27 1 8 2 1 32 14 14 4 8 32 9 24 15 81 11 26 1 28 17 20 -
Shotton et al. [16] 33 46 5 14 11 14 34 8 6 3 10 39 40 28 23 32 19 19 8 24 9 20 -

Fulkerson et al. [15] 56 26 29 19 16 3 42 44 56 23 6 11 62 16 68 46 16 10 21 52 40 32 51
local model (N=0) 16 17 8 9 13 8 9 9 29 15 9 12 12 7 13 5 16 16 26 14 21 14 15

+discrete CRF (N=0) 17 18 8 9 21 8 9 8 28 14 9 13 12 7 13 5 16 16 26 14 22 14 16
+Ours(learnt) (N=0) 23 20 26 12 18 12 17 14 49 17 1 23 16 11 50 4 42 20 44 30 33 23 22

local model (N=1) 24 13 18 13 9 12 14 24 35 16 9 11 28 15 36 23 14 21 20 35 27 21 38
+discrete CRF (N=1) 42 6 16 9 6 5 11 14 56 19 4 11 16 16 55 36 24 16 8 56 21 21 38
+Ours(learnt) (N=1) 33 11 18 14 10 13 16 26 51 16 7 9 35 22 67 29 31 25 16 60 33 26 32

local model (N=2) 39 10 22 15 11 12 18 36 44 23 8 11 33 15 53 37 17 17 16 36 28 24 36
+discrete CRF (N=2) 58 9 25 14 6 3 20 38 54 27 12 10 31 7 59 44 12 17 13 43 27 25 50
+Ours(learnt) (N=2) 52 9 24 17 8 12 19 41 55 21 10 10 37 14 68 42 14 12 14 51 32 27 46

local model (N=3) 52 13 14 18 8 5 23 38 45 17 7 10 30 21 63 50 17 20 19 43 23 25 46
+discrete CRF (N=3) 65 10 14 15 5 2 24 40 60 13 6 8 24 19 68 55 18 19 16 46 26 26 56
+Ours(learnt) (N=3) 63 11 15 17 7 2 22 40 60 13 5 10 32 20 71 57 13 17 14 48 26 27 55

local model (N=4) 59 6 15 18 4 0 25 44 46 17 3 4 24 20 62 56 15 14 13 38 33 25 51
+discrete CRF (N=4) 63 8 15 18 4 0 26 46 48 17 2 4 25 20 64 58 12 14 12 38 34 25 54
+Ours(learnt) (N=4) 69 5 11 19 4 0 28 45 55 13 2 3 18 18 69 60 7 13 7 44 36 25 59

6 Conclusion

We presented an semantic segmentation framework based on graph Laplacian approxi-
mation of manifold embedding problem. The main contribution of this work is a method
for choosing internal parameters of graph Laplacian in a fully unsupervised manner in-
dividually for each test image. Proposed unsupervised learning method has a low com-
putational cost and shows better performance compared to discrete CRF with graph-cut
inference.



106 S. Milyaev and O. Barinova

References

1. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation
of objects in n-d images. In: ICCV, vol. 1, pp. 105–112 (2001)

2. Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for enforcing label consistency.
In: CVPR (2008)

3. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph cut based inference with co-occurrence
statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS,
vol. 6315, pp. 239–253. Springer, Heidelberg (2010)

4. Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs using graph cuts. In: Forsyth, D., Torr,
P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer,
Heidelberg (2008)

5. Nowozin, S., Gehler, P.V., Lampert, C.H.: On parameter learning in CRF-based approaches
to object class image segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part VI. LNCS, vol. 6316, pp. 98–111. Springer, Heidelberg (2010)

6. Grady, L.: Random walks for image segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence 28(11), 1768–1783 (2006)

7. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. IEEE
Trans. on Pattern Analysis and Machine Intelligence (2008)

8. Singaraju, D., Grady, L., Vidal, R.: P-brush: Continuous valued mrfs with normed pairwise
distributions for image segmentation. In: CVPR (2009)

9. Duchenne, O., Audibert, J.Y., Keriven, R., Ponce, J., Segonne, F.: Segmentation by transduc-
tion. In: CVPR (2008)

10. Hein, M., Audibert, J.Y., von Luxburg, U.: From graphs to manifolds - weak and strong point-
wise consistency of graph laplacians. ArXiv Preprint, Journal of Machine Learning Research
(2006) (forthcoming)

11. Zhou, H., Cheng, Q.: O(n) implicit subspace embedding for unsupervised multi-scale image
segmentation, pp. 2209–2215 (2011)

12. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computataion 15, 1373–1396 (2003)

13. Coifman, R.R., Shkolnisky, Y., Sigworth, F.J., Singer, A.: Graph laplacian tomography from
unknown random projections. IEEE Trans. on Image Processing

14. Belkin, M., Niyogi, P.: Towards a theoretical foundation for laplacian-based manifold meth-
ods. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 486–500.
Springer, Heidelberg (2005)

15. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with super-
pixel neighborhoods. In: ICCV (2009)

16. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and
segmentation (2008)

17. Pantofaru, C., Schmid, C., Hebert, M.: Object recognition by integrating multiple image
segmentations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS,
vol. 5304, pp. 481–494. Springer, Heidelberg (2008)



Virtual Reality Technology for the Visual

Perception Study

Galina Menshikova, Yuriy Bayakovski,
Elizaveta Luniakova, Maxim Pestun, and Denis Zakharkin

Moscow State University, Moscow, Russia
{gmenshikova,eluniakova,max.pestun,denis.zakharkin}@gmail.com,

ymb-lab@yandex.ru

http://www.msu.ru/en/

Abstract. Lately the virtual reality (VR) techniques were applied suc-
cessfully to investigate 3D visual perception. In our study the effects of
2D vs. 3D displays on lightness perception was assessed using the CAVE
system. In current models of lightness perception it has been suggested
that 2D visual cues in a scene play a crucial role in lightness estimations.
In some studies the role of depth cues was investigated, but the results
were contradictory. In our study the effect of 2D vs. 3D displays of the
simultaneous lightness contrast (SLC) illusion on its strength was inves-
tigated. Namely the articulation effect was studied for 2D vs. 3D displays
of the SLC illusion. Three modified configurations of 2D SLC articulated
displays were constructed having a) depth cues for test squares and b)
depth cues for background squares. For all configurations test squares
were equally moved out of their backgrounds. The background squares
consisted of different objects: 2D patches for the first configuration, 3D
cubes or 3D balls for the other configurations. The number of objects in
any configuration remained constant. Twenty five observers were tested.
They were asked to estimate the illusion strength for 2D and three 3D
versions of the SLC illusion. The method of constant stimuli was used.
The results showed that the illusion strength decreased for all 3D displays
relative to the 2D displays of the SLC illusion. There were no significant
differences in illusion strength between three modified versions of the
SLC displays with 3D backgrounds. The results allowed introducing the
modified articulation rule for 3D complex scenes.

Keywords: 3D visual illusions, lightness perception, simultaneous
lightness contrast Virtual Reality, VR, CAVE.

1 Introduction

A new Virtual Reality (VR) technology was widely used in psychological research
last decade. Its effectiveness has been proven by medicine, neuropsychology, cog-
nitive and social psychology data. The VR technology equips experimental psy-
chology with methods that have certain differences from traditional laboratory
instruments. A heated dispute of the advantages and disadvantages of using VR

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 107–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.msu.ru/en/


108 G. Menshikova et al.

systems in psychology has been held in all experimental and review works carried
out within this new technique [1][2][3]. As for the studies in visual perception
VR technology provides 1) active 3D viewing and 2) complex 3D scenes with
controlled parameters.

In our study VR technique was applied to investigate lightness perception.
The problem of lightness perception is tightly connected with the perception of
lightness illusions, which were often used as demonstrations of theoretical as-
sumptions made within different approaches to lightness perception. Recently
the anchoring theory of lightness perception was frequently debated [4]. It as-
sumed that the ratios of the test surface luminance to the luminance of other
surfaces determined the process of lightness estimations. Using these ratios vi-
sual system could estimate the relative reflectance of all surfaces, which were
equally illuminated. To estimate the absolute surface reflectance the anchoring
rule should be applied: one of relative reflectance values anchored to some abso-
lute value, for example, to the most luminous object in the scene which supposed
to be white [4][5]. The anchoring rules “worked” in the range of local and global
frameworks. Local frameworks were used to estimate the luminance ratio of the
test and adjacent background surfaces while global frameworks were used for
estimating the luminance ratio of test and distant surfaces. The net lightness of
the test surface was a weighted average of its computed luminance ratio values in
each of these frameworks, in proportion to the strength of each framework. The
strength of the framework was determined by its angular size and its articulation.
The effect of articulation was defined as the number of patches with different
reflectance within a scene. These theoretical hypotheses were used to explain
some lightness illusions, for example the simultaneous lightness contrast (SLC)
illusion [4][6] (Fig. 1). Two identically gray target squares, located on the light
or dark backgrounds, were perceived as dark-gray and light-gray respectively.

It was found that local frameworks played a crucial role in the SLC illusion.
Two local frameworks could be picked out in the SLC display: 1) the grey target

Fig. 1. The classic display of the SLC illusion



Virtual Reality Technology for the Visual Perception Study 109

in the white surround and 2) the grey target in the black surround. The SLC
display as a hole could be considered as a global framework. The anchoring in
the first local framework and in the global framework should lead to the same
correct lightness estimations because of the same anchor – a white surface. The
anchoring in the second local framework should yiel a higher value for target’s
lightness because the target itself became the local anchor.

The anchoring theory supposed to explain lightness perception in complex
scenes, where lightness estimations were accomplished into two stages. At the
first stage the groups of coplanar surfaces (= equally illuminated) were picked
out, and at the second stage lightness was estimated in accordance with the
anchoring theory for each group separately.

In complex scenes depth and articulation cues would result in lightness assess-
ment. The role of depth cues was tested in a number of works, but the results
were contradictory. The main idea of these studies was to manipulate 3D posi-
tions of test and background surfaces. In accordance with the anchoring theory it
would lead to decreasing the relationship between test and background surfaces,
and as a result to a shift in lightness assessment. Some works [7][8] confirmed
these predictions. Other studies did not reveal or determined the very weak in-
fluence of depth cues on lightness estimations [9][10]. So, the question of the
role of depth cues remained unclear. The influence of the articulation cues on
lightness perception was proposed and investigated by D. Katz [11]. Articulation
effects were determined as the influence of the background complexity on light-
ness estimations. The term “complexity” referred to the number of patches with
different reflectance within a whole scene. The rule of articulation was formu-
lated by D. Katz [11] as following: the more colored patches were located around
the test patch the better lightness estimations were. For example, it was shown
that lightness estimations were much more accurate if the background was not
a uniform-colored surface but a surface consisted of 48 patches of different re-
flection changing from black to white [12]. The influence of articulation effect
also was shown in the famous Gelb effect [13], where illuminated black disk on
the dark unlit background was demonstrated. Observers estimated the disk color
as white or light-grey. Color estimations became more accurate if another small
white disk was added in the field of illumination. Similar results were obtained in
a recent study [4]. It was shown that the lightness of the test disk was estimated
as 7.5 (light-grey), 4.5 (middle-grey) or 3.3 (very dark grey) Munsell units if the
test disk was surrounded by 2, 5 or 10 patches having different grey shades.

According to articulation rule proposed by D. Katz the strength of the SLC
illusion in articulated version (Fig. 2) would decrease because of higher accu-
racy of lightness estimations. However, some studies have revealed the opposite
results: the illusion strength increased for the articulated version [4]. To explain
this result the rule of articulation was modified [14]: the higher degree of artic-
ulation within a framework would result in stronger local anchoring. According
to this modified rule the strength of the SLC illusion should increase due to
stronger local anchoring, which played a main role in the SLC illusion.



110 G. Menshikova et al.

Fig. 2. The articulated version of the SLC illusion

The articulation effect was mainly investigated for 2D scenes. How can be
formulated the articulation rule for scenes composed of 3D objects? The distinct
patch in 2D scenes could be displayed by the single luminance value, while the
3D object of uniform reflectance should be displayed by several luminance values
depending on its shape. So, in 2D displays the number of patches having different
reflectance was the same as the number of patches of different luminance, but in
3D scenes the number of 3D objects with different reflectance would be obviously
less than the number of patches of different luminance. The question arises which
of mentioned parameters – reflectance or luminance – determines the articulation
effect.

Two answers to this question may be proposed. The articulation effect could
be determined by 1) the number of patches which reflectance imaged by the sin-
gle luminance value, or 2) the number of 3D uniform-colored objects which re-
flectance imaged by several luminance values depending on its shape. We named
the first type of articulation as a “luminance articulatio” and the second type –
as an “an object articulation”.

In our study we investigated which type of articulation rules would determine
lightness perception in complex 3D scenes.

Using the VR technology, we studied the strength of 3D SLC illusion to find
out the role of 1) the depth cues and 2) articulation cues of 3D backgrounds on
the strength of 3D lightness illusions.

Two hypotheses were offered:

1. Locating the test and background surfaces in different space positions would
break their local relationship resulting in weakening local anchoring and,
in their turn, in reducing the illusion strength. So, the strength of 3D SLC
illusions would decrease relative to its classical 2D configuration.

2. If the articulation effect is determined by the number of patches with re-
flectance imaged by the single luminance value then the illusion strength
would increase under 2D to 3D backgrounds transformation. On the con-
trary, if the articulation effect is determined by the number of objects with



Virtual Reality Technology for the Visual Perception Study 111

reflectance imaged by several luminance values depending on its shape the
illusion strength would not change.

2 Method

2.1 Observers

Twenty five observers (age range 17-30) with normal or corrected to normal
vision were tested. Before the experiment all observers were tested for 3D viewing
ability. They were unaware of experiment’s purpose.

2.2 Stimuli

The 2D articulated version of the SLC illusion (Fig. 3.1) was used as a basic
display. Three

modified 3D configurations of a basic display were constructed having a) depth
cues for test squares and b) depth cues for background squares. For all configura-
tions test squares were equally moved out of their backgrounds. The background
squares consisted of different objects: 2D articulated patches for the first config-
uration (Fig. 3.2), 3D cubes for the second (Fig. 3.3) and 3D balls for the third
(Fig. 3.4) configurations. 3D backgrounds varied from simple (the first type)
to complex (the third type) variant of the articulation effect. The number of
background objects in any configuration remained constant.

The average luminance of backgrounds was constant for all types of stimuli.
The method of constant stimuli was used to estimate the strength of the SLC

illusion. The gray squares on the light backgrounds were standard. Its lightness
was 30% of white shade in Grayscale units and was not changed during the
experiment. Seven variable stimuli were created for every 2D-3D configuration,
for which the value of lightness for the test squares lying on the dark backgrounds
decreased from 30% to 15% of white shade with a step of 2.5%. So, 28 stimuli
were created: four 2D-3D configurations, each having seven variable lightness
values stimuli of the test square.

2.3 Apparatus

The 2D articulated version of the SLC illusion and three types of 3D displays
were presented using the CAVE system (Fig. 4).

The CAVE system had four large flat screens (Barco ISpace 4), which were
connected into one cube consisting of three walls and a floor. The length of each
screen side was about 2.5 meters. Shutter eye glasses were made by CrystalEyes
3 Stereographics. Projection system was based on BarcoReality 909. The projec-
tor’s matrix resolution was 1400x1050 with 100 Hz update frequency. Tracking
system produced by ArtTrack2. VirTools 4.0 was used for software developing.
It supported DX9/GL2, HAVOK, particle systems and shaders.

The observer stood motionless in front of the central screen at a distance of 2.5
m. Virtual stimulus configuration was located before him with the background



112 G. Menshikova et al.

Fig. 3. Different types of 2D-3D configurations of the SLC illusion: 1 – 2D classic
articulated configuration; 2 – 3D configuration with 2D articulated background; 3 –
3D configuration with 3D articulated background (cubes); 4 – 3D configuration with
3D articulated background (balls)

placed on the screen plane. It subtended 30 of visual angle horizontally and 15
vertically.

The visual angle of the test squares in 3D configurations (2, 3 and 4) was the
same as those in the 2D display (1). Thus, when projected on the retina, 3D and
2D displays produced practically the same pattern.

The laboratory room was darkened; there were no any light sources, except
CAVE systems projectors. The luminance range in stimulus scene was 1:230.
The maximum luminance was 5.5cd/m2, the minimum - 0.02cd/m2.

2.4 Procedure

The observer was given the following instructions: “Each trial you will see two
gray test squares on the different backgrounds. Please, choose the lighter of two
central squares, using a special joystick. Try to stand motionless during the
experiment.”

The experiment included four series: 1 – 2D articulated version of the SLC il-
lusion; 2 – 3D articulated version of the SLC illusion with backgrounds consisted
of 2D patches; 3 – 3D articulated version of the SLC illusion with backgrounds
consisted of cubes; 4 – 3D articulated version of the SLC illusion with back-
grounds consisted of balls.

Each series lasted about 5 minutes. The stimuli sequence was completely
randomized. Every series consisted of 70 trials: each of seven variable stimuli
was repeated 10 times. The left/right position of light and dark backgrounds
was changed randomly.



Virtual Reality Technology for the Visual Perception Study 113

Fig. 4. The CAVE system

3 Results

Psychometric functions for 2D and three different 3D configurations were ob-
tained and used to evaluate the strength of the SLC illusion for each partic-
ipant and each 2D-3D configuration. The illusion strength was calculated as
IS = (LSt − LT )/LSt ∗ 100%, where LSt was luminance of standard square;
LT – PSE (Point of Subject Equality) – luminance of test square with 50%
probability of answers “lighte”.

Statistical processing of the data included the Kolmogorov-Smirnov test test-
ing for normality of the received data distribution and the paired Student’s
t-test.

The results averaged across 25 observers are shown in Fig. 5. The horizontal
axis plots the different 2D-3D configurations. The vertical axis plots the average
strength of the SLC illusion (%).

The significant differences were revealed between the type 1 (2D articulated
configuration) and the other different 3D configurations (the type 2 (t(24) =
9.9, p < 0.001), the type 3 (t(24) = 5.4, p < 0.001), the type 4 (t(24) = 8.01,
p < 0.001).

The strength of 2D classic display was twice more than the strength of any 3D
display of the SLC illusion. As to articulation effects, there were no significant
differences between the values of SLC strength calculated for three types of
3D backgrounds: for 2 and 3 types (t(24) = 1.88, p = 0.05), 2 and 4 types
(t(24) = 0.29, p = 0.05), 2 and 3 types (t(24) = 2.22, p = 0.01).



114 G. Menshikova et al.

Fig. 5. The strength of the SLC illusion for 4 types of stimulus configurations: 1 –
2D articulated configuration; 2 – 3D configuration with backgrounds consisted of 2D
patches; 3 – 3D configuration with backgrounds consisted of cubes; 4 – 3D configuration
with backgrounds consisted of balls

4 Conclusion

Our results revealed strong influence of depth cues on the illusion strength.
It was shown that the illusion strength decreased for all 3D displays of the
SLC illusion relative to 2D articulated classic display. This result was in good
agreement with the anchoring theory. Different depth positions of the test and
background surfaces resulted in weakening anchoring within the local framework,
that should lead to more correct targets lightness estimation and, in turn, to the
reduction of the illusion strength. The same results have been reported in our
study with 3D configurations of classic SLC illusions [15]. So, our first hypothesis
was successfully confirmed. It should be noted that the significant changes of the
illusion strength cannot be explained in the framework of other approaches to
lightness perception.

There were no significant differences in illusion strength for different types
of 3D backgrounds. It seems that articulation effects weakly depend on depth
cues of backgrounds. Tree types of the backgrounds differed by the number of
patches with different luminance; while the number of uniform-colored objects
remained constant within a scene. Our results showed that lightness estimations
were defined only by the number of uniform-colored objects. So, our second
hypothesis which asserted that in 3D scenes lightness should be estimated in
accordance with an “object articulation” rule was also confirmed.



Virtual Reality Technology for the Visual Perception Study 115

Virtual reality technologies may be effectively used in studies of lightness
perception and 3D visual illusions. It enables to reproduce illusions in depth and
to construct complex 3D scenes with controlled parameters to create 3D illusory
effects.

Acknowledgments. The work is supported by the Program of Development
of Lomonosov MSU and by the grant “The application of modern information
technologies to the development of innovative methods in the study of human
cognitive processes” within the framework of the Federal Target Program “Sci-
entific and scientific-pedagogical personnel of innovative Russia” for 2009-2013
(Contract No8011).

References

1. Khan, Y., Xu, Z., Stigant, M.: Virtual Reality for Neuropsychological Diagnosis and
Rehabilitation: A Survey. In: Proceedings of the Seventh International Conference
on Information Visualization, pp. 158–163. IEEE Computer Society, Washington
DC (2003)

2. Yee, N.: Psychological Research in Virtual Worlds,
http://bps-researchdigest.blogspot.com/2007/06/psychological-

research-in-virtual.html

3. Zinchenko, Y.P., Menshikova, G.Y., Bayakovsky, Y.M., Chernorizov, A.M., Voisk-
ounsky, A.E.: Technologies of virtual reality in the context of World-wide and
Russian psychology: methodology, comparison with traditional methods, achieve-
ments and perspectives. In: Zinchenko, Y.P., Petrenko, V.F. (eds.) Psychology in
Russia. State of the Art. Scientific Yearbook, pp. 11–45. Lomonosov Moscow State
University; Russian Psychological Society, Moscow (2010)

4. Gilchrist, A.L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spe-
har, B., Annan, V.: An anchoring theory of lightness perception. Psychological
Review 106(4), 795–834 (1999)

5. Land, E.H., McCann, J.J.: Lightness and retinex theory. Journal of the Optical
Society of America 61, 1–11 (1971)

6. Economou, E., Zdravkovich, S., Gilchrist, A.: Anchoring versus spatial filtering
accounts of simultaneous lightness contrast. Journal of Vision 7(12), 2–15 (2007)

7. Wolff, W.: Über die kontrasterregende Wirkung der transformierten Farben. Psy-
chologische Forschung 18, 90–97 (1933)

8. Coren, S.: Brightness contrast as a function of figure ground relations. Journal of
Experimental Psychology 80, 517–524 (1969)

9. Epstein, W.: Phenomenal orientation and perceived achromatic color. Journal of
Psychology 52, 51–53 (1961)

10. Zaidi, Q., Spehar, B., Shy, M.: Induced effects of backgrounds and foregrounds in
three-dimensional configurations: the role of T-junctions. Perception 26, 395–408
(1997)

11. Katz, D.: The world of color. Kegan Paul, Trench, Trubner & Co., London (1935)
12. Burzlaff, W.: Methodologische Beiträge zum Problem der Farbenkonstanz.

Methodological notes on the problem of color constancy. Zeitschrift für Psycholo-
gie 119, 117–235 (1931)

http://bps-researchdigest.blogspot.com/2007/06/psychological-research-in-virtual.html
http://bps-researchdigest.blogspot.com/2007/06/psychological-research-in-virtual.html


116 G. Menshikova et al.

13. Gelb, A.: Die “Farbenkonstanz” der Sehdinge. In: von Bethe, W.A., von Bergmann,
G., Embden, G., Ellinger, A. (eds.) Handbuch der Normalen und Pathologischen
Physiologie Band 12. 1. Halfte Receptionsorgane II, pp. 594–678. Springer, Berlin
(1938)

14. Gilchrist, A., Annan, V.: Articulation effects in lightness: Historical background
and theoretical implications. Perception 31, 141–150 (2002)

15. Menshikova, G., Nechaeva, A.: Does the strength of simultaneous lightness contrast
depend on the disparity cue? Perception, ECVP Abstract Supplement 40, 104
(2011)



Locally Adapted Detection and Correction

of Unnatural Purple Colors in Images of
Refractive Objects Taken by Digital Still Camera

Mikhail Matrosov1, Alexey Ignatenko1, and Sergey Sivovolenko2

1 Department of Computational Mathematics and Cybernetics
Lomonosov Moscow State University, Moscow, Russia

{matrosov,ignatenko}@graphics.cs.msu.ru
2 OctoNus Software Ltd.
sivovolenko@octonus.com

Abstract. We discovered significant error in color in images produced
by a digital still camera used to capture scenes with a special setup. Setup
includes several LEDs as point light sources and a light-refractive object.
Due to light dispersion in the object, vivid monochromatic colored flares
appear. However, images captured with a digital still camera occasionally
exhibit bright purple (almost pink) colors, which do not correspond to
any monochromatic color.

In this paper, we analyze the origins of this effect by examining dif-
ferent properties of the setup and analyzing RAW images. We propose
a simple and efficient algorithm for correction of unnatural purple col-
ors by using only a final JPEG image produced by camera. We develop
a continuous transform which maps all unnatural colors to the natural
ones in a perceptually uniform color space. We also propose a simple
segmentation technique to identify image areas to be corrected.

Keywords: color management, color calibration, segmentation, color
correction, monochromatic colors, RAW-processing, perceptually uni-
form color spaces, light dispersion, digital still camera.

1 Background

Consumer digital still cameras are very powerful tools for capturing real world
images. Since they are broadly available, well-studied and intensively developed,
the cameras are frequently used not only by photographers, but also in many
research and engineering applications. The latter applications require precise,
repeatable and calibrated results.

Color calibration of a camera is not a trivial task, since camera perceives
world in a model-specific color space. In order to be able to process and correctly
display such an image, it is necessary to convert it to a certain conventional color
space, such as CIE XYZ [12]. The complete chain of color processing in digital
cameras including this component is briefly and clearly described by Adams et
al. [5]. They describe this conversion to be handled by a 3× 3 matrix converting

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 117–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



118 M. Matrosov, A. Ignatenko, and S. Sivovolenko

Fig. 1. Images with unnatural purple color for two different objects

camera-specific RGB response to universal XYZ values. The tricky part is that
camera spectral sensitivities cannot be represented as linear combinations of CIE
color matching functions forming XYZ values.

Therefore, this conversion matrix is usually designed to minimize the average
error for a specific set of colorants. Spaulding et al. [13] used Macbeth Color
Checker [9] as a target set and an RMS error of CIELAB ΔE∗

ab color-difference
measure to find an optimal matrix:

ΔE∗
RMS =

√√√√ N∑
i=0

(ΔE∗
i )

2,

where N is the number of color patches and

ΔE∗
i =

√
(L∗

si − L∗
di)

2 + (a∗si − a∗di)2 + (b∗si − b∗di)2,

where L∗
si, a

∗
si and b∗si are the CIELAB scene color values for the i-th color path

and L∗
di, a

∗
di and b∗di are the CIELAB reproduced color values for the i-th color

path.
Hong et al. [7] used a broader collection of colorants: an ANSI IT8.7/2 [6] chart

on Kodak Ektacolor Professional Paper, and the textile samples selected from
The Professional Colour Communicator [11] using reactive dyes on cotton. They
also performed a polynomial regression with least-squares fitting to minimize
the color-reproduction error.

Thus, there are many available techniques to perform conversion of camera
RGB response to XYZ values which can generally include some non-linear trans-
formations or multidimensional look-up-tables. And we do not know precisely
how a particular camera model handles this conversion since most of camera
firmwares are proprietary and closed.

However, most of these techniques are focused on reproduction of colors usu-
ally observable in natural scenes, but not of all the physically available spectra.
In specific engineering tasks, a certain spectra can be encountered, which a cam-
era would not be able to handle properly. That is the case discussed in this
paper.



Locally Adapted Detection and Correction of Unnatural Purple Colors 119

We analyze optical properties of a transparent colorless object shaped as a
polyhedron. Its refractive index is high enough to make it a dispersive media.
Thereby, when illuminated by a white light, such an object appears with colored
faces. Since colors are induced by light dispersion and the object’s faces are
small enough, color spectra of a single face is nearly constant and virtually
monochromatic. We used a consumer digital still camera to capture images of
the described scene and discovered vivid saturated purple colors appearing under
certain conditions. Examples of such images are shown in figure 1.

However, such vivid purple colors do not correspond to any monochromatic
spectra and we weren’t able to witness the same purple faces with naked eyes
observation. Thus we have decided that we’ve encountered the above mentioned
case of a camera being unable to properly represent captured color. We present a
simple correction algorithm to work with our setup. While the algorithm is very
specific and aimed at our particular task, the conducted research is extensive
and general.

2 Introduction

The detailed description of our setup, including the notes on illumination, prop-
erties of object and camera model, is given in section 3. This section also contains
information on how images were obtained and how a collection of analyzed im-
ages was formed.

An examination of the issue was done in our previous work [8] and is briefly
recalled in section 4.

Though we prove that a consumer camera cannot properly handle discussed
colors, we want to use our setup for further research of the described objects. So
in section 5 we propose a simple correction algorithm which can be applied to
JPEG camera output images to replace unnatural vivid purple colors with ones
of a more bluish hue, which can be observed as a result of light dispersion. Firstly,
we briefly recall our previous algorithm, and secondly, we propose a number of
enhancements to it. The main enhancement is the segmentation technique, used
to determine areas in which the correction is applied, as opposed to globally
applied previous approach.

Examples of images corrected with the proposed algorithm are shown in sec-
tion 6. Conclusions and acknowledgments are given in section 7.

3 Setup and Photos

There are three essential components of our setup: illumination, an object and a
camera. All of these components are enclosed in a closed box with illumination
mounted on the top, an object mounted at the bottom and a camera placed at the
front and directed to the object. Figure 2 represents the schematic illustration1.

1 Camera icon designed by Go Squared Ltd.



120 M. Matrosov, A. Ignatenko, and S. Sivovolenko

~600mm

~5mm

~300mm

Light source
Camera

The object

Fig. 2. Schematic illustration of the used setup. Relative sizes of objects and relative
distances in the scene are not preserved for illustrative purposes.

Illumination consists of a several bright LEDs with wide warm spectra. The
camera white-balance was adjusted automatically prior to the shooting of any
images. A sample paper patch with a neutral color was used for this purpose.
There were about 50 LEDs, each of which is small enough and is supposed to
approximate a point light source.

An object has a shape of a polyhedron with 50-70 faces and is 4-6 millimeters
in diameter. It is made of a transparent colorless material with refractive index
about 2.41, hence it introduces strong light dispersion and its faces appear to
be colored when observed under appropriate illumination from a suitable point
of view. The object is fixed on a motorized holder, which allows rotation along
the two perpendicular axes, situated in the plane orthogonal to optical axis of
a camera. Controlling this holder, one may adjust the position of the object in
which a face with a color of interest will be observable by the camera.

The camera is mounted in front of the box and is pointed at the object. It
is plugged into and is operated by a computer, so one can capture images of
the object without touching the camera, which can lead to undesired vibrations
of the box and break down the current dispersive pattern. In our tests we used
a Canon EOS 5D Mark II digital still camera with a Canon EF 100mm f/2.8
Macro USM lens and a Kenko Teleplus PRO 300 DGX 1.4x AF teleconverter.
However, as we will show later, the explored effect poorly depends on a specific
model of the digital camera.

With the given setup, the linear size of an object on captured images becomes
400-600 pixels. To obtain images of an object with purple faces (like the ones
shown in figure 1) we rotated the holder slightly in an arbitrary direction and
made a shot with the camera. We then studied the acquired image for purple
faces and optionally suggested a direction for further rotation. The effect is not
rare, therefore it is sufficient to make 3-5 shots of the object to detect a new
purple face and additional 2-3 shots to select an appropriate exposure.

Once a purple face was detected and an appropriate central exposure was
selected, we made 11-15 shots of the same scene with different exposures using a
2
3 E.V. step. In other words, by making 15 shots we captured a number of images
taken with exposures from −4 2

3 to +4 2
3 E.V. relative to the central exposure.



Locally Adapted Detection and Correction of Unnatural Purple Colors 121

In total, we captured 11-15 exposures for each of the 3-5 positions of 5 objects
resulting in 254 images.

4 Examination

A thorough examination of the effect is done in our previous work [8]. This
section briefly summarizes it.

One particular set with 15 exposures is examined, images in this set are num-
bered from 1 to 15 in order of the increasing exposure. The purple faces are
manually marked up for this set and the colors within a single image are aver-
aged, as shown in figure 3.

Camera JPEG colors on different samples

sample #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. Averaged colors of a masked purple face for the set of images with the increasing
exposure

We then analyze low-level responses of camera sensors stored in camera RAW
images. We use the free open-source utility dcraw [3] to obtain a non-interpolated
Bayer mosaic in an unknown camera-specific CAM color space. We then conclude
that the RAW images are linear on the exposure and the purple faces effect arises
at a latter point.

Thus, we consider that the CAM→XYZ conversion is unreliable. As mentioned
in section 1, the conversion is optimized to minimize errors in reproduction of
normally observable colors and fails to properly handle values induced by purple
faces.

5 Correction

In our previous work [8], we proposed a simple and efficient algorithm for cor-
rection of purple faces. However, due to its simplicity, it is unable to correctly
handle a number of scenarios encountered in the real production environment.
Several examples are given in figure 4, accompanied with results of the new
proposed algorithm.

In this section we briefly recall the previous algorithm. We then propose sev-
eral enhancements to it. The most significant enhancement is the introduced
segmentation technique, which makes the algorithm locally adapted. Instead of
applying the correction to the whole image, we correct only the areas marked as
potential purple faces.



122 M. Matrosov, A. Ignatenko, and S. Sivovolenko

Fig. 4. The comparison between the proposed method (in the right column) and the
previous method [8] (in the middle column). Two cropped source images are in the left
column. Note the visual artifacts at the borders of the purple faces, produced by the
previous method.

5.1 Previous Algorithm

First, we decide to work only with the final JPEG image produced by the camera,
hence the correction is applied to this image, and no processing of the RAW file
is done.

Then we propose to shift hue of a color and preserve its luminance. For this
purpose we are using the Perceptually Uniform Lab color space [1, Uniform
Perceptual Lab2], or simply the UPLab.

Rotation of the color radius-vector in UPLab within the ab plane corresponds
to the Munsell hue [10] shift. Alteration of the radius-vector length corresponds
to the shift in the Munsell chroma. We move pixels within the ab plane in the
UPLab space preserving the L coordinate to keep luminance unchanged.

We divide the ab plane with four rays outgoing from the origin to four sectors
of hues. These rays are shown in figure 5 as OA, OB, OC and OD.

Let the color hue be in the range XY if its ab coordinates lie inside a sector
formed by the OX ray, which moves to the OY ray counter-clockwise. Then hues
of all possible colors are in one of the ranges AB, BC, CD or DA.

For a given pixel, correction shift depends on its hue:

2 http://brucelindbloom.com/UPLab.html

http://brucelindbloom.com/UPLab.html


Locally Adapted Detection and Correction of Unnatural Purple Colors 123

Fig. 5. The sRGB gamut in the UPLab with a several objects. The points depict all
of the colors from purple faces in all images from the entire base. The teal marks
correspond to correction boundaries. The white marks illustrate the correction.

– Hues in the DA range are not changed.
– Hues in the AC range are shrank to the AB range.
– Hues in the CD range are stretched to the BD range.

By shrinking/stretching one range to another we imply the following. Let P be a
point in the ab plane in the UPLab space corresponding to the given color (with
a persistent L coordinate). Let the prolongation of the OP ray intersect the
sRGB gamut at the point R. Let the correction move P to P ′ with prolongation
of OP ′ intersecting the sRGB gamut at the point R′ (see figure 5). Then, if the
color hue in the XY range is shrank/stretched to the X ′Y ′ range, the following
equations are met:

∠XOP

∠XOY
=

∠X ′OP ′

∠X ′OY ′ and
|OR|
|OP | =

|OR′|
|OP ′| , (1)

which gives us

|OP ′| = |OP | |OR′|
|OR| . (2)



124 M. Matrosov, A. Ignatenko, and S. Sivovolenko

The A boundary passes near a distinctive cluster of blue colors on the sRGB
gamut. The B boundary specifies the strength of correction and passes near the
“most purple” observable monochromatic color. The C boundary is selected in
such a way that all colors of purple faces collected through the entire image base
lie within the AC range. The D boundary is selected somewhat arbitrarily and
has different locations for the previous and the present works.

The proposed correction algorithm includes intersection of rayswith 3D gamuts
and conversion from the sRGB color space to the UPLab color space and back-
wards. These tasks require significant time to be performed, but since we precom-
pute the LUT, they do not affect overall efficiency of the correction algorithm.
It took us about 5 minutes to construct a LUT for all possible 16,777,216 sRGB
colors. We used CGAL AABB Trees [2, 3D Fast Intersection and Distance Com-
putation (AABB Tree) 3] to compute intersections of rays with gamuts. The size
of full LUT is 48MiB, but we compressed it to≈7MiB using a run-length-encoding
technique since most of the colors are unaffected by the correction and it can still
be efficiently accessed in the compressed form.

5.2 Proposed Algorithm

In the present work, we propose a number of enhancements to our previous
work. The main enhancement is to use a segmentation technique to select areas
in which the correction needs to be applied. It is different from our previous
approach, in which we applied the correction globally to the whole image.

The other two enhancements are: expanded CD range and constraint on the
OP ′ length, i.e. the chroma of the corrected color. We discuss these two enhance-
ments in current section, and leave the segmentation technique for a separate
section.

We also optimized the exact location of the B boundary to be the average of
the three possible locations presented in the previous work.

Expanded Range. By analyzing collected data, we conclude that the previous
algorithm tends to perturb smooth gradients in a number of situations. The
simplest way to make the correction smoother is to expand the stretched range
of colors, i.e. the CD range.

As mentioned in our previous work, the exact location of the D boundary
was chosen somewhat arbitrarily. We tried to make the whole range of affected
colors considerably smaller to minimize potential distortions of the image. In the
current work we place the D boundary at 45◦ instead of 0◦ (see figure 5).

After this modification the correction affects more colors, especially close to
reds. However, affected colors still lie along the purple line and should not inter-
fere with monochromatic colors.

3 http://www.cgal.org/Manual/latest/doc html/cgal manual/AABB tree/

Chapter main.html

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/AABB_tree/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/AABB_tree/Chapter_main.html


Locally Adapted Detection and Correction of Unnatural Purple Colors 125

In practice, there are colors of almost any hue on the production images. Hence
it is important to preserve colors that we are sure should not be corrected. This
is achieved by a segmentation technique discussed below.

Constrained Chroma. The sRGB gamut in the UPLab color space has a
complex shape. This is especially pronounced near the magenta-white edge of
the RGB cube. It is where the colors of the purple faces are located. After
applying the equations (1), |OP ′| may be significantly larger than |OP |. That
means, that the chroma of the color is increased.

We discovered that this effect contributes to the problem of perturbed gradi-
ents. Hence we constrain the chroma not to be enlarged by the correction. We
replace the equation (2) with the following:

|OP ′| = |OP |min

(
1,

|OR′|
|OR|

)
.

5.3 Segmentation Technique

The above correction is applied only to areas of the image marked by a segmen-
tation as possible regions with purple faces. The segmentation produces a binary
decision mask, which marks every pixel on the image as to be either corrected,
or ignored.

All the colors are divided into three classes:

– Strong purples
– Weak purples
– Others

The strong purples are the colors for which we are sure that they correspond to
a purple face. To form these, we compute distance to the colors from marked
up purple faces throughout the entire image base. Note that every purple face
becomes black on very low exposures and white on very bright exposures. How-
ever, black and white are neutral colors and can be encountered anywhere on
the image. Therefore we include additional constraint on chroma when we select
strong purples.

The weak purples are the colors from the whole range affected by the correc-
tion, i.e. the colors from the AD range, except the colors that are marked as
strong purples. They need to be processed to smooth transitions between strong
purples and the rest of the image.

Finally, the others are the colors that are not affected by the correction under
any circumstances. These are the colors lying outside the correction boundaries,
the AD range.

After colors of all the pixels on the image are classified to one of these three
classes, a segmentation mask is constructed. It includes all the connected regions
of weak purples, for which there is a neighboring strong purple. That is, strong
purples act as a seed pixels for a flood-fill, constrained with weak purples, as
follows.



126 M. Matrosov, A. Ignatenko, and S. Sivovolenko

Fig. 6. Projections of median colors of the purple faces on the GB, RB and RG planes
of the RGB cube, from left to right. The coordinates are in the sRGB color space.

Fig. 7. The masks used for detection of strong purples. A color is considered close to
the colors of purple faces if and only if its projections on the GB, RB and RG planes
of the RGB cube correspond to white pixels of the masks, from left to right. The outer
black strokes are added for visualization only.

Detection of Strong Purples. For every marked up purple face from the
entire image base, median color is computed. All these median colors are placed
in the RGB cube for the source sRGB color space. They are then projected on
the different sides of the RGB cube. The projections are shown in figure 6.

Our task is to define a rule which can determine whether a given color lies
within a cluster of colors formed by purple faces. This rule doesn’t have to be
very precise, since the selected strong purples only act like seeds.

We propose a simple solution for this rule. We manually compose masks for
the three projection planes. We then assume, that a color lies within a cluster of
colors formed by purple faces if and only if its projections on the planes of the
RGB cube lie within the composed masks. These masks are shown in figure 7.

Finally, a color is considered a strong purple, if and only if:

– Its projections on the sides of the RGB cube lie within the given masks
– It lies within the AC range
– Its chroma is greater than 50



Locally Adapted Detection and Correction of Unnatural Purple Colors 127

The first condition is computed in the sRGB color space. The remaining two are
computed in the UPLab color space. For the sake of performance, a technique
utilizing a look-up table is used, similar to the one used for the correction. All
the sRGB colors are checked to be strong or weak purples, and the results are
stored in 3D LUTs. The details about this process are given below.

Construction of the Mask. After colors of all the pixels on the image are
classified into strong purples, weak purples, or others, the final segmentation
mask is constructed.

Pixels with colors classified as weak purples are divided into connected com-
ponents. A component is included in the mask if and only if it has a neighboring
pixel with a color classified as strong purple. The process is illustrated in figure 8.

Fig. 8. Construction of a segmentation mask. The source image is shown in the left.
Classification result is shown in the middle, with strong purples marked as white, weak
purples marked as gray, and others marked as black. The constructed segmentation
mask is shown in the right.

As one can see, the constructed mask is not very accurate or discriminative.
But this is not important, since most pixels accidentally included in the mask
are near-neutral. We only want to preserve chromatic colors while correcting
purple faces. Neutrals are very slightly affected by the correction.

In order to reduce the noise impact, the mask of strong purples is morpholog-
ically eroded before the segmentation mask is constructed. A disk with a 2-pixel
radius is used as a structural element for the erosion. The pixels excluded from
the mask of strong purples in such a manner, are marked as weak purples.

Implementation. To accelerate the classification process we precompute the
results for all sRGB colors. Two look-up tables are constructed at this stage:
one for strong purples, and one for weak purples. It is important to mention



128 M. Matrosov, A. Ignatenko, and S. Sivovolenko

that the table with weak purples also contains strong purples. It makes the
implementation easier.

These two tables are compressed using the same RLE-technique as the cor-
rection table. Additionally, since the masks are binary, they are stored as bit-
encoded, with every byte describing eight neighboring colors. Using this encoding
we reduced the total size of the tables from 32MiB to 1MiB (250KiB and 850KiB
for strong and weak purples respectively).

The connected components are extracted using a simple flood-fill algorithm,
started from each pixel marked as a strong purple. The flood-fill is spreading
only on pixels marked as weak purples.

The morphological erosion and flood-fill are done using the corresponding
functions from the highly optimized Intel R© IPP library [4].

6 Results

To ensure that the proposed enhancements contribute to the quality of the re-
sults, we manually selected 33 samples from production photos, in which the
previous algorithm exhibited visual artifacts. We then manually checked the re-
sults on all of the samples. Three of the samples are shown in figure 4. The
others can be found in the supplementary materials available on the Internet4.

Several examples of correction made by the proposed algorithm are given in
figure 9. They are not very different from the ones generated by the previous
algorithms. For differences see figure 4.

The introduction of local processing slowed the algorithm by 7 times. However,
it is still very fast and it takes only 430ms to process a 21Mpix photo on Intel R©

E8500 CPU running two cores at 3.16GHz.

7 Conclusion

During our engineering work we have stumbled upon limitations of applicability
of digital still cameras, where specific colors from our scene could not be repro-
duced properly. We analyzed this issue and proposed an efficient algorithm for
its correction.

In the present work we proposed a several enhancements to the previous al-
gorithm. With these enhancements, the quality of the algorithm is sufficient for
processing of production photos. Despite the proposed enhancements compli-
cated the algorithm, it is still very efficient.

The further enhancement of the algorithm may take into account character-
istics of the illumination, discrimination of facets and stars and even processing
of the geometry of an object.

4 ftp://graphics.cs.msu.ru/projects/PurpleFires/2012-11-28-Segmentation

results/manual.html



Locally Adapted Detection and Correction of Unnatural Purple Colors 129

Fig. 9. Examples of the correction made by the proposed algorithm. The source images
are shown in the top row. The corrected images are illustrated in the bottom row.

Acknowledgments. This work was done in cooperation with and with financial
and technical support of OctoNus Software Ltd.

References

1. Bruce lindbloom’s web site, http://brucelindbloom.com (accessed: May 27, 2012)
2. CGAL - computational geometry algorithms library, http://www.cgal.org

(accessed: May 27, 2012)
3. Decoding raw digital photos in linux, http://cybercom.net/~dcoffin/dcraw

(accessed: November 27, 2012)
4. Intel integrated performance primitives,

http://software.intel.com/en-us/intel-ipp (accessed: November 28, 2012)
5. Adams, J., Parulski, K., Spaulding, K.: Color processing in digital cameras. IEEE

Micro 18(6), 20–30 (1998)
6. ANSI, I.: 7/2-1993 (ISO 12641). Graphic Technology-Color Reflection Target for

Input Scanner Calibration
7. Hong, G., Luo, M., Rhodes, P.: A study of digital camera colorimetric characteri-

sation based on polynomial modelling (2001)
8. Matrosov, M., Ignatenko, A., Sivovolenko, S.: Detection and correction of unnat-

ural purple colors in images of refractive objects taken by digital still camera. In:
Graphicon (2012)

http://brucelindbloom.com
http://www.cgal.org
http://cybercom.net/~dcoffin/dcraw
http://software.intel.com/en-us/intel-ipp


130 M. Matrosov, A. Ignatenko, and S. Sivovolenko

9. McCamy, C., Marcus, H., Davidson, J.: A color-rendition chart. J. App. Photog.
Eng. 2(3), 95–99 (1976)

10. Newhall, S., Nickerson, D., Judd, D.: Final report of the OSA subcommittee on
the spacing of the munsell colors. JOSA 33(7), 385–411 (1943)

11. Park, J., Park, K.: Professional colour communicator-the definitive colour selector.
Journal of the Society of Dyers and Colourists 111(3), 56–57 (1995)

12. Smith, T., Guild, J.: The CIE colorimetric standards and their use. Transactions
of the Optical Society 33, 73 (1931)

13. Spaulding, K., Vogel, R., Szczepanski, J.: Method and apparatus for color-
correcting multi-channel signals of a digital camera, US Patent 5,805,213 (Septem-
ber 8, 1998)



 

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 131–142, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Some Theoretical Issues of Scientific Visualization  
as a Method of Data Analysis 

Victor Pilyugin1, Eugeniya Malikova1, Valery Adzhiev2, and Alexander Pasko2  

1 National Research Nuclear University "MEPhI", Moscow, Russia 
2 National Centre for Computer Animation, Bournemouth University, Bournemouth,  

United Kingdom 
{pilyugin,malikova}@sv-journal.com, 
{vadzhiev,apasko}@bournemouth.ac.uk 

Abstract. The paper discusses scientific visualization as a modern computer-
based method of scientific data analysis in experimental and theoretical  
research. A definition of this method and descriptions of some of its characteris-
tics are given as observed by the authors from the generalization of practical 
experience. An example of the implementation of this method are provided and 
illustrated on the basis of the HyperFun programming language and its support-
ing software tools.  

Keywords: Scientific data analysis, scientific visualization, spatial scene,  
geometric modeling, Function Representation. 

1 Introduction 

As it appears in practice, scientific visualization is seen in the general sense as a set of 
techniques for graphical representation of data in theoretical or experimental research. 
In other words, scientific visualization is based on using computer tools for the trans-
formation of the "invisible" raw data into visible graphical data ("to make invisible 
visible"). Such tools are applied with the purpose of the following analysis and under-
standing of this raw data.  

We consider scientific visualization as a modern computer-based method of data 
analysis. The essence of this method is in establishing the correspondence between 
the initial data being analysed and its static or dynamic graphical interpretation, which 
is analysed visually, and the results of this analysis of graphical data are interpreted in 
terms of both the initial data and the reality behind it (Fig. 1). 

With such an interpretation of scientific visualization, both the stage of the visuali-
zation of initial data ("scientific visualization" in the general sense as mentioned 
above) and the visual analysis of the obtained results are considered as a single inte-
grated process. Initial data analysed with the scientific visualization method can be of 
various nature. The goals of the data analysis can be different as well. As a result, 
various graphical representations can be involved. This entire process gives an oppor-
tunity to utilise enormous potential abilities of the spatial imaginary thinking of the 
researcher in data analysis. 



132 V. Pilyugin et al. 

 

 

Fig. 1. The method of scientific visualization     

Further evolving of this method along with extending its scope makes the devel-
opment of its scientific and engineering basis worth pursuing. In this paper, some 
generalization of practical results is proposed on the basis of the authors' experience 
in solving various data analysis problems using the method of scientific visualization.  

2 Some Theoretical Generalizations  

1. First of all, we consider an answer to the following question (which seems a rhe-
torical one at the first glance) is worth clarifying - what should be understood in 
the general case under scientific data and scientific data analysis in the con-
text of visualization?  

The distinguishing feature of modern scientific research is wide use of computers, 
which is true for both experimental and theoretical research. When discussing 
theoretical research, we mean the modern style of such research called a computa-
tional experiment, when a mathematical model of a real or imaginary object is 
analysed using a computer. Experimental research of material objects is quite 
close to mathematical research of abstractions with computers. Here, mathemati-
cal abstractions serve as a subject of research and a specific in-situ experiment 
takes place.  

When conducting such research, various data is obtained describing the object un-
der study. This scientific data is numerical data represented in the computer 
memory in various forms. This is typically ordered finite sets represented in 
several interconnected tables, and as such they can be considered as numerical 
tabular data. 

2. Analysis of the numerical tabular data obtained as a result of an in-situ or com-
putational experiment, or in the process of mathematical abstraction research us-
ing a computer, is generally preceded by preliminary processing of this data. 
The goal of processing raw data is to increase its quality in the context of the fol-
lowing analysis. Typical processing operations include data interpolation. filtering 
and decimation. These operations can be applied separately or in aggregation. 



 Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis 133 

 

As the result of processing, new numerical data is generated, which then under-
goes an actual analysis. We will further refer to this generated data under analysis 
as scientific data or simply data. 

3. The process of data analysis can be considered a solution of the data analysis 
problem with the following problem statement: 

 
Given: 
Numerical tabular data D describing the object under consideration. 
Required: 
Obtain conclusions C of interest to the researcher regarding the object. 
 

4. The solution of the above stated problem by the method of scientific visualiza-
tion means reducing this problem to the following two problems solved in  
succession. 

 
The first problem is to represent the given data in some graphical form (actual 
problem of data visualization). This problem is solved using computer. The sec-
ond problem is to visually analyse the graphical image(s) obtained as the result 
of solving the first problem. The results of this analysis are interpreted in respect 
to the initial data. This problem is solved directly by the researcher. 

5. The algorithm f for solving the first problem can be represented as a superposi-
tion of the following two mappings: 

 f = f1 * f2,                                                       (1) 

where 

 f1:  D   ( L,O ) 

 f2:  ( L,O )   GR , 

and D is a set of initial numerical data in the given form, 
L is a set of geometric models of imaginary spatial scenes (i.e., one or several ma-
terial and/or abstract spatial objects) of a selected type, 
O is a set of optical models of the spatial scene(s), 
GR is a set of graphical images of the spatial scene(s). 
A block-diagram of the algorithm f is presented in Fig. 2.  
 

 

Fig. 2. Block-diagram of the algorithm f 



134 V. Pilyugin et al. 

 

In a particular case, the mapping f1 can have a form f1: D  L, where an element 
of the set O is defined by the researcher at the stage of the algorithm execution. 
In general case, the geometric models L are collections of static and dynamic point 
sets with numerical parameters in the Euclidean space E3. The optical models O 
represent optical characteristics of the spatial scene objects defined as dependent 
numerical variables on the point sets of E3 of geometric models in the scene. Such 
characteristics can be light reflection and refraction coefficients, which also can 
depend on time.  
The mapping f2 is parameterized by such variables as the type of projection, cam-
era location and orientation, light source parameters and spatial media, which con-
stitute attributes of visualization.                  
It is worth to note that algorithms of type f of the stepwise transformation of initial 
data into graphical images are known as visualization conveyors (or visualization 
pipelines). This terminology is widely used when discussing scientific visualiza-
tion in the mentioned above general sense (as making invisible visible). 
The above notions can serve as a conceptual basis for the development of an algo-
rithm of visualization of initial data. The mapping f2 is a standard visual rendering 
of spatial scenes. The mapping f1 reflects spatial modeling of initial data. When 
defining the mappings f1 and f2, one needs to specify the sets D, L, O and GR un-
der consideration.  
While the mapping f2 is well known and assumes usage of 3D computer graphics 
tools, the mapping f1 is less studied and understood. This mapping depends very 
much on the form of the initial data representation. For example, this data can rep-
resent numerical values of quantitative input and output variables of the studied 
mathematical model as well as numerical values of parameters of geometric, vec-
tor, tensor or other types of variables of this mathematical model.     
Following from our experience in different application areas of scientific visuali-
zation, the mapping f1 can be represented as a superposition of two mappings s1 
and s2: 

 f1 = s1*s2                                                      ( 2 ) 

where   

 s1: D    N 

 s2: N   ( L,O ) 

and N is a set of geometric models of the initial data.   
In a particular case, the mapping s2 can have a form s2: N  L, where an element 
of the set O is defined by the researcher at the stage of the algorithm execution. 

In contrast to geometric models of the set L, geometric models of the set N can be 
represented as static or dynamic geometric point sets with numerical parameters 
in 3D Euclidean space E3  as well as in multidimensional geometric spaces. An 
example of such space is an n-dimensional Euclidean space En  with the points 
represented as n-tuples of real numbers. The mapping s1: D    N itself can in 



 Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis 135 

 

general case include complex geometric operations being applied in one or several 
geometric spaces.  

In addition, geometric point sets in 3D and multidimensional spaces can have point 
wise attributes defined by additional mappings of point sets onto real numbers, 
vectors or other mathematical objects. 

In the simplest case, the set N is equivalent to the set L, and the mapping f1 takes 
the form f1:  D   ( L,O ). 

6. So far we have discussed the main characteristics of the first problem solution.  
Let us now consider the process of solving the second problem, namely a visu-
al analysis of graphical images of the initial data and subsequent interpretation of 
the result of analysis in respect to the data, i.e., making some conclusions C re-
garding the object under study. Both analysis and interpretation are performed by 
the researcher solving the problem of data analysis.  

What does actually visual analysis of graphical data representation constitute? It is 
a matter of principle to understand that visual analysis in its essence consists in 
qualitative analysis of the spatial interpretation, which is put in correspondence to 
the initial data by the mapping f1:  D   ( L,O ). This means that the obtained 
graphical images serve just as means for natural and convenient conveying the 
spatial interpretation to the researcher for its analysis followed by the interpreta-
tion of the results in terms of the initial scientific data. 

Thus, the method of scientific visualization as a method of scientific data analysis 
is a method of spatial modeling of this data, which allows for using enormous po-
tential abilities of a researcher to use their spatial imaginary thinking in the 
process of data analysis.  

The process of the visual analysis of a graphical image is hard to precisely formal-
ize. The efficiency of the visual analysis depends on the researcher' experience 
and their inclination to use spatial imaginary thinking. When observing an image, 
the researcher can solve three main problems: 

- analysis of shapes of spatial objects; 
- analysis of mutual spatial positions of spatial objects and their topological  
relations; 

- analysis of graphical attributes of spatial objects.  
As the result of solving these problems, some conclusions are made by the re-
searcher regarding the spatial scene. As mentioned above, these conclusions are 
then interpreted in terms of initial data and thus conclusions are formed regarding 
the object under study.  

The researcher is either satisfied by the results of analysis or repeats the algorithm 
f or its part to obtain better results by changing the values of some parameters. For 
example, they can get different projection images of the spatial scene to better 
analyze the shapes of spatial objects in it. As the result, the process of data analy-
sis using the method of scientific visualization becomes more complex, iterative 
and interactive one. 

7. As it was mentioned above, the method of scientific visualization consists in spa-
tial modeling of initial data. The introduced spatial scene is analyzed visually, i.e., 
sensory analysis of the spatial scene is performed using a specific human organ of 



136 V. Pilyugin et al. 

 

senses, namely a human eye. However, in the combination with human eyes, oth-
er organs of senses such as human ears can be used.   

For example, when analyzing a given scalar field, a spatial scene can be put into 
correspondence with it, which includes a traditional isosurface (or several of 
them) as well as an imaginary abstract point sound source with the amplitude pro-
portional to the scalar field value at the given point. As a result, an additional pos-
sibility of listening to the spatial scene using sound rendering appears, i.e.,  
extended scientific visualization takes place in this case.  

8. After the algorithm f for solving the first problem has been specified, it is im-
plemented on the computer for the given initial data from the set D. This  
implementation assumes the development of an application software program in 
accordance with the algorithm using some programming language required by the 
used software tool. As we mentioned earlier, the algorithm f can be quite com-
plex. This assumes that the implementation can involve quite sophisticated  
instrumental software tools supporting the entire system of concepts used by the 
researcher to formulate the algorithm including multidimensional and time-
varying geometric modeling tools.  

Our experience shows that the programming language and software tools of the 
HyperFun project based on the Function Representation (FRep) of geometric ob-
jects well suite the purposes of the described instrumental tools (Pasko et al., 1995) 
, (Pasko et al., 2001), (Pasko et al., 2004), (Cartwright et al, 2005), (Adzhiev et 
al.,1996), (Adzhiev et al.,1999). We discuss the characteristics of FRep and HyperFun 
in the following section. 

3 Function Representation and HyperFun Language 

HyperFun (Pasko et al., 2004), (Cartwright et al, 2005), (Adzhiev et al.,1999) is a special-
purpose programming language for geometric modeling using FRep. The system of 
concepts used in HyperFun includes sets of geometric objects (point sets), geometric 
operations and relations. FRep defines a geometric object in a multidimanesional 
space as whole with a single real continuous function F of several variables X (point 
coordinates) (Pasko et al., 1995), (Pasko et al., 2004)  in the form of the inequality 
F(X) ≥ 0 providing the point membership classification rule as well as an algebraic 
measure of the distance from the point to the object boundary. The geometric object 
definition is given in a multidimensional space, which allows for selecting an appro-
priate dimensionality for a specific application. Note that the function F can be de-
fined in various ways including analytical equations as well as pure procedural defini-
tions. In this sense, FRep generalizes the traditional usage of real functions in skeletal 
implicit modeling and Constructive Solid Geometry (CSG).   

A program in HyperFun defines an algorithm of the function evaluation of a single 
geometric object based on the vector of point coordinates and a vector of numerical 
parameters. In the modeling process some finite number of pre-defined geometric 
primitives can be employed with the known definition and a set of numerical parame-
ters. However, it is not entirely necessary as the user can define geometric objects 



 Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis 137 

 

directly using equations and function evaluation procedures. This allows for the unifi-
cation of several modeling styles including CSG, free form skeletal objects, sweeps, 
voxels, meshes and point clouds converted to real functions.  

Each geometric operation in FRep has to yield a continuous real function for its  
resulting geometric object thus making the operation closed on the representation. 
Examples of basic geometric operations in FRep are set-theoretic ones, blending, 
offsetting, bijective mappings, projection, Cartesian product, metamorphosis and 
others. Examples of relations are inclusion, point membership, collision and others.   

The work (Pasko et al., 2001) introduced a model of constructive hypervolumes, 
which allows to model heterogeneous volume objects as point sets with point wise 
attributes such as material, its density, colour and other physical properties (see de-
tails in (Pasko et al., 2008). HyperFun in its latest version supports constructive hy-
pervolume modeling via defining point wise attributes in an additional input/output 
array. For visualization of spatial scenes with HyperFun objects with specialized ren-
dering tools, the user can define optical characteristics of objects by selecting color, 
reflectance and refraction properties.  

The mapping f1 discussed above can be implemented quite naturally in HyperFun 
when initial data is given in the form of functional dependencies. In the case of dis-
crete numerical data, some interpolation procedures have to be involved to obtain 
continuous functions. An example of the mapping f2 is a procedure of the piecewise 
linear approximation (polygonization) of the FRep object surface by a set of triangles 
with their following projection onto the selected image plane. In  (Pasko et al., 1986) 
a polygonization algorithm was proposed and implemented, which is used in several 
HyperFun rendering tools. This algorithm is free of topological ambiguities essential 
for the original Marching Cubes algorithm (Lorensen & Cline 1987 ). The trilinear 
interpolation inside the cubic cells and the bilinear interpolation on their faces are 
used to detect and connect hyperbolic arcs on the faces, which define the sides of the 
generated triangles.   

4 Practical Example 

Let us discuss and illustrate an example of the application of the method of scientific 
visualization for data analysis. 

4.1 Problem Statement 

The object under study is a computer model of the C2H2 molecule. 
 

Given 
A mathematical model of the scalar field of electron density of this molecule in the 

following form: 

 Y = φ (x,y,z|t), where 



138 V. Pilyugin et al. 

 

x,y,z are coordinates of points in space,  Y is an electron density given in the tabular 
form, 

 x1≤x≤x2, y1≤y≤y2 , z1≤z≤z2; 

t is a parameter associated with the function Y defined for the values t=t1 и t=t2 
(0≤t1≤1, 0≤t2≤1) as 

 t=t1: Y= φ1(x,y,z) 

 t=t2: Y= φ2(x,y,z). 

Required 
To analyze variations of the function Y depending on the parameter t. 
We will solve this problem using the method of scientific visualization.  

4.2 Solving the First Problem 

According to the method described above, the algorithm f of solving the first problem 
is a superposition of two functional mappings: 

 f = f1 * f2 

Mapping f1 includes the following steps.  
Let us define the geometric model of the spatial scene. 

1. Let us introduce interpolation functions φ∼
1(x,y,z) and φ∼

2(x,y,z) corresponding to 
the tabulated functions φ1(x,y,z) и φ2(x,y,z). Let us also introduce a function of 
four variables Ψ(x,y,z,t) = (1-t)*φ ∼

2+t*φ∼
1. The geometric interpretation of this 

function is the hypersurface G5 in the Euclidean space E5 with Ψ as the defining 
function. This geometric interpretation defines the mapping s1: D    N discussed 
earlier. Thus, we use here s1 as a superposition of s11 and s12, where s11 is a map-
ping of tabular functions φi(x,y,z) onto the set of interpolation functions φ∼

i(x,y,z), 
and s12 is the known from analytical geometry mapping of the set of real functions 
of four variables onto the set of geometric objects (point sets) of the Euclidean 
space E5. 

2. By assigning a constant value t=ti we can put the given hypersurface G5 in E5 into 
correspondence with a hypersurface G4 with the definition Y = φi(x,y,z). This can 
be interpreted as a geometric operation of intersection between the hypersurface G5 
and the hyperplane t=ti followed by projecting the result of the intersection onto the 
space E4. The hypersurface G4 in its turn can be put into correspondence with a 
collection of isosurfaces Cj in the space E3 by selecting level values cj for the func-
tion Y. This can be interpreted as a geometric operation of intersection of the hy-
persurface G4 with hyperplanes Y = cj followed by projecting of the results onto 
E3. Such a procedure defines the above mentioned mapping s2: N  L, which in 
this case maps hypersurfaces in E5 onto sets of isosurfaces in E3. 



 Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis 139 

 

3. The obtained collection of isosurfaces is considered a geometric model of an 
imaginary spatial scene, which is introduced according to the initial mathematical 
description of the scalar electron density field as well as the mappings s1 and s2.  

4. Let each of the level values cj of the function Y correspond to some color of the 
isosurface selected from some color scale. Thus, we have completely specified the 
mapping f1.   

Mapping f2 
Rendering of isosurfaces can be implemented through their approximation by tri-

angle meshes with the following mesh rendering, or through a ray-tracing procedure 
directly defining color for each pixel. For simplicity we can use default rendering 
parameters for the implementation of the mapping f2.  

Thus we have completely defined the mapping f = f1*f2. 

4.3 Solving the Second Problem 

By visually analyzing the obtained images of isosurfaces we make conclusions about 
the changes in the shapes of isosurfaces according to the changes of the parameter t. 
These conclusions are interpreted then in terms of the properties of the scalar field 
being analyzed. 

4.4 HyperFun Program Implementing the Algorithm f1 and Results of Its 
Work 

This HyperFun model defines the hypersurface G5, its cross-section t=ti projected on 
G4, and a union of 3D volumes with zero-level isosurfaces. 

my_model(x[3], a[1],s[1]) 
{ 
array xt[4];   
array xt2[3]; 
array c[1]; 
 
s[1]   = 0.0; 
c[1]= 0.0; 
-- defining parameter t=ti; 
t=0; 
 
-- defining point coordinates in space E4: 
{xt1,xt2,xt3,t} 
xt[1]=x[1]; 
xt[2]=x[2]; 
xt[3]=x[3]; 
xt[4]=t; 
 



140 V. Pilyugin et al. 

 

 
-- defining point coordinates in space E3: {xt1,xt2,xt3 } 
xt2[1]=x[1]; 
xt2[2]=x[2]; 
xt2[3]=x[3]; 
 
 
while (t<=5) loop 
-- assigning constant values t=ti 
xt[4] = t*0.2; 
-- shift of each hypersurface G4 along X axis 
xt2[1]=x[1]+3*t; 
 
-- interpolation function of the tabular data  
-- in file t1->Y= φ1(xt2[1],xt2[2],xt2[3]) 
sp1=rscalars(1,xt2,"ed1.txt");  
 
-- interpolation function of the tabular data  
-- in file t2->Y= φ2(xt2[1],xt2[2],xt2[3]) 
sp2=rscalars(2,xt2,"ed2.txt"); 
 
-- defining the projected cross-section of hypersurface 
G5  
-- with defining function of 4 variables by a hyperplane 
t=ti  
sp3=(1-xt[4])*sp1+xt[4]*sp2; 
if (t = 0) then sp4=sp1; 
else 
sp4=sp4 | sp3;  -- union of all projected cross-sections 
 
endif; 
 
t=t+1; 
endloop; 
 
my_model = sp4; 
} 

To obtain good quality images when rendering isosurfaces, the VTK library was used, 
which includes a procedure of rendering a group of isosurfaces Cj in E3 with the given 
function Y and a set of level values cj. The images in Fig. 3 were rendered using this 
VTK procedure for the above HyperFun model and several values ci to get images of 
several isosurfaces for each given value ti.  
 
 



 Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis 141 

 

 

 

Fig. 3. Nested isosurfaces of the scalar electron density field for different values of parameter t 

Fig. 3 shows images of isosurfaces of the scalar electron density field, which allow 
for visual analysis of the spatial scene and interpretation of the analysis results in 
terms of initial data, thus forming conclusions regarding the properties of the electron 
density field itself. 

In particular, while analysing the shapes of isosurfaces and their colors for each pa-
rameter value ti the user makes conclusions regarding the variations in the values of 
the electron density field on the given parameter interval 0 ≤t ≤ 1. Fig. 4 shows pro-
jections of the same spatial scene with different camera parameters of rendering. 

 

 

Fig. 4. Different camera positions in rendering isosurfaces of the electron density field 



142 V. Pilyugin et al. 

 

5 Conclusions 

We introduced several theoretical generalizations obtained from practical experience 
of solving various problems of data analysis with the method of scientific visualiza-
tion. We would like to underline that from our point of view the introduction of map-
pings s1 and s2 is the matter of principle in spite of the fact that in many problems of 
data analysis these mappings are trivial. With the increasing data complexity and the 
growth of data dimensionality, the importance of rigorous mapping of data onto geo-
metric models will undoubtedly grow. Otherwise, solving the second problem of vis-
ual analysis of graphical images and interpreting the results in terms of initial data 
will be increasingly difficult.  

We believe that the introduced generalizations will be useful for practitioners in 
data analysis and for developers of future scientific visualization systems. We con-
tinue our research in this direction to provide systematic views on specifics of each 
presented mapping. 

References 

1. Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., Savchenko, V.: HyperFun 
project: a framework for collaborative multidimensional FRep modelling. In: Proceedings of 
Implicit Surfaces 1999, Eurographics/ACM SIGGRAPH Workshop, pp. 59–69 (June 1999) 

2. Adzhiev, V., Pasko, A., Savchenko, V., Sourin, A.: Modeling shapes using real functions. 
Open Systems 5(19), 14–18 (1996) 

3. Cartwright, R., Adzhiev, V., Pasko, A., Goto, Y., Kunii, T.: Web-based shape modelling 
with HyperFun. IEEE Computer Graphics and Applications 25(2), 60–69 (2005) 

4. Pasko, A., Adzhiev, V., Comninos, P. (eds.): Heterogeneous Objects Modelling and Appli-
cations. LNCS, vol. 4889, 285 p. Springer, Heidelberg (2008) 

5. Lorensen, W., Cline, H.: Marching Cubes: A high resolution 3D surface construction algo-
rithm. Computer Graphics 21(4), 163–169 (1987) 

6. Pasko, A., Adzhiev, V.: Function-based shape modeling: mathematical framework and spe-
cialized language. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 132–160. 
Springer, Heidelberg (2004) 

7. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric 
modelling: concepts, implementation and applications. The Visual Computer 11(8),  
429–446 (1995) 

8. Pasko, A., Adzhiev, V., Schmitt, B., Schlick, C.: Constructive hypervolume modelling. 
Graphical Models 63(6), 413–442 (2001) 

9. Pasko, A., Pilyugin, V., Pokrovsky, V.: Geometric modeling in the analysis of trivariate 
functions. Computers and Graphics, vol 12(3/4), 457–465 (1988) 

 
 



Pose Refinement of Transparent Rigid Objects

with a Stereo Camera

Ilya Lysenkov and Victor Eruhimov�

Itseez,
603000, Korolenko 19b, Nizhny Novgorod, Russia
{ilya.lysenkov,victor.eruhimov}@itseez.com

Abstract. We propose a new method for refining 6-DOF pose of rigid
transparent objects. The algorithm is based on minimizing the distance
between edges in a test image and a set of edges produced by the training
model with a specific pose. The model is scanned with a monocular
camera and a 3D sensor such as a Kinect device. The pose is estimated
from a monocular image or a stereo pair. The method does not require
a CAD model of the object. We demonstrate experimental results on a
set of kitchen items essential for any home and office environment.

Keywords: pose estimation, localization, transparent objects.

1 Introduction

Perception for personal robotics is a wide and important application of computer
vision. A personal robot is expected to efficiently interact with the environment.
In particular, it has to be able to detect a specific object in a scene and find
its pose for grasping and manipulation. Recent advances in object recognition
and pose estimation [1] demonstrate good results with a monocular camera for
textured objects. SIFT features are used to find similarities between training
and test textured image patches and then geometric validation is used to filter
out false matches. Since the training set contains 3D coordinates of all features,
pose estimation in this approach is done by solving a PnP problem on SIFT
matches. However if an object has few textured features, local descriptors will
produce few matches and detection will fail. Moreover, if only a small part of
the object is textured, it will be detected but there may be a substantial error in
the pose estimation. Also, this method does not work with transparent objects.

Both textureless and transparent objects such as cups, dishes, staplers etc.
are an essential part of home and office environment. The problem of estimating
the pose of such objects is important for personal robotics. While recent devel-
opments in structured light sensors such as Kinect shows promising results in
finding the pose of textureless objects, this type of technology does not work
with specular and transparent surfaces. Our work in this paper is largely influ-
enced by the methods for textureless objects coming from industrial robotics [2]

� This work was supported by Willow Garage.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 143–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



144 I. Lysenkov and V. Eruhimov

that use a CAD model of an object to estimate its pose from a monocular cam-
era by projecting the model to a test image and comparing object features with
image edges. While CAD models of manipulated objects in industrial settings
are usually available anyway, CAD models of all objects in the personal space
are hard to capture.

We present an algorithm for refining 6-DOF pose of a transparent object using
edge features. The method does not require a CAD-model, it needs a 3D scan of
an object including a point cloud and images registered to each other. We show
that the method can be used for accurate pose estimation of transparent rigid
objects.

2 Related Work

Transparent objects are very challenging objects in computer vision because
their appearance in an image largely depends on a background. Also it is hard
to capture a 3D model or a point cloud for transparent objects due to limitations
in technologies of existing 3D sensors and because reconstruction of transparent
objects is still a very hard problem [3].

The algorithm for detection and reconstruction of unknown transparent ob-
jects was proposed in [4]. The algorithm uses two views of a test scene captured
by a ToF camera. The algorithm is insensitive to changes in illumination and
it was applied for grasping of isolated transparent objects by a robot. Grasping
was successful in 41% of reconstructed objects and failed attempts are explained
by errors in objects reconstruction and pose estimation.

The algorithm for pose estimation of transparent objects from two views of a
test scene was proposed in [5]. Accurate pose estimation was achieved but the
objects are required to stay on a table plane and they should be separated from
each other. So the algorithm is not able to estimate 6-DOF pose.

Kinect sensor is used for pose estimation and recognition of transparent ob-
jects in [6]. However, results are reported only in case when objects are assumed
to stay on a table plane. So accuracy in case of 6-DOF pose estimation is unclear.

Specularities are important features when working with transparent objects
and there are very promising approaches to pose estimation [7], [8], [9] using this
cue. However, these algorithms of pose estimation require a triangulated mesh
or a CAD model of an object and they were evaluated with textureless objects
only.

Texture features like SIFT are not suitable when working with textureless and
transparent objects because such objects don’t have their own texture. Computer
vision research [10] and psychological studies [11] show that edges and contours
of objects are important features and they can be used successfully for the ob-
ject recognition problem. For example, humans can recognize objects from rough
pencil sketches although texture is missing. This cue is available both for trans-
parent and textureless objects and it makes the problem of pose estimation of
transparent objects related to pose estimation of textureless objects.

The problem of untextured pose estimation has a long history in computer
vision. See [12] for a detailed overview of the 2D-3D pose estimation problem.



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 145

[13] shows that it is possible to estimate a pose of a textureless object by using
single-view object detection algorithms. However the 2D object representation
used in this method is viewpoint-dependent, so a set of detectors has to be
trained for different viewpoints. Running all detectors is infeasible in the general
case so pose clustering is used [14], [13], [15], first to make a rough estimation
of the pose and then refine it by running a smaller set of detectors. The pose
corresponding to the most confident detector is returned as an estimation of the
object pose. But the accuracy of this estimation is bounded by the number of
detectors that also defines the computational cost.

General multi-view approaches and a 3D model of an object are required to
balance between the computational cost and the pose estimation accuracy. The
idea to use a 3D representation of an object for recognition is going back to
early computer vision of 70’s and 80’s, see, for example, [16]. Approaches [17],
[2], [18] utilize this idea and they can estimate a pose of a textureless object
quite accurately. Algorithms [17], [18] find the closest training pose and run a
local optimization of it using a CAD model of an object. High-quality CAD-
models are hard to obtain and although there are some CAD-models of typical
household objects (like a cup or a bottle), models are not available for all specific
objects that robots need to grasp in a household environment.

Our approach to pose refinement step is similar to [17], [18] and also based on
edges cue. However, it does not require a CAD model and it is able to estimate
6-DOF pose of transparent objects.

3 Proposed Approach

To solve the considered problem we divide it to following tasks:

1. Create a 3D model which allows to generate object edgels (points on edges)
for different poses. Our model contains a 3D object model and a 3D edge
model. The 3D object model is a point cloud of the whole object and it is
used to generate silhouette edges. The 3D edge model is a point cloud with
points on surface edges, that is edges created by depth discontinuities or
texture.

2. Determine a cost function which estimates dissimilarity between generated
edgels and the observed test data and then minimize the cost function by
varying parameters that determine pose of the object.

We will address all of these steps in the following subsections.

3.1 Creation of the 3D Model

There are no stable ways to estimate depth or produce point clouds for trans-
parent objects [3]. So we take a copy of the object, paint it with a color and use
the painted object in the model creation pipeline.

The 3D object model is created automatically from the train data. We scan
each object on a planar surface with a Kinect device. Two fiducial markers



146 I. Lysenkov and V. Eruhimov

consisting of grids of circles are placed in the field of view to provide accurate
registration of frames. Depth map from Kinect allows us to segment the plane
and calculate the object mask in each image.

We illustrate the algorithm of the surface edge model creation using a tex-
tureless object that has many surface edges (Fig. 1). First, we extract 3D points
that correspond to surface edges in each frame, then we register point clouds
from different frames, and, finally, we build a surface edge model.

Fig. 1. Example of an object to be modeled

Detecting Edges in Each Frame

1. Find edges on each image of the object using Canny edge detector [19] .
Then find edges of the object by intersecting the detected edges with the
object mask.

2. Select the points from the 3D cloud that correspond to image edges. Our
point cloud is interpolated to the size of the train image and so there is a
bijection between 3D points and image pixels. As a result we get a 3D edge
model for each training image.

Registering Point Clouds

1. Transform all models to the same coordinate system associated with the first
frame, using the poses from the fiducial markers. The corresponding points
from different frames would coincide with each other in the ideal case but
there are always some deviations in practice due to noise (see the Fig. 2A).

2. Register transformed point clouds. There is a classic and widely used algo-
rithm Iterative Closest Point (ICP) for registration of two point clouds [20],
[21]. Global approaches like [22] are used for registration of multiple point
clouds because they can distribute registration error between all point clouds



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 147

Fig. 2. Creation of the surface edge model. (A) All train point clouds transformed to
the same coordinate system. (B, C) Refined and denoised point cloud with k-partite
matching and robust statistics. (D) Downsampled point cloud which approximates the
full model well.

evenly. We have a good initial alignment of point clouds using the poses from
the fiducial markers so we have used more simple global algorithm [23] with
LM-ICP [24] to register pairs of point clouds.

Creating a Surface Edge Model

1. Partition all transformed points into groups where each group corresponds
to the same point of the object. This allows to get more accurate coordinates
of the object point by its noised observations. Partitioning is done by solving
the problem of k-partite matching which is a generalization of the bipartite
matching for the case of k-partite graphs. It is known to be an NP-hard
problem [25] so we used a heuristic algorithm based on [26] (see appendix
for details).

2. For each group compute accurate coordinates of the model point using ro-
bust estimation of location [27] e.g. the minimum covariance determinant
estimator (MCD) [28]. The constructed model is given in the Fig. 2B and it
represents edges of the object much better than transformed point clouds in
Fig. 2A.

3. Downsample the constructed 3D edge model. The 3D edge model of the
whole object is given in the Fig. 2C. It contains many close points that
don’t give additional information. So we keep 10% of points to lower compu-
tational costs of further processing. It is done by a trivial adaptation of the



148 I. Lysenkov and V. Eruhimov

Douglas-Peucker algorithm [29] for this task. The downsampled model is
given in the Fig. 2D.

It is important to note that as a result of the k-partite matching the silhouette
edges, which presence depends on a point of view, will be automatically filtered
out as they will not have correspondences in different frames.

We group all surface edge points into contours by proximity. 3D orientation of
a contour at a point can be estimated as direction of the tangent vector to the 3D
contour at this point. We do this by generalizing [30] to the 3D case by means
of multi-dimensional robust statistics [27]. When the model is transformed in
3D space, orientations of points are transformed as usual 3D points. We use the
contours to calculate the orientation in each projected edgel that can be used in
the cost function.

The algorithm for constructing a silhouette model is similar. We register dense
point clouds that we obtain from a Kinect by using the same algorithm (ICP
registration with the initial pose from the fiducial markers). The coordinate
system origin is placed into the mass center of the joint point cloud.

In order to guarantee that poses that are close to each other are produced
by close rotation and translation vectors, we place the coordinate system origin
into the center of mass for each of the objects.

3.2 The Cost Function

The cost function is defined by comparing detected test image edges with projec-
tions of 3D surface and silhouette edges that depend on the object pose. Given
a rotation and translation of the object, we transform the point cloud into the
test camera reference frame. Surface edges are projected into the image and they
give us 2D surface edges because transparent objects don’t have self-occlusions.
In order to get silhouette edges, we project a dense point cloud into a test image,
apply several closing operations to the resulting set of pixels and find the borders
of the connected components. These borders constitute silhouette edges.

Now we want to construct a cost function that compares two sets of edges in
an image. Let E = {ej} be a set of pixels that belong to edges of a test image,
T = {ti} is a set of the model points projected into the image plane. One of the
most popular cost functions is Chamfer Matching (CM):

dCM (E, T ) =
1

|T |
∑
ti∈T

min
ej∈E

||ti − ej ||, (1)

where || · || is Eucledian norm. However, mean is not a robust statistic because a
single outlier can affect the final value severely. Edge detection is an unsta-
ble operation that produces a lot of variation, especially in edge endpoints.
In order to overcome this issue we use the Partial Directed Hausdorff (PDH)
distance [31]:

dH(E, T ) = Kth
ti∈T min

ej∈E
||ti − ej|| . (2)



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 149

Here Kth
ti∈T (X) is the Kth ranked value in the sorted set X. Throughout the

paper we use K = 0.8|T |, where |T | is the number of elements in T . However,
this distance can be set to zero by placing the object infinitely far away from
the camera. It means the global minimum will be achieved in the incorrect pose
for this distance. So we introduce a Normalized PDH (NPDH) distance:

dH(E, T ) =
1√
detC

Kth
ti∈T min

ej∈E
||ti − ej ||, (3)

where C is the covariance matrix of the projections of the point cloud into the
image.

Both CM and PDH distances are known to behave incorrectly in clutter. Ori-
ented Chamfer Matching (OCM) [10] is known to handle clutter better. However,
it is more computationally expensive, so we use NPDH throughout the paper.

The PDH cost function is computed separately for surface and silhouette
edgels. The resulting distances are added with different weights: 2/3 for surface
and 1/3 for silhouette edges. The weight for surface edges is higher because
surface edges are more stable: they are constructed by fusing edgels from many
training frames, so we know that each surface edge is found robustly by the edge
detector.

The cost function 3 is minimized by the global optimization algorithm DI-
RECT [32] from the NLopt library [33] by varying the 6 parameters defining
pose of the object: a translation and rotation vectors.

4 Experimental Results

4.1 Transparent Objects

The algorithm was tested on the base of 5 transparent objects. We take 5 pairs
of kitchen items and paint one object in each pair in white color to make it
opaque because there are no reliable way to scan a transparent object [3]. We
use the painted object to scan it with Kinect to create object models. Each
training sequence contains 12 frames with different poses of the table relative to
Kinect. The asymmetric circles pattern from the OpenCV library was used as the
fiducial marker to estimate poses between frames. To create test data we used
the corresponding transparent objects captured by a calibrated stereo pair of
Canon EOS 40D cameras from a distance about 1 meter. Images were resized to
resolution of about one megapixel (1166x778). Each test object is placed exactly
as the corresponding training object relatively to the fiducial marker, so we know
the ground truth.

The objective of these experiments it to investigate how accurate the initial
guess about the object pose should be for the algorithm to produce a stable
correct result. We ran the algorithm with many different initial guesses generated
randomly. In particular, the correct pose was translated in random direction on
the specified distance d and rotated in random direction on the specified angle
α. Each experiment with specific values of d and α was repeated 50 times and



150 I. Lysenkov and V. Eruhimov

we take 27 different combinations of these values. All objects in the test base
have rotation symmetry and this was taken into account when evaluating pose
returned by the algorithm but this knowledge was not used by the algorithm
itself.

Fig. 3. Images from a stereo pair with the projected poses found with the algorithm,
initial (upper row) and refined (bottom row)

The example of the results is given in Fig. 3. Points of objects’ models are
colored. They are projected into the image plane using initial hypothesis of
objects’ poses and poses refined by the algorithm. Initial poses are quite far
away from correct poses. However, final poses are accurate enough for grasping.

We run the algorithm on all 5 objects to see how often the algorithm returns a
correct pose. We consider the pose estimation successful if the difference between
the returned and correct poses is less than 2 cm in translation and 10 degrees
in rotation. Fig. 4 shows the statistics for all 5 objects. The percent of runs
when the algorithm succeeded is plotted on the y-axis. The chart shows that
if the initial translation error is less than 2 cm, we can successfully reconstruct
the pose in more than 80% of the cases. Black area in Kinect depth map that
corresponds to specular and transparent surfaces can give us a hypothesis about
the object location. This information can be used to generate a good initial
guess about the translation vector. If the initial error of the translation vector is
2cm, the rate of successful reconstructions (averaged over all angles) is 88%, if



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 151

the initial translation error is 5cm, then the rate of successful reconstructions is
77%. Note that part of the error comes from poses that are upside-down to the
ground truth: since many objects are close to cylindrical shape, the final result
can put the top of the glass to the bottom.

See more examples at Fig. 5. Also see Fig. 6 for example of the algorithm
failure. The algorithm returned the pose which is upside down of correct one
because the object has nearly cylindrical shape.

0 15 30 45 60 90 120 150 180
Initial rotation angle (deg)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fi
n
e
m

e
n
t 

ra
te

Initial translation

0 cm

2 cm

5 cm

10 cm

Fig. 4. Statistics of the algorithm working on rigid transparent objects. Pose can be
refined successfully if an initial pose is not very far from the correct pose. The algorithm
is robust to incorrect initial rotation but it is more sensitive to initial translation.

The proposed algorithm can refine poses of transparent objects in some cases,
but it has several limitations. The approach demands good initial hypothesis of
the object pose, otherwise the search for the global minimum takes too much
time. The algorithm is unstable in clutter e.g. if the object is surrounded by
other objects. But in the case of low clutter the algorithm works with sufficient
speed and quality to be applied for pose refinement of rigid transparent objects.

Another limitation of the proposed method is using a calibrated stereo pair for
generating test images instead of a single monocular camera. The main obstacle
for a monocular camera is ambiguity that cannot be resolved from a single image
without additional assumptions or priors.

There exist significantly different poses that have very good projections to
a test image and it is specificity of transparent objects. For example, two dif-
ferent poses of an opaque object are shown in the Fig. 7 and there is no ambiguity



152 I. Lysenkov and V. Eruhimov

Fig. 5. Examples of successful pose refinement for different objects. Left images are
initial poses and right images are refined poses. Only one image from the stereo pair
is shown.

Fig. 6. Example of the algorithm failure due to cylindrical shape of the object. Two
images from a stereo pair are shown: initial pose (upper row) and refined pose (lower
row).



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 153

Fig. 7. Two different poses of an opaque object. There is no ambiguity between them
because different edges are visible in different poses.

Fig. 8. Ambiguous projection of a transparent object. Two plausible poses of the object
are possible because all edges are visible on the same image.

between them. However, if the same object is transparent then there are two
different plausible interpretations of the same projection (Fig. 8) because trans-
parent objects don’t have self-occlusions and all edges are visible.

We evaluated the algorithm with a monocular camera on the same dataset
using only left images of our stereo test set. The statistics of pose estimation
is shown in the Fig. 9. One can see that there is a significant degradation of
accuracy compared to the stereo case.

4.2 Textureless Objects

The proposed algorithm can be used for pose refinement of opaque objects too.
An example of the algorithm working is shown in the Fig. 10. The corresponding
poses of the object are used to project model points onto the images for visu-
alization. You can see that the initial pose is far from correct because edges of
the object are not projected onto edges of the image. However, the proposed al-
gorithm refines this pose and gives accurate pose estimation suitable for robotic
grasping.



154 I. Lysenkov and V. Eruhimov

0 15 30 45 60 90 120 150 180
Initial rotation angle (deg)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fi
n
e
m

e
n
t 

ra
te

Initial translation

0 cm

2 cm

5 cm

10 cm

Fig. 9. Statistics of the algorithm working when using a monocular camera only. The
results degrade significantly comparing to the stereo camera due to inherent ambiguity
of pose estimation of transparent objects from a single view.

(a) Initial pose (b) Refined pose

Fig. 10. Initial and refined pose of an opaque object. The first row shows the surface
model projected onto the images, the second row shows corresponding point clouds.
The edges and the point cloud of the object are far from correct location initially but
they move to correct position after the algorithm working.



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 155

5 Conclusion

The paper presents the algorithm for refining the 6-DOF pose of transparent
objects. Our method only requires a calibrated stereo pair during the online
stage. Given an initial estimate that has an error in translation less than 5cm,
the rate of accurate pose estimations is higher than 75%. The method allows to
grasp transparent objects without using expensive sensors such as TOF cameras.

Appendix: k-Partite Matching

Bioinformatics has an important problem of finding correspondences between
protein-protein interaction networks [34]. This problem resembles our problem
of point cloud registration because we need to find correspondences between
points from different point clouds to refine locations of individual points. In
bioinformatics this problem can be successfully solved by treating it as k-partite
matching problem as proposed in [26]. However, in our case we have a lot of
outliers and strong noise which creates significant difficulties for that algorithm.
Based on [26] we developed a more suitable algorithm for our problem which
uses robust statistics explicitly to be not affected by noise (Algorithm 1).

Algorithm 1. Creating a surface edge model

Require: k-partite graph G
Ensure: Edge model

for all vertex v of the graph G do
Find the nearest vertex to v in each part of the graph G
Sort edges between v and found vertices by weight
Compute sum of h edges with minimum weight as robust estimation of scatter
Put v in a priority queue with priority equal to the computed sum

end for
while the priority queue is not empty do

Take the top vertex from the queue
Compute scatter estimation as before
if scatter estimation is not changed then

Compute robust estimation of a centroid using this vertex and the nearest
vertices from different parts of the graph
Add the centroid into the model
Remove the vertex and these nearest neighbors from the queue

else
Put the vertex into the queue with updated estimation of scatter

end if
end while



156 I. Lysenkov and V. Eruhimov

References

1. Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full
pose registration from a single image for robotic manipulation. In: IEEE Interna-
tional Conference on Robotics and Automation (2009)

2. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for
joint image segmentation and pose tracking. International Journal of Computer
Vision 73(3), 243–262 (2007)

3. Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the
Art in Transparent and Specular Object Reconstruction. In: STAR Proceedings of
Eurographics, pp. 87–108 (2008)

4. Klank, U., Carton, D., Beetz, M.: Transparent Object Detection and Reconstruc-
tion on a Mobile Platform. In: IEEE International Conference on Robotics and
Automation (2011)

5. Phillips, C., Derpanis, K., Daniilidis, K.: A Novel Stereoscopic Cue for Figure-
Ground Segregation of Semi-Transparent Objects. In: 1st IEEE Workshop on Chal-
lenges and Opportunities in Robot Perception (2011)

6. Lysenkov, I., Eruhimov, V., Bradski, G.: Recognition and pose estimation of rigid
transparent objects with a kinect sensor. In: Robotics: Science and Systems Con-
ference (2012)

7. Lagger, P., Salzmann, M., Lepetit, V., Fua, P.: 3d pose refinement from reflections.
In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2008)

8. Chang, J., Raskar, R., Agrawal, A.: 3d pose estimation and segmentation using
specular cues. In: IEEE Conference on Computer Vision and Pattern Recognition.
IEEE (2009)

9. Netz, A., Osadchy, M.: Using specular highlights as pose invariant features for 2d-3d
pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition
(2011)

10. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using
contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 1270–1281 (2007)

11. Biederman, I., Ju, G.: Surface versus edge-based determinants of visual recognition.
Cognitive Psychology 20(1), 38–64 (1988)

12. Rosenhahn, B.: Pose estimation revisited. PhD thesis, Universität Kiel (September
2003)

13. Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation
templates for real-time detection of texture-less objects. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2257–2264 (2010)

14. Gavrila, D.: A bayesian, exemplar-based approach to hierarchical shape match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1408–1421
(2007)

15. Reinbacher, C., Ruther, M., Bischof, H.: Pose estimation of known objects by effi-
cient silhouette matching. In: IEEE International Conference on Pattern Recogni-
tion, pp. 1080–1083 (2010)

16. Lowe, D.: Three-dimensional object recognition from single two-dimensional im-
ages. Artificial Intelligence 31(3), 355–395 (1987)

17. Liu, M., Tuzel, O., Veeraraghavan, A., Chellappa, R., Agrawal, A., Okuda, H.:
Pose estimation in heavy clutter using a multi-flash camera. In: IEEE International
Conference on Robotics and Automation (2010)



Pose Refinement of Transparent Rigid Objects with a Stereo Camera 157

18. Ulrich, M., Wiedemann, C., Steger, C.: CAD-based recognition of 3d objects in
monocular images. In: International Conference on Robotics and Automation,
vol. 1191 (2009)

19. Canny, J.: A computational approach to edge detection. Readings in Computer
Vision: Issues, Problems, Principles, and Paradigms 184, 87–116 (1987)

20. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (1992)

21. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces.
International Journal of Computer Vision 13(2), 119–152 (1994)

22. Pulli, K.: Multiview registration for large data sets. In: IEEE Second International
Conference on 3-D Digital Imaging and Modeling, pp. 160–168 (1999)

23. Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-
view registration technique. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18(5), 540–547 (1996)

24. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image and Vision
Computing (2003)

25. Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional
matching. In: Electronic Colloquium on Computational Complexity, TR03-020
(2003)

26. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction
networks. In: Proc. Pacific Symp. Biocomputing, vol. 13, pp. 303–314. Citeseer
(2008)

27. Hubert, M., Rousseeuw, P., Van Aelst, S.: High-breakdown robust multivariate
methods. Statistical Science 23(1), 92–119 (2008)

28. Rousseeuw, P.: Multivariate estimation with high breakdown point. Mathematical
Statistics and Applications 8, 283–297 (1985)

29. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 10(2), 112–122
(1973)

30. Matas, J., Shao, Z., Kittler, J.: Estimation of curvature and tangent direction by
median filtered differencing. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.)
ICIAP 1995. LNCS, vol. 974, pp. 83–88. Springer, Heidelberg (1995)

31. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the
hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 850–863 (1993)

32. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization Theory and Applications 79(1),
157–181 (1993)

33. Johnson, S.G.: The nlopt nonlinear-optimization package,
http://ab-initio.mit.edu/nlopt

34. De Las Rivas, J., Fontanillo, C.: Protein–protein interactions essentials: key con-
cepts to building and analyzing interactome networks. PLoS Computational Biol-
ogy 6(6), e1000807 (2010)

http://ab-initio.mit.edu/nlopt


Analysis of Space-Time Flow Structures

by Optimization and Visualization Methods

Alexander Bondarev

Keldysh Institute for Applied Mathematics RAS, Russia, Moscow
bond@keldysh.ru

Abstract. This paper presents an approximate approach to analysis
of space-time structures for unsteady problems in CFD (computational
fluid dynamics). The approach is based on the solution of optimization
problem combined with methods of data visual presentation. This ap-
proach is intended for fast approximate estimation of unsteady flow struc-
tures dependence on characteristic parameters (or determining parame-
ters) in a certain class of problems. For some cases such approach allows
to obtain the sought-for dependence in a quasi-analytical form. Having
natural internal parallelism the approach is very suitable for parallel
computations.

Keywords: space-time structures, optimization, inverse problems, vi-
sualization methods.

1 Introduction

Time-dependent processes in CFD problems are often accompanied by the pres-
ence of changeable space-time structures (STS) in the flow, such as separation
zones, circulating flows, vortex bursts, etc. These structures cause many unde-
sirable effects in practice: reduced lift, airframe and control vibrations. STS can
appear and disappear defining the flow pattern and quantitative characteristics
of the flow field. Simulating these changeable structures is therefore an important
aspect of CFD.

Nowadays, modern computer hardware and mathematical methods allow one
to simulate practically any time-dependent physical process in CFD and to ob-
tain corresponding field of physical values. Calculating thoroughly the flow field
one can obtain a beautiful picture of STS transformations. Nevertheless it is
evidently insufficient for practical aims. In practice the phenomenon (physical
effect) by itself is not the main point of interest. For practical engineering it is
more interesting to know the circumstances leading to the phenomenon appear-
ance, i.e. how this appearance depends on the problem characteristic parameters,
such as Mach number, Reynolds number, Prandtl number etc. To define such
dependence one should solve the problem in optimization statement, which is
based on multiple calculations of the inverse problem.

This paper presents an approximate approach to analysis of space-time struc-
tures. This approach is intended for fast and rough estimation of unsteady flow

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIX, LNCS 7870, pp. 158–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Analysis of Space-Time Flow Structures by Optimization 159

structures dependence on characteristic parameters in a certain class of prob-
lems. The approach is based on the solution of optimization problem combined
with methods of data visual presentation. Visualization methods are applied to
the solution of optimization problem. The solution is obtained in a form of mul-
tidimensional array. According to classification described in [1], such approach
can be referred to data analysis methods.

There are two high-priority tasks for modern parallel computations: multidis-
ciplinary problems and inverse problems. From this point of view the described
below approach is very promising because it can be applied to a very wide range
of time-dependent processes for various practical applications. Using the theory
of optimization problems solution the approach is a modification of method [2]
(parametric space analysis).

As it is shown below for concrete examples, this approach allows obtaining
the sought-for dependencies in a form of quasi-analytical expressions.

2 Inverse Problems and CFD Applications

Numerical computation of the inverse problems in CFD is enough difficult. One
should calculate 4D problems (3D+time) in a variational statement. It requires
using high-performance computers. The separate difficulty is to visualize the in-
verse problems solutions for multidimensional case. There is a significant lack of
concepts and tools in scientific visualization now. Nevertheless, the rapid devel-
opment of computing technologies and hardware allows one to solve this class of
numerical simulation problems.

A wide range of CFD problems can be solved using the concept and statement
of inverse problems. Typically, the practical engineering problem is to choose the
desired variants from the set of admissible variants. This can be the choice of
a geometric shape (minimal drag), the choice of flow control (maximal mix-
ing), etc. According to [3,4], the inverse problems are classified as boundary
searches, coefficient searches, retrospective inverse problems, optimization prob-
lems. In general, for practical goals inverse problems are formulated as follows.
One should find the determining parameters for which a phenomenon of interest
occurs in a certain class of problems. It shouldn’t depend on the details of the
phenomenon appearance. It can be quantitative appearance of the phenomenon
(some variable reaches definite value) or qualitative appearance (vortex forma-
tion, flow separation, any other STS changing).

Let’s consider formalized statement of the inverse problem in a general form.
The numerical solution of the chosen CFD problem is elaborated during the

computation process. The solution is defined by the finite set of determining
parameters (or characteristic parameters) of the problem. These determining
parameters can be divided into three main groups:

A = (a1, ..., an) - the parameters determining physical properties and mathe-
matical model of problem;

B = (b1, ..., bm) - the parameters determining the numerical method;
C = (c1, ..., cl) - the parameters determining organization of the calculation

process.



160 A. Bondarev

All these parameters form the numerical solution

F = F (A,B,C) = F (a1, ..., an, b1, ..., bm, c1, ..., cl) (1)

as a result of computation. So, the solution is based on the chosen mathematical
model, numerical method and the way of calculation process organization.

We consider the event functional J(F (A,B,C)). Just as logical variable so
this functional has two values:

J(F (A,B,C)) = 1 - if the event of interest occurs (independently on the event
details), or

J(F (A,B,C)) = 0 - if the event of interest doesn’t occur.
Presenting J(F (A,B,C)) in a form

J(F (A,B,C)) = J(a1, ..., an, b1, ..., bm, c1, ..., cl) (2)

one can formulate the inverse problem in a general form as follows. Find all the
determining parameters (a1, ..., an, b1, ..., bm, c1, ..., cl) for which a phenomenon
of interest occurs in a certain class of problems, i.e.

J(a1, ..., an, b1, ..., bm, c1, ..., cl) = 1 (3)

Considering the determining parameters (a1, ..., an, b1, ..., bm, c1, ..., cl) as a set
of basis vectors, one can present the space of the determining parameters
L(a1, ..., an, b1, ..., bm, c1, ..., cl) having (n+m+ l) dimensions.

Then for general case the inverse problem can be formulated as the problem
of finding in this space L all the subdomains L∗ where the event of interest is
observed, i.e. J(L∗) = 1.

At the same time the problem of data filtration is solved. Setting the ranges
for characteristic parameters one can not guarantee the fact of appearance of
the sought-for event inside the range. So if the event does not occur for some
point of space, this point is not considered.

3 Optimization Problem and Visualization

Using numerical or experimental modeling of unsteady phenomenon for practi-
cal goals in mechanics we usually know the reason of phenomenon appearance
and quantitative parameter regulating this reason (control parameter)f∗

cont. The
simulation is intended to define the control parameter dependencies on the de-
termining parameters (f1, ..., fn) of the problem. To obtain such dependencies
f∗
cont(f1, ..., fn) in a quasi-analytical or in a table form is a real practical goal
of research. As a matter of fact these dependencies have been the main point of
practical CFD applications last 50 years.

This paper considers a methodological approach to obtain these dependencies
by means of numerical simulation. The approach can be described in general as
follows.

Let’s suppose that one has mathematical model of the CFD problem and reli-
able numerical method for solving. Then one can simulate some time-dependent



Analysis of Space-Time Flow Structures by Optimization 161

CFD process under investigation. During this simulation some event occurs. For
instance, a new space-time flow structure appears. Such simulation is a compu-
tation of direct problem.

To study thoroughly the unsteady event one should solve the inverse problem
with purpose to find the exact value of control parameter, when the event occurs.

For inverse problem solution one should multiply solve the direct problem
varying the control parameter f∗

cont(f1, ..., fn) until the onset of the unsteady
phenomenon (physical effect) of interest. During this optimization process the
set of determining parameters (f1, ..., fn) is fixed. It is classic form of inverse
problem. But it is the solution only for single point in multidimensional space
created by determining parameters (f1, ..., fn).

Then a set of grid points is specified for each determining parameter range.
So the grid in multidimensional space is defined. The main point of interest
is to find the solutions of inverse problem for each point of the grid. For this
purpose the inverse problem should be solved multiply, for each point of grid.
This procedure is a parametric optimization analysis. As a matter of fact it is
a kind of standard parametric research where the inverse problem is considered
for each point of parametric grid instead of direct problem.

The considered problem is a very difficult one. It requires a lot of computer
resources. So it is quite natural to use parallel methods for this problem.

The problem of parametric optimization analysis has one serious advantage. It
amounts to solving a set of similar small tasks. Each small task is the solution of
inverse problem having a fixed set of determining parameters. So the approach
of multitask parallelism can be applied. Using the principle ”one task – one
process” and having a minimal quantity of internal exchanges allows one to
make very effective applications of this approach to practical problems. The
possibility of rough grids using is another one serious advantage of the approach
to be described.

The most effective and easy way to implement multitask parallel computations
is to apply MPI (Message Passing Interface) technology [5]. Using MPI tools one
can implement parallel computations according to the scheme presented in Fig. 1.

The control process creates the grid in the multidimensional space of deter-
mining parameters. Then the process forms the tasks and sends them to others
processes and to itself. After task completion the control process collects the
results in multidimensional array.

As a result one obtains control parameter dependence on determining param-
eters in general form of n-dimensional array f∗

cont(f1, ..., fn).
This form is not suitable for practical goals. The most effective way of a search

of the sought-for dependence in a quasi-analytical form is visual presentation of
the array.

Analyzing the array one can decrease the dimensionality. For this purpose one
should omit those determining parameters, which do not influence at the con-
trol parameter. If one has as a result n ≤ 3 after such decreasing, then the rest
of data can be visualized. For some cases the visualization is fast and effective



162 A. Bondarev

Fig. 1. Scheme of multitask parallel computations

way to obtain the dependence f∗
cont(f1, ..., fn) in a form of quasi-analytical ex-

pression. To obtain such expressions it is assumed to approximate the array data
(where it is possible) by simple geometric elements, such as lines, planes, parts of
spheres etc.

It is very simple to do if we are dealing with the case of two determining
parameters. We can approximate the surface f∗

cont(f1, f2). For the case of three
determining parameters we are able to build the isosurfaces. Then we can try
approximating the isosurfaces by means of simple geometric elements. But for the
case n > 3 there is an evident lack of concepts and tools for visual presentation.
The creation of reliable and suitable for human acceptance visual presentations
for this case is a subject for discussions.

By tradition the problem of multidimensional data visualization can be re-
ferred to the field of Information Visualization due to the fact that the solutions
of such problems are necessary for business applications. There were some at-
tempts to elaborate original visualization methods for multidimensional data.
For instance, one can mention such approach as ”Chernov’s faces” [6]. The main
idea of this approach is to present the values of different variables by various
details of human face. Another attempt is presented in [7] for the space of events
as ”event tunnel”. The space of events is presented in a form of 3D cylinder
(”event tunnel”). Lengthwise axis presents the time; the events are presented as
spheres inside the cylinder. As the distance from the point of observation grows,
the sizes of spheres are reduced. Despite some success for business applications
the artificial character of such visual concepts is evident.

So for common case one should try to decrease the array dimensionality up to 3
and hope the class of problems under consideration would allow such decreasing.
Fortunately, for many real applications it is true, as it is shown below.

There are some well-known ways to decrease the array dimensionality.
The first way is the analysis of variances for each characteristic parameter.

Characteristic parameter is considered as coordinate direction. Data variances
D1, D2, ...Dn are computed along the each direction. Then the variances should



Analysis of Space-Time Flow Structures by Optimization 163

be arranged. The direction with minimal variance Dmin = min
i=1,n

{Di} is rejected

(compactification).
Another way is the construction of different 3D data projections for various

triplets of determining parameters, as it is shown below for example of compu-
tations. If the data on projections for some direction are close to constant then
this direction can be rejected.

Also it is very useful to apply PCA method (Principal Component Analysis)
with purpose to decrease the number of dimensions. The principal component is
a direction in multidimensional space with maximal data variance along. PCA
method is based on localization of 3 principal components and data presentation
using these components as new coordinate system. So this method provides the
choice of a new orthogonal basis with coordinate directions corresponding to
the variances arranged in descending order. For the case of data with complex
topology PCA method is generalized. The generalized method is called principal
manifolds method (or principal curves) [8].

Combining all these methods one can decrease the array dimensionality for
many practical cases.

Described above approach combines the parallel computations of paramet-
ric optimization problem with and data analysis. The approach was applied to
analysis of finite difference schemes also. This methodological approach was suc-
cessfully used in [9] to optimize the computational properties of hybrid finite
difference scheme applied to the solution of the supersonic far wake problem.
Viscosity and turbulence were taken into account. The emergence of undesired
oscillations was considered as the event to be controlled. The weight coefficient of
finite difference scheme was used as the control parameter. The grid step, Mach
and Reynolds numbers were chosen as determining parameters. As a result for
chosen class of problems the weight parameter dependence on determining pa-
rameters was obtained in a quasi-analytical form.

4 Application Examples

The optimization approach is applied to practical analysis of unsteady circulating
zones transformation. The problem of unsteady interaction of the supersonic
viscous flow with jet obstacle is considered. This obstacle appears due to co-
current underexpanded jet exhausting from the nozzle. The nozzle is placed
to external supersonic viscous flow. Expanding jet propagates on the external
surface of the nozzle and creates obstacle in external flowfield. The obstacle
disturbs external flow and circulating zone appears ahead the obstacle. Typical
flow structure is shown in Fig. 2 (a) by streamlines.

We consider a problem containing time-dependent boundary condition for un-
derexpanded jet. Jet pressure ratio was set at the nozzle edge as time-dependent
function n = n(t) = Pa/P∞ (where Pa - jet pressure, P∞ - external flow
pressure). The full system of time-dependent Navier-Stokes equations for vis-
cous compressible heat-conductive flow is used as mathematical model. Implicit



164 A. Bondarev

hybrid finite difference WW-scheme is applied to solve the system of equations.
This scheme has second order accuracy in time and space.

The dependence n = n(t) is chosen as linear function. It allows one to set
different rates of pressure ratio growth up to n = 100.

As a result of calculations of direct problem a new STS formation is obtained.
Increasing the rate of pressure ratio growth one obtains new space-time structure
in the vicinity of circulating zone ahead the jet obstacle. This new structure is
shown by streamlines in Fig. 2 (b).

Fig. 2. Flow structure for slow pressure ratio growth (a) and for fast pressure ratio
growth (b)

Let’s consider the optimization approach application to analysis of unsteady
event: the formation of the new space-time structure in the flow. The rate of pres-
sure ratio growth is chosen as control parameter. The case of four determining pa-
rameters is considered. These four parameters are Mach number M∞, Reynolds
numberRe∞, Prandtl number - Pr∞ and Sh∞ - Strouhal number for the problem
under consideration. For each fixed set of these numbers (M∞, Re∞,Pr∞, Sh∞)
the inverse problem is solved by varying pressure ratio growth rate until the on-
set of the new structure formation in the flow. These characteristic numbers vary
in ranges: 1.5 ≤ M∞ ≤ 3; 2.5 ≤ lgRe∞ ≤ 4; 0.72 ≤ Pr∞ ≤ 1; 1 ≤ Sh∞ ≤ 2. For
each new fixed set of numbers (M∞, Re∞,Pr∞, Sh∞) the procedure described
above is repeated.

So for each set of determining parameters (M∞, Re∞,Pr∞, Sh∞) one defines
the exact values for crucial velocity of pressure ratio growth V ∗ and characteristic
time t∗ when the new flow structure appears. As event characteristic time t∗ =
tev/tn=100 is chosen, here tev - the time when the event occurs and tn=100 - the
time when pressure ratio reaches 100.

According to the scheme presented in the previous chapter parallel algorithm
is elaborated for computations. Two types of grids are chosen: 5 and 10 points
for each determining parameter. It requires computing 625 and 10000 inverse
problems. The computations are performed by parallel cluster K100 (Keldysh
Institute of Applied Mathematics RAS, Moscow, Russia). MPI technology is
applied to control parallel computations.

As a result of approach application four-dimensional arrays are obtained. These
arrays contain numerical presentations of the characteristic time t∗ and crucial ve-
locity V ∗ dependencies on four determining parameters (M∞, Re∞,Pr∞, Sh∞).

According the previous chapter some methods are applied to decrease the
number of dimensions.



Analysis of Space-Time Flow Structures by Optimization 165

The analysis of variances for each characteristic parameter shows the fact the
variance along direction Re∞ is much smaller than the others, i.e. DlgRe∞ <<
DM∞ , DSh∞ , DPr∞ . One can assume the determining parameter Re∞ does not
influence on the solution.

The construction of different 3D data projections for various triplets of deter-
mining parameters confirms this assumption.

The dependencies V ∗ = V ∗(M∞, lgRe∞,Pr∞) and t∗ = t∗(M∞, lgRe∞,Pr∞)
are presented in Fig. 3 and Fig. 4 by isosurfaces. These isosurfaces show that
characteristic time and crucial velocity does not depend on Reynolds number for
chosen laminar diapason ofRe∞.

Fig. 3. Crucial velocity dependence on Mach, Reynolds and Prandtl numbers

Fig. 4. Characteristic time dependence on Mach, Reynolds and Prandtl numbers

Further, the dimensionality of array can be decreased and one is able to con-
sider 3D arrays V ∗ = V ∗(M∞,Pr∞, Sh∞) and t∗ = t∗(M∞,Pr∞, Sh∞). These
dependencies are shown in Fig. 5 and Fig. 6 by isosurfaces.

Also PCA method is applied to four-dimensional array containing crucial
velocity data. The presentation of crucial velocity in coordinates of principal
components is shown in Fig. 7.

Using all these results and visual presentations one can make two main
conclusions:

1) The dimensionality of four-dimensional array under consideration can be
decreased up to 3, because characteristic parameter Re∞ has a very small influ-
ence on the solution.



166 A. Bondarev

Fig. 5. Crucial velocity dependence on Mach, Prandtl and Strouhal numbers

Fig. 6. Characteristic time dependence on Mach, Prandtl and Strouhal numbers

Fig. 7. Data presentation for crucial velocity in principal components

2) Analyzing the view of these visual presentations one can approximate the
isosurfaces by planes. For the purpose of rough estimation the sought-for depen-
dence can be written in a form of plane



Analysis of Space-Time Flow Structures by Optimization 167

AM∞ +B Pr∞ +CSh∞ = const.

It allows one to get average estimation of V ∗ and t∗ dependencies on determining
parameters as

V ∗ = V ∗(M∞,Pr∞ , Sh∞) = −0.1M∞ + 0.115Pr∞ +0.24Sh∞ (4)

t∗ = t∗(M∞,Pr∞ , Sh∞) = 0.224M∞ − 0.04Pr∞ −0.132Sh∞ (5)

These expressions describe the connection between control parameter (pressure
ratio growth rate) and characteristic parameters – Mach, Reynolds and Strouhal
numbers.

The way to check the accuracy of such approach is simple enough. For this
purpose one should specify characteristic numbers and the rate of pressure ratio
growth and then one should carry out the computation of the straight problem.
The resulting space-time structure can be compared with the structure corre-
sponding to approximate expression.

For the problem under consideration such estimation of accuracy is computed
also. Maximal deviation from the approximating plane for crucial velocity does
not exceed 14 percents.

5 Dicussions

In this chapter we would like to discuss the field where the described approach
could be efficiently implemented.

As is known, computer simulation of 3D time-dependent CFD process is a
very difficult task. The simulation requires a lot of computer resources, especially
for thorough grids. Taking this into account, the implementation of parametric
research for such simulation is almost impossible. Even parallel computer systems
can not help much. One can find an example of this situation in [10]. In this
paper the authors describe the simulations of 3D time-dependent CFD complex
problems, such as the search of separation zones in the flows, internal CFD
problems for engines, etc. The authors note the fact that even for direct problem
solution the computation of Navier-Stokes equations with modern parallel cluster
can take up to two weeks.

For such problems the researcher can not know in advance the point in the space
of determining parameters where the computation would be effective. So the set
of determining parameters for direct problem is chosen by researcher basing on
experience. The inaccuracy of this choice leads to the loss of computer time.

At the same time these difficulties can be avoided. A simple strategy of com-
puting can be applied with the help of preliminary optimization approach.

At the first stage of this strategy proposed in this paper approach is applied
for rough grids. It allows obtaining important points in the space of determining
parameters. Also in this space can be defined hidden dependencies.



168 A. Bondarev

At the second stage one can carry out the computation of direct problem for
thorough grid. The fixed set of determining parameters for the problem is set in
accordance with results of the previous stage of computation.

6 Conclusions

The optimization approach to unsteady processes analysis is considered. The ap-
proach allows carrying out fast and effective estimation of the way how the cru-
cial points of flow structure transformation depend on determining parameters
of the problem. Combining the inverse problems solutions with the visual presen-
tations of such solutions for many real cases allows one to obtain the sought-for
dependencies in a quasi-analytical form. The approach can be applied for rough
grids. The approach amounts to solving a set of similar small tasks, so it can be
applied also for parallel computations. The approach can be applied to a wide
range of time-dependent processes for various practical applications.

Acknowledgements. This work is supported by RFBR (project number
13-01-00367A).

References

1. Bondarev, A.E., Galaktionov, V.A., Chechetkin, V.M.: Analysis of the develop-
ment concepts and methods of visual data representation in computational physics.
Computational Mathematics and Mathematical Physics 51(4), 624–636 (2011)

2. Sobol, I.M., Kartyshov, S.V., Kulchickaya, I.A., Levitan, Y.L.: Multicriterial op-
timization of mathematical models. Matematicheskoe Modelirovanie (6), 85–93
(1994) (in Russian)

3. Alifanov, O.M.: Inverse Problems for Heat Transfer. Mashinostroenie, Moscow
(1988) (in Russian)

4. Beck, J.V., Blackwell, B., St.Clair, C.: Inverse Heat Conduction. Ill-posed Prob-
lems. John Wiley&Sons, USA (1985)

5. Pacheco, P.: Programming Parallel with MPI. Morgan Kaufmann, San Francisco
(1997)

6. Savasere, A., Omiecinski, E., Navathe, S.: An Efficient Algorithm for Mining As-
sociation Rules in Large Databases. In: Proc. 21st Int’l. Conf. Very Large Data
Bases, pp. 432–444. Morgan Kaufmann, San Francisco (1995)

7. Suntinger, M., Obweger, H., Schiefer, J., Gröller, M.E.: Event Tunnel: Explor-
ing Event-Driven Business Processes. IEEE Computer Graphics and Applica-
tions 28(5), 46–55 (2008)

8. Gorban, A., Kegl, B., Wunsch, D., Zinovyev, A. (eds.): Principal Manifolds
for Data Visualization and Dimension Reduction. LNCSE, vol. 58. Springer,
Heidelberg (2007)

9. Bondarev, A.E.: Optimizing Hybrid Finite Difference Scheme with regard to Vis-
cosity and Turbulence on the Base of Inverse Problems. In: Proc. of Conf. ”High-
Performance Computations in Mechanics and Physics”, Moscow, pp. 39–44 (2009)
(in Russian)

10. Shalaev, V.I., et al.: Application of parallel computer technologies to complex CFD
problems in “VC FALT MFTI”. Supercomputers 10(2), 59–64 (2012) (in Russian)



Author Index

Adzhiev, Valery 131

Barinova, Olga 92
Bayakovski, Yuriy 107
Bondarev, Alexander 158

Eruhimov, Victor 63, 143

Frolov, Vladimir 17

Galaktionov, Vladimir 17

Ignatenko, Alexey 117

Kharlamov, Alexander 17
Kryzhanovsky, Konstantin 48

Lukin, Alexey 1
Luniakova, Elizaveta 107
Lysenkov, Ilya 143

Malikova, Eugeniya 131
Matrosov, Mikhail 117

Menshikova, Galina 107
Milyaev, Sergey 92

Pasko, Alexander 131
Patana, Elena 33
Pestun, Maxim 107
Pilyugin, Victor 131
Pushchina, Zoya 48

Rychagov, Michael 33

Safonov, Ilia 33, 48
Shumskiy, Vladimir 78
Sinitsyn, Valentin 1
Sivovolenko, Sergey 117
Spizhevoy, Alexey 63
Storozhilova, Maria 1

Vil’kin, Aleksey 48
Vostryakov, Konstantin 17

Yurin, Dmitry 1

Zakharkin, Denis 107


	LNCS Transactions on Computational Science
	Table of Contents
	2.5D Extension of Neighborhood Filters for Noise Reduction in 3D Medical CT Images
	1 Introduction
	2  V Filtering
	3 2.5D Rank Filtering Algorithm
	4 16-bit Extension of Rank Algorithm
	5 2.5D Non-local Means Filtering
	6 Synthetic Phantom Generation
	7 Analysis of Residual Images
	7.1 Correlation Measure
	7.2 Entropy Measure

	8 Results
	9 Conclusion
	References

	Implementing Irradiance Cache in a GPU Realistic Renderer
	1 Introduction
	2 Related Work
	2.1 GPU Ray-Tracing
	2.2 Irradiance Cache
	2.3 Parallel Irradiance Cache
	2.4 GPU Irradiance Cache

	3 Suggested Approach
	3.1 Creation of Irradiance Cache
	3.2 The Very First Pass (Coarse Screen Space Pass)
	3.3 Final Rendering
	3.4 Implementation and Results
	3.5 Hemisphere Sampling
	3.6 Insertion Records in Octree
	3.7 Fast Octree Look-Up
	3.8 Results Overview
	3.9 Bottleneck Analysis
	3.10 Conclusion

	References

	Adaptive Generation of Color Anaglyph
	1 Introduction
	2 Related Works
	3 Adaptive Anaglyph Generation
	3.1 General workflow
	3.2 Anaglyph Enhancement
	3.3 Transmission Func ctions Estimation by User
	3.4 Algorithm for selection of transmission function of existing filter
	3.5 Adaptation to Size of Hardcopy

	4 Results and Disc cussions
	References

	Audio-Adaptive Animation from Still Image
	1 Introduction
	2 Related Works
	3 Animation Effects from Single Image
	3.1 General Workflow
	3.2 Flashing Light
	3.3 Soap Bubbles
	3.4 Sunlight Spot

	4 Adaptation to Audio
	5 Results and Discussion
	6 Future Works
	References

	Auto-calibration for Image Mosaicing and Stereo Vision
	1 Introduction
	2 Rotational Camera Auto-calibration
	2.1 Problem Statement
	2.2 Intrinsic Parameters Error Effect
	2.3 Proposed Algorithm
	2.4 Experiments

	3 Stereo Rig Auto-calibration
	3.1 Problem Statement
	3.2 Camera Intrinsic Parameters Error Effect
	3.3 Proposed Algorithm
	3.4 Experiments

	4 Conclusion
	References

	GPU Ray Tracing – Comparative Study on Ray-Triangle Intersection Algorithms
	1 Introduction
	2 Previous Work
	2.1 Moller-Trumbore’s Algorithm
	2.2 Unit Triangle Algorithm
	2.3 Bounding Volume Hierarchies

	3 Implementation
	3.1 GPU Optimized Intersections

	4 Results
	5 Conclusion and Future Work
	References

	Learning Graph Laplacian for Image Segmentation
	1 Introduction
	2 Related Work
	3 One-Dimensional Manifold Embedding for Semantic ImageSegmentation
	3.1 Manifold Embedding
	3.2 Image Segmentation as the Manifold Embedding Problem
	3.3 Approximation of Laplace-Beltrami Operator
	3.4 Discretization of the Problem with Graph Laplacian

	4 Unsuperivised Learning of Graph Laplacian Parameters
	4.1 Kernel Bandwidth � Selection with Fixed α
	4.2 Implementation Details

	5 Experiments
	5.1 GrabCut Image Dataset
	5.2 Graz Image Dataset
	5.3 Pascal 2007 Image Dataset

	6 Conclusion
	References

	Virtual Reality Technology for the Visual Perception Study
	1 Introduction
	2 Method
	2.1 Observers
	2.2 Stimuli
	2.3 Apparatus
	2.4 Procedure

	3 Results
	4 Conclusion
	References

	Locally Adapted Detection and Correction if Unnatural Purple Colors in Images of Refractive Objects Taken by Digital Still Camera
	1 Background
	2 Introduction
	3 Setup and Photos
	4 Examination
	5 Correction
	5.1 Previous Algorithm
	5.2 Proposed Algorithm
	5.3 Segmentation Technique

	6 Results
	7 Conclusion
	References

	Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis
	1 Introduction
	2 Some Theoretical Generalizations
	3 Function Representation and HyperFun Language
	4 Practical Example
	4.1 Problem Statement
	4.2 Solving the First Problem
	4.3 Solving the Second Problem
	4.4 HyperFun Program Implementing the Algorithm f1 and Results of Its Work

	5 Conclusions
	References

	Pose Refinement of Transparent Rigid Objects with a Stereo Camera
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Creation of the 3D Model
	3.2 The Cost Function

	4 Experimental Results
	4.1 Transparent Objects
	4.2 Textureless Objects

	5 Conclusion
	References

	Analysis of Space-Time Flow Structures by Optimization and Visualization Methods
	1 Introduction
	2 Inverse Problems and CFD Applications
	3 Optimization Problem and Visualization
	4 Application Examples
	5 Dicussions
	6 Conclusions
	References

	Author Index



